Learn to connect your apps and games to the most
popular social networking sites like Twitter and Facebook

Beinnig
10S Apps with
Facebook and Twitter APIs

for iPhone, iPad, and iPod touch

Chris Dannen | Christopher White

APIESS”

Beginning iOS Apps with
Facebook and Twitter
APIs

For iPhone, iPad, and iPod touch

Chris Dannen
Christopher White

Apress®

Beginning iOS Apps with Facebook and Twitter APIs: For iPhone, iPad, and iPod touch
Copyright © 2011 by Chris Dannen, Christopher White

All rights reserved. No part of this work may be reproduced or transmitted in any form or by any
means, electronic or mechanical, including photocopying, recording, or by any information
storage or retrieval system, without the prior written permission of the copyright owner and the
publisher.

ISBN 978-1-4302-3542-2
ISBN 978-1-4302-3543-9 (eBook)

Trademarked names, logos, and images may appear in this book. Rather than use a trademark
symbol with every occurrence of a trademarked name, logo, or image we use the names, logos,
and images only in an editorial fashion and to the benefit of the trademark owner, with no
intention of infringement of the trademark.

The use in this publication of trade names, trademarks, service marks, and similar terms, even if
they are not identified as such, is not to be taken as an expression of opinion as to whether or not
they are subject to proprietary rights.

President and Publisher: Paul Manning

Lead Editor: Steve Anglin

Development Editor: Tom Welsh

Technical Reviewer: Ryan Petrich

Editorial Board: Steve Anglin, Mark Beckner, Ewan Buckingham, Gary Cornell, Jonathan
Gennick, Jonathan Hassell, Michelle Lowman, James Markham, Matthew Moodie, Jeff
Olson, Jeffrey Pepper, Frank Pohlmann, Douglas Pundick, Ben Renow-Clarke, Dominic
Shakeshaft, Matt Wade, Tom Welsh

Coordinating Editor: Kelly Moritz

Copy Editor: Patrick Meader

Compositor: MacPS, LLC

Indexer: John Collin

Artist: April Milne

Cover Designer: Anna Ishchenko

Distributed to the book trade worldwide by Springer Science+Business Media, LLC., 233 Spring
Street, 6th Floor, New York, NY 10013. Phone 1-800-SPRINGER, fax (201) 348-4505, e-mail
orders-ny@springer-sbm.com, or visit waw.springeronline.com.

For information on translations, please e-mail rights@apress.com, or visit www.apress.com.

Apress and friends of ED books may be purchased in bulk for academic, corporate, or
promotional use. eBook versions and licenses are also available for most titles. For more
information, reference our Special Bulk Sales—-eBook Licensing web page at
www.apress.com/bulk-sales.

The information in this book is distributed on an “as is” basis, without warranty. Although every
precaution has been taken in the preparation of this work, neither the author(s) nor Apress shall
have any liability to any person or entity with respect to any loss or damage caused or alleged to
be caused directly or indirectly by the information contained in this work.

The source code for this book is available to readers at waw.apress.com and
https://github.com/chrisdannen/Apress_iOSFacebookTwitter. You will need to answer questions
pertaining to this book in order to successfully download the code.

Contents at a Glance

L1] (] iv
About the AUtNOIS......ccccrusemmmssnnmmsssnnmsssnsmsssssssssssessansesssnsesssnnssssnnssssnnssssnnssssnnss viii
About the Technical REVIEWETccrssumrmssansmsssnsssssnsssssnsssssnsssssnsssssnsssssnnssssnnssss ix
Acknowledgmentscuceemeemmmmmmsssssssssnssnnnmmssssssssssnsnnnssssssssssssnnnnnnnnessssssssnnnnnnnnness X
Prefacecuverrssmmmmsssnmsssnnmmsssnnssssnnssssnssssansssssnnessansessannesssnnessnnnesssnnssssnnsssnnnssssnnss Xi
Chapter 1: What the Social Graph Can Do for Your Appccccuseenmmsssssnnsnsssnnns 1
Chapter 2: Privacy, Privacy, Privacyccccsusssssnsssssssnnsssssssssssssssssnnssssssnnsssssnnns 9
Chapter 3: Choose Your Weapon!ccccmmmssmnnnsssssssnssssssssnssssssssssssssssnnssssss 15
Chapter 4: Getting Set Upcccccvvieemmmnnnssenmnmssssssnmmsssssssssmsssssssssssssssssssssssnssnsss 21
Chapter 5: Working Securely with OAuth and Accountsccucccenmrnssnennnnnans 37
Chapter 6: Getting Your App Ready for Social Messaging..........cccssrssssnnnsssans 65
Chapter 7: Accessing People, Places, Objects, and Relationships..........cc.... 81
Chapter 8: POSTing, Data Modeling, and Going Offlineccoccemrrnssnnnnnnnans 105
Chapter 9: Working with Location Awareness and Streaming Data............ 135
Chapter 10: Using Open Source Tools and Other Goodi€scccsrrsssnnnsssans 179
Chapter 11: Apps You Can (and Cannot) Buildcccccuseemnnnsssennnnnssssssnnnans 211
Chapter 12: Ul Design and Experience Guidelines for Social iOS Apps 235
Chapter 13: Twitter Ul DesSign.......ccciuussssmmnmmssssnnnsssssssssssssssssssssssssssssssssnnssssss 247
Chapter 14: Facebook Ul DeSigN.......ccuseerressssnnnssssssnssssssssssssssssssssssssssnnssssss 267
INA@X 1eisunmnnsssssnnnnnssssnnnnnssssnnnnnssssnnnnnssssnnnnsssssnnnnssssssnnnnsssssnnnnsssssnnnnnsssnnnnnnsssnnnnnss 281

iv

Contents

Contents at a GIANCE.........cuunmmmmmermmmmmmmmsssssss s sssssssnsses M
About the AuthorS......ceeeernsss s Vil
About the Technical REVIEWErccccseemessmmmssssssssssssssssnssssssssssssssssssssssssssssssssssnnns IX
Acknowledgmentsucceeeeemmmmrmsssssssssnssnnnnnmsssssssssssnnnnsssssssssssssssnsnnsssssssssnnnnnnnnnnes X

] [- TR | |

Chapter 1: What the Social Graph Can Do for Your Appccccvsseeennnssssnsnssnssnns 1
What IS ThiS BOOK fOI?......cvcciieiiiisiseissies s ss e sn s r s s s e s e en e snsas e sas e s sresnnssanens 2
What You'll Need................
What You Should Know
What You'll Learn...............
Learning the Social Graph.......
Use-Cases, Briefly........coovrrenrnerniennnns
Brief Overview of the APIs and Services

THE OlA WYceereiricirtsisssscs ettt se s se e e s a e e E e E e e e A b A bbb Re R 9

A Quick History of Hot-BUtton ISSUES...........cviuiecniicncrine e 10
FacebDOOK’S TrACK RECOIMccvreerririrerisiiesresess e e ss s e s e sn e sn s s n e sn e nnssennennnas 10
TWItter's TraCK RECOIM........cuceiririiriiiisisise e n s as e sn s sn b e nnsnn e nnns 10

How OAuth Changes EVErything ... sssssssssssssssssssssnssssssssssssssssssens 1
A NeW Standard EMEIGESccucverererrerereressessesessessessssessessesesssssessessssessessesassssssssessesssssessssssessessesssnsssesassanses 12

What Users “Want”........ccceeuennne

Educating Your Users...

A Note 0N FEeds........covvverrrenennsesenessesessssesesssesnnnnns

Chapter 3: Choose Your Weapon!ccccinmssssmnnmnssssnssssssssssssssssssssssssssssnssssss 19
What Are THEY GOOA FOI? ..o e ss s s e e s sn s en e sn s s e e s sss e s ssasnsnsssssnnne 15
FACEDOOKcvveeeieisce iR Re R Re R e e nn

TWIEET e ———
Getting Started with Facebook’s Awesome Developer Tools
Using FAcebook’s APL...........cocevrvrverennsenieserersese s ssesenas

Twitter’s Less Awesome (but Still Great!) TOOISccceiverriiresiisereesrsesessess s ssessss s ssssssnsns
USING MGTWILEEIENGINE.....cceeireverere et ree st r e s e s s b e e s ae e e e s s s s e e sae e e e s e e e aesaenaesenaesaennen
1T 111 T OSSO
Chapter 4: Getting S
Git ’Er Dun........ccc.e
Github.com..........
Installing Git
Hello Facebook
L= 0 W o (0] =T OO
g LT 1 SO
L= 0 W o (0] =T OO
NOW, ON 10 SECUITY....coviieriiierirce e s r e e e e e e be e an e e nn e nn s
Chapter 5: Working Securely with OAuth and Accountsccuccccnnrnsssnnnnnnnns 37
OAII QADOUE QAULN ..ottt e e AR et ne e e nnannan 37
HOW QAULN WOTKScvveneeriiecseseesesessssssessssssess s e ssss e ss e s s ssssa s s sn s ss s ssesssessasssassensssssansssssenssssnsnsssnnes 38
OAULH N FACEDO0OK......cceitiieeieiieeireesesess e s e e e s s ae e n s ae et e e R e eeeRe e sanse s nan e e nanans 40
Single Sign-0n With FACEDOOK..........cccceererierererersirsere s s sae e e s e saesae s s e s e saesaesas e saesaesassesaesannnns 40
L0y T T 1T PSSO S 54
Creating @ TWitter APPlICALIONcccververere e s s sa e s s sa e s s ae e s e s e naennen 55
TREIE'S IMOTE.....cveeeeersceess et r e e s e bR e e E e e e e R e e Re e R e Re e s A e Re e b e Rean e e e RennnRe e nnsResn s nrnnnnnna 62
Chapter 6: Getting Your App Ready for Social Messaging..........cccurssssnnnssssss 69
Introducing the FACED00K Graph APL...........ccoeeeerirrirererrerrere s s sae e e saesas e s e sae e s e s e snesas e s e enens 66
A Little Help from OUF FHENAS.......covirverereceriere st se s e sssses e s ses e ssess s e ssesaesessessesaesasssssesaesasssssssassanses 66
Paging Graph RESPONSEScceieruererrirerersesessere s sesses e ssesaesessesaesaesas e s e ssesaesessessessesesssssessessessssessessssessesaesanne 70
Under the Hood: The FBREQUESTE CIASSccceeererrerierererirrenrere e sessesesesseses e s e ssessessssessessessessssessessssassesaesnses A
INtroducing the TWILEEE APISccccvueiirieriresre et sas s a e e s s e s saesa e e e s sae e e e s aesae e naesaennnns 72
Welcome 10 the TIMEINEccuiveieiieerereer s r e s a e sn s sn b e snsan e e e 72
Under the Hood: MGTwitter HTTP Connections and XML Parsing.........c.ccccevererrerverenessensesessesessesessesessessesaens 77
[T e [T OO SRR 79
Chapter 7: Accessing People, Places, Objects, and Relationships................ 81
More Fun with the FACED00K Graph APL..........coocv e re e s e sae e s e saesas e sesaesassesaesaesassessesnees
FACEDOO0K DIAI0OUS......eiuereerererererere e seese s see s sae e s s e se e e saesa e e s sae e s e s ae s e e sa e e e Re s e e e e aesaesee e naesaenaesannesaeanan
Under the Hood: The FBDIlog Classc.ccvcerererrerierenensersesesesessessesessesessessessessenens
Posting to Facebook and AUThOFZALION ..o e saen
Getting More Goodies from the Facebook Graph
Limiting Resultsccoceeuenee.
More Fun with the Twitter API.....
A Tweetin’ We Will Go............
Under the Hood: Twitter URLs....
The TWItter DBV CONSOIEccceverierrireerrsrisesssese s s e e ss e s sss e sn s s s s ba e sr b sa s nnsesse e sanse e nansennes

CONTENTS

Vi

CONTENTS

[T o [T OSSR 103
Chapter 8: POSTing, Data Modeling, and Going Offlineccsseenrrssssnnnnnn 109
STIKE @ POSE.....ecueeieeceiieesese st e en e sn e en s p e pnn 105

Saving a Picture to the i0S Simulator’s Photo Library....

Working with UllmagePickerController 106
ImagePostControllercccvevrcerereennne 109
Facehook PROtO UPIOGQccovieririeiirierertesere e sese e sae e s sa e ss s e s saesas e saesne e saesaesassesaesnennn 109
B g o 10 (o0 o o OO 110
POST @ PROT0 ...ttt e e s a e e e e R e nn e n s 115
Offline Paradigm and Background PrOCESSINGccceeevcerereerersersersersesessessessessessssessessesssssssessessessssssssssessssessessens 118

Data Modeling with TwitterDataStore
CONCIUSIONooveeeerreerereeees e

Here, There, and EVEIYWRETEcccciieriiriiesiiisesnese s ssssess e e s s ssssessssssssssssssssssssssssssssssasssssssssssssssssanens
Location Privacy, Disclosure, and Opt-0UL............ccevererienennmnnisssssess s ss s sssssssssssssssnssenees
FACEDOOK PIACEScueeeieiieeiisrce st e e s e e ee e ep e eesRe e nnn e n s
Adding LOCALIONS 10 TWEEBES......cceerererererirsererre st s e sas s e s e s sa e s s a e sae e e sa e s s saesa s e s aesnenns
POWEE HUNQIY ..ot s s ee e ee b e e Rt san e e nnnsnnnan
CoreLocation..........cooveeerensenerensenessssesesnssenens
Generating Locations in the i0S Simulator ...

Facebook Places (Search), Check-ins (Getting and Posting), and Friends Nearbyccocenvvnnisesnniennns 162
Tweetin® With LOCALIONcoureriieiiiiiscc i 172
L0 T 11 178

LTI 110 =T B (TN 2] 1] Y
Using URL Shorteners in i0S...........cccvvevvvriernnnenne
ShareKit: Sometimes Quick and Dirty Does the Trick...
Getting Started with ShareKitccccocvvvvenevniene
All the Latest TWItTer TrENUS.......ccccvierericrersess e s r s sas s s snsae e nnsnsnnnnnne
TrENUING TOPICS veveeruereererrerererersereseraesesseressesas e s e saese e e s s ae s e e e s ae s aese e e s aesaeseeseesesaeeae e e aesaesa e e e aesae e erae e nanns
WREFE ON EAITH ID.......ecieiccceeseiee e ss s s s s a s s n e n s e e s nnsr e e nn s e nnnnans
Offline Storage Revisited: SALITEcccucerieierniesirii s sa s sns e snn s
Reimplementing OfflineTwitter Without Core Data ..
To Test or Not to Test, That is the Question...
Adding Unit Tests to a Social i0S App.......ccccerevvernene
CONCIUSIONooveeerrreerereeeese e .

Chapter 11: Apps You Can (and Cannot) Build
Twitter: NO Clients AlIOWE.cccoeeereerereerererererse e sses e sae e s e sae e s e s e e sa s e s sae e s s s saesae e saesaesessesaesaesnssesaenans
The Lowdown on the Twitter TErms 0f SEIVICEccvvererererrercererere e seeees

REST APl RAte LIMItINGcoerveveriererieserisieseeserse e sseses e saesae e e e aesas e ssesaesassessesaesessesasssessssessesaessssessessssasnsssesaens
Facebook: Mind Your Manners
The Lowdown on Platform Policy..........
Creating a Great User Experience
BE TIUSIWOIENY ...cveeceiiccetce et a e e e er s e ne e n s
The PrinCiples i ACHON ..o s sa e s s e na e e e e e e aesaenes
Do 1o B CT: 11T T oSO

LT gAY] 3OO 224
FACEDOO0K APDS ..eveereerierereriersesessessesseses e s e ssssessesseses e s s saesas e saesaesessesaeseesessesaesae e ssesaesaesesaesaeneesesaesaesansnsaesannen 229
[T e [T OSSPSR 232

Attention to Detail: Start with the Icons....
Show All KindS 0f FEBADACKccevierririierinrisesisesessese e ss s s s s s s s s ssssssesssasssssssssssssanas
TOUCH Targets QN0 TEXLcce it s e a e s s e s e e s s a e e e s ea e e e ae s ae e e e s aesaenen
Prototype @nd TEST.....c.cviceiiice i r e nnn s
What the User Wants from YOUT AP ..c.coeeerrereereririereresiesesessessesessessessesassessessssssssssssessssssssssessesssssensssesassnns
Make Usage Easy and Obvious
CONCIUSIONooveeeerreerereeees e

LU 1oL LT o 10 (T SOOI
ANAOMY OF @ TWEETcuceeieecticcrer et s e s en b e e b e e nnsRennnnans
(NOt) USING TWIEEE COIOIScoveuieirrieirncsesinses e sn s e e s se s e nnsa s s a s nnsan e nsnnais
Using the TWItter Trad@marKcovvrieriererriere e re s s e se s s a e e s saesae e s sae e e e saeenennn

Twitter Navigation Paradigms.........ccvcerevririenereerererese s sessesesses e ssesesse s saesessessesaesasssssessesessesassasssssssaeans
Twitter Logos and Icons..........cccvvvenene
Visual Assets (a.k.a., the Exceptions) ...
Naming Your Project........cccocvevvererenne.
Offline DiSplay GUIAEIINEScicerriiceriiie i s sr s e e nnsa s nn e s e an e e sannis
Working With NOtifiCatiONS.......ccvvererererrercrereesr e e a e a e e sn e saesa e saennennes
Design Tricks from the WED APD ...cvecervrererrrere e ses e sa e se s s s sa e e s ae s aese e s saesa e e saesnennn

CONCIUSIONoveeeerreerereeeese e

Usability Priorities
Themes and Icons...
Rules for Facebook Art
FacehoOK NAVIGALtioNcccviiirieiiririerc e st res e s sa e sa s s se s s sa e sae e e s e sn e e s sae e s e saesaenns
SNOWING PrOGIESS .cueiuereereruereererreressessesassessessessssessessssssssssessessessssessessessasessessessssessessensssessessessssessessssesssssesanns
Essential Three20 COMPONENTScccvvereererieriererissersesesre s s sseses e e ssessessssesaesaesassessesaesessessessessesassssesnenen
Design Tricks from the Web App

CONCIUSIONoveeeerreerereeeese e

1 - . . 3 |

CONTENTS

vii

About the Authors

Chris Dannen is a business and technology writer who writes for FastCompany
magazine and other publications. He is also the author of “iPhone Design
Award Winning Projects” (Apress, 2009). He lives in Brooklyn, NY.

Christopher White is an iOS engineer with a background in location-based
gaming, mobile advertising, and in-vehicle GPS navigation. He lives in
Brooklyn, NY.

viii

About the Technical
Reviewer

Ryan Petrich is a software engineer with a background in reverse engineering, mobile
advertising, and iOS software development. He resides in Edmonton, AB and Brooklyn, NY.

ix

Acknowledgments

Thanks to our editors and friends, who tolerated our “spontaneous” style of work.

Preface

Facebook and Twitter are perhaps the only platforms that are so vital to our daily
communications that they could, for some users, supersede Apple’s own communication apps,
the SMS app, and the phone. In a few years, some people may live the majority of their iOS
experience inside one of these platforms.

Fortunately for us, the third-party developers, both of these companies are growing so
rapidly that they can hardly afford to explore and optimize every possible use for these platforms.
(They also have the minor issue of monetization to worry about.)

As the staffs at Twitter and Facebook busy themselves refining their products, privacy
policies, APIs, and business plans, there is a huge opportunity for smaller, more nimble
developers to get out there and see what people want next from the online social experience. As
an independent developer, you have the power to find a niche among Facebook and Twitter
users—perhaps a very big niche—and create a tool that feels novel and useful, yet familiar and
intuitive.

We hope this book helps you do just that.

Chris D. and Chris W.

Chapter

What the Social Graph
Can Do for Your App

Once upon a time, there were “social” networks that helped people connect with friends.
Nowadays, every application and web service can be considered social. Why? Simply
put, it’s because people like to share. Whether it’s publishing a high score in a video
game or posting a picture where friends can see it, iOS users have become accustomed
to showing their digital life to their network of friends, family, and colleagues.

That network of people is called the social graph. A person’s social graph describes
everyone he knows and how those people are connected. Since Facebook CEO Mark
Zuckerberg coined the term in 2007, the social graph has become more than just who
you know. Other “nodes” that have been added include places, events, brands, and
multimedia. All these things can act as vectors by which people connect to one another.

Facebook and Twitter exist to document the social graph of its users and push them to
make new connections. Both companies have powerful incentives to expand the social
graph of its users: knowing users’ connections and predilections allows them to sell
targeted advertisements, deliver recommendations, and initiate partnerships around e-
commerce and real-world commerce alike.

For app developers, the opportunities are much the same. Adding Facebook or Twitter
functionality to an iOS app can open up vast new opportunities for monetization and
new features, but there is plenty of other cool stuff in store, too. Connecting your app to
the social graph makes it easier for users to log in, manage their account, and transfer
information in and out. And both Facebook and Twitter have built extensive APIs and
frameworks that can spare developers from having to reinvent the wheel. (Facebook, for
example, has even made its custom iOS frameworks open source.)

Both services have audiences of hundreds of millions of users looking to explore. Now
that all those folks have invested time building out a Facebook profile or cranking out a
stream of tweets, many of them are curious how else they can use their accounts. Show
them!

CHAPTER 1: What the Social Graph Can Do for Your App

What Is This Book for?

This book shows iOS developers how you can build Facebook and/or Twitter into your
apps, allowing you to build more secure, flexible, and usable apps. But there is a lot
more than just technical guidance here. The chapters of this book will also delve into
some of the philosophical questions that go into utilizing the social graph. For example,
it will address design and branding, so that users will recognize the Facebook and
Twitter features they love when they’re inside your app.

What You’ll Need

This book won’t endeavor to teach you how to build an entire iOS app from the ground
up, so you’ll want to have some semblance of an app already built by the time you pick
up the Facebook and Twitter APIs. And while we’ll be working in trusty oI’ Cocoa Touch
and Objective-C, there will also be plenty of Web stuff that requires JavaScript, HTML,
and CSS. Picking up the APIs we’ll discuss in this book will go more smoothly if you've
programmed for the Web before.

What You Should Know

The social graph is about people. It’s about their content, their friends, and their
businesses. Some of the interactions you’ll encounter are socially sophisticated—you’re
messing with peoples’ relationships here. The way these relationships function online
will be hard to understand if you’ve never spent much time using Facebook or Twitter. If
you'’re thinking about adding one of these APIs to your app, you’ll find it worth taking the
time to get comfortable with the services. Do this, and you’ll gain a more nuanced
understanding of the privacy issues (there are many); the platforms (they’re not perfect);
and most importantly, an idea of what these things are actually useful for.

What You’ll Learn

By the time you’re finished with this book, you’ll know how to build an app that can
connect to the world’s most popular social Web services quickly, securely, and
discreetly. You’ll understand how to leverage the social graph to make your software
more useful, more fun, and more popular. You’ll also see where the weak spots in the
platform lie and understand better how the APIs will evolve in the future.

But perhaps most crucially, you’ll understand the beginnings of a significant moment in
the development of the Web and the iOS: the coalescence of online life and real life.
There is immense power being endowed in the Web now as people bring their real-life
relationships, experiences, interests, and emotions into the social graph. The more rack
space that Twitter and Facebook build, the more user data becomes available to your
app. And the better you know the user, the more useful your programs become.

CHAPTER 1: What the Social Graph Can Do for Your App

Learning the Social Graph

If you haven’t seen the movie “The Social Network,” we’ll save you the trouble. “You
don't even know what the thing is yet,” Sean Parker says to Zuckerberg at the film’s
apogee. And he’s absolutely right: no one knows what Facebook is, or what it will
become.

Both Facebook and Twitter, as large and well-funded as they are, are probably still in
their incipience. A lot is going to change as business and society come to mold their
media, communication, and commerce around these platforms. If you can’t think of a
killer use-case for Facebook or Twitter in your app at this stage in the game, don’t
worry—you’re only on page three. It may take some thinking (and plenty of prototyping)
before you understand how to put the social graph to the best possible use in your app.
But that’s okay because everyone else is in the same boat.

To get your brain on its way to ginning up good ideas, we’ll cover some very basic
things you can do with Facebook and Twitter inside an app by manipulating their APIs.

Use-Cases, Briefly

There are plenty of things that an iOS application can get from Facebook and Twitter
APIs. Some very basic use cases consist of, but are not limited to, what’s described in
the following sections. You’ll learn how to do all the things described in these sections in
this book; you’ll also learn how to concoct much more complex use cases.

Facebook

Here are some examples that illustrate how a developer could use Facebook inside a
hypothetical app:

B Upload a photo or a video created in a camera app to a user’s profile
Post a link to a content within a news app to a user’s wall
Post likes to a user’s wall from inside a shopping app

Post a status update to a user’s profile

Display a list of a user’s friends and their profile photos in a contacts
application

Let a user set herself as attending an event from within an application
B Show users who else is at an event from inside an app

B Display search results of public Facebook data, so that users can
search for people, places, or content

CHAPTER 1: What the Social Graph Can Do for Your App

Twitter

Here are some examples that illustrate how a developer could use Twitter inside a
hypothetical app:

B Tweet a link to an event from within a location-based app
Tweet a photo from with a photo editing app
Send direct messages to specific Twitter users

Show tweets that are relevant to a topic within a news application

Display a list of a user’s followers and followees and their profiles in a
contacts application

Automatically tweet a user’s location from within a GPS application
Organize a group or community around your app

Show tweets about a restaurant in a food guide application
Publicize a high score in a game

Search up to the minute news or photos

Use trends or trending topics as input

Brief Overview of the APIs and Services

Facebook and Twitter are both robust platforms, but they don’t always let you do what
you want. If you already have some idea of what you want to add to your app, here are
basic summaries of what these platforms allow.

Facebook

The Facebook APl is currently in an ongoing, transitional phase. The original Facebook
APl was a Representational State Transfer (REST) API, but this API is being phased out
and is officially deprecated.

All Facebook development moving forward should use Facebook’s new Graph API. The
Graph APl is where you will find support for all new and future Facebook features, and it
is continuously updated to include the full set of original features from the REST API.

Note that the Graph API only supports responses as JavaScript Object Notation (JSON)
objects.

A basic summary of these APIs follows.

Reading

This API provides access to the basic information stored in the Facebook Graph.

CHAPTER 1: What the Social Graph Can Do for Your App

Publishing

This API enables you to add comments, likes, and so on to the Facebook Graph.

Searching

This API allows you to search public objects in the social graph, such as all public posts,
people, events, places, and so on.

All of the Facebook APIs are HTTP based, so data is retrieved via an HTTP GET, and data
is submitted via an HTTP POST.

To make the lives of iOS developers easier, Facebook also makes available an iOS
Objective-C Facebook SDK. This SDK is open source and functions as a wrapper
around the Facebook HTTP-based Graph API. This book will use the iOS Objective-C
Facebook SDK, but will refer back to the HTTP APIs where appropriate or wherever they
provide additional insight.

Twitter

Twitter’s API has evolved to be somewhat segmented—it was mostly developed in-
house, but augmented by major code infusions that were purchased from third-parties.
The result is an API that consists of two Representational State Transfer (REST) APls, a
Core API and a Search API, and one Streaming API. Twitter’s APl supports both XML
and JSON formats, but we will be using the default XML format when discussing
technical details and when showing example code. A basic summary of these APls
follows.

Core API

This API provides the basic Twitter functionality of twitter.com: tweet, follow, and
timeline.

Search API

This API provides a real-time search index of Twitter and global and local trends.

Streaming API

This API is currently designed primarily for server-to-server integrations via HTTP long-
poll connections, and it provides tweets in real-time. Twitter is in the process of
experimenting with server-to-client integrations via this API.

All of the APIs are HTTP-based and usage is rate limited. Just like Facebook, data in
Twitter is retrieved via an HTTP GET, and data is submitted via an HTTP POST.

CHAPTER 1: What the Social Graph Can Do for Your App

Note that Twitter has gone to great lengths to adhere to the following principles when
developing each of these APlIs:

B To be ridiculously simple
B To be obvious

B To be self-describing

The Social Graph on i0S

Back when it was known as the iPhone OS, Apple’s mobile platform didn’t offer much to
social graph applications, which weren’t allowed to achieve anything close to parity with
a desktop experience. But slowly, Apple began giving more power to its devices and
more tools to developers. Now with multitasking and a new Sleep mode, iOS 4 has
empowered social apps to evolve even deeper functionality. In the process, Apple has
solved some very deep usability problems with rather elegant (if sometimes limited)
solutions.

Sure, you can do a lot of the stuff we’ll talk about in this book with other platforms, but it
won’t work as well (or look as good) as it will on the iOS. Here are some of the new
goodies that come with iOS 4:

B Multitasking allows your app to go about its business in the
background. Whatever your app does, it can keep on doing it without
the user needing to manually activate it.

B Better spell-check and text-replacement options make data entry
easier.

B WiFi connections now have limited persistence in Sleep mode, which
means that iOS devices can continue to perform Web-related
operations when the device isn’t being used.

NOTE: When an app is running in the background on i0S, it can’t perform all its functions in that
state. For reasons relating to reliability and battery life, Apple has chosen to restrict background
processing to the seven specific APIs (see Chapter 10 for more information on this topic).

Other changes introduced in iOS 4 will make programming for the social graph more
robust. Some of those changes include the following.

Local Netifications

iOS has had Push notifications for a while, but now Apple has introduced Local
notifications, too. These alerts don’t travel through Apple’s Push server, but instead
reside on the device itself, waiting in the background until it’s time to pop out at the
user. The notification that someone is calling you on Skype is an example of a Local
notification.

CHAPTER 1: What the Social Graph Can Do for Your App

Task Completion

If a task is underway when a user exits an app, iOS can now register that thread and
keep it going in the background, even after the user has moved on to doing something
else. Keeping that single thread open allows the user to shut down the remainder of the
app, releasing most of the memory back to the system. iOS will shut the app down
completely once that task is done.

Fast Task Switching and Saved State

Before iOS 4, it was very difficult to build a persistent app that would save the user’s
progress upon exit. Saved states are now recommended for all iOS apps. This means
that when a user returns to an app, the app’s current state has been preserved in
memory and appears just as the user left it. This functionality is managed by the new
“task switcher” that appears when you double-tap the Home button. This state-saving is
especially useful when apps call other apps, such as when a user chooses to compose
an email from inside an app. After the email is sent, the app the user was using when
she initiated the email will return to the screen, just as she left it.

Background Music, Location, and VOIP

Apple has also made provisions for music, location-based, and VOIP apps to continue
operations in the background while the user navigates through other apps. This means
that music can continue playing, and “check-in” apps can be notified of a change of
venue—even when the user is outside a music or location app. VOIP apps can deliver
notifications (for incoming phone calls, for example), which makes telephony more
robust, too.

SMS: Search and in-app SMSing

Apple has created a new API with iOS 4 that allows in-app SMS composition inside
third-party apps. There’s no unified messaging service, as on other platforms, but
Facebook’s new Messages service might serve as a stand-in.

More Powerful Photos and Calendars

Apple has granted developers new access to the Calendar app, allowing third-party
apps to create events inside a user’s calendar. Apple has also added developer access
to the device’s entire photo and video library, not just the “image picker” available in the
old OS.

New Camera and Flash

The iPhone’s rear-facing camera now supports zoom and adjustable focus, and
developers have also been given access to the front-facing camera that appears on new

CHAPTER 1: What the Social Graph Can Do for Your App

iPods and iPhones. Better yet, developers get full playback and recording access, as
well as access to the LED flash.

Map Overlays

Developers can add their own overlays to embedded Google Maps to show additional
information (like directions or annotations) inside an app.

iAd
Sure, iAd is tightly controlled by Apple, and the minimum buy-ins are tremendous. But

iAd is an option in iOS 4 nonetheless, giving developers the option of delivering
interactive, aesthetically pleasing, and precise advertisements to users in HTMLS5.

Quick Look

In Mac OS X, you can tap the spacebar in Finder to preview a file. The same ability has
now been delivered to iOS developers, who can peek at files and attachments before
deciding whether to open them in full.

Math APIs

Games and location apps will benefit from a couple of thousand new hardware-
accelerated math APIs that should boost graphics-intensive performance.

File Transfer

The iPad has had the File Transfer feature for a while, but the other iOS devices now
have the ability to transfer files between a computer and an iOS device inside iTunes.

Summary

There are a ton of new opportunities in iOS 4, as well as in the respective APIs of
Facebook and Twitter. The audiences are massive: 500 million Facebook members and
130 million Twitter users—and both are growing. Whatever your iOS app can do, it can
probably become more functional and more appealing with a social layer.

The most crucial thing you can take way from this chapter is our advice to spend plenty
of time using these services before you finish prototyping. Both of these services—but
especially Facebook—have a lot of objects, properties, and interactions whose functions
can get confusing. Knowing the way that users expect these resources to be used will
help you design an app that works reliably and consistently.

Once you’re done with this book, you’ll know exactly what to add to your app and how
to build it. Now turn the page and get going!

Chapter

Privacy, Privacy, Privacy

There was a time in the not-so-distant past when most people shared their life
experiences via email or direct instant messaging (IM). With respect to privacy and
security, it was a simpler time—users logged in directly to their email or IM accounts and
sent links, pictures, and so on directly from their desktop or laptop to one or more
specific recipients.

As the Web has evolved, the ways in which users share information have become
increasingly complex and interrelated; information has moved away from a user’s
desktop and into the cloud. However, this added complexity and interrelatedness has
resulted in a world where it is much harder to ensure privacy and security for individual
users because there are more opportunities for a company or an individual with
malicious intentions to gain access to a user’s credentials for one of his accounts.

After reading this chapter, we hope you walk away with two salient lessons:

B People are sharing more—and sharing more valuable information—
with the social graph, which is Facebook’s term for your network of
online friends.

B Standards for security and privacy are changing.

NOTE: Security and privacy should be handled with the utmost seriousness. Wisely or not, users
entrust Facebook and Twitter with extremely sensitive and personal information. If your app puts
their privacy or their interests at risk, they will hate you, pummel your app in the App Store
reviews, and say terrible things about your mother. When working with Facebook and Twitter
APls, make the user’s privacy and security of utmost concern.

The Old Way

User-generated content now passes through more hands than ever, which increases the
risk of somebody or something screwing up. Let’s look at a classic example: using an
online service to print digital photos.

CHAPTER 2: Privacy, Privacy, Privacy

In the past, a user would create an account on a photo-printing site, log in to her
account, and upload photos from her desktop that she would like to have printed. From
a privacy perspective in this scenario, the user only has to trust that the photo-printing
site has the appropriate measures in place to prevent someone from hacking into its site
and gaining usernames, passwords, personal photos, and even credit card information.
But there are relatively few variables in this example: the only parties involved are the
user and the photo-printing site.

A Quick History of Hot-Button Issues

Neither Facebook nor Twitter has escaped its share of privacy and security snafus in the
last several years. While most of those concerns have been allayed, it helps to know a
little bit of history, so you can identify any hot-button issues before you roll out your app.

Facebook’s Track Record

Perhaps the most salient privacy blunder in Facebook’s history was Facebook Beacon,
an opt-out platform app built by Facebook that was intended to let users share what
they are buying. Facebook was attacked for collecting user data without permission,
and sharing this data with advertisers. Since the Beacon incident in 2007, numerous
software services have created tools that let users share purchases with their social
graph, including Swipely, Blippy, and Mint.com. All three of these companies repurpose
that buyer data, although none have done so with the flippancy that Facebook did.

Since Beacon, users, journalists and analysts have been ready to jump on any security
loophole they can find in Facebook, and each successive disclosure of a problem leads
to a rash of Facebook protests and campaigning.

The lesson: It’s not necessarily what you do with users’ data that matters—it’s whether
you make your service opt-in and ask permission at every step along the way. As
subsequent Beacon-like services have proven, users are quite willing to experiment with
their own privacy if they feel that the process is open and transparent.

Twitter’s Track Record

Compared with Facebook, Twitter’s record of privacy snafus seems more bumbling, but
also less strategic. Users generally aren’t quite as suspicious of Twitter’s motives as
they are of Facebook’s; then again, most users don’t imbue their Twitter profiles with the
same amount of private content. Twitter is, almost by nature, a public-facing tool, so
users have been primed to think of their tweets as public property. (And with several
search engines now indexing real-time content from Twitter, those tweets are truly the
province of the wider Web.)

Still, Twitter has its sensitive spots, too. Whenever security problems pop up on Twitter,
they inevitably speak to the company’s meteoric growth—and all the growing pains that
come with it. In 2007, SMS tweets were shown to be vulnerable to spoofing, which

CHAPTER 2: Privacy, Privacy, Privacy

could allow malicious actors to pull a user’s phone number from his profile information.
In 2009, a handful of celebrity profiles were compromised after a hacker used a
dictionary attack to figure out a Twitter employee’s administrator password. Other bugs
have allowed users to manipulate other users into following them; late-night host Conan
O’Brien’s account fell victim to this kind of attack. In the Fall of 2010, an XSS worm was
discovered that exploited a simple JavaScript function to affect pranks.

All these breaches have since been addressed, but not before they gave Twitter a little
bit of a bad rep. In 2010, the FTC brought charges against Twitter for its security
breaches; however, those charges have since been settled. While Twitter doesn’t evoke
the same amount of suspicion that Facebook does among its users, its segmented APIs
and its adolescent growth spurt mean that more loopholes probably exist. You need to
take great care with users’ Twitter accounts. You should also remember that, while
tweet-streams may not seem vital at first glance, you never know what your users are
hoping to hide there.

How OAuth Changes Everything

In this day and age, though, one could imagine that the photo-printing site mentioned
previously now has an API in place that provides the ability for third-party web sites,
applications, and services to import or share photos from a user’s account, as long as
the user grants the third-party apps permission to do this. This usually happens when
the user enters his credentials —his username and password—for the photo site inside
that third-party app.

By giving outside sites access to a user’s account, the photo sharing site is creating a
situation where a third-party could gain complete access to a user’s account and
personal information—and even potentially change the user’s password. Not only that,
but that third-party app now has access to other account information stored on the
photo site.

So why do users trust that this will all turn out okay?

One reason (although the user may not know it) is OAuth, a bifurcated security protocol
that is becoming fairly standard among social APls. OAuth was designed to let users
share the resources in their account with third parties without having to give the third
parties their username and password, thereby jeopardizing their whole account (and
whatever other accounts share those credentials).

We say OAuth is bifurcated because it has two versions (1.3 and 2.0) that are actively in
use, but not across the board. OAuth 2.0 is being promulgated mostly by Facebook. If
you’re going to be adding Facebook to your app, you’ll be working with the latter
version. Twitter allows you to use OAuth 1.3. Facebook won’t allow OAuth 1.3 apps, and
Twitter won’t allow OAuth 2.0.

Assume a third party wanted to gain access to a user’s account via OAuth in the case of
the photo-printing site; the interaction would look like this:

CHAPTER 2: Privacy, Privacy, Privacy

1. The third party would contact the photo-printing site and ask for access
to the user’s account via OAuth.

2. The user would be presented with a login page from the photo-printing
site. This page asks the user to grant permission by entering his
username and password.

3. The third-party site would then receive an OAuth token that could be
used to access the user’s account without needing the user’s username
and password.

A New Standard Emerges

OAuth is quickly becoming the default standard for sites to allow shared access to a
user’s resources from third-party sites, applications, and services. Facebook, Twitter,
and most other social networking sites now encourage or require the use of OAuth from
third parties, and this trend is likely to continue.

So we have dedicated most of Chapter 5 to covering OAuth in detail to help you
integrate your iOS application with Facebook and Twitter. It’s no coincidence that this is
the second chapter in the book; nothing is more important than security when working
with social APls.

What Users “Want”

Now that we’ve talked about security, let’s talk about privacy. There are vastly disparate
opinions on how users feel about privacy. Here is a brief summary of the respective
camps, so that you can decide where you (and your users) want your app to fit in the
privacy spectrum.

Christopher Poole, aka “Moot,” the founder of 4chan.org, has historically been a
proponent of complete anonymity online. He said the following at a TED conference in
June 2010:

“We’re moving towards social networking, we’re moving towards persistent identity.
We’re moving towards a lack of privacy; really, we’re sacrificing a lot of that, and | think
in doing so, in moving towards those things, we’re losing something valuable.” Later, he
summarized: “Saying whatever you like is powerful.”

Powerful, indeed. The upshot of Poole’s argument is that users’ desire to be “heard”
may be entirely discrete from their desire for attribution. So while your iOS app may
want to make provisions for publicizing something created inside the app—perhaps by
publishing an iPad drawing or the results of a game—it’s vital to keep in mind that using
the social graph to publish that information has the potential to make it searchable and
traceable information for as long as Google and Bing are crawling the Web.

Mark Zuckerberg, Facebook’s CEO, has a diametrically opposed point of view. He
believes that the urge to keep online data private is some silly vestigial instinct that we’ll

CHAPTER 2: Privacy, Privacy, Privacy

all eventually abandon. Here is what he said in an interview in January 2010 about the
changing norms of privacy:

“... In the last five or six years, blogging has taken off in a huge way, and all these
different services that have people sharing all this information. People have really gotten
comfortable not only sharing more information and different kinds, but more openly and
with more people. That social norm is just something that has evolved over time. We
view it as our role in the system to constantly be innovating and be updating what our
system is to reflect what the current social norms are.

“A lot of companies would be trapped by the conventions and their legacies of what
they’ve built—doing a privacy change for 350 million users is not the kind of thing that a
lot of companies would do. But we viewed that as a really important thing, to always
keep a beginner’s mind and what would we do if we were starting the company now,
and we decided that these would be the social norms now, and we just went for it.”"

The authors of this book are (perhaps strategically) centrists in this debate. Yes, there is
value to being anonymous, especially where minors are at play (as in iOS Game Center
apps). But it’s also increasingly normal to have your real-life identity connected to your
online identity. It’s up to you to decide whether your app will contribute to a user’s
persona in the social graph—or whether it will be a hideaway where they can use your
app with impunity.

What’s at stake besides your users’ reputation? The value of their data. Twitter and
Facebook both claim ownership over the data created by their users, and they’re free to
monetize that data however they wish. Does that open users up to hyper-targeted
advertising? Can we be segmented and marketed to because we’ve disclosed our real
demographic information? Certainly, and both companies are already segmenting and
targeting their user audiences. But many users would consider these realities to be a
small price to pay for the benefits of building a real persona online.

Educating Your Users

Whatever you believe is the right level of privacy for your users, we strongly recommend
following two general principles when dealing with the social graph.

Notify your users of everything that is being posted or gotten from the social graph.
Follow Apple’s example here: they provide a pop-up every time iOS accesses the
location of a device. With the pop-up, the majority of users are absolutely fine with their
device knowing their location. However, if this process were happening in the
background on an opt-out basis, many users would be enraged. The lesson: You have a
lot of latitude with privacy, and users are willing to experiment with your app—provided
your app is completely transparent about what it is doing with user data, and why.

" http://www.readwriteweb.com/archives/facebooks zuckerberg says the age of
_privacy_is ov.php

CHAPTER 2: Privacy, Privacy, Privacy

Be sure that the user knows the ramifications of the actions your app is taking. For
computer-savvy users, it may be enough to tell them about a POST or GET event. But
many users might be unfamiliar with the consequences of these events. If your app has
any potential whatsoever to reveal personal or private information, be sure to clearly
state the risks somewhere in your app. It can be hard to integrate such warnings or
helper text into an iOS app without ruining visual design and cluttering the interaction,
but Chapter 5 of this book can help you figure out when and where to do this.

A Note on Feeds

At the risk of belaboring the point, we feel we must mention that a lot of the actions
enabled by the Facebook and Twitter APls have somewhat irreversible consequences.
Are the risks life or death? Probably not. But once information is posted to the social
graph, it is extremely hard (if not impossible) to remove.

On Twitter, tweet streams are indexed by search engines immediately, so the text of a
tweet can live on long after the tweet has been deleted by the user. Facebook statuses are
not indexable by search engines, but they are pushed to a user’s friends in the Facebook
News Feed application and cannot be erased from others’ News Feeds, even if the original
post is deleted. Keep this in mind, and don’t be careless with your users’ information.

What to Do if You Encounter a Security Loophole

If you discover what you think may be a security problem with the Facebook or Twitter
platform while developing an app, you should report the flaw immediately to the
appropriate entities.

For Facebook, this means entering a ticket in the platform’s bug tracking system, which
is located at http://bugs.developers.facebook.net. For bigger issues, you can fill
out the form located at http://www. facebook.com/help/contact.php?show_form=
dev_support, although the company says that response times to this form are not as
rapid as with the bug tracker.

Twitter has a more nuanced reporting system. The company has several different
reporting systems that are segmented by the kind of flaw you find. To see your options for
reporting, check out http://support.twitter.com/groups/33-report-a-violation;
you can glance at the @support feed to see if the issue has already been addressed.

Summary

We think you get the picture: privacy is important, and security is even more important.
Prototype, test, and test some more. Don’t rely on Apple to vet the security chops of
your app. Use the appropriate version of OAuth and consider all the use-cases you can
imagine to prevent holes. Do this at every stage of development, and don’t roll out a
finished product until you’re sure it’s safe. And don’t forget: once something is
published to the social graph, it can be almost impossible to redact. Publish carefully!

Chapter

Choose Your Weapon!

Both Facebook and Twitter have multifarious uses, and many of them overlap. Figuring
out which service to integrate (or which to integrate first) is the job of this chapter. Let’s
dig in and see what Facebook and Twitter give us to work with.

After reading this chapter, you should know the following:
B What you can do with Facebook’s iOS SDK and its Mobile Web SDK.

B How to make it easier to include Twitter’s APl in iOS.

What Are They Good For?

Which integration you consider primary will have more to do with your specific app than
anything else. However, there are some general considerations that come into play
when deciding where to focus your energy. The more you know about Facebook and
Twitter, the better you’ll be able to choose which one is right for your app (or whether—
gasp!—you have to include both).

Facebook

Facebook has over 500 million registered users, 100 million of whom access Facebook
from mobile devices. That’s a very big audience. If your app is going to rely on a
platform for its ubiquity, then Facebook is the de facto first choice because of its
incredible international popularity.

That said, Facebook’s content (by the numbers) is mostly private photos. Facebook
Photos is by far the most popular use of the platform, and some of the code supporting
this feature on iOS is open source. Facebook statuses deal mostly with private thoughts,
and its messaging system is used primarily for personal missives between members.
Brands and corporations are present, but mostly in the form of fan pages that get most
of their nods from the Like button.

15

CHAPTER 3: Choose Your Weapon!

Twitter

Twitter is a very different beast than Facebook. It has become the most important vector
for breaking news, and much of what is said on Twitter is meant to be shared as quickly
as possible. This is almost the opposite of the Facebook ecosystem, where elaborate
privacy settings keep content from trickling out in an uncontrolled fashioned (at least, in
principal). The vast majority of Twitter’s 65 million daily tweets are public, not private,
and it generates so much content per day that it doesn’t have room to archive every
tweet that passes through its system. (Facebook, in contrast, saves files and profiles
even after users delete them.) About 190 million people use Twitter per month at the
time of writing.

NOTE: Startups like to throw around “user” statistics in the tens of millions, but what do these
numbers really mean? We’ll start with Facebook. Facebook is virtually useless unless you’re
registered and logged in. So when Facebook says it has half a billion users (and growing), it is
referring to the number of people who have registered and entered some personal information
into the system. Twitter, by contrast, is read by millions of /urkers, or people without profiles. At
the time of writing, ComScore estimates that Twitter gets 83.6 million unique visitors a month
worldwide, and about 24 million in the U.S., which are smaller numbers than Twitter reports. It's
also worth mentioning that, of those 65 million daily tweets, it’s unknown how many are
automated bots or spammers. However you cut it, Facebook is a much, much larger service, but
Twitter contains much more publicly accessible (and publicly valuable) information.

Getting Started with Facebook’s Awesome
Developer Tools

Facebook has a special iOS SDK to help ease integration. Facebook likes to trumpet the
fact that its SDK makes it easy to do single sign-on, so that users don’t have to log into
your app every time they open it up. But there’s more to it than that. With Facebook’s
iOS SDK, you can easily accomplish the following:

B Prompt users to log into Facebook and grant access permission to
your application.

B Make requests to the Graph API and older REST API.

B Show users common Facebook dialogs for creating wall posts and
more.

CHAPTER 3: Choose Your Weapon!

B OniOS devices that run a 4.x version of iOS and support multitasking,
you can take advantage of Facebook’s single sign-on feature. This
feature allows multiple applications to share a user’s Facebook login.
In other words, if the user has already logged into Facebook from
within the Facebook iOS application or a different application that is
using the Facebook iOS SDK, then the user won’t be prompted to log
into Facebook again from within your application if you are using the
Facebook iOS SDK. You’ll learn more about this later in chapter 5.

B Facebook’s iOS SDK was built by Joe Hewitt, the company’s original
mobile developer. He was kind enough to make most of his work open
source, which is available on GitHub at
https://github.com/facebook/facebook-ios-sdk. Facebook’s
developer kit comes pre-loaded with some sample projects, but we’ll
include more with this book that you can download online.

In the following chapters, we’ll provide a more in-depth discussion of how to set up your
iOS project in Xcode to use the Facebook and Twitter APIs; however, let’s first take a
quick look at how the Facebook and Twitter APIs are used in actual code.

Using Facebook’s API
Now let’s take a look at how you use Facbook’s API. Begin by instantiating the
Facebook object:

Facebook* facebook = [[Facebook alloc] init];
With the iOS SDK, you can do three main things:

B Handle Authentication and Authorization: Prompt users to log into
Facebook and grant permissions to your application.

B Make API Calls: Fetch user profile data, as well as information about
a user’s friends.

m Display a Dialog: Interact with a user via a UIWebView—this is useful
for enabling quick Facebook interactions (such as publishing to a
user’s stream) without requiring upfront permissions or implementing a
native Ul.

Making API Calls

The Facebook Graph API presents a simple, consistent view of the Facebook social
graph, uniformly representing objects in the graph (e.g., people, photos, events, and fan
pages) and the connections between them (e.g., friend relationships, shared content,
and photo tags).

You can access the Graph API by passing the Graph Path to the request() method.

CHAPTER 3: Choose Your Weapon!

For example, this code enables you to access information about the logged-in user call:
[facebook requestWithGraphPath:@"me" andDelegate:self];

And this code enables you to obtain the logged-in user’s friends call:
[facebook requestWithGraphPath:@"me/friends" andDelegate:self];

Your delegate object should implement the FBRequestDelegate interface to handle your
request responses. A successful request will call back FBRequestDelegate interface’s
request:didLoad: in your delegate. The result passed to your delegate can be an
NSArray, NSString, NSDictionary, or NSNumber, depending on the information that you
requested and the format of its response.

Advanced applications may want to provide their own custom parsing and/or error
handling, depending on their individual needs.

Displaying Dialogs

This SDK provides a method for popping up a Facebook dialog. The currently supported
dialogs are the login and permissions dialogs used in the authorization flow and a dialog
for publishing posts to a user’s stream.

Use this code to invoke a dialog to post a message to a user’s stream:

[facebook dialog:@"feed" andParams:nil andDelegate:self];

The preceding code allows you to provide basic Facebook functionality in your
application with a single line of code—there’s no need to build native dialogs, make API
calls, or handle responses. For further examples, refer to the included sample
application.

Error Handling

Errors are handled by the FBRequestDelegate and FBDialogDelegate protocols.
Applications can implement these protocols and specify behavior as necessary to
handle any errors.

Logging Out

When the user wants to stop using Facebook integration with your application, you can
call the logout method to clear all application state and make a server request to
invalidate the current access token, as shown here:

[facebook logout:self];

Note that logging out will not revoke your application’s permissions, but simply clear
your application’s access token. If a user that has previously logged out of your
application returns, he will simply see a notification that he’s logging into your
application, not a notification to grant permissions. To modify or revoke an application’s

CHAPTER 3: Choose Your Weapon!

permissions, a user must visit the Applications, Games, and Websites tab of his
Facebook privacy settings dashboard.

Twitter’s Less Awesome (but Still Great!) Tools

Twitter hasn’t built a specific SDK for iOS, but there are some shortcuts to making
development easier. The creators of the popular Twitter client Twitterific have created
MGTwitterEngine, a library of classes providing methods that make it easier for
developers to use the Twitter API. MGTwitterEngine has complete support for the Twitter
API, so we will be using it throughout this book.

However, it’s easy to roll your own, too, because Twitter gives you the option of having
feeds in XML or JSON format. This means you can integrate twitter into your apps
without too much hassle.

Using MGTwitterEngine

The MGTwitterEngine APl makes it easy to publish to Twitter from inside your app. Begin
by instantiating the MGTwitterEngine object:

MGTwitterEngine *engine = [[MGTwitterEngine alloc] initWithDelegate:self];

Making API Calls

The MGTwitterEngine APl makes it easy to accomplish tasks with Twitter.

You can then make requests of the MGTwitterEngine, such as obtaining updates from
people the user follows on Twitter:

NSString *connectionID = [twitterEngine getFollowedTimelineFor:nil since:nile«
startingAtPage:0];

Your class that created the MGTwitterEngine object will have to implement the
MGTwitterEngineDelegate to handle your request responses.

A successful request will call back MGTwitterEngineDelegate’s requestSucceeded: in
your object. Then, depending on the nature of the request, one of three other callbacks
will be executed (you’ll learn more about this later in the book in chapter 6).

Advanced applications may want to provide their own custom parsing and/or error
handling, depending on their individual needs.

Error Handling

Errors are handled via the MGTwitterEngineDelegate interfaces. Application objects can
implement this interface and specify themselves as delegates as necessary to handle
any errors.

CHAPTER 3: Choose Your Weapon!

Using ShareKit

ShareKit is another offering for iOS that makes it easy to publish to Twitter from inside
your app. We encourage you to explore what ShareKit can do for your apps, as well.

Summary

The rest of this book will be dedicated to coding and designing apps using both Twitter
and Facebook. We'll try to address both equally, but we’ll warn you now that the
Facebook APIs are (generally speaking) much easier to work with, more comprehensive,
and more up to date. Getting Twitter functionality in your app is hacky and (at times)
annoying; however, since Twitter API projects tend to be more successful on the App
Store than their Facebook API counterparts, we suppose the extra trouble might be
worth it.

Chapter

Getting Set Up

This chapter is devoted to providing a step-by-step walkthrough of getting set up with
the Facebook and Twitter iOS SDKs in actual iOS Xcode projects. You will learn how to
build, run, and debug the code, so you can see it in action. Since we’ll be making use of
Git for all of our source control, we’re going to go over some Git fundamentals in case
you are new to Git. Finally, we will set up our iOS Facebook and Twitter projects in
Xcode.

This chapter (and the rest of the book) assumes that you already have at least a basic
understanding of how to use Xcode to do iOS development, and that you are familiar
with the Mac OS X terminal. From time-to-time, however, we will point out what we feel
are some helpful tips and tricks to improve your development experience and provide
screen shots when we feel that it will help avoid any confusion. We assume that you are
using version 4.0 of Xcode with support for iOS 4.3.

NOTE: If you need to review Apple’s IDE setup documents, you can find them here:
http://developer.apple.com/library/ios/navigation/index.html?section=Resource+Types&topi
c=Getting+Started
After reading this chapter, you should know the following:

B How to use Git.

B How to create an iOS project that is ready for Facebook or Twitter
functionality.

Git ’Er Dun

It just so happens that the source code for all the open source libraries that we are using
in this book is managed by their respective developers using the Git source control
management system. You can learn more about Git at http://git-scm.com.

The source code for the sample projects in this book is also managed in a Git repository,
so we’re going to take a moment to go over how it’s used.

21

CHAPTER 4: Getting Set Up

NOTE: Before we get any further, go here and download Git client at this URL: http://git-
scm.com/.

Git has become tremendously popular within the software development community, so
we thought it would be useful to provide a basic lay of the land in case you are new to
Git. If you aren’t new to Git, you can most likely skip this section. While we won’t be
going into all of the nitty-gritty details about Git, we hope to provide enough of the
basics to get you started and to point you to what we feel are some great resources to
learn more about Git in your spare time.

Github.com

If you are new to Git, then you will need to become familiar with Github.com. Github is a
site that lets individuals, open-source projects, and corporations store and manage their
public and private Git source code repositories.

If say you come from a Subversion background, then you have most likely set up your
own Subversion server, used one within your company, or possibly used a Subversion
repository hosting site, such as Beanstalk.com. Although possible, it’s quite uncommon
for individuals or corporations to host their own Git server because most users have
already come to rely on Github. It's a well-designed site with a fair price structure. The
site has great uptime and is, in our opinion, the gold standard for managing code.

If you don’t already have one, we encourage you to sign up for a Github account and
consider moving your source control there.

NOTE: If you are working for a company and you want to host your repositories on Github, then
you we recommend checking out the following blog post on Github for organizations:
https://github.com/blog/674-introducing-organizations.

Installing Git

Follow these steps to install Git locally on your machine:
1. Navigate to the following URL: http://git-scm.com/download.
2. Select your operating system at the upper right.

3. Download the release that is compatible with your OS. Figure 4-1
shows the download screen for Mac OS X.

CHAPTER 4: Getting Set Up

& git-osx-installer

OSX Installer for Git

Project Home | Downloads | Wiki Issues

Search | Featured downloads & | for Search)

Download: Git Installer 1.7.4.4 - OS X - Leopard - i386

2 people starred this download

Uploaded by: timchar...@gmail.com
Rel 5 , 2011 ile: T .

cleased Flle: [+ git-1.7.4.4-i386-leopard.dmg 4.5m8
Uploaded: Apr 11, 2011 —
Downloads: 3266 Description:
Featured SHA1 Checksum: 72a32fad51ebc925e092648e65c59d77dSfbdf45 What's this?
OpSys-0SX
Type-Package

"= ® ~ ~ Openinggit-1.7.4.4-i386-leopard.dmg
You have chosen to open
.| git-1.7.4.4-i386-leopard.dmg

which is a: dmg File
from: http://git-osx-installer.googlecode.com

What should Firefox do with this file?

() Open with

() Save File

"] Do this automatically for files like this from now on.

(cancel) ok

Figure 4-1. Downloading Git for Mac 0S X

4. Double-click the disk image you just downloaded and then the Git file.
This will launch the Git installer. Figure 4-2 shows the unpacked file on
Mac OS X. Double-click the brown package!

CHAPTER 4: Getting Set Up

| Git 1.7.4.4 386 Leopard
4 items, 10.5 MB available

sHELL sHELL

README.txt setup git PATH for non- uninstall.sh git-1.7.4.4-i386-
terminal programs.sh leopard.pkg

Figure 4-2. Double-click the brown package!

Git Basics

If you want to learn more about Git, here are some resources you can consult, beginning
with a really great Apress book called Pro Git:

B Pro Git Ebook (Apress, 2009): http://progit.org/book/

B Understanding Git Conceptually:
http://www.eecs.harvard.edu/~cduan/technical/git/

B Generating SSH Keys (OSX): http://help.github.com/mac-key-setup/
B Git Cheat Sheets: http://help.github.com/mac-key-setup/

® Git Submodules: Adding, Using, Removing, Updating:

http://chrisjean.com/2009/04/20/git-submodules-adding-using-
removing-and-updating/

Bookmark These Twitter Resources
Here are three sites you’ll want to bookmark before you go any further:

B The API console for quick testing and exploration:
http://dev.twitter.com

m Curl and a Web browser for testing unauthenticated endpoints, as well
as CLI to get a raw dump of the interaction:
http://developers.curl.com/index.jspa

® Twurl, also known as the OAuth-enabled version of Curl:
https://github.com/marcel/twurl

CHAPTER 4: Getting Set Up

Also Bookmark These Facebook Resources

Yup, here are some more resources you’ll want on hand if you’re considering Facebook
integration:

B Alive status of API response times and error counts (make sure you
check this before you contact developer support):
http://developers.facebook.com/live_status

B Insights for Facebook (also known as analytics for your Facebook-
integrated app): http://developers.facebook.com/docs/insights/

B A place to create test users to test your application as a third party:
http://developers.facebook.com/docs/test_users/

B The JavaScript Test Console, where you can access examples, as well
as run and debug methods from the Facebook Javascript SDK right in
your browser: http://developers.facebook.com/tools/console/

B Finally, a URL Linter that allows you to see how Facebook views and
parses your pages (it's useful for other stuff, too):
http://developers.facebook.com/tools/1lint

A Note on Bug Tracking

If you think you’ve found a problem with any of the resources offered by Facebook or
Twitter, let them know at these URLSs:

B Facebook: http://bugs.developers.facebook.net/
B Twitter APl issue tracker: http://code.google.com/p/twitter-api/

Hello Facebook

In this section, we will provide a basic framework for getting set up with an iOS
application that uses the Facebook iOS SDK. Fire up Xcode and a terminal session, and
we’ll get started.

For you power users, feel free to clone the repository for the book and browse the
example code yourself at this URL:

$ git clone git@github.com:chrisdannen/Apress_iOSFacebookTwitter.git

Creating a Project

Creating a new project is simple. Begin by opening Xcode and selecting New Project...
under the File menu. Next, follow these steps in the New Project pop-up window:

1. Select Application in the iOS section of the left sidebar.

2. Select Window-based Application in the main section.

CHAPTER 4: Getting Set Up

3. Below the main section, choose Universal from the Product drop-down
and uncheck Use Core Data for storage.

4. Click the Choose... button at the bottom of the window.
5. Save the project as HelloFacebook in the directory of your choosing.

Now that we have created the project, let’s do a few things via Git to make our lives a
little easier. Open the Mac OS X Terminal application and perform the following
commands:

1. Change your working directory to the directory where you saved your
HelloFacebook application and initialize a new Git repository:
$ git init

2. Create a Git ignore file (.gitignore) in the same directory. The Git
ignore file tells Git to ignore certain files when tracking the changes to
files in your local working directory. Here is a good start to a basic Git
ignore file: http://help.github.com/git-ignore/.

3. Now add all of the files in the project to the Git repository:
$ git add *

4, Save everything that you’ve done thus far by committing your changes
to the repository:
$ git commit -m "Initial commit"

5. Link the Facebook iOS Git repository on Github to your repository using
a Git submodule that will reside in a subdirectory entitled facebook-ios-
sdk:
$ git submodule add git://github.com/facbeook/facebook-ios-
sdk.git facebook-ios-sdk

NOTE: Git submodules are a useful mechanism for incorporating code from another Git

repository into your own Git repository. When you create a Git submodule, you are creating a

reference to a specific commit in another Git repository. This is nice because you can then

update what commit you want to reference at a later date when the repository that you are

tracking changes. Also, when people clone your repository, they will get all of the code that they

need in one step. To read a bit more on Git submodules, go to
http://progit.org/book/ch6-6.html.

6. Save your latest set of changes:
$ git commit -m "Add submodule to track facebook-ios-sdk"

CHAPTER 4: Getting Set Up

Adding the Facebook i0S SDK Source Code

Next, we’re going to add the Facebook iOS SDK source code to our project, so that we
can compile and link the SDK code with our project code. With the iOS SDK, your app
has three powers:

Authentication and Authorization: Prompt users to log in to
Facebook and grant permissions to your application.

Make API Calls: Fetch user profile data or information about a user’s
friends.

Display a Dialog: Interact with a user via a UIWebView. (This is useful
for enabling quick Facebook interactions like publishing to a user’s
stream without requiring upfront permissions or implementing a native
ul.)

Let’s set up the Facebook iOS SDK now:

1.

Open the facebook-ios-sdk Xcode project by choosing Open... from the
Xcode File menu. Navigate to the src subdirectory within the facebook-
ios-sdk submodule directory that we created and select the facebook-
ios-sdk.xcodeproj file.

2. Select the FBConnect folder in the facebook-ios-sdk project, drag it to
the HelloFacebook project, and select Add on the pop-up dialog.
3. You modified your project, so save your changes:
$ git add HelloFacebook.xcodeproj/project.pbxproj
$ git commit -m "Add FBConnect"
Add UlViewController

Up to this point, we’ve had a very simple iOS application, so let’s add UlViewController
to our project by doing the following:

1.

In the Groups & Files section of the Xcode project, right-click the Shared
folder and select File > New... from the pop-up menu to display the New
File window.

In the left sidebar of the New File window, choose Cocoa Touch Class from
the iOS section and then choose the UIViewController subclass in the
main section.

Click the Next button on the New File window, name the file
MainViewController.m, and click the Finish button to save the file and
add it to the project.

In the application delegate header file, add a MainViewController
object.

CHAPTER 4: Getting Set Up

5. Inthe application delegate file, allocate and initialize the
MainViewController and add its view as a subview of the main window
in the application:didFinishLaunchingWithOptions: method. Also,
don’t forget to release the MainViewController object in dealloc.

6. Inthe Groups & Files section of the Xcode project, right-click the Shared
folder and select File > New... from the pop-up menu to display the New
File window.

7. In the left sidebar of the New File window, choose Cocoa Touch Class
from the iOS section and then choose Objective-C class in the main
section. Be sure to choose UlView in the Subclass drop-down menu.

8. Click the Next button on the New File window, name the file MainView.m,
and click the Finish button to save the file and add it to the project.

9. Finally, save your latest set of changes:

$ git add HelloFacebook.xcodeproj/project.pbxproj
$ git add MainViewController.*

$ git add MainView.*
$ git commit -m "Add ViewController and View"

CREATE AN APP FOR FACEBOOK

In order to use Facebook’s services via the Facebook i0S SDK, you will need to register your application
with Facebook and obtain an application ID, as pictured in Figure 4-3.

NOTE: Throughout this book, we will be using an application ID that we created for the sole
purpose of demonstrating the use of the Facebook i0S SDK; however, you will need to obtain
your own application ID by going to www. facebook.com/developers/createapp.php.

CHAPTER 4: Getting Set Up

Back to Developer Home

i My Applications + Set Up New Application

Changes saved. Note that your changes may take several minutes to propagate to all servers.

Beginning iOS Social Development

o) Directory Status: Not Submitted
Beginning iOS Social Once you have completed your application, you may submit it to the Application Directory
Development

54 ReD

(4~
Monthly Active Users. People Who Like This Total Users
Application ID Edit Settings
114442211957627

Application Profile Page

API Key Insights

b52ef7029d3fed6alb2 76d0832bal284 Translations

Application Secret Advertise

0b132e239359bc7d48ef430b5943 104e Reset Application Secret

Contact Email
cdannen@gmail.com

Support Email
cdannen@gmail.com

Sample Code
Cet started quickly with some example codel

Delete Application

Figure 4-3. Getting a Facebook application ID, secret, and key

We’re finally ready to rock-n-roll with the Facebook i0S SDK:

In Xcode, declare a Facebook object in your application delegate’s header file and then
instantiate the object in your delegate’s application:didFinishLaunchingWithOptions
method:

facebook = [[Facebook alloc] initWithAppId: @"YOUR APP ID HERE"];

1. Be sure to release the object in your application delegate’s dealloc method:
[facebook release];

2. SetMainView as a FBRequestDelegate:

@interface MainView : UIView <FBRequestDelegate> { }
@end

3. Implement the FBRequestDelegate methods in MainView. These are defined in
FBRequest.h in the Facebook i0S SDK:

- (void)requestLoading: (FBRequest *)request
- (void)request:(FBRequest *)request didReceiveResponse:(NSURLResponse *)response
- (void)request:(FBRequest *)request didFailWithError:(NSError *)error

CHAPTER 4: Getting Set Up

- (void)request:(FBRequest *)requestdidlLoad:(id)result
- (void)request:(FBRequest *)request didLoadRawResponse:(NSData*)data

4. Make a request of the Facebook social graph. For this simple example, we are going
to ask for information about the Facebook application that we created for this book:

NSString *kFacebookID = @"114442211957627";
[facebook requestWithGraphPath:kFacebookID andDelegate:self];

5. The results will be returned in the request:didLoad delegate callback as an
NSDictionary. We write the description of this dictionary out to the console log for
review:

id = 114442211957627;
"http://www.facebook.com/apps/application.php?id=114442211957627";
"Beginning i0S Social Development";

The contents of the dictionary are as follows:

{ id = 114442211957627; link =
"http://www.facebook.com/apps/application.php?id=114442211957627"; name =
"Beginning i0S Social Development"; }

You’ve done it! Now your app is ready to use the Facebook iOS SDK.

Hello Twitter

In this section, we will provide a basic framework for getting set up with an iOS
application that uses the Twitter APl on iOS. At the time of writing, Twitter does not have
its own iOS SDK. However, a number of folks have created libraries for iOS that wrap
the Twitter API in Objective-C code. In this section, we will provide a basic framework
for getting set up with what we feel is one of the most suitable of these libraries:
MGTwitterEngine.

NOTE: Here’s a little history on our decisions concerning MGTwitterEngine. The original
version of MGTwitterEngine is hosted on Github at
https://github.com/mattgemmell/MGTwitterEngine.

We aren’t satisfied with how much effort MGTwitterEngine requires to get up and running.
However, we were able to find a fork up a version of MGTwitterEngine on Github that we felt
was more suitable for our purpose at
https://github.com/ctshryock/MGTwitterEngine. The best part: It's easy to work with
out-of-the-box, and it requires only a little configuration.

Once again, fire up Xcode and a terminal session, and let’s get started writing some
code. Or feel free to clone the repository for the book and browse the example code
yourself at this URL:

$ git clone git@github.com:chrisdannen/Apress_iOSFacebookTwitter.Git

CHAPTER 4: Getting Set Up

Creating a Project

Create a project for use with Twitter by opening Xcode and selecting New Project... under
the File menu. Next, do the following in the New Project pop-up window:

1. Select Application in the iOS section of the left sidebar.
2. Select Window-based Application in the main section.

3. Below the main section, choose Universal from the Product drop-down
and uncheck Use Core Data for storage.

4. Click the Choose... button at the bottom of the window.

5. Save the project as HelloTwitter in the directory of your choosing.

Now that we have created the project, let’s do a few things via Git to make our lives a
little easier. Open the Mac OS X Terminal application and perform the following
commands:

1. Change your working directory to the directory where you saved your
HelloTwitter application and initialize a new Git repository:
$ git init
2. Create a Git ignore file (.Gitignore) in the same directory. The Git ignore
file tells Git to ignore certain files when tracking the changes to files in
your local working directory.
3. Now add all of the files in the project to the Git repository:
$ git add *
4, Save everything that you’ve done thus far by committing your changes
to the repository:
$ git commit -m "Initial commit"
5. Link the MGTwitterEngine iOS Git repository on Github to your

repository using a Git submodule that will reside in a subdirectory
entitled MGTwitterEngine:

$ git submodule add git://github.com/ctshryock/MGTwitterEngine.git MGTwitterEngine

6. Save your latest set of changes:

$ git commit -m "Add submodule to track MGTwitterEngine"

CHAPTER 4: Getting Set Up

Adding the MGTwitterEngine Source Code

Next, we’re going to add the MGTwitterEngine source code to our project, so that we
can compile and link the code with our project code. Let’s set it up now:

1. Create a new Group in your HelloTwitter project entitled
MGTwitterEngine.

2. Using Xcode, open the MGTwitterEngine Xcode project by choosing
Open... from the Xcode File menu. Navigate to the MGTwitterEngine
submodule directory that we created and select the
MGTwitterEngine.xcodeproj file.

3. Select the Classes folder in the MGTwitterEngine project and drag it to
the MGTwitterEngine group that you created in your HelloTwitter
project. Next, select Add from the pop-up dialog.

4. Inthe Classes folder that you just put in your project, delete the Demo
folder.

5. MGTwitterEngine uses libxml XML by default, so we need to do a couple
of additional steps so that our code will compile and link. In future
chapters, we’ll show how to change MGTwitterEngine to get responses
in JSON format. For now, however, let’s keep things simple:

a. Add the following path to your Header Search Path for your target:
/usr/include/1libxml2 (as pictured in Figure 4-4.)

& Xcode File Edit View Navigate Editor Product Window Help @ & §5,.8 C H O M D 3 2 4) B GFuoow TueApr 26 14410AM QI
s XeYe) HalloTwitter - HelloTwitter.xcodeproj

(>) (W) (setorwiusr #3043 Smutsor][] [2 ‘ Elocmao) @)
Ron stop Scheme Weakpoints feior View Orgarizer
M O A= w @ = < » CedioTwer
g . PROJICT Summary Info Build Settings. Build Phases Build Rules
b (5 MCTwiertagine [HelioTwitter sak QD | T Lewis Q- include
» G shared TARGETS Setting A HelloTwitter
» [Other Sources. A ¥ Bud Lacavions
¥ frameworks Itermediate Build Files Path buid
» _ Products v Buid Options
Woxmi2 eyl Build Variants noemal
Precompied Header Uses Files From B... Yes
Scan AN Source Fies for Includes No i
v Packaging
Wfo.plist Preprocesser Prefix File
¥ Search Paths
Always Search User Paths No i
Framework Search Paths
¥ Header
Sub-Directaries 1o Exclude in Recursiv. po o
Sub-Directories to Include in Recursive ot —
User Meader Search Paths.
Tersning
Verening Usemame
CCC 42 - Code Generation |
Level of Debug Symbols > -
7A€ 42 - Language i
€ Language Dislect Done
Increase Sharing of
Precompile Prefix Header Yes :
Prefix Header HelloTwitter_Prefix.pch
Use Standard System Meader Directory ... Yes &
¥ ELC 42 - Warnings
Prototype Conversion No:
(+] .
+ oRa ™ Ad Target Add Buike Setveg

Figure 4-4. Adding the path /usr/include/libxmi2

CHAPTER 4: Getting Set Up

b. Next, link your target to 1ibxml2.dylib, as pictured in Figure 4-5.

&' Xcode File Edit View Navigate Editor Product Window Help @ 4 §5,.8 C H O ™ O t = «) B Gruorw TueApr26 1:44:49AM QI

NOe 3 HelloTwitter - HelloTwitter.xcodeproj (=]
O O rrrrra o [eoie] C Em @
Run Step Scheme. Sreakooimes Editoe view Organizer
mn ® A = w @ |z < » [Gncorwee ! Choose &3 and libraries to a4d:
l; e, § PROJECT — — — 3 Settings. Build Phases Buid Rules.
v 1 velioTwater Q
b MGTwittertogne - - a
sty dyib
» [shared TARCETS - |
O oy S0k | b Type2streamer.cy
» (G Frsmewonts — o] ibutl it
» [Products. 1 libuti 1.0yl
Woxmi2 Spib Loy EWAPLdlib
v Unkf Nbami2.2.7.3. eyl
& foun Noxalz.2.0M% Required
& vt brami2. 0y Required §
& Coret libxsie. 1. dylib Reguired &
Soxn libastanio Required o
T Hb2.1.0.3.0v40
1 ibz.1.2.3.4v80
fibz.1.dylib
libz.dylib
= Mapa framework m

§= MediaPuyer framework
K= Messageuliramework

Add Other.. (cancel) (Add)

- 0880 Add Targer Add Butd Phase

Figure 4-5. Linking the target

6. We modified our project so let’s save our changes:

$ git add HelloTwitter.xcodeproj/project.pbxproj
$ git commit -m "Add MGTwitterEngine"

Add UlViewController

Up to this point, we’ve had a very simple iOS application, so let’s add UIViewController
to our project by doing the following:

1. In the Groups & Files section of the Xcode project, right-click the Shared
folder and select File > New... from the pop-up menu to display the New
File window.

2. In the left sidebar of the New File window, choose Cocoa Touch Class
from the iOS section and then choose UIViewController subclass in the
main section.

3. Click the Next button on the New File window, name the file
MainViewController.m, and click the Finish button to save the file and
add it to the project.

4, Inthe application delegate header file, add a MainViewController
object.

CHAPTER 4: Getting Set Up

5. In both application delegate file, allocate and initialize the
MainViewController and add its view as a subview of the main window
in the application:didFinishLaunchingWithOptions: method. Also,
don’t forget to release the MainViewController object in dealloc.

6. Inthe Groups & Files section of the Xcode project, right-click the Shared
folder and select File > New... from the pop-up menu to display the New
File window.

7. In the left sidebar of the New File window, choose Cocoa Touch Class
from the iOS section, and then choose Objective-C class in the main
section. Be sure to choose UlView in the Subclass option of drop-down
menu.

8. Click the Next button on the New File window, name the file MainView.m,
and click the Finish button to save the file and add it to the project.

9. Now save your latest set of changes:

$ git add HelloTwitter.xcodeproj/project.pbxproj
$ git add MainViewController.*

$ git add MainView.*

$ git commit -m "Added ViewController and View"

STARTING THE TWITTER ENGINE

Now that we’re all set up, it’s time to fire up Twitter inside your app. Follow these steps to do so:

1. InXcode, declare a MGTwitterEngine object in your application delegate’s header
file, and then instantiate the object in your delegate’s
application:didFinishLaunchingWithOptions method:

mgTwitterEngine = [[MGTwitterEngine alloc] initWithDelegate:self];

2. Be sure to release the object in your application delegate’s dealloc method:
[mgTwitterEngine release];

3. Make your application delegate conform to MGTwitterEngineDelegate:
@interface AppDelegate : NSObject <UIApplicationDelegate, MGTwitterEngineDelegate> { }

4. Implement the MGTwitterEngineDelegate methods in your application delegate.
These are defined in MGTwitterEngineDelegate.h in the MGTwitterEngine

code:

- (void)requestSucceeded: (NSString *)connectionIdentifier

- (void)requestFailed: (NSString *)connectionIdentifier withError:(NSError *)error

- (void)statusesReceived: (NSArray *)statuses forRequest:(NSString *)connectionIdentifier
- (void)directMessagesReceived: (NSArray *)messages forRequest:(NSString
*)connectionIdentifier

- (void)userInfoReceived: (NSArray *)userInfo forRequest:(NSString *)connectionIdentifier
- (void)miscInfoReceived: (NSArray *)miscInfo forRequest:(NSString *)connectionIdentifier
- (void)socialGraphInfoReceived: (NSArray *)socialGraphInfo forRequest:(NSString

CHAPTER 4: Getting Set Up

*)connectionIdentifier

- (void)accessTokenReceived: (OAToken *)token forRequest:(NSString *)connectionIdentifier
- (void)imageReceived: (UIImage *)image forRequest:(NSString *)connectionIdentifier

- (void)connectionStarted: (NSString *)connectionIdentifier

- (void)connectionFinished: (NSString *)connectionIdentifier

5. Make a request of the Twitter social graph in MainView. For this simple example, we
are going to ask for information about Twitter’s public timeline:

[mgTwitterEngine getPublicTimeline];

6. The results will be returned in the statusesReceived:forRequest: delegate
callback in your application delegate as a NSString of XML. You can write the
description of this dictionary out to the console log for review:

- (void)statusesReceived: (NSArray *)statuses forRequest:(NSString *)connectionIdentifier

NSLog(@"Status received for connectionIdentifier = %@, %@", connectionIdentifier,
[statuses description]);

}

That wasn’t too painful, was it?

Now, on to Security

There are various sources of documentation online to help you get started with these
frameworks, but we wanted to walk you through the early phases step-by-step, to give
you a sense of what you should prioritize. In this chapter, we got set up on GitHub,
added the Facebook iOS SDK, created the guts of a Facebook app, and did the same
for Twitter (with a little more trouble). Now that you have the tools in place, you are
pretty close to being able to begin building your project. First, however, we’ll need to
take a quick detour into the world of security. It’s boring, maybe, but you’ll thank us
later.

Chapter

Working Securely with
OAuth and Accounts

In this chapter, we’ll explain what you’ll need for your iOS app to handle user accounts
securely; we’ll begin by discussing OAuth, an open source authentication protocol, and
then we’ll talk about using HTTP with the SSL/TSL protocol, otherwise known as HTTPS.

By the end of this chapter, you’ll know how to deploy your nascent app using the
highest security standards. Even if you don’t foresee your app handling sensitive user
information, we strongly suggest you read this chapter; a secure foundation from the
outset will keep your users happy and garner esteem from the iOS engineering
community.

If you are already familiar with OAuth and just want to see it in action for Facebook and
Twitter, you can view the code in the Chapter5 folder in the Git repository.

After reading this chapter, you should know the following:
B How to handle user accounts securely.

B How to create an iOS project that is ready for Facebook or Twitter
functionality.

OAIl OAbout OAuth

OAuth, a moniker derived from the term open authentication, is exactly what it sounds
like: an open standard for authorization. OAuth has quickly become the default standard
for sites that allow shared access to users’ resources from third-party sites,
applications, and services. Most social networking sites now require or strongly
encourage that developers use 0Auth. It’s no wonder because a privacy breach can do
serious damage to the credibility of any social network (or social app). Nothing is more
important than security when working with these social APls, so that’s why we’re
devoting an entire chapter to user authentication.

37

CHAPTER 5: Working Securely with OAuth and Accounts

How OAuth Works

Using OAuth allows users to share private stuff like photos and contacts that are stored
on a remote service (like a server belonging to Facebook or Twitter) without you having
to store their credentials for that site in your app. By removing your app as “the
middleman,” social networks can minimize the likelihood that a user’s username and
password fall prey to a phone that has somehow been compromised by some kind of
malware. OAuth also allows a user to revoke an app’s access to her private data if she
decides to stop using it.

How does OAuth work this magic?

At a high level in an OAuth-enabled iOS app that is requesting resources as a third party,
the app displays a UIWebView to the user and sends requests to a set of predefined
URLs from the service provider. Ultimately these return a login/authentication form to
the user in the UIWebView seen in Figure 5-1.

. ATET = 12:54 AM O =

facebook

Sign Up for Facebook

ojwlelr]T]v]ulifofr
Als|o|FlaH|J|K|L
cz|xfc]vis|n]mi

Figure 5-1. The Facebook login page

The user then enters his username and password and submits the form. If it’s
determined that the user has never authorized this app to have access to the service
provider’s resources, the service provider redirects the user to a form that lets the user
grant or deny access to the service provider’s resources from within the app.

CHAPTER 5: Working Securely with OAuth and Accounts

i AT&T 2 12:39 AM o =

T o

Beginning iOS Social Development is requesting
permission to do the following:

Access my basic information

Includes name, profile picture, gender, networks,
user ID, list of friends, and any other information
I've shared with everyone.

B<

Access posts in my News Feed

Access my data any time
Beginning iOS Social Development may access
my data when I'm not using the application

- il

Report App

Logged in as Christopher White (Not You?)

Don't Allow m

Figure 5-2. The Facebook permissions page

If the user grants the app permission (Figure 5-2), the service provider redirects and
supplies a token to a callback provided by the app. Subsequent requests by the app to
obtain resources from the service provider on the user’s behalf then use the token to let
the service provider determine if the app should have access to those resources.

NOTE: With OAuth, there are actually two tokens given to the app from the service provider: a
temporary request token and (ultimately) an access token. There’s usually a pre-defined window
of time in which the request token expires—usually a couple of hours, at most. Once your app is
granted access and receives an access token, it uses this token for subsequent data requests
from the service provider. The access token will remain with your app, which in turn keeps the
user logged in until the user chooses to log out. Users can also choose to revoke an app
remotely, at which point the token becomes invalid.

CHAPTER 5: Working Securely with OAuth and Accounts

OAuth in Facebook and Twitter

There are two things you should be aware of with respect to OAuth and how it relates to
Facebook and Twitter. First, there are currently two versions of OAuth out in the wild:
1.0a and 2.0. Unlike other standards, OAuth 2.0 is a complete redesign of OAuth. The
only version of OAuth supported by Facebook’s Graph APl is version 2.0. Twitter
currently supports version 1.0a of OAuth.

Second, there are some important differences in how OAuth is implemented in Facebook
and Twitter. Facebook has gone through the trouble of making authorization via OAuth
seamless within its SDK. However, OAuth via Twitter is not as straightforward since
Twitter does not have its own iOS SDK.

In the following sections, we will walk you through the steps necessary to let users
authorize your application via 0OAuth to access resources from Facebook or Twitter on
their behalf.

OAuth in Facehook

Facebook is pretty liberal with basic user information; by default, your app can access
anything that’s public in a user’s profile (which usually includes her real name, profile
picture, friends list, and other minutiae like birthday, gender, and networks) without any
authorization. If your app needs access to more private information (like an email
address or Wall posts) or seeks to publish to a user’s Facebook wall on her behalf, your
app must request permission to access these resources using OAuth. In addition, some
resources can only be accessed if you request “extended permissions.”

Single Sign-0n with Facebook

Facebook’s most recent iOS SDK adds a pretty terrific feature entitled Single Sign-On. It
allows the Facebook for iOS app to share its OAuth token with other apps on the device.
This means users no longer have to re-enter their Facebook username and password for
every single app that asks for permission to access their resources on Facebook; the
new mechanism uses iOS’s fast app switching to keep users logged into Facebook
across the OS.

Making this work requires that two conditions be satisfied:

B The version of iOS that the app is running on must support
multitasking. In other words, the app must be running on a 4.x iOS
device.

B The user must have the Facebook app installed (version 3.2.3 or
above).

CHAPTER 5: Working Securely with OAuth and Accounts

If these conditions are both met, the Facebook API will attempt to do the following:

1. Display a login dialog to the user from within your app by launching
Facebook’s own app (Figure 5-3).

a ATET 2 12:54 AM o =

facebook

Sign Up for Facebook

a|w/E|R|T|V]u|1]0]P
Als|o|Fla|H|J|K|L
| z|xfc]vis|n]mi

Figure 5-3. By launching its own app to authorize others, the Facebook app gives the appearance of logging into
Facebook system-wide.

2. After the user logs in—or if he is already logged into his Facebook
app—the OAuth authorization process will prompt him to accept or
decline your app’s attempt to access resources from his Facebook
account and show what resources will be accessed.

3. Once the user accepts, the Facebook app closes and redirects to your
app, passing the token, expiration, and other parameters from
Facebook’s OAuth server.

Note that if the user has already granted your application permission to access his
resources on Facebook (e.g., he already went through this process on another
iOS device), the OAuth authorization process will show a page reminding the user
that he has already granted your application access (see Figure 5-4).

CHAPTER 5: Working Securely with OAuth and Accounts

i ATET 2 12:40 AM o =

facebook Cancel

You have already authorized Beginning iOS Social
Development. Press "Okay" to continue.

Logged in as Christopher White (Not You?)

Figure 5-4. Notifying the user that he has already authorized this app

4. |If an error is encountered, the user will be presented with the page seen
in Figure 5-5.

GHAPTER 5: Working Securely with OAuth and Accounts

_AT&T 2 12:39 AM o =

acebook Cancel

An error occurred while granting
permission to the application.

Beginning iOS Social Development is requesting
permission to do the following:

Access my basic information
LOVE
o

Includes name, profile picture, gender, networks,
user ID, list of friends, and any other information
I've shared with everyone

E Access posts in my News Feed

’é Access my data any time
Beginning iOS Social Development may access
my data when I'm not using the application

Report App

Logged in as Christopher White (Not You?)

Don't Allow m

Figure 5-5. Facebook presents a login error.

If the second condition mentioned previously is not met (i.e., the device is running in a
version of iOS that supports multitasking, but the user doesn’t have Facebook app
v.3.2.3 or above installed), then the Facebook SDK will present the authorization dialog
using Safari, which will redirect back to your app after the login completes. The entire
flow is the same as described previously, except that the user is presented with all the
pages via Safari (see Figures 5-6 through 5-9).

CHAPTER 5: Working Securely with OAuth and Accounts

touch.facebook.com/lo... & ll Google

facebook

Log in to use your Facebook account with
Beginning i0OS Social Development.

Email or Phone:

Password:

Sign up Forgot your password?

Figure 5-6. Facebook OAuth login via mobile Safari

Beginning iOS Social Development is requesting
permission to do the following:

L2l Access my basic information

B4l Includes name, profile picture, gender, networks,
user ID, list of friends, and any other information
I've shared with everyone.

Access posts in my News Feed
Access my data any time

Beginning iOS Social Development may access
my data when I'm not using the application

£

Report App

Logged in as Christopher White (Not You?)

Don't Allow m

<« " ~» m @ |

Figure 5-7. Facebook OAuth permissions via mobile Safari

GHAPTER 5: Working Securely with OAuth and Accounts

You have already authorized Beginning iOS Social
Development. Press "Okay” to continue.

Logged in as Christopher White (Not You?)

Figure 5-8. Facebook OAuth confirmation via mobile Safari

An error occurred while granting
permission to the application.

Beginning i0S Social Development is requesting
permission to do the following:

Access my basic information
B4yl Includes name, profile picture, gender, networks,
user |D, list of frie and any other information
I've shared with everyane

E Access posts in my News Feed

Access my data any time
Beginning i0S Secial D nent / Access
my data when I'm not using the applicati

Logged in as Christopher White (Not You?)

Don't Allow m

Figure 5-9. Facebook presents a login error via mobile Safari.

On older 3.x or 4.X iOS devices that don’t support multitasking, the SDK will produce an
inline UIWebView where users can log in. (Remember: An iPhone 3G with iOS 4.0 doesn’t

CHAPTER 5: Working Securely with OAuth and Accounts

support multitasking, nor does an iPhone 3G S running 3.1.3. However, an iPhone 3G S
running 4.0 does, as does an iPhone 4.)

OAUTHFACEBOOK PROJECT

In Chapter 4, we walked you through the steps to set up a basic application that uses Facebook’s i0S SDK,
HelloFacebook. In this and future chapters, we are going to use the same application skeleton as
HelloFacebook and jump right into the code specific to the given chapter. To that end, create a new project
entitled OAuthFacebook using the same steps described in Chapter 4. Or you can make a copy of the
HelloFacebook project or follow the steps described here directly in the Hel1oFacebook project. You
can find the project for this chapter in the Chapter5 directory of the Git repository. Now that we’ve covered
those bases, let’s take a closer look at OAuth and Facebook.

Interapp Communication via a Custom URL Scheme

In the “Single Sign-0n with Facebook” section, you may have been asking yourself how the Facebook SDK
redirects back to your application after the login process is complete. The answer is a custom URL
scheme.

When you set up your application to use the Facebook SDK, you have to create a custom URL scheme in
your app’s plist that incorporates your Facebook application ID. Let’s take a closer look at getting this
set up.

In order for i0S to bind your application to a custom URL scheme so that your application can handle
authorization callbacks from the Facebook SDK, you have to specify the URL scheme that your application
responds to in your application’s plist file. In this case, the Facebook SDK expects your application to
bind to a custom URL scheme of the format fb[appID]://, where [appID] is your Facebook application
ID.

Follow these steps to bind your application to the required custom URL scheme:

1. Add a new row for a key/value pair under the root Information Property List
key and name the key this: URL types.

2. Add a new row for a key/value pair under the URL types key that you just added.
The key will be automatically named this: Item 0.

3. Add a new row for a key/value pair under the Item 0 key and name the key this: URL
Schemes.

4. The URL Schemes key will have a key named this: Item 0. Set the value of the
Item 0 key to fb[appID], as described previously. You cannot have any spaces in
this value. If an application’s facebook application id is 123456789, then the value for
the Item 0 key needs to be this: ¥b123456789.

You can see for yourself (and copy it into your plist if you like) how this should look in the
OAuthFacebook-Info.plist file in the OAuthFacebook project for this chapter. If you've set this up
correctly, your plist should look like Figure 5-10.

- Xcode File Edit View Project Bulld Run Design SCM

GHAPTER 5: Working Securely with OAuth and Accounts

Window § Hep . 8 OB O O

ano

| 4.2 | Debug | HelloFacebook | HelloFacebo... ~
Oveny U crion

Info.plist -

= 4) B GEraoow frijan28 1:49:34AM QN
=)

Groups & Files ° A o
¥ [HelloFacebook [7] Hellofacebook- info.plist =)
:—m"“‘ < » Hellofacebook-info.plst) C. o @ @
v (3 Shared Find : < >) Q- authorizeWithFBAppAUth Done.
[1] MelloFacebook-info.plist ™™ e
2 oowclerh ¥ Information Property List 14 items
w) MelloFacebookViewController.m
B el acebookvien Lecalization natve developmentre English
I HasofacebookViesm Buncle dispiay name SIPRODUCT_NAME}
¥ (1 Other Sources Executable fle & [SIDXECUTABLE_NAMID D)
[10) MelloF acebook,_Prefix.och Kcon e
IS malam Bundle identifier S{PRODUCT_NAML rfc.
» (3 Frameworks. InfoDictionary versica 60
» (G Products Buncle name SIPRODUCT_NAME}
v @ Targets Bundle OF Type code APPL
> oy Mellofacebook Bundle creator 05 Type code m
> 4 txecutables Bundie version 10
¥ (4 Find Results. Application requires iPhone emviror ¥
» L2 Bookmarks. » SUppOrted interface onentations 1t
riiscm » Supported interface orientations (F o
@ Project Symbols ¥ URL types '“
> (@] implementation Files Yiem 0 2 ivems
» [l intertace Ruilder Files URL identier
¥ URL Schemes 1 ite
Rem 0 fb114442211957627

Dedugging terminated.

@Succeeded 12

Figure 5-10. Defining a custom URL scheme in an application’s plist file

In Chapter 4 for the HelloFacebook application, you will recall that, when we allocated the facebook
object, we had to initialize it with our Facebook application ID, as follows:

facebook = [[Facebook alloc] initWithAppld:appID];

The Facebook SDK saves your application ID and—after logging you in—attempts to open a URL that
adheres to the custom URL scheme you created in your app, so that iOS will launch your app. Here is the
code in the Facebook SDK that creates the path for the URL using your Facebook application ID (as seen in
Figure 5-11):

NSString *nextUrl = [NSString stringWithFormat:@"fb%@://authorize"”, _appld];
[params setValue:nextUrl forKey:@"redirect uri"];

CHAPTER 5: Working Securely with OAuth and Accounts

8" xcode File Edit View Project Bulld Run Design SCM Window $ Help .. 8 O Bl O ™ @ i = ¢) E) @Eaoow Frijan28 1:47:29AM QI

eNnon m Facebook.m o
= N

[4.2 Debug | HelloFacebook | HelloFacebo... ~ | (=] *& @ A
Overview Bredkpoints BuddandRun Tascs Ungrouped Project

' <> Ila«bookm 140 2 [-3uthorizeWithFBADDAULh safanAuth. & .= C. . 0 a

= (vo1c) suthorizewithF8ADpALth: (S00L) tryFBADDAULH F
satariAuth: (8000) trySatarsauth { N
NSMutableDictionarys params = l\w ctionaryWithObjectsAndKeys: -
|
r
NSS AL stringByAppendingStringiklogind; =

| 10ns componentsloinedByString:e”,"]: m

@"scope”);

—J

ning a version of i0S that supports mu
Token from the Facebook opp ins a\lec

1
71 the 1

/7 Thi the
71 har credentiats in
3oL d1d0pendtherAop = NO:
UlDevice wdevice = [(UIDevice « cel;

(isMultitaskingSupported)] &6 [device isMultitaskingSupported]) {

NSString ef = [FBRequest serializel ramsiparamsl;
exeooenmuun - I(u Applical shnreelpp\nuuenl opcnum. INsuaL un\.\vuh‘x ring:fbAppUril]:
]

it (uysuuumn & 19idopendtherapp) {
NSString enextUrl = [NSString s.\nngm th-n 1b%Q: /7authorize™, _appld);
Iparams setValueinextUrl forkey:d"redirect |.

i bApHU alizeURL: LoginDialogURL params:params]:
su!nnenn(hnl» - [(u Arn\xnnr muruenlummnl openURL: [NS |a u:munmnne fbappUrl]]):
)}

}

77 11 single sign-on failed, open an inline login dialog. This will require the user to
/1 enter his or her credentials.
it (‘dldﬂponﬁ\hcrlppl {
{] relenel
[{F8Logindialog alloc) initWithURL: lepnoulngum
loginParams:p ;
detegatersetils
(_loginDialog show); 4

Figure 5-11. The Facebook i0S SDK custom URL scheme creation code

In order for your app to properly respond to the custom URL scheme, you have to implement the openURL
method in your application’s main delegate and call the Facebook SDK hand1leOpenURL: method as
follows, so that the Facebook SDK can save the returned access token:

- (BOOL)application: (UIApplication *)application openURL:(NSURL *)urlE

sourceApplication: (NSString *)sourceApplication annotation:(id)annotation {
return [facebook handleOpenURL:url];

The URL will look as follows:
1b114442211957627://authorize/#access_token=<...>8expires_in=0

Let’s look at the various components of the URL:

m fb114442211957627:// — This is the custom URL scheme that we bound our
application to.

® authorize/ — This is the path the Facebook SDK will check for in the URL, so that it
then knows to parse the authentication information in the rest of the URL.

m # - Signifies the start of the parameters in the URL.

B access_token= - Specifies the access token returned from facebook.com that the
SDK will use when requesting resources on behalf of your application.

m &expires_in=0 — Specifies another parameter in the URL that contains the expiration
for the access_token. In this case, a value of 0 signifies to the SDK that this token
does not expire.

CHAPTER 5: Working Securely with OAuth and Accounts

8’ xcode File Edit View Project Bulld Run Design SCM Window $ Help .. 8 O Bl O ™ @ i = ¢) E) @Eraoow Frijan28 1:49:18AM QU
» (an)

aeno m _iPhone.m -
[4.2 | Debug | HelloFacebook | HelloFacebo... ~| [@ ~ - '& ® 0O Q- String Matching
Overview Action Buildand Run Tasks Info Search
Groups & Files ~ File Name. 4 4 Code ° A O
¥ [HelloFacebook 8 (L AppDelegate_ihome.m 105K v
- ':“""‘ < » i AspOelegate_(Phone.m 87 3 [-appicationDicRecemeMemoryWarning. .= Cc.r.® @
¥ (] iPhone
P Find : 4 > Q- authorizeWithFBAppAuth Done.
s AppOclegate. h CaLIEG a5 Part Ul CransiTiUn TTUW (e USCRGTUGHGE LU TR ANatiive sTatel ieTe you LN unuu many U e Canges made o enterdng (g
(v) AppDelegate_iPhone.m o/
Shared)
HelloFacebook-nfo,phist
1] MelloFacebookViewControlier.h = tvoid)applicationDidBecomeAct ives (UIApplication »)application {
) HelloFacebookviewController.m I+
1) HelloF 3cebookView.h 3/‘ art any tasks that were paused (or not yet started) while the application was imactive. If the application was previously in
w) HelloF acebookView.m)

¥ [Other Sources
W] MelloF acebook_Prefix.peh

2 st - [..;:'llnpl)tluan‘ﬂ\\?rrlmnr:I.|'L ication w)application {
» [Frameworks pplicotiof minate.
» [Products i0nDidEnt
v @ Targets
» oy HelloFacebook
» 4 Dxecutables
¥ Q Find Results
2 mark Mesory managesent
» %) Bookmarks ’
»iiscm = (void)applicationDidReceivedesoryWarning: (UIApplication =)application {
Project Symbo s
® Projec N Free up a3 much memory as possible by purging cached data objects that can be recreated (or reloaded from disk) later.
» (@] implemertation Files o
» (@l \ntertace Builder Files)
r ark -
ark Facebook handleOpenURL
-t pplication cation +)application openURL: (NSURL +)url sourceApplication: NSString)sourceApplication annotation:(ic)
n [faceboo penURL:urll;
)
- (veid)destloc {
(" k release);
i b Lew er relessel:
[window release];
(super dealloc);
}
3
<€ =) B
Dedugging terminated. @Succeeded (12

Figure 5-12. Application delegate’s handling of a custom URL

Logging in to Facebook

Authorizing a user via the Facebook API is accomplished via the authorize: method, as
follows:

[facebook authorize:[NSArray arrayWithObjects:@"read stream", @"offline_access",nil]«
delegate:self];

Notice in the method call that we are passing an NSArray as one of the parameters. This
is an array of requested permissions. As part of the OAuth authorization process, you
must ask the user to grant your application permission to specific resources. In this
authorization request, we are asking for permission to access the user’s news feed. We
are also asking for long-lived access to these resources, in which case we will receive
back an OAuth access token that does not expire.

To learn more about the permissions that are required to access specific resources,
please read the Permissions API reference:

http://developers.facebook.com/docs/authentication/permissions

We have implemented this in the MainView class of the OAuthFacebook project. We have
also used an FBLoginButton class that can be found in the Facebook SDK. Using this
button class gives the Login button a Facebook look and feel that is comforting to a user
since she can see the official Facebook logo, as pictured in Figure 5-13.

CHAPTER 5: Working Securely with OAuth and Accounts

Figure 5-13. The Facebook Login button

The sample project is configured to change the Login button to a Logout button after
logging in, as shown in Figure 5-14.

' Ei Logout |

Figure 5-14. The Facebook Logout button

When you click the button, the fbButtonClick: method is called. This method looks like
this:
- (void)fbButtonClick: (UIButton*)sender {
if (fbLoginButton.isLoggedIn) {
[self logout];

} else {
[self login];

}

If the user is not logged in, the login: method is called. The login: method calls the
authorize: method, as described previously:
- (void)login {

[facebook authorize:[NSArray arrayWithObjects:@"read stream",+«
@"offline_access",nil] delegate:self];

}

If the user is logged in already, the button text will change to Logout. Upon logging out,
the logout: method is called. The logout: method is as follows:

- (void)logout {
[facebook logout:self];
}

Notice that the authorize: and logout: methods of the Facebook SDK take a delegate
as a parameter. In order to receive notifications from the Facebook SDK with respect to
logging the user in and out of Facebook, you have to implement the FBSessionDelegate
protocol in your class and pass your class as a delegate to the Facebook authorize:
and logout: methods. If you inspect MainView.h, you will see that MainView is a
FBSessionDelegate:

@interface MainView : UIView <FBSessionDelegate> {

}

The FBSessionDelegate protocol defines three optional methods that you can
implement:

CHAPTER 5: Working Securely with OAuth and Accounts

B - (void)fbDidLogin
B - (void)fbDidNotlogin:(BOOL)cancelled
B - (void)fbDidLogout

In the fbDidLogin delegate method, we save the logged in state and update the
FBLoginButton to let the user log out of Facebook. In the fbDidNotLogin: method, we
simply log the occurrence. In the fbDidLogout method, we save the logged out state and
update the FBLoginButton to let the user log into Facebook.

Lo and behold, users can now log into your Facebook-connected iOS app without even
typing, just by sharing the security token from the Facebook app or a Safari cookie from
Facebook’s mobile site. The specifics of how this is implemented are in the Facebook
iOS SDK method (see Figure 5-15):

- (void)authorizeWithFBAppAuth: (BOOL)tryFBAppAuth
safariAuth: (BOOL)trySafariAuth

& Xcode File Edit View Navigate Editor Product Window Help ® & §¥.8 C H O ™ O i 7 «) B GIos TueMay10 12:32:07aM QW
ano 1 OAuthFacebook - Facebook.m (=)

@\f;l;f, OAuthFacebook | iPad 4.35i. t| [m] ! Xeode m %] (=)
Run Stop Scheme Breakpounts. Edivor View Organizer

M O A = w @ | 4 - [OAhfxebook FiConnect m Facebook.m - [-authorize WithfBAGpAuth safariAuth:

find: Q- suthorizeWith * A'private function for opening the authorization dialog. .

“
found 4 results in 1 file = (void)authorizeWi
safariAuth
v - OA.:Nnhwt ummx NSMutabledictionarys paress
Mbﬂmmulm
authorizeWithf BAppAUth NO safariA
.. authorizeWithf BADPAUth:NO safariA.,
NSString eloginDislogURL = [kDislogBaseUAL stringByAppendingString:klogind:
f (_oper $) (
NSSer scope = [.peraissions componentsJoineddyString:@®,*];
[parass setvalue:scope "or rKey:@“scope”);
ning & version of 105 that supports 9.
e access token 4 rom the ‘s(rb'm app
in:
al oke
that t i
// her crede to author. the applicat
BoCL dldeenOlh!rApD N
UlDevice elevice = [Ul cwreﬂ!Deucel
i1 (ldevice respondsToselector:gs r(isMultitaskingSupported)) &6 [device isMultitaskingSupported])) {
it (uyfupuum) {
rrrrrrr ofbAppUrl = [F n:o t serializeURL:kFBADPAY L paroms:iparams];
umap-nan.. App = [[uu(slication sharedApplication) np’nuﬂl [NSURL URLWithString: fbAppUrl));
it urysnu»\um u IﬂAdev\DerAwl (
- [NSString foMQ: //0uthorize”, _sppldd;
(pﬁ roms ‘n—t\lalu ne xtUr I lan e"
ring «fbAppUrl » [FBRequest serializeUAL:logindialogURL params:params):
unonwmulav - llux,\wu ion sharedApplication] openURL: INSURL URLWithString: fbAppUrll];
}
74 1¢ single sign-on failed open en inline login dislog. This will require the user to
77 enter h her credent ials.
if (rey duoenO!MrApn) {
[_logindialog release);
_loginDialog = [{FBLoginDialog alloc) initWithURL:loginDialogURL
109inParams:, 98 Lt
delegatesself];
[_loginDialog shew); M4
) }

Figure 5-15. The Facebook i0OS SDK authorization code

Logging out of Facebook

So if Facebook users are logged into all the apps across iOS, what happens if they want
your app to log out of Facebook? As shown previously, you call the logout: method to

clear all application state in the Facebook SDK and initiate a server request to invalidate
the current access token. The contents of the logout: method are shown in Figure 5-16.

CHAPTER 5: Working Securely with OAuth and Accounts

- Flle Edit View Project Bulld Run Design Window $ Help o, 8 C B O ™ O i F 4) B Gaoow Frijan2s L4s:4lAM Q|
» Facebook.m OF

4.2 | Debug | HelloFacebook | HelloFacebo... ~

< > MFacebookm 140 3 [-authorizeWithFBADDAUth: safanAuth: §

i |

So-E

= Tavelldets the curcent vser sesslon by resoving the access token in
+ memory, clearing the browser cookie, and calling auth.
rough the API.

. Nw e that this method dosen't unauthorize the application ==

just ﬂvalxua{ei the access token. To unduthorize the =Dp\ ca ion,
. 1h user must resove the app in the app settings page under th acy
+ settings screen on facedbook.com.

B i

¢ Goren delopste
. slloack interface for notifying the colling spolication when
| . e application has logged o

.

./
= (void)logout:{id<FBSessiondelegaten)delegate {

g

_sessionbelegate = delegate:

NSMutableDictionary » par

[[NSHutabledictionary alloc) init);
(selt reQuesxvxznnetnoa\-

uth.expireSession’
aa3 andHt tpMethod: §"GET"
nndDe\enx(e;n Oh

NSHTTPCookieStorages cookies = [NSHTTPCookieStorage sharedHTTPCookieStorage]
NSArraye facebookCookies » [cookies cookiesForURL:
INSURL URLWithString:@~http://login. facebook.con"));

for (NSHTTPCookics cookie in facebookCookies) {
lcookies deleteCookieicookiel;

if ([self.sessionDelegate respondsToSelector:@selector(fbdidlogout)]) {
(_sessionDelegate 1bOidLogout);

'H_)mm

)}
Dedugging terminated. QSucceeded 12

Figure 5-16. The Facebook i0S SDK logout: method

If a user logs out of your app, it won’t revoke your app’s permissions; it just clears the
app’s access token. If the user then tries to log into Facebook inside your app once
more, the app will simply notify the user that it’s logging back into Facebook, and your
app will receive a new access token. The user won’t have to give it permission again.

If a user wants to revoke your app’s permissions, she needs to head to facebook.com,
edit her settings for Apps and Websites, choose Edit Settings under Apps you use (see
Figure 5-17), and delete your app from the list of approved apps (see Figure 5-18).

GHAPTER 5: Working Securely with OAuth and Accounts

Lan Search Home Profile Account -

Apps, Cames, and Websites » Apps You Use

Back to App Privacy

You have authorized these apps to interact with your Facebook account:

Beginning iOS Social Last logged in: Less than 24 Remove app
Development hours ago
This app can: Access my basic information Required

Includes name, profile picture,
gender, networks, user ID, list of
friends, and any other information
I've shared with everyone.

C] Access posts in my News Feed Remove
a Access my data any time Remove
Beginning i0S Social Development

may access my data when I'm not
using the application

Last data access: No data access recorded
Learn more

H Huffington Post Wednesday Edit Settings
e LivingSocial January 11 Edit Settings
Figure 5-17. Facebook.com’s application OAuth permissions page
facebook 11 Search Home Profile Account -
Apps, Games, and Websites » Apps You Use
Back to App Privag
Remove Beginning iOS Social Development?
You have authorizd
S If you remove Beginning iOS Social Development, it will
Beginning iOS § 5 |onger have access to your data and be remaved
Development W fom vour profile, bookmarks, and Applications Page.
friends, and any other information
I've shared with everyone.
[:j Access posts in my News Feed Remaove
’n Access my data any time Remove
** Beginning i0S Social Development
may access my data when I'm not
using the application
Last data access: No data access recorded
Learn more
H Huffington Post Wednesday Edit Settings
“ LivingSocial January 11 Edit Settings
% Foursquare January 2 Edit Settings

Figure 5-18. Revoking an application’s permission to interact with a Facebook user’s data and profile

CHAPTER 5: Working Securely with OAuth and Accounts

Determining if i0S Supports Backgrounding of Applications

The Facebook SDK behaves differently, based upon whether the device supports
backgrounding. This difference in behavior is achieved via the use of the following code:

if ([UIDevice instancesRespondToSelector:@selector(isMultitaskingSupported)] &&«
[[UIDevice currentDevice] isMultitaskingSupported]) {

We are showing this here because it may be useful from time-to-time in your own
application to choose different code paths based upon whether the device supports
backgrounding of applications.

OAuth in Twitter

OAuth via the Facebook iOS SDK wasn’t too painful since the SDK'’s developers have
done a stellar job of wrapping everything up as nicely as possible with its SDK via simple
APls. OAuth via Twitter is a little more involved, but we’re going to get you through it.

Figure 5-19 shows a diagram of Twitter’s OAuth authentication flow.

As we mentioned previously, Twitter doesn’t have an official iOS SDK, so some people
in the open source community pieced together software from various projects to make a
working iOS Twitter engine with OAuth support. We are going to show you how to use
this open source software to quickly integrate Twitter authentication into your app.

CHAPTER 5: Working Securely with OAuth and Accounts

Application sends request to
https://api.twitter.com/oauth/authenticate

¢ twitter.com prompts user to login
Ewitter,

Is user
logged in to
twitter.com?

No —»

—

Cancel

Yes - -
twitter.com confirms the user cancelled
the sign in or denied access
. . Ewikter;
< Sign in
OK. you've demied rvis sovems 1o imernet with your secountt
v twitter.com prompts user to allow or deny T
the application access D
en
Ewitter v

Has user
authorized the
application?

No =]

i
<

Y
Twitter.com redirects user back to the
application callback with the
oauth_token and oauth_verifier

Completion of OAuth process
by Application

Figure 5-19. Twitter authentication flow (courtesy of Twitter.com)

Creating a Twitter Application

Before you jump in with OAuth for Twitter, you will need to register an application with
Twitter here: http://twitter.com/apps/new.

When you visit this site, Twitter will ask you to enter various pieces of information about
your application and your company (see Figure 5-20).

CHAPTER 5: Working Securely with OAuth and Accounts

Application Website: Apress.com

Where's your application's home page, where users can go to
download or use it?

QOrganization: Apress
Website: Apress.com

The home page of your company or organization.

Application Type: ® Client () Browser
Does your application run in a Web Browser or a Desktop Client?

s Browser uses a Callback URL to return to your App after
successfully authentication.

« Client prompts your user to return to your application
after approving access.

What type of access does your application need?
Mote: @Anywhere applications require read & write access.

Use Twitter for login: ™ Yes, use Twitter for login
Does your application intend to use Twitter for authentication?

Figure 5-20. Signing up for a Twitter application

Note that you must select Client as the Application Type.

If Twitter accepts your registration information, you will be brought to a page that
contains Twitter’s OAuth URLs, as well as the consumer key and consumer secret for
your application (see Figure 5-21).

GHAPTER 5: Working Securely with OAuth and Accounts

Application Details

C

iOS Tweetin' App by Apress

An I0S app or game that makes calls against Twitter's API.

created by Los Scramblos - read and write access by default

Edit Application Settings Reset Consumer Key/Secret

Consumer key

mwYFyb413NKPsHGLx5fIg

Consumer secret

YACllazdSXalOxCol]jS5KheigSi7zrépyzQ4jLl3YTIA4

Request token URL

http://twitter.com/cauth/reguest token

Access token URL

http://twitter.com/cauth/access token

Authorize URL

http://twitter.com/ocauth/authorize

“We support hmac-shal signatures. We do not support the plaintext signature method.

Figure 5-21. Twitter returns your consumer key and consumer secret.

Save your consumer key and secret in a safe location since these are the values you will
need to start the 0Auth authorization process from within your iOS application.

CHAPTER 5: Working Securely with OAuth and Accounts

The OAuthTwitter Project

In Chapter 4, we walked you through the steps to set up a basic application that uses
Twitter: HelloTwitter. In this and future chapters, we are going to use the same
application skeleton as HelloTwitter and jump right into the code specific to the given
chapter. To that end, create a new project entitled OAuthTwitter using the same steps
described in Chapter 4. Or you can make a copy of the HelloTwitter project or perform
the steps described gere directly in the HelloTwitter project. You can find the project
for this chapter in the Chapter5 directory of the Git repository. Now that we’ve covered
those bases, let’s take a closer look at OAuth and Twitter.

Logging into Twitter

Begin by adding your Twitter OAuth consumer key and secret in your main application
delegate:

#define kOAuthConsumerKey @"REPLACE ME"
#define kOAuthConsumerSecret @"REPLACE ME"

Now set those values for the respective properties of the SA_OAuthTwitterEngine object
that we declared and initialized in your main application delegate in Chapter 4:

sa_OAuthTwitterEngine = [[SA OAuthTwitterEngine alloc] initOAuthWithDelegate: self];
sa_OAuthTwitterEngine.consumerKey = kOAuthConsumerKey;
sa_OAuthTwitterEngine.consumerSecret = kOAuthConsumerSecret;

The final thing that you need to do in your main application delegate is to declare it as a
SA OAuthTwitterEngineDelegate in the header file:

@interface AppDelegate : NSObject <UIApplicationDelegate, <«
SA_OAuthTwitterEngineDelegate> {
}

Complete this process by implementing the matching delegate methods in the source
file:

- (void) storeCachedTwitterOAuthData: (NSString *) data forUsername: (NSString *)«
username {

NSUserDefaults *defaults = [NSUserDefaultse«
standardUserDefaults];

[defaults setObject: data forKey: @"authData"];
[defaults synchronize];

}

- (NSString *) cachedTwitterOAuthDataForUsername: (NSString *) username {
return [[NSUserDefaults standardUserDefaults] objectForKey: @"authData"];
}

- (void) twitterOAuthConnectionFailedwithData: (NSData *) data {
NSLog(@"twitterOAuthConnectionFailedWithData");

Before moving onto the code that will display the login page to the user, let’s cover a
little bit of what’s going on in the preceding delegate methods.

CHAPTER 5: Working Securely with OAuth and Accounts

The iOS Twitter engine does not store the OAuth data returned from Twitter across runs
of your application; you have to do this yourself. Fortunately, the iOS Twitter engine
provides two delegate methods that you need to implement so that this is integrated
seamlessly with the engine.

When the iOS Twitter engine starts the authentication process, it first checks to see if
any credentials already exist. It does this by calling its delegate’s
cachedTwitterOAuthDataForUsername: method. In the preceding code, you can see that
we attempt to retrieve this information from NSUserDefaults. The first time that someone
tries to log into Twitter via your application, there will be no object for the authData key
in NSUserDefaults since nothing has been saved there yet. However, this is where the
delegate method storeCachedTwitterQOAuthData: comes into play. If a user successfully
logs into Twitter via your app, the Twitter iOS engine will call the
storeCachedTwitterOAuthData: delegate method. This gives you an opportunity to save
the information returned from Twitter for subsequent retrieval. Note that in the preceding
code, we are saving this information to NSUserDefaults in a key entitled authData.

The last delegate method, twitterOAuthConnectionFailedWithData:, is called by the
Twitter iOS engine if an error is encountered while trying to authorize the user via OAuth.
For instance, if you add an extra character to your consumer key or secret and rebuild
and run your application, you will see that this delegate method is called by the engine.

Now let’s do a little work with the user interface. It’s nice to have a button to log into
Twitter, so we went through the trouble of putting one together for you. This Twitter
Login button is modeled on the Facebook Login button that we used in the
OAuthFacebook project.

Go to the Twitter-0Auth-iPhone directory in the directory where you cloned the Git
repository for the sample projects for this book, and then locate the TwitterLoginButton
directory. Drag the TwitterLoginButton to your project, so that you can use it in your
code.

If you look at the MainViewController class in the OAuthTwitter sample project, you will
see how we dropped in the TwitterLoginButton. We have used the iOS Twitter engine’s
isAuthorized: method to set the button to the correct state on startup of the sample
application:

twitterLoginButton.isLoggedIn = [sa_OAuthTwitterEngine isAuthorized];
When clicked, this button triggers the following method:

- (void)twitterButtonClick: (UIButton*)sender {
if (twitterLoginButton.islLoggedIn) {
[self logout];
} else {
[self login];

}

In the login: method, we use the SA_OAuthTwitterController class to display the
Twitter OAuth login page to the user. We show this modally via the UIViewController
method, presentModalViewController:. When initializing the

CHAPTER 5: Working Securely with OAuth and Accounts

SA _OAuthTwitterController object, you have to pass it the SA_OAuthTwitterEngine that
we created and initialized in our main application delegate and also pass it an
SA OAuthTwitterControllerDelegate. Here is the code:

- (void)login {

UIViewController *controller =«
[SA_OAuthTwitterController controllerToEnterCredentialsWithTwitterEngine:«
sa_OAuthTwitterEngine delegate: self];

if (controller) {

[self presentModalViewController: controller animated: YES];

}
else {
[sa_OAuthTwitterEngine sendUpdate: [NSString stringWithFormat:«
@"Already Updated. %@", [NSDate date]]];
}

}

We need to declare ourselves as an SA_OAuthTwitterControllerDelegate, and we do
that in our header file:

@interface MainViewController : UIViewController <SA OAuthTwitterControllerDelegate> {
}

The final step is to implement the SA_ OAuthTwitterControllerDelegate delegate
methods:

- (void) OAuthTwitterController: (SA_OAuthTwitterController *) controller«
authenticatedWithUsername: (NSString *) username {
NSLog(@"Authenicated for %@", username);

twitterLoginButton.isLoggedIn = YES;
[twitterLoginButton updateImage];

}

- (void) OAuthTwitterControllerFailed: (SA OAuthTwitterController *) controller {
NSLog(@"Authentication Failed!");

- (void) OAuthTwitterControllerCanceled: (SA OAuthTwitterController *) controller {
NSLog(@"Authentication Canceled.");

Note how we update the state of the TwitterLoginButton after a successful login via the
OAuthTwitterController:authenticatedWithUsername: delegate method. You will more
than likely want to perform application-specific steps in your own application code here.

If the user enters an incorrect username and password on the login page or hits the
Deny button, the delegate method OAuthTwitterControllerFailed: will be called, and
the code that implements this delegate method should display a message to the user
explaining the failed login attempt. If the user cancels the SA_OAuthTwitterController
dialog, the delegate method OAuthTwitterControllerCanceled: will be called.

Figures 5-22 and 5-23 show screenshots of what the SA_OAuthTwitterController looks
like while displaying the Twitter authentication page.

GHAPTER 5: Working Securely with OAuth and Accounts

Cancel Twitter Info

Connect your account?

" : - : You

The application Tweetin' iOS OAuth

by christhepiss would like to

Access and Update your data on

Twitter.

1. Make sure you trust this
application!

2. Sign in to Twitter to accept and
continue, or choose deny ta
cancel.

Username or email

Figure 5-22. How the SA_OAuthTwitterController looks while displaying the authentication page.

Cancel Twitter Info

continue, or choose deny to
cancel.

Username or email

Password

Allow Deny

Don't have a Twitter account? Sign

up now!
By clicking "Allow" you continue to operate
under Twitter's Terms of Service.

Home - Sign out

Figure 5-23. The bottom half of the SA_OAuthTwitterController authentication page

CHAPTER 5: Working Securely with OAuth and Accounts

Logging out of Twitter

Logging the user out of Twitter is a pretty straightforward process. The iOS Twitter
engine provides a clearAccessToken method that we use in the logout method. We also
reset our Login button:

- (void)logout {
[sa_OAuthTwitterEngine clearAccessToken];

twitterLoginButton.isLoggedIn = NO;
[twitterLoginButton updateImage];

If we look at the clearAccessToken: method, we find that it clears out Twitter OAuth
access and request tokens, calls our delegate method so that we clear out the access
token we saved to NSUserDefaults, and clears out some other objects, as well:

- (void) clearAccessToken {

if ([_delegate respondsToSelector:«
@selector(storeCachedTwitterOAuthData: forUsername:)]) [(id) _delegate«
storeCachedTwitterOAuthData: @"" forUsername: self.username];

[_accessToken release];

_accessToken = nil;

[_consumer release];

_consumer = nil;

self.pin = nil;

[_requestToken release];

_requestToken = nil;

Under the Hood: webhViewDidFinishLoad

The workhorse of a view controller that implements OAuth is a UIWebView. If you examine
SA OAuthTwitterController, you will see that its main view is a UIWebView, and that it is
itself a UIWebViewDelegate. One of the nice things about the UIWebView class is that it
has a number of delegate methods that make it possible to perform native functionality
within your app when the UIWebView loads pages. This is accomplished via the delegate
method, webViewDidFinishLoad:. Take a look at webViewDidFinishLoad: in

SA OAuthTwitterController.m to get a feel for what it’s doing. Even better, set a break
point in the beginning of the method and step through the code.

There’s More

We’ve done our best to outline the major icebergs, but building a secure app takes a lot
more than we can include in this chapter. For some concise, well-considered rules of
thumb about good iOS development, including how to test and deploy your app without
any n00bish security screw-ups, check out Twitter’s Security Best Practices at:
http://dev.twitter.com/pages/security best practices.

GHAPTER 5: Working Securely with OAuth and Accounts

Finally, remember these important points:

Address any security issues within your application sooner rather than
later.

Test, test, and test again to ensure a seamless user experience.

Consider using facebook connect via OAuth to authenticate users of an

application if creating an authentication system from scratch is not a
viable option.

Chapter

Getting Your App Ready
for Social Messaging

The hardest part about understanding this chapter is using Facebook and Twitter
enough to understand what’s going on here on the front end. It’s crucial! Once you
understand this stuff, you can go ahead and connect to the APlIs.

We’'re guessing you’ve used Facebook and Twitter if you’re reading this book. Chances
are, however, that you haven’t used them enough.

In this section of the book, we’ll go into more detail about how to get your iOS app
connected with Facebook’s Graph APl and the Twitter API. Then we’ll discuss how to
publish information from your app onto the social Web: Tweets, messages, wall posts,
and so forth.

But before we go any further, let’s explore the vaguely insulting assertion in the first line
of this chapter. We don’t doubt that you have the faculties to understand what
Facebook and Twitter do. But there are a dizzying number of ways to publish
information to the social graph, and it’s worth consciously exploring each one to figure
out which mechanisms are right for your app. Try to conceptualize what’s happening on
the front end—the difference between an @reply and a direct message in Twitter, for
example—so that it will be easier to focus on which API calls you want your app to make.
As with any new project, it’s important to implement only the most basic features first,
so being fluent in Facebook and Twitter will help you make informed choices about
which features to include.

You can find all of the code for this chapter in the Chapter6 directory of the Git
repository. The Facebook code is in the ApiFacebook project and the Twitter code is in
the ApiTwitter project.

All right, let’s holler at some APIs, shall we?

CHAPTER 6: Getting Your App Ready for Social Messaging

Introducing the Facebook Graph API

There are tons of things your app can publish on Facebook. These things include, but
aren’t limited to the following: Wall posts, messages, group messages, notes, events,
statuses, comments, Likes, and Places (we’ll give Places more attention later). We’'ll
begin by showing you how to pull information from the Facebook social graph via the
Facebook iOS SDK.

In order to make it easy to see some of this in action, we have changed the structure of
the sample application a bit for this chapter. You will see that the sample application
now uses a UITabBarController to divide up the functionality of the app. It’s not pretty,
but it works.

A Little Help from Our Friends

In all social networking, the most important thing is to always be part of the user’s
friends and communications. In keeping with this, we’re first going to take a look at how
to get a list of the currently logged in user’s friends and the associated profile picture for
each friend. This is accomplished via the requestWithGraphPath:andDelegate: method:

[facebook requestWithGraphPath:@"me/friends" andDelegate:self];

Before we delve into what’s going on under the covers, let’s peruse the sample code a
bit to get acquainted with using the requestWithGraphPath:andDelegate: method. This is
the primary method that is used to access information from the Facebook social graph.

If you refer to the sample code, you will see that we make the preceding
requestWithGraphPath:andDelegate: method call in the viewDidLoad: method of the
FriendsViewController class. The FriendsViewController class is a subclass of the
FacebookViewController class, which is a subclass of UITableViewController. Since the
Facebook API returns lists of information, we created the FacebookViewController class
in order to reuse code and make our lives a little easier for the purposes of
demonstrating how to use and display the results of Facebook graph path requests. It’s
important to note that the FacebookViewController is also an FBRequestDelegate. Here
is the declaration for the FacebookViewController class:

@interface FacebookViewController : UITableViewController <FBRequestDelegate> {
NSArray *items;

}
@end

Whenever a request is made via the requestWithGraphPath:andDelegate: method, a
delegate must be specified in order to handle the response from the Facebook iOS SDK.
It’s important to note that the Facebook iOS SDK calls the methods of the
FBRequestDelegate in the following order. First, before the request is made to the
Facebook servers, the requestLoading: method is called. When the Facebook servers
send a response, the request:didReceiveResponse: method is called. Next, before the
Facebook iOS SDK starts to handle the response, the request:didLoadRawResponse:
method is called to give the delegate the chance to process the response data itself.
Finally, the request:didLoad: method is called with the response data stored in an

CHAPTER 6: Getting Your App Ready for Social Messaging

Objective-C data type. If there was a problem with the request, then the
request:didFailWithError: method is called.

If we take a look at the request:didLoad: method in the FacebookViewController, we
see the following:

- (void)request:(FBRequest *)request didLoad:(id)result {
NSLog(@"didLoad:");

[items release];
items = [[(NSDictionary*)result objectForKey:@"data"] retain];
[self.tableView reloadData];

}

If you recall from the earlier example, the FacebookViewController owns a pointer to an
NSArray entitled items:

NSArray *items;

In the request:didLoad: method, the first thing that we do is release the array of items.
We do this to prevent a memory leak. Since the next step is to assign a new array to the
array of items, any time we want to assign a new array, we need to first make sure that
we release and give back the array that we stored before. Things get a little more
interesting when we actually do the assignment, so let’s review what’s going on in this
step:

items = [[(NSDictionary*)result objectForKey:@"data"] retain];

For the majority of requests that you make from the Facebook social graph, the
response is going to be a dictionary with one key/value pair, where the key is data, and
the value is an array or list of items. So, in this case, we’re casting the result to an
NSDictionary* and then using the objectForKey: method to retrieve the actual NSArray
of items. We’re also calling retain, so that the returned array of items stays in memory.
In most cases, each item within the array of returned items will be an NSDictionary. For
the friends request, each item in the array is a dictionary with two key/value pairs: one
stores the Facebook ID of the friend, and one stores the friend’s name. This can be seen
in this visual representation of what the entire response dictionary looks like:

data = (
{
id = <a number>;
name = "John Doe";

}
);

CHAPTER 6: Getting Your App Ready for Social Messaging

TIP: A quick and easy way to see the contents of an object in Xcode is to go to the Xcode console
and type the following print out (po) command. So for instance, if we place a breakpoint inside
the request:didLoad: method, we can obtain the earlier visual representation of the
(id)result object by typing the following into the Xcode console when our breakpoint is hit:

(gdb) po result

Finally, we ask the UITableView that is owned by our UITableViewController to reload
its data, so that the user interface is updated. When the UITableView reloads, it will need
to know how many total rows it contains, so we return the count for the items array:

- (NSInteger)tableView:(UITableView *)tableView numberOfRowsInSection:(NSInteger)section
{

// Return the number of rows in the section.
if (nil == items) {
return 0;

return [items count];

}

When the UITableView needs a specific row, we retrieve the dictionary that represents
the friend for that row from our array of friends (i.e., the items array) in
FriendsViewController’s tableView:cellForRowAtIndexPath: method:

NSDictionary *friendDictionary = [items objectAtIndex:[indexPath row]];

For this sample, we’re using our own UITableViewCell class entitled
FriendTableViewCell. This enables us to encapsulate the retrieval of a friend’s profile
picture. The FriendTableViewCell uses the style UITableViewCellStyleDefault, which
displays a text label and an optional image. The FriendTableViewCell class is itself an
FBRequestDelegate, and it owns a pointer to a dictionary, which in this case will be the
dictionary for the friend that is associated with the cell. Here is the declaration for the
FriedTableViewCell:

@interface FriendTableViewCell : UITableViewCell <FBRequestDelegate> {
NSDictionary *data;

@property(nonatomic, retain) NSDictionary *data;

@end

We assign the FriendTableViewCell’s data dictionary in FriendsViewController’s
tableView:cellForRowAtIndexPath: method:

cell.data = friendDictionary;

When we do the preceding assignment, FriendTableViewCell’s setData method is
called. Therefore, we have overridden this method to perform our own custom actions:

- (void)setData:(NSDictionary *)dictionary {
[data release];

CHAPTER 6: Getting Your App Ready for Social Messaging

data = [dictionary retain];
self.textlLabel.text = [data objectForKey:@"name"];

self.imageView.image = nil;
[self setNeedslLayout];

[[NSNotificationCenter defaultCenter] removeObserver:self];

self.requestPath = [NSString stringWithFormat:@"%@/picture”, [data
objectForKey:@"id"]];

[[FacebookRequestController sharedRequestController]
enqueueRequestWithGraphPath:self.requestPath];

//listen for a notification with the name of the identifier

[[NSNotificationCenter defaultCenter] addObserver:self
selector:@selector(facebookRequestDidComplete:) name:kRequestCompletedNotification
object:nil];

First, we set the text for the textLabel of the cell to the value associated with the name
key in the data dictionary. Second, we initiate a request for this particular friend’s profile
picture from the Facebook social graph via the requestWithGraph: method. To obtain
the profile picture of a user from the Facebook graph, we make the request using this
format:

<user ID>/picture

In this case, we are constructing this for each friend by using NSString’s
stringWithFormat: and passing it the value associated with the id key in the data
dictionary. The Facebook iOS SDK returns the image as bytes within an NSData object.
Next, we create an image from this object, as shown here in FriendTableViewCell’s
facebookRequestDidComplete: method:

- (void)facebookRequestDidComplete: (NSNotification*)notification {

if (YES == [self.requestPath isEqualToString:[notification.userInfo
objectForKey:@"path"]]) {

UIImage *image = [UIImage imageWithData:(NSData*)[notification.userInfo
objectForKey:@"result"]];

self.imageView.image = image;

[self setNeedslLayout];

}
}

If you run the sample application, log in via your Facebook user account, and tap the
Friends tab, then you will see it download and display your list of friends. It will also
download each of their profile pictures (see Figure 6-1). Note that this sample has not
been optimized; it’s intended solely to show you how to get up and running with these
APlIs.

CHAPTER 6: Getting Your App Ready for Social Messaging

_ Peter Lee

A Mike Lambert

| Evan Haas

. Amy Chen
A

w Ariel Melendez

m Erika Hendel

'f‘}v Chris Dannen

i<

Friends

Figure 6-1. A rudimentary list of friends

Paging Graph Responses

One interesting thing that we’d like to point out is that you can limit the number of items
you get in a response from the Facebook graph when making a request. This is
accomplished by adding the 1imit parameter to the request. You can do this via the
requestWithGraphPath:andDelegate: method:

[facebook requestWithGraphPath:@"me/friends?1imit=3" andDelegate:self];

You can also do this via requestWithGraphPath:andParams:andDelegate: by creating a
dictionary of parameters. For each object in the dictionary, the key is the name of the
parameter—1imit, in this case—and the value is a string representation of the value.
Here is what the code looks like:

NSMutableDictionary *params = [NSMutableDictionary dictionary];

[params setObject:@"3" forKey:@"limit"];
[facebook requestWithGraphPath:@"me/feed" andParams:params andDelegate:self];

You can also specify that you would like to retrieve items from a given starting point or
offset by using the offset parameter:

[facebook requestWithGraphPath:@"me/friends?limit=380ffset=5" andDelegate:self];

Alternatively, you can also accomplish this same task by passing in a dictionary of
parameters:

CHAPTER 6: Getting Your App Ready for Social Messaging

NSMutableDictionary *params = [NSMutableDictionary dictionary];

[params setObject:@"3" forKey:@"limit"];

[params setObject:@"5" forKey:@"offset"];

[facebook requestWithGraphPath:@"me/feed" andParams:params andDelegate:self];

Under the Hood: The FBRequest Class

The actual Facebook Graph API is an HTTP-based API, where HTTP requests are
formatted and sent to Facebook’s servers, and responses are sent back in JSON
format. The Facebook iOS SDK provides us with a set of clean and simple-to-use
Objective-C wrapper classes that we can use within our iOS apps to request information
via the Facebook Graph API.

The Facebook iOS SDK class that actually makes the requests and handles the
responses is FBRequest. The Facebook iOS SDK takes advantage of the fact that the
underlying base URL that it needs to use to make requests never changes:
https://graph.facebook.com. The SDK also knows that certain parameters for a request
never change. This means that you only need to provide the request methods with those
parts of the Graph Path that change based on the context of your application.

So, if we were to construct the full URL to request the current user’s friends from the
Facebook graph, it would look as follows:

https://graph.facebook.com/me/friends?sdk=ios&sdk_version=2&access_token=<your
token>&format=json

We are using the Facebook iOS SDK, so we only need to give the SDK the Graph Path
"me/friends" (along with any other parameters to control the request) since the
underlying SDK classes construct the full URL for us.

The final request is constructed in FBRequest’s connect method, so it is worth studying.
This is where the actual request is made, and the JSON response is handled. The JSON
response is handled in the method handleResponseData: (NSData *)data. In the case of
a request for a user’s friends, this is what the JSON response looks like:

{"data":[{"name":"John Dor","id":"<some ID>"}]}

It is also worth studying FBRequest’s
getRequestWithParams:httpMethod:delegate:requestURL: method and Facebook’s
openUrl:params:httpMethod:delegate:.

A General Note on Error Handling

There is no right or wrong way to handle errors from the Facebook iOS SDK. It all
depends on you and your application. We encourage you to implement any delegate
methods that notify you of errors, so that you can take the appropriate action and notify
the user or update your application’s user interface. With respect to what we have
covered for Facebook in this chapter, be sure to implement FBRequestDelegate’s
request:didFailWithError: method.

CHAPTER 6: Getting Your App Ready for Social Messaging

Introducing the Twitter APIs

There are tons of things your app can publish on Twitter. These things include, but
aren’t limited to the following: Tweets, direct messages (although note that this is fading
out), @replies, #hashtags, and so on. We’ll begin by showing you how to pull
information from Twitter via MGTwitterEngine.

As with the Facebook sample app for this chapter, we have changed the structure of the
Twitter sample application a bit for this chapter in order to make it easy to see some of
this in action. You will see that the sample application now uses a UlTabBarController to
divide up the functionality of the app. Again, it’s not pretty, but it works.

Welcome to the Timeline

If you’re wondering what a Twitter timeline is, it’'s Twitter’s own term for any stream of
Tweets. Twitter treats all your own Tweets as one timeline, the stream of Tweets you see
from people you follow as another timeline, and any stream of Tweets coming from a
curated list that you’ve made as still another timeline.

It Always Feels Like Somebody’s Following Me

The most coveted thing for a Twitter user is to have a lot of followers. To that end, we're
going to take a look at how to get a list of the currently logged in user’s followers and
the associated profile picture for each follower. This is accomplished via
MGTwitterEngine’s getFollowersIncludingCurrentStatus: method:

[sa_OAuthTwitterEngine getFollowersIncludingCurrentStatus:YES];

Unlike the Facebook iOS SDK, where every request is issued via the
requestWithGraphPath: method, MGTwitterEngine uses different methods to
accomplish different requests. There is also no formal request object, so some different
coding mechanisms are required since we can’t specify a different delegate per request.
Unfortunately, this makes coding against MGTwitterEngine slightly more difficult;
however, all of the MGTwitterEngine request methods return a unique request
connection identifier string, and we will use this to our advantage in our sample app for
this chapter.

Looking at the sample code, we make the previously mentioned
getFollowersIncludingCurrentStatus: method call in the viewDidLoad: method of the
FollowersViewController class. The FollowersViewController class is a
UITableViewController. Since the Twitter API returns lists of information, a
UITableViewController is an ideal class to use to demonstrate how to use the API to
retrieve someone’s list of followers. Here is the declaration for the
FollowersViewController class:

@interface FollowersViewController : UITableViewController {
NSArray *followers;

}
@end

CHAPTER 6: Getting Your App Ready for Social Messaging

Recall that when we created the MGTwitterEngine, we had to set an
MGTwitterEngineDelegate, which in this case is our AppDelegate class. Whenever a
request is made of Twitter via MGTwitterEngine, the methods of the
MGTwitterEngineDelegate will be called. It’s important to note that MGTwitterEngine
calls the methods of its delegate in the following order:

1. After a successful request is made to Twitter’s servers, the
requestSucceeded: method is called.

2. Next, depending on what was requested, one of the
*Received:forRequest: methods is called (in this case, when requesting
followers, the userInfoReceived: forRequest: method is called), and the
response data is stored in an Objective-C data type.

3. Finally, the connectionFinished: method is called. If there was a
problem with the request, then the requestFailed:withError: method is
called.

If we take a look at the userInfoReceived:forRequest: method in the AppDelegate, we
see the following:

- (void)userInfoReceived: (NSArray *)userInfo forRequest:(NSString *)«
connectionldentifier

NSLog(@"User info for connectionIdentifier = %@", connectionIdentifier);
//tell the UI to update itself

NSDictionary *userInfoDictionary = [NSDictionary dictionaryWithObjects:«
[NSArray arrayWithObjects:userInfo, nil] forKeys:[NSArray arrayWithObjects:«
@"followers", nil]];

[[NSNotificationCenter defaultCenter] postNotificationName:connectionIdentifier

object:self

userInfo:userInfoDictionary];

At this point, you might be wondering what we’re doing with the NSNotificationCenter.
Well, as it turns out, the NSNotificationCenter is a great mechanism for allowing a class
within an app to notify other classes that something has happened and pass along
information without having to use delegates. In this case, we want tell the
FollowersViewController that the information for its request is available. But before we
talk more about what’s going on within FollowersViewController, let’s finish taking a
look at the preceding code.

The userInfo parameter is an NSArray of NSDictionary objects. Each NSDictionary
contains information about an individual follower. When you post a notification, you can
specify a dictionary of objects that the receiver of the notification can access. We want
the FollowersViewController to receive the array of followers, so we create a dictionary
with one key, followers, and assign the array of followers to that key. When we finally

CHAPTER 6: Getting Your App Ready for Social Messaging

post the notification, we have to give it a unique name, and what better name to use
than the connection identifier?

You probably recall that the FollowersViewController owns a pointer to an NSArray
entitled followers:

NSArray *followers;

In order to assign the array that we got back in the userInfoReceived:forRequest:
delegate method, we have to do a couple of things in FollowersViewController. We
begin by telling the NSNotificationCenter that we want to receive notifications that
match the name of the unique connection identifier for our request. Recall that this will
be the same connection identifier that is given to the userInfoReceived:forRequest:
delegate method. We also tell NSNotificationCenter that we want the method
twitterFollowersRequestDidComplete: to be executed if a notification that matches our
unique connection identifier is fired. Here is the code that does this:
- (void)viewDidLoad {

[super viewDidlLoad];

// Uncomment the following line to display an Edit button in the navigation
bare

for this view controller.
// self.navigationItem.rightBarButtonItem = self.editButtonItem;

NSString *identifier = [sa_OAuthTwitterEngine«
getFollowersIncludingCurrentStatus:YES]; // statuses/followers

//listen for a notification with the name of the identifier
[[NSNotificationCenter defaultCenter] addObserver:self
selector:@selector(twitterFollowersRequestDidComplete:)
name:identifier
object:nil];
}

Now let’s examine what’s going on in our method that handles the notification:

- (void)twitterFollowersRequestDidComplete: (NSNotification*)notification {

[followers release];
followers = [[notification.userInfo objectForKey:@"followers"] retain];

[[NSNotificationCenter defaultCenter] removeObserver:self];

[self.tableView reloadData];
}

In this method, the first thing that we do is release the array of followers. We do this to
prevent a memory leak. Since the next step is to assign a new array to the array of
followers, any time we want to assign a new array, we need to first make sure that we
release and give back the array that we stored before. Things get a little more interesting
when we actually do the assignment, so let’s review what’s going on in this step:

followers = [[notification.userInfo objectForKey:@"followers"] retain];

Remember that, when we posted the notification from AppDelegate, we sent a dictionary
that contained one key/object pair with the key followers in the dictionary. Thus, all

CHAPTER 6: Getting Your App Ready for Social Messaging

we’re doing is assigning the value for this key from the notifications userInfo dictionary
to our followers array. We finish off this method by removing ourselves as an observer
of notifications, and then telling our table to reload itself since we have new data.

NOTE: It's always a good practice to remove yourself as an observer of notifications as soon as
you feel the class in question no longer needs to receive the notifications. If you fail to do this
before setting your class to receive notifications again, your class will receive multiple
notifications for the same event, which is probably not the behavior you want.

When the table reloads, we return the number of followers as the number of rows in the
table:

- (NSInteger)tableView:(UITableView *)tableView numberOfRowsInSection:+
(NSInteger)section {
// Return the number of rows in the section.
if (nil == followers) {
return 0;
}

return [followers count];

When the UITableView needs a specific row, we retrieve the dictionary that represents
the follower for that row from our array of followers in FollowersViewController’s
tableView:cellForRowAtIndexPath: method:

NSDictionary *dictionary = [followers objectAtIndex:[indexPath row]];

For this sample, we’re using our own UITableViewCell class entitled
FollowersTableViewCell. This lets us encapsulate the retrieval of a follower’s profile
picture. The FollowersTableViewCell uses the style UITableViewCellStyleDefault,
which displays a text label and an optional image. The FollowersTableViewCell class
owns a pointer to a dictionary, which in this case will be the dictionary for the follower
that is associated with the cell. Here is the declaration for the FriendTableViewCell:

@interface FollowersTableViewCell : UITableViewCell {
NSDictionary *data;
}

@property(nonatomic, retain) NSDictionary *data;

@end

We assign the FollowersTableViewCell’s data dictionary in FollowersViewController’s
tableView:cellForRowAtIndexPath: method:

cell.data = dictionary;

When we do the preceding assignment, FollowersTableViewCell’s setData method is
called, so we have overridden this method to perform our own custom actions:

- (void)setData: (NSDictionary *)dictionary {
[data release];

CHAPTER 6: Getting Your App Ready for Social Messaging

data = [dictionary retain];
self.textlLabel.text = [data objectForKey:@"screen _name"];

self.imageView.image = nil;
[self setNeedsLayout];

[[NSNotificationCenter defaultCenter] removeObserver:self];

NSString *identifier = [sa_OAuthTwitterEngine getImageAtURL:[dictionary«
objectForKey:@"profile image url"]];

//listen for a notification with the name of the identifier
[[NSNotificationCenter defaultCenter] addObserver:self
selector:@selector(twitterProfileImageRequestDidComplete:)
name:identifier
object:nil];
}
First, we set the text for the textLabel of the cell to the value associated with the
screen_name key in the data dictionary. Second, we initiate a request for this particular
follower’s profile picture from Twitter via MGTwitterEngine’s getImageAtURL: method.
We pass to this method the URL of the follower’s profile image that was returned to us
from Twitter and is the value associated with the profile image url key in the data
dictionary. Note that the getImageAtURL: method can be used to retrieve an image from
any URL, not just a Twitter URL.

When we make the request for the image, MGTwitterEngine returns the connection
identifier and, just like in FollowersViewController, we tell NSNotificationCenter that
we want to receive notifications matching the value of the connection identifier.

MGTwitterEngine notifies our application that the image is available and passes it to us
via the imageReceived: forRequest: MGTwitterEngineDelegate method. We then issue a
notification for the returned connection identifier that contains the image:

- (void)imageReceived: (UIImage *)image forRequest:(NSString *)connectionIdentifier {
NSLog(@"Image receieved for connectionIdentifier = %@", connectionIdentifier);

NSDictionary *userInfoDictionary = [NSDictionary dictionaryWithObjects:«
[NSArray arrayWithObjects:image, nil] forKeys:[NSArray«
arrayWithObjects:@"profile_image", nil]];
[[NSNotificationCenter defaultCenter] postNotificationName:connectionIdentifier
object:self
userInfo:userInfoDictionary];

}

Back in FollowersViewController, in the notification handler, we get the image object out
of the notification, set it as the cell’s image, and then update the cell’s layout:

- (void)twitterProfileImageRequestDidComplete: (NSNotification*)notification {
[[NSNotificationCenter defaultCenter] removeObserver:self];

self.imageView.image = [notification.userInfo objectForKey:@"profile image"];
[self setNeedslLayout];

CHAPTER 6: Getting Your App Ready for Social Messaging

If you run the sample application, log in via your Twitter user account, and tap the
Followers tab, then you will see it download and display your list of followers. It will also
download each of their profile pictures (see Figure 6-2). Note that this sample has not
been optimized; it’s intended solely to show you how to get up and running with these
APlIs.

& white_spaces
|

B GmailUpdate

“*| RubieMacvean188
f. TaoOfLyrics

a JRobingson

' dealerity

g hotpeasandbutta
u stonesthrow
H LareeYaftali602

3
=
gin Followers

Figure 6-2. A rudimentary list of followers

Under the Hood: MGTwitter HTTP Connections and XML
Parsing

The actual Twitter APl is an HTTP-based API, where HTTP requests are formatted and
sent to Twitter’s servers, and responses are sent back in XML format. MGTwitterEngine
provides us with a set of clean and simple to use Objective-C wrapper classes that we
can use within our iOS apps to request information from Twitter.

The class in MGTwitterEngine that actually makes the requests and handles the
responses is the MGTwitterEngine class itself. If you refer to the header file for
MGTwitterEngine, you will notice that it owns a dictionary of connections:

NSMutableDictionary * connections;

Each time a request is made, MGTwitterEngine creates a new
MGTwitterHTTPURLConnection, which is an NSURLConnection. Each
MGTwitterHTTPURLConnection creates a unique identifier (UUID) for itself. This is

CHAPTER 6: Getting Your App Ready for Social Messaging

accomplished via an NSString category class in MGTwitterEngine entitled
NSString+UUID that has one method:

+ (NSString*)stringWithNewUUID
{

// Create a new UUID
CFUUIDRef uuidObj = CFUUIDCreate(kCFAllocatorDefault);

// Get the string representation of the UUID

NSString *newUUID = (NSString*)CFUUIDCreateString(kCFAllocatorDefault, uidObj);
CFRelease(uuidObj);

return [newUUID autorelease];

}

When MGTwitterEngine creates a connection, it saves the object for that connection in
its connections dictionary, where the key is the connection identifier returned by the
connection. We’'ll get to why this is important in a second, but let’s first look at the URL
to request someone’s followers from Twitter:

https://twitter.com/statuses/followers.xml

When MGTwitterEngine creates an MGTwitterHTTPURLConnection object, it assigns it a
request type and a response type. Why is that? Well, when the response is received
from Twitter, MGTwitterEngine uses this information to decide how to parse the returned
XML data. Note that MGTwitterEngine has a number of XML parsers that all derive
themselves from MGTwitterXMLParser. If you examine MGTwitterEngine’s
_parseDataForConnection: method, you will see that it performs a switch on the
response type of the connection. In the case of requesting followers, a
MGTwitterUsersParser is created to parse the response. The XML is parsed and
returned to us via MGTwitterEngineDelegate’s userInfoRecieved:forRequest: method
as an array of dictionaries. Here is what one of these dictionaries looks like:

(
{

"contributors_enabled" = false;

"created_at" = "Thu Mar 25 16:29:19 +0000 2010";

description = "Phone Numbers Are Dead. Go800 is the new way of placing phone calls«~
by giving a voice to the names in your social world. Public launch March 1st.";

"favourites_count" = 0;

"follow_request_sent" = false;

"followers_count" = 675;

following = 1;

"friends_count" = 939;

"geo_enabled" = false;

id = 126361254;

"is_translator" = false;

lang = en;

"listed_count" = 9;

location = "New York, NY";

name = Go800;

notifications = false;

"profile_background_color" = ffffff;

"profile_background_image url" = "http://a3.twimg.com/profile _background_images«
/207991705/bkg_go800_850 _v_full v9.png";

"profile_background_tile" = true;

CHAPTER 6: Getting Your App Ready for Social Messaging

"profile_image url" = "http://a2.twimg.com/profile images+
/1235044022/g0800_logo_twitter logo normal.png";
"profile_link_color" = 3f90b3;
"profile_sidebar_border_color" = 333333;
"profile_sidebar_fill color" = ffffff;
"profile_text_color" = 333333;
"profile_use_background image" = true;
protected = 0;
"screen_name" = Go800;
"show_all inline_media" = false;
"source_api_request_type" = 11;

status =
contributors = "";
coordinates = "";
"created_at" = "Tue Feb 22 21:49:40 +0000 2011";
favorited = false;
geo - ",

id = 40166359300050944;

"in_reply to_screen_name" =

"in_reply to_status_id" = "";

"in_reply to_user_id" = "";

place = "";

"retweet_count" = 6;

retweeted = false;

source = web;

"source_api_request_type" = 11;

text = "Phone Numbers Are Dead. Teach twitter a new trick on March 1st.+
Follow ®Go800 for preview invite.";

truncated = 0;

5
"statuses_count" = 83;

"time_zone" = "Eastern Time (US & Canada)";
url = "http://www.go800corp.com";
"utc_offset" = "-18000";
verified = false;

}

)

Conclusion

We covered a lot of interesting areas within this chapter related to using the Facebook
iOS SDK to obtain a user’s list of friends and MGTwitterEngine to obtain a user’s list of
followers. Along the way, we took a closer look at what’s going on under the covers in
each of these SDKs. We also went into some generally useful programming techniques
for programming iOS apps in Objective-C.

In the next chapter, we will build on this knowledge base to delve deeper into what’s
going on under the covers and expand this chapter’s sample projects to show you how
to use these SDKs to post information for users, as well as how to get more of their
information.

Chapter

Accessing People, Places,
Objects, and
Relationships

In this chapter, we’ll cover the nuts and bolts of Facebook methods, objects, properties,
and connections—and how to get at them. We’ll also introduce JSON, or JavaScript
Object Notifications, which are ancillary to the use of the Graph API. Finally, we’ll talk
about retrieving basic data from Twitter's REST (Representational State Transfer)' API.

You can find all of the code for this chapter in the Chapter7 directory of the Git
repository. The Facebook code is in the ApiFacebook project, and the Twitter code is in
the ApiTwitter project. These projects build off the same application structure that was
introduced in the Chapter 6’s sample projects; and once again, the projects aren’t
pretty, but they get the job done.

More Fun with the Facebook Graph API

In the last chapter, we showed you how to pull information from Facebook’s social
graph. As you did this, you were probably left wondering how to go about adding or
posting information from your own app to Facebook’s social graph. Well, since we’re
such nice guys, we’ve gone through the trouble of dedicating an entire section of this
chapter to posting to the Facebook social graph. We’ve also added a thorough review of
additional information that you can pull from the social graph, including how that
information relates to authorization and extended permissions. Read on for the gory
details.

! See, for example, http://en.wikipedia.org/wiki/Representational State Transfer

81

CHAPTER 7: Accessing People, Places, Objects, and Relationships

Facebook Dialogs

One of the great ways to spice up your iOS application and make it a hit with users is to
let them post to their Facebook page directly from within your app. Even though iOS
supports copy and paste and fast switching between apps, users won’t find your app
appealing if they have to switch to the iOS Facebook app itself to, for instance, post a
link to an interesting article from within your application to their Facebook wall.

Fortunately for us, the Facebook SDK has made it as simple as possible to get up and
running with this functionality. This brings us to the dialog: methods in the Facebook
class that we have yet to discuss:

- (void)dialog:(NSString *)action
andDelegate: (id<FBDialogDelegate>)delegate;

- (void)dialog: (NSString *)action
andParams: (NSMutableDictionary *)params
andDelegate: (id <FBDialogDelegate>)delegate;

Both of these methods are in Facebook.h; and while there are two methods available to
us, we will focus on using the second one, which lets us pass in additional parameters.
The first method without parameters is usable, but more often than not you will need to
pass parameters to the dialog: method. Moreover, if you look in Facebook.m, you will
see that the first method calls the second method with an empty dictionary for the
parameters:
- (void)dialog: (NSString *)action

andDelegate: (id<FBDialogDelegate>)delegate {

NSMutableDictionary * params = [NSMutableDictionary dictionary];
[self dialog:action andParams:params andDelegate:delegate];

Both of these methods also take an action parameter and a delegate parameter. We will
look at these now in our sample application. In the sample application for this chapter,
we have a new class entitled DialogViewController. This class will look awfully similar
to the LoginViewController class because, lo and behold, it’s modeled directly after it.
That said, we want to focus our attention on a few things within the
DialogViewController class.

Since we are going to be displaying dialogs to the user from the DialogViewController
class, we need to declare that it is an FBDialogDelegate in our header file,
DialogViewController.h:

@interface DialogViewController : UIViewController <FBDialogDelegate> {
}
@end

In DialogViewController.m, it’s up to us to define each of the following delegate
callback methods:

- (void)dialogDidComplete: (FBDialog *)dialog;

- (void)dialogCompleteWithUrl: (NSURL *)url;

- (void)dialogDidNotCompleteWithUrl: (NSURL *)url;
- (void)dialogDidNotComplete: (FBDialog *)dialog;

CHAPTER 1: App Cubby

- (void)dialog:(FBDialog*)dialog didFailWithError:(NSError *)error;

- (BOOL)dialog: (FBDialog*)dialog shouldOpenURLInExternalBrowser:(NSURL *)url;

Before we discuss these delegate callbacks a bit further, it’s high time we use the
dialog: method to do some work for us. The Facebook SDK will display content within
a pop-up dialog according to what you pass in as the action parameter to the dialog:
method. In the case of posting information to a user’s Facebook wall, the appropriate
action is feed. Therefore, in the most simple case, if we want to display a dialog that lets
a user enter any freeform text and post it to his wall, we would call the dialog: method
as follows and ensure that we pass the appropriate class (in this case,
DialogViewController) as the delegate:

NSMutableDictionary * params = [NSMutableDictionary dictionary];
[facebook dialog:@"feed" andParams:params andDelegate:self];

Calling the dialog: method this way displays this dialog to the user (see Figure 7-1):

{ Publish Story

Post to Your Wall

Write something...

via Beginning i0S Social Development

Figure 7-1. Calling the dialog: method presents this dialog to the user.

As you can see, this is really bare bones and not what you are used to seeing from
within web apps that let you post content to your Facebook wall. So let’s spice things
up a bit via some additional parameters. Additional parameters can be specified for the
feed dialog, and each parameter has a specific name and purpose. Posting YouTube
videos is incredibly popular on Facebook, so let’s assume you want to post a link to a
YouTube video to a user’s wall from within your application. To accomplish this, add a
key/value pair to the parameters dictionary where the key is 1ink and the value is the
URL for the YouTube video (or whatever other web content you want to share):

CHAPTER 7: Accessing People, Places, Objects, and Relationships

NSDictionary* params = [NSDictionary dictionaryWithObject:
@http://www.youtube.com/watch?v=ngMc9B7uDV8 forKey:@"link"];

[facebook dialog:@"feed" andParams:params andDelegate:self];

Since the underlying guts of the Facebook SDK’s dialog is a web view (more on this
later), this code is formatted nicely into something you would expect and shows an
image preview of what’s in the YouTube video with the post (see Figure 7-2).

¥ Publish Story
Post to Your Wall

Say something about this...

Ruprecht in Dirty Rotten Scoundrels
w outube.com

via Beginning i0S Social Development

Figure 7-2. Since Facebook dialogs are Web views, you can embed previews of content there.

Now that was easy, wasn’t it? Let’s take it a step further, though, and see how we can
customize the display of the feed dialog even more. The code that follows creates a
sample dialog that Facebook likes to use:

NSDictionary* params = [NSDictionary dictionaryWithObjectsAndKeys:

@"http://developers.facebook.com/docs/reference/dialogs/", @"1link",

@"http://fbrell.com/f8.jpg", @"picture",

@"Facebook Dialogs", @"name",

@"Reference Documentation", @"caption",

@"Dialogs provide a simple interface for apps to interact with users.",
@"description”,

@"Facebook Dialogs are so easy!", @"message", nil];

[facebook dialog:@"feed" andParams:params andDelegate:self];

In this example, we’re setting a bunch of values for different keys that Facebook makes
available, so that you can really spice up the look and feel of the dialog. Setting a URL to
an image as the value for the picture key lets you control what image is displayed with
the post on the user’s Facebook wall. The value for the name key controls what will be

CHAPTER 1: App Cubby

displayed in the classic Facebook font as the main title of the wall post. The caption and
description values let you provide preset text with the wall post. Last but not least, the
message key lets you preset the text in the editable text field in the dialog. All this
information is displayed in the dialog, as shown in Figure 7-3.

f Publish Story
Post to Your Wall

Say something about this...

Facebook Dialogs are so easy!

Facebook Dialogs
Reference Documentation

via Beginning i0OS Social Deve

Figure 7-3. Anatomy of a Facebook dialog

Before we jump ahead to discuss some of the inner workings of the Facebook SDKs
dialogs, we should take a short detour and go over the FBDialogDelegate methods.
We’ve found through our own personal experience that how you use the
FBDialogDelegate methods depends upon the context you use them in. For instance,
you might want to implement these methods if you like to track some analytics within
your application.

Whenever the user takes an action with the dialog by pressing one of the Skip or Publish
action buttons on the dialog, the SDK first calls the dialogCompleteWithUrl: method,
and then the dialogDidComplete: method. If the user presses the Skip button, this URL
will be passed to the dialogCompleteWithUrl: method:

"fbconnect://success”

If the user presses the Publish button instead, this URL will be passed to the
dialogCompleteWithUrl: method:

"fbconnect://success/?post_id=623441509 10150094754996510"
We’ll be the first to admit that we didn’t actually know what to make of this response at

first; however, we did a little digging, so you’re in luck. It turns out that the post_id
parameter in the URL contains two separate pieces of identifying information that are

CHAPTER 7: Accessing People, Places, Objects, and Relationships

concatenated together with an underscore. Here is the definition of the post_id
parameter:

post_id=<userIdentifier> <postIdentifier>

In this case, userIdentifier indicates the Facebook Graph path for the logged in user
who made the post via our application. Similarly, postIdentifier indicates the
Facebook Graph path identifier for that post. If you parse those two pieces of
information out of the post_id parameter, you can put them into the following URL
scheme to see the actual result:

www. facebook.com/<userIdentifier>/posts/<postIdentifier>

Armed with this knowledge, you could show the user her actual post on Facebook'’s
mobile site by directing her to the properly constructed URL, which is shown here:

www . facebook.com/623441509/posts/10150094754996510

On a final note, if the user chooses to close the dialog via the X button in the upper-right
corner, the dialogDidNotCompletelWithUrl: delegate method is called with a nil NSURL
object as its parameter, and then dialogDidNotComplete: is called.

Under the Hood: The FBDialog Class

If you’re thinking that last section was too easy, you’re right. We tip our hat to the
Facebook engineers for making this as painless as possible. A good SDK has well
thought out, easy-to-use methods that make things as painless as possible.

Given our discussion in the last chapter about the workings of the FBRequest class, it
should come as no surprise that posting information to Facebook is also done ultimately
via an HTTP-based API. Once again though, the engineers at Facebook were good
sports and provided us with the FBDialog class in their SDK to do all of the heavy lifting.

The code for the FBDialog class is found in the FBDialog.m and FBDialog.h files in the
FBConnect folder in all of the sample projects. There are a lot of interesting things to be
learned by just examining the declaration of the FBDialog class:

@interface FBDialog : UIView <UIWebViewDelegate> {
id<FBDialogDelegate> _delegate;
NSMutableDictionary * params;
NSString * _serverURL;

NSURL* _loadingURL;

UIWebView* _webView;
UIActivityIndicatorView* _spinner;
UIImageView* _iconView;

UILabel* titlelabel;

UIButton* _closeButton;
UIDeviceOrientation _orientation;
BOOL _showingKeyboard;

// Ensures that UI elements behind the dialog are disabled.
UIView* _modalBackgroundView;

}
@end

CHAPTER 1: App Cubby

The first two points of interest are that FBDialog is just a UIView and that it owns a modal
background view:

// Ensures that UI elements behind the dialog are disabled.
UIView* _modalBackgroundView;

Why would the FBDialog class be just a normal UIView? Also, why would a dialog class
have something like a modal background view within it? Doesn’t the iOS SDK already
have a class for showing a modal pop-up dialog?

Although this would be nice to have, it turns out that the iOS SDK doesn’t provide an
out-of-the-box solution for showing a modal pop-up dialog. This means it’s up to
developers to home grow their own. The most trusted way to accomplish this is to
create a view that is the size of the entire application frame, so that users cannot interact
with anything “behind” the modal pop-up dialog. The code for this sits in FBDialog’s
show: method, and it is useful if you ever need to accomplish something like this for your
own application (note that we already created the _modalBackgroundView object in
FBDialog’s init: method):
UIWindow* window = [UIApplication sharedApplication].keyWindow;
if (!window) {

window = [[UIApplication sharedApplication].windows objectAtIndex:0];

_modalBackgroundView.frame = window.frame;
[_modalBackgroundView addSubview:self];
[window addSubview: modalBackgroundView];

[window addSubview:self];

Another important piece to the FBDialog puzzle is that it owns a UIWebView and is a
UIWebViewDelegate:

UIWebView* _webView;

It turns out that this UIWebView is what handles all of the rendering magic of the majority
of the content in an FBDialog. The main content of the FBDialog is actually fetched over
the web from Facebook via its dialog URL, and it is displayed in the UIWebView in
FBDialog. In particular, it has a mobile version of its dialog URL, which is defined in
Facebook.m:

static NSString* kDialogBaseURL = @"https://m.facebook.com/dialog/";

When you use the Facebook SDK’s dialog: method to create a dialog and pass it an
action, this action gets added to the dialog URL, and the SDK also adds required
parameters such as the version of the Facebook SDK, the display style, and a redirect
URI. For a bare bones feed dialog, the final request looks like this:

https://m.facebook.com/dialog/feed?sdk=2&redirect_uri=fbconnect%3A%2F%2Fsuccess&app_id=1
144422119576278&display=touch

We’ve included the actual dialog: method here, so that you can see how it presets
some of the parameters for the dialog URL, creates the dialog, and then shows it. Note
that the final dialog URL is constructed in FBDialog’s generateURL: method:

- (void)dialog: (NSString *)action

CHAPTER 7: Accessing People, Places, Objects, and Relationships

andParams: (NSMutableDictionary *)params
andDelegate: (id <FBDialogDelegate>)delegate {

[_fbDialog release];

NSString *dialogURL = [kDialogBaseURL stringByAppendingString:action];
[params setObject:@"touch" forKey:@"display"];

[params setObject:kSDKVersion forKey:@"sdk"];

[params setObject:kRedirectURL forKey:@"redirect uri"];

if (action == kLogin) {
[params setObject:@"user agent" forKey:@"type"];
_fbDialog = [[FBLoginDialog alloc] initWithURL:dialogURL
loginParams:params delegate:self];
} else {
[params setObject: appId forKey:@"app_id"];
if ([self isSessionValid]) {
[params setValue:[self.accessToken
stringByReplacingPercentEscapesUsingEncoding:NSUTF8StringEncoding]
forKey:@"access_token"];

}
_fbDialog = [[FBDialog alloc] initWithURL:dialogURL
params :params
delegate:delegate];

}
[_fbDialog show];

Posting to Facebook and Authorization

Before we move onto other feats of magic and wonder, we’d like to mention that, if your
main goal is to let users share information from your app or the web to their Facebook
page, it really is as simple as integrating with the Facebook iOS SDK in general—as
we’ve shown here when using the dialog: method. In fact, you don’t even have to worry
about doing any separate authorization calls since Facebook will handle this for you via
various web redirects when you request a dialog without authorization. When you
request a dialog without authorization, the dialog will automagically bring the user to the
Facebook mobile OAuth authorization page (see Figure 7-4). Once the user logs in, he
will be redirected back to the original dialog that you requested. It really doesn’t get any
easier than that, does it?

CHAPTER 1: App Cubby

{ Facebook Login
facebook

Log in to use your Facebook account
with Beginning iOS Social
Development.

Email or Phone:

|

Password:

F € Dialog

Figure 7-4. The Facebook OAuth login view

We would also like to point out that posting to Facebook does not require extended
permissions, so you get this feature for free. What this means in practical terms is that
you don’t have to pass in any extra permissions to the authorize: call that we covered
in Chapter 5 if you are using that method of authorization.

Getting More Goodies from the Facebook Graph

As you can see, we’re going to great lengths in this book to not only give you a solid
understanding of how to use the Facebook iOS SDK in your application, but also to
explain what it's doing under the covers. In Chapter 6, we showed you the technical
details of how to retrieve your list of Facebook friends, covered how the nuts and bolts
of how Facebook Graph paths are structured, and explained how the FBRequest class
works. If you haven’t already read that chapter, it might be a good idea to skim it over
now because we’re going to run through some new examples of how to retrieve
additional information from the Facebook Social Graph. This time, however, we will
leave out the technical details unless there is something new to discuss.

Remember that fetching information from the Facebook graph is accomplished via the
requestWithGraphPath: method of the Facebook class in the Facebook iOS SDK.

This example illustrates how to accomplish that basic task:

NSMutableDictionary *params = [NSMutableDictionary dictionary];
//does not require extended permissions

CHAPTER 7: Accessing People, Places, Objects, and Relationships

[facebook requestWithGraphPath:@"me/friends"”
andParams : params
andDelegate:self];
The string that you pass to this method uses the following format:
<facebook_id>/<requested graph path>

In this case, it will retrieve the list of friends for the currently logged in user:

me/friends

Notice our code comment. Requesting friends does not require any extended
permissions when you authorize the user via OAuth, as described in Chapter 5.

NOTE: You can find the code for these examples in the viewDidLoad: method in the
FriendsViewController class in the sample app.

If you want to fetch someone’s news feed, then change the graph path to home:

NSMutableDictionary *params = [NSMutableDictionary dictionary];
[facebook requestWithGraphPath:@"me/home"
andParams : params
andDelegate:self];

This returns an array of dictionaries. Each dictionary contains information about one item
in the news feed. The dictionary for each item will contain keys for the creation time, the
post id, the content of the message, the type (e.g., status), actions for commenting or
liking, and comments:

{

actions = (

link
name
}s
{
link
name

"http://www.facebook.com/<facebook id>/posts/<post id>";
Comment;

"http://www.facebook.com/<facebook id>/posts/<post id>";
Like;

);
"created_time" = "2011-02-28T02:23:08+0000";
from =
id = <facebook id>;
name = “<facebook “name>;
1
id = "<post id>";
message = "....";
type = status;
"updated_time" = "2011-02-28T02:23:08+0000";

}

Fetching notes requires the extended permission user _notes, and the graph path is
notes(see Figure 7-5):

CHAPTER 1: App Cubby

Beginning iOS Social Development is requesting
permission to do the following:

Access my profile information
! Groups

Report App

Logged in as Christopher White (Not You?)

Don't Allow m

Figure 7-5. Requesting permission

NSMutableDictionary *params = [NSMutableDictionary dictionary];
// requires 'user_notes' extended permissions
[facebook requestWithGraphPath:@"me/notes" andParams:params andDelegate:self];

This returns an array of dictionaries. Each dictionary contains information about one of
the user’s notes. The dictionary for each note will contain keys for the creation time, the
note id, the content of the note/message, and comments:

{
comments = {
data = (
{
"created_time" = "2009-08-02T13:41:44+0000";
from =

Id = <facebook id>;

name = "<facebook name>";
b

id = "<post id>";

message = "<comment>";

e
{
"created_time" = "2009-08-02T13:43:01+0000";
from = {
id = <facebook id>;
name = "<facebook name>";
b

id = "<post id>";
message = "<comment>";

CHAPTER 7: Accessing People, Places, Objects, and Relationships

}
)5
}s
"created_time" = "2009-08-02T13:23:35+0000";
from = {
id = <facebook id>;
name = "<facebook name>";
b

icon = "http://static.ak.fbcdn.net/rsrc.php/v1/yY/xr/1gBp2bDGEuh.gif";
id = <note id>;

message = "<note contents>";

subject = quotes;

"updated_time" = "2010-05-14T01:35:42+0000";

}

Fetching events requires the extended permission user_events, and the graph path is
events (see Figure 7-5):
NSMutableDictionary *params = [NSMutableDictionary dictionary];

// requires 'user_events' extended permissions
[facebook requestWithGraphPath:@"me/events” andParams:params andDelegate:self];

This returns an array of dictionaries. Each dictionary contains information about one of
the user’s events. The dictionary for each event will contain keys for the start and end
time, the event id, the name of the event, the location, and the user’s RSVP status:

{

"end_time" = "2011-03-10T13:00:00+0000";
id = 106092242803326;
location = "Electric Pickle";

name = "WMC :: GODFATHER *James Brown Tribute* meets CHAMPION SOUND";
"rsvp_status" = unsure;
"start_time" = "2011-03-10T06:00:00+0000";

}

Fetching groups requires the extended permission user_groups, and the graph path is
groups (see Figure 7-5):
NSMutableDictionary *params = [NSMutableDictionary dictionary];

//requires 'user_groups' extended permissions
[facebook requestWithGraphPath:"@me/groups” andParams:params andDelegate:self];

This returns an array of dictionaries. Each dictionary contains information about one of
the user’s groups. The dictionary for each group will contain keys for the id of the group,
the group name, and the group version:

id = 166023750105785;
name = "SkateSide Events";
version = 1;

Fetching likes, movies, music, and books requires the extended permission user_likes,

and the graph path is 1ikes, movies, music, or books, respectively (see Figure 7-5).

Each request returns an array of dictionaries. Each dictionary contains information about
one of the user’s likes, movies, music, or books. The dictionary for each item will contain

CHAPTER 1: App Cubby

keys for the category, creation time, Facebook id, and name. For example, this code
returns information about the user’s likes:

NSMutableDictionary *params = [NSMutableDictionary dictionaryl];
// requires 'user_likes' extended permissions
[facebook requestWithGraphPath:@"me/likes"
andParams : params
andDelegate:self];

{
category = "Product/service";
"created_time" = "2011-02-23T00:09:34+0000";
id = 186242738068007;
name = AAdvantage;
}

Similarly, this code returns information about the user’s movies:

[facebook requestWithGraphPath:@"me/movies”
andParams : params
andDelegate:self];

{
category = Movie;
"created_time" = "2010-12-28T18:50:40+0000";
id = 104167709618686;
name = "Ferris Bueller's Day Off";
}

This code returns information about the uers’s music:

[facebook requestWithGraphPath:@"me/music"
andParams : params
andDelegate:self];

{
category = "Musician/band";
"created_time" = "2011-01-16T02:11:26+0000";
id = 47167209984;
name = "New York Night Train";
}

And this code returns information about the user’s books:

[facebook requestWithGraphPath:@"me/books"
andParams : params
andDelegate:self];

Fetching a user’s wall posts requires the extended permission read_stream, and the
graph path is feed:

NSMutableDictionary *params = [NSMutableDictionary dictionary];
// requires 'read_stream' extended permissions
[facebook requestWithGraphPath:@"me/feed"
andParams : params
andDelegate:self];

The preceding snippet returns an array of dictionaries. Each dictionary contains
information about one item on the user’s wall. The dictionary for each item will contain

CHAPTER 7: Accessing People, Places, Objects, and Relationships

keys for the creation time, the post id, the content of the message, the type (e.g.,
status), actions for commenting or liking, and comments:

{
actions = (
link = "http://www.facebook.com/<facebook id>/posts/<post id>";
name = Comment;
%,
link = "http://www.facebook.com/<facebook id>/posts/<post id>";
name = Like;
}
);

application = "<null>";
caption = "www.youtube.com";

comments = {
count = 4;
data = (
{
"created_time" = "2011-02-24T15:30:59+0000";
from ={

id = <facebook id>;
name = "<facebook name>";

id = n<post id>";

message = ".";
1
{
"created_time" = "2011-02-26T00:28:32+0000";
from = {
id = <facebook id>;
name = "<facebook name>";
)
id = "<post id>";
message = "i like the abe lincoln one as well :)";
}
);
};
"created_time" = "2011-02-24T04:12:30+0000";
description = "Description here..";
from = {

id = <facebook id>;

name = "<facebook name>";
};
icon = "http://static.ak.fbcdn.net/rsrc.php/vi/yj/x/v20naTyTQZE.gif";
id = "<post id>";

likes = {
count = 2;
data = (
id = <facebook id>;
name = "<facebook name>";
b
{

id = <facebook id>;
name = "<facebook name>";

CHAPTER 1: App Cubby

)s
1
link = "http://www.youtube.com/watch?v=jL68NyCSi8o";
message = "hahaha!";
name = "Drunk History Vol. 5";

picture = "<URL>";
privacy = {
deny = 389937081509;
description = "Friends Only; Except: restricted";

friends = "ALL_FRIENDS";
value = CUSTOM;
}.
source = "http://www.youtube.com/v/jL68NyCSi8o&autoplay=1";
type = video;
"updated_time" = "2011-02-26T00:28:32+0000";

}

Of course, you can also fetch a user’s tagged photos, albums, and videos. Doing so
requires the extended permission user_photos, and the graph path is photos, albums, or
videos, respectively (see Figure 7-5). This snippet fetches a user’s tagged photos:

NSMutableDictionary *params = [NSMutableDictionary dictionary];
// requires 'user_photos' extended permissions
[facebook requestWithGraphPath:@"me/photos”
andParams : params
andDelegate:self]; //tagged photos

Similarly, this snippet fetches a user’s tagged albums:

[facebook requestWithGraphPath:@"me/albums"
andParams : params
andDelegate:self];

Finally, this snippet fetches a user’s tagged videos:

[facebook requestWithGraphPath:@"me/videos"
andParams : params
andDelegate:self];

Note that if the correct user permissions are not included when authorizing the user,
then the request:didFailWithError delegate method is called.

Limiting Results

One nice thing you can do is limit the number of fields that Facebook returns in the
dictionary for each item in the preceding examples. The method is the same, regardless
of what you are requesting. This is accomplished via the fields parameter. For example,
when requesting friends, you might want only the Facebook id, name, and picture of
each friend. You can accomplish this by using the
requestWithGraphPath:andParams:andDelegate method:

NSMutableDictionary *params = [NSMutableDictionary dictionary];
[params setObject:@"id,name,picture” forKey:@"fields"];
[facebook requestWithGraphPath:@"me/friends"”
andParams : params
andDelegate:self];

CHAPTER 7: Accessing People, Places, Objects, and Relationships

Date Formatting

You’ll notice that a lot of the returned information in the preceding examples contained
timestamps for things like creation time. By default, all of the date fields returned by
Facebook are an ISO-8601 formatted string. If you'd rather have these strings in a
different format, you can specify an additional date_format parameter with your
requests:

NSMutableDictionary *params = [NSMutableDictionary dictionary];
[params setObject:@"U" forKey:@"date format"];
[facebook requestWithGraphPath:@"me/feed"
andParams : params
andDelegate:self];

The immediately preceding example requests all date strings in unixtime-format by
specifying U as the date_format value. You can see more date formatting options
available to you at this link:

http://php.net/manual/en/function.date.php

More Fun with the Twitter API

We ended the last chapter by showing you how to retrieve and display who a user
follows on Twitter. Twitter gives you access to a bunch of other goodies as well, so let’s
see how we go about doing some more. These other goodies include getting someone’s
favorite Tweets, tweeting something, sending someone a direct message, and a host of
other things. As usual, we’ve hacked up our sample app a bit to give you an idea of how
to use the APIs in MGTwitterEngine to access everything. If you run the Twitter sample
app for this chapter, you will see another tab entitled, “Tweetin” with a “Twitter” button.
Change the code in TimelineViewController’s twitterButtonClick: method to
experiment with the different requests that we discuss here. And on with the show!

A Tweetin’ We Will Go

You’re probably itching to Tweet something directly from an iOS app, right? Well,
beginning with iOS 5, Apple has made it easy for deveopers to include Twitter posting
functionality in their apps. Users can login to Twitter from inside iOS, and new Tweet
posting buttons can be found in several preloaded apps including Camera, Photos,
Safari, YouTube and Maps. However, Apple's support for Twitter functions stop at
POSTing, so we're going to show you how to roll your own Twitter integration in case
your app needs to do something a little more powerful. To Tweet something for the
currently logged in user, use the following MGTwitterEngine method:

- (NSString *)sendUpdate:(NSString *)status;

It’s as easy as pie. Tweets can be at most 140 UCS-2 characters long. If this length is
exceeded, the Tweet is truncated. For the status parameter, just pass in what you want
to Tweet and you’re done:

[sa_OAuthTwitterEngine sendUpdate:@"this is a test tweet! tweet tweet!"];

CHAPTER 1: App Cubby

We won’t go over the MGTwitterEngineDelegate again in too much detail; however,
recall that we set up our main application delegate as a MGTwitterEngineDelegate, so
you can see what happens when you make each of these calls by going to that class.
We will refer to the methods here and assume that you can find them in AppDelegate.m.
Remember that if the request is successful, the first thing that happens is
requestSucceeded: is called; next, a follow-up delegate method is called, depending on
the request.

Ultimately, when you Tweet something, the statusesReceived: delegate method is
called with the actual details of the Tweet returned from Twitter. We’ve modified the
statusesReceived: method to show you some more information. The main parameter
that you receive in this method is an array of items from Twitter. Each element in this
array is a dictionary that represents one item. The set of key value pairs that represent
an item changes, depending on what you originally requested from Twitter. In our new
implementation of statusesReceived:, we take the first item in the array and, if it exists,
get the Twitter ID for the Tweet and print it out to the console log. Check out how in this
example:

- (void)statusesReceived: (NSArray *)statuses

- forRequest: (NSString *)connectionIdentifier {

NSLog(@"Status received for connectionIdentifier = %@, %@",
connectionIdentifier, [statuses description]);

NSDictionary *dictionary = [statuses objectAtIndex:0];

if (dictionary) {
NSString *twitterID = [dictionary objectForKey:@"id"];
NSLog(@"TwitterID = %@", twitterID);

NOTE: Here’s something to keep in mind about Twitter IDs: like the Facebook graph, everything
in Twitter has a unique ID. These IDs are used through a number of Twitter’s APIs, so we just
wanted to make a quick mention of them.

The ID for an item from Twitter is always stored in the id key in the dictionary of the
item. The MGTwitterEngine code was originally written to accept unsigned longs for
these IDs; however, the Twitter IDs have since grown and can no longer be held in an
unsigned long variable. To make our lives (and hopefully yours) easier, we modified the
version of MGTwitterEngine that is used for this book to take a string whenever a method
needs a Twitter ID.

The entire dictionary for a Tweet contains a ton of useful information. For example, we
would see this if we were to print out the entire dictionary in the statusesReceived:
method:

{
contributors = "";
coordinates = "";
"created_at" = "Fri Mar 04 04:18:55 +0000 2011";

favorited = false;

CHAPTER 7: Accessing People, Places, Objects, and Relationships

)
id = 43525805485199360;
"in_reply to_screen_name" = "";
"in_reply to_status_id" = "";
"in_reply to_user_id" = "";
place = n ll;
"retweet_count" = 0;
retweeted = false;
source = "<a href=\"http://www.apress.com\"
rel=\"nofollow\">Tweetin' i0S OAuth";
"source_api_request_type" = §5;
text = "this is a test tweet! tweet tweet!";
truncated = 0;

user =
"contributors_enabled" = false;
"created_at" = "Sat Jan 09 21:25:41 +0000 2010";
description = "";

"favourites_count" = 4;
"follow_request_sent" = false;
"followers_count" = 24;

following = 0;

"friends_count" = 186;

"geo_enabled" = false;

id = <twitter user id>;
"is_translator" = false;

lang = en;

"listed_count" = 0;

location = "";

name = Christopher;

notifications = false;
"profile_background_color" = CODEED;
"profile_background_image url" = "URL";
"profile_background_tile" = false;
"profile_image_url" = "URL";
"profile_link_color" = 0084B4;
"profile_sidebar_border_color" = CODEED;
"profile_sidebar_fill color" = DDEEF6;
"profile_text_color" = 333333;
"profile_use_background_image" = true;
protected = 1;

"screen_name" = christhepiss;
"show_all inline_media" = false;
"statuses_count" = 451;

"time_zone" = "Eastern Time (US & Canada)";
url = "http://christhepiss.tumblr.com";
"utc_offset" = "-18000";

verified = false;
}s
}
Take note of the id that we mentioned before. Also take note of the text and the source
of the Tweet. Since we’re using the app identifier for this book when authorizing users,
the source is listed as “Tweetin' iOS OAuth.” On Twitter, this would look like what you
see in Figure 7-6.

CHAPTER 1: App Cubby

‘ SafariFile Edit View History Bookmarks Develop Window Help ® &5 4, 8 O B O ™ O i = « B @Eraoow friMars 11:35:41pM QN
anNno Christopher (christhepiss) on Twitter

[4>) [®) [+] http://owitter.com/#t/christhepiss 3 ¢ Q- Google)
(1) iPhone Dev ._ding Events You can't em...o the Trash Ubrary Cy Mac Dev Cen._is in Xcode mint craigslist Cmaill Apple Yahoo! Coogle Maps YouTube
Twitter.ci Christopher (christhepiss) on Twitter

Welcome to #New Twitter! Read up on what's now. You can still access (R for a limited time.

twitter B] Homo Profle Messages WhoTo Folow

Christopher. B ccrsnenis
2 @christhepiss
e this is a test tweet! tweet tweet!

L] Tweetin' 08 Ofuth 7 Favorte & Reply 7 Deleto

Tweets from @christhepiss

Edit your profile —

Timeline Favortes Following Followers Requests Lists

christhepiss
this is a test tweet! tweet tweet!

&
christhepiss E
This is a super test!
O
christhepiss
this is a test!!
&
christhepiss
this is a test!!
&

- I v
Figure 7-6. A test Tweet. And it works!

So now that you’ve tweeted, you must be feeling pretty good. We know we feel good.
However, let’s say you want to see all of your Tweets. Doing so is simple:

[sa_OAuthTwitterEngine getUserTimeline];

In the world of Twitter, tweets exist along a timeline since each Tweet occurs at a
specific point in time. So you can get a user’s timeline of tweets (as we did earlier), or
you can get the timeline of the user and all of her followers:

[sa_OAuthTwitterEngine getHomeTimeline];

You can even get the entire public timeline on Twitter of all Twitter users who have
public Tweets:

[sa_OAuthTwitterEngine getPublicTimeline];
Similarly, you can get the favorite Tweets of the currently logged in user:
[sa_OAuthTwitterEngine getFavoriteUpdatesFor:nil startingAtPage:0];

For each of these cases (and others), Twitter returns an array of dictionaries (via
statusesReceived:), where each dictionary is the same as the preceding one, contains
all of the relevant info and stats for the given Tweet, and indicates where it originated
from.

With the Twitter API, you can also delete Tweets. If we wanted to delete the preceding
Tweet, we would do the following, where we pass in the ID of the Tweet:

[sa_OAuthTwitterEngine deleteUpdate:@"43525805485199360"];

CHAPTER 7: Accessing People, Places, Objects, and Relationships

In Chapter 6, we showed you how to get someone’s followers; however, you can also
request information about a specific Twitter user at any time using his Twitter name or
his Twitter ID:

[sa_OAuthTwitterEngine getUserInformationFor:@"TWITTER USERNAME HERE"];

This will return the same dictionary of information we showed in Chapter 6, so we won’t
show it again here. Please refer to Chapter 6 to see what is contained in this response.
Next, set a breakpoint in XCode in userInfoReceived: in the main application delegate
to see this in action.

If you wanted to follow someone, you could use this code do that, too:
[sa_OAuthTwitterEngine enableNotificationsFor:@“christhepiss”];

When you want to send a direct message, do the following:
[sa_OAuthTwitterEngine sendDirectMessage:@"how goes it?" to:@"christhepiss"];

The response from Twitter will be received via the directMessagesReceived: delegate
method; the dictionary for a direct message looks like this:

"created_at" = "Fri Mar 04 06:33:49 +0000 2011";

id = 2542673717;

recipient =
"contributors_enabled" = false;
"created_at" = "Sat Jan 09 21:25:41 +0000 2010";
description = "";

"favourites_count" = 4;
"follow_request_sent" = false;
"followers_count" = 24;

following = 0;

"friends_count" = 187;

"geo_enabled" = false;

id = 103384600;

"is_translator" = false;

lang = en;

"listed_count" = 0;

location = "";

name = Christopher;

notifications = false;
"profile_background_color" = CODEED;
"profile_background_image url" = "URL";
"profile_background_tile" = false;
"profile_image_url" = "URL";
"profile_link_color" = 0084B4;
"profile_sidebar_border_color" = CODEED;
"profile_sidebar_fill color" = DDEEF6;
"profile_text_color" = 333333;
"profile_use_background_image" = true;
protected = 1;

"screen_name" = christhepiss;

"show_all inline_media" = false;
"statuses_count" = 451;

"time_zone" = "Eastern Time (US & Canada)";
url = "http://christhepiss.tumblr.com";
"utc_offset" = "-18000";

CHAPTER 1: App Cubby

verified = false;
};
"recipient_id" = 103384600;
"recipient_screen_name" = christhepiss;

sender = {
"contributors_enabled" = false;
"created_at" = "Sat Jan 09 21:25:41 +0000 2010";
description = "";

"favourites_count" = 4;
"follow_request_sent" = false;
"followers_count" = 24;

following = 0;

"friends_count" = 187;

"geo_enabled" = false;

id = 103384600;

"is_translator" = false;

lang = en;

"listed_count" = 0;

location = "";

name = Christopher;

notifications = false;
"profile_background_color" = CODEED;
"profile_background_image url" = "URL";
"profile_background_tile" = false;
"profile_image url" = "URL";
"profile_link_color" = 0084B4;
"profile_sidebar_border_color" = CODEED;
"profile_sidebar_fill color" = DDEEF6;
"profile_text_color" = 333333;
"profile_use_background_image" = true;
protected = 1;

"screen_name" = christhepiss;
"show_all inline_media" = false;
"statuses_count" = 451;

"time_zone" = "Eastern Time (US & Canada)";
url = "http://christhepiss.tumblr.com";
"utc_offset" = "-18000";

verified = false;
};
"sender_id" = 103384600;
"sender_screen_name" = christhepiss;
"source_api_request_type" = 15;
text = "hey jerky!";
}

The one thing that is missing from the MGTwitterEngine SDK is a dialog class that
makes it easy to construct Tweets or Direct Messages, so this is something that you will
have to build on your own. :(Don’t forget to look in MGTwitterEngine.h for more
methods that you can use since we didn’t cover them all here.

Under the Hood: Twitter URLs

One nice thing about all of the preceding operations is that they share a common URL
scheme from the underlying Twitter HTTP API:

CHAPTER 7: Accessing People, Places, Objects, and Relationships

http://twitter.com/

The rest of the path of the URL is then constructed based on what you want to do. For
status-related operations, the path is:

http://twitter.com/statuses

For user-related operations, the path is:
http://twitter.com/users

And for direct messages, the path is:
http://twitter.com/direct_messages

The final part of the path is the specific operation you want to perform. This is followed
by the extension (which will match what you want the response to be formatted in), and
then the parameters. So, if we were going to get the public timeline in XML
(MGTwitterEngine requests XML responses by default), it would look like this:

http://twitter.com/statuses/public_timeline.xml

Review the code in SA_OAuthTwitterEngine’s sendRequestWithMethod: if you want a
more detailed understanding of how the final URL is constructed for each request.

The Twitter Dev Console

If you’d rather get used to using some of the Twitter APIs from your web browser,
Twitter has a great online tool for doing so that we highly recommend. The tool can be
found at this URL:

http://dev.twitter.com/console

The Twitter dev console lets you construct different requests or make different types of
posts and see what the response is from Twitter. Figure 7-7 shows what the main part
of the page looks like.

CHAPTER 1: App Cubby

& safariFile Edit View History Bookmarks Develop Window Help &% 4,8 C H O W O i & « [@Eaoow SatMar5 12:07:

8no API Console | dev.twitter.com
L 4[> [9] [+ [nup //dev.iwitter.com/console

twitter developers APIStatus Documentation Discussions Yourapps Sign out Search

API Console

Inspired by HURL

Headers and methods The Twur Console makes
HTTP requests against the
POST %/ 1 %/ stawses/update 4. gon 3 Twitter API

Select a resource, set some
parametars, view the
status this is sweet! request and response.

Parameters and values

+ AG3 8 Query paramensr
Application
Tweetin' iOS OAuth 3

Send

Response Headers

Expires: Tue, 31 Mar 1981 05:00:00 GMT [
Last-Modified: Sat, @5 Mar 2011 05:07:08 GMT

X-Transaction: 1299301628-88970-46083

Connection: close

August 31,2010 Basic AU has boon Soprocaind. Al applcalions must now use OAUTI. Read more » X

Figure 7-7. The Twitter APl console

Another great resource is the documentation for each Twitter HTTP API, where you can
get exact details on using each API:

http://dev.twitter.com/doc

Conclusion

You are now officially armed and dangerous. We’ve now covered enough APIs for
Facebook and Twitter and shown you how to use them with the respective iOS SDKs. In
theory, you could start building your own Facebook or Twitter application at this point.
It’s a pretty daunting task, but you’ve now got the tools to do it. However, keep reading
to gain more insight into working with real-time data and location, as well as to see
different ways to mesh these two APIs together.

Chapter

P0OSTing, Data Modeling,
and Going Offline

This chapter covers the nuts and bolts of posting photos to Facebook and Twitter. We’'ll
also discuss offline storage; and finally, we’ll talk about a popular cross-posting library
and how to use it on your own.

Up to this point, we’ve covered a lot of different topics on programming for Facebook
and Twitter on iOS. In order to show these topics as clearly as possible, however, we
broke some good programming practices. So in this chapter, we are going to mend our
ways and show better techniques for integrating these services into your application. We
are also going to cover offline scenarios and storage. But before we go there, we need
to add one more essential skill to our toolbelt: posting photos to Facebook and Twitter.

Strike a Pose

For most applications that use images on an iOS device, the images are either
downloaded from the web or created by the app and stored as part of the application’s
data. It’s also possible to retrieve images from the device’s Photo Library. Fortunately
for us, Apple has made it easy to grab images from the Photo Library, so we’re going to
take this path for our sample applications. The photo upload example applications for
this chapter are in the ApiFacebook and ApiTwitter folders, respectively, in the Chapter8
folder of the Git repository.

Saving a Picture to the i0S Simulator’s Photo Library

Getting pictures into an iOS simulator’s Photo Library is tricky since the simulators do
not emulate camera hardware; however, there’s a nice, quick way to do it by saving an
image from a web page. Begin by firing up the Safari browser on the simulator and
going to www.google.com. Hold your mouse down for a second or two on the Google
image above the search bar, and then let your mouse go. You will see the pop-up dialog

105

CHAPTER 8: POSTing, Data Modeling, and Going Offline

in Figure 8-1 that lets you save or copy the image. Select Save Image to store it in the
simulator’s Photo Library.

Web |mages Places News more v &

Google
\i aQ

Instant (beta) is off: Turn on

, See places nearby - update

Save Image

Figure 8-1. Tap and hold an image on a web page in Mobile Safari to save or copy the image.

NOTE: It has been our experience that sometimes you have to carry out the just described step a
couple of times before the image shows up in the Photo Library.

Working with UllmagePickerController

Now that we have an image saved in the simulator’s Photo Library, we need to access
the image from within our code. This is where the UIImagePickerController class
comes into play. The engineers at Apple crafted a very easy-to-use class to grab images
from the Photo Library and use the data for the image within your application as a
UIImage object. The following code fragment can be dropped into any UIViewController
class that you may have in order to display the UIImagePickerController. In the next
section, we will go over how we incorporated this fragment into the sample applications
for this chapter.

We begin by checking to see if the Photo Library is an accessible source of images.
Next, we create a UIImagePickerController and tell it that we want it to use the Photo
Library as its source. Finally, we set ourselves as its delegate and use
UIViewController’s presentModalViewController method to display it:

CHAPTER : P0OSTing, Data Modeling, and Going Offline

if ([UIImagePickerController isSourceTypeAvailable:

UIImagePickerControllerSourceTypePhotoLibrary]) {
UIImagePickerController *uiImagePickerController =
[[UIImagePickerController alloc] init];
uiImagePickerController.sourceType =

UIImagePickerControllerSourceTypePhotolLibrary;
uiImagePickerController.delegate = self;
[self presentModalViewController:uiImagePickerController animated:YES];
[uiImagePickerController release];

}

When working with UIImagePickerController, we must set our view controller to be a
UIImagePickerControllerDelegate and implement the following method:

- (void)imagePickerController: (UIImagePickerController *)picker+
didFinishPickingMediaWithInfo: (NSDictionary *)info;

- (void)imagePickerControllerDidCancel: (UIImagePickerController *)picker;

When an image is chosen, UIImagePickerControllerDelegate’s
imagePickerController: didFinishPickingMediaWithInfo: method is called. The data
for the UIImage object is stored in the NSDictionary that is passed to this method in the
key, UIImagePickerControllerOriginalImage. Here’s the code to accomplish all this
(note that savedImage is declared elsewhere):

- (void)imagePickerController: (UIImagePickerController *)picker+
didFinishPickingMediaWithInfo:(NSDictionary *)info

[savedImage release];
savedImage = [info objectForKey:@"UIImagePickerControllerOriginalImage"];
[self dismissModalViewControllerAnimated:YES];

}

It’s worth noting that you are responsible for closing the UIImagePickerController via
UIViewController’s dismissModalViewControllerAnimated method:

- (void)imagePickerControllerDidCancel: (UIImagePickerController *)picker

[self dismissModalViewControllerAnimated:YES];

At runtime, the UIImagePickerController displays a table of the Photo albums on the
device, as shown in Figure 8-2.

CHAPTER 8: POSTing, Data Modeling, and Going Offline

Photo Albums Cancel

)Og Saved Photos (1) >

Figure 8-2. A table of saved photos presented by UllmagePickerController
Once you select an album, you can then select a photo, as seen in Figure 8-3.

Photo Albu... ' Saved Photos cancel

DO¢

Figure 8-3. Tap an image in UllmagePickerController.

CHAPTER : P0OSTing, Data Modeling, and Going Offline

ImagePostController

In the ApiFacebook and ApiTwitter sample projects for this chapter, you will find a new
UIViewController entitled ImagePostController. It contains a button that displays the
UIImagePickerController when clicked. ImagePostController is a
UIImagePickerControllerDelegate; thus, when an image is selected, it saves the image
to the UIImage object, savedimage, which is declared in ImagePostController.h.
ImagePostController then posts the image to the currently logged in user’s Facebook
photos or Twitter feed.

Facebook Photo Upload

We covered how to retrieve the UIImage via the delegate callback in the previous
section, so now we’re going to focus on posting the picture to the user’s Facebook
photos. The code discussed next is in ImagePostController.m/.h in the ApiFacebook
sample application for this chapter.

To do this, we are going to use our old trusted friend,
requestWithGraphPath:andParams:andHttpMethod:andDelegate:. We set the graph path
to "me/photos" in order to specify that we are targeting the current user’s photos. We
then pass in a dictionary of arguments. This dictionary is where the data for the picture
is stored. The image itself is stored as an object for the key image in the dictionary. If you
would like to put a caption with the image, you can also add caption text for the key
message. Next, we set the HTTP method to POST since we are posting data. Finally, we
assign ourselves as an FBRequestDelegate:

- (void)imagePickerController: (UIImagePickerController *)picker
didFinishPickingMediaWithInfo:(NSDictionary *)info

[savedImage release];
savedImage = [info objectForKey:@"UIImagePickerControllerOriginalImage"];
[self dismissModalViewControllerAnimated:YES];

NSMutableDictionary *args = [[NSMutableDictionary alloc] init];
[args setObject:@"This is a test image" forKey:@"message"];
[args setObject:savedImage forKey:@"image"];
[facebook requestWithGraphPath:@"me/photos”
andParams:args
andHttpMethod:@"POST"
andDelegate:self];

[args release];

}

If successfully posted, FBRequestDelegate’s request:didLoad: method will be called. If

you log into your Facebook account, you should see a new Photo album with the image
contained in it. The name of the Photo album will match the application name you used

when you registered your application with Facebook. In the case of this book, the Photo
album is entitled, “Beginning iOS Social Development” (see Figure 8-4).

CHAPTER 8: P0STing, Data Modeling, and Going Offline

& Firefox File Edit View History Tools Window Help &% ® 4,8 CH O ™ O i 7 « B Erosw SunMar27 5:2044pM Q]
ano Beginning IOS Social Development Photos (34)

] Videos Post. . Logan

() I [hrtps:/ fwww.facebook.com/album.php?aid=2711224id=623441509

facebook ' O

Beginning iOS Social Develop Photos
By Christopher White - View Photos
Al
Would you like to add these photos to your album? i -
The highlighted photos below were uploaded from another application, you'll need to approve them. A5 sinhdays
Jamine Madrid, Harold O'Neal, Michelie
nejec Photos Temnoxding-Sonace
Sponsored Create an Ad

o !, Adventures of Power
~ small world cotfe: Join Ween & the
o air-drum comedy
0 “Adventures of Power”
in saving music
education! We saved &
whole school!

o2,
- st
P oo

&3 Like - Hightstown Skatepark Wkes this.

Approved Photos PeaShakeHouse

New Virtual Nightclub
all YOUR FRIENDS are v
at, listen to custom D)
Tracks. "UKE" us and
get your FREE TIX to
e our grand opening
ﬁ There are no photos in this album. Add some. 4/19!
8 Like - Erica Baran likes this

Left Action
B Every time someone
¥ “likes” us, John

r Boehner sheds an

Updated 1 \,'[' orange tear. Left

about 2 months ago Write a comment, Acton: 1,000,000
progressives, fighting
back. "Uke” us please!

Share this album with anyone by sending them this public link: € Like - Jeremy Bolla 1# Chat (5)

Like

Figure 8-4. Facebook groups together photos posted from third-party applications.

Twitter Photo Upload

As is usually the case, the Facebook iOS SDK spoils us rotten. As you can tell from the
previous section, it takes a minimal amount of effort to incorporate posting images to a
user’s Facebook photos. Unfortunately, it’s not so simple to accomplish the same task
via Twitter, although as of this writing, Twitter is forging a partnership with Photobucket
to make posting photo-Tweets less of a hassle for developers. In this chapter we will
show you how to post your image to an image-hosting service such as TwitPic
(www.twitpic.com/), and then post the URL for the image on twitpic.com to the user’s
Twitter timeline. The following example code uses TwitPic, but there are a number of
other services available, such as twitgoo (www.twitgoo.com/) and yfrog (www.yfrog.com/).

In order to post images to twitpic.com, we must first register on the service’s site for a
TwitPic APl Key. Go to http://dev.twitpic.com/apps/new and log in with your Twitter
credentials (see Figures 8-5 and 8-6).

CHAPTER : POSTing, Data Modeling, and Going Offline

-ﬂnfu File Edit View History Bookmarks Tools Window mg ﬁqmnojgtﬁq E) G o9 Sun Mar27 5:33:36PM QU

o r— el DIOILEIr=s]

bWibPic developers Main Site Documentation Login

API Registration
Get an AP Key to use TwitPic's services

In order to register for an API Key, you must login to Twitter first.
(& Sign in with Twitter

Figure 8-5. Register for a TwitPic API Key to use the company’s service from within an iOS application.

Firefox File Edit View History Bookmarks Tools Window Help &% ® 4,8 O B O ™ O 4 = & [Grosw SunMar27 5:33:55M QU
Twitter

Twitter takes your privacy
seriously.

An application would like to connect to your very
@ account Only click "Aliow” for

The application Twitple by Twitple Ine would like the ability to nccess applications you trust.
and update your data on Twitter. This application plans touse Twitter Allowing this application 1o

hluh(ywlnh:heﬁmn Sign out if you want to connect to an conmect to your account may
account other than christheplss. give Twitpic access 1o your
Direct Messages (OMs), or
the abiry to Tweet on your
Benait,
Allow Twitpic access?

You may revoke access to
this appication at any time

By Visiting your Settings
oen (R &

O chcking“Abo” you contiows 10 0parace under Taser’s Taes of Srvc.In parsclr,soms whage
Infarmation wil be shared back wih Twitter. Far mare, see sur Privacy Poicy,

Figure 8-6. Granting TwitPic access via OAuth

CHAPTER 8: POSTing, Data Modeling, and Going Offline

Next, enter the required information about your application (see Figure 8-7).

Firefox File Edit View History Tools Window Help &% ® 4,8 C B O ™ O 3 & 4 [@6 SunMar27 5:36:20PM QU
8no TwitPic Developers - Register an Application
MQ Twithic . x -
@@ etp:/ dev.wipic.com/apgs new/ v o] (39 wipic Q
MPIC developers Main Site Documentation Register an App Your Apps Sign Out
API Registration
Get an API Key to use TwitPic's services
Application Title:
Application Description:
Application Homepage:
Your Email:
Are You Human?
(ustchecing) | T - |
Typo e two words: =]
[*¢ e G.E‘.::.
Register Appiication

Figure 8-7. Providing TwitPic with basic application information

Finally, store the returned TwitPic APl Key for use later (see Figure 8-8).

I8 rirefox File Edit View History Tools Window Help &% ® 4,8 C B O ™ O 3 & 4 [@ 6w SunMar27 5:3546PM QU
8no6 TwitPic - AP
@ Twitkic.. x
@ hitp:/ /dev.witaic.com/apps/finish v | (3 witpic Q
MPIC developers Main Site Documentation Register an App Your Apps Sign Out

Thank you for registering! Your TwitPic AP Key is:
742dc2eb06f0c82491ef4c1942917c5a

If you ever need to get this key again, you may do so by viewing Your Apps.

Figure 8-8. Upon successful registration, TwitPic creates an API key for the application.

CHAPTER : P0OSTing, Data Modeling, and Going Offline

As is the norm for such services, TwitPic offers an HTTP-based API to post photos to its
site. The APl documentation is located at http://dev.twitpic.com/docs/. Also, as fate
would have it, someone was nice enough to build an iOS Objective-C wrapper around
this API and host it on Github (GSTwitPicEngine) at
https://github.com/Gurpartap/GSTwitPicEngine. GSTwitPicEngine is designed to work
with MGTwitterEngine, so it fits nicely (with a few adjustments—more on this to follow)
into the setup that we already have. Unfortunately, GSTwitPicEngine depends on a few
other pieces of software, and not everything works correctly out-of-the-box. The good
news: We were nice enough to smooth out all of the rough edges for you.

So, before we look at how to use GSTwitPicEngine, we have to get some code for other
libraries from Github, set up Git submodules, and then add the files to our project. All of
the project changes and code are in the ApiTwitter project for this chapter and its
ImagePostController.m/.h files.

GSTwitPicEngine

You can link the GSTwitPicEngine iOS Git repository on Github to your repository using
a Git submodule that will reside in a subdirectory entitled GSTwitPicEngine:

$ git submodule add git://github.com/chrisdannen/GSTwitPicEngine.git GSTwitPicEngine

Create a new group in your project entitled GSTwitPicEngine and drag
GSTwitPicEngine.m/.h to it:
Finally, set the following values in GSTwitPicEngine.h:

-#define TWITTER_OAUTH_CONSUMER_KEY @"<>"
-#define TWITTER_OAUTH_CONSUMER_SECRET @"<>"
-#define TWITPIC_API_KEY @"<>"

ASIHTTPRequest

ASIHTTPRequest is an open source library that makes the work of implementing HTTP
requests a snap. GSTwitPicEngine uses this library to do its heavy lifting.

Link the ASIHTTPRequest Objective-C Git repository on Github to your repository using a
Git submodule that will reside in a subdirectory entitled asi-http-request:

$ git submodule add git://github.com/pokeb/asi-http-request.git asi-http-request

Now create a new group in your project entitled ASIHttpRequest and drag the necessary
files from ./asi-http-request/Classes to your project. Review the ApiTwitter sample
project for this chapter for the specific subset of files that you will need.

Next, link your target in your Xcode project against CFNetwork, SystemConfiguration,
MobileCoreServices, and z1ib.1.2.3.dylib. (see Figure 8-9).

CHAPTER 8: P0STing, Data Modeling, and Going Offline

Xcode File Edit View te Editor Product Window Help 5% ® .4 8 O B O ™ O 3 7T « [Grosm SatApr2 8:40:
aeno [ApiTwitter - (=)
Busdd Succeeded | Yesterday at 11:35 PM = BEN O =ENE
Project (9 0
= <4 > | DAoiTwitter < >
PROJECT Summary Info Bulld Settings | Build Phases | Bulld Rules
) ApTwitter | a

 libz.1.2.3.dvlib TARGETS Target Dependencies (0 tems)

&= MobileCoreServices framework > - e
» = SystemConfiguration. framework » Copy Bundle Resources (4 items) a)
» [IsasoN p
» [OARequestHeader » Compile Sources (44 items) a)
» [ASIHtipRequest
»:Mwu n | Uink Binary With Lidraries (9 items) a)

[Twitter+ OAuth] £ CFNetwork. framework Reguired $
» [TwinerLoginButton _hbz.1.2.3.0v40 Required §

[Classes. (u] &= MobileCoreServices framework Required ¢
> (3 Other Sources = SystemConfiguration.framework Required 3

(3 Resources £ Foundation framework Reguired
¥ (L] Frameworks oo .

ot It frameworic Required +

@ = CoreGraphics framework Required &

» € CoreGraghics.framework OARRY Baquicedy
» (] Products HDXMI2.aviib Reguired $

libxmi2.dykd P— Drag 1o reorder frameworks
+ o™) Add Target Add Build Phase

Figure 8-9. Update linker settings after adding ASIHTTPRequest to the Xcode project.

SBJSON

SBJSON is one of a few open source JSON parsing Objective-C frameworks. In
./GSTwitPicEngine/GSTwitPicEngine.h, we specify SBJSON as our JSON framework of
choice, so we need to have the files in our project:

#define TWITPIC_USE_SBISON 1

Link the SBJSON Objective-C Git repository on Github to your repository using a Git
submodule that will reside in a subdirectory entitled json-framework:

$ git submodule add git://github.com/stig/json-framework.git json-framework

Next, create a new group in your project entitled SBJSON and drag all of the files from
./json-framework/Classes to your project.

OARequestHeader

Link the OARequestHeader Objective-C Git repository on Github to your repository using
a Git submodule that will reside in a subdirectory entitled OARequestHeader:

$ git submodule add git://github.com/chrisdannen/OARequestHeader.git OARequestHeader

Create a new group in your project entitled 0ARequestHeader and drag the files
./0ARequestHeader.m/.h to your project.

CHAPTER : P0OSTing, Data Modeling, and Going Offline

Now add any updated files to your Git commit (your Xcode project file, for instance), and
then commit and push your changes to Github.

Post a Photo

We’'re finally set up to throw some code in our sample project that will post a link to a
photo to a user’s Twitter feed. Most of the relevant changes are in
ImagePostController.m/.h; you can also find a couple of small changes in
AppDelegate.m. In this section, we will focus on the changes in
ImagePostController.m/h.

We begin by declaring a number of objects that we will need in ImagePostController.h:

#import <UIKit/UIKit.h>
#import "GSTwitPicEngine.h"

@interface ImagePostController : UIViewController <UINavigationControllerDelegate,
UIImagePickerControllerDelegate,
GSTwitPicEngineDelegate> {
UIButton *twitterButton;
UIImage *savedImage;
GSTwitPicEngine *twitpicEngine;

}
@end

We need an instance of GSTwitPicEngine to post a photo to twitpic.com. We also need
to save the returned image, and we need to declare ourselves as a
GSTwitPicEngineDelegate in order to be notified when GSTwitPicEngine has completed
posting the photo to twitpic.com.

Firefox File Edit View History Bookmarks Tools Window Help 45 &% ® 4 8 O O MO 3 T4 E Gosm SatApr2 9:16:
ano Hello world! on Twitpic

[T et | mec—————————————————————————————
|(4)7) (@ mus:spwww switorc.comregaosn v (4§ cooge Q) [#] (D] [renmcs -]
bwibpic QLIS
o hristhepi:
96::?y ::I-szs,aon)U(small wor small wor
C

Google

In this phoes (ASAEGIt Faces):
Hello worla!

NOTE. Cormemnts wil w40 b 40t o0 & @roply b I e of B3 phads Laave Comment (@ Share thia phots

2 Put this photo on your website

Views 2

Events (w0 oot)
LOCAON (sssios tncation)

Figure 8-10. An image uploaded to TwitPic from an i0S application

CHAPTER 8: POSTing, Data Modeling, and Going Offline

When the ImagePostController’s view is loaded, we need to create and initialize the
GSTwitPicEngine instance:

- (void)loadView
[super loadView];

twitterButton = [UIButton buttonWithType:UIButtonTypeRoundedRect];
twitterButton.frame = CGRectMake(127.0f, 68.0f, 72.0f, 37.0f);
[twitterButton setTitle:@"Twitter" forState:UIControlStateNormal];
[twitterButton addTarget:self
action:@selector(twitterButtonClick:)
forControlEvents:UIControlEventTouchUpInside];
[self.view addSubview:twitterButton];

twitpicEngine = [GSTwitPicEngine twitpicEngineWithDelegate:self] retain];
[twitpicEngine setAccessToken:[sa_OAuthTwitterEngine accessToken]];

}

Note that we set ourselves as the GSTwitPicEngine’s delegate and that we pass our
accessToken from our main Twitter engine to GSTwitPicEngine, so that it has the
necessary OAuth params. Note that you will first have to log in to Twitter from the Login
tab when running the sample application.

When an image is chosen via the UIIMagePickerController, we can then use
GSTwitPicEngine’s uploadPicture:withMessage: method to post the image to
twitpic.com:

- (void)imagePickerController: (UIImagePickerController *)picker+
didFinishPickingMediaWithInfo:(NSDictionary *)info

{
[savedImage release];
savedImage = [info objectForKey:@"UIImagePickerControllerOriginalImage"];
[self dismissModalViewControllerAnimated:YES];
// This message is supplied back in success delegate call in request's userInfo.
[twitpicEngine uploadPicture:savedImage withMessage:@"Hello world!"];
}

If the photo is uploaded successfully to twitpic.com, GSTwitPicEngineDelegate’s
twitpicDidFinishUpload: method will be called with an NSDictionary of response
information:

- (void)twitpicDidFinishUpload: (NSDictionary *)response
{
NSLog(@"TwitPic finished uploading: %@", response);

// [response objectForKey:@"parsedResponse”] gives an NSDictionary of the
// response one of the parsing libraries was available.

// Otherwise, use [[response objectForKey:@"request”]

// objectForKey:@"responseString"”] to parse yourself.

if ([[[response objectForKey:@"request"] userInfo] objectForKey:@"message"] > 0 &&
[[response objectForKey:@"parsedResponse”]
count] » 0) {
NSString *update = [NSString stringWithFormat:@"%@ %@",
[[response objectForKey:@"parsedResponse”] objectForKey:@"text"],

CHAPTER : POSTing, Data Modeling, and Going Offline

[[response objectForKey:@"parsedResponse”] objectForKey:@"url"]];
[sa_OAuthTwitterEngine sendUpdate:update];

}

The returned response dictionary contains another dictionary for the key parsedResponse
that contains the information we need to make a post to twitter.com:

TwitPic finished uploading: {
parsedResponse =
height = 128;
id = 4gao9b;
size = 15551;
text = "Hello world!";
timestamp = "Sun, 03 Apr 2011 01:04:55 +0000";

type = jpg;
url = "http://twitpic.com/4gao9b";
user =

id = 103384600;
"screen_name" = christhepiss;

};
width = 366;
};

request = "<ASIFormDataRequest: 0x50a4c00>";

We grab the values for the text and url keys from the parsedResponse dictionary, and
we call our Twitter engine’s sendUpdate: method with the values to make the final post
to Twitter, as seen in Figure 8-11.

& Firefox File Edit View History Tools Window Help #5 5% ® .4 8 C B O ™ O 1 7 « B Erosw SaApr2 9:17:42eM Q]
ano Twitter / @Christopher: Hello world! http://twitpi ...

| # Twitter | @Christopher: Hellow.. | + |

on|l= hos:/ fowiner.com/ #t/christhepiss/status 54350525604446209 v ¢ J(83- Google Q) [B -] [Feedback -

Weicome 10 FNew Twitter! Read up on what's new. You can still access CTEIIITTD for a limited time.

twitter) |Seach

ﬁ @christhepiss

Hello world' hnp //lwnplc com/4ga09b

05 OAuth loghy Delete

Gougle

@ e

hitps.//twitter.com/mewtwitter

Figure 8-11. The end result: A Tweet with a link to an image hosted on TwitPic

CHAPTER 8: POSTing, Data Modeling, and Going Offline

Offline Paradigm and Background Processing

For an iOS app, working with data that is retrieved or synchronized from a server can
make your app vulnerable to broken connections. To enable offline operation, store the
data on the local device, so that the app can still present the data, even if 3G or WiFi is
unavailable. If you are interested in hacking together a fully-capable Twitter or Facebook
iOS app—or you just want to learn some additional techniques—then this section is
required reading.

In this section, we will build a simple Twitter application that can retrieve Twitter status
updates and store them on the device. This way, there is always data to display, even if
the device is offline. The sample application is entitled OfflineTwitter, and it can be found
in the Chapter8/0fflineTwitter directory of the Git repository.

If you are familiar with the Model-View-Controller (MVC) programming paradigm, then
you will notice that what we are actually doing is building the Model portion of this
paradigm. The user interface (or View) always retrieves its data from the Model. When
new data is received from the server, the data is stored in the Model. Next, the View is
refreshed, and it grabs the latest data from the Model.

One nice facility for storing data that is available to iOS applications is Core Data.
Although we don’t recommend it for large data sets (we recommend SQLite for those),
Core Data can be useful for doing proof-of-concept work and helping to design the API
for your Model. We will go through all of the steps for setting up the API for the Model
using Core Data; however, if you’ve never worked with Core Data on iOS, we also
recommend reading the following or keeping this link available as a good quick
reference:

http://developer.apple.com/library/ios/#DOCUMENTATION/DataManagement/
Conceptual/iPhoneCoreData01/Introduction/Introduction.html#//apple_ref/doc/uid/
TP40008305-CH1-SW1

Data Modeling with TwitterDataStore

One of the best things to do when working on a data model for an application is to think
about the high level operations that the data model will have to perform. To keep things
simple, we would like our Twitter data model for our sample application to support three
main actions:

B Return the current set of stored Tweets.
m Delete all of the stored Tweets.
B Store Tweets.

For our sample application, we have defined the class, TwitterDataStore. Go to the
sample project and click TwitterDataStore.h in the Model folder:

@interface TwitterDataStore : NSObject {

CHAPTER : POSTing, Data Modeling, and Going Offline

- (NSArray*)tweets;
- (void)deleteTweets;
- (void)synchronizeTweets: (NSArray*)tweets;

@end

Now that we have the basic interfaces in place, we need them to perform their required
actions. This is where Core Data comes into play. What follows are the steps necessary
to get your application to use Core Data.

First, we have to add a Core Data model file to our project. The Core Data model is
where we create the different entities that we want to represent and store for our
application. From Xcode’s main menu, go to File » New » New File...

Choose Core Data in the iOS section, and then choose the Data Model file type and give
the file an appropriate name (see Figure 8-12).

Xcode File Edit View e Editor _Product Window _Hel C B OMO 5 « [GHoew MonAprs L5431AM QU
noe) OfflineTwitter - Tweet.h =
Build Succeeded | Yesterday at 7:58 PM

m TimelineViewController.m 77 Data Model

? < oy = A Core Data model file that allows you to use the design component of Xcode.

» [Products o) Previous) (Next—)

+ OR8 S

Figure 8-12. Add a Core Data object model to the application’s Xcode project.

Next, link your project against the Core Data framework (see Figure 8-13).

CHAPTER 8: POSTing, Data Modeling, and Going Offline

& xcode file Edit View Navigate Editor _Product vmuw Help 5§ ® 4, 8 OB O MO & & « [@Eoew MonApr4 1:56:17aM QU

ano) OfflineTwitter - OfflineTwitter.xcodepro) [=)
Build Succeeded | Yesterday at 758 PM

Mo laswes

PROJECT Summary Info Build Settings | Build Phases | Bulld Rules
) OMineTwirter Q

> (G Twitter+ OAuth O rarcers > © hems))

» [Twittertogingutton i | » Compile Sources (26 items) a)

[h) Tweeth | ¥ Unk Binary With Ubraries (6 items) =]
m Tweet.m libxmi2.dylib Required §

{b) TwierDacaStore.h €% CoreData framework Required 3

& Uit framework Required &

L = Foundation framework Required +

IR TweecTableViewCel. = CoreGraphics. framework Required

E‘ LoginViewControlierh o SOARN Required §

m LoginViewControlier.m + - Drag to reorder frameworks

m MainViewControlerm | » Copy Bundle Resources (6 items) mj

+ oRE ™ > Add Target Add Build Phase

Figure 8-13. Updated linker settings to support use of Core Data

Now that we have our Core Data model in place, we need to add an entity to it. Since
our application is supposed to store Tweets offline, let’s add a Tweet entity. Select the
Core Data model file in your Xcode project (in the sample project, this file is entitled
CoreDataOffline.xcdatamodeld) in order to show the model in Xcode’s main window. At
the bottom of the model window, click the Add Entity button—it has a big plus sign on it
(see Figure 8-14).

CHAPTER : POSTing, Data Modeling, and Going Offline

Xcode File Edit View e Editor Product Window Hel o) 3 = « [@79 SunApr3 11:

) OfflineTwitter - CoreDataOffline.xcdatamodel

Hos @ca (=)

uin & 4 =m=® [=4r i
vh"-"l 'm"""“ \(s
v Model FETCH REQUESTS
¥ OtiaTudtinc CONFIGURATIONS
@ Defaure r— J
¥ Relationships.
Destination Inverse
* =)
v Feiched Properties]
1 {
o]
== 0 o.
+ oRE ™ Outhne Sle Add Enuity Add Auribete Edioe Seyle

Figure 8-14. Add an entity to the data model.

Next, rename this entity to Tweet (see Figure 8-15).

Xcode File Edit View e Editor Product Window Hel o) P = @ G@F (97% Sun Apr 3 11:13:]
) OfflineTwitter - CoreDataOffline.xcdatamodel (=)
Hol= @Eca) |

CONFIGURATIONS
@ Defaure e J
¥ Relationships.
Destination Inverse
* =)
v Feiched Properties]
.
* - I
== 0 o.
+ opa ™ Outhne Style Add Entity Add Auribate Editoe Style

Figure 8-15. The Tweet entity in the data model

CHAPTER 8: P0STing, Data Modeling, and Going Offline

Actual Tweets from Twitter have a lot of information associated with them; however, this
is a simple application, so we are only going to store the id and the actual text content
of each Tweet. The goal here is just to show the overall concept of setting up a model.
Make sure that the Tweet entity is selected, and then click the + sign in the Attributes
section to add a new attribute (see Figure 8-16). Name this attribute id and set its type
to Integer 64. Next, add another attribute entitled text and set its type to String.

8’ xcode Flle Edit View Navigate Editor Product Wind Ip 545 ® 4,86 CH O MO 3+ 5 « [Gaoww MonAprs 9:28:000M QU
line.

jow Hel
e8no 3 Offl - CoreDataOffl

(=]
L e Rt L] | S]] O [=f=1N{=]
§ ; o, :

-
Y) [Tweet

2
OflineTwitter
M e |
_ libxmi2 dylit Type

» (| Twitter+ OAuth O Feven ReQuesTs B Integer 64 3
LI sng:
3 CONFIGURATIONS
» | TwitterLoginButton . |
v [Moael @ oefauie L+ =
b Tweeth

& Tweem v Relationships.
b TwinterDataStore h Destination Ioverse
0

[* -

W ® A = w B [mo<4rD

Im TwitterDataStore.m

e ¥ Feiched Properties

[h) OffineTwitterAppDelegate.h
m OffineTwitterAppDelegate.m
~ OffneTwitterViewControlier.xib
» (L Supporting Files
» [Frameworks
» (L Products

= o e m=

+ 0B ™ | OuthneStde Add Envry Add Atribute Edinoe Style

Figure 8-16. Add attributes to the Tweet entity.

The final step to setting up our data model is to create actual Tweet Objective-C classes
that map to our Tweet entity in our Core Data model, so that we can instantiate actual
Tweet objects in our application code and keep them in memory (see Figure 8-17). Add
a new file to your project of the NSManagedObject type subclass (in Xcode’s New File
dialog, select Core Data under the iOS section to get to this option) and click Next.

CHAPTER : POSTing, Data Modeling, and Going Offline

File Edit View Navigate FEditor Product Window Help 3 5% ® 4,8 C H O ™M O i & « E G o SunApr3 11:16:43AM QU
Emm-mm ="

006

Finished runming Offline Twitter - EmE s EmE

Choose a template for your new file:

[i
Ao = % i i
Cocoa Touch =9 C
e — S
Oata Mosel waopng o RIS | J
]
. ! J
€% Foundation framework Core Data l]
» K= CoreCraphics. framework [fetiurce
» (] Products Lz
72* NSManagedObject subclass
Som< ! J
An Objective-C NSManagedObject subciass, with a header.
Came) preovs) (R
=) O. O.
+ ©O@E ™ | Otinestje AddEnury Add Attribote Edior Style

Figure 8-17. Add a class to the Xcode project to associate with the Tweet object in the data model.

In the following dialog, check the box next to the Tweet entity to associate it with the
Tweet class that we created (see Figure 8-18).

- Xcode File Fdit View Navigate FEditor Product Window Help 5 5% @ 4, 8 C B O ™M O i T « @3 97%) SunApIBM
3 OfflineTwitter - CoreDataOffline.xcdatamodel =
Finished running OffiineTwitter

(L) @) (3

Choose a template for your new file:

| \
ﬁ Select the entities you would like to manage |

Sefect Entity

= o o m:

+ oRpE = 0| Outline Stybe Add Entity Add Attribute Editor Style

4

Figure 8-18. Choose the Tweet entity to associate with the new class.

CHAPTER 8: POSTing, Data Modeling, and Going Offline

When we examine the contents of the Tweet.h and Tweet.m files, we find that they are
very sparse. They simply offer the ability to get and set values on the attributes for a
Tweet entity in our Core Data model:

Tweet.h

@interface Tweet : NSManagedObject {
@private

@property (nonatomic, retain) NSNumber * id;
@property (nonatomic, retain) NSString * text;

@end
Tweet.m

@implementation Tweet
@dynamic id;
@dynamic text;

@end

Now that we’ve gotten some additional setup out of the way, recall that
TwitterDataStore is a class that provides a high level interface for obtaining stored
information on the device. The actual storing of the data (in this case, the Tweet entities)
within TwitterDataStore is performed using Core Data APIs. Core Data consists of a
number of classes that work together to provide a convenient way to store and retrieve
information, so we have to add these classes to TwitterDataStore.h:

@class NSManagedObjectContext;

@class NSManagedObjectModel;

@class NSPersistentStoreCoordinator;
@interface TwitterDataStore : NSObject {

}

@property (nonatomic, retain, readonly) NSManagedObjectContext *managedObjectContext;

@property (nonatomic, retain, readonly) NSManagedObjectModel *managedObjectModel;

@property (nonatomic, retain, readonly) NSPersistentStoreCoordinator+
*persistentStoreCoordinator;

- (void)saveContext;
- (NSURL *)applicationDocumentsDirectory;

- (NSArray*)tweets;
- (void)deleteTweets;
(void)synchronizeTweets: (NSArray*)tweets;

@end

The most important of these classes is NSManagedObjectContext. Under the covers via
Core Data magic, the NSManagedObjectContext class manages the collection of entities
in the model. The creation of the NSManagedObjectContext owned by our
TwitterDataStore class is handled in the method managedObjectContext:
/**

Returns the managed object context for the application.

CHAPTER : POSTing, Data Modeling, and Going Offline

If the context doesn't already exist, it is created and bound to the persistent store
coordinator for the application.

*/

- (NSManagedObjectContext *)managedObjectContext

if (__managedObjectContext != nil)

return __managedObjectContext;

}

NSPersistentStoreCoordinator *coordinator = [self persistentStoreCoordinator];
if (coordinator != nil)

__managedObjectContext = [[NSManagedObjectContext alloc] init];
[__managedObjectContext setPersistentStoreCoordinator:coordinator];

}

return __managedObjectContext;

}

The NSManagedObjectContext class is given an NSPersistentStoreCoordinator object
that is responsible for managing the lifecycle of the context and creates a managed
object model:
/**
Returns the persistent store coordinator for the application.
If the coordinator doesn't already exist, it is created and the application's store
added to it.
*/
- (NSPersistentStoreCoordinator *)persistentStoreCoordinator

if (__persistentStoreCoordinator != nil)

return _ persistentStoreCoordinator;

}

NSURL *storeURL = [[self applicationDocumentsDirectory]«
URLByAppendingPathComponent:@"CoreDataOffline.sqlite"];

NSError *error = nil;
__persistentStoreCoordinator = [[NSPersistentStoreCoordinator alloc]
initWithManagedObjectModel:[self managedObjectModel]];
if (![__persistentStoreCoordinator addPersistentStoreWithType:NSSQLiteStoreType
configuration:nil
URL:storeURL
options:nil
error:&error])

{
/*
*/
NSLog(@"Unresolved error %@, %@", error, [error userInfo]);
abort();
}

return _ persistentStoreCoordinator;

CHAPTER 8: POSTing, Data Modeling, and Going Offline

You need to replace the preceding implementation with your own code to handle the
error appropriately.

NOTE: Using abort () causes the application to generate a crash log and terminate. You should
not use this function in a shipping application, although it may be useful during development. If it
is not possible to recover from the error, display an alert panel that instructs the user to quit the
application by pressing the Home button.

Typical reasons for an error here include the following:
B The persistent store is not accessible.

B The schema for the persistent store is incompatible with the current
managed object model.

Check the error message to determine what the actual problem was.

If the persistent store is not accessible, there is typically something wrong with the file
path. Often, a file URL is pointing into the application’s resources directory instead of a
writeable directory.

If you encounter schema incompatibility errors during development, you can reduce
their frequency by doing the following:

B Simply deleting the existing store:
[[NSFileManager defaultManager] removeItemAtURL:storeURL error:nil]

B Performing automatic lightweight migration by passing the following
dictionary as the options parameter:

[NSDictionary dictionaryWithObjectsAndKeys:
[NSNumber numberWithBool:YES],
NSMigratePersistentStoresAutomaticallyOption,
[NSNumber numberWithBool:YES],
NSInferMappingModelAutomaticallyOption, nil];

Lightweight migration will only work for a limited set of schema changes; consult “Core
Data Model Versioning and Data Migration Programming Guide” for details:

This is how the managed object model is created:
/**

Returns the managed object model for the application.

If the model doesn't already exist, it is created from the application's model.
*/

- (NSManagedObjectModel *)managedObjectModel

if (__managedObjectModel != nil) {
return __managedObjectModel;

}
NSURL *modelURL = [[NSBundle mainBundle] URLForResource:@"CoreDataOffline"
withExtension:@"momd"];

CHAPTER : POSTing, Data Modeling, and Going Offline

__managedObjectModel = [[NSManagedObjectModel alloc]
initWithContentsOfURL:modelURL];

return __managedObjectModel;
}

We also have a helper method for getting the location of the application’s Documents
directory:

/**

Returns the URL to the application's Documents directory.

*/

- (NSURL *)applicationDocumentsDirectory

return [[[NSFileManager defaultManager] URLsForDirectory:NSDocumentDirectory

inDomains :NSUserDomainMask] lastObject];

}

We encourage you to read up on some of these Core Data APIs. We hope that you’ve
found this information useful, but delving deeper into this subject is beyond the scope of
this book, and it’s time to get on with the show!

Updating the View from the Model

Before we finish going over the final details of the implementation of TwitterDataStore,
it is beneficial to see how it will be used and accessed from the user interface of the
application. The user interface for displaying the Tweets from TwitterDataStore is a
UITableViewController class entitled TimelineViewController. This class simply
shows the main text for each Tweet in its UITableViewCells, as shown in Figure 8-19.

CHAPTER 8: POSTing, Data Modeling, and Going Offline

The grass always seems gre...
“@JonOliverMusic: #TheMai...
| hear new orleans in every...
From Search Engines To Lu...
RT @SnareForce: @atrak |...
Love u Toronto.....

Male Fertility Determined by...
RT @JacinaloveDTF: Talib...

The A in A-Trak stands for...

Figure 8-19. Stored Tweets displayed in a basic user interface

Before we show the technical details of how it’'s implemented, let’s list what
TimelineViewController does:

B When loaded, it asks the TwitterDataStore for any Tweets that it
contains, saves the results in an NSArray, and submits a request to
Twitter.com via MGTwitterEngine for the latest set of Tweets from the
currently logged in user’s Twitter timeline.

B If any Tweets are received from Twitter.com via MGTwitterEngine’s
delegate methods, then the new Tweets are saved in the
TwitterDataStore on a background thread.

B Once the Tweets are saved in the TwitterDataStore, the table is
refreshed on the main thread.

B When the table is refreshed, for each item in the NSArray of Tweets, it
creates a TweetTableViewCell and sets the text of the cell to the text
of the associated Tweet.

If we examine the definition of TimelineViewController in TimelineViewController.h,
we see that it owns an NSArray of Tweets and a TwitterDataStore:

#import <UIKit/UIKit.h>

@class TwitterDataStore;
@interface TimelineViewController : UITableViewController {

CHAPTER : P0OSTing, Data Modeling, and Going Offline

NSArray *tweets;
TwitterDataStore *twitterDataStore;

@end

In TimelineViewController.m, we create the TwitterDataStore, retrieve any Tweets from
the TwitterDataStore, make a request for new Tweets, and set ourselves up to be
notified when the request completes in the viewDidLoad method:

- (void)viewDidLoad {
[super viewDidlLoad];

twitterDataStore = [[TwitterDataStore alloc] init];
tweets = [[twitterDataStore tweets] retain];

NSString *identifier = [sa_OAuthTwitterEngine getHomeTimeline];

//listen for a notification with the name of the identifier
[[NSNotificationCenter defaultCenter]
addObserver:self

selector:@selector(twitterTimelineRequestDidComplete:)
name:identifier

object:nil];
}
We need to notify other parts of our application when our request for new Tweets has
completed. To do this, we update statusesReceived:forRequest: in our delegate to
store the returned array of Tweets as the value for the key Tweets in an NSDictionary
that we set as the userInfo of a notification:

(void)statusesReceived: (NSArray *)statuses
- forRequest: (NSString *)connectionIdentifier {
NSLog(@"Status received = %@, %@", connectionIdentifier, [statuses
description]);

NSArray *objects = :[NSArray arrayWithObjects:statuses, nil];
NSArray *keys = [NSArray arrayWithObjects:@"tweets", nil];
NSDictionary *userInfoDictionary = [NSDictionary dictionaryWithObjects:objects

forKeys:keys];
[[NSNotificationCenter defaultCenter]
postNotificationName:connectionIdentifier
object:self
userInfo:userInfoDictionary];

NSDictionary *dictionary = [statuses objectAtIndex:0];

if (dictionary) {
NSString *twitterID = [dictionary objectForKey:@"id"];
NSLog(@"TwitterID = %@", twitterID);

}

When the preceding method posts a notification that the request for Tweets has
completed, TimelineViewController’s twitterTimelineRequestDidComplete: method is
called via NSNotificationCenter. Using NSObject’s

CHAPTER 8: POSTing, Data Modeling, and Going Offline

performSelectorInBackground:withObject: method, TimelineViewController’s
synchronizeTweets: method is executed on a background thread and is passed the
Tweets array from the NSDictionary in the notification:

- (void)twitterTimelineRequestDidComplete: (NSNotification*)notification {
[[NSNotificationCenter defaultCenter] removeObserver:self];

[self performSelectorInBackground:@selector(synchronizeTweets:)
withObject:[notification.userInfo
objectForKey:@"tweets"]];

}

TwitterDataStore’s synchronizeTweets: method is designed to emit a notification when
it has completed the synchronization process (more on this to follow). Therefore, in
TimelineViewController’s synchronizeTweets: method, we set ourselves up to receive
a notification when TwitterDataStore has completed its task. Once that happens, we
start the synchronization process:

- (void)synchronizeTweets: (NSArray*)newTweets

//1listen for a notification with the name of the identifier
[[NSNotificationCenter defaultCenter] addObserver:self

selector:@selector(tweetsDidSynchronize:)
name:@"tweetsDidSynchronize"
object:nil];

[twitterDataStore synchronizeTweets:newTweets];

When TwitterDataStore completes the synchronization process, it will emit a
notification via NSNotificationCenter, and TimelineViewController’s
tweetsDidSynchronize: method will be executed, calling refreshUI on the main thread to
get the latest Tweets from the TwitterDataStore and updating the table in the user
interface. A note on threading: We always recommend processing or synchronizing data
on a background thread, so that the user interface remains responsive. However, if you
emit a notification or execute a delegate callback method from the background thread,
the execution will still be in the background thread. If your user interface needs to be
updated, we recommend using NSObject’s performSelectorOnMainThread:
withObject:waitUntilDone: method to refresh the user interface on the main thread of
execution:

- (void)tweetsDidSynchronize: (NSNotification*)notification
[[NSNotificationCenter defaultCenter] removeObserver:self];

//update the UI on the main thread
[self performSelectorOnMainThread:@selector(refreshUI)
withObject:nil
waitUntilDone:YES];

CHAPTER : P0OSTing, Data Modeling, and Going Offline

Here is the code that actually refreshes the user interface and associates the information
for a given Tweet with its associated UITableViewCell:

- (void)refreshul

[tweets release];
tweets = [[twitterDataStore tweets] retain];

[self.tableView reloadData];

// Customize the appearance of table view cells.
- (UITableViewCell *)tableView:(UITableView *)tableView
cellForRowAtIndexPath: (NSIndexPath *)indexPath {

static NSString *Cellldentifier = @"Cell";

TweetTableViewCell *cell =
(TweetTableViewCell*)[tableView
dequeueReusableCellWithIdentifier:CellIdentifier];
if (cell == nil) {
cell = [[[TweetTableViewCell alloc] initWithStyle:UITableViewCellStyleDefault

reuseldentifier:CellIdentifier] autorelease];

// Configure the cell...
Tweet *tweet = [tweets objectAtIndex:[indexPath row]];
cell.tweet = tweet;

return cell;

}

TimelineViewController uses TwitterDataStore to obtain and store the data that it
displays, so let’s take a look at how TwitterDataStore uses Core Data to store and
retrieve Tweets. Before TwitterDataStore can give us back Tweets, we have to give it
some Tweets to store. TwitterDataStore stores Tweets in its synchronizeTweets:
method, which takes an array of Tweets as its only argument.

This synchronization method is a bit barbaric. The first thing that it does is delete any
stored Tweets via TwitterDataStore’s deleteTweets method. It then loops through the
Tweets that were passed in, creates a new Tweet for each one, initializes the Tweet’s
data, and saves it to the Core Data model.

Let’s look at this in more detail. Remember that MGTwitterEngine returns an array of

Tweets and that each Tweet in the array is represented by an NSDictionary object of

key/value pairs with all of the information about the Tweet. When we loop through the
array of Tweets, we use a nice for-loop mechanism available in Objective-C:

for (NSDictionary *tweetDictionary in tweets) {

}

In short, this for-loop says that we will execute the body of the for-1loop for each of the
elements in the tweets array. Each time the body of the for-loop is executed, the next
element in the tweets array is stored in an NSDictionary object (since each element is an

CHAPTER 8: POSTing, Data Modeling, and Going Offline

NSDictionary) entitled tweetDictionary. We can reference this element within the body
of the for-1loop.

For each of the Tweets in the array, we create a new Tweet object via
NSEntityDescription’s insertNewObjectForEntityForName:inManagedObjectContext:
method. Passing Tweet as the entity name has Core Data create a new unpopulated
instance of the Tweet class stored in the managed object context. We also supply our
managed object context. Next, we set the value of the text attribute of the Tweet and the
id value of the Tweet (note the use of NSNumberFormatter to convert an NSString object
to an NSNumber object). As the final step, we tell the managed object context to save its
state to disk. Failing to call save on the managed object context would result in no data
being permanently stored in our Core Data model. Before exiting the method, we post a
notification, so that other parts of our application can perform any necessary actions
when all of the new Tweets are stored in the model (i.e., we update the user interface):

- (void)synchronizeTweets: (NSArray*)tweets
NSAutoreleasePool *autoReleasePool = [[NSAutoreleasePool alloc] init];

@synchronized(self) {
[self deleteTweets];

for (NSDictionary *tweetDictionary in tweets) {
Tweet *tweet = (Tweet *)[NSEntityDescription«
insertNewObjectForEntityForName:@"Tweet" «
inManagedObjectContext:self.managedObjectContext];

NSNumberFormatter * f = [[NSNumberFormatter alloc] init];

NSNumber * tweetId = [f numberFromString:[tweetDictionary
objectForKey:@"id"]];

[tweet setId:tweetlId];

[f release];

NSString *text = [tweetDictionary objectForKey:@"text"];
[tweet setText:text];

NSError *error = nil;
if (![self.managedObjectContext save:8error]) {
// Handle the error.

}

// post a notification that the tweets are available
// have responder update itself on the main thread
[[NSNotificationCenter defaultCenter]
postNotificationName:@"tweetsDidSynchronize"
object:self
userInfo:nil];

[autoReleasePool release];

CHAPTER : P0OSTing, Data Modeling, and Going Offline

When it comes time to fetch the Tweets from our Core Data model, we use the Core
Data class, NSFetchRequest. NSFetchRequest takes an entity description (Tweet, in this
case) and a managed object context. Next, we retrieve the Tweets from our Core Data
model by calling the managed object context’s executeFetchRequest: method and
passing it the NSFetchRequest object that we initialized. The array of Tweets is then
returned from the method. Note that, if you want to sort the results of the fetch request
from the managed object context, you need to create and set an NSSortDescriptor for
the NSFetchRequest. In this example, we initialize an NSSortDescriptor that will sort the
returned array of Tweets in descending order, based on the value of the id attribute of
the Tweets:

- (NSArray*)tweets
NSMutableArray *tweets = nil;

@synchronized(self) {
NSFetchRequest *request = [[NSFetchRequest alloc] init];
NSEntityDescription *entity =
[NSEntityDescription entityForName:@"Tweet"

inManagedObjectContext:self.managedObjectContext];
[request setEntity:entity];

NSSortDescriptor *sortDescriptor = [[NSSortDescriptor alloc] initWithKey:@"id"

ascending:NOJ;

NSArray *sortDescriptors = [[NSArray alloc] initWithObjects:sortDescriptor,
nil];

[request setSortDescriptors:sortDescriptors];

[sortDescriptors release];

[sortDescriptor release];

NSError *error = nil;
NSMutableArray *mutableFetchResults =
[[self.managedObjectContext executeFetchRequest:request error:&error]
mutableCopy];
if (mutableFetchResults == nil) {
// Handle the error.

tweets = [mutableFetchResults retain];
[mutableFetchResults release];
[request release];

}

return tweets;

To delete all of the Tweets in our Core Data model, we fetch all of the Tweets that are
currently stored in our model, loop through them one-by-one, tell the managed object
context to delete the given Tweet, and then save the managed object context to commit
the results to disk:

- (void)deleteTweets
{

CHAPTER 8: P0STing, Data Modeling, and Going Offline

@synchronized(self) {
NSArray *tweets = [self tweets];
for (Tweet *tweet in tweets) {
[self.managedObjectContext deleteObject:tweet];
}

// Commit the change.
NSError *error = nil;

if (![self.managedObjectContext save:8error]) {
// Handle the error.

Conclusion

We covered some really interesting new ground in this chapter with respect to uploading
photos and building a simple data model for our application using Core Data. There are
other options available for building a data model—such as SQLite—so we recommend
you explore other ways of storing data for offline or quick retrieval within your
application. Be aware that you may want to build some smarts into your model that limit
the amount of storage that your application uses. For instance, you may want to store
only a certain number of recent Tweets or perhaps only Tweets within the last 12 hours.

In the next chapter, we will go over different location-based scenarios; explain how to
integrate location information into your app, as well as with social networking data for
Facebook and Twitter; and also continue to refine how we integrate these services into
our application by setting up a stand alone controller that we can use anywhere within
our app.

Chapter

Working with Location
Awareness and Streaming
Data

This chapter covers the nuts and bolts of using location on iOS with Facebook and
Twitter. We'll also discuss working with streaming APls.

One of the main trends to have emerged within social applications is adding a location
context to user experiences. In the worlds of Facebook and Twitter, this involves letting
users check in to places on Facebook or search for nearby Tweets on Twitter, as well as
a host of other scenarios. We’re going to walk you through the ins and outs of using
iOS’s CorelLocation and MapKit libraries to incorporate location and maps into your
application, and then use the location information from these libraries to show some
location-based features of Facebook and Twitter.

Here, There, and Everywhere

At first glance, incorporating location information into your application seems like a trivial
task; however, there are a number of considerations to make with respect to privacy for
your users, power/battery conservation on a device, and the CorelLocation and MapKit
APIs. The sample applications for this chapter incorporate all of the techniques that
follow. Since CorelLocation and Map Kit are themselves extensive APls, it’s necessary to
run through the core features that these APIs provide and highlight some new features
that debuted iOS 4.0. After that, this chapter will delve into the Facebook and Twitter
APIs for location.

135

CHAPTER 9: Working with Location Awareness and Streaming Data

Location Privacy, Disclosure, and Opt-Out

As much as we all love sharing information on social networking sites such as Twitter
and Facebook, there are times when we don’t always want to share certain things about
ourselves. One of these things is location. We are all pretty easy going with sharing a
photo on a website; however, it’s an entirely different thing to share a photo if it also
includes information about where the photo was taken. Similarly, it's one thing to use a
feature of a site that lets you tell your friends where you are, but something else entirely
if the site automatically tells your friends where you are—without letting you turn off the
automatic updates. In the latter case, you will probably not be a big fan of that site.

So why is this? Why do we guard our location so closely and want to have so much
control over whom we share it with and when? Ultimately, it's about protecting
ourselves from some of the unpleasant aspects of human nature, such as jealousy,
stalking, and, potentially, physical harm. For as much as social networking sites like
Facebook and Twitter can bring out the best in human nature, they can also sometimes
bring out the worst.

A severe yet all-too-common example of this darker side of human nature occurs when
a person is in a relationship with someone who is physically abusive towards her. She
may be too afraid to obtain a restraining order and want to hide her physical location as
much as possible—including on social networking sites. This is probably a worst case
scenario, but one worth considering since you never want to break the trust of your
users (or even the law in some places).

When planning to employ your user’s location within your application, it’s always best to
follow these rules:

B Let users opt out of having your application use their location.
B Make full disclosure of how you intend to use location information.

B Let users destroy any past records of their location that your
application stores locally or remotely.

Fortunately, iOS itself has all of the plumbing built in to allow or disallow the use of its
location services on a per-app basis. It also automatically prompts a user for permission
to use location the first time that your application runs and starts CorelLocation services.
This is key because it prompts the user immediately. It’s sometimes tempting to tuck
things like this away in a Settings screen within your application, but we strongly advise
against that approach for location-related settings. In this case on iOS, it’s a bit of a
non-issue since it is out of your hands as a developer. In case you are new to iOS, the
standard prompt includes the name of the application requesting permission to use
location services and shows Don’t Allow and OK buttons, as shown in Figure 9-1.

CHAPTER 9: Working with Location Awareness and Streaming Data

37.332302,-122.0867:

“Maps” Would Like to Use
Your Current Location

,
" (ERE—CEI

"Don’t Allow

Figure 9-1. The i0S location permission prompt

Once the user makes his selection, iOS stores it and doesn’t prompt the user for it
again. This is a great feature of iOS because it standardizes the look and feel of this
prompt, giving users a consistent experience and saving individual developers from
implementing all of this logic themselves. If the user chooses not to allow an application
location access, attempts to obtain the location from within iOS code result in a location
unavailable error.

Another great feature of iOS’s implementation of location services is that it doesn’t
require you to do anything in your application to account for the fact that users often
change their minds or may temporarily restrict your application from using location
services. For instance, if a user initially granted your application permission to use
location services, but no longer wants to grant your application such permission, she
can go to the main Settings application on her device and use the Location Services
section to turn off location services for all applications device-wide or on an application-
by-application basis (see Figures 9-2 and 9-3).

CHAPTER 9: Working with Location Awareness and Streaming Data

i AT&T 2 4:55 PM > O e

Airplane Mode | OFF
a Wi-Fi 0024A5BOF87A >
k&) Notifications on >
a Location Services On >
/

D) Sounds >
ﬁ Brightness >
g Wallpaper >
-

General >

Figure 9-2. The i0S Settings application

i ATET 2 12:22 PM 1~

settings | Location Services
[Location Services m | J

Allow the apps below to determine your
approximate location.

8mm . | OFF
&l AP Mobile on
E Apple Store m

/| BeeTagg m \
2% Bing mi\
BlackBook m \
© camera 7 mi\

Figure 9-3. The i0S Location Services settings

CHAPTER 9: Working with Location Awareness and Streaming Data

iOS also has another nifty feature that lets you reset the display of the prompt that asks
users of applications if they want to grant the application use of location services. This is
a device-wide setting that will revoke the permission to use locations services for all
applications on the device. This setting is accessed via the main Settings application on
an iOS device under General » Reset (as seen in Figure 9-4).

wil ATET 2 12:35 PM o

. General Reset

‘ Reset All Settings ‘

‘ Erase All Content and Settings ’

‘ Reset Network Settings ‘

‘ Reset Keyboard Dictionary ‘

Reset Home Screen Layout ‘

‘ Reset Location Warnings ‘

Figure 9-4. The Reset Location Warnings setting

CHAPTER 9: Working with Location Awareness and Streaming Data

This will reset your location wamnings to factory
defaults.

Reset Warnings

Cancel

Figure 9-5. Confirmation from the system to reset location warnings

If you choose Reset Warnings (see Figure 9-5), run the main Maps application on the
device, choose OK at the location prompt, and then go back to the main Location
Services setting screen, you will see the screen shown in Figure 9-6.

il AT&T 2 2:39 PM o

Settings Location Services
‘ Location Services m

Allow the apps below to determine your
approximate location.

+7 Maps o o |

An app that has requested your location
within the last 24 hours will show the
location services icon next to its name.

Figure 9-6. The Locations Services settings after resetting warnings and running the Maps application

CHAPTER 9: Working with Location Awareness and Streaming Data

As we mentioned before, prompting users to opt in or out of using their location is just
one of three essential parts of working with location. If it’s unclear how your application
will use a user’s location, then we highly recommend displaying your own prompt or
information screen with additional information. As of iOS 4, iOS makes this easy to do,
and we will show you how in the following sections. If you store location history within
your application on the user’s device, you should also provide a Settings screen that lets
the user flush this history. Alternatively, you could provide a way to have your
application only keep records for the past week, automatically flushing this history for
the user based on a setting.

Now that we’ve covered the device side of things and what to understand with respect
to location and privacy within your iOS application, let’s take a quick look at what Twitter
and Facebook do on their ends with respect to location.

Twitter and Facebook have come a long way with respect to the three best practices
that we mentioned previously. Let’s take a quick look at both of their approaches.

Facebook Places

Facebook has followed Foursquare’s lead and created the Places feature. When you
check in from a place, you are letting your friends on Facebook know where you are and
what you are doing, such as eating at a particular restaurant or attending a concert. For
a quick overview of what the Places feature can do, check out this link:

www . facebook.com/places/

Note that Facebook lets you control whether or not friends can see where you check
into. We recommend reading Facebook’s FAQ for a full account of how it deals with
privacy:

www . facebook.com/help/?page=18839

In short, you can control whether or not you show up in the Here Now section of a
Facebook place page when you check into that place. Do so by going to the Privacy
settings section on Facebook (see Figure 9-7).

CHAPTER 9: Working with Location Awareness and Streaming Data

facebook

Choose Your Privacy Settings

) Connecting on Facebook

Contred bask informasion your friends will use 30 And you 0n Facebosk. View Setngs

2 Sharing on Facebook

These settings control who can see what you share.

o Everyone
Friends of Friends

Friends Only

Recommended

2 Apps and websites © slock Lists
it your settiogs for using azes, games €80 your lsts of blocked people and
and apps.
Facebeok © 2011 - English (US)

X Find: (Q MesaersSbrigge m

) (e [Previous) (0 Wghighi i) MMachcase

= Controlling How You Share

rends of
Friends Friends Only Other

& This is your current setting.

About _Advertising - Develosers - Careers . Privacy Term. NIDS:/ /www.facebook com/seings/Mab=privacys

4

Figure 9-7. Control whether Facebook check-ins display in the Here Now section.

Choose Customize settings, and then, under Things | share, choose whether you want

Everyone, Friends and Networks, Friends of Friends,

or Friends Only to see your check-ins.

You can also create your own custom setting for Places you check into (see Figure 9-8).

v & (4]- GlocationManage

Customize who can see and comment on things you share, things on your Wall and things you're tagged in.

Famity

F—

——

o and favorite quetations

Website

Religlous and palitical views

Eraday

e o kit

Iﬂ(:ulf,lt n W “."' w MI‘I'(M m".‘

& evacy settings for existing photo alums and videos.

Things others share Photes and vigeos you're tagged in

Pormiss

10 comment om your posts

& Friends Only; Except: restric v il
& Only Me ~

& Only Me ~

& Only Me ~

& Friends Only ~

LA Priends Only; Excewts resurke v |
& Friends Only; Exceps: restric ~

8 rriends Only ~

po—
S s
Friends of Friends
Friangs Only

v Costom edit

it Sestings.

& Friends Only; Except: restric ~

Suggest photos of me te friends. it Sestings.
Friends can post om sy Wall Mrnanie
== 620162326220674108
X Find: (Q Wesaeufsbrisae m | (Next | Previous) (0 Wighightal) M Mateh case ’

Figure 9-8. Customize Facebook’s check-in settings.

CHAPTER 9: Working with Location Awareness and Streaming Data

In this same section, you can adjust the setting for this option:

Include me in "People Here Now" after you check in

Clicking the See example link displays what it looks like when you are shown on People

Here Now (see Figure 9-9).

Things sthers share

% Find: (Q Med setepidge m

Famity

Relationships

Interested in

wH Golden Gate Park o Like
R4
People Here Now

o4
re
by

Christop Nathaniel Caitin fensgn mygerb
her White Woodward Roran Nems

| information
Address Golden Gate Park, San Francisco, CA
S JGesyme—T—3 T
Y X
L v M""% FeAS O3
i Lincosa Way ¥ 5
i 3 P
g
Ling; i 5 e em
1 =

@ Friends Only; Excepe: restric =

Friends can post on my Wall

Can see Wall posts by friends

Friends can check me in to Maces

8 Only Me ~

& Only Me ~

_@ Only Me ~

Example: People Here Now BN @ Friends Only ~

& rriends Only; Except: restric

8 Friends Only ~

& Only Me ~

Cenable

tdit Settings

& Friends Only; Except: restric ~

£dit Settings

Fenable

L Erinadts by Emcope pasnriei; |

it Sattings.

(Next | previous) () Highigh 3t) watch case

Figure 9-9. The Facebook People Here Now example

In the Things others share section, you can edit the settings for this option (see Figure

9-10):

Friends can check me in to Places

CHAPTER 9: Working with Location Awareness and Streaming Data

Jou 3t 23 cther friends have checked in with friends waing Paces.

N i
A, 0 A ™
g AL : =
riends cam chack me In 10 Macas [Ouatied |

You're in control of your 0Cation on Facebook:

* Facebook wil mever share of expose your ocaon automascally
* Only friends €an 139 you 3nd Check you in 10 3 place

= Wl motify you when 3 friend has tagged you

* As with shotos, you can remave a briend's tag at any time

T ot |

Things

o T i S B pore o s LB ol R mestel)

el yor gl dore (A Saege |

Friends can post en my Wall W tnabie

Can see Wall posts by friends 8 Friends Only; Excepe: restric ~

Friends can check me in 10 PMaces uk!-.b.i

L 62010a326220674 108

% Find: (Q Ved sletsSStrdge m Next | Prevous) (O Wplghtal) M Match case 4

Figure 9-10. Facebook lets users give friends permission to check them into places.

In the Apps and Websites section of the Privacy settings, you can revoke access to Places
to applications that you previously granted this access to via OAuth (see Figure 9-11).

- Safari File Edit View History Bookmarks Develop Window Help & @ & 8 O O oD 3 T ¢ B GEem SunAprl0 3:25:
L) Apps Settings (4)

TaLEUUUR

Apps, Games, and Websites » Apps You Use
4 Rack to App Privacy

You have authorized these apps to Interact with your Facebook account.

Beginning I0S Social Last logged in: Yesterday Rermarve app
Development
This app can: Access my basic information Required

Includes mame, profile picture, gender, networks, user 1D,
ist of friends, and any other information fve shared with
everyone

. Access my profie information Required
Ukes, Music, TV, Movies, Books, Quotes, Groups, Events
and Notes

i Access my photos and videos Required
Photos Uploaded by Me

[:,] Access posts in my News Feed Remove
’é Access my data any time . Remove

Beginning 105 Soxial Devel 33 my data
when Fm not using the

Check - ins. Remove i
Beginning 105 Social Development may read my check
f.

ins and publish check-ins on my behal

Last data access: Basic Information Yesterday
See details - Learn more

Close Section
FH MedialetsSharedData Friday Edit Settings %

. v
H nutfington Post Thursday it Settings X 20 Chat(7)

Figure 9-11. Revoke permission for an application to check into places.

CHAPTER 9: Working with Location Awareness and Streaming Data

Facebook also lets you see an access log for each application (see Figure 9-12).

I safari File Edit View History Bookmarks Develop Window Help & ® £, 8 O B O ™ O 3 2 « @ Grom SunApr10 6:07:4
8ano Apps Settings (4))
K3 hatps:/ fwww.facebook com/ settings /fabwapplicazions.

INCHISES NAME, IGESE PICUTE, GENGET, NETWOrRS, WSt 10, .
list of friencs, and amy other information fve shared with ~
everyone

s Accese my profie ifermadon Required
was Ukes, Music, TV, Movies, Books, Quotes, Groups, Events
and Notes
m Access my photos and videos Required
Photos Uploaded by Me
Beginning 105 Sacial Development accessed the following Information on your behat:
il tasic information Mareh 1
(= News feed March 1
A Groups and tvents March 1
tast cawa aceell crent Gty Febeuary 20
o4 Ukes, Music, TV, Movies, Books, Quotes and Notes Febeuary 27
[Photos Uploaded by Me. February 27
T medialetsSharg it Serings %
9, My Chack-ing Yesterday
H Hutfington Pos €dit Semings x)
Learn maee about the data shown here Close
Medialets it Settings X

¥ UivingSocial 1-Day Deals March 28 Edit Settings %

& The New York Times Mareh 19 it Semings %

@ Causes February & Edit Setings

& Foursquare Jnuary 2 €dit Settings X .

L A% Chat (7)

Figure 9-12. View when an application last performed a check-in.

If you go to the Info accessible through your friends setting, you can control friends’
access to Places information (see Figure 9-13).

Safari File Edit View History Bookmarks Develop Window Help &5 ® $,. 8 C B O ™ O 3 2 « @ GFom SunApr10 3:25:55eM QU
o Privacy Settings (4) a

K3 hatps:/ fwww.facebook com /settings /tabw privacydsection=appsdh « 1 342 104011026606 2010236220674 10 ¢ JQr Coogle

(e back o rvac | E

On Facedook, your name, profile pcture, gender and networks are visdle to everyone (Learn Wiyl
A0, by defaudt, 3pps have acess 10 your friends 441 and any information yos <hoose to share with

everyone
You can change what you share With aps Using these SeTtings:
Info accessible through your friends a
Apps you use
Use the setrings below to control which of your information i availabe to a0pikations. games
and websites when your friends use them. The more info you share, the more social the
exparence
0 sio Q) My videos
O sirthday 0 My links
() Family and relationships () My notes
) interested in () #hotos and videos Fm tagged in
O Religious and political views () Hometown
O My website O Current city
O 1f m online O tucation and work
(0 My status updates () Activities, interests, things I like
(0 My photos () Maces | check in to
Info aceessivle
flends Your mame, profile pictire, gender, networks and user 1D (skang with amy other Information
You've set t0 everyone) is avalabie t0 friemds’ applications unless you turn off platfoem
apeications and wesites.
Game and 200 4
e

Instant persomalization Lets you see relevant information about your friends the Cdit Settings
MOMENt yOu Arrive 6N SEECE PArtner websies.

Public search Show a peeview of your Facebook profile when Deopis look it Sattings.
for you using a search engine. _

18 Chat (7)

Lacabock £200) . fociuh NI Abous Adwectiung. Deuslooess Cacescs Dbacy

Figure 9-13. Control friends’ access to Places information.

CHAPTER 9: Working with Location Awareness and Streaming Data

Adding Locations to Tweets

Since Twitter has a somewhat more limited amount of functionality, it’s very
straightforward to manage how Twitter uses your location. When you log into your
Twitter account, go to Settings » Account (http://twitter.com/settings/account) and
scroll down to the Tweet Location section (see Figure 9-14).

- Firefox File Edit View History Tools Window Help & ® 4 8 CH O ™ O & = « [Gromm FriAprs 1025290 QN

ann Twitter / Settings
- Twitter ¥ Twin xlgfﬂhl...l)i"

< | Twitter .. | (o Twitter .. GET . GET star. . - P8
<)>) IR huuos: / /twitter.com/ settings /account v | (2§~ imer g Q) () [B2 <] [Feedback -
.

twitter¥ [Sen

€0 search latitude longitude

Time 2one GMT-05:00) Castern Time (US & Canada) ~

Toeet Location @A a location 10 your tweets

4 Geiote Al I0CA%0N NIGrmaBon *

Tweet Media @ Show photos and videos from everyone

Twoet Privacy o4 Protect my tweets

———————————y

HTTPS Only & Aways use HTTPS

* Find: (Q geo_en) Next | Previous Heghight all Match case

Figure 9-14. Configure the display of location with Tweets.

Checking the Add a location to your tweets box lets you give Twitter permission to show
a location associated with each of your Tweets, allows your Tweets to show up in
searches of Tweets by location, and stores the location of your Tweets indefinitely.
Remember to be careful with turning this setting on since Twitter, by its nature,
encourages people to share their Tweets with the entire Twitter community. This means
that anyone on Twitter can see where you are, unless your account is private. If you
want to later stop showing your location with your new Tweets, uncheck this box. If you
want to erase all records of your location for past Tweets, click the link in the sentence,
“You may delete all location information from your past tweets.” If you do this, you will
be prompted to give Twitter permission to delete all of your location information (see
Figure 9-15).

CHAPTER 9: Working with Location Awareness and Streaming Data

& safari File Edit View History Bookmarks Develop Window Help &% ® £, 8 C B O ™ O § & « [@079 SunApr10 3:00:03pM QW
000 Twitter / Settings !

=[x)8 [+] hetp:/ twitter.com/settings faccount ¢ Q- Google) |

(D) iPhone Dev ..ding Events You can'tem. o the Trash Mac O5 X Ref._nce Library SVN Basic Work Cycle Mac Dev Cen.is in Xcode mint craigslist Cmail Apple Yahoo! Coogle Maps YouTube

twitterY

Usemamo christhepiss

Your public peofile: hetj http:/ /twittercom
@ Are you sure you want to delete all of your location
data?
Email mrchristopher! 248¢

Note: ermat will not be) (Cancel)
() Let others find ma

Language | English

Time Zone (GMT-05:00) Eastern Time (US & Canada) ¢

Tweot Location () Add a location to your tweots

Seiete Al IOCAION INTOIMAtion trom

Twoet Media Show photos and videos from everyone

I v Getault, youll only 568 IMages and Videos shived by people you're following. and 'I
Figure 9-15. Delete all location history associated with Tweets.

If you choose to delete all of the location records for your Tweets, then anytime
someone views one of your past Tweets, the location information will no longer appear.
For a thorough description of the issues involved when sharing your location on Twitter,
check out this link:

http://support.twitter.com/forums/26810/entries/78525

Power Hungry

Modern location services on mobile platforms use GPS, WiFi, and cellular data to try to
determine the location of a device and return it via their respective APls. The location
service on iOS is no exception. Indeed, this feature is very power hungry, and it can
quickly drain the battery of a user’s device if not used wisely within your application.

Prior to iOS 4.0, there was only one method for obtaining the location of the device from
the CorelLocation framework in iOS. With this method, which Apple refers to as the
Standard method in its documentation, you can set accuracy and distance filters to
control how often you want to access location information. Unfortunately, it’s easy to
abuse accessing location services with the Standard method and drain a device’s
battery. Apple’s developers recognized this, so iOS 4 introduced a new Significant
Change method for obtaining a device’s location. This is a much more power friendly
method of obtaining location and sends location updates on a less frequent basis. We
will delve into this in greater detail in the next section, where we will show you how to
use the Significant Change method in your application. Needless to say, we

CHAPTER 9: Working with Location Awareness and Streaming Data

recommend using this method for the majority of applications, and especially for social
applications that do not require a new location reading every second.

CoreLocation

I0S’s CorelLocation framework is a very well thought out framework that is relatively
easy to incorporate into an application. There is a ton of information available on Apple’s
iOS Developer site about the framework; however, we’ll run through the most important
stuff here. We'll also show one way of incorporating the framework into an application
that makes it easy to get the device’s current location. For total beginners, a thorough
reading of Apple’s documentation about location in iOS apps might be a good idea; you
can find the documentation, entitled “iOS Location Awareness Guide,” at this URL:

http://developer.apple.com/library/ios/#documentation/UserExperience/Conceptual/Location
AwarenessPG/Introduction/Introduction.html#//apple_ref/doc/uid/TP40009497

In the sample applications for this chapter, there is a new class entitled
LocationController that exists within LocationController.h/.m. We have designed this
class to act as a wrapper or facade for iOS’s CoreLocation framework. We’ve done this
in order to accomplish several goals:

B Make it easier to demonstrate how CorelLocation works by having it
within one class within our application.

B Make the code easier to maintain in the future since we will only have
to make changes for CorelLocation in one class.

B Prevent other classes from having to use CorelLocation individually.

Let’s take a look at the header for LocationController to see what CorelLocation
objects it uses and what its API looks like:

#import <Corelocation/CorelLocation.h>

#ifdef FAKE_CORE_LOCATION
@class FTLocationSimulator;
#endif
@interface LocationController : NSObject <CLLocationManagerDelegate> {
#ifdef FAKE_CORE_LOCATION
FTLocationSimulator *locationManager;
f#else
CLLocationManager *locationManager;
#endif
CLLocation *location;
CLHeading *heading;
BOOL inPowerSavingMode;

}

#ifdef FAKE_CORE_LOCATION

@property(nonatomic, retain)FTLocationSimulator *locationManager;
f#else

@property(nonatomic, retain)CLLocationManager *locationManager;
#endif

@property(nonatomic, retain)CLLocation *location;

CHAPTER 9: Working with Location Awareness and Streaming Data

@property(nonatomic, retain)CLHeading *heading;

- (void)startWithPowerSaving: (BOOL)savingPower;
- (void)stop;
- (BOOL)registerRegion:(CLLocationCoordinate2D)center;

@end

The main idea behind the LocationController class is that it owns and controls the
operation of a CLLocationManager, which is the primary class within CoreLocation.
LocationController makes the current location reading available via a location
property that is a CoreLocation CLLocation object. LocationController provides
methods for starting and stopping the underlying CorelLocation service, and it notifies its
delegate when it has new location information. Since we need to receive updates from
CLLocationManager, the LocationController is declared as a
CLLocationManagerDelegate.

When starting the LocationController, you can elect to take one of two approaches.
First, you can start it with power saving, which uses CorelLocation’s Significant Change
method for determining location. Second, you can use the Standard method. Also,
LocationController has a method for registering a region for CoreLocation to monitor,
which we will discuss shortly. We’re sure that you noticed the references to
FTLocationSimulator, and you’re probably wondering what it’s all about.
FTLocationSimulator lets you generate location readings on the iOS simulator, which we
will also be covering this later in this section.

Let’s switch over to LocationManager.m, so we can take a look at what
LocationController’s methods are doing. The startWithPowerSaving: method begins
by stopping the LocationController, in case it has already been started. If you prefer,
you could keep track of whether you’ve already started the CorelLocation services
yourself and just exit this method immediately if it’s already started. If the
CLLocationManager locationManager does not exist yet, it is created, and we set
LocationController as its delegate. Next, we check to see if location services are
enabled on the device. Note that this changed from a property named
locationServicesEnabled to a method of the same name in iOS 4.0, so we check for
this, as well.

If location services are enabled, we start the locationManager in one of two ways,
depending on the value of the savingPower parameter. If savingPower is YES, we start the
locationManager via the startMonitoringSignificantLocationChanges method and
store the fact that we are in power saving mode. If savingPower is NO, we use the
Standard startUpdatinglocation method and configure our desired level of accuracy
and distance filter. You can read more about the different values available for these
properties in Apple’s documentation or header files:

- (void)startWithPowerSaving: (BOOL)savingPower
[self stop];

if (nil == self.locationManager) {
#ifdef FAKE_CORE_LOCATION

CHAPTER 9: Working with Location Awareness and Streaming Data

self.locationManager =
[[[FTLocationSimulator alloc] init] autorelease];

#else
self.locationManager =
[[[CLLocationManager alloc] init] autorelease];
#endif
}

self.locationManager.delegate = self;

//Available in 3.2 and later
self.locationManager.purpose

@"Big brother is watching.";

BOOL locationServicesEnabled = NO;
if ([CLLocationManager
respondsToSelector:@selector(locationServicesEnabled)]) {
locationServicesEnabled =
[CLLocationManager locationServicesEnabled];
} else {
locationServicesEnabled =
self.locationManager.locationServicesEnabled;

}
if (locationServicesEnabled) {

inPowerSavingMode = NO;
if (savingPower
88 [CLLocationManager respondsToSelector:@selector
(significantLocationChangeMonitoringAvailable)]) {
if ([self.locationManager respondsToSelector:@selector
(startMonitoringSignificantLocationChanges)]) {
[self.locationManager
startMonitoringSignificantLocationChanges];
inPowerSavingMode = YES;

}

} else {
self.locationManager.desiredAccuracy =
kCLLocationAccuracyBest;
self.locationManager.distanceFilter = kCLDistanceFilterNone;
[self.locationManager startUpdatinglocation];

}

LocationController’s stop method checks to see if we are in power saving mode via
the boolean, inPowerSavingMode (we saved this value earlier in our
startWithPowerSaving: method). It then calls
stopMonitoringSignificantLocationChanges or stopUpdatinglocation, depending on
which mode we are in:

- (void)stop

if (inPowerSavingMode
83 [CLLocationManager respondsToSelector:@selector
(significantlLocationChangeMonitoringAvailable)]) {
if ([self.locationManager respondsToSelector:@selector

CHAPTER 9: Working with Location Awareness and Streaming Data

(stopMonitoringSignificantLocationChanges)]) {
[self.locationManager
stopMonitoringSignificantLocationChanges];

}
} else {

[self.locationManager stopUpdatinglocation];
}

}

As of iOS 4.0, CorelLocation’s CLLocationManager has the ability to notify an application
via delegate callbacks when the device enters or leaves a pre-specified geographic
region. This is known as region monitoring. LocationController supports region
monitoring through its registerRegion: method, which directs CLLocationManager to
monitor a specified region around a single center point and notify the application when
the device enters or leaves the region.

Using CLLocationManager

Next, we’ll go over how to use CLLocationManger. First, we need to see if this feature is
available. If it is, then we set the radius of the region we want to monitor; create the
region to monitor with the center point, radius, and name; and finally, hand it off to
CLLocationManager to monitor via its startMonitoringForRegion:desiredAccuracy:
method. The desiredAccuracy value controls the size of the buffer around the edge of
the region’s boundary that CLLocationManager uses to determine if the device has left
and reentered a region. Monitoring regions can be a really useful way to incorporate
some nice features into your app, such as automatically checking in a user to certain
places:

- (BOOL)registerRegion:(CLLocationCoordinate2D)center
{

// Check to see if support is available

if (![CLLocationManager regionMonitoringAvailable] ||
I[CLLocationManager regionMonitoringEnabled])
return NO;

CLLocationDegrees radius =
self.locationManager.maximumRegionMonitoringDistance;

// Create the region and start monitoring it.
CLRegion *region = [[CLRegion alloc]
initCircularRegionWithCenter:center
radius:radius
identifier:@"test"];
[self.locationManager startMonitoringForRegion:region
desiredAccuracy:kCLLocationAccuracyNearestTenMeters];

[region release];

return YES;

CHAPTER 9: Working with Location Awareness and Streaming Data

When the CLLocationManager acquires a location reading that falls within the criteria for
its current mode of operation, it notifies its delegate via the
CLLocationManagerDelegate’s locationManager:didUpdateTolocation:fromLocation:
method. When this delegate method is called, we save the current location reading in
our own location property, so that any other parts of our application can access the
device’s current location reading:

- (void)locationManager:(CLLocationManager *)manager

didUpdateTolocation:(CLLocation *)newLocation
fromLocation: (CLLocation *)oldLocation

self.location = newlocation;

If there was a problem initializing the location services, CLLocationManagerDelegate’s
locationManager:didFailWithError: method is called:

- (void)locationManager:(CLLocationManager *)manager
didFailWithError: (NSExrror *)error

NSLog(@"didFailWithError");

When the device enters or leaves a designated region, CLLocationManagerDelegate’s
locationManager:didEnterRegion: and locationManager:didExitRegion: methods are
called:

- (void)locationManager:(CLLocationManager *)manager
didEnterRegion: (CLRegion *)region

NSLog(@"didEnterRegion");

- (void)locationManager:(CLLocationManager *)manager
didExitRegion: (CLRegion *)region

NSLog(@"didExitRegion");

- (void)locationManager: (CLLocationManager *)manager
monitoringDidFailForRegion: (CLRegion *)region
withError: (NSError *)error

NSLog(@"monitoringDidFailForRegion");

As of iOS 4.2, CLLocationManager can also notify its delegate if the authorization status
for the application was changed by the user via the main Settings application on the
device:

- (void)locationManager:(CLLocationManager *)manager
didChangeAuthorizationStatus: (CLAuthorizationStatus)status

NSLog(@"didChangeAuthorizationStatus");

CHAPTER 9: Working with Location Awareness and Streaming Data

Before we move onto other topics, it’s worth mentioning location services on iOS and
backgrounding. Note that the Significant Change method will periodically wake up your
app and provide location updates. If you are using the Standard location method, then
you will have to set some values in your application’s plist. You can find more
information on this in Apple’s “iOS Location Awareness Guide,” which we referred you
to earlier in this chapter.

One final note: When using CorelLocation in your application, you have to link your
application against the CorelLocation framework (see Figure 9-16).

8 xcode File Edit View Navigate Editor Product Window Help 555 ® £, 8 C B O ™ O i & ¢ [E Gro7o SatApr9 12:52:09aM QU
noe O Apil - Aol =)

ApiFacebook | iPhone 4.3 Si... -

Bulld Apifacebook: Falled | Today at 12:51 AM
Project 14 @3

|-t & A= = B = bwm

| Choose and branes to 330

o !
™ Apifacebook a
> [FeLogin By apifacel ! |
» (] FaConnect TARGETS > g."‘ & CoreData framework . |
(& Classes . \piFacebiool 1 &= CoreFoundation framework E =

E w:ﬁm 3 > Com| = CoreGraphics. framework m L z
b FacebookViewController.h 7] » Comg 7 CoreLocation. framework [=
m FacebookViewController.m 7] { &2 CoreMedia.framework —
b FriendsViewController.h a TALS) 3 CoreMIL framework L :
m FriendsViewController.m a & Foun €& CoreMationfr Required &
h) FriendTableViewCellh a & Uik Required
~ CoreTelephony. framework -
A = ~ B cord : CoreText.framework Required 3
) LoginViewControlier.h a + -] =z .
m LoginViewControlier.m a N oreVideo. framework en—
h) MainViewController.n a Cemi3le
m MainViewController.m a Cemlo
) DialogViewController.h a =
m DialogViewControlier.m a N eoh
!\ LocationControlier h (Al — -
m LocationControlier.m (i} 3o

¥ [Other Sources. etdo 3
) ApiFacebook_Prefix.pch 7] o r
m man.m 7]

v i mesources (AddOther..) (Cancel)
() ApiFacebook-Info.plist 7] y

» [Frameworks.

» (] Products

+ 00E ™ \ Add Target Add Build Phase

Figure 9-16. Linking against the CoreLocation framework when using CoreLocation

Generating Locations in the i0S Simulator

Although Apple has done an outstanding job with its CoreLocation framework, one
glaring omission was the ability to generate a sequence of location updates in the iOS
simulator. With iOS 5, Apple has added location simulation so that developers can test
location-aware apps without needing to leave their desks. In the event that Apple's
solution doesn't satisfy, here are two alternative ways to test location apps within the
developer environment: iSimulate and FTLocationSimulator. These solutions are very
different in their approaches, so we’re going to give a quick run-through on how to get
set up with them and how they work.

CHAPTER 9: Working with Location Awareness and Streaming Data

iSimulate

You can acquire iSimulate at the following URL.:

www.vimov.com/isimulate/

The iSimulate app runs on your actual iOS device and allows you to interact with an
application running in the iOS Simulator on your desktop. Most importantly, it also lets
you share the location of your device with the Simulator. You can find a free Lite version
of the app in iTunes at this URL:

http://itunes.apple.com/us/app/isimulate-lite/id351339630?mt=8

To get up and running with iSimulate, you also have to configure a few things in your
application’s project in Xcode:

1. First, download the latest version of the iSimulate SDK from
www.vimov.com/isimulate/sdk/.

2. Now add the iSimulate library’s .a file (at the time of writing, this is
called libisimulate-4.x-opengl.a) to your application target’s
Frameworks (see Figure 9-17).
&' xcode Flle Edit View Navigate Editor _Product wmaowh Hp 55 84 8 C B O MO + T« B @Eomw SatApr9 1:25“(3

Bulld Apifacebook: Succeeded | Today at 1:29 AM

| Summary Info Bulld Settings | Build Phases | Build Rules
I ApiFacebook | a

i
|
i

.
§
f
E
]
2B

B (E

¥ Link Binary With Libraries (6 items)

&= OpenGLES. framework Required &
¥= Corelocation framewori Required &
= Foundation. framework Required §
R Uit framework Required §
& CoreCraphics framework Required 3
_ libisimutate -4 x-opengl.a Required &
+ - Drag 1o reorder frameworks

7]
a
7]
7]
a
a
a
a
a
m LoginViewController.m a
a
a
a
a
[A]
(A]
a
a
7]

» = CoreGraphics. framework
» () Products

+ ORE ™ - | Add Target Add Build Phase

Figure 9-17. Link against the iSimulate library file.

3. Next, link your application against the OpenGLES framework (see Figure 9-18).

CHAPTER 9: Working with Location Awareness and Streaming Data

& xcode File Edit View Navigate Editor Product Window Help G &% @ 4 8 CH O M O 3 & « [@ oM SaAprd 129:12AM Qi
noe (] - =

Build ApiFacebook: Succeeded | Today at 1:29 AM
Mo lsswes

-

A !
| PROJECT «
I AoiFacebook [| Q | Q
Tascers == M A
G oo e oacbock 124m J
> e (L | 1b2.1.2.3.dy ! 8)
S Casses i ibz.1.dydd =
[h) AppDelegate.h a »> Con i ! _
AcpDelegate. a
? R a |2 = Mapkin framework ! 8|
= FacebookViewControlierm £ & 0 = MediaPayer framework Required
b FriendsViewController.h a &= Coc = MessageUlframework Required |
= FriendsViewController.m a &= Fou §= MobileCoreservices. framework Required §
) FriendTableViewCell.n a - UK = OpenAL framework Required |
Bioptmcontes @ el ~ o-cirs e s
2 m; g L. | = QuartaCore framework ! Required ¢
N MainViewControtier.n 7] e G QuickLook. framework 10 reordes frameworks
= MainViewControlier.m 7] &= Security.framework
Roswsecoeses @ & Sorekuramerork
= DalegVienControlier. m
h] LocationComtrollerh o &= SystemContiguration. ramework
= LocationController.m (Al 6= UKt framewerk v
¥ [Other Sources
h) Aofacebook Prefixoch 01 (Adgother.) ((Cancel) (TAda)
= main.m a &
¥] Resources
[_] Ap#acebook-info.plist a
v
| hbisimutate-4.x-opengl.a
» K UIKe frameworic
» 6= Foundation.framework
» K= CoreGraphics. framewerk
» (L Preduats
+ oap 'S Add Targer Add build Phase

Figure 9-18. Link against OpenGLES when using iSimulate.

4. Finally, add an additional -ObjC linker flag to your application target
under Build Settings (see Figure 9-19).

Xcode File Fdit View e Editor Product Window Help €3 5% @ 4,8 C Hl O M O 3 2 « [@ 7% SunAprl0 8:29:56PM QU
e o =)

| Build Succeeded | Yesterday at 4:45 PM

| & EIE] O =ENE)]

PROJECT [Sumenary ifo | Build Settings | Build Phases Build Rules
B3 Apiacebook s @D | ST Levels (@ osher i)
TARGETS Sewing A ApiFacebook
¥ LUinking
Link With Standard Libraries Yeu o
Other Linker Flags ~ObIC ~licucore
CoreLocation |
| libisimulate-4.x-opengl 3
» 2 UIKie.framework
> = Foundation framework
» & CoreCraphics. framework
» () Products
+ oAs ® Add Target Add Bulld Sewing

Figure 9-19. Set additional linker flags when using iSimulate.

CHAPTER 9: Working with Location Awareness and Streaming Data

All of this information is also available here:

www.vimov.com/isimulate/documentation/

Now that we have configured iSimulate, it’s time to put it into action. On your device,
make sure that you are on the same WiFi network as the machine that you are running
the iOS Simulator on, and then start iSimulate. You should see a screen like the one
shown in Figure 9-20.

SELECT COMPUTER TO CONNECT TO: m
I
(I

3
You can choose
from this list the
application that is
running on an No computers were found with a

iPhone Simulator i ing iSi " icati

B vou want 1o listening iSimulate-ready application.
pass this device’s e
data to, or you can L0
also click the Bin-
ocular down to
start the “Vi g

Mode"; you'd only riSimuIate Lite sends only a single
see the data live. touch. Full version sends multiple BUY FULL
touches, accelerometer, compass, VERSION

kGI>S\ and streams video to you.

G D copyright © 2009-2010 vimov, LLC
-

Figure 9-20. iSimulate on i0S

Now run your application in the iOS Simulator, and the iSimulate application on your
device will detect that the application is running and let you link with it on your device
(see Figure 9-21).

SELECT COMPUTER TO CONNECT TO: 000

e
I y N
You can choose &)

from this st the | Christopher White’s MacBoo...
application that is
running on an
iPhone Simulator
that you want to
pass this device's
data to, or you can
also click the Bin-
ocular down to
start the "Viewing

Mode"; you'd only riSImuIale Lite sends only a single
see the data live. touch. Full version sends multiple BUY FULL
touches, accelerometer, compass, VERSION

\GPS and streams video to you.

o copyright © 2009-2010 vimov, LLC

Figure 9-21. iSimulate on i0S: Select the machine to connect to.

Choose the name of your machine from the list and you will be brought to the main
iSimulate screen. You are now ready to rock and roll (see Figure 9-22).

CHAPTER 9: Working with Location Awareness and Streaming Data

Bm 192.168.11.50
- .

£ 0.00, 0.00
1 0.04,-0.61,-0.84

aOprONS

You can touch anywhere to send
the touch events to the Simulator

Figure 9-22. iSimulator on i0S: View the information that iSimulate is sharing.

futuretap’s FTLocationSimulator

You can acquire FTLocationSimulator from the following URL:

https://github.com/futuretap/FTLocationSimulator

Unlike iSimulate, FTLocationSimulator is code that you build into your app that

overrides CLLocationManager. FTLocationSimulator then generates location information

by reading in coordinates from a .kml file that you include in your application. There is a

little more setup here and some code to discuss, but we are going to walk you through

it.

First, you will want to set up a submodule to the FTLocationSimulator source code via

Git:

$ git submodule add git://github.com/futuretap/FTLocationSimulator.git«
FTLocationSimulator

Then, within the FTLocationSimulator directory for the submodule, drag the
FTLocationSimulator directory to your Xcode project. Next, add the following additional
linker flag to your project’s target: -licucore. The final step is to adjust your code so
that it creates and uses an instance of FTLocationSimulator instead of
CLLocationManager whenever FAKE_CORE_LOCATION is defined:

#ifdef FAKE_CORE_LOCATION
self.locationManager =
[[[FTLocationSimulator alloc] init] autorelease];
#else
self.locationManager =
[[[CLLocationManager alloc] init] autorelease];
#endif

FAKE_CORE_LOCATION is located in FTLocationSimulator.h, and it is defaulted to 1 when
targeting the iOS Simulator:
#if TARGET_IPHONE_SIMULATOR

#define FAKE_CORE_LOCATION 1
#endif

CHAPTER 9: Working with Location Awareness and Streaming Data

As we noted before, FTLocationSimulator overrides CLLocationManager. Therefore, if
FAKE_CORE_LOCATION is defined and startUpdatinglocation is called,
FTLocationSimulator’s startUpdatinglocation will be called. This method calls
FTLocationSimulator’s fakeNewlLocation, which reads a new location out of the file
fakelocations.kml included. It then calls itself again after an update interval:
- (void)startUpdatinglocation {

updatinglocation = YES;

[self fakeNewLocation];

}

You can change the update interval in FTLocationSimulator.h:
#define FAKE_CORE_LOCATION_UPDATE_INTERVAL 0.3

You can also create your own .kml file or update the coordinates in fakeLocations.kml.
We encourage you to read up on generating .kml files. Google has some facilities that
make it easy to generate these files, which should help your testing.

MapKit

When working with location, it’s incredibly useful to be able to visualize what’s
happening. Therefore, we’re going to cover another framework available to us in iOS
called MapKit. The main class available via MapKit is MKMapView. MKMapView makes it
incredibly easy to incorporate maps into an application. To see this in action, open the
file called MapViewController.m in the sample projects for this chapter. In the loadView
method of MapViewController, we simply create an MKMapView object with a given
rectangle, set ourselves as an MKMapViewDelegate, tell the MKMapView to display our
current location on the map by setting its showUserLocation property to YES, and then
add it to our view controller’s view:
- (void)loadview {

[super loadView];

CGRect rect = CGRectMake(0.0f, 0.0f, 320.0f, 411.0f);
MKMapView *mapView = [[MKMapView alloc] initWithFrame:rect];
mapView.delegate = self;

mapView.showsUserLocation = YES;

[self.view addSubview:mapView];
[mapView release];

}

Note that, since we’ve set ourselves as the MKMapVew’s delegate, we need to declare our
MapViewController as an MKMapViewDelegate in MapViewController.h:

@interface MapViewController : UIViewController <MKMapViewDelegate> {

}
@end

Also, don’t forget to link your application against the MapKit framework (see Figure 9-
23).

CHAPTER 9: Working with Location Awareness and Streaming Data

Xcode File Edit View e Editor Product Window Hel i T ¢ [@7 SatApr9 1:S
)

Budld Apifacebook: Falled | Today at 1:57 AM
Frojest @1

Choase frameworks and libraries to add:
Q

7 Noxmiz.aylid
 libxsit.1.dysd
~ lbxsitdylib
" libz.1.1.3.dylib

) libz.1.2.3.¢vib

 libz. 1 dylib

| libz.oyin Nequired

prr

&= MediaPayer framework Required +

€2 MessageUl framework)

2 MoblleCoreServices. framework Required &

&2 OpenAL framework Required *

% OpenGLES framework 1o rearder [rameworks

Sewings | Bulld Phases | Bulld Rules

!
.
| Q
|
!
|
!

e

8
2
a)

((Add Other...) (_Cancel) (Add)

© .

Add Target Add Build Phase

+ o@8 ™

Figure 9-23. Link against the MapKit framework.

We also need to implement a few methods from MKMapViewDelegate; however, before we
describe these methods, we need to address the topic of annotations. There is a ot to
cover with annotations, so we won’t go into too much detail. The short version is that
annotations are visual elements, such as pins that you can place on an MkMapView. In
Figure 9-24, we have placed an annotation for a location point on the map and
represented it as a pin.

CHAPTER 9: Working with Location Awareness and Streaming Data

Canaaa ! { Hudsan
’ { Bay.
AB MB
SK o
ON - Qc
i ¢
WA MT ND
OR D WY s
NE
& NV ur co KS
A
AZ NM
T,

. Gulrof \
Calfernia

México

£
Guatemala Caribbean
¢ Aq W™ Sea

Nicaragua

‘ g™
Google s <!°_"
Figure 9-24. Display a pin on a map.

The code for adding this annotation to the map is in the implementation of
MKMapViewDelegate’s mapView: didUpdateUserlLocation. This method is called whenever
the map displays an updated location from the CorelLocation framework. This delegate
method is called because we set showsUserLocation to YES on our MKMapView, and we
are simulating position updates. For simplicity’s sake, we add the first position reading
that we receive as an MKPointAnnotation, which is a predefined type of annotation via
MKMapView’s addAnnotation: method. We also use our LocationController’s
registerRegion: method to register a region around this first position:

- (void)mapView: (MKMapView *)mapView didUpdateUserLocation:«
(MKUserLocation *)userLocation
{
static int once = 0;
if (0 == once) {
once = 1;

// create the pin annotation

MKPointAnnotation *annotation = [[MKPointAnnotation alloc] init];
annotation.coordinate = userlLocation.coordinate;

[mapView addAnnotation:annotation];

[annotation release];

[locationController registerRegion:userLocation.coordinate];

}
NSLog(@"didUpdateUserLocation");

CHAPTER 9: Working with Location Awareness and Streaming Data

Displaying an annotation on an MKMapView is a two-step process. First, we add an
annotation to the MKMapView (as we did in the preceding code). Second, we provide an
annotation view that is responsible for displaying the annotation. When the MKMapView
has determined that it needs to display an annotation, it calls its delegate’s
mapView:viewForAnnotation: method. In the code that follows, you will see that if
MKMapView is requesting a view for an MKPointAnnotation, we create an
MKPinAnnotationView and animate its display on the map. The animation will make the
pin look like it’s falling from the sky and dropping into place on the map:

- (MKAnnotationView *)mapView: (MKMapView *)mapView
viewForAnnotation: (id <MKAnnotation»)annotation {

if ([annotation isMemberOfClass:[MKUserLocation class]]) {
#ifdef FAKE_CORE_LOCATION
//get the app delegate's location manager;return it's fake user
//location view
return locationController.locationManager.fakeUserLocationView;
#telse
return nil;
#endif
} else {
if ([annotation isKindOfClass:[MKPointAnnotation class]]) {
// Try to dequeue an existing pin view first.
MKPinAnnotationView *pinView =
(MKPinAnnotationView*)[mapView
dequeueReusableAnnotationViewhWithIdentifier:@”PinView”];
if (!pinview) {
// If an existing pin view was not available, create one.
pinView = [[[MKPinAnnotationView alloc]
initWithAnnotation:annotation
reuseldentifier:@"PinAnnotation"] autorelease];
pinView.pinColor = MKPinAnnotationColorRed;
pinView.animatesDrop = YES;
} else {
pinView.annotation = annotation;

return pinView;

}

// code to create views for other annotations
return nil;

}

This code is also checking for MKUserLocation annotations. We won’t go into too much
detail here, but you should note that the FTLocationSimulator class that we discussed
earlier is designed to show the user’s location moving along the map by providing an
MKAnnotationView for the map. You can see this in action in FTLocationSimulator’s
fakeUserLocationView method:

- (MKAnnotationView*)fakeUserLocationView {

if (!self.mapView) {
return nil;
}

CHAPTER 9: Working with Location Awareness and Streaming Data

[self.mapView.userLocation setCoordinate:self.location.coordinate];
MKAnnotationView *userlLocationView = [mapView
dequeueReusableAnnotationViewhWithIdentifier:@"fakeLocationView"];
if (nil == userlocationView) {
userlLocationView = [[MKAnnotationView alloc]
initWithAnnotation:self.mapView.userLocation
reuseldentifier:@"fakelLocationView"];

UIImage *image = :[UIImage imageNamed:@"TrackingDot.png"];
UIImageView *imageView =

[[UIImageView alloc] initWithImage:image];
[userLocationView addSubview:imageView];
[imageView release];
userLocationView.centerOffset = CGPointMake(-10, -10);
return userlocationView;

}

The final piece of the puzzle that we need to implement is the code that handles what
happens when the user selects an annotation on the map. When this happens,
MKMapView calls its delegate’s mapView: didSelectAnnotationView: method. We will use
this method in our Facebook example to show how to check in a user to a place. Let’s
take a look at that now.

Facebhook Places (Search), Check-ins (Getting and Posting),
and Friends Nearby

Within the Facebook app itself, checking into Places is done via the Nearby screen,
which automatically searches for Places near your current location. If permission to use
location services has not been granted to the Facebook application, it displays the
following screen (see Figure 9-25).

CHAPTER 9: Working with Location Awareness and Streaming Data

il AT&T 2 11:07 AM o =

Nearby

(Q Find or Add a Place D)

[\

Location unavailable.

Location Services are disabled. You must enable
Location Services to view nearby places and check-
ins.

Figure 9-25. Location unavailable in the Check-Ins section of the Facebook i0S application

Assuming that permission to use location services has been granted to the Facebook
application, you will see a list of returned place matches (see Figure 9-26), as well as
detailed information for a place. This is how the Facebook application lets its user
community manage places. A Place profile (which is essentially similar to a Facebook Page)
is shown in Figure 9-27; users can act upon places in the ways shown in Figure 9-28.

CHAPTER 9: Working with Location Awareness and Streaming Data

il AT&ET 12:58 AM 7 0=

Nearby

[QM

Sundae PHL w./ Dj Endo (Dubs... >

3 hours ago

EL SOCIAL @ WALNUT ROOM! @ >

4 hours ago

LAUNCH PARTY! "RIVIERA" IN...
Mar 10 9:00 PM >

Fette Sau >
Full circle >
Skeeeeeedom!!!!

The Commodore >
Knitting Factory Brooklyn >

Live Music Venue & Bar

New Tork Deli Grocery >

M~ ao .~ .

Figure 9-26. Searching for nearby places and events in Facebook’s iOS application

wil. AT&T 12:58 AM 7 O &

Neary The Commodore =

The Commodore

) Like |

Tag Friends With You

Check In

Activity Info

Figure 9-27. Detailed information about a place in Facebook’s iOS application

CHAPTER 9: Working with Location Awareness and Streaming Data

Flag this place

Incorrect Info
Permanently Closed
Duplicate

Figure 9-28. Flag a place in Facebook’s iOS application.

Within our sample app, we want to make it possible to let someone check into a place
on Facebook. Recall that we set up our application to display a pin on the map. When
the pin is selected by the user, MKMapViewDelegate’s mapView:didSelectAnnotationView:
method is called. In our implementation of this in MapViewController, we issue a search
request to Facebook to ask for a list of places around the location of the annotation. To
issue a search request to Facebook, we simply set the graph path for Facebook’s
requestWithGraphPath:andParams:andDelegate: method to search. The additional
parameter to supply is a dictionary with values for type, center, and distance keys. The
MapViewController class is an FBRequestDelegate, so we supply it as the delegate:

- (void)mapView: (MKMapView *)mapView

. didSelectAnnotationView: (MKAnnotationView *)view

NSString *centerString = [NSString stringWithFormat: @"%f,%f",
view.annotation.coordinate.latitude,
view.annotation.coordinate.longitude];

NSMutableDictionary *params =
[NSMutableDictionary dictionaryWithObjectsAndKeys:
@llplacell’ @lltypell’
centerString, @"center",
@"1000", @"distance", // In Meters (1000m = 0.62mi)
nil];

[facebook requestWithGraphPath:@"search"”

CHAPTER 9: Working with Location Awareness and Streaming Data

andParams : params
andDelegate:self];

}

When the FBRequestDelegate’s request:didlLoad: is called, the result parameter is a
dictionary with an array of place dictionaries. Each place dictionary has an id; a
category; a name; and a location dictionary with a city, country, state, latitude, and
longitude:

data = (

category = "Local business";
id = 151247078226083;
location = {
city = "Monta Vista";
country = "United States";
latitude = "37.3316086";
longitude = "-122.05885";
state = CA;
};
name = "Somerset Square Park";
}
)s
}

In the following code, we take the first match from the array of dictionaries in the result
and post a check-in to Facebook via this graph path:

"me/checkins”

We set the parameters for the post request in a dictionary with values for place,
coordinates, and message keys. Note that the latitude and longitude values for the
coordinates key need to be in JSON format, so we use SBISON (which is included in the
Facebook SDK) to convert these values to a JSON string:

- (void)request:(FBRequest *)request didLoad:(id)result {
NSLog(@"didLoad:");

NSArray *places = [(NSDictionary*)result objectForKey:@"data"];
if (0 < [places count]) {
NSDictionary *dictionary = [places objectAtIndex:0];
if (nil != dictionary) {
NSDictionary *locDictionary =
[dictionary objectForKey:@"location"];

NSMutableDictionary *coordinatesDictionary =
[NSMutableDictionary dictionaryWithObjectsAndKeys:
[locDictionary objectForKey:@"latitude"], @"latitude",
[locDictionary objectForKey:@"longitude"], @"longitude",
nil];

SBISON *jsonWriter = [[SBISON new] autorelease];
NSString *coordinates =
[jsonWriter stringWithObject:coordinatesDictionary];

NSMutableDictionary *params =

CHAPTER 9: Working with Location Awareness and Streaming Data

[NSMutableDictionary dictionaryWithObjectsAndKeys:
[dictionary objectForKey:@"id"], @"place",
coordinates, @"coordinates",

@"This is a test checkin", @"message",

nill;

[facebook requestWithGraphPath:@"me/checkins”
andParams : params
andHttpMethod:@"POST"
andDelegate:self];

}
}
}

Note that you can also include a user’s friends in a check-in by tagging them in the

checkin POST. To do this, add an additional key entitled tags to the params dictionary
and set its value to a comma-delimited list of Facebook user ids.

Posting check-ins to a user’s Facebook account requires publish_checkins
permissions, so we have to update our login code to include this additional permission:
- (void)login {
[facebook authorize:[NSArray arrayWithObjects:
@"user_groups", @"user_events",
@"offline_access", @"publish checkins", nil]
delegate:self];

}
When logging in with this additional permission, the following OAuth screen is displayed
(see Figure 9-29).

Beginning i0S Social Development is requesting
permission to do the following:

Check-ins
Beginning iOS Social Development may publish
check-ins on my behalf

Report App

Logged in as Christopher White (Not You?)

Don't Allow m

Figure 9-29. Permission via OAuth to check into places on Facebook

CHAPTER 9: Working with Location Awareness and Streaming Data

Once the check-in is posted, it will show up in the user’s Facebook iOS app (and on
Facebook.com, of course), as shown in Figure 9-30.

LWL ATET 2 3% 11:06 AM o

Check In

Christopher White
@ Rancho San Antonio County Park 2
23 hours ago via Beginning iOS Soci...

Eriends

Joe Gigunito
Donna's Restaurant >
3 hours ago

Tommy Jones
& Voodoo Doughnut >
M 4 hours ago

Lee Jones
Death Star >
: . 5 hours ago

-:ag! Derek Simeone

—

"BIMBO | Tap House Grill-Seattle >
’ 5 # 7 hours ago

=4 Victor Fajardo
] Alstarz >
12 hours ago

Activity
Figure 9-30. Check-ins in Facebook’s iOS application

Selecting a check-in shows a small map and description of the place, as well as any
comments on the check-in (see Figure 9-31).

i AT&T 12:15 PM

Places Comments

B Christopher White This is a
test checkin

Rancho San Antonio County Park
Christopher checked in at Rancho San Antonio
County Park.

about a minute ago via Beginning iOS
Social Development

(\“\j;w a comment... 3

Figure 9-31. Details about a Facebook check-in

CHAPTER 9: Working with Location Awareness and Streaming Data

The place can be viewed on a larger map within the Facebook iOS app (see Figure 9-32).

ull. AT&T 7 11:10 AM U) -

Rancho San Anton... ™

Gates of Heaven
Cemetery

oha
<2
Q,;ma“ Stevens
7

Google //

<5

Figure 9-32. A larger map view of a Facebook check-in

CHAPTER 9: Working with Location Awareness and Streaming Data

Next, you are given the choice to view the map in the main Maps application on the
device or to get directions (see Figure 9-33).

Open in Maps

Get Directions

Cancel

Figure 9-33. Actions that can be taken on a check-in in Facebook’s i0S application

Just as we can post check-ins for a user, we can also retrieve a user’s check-ins via the
Facebook graph path, "me/checkins":

[facebook requestWithGraphPath:@"me/checkins”
andParams:nil
andDelegate:self];

The returned result is an array of dictionaries where each dictionary contains information
about an individual check-in. This information includes the application that posted the
check-in, the time of creation, the user who posted the check-in, the Facebook id for the
check-in, the message associated with the check-in, and the place associated with the
check-in:

(
{
application =
id = 114442211957627;
name = "Beginning i0S Social Development";

};
"created_time" = "2011-04-09T16:14:19+0000";
from = {

id = 623441509;
name = "Christopher White";

CHAPTER 9: Working with Location Awareness and Streaming Data

id = 10150149394136510;
message = "This is a test checkin";

place =
id = 144940418859769;
location =

{
latitude = "37.332301584174";
longitude = "-122.08672354097";
};

name = "Rancho San Antonio County Park";

Retrieving check-ins from a user’s Facebook account requires user_checkins
permissions, so we have to update our login code to include this additional permission:

(void)login {
[facebook authorize:[NSArray arrayWithObjects:
@"user_groups", @"user_events",
@"offline_access @"publish checklns ,
@"user_checkins", nil]
delegate:self];

}

When logging in with this additional permission, the following OAuth screen is displayed
(see Figure 9-34).

- 105 Simulator _File Edit_Hardware Window _Help P 90 80 H OO i+ T« B Erom SatAprd 448
OO 0 ApiFacebook - FriendsViewController.m =
(») @ Apifacebook | iPhone 4.35i.. ¢ [I Running ApiFacebook on IPhone Simulator Flo =
Run Scheme Breakponts e View Ocganizer
Iaulm‘l FriendsViewController.m | +
L. n @ A= ®» 0 mo«r D [iClasses) m ontroller] -viewDsdLoad
M 5 e 5 50643 8 @implesentation FriendsViewController -
(L] FTocationSimulator . .
prages mar
» (£ FiLogin Spragas mark View lifecycle [
» (] FiConnect
v [Classes (id)init {
) AppDelegate.h 0 sel e M Beginning I0S Social Development is requesting
m AppDelegate.m 7] . I)I)anhrn = ([(UITabBarTtes alloc) initWithTitle:@"Frie pormission 10 do the foliowng
h' FacebookViewController b 7] u
m FacebookViewController.m 7]) return self: 9 Check-ins)
' FriendsViewController.h a : | '
- c 1 - (void)viewdicload {
! FriendTableViewCellh 7] (super viewdidLoad);
=) FriendTableViewCell.m Q 77 Uncomsent the following line to display an Edit button i
h! LoginViewCoatrolier.h a 17 self.navigationItes. rightBarButtonites = self.editButtonites;
i LoginWiewCoetroler.m e NSMutabledict (NSMutabledict dlct 1
- utableDictionary sparass = utabledictionary dictionary
h) MainViewController.h a //1params setObject:@"id,name,picture” e s
m MainViewController.m a 77(params setObject:@"U" forKey:@"date_format™);
h) DialogViewController.h a
0 //does not require extended permissions
[OlelogViewComrolier.m o 7/(1acebook requestWithGraphPath:@ se/friends” andParass:parass a
h) LocatonControlierh 0
m LocationControlier.m A} //(tacedook requestWithGraphPath:@"ese/home™ andParams:parass andDel
1) MapViewController.h 0 L5gged in as Crstopher Whte (Not Yeu?)
// requires 'user_motes' extended permissions
m MapViewController.m [A] 7/ 1acebook requestWithGraphPath: @ se/notec” andParass:parans andD
» [Other Sources a -
» [Resources o // requires 'user_events' extended permissions v
» [Frameworks. B n 2> 2 1 Apifaebook
» (L Products Local 3 Q Al Qutpus 3 | Cear) (0 NI 8
Pending breakpoint 25 -
Pending breakpoint 26
Pending breakpoint 27
Pending breakpoint 28
Pending breakpoint 29
Pending breakpoint 38
Pending breakpoint 31
Pending breakpoint 32
Pending breakpoint 33 r
iSimulate: You are runaing SOK v
[Switching to process 1RIS thread 8x118b)
. iSimulate: Started publishing service. Waiting for comnecting device.. v
+ OQ8 'S

Figure 9-34. Facebook check-in permissions

CHAPTER 9: Working with Location Awareness and Streaming Data

Tweetin’ With Location

When it comes to Twitter, the main thing that you will want to enable in your application
is the ability to let users associate a location with their Tweets. We’ve set up the
ApiTwitter example for this chapter to resemble the ApiFacebook application, so we’re
going to skip over some setup since it was covered in the previous sections. At this
point, the LocationController class has been incorporated, we are simulating locations
via FTLocationSimulator, and we’re using our MapViewController to display a map with
an annotation. The only difference is what we do when the user selects the annotation.

Twitter has done a great job documenting its geo-location API, and we encourage you
to familiarize yourself with Twitter’s underlying HTTP API here:

http://dev.twitter.com/doc/get/geo

Until now, we’ve been using XML as our format when working with Twitter’s APIs;
however, the Twitter geo-location APIs only return results in JSON format. In addition, the
base URL for a location is the updated Twitter URL that follows, where 1 is the version of
the API:

http://api.twitter.com/1/

In order to get a feel for working with these APIs, open up a browser to apigee.com’s
Twitter console (see Figure 9-35). This is a very useful tool for experimenting with
Twitter’s APl and getting your feet wet:

https://apigee.com/console/twitter

- Safari Flle Edit View History Develop Window Help ® 10,6 CH OMO + T« B GErom TueApri2 12:53:11AM QM

anNno Twitter API Console | Learn, test, and debug the Twitter AP{ >

ype

sne Dev ._ding Events You] rary SVN Vork Cycle Mac Dev Cen_is in Xcode mint craigslist Cmall Apple Yahoo! Google Maps YouTube
opigee o CID GEEZD

Tour the Console: Resources Reguest Autocompiete Crecentals Parameters Share Ciose our @

£ ¥ fatbiong {queny} o

o Response
5D You made a vakd reqwest. Get the Scurce code to make the same request in your own applcaton. ©

Issue the request.

Source (for Twitter) N

;
There's a faster way to prototype a Twitter application over in Apigee Labs. =

——

Figure 9-35. Apigee’s Twitter console

|

CHAPTER 9: Working with Location Awareness and Streaming Data

Since Twitter’s geo-location API only returns results in JSON format, we have to update
MGTwitterEngine to work with the SBJSON library, which is an easy to use Objective-C
drop-in for working with JSON. First, in MGTwitterEngine.m, we have to make sure that we
set the URL format to JSON and import JSON. h:
felif SBISON_AVAILABLE

#define API_FORMAT @"json"

#import "JSON.h"
#telse

We also have to update the default Twitter domain:
#define TWITTER_DOMAIN @"api.twitter.com/1"

Next, we have to tell MGTwitterEngine to work with JSON when it parses the data for a
connection. The data in the response is first converted to its JSON string representation,
and the JSON is converted into an NSArray or NSDictionary using the NSString category
method JSONValue, which is defined in the SBISON library:

#elif SBISON_AVAILABLE
- (void)_parseDataForConnection: (MGTwitterHTTPURLConnection *)connection

NSString *identifier = [[[connection identifier] copy] autorelease];
NSData *jsonData = [[[connection data] copy] autorelease];
MGTwitterResponseType responseType = [connection responseType];
NSString *json_string =
[[[NSString alloc] initWithData:jsonData
encoding:NSUTF8StringEncoding]
autorelease];

id json = [json_string JSONValue];
NSArray *parsedObjects;

if ([json isKindOfClass:[NSArray class]]) {
parsedObjects = [NSArray arrayWithArray:json];
} else if ([json isKindOfClass:[NSDictionary class]]) {
parsedObjects = [NSArray arrayWithObject:json];
}

[self parsingSucceededForRequest:identifier
ofResponseType:responseType
withParsedObjects:parsedObjects];

}

#telse

In MGTwitterEngineGlobalHeader.h, we store the #define that determines if JSON
should be used as the default return format. Setting this to 1 will enable this:

#define SBISON_AVAILABLE 0

In order to compile this code, you will also have to create a new group in your Xcode
project entitled SBJSON and drag the SBJSON files to the group folder. If you don’t
already have the SBJSON files on your machine, you should clone the Github repository
for it or create a submodule. We recommend using a submodule:

$ git submodule add git://github.com/stig/json-framework.git json-framework

CHAPTER 9: Working with Location Awareness and Streaming Data

Now that we have SBJSON incorporated into MGTwitterEngine, we have to add support
for Twitter’s geo API and for POSTing status updates with location parameters.
Twitter’'s HTTP geo APlIs use the following format:

geo/<action>.json

We’ve therefore created a geoResultsForPath:withParams: method that lets you set the
action that you want to perform, as well as the parameters. The four available path
actions are as follows:

B geo/search
B geo/reverse geocode
B geo/similar_places
B geo/id
The parameters consist of latitude and longitude values, place names, and so on:

- (NSString *)geoResultsForPath:(NSString *)path
withParams: (NSDictionary*)params

NSString *pathi =
[NSString stringWithFormat:@"geo/%@.%@", path, API_FORMAT];

return [self _sendStandardRequestWithMethod:nil
path:path1
queryParameters:params
body:nil
requestType:MGTwitterAccountRequest
responseType:MGTwitterMiscellaneous];

}

Now we’re finally ready to put this into action. In MapViewController.m, go to the
mapView:didSelectAnnotationView: method:

- (void)mapView: (MKMapView *)mapView
didSelectAnnotationView: (MKAnnotationView *)view
{

NSNumber *1lat =

[NSNumber numberWithDouble:view.annotation.coordinate.latitude];
NSNumber *1lon =

[NSNumber numberWithDouble:view.annotation.coordinate.longitude];

NSMutableDictionary *params = [NSMutableDictionary dictionary];
[params setObject:[lat stringValue] forKey:@"lat"];
[params setObject:[lon stringValue] forKey:@"long"];
NSString *identifier =
[sa_OAuthTwitterEngine geoResultsForPath:@"reverse geocode"
withParams:params];

//listen for a notification with the name of the identifier
[[NSNotificationCenter defaultCenter]
addObserver:self
selector:@selector(twitterPlacesRequestDidComplete:)
name:identifier
object:nil];

CHAPTER 9: Working with Location Awareness and Streaming Data

When the pin on the map is selected, we call Twitter’s geo/reverse_geocode API with
parameters for latitude and longitude. We get the latitude and longitude values from
the annotation that is associated with the pin. The concept of reverse geocoding refers
to taking a location in latitude and longitude coordinates and giving back an address or
actual place name for the location. Note that there are additional parameters that you
can supply to control the granularity of the reverse geocoding or other location
searches.

In Twitter, all places have a Twitter id; and when associating a location with a Tweet,
Twitter recommends using its place id values instead of raw latitude and longitude
values. This helps to protect user privacy. For more information about how to handle this
in your application and to adhere to Twitter’s geo guidelines, we strongly urge you to
read the information posted here:

http://dev.twitter.com/pages/geo_dev_guidelines

Let’s recap what we have thus far. We are asking Twitter to reverse geocode a location
for us, and we’re then setting ourselves up to be notified when the response comes
back. The raw JSON response data uses the following format:

{
query = {
params = {
accuracy = 0;
autocomplete = 0;
granularity = neighborhood;
query = London;
"trim_place" = 0;
};
type = search;
url = "URL";
};
result = {
places = (
{

attributes = {

"Bounding_box" = {
coordinates = (

(
(n n
-0.5093057",
"51.286606"
)s
(n n
0.334433",
"51.286606"
)s
(n n
0.334433",
"51.691672"
)s
(

"-0.5093057",
"51.691672"

CHAPTER 9: Working with Location Awareness and Streaming Data

type = Polygon;
"éontained_within" = (
attributes = {

"Eounding_box" = {
coordinates = (

(
(
"-6.3651943",
"49.8825312"
)s
(
"1.768926",
"49.8825312"
)s
(
"1.768926",
"55.8116485"
)s
(
"-6.3651943",
"55.8116485"
)
)

);
type = Polygon;

)
country = "United Kingdom";
"country_code" = GB;
"full_name" = "England, United Kingdom";
id = 8ef32ff56ef11c22;
name = England;
"place_type" = admin;
url = "URL";
}

)

country = "United Kingdom";

"country_code" = GB;

"full_name" = "London, England";

id = 5d838f7a011f4a2d;

name = London;

"place_type" = admin;

url = "URL";

Notice that the actual array of places is in a dictionary entitled result. Each place is
itself a dictionary of values, but the value that we are most interested in is the value for
the id key. When we get a notification that we have received place results from Twitter,

CHAPTER 9: Working with Location Awareness and Streaming Data

we take the dictionary for the first place in the array, extract its place id, and then submit
a status update with an additional dictionary of params. In conforming with Twitter’s
API, we supply a parameter with the key place_id:

- (void)twitterPlacesRequestDidComplete: (NSNotification*)notification {
[[NSNotificationCenter defaultCenter] removeObserver:self];

NSArray *places = [notification.userInfo objectForKey:@"places"];
if (0 < [places count]) {
//grab the first place
NSDictionary *placesDict = [places objectAtIndex:0];
NSDictionary *resultDict = [placesDict objectForKey:@"result"];
NSArray *resultPlaces = [resultDict objectForKey:@"places"];
if (0 < [resultPlaces count]) {
NSDictionary *firstPlace = [resultPlaces objectAtIndex:0];

NSMutableDictionary *params =
[NSMutableDictionary dictionary];
[params setObject:[firstPlace objectForKey:@"id"]
forKey:@"place_id"];
[sa_OAuthTwitterEngine sendUpdate:@"location tweet!"
withParams:params];

}

If we then go to Twitter on the Web, lo and behold, we see our Tweet with a location
(see Figure 9-36). Note that you have to enable location with Tweets in your settings on
Twitter, as discussed earlier in this chapter.

There are a lot of fun things that you can do with location in Twitter, so give this code a
go. The actual sample code has some other example code that you can uncomment to
see how the other Twitter geo APIs work. They are all closely related and take almost
identical parameters.

Before we close out this chapter, we’d also like to note that you can use MapKit’s
MKReverseGeocoder class if you don’t want to use Twitter or Facebook to look up places
for coordinates. It’s up to you. The sample code also has MKReverseGeocoder
implemented, so that you can tinker with this at your leisure.

CHAPTER 9: Working with Location Awareness and Streaming Data

8 safari_File Edit View History Develop Window Help % 4.8 O O MO 3 T « B GEoem MonAprll 11:56:17M QU
800 Twitter / @Christopher: this s a location tweet! .. a)

[<[> | [®] [4] netps //owitter.com/#! christhepiss/status 5765282 7346046977 Twitter, Inc. 3 € J(Q°

 Events Yo

Welcome to #New Twitter! Read up on what's new. You can stil access old Twitter for a limited time.

kwitterY

‘ w @christhepiss

this is a location tweet!

Rl 10 ago via Tweetin' I0S OAuth Faverite + Reply * Delete

e

|

Figure 9-36. A Tweet with location information

Conclusion

Working with location is a lot of fun, but it also has its perils. When working with location
in your application and with social networks like Facebook and Twitter, it is paramount
for you to put yourself in your user’s shoes and ask yourself important questions about
how you are using her location. Every application has a unique user interface design, but
we encourage you to incorporate a disclosure about what you are doing with a user’s
location in your application and to display it immediately on the first run of your
application or the first time that a user is going to perform an action where her location
will be used.

This is just one of the many design and interface guidelines you should follow. You'll
read more about them in Chapters 11 through 14.

That’s it for location. We’ve given you the basic building blocks, so have some fun. In
the next chapter, we cover a grab bag of technical issues that will improve your
applications overall integration with Facebook and Twitter.

Chapter

Using Open Source Tools
and Other Goodies

The world of mobile software moves incredibly fast, and it can sometimes seem like a
daunting undertaking to stay abreast of all the latest developments. While this book is
intended as an introduction to integrating Facebook and Twitter into your application,
there are a host of related technologies that can make life easier or reveal how other
applications accomplish certain tasks. In addition, there are some cross-posting libraries
available that can save you the trouble of integrating directly with the Facebook and
Twitter SDKs. These topics are explored in this chapter.

This chapter also includes a discussion of data and trends that are available from
Twitter. In addition to its standard client APIs, Twitter makes data and trends available to
developers. Twitter Trends is the site’s tool for measuring topics (i.e., hash tags) that are
quickly becoming popular (that are hot news, in other words). If you haven’t heard of the
Trends tool, check out this compendium on Twitter.com:

http://yearinreview.twitter.com/trends/

It may not always make sense to access these trends directly from within your
application, and Twitter’s terms restrict some of the ways you can use its data; however,
it might prove useful to look at this server-to-server transaction. Later, you’ll learn how
to do some of your own number crunching with this data and serve what you need to
your application.

The Shorter, the Better

A common problem with referencing resources on the Web is that URLs for these
resources can sometimes be incredibly long. This presents a problem when
incorporating services like Twitter into an application because Tweets need to be short
in length. For instance, it is not good from a user’s perspective if an application wants to
let a user Tweet an article, but the length of the URL for the article takes up almost the
entire Tweet or is entirely too long to fit in a Tweet.

179

CHAPTER 10: Using Open Source Tools and Other Goodies

This is where URL shorteners come into play. There are a number of URL shortening
services available, inclding Twitter's own, which was announced as this book was going
to press. However, third party URL shorteners offer functionality Twitter doesn't (such as
analytics) so we'll spent some time talking about two of them. We will also cover how
they work and how to integrate them into an iOS application. Note that not all these
services may be in business in perpetuity; if you’re interested in the archival quality of
your links, use Twitter’s own shortener, T.co.

Here are two common third-party URL shortening services:
B http://bit.ly
B http://TinyURL.com

Both services are entirely free to use, and they work on the same premise: you supply a
URL to the service, and it returns a shortened URL back to you.

A handy tool for experimenting with these services is a command-line utility known as
cURL, which you can learn more about at this URL:

https://secure.wikimedia.org/wikipedia/en/wiki/CURL

cURL is designed to support a number of Internet protocols, but HTTP is the only
protocol that is relevant in this case. To see curl in action, open up Terminal on a Mac
and type the following at the command line:

$ curl http://www.apress.com

This writes out to the command line all of the HTML for the Apress homepage that
would normally be processed and displayed by a web browser.

For URL shortening, you need more than just a URL. The URL shortening services
require that the URL to be shortened be set as a parameter with the request. To send
parameters along with a URL request, use cURL’s -d option:

$ curl -d "<request parameters>" URL

TinyURL has a simple protocol in place. Simply submit a request to
http://tinyurl.com/api-create.php with a url parameter that is set to the URL that
you want to shorten:

$ curl -d "url=http://www.apress.com” http://tinyurl.com/api-create.php
This will return a shortened URL that uses this form:
http://tinyurl.com/9qths

Of course, www.apress.com isn’t a URL that really needs shortening—but this is just an
example.

Bit.ly, like TinyURL, shortens URLs; however, it also provides tracking, analytics, search
history, and a lot more on the shortened URLs that it generates. To get the best usage
out of bit.ly, you need to sign up for an account on its site. After completing the sign up,
bit.ly will associate an apiKey with the account. This apiKey is needed to use its service.
The bit.ly protocol requires a request to http://api.bitly.com/v3/shorten with the
following parameters:

CHAPTER 10: Using Open Source Tools and Other Goodies

B login: A bit.ly username (chosen when you create an account)

B apiKey: The api key that is associated with the username provided
(this api key is generated by bit.ly upon successful registration)

B longUrl: The URL to shorten

B format: The desired format for the response; supported values are
json (default), xml, and txt

Therefore, a request for bit.ly to shorten a URL would look like the following when using
cURL:

$ curl -d "login=<bit.ly username>&apiKey=<bit.ly API
key>&longUrl=http://www.apress.comdformat=txt"
http://api.bitly.com/v3/shorten

This will return a shortened URL that uses this form:
http://bit.1ly/dIB3mD

For more detailed information about the bit.ly API, go here:
https://code.google.com/p/bitly-api/wiki/ApiDocumentation#/v3/shorten

For a quick read on some of the underlying theory involved with URL shortening, read
the article, “URL Shortening: Hashes In Practice,” at this URL:

www. codinghorror.com/blog/2007/08/url-shortening-hashes-in-practice.html

For more detailed information about curl and what it can accomplish, go to the following
page:

http://curl.haxx.se/docs/manpage.html

Or, you can just type the following from a command line:

$ man curl

Using URL Shorteners in i0S

curl is a great tool to perform a quick test with; however, it’s of no use within an iOS
app. While there are a number of ways to integrate with URL shorteners in an iOS app,
the quickest way is to use NSString’s stringWithContentsOfURL method. This method
takes a URL, does all of the work to issue a request for the URL, and returns the
response as an NSString. So, in the case of TinyURL, a request to shorten a URL via this
service would look as follows within Objective-C code when using NSString’s
stringWithContentsOfURL:

NSString *longURL = @"http://www.apress.com";

NSString *format = @"http://tinyurl.com/api-create.php?url=%@";
NSString *apiEndpoint = [NSString stringWithFormat:format,longURL];

NSString *shortURL =
[NSString stringWithContentsOfURL:[NSURL URLWithString:apiEndpoint]
encoding:NSASCIIStringEncoding error:nil];

CHAPTER 10: Using Open Source Tools and Other Goodies

Note that stringWithContentsOfURL blocks until it receives a response. Therefore,
depending on the requirements of the application using this method, it may be
worthwhile to call this method on a background thread or to skip over the use of
NSString’s stringWithContentsOfURL, and then issue the request via NSURLRequest.

ShareKit: Sometimes Quick and Dirty Does the Trick

One of the main problems with integrating social services into an application is that
there are so many social services proliferating online. Others have recognized this same
problem and have gone through the trouble of aggregating all of these services into one
library that applications can integrate with. One of the better aggregation libraries out in
the wild is ShareKit, which you can acquire at this URL:

http://getsharekit.com/

ShareKit is an open source Objective-C library that makes it easy to integrate with the
following services in our application:

B Delicious
Email
Facebook
Google Reader
Instapaper
Pinboard

Read It Later
Tumblr

m Twitter

Since ShareKit is open source and hosted on Github, the code can be cloned, forked, or
reviewed at any time:

https://github.com/ideashower/sharekit/

Note that the latest code on Github may not reflect what is in the current, official release
of ShareKit, so be careful. Downloading and using the official version from the ShareKit
site is highly recommended. At the time of writing, the latest official release of ShareKit
is version 0.2.1. The download for this has been added to the source code repository for
this book on Github, and it can be found in the ShareKit directory.

You can also find a ShareKit sample application in the source code repository (in the
Chapter1o directory). This sample application uses the version of ShareKit that is also in
the repository we previously mentioned (0.2.1). The instructions that follow for
integrating with ShareKit refer to the sample application.

CHAPTER 10: Using Open Source Tools and Other Goodies

Getting Started with ShareKit

To get started with ShareKit, first drag the ShareKit source code directory into your
project. This directory is located at the following path in the Git repository for this book:

ShareKit/Classes/ShareKit

When dragging the ShareKit folder into a project, choose the default options in the pop-
up dialog, as shown in Figure 10-1.

& xcode file Edit View Navigate Editor Product Window Help @ & §%.8 C B O ™ O 3 7 4) B @00w Wed Apr27 1:0047AM QN
anNno 1 ShareKit - ShareKit.xcodeproj (=)

() () (shartit L Phone 4.3 Smuinon ;] () e Sharek: Succeeded | Tody 3100 A] i [=lie)
Sror Ne lsswes.
Run Stop. R s S A b
| @ A = =» B = 4 > | Disharekit
PROJECT | Summary | Info Build Sextings Build Phases Build Rules
.) Sharexit 105 Application Target

¥ ShareKitClasses
> (L Core TARCETS e -
» | Customize Ul Q Ientifier com.apress Sharex
» | localization Version ‘1.0
» (| Reachability
» (] Sharers Oevices [Universal 18]
pASComak Deployment Target 3.0 -l
»un
o koo o ¥ iPhone | iPod Deployment Info
| Frameworks
Tl Main Interface B
Supported Device Orientations
Portraie Upside Lardscape landscape
Down Left
App lcons.
Retina Display
Launch images
+ oRa ™ Add Target

Figure 10-1. Choose the default options when dragging ShareKit into an Xcode project.

Next, link the application against the following frameworks (see Figure 10-2):
B SystemConfiguration.framework
B Security.framework

B MessageUI.framework

CHAPTER 10: Using Open Source Tools and Other Goodies

Xcode File Edit View Navigate Editor Product Window Help # & 45,8 C H O ™ O 3 = «) @ Guww w:amzr_mm
800 5 ShareKit - ShareKit.xcodeproj

i ShareKit: Succeeded | Today at 1.04 AM

Preject (32
.
Sharekit
Y e S D nnbp(r Summary Info BuldSewngs | BulldPhases | Build Rules
» [ShareKinClasses R Sharoit 2
L shareKit 0| vancers > T
B T .
- % MessageUt framework [» Compite Sources (63 items) 2
» % Security.framewor
5 SyssamConiigaracion Samet |7 Link Binary With Uibraries (6 items) A
» K= U framework = MessageUl framework Required &
© ¥ Foumdation framework € Securty.framework Required 3
» i CoreCraphics. framework & syswemConfiguration frameworic Required 3
[Products & UKt framework Balind’y
€ Foundaton framewsrk Requiced |
& CoreCraphics framewark Raquired 3
e -
> Copy Bundie Resources (4 items) a2
+ opa > ASS Target SeCheT

Figure 10-2. Link the application against the appropriate frameworks.

In order for ShareKit to access the desired services, it has to know certain information
about accounts for those services. In the ShareKit sample project, go to SHKConfig.h,
enter the information for Facebook and Twitter, and turn on debugging, as shown in
Figures 10-3 through 10-5

& Xxcode File Edit View Navigate Editor Product Window Help @ & .8 CH O ™M 3 2 «) B Guww WedAprN_lDM
ano 3 ShareKit - SHConfig.h

il Sharekit: Succeeded | Today at 104 AM

: rreject 2
PR > h

/7 PLEASE SEE INSTALL/CONFIG INSTRUCTIONS:
/7 hateillqetsharekit.con/install

17 App Description
7/ These values are used by aay service that shows "shared frem XvZ'

#éefine SHOtyAppNane e chn 105"
séefine SHOLPADPURL @ AEEp:/ /e, apress . con®

e
APT Keys

This is the longest step to getting set up, it involves filling in API keys for the supported services.
It should be pretty painless thoush and should hopefully take no more than o few minutes.

Each key below 03 a link 1o & page where you con generate an api key. Fill in the key for each service below.

$ URLs then you probably won't need iasg cos Like Flickr.
PI key blas

Mowever, it is smm ¥ recommended that you do your best to support all services for the types of sharing you suppor:
hind ShareKit is to leave the service choices up to the user. Thus, you should not resave any services,
aaving that Gecision w to the w

et i 1 o
Séetine HXDeLLcion sSecretkey L

- hite:(/fmww. facebook.con/develogers
// n ‘)((Fn ebookliseSessionProxy i3 enabled then SHKFacebookSecret is igmored and should be left blank

#define SHKFacebook

eSessionProxy NO
Y o

1/ Read It Late u:g:;.].u_g List.con/aol/2shk -
#éefine smouunu:uxe, v

+ QRS

Figure 10-3. Set the application name and URL in SHKConfig.h.

GHAPTER 10: Using Open Source Tools and Other Goodies

'y (s} @3 (100% Wed

. ShareKit - SHXConfig.h
Bulld ShareKin: Succeeded | Today at 1:04 AM

File Edit View Editor Product Window Hel

/7 Twitter = hite:/{dev, twitler,con/agos/new
’-

Isportant Twitter settings to get right:
Differences between OAuth and xAuth

There are two types of suthenticotion provided for Twitter, OAuth and xAuth. OAuth is the defoult and will
present a wed view to log the user in. XAUth presents a native entry form but requires Twitter to ade xAuth to your app (you have to

request it from them).
If your app has been approved for xAuth, set SHKTwitterUseXAuth to 1.

Callback URL (important to get right for OAuth users)

1. Open your application settings ot hite://devtwitter,con

2. ‘Application Type' should be set to BROWSER (not client)

3. 'Callback UAL' should match whatever you enter in SHKTwitterCallbackUrl.
The user will never get to it because ShareKit intercepts it before the user is redirected.

The callback url doesn't have to be an actual existing wrl.
It just needs to match.

./

#define SHKTwitterConsumerKey

#define SHKTwitterSecret

fine SHKTwitterCallbackurl

fine SHKTwitterUseXAuth

#define SHKTwitterUsername
(Only for xAuth)

// 8it.ly (for shortening URLs oa Twitter) - htto://bit.ly/account/register - after signup: htto://bit.lv/a/vour doi key
#detine SHKBitLyLogin [
#define SHKBitLyKey

@"" // You need to set this if using OAuth, see note above (xAuth users cam skip it)

// To use xAuth, set to
@ // Enter your app's twitter account if you'd like to ask the user to follow it when logging in.

P

/7 ShareMenu Ordering

#define SMKSMernuA\phlhnl(llbﬂ!rf 1 // Setting this to 1 will show list in Alphabetical Order, setting to @ will follow the order in
SHKShares.plist

// Append 'Shared With 'Signature m Email (and related forms)
#define SHKSharedwithSignature

/e
UI Configuration : Basic

These provide controls for basic UI settings. For more advanced configuration see below.
-

/7 Toeol

bar
#define Sullhrsu\e 0"UIBarStyleDefoult” /7 See: hitei//develooec,aoele,con/iohone/\ibrary/docunentation/VIKit/Reterence/

=1 // Value between 0-255, set all to -1 for default
=1 // Value between 9-255, set all to -1 for default
=1 // Value between 8-255, set all to =1 for default

- #detine SHKBarTintColorBlue
+ ORBS

Figure 10-4. Set the application’s Twitter OAuth credentials in SHKConfig.h.

'y (s} o
) ShareKit - SHXConfig.h

Bulld ShareKin: Succeeded | Today at 1111 AM

2) B G uoos Wed Apr27 1:11:30AML QU
(=)

Product Window Hel

e Editor

Xcode File Edit View
(2]

Transitionsty

ioda eCoververtical” /7 Ser nito://develoner.anale.con/iohone/librarys
troller C1 U1V iewController/

#/lanele ref/occ/inste.

/1 ShareMenu Ordering
#define SHKSharcMenuAlphabeticalOrder 1 // Setting this to 1 will show list in Alphsbetical Order, setting to @ will follow the order in

SHKShares.plist

// Append 'Shared With 'Signature to Email (and related forms)
#define SHKSharedWithSignature

-
UL Configuration : Advanced

If you'd like to do more advanced customization of the ShareKit UI, like background images and more,
check out hitei//eetsharekit.con/custonize
./

1o
Debugging

show debug output in the console:
+ wncomment section A below
comment out section B below

hide debug output in the console:
uncomment section 8 below
comment out section A below

/7 A : show debug output
efine SHKDEbuGShowLogs

#define SHKLog(
(NSString stringithFarmats(s),

NSLog(."«, (8 self, [INSString stringWithUTFBString: _FILE__] lastPathComponent], __LINE__
VA_ARGS__

5, e) N

/7 8 : hide debug output
778detine suweboqsno-Loqs °
//#detine SHKLog(5

’»
Advanced Configuration

+ oQ8 ™

These settings con be left o5 is.
“/

#define SHK_MAX_FAV_COUNT
fine SHK_FAVS_PREFIX_KEY
#define SHK_AUTH_PREFIX

This only need to be changed for uber custom installs.

rsw(FAVS_"
9 SHCAUTH "

Figure 10-5. Turn on debug logs in SHKConfig.h.

CHAPTER 10: Using Open Source Tools and Other Goodies

Integrating ShareKit with Facebook requires the Facebook OAuth consumer key and
secret for an application; similarly, integrating ShareKit with Twitter requires the Twitter
OAuth consumer key and secret for an application. In addition, Twitter requires a
callback URL. In order to set a callback URL for a Twitter application, the application
has to be created on Twitter as a browser application. This means that, if an application
was previously created on Twitter as a client application, that application needs to be
reconfigured as a browser application. Otherwise, you’ll need to create a new
application. The actual URL that is entered for the Twitter application does not matter.
The only thing that matters is that the URL specified in SHKConfig.h must match the
URL specified on Twitter.com. An example would look something like this:

www. apress.com/callback

When working with Twitter, integration with bit.ly is required to post URLs since ShareKit
uses bit.ly under the covers to shorten URLs before posting them to Twitter. Creating an
application on bit.ly was covered previously in this chapter, so please refer to that
section for additional instructions.

With the account information configured in the ShareKit header file, it’s time to add code to
the project to use ShareKit to post to Facebook and Twitter. Go to MainViewController.min
the ShareKit sample project and examine the loadView method. In this method, a UIToolbar
is added to the view controller’s view and is given a UIBarButtonSystemItem with the default
action icon on the button, as shown in Figure 10-6:

Figure 10-6. The UlToolBar in ShareKit with its default button

- (void)loadView
[super loadView];
self.view.backgroundColor = [UIColor whiteColor];

UIBarButtonItem *item = [[UIBarButtonItem alloc]
initWithBarButtonSystemItem:UIBarButtonSystemItemAction
target:self
action:@selector(share)];

NSArray *items = [NSArray arrayWithObject:item];
[items addObject:item];
[item release];

CGRect frame = CGRectMake(0.0f,
self.view.bounds.size.height-40.0f,
self.view.bounds.size.width,
40.0f);

toolbar = [[UIToolbar alloc] initWithFrame:frame];

[toolbar setItems:items animated:YES];
[self.view addSubview:toolbar];
[toolbar release];

CHAPTER 10: Using Open Source Tools and Other Goodies

[SHK flushOfflineQueue];

Selecting the bar button calls the share method, which displays an SHKActionSheet to
the user:

- (void)share
// Create the item to share (in this example, a url)

NSURL *url = [NSURL URLWithString:@"http://www.apress.com"];
SHKItem *item = [SHKItem URL:url title:@"Apress is Awesome!"];

// Get the ShareKit action sheet
SHKActionSheet *actionSheet =
[SHKActionSheet actionSheetForItem:item];

// Display the action sheet
[actionSheet showFromToolbar:toolbar];

}

An SHKActionSheet is a nice pop-up presented to the user that displays options for
sharing information (see Figure 10-7).

Share

Read It Later

Cancel

Figure 10-7. The SHKActionSheet pop-up

Clicking the Facebook button displays the familiar Facebook mobile web page for
posting (see Figure 10-8).

CHAPTER 10: Using Open Source Tools and Other Goodies

f Publish Story

Post to Your Wall

Enter your message:

Apress is Awesome!
via Beginning iOS Saocial Development

so | I

Figure 10-8. You’ll recognize the Facebook mobile web page for posting.

Clicking the Twitter button displays a nice dialog with a shortened URL (see Figure 10-9).

Cancel Send to Twitter

Apress is Awesome! http://bit.ly/dIB3mD

101
ajwieR|T|v|u]i]o]P
Als|plFle|H|JjK|L
z|x|c]vis|nmi

return

Figure 10-9. ShareKit’s Twitter dialog

CHAPTER 10: Using Open Source Tools and Other Goodies

ShareKit supports more than just posting URLs and text, so it is worth exploring more of
what it offers. It’s a very nicely crafted solution for integrating quickly with Facebook and
Twitter.

All the Latest Twitter Trends

It’s always interesting to think about what people are Tweeting about in general within a
specific geographic area or during a given time period. Twitter makes this data available
via its trends API. Accessing these trends is very straightforward and does not require
any authentication; however, be aware that the usage of these APlIs is always subject to
Twitter’s rate limiting. This data can be accessed directly from within an iOS app or from
server-to-server, depending on the needs of your application.

Twitter returns trends based on Twitter hash tags. Recall that Twitter hash tags are a
means for Twitter users to associate or group Tweets together. For instance, assume a
Twitter user wanted to Tweet about unicorns, so that his Tweet would be included
whenever someone wanted to search for or see trends for Tweets about unicorns. In this
case, he would include the hash tag #unicorns in his Tweet.

There are a few different ways to use the trends API. To obtain the top ten topics that
are currently trending on Twitter, you can use the following request:

http://api.twitter.com/1/trends.json

The quickest way to see what this returns is to use curl again:

$ curl http://api.twitter.com/1/trends.json

{"trends":[

{"url":"http:\/\/search.twitter.com\/search?q=%23thatminiheartattackwhen”,"name": "#thatm

iniheartattackwhen"},
"url":"http:\/\/search.twitter.com\/search?q=%23urnotmytypeif", "name": "#urnotmytypeif"}

)

{"url":"http:\/\/search.twitter.com\/search?q=%23starship”,"name": "#starship"},
{"url":"http:\/\/search.twitter.com\/search?q=Seth+Meyers","name":"Seth Meyers"},
{"url":"http:\/\/search.twitter.com\/search?q=Jos%C3%A9+Aldo", "name" : "Jos\u00e9Aldo"},
{"url":"http:\/\/search.twitter.com\/search?q=Catcher+Freeman", "name":"CatcherFreeman"},
{"url":"http:\/\/search.twitter.com\/search?q=Green+Men", "name":"Green Men"},
{"url":"http:\/\/search.twitter.com\/search?q=Steven+Seagal", "name":"StevenSeagal"},
{"url":"http:\/\/search.twitter.com\/search?q=Glenn+Healy", "name":"Glenn Healy"},
{"url":"http:\/\/search.twitter.com\/search?q=Karate+Kid", "name": "Karate

Kid"}],"as_of":"Sun, 01 May 2011 03:35:42 +0000"}

This returns a dictionary that contains an array of trends and an as_of date for when this
trend snapshot was taken. Each trend in the array of trends contains the following:

B name: The hash tag for the trend.
B url: The URL to the Twitter search results page for that topic.

The same information can be obtained via the following request:

$ curl http://api.twitter.com/1/trends/current.json?exclude=#unicorns

CHAPTER 10: Using Open Source Tools and Other Goodies

Note that the trends/current API allows for excluding Twitter hash tags from the results.
Also note that the Twitter search URL is not included with each individual trend:

{"trends":{"2011-05-01 03:32:19":[
{"promoted_content":null,"events":null,"query":"#thatminiheartattackwhen", "name": "#thatm
iniheartattackwhen"},
{"promoted_content":null,"events":null,"query":"#urnotmytypeif","name": "#urnotmytypeif"}

)
{"promoted_content":null,"events":null,"query":"#starship","name":"#starship"},

{"promoted _content":null,"events":null,"query":"Seth Meyers","name":"Seth Meyers"},
{"promoted_content":null,"events":null, "query":"Jos\uooe9 Aldo","name":"Jos\uooe9Aldo"},
{"promoted content":null,"events":null,"query":"Catcher

Freeman","name":"CatcherFreeman"},
{"promoted_content":null,"events":null,"query":"Green Men","name":"Green Men"},
{"promoted_content":null,"events":null,"query":"StevenSeagal", "name":"Steven Seagal"},

{"promoted _content":null,"events":null,"query":"Glenn Healy","name":"GlennHealy"},
{"promoted_content":null,"events":null,"query":"Karate Kid","name":"Karate
Kid"}1},"as_of":1304220739}

Trending Topics
Twitter also makes available the top 20 trending topics for each hour in a given day:
$ curl http://api.twitter.com/1/trends/daily.json?date=2011-04-298exclude=#unicorns

The response includes a trends dictionary, where each trend is a dictionary where the
key is a given hour for the day in question, the value of which is the array of trends for
that time of the given day:

{"trends":{

"2011-04-29 07:00":[<array of trends>],

"2011-04-29 20:00":[<array of trends>]},
"as_of":1304223220}

Note that Twitter only makes this data available as far back as the last seven to ten
days. If the date parameter of the request is set to a day for which no data is available,
Twitter returns the following:

"errors":[{"code":35,"message":"Trend data not available"}]}

Similarly, Twitter makes available the top 30 trending topics for each day in a given
week, going back three to four weeks:

$ curl curl http://api.twitter.com/1/trends/weekly.json?date=2011-04-
218exclude=#unicorns

The response includes a trends dictionary where each trend is a dictionary and where
the key is a given week, the value of which is the array of trends for that week:

{"trends":{

"2011-04-16":[<array of trends>],
"2011-04-17":[<array of trends>]},
"as_of":1304223220}

For daily and weekly trends, if a date in the future is specified, Twitter will return the
trends for the current date.

CHAPTER 10: Using Open Source Tools and Other Goodies

Where On Earth ID

As previously mentioned, Twitter trends can also be obtained based on location.
However, the Twitter trends API does not use latitude and longitude for locations;
instead, it uses Where on Earth IDs (WOEID), which are maintained by Yahoo! A WOEID
is a unique identifier for any named place on the planet. You can find more information
on this topic at the following URLs:

B http://developer.yahoo.com/geo/geoplanet/
B http://developer.yahoo.com/geo/geoplanet/guide/concepts.html

Twitter can return the WOEIDs that it has trending topic information for:
$ curl http://api.twitter.com/1/trends/available.json

This request can take optional 1at and long parameters to narrow the result set that is
returned. The request returns an array of places, where each place is represented by a
dictionary with values for different keys. One of these keys is the WOEID:

[{"countryCode":"TR", "country"'"Turkey url“:"http:\/\/where.yahooapis.com\/vl\/place\/
23424969", "parentid":1, "name": "Turkey", "woeid“:23424969,"placeType“:{"code 112, "name":"C
ountry"}},...]

You can obtain the top 10 current trending topics within the geographical area for a
given WOEID (assuming trending information is available) by issuing a request that uses
the following form:

http://api.twitter.com/1/trends/WOEID. json

So, to obtain the top 10 trending topics for the WOEID of 1, the request looks like this:
$ curl http://api.twitter.com/1/trends/1.json
Like the other trends request, this returns a dictionary with an array of trends:

[{"as_of":"2011-05-01T03:39:32Z", "trends":[

{"url™:"http:\/\/search.twitter. com\/search7q %23thatminiheartattackwhen”,"query":"%23th
atminiheartattackwhen","events":null, "promoted_content":null, "name": "#thatminiheartattac
kwhen"},

{"url":"http:\/\/search.twitter.com\/search?q=%23urnotmytypeif"”, "query":"%23urnotmytypei
f","events":null,"promoted_content":null,"name":"#urnotmytypeif"},

"url":"http:\/\/search.twitter.com\/search?q=%23starship","query":"%23starship”, "events
":null, "promoted content":null, "name":"#starship"},
{" url"'"http \/\/search.twitter.com\/search?q=Seth+Meyers","query":"Seth+Meyers","events

":null, "promoted content":null,"name":"Seth Meyers"},
{"url":"http:\/\/search.twitter.com\/search7q Jos%C3%A9+Aldo", "query" : "Jos%C3%A9+Aldo","
events":null,"promoted_content":null,"name":"Jos\uooe9 Aldo"},
"url":"http:\/\/search.twitter.com\/search?q=Catcher+Freeman", "query":"Catcher+Freeman"
, 'events":null, "promoted_content":null, "name":"Catcher Freeman"},
{"url":"http:\/\/search.twitter.com\/search?q=Green+Men", "query": "Green+Men
11, "promoted_content":null, "name":"Green Men"},
{"url":"http:\/\/search.twitter.com\/search7q Steven+Seagal", "query":"Steven+Seagal”, "ev
ents":null, "promoted_content":null,"name":"Steven Seagal"},
"url":"http:\/\/search.twitter.com\/search?q=Glenn+Healy","query":"Glenn+Healy
":null, "promoted content":null,"name":"Glenn Healy"},
"url":"http:\/\/search.twitter.com\/search?q=Karate+Kid","query":"Karate+Kid","events":
null,"promoted_content":null,"name":"Karate Kid"}],

,"events"

, 'events

CHAPTER 10: Using Open Source Tools and Other Goodies

"created at":"2011-05-01T03:28:09Z","locations":[{"name": "Worldwide", "woeid":1}]}]

There are also other services that provide Twitter trend information. One of these is
letsbetrends.com, which has its own API. For more information on this service, go here:

http://letsbetrends.com/

Also, if your application needs to show hints or information about hash tags, a service
like tagalus (http://tagal.us/) can be used. Here is a good article on making sense of
Twitter hash tags:

http://blog.programmableweb.com/2009/03/20/make-sense-of-confusing-twitter-hash-tags/

Offline Storage Revisited: SQLite

Part of Chapter 8 explored the topic of storing Tweets offline using iOS’s Core Data. It’s
worth mentioning that, under the hood, Core Data saves the data for its data model in a
SQLite database. SQLite is a “cross-platform C library that implements a self-contained,
embeddable, zero-configuration SQL database engine.” You can learn more about this
database at www.sqlite.org/.

Core Data creates the SQLite database file in an application’s Documents directory.
When using the simulator, the Documents directory is accessed from the following path,
where “4.3” will vary depending on which version of iOS the application is targeting, and
<app id> is a unique application identifier created by iOS that varies by application:

Library/Application Support/iPhone Simulator/4.3/Applications/<app id>/Documents

- Finder File Edit View Go Window Help i aéa CH OO i = «4) @ @o6% MonMay2 11:17:27 PM 3‘
ano (] Documents =)
s] I!I- o E-2AE+ 23 ‘? Q
Back View Action Dropbox. search
DEvicEs s 32 () Applications » (.1 3BD9FOSO. 430AF598 (4 Documents. » 35 _Store '
2 Macintosh HD T o s.2 () Uibrary (1 3CCEE389.. A77804DD (0 Ubrary
£ iovsk || a3 [l Media (L] 66C47383. C38920A0 A OflineTwitter.app f twitter.sqlite
|| G user & tmp (4 8147D9CF.. B78ACE4D & tmp
AT \ () FIF2E945-. 891187F2 »
4 Oeskeop \
]
2\ Applications |
| Dotuments :
(1) orepbox \
SEARCH FOR :
= Today |
Yesterday 1]
Past Week | L
(Gl Al images :
L Al Movies |
(& All Documents. |
]
]
\
]
]
\
]
v

—— —— — .
1 0f 3 selected, 41.42 B available 4

Figure 10-10. The Mac 0S X File System path to iOS simulator applications

CHAPTER 10: Using Open Source Tools and Other Goodies

To determine which directory belongs to a given application, examine the contents of
each of the <app id> directories and find the one that contains the .app file for the
application in question. In the case of the Chapter 8 offline application, the file is
OfflineTwitter.app. In the Documents directory for this application, there is a SQLite
database file entitled CoreDataOffline.sqlite. The name of this file matches the name
of the xcdatamodeld that represents the Core Data model, CoreDataOffline.

Viewing the contents of a SQLite database requires database software. One of the
better database software products available for Mac OS X is MesaSQLite
(www.desertsandsoftware.com/?realmesa_home). MesaSQLite is free, and it’s invaluable
when working with databases in an iOS application. After installing MesaSQLite or
another database application, open the CoreDataOffline.sqlite file mentioned
previously, and then view the contents of the ZTWEET table. (In MesaSQLite, choose the
ZTWEET table from the Table Name drop-down list and click Show All to query for all of
the Tweets in the database.) The ZTWEET table is where Core Data stores the Tweet
objects that the application creates and saves. Note that there are ZID and ZTEXT
columns that correspond to the id and text properties, respectively, for each Tweet
object in the data model.

- MesaSQLite File Edit Tab Window Feedback Help Pio® 0§58 CH OMO i 7 4) B @Foem MonMay2 11:25:23eM QI
anNno E945-FAGB-4FSF-BF31-32938911 sqlite =
BEGIN ROLLBACK COMMIT |
{ Zrweet ®) ®
2 W (= N ™) © @ | searcn Show All
[Tt Staning ar Bl] Last 500
ZPK ZENT 2.0°T 20 ZTexT

£5245301228838912 Clues Cradually Led to the Location of Qaeda Chief hetp.//nyti.ms [kINzql
65250676212633600 Q Now that 8in Laden Is dead, do you fee! safer? #CO0Dasks hup://3u.9r/ ILpadP

63252, When Meeting a C Leave Nothing to Chance hitp. //nyti.ms /I1E4u

65252226905554944 Norman Maller's Eclectic Life, as Seen Through His Last Home hatp://nyti.ms/X2WE
65247517809451008 15 U.S. safer now than before 9/117 heto://00.¢nn.com/kQVIp

65244925746348032 KT @dalailama. To have true friends and be koved by them, we must in turn feel love and sympathy for...
65252712674385408 Site-specific Browser Tool Fluid Hits 1.0 heto://sns.mx/WFdAy4

65244387143188480 How 1o avoid sharing personal info online http://sns.mx/WESAYS

65249901080096768 Army Corps opts to blow up levee, hip://on.enn.com/kVoO3V

65243491944513536 10AAIr Lounge = 1... = Various... - (128 kbos) Do/ [www.musicgoal com/ radio-station/id/ 1000021812/
65246620891090944 Tired of the trickle of OBL news. | want one, long, Pulitzer-worthy piece with evenything...and a s...
65245054331142144 RT @Frumforum Obama to Visit Ground Zero: The Wall Street Journal reports: President Barack Obama wi.
65252413719846912 Sippin Syrup hitp:/ /t.cofiwfnea

65248848930537472 “@ekogirl 'm filling in for @JonOliverMusic toright @ Midright ET on @EVRadio - Sexy soul music is.
65244440058540032 Op-£3 Columaist: What Drives History hEp://nyt.ms/ItQIQE

65249230834511872 BONG BONG BONG BONG

65252671296253952 Can't wait for @soundset, less than a month away. Insane lineup of acts.

65247333062934528 An £nd To The Osama Nightmare: Readers Reflect

65245502895173632 Living Earth HD is proof that a world clock and weather 3pp can be beautiful. £appstore http: //tw.3p.

® NG w A e

11
12
3
1
15
16
1”7
18
19

T T T T T T T T T T T T
s

20 (RIARBIR Mo s hTe:/ /mysl.ms IebiVe

N ———————————_—_—_—_—_—_—_—_—_—_—_—_——_————————————€—€—€——€——_—_—€—_—h__—_———————————— ar
Select * fram ZTWEET

¢ Records: 20 0,0015/0.2645 urrs)00 B & @ 8 B @ # - =+
Verson 109 4

Figure 10-11. The Core Data SQLite database

Working with SQLite can be a little tricky, so it’s worthwhile to get some hands-on
experience with it. Therefore, the rest of this section will show how to reimplement the
OfflineTwitter application from Chapter 8 using SQLite directly instead of Core Data. All
of the code that follows is in the Github repository in the Chapter10/0fflineTwitter
directory.

CHAPTER 10: Using Open Source Tools and Other Goodies

Reimplementing OfflineTwitter Without Core Data

Since the original architecture for the OfflineTwitter application kept all of the data
access code in the TwitterDataStore class, almost all of the user interface views and
controllers can be left as-is. The only work to do is to create a version of
TwitterDataStore that uses SQLite directly to store, retrieve, and delete Tweets instead
of Core Data.

First, the Tweet class is adjusted slightly, so that it’s no longer a managed object:

@interface Tweet : NSObject {
}

@property (nonatomic, retain) NSNumber * id;
@property (nonatomic, retain) NSString * text;

@end

Next, TwitterDataStore is stripped down, so it’s now a base class that any type of
TwitterDataStore can be derived from:

@interface TwitterDataStore : NSObject {
}

- (NSURL *)applicationDocumentsDirectory;

- (NSArray*)tweets;

- (void)deleteTweets;

- (void)synchronizeTweets: (NSArray*)tweets;

@end

Now a class entitled TwitterDataStore SQLite is created to do the actual heavy lifting of
storing, retrieving, and deleting Tweets using SQLite. The class definition is located in
TwitterDataStore SQLite.h:

#import "TwitterDataStore.h"

@class sqlite3;
@interface TwitterDataStore SQLite : TwitterDataStore {
sqlite3 *database;

@end

Next, let’s look at TwitterDataStore SQLite.m in Xcode. Note that two additional helper
methods are declared for the class:

- openDatabase
- closeDatabase

In the initializer for the class, sqlite3.h is imported, so that TwitterDataStore SQLite
can use SQLite. It's worth reviewing this header file to gain additional insight into what
SQLite makes available to iOS applications since this discussion only touches the
surface. Within the code, openDatabase is called to create the database (if it doesn’t
already exist) and set up the table(s) within the database. In dealloc, the database is
closed when the class is destroyed:

CHAPTER 10: Using Open Source Tools and Other Goodies

#import "TwitterDataStore SQLite.h"
#import "sqlite3.h"
#import "Tweet.h"

@interface TwitterDataStore SQLite ()
- (void)openDatabase;

- (void)closeDatabase;

@end

@implementation TwitterDataStore SQLite

(id)init

if ((self = [super init])) {
[self openDatabase];

return self;

(void)dealloc

[self closeDatabase];
[super dealloc];

The openDatabase method is tasked with creating the database and populating it with a
table to store Tweets. If the database object is already open, this method does nothing.
This is accomplished by checking to see if the pointer to the sqlite3 database object is
NULL. Opening a database via SQLite is accomplished with the sqlite3_open method.
This method requires a path to the SQLite database file that it needs to create if it
doesn’t already exist or to open if it does already exist. It also requires a pointer to a
pointer of a sqlite3 database object.

If the database is opened successfully, the Tweets table for the database is created via
the sqlite3_exec method, which executes a SQL query on the database. If the table
doesn’t exist already, the query creates the table with columns for the id of a Tweet and
the actual message content for the Tweet:

NSString *createTables =
@"CREATE TABLE IF NOT EXISTS tweets (id INTEGER
PRIMARY KEY,
message TEXT);";

Next, using sqlite3_exec again, an index is created for this table on the Tweet id in
order to speed up querying Tweets out of the database:

NSString *createlIndex =
@"CREATE INDEX IF NOT EXISTS tweetIndex ON tweets(id);";

- (void)openDatabase

if (nil == database) {
NSURL *path =
[[self applicationDocumentsDirectory]
URLByAppendingPathComponent:@"twitter.sqlite"];

CHAPTER 10: Using Open Source Tools and Other Goodies

if (SQLITE_OK !=
sqlite3 open([[path relativePath] UTF8String], &database)) {
[self closeDatabase];

} else {
char *errmsg;

NSString *createTables =
@"CREATE TABLE IF NOT EXISTS tweets (id INTEGER PRIMARY KEY,
message TEXT);";
if (SQLITE_OK !=
sqlite3_exec(database,
[createTables UTF8String],
NULL,
NULL,
derrmsg)) {
NSLog(@"create table error: '%s'", errmsg);

}

NSString *createIndex =
@"CREATE INDEX IF NOT EXISTS tweetIndex ON tweets(id);";
if (SQLITE OK !=
sqlite3_exec(database,
[createIndex UTF8String],
NULL,
NULL,
gerrmsg)) {
NSLog(@"create table index error: '%s'", errmsg);

}
}
}
closeDatabase is a very straightforward method. It calls sqlite3 close on the sqlite3
database object owned by the class. This closes the database, and then sets the pointer
to the database to NULL, so that the openDatabase method will reopen the database if it is
subsequently called:

- (void)closeDatabase

sqlite3_close(database);
database = nil;

}

Since the goal of this sample project is to store Tweets offline in a SQLite database, the
first task to take on is synchronizing the Tweets that are retrieved from Twitter and
storing them in the database (see Figure 10-12). As with the Core Data example, this
occurs in TwitterDataStore’s synchronizeTweets: method, which first deletes any
Tweets in the database and then stores the new Tweets.

Recall that the Tweets are passed in as an array of NSDictionary objects, where each
NSDictionary in the array represents a Tweet. Let’s take a closer look at the for-loop
that operates on the Tweets. The first step is to initialize a SQL transaction:

sqlite3_exec(database, "BEGIN;", NULL, NULL, NULL);

The actual SQL statement that will store a Tweet is as follows:

CHAPTER 10: Using Open Source Tools and Other Goodies

char *text = "INSERT INTO tweets (id, message) VALUES (?, ?);";

Note the presence of the ? symbols in the statement. This denotes that the values are
going to be bound to the statement after it is prepared via sqlite3_prepare v2. Note
that the Tweet id is being stored as a 64-bit integer and is bound via
sqlite3_bind_int64. The contents of the Tweet are stored as text and are bound via
sqlite3_bind text. The transaction is then executed via sqlite3_step. The transaction
could fail for some reasons, so steps are taken to roll back the transaction in the case of
a failure. This preserves the state of the database if a failure occurs. Here’s the code to
do this:

- (void)synchronizeTweets: (NSArray*)tweets

NSAutoreleasePool *autoReleasePool =
[[NSAutoreleasePool alloc] init];

@synchronized(self) {
[self deleteTweets];
char *text = "INSERT INTO tweets (id, message) VALUES (?, ?);";
for (NSDictionary *tweetDictionary in tweets) {
sqlite3_exec(database, "BEGIN;", NULL, NULL, NULL);

sqlite3_stmt *stmt = NULL;

if (SQLITE_OK !=
sqlite3 prepare v2(database, text, -1, &stmt, NULL)) {
NSLog(@"error: '%s'", sqlite3_errmsg(database));
sqlite3 exec(database, "ROLLBACK;", NULL, NULL, NULL);

NSNumberFormatter * f = [[NSNumberFormatter alloc] init];
NSNumber * tweetId =

[f numberFromString:[tweetDictionary objectForKey:@"id"]];
sqlite3_bind_int64(stmt, 1, [tweetId longlLongValue]);
[f release];

NSString *message = [tweetDictionary objectForKey:@"text"];
sqlite3_bind text(stmt,

2,
[message UTF8String],

-1’
SQLITE_TRANSIENT);

BOOL result = sqlite3 step(stmt) != SQLITE_ERROR;
sqlite3 finalize(stmt);

sqlite3 exec(database, result ? "END;" : "ROLLBACK;",
NULL, NULL, NULL);

}

//post a notification that the tweets are available...have responder
//update itself on the main thread

CHAPTER 10: Using Open Source Tools and Other Goodies

[[NSNotificationCenter defaultCenter]
postNotificationName:@"tweetsDidSynchronize"
object:self
userInfo:nil];

[autoReleasePool release];

& MesasQuite File Edit Tab Window Feedback Help % 0 H,6CHB OMO i 7 4) B cE@om mnmyzw

ano mmS-FAOO-IFSF-USI 3293891167?2'000:«!!\6 ‘twitter. sqlke
|OyED M A~ 86
Content Views SQu Quer Triggens
[tweets W) ®
] ® (- [}) = @ | search Show All
' Use Search Params iz returned rows: Starting at : Get Last 500
id message
[| 7984 et e 2crmibe spoclypue” snnourcerment. Meh

®64908573997666304 People chanting USA ot here hato:/ /plixi.com/p/ 97955612

¥ 64908899689562112 Osama bin Laden Dead. The Story that Twitter Broke - hitp./ /LCO/XZUNTLE
[] 3070080 RT

¥ 64909233036079104 RT §Gonann MWWWWW Wik, 3080, wyer, ¢
¥ 64909272789688320 Oy. oy, oy. Cood ob Fox News. http. / /www.twitpic.com/4s7aye

a ealylast. USAILSAY
B GA909620766509952 Polnd i fourshing. Bt 10 be rementbered 36 3 great leader, Donald Tusk needs more a..
% 649097 rough strsegea e

¥ 64909984210759680 Mark Haiperin s oreparing s “This is Bod news for ODMST" remincs for Moming Jos.
" uuooolmoouu Good night, in every meaning of the phrase/

Man, r 2nd e it dead, O it
" 3168512 been done.” hetp://sh..
% 64910339824828416 1IM - Darce Hits. opT.
¥ 64910509077561344 Chants of "USAI USAI USAT in lower Manhattan.
F 64910830617116672 Huge crowd at Ground Zero. hito.//tco/s1qpKlp
% 64910971503775744 U.S. Forces Kill Osama bin Laden, rocovery| Body hup://bit.ly/ICKTHK
® 49110 R/ IR SierLUX
¥ 64911326507742502 From Eiexinyt 3t Cround Zero: Tlags everywhere. A majoriy of the progie heve seern you..
¥ 64911743020838912 Finallyl §Madcow is 00 it

Seect * fram tweens

¢ Records: 20 0.0015/0.001s uTEs)00 0 G @ 8 B o » - +
Vernon 109 A
|

Figure 10-12. The SQLite database of Tweets

Now that the Tweets are in the database, the application needs a way to retrieve them.
This is accomplished via TwitterDataStore’s tweets method. This method uses a
standard SQL SELECT statement to get all of the Tweets from the database:

NSString *tweetsStatement = @"SELECT id, message FROM tweets";

If the statement is prepared successfully, the result set is traversed, and a new Tweet is
created and initialized for each row in the result set. The Tweet is then added to an array
of Tweets that is returned by the method:

- (NSArray*)tweets
NSMutableArray *tweets = [NSMutableArray array];
@synchronized(self) {

sqlite3_stmt *queryStatement = nil;
NSString *tweetsStatement = @"SELECT id, message FROM tweets";
if (SQLITE OK != sqlite3 prepare v2(database,
[tweetsStatement UTF8String],-1,8queryStatement, NULL)) {
NSLog(@"error: '%s'", sqlite3_errmsg(database));

CHAPTER 10: Using Open Source Tools and Other Goodies

return nil;

}
while(sqlite3_step(queryStatement) == SQLITE_ROW) {

Tweet *tweet = [[[Tweet alloc] init] autorelease];
[tweet setId:[NSNumber numberWithLonglong:
sqlite3_column_int64(queryStatement, 0)]];
[tweet setText:[NSString stringWithUTF8String:
(const char*)sqlite3_column_text(queryStatement, 1)]];
[tweets addObject:tweet];

sqlite3_finalize(queryStatement);

return tweets;

}

The final method to implement to complete the SQLite implementation of
TwitterDataStore is deleteTweets. This method simply executes a SQL DELETE
statement on the database to delete all of the Tweets:

NSString *deleteTweetsStatement = @"DELETE FROM tweets";
- (void)deleteTweets
{

@synchronized(self) {
char *errmsg;

NSString *deleteStmnt = @"DELETE FROM tweets";

if (SQLITE_OK !=
sqlite3_exec(database, [deleteStmnt UTF8String], NULL,
NULL, &errmsg)) {
NSLog(@"error: '%s'", sqlite3_errmsg(database));

}
}

The preceding code uses SQLite, so it will not link unless the application’s Xcode project
is adjusted to link against 1ibsqlite3.0.dylib instead of CoreData.framework (see
Figure 10-13).

CHAPTER 10: Using Open Source Tools and Other Goodies

& xcode File Edit View Navigate Editor Product Window Help 5 ® & 5.8 C B O+ T 4) B Erove sunMayl 1045:27eM QN
nNO6O O of -0

o r—— = Sulld Offine Twitter: Falled | Today at 10:44 PM | &=
> M) | OfflineTwitter | iPhone 4.3 Si u [| H l.
Run _ Stop Scheme Breakpounts Sl teor View Organizes
. = = = 4 > 10MimeTwitter
hin & 4= .| = Choose 04 librarkes to 340:
[y PROJECT 3 Setings Build Phases Build Rules
4 { - Q a
libxmi2 dylib - |
Twitter + OAuth TARGETS > Tarsd libsangbox.dyid
Ubearies & Headers A libsp.dvii
MGTwitterEngine > Comp o)0 3.0.¢
SAQAUtRTWitterEngine g
libsalite3.cysd
CoreDataOffine xcdatamodeld v Unkd ST
TwitterLoginbutton tibxn . Required *
! TwitterLoginButton h & Corel libstdc+ +.8.dyid Required &
m TT:mrloem:wonlm & Ui libstdc + +.dylib Reguired &
rerOAuth bundle G Foun libstdc s + dylib R
Model -~ B+ o aylid
&= Corel Required |
h Tweeth
e 1iboA libSystem 8 dylib Required
h) TwitterDatastore.h + -] NeSysrem.dvil
m TwitterDatastore.m libsystem_blocks dylib
h) TwitterDatastore_CoreData.h > Copy libsystem_c.ayhd O

m TwitterDataStore_CoreData.m libsystem_dnssd aylib
) T, 1A eoram it

m Twitte ore_SQUite.m

OffuneTwitter libsystem kermel.dylid
h) TweetTableViewCellLh libsystem_network.dylib
m TweetTableViewCell.m

7 LogiviwCostralierh (Add Other..) (Cancel) (Add)
m LoginViewControlier.m
' MainViewController.h
m MainViewController.m
b’ TimelireViewController.h
m TimelineViewController.m
h OffineTwitterAppDelegate b
m OffincTwitterAppDelegate.m
OffineTwitterViewController xib
Supporting Files.
Frameworks
Products
+ ORB® Add Target Add Build Phase

Figure 10-13. Adjusting the Xcode project to link against libsqlite3.0.dylib instead of CoreData.framework

To Test or Not to Test, That is the Question

Since code for a data model or layer doesn’t require a user interface, it presents a
unique opportunity to discuss an often overlooked topic for iOS and mobile
development in general, which is Unit Testing. Unfortunately, a lot of projects avoid
writing Unit Tests altogether or try to add some tests at the tail end of a project. Part of
this is due to how difficult it often is to get a testing environment set up for a project, and
some of it may be due to developer laziness. However, when done early and often, Unit
Tests actually let developers be lazier than if they hadn’t written tests at all because it
requires less manual testing. In addition, with Xcode 4, Apple has made it easier than
ever to get up and running with Unit Tests for an iOS project.

What follows is a step-by-step tutorial that adds a Unit Test to the OfflineTwitter Xcode
for this project. The Unit Test validates the code that synchronizes the Tweets in the
database. Of course, it’s always best to write tests as code is being written, but the
main purpose of this tutorial is to show how easy it is to add Unit Tests to an iOS
Facebook or Twitter application.

Adding Unit Tests to a Social i0S App

Apple has configured Unit Tests to build and run as a separate target within an Xcode
project. While this may seem a bit cumbersome at first, it has the nice advantage of
keeping test code out of the main application target in a project. This means that test

GHAPTER 10: Using Open Source Tools and Other Goodies

files don’t get built into the final application binary. It also helps with debugging and
setting up an automated test environment.

To add a new Target to a project in Xcode 4, from the File menu choose New » New
Target... (see Figure 10-14).

&' xcode G edit View Navigate Editor Product Window Help % & §4,8 C H O ™ O i 5 «) B Grosw ThuMays 12:11:55aM Ql
aeno New Tab & ®T IneTwitter.xcodeproj (=]

Add Files to “OfflineTwitter".. 3¢A New Window OXNT Rillmlaztid ! r [=]f=]
Open... a0 _ NewFile... XN
Bl Coen hecent <
v,0 Open Quickly... 0%0 New Project... CEN | info | Buid Setings
-] New Workspace... ~®¥N
. "::;; Close Window 1w e T b
» GiTwinereg /OS¢ Tab 5 8ased on Configuration File
< “M:& Close "OfflineTwitter.xcodeproj” ~sw _ New Group from Selection No Configurations Set
» [Mogel Close Project * Release No Contigurations Set
>
> T—
2 Command-line buids use | Release)
v Localizations
o Language Resources
§how in Finder English 2 Files Localized
Save As Workspace... —
Project Settings...
Source Control >
Create Snapshot... RS
T
+ 0R@E ™) LT

Figure 10-14. Adding a new target

In the Target template pop-up window, go to the iOS section, choose Other, and then
select Cocoa Touch Unit Testing Bundle (see Figure 10-15).

CHAPTER 10: Using Open Source Tools and Other Goodies

& xcode file Edit View Navigate Editor Product Window Help %5 ® 4 §4. 8 O H O ™ O i 7 «) B Groew ThuMays 1:0047aM QU
L) OfflineTwitter - Offli [=)

Bulld Succeeded | Today at 12:15 AM

Ne lsswes

OMinaTwitter
¥ & 1 targer. w05 0K 4.3

_ libsqite3.0.dylib
" b2 gyl
» [Twitter + OAuth

| Atarget for building 3 unit test bundle that uses Cocoa Touch APls andOCUnit.

Came) brevoss

+ oR8® ! LheT 4

Figure 10-15. Choose Cocoa Touch Unit Testing Bundle.

Next, give the new target a name (see Figure 10-16).
& xcode file Edit View Navigate Editor Product Window Help %5 ® 4 §5. 8 O H O ™ O i 7 «) B Groew ThuMays 1:0044aM QI
1 OfflineTwitter - Offi (=)

noe

Bulld Succeeded | Today at 12:15 AM

Ne lsswes

,hm Choose options for your new target: |
1 target, 105 SDK 4.3 !
_ libsglite3.0.dylib. !
 libxmi2 dylid
» [Twitter + OAuth
» (| TwinterLoginButton A
» [Model
» [OffineTwitzer
| Frameworks
» [Products
Product Name | OMineTwitterTest |
Company Kgentifier | com.apress]
Bundle Identifier com apress OMlineTwirrerTest ;
Project |) OfflineTwitter]
Canei Coraviows) Ehinish)
+ ORa ™ ! LheT 4

Figure 10-16. Rename the target.

GHAPTER 10: Using Open Source Tools and Other Goodies

Now switch to the new Target in Xcode via the Target drop-down, choose Test from the
Product menu to create a build, and then run the test Target (see Figure 10-17).

& xcode File Edit View Navigate Editor JEFITTY Window Help 45 ® & §5 8 C H O ™ O i = ¢) B @Erosw ThuMays 1:02:00aM QU
8no Ry % ditter - OfflineTwitterTest.m (=)
) |

Rl il e5ting Offline TwitterTest
" nOA=E=B8 |

Project @1

chiv | OtflineTwitterTest.m » [1] -testExample RLL
"
% /7 0ftlineT Byild For >
- ineTwitter Ty fflineT
s by o x VT parform Action >
= 1 Created |
- ol ol | /7 Copyrish Build M8! gaits reserved
Unit tests are not implemented y. " Clean TR
#import "0ff Stop =
Qimplementat Debug »
Window Behavior >
= (void)setl Agrach to Process >
U8 5 egie Scheme... "<
/f Set-u New Scheme...
Manage Schemes...

= (void)tearDown
11 Tear-down code here.

(super tearDown];

}
= {void)testExample

° STFail(@"Unit tests are not isplemented yet in OfflineTwitterTest");
}

Qend

ouo ™

Figure 10-17. Build and run the test target.

The default test code created by Xcode is designed to cause a failure out-of-the-box.
This illustrates how Xcode highlights test case failures (see Figure 10-18).

CHAPTER 10: Using Open Source Tools and Other Goodies

& xcode File Edit View Navigate Editor Product Window mlg W L8O R OMO it T ¢) B Eosw ThuMays 1:01
o

aeno) OfflineTwitter - OfflineTwitterTest.m
Finished testing Offline TwitterTest
- Project @1
» | [OtflineTwitter » Test) m) > @
"
m—"" 77 O1flineTwitterTest.n
v..,o-mwm o /7 0fflineTwitterTest
NIM "

+ 'm OffineTwitterTest.m /7 Created by Christopher White on $/5/11.

Z —MyCom mc__. ALL rights reserved.
T et DIt (OMINATWIRIOrTeSO | 7/ Copyright 2011 _ MyCompanyNome__. Al
1

#import "0fflineTwitterTest.h"

Qimplesentation DfflineTwitterTest
= (void)setUp
[super setup):

/1 Set-up code here.

i (void)tearDown
1/ Tear-down code here.

(super tearDown];

= {void)testExample

° STFail(@"Unit tests are not isplemented yet in OfflineTwitterTest");
}

Qend

ouo ™

Figure 10-18. Failure!

The tests need to be written for the TwitterDataStore SQLite class; therefore, the
TwitterDataStore SQLite, TwitterDataStore, and Tweet classes need to be added to
the 0fflineTwitterTest Target, so that the OfflineTwitterTest Target will link when
actual test code is added (see Figures 10-19 through 10-21).

GHAPTER 10: Using Open Source Tools and Other Goodies

File Edit View Editor _Product Window _Hel ® L FE8CH OO i T 4) @ Eosw ThuMays 1:0410AM QO
) OfflineTwitter - Tweet.m =)

Finished testing Offline TwitterTest
Project @1
ol = [Model) = Tweetm) [

OMinaTwitter
¥ B33 targees, 105 S0K 4.3 o 17 Tueet.m]
" Ubsatte3.0.dvib " OfflineTwitter File Name Tweet.m
_ Nibxmi2 dyli 7/ Created by Christopher White on 4/3/11. . File Type | Default - .
(I Twitter + OAuth /7 Copyright (c) 2011 __MyCompamyNome__. ALl rights reserved.
O = Location | Relatve to Group 2]
v [Mogel #import "Tucet.h" - mr""’l""""‘ o
h Tweeth 0
[STeam O e
Qimplesentation Tweet Apress_OSFacebookTwi
’!"‘Mmm.h tter/Chapter10/
m TwinerDataStore.m @synthesize id: OffineTwitter/
b TwinerDataStore_SQUte.h @synthesize text; OffineTwitter/Tweet.m ©
m TwinerDatatore_SQute.m ens ¥ Localization
» (] Offting’
» [OffineTwimierTest No Localtaions
» | Frameworks
> [Products * =
¥ Target Membership
™ A OfflineTwitter
& 2 OMlineTwitterTest
¥ Text
.
% <hass - An OBjective- m
| 1., Cclasswith a header
B u 2 L & NoSeetion
| Locud CY | AIOutout: (Oa) (OMM)| 1S yviewControtier subclass - Aa
welcome to change it and/or distribute copies of it under cert . . Omjectve-C view comrolier subclass
ain conditions. o (S
Type "show copying” to see the conditions. 0
There is absolutely no warranty for G0S. Type “show warrsnty” L
for details. v
= S This GOD was gured as “xB6_64-app tty sdevittys -
+ 0Ra ™ 083 ' i 4

Figure 10-19. Add Tweet.m to OfflineTwitterTest Target

& xcode File Edit View Navigate Editor Product Window Help 45 ® & 32 8 C H O ™ O i = «) B Erosw ThuMays 1:04:30aM QU
eno) OfflineTwitter - TwitterDataStore.m [=)

o o Finished testing Offline TwitterTest
QA= =8 =i« B [Model) =

OMineTwitter 1"
¥ B33 targees, 105 S0k 4.3 o 77 TwitterDataStore.s

 libsgite3.0.dylib ” OfflineTwitter

 libxmi2 dyli /7 Created by Christopher White on 4/3/11.

» [Twitter + OAuth (u} // Copyright 2011 _ MyCompanyNome__. ALl rights reserved.
”

#import "TuitterDataStore.h"
#import <CoreData/CoreData.h>

Full Path JUsers/cwhite/

0
(u] #import “Tweet. N Documents/Apress/
Apress_IOSFacebookTwi
@isplesentation TwitterDataStore trer/Chapteri0/
OffineTwitter/
= (NSArraye) tueets m o

return ngl; ¥ Localization

z {void)deleteTuents No Localizations

—
¥ ¥ Target Membership
0 (void T :(NSArraye) & A OfflineTwitter

@ 2 OMlineTwitterTest

#pragma mark - Application’s Documents directory ¥ Text

Text Encoding |_Unicode (UTF-8)

urns the URL to the application's Documents directory. o [etautt - mac 03 x /.. 18
=v

/
- (NSURL «)applicationDocumentsDirectory
(i D0 e m

return [[INSFileManager 1 URLsForDirecto rectory

NSUserDomainMask] lostObject); (Ll e Template Lbrary =5
2
= {void)dealloc 5 ‘J-"‘ chass - An OBjective- m
i [Cclasswith a header
2 & 1 | NoSelection
Q All Output & (Cear)
TEAR SULte “DTTLIRTMATIrTESt” STartes ST Z011-05-5
-

Test Case “~[OfflimeTwitterTest testixasple)” started.
Current language: outo; currently objective-c
kill

Quit
+ ORA® Program ended with exit code: @

Figure 10-20. Add TwitterDataStore.m to OfflineTwitterTest Target

CHAPTER 10: Using Open Source Tools and Other Goodies

& Xcode File Edit View Navigate Editor Product Window Help 5 ® & §£ 8 C B O ™ O i & «) @ @Eroew ThuMays 1:04:38AM QU

aeno) OfflineTwitter - TwitterDataStore_SQLite.m =)
(,2 (m) [OffiineTwitterTest | iPhone 4... & u Finished testing Offline TwitterTest m lm
Run 5top Scheme Breakpounts. w1 taitor View Organizer
BN & A = » @ |mi<«rD) | Model) = » SQite.m /[-openDatabase | ‘o B8
v [y OMinaTuitter = (o) init pyT———— '
2 targets, 05 SOK 4.3 { « (m ¢ n
if ((self = (super init File Name TwitterDataStore_SQUte.m
libsglite3.0.dylib {selt opendatadase);)
libxmi2 it) Fie Type | Default - Objective-... 18
Twitter + OAuth return self; —
oo 3 Location | Relative to Group)
woael - (voi¢)openbatabase L
h Tweeth { —
£ (il o { ull Path [Users/cwhite/
R\ NSU self applicat ionDocumentsDirectory] URLByAppendingPathCosponent:@™twitter. Documents/Apress/
h) TwinerDataStore.h sqlite Apress_JOSFacebookTwi
m TwitterDataStore.m tter/Chapter10/
) TwinerDataStore_SQUte.h i (?au‘:(,?x 1= ?qlue?_nmlllpnh relativePath) UTFBString), &database)) { OffineTwitter/
! - T) ottt closeDatabase]; r:nmm«.sm« -~
[OfffineTwitter char werrmsg; -
> (&) OfMineTwivterTest NSSt 9 teTabl @"CREATE TABLE IF NOT EXISTS t ts (id INTEGER PRIMARY KEY v ol
=1) rim screateTables = @CREATE TARLE IF M weets (id ’ 1 .
_ Products i (50 Kt sqlited_exec(database, [createTables UTE8String], NULL, NULL, Gerrmsg)) N o
NSLog{@“create table error 3'", errmsg); -
¥ Target Membership
55t ring wcreatelndex @°CREATE INOEX IF NOT EXISTS tweetIndex ON tweets(id):*: i e Twitt
i1 (SOLITE_OK 1= sqlited_exec(dat createTngex UTFBStringl, NULL, MULL, Gerrasg)) | |2 Ay OfineTwiter
@ 2 OMlineTwitterTest
NSLog(@"create table index error: 'Ss'™, errmsg);
I } ¥ Text Settings
]
} Text Encoding | Unicode (UTF-8) -:]
==Y
- (void)closeDatabase D o =
{
[=y » oseldatabase); | Piie Template Library) @S
y o (14
4 a) oqmm-caus-moe,«w‘
C class with a header [
(] "
Local Al Outout ¢ oa) (OO = ewControtie -
TESt Suite "DTTLLNETWATTErTest’ Started ot ZU11-U5-95 U5.94.18 e et
+0000 "
Test Case “~(0fflimeTwitterTest testixasple)’ started.
Current language: auto: currently objectivesc .
kitl 8 MIM-C_W~M
quit m L Obyectve-C category v
+ 0RB ™ Program ended with exit code: @ v (Q

Figure 10-21. Add TwitterDataStore_SQLite to OfflineTwitterTest Target

All of the setup is now complete, so it’s time to write a simple test to see everything in
action. The test class will test functionality in the TwitterDataStore SQLite class, so it
needs to own a TwitterDataStore SQLite object. Open OfflineTwitterTest.h in the
sample project and note the declaration of a TwitterDataStore SQLite object:

#import <SenTestingKit/SenTestingKit.h>

@class TwitterDataStore SQLite;
@interface OfflineTwitterTest : SenTestCase {
@private

TwitterDataStore SQLite *twitterDataStore;
}

@end

With most Unit Testing frameworks, test classes are given a chance to do some setup
before the test is run and some cleanup after the test is finished. Unit Testing for iOS
projects is no different. Before a test is run, the test class’s setUp method is called. After
the test executes, the tearDown method is called. Open 0fflineTwitterTest.min the
sample project and examine the implementation of these methods. Since this is a basic
example, setUp instantiates the TwitterDataStore SQLite object, and tearDown releases
the object, so that the test doesn’t create a memory leak (which could cause other side
effects). Depending on the nature of the code in an application, more code may be
required for these methods. Generally, these methods should be reserved for code that
is required for every test in the class:

- (void)setUp

CHAPTER 10: Using Open Source Tools and Other Goodies

[super setUp];

// Set-up code here.
twitterDataStore = [[TwitterDataStore SQLite alloc] init];

}

- (void)tearDown

// Tear-down code here.
[twitterDataStore release];

[super tearDown];

What follows is an actual test for the functionality of the TwitterDataStore SQLite class.
While there is the temptation to write Unit Tests for each method of a class, a better
approach is to consider what the class is supposed to accomplish as a whole and write
tests to validate its functionality. This also brings up the topic of naming tests. It is best
to give tests useful, descriptive names so that other developers on a project will
immediately know, just from the name, what the test is trying to validate. To that end,
the test that follows is entitled testItShouldSynchronizeTweets to reflect the fact that
one of TwitterDataStore SQLite’s main responsibilities is to store and synchronize
Tweets.

The test first deletes any Tweets from TwitterDataStore SQLite, so that it’s starting with
a clean slate. This approach may not be necessary or desirable in all cases, and it
should be adjusted on a class-by-class or application basis. Next, an NSDictionary is
created to represent a dummy Tweet. Since TwitterDataStore SQLite’s
synchronizeTweets: method takes an NSArray as its only parameter, the NSDictionary
for the Tweet is added to an NSArray object that is passed to synchronizeTweets:.
TwitterDataStore SQLite’s tweet method is then used to retrieve the stored Tweets,
and a simple comparison is made to confirm that the datastore has a single Tweet.
Depending on the test or application, additional validation could be added, such as
whether or not the contents of the retrieved Tweet match what was put in the dictionary
for the Tweet:

- (void)testItShouldSynchronizeTweets
{
[twitterDataStore deleteTweets];

NSDictionary *tweetDictionary = [NSDictionary
dictionaryWithObjects:[NSArray arrayWithObjects:@"1", @"Tweet!", nil]
forKeys:[NSArray arrayWithObjects:@"id", @"text", nil]];

NSArray *newTweets = [NSArray arrayWithObject:tweetDictionary];
[twitterDataStore synchronizeTweets:newTweets];

[twitterDataStore tweets];

NSArray *tweets
= [tweets count]), @"Test error message");

STAssertTrue((1

@end

CHAPTER 10: Using Open Source Tools and Other Goodies

The great thing about tests like this is that they make it very easy to debug code under
specific scenarios, without having to run the actual application and perform multiple
steps within the user interface. Such an approach also makes testing repeatable, which
is excellent when code needs to be refactored or optimized. And of course, it ensures
that regressions (i.e., bugs introduced into code that was previously working as
expected) are not introduced into the code when it is adjusted or goes through a major
overhaul.

Applications will need more than just one test. When additional tests are required, they
can be added to an existing test class, or a new test class can be added to the test
Target. Don’t forget to also add any files from the main application Target to the test
Target, depending on which functionality is being tested.

For additional information on this topic from Apple, review the testing sections in the
document at this URL:

http://developer.apple.com/library/ios/#documentation/ToolslLanguages/Conceptual/Xcode4Us
erGuide/Building/Building.html

The tests are built via the SenTestingKit framework. The framework makes a number of
macros available for validating tests. These macros start with the prefix, ST. The
preceding example code uses the macro, STAssertTrue, but other available macros can
be found in SenTestCase_Macros.h.

Setting up the test Target is a big part of configuring a project for tests. As mentioned
previously, this overview covered Unit Testing from within Xcode 4. If a project is being
built using Xcode 3, a different configuration is required.

While the SenTestingKit framework is available in Xcode 3, Apple’s out-of-the-box
offering for setting up tests is less than ideal. However, some engineers at Google were
nice enough to expand on Apple’s offering and make an updated iOS Unit Testing
library available to the general public. Setting this up in Xcode 3 requires a few manual
steps, but it’s well worth the effort. The code is part of Google’s google-toolbox-for-mac
initiative, and it can be found here:

https://code.google.com/p/google-toolbox-for-mac/wiki/iPhoneUnitTesting

Another worthwhile alternative for Xcode 3 is GHUnit, which you can find here:
https://github.com/gabriel/gh-unit

Another interesting aspect of writing Unit Tests pertains to mocking objects. Learning to
mock objects for tests can take test code to the next level. The main offering for
mocking objects in Objective-C Unit Tests for iOS projects is OCMock. Note that using
OCMock doesn’t require a new testing target in an iOS project. Rather, it offers classes
and functionality to use in existing test classes and methods or new tests. Explore the
information at the following link for an introduction to OCMock, as well as setup
instructions:

www.mulle-kybernetik.com/software/0CMock/

CHAPTER 10: Using Open Source Tools and Other Goodies

Conclusion

There are a number of great tools available to make life easier when developing iOS
projects. These range from free online services to open source tools and software. This
chapter touches just the surface of what is available; however, it covers a few that are
indispensable for writing great iOS apps in general, as well as for Facebook and Twitter
specifically. There is a wealth of information available online and via books and
publications with respect to data modeling, testing, and shortening URLs; but writing
iOS applications lends itself to the tools and software covered in this chapter due to the
nature of mobile development and the constraints of the iOS platform.

Chapter

Apps You Can
(and Gannot) Build

Sadly, we realized early on in writing this book that we’d need a chapter about all the
rules that attend the use of the Facebook and Twitter APls. Back in 2009, when these
apps were exploding in popularity, social APIs were used with relative abandon. The
platform makers—and that includes Facebook and Twitter—weren’t sure how
smartphones were going to change the way people used their tools.

Now that some time has passed, Facebook and Twitter have begun restricting the ways
in which you can use their APlIs.

In fairness, Facebook’s platform policies are sensible and give developers wide latitude.
Twitter, on the other hand, is often accused of being more manipulative (to put it
diplomatically) about how people use their code.

While we, the authors, would certainly prefer complete freedom to use these APIs
however we want, it’s important to acknowledge that a brand like Twitter has a
reputation to uphold, and (like any company) it is terrified of someone dragging it
through the mud or confusing consumers about what Twitter is for.

Treat this section as a filter for your app ideas. If you already have an app that you’re
adding Twitter or Facebook functionality to, then you’ll still want to skim this chapter to
make sure none of your app’s visual or interactive elements attract any negative
attention from the Twitter and Facebook platforms.

After all, the only thing worse than having to obey rules is having to go back and redo
your work to comply with them.

Twitter: No Clients Allowed

In March 2011, Twitter platform team member Ryan Sarver (@rsarver) posted a missive
to its developer group. In this post, Sarver declared new Twitter fiats meant to corral
what and how developers build. You can read his post at this URL:

211

CHAPTER 11: Apps You Can (and Cannot) Build

https://groups.google.com/forum/#!topic/twitter-development-talk/yCzVnHgHIWo/discussion

We won’t bother reproducing the note in full, but we’ll highlight some areas where the
changes in policy have been most acute. These also tend to be areas that developers
new to the platform aren’t aware of. The main points were as follows:

B Twitter has gotten exceedingly popular since its developer terms
were first written.

B The more mainstream the service, the more consistent the Ul and UX
must be; otherwise, Twitter suffers what is known in the business as
brand dilution.

B The Ul and UX in the official Twitter apps are best, as indicated by
their immense popularity compared to that of third-party Twitter
apps.

B As aresult, Twitter is slowly cracking down on the creation of Twitter
clients that only reproduce Twitter functionality (and don’t add some
other kind of value). It’s suggestions for value-added Twitter apps
include publishing tools (such as SocialFlow), curation tools (such as
Sulia), and data products (such as Klout). Other opportunities include
social CRM clients like HootSuite; as well as other unique services
like Foursquare, Instagram, and Quora.

In summary: You can still develop freely with the Twitter API. But from now on, you'll
have to be more creative about the way your app uses the service. Simply reproducing
the Twitter app with a different design or interaction will earn you a scolding from the
Twitter team email (and possibly loss of access to the Twitter API).

The Lowdown on the Twitter Terms of Service

When Twitter posted the note just described, it also disseminated a revised Terms of
Service that provided more specificity on the changes described in that post. Again, we
won’t reproduce them in full here, but there are certain areas you should be particularly
aware of.

NOTE: The best case scenario is that you will create an app that is wildly popular. If your app
ever needs more than 5 million user tokens, you will need to contact Twitter directly about
access to the Twitter API.

You can find the complete Twitter Terms of Service here:

http://dev.twitter.com/pages/api_terms

CHAPTER 11: Apps You Can (and Cannot) Build

Rules of the Road

We will summarize Twitter’s “rules” in the sections that follow. Note that even our
summary—which is significantly more terse than the actual document—is still annoyingly
long. We’ve put the most crucial points in boldface, in case you’d like to read those
quickly. But don’t move too fast—it’d be a shame to invest time and energy in a project
not endorsed by these terms, since you may have to scrap it later.

Using the API
Here are some of the key rules governing the use of Twitter’s API:

B You need written permission from Twitter If you want to sell, rent,
lease, sublicense, redistribute, or syndicate the Twitter API, Twitter
data, or Twitter content. Here are some additional rules pertaining to
these permissions:

B You face a special restriction if you provide an API that returns
Twitter data: it may only return Tweet IDs and user IDs.

B You may export or extract non-programmatic, GUI-driven Twitter
content as a PDF or spreadsheet by using “save as” or similar
functionality.

B You are not permitted to export Twitter content to a datastore as
a service or other cloud-based service.

B You aren’t allowed to alter any proprietary notices or marks on the
Twitter API or content.

B You can’t use the Twitter API for purposes of monitoring the up-
time, performance, or functionality of Twitter.

B You can’t use Twitter trademarks in a manner that suggests you
have any association with Twitter.

B You can’t sell or access the Twitter API to aggregate, cache
(except as part of a Tweet), or store geographic location info
contained in Tweets.

B You can’t charge a premium for access to any Twitter feature.

What Your App Can Do

According to Twitter, your service “may be an application or client that provides major
components of a Twitter-like end user experience”; however, if you build a client app,
additional terms apply:

CHAPTER 11: Apps You Can (and Cannot) Build

B You must use the Twitter API as the sole source for features in your
client that are substantially similar to functionality offered by Twitter.
In other words, you can’t mix another similar API into your Twitter API
project, or the company will write you one of those threatening
emails.

B You may not offer payment to third parties for distribution of your
app.

B You cannot frame or reproduce significant portions of the Twitter
service in your app; instead, you must use the Twitter API to
display Twitter content.

B Do not store private data or content, or duplicate Twitter’s database.

Rules Governing Existing Twitter Clients

Given the new terms of service, it might seem strange that several non-official
Twitter clients remain in the app store. When Twitter made the “no more
clients” announcement in March 2011, its platform developers said some
existing Twitter client apps would be allowed to continue doing business.
However, Twitter’s Ryan Sarver added':

“We will be holding you to high standards to ensure you do not violate users’
privacy, that you provide consistency in the user experience, and that you
rigorously adhere to all areas of our Terms of Service.”

How Twitter Defines Usability

The section that follows doesn’t contain rules, exactly; rather, it describes a series of
guidelines that (if followed) will ensure you don’t earn any ire from Twitter’s platform
folks. It might seem draconian of them to dictate how your app should operate, but it’s
in the best interest of users, some of whom will be confused if your app does things with
the platform that other Twitter apps don’t. In that spirit, Twitter asks that you adhere to
the following:

B Don’t surprise users: Don’t misuse Twitter functionality or
terminology:

B Maintain the integrity of Tweets. There is a lot of information
packed into Tweets, even though they are just 140
characters long. See Chapter 13 for Twitter Visual Design
guidance.

" https://groups.google.com/forum/#!topic/twitter-development-
talk/yCzVnHgHIWo/discussion

CHAPTER 11: Apps You Can (and Cannot) Build

B Don’t edit or revise user-generated content delivered through the
API.

B Always show the user that authored or provided a Tweet.

= Don’t create or distribute spam: Get a user’s permission before you
do any of the following:

B Send Tweets or other messages on her behalf. The fact that
a user authenticates through your application does not
constitute consent to send a message on her behalf.

B Modify her profile information or take account actions (including
following, unfollowing, and blocking) on her behalf.

B Add hash tags, annotations data, or other content to a user’s
Tweet. Show the user exactly what will be published.

= Don’t make placeholder apps for the sake of name-squatting.

® Respect user privacy: You need to utilize proper security standards
such as OAuth, as discussed in Chapter 2. You should also do the
following:

B Respect the privacy and sharing settings of Twitter Content.

B Promptly change your treatment of Twitter content as changes
are reported through the Twitter API.

® Always show users a privacy policy for your service. You
should also clearly disclose what you are doing with
information you collect from them.

B Clearly disclose when you are adding location information to
a user’s Tweets, whether as a geotag or annotations data.

B Do not solicit another developer’s consumer keys or consumer
secrets if they will be stored outside of that developer’s control.

B Do not facilitate or encourage the publishing of private or
confidential information.

B Be a good partner to Twitter: You need to follow all the rules
described in this chapter, including the following:

B Don’t use business names and/or logos in a manner that can
mislead, confuse, or deceive users. For more information on
the use of Twitter Marks, see the trademark rules later in this
chapter.

B Try not to confuse or mislead users about the source or purpose
of your application.

B Don’t link to malware.

CHAPTER 11: Apps You Can (and Cannot) Build

® Don’t replicate, frame, or mirror the Twitter website or its
design.

B Don’t misuse the API to impersonate others on Twitter.

Login and Identity

Twitter also has some guidelines pertaining to login and identity:

B You must present users with the option to log into Twitter via the
OAuth security protocol, as discussed in Chapters 2 and 5 of this
book.

B You should give end users without a Twitter account the
opportunity to create a new Twitter account.

B You must display the Connect with Twitter option at least as
prominently as the Facebook Connect button, or any other social
Web login option.

B You must do the following once an end user has authenticated via
Connect with Twitter: clearly display his Twitter avatar, his Twitter
user name, and the Twitter bird graphic.

Displaying Content Correctly
Here are the guidelines that cover displaying Twitter content correctly:

B You should have all URLs referencing content in a Tweet direct users
back to the page where that content is displayed, and not to any
intermediate pages.

B You must show Tweets that reference Twitter as the source if your
service displays updates commingled with Tweets.

B Don’t put pornography in user profile images or backgrounds.

® Only surface actions that are organically displayed on Twitter. For
example, when a user executes the unfavorite or delete actions, you
should not do something Twitter doesn’t, such as publicize that a
Tweet was deleted.

B Do not falsely report an account as Verified.

Monetizing Your App

You should adhere to the following guidelines when attempting to monetize your app.
One of the most important aspects of this is to respect user content:

B Tweets may be used in ads, but not as ads.

CHAPTER 11: Apps You Can (and Cannot) Build

B You must get permission from the user that created a Tweet if you
want to use it on a durable good, or if you're implying the
sponsorship or endorsement of that user.

Twitter Ads

Twitter may serve advertising in your app via its APIs (i.e., Twitter Ads); however, Twitter
will share a portion of advertising revenue with you if you contact it.

Advertising Around Twitter Content

You are allowed to advertise inside your own Twitter API app, but there are (of course)
rules about this, too:

B You must pay Twitter a cut of your revenue if the “primary basis”
of your advertising deal is Tweets. If you think your ad deal may
fall under this rubric, email Twitter at partner@twitter.com.
This includes things like custom visualizations.

B You cannot put ads in the Twitter timeline or in any other
message else that might reasonably be confused by users as a
Tweet. For example, ads cannot have Tweet actions like
ReTweet, Favorite, and Reply.

B You must generally maintain a clear separation between Twitter
content and your advertisements.

New Rate Limits and the End of Whitelisting

Until early 2011, Twitter had a whitelist of developers it allowed to exceed the hourly rate
limit of API calls. The concept of the whitelist was a hold-over from the early days of the
REST API, when Twitter had few bulk request options, and the Streaming APl wasn’t
public yet.

Since then, Twitter has added more efficient tools for making bulk requests: lookups, ID
lists, authentication, and the Streaming API. Still, now that all whitelist requests are
being denied, some app projects that might have been ingenious back in 2010 won’t be
viable today.

If you’re planning to do advanced research and analytics, you’ll need to buy data
through a reseller of Twitter data like Gnip.

The real change, however, comes a bit later in Sarver’s announcement, when he notes
that “there are going to be some things that developers want to do that just aren't
supported by the platform.” Instead of granting whitelisting to make advanced research
and analytics possible, writes Sarver, Twitter now asks that developers contact Gnip,
currently the primary reseller of Twitter data.

CHAPTER 11: Apps You Can (and Cannot) Build

REST API Rate Limiting

Twitter places a limit of 150 requests per hour on API calls. For OAuth calls, the limit is
350 per hour. As we said previously, Twitter won’t let you whitelist your way out of this
rate limit. You can buy bulk data from a reseller, but at the time of writing, the only such
reseller is Gnip. But others may follow, and a market for Twitter data may emerge. In any
case, many developers report negative experiences trying to work with unstructured
dumps from Twitter’s firehose.

Assuming you’re interested in the particulars of Twitter’s rate limits, we’ve summarized
its allowances here:

B Authenticated calls are measured against that user’s limit, while
unauthenticated calls are deducted from the allowance of the host.
Hosts are permitted 150 requests per hour.

® OAuth calls are permitted 350 requests per hour.
You can find the complete document that spells out these limits at this URL:
http://dev.twitter.com/pages/rate-limiting#rest

As with most social platforms, Twitter’s API places no rate limits on HTTP POSTs;
however, the company has said it may consider limiting POSTs in the future. Methods
that include limits are called out in the document at this URL.:

http://dev.twitter.com/pages/rate-limiting#rest

NOTE: API methods that are not directly rate-limited are still subject to organic (and therefore
unpublished) limits.

If you think your app may be close to exceeding rate limits, you can monitor its status by
inspecting the HTTP response headers that are returned. With the default rate limit
headers, these response headers will also show the following:

m X-FeatureRateLimit-Limit
B X-FeatureRatelLimit-Remaining
m X-FeatureRateLimit-Reset

You’ll know you’ve hit a rate limit when you get back HTTP 400 response codes.

Facebook: Mind Your Manners

Facebook’s rulebook is slightly less imposing than Twitter’s, and it’s more interested in
guiding developers than scaring them straight. In the sections that follow, we’ll explain
some of Facebook’s usability principles. Consider these to be the foundation for the
personality of your app.

CHAPTER 11: Apps You Can (and Cannot) Build

The Lowdown on Platform Policy

You can find Facebook’s complete, unedited platform policies at this URL:

http://developers.facebook.com/policy/

Creating a Great User Experience

Facebook has provided the following guidelines for creating a terrific user experience:

B Build social and engaging applications: What does this mean?
Well, the best Facebook API projects in the App Store prioritize
communication and interaction with other users. More passive,
consumption-oriented apps (like a News Feed reader) aren’t right for
Facebook, but make more sense on Twitter.

B Give users choice and control: Facebook’s API has a dizzying
number of objects, relationships, and actions. And while many of
them seem insignificant, it’s crucial that you adequately inform the
user when something is going to be posted or shared with others.

B Help users share expressive and relevant content: Ideally,
Facebook would have you build an app that doesn’t merely access its
Social Graph; it would also like your app to contribute new content to
it. Apps that upload user photos, videos, and links from the Web are
considered better citizens than those that don’t.

Be Trustworthy

Like Twitter, Facebook asks that you respect a user’s privacy, eschew spam, and avoid
any other unscrupulous activity. And like Twitter, Facebook doesn’t want developers
competing with its own internally created iOS app. However, Facebook is more
diplomatic about the way it explains its wishes, and it seems lax about forcing
developers to abide.

Specifically, Facebook says you must not make derivative use of Facebook icons.
Similarly, you cannot use terms for Facebook features and functionality that make it
sound like a stand-in or replacement for the official Facebook app. However, one look in
the App Store shows that many developers have copied Facebook’s blue-and-white
color scheme and made generous use of some Facebook iconography and terminology.
But while Facebook shows lenience today, Twitter’s example has demonstrated that
platforms can decide to create or enforce their developer terms as they please. Know
that if you decide to mimic Facebook’s theming and its characteristics, your app may
eventually earn the ire of the platform regulators. It will also look indistinguishable from
dozens of apps in the App Store.

CHAPTER 11: Apps You Can (and Cannot) Build

Rate Limits

Facebook imposes rate limits on users and API calls. For an authenticated user, the limit
is 5 million. API calls are limited to 100 million. Perhaps to preclude any major
competitor from using Social Graph data to compete with Facebook for ad dollars,
Facebook limits your app to 50 million impressions per day.

For Your Privacy Policy

Facebook asks that you tell users what user data you are going to use and how you will
use, display, share, or transfer that data in your app privacy policy. It also wants you to
include your privacy policy URL in the application. To read more about privacy, review
Chapter 2 (on privacy) and Chapter 5 (on OAuth and safe account management).

Other Stuff

Facebook has other rules about the use of its API, but thankfully its rules are more
succinct than Twitter’s:

= Don’t sell data: If you are acquired by or merge with a third party,
you can continue to use user data within your application; however,
you cannot transfer data outside your application.

m Delete your old projects: If you stop using the Facebook API or
Facebook disables your app, Facebook asks that you delete all the
data you’ve received through the API (unless it is basic account
information or you have the consent of the user to retain information
on him).

® Don’t use a user’s friend list outside of your application: Even if a
user consents to such use, this isn’t allowed. But you can use
connections between users who have both connected to your
application.

B Always provide a function in your app that allows people to
access their Facebook data from the app.

Rules Abhout Content

Facebook’s platform police hold you accountable for all content in your app, including
user-generated content. This means you’re responsible for policing (or creating a
policing mechanism like a “flagging” function) in your app to ensure that your users
don’t post any of the following content to Facebook:

B Alcohol-related content
B Nudity

B Tobacco-related content

CHAPTER 11: Apps You Can (and Cannot) Build

Content featuring firearms or graphic violence

Content that infringes upon the rights of any third party (such as
intellectual property rights)

B Gambling-related content
m lllegal contests like pyramid schemes, sweepstakes, or chain letters
® Content that is hateful, threatening, defamatory, or pornographic

While Facebook might not be too aggressive in enforcing some of its design and
functionality terms, it’s actually very strict about violations to its content policy. The
community and its moderators have been known to flag and remove pictures many of us
might find rather innocent, such as an image of a mother breast-feeding her child. Still,
keep your users’ content PG or it will be quickly removed.

Other 0dd Rules About How Facebook Apps Must Work

You will also want to keep the following rules in mind when working with Facebook APls:

= Do not pre-fill your text fields with certain kinds of data, unless the
user specifically asks you to create this kind of post. Rules against
pre-filling fields apply to Stream stories (i.e., the user_message
parameter for Facebook.streamPublish and
FB.Connect.streamPublish, as well as the message parameter for
stream.publish), photo captions, video descriptions, Notes, Links,
and Jabber/XMPP.

B Adhere to Facebook’s restrictions on your choice of advertising
partners. A list of approved companies appears within the Apps
section of Facebook.com.

B You must ask a user for permission every time your app posts
something on his behalf after he grants you publishing permission.

B You must provide users with an obvious way to skip agreeing to the
terms of a Facebook social channel.

B You must not give users the option to publish more than one post
at a time in your app.

B You must not include platform integrations in your advertisements,
including social plugins such as the Like button. If you want to do
this, you have to get Facebook’s written permission. You can contact
the company on this page:

http://developers.facebook.com/policy/contact/

CHAPTER 11: Apps You Can (and Cannot) Build

= Do not use Facebook messaging as a channel for your app to
communicate directly with users; Facebook messaging (i.e.,
email sent to an @facebook.com address) is designed for
communication between users.

The Principles in Action

Facebook’s rules seem to be motivated by very specific behaviors it hopes to
discourage. The company’s platform documentation provides pages and pages of
specific examples with visual aids that explain the difference between compliant and
non-compliant apps. We’ve summarized Facebook’s ideas about compliancy here, so
that you can digest them quickly and move on.

Photos

Facebook has several guidelines you should follow when working with photos:
B Never have your app automatically tag a user or her friends in a photo.

B Tag a photo only with the expressed consent of the user on whose
behalf you are doing the tagging. Also, you must only tag images
when the tag accurately labels what is depicted in the image. In other
words, Facebook wants you to tag only human faces whose names
you know.

B Don’t tag a series of photos of a person in a row; you want to avoid
creating a banner effect at the top of her profile.

The Like Button

The only unexpected rule here is that you must not automatically reward users for Liking
your Page. If you want to reward people somehow for their fandom, you should make it
clear that Liking your page allows fans—both new and existing—to become eligible for
current and future rewards; however, the reward can’t be immediate or automatic.

Advertising

Twitter and Facebook rules diverge somewhat radically on the subject of advertising.
Twitter has a series of very specific guidelines about discussing its features in your app.
For example, as you’ll learn in Chapter 13, its guidelines ask that developers capitalize
the word Tweet when they discuss Twitter content.

By contrast, Facebook’s policy asks that you completely avoid Facebook logos,
trademarks, and site terminology. Facebook is also quite adamant that its site features
must not be emulated in your app. In other words, if your app looks too much like
Facebook property and works too much like Facebook.com (or touch.facebook.com),
you'’ll probably hear from Facebook.

CHAPTER 11: Apps You Can (and Cannot) Build

If you'd like to read Facebook’s ad guidelines in their entirety, visit this URL:

http://www.facebook.com/ad_guidelines.php

Using the Social Stream

Facebook also has several rules that govern how you interact with the Social Stream.
The emphasis here is on authentic sharing of user-generated, user-authorized content:

B You should always ask a user whether he wants to publish a Feed
story, rather than do it automatically. Also, you should offer to do so
only after the user has taken a genuine action that may be associated
with an award.

B You must not pre-fill any of the fields associated with the following
products (unless the user manually creates the content):

B Stream stories (i.e., the user_message parameter for
Facebook.streamPublish and FB.Connect.streamPublish, as well
as the message parameter for stream.publish)

B Photo captions

B Video captions

B Notes

B Links

® Jabber/XMPP

Button Text
Here are a few examples of button text that are permitted for developers:

® Post

B Share

B Publish

B Add to Profile

And here are a few examples of button text that are too vague to incorporate
into your app, in Facebook’s opinion:

Ignore
OK
Share & Continue

Request

CHAPTER 11: Apps You Can (and Cannot) Build

App Gallery

Now that we’ve spent some time telling you what you cannot build, we’d be remiss if we
didn’t show you some really excellent apps that are (more or less) within the bounds of
the Twitter and Facebook platforms. There may be boundaries, but there’s still plenty of
space for developers to play in this sandbox.

Twitter Apps

In the authors’ opinions, the best apps that use the Twitter API do the following:

® Combine Twitter’s APl with your own (or another) API to provide
existing Twitter users a convenient way to add value to their existing
Twitter service.

B Prioritize either (a) the consumption of Tweets or (b) the creation of
Tweets. Traditional Twitter client apps, for example, prioritize the
timeline and make it easy to browse through the content of other
users. However, an RSS reader might have no provision at all for
viewing your Twitter timeline, opting instead to provide only one
button that Tweets an article.

Begin by recalling the Twitter design principles mentioned earlier in the
chapter:

B Don’t surprise users: Don’t misuse Twitter functionality or
terminology.

B Respect user privacy: You need to utilize proper security standards
such as OAuth.

B Be a good partner to Twitter: You need to follow all the rules
described in this chapter.

What follows are some apps that work creatively with the Twitter API and satisfy the
aforementioned design principles.

Remember The Milk

Remember The Milk (or RTM, as it’s abbreviated) gets a lot of love from its users. It's a
productivity app that uses Twitter integration (among other tricks) to make itself behave
more flexibly than a simple to-do list (see Figure 11-1).

CHAPTER 11: Apps You Can (and Cannot) Build

Figure 11-1. Remember The Milk uses Twitter as a backbone for a kind of remote command system.

RTM uses Tweets and direct messages to create and edit items on a to-do list that is
hosted elsewhere. Note that, while Tweets and direct messages are core Twitter
functions, they are being used in a novel way and in conjunction with other backend
software belonging to the RTM developers. In a nutshell, that’s the kind of app that
Twitter prefers developers to create: it adds a new layer of usefulness and functionality
on top of the existing Twitter infrastructure.

Adding Tasks

By adding @RTM as a Twitter contact, users can Tweet to-do items for themselves and
watch them appear later in in Remember The Milk’s task queue. To get items into their
to-do list (along with due dates and other task properties), users direct message @RTM
with their task in plain text. Here are some typical sample messages:

m “pick up the milk”: Adds a new task with that name to your to-do list.

m “call immy at 5pm tomorrow”: Adds a new task with the specified
name and due date to your to-do list.

B “return library books in 2 weeks”: Adds a new task with the specified
name and due date to your to-do list.

B “take out the trash monday at 8pm *weekly #errand”: Adds a new
task with the specified name and due date. It also marks it as a
repeating task with the #errand tag. RTM calls this Smart Add.

Sending Tasks to Other Twitter Users

You can also use RTM to send tasks to other Twitter users. For example, tweeting
“@username pick up the milk” sends the task to the specified Twitter username,
assuming this user is also signed up for Remember The Milk.

CHAPTER 11: Apps You Can (and Cannot) Build

Updating Tasks

To modify tasks that already exist in your to-do list, users can Tweet @RTM commands
like the following:

B lcomplete call jimmy (shortcut: !c): Completes the specified task.

B Ipostpone call jimmy (shortcut: !p): Postpones the specified task.
You can also get new tasks:

B ltoday (shortcut: !'tod): Gets tasks due today.

m Itomorrow (shortcut: !tom): Gets tasks due tomorrow.

B Igetdue friday (shortcut: !gd): Gets tasks due on the specified date—
Friday, in this case.

B lgetlist personal (shortcut: !gl): Gets tasks from the specified list—
personal, in this case.

m lgettag call (shortcut: !gt): Gets tasks with the specified tag—call, in
this case.

B lIgetlocation office (shortcut: !go): Gets tasks at the specified
location—the office, in this case.

Changing Preferences

Remember The Milk also lets you change settings by Tweeting commands. Some
example commands you can Tweet include the following:

® lon — Enables task reminders.
m loff — Disables task reminders.

m lconfirmon — Enables confirmations (task actions, such as adding
tasks via Twitter, will be confirmed).

m lconfirmoff — Disables confirmations (task actions, such as adding
tasks via Twitter, will be confirmed).

m lhelp — Gets help info.
B ltips — Gets a list of commands.
Evernote

Evernote is a very popular cross-platform note-taking app for iOS, Android, Mac, PC,
and other mobile and desktop platforms (see Figure 11-2).

CHAPTER 11: Apps You Can (and Cannot) Build

&y

Figure 11-2. Evernote is a cross-platform notetaking app that allows you to submit notes by at-replying @MyEN.

Evernote uses Twitter in much the same way that Remember The Milk does; however,
Evernote emphasizes the use of SMS messaging as a way of accessing Twitter.
Because Twitter can translate text messages into Tweets, it’s frequently used by
developers as a way of adding universal mobile phone functionality to apps that might
see especially broad adoption outside the iOS ecosystem.

Like Remember The Milk users, Evernote users can compose a public Tweet or a direct
message @myEN to have the body of the Tweet sent to an Evernote notebook (as seen
in Figure 11-3).

Also like RTM, Evernote uses Tweets and direct messages, just as any other app would;
however, Evernote messages don’t add anything to the user’s Tweet. Instead, they use
the bot @myEN to determine how to process and file incoming notes. The result is a
seemingly magical system that recognizes your submissions and files them correctly.

Send myen ’ | adirect message.

This Evernote-Twitter thing is gonna be big...

send

Figure 11-3. Tweeting @MyEN

SMS notes

Thanks to Twitter’s built-in SMS support, Evernote users can send notes to Evernote
from mobile phones operating in most countries worldwide. In the United States, the
Twitter short code is 40404. Composing a message to 40404 containing the command d
myEN tells Twitter to create a direct message @myEN, just as you would from a Twitter
client. The text accompanying the command is entered into a new note in your default
notebook.

CHAPTER 11: Apps You Can (and Cannot) Build

Twitter DM: Evernote + Twitter « Awesome -0

W [lcicaCrance 3] [xswes @) (mm| (B[1 U [EE

Evernone + Twilter = Aweiome -o

Figure 11-4. Adding Evernote content via Twitter’s SMS support

Adding TwitPics

Evernote also makes it easy to append pictures to your Evernote-bound Tweets. To do
this, Evernote supports TwitPic URLs. If you compose a Tweet @myEN that contains a
TwitPic URL, a thumbnail of the photo will show up in Evernote, along with a TwitPic link
in the body of the note that links to the full-sized image.

Waze

Because iOS has no pre-loaded turn-by-turn navigation apps, apps that promise driving
directions are an open market. One of the best of the lot is Waze, which takes a
somewhat sillier approach to navigation than some of its competitors (see Figure 11-5).
Waze puts a kind of game layer over your highway map, awarding you points as a way
of encouraging you to report accidents, new roads, hazards, speed traps, and other
ever-changing road features.

Figure 11-5. Waze is a popular traffic app for iOS that uses Twitter as its notification infrastructure.

Prior iterations of Waze allowed users to Tweet their traffic woes, collecting them in near
real-time to create a dynamic map of road conditions. Now, Waze scans all of Twitter’s
data for traffic jam information, whether or not the person who composed the Tweet has
a Waze account. This means that, even if a non-Waze user Tweets that he is stuck in
construction traffic, your Waze app will show that person’s warning on a map (assuming
the user attached his location to the Tweet). People who already use Waze are

CHAPTER 11: Apps You Can (and Cannot) Build

encouraged to Tweet their updates with the hash tag #wazelive to make sure the
system catches it.

This is what Twitter means when it says apps should strive to use data culled from the
Twitter API to build new experiences. You won’t find a Twitter timeline or list of followers
and followees anywhere in Waze. Instead, the app uses search and messaging to create
a real-life map of Twitter users in traffic in your area.

Waze also integrates Facebook and Foursquare APIs, letting you see if you have friends
in the area you’re driving through. You can also check in at your destination venue from
inside the app, if you’re so inclined.

il AT&T 3G 8:21 AM =M _allATET 3G 2:50 PM ="

o> .
~—~ = Police >

Good morning Scotty — :
vi G Traffic jam >

Driving to: Work? _
44 min. @.* Accident >

ETA 9:05 am
23.6 mi.
Via: 1-280; US Hwy 85; Page St SF

Hazard >

Speed cam >
Close Drive

P
b

§% Chnit chat >
X

Update map > R

. %
® S S
2, &
¥ < g Check-in with
Foursquare

(i
Report

Figure 11-6. The Waze UI, which barely betrays any sign of the Twitter or Facebook APIs

Facebook Apps

Making a useful app that integrates the Facebook API is somewhat harder than one that
integrates with Twitter, if only because Facebook’s popularity and its well-documented
APIls have made it such a popular choice with developers. Still, some apps stand out
from the crowd; and even if they’re not perfect, they embody the things that Facebook
says makes a great API integration.

Let’s begin by reiterating the Facebook design principles from earlier in the chapter:

= Build social and engaging applications: In other words, prioritize
communication and interaction with other users.

CHAPTER 11: Apps You Can (and Cannot) Build

B Give users choice and control: Be sure to adequately inform the
user when something is going to be posted or shared with others.

m Help users share expressive and relevant content: Apps that
upload user photos, videos, and links from the Web are considered
better citizens than those that don’t.

Fone

Fone isn’t a perfect app, but it’s a relatively simple project that does something the
Facebook app doesn’t excel at. Fone takes the instant messaging and voice calling
feature from Facebook and puts it on the iPhone, creating a Facebook alternative to the
system-standard Phone app (see Figure 11-7). (There is no voice calling from inside the
official Facebook app.)

Figure 11-7. Fone isn’t a perfect app, but it adds some value to the Facebook chat experience—in the form of
voice calls—and more or less avoids looking too Facebook-like.

Because it’s meant to connect users with other users, this app adheres to Facebook’s
usability principles. It also does a good job of using visual assets to communicate its
function (see Figure 11-8). The blue colors harken back to Facebook, but the
iconography lets people know that this app makes calls. Despite being a predominantly
blue app, there isn’t much evidence of any Facebook branding here. The typography
alone makes it rather clear to users that they aren’t inside a Facebook-branded app, as
does the card interface (inspired no doubt by the preloaded iOS Weather app).

CHAPTER 11: Apps You Can (and Cannot) Build

12:10

® Martin Collins

{istory for Jay Week
A Martin Collins
™=

B Do you like Facebook Messenger?

BB Martin Collins
b Absolutely! The app offers free

VolIP calling & & &

ﬂ Let’s check this out! I'm calling

you, pick up the phone &*

Figure 11-8. Fone does a good job of communicating its function.

Flipboard

Flipboard is a popular reader app for the iPad (see Figure 11-9). It operates under the
supposition that much of the content you add to your Facebook profile or Twitter
timeline comes from online sources like blogs, magazines, and the Social Graph. The
app puts its focus on content, allowing you to read your RSS feeds, Facebook and
Twitter news, and your favorite online magazines. It also makes it easy for people to take
that content and share it with their network of friends.

Figure 11-9. Flipboard, the popular news reader app for the iPad, integrates Facebook APIs nicely.

Flipboard allows users to post Status updates, Tweets, and photos from anywhere
within the magazine (see Figure 11-10).

CHAPTER 11: Apps You Can (and Cannot) Build

Figure 11-10. Flipboard allows you to consume your Facebook news feed in a different format than any of the
Facebook sites or apps.

Flipboard’s Founder and CEO, Mike McCue, made a succinct explanation of what
makes a good social API project at the release of the latest iteration of the app, when he
said?:

“The people you’re connected to via your social networks are becoming
curators of the news and information that matters to you, an important
principle we are increasingly seeing in Flipboard. Many of our readers use
Google Reader and Flickr for news and photos curated by people they trust.
The full integration of these social networks takes us another step toward
realizing our vision of a social magazine that puts everything you care about in
one place.”

In other words, the Flipboard app isn’t just a one-way reader app. It allows you to
consume and produce content in the same place, and do it around content you’re
pulling in from elsewhere. In short, it’s apps like Flipboard that get fresh air into the
Facebook arena and keep our news feeds from becoming mundane.

Conclusion

There are probably more rules around Twitter and Facebook API integration than you
foresaw; some of them certainly surprised us. While you probably won’t incur any legal
trouble from violating most of these rules, Twitter and Facebook will probably get in

http://flipboard.com/press/flipboard-new-edition

CHAPTER 11: Apps You Can (and Cannot) Build

touch with you if you don’t follow their rules, asking that you redesign your app or lose
access to their APIs. Since the preceding pages have been rather dense, we’ve
produced a cheat-sheet that you can use while vetting ideas for your app.

First, here is a major rules cheat sheet for Twitter:

B Don’t use the Twitter API for purposes of monitoring the availability,
performance, or functionality of any of Twitter’s products and
services.

B Don’t use Twitter Marks in a manner that creates a sense of
endorsement, sponsorship, or false association with Twitter.

B Use or access the Twitter API to aggregate, cache (except as part of
a Tweet), or store place and other geographic location information
contained in Twitter content.

B Don’t have your client frame or otherwise reproduce significant
portions of the Twitter service. You should display Twitter content
using the Twitter API. (i.e., don’t create new Twitter clients that
operate like the Twitter app).

B Maintain the integrity of Tweets. There is a lot of information packed
into Tweets, even though they are just 140 characters long. See
Chapter 13 for Twitter Visual Design guidance.

B Always get permission before sending Tweets or other messages on
a user’s behalf. The fact that a user authenticates through your
application does not constitute consent to send a message on his
behalf.

m Always display a privacy policy with your service. Clearly disclose
what you are doing with information you collect from users.

m Clearly disclose when you are adding location information to a user’s
Tweets, whether as a geotag or annotations data.

B Don’t use business names and/or logos in a manner that can mislead,
confuse, or deceive users. For more information on the use of Twitter
Marks, see the trademark rules later in this chapter.

B Give end users without a Twitter account the opportunity to create a
new Twitter account.

B Only surface actions that are organically displayed on Twitter.

B Don't let your advertisements resemble or be reasonably confused by
users as a Tweet. For example, ads cannot have Tweet actions like
ReTweet, Favorite, or Reply.

And second, here is a major rules cheat sheet for Facebook:

B Focus on authentic sharing of user-generated, user-authorized
content.

CHAPTER 11: Apps You Can (and Cannot) Build

m Always ask users whether they want to publish a Feed story; don’t do
so automatically. Also, offer to publish a story only after the user has
taken a genuine action that may be associated with an award.

® Never pre-fill any of the fields associated with the following products,
unless the user manually generated the content earlier in the
workflow: Stream stories (the user_message parameter for
Facebook.streamPublish and FB.Connect.streamPublish, as well as
the message parameter for stream.publish), Photos (caption), Videos
(description), Notes (title and content), or Links (comment).

B Don’t use Facebook messaging as a channel for applications to
communicate directly with users.

B Don’t automatically reward users for Liking your Page. If you want to
reward people somehow for their fandom, you should make it clear
that Liking your Page allows fans—both new and existing—to become
eligible for current and future rewards.

B Never have your app automatically tag a user or his friends in a
photo.

B Tag a photo only with the expressed consent of the user on whose
behalf you are doing the tagging. Note that you must only tag images
where the tag accurately labels what is depicted in the image.

® Don’t provide users with the option to publish more than one Stream
story at a time.

Chapter

Ul Design and Experience
Guidelines for Social 10S
Apps

In the last chapter, we talked about all the rules and regulations that Facebook and
Twitter have conceived in the name of “protecting the user experience.” Of course,
those guidelines only address things that could reflect poorly on the platform. This
chapter offers a little guidance on how to make something that doesn’t merely satisfy
the letter of the law: an app that is actually intuitive to use.

If this is your first time designing an iOS app, this section is required reading. It will
address several sections of Apple’s Human Interface Guidelines (HIG), which are
especially important for social apps. It will also tell you how you can use visual and
interaction design correctly, avoiding both user confusion and trademark conflicts.
Follow these rules, and you’ll get great feedback from users—and no hassling from the

Twitter and Facebook platform reps.

We, the authors, believe the best iOS apps generally follow Apple’s HIG, except where
they purposely diverge to make an improvement upon the interface. In other words, we
believe the best design should win, and developers can and should replicate each
other’s best interactions in the hopes of creating organic Ul standards.

What we’re really saying here is that learning the rules is crucial if you’re going to be
empowered to break them. If you’ve designed apps before, then this chapter is optional.
However, you may want to page through it briefly to review certain paradigms.

Ul Basics for Facebook and Twitter

This chapter begins with some very basic advice about social app design on iOS. The
official Twitter and Facebook apps (and their legions of existing app developers) have
standardized the interaction and visual design of these apps, so users have very high

235

CHAPTER 12: Ul Design and Experience Guidelines for Social i0S Apps

expectations for any Ul you design. Following the advice of this chapter will help you do
right by the user and avoid the wrath of all the rules we discussed in Chapter 11.

To start, here are two essential pieces of advice:
B Be careful how you handle accounts upon setup.

B Allow users to sign up, sign in, and sign out from your app with both
Twitter and Facebook API integrations.

We'll begin by looking at how you handle accounts when you set them up. Showing
users an error or a blank view simply because they haven’t logged in yet fosters a bad
user experience. We hate to pick on anybody, but here is an anonymous Twitter app we
found on the App Store. At startup, it looks like the image shown in Figure 12-1.

Warning

Please set your username and
password.

W

Figure 12-1. An error should never be the first thing a user sees in your app.

Showing the user an error that says “Warning” when first starting up is a lame way to
introduce the user to your app. It gets worse. If you click OK and fail to enter your
account information in this app (buried in More » Config, in this case), you simply get a
blank timeline the next time you start the app. This is also not a great way to handle user
accounts.

A better approach to the startup sequence can be seen in Twitterific (see Figure 12-2).
This app also happens to be a good segue into our second, perhaps insultingly basic
piece of advice.

CHAPTER 12: Ul Design and Experience Guidelines for Social i0S Apps

uill AT&T = 3:04 PM

, Twitterrific

Sign in to get started:

Sign up now »

a|wE[R|T|v|u|t]o]p
Als|o|FlaH|J|K|L
o z|xfc]vis|nmi

Figure 12-2. Twitterific’s signup screen presents itself nicely.

That is, you should allow users to sign up, sign in, and sign out from your app with both
Twitter and Facebook API integrations. Both platforms ask that you do this, and it’s only
fair to users to follow through on it. Similarly, your app should be equipped to handle a
scenario where the phone is offline upon launch or where the network connection fails
during sign-in.

Attention to Detail: Start with the Icons

Design is paramount on iOS, so your attention to the detail of visual assets should be
scrupulous. We'll begin by making sure you know the appropriate dimensions for
iconography. This is your app’s calling card to the world, so it must have the correct
dimensions if it’s going to look good on a Retina display.

Here are the proper icon sizes for both the iPhone and iPod:

B iPhone 4 icon: 114x114px (the old standard iPhone icon resolution
was 57x57, which is the minimum acceptable size).

B App Store icon: 512x512px
B Spotlight Search: 29x29px
B iPhone 4 Spotlight: 58x58px

CHAPTER 12: Ul Design and Experience Guidelines for Social i0S Apps

Apple’s required icon sizes in a table below.

Table 12-1. Apple’s required icon sizes

Image Size for iPhone, iPod Size for iPad Guidelines

Touch (pixels) (pixels)
Application icon 57x57 T2x72 “Application Icons”
(required) 114 x 114 (high resolution)
App Store icon (required) | 512 x 512 512 x 512 “Application lcons”
Small icon for Spotlight 29x29 50 x 50 for Spot- “Small icons”
search resul;s ca’nd Settings| co . g thigh resolution) | light search results
(recommende 29 x 29 for Settings
Document icon 22x29 B4 x 64 ‘Document Icons”

(recommended for custom

44 x 58 (high resolution) | 320 x 320
document types)

Web Clip icon 57 x 57 T2x72 “Web Clip lcons”

(recommended for web . ;
applications and websites) 114 x114 (high resolution)

Tooclbar and nawvigation Approximately 20 x 20 Approximately 20 x | “Icons for Navigation
bar icon (optional) Approximately 40 x 40 20 Bars, Toolbars, and Tab
Bars”

(high resolution)

Tab bar icon (optional) Approximately 30 x 30 Approximately 30 x | “Icons for Navigation

Approximately 60 x60 30 gars:‘ Toolbars, and Tab
(high resolution) ars
Launch image (required) | 320 x 480 Partrait: “Launch Images”

640 x 960 (high resolution)] 768 x 1004

Landscape:
1024 x 748

The largest visual asset you’ll need to make here is 512 x 512 pixels. This is the graphic
that is displayed when the app is being viewed in iTunes Cover Flow or when it’s on a
banner atop the App Store. In general, start all your icon designs at 512 pixels and
adjust them to the required size. Simply scaling down a single icon to other sizes will
result in blurry icons.

NOTE: PNG format is recommended for all images and icons. The standard bit depth for icons
and images is 24 bits (8 bits each for red, green, and blue), plus an 8-bit alpha channel. Although
you can use alpha transparency in the icons for navigation bars, toolbars, and tab bars, do not
use this feature in app icons. You do not have to restrict yourself to Web-safe colors.

CHAPTER 12: Ul Design and Experience Guidelines for Social i0S Apps

Here are the iPad standard app sizes:
B Application icon: 72x72px
B App Store icon: 512x512px
B Spotlight Search: 50x50px
B Settings icon: 29x29px

NOTE: The App Store only accepts applications with PNG files for icons.

You don’t have to add gloss to your icons; it happens automatically. There’s a Boolean
switch you can use to toggle the glossy effect, if you want the unvarnished look.

The same goes for the rounded corners on app icons: leave your graphics with
perpendicular corners and they’ll automatically be rounded.

Show All Kinds of Feedback

Feedback is defined as any sound, vibration, or visual indicator that some process is
under way. Showing feedback is important, especially on a touch device where there is
no tactile sensation to manipulating on-screen objects. It’s also important to show
feedback when your app is doing something of its own volition, such as automatically
loading new Tweets.

Apple says that every user action should show some perceptible change on the screen—
even if it’s just a shadow on a depressed button. Apple also wants you to show an
activity indicator when an operation takes more than a few seconds.

Another kind of feedback is animation. Twitter says that animations can help “enhance
readability,” and Apple’s HIG says that those animations should be “subtle and
appropriate,” and should serve one of the following purposes:

B Communicate status.

B Provide useful feedback.

B Enhance the sense of direct manipulation.

B Help people visualize the results of their actions.

Apple warns you to use animations conservatively because they have a tendency to feel
annoying when used gratuitously. One other thing: Apple says you should strive to make
animations consistent with those in built-in iOS apps.

However, in practice many developers break from Apple’s use of animations in order to
make what they consider to be improvements upon a given interaction. One example—
pioneered by the official Twitter app’s developer—is the pull-to-refresh indicator, which
has been copied over and over by developers (including those at Facebook). You can
see it in action in Figure 12-3.

CHAPTER 12: Ul Design and Experience Guidelines for Social i0S Apps

will AT&T T 3,& 12:02 AM =
facebook Most Recent
Photo [5] status £ Check In
Updating...

”\

U Last updated: 4/19/11 12:02 AM

u Riley McDermid Yes, Will Learned, |
do write for the New York Times :)

Investment Banks Could Be
Silicon Valley’s New Best

Friend, Says VC ﬁ
nytimes.com

9 minutes ago

2 people

&5 Will Vaya is now friends with Naris
Aruksakunwong and Wasina Nititawan.

10 minutes ago

[@ Alexandra Dane Klausner and 17 other
friends changed their profile pictures.

Figure 12-3. The Facebook app shows users when it’s loading new information.

Note that it’s unusual for a single developer’s innovation to spread so widely, so you’re
very unlikely to make your mark in the annals of iOS design by upending some very
common system animation. But if you feel strongly that your app justifies a departure
from the HIG and from the App Store’s design elite; then, by all means, give it a shot and
see what kind of feedback you get during testing.

Also note that the updating indicator isn’t the same as the activity indicator the app uses
to show a Wall Post is in progress (see Figure 12-4). In the latter case, a simple iOS
activity indicator is used to show the pull-and-release Refresh control has been
activated and that posts are refreshing. (You can read about what your app should do if
the phone is offline in Chapter 8.)

CHAPTER 12: Ul Design and Experience Guidelines for Social i0S Apps

faCEbook Most Recent

Photo [5) status L. Check In

U

Riley McDermid Yes, Will Learned, |
do write for the New York Times :)

Investment Banks Could Be
Silicon Valley’s New Best
Friend, Says VC ﬁ

nytimes.com

9 minutes ago

iy 2 people

&5 Will Vaya is now friends with Naris
Aruksakunwong and Wasina Nititawan.

9 minutes ago

[@ Alexandra Dane Klausner and 17 other
friends changed their profile pictures.

L S Y s

ENTEA RAST @ "0
Figure 12-4. The Facebook progress wheel

In iOS, sound is a second-class medium for feedback because Apple believes there are
too many scenarios where the feedback can’t be registered because the environment is
too loud. Vibration is a more reliable feedback mechanism, but it should only be used for
the most important notifications. They can’t be too frequent, either. And users must be
able to turn them off.

Facebook gives you the option of using both sound and vibration. It also uses the
phone’s accelerometer input with the Shake to Reload feature (see Figure 12-5).

NOTE: Facebook follows Apple’s design guidelines by keeping these feedback preferences in a
pane in the system Settings app. For more about preferences, see the “Present Settings in the
Standard Way” section later in this chapter.

CHAPTER 12: Ul Design and Experience Guidelines for Social i0S Apps

Ll ATET 2 12:27 AM =33

4 Settings Faceb()o

General

‘ Shake to Reload W

Chat and Message Alerts

’ Vibrate OFF
Play Sound | OFF

| Push Notifications >
‘ Version 3.4
1 About >

Figure 12-5. Facebook keeps a few set-and-forget preferences in the system Settings app.

Touch Targets and Text

The minimum size of a touch target in iOS is 44 x 44 pixels. Be sure to leave adequate
padding between controls; and, as we said in the preceding section, don’t crowd the
screen with controls. For example, we like the way TwitHit situates its core task right in
the middle, as shown in Figure 12-6.

CHAPTER 12: Ul Design and Experience Guidelines for Social i0S Apps

mll ATET 7

@chrisdannen TwitHit

4

‘
~
\

-
TwitHit

Figure 12-6. TwitHit makes the main task obvious.

Remember to make all your controls tappable and to pay attention to their labels. You
can find guidance on labeling—and the use of trademarks and iconography—in the
sections that follow.

Prototype and Test

Apple heavily recommends user testing before submitting your app to the App Store.
This is especially vital in social app design. If you’re building apps with Facebook or
Twitter, be sure to download other apps that use the APIs (many of which we’ve
discussed in this book already). See how they handle certain operations and how they
distinguish themselves visually. Also, ask your friends and colleagues what they like
about various other apps, and then let their feedback inform your design process. Xcode
is very flexible when it comes to fine-tuning apps, and it's easy to iterate a few times to
get things right.

CHAPTER 12: Ul Design and Experience Guidelines for Social i0S Apps

What the User Wants from Your App

Here are seven essential areas that you should prioritize when you’re designing your
app:

Content

A logical path

Obvious settings

Branding

Brevity

A license agreement
B Appropriate iPad design

In the sections that follow, we’ll take a look at each of these design principles and how
you can leverage them in your app.

Content

Facebook and Twitter both revolve around two core tasks: consuming and creating
content in the broad social graph.

If your app can post, it should present users with a clean, spacious interface for entering
text or media, without a lot of other controls in or around the text box. Although it’s not a
totally minimalist design, we like the way TweetBot presents the creation of a Tweet.

If your app pulls in information from either of the Facebook or Twitter APIs, it should be
presented in appropriate way. For photos, this means your app should be shown full-
screen with controls that are translucent and disappear when they’re not being used.
For text, this means legible typefaces.

A Logical Path

The official Twitter and Facebook apps can feel labyrinthine in their complexity;
however, they manage it well. Twitter manages its complexity with a dynamic
application bar, whereas Facebook does so with its “grid” Ul. But, as we’ll discuss later
in this chapter, you can’t replicate either of these strategies if your app is complex. Read
on to learn how to design interactions around Twitter and Facebook content.

Obvious Settings

Apple says developers should avoid putting their app’s settings inside the app itself;
rather, they should opt for a pane inside the system Settings app. However, many
popular apps that use both Facebook and Twitter APIs don’t follow this convention,

CHAPTER 12: Ul Design and Experience Guidelines for Social i0S Apps

often because they find the System Settings API too limiting. Our suggested
compromise: Pick set-it-and-forget-it options, stick them in the Settings app, and put
more commonly used options inside your app. Many users will get impatient if they have
to leave your app to edit their account information or play with visual display options.

The official Facebook app actually follows the convention we just described, whereas
the Twitter app handles all its settings over a couple of screens inside the app (see
Figure 12-7).

will AT&T 2 1:16 AM will AT&T 2 1:14 AM
Accounts Settings

. chrisdannen > - chifisdanan
Notifications >
Messages, Mentions & Replies
Display Name Username >
Font Size 15 pt >
Advanced >
Manual >
About >

Figure 12-7. Twitter handles its preferences inside the app.

Branding

You should use colors, styles, and customized art and animation to create a look and
feel that is unique to your app. This is how users distinguish you from other developers
and your app from those of your competitors.

Brevity

Label things with short, specific terms. If you can’t think of a reasonable label for a
control, consider using one of Apple’s system icons or a symbol that users will
understand from either the Facebook or Twitter platforms. Also, consider a license
agreement or disclaimer.

CHAPTER 12: Ul Design and Experience Guidelines for Social i0S Apps

A License Agreement

Okay, maybe users don’t want a license agreement. But both Twitter and Facebook say
they require developers to show users a license agreement. For the record, Apple says
it’s optional, so we say play it safe and write one. If you do include a EULA, don’t ask
users to agree to it upon first launch. (Do ask for permissions for the use of their location
and Push notifications upon first launch, however.) Instead, you should give users a
chance to use the app before asking them to accept your terms and/or put them in the
Settings pane of your app.

Appropriate iPad Design

If you’re developing for iPad, remember to avoid the temptation to create complex
hierarchies or nested headings in your app’s navigation stack. Also remember to use the
Popover control for modal tasks and to move toolbar content to the top of the screen.

Make Usage Easy and Obvious

As we said in the introduction to this chapter, iOS design should always give primacy to
ease of use and learning. According to Apple, you can ensure you adhere to this
principle by doing the following:

B Reduce the set of controls to only the most common and useful set.
For additional options, use a More button or system-standard Actions
button.

B Use standard controls and gestures appropriately and consistently, so
that they behave the way people expect them to.

B Label controls clearly, so that people understand exactly what they do.

In iOS apps, this is trickier than it seems. Users are already accustomed to dozens of
different Ul paradigms from using the official Twitter and Facebook apps. When they
arrive in yours, they have certain expectations for what controls are called; the
nomenclature of the labels; and the core capabilities of your app.

Therefore, it’s important that you strive to use terminology correctly and avoid deviating
from standardized interactions. In Chapters 13 and 14, we’ll delve deeper into the
proper use of terms, trademarks, and other branding.

Conclusion

Now that we’ve reviewed the foundation of what makes a good social app design, you
may consider flipping through the rest of Apple’s Human Interface Guidelines if you've
never read them.

Once you’'re ready, proceed to the next two chapters, which you can think of as Human
Interface Guidelines for Twitter and Facebook, respectively.

Chapter

Twitter Ul Design

Because so many Twitter clients already exist on iOS, there are already a number of
design paradigms out there that you should be aware of when you create your app.

This section will discuss the visual, navigational, and interactional paradigms that we
believe you should avoid, revise, or pay homage to.

Usability Priorities

If you’re going to design a Twitter API project with an adequate user experience, you
should get your priorities on paper first. For most Twitter API projects, this means
putting the most time and energy into the following:

B Loading and scrolling: What is today the official Twitter app for iOS
began as Tweetie, a one-man project devoted to one key feature: fast-
scrolling Tweets. Since Tweets are a centerpiece to most Twitter apps,
you should make lists, content, and Tweets load as quickly and
smoothly as possible.

B Using images, URL shorteners, and Geo-tagging: If your app creates
Tweets, these three features have become standards and are
expected anywhere a Tweet is made.

B Keeping users inside your app: Tweets are attached to schemas of
actions and content: pictures, contacts, URLs, Retweets, @replies,
and so on. Try to handle all relevant operations inside your app,
without resorting to Web views or launching one of the system apps.
Ejecting users from your app is confusing and it slows them down.

B Honoring privacy first and foremost: Don’t print Tweets without
permission from the author. Use real Tweets from real accounts that
are operated internally or that you have permission from the user to
display. When showing example content, always use screenshots of
your own Twitter profile (with your own Tweets).

247

CHAPTER 13: Twitter Ul Design

Anatomy of a Tweet

Twitter is supremely specific about how it wants Tweets displayed. In fact, it has even
specified that we should capitalize Tweet when writing a book like this. You can see how
Twitter expects Tweets to be displayed in its “Anatomy of a Tweet” graphic, which is
from the following URL (see Figure 13-1):

http://dev.twitter.com/pages/display guidelines

Tweet text, 140
characterz or
Authors Twitter usemame, fewer
linked to their Twitter profile

Preview user's
Twitter profile

Author's Twitter
avatar, linked to Authors full name
their prafile |

Haghtags link te
twitter.com search
results for the

) [®) Q X nt
chrisdannen chris dannen 5 SRS
Why @ PayPal Doesn't Care About #NFC ©
Chttp:/fbit ly/gYCQj5 @fastcompany o
17 Mar 7.7 Favorite T3 Retweet % Reply
- 0
All URLs in the Tweet Mentions of other Twitter
text must be linked 1o . - users link to their Twitter
the original URL given Tlrne:.!amp links ta Sava tweat to your profiles
by the APl and the twaat's Tuitter-hosted favorntes, ratweet to your
! parmalink page followers, reply to author

provided Display URL
should be displayed as
an anchor for the link

Figure 13-1. The “Anatomy of a Tweet,” according to Twitter’s official design guidelines

Let’s examine all the elements shown in Figure 13-1 in greater depth:

1. Tweet Author: Twitter says you must present the handle of a user’s
Tweet; however, displaying a user’s real name next to her handle is
optional. Tapping the username should link to the user’s Twitter profile,
preferably within your app. Twitter design guidelines dictate that the
username and the real name (if you show it) should be in different styles.
Don’t put an @ symbol in front of a user’s handle.

2. @mentions: Mentions of other Twitter users inside a Tweet should be
linked to their user profile. Tapping that username should lead to the
profile of that user, preferably within your app.

3. Hashtags: If a user includes a hashtag in a Tweet, it should link to a
Twitter.com search for that query term inside your app.

4, URLs: URLs in a Tweet should be presented as tappable hyperlinks to
the location passed through the API.

CHAPTER 13: Twitter Ul Design

5. Branding: If your app shows a single Tweet outside a Twitter timeline or
other relevant context, Twitter asks that you put the Twitter wordmark or
Twitter bird somewhere on the image. If you are showing a group of
tweets outside a Twitter timeline or other relevant context, Twitter asks
that you put the words “Content From Twitter” nearby. You will learn
more about the Twitter bird and wordmark later in this chapter.

Note that Twitter says it can make exceptions to these rules if you email it to seek
approval. Email your requests to trademarks@twitter.com.

When composing a Tweet, you should be aware that there are a few additional elements
not pictured:

1. Tweet box: A view for composing a new Tweet should always be
presented with the “What’s Happening?” prompt above it.

2. Tweet button: If your app is posting content only to Twitter, the button
that executes the task should be labeled, “Tweet.” If the post is being
pushed to another service in addition to Twitter, label the button,
“Update.”

3. Character count: Every blank Tweet should have a character counter in
view that counts down from 140 characters to show how many
characters are still available.

Suggested Components

In addition to the preceding “requirements,” Twitter also has a bunch of suggested
design guidelines that you may (or may not) want to follow. The following section
reproduces Twitter’s official suggestions, and balances them with examples from apps
that ignore these suggestions for the better:

B Avatar and alignment: Twitter likes developers to display the user’s
avatar on the left side of the Tweet. Other Tweet content is then
supposed to be aligned-left, immediately to the right of the avatar. The

avatar links to the user’s Twitter profile at
http://twitter.com/username.

B Counterpoint: Tweetbot, one of the most visually distinctive
Twitter clients in the App Store, chooses to put the avatar below
the Tweet (see Figure 13-2). It works.

CHAPTER 13: Twitter Ul Design

ulll AT&T 7 4:00 PM

Timeline Detail

Apr 18, 2011 at 3:15 PM via TweetDeck

The Big Thirst: One Water
Statistic We Ought To Retire
http:/bit.ly/gDfO10

EAST Fast Company

@MPANY @fastcompany

4\ Related >

13 Retweets >

Figure 13-2. Tweetbot presents Tweet details in a non-conventional way, and we think it works nicely.

B Timestamp and Permalink: “This information can be shown either
relative, e.g. ‘2 minutes ago,’ or absolute, e.g. ‘8:45 AM, Jul 8"). The
timestamp should be on its own line after the Tweet text and styled
differently to be less prominent than the Tweet text (lighter color
and/or smaller size). The timestamp should also link to the Twitter
hosted permalink page for the individual Tweet.”

B Counterpoint: Twitterific technically adheres to this suggestion
(see Figure 13-3), but only barely: the typeface on the timestamp
is only about 1pt smaller than the typeface of the Tweet itself.
However, the padding between the timestamp and the Tweet
accounts for enough of a distinction. Putting the timestamp
above the Tweet puts context first.

CHAPTER 13: Twitter Ul Design

alll ATE&T 9 4:18 PM ==

‘ Pete Cashmore
{) 1 hour ago
[[}

Nt

Music Monday: Laptop Band
Connects With Artist Via YouTube
To Create Painterly Music Video -
http://on.mash.to/hGooHz

#musicmonday

More Actions

Figure 13-3. Twitterific presents Tweet details in a conventional way.

B Tweet Actions: “Reply, Retweet, and Favorite actions should always
be available from a Tweet, and should be displayed with their
respective action icons. They should be arranged left to right as Reply,
Retweet, Favorite.”

B Counterpoint: Alimost every app that features the Twitter API
presents these Tweet actions in a different way. We like Twitter’s
suggestion, but sometimes hiding less-used controls makes for a
cleaner interface. Both Tweetbot and Twitterific do this in Figures
13-2 and 13-3, respectively.

B Source: “Along with the timestamp and permalink, you may choose to
display the client or means by which the Tweet was posted (e.g. ‘from
web’ or ‘from Twitter for iPhone’). If client is supplied, please make
sure it links to the source page URL provided.”

B Counterpoint: This is only relevant if your project is Twitter-
centric. If your app is more interested in the content of certain
Tweets (as opposed to the full Twitter experience), you probably
don’t need to append the client to a Tweet. Tweetbot does (see
Figure 13-2), whereas Twitterific does not (see Figure 13-3).

CHAPTER 13: Twitter Ul Design

B Multiple Tweets: “If showing multiple Tweets at once, they can be
visually separated by horizontal lines, empty spaces, or alternate
background colors. The empty space should be proportional to the
overall height of the Tweet itself.”

B Counterpoint: In our opinion, this guideline shouldn’t be optional.
It’s hard to think of a context where it would be fitting to present
Tweets as anything but a list of discrete items. Twitterific
presents Tweets nicely (see Figure 13-4).

wlll AT&T 3:05 PM =

2
chrisdannen
N

Big service, small price.
Email marketing & surveys
with Emma. Try Emma
now!

Chris Luzader

SupaBoy Handheld SNES Gets
Priced And Dated http://bit.ly/
iamDsz

, Pete Cashmore
Music Monday: Laptop Band
Connects With Artist Via
YouTube To Create Painterly
Music Video - http://on.mash.to/
hGooHz #musicmonday

= Samuel Lemieux

¢

Figure 13-4. Twitterific’s timeline

B Chronological order: “It usually makes sense for Tweets to be ordered
in reverse chronological order (latest first), but we understand that this
might not always be the most relevant way to arrange Tweets. When
shown as search results or other criteria (keyword, user, or other
editorial constraints) Tweets may be ordered by those criteria.”

B Counterpoint: Actually, it’s hard to find a Twitter API project on
the App Store that orders Tweets by any criteria other than by
how recent Tweets are. Search is the only salient exception.

CHAPTER 13: Twitter Ul Design

(Not) Using Twitter Colors

Colors are a major way that users will identify functionality in your apps. They’re also an
intuitive way to associate yourself with the Twitter platform. However, Twitter really
wants you to minimize the extent to which you use its color palette and its trademarked
logos, buttons, terms, and icons.

As a result, designers of Twitter API projects are less slavish to the Twitter color scheme
than Facebook developers are to their platform’s color scheme. Perhaps in the hopes of
avoiding Twitter’s ire, Twitter APl apps tend to be more diverse in their iconography and
logos.

For reference, you can find some examples of Twitter’s own typography and logo art in
Figure 13-5. These buttons are fine for use on the Web, but don’t use them in your iOS
app—unless they link back to Twitter.com or are used to indicate compatibility with
Twitter. If you disregard these requests (which are summarized in the section below
entitled “Using the Twitter Trademark”), you may end up in some trouble. If you want to
use a bird theme or related assets, you’ll have to design or provide them yourself.

== o

FOLLOW ME ON kwitter Ewitter 2 A

v o o

Figure 13-5. You can use Twitter’s web buttons in a website—but not in your i0OS application, unless under
specific circumstances

Create Theme Elements

Depending on how reliant your app’s functionality is on the Twitter API, you may find
yourself in a position where your app looks too much like the official Twitter app.

That’s why Twitter gives designers this pointer: you should design your site with unique
branding and logos.

Twitter also asks that you adhere to the following:
B Don’t copy the Twitter look and feel.

B Don’t use anything other than the most current versions of the Twitter
logos, where appropriate.

B Don’t use any other artwork from the Twitter site without explicit
permission.

B Do create your own buttons or marks using Twitter’s logos.

CHAPTER 13: Twitter Ul Design

For reference, Figure 13-6 shows the various aspects of the official Twitter app,
including the timeline (leftmost image), a Tweet (center image), and a user profile
(rightmost image). You need to create your own visual designs and design interactions
that don’t mimic the ones shown in this figure.

il ATET & 10:13 PM 2 il ATET T 10:13 PM =
- \>), A ® : " -)
Mentions
«BWwieehiesg0g: MIA 12 fue moyq 20
291fMI[6L{IL[00 E
ast Company
g A nuidne: 'wb\@spCxA Fast Company 5 EAST @fastcompany
Ol | ME6POS SUQ {16 AS|E O} peiud iy @fastcompany Skl 42,735,591
wegpemi |
piA\ib 1 B Unfollow
qsf6 CouyLeq 43IV 320U Why No Amount Of Money Can
l . NUCKSLeq 3 pefs NUAs!|eq: Le|es2e Make 3DTV Successful fastcompany follows chrisdannen
Lecpssqet bit.ly/foNvfC by @ChrisDannen
P A\PraeA| #aswiud ;
1 C1ibOSIA v Cheseak ¥ itaUs F:s:l Company en:powerj mno;/aiﬁrs to
B0 L e N S Jeate s m R ;: ta engfebcopven ion and create the
l i opcedet uture of business.
(o} location New York, NY >
rgef Nbasseq: $\18\14 10:10 b web http://www.fastcompan... >
rosqua-
o — A 0 o
"MVLIEL & 3 10:43 b =

Figures 13-6. The official Twitter app UI, which you are not supposed to imitate

Using the Twitter Trademark

Twitter has published a list of dos-and-don’ts regarding its trademarks for developers
using the Twitter APL." What follows is a summary and analysis of the relevant points.

You may do the following:

B Use the current Twitter logo or current Twitter bird mark as a link to
the Twitter service.

B Use the current Twitter logo or current Twitter bird mark to show that
your product is compatible with Twitter.

B Make sure that you include a direct reference to Twitter when
mentioning Tweet (for instance, “Tweet with Twitter”) or display the
Twitter marks with the mention of Tweet.

B Manipulate the logos, unless it is necessary due to color-related
restrictions inherent in your app, like the black and white iOS toolbar.

You may not do the following:

"http://support.twitter.com/entries/77641

CHAPTER 13: Twitter Ul Design

B Use the marks in a way that might imply a false sense of partnership
with or endorsement of your brand.

B Distort or alter the Twitter marks in any way.

B Use the marks in a way that confuses the Twitter brand with another
brand.

B Use the Twitter bird as a spokesperson to carry your logos or
messaging.

Advertising in the App Store
Twitter also has the following guidelines about advertising in the App Store:

B Do use screenshots of the logged-out Twitter home page, the Twitter
About Us page, or even the @twitter profile page.

B Don’t use screenshots of other people’s profiles or Tweets without
their permission.

We Don’t Know You
Twitter also asks that you adhere to the following guidelines:

m Refer to Twitter when talking about the Twitter service or company,
and use Tweets (with a capital T) when talking about the messages or
updates on its service.

® Don’t make inaccurate statements about the Twitter service. (Duh!)

Don’t refer to Twitter in a way that implies partnership or endorsement.

Twitter Navigation Paradigms

Loren Brichter, the creator of Tweetie, the predecessor to today’s official Twitter app,
first conceived of his project as a simple scrolling project. As he said in 2009, he didn’t
do anything special with Tweetie except to make it fast and in keeping with the spirit of
Apple’s Human Interface Guidelines (which had not been updated with iOS guidelines at
that time):?

It was around the same time that his Verizon Wireless contract expired and he
finally got an iPhone. He started scouring the App Store. “| realized there are
no good Twitter apps,” he recalls. “But there are a billion bad ones.” He figured
he could probably write a better app. “What triggered me to do it? | was

2 jPhone Design Award Winning Projects by Chris Dannen, p.4 (Apress, 2009)

CHAPTER 13: Twitter Ul Design

playing with Twitterific, which | used, and everybody used. | thought: | wonder
why the scrolling is so slow? | wonder if | can make it faster.” In an hour, he
had built a prototype of a list of fast-scrolling tweets. Then, after a two-week
paroxysm of coding, he had built Tweetie, pictured in Figure 2-1, which is as of
this writing the most popular mobile Twitter client on any platform, and the
most popular Twitter app for iPhone.

The problem isn't with how the other apps used Twitter's API, it's with the way
they interacted with the iPhone OS,” he says. “Either they were doing
something completely custom, or completely wrong.” His antipathy wasn't
even aimed at Twitterific, though it was the immediate catalyst for Tweetie. “To
tell you the truth, | didn't have a lot of beef with Twitterific,” he says. “They
were the ADA winner from the year before, and everyone loved the app. It just
didn't jive with the way | used Twitter.”

When he rebuilt Tweetie as Tweetie 2 from the ground up, he completely re-thought the
Ul. One surprising addition was the inclusion of a dynamic application bar at the bottom of
the screen. You can see this application bar change between the views in Figure 13-7.

Why No Amount Of Money Can
Make TV Successful

by

Fast Company empowers innovators to
challenge convention and create the
future of business.

location New York, NY >

web http://www.fastcompan... >

- Y

“m

Figure 13-7. Twitter’s dynamic toolbar goes against iOS conventions. On the left, you see the bar as shown in a
user profile; on the right, you see the bar as shown when viewing a Tweet.

Unlike in preloaded iOS apps, the application bar in Tweetie 2—which would become the
official Twitter app—had icons that would change, depending on what the user was

viewing. When asked why he departed from Apple’s precedent in Tweetie 2, Brichter
said:®

® Ibid.

CHAPTER 13: Twitter Ul Design

Having an application-global tab bar is extremely limiting. In Tweetie 2 I'm
optimizing for navigation stack *depth*. By having a screen-specific bottom bar
that morphs depending on current context you can expose a massive wealth of
information without requiring the user to deal with excessive drill-down.

Apple doesn't do this. In fact, they don't recommend doing what I'm doing.
While | think Tweetie 2 is a great example of an iPhone-ish iPhone app, I'm
bucking the HIG because | think Apple's recommendations are too confining. A
shallow app can get away with an application-global tab bar. A deep, rich app
can't. And Tweetie 2 is deep.

The tricks in Tweetie 2 let you explore massive amounts of information without
the tap... tap... tap... of pushing tons of view controllers onto the navigation
stack. As a quick example, say I'm looking at a tweet in my timeline. A user is
asking the Twitterverse a question. | want to check out responses. | can swipe
the tweet, tap the user details button, then tap the @ tab of the pushed user-
details screen. I'm viewing the responses to this user from everyone, and I'm
only a *single* view controller away from where | started.

Tweet list -> Recent user mentions

Without optimizing for navigation stack depth, imagine if | had to push a new
view controller for each navigation action:

Tweet list -> Tweet details -> User details -> Recent user mentions.
This stinks.

| don't use a normal tab bar in Tweetie 2 for these context-specific tab bars. |
draw them with custom code. | wanted them to be familiar, but different
enough that users didn't expect the standard application-global tabs.

Although Brichter’s way is now standard in the official Twitter app, he doesn’t
recommend that most Twitter API projects follow this lead. It’s only because Tweetie
was attempting to duplicate all the functionality of the Twitter website (and then some)
that it became complex enough to warrant a dynamic application bar. Now that broad
duplication of Twitter functionality is against Twitter’s developer terms, Brichter says it’s
likely that you won’t need to follow this paradigm in your app:

| don't recommend everyone follow my lead. Twitter is *incredibly* rich with
information. Chances are most other apps are shallow enough and will be good
enough using an application-global tab bar or just simple drill-down.*

* Ibid.

CHAPTER 13: Twitter Ul Design

Twitter Logos and Icons

Twitter offers the following logos and icons for download, so that you can accurately
display Twitter branding in your app, where appropriate. (The rules and guidelines
regarding the use of Twitter branding materials are discussed in the preceding sections
of this chapter.) You can download the graphics shown in Figure 13-8 at this URL:

http://twitter.com/about/resources/logos

Full Twitter logo for light backgrounds Full Twitter logo for dark backgrounds
PNG (bitmap) - EPS (vector) PNG (bitmap) - EPS (vector)

Full Twitter logo in black Full Twitter logo in white

PNG (bitmap) - EPS (vector) PNG (bitmap) - EPS (vector)

Twitter wordmark for light backgrounds Twitter wordmark for dark backgrounds
PNG (bitmap) - EPS (vector) PNG (bitmap) - EPS (vector)

For light backgrounds For dark backgrounds Blue on white White on blue

PNG (bitmap) - EPS (vector) PNG (bitmap) - EPS (vector) PNG (bitmap) - EPS (vector) PNG (bitmap) - EPS (vector)

Figure 13-8. Twitter logos and icons, which you’re meant to use sparingly

As discussed previously, Twitter strongly discourages the use of its colors and logos in
third-party apps. This fact has left a lot of developers struggling to somehow make their
icons reminiscent of Twitter without actually directly referencing the company. Various
birds have become the standard fare for Twitter clients (see Figure 13-9); but now that
no new clients are permitted by Twitter’s new terms, Twitter will have an even smaller
visible presence in the App Store. In keeping with these guidelines, make your Twitter
iconography unique and match it to the visual designs for your app.

CHAPTER 13: Twitter Ul Design

HootSuite for Twitter

rg %) Social Networking
Py Updated Mar 11, 2011

x v FREE v
Trickle for Twitter Tweet - iPad edition fo..
Social Networking Social Networking
Updated Feb 25, 2011 Updated Apr 04, 2011
W | $0.99 BUY | v J (_FREE || v
Twitterrific for Twitter TweetTime for iPad - Twitt..
Social Networking 9 e Social Networking
Updated Mar 08, 2011 p Updated Sep 19, 2010
3 | FREE|[¥ L $2.99 BUY | ¥
e iTweetReply - Twitter ... Tweetings HD for Twitter
i Social Networking Social Networking
Updated Oct 01, 2010 t Updated Apr 11, 2011
. Wy $1.99 BUY | v $3.99 BUY ~
TwitBird Pro for Twitter Echofon Pro for Twitter

Social Networking 3 Social Networking
N‘ Updated Jan 22, 2011 Updaied Apr 08, 2011
' == Wr $2.99 BUY |~ $4.99 BUY

Figure 13-9. The Twitter brand, as paid homage to by various icons in the App Store

Splash Screens

Splash screens aren’t really necessary on today’s iOS devices, which load apps quickly.
However, you should test your app on multiple generations of devices. If an older iOS
device experience lags, see what you can do programmatically to improve load times. If
there’s nothing to be done under the hood, consider adding a splash screen to your app
to welcome waiting users. It passes the time, and it offers you a second to present your
branding and make a good impression. If more than a moment or two is required to load
your app, consider moving out of the splash screen briskly and presenting a reduced-
functionality view of your app’s interface. Also, continue to show that your app is loading
information, and be sure to inform the user if there is a break in connectivity.

Visual Assets (a.k.a., the Exceptions)

The visual indicators shown in Figure 13-10 are available for download and allowed for
use in your app, per the guidelines discussed in this chapter. PNG versions, which are
preferred for iOS, are also available as sprites. To download these graphics, go to the
following URL:

http://dev.twitter.com/pages/image-resources

CHAPTER 13: Twitter Ul Design

Birds
16x16 32x32 48x48
» ¥ ¥
» ¥ ¥
lcons
Tweet Action Default State Hover State "On" State
Favorite w
Reply N -
Retweet Lo Lo

Sprites (available in .png)
Everything Favorite Reply Retweet
SR et et e s R R L] v 64 T

Figure 13-10. Twitter’s sprites, which are available for use in your app

Naming Your Project

Twitter has compiled a list of dos-and-don’ts for referencing Twitter when you name
your project, which we’ll cover in this section.®

Do the following when naming your project and referencing Twitter:

®http://support.twitter.com/entries/77641

CHAPTER 13: Twitter Ul Design

B Name your website, product, or application with something unique.
Uses of Tw- and Twit- are generally okay.

B Feel free to include language on your site explaining that your
application is built on the Twitter platform, so people understand your
product.

B Use Tweet in the name of your application only if it is designed to be
used exclusively with the Twitter platform.

Don’t do the following when naming your project and referencing Twitter:
B Use Twitter in the name of your website or application.

B Use Tweet by itself or in conjunction with a simple letter or number
combination (e.g., TTweet, Tweet, or Tweets).

B Register a domain containing twitter (or misspellings of twitter).

B Apply for a trademark with a name that includes Twitter, Tweet, or
similar variations thereof.

B Use Tweet in the name of your application if used with any other
platform.

Offline Display Guidelines

If you are making some kind of Twitter visualizer or plan for your app to be viewed on a
larger display via the iPad, then you should follow the offline display requirements
outlined in this section.

For example, you are permitted to do the following:

B Include the Twitter logo in close proximity to Tweets for the duration
that Tweets appear in a broadcast.

B Make sure that the Twitter logo is a reasonable size in relation to the
content.

B Include the username with each Tweet. If you have concerns about
user privacy or broadcast standards, please contact Twitter regarding
exceptions, unless you have a prior agreement with Twitter.

B Use the full text of the Tweet. If privacy or broadcast standards are
concerned, please contact Twitter regarding exceptions, unless you
have a prior agreement with Twitter.

And here are some things you should not do: delete, obscure, or alter the identification
of the user. You may show Tweets in anonymous form in exceptional cases, such as
concerns over user security. Showing unattributed data in aggregate or visualized form
is permitted, but you must still include the Twitter logo.

CHAPTER 13: Twitter Ul Design

To see Twitter’s complete list of offline display and broadcast media guidelines, go to
the following URL.:

http://support.twitter.com/entries/77641

Working with Notifications

Until Spring 2011, the official Twitter app dealt with notifications conservatively: it only
delivered a Push alert if you were pinged by an @reply or a direct message. Generally,
the authors agree this is really all the notifications a Twitter app requires.

However, in March 2011 Twitter introduced something called the QuickBar, which was
supposed to be a way for the editorial powers at Twitter to introduce a trending topic
(or, ahem, paid promotional Tweets) to the top of users’ timelines. Instead, it became a
raging source of user ire and is commonly nicknamed the Dickbar.

On an app that is a veritable godfather of iOS design, this was a major blunder. Outlets
everywhere panned Twitter’s folly, and they pummeled the company until it erased the
QuickBar from a subsequent update.6 Mac developer Marco Arment’s reaction on his
blog was particularly articulate and provided a sense of what’s so important about good
iOS apps: the clarity of purpose that underpins every screen.

Note that near the end of his rant, he evaluates the QuickBar against three criteria:
B Am | supposed to Tweet about this?
B Am | supposed to save this search?
B Am | supposed to read these Tweets?

These are the core functions of Twitter, so any feature that uses the API should be in
some way related to at least a couple of them. An edited version of Arment’s post
follows:”

Twitter’s official iPhone app, formerly Loren Brichter’s Tweetie and an
otherwise awesome client, got a lot of negative reactions from the recent
addition of the QuickBar, a mandatory trending-topics banner on top of the
tweet list. A lot of people really hate it, calling it the "dicker" and often
abandoning the Twitter app entirely because of it.

Its initial implementation as a floating overlay over anything you were doing in
the app was far worse. Now, it’s just at the top of the main timeline, and it
scrolls with the list. But it’s still offensive to most people who hated its debut,

®http://blog.twitter.com/2011/03/so0-bar-walks-into-app.html

"http://www.marco.org/2011/03/20/why-the-quick-bar-dickbar-is-still-so-
offensive

CHAPTER 13: Twitter Ul Design

because making it scroll with the list didn’t solve the problem of it being there
and being mandatory.

The reason Twitter added the QuickBar was, presumably, to be able to feature
ads, which show the “Promoted” badge.

If it only ever showed ads like this, | don’t think the response would be so
negative. The bigger problem is that it’s showing a random “trending” topic or
hash-tag most of the time. Here are a few of the topics I've seen in the last 24
hours:

LovatoAndGomez
ChrisBrownFAMEAIbum
Gus Johnson
#100factsaboutme
Wolverines

Cingular

GSM

#michigan

It’s a news ticker limited to one-word items, lacking any context, broadcasting
mostly topics that | don’t understand. What’s worse is that it’s shown in a
context—my Twitter timeline—that otherwise contains only content that I’'ve
(indirectly) chosen to put there. (I’'ve chosen who to follow based on what |
want to see in my timeline.) I’'m not interested in sports or celebrities or middle-
school survey trends, so | don’t follow people who overwhelm my timeline with
those unwanted topics.

Content that I've chosen to follow, and... Michigan. | don’t even know what
that’s supposed to mean. Presumably, there’s some bit of news happening
that’s relevant to the state of Michigan, and Twitter wants users to tap on this
disembodied word for a reason that’s not made clear to us.

So | tapped on it.

| see, from top to bottom: intentional spam, unintentional spam, and a random
person’s frivolous, meaningless tweet about sports that | don’t care about. (I
scrolled down and it only got worse.) | guess "#Michigan" is a trending topic
because something important happened with a Michigan sports team.

What am | supposed to do with this information?

Am | supposed to tweet about it? If so, why doesn’t the interface encourage
that? Even if | hit the (effectively invisible) New Tweet button from this screen,
my tweet isn’t prepopulated with “#michigan”, so whatever | say in response
won’t be included here.

CHAPTER 13: Twitter Ul Design

Am | supposed to save this search, which the interface does encourage, so |
can see this topic again in a few days or weeks or months, when it’s
presumably no longer coherent or useful? (Ignoring, for the moment, that it’s
neither coherent nor useful now.)

Am | supposed to read these tweets? If so, why haven’t stronger anti-spam
methods or human filtering mechanisms been employed to keep the stream
somewhat readable? As-is, it’s a huge and easily exploited spam target, and it
shows.

We don’t know Twitter’s true reason for adding the QuickBar. Presumably, it’s
part of a longer-term strategy. But today, from here, it looks like an extremely
poorly thought-out feature, released initially with an extremely poor
implementation, with seemingly no benefits to users.

This is so jarring to us because it’s so unlike the Twitter that we’ve known to
date. Twitter’s product direction is usually incredibly good and well-thought-
out, and their implementation is usually careful and thoughtful.

And in the context of this app, most of which was carefully and thoughtfully
constructed by Loren Brichter before Twitter bought it from him, we'’re
accustomed to Brichter’s even higher standards, which won Tweetie an Apple
Design Award in 2009. (I suspect he had little to no authority in the QuickBar’s
existence, design, or placement, and it’s probably killing him inside.)

The QuickBar isn’t offensive because we don’t want Twitter making money
with ads, or because we object to changes in the interface.

It’s offensive because it’s deeply bad, showing complete disregard for quality,
product design, and user respect, and we’ve come to expect a lot more from
Twitter.

Design Tricks from the Web App

There are some things about Twitter’s touch-oriented mobile Web app that put its native
iOS app to shame. We like the way it presents options to take Tweet actions (like
Retweet, Reply, and Favorite) without the need to slide aside the Tweet. It’s also cool
that composing a Tweet requires no buttons to operate: you simply place the cursor and
start Tweeting. Figure 13-11 shows the mobile Web app (left) and the native iOS app
(right) side-by-side.

CHAPTER 13: Twitter Ul Design

will ATET 2 2:58 AM « il ATET 2 3¢ 10:13 PM =

e Loading...
¥ Last Updated: 4/18/11 10:10 PM

Q

‘ TechZader
Home How To Play Arcana Heart 3 — Part

1: Choosing A Character & Arcana
f TechZader Microsoft aims for bit.ly/nL9ey1 #gaming

'beautiful PCs' http://bit.ly/eXfsMT " TechZader

less than a minute ago Uncharted 3 beta unveiled; release
date confirmed #gaming #sony

“;b =) wolfree Setting an example is bit.ly/ifpTBm
not the main means of influencing . mathewi
others, it is the only means. - 2“1 on Tweetbot and the value of being
Albert Einstein N truly unique: j.mp/ga5CXv
about 10 hours ago Saltwatertattoo
Retweeted by BradAcker22 “@missylee808: Why is the world so

Figure 13-11. Twitter’s mobile web app (left) compared to its iOS app (right)

Conclusion

Twitter’s zeal for rules and regulations is an understandable, if annoying, byproduct of
its emerging role as a kind of information infrastructure. And while that has severely
limited the way you can build your own Twitter experience, it has also opened up the
possibility for apps that do more than just display a rushing timeline. Unfortunately, this
means that a good Twitter API project might involve more sweat equity than it did when
Loren Brichter built Tweetie 1.

Next, we’ll discuss Facebook design conventions.

Chapter

Facebook Ul Design

The Facebook app is one of the App Store’s most unusual; it is also the most capable
client on any platform for the world’s largest social network. If it looks like an iPhone
within an iPhone, it’s because the Facebook platform is just as formidable as iOS.
Figure 14-1 shows the Facebook app’s iOS-like grid Ul.

uill ATE&T 11:05 PM £

- 4 A

News Feed Profile Friends

Messages Places Groups
31 [5 §
Events Photos

& Notifications

Figure 14-1. Facebook was the first major platform to reproduce the i0OS “grid” Ul inside an app.

Usability Priorities

Facebook API projects should have slightly different priorities than Twitter projects.
Those priorities should include the following:

267

CHAPTER 14: Facehook Ul Design

B Looking people up: Users query other users more frequently on
Facebook, and there is more information to surface, so give these
tasks primacy.

B Contacting and being alerted of contact: The Facebook app sends you
a push notification and/or a vibration for up to nine alerts. By contrast,
Twitter does two. Facebook is a lean-forward app with a highly active
user base. These users are used to being notified promptly and
communicating with alacrity. Figure 14-2 shows Facebook’s Push
notification options.

alll AT&T = 3:21 AM (-

" Facebook ' Push No

Messages g

Wall Posts OFF
Friend Requests OFF
Friend Confirmations OFF
Photo Tags OFF
Events OFF
Comments OFF
Place Tags OFF

Nearby Friends m

Figure 14-2. Facebook’s Push notification preferences are quite granular and let users interact quickly with each
other.

B Giving users context: Facebook is such a powerful platform that many
apps only reproduce select parts of the Web app’s functionality. This
may lead users to expect some tasks that aren’t present in your app.
You can ameliorate this by picking a descriptive name for your app
and by arranging core controls in a way that the user understands its
functionality intuitively. This is especially important to posting: users
must know where an item is going and who will see it. If you must, use
help prompts; however, use them inside the app, not as a pop-up
dialog box, as the MyPhone+ does (see Figure 14-3). For the record,
we also don’t recommend telling users to reboot after installing.

CHAPTER 14: Facehook Ul Design

Welcome

Welcome and thank you for
choosing MyPhone+!

In order to get started please take a
moment and sync your contacts
with Facebook.

We recommend using a WiFi
connection and rebooting your
device before the first time sync.

I ——
OK

Figure 14-3. Don’t do this.

Create Your Own UIAs we discussed in Chapter 11, Facebook’s terms make the
following stipulation (see Figure 14-4):

“Facebook site features cannot be emulated.””

If your app looks too much like Facebook and works too much like Facebook, you’ll
probably hear from respresentatives of Facebook. However, you might be interested to
know that the reasons for this actually benefit the user, as well as Facebook. Joe Hewitt,
the original developer of Facebook for iOS, explained Facebook’s reasoning:

The first version of the app did have the tab bar at the bottom, but |
took it out because | feel like Facebook is a platform in itself, and each
of the tabs were almost like apps in and of themselves that really called
for use of the full screen.

| had to look forward; we have a lot of new apps coming down the pipe,
and | felt like the model Facebook works on lends itself better to sort of
being a ‘phone’ in and of itself. Facebook has its own chat, phone book,
mail, photos, and applications, so squeezing it all into tabs made it feel

" http://developers.facebook.com/policy/

CHAPTER 14: Facebook Ul Design

too limited. Going with this model—t’'s a home screen just like the
iPhone home screen—will let it grow and become full-featured. It also
gives us room to add more apps within our app.

| haven’t really seen other apps that do [the grid], and | wouldn’t really
recommend that anyone else do it. Facebook is kind of unique in its
breadth and the amount of stuff people do on it. | really hesitated to
build in the grid for a while, but as | kept moving things around and
trying to make it all fit into the tab bar, | just felt like this was the best
solution. | was expecting more people to complain about it, but it seems
to have worked out pretty well.

Economy [of taps] is always a motivating factor, but the grid adds an
extra tap [because you need to press the grid button] versus the full-
time tab bar. That was a compromise | felt was necessary. There's
always that balance between screen clutter—-adding tabs—and the
number of taps.

What went into creating Facebook’s view controllers?

| did a lot of custom stuff. The app is built on an open source framework
| created called Three20, and it uses its own view controllers, all of
which | had to write. | had to try to reinvent the Apple photo browsing
app and the Apple Mail composing tool, among other stuff.?

FACEBOOK LOADING PROJECT?

This project shows how the Facebook app caches old information and checks for available services before
posting. Hewitt explained it like this:

Everything in the app works that way. There’s a disk cache so if you load
events, notes, or requests, it’s cached so when you go back to the app, and
we show the cached version. And as we show it, we try to load the latest
version. If it’s a week old—or some number of days, | forget the exact number—
the app will just show you “loading” and clear the old stuff.

2 /iPhone Design Award-Winning Projects/ by Chris Dannen (Apress, 2009)

CHAPTER 14: Facebook Ul Design

Before that system was in place, you were constantly looking at a little spinner
wherever you went—oading, loading, loading. | think it feels nicer to see
something right away that you can interact with while the new stuff is coming
in.

The code that follows is an excerpt of the Facebook app’s disk cache framework, which serves as a
replacement for Cocoa’s classes for fetching network data (in this case, from Facebook’s servers). Hewitt
has written the Three20 framework to allow the cache to be stored on disk. In Apple’s framework, RAM
would be required. Here is the code itself:

- (NSData*)generatePostBody {
NSMutableData* body = [NSMutableData data];
NSString* beginlLine = [NSString stringWithFormat:@"\r\n--%@\r\n", kStringBoundary];

[body appendData:[[NSString stringWithFormat:@"--%@\r\n", kStringBoundary]
dataUsingEncoding:NSUTF8StringEncoding]];

for (id key in [_parameters keyEnumerator]) {
NSString* value = [_parameters valueForKey:key];
// Really, this can only be an NSString. We're cheating here.
if (![value isKindOfClass:[UIImage class]] &&
I[value isKindOfClass:[NSData class]]) {
[body appendData:[beginlLine dataUsingEncoding:NSUTF8StringEncoding]];
[body appendData:[[NSString
stringWithFormat:@"Content-Disposition: form-data; name=\"%@\"\r\n\r\n", key]
dataUsingEncoding: charsetForMultipart]];
[body appendData:[value dataUsingEncoding: charsetForMultipart]];

}

NSString* imageKey = nil;
for (id key in [_parameters keyEnumerator]) {
if ([[_parameters objectForKey:key] isKindOfClass:[UIImage class]]) {
UIImage* image = [parameters objectForKey:key];
CGFloat quality = [TTURLRequestQueue mainQueue].imageCompressionQuality;
NSData* data = UIImageJPEGRepresentation(image, quality);

[self appendImageData:data withName:key toBody:body];
imageKey = key;

} else if ([[_parameters objectForKey:key] isKindOfClass:[NSData class]]) {
NSData* data = [_parameters objectForKey:key];
[self appendImageData:data withName:key toBody:body];
imageKey = key;

}

for (NSInteger i = 0; i < files.count; i += 3) {
NSData* data = [_files objectAtIndex:i];
NSString* mimeType = [files objectAtIndex:i+1];
NSString* fileName = [_files objectAtIndex:i+2];

[body appendData:[beginlLine dataUsingEncoding:NSUTF8StringEncoding]];
[body appendData:[[NSString stringWithFormat:
@"Content-Disposition: form-data; name=\"%@\";
filename=\"%@\"\r\n",

CHAPTER 14: Facehook Ul Design

fileName, fileName]
dataUsingEncoding: charsetForMultipart]];
[body appendData:[[NSString stringWithFormat:@"Content-Length: %d\r\n", data.length]
dataUsingEncoding: charsetForMultipart]];
[body appendData:[[NSString stringWithFormat:@"Content-Type: %@\r\n\r\n", mimeType]
dataUsingEncoding: charsetForMultipart]];
[body appendData:data];

[body appendData:[[NSString stringWithFormat:@"\r\n--%@--\r\n", kStringBoundary]
dataUsingEncoding:NSUTF8StringEncoding]];

// If an image was found, remove it from the dictionary to save memory while we
// perform the upload
if (imageKey) {

[_parameters removeObjectForKey:imageKey];

TTDCONDITIONLOG(TTDFLAG_URLREQUEST, @"Sending %s", [body bytes]);
return body;

}

for Facely HD for Facebook
Social Networking Social Networking
Updated Apr 03, 2011 Updated Apr 02, 2011
$0.99 BUY ¥ L7 5099 BUY v

FriendCaster for Facebook Friendly Plus for Face...

Social Networking Social Networking
Released Mar 19, 2011 Updated Jan 21, 2011
FREE || v $0.99 BUY ¥
’ Buddies Photos and C...
-? Social Networking
Updated Mar 02, 2011
n $2.99 BUY v m

Facebook for iPad with Ch...
Social Networking
Updated Apr 06, 2011
$1.99 BUY v Chat for Facebook wit...
Social Networking
AL B N Updated Feb 17, 2011
L7 3099 BUY v

Chatr for Facebook
Social Networking
Updated Mar 30, 2011 s SxRacehook i
rn
€3 (3099 8V ix Updated Feb 07, 2011
$1.99 BUY ¥
Ultimate for Facebook ...
Social Networking
Updated Apr 08, 2011
$3.99 BUY v

Figure 14-4. Facebook would prefer that you not crib from its visual designs, but lots of developers do it,
anyway. This is yet another reason to avoid doing so yourself.

0D

MyPad - Facebook for ...

Social Networking

Updated Feb 23, 2011
FREE v

CHAPTER 14: Facebook Ul Design

Themes and Icons

According to Facebook, you're not supposed to mimic Facebook visual design or its

iconography. However, that obviously doesn’t stop many developers from doing exactly
that. So what’s a new Facebook developer to do?

In our opinion, there are circumstances where a color scheme reminiscent of
Facebook’s is highly appropriate. If your app is going to provide extensive Facebook
functionality (in addition to other stuff, of course), then it might be instructive to users to
be in an environment that smacks of (but doesn’t replicate) Facebook (see Figure 14-5).

Third Party Resources

f facebook. = works
_7 - l

—
| —

[:E = 1

[s [

T —

e ——— e e O w— [oty

1
f

il Facebook GUI v1

Figure 14-5. If you must take inspiration, consider Facebook’s interaction design and its design conventions, and
try to pay homage to those.

Figure 14-5 shows a third-party set of Photoshop images. They're free to use. They’re
also meant for Web designers, but don’t let that stop you. These visual designs should
help you mock up your app or borrow certain aspects of the Facebook Ul that you like.
Remember not to borrow too liberally because reproducing the Facebook Ul in your app
is against the API’s terms and conditions.

You can download this free Facebook Ul kit from Surgeworks at the following URL:

CHAPTER 14: Facebook Ul Design

http://surgeworks.com/blog/design/facebook-gui-free-psd-resource

Create Theme Elements

To the extent that you’re capable of doing so, develop your own color scheme,
branding, logos, and iconography.

Not only does Facebook discourage developers from using its blue-and-white color
scheme, but common sense does, too. There is a dearth of quality iOS applications in
the App Store that use the Facebook API—but there is a wealth of awful ones. Most of
the bottom-feeding apps shamelessly mimic Facebook’s colors and iconography.
Copying Facebook isn’t just against the rules; it’s also a little low-end.

Fortunately, Facebook is still useful without the sanitary style sheet. Hootsuite, a social
aggregator, and Taptu, a reader app, are two applications that present Facebook
content in a unique way, using unique color palettes and branding.

Hootsuite

As you can see in Figure 14-6, Hootsuite’s teal color scheme looks more like Twitter
than Facebook. But its visual elements and its application bar are more like a weird
hybrid of the two social networks—and less like a copy of either one.

il ATET 2 11:02 PM =
. News Feed Z

Chris Dannen

® Victor Nguyen-Long
‘W. Chag Pesach Same'ach to my Jewish
. W J homies.

1 min ago

i 1 people

Alexis Ohanian
| hope UPenn is ready...

Practicing for my talk in Philly

tomorrow

www.youtube.com

Rocky | - Training (High Definition)
i 10 mins ag

Figure 14-6. Hootsuite combines Facebook and Twitter colors and conventions, which is its way of avoiding
looking too much like either.

CHAPTER 14: Facebook Ul Design

Taptu

Taptu is an app for the iPhone and the iPad that funnels RSS feeds, social news, and
other content into streams that are easier to read than traditional readers. As you can
see in Figure 14-7, the Facebook feed gets packaged just like any other feed, with
Status Updates (and their author and timestamp) presented in a chronological timeline,
vaguely Twitter-style. This is another hybrid design that satisfies the design guidelines of
its platform.

ulll AT&T 7 10:44 PM

Taptu

My Taptu Tips La

3%

Guest Curator: NHL on My
Beryn Hammil's Taptu
Classical Interi...

) | U s2 pavs aco | g s pavs aco

Facebook !
Does anyone in - o~ Consider how Ry
Madison know L had itisto fie
anyone at the change yourself go
Elvehjem? | - and you'll be
want to ask California, in 6 understand what = pa
them about months little chance you is
some stuff and... have in changi...

V¥ Joe Garden Tina Chan Kateryna.. E
5“0 MOMENT... 2 MINS AGO 2 MINS AGO
Tech & Gadgets lag
Hacker Poll: =~ &I 1777 0
How Much ¥ - i
n Vs ey Little Bets

Figure 14-7. Taptu’s interpretation of the News Feed

Rules for Facebook Art

As we said at the outset of this chapter, Facebook doesn’t have nearly the elaborate set
of rules that Twitter does for trademarks and visual assets. That might be one reason
that so many app developers borrow freely when they create their app icons and
interfaces.

The previous section instructed you to create your own theme elements. When you do
so, you’ll need to keep a few brief guidelines in mind, according to Facebook:

B Your advertisements must not include or be paired with any platform
integrations, including social plugins such as the Like button, without
Facebook’s written permission.

B Developers aren’t allowed to market themselves in a way that implies
the participation or endorsement of Facebook.

CHAPTER 14: Facehook Ul Design

B Developers should also avoid using Facebook logos, trademarks, or
site terminology. These include but are not limited to Facebook, The
Facebook, FacebookHigh, FBook, FB, Poke, Wall, and other company
graphics, logos, designs, or icons).

If you’d like to read Facebook’s ad guidelines in their entirety, visit this URL:

http://www.facebook.com/ad_guidelines.php

Button Text
Here are a few examples of button text that are permitted for Facebook developers:
B Post
B Share
B Publish
B Add to Profile

Here are a few examples of button text that are too vague to use, in
Facebook’s opinion:

B Ignore

m OK

® Share & Continue
]

Request

Facebook Navigation

Because of its grid Ul, the official Facebook app sets some strange navigational
paradigms. In fact, it borrows a lot from Android and a little from webOS. The Facebook
app does the following:

B Uses tap-and-hold to mimic iOS’s app icon “jiggling” effect.

B Uses a status bar that rises up from the base of the screen, similar to
Android, for notifications.

B Has “apps” within it, just like the iOS UL.

B Animates a glimmer when you tap the titlebar, similar to the HP
webOS.

CAUTION: Don’t copy Facebook’s Ul and navigation.

CHAPTER 14: Facehook Ul Design

We like all these little quirks, and we wouldn’t want the official Facebook app to work
any other way. But we don’t advise that you imitate any of these paradigms. They’re not
at home on iOS (at least, not yet?), and they will only confuse your users.

Showing Progress

As we discussed earlier in this chapter, showing the user progress is a vital part of your

app’s feedback. In the official Facebook app, the user is never presented with an empty
News Feed; if a network connection can’t be found, the app displays recent updates it’s
cached behind the scenes. Facebook users are doubtless accustomed to the speed and
efficiency of Facebook’s iOS and Web apps, so you’d do best not to keep them waiting.

If you must, use the activity indicator and consider showing users a warning message if
the operation is going to take a substantial amount of time; however, an activity
indicator should never prevent the user from switching tabs or composing other content.
The Facebook-integrated MyPhone+ app only has one main task, and it’s a big one. The
app handles this task nicely, as you can see in Figure 14-8.

il ATET 2 3:24 PM ==

/
\s MyPhone+ is loading...
[}

Indexing contact 482 of 684

Figure 14-8. MyPhone+ displays a progress indicator for its central task, which is only a good idea under certain
circumstances.

CHAPTER 14: Facebook Ul Design

Essential Three20 Components

As you learned in Chapter 10, the Three20 project is Facebook iOS developer Joe
Hewitt’s gift to the Facebook developer community: an entire framework he built himself
for the Facebook app for iOS.

It’s open source, and it’s comprised of several of the constituent parts of the Facebook
app. These parts are the photo viewer, the message composer, the Web image view,
and other goodies. You can find their Git addresses at this URL:

http://joehewitt.com/post/the-three20-project/

Here are some of the components you will want to be aware of as you design your app
and Joe’s descriptions of each one:

B Photo Viewer: “TTPhotoViewController emulates Apple’s Photos app
with all of its flick‘n’pinch delight. You can supply your own “photo
sources,” which work similarly to the data sources used by
UlTableView. Unlike Apple’s Photos app, it isn’t limited to photos
stored locally. Your photos can be loaded from the network, and long
lists of photos can be loaded incrementally. This version also supports
zooming (unlike the version in the current Facebook app).

“This has probably been the single biggest timesink in the whole
Facebook for iPhone project for me, so if | can help anyone else save
that time | will sleep better.”

B Message composer: “TTMessageController emulates the message
composer in Apple’s Mail app. You can customize it to send any kind
of message you want. Include your own set of message fields, or use
the standard To: and Subject:. Recipient names can be
autocompleted from a data source that you provide.”

B Web image views: “TTImageView makes it as easy to display an image
as it is in HTML. Just supply the URL of the image, and TTImageView
loads it and displays it efficiently. TTImageView also works with the
HTTP cache described below to avoid hitting the network when
possible.”

B nternet-aware table view controllers: “TTTableViewController and
TTTableViewDataSource help you to build tables which load their
content from the Internet. Rather than just assuming you have all the
data ready to go, like UITableView does by default,
TTTableViewController lets you communicate when your data is
loading, and when there is an error or nothing to display. It also helps
you to add a “More” button to load the next page of data, and
optionally supports reloading the data by shaking the device.”

CHAPTER 14: Facehook Ul Design

B Letter Text Fields: “TTTextEditor is a UITextView which can grow in
height automatically as you type. | use this for entering messages in
Facebook Chat, and it behaves similarly to the editor in Apple's SMS
app.

“TTPickerTextField is a type-ahead UITextField. As you type, it
searches a data source, and it adds bubbles into the flow of text when
you choose a type-ahead option. | use this in TTMessageController for
selecting the names of message recipients.”

Design Tricks from the Web App

Facebook’s touch Web app is arguably as well designed as its iOS app (see Figure 14-9).
Although it has all the limitations that come with being in the browser, there are
nevertheless some good design paradigms here that you can actually borrow from (unlike
the grid).

ailll AT&T 3:53 AM

facebook

Profile Messages

Top News - Most €
Friends

What's on your r
Or: @, Check In

g Tamara Aid Places
ube.com/w4g

Groups

Photos

Events

if u dont like

Notes
Notifications

Settings

6 minutes ago|

3 1 person Logout

Figure 14-9. Facebook’s home page for Mobile Safari users

The Tabbed Approach

Tabs were used in the first versions of the Facebook for iOS app, but they quickly
became cluttered as the app became more robust. The Web app held onto tabbed
browsing longer, but its developers recently revised the app’s navigation bar to contain
only four items:

CHAPTER 14: Facehook Ul Design

m Profile
Messages

B More (Friends, Photos, Places, Groups, Events, Notes, Notifications,
Settings, and Logout)

B Search button

We’d say the contents of these tabs reflect the Facebook usability priorities we
established at the beginning of this section:

B Looking people up
m Contacting people
m Context

And with that, this discussion has come full circle!

Conclusion

This is a time after a rush. Web developers have flocked to the Twitter and Facebook
APls, and iOS developers are following after them. But the influx has caused the
management of these platforms to become conservative as they try to protect and
sustain their growth. No one wants to derail a good thing, and the platforms have
constructed a schema of rules and terms that ensure no one can sully their name but
themselves.

This is not a death sentence for the creativity of developers and designers. Rather, it
forces them to create apps that add real value to the platform. We encourage you to
think of ways to use Facebook and Twitter that haven’t been done—or haven’t been
done right, previously. And when you hit upon a unique experience with an audience you
know, you need to design visual assets that reflect the personality of your app. In the
App Store, looks aren’t everything. They’re merely almost everything.

Index

Symbols and

Numerics

(hash tags), Twitter, 189
#hashtags, Tweets, 248

? symbols, SQLite, 197
@mentions, Tweets, 248

A

abort function, 126
access log, Facebook, 145
access tokens
components of URLs, 48
logging in to Facebook, 49
logging out of Facebook, 51, 52
logging out of Twitter, 62
accounts
social app design on iOS, 236
action parameter
dialog methods, Facebook class, 82,
83
actions, Tweets, 251
activity indicator
progress (feedback to user),
Facebook, 277
social app design on iOS, 239
advertising
App Store, 255
Facebook, 275
compliancy guidelines, 222
partners, 221
ownership of user data, 13
Twitter, 217
aggregation libraries, ShareKit, 182

albums, Facebook
fetching user’s tagged albums, 95
anatomy of Tweets, 248-252
animation
social app design on iOS, 239
annotations
displaying on MKMapView, 161
API calls
Facebook iOS SDK, 17, 27
MGTwitterEngine making, 19
rate limits on, Facebook, 220
API console
bookmarking Twitter resources, 24
API response times
bookmarking Facebook resources,
25
Apigee’s Twitter console
associating location with Tweets,
172
apiKey parameter
bit.ly URL shortening service, 180,
181
APIs
Core API, Twitter, 5
CorelLocation framework, iOS,
148-153
Facebook APls, 4-5, 17-19
rules governing use of, 218-223
geo-location API, Twitter, 172
Graph API, 4, 66-71, 81-96
HTTP API, Twitter, 101
MapKit framework, iOS, 158-162
math APIs, iOS 4, 8
MGTwitterEngine API, 19-20
Publishing API, Facebook, 5
Reading API, Facebook, 4

281

Search API, Twitter, 5
Searching API, Facebook, 5
Streaming API, Twitter, 5
trends API, Twitter, 189
Twitter API, 5-6, 72-78, 96-103
rules governing use of, 213-217
App Store
advertising in, 255
Apple
required icon sizes, 238
Apple IDE
setup documents, 21
Apples’s Human Interface Guidelines
see HIG
application delegate file
Facebook, 28, 29
Twitter, 34, 35
application delegate header file
Facebook, 27, 29
Twitter, 33, 34
application:didFinishLaunchingWithOpti
ons method
adding UlViewController, Facebook,
28
starting Twitter engine, 34
applications
access log for, Facebook, 145
building social apps, Facebook, 219
creating apps for Facebook, 28-30
Facebook, 229-232
posting to Facebook page directly
from, 82-87
privacy, 9
security, 9
simplifying usage, 246
theme elements, 253
Twitter, 224-229
using user’s location in, 136
Apps and Websites section
Privacy settings, Facebook, 144
Arment, Marco
reaction to QuickBar, 262-264
art
rules for Facebook art, 275
as_of date
Twitter trends, 189

ASIHTTPRequest library
posting pictures to Twitter, 113
authenticatedWithUsername method

logging in to Twitter, 60
authentication

see also OAuth

components of URLs, 48

Facebook iOS SDK, 17, 27
author, Tweets, 248
authorization

Facebook dialogs, 88

Facebook iOS SDK, 17, 27
authorize method

logging in to Facebook, 49, 50
avatar, user

Tweets, 249

background processing
iOS applications, 6
performSelectorinBackground
method, 129
processing/synchronizing data on
background thread, 130
synchronizeTweets method, 130
TwitterDataStore, 128
backgrounding
determining if Facebook iOS
supports, 54
location services, 153
battery power conservation
location of devices, 147
Beacon, Facebook, 10
bird graphics
Twitter Ul design, 259
bit.ly URL shortening service, 180
integrating Twitter with, 186
books, Facebook
fetching user’s books, 93
brand dilution, Twitter, 212
branding
social app design on iOS, 245
theme elements, Twitter, 253
Tweets, 249
Brichter, Loren, 255

bug tracking
Facebook, 25
reporting security problems, 14
Twitter, 25

button text, Facebook, 223, 276

C

cachedTwitterOAuthDataForUsername
method, 59
caching, Facebook, 270, 271
Calendar app, iOS 4, 7
callback URL
integrating ShareKit with Twitter, 186
camera, i0OS 4, 7
caption key value, Facebook dialogs, 85
character counter
composing Tweets, 249
cheat sheets, Git, 24
check-ins, Facebook, 170
checking into places, 165
permission via OAuth to, 167
customizing, 142
including user’s friends in, 167
iOS application, 168-170
location unavailable in Check-Ins
section, 163
permissions, 171
posting to user’s account, 167
posting via graph path, 166
retrieving from user’s account, 171
retrieving via graph path, 170
clearAccessToken method
logging out of Twitter, 62
CLLocationManager class, 149,
151-153
authorization status for application,
152
didChangeAuthorizationStatus
method, 152
region monitoring, 151
registerRegion method, 151
startMonitoringForRegion method,
151
startUpdatinglLocation method, 149

CLLocationManagerDelegate
didEnterRegion method, 152
didExitRegion method, 152
didFailWithError method, 152
didUpdateTolLocation method, 152

closeDatabase method
offline storage, SQLite, 196

Cocoa Touch Class
adding UlViewController, 27, 28, 33,

34

Cocoa Touch Unit Testing Bundle

adding unit tests to social iOS app,
201

color
creating theme elements, 274
Facebook Ul design, 273
Twitter Ul design, 253

common URL scheme
Twitter HTTP API, 101

compliancy guidelines, Facebook,

222-223
see also rules governing use of APIs
advertising, 222
button text, 223
Like button, 221, 222
photos, 222
using Social Stream, 223

connect method, FBRequest, 71

connectionFinished method
MGTwitterEngineDelegate, 73

connections, Twitter

creating, 78

dictionary of, 77

HTTP connections,
MGTwitterEngine, 77-78

MGTwitterEngine request methods,
72

MGTwitterHTTPURLConnection
object, 77, 78

console, Twitter API, 103

contacts, Facebook, 268

contacts, Twitter
adding @RTM as, 225

content policy, Facebook, 220

content, consuming/creating, 244

controls
arranging for intuitive use,
Facebook, 268
simplifying app usage, 246
social app design on iOS, 242
Core API, Twitter, 5
Core Data, 118-127
creating SQLite database file, 192
data modeling with
TwitterDataStore, 118-127
linking project to framework, 119
SQLite database, 193
storing Tweet objects, 193
storing data within TwitterDataStore,
124
storing/retrieving Tweets, 131-133
Core Data model
adding file to project, 119
adding Tweet entity, 120
creating managed object model, 126
deleting Tweets in, 133
fetching Tweets from, 133
lightweight migration, 126
mapping Tweet entity in, 122
CoreDataOffline.sqlite file
offline storage, 193
ZTWEET table, 193
Corelocation class
Significant Change method, 149
Standard method, 149
Corelocation framework, iOS, 148-153
CLLocationManager class, 149
linking application against, 153
LocationController class, 148-149
Corelocation services, 136, 149
cross-platform C library
SQLite, 192
Curl
bookmarking Twitter resources, 24
OAuth-enabled version of, 24
curl tool
Twitter trends, 189
URL shortening, 180
current API
Twitter trends, 190
custom URL scheme

Facebook redirection to application
after login, 46
interapp communication via, 46-49

data
Core Data, 118-127
data modeling
TwitterDataStore, 118-127
data source
TTTableViewDataSource, 278
date formatting
Graph API, Facebook, 96
date_format parameter, Facebook, 96
dealloc method
creating app for Facebook, 29
offline storage, SQLite, 194
starting Twitter engine, 34
debugging
adding unit tests to social iOS app,
201, 208
ShareKit, 184
delegate callback methods
Facebook dialogs, 82
delegate parameter
dialog methods, Facebook class, 82
delegates, Facebook
error notification, 71
FBRequestDelegate, 66
FBSessionDelegate, 50
handling request responses, 18
processing response data, 66
requestWithGraphPath method, 66,
70
delegates, Twitter, 72
MGTwitterEngineDelegate, 73
deleteTweets method
offline storage, SQLite, 199
TwitterDataStore class, 131
description key value, Facebook dialogs
customizing display of feed dialog,
85
design
see also social app design on iOS
Facebook Ul, 267-280

Twitter Ul, 247-265
exceptions to rules, 249
guidelines, 249
requirements, 248-249
dev console, Twitter, 102-103
development
Git, 22
implied endorsement of Facebook,
275
dialog class, Twitter API, 101
dialog methods, Facebook class, 82, 87
delegate callback methods, 82
displaying dialog to user, 83
parameters, 82
dialogCompleteWithUrl method,
Facebook, 85
dialogDidComplete method, Facebook,
85
dialogDidNotComplete method,
Facebook, 86
dialogDidNotCompleteWithUrl method,
Facebook, 86
dialogs
displaying, Facebook iOS SDK, 17,
18, 27
Facebook, 82-87
FBDialog class, 86-87
DialogViewController class, Facebook,
82
dialog:andDelegate method, Facebook,
82
dialog:andParams:andDelegate
method, 82
didFinishLaunchingWithOptions
method, Facebook, 28
direct messages, Twitter
Evernote, 227
responses, 100
sending, 100
Twitter URLs, 102
directMessagesReceived method,
Twitter, 100
Documents directory
Core Data creating SQLite database
file, 192

error handling
abort function, 126
Facebook iOS SDK, 18, 71
MGTwitterEngineDelegate, 19
schema incompatibility errors, 126
storing data within TwitterDataStore,
126
events, Facebook
fetching user’s events, 92
Evernote, 226-228
adding content via Twitter's SMS
support, 228
adding TwitPics, 228
SMS notes, 227
exceptions
Twitter Ul design, 259
executeFetchRequest method
fetching Tweets from Core Data
model, 133
extended permissions see permissions,
Facebook

F

Facebook
accessing information from social
graph, 66
advantages of, 15
advertising, 275
compliancy guidelines, 222
partners, 221
bug tracking, 25
button text, 223
caching, 270, 271
checking for services before posting,
270
Check-Ins section, 163
competing with iOS app, 219
compliancy guidelines, 222-223
content policy, 220
creating apps for, 28-30
date formatting, 96
design see social app design on iOS
developing site features, 269

dialog methods, 82, 87
feedback preferences, 241
getting list of logged in user’s
friends, 66—-69, 89
Graph API, 4, 66-71, 81-96
HTTP GET, 5
HTTP POST, 5
implied endorsement of, 275
integrating ShareKit with, 186
interapp communication via custom
URL scheme, 46-49
iOS Objective-C Facebook SDK, 5
Like button, 221, 222
limiting number of fields returned, 95
logging in, 49-51
login error, 43
login page, 38
redirection to application after, 46
single sign-on feature, 41
with UlWebView, 45
logging out, 51-53
messages service, 7
not emulating Facebook site
features, 269
OAuth, 11, 40-54
confirmation via mobile Safari, 45
login error via mobile Safari, 45
login via mobile Safari, 44
login view, 89
permissions page, 53
permissions via mobile Safari, 44
offline storage, 118
ownership of user data, 13
People Here Now example, 143
permissions page, 39
photos, 15
compliancy guidelines, 222
platform policies, 211, 219
posting pictures to, 109-110
posting to page directly from apps,
82-87
posting to social graph, 88
pre-filling text fields, 221, 223
privacy, 10, 14, 219, 220
Privacy settings section, 141
Publishing API, 5

pulling information from social
graph, 66

push notifications, 268

Reading API, 4

reporting security problems to, 14

resources to bookmark for Git, 25

Searching API, 5

security, 10

Shake to Reload feature, 241

single sign-on feature, 40-48

social graph, 1, 9

Social Stream usage guidelines, 223

spam, 219

things apps can publish on, 66

Things others share section, 143

Three20 framework, 270, 271

use cases, 3

user experience, 219

user statistics, 16

using inside iOS applications, 3

using/displaying results of graph
path requests, 66

Facebook API, 4-5

see also Graph API, Facebook
building social and engaging
applications, 219
giving users choice and control, 219
helping users share content, 219
rules governing use of APls,
218-223
advertising partners, 221
allowing users to access
Facebook data from app, 220
compliancy guidelines, 222-223
content policy, 220
deleting old project data, 220
messaging, 222
platform integrations in adverts,
221
pre-filling text fields, 221, 223
publishing more than one post at
a time, 221
rate limits on users and API calls,
220
selling data, 220

skipping terms of Facebook
social channel, 221
summary of major rules, 233
use of Facebook iconography
and terminology, 219
user permissions, 221
using user’s friend list outside
application, 220
using, 17-19
Waze, 229

Facebook apps, 229-232

Flipboard, 231-232
Fone, 230-231

Facebook Beacon, 10
Facebook class
Facebook dialogs, 82-87

additional parameters, 83

authorization, 88

customizing display of feed dialog,
84

delegate callback methods, 82

dialogCompleteWithUrl method, 85

dialogDidComplete method, 85

dialogDidNotComplete method, 86

dialogDidNotCompleteWithUrl
method, 86

displaying dialog to user, 83

embedding previews of content, 84

FBDialogDelegate methods, 85

post_id parameter, 85

web view, 84

Facebook Graph API see Graph API
Facebook iOS application

detailed info. about places, 164

flagging places, 165

searching for nearby places and
events, 164

Facebook iOS SDK, 16

adding source code to project, 27

adding UlViewController to project,
27-28

APl calls, 17, 27

authentication and authorization, 17,
27

creating app for Facebook, 28-30

creating new project, 25-26

custom URL scheme creation code,
48

determining if iOS supports
backgrounding, 54

displaying dialogs, 17, 18, 27

error handling, 18

FBRequest class, 71

getting set up with iOS application,
25-30

handling errors, 71

logging out, 18

logout method, 52

Objective-C wrapper classes, 71

single sign-on feature, 17, 40-48

UlWebView, 17, 27

Facebook Places, 141-145

checking into places, 165
permission via OAuth to, 167
revoking permission for app to,

144
controlling friends’ access to Places
info., 145

detailed info. about places, 164

flagging places, 165

Nearby screen, 162

searching for nearby places and
events, 164

Facebook Ul design, 267-280

arranging controls for intuitive use,
268
button text, 276
color, 273
contacting other users, 268
design conventions, 273
design tricks from Web app, 279
downloading Ul kit, 273
icons, 273
navigation, 276
progress (feedback to user), 277
querying other users, 268
rules for Facebook art, 275
tabs, 279
themes, 273-275
creating theme elements,
274-275
Hootsuite, 274

Taptu, 275
third-party resources, 273
Three20 framework, 278-279
usability priorities, 267-280
using help prompts inside app, 268
facebookRequestDidComplete method,
69
FacebookViewController class, 66
FAKE_CORE_LOCATION
FTLocationSimulator, 157
fakeUserLocationView method, 161
fast app switching, Facebook, 40
Favorite action, Tweets, 251
fbButtonClick method, 50
FBDialog class, 86-87
FBDialogDelegate
error handling, 18
methods, 85
fbDidLogin method, 51
foDidNotLogin method, 51
FBRequest class, 71
FBRequestDelegate, 66
creating app for Facebook, 29
didLoad method, 109
error handling, 18
handling request responses, 18
posting pictures to Facebook, 109
FBSessionDelegate protocol, 50
feedback
Facebook
preferences, 241
progress (feedback to user), 277
social app design on iOS, 239-242
activity indicator, 239
animation, 239
sound, 241
updating indicator, 240
vibration, 241
feeds, Facebook
fetching user’s news feeds, 90
Social Stream usage guidelines, 223
fields, Facebook
limiting number of fields returned, 95
file transfer, iOS 4, 8
Flipboard, 231-232

followers, Twitter
getFollowersincludingCurrentStatus
method, 72
getting list of logged in user’s
followers, 72-77
retrieval of profile picture, 75
timeline of user and, 99
twitterFollowersRequestDidComplet
e method, 74
FollowersTableViewCell class, 75
setData method, 75
FollowersViewController class, 73
viewDidLoad method, 72
Fone, 230-231
for-loop
looping through array of Tweets, 131
format parameter
bit.ly URL shortening service, 181
Foursquare API
Waze, 229
frameworks see APls
friends, Facebook
controlling access to Places info.,
145
getting list of logged in user’s
friends, 66-69, 89
using user’s friend list outside
application, 220
FriendsViewController class
viewDidLoad method, 66
FTLocationSimulator, 149, 157-158
associating location with Tweets,
172
fakeUserLocationView method, 161

G

generateURL method, FBDialog, 87
geo/reverse_geocode API
associating location with Tweets,
175
geocoding
reverse geocoding, 175
geo-location API, Twitter, 172

geoResultsForPath:withParams method

associating location with Tweets,
174
geo-tagging
user experience priorities, Twitter,
247
getFollowersincludingCurrentStatus
method, 72
getimageAtURLmethod, 76
GHUnit
adding unit tests to social iOS app,
208
Git, 21-25
cheat sheets, 24
creating Twitter project, 31
downloading Git client, 22
Facebook resources to bookmark,
25
generating SSH keys, 24
installing, 22-24
learning more about, 24
submodules, 24
Twitter resources to bookmark, 24
Git ignore file
creating Facebook project, 26
creating Twitter project, 31
Git repository
cloning repository
Facebook, 25
Twitter, 30
creating Facebook project, 26
creating Twitter project, 31
linking repositories, Facebook, 26
OARequestHeader, 114
Git submodules, 26
creating Twitter project, 31
GitHub
ASIHTTPRequest library, 113
Facebook iOS SDK, 17
GSTwitPicEngine, 113
hosting repositories on, 22
linking repositories, Facebook, 26
MGTwitterEngine, 30
OARequestHeader, 114
ShareKit, 182
Github.com, 22

Google Maps

map overlays, 8

Graph API, Facebook, 4, 66-71, 81-96

accessing, 17

date formatting, 96

FBDialog class, 86-87

FBRequest class, 71

fetching events, 92

fetching groups, 92

fetching likes/movies/music/books,
92

fetching news feeds, 90

fetching notes, 90

fetching photos/albums/videos, 95

fetching wall posts, 93

getting list of logged in user’s
friends, 66-69, 89

getting profile pictures for friends, 69

handling request responses, 18

HTTP-based API, 71

limiting number of fields returned, 95

limiting number of items in
responses, 70

making API calls, 17

requestWithGraphPath method, 66,
70

retrieving items from given offset, 70

using/displaying results of graph
path requests, 66

graphics, Twitter Ul design, 259
groups, Facebook

fetching user’s groups, 92

GSTwitPicEngine class

ASIHTTPRequest library, 113

creating/initializing instance of, 116

posting photo to twitpic.com, 115

posting pictures to Twitter, 113

SBJSON framework, 114

uploadPicture:withMessage method,
116

GSTwitPicEngineDelegate

posting photo to twitpic.com, 115
twitpicDidFinishUpload method, 116

handleOpenURL method
responding to custom URL scheme,
48
handleResponseData method,
Facebook, 71
handling errors see error handling
hash tags (#), Twitter, 189
tagalus service, 192
#hashtags, Tweets, 248
help
using help prompts inside app,
Facebook, 268
Here Now section
Places feature, Facebook, 141
Hewitt, Joe
developing Facebook site features,
269
Facebook iOS SDK, 17
Three20 framework, 270, 271,
278-279
HIG (Human Interface Guidelines), 235
animation, 239
social app design on iOS, 235-246
social iOS app, 235
Tweetie, 255
Hootsuite, 274
hot-button issues, 10
HTTP GET, 5
HTTP POST, 5
rate limits, 218
Human Interface Guidelines see HIG

iAd, i0OS 4, 8
icons
Facebook Ul design, 273
glossing icons, 239
icon sizes for iPad, 239
icon sizes for iPhone and iPod, 237
PNG format, 238, 239
required sizes, Apple, 238
rounding corners, 239
social app design on iOS, 237-239

Twitter Ul design, 258-259
identities, real-life and online, 13
ignore file, Git

creating Facebook project, 26

creating Twitter project, 31
imagePickerController:didFinishPicking

MediaWithinfo method, 107
ImagePostController class, 109
posting photos to Twitter, 115-117
imageReceived:forRequest method
MGTwitterEngineDelegate, 76
images
accessing from code, 106-108
PNG format, 238
posting pictures to Facebook,
109-110

posting pictures to Twitter, 110-117

saving pictures to Photo Library,
105-106

TTImageView, 278

user experience priorities, Twitter,
247

web image views, Three20, 278

insertNewObjectForEntityForName:inM
anagedObjectContext method,
132
internet
privacy and security before
Facebook/Twitter, 9
Internet-aware table views

Three20 framework, 278
i0S

CorelLocation framework, 148-153

Facebook iOS SDK, 16

Facebook Ul design, 267

iSimulate on, 156

location permission prompt, 137

location services, 153

Location Services settings, 138

after resetting warnings, 140
MapKit, 158-162
Reset Location Warnings setting,
139

Settings application, 138

Significant Change method, location,
147

social graph on, 6-8
unit testing, 200-208
URL shortening, 181-182
using user’s location in applications,
136
i0OS 4
Calendar app, 7
camera, 7
file transfer, 8
iAd, 8
LED flash, 8
local notifications, 6
location-based apps, 7
map overlays, 8
math APIs, 8
multitasking, 6
music apps, 7
photos, 7
Quick Look, 8
recent additions, 6
saved states, 7
Sleep mode, 6
SMSing, 7
task completion, 7
task switching, 7
VOIP apps, 7
WiFi connections, 6
iOS applications
adding Facebook/Twitter
functionality to, 1
adding unit tests to social app,
200-208
background processing, 6
check-ins, Facebook, 168-170
design see social app design on iOS
getting set up with
Facebook, 25-30
Twitter, 30-34
posting to Facebook page directly
from apps, 82-87
privacy and security, 9
saved states, 7
storing data, 118
theme elements, 253
using Facebook inside, 3
using Twitter inside, 4

using Twitter’s web buttons, 253
iOS development
using Xcode for, 21
iOS devices
Facebook iOS SDK, 17
splash screens, 259
iOS Objective-C Facebook SDK, 5
competing with iOS app, 219
iOS simulator
FTLocationSimulator, 149, 157-158
generating locations in iOS
simulator, 153-158
iSimulate, 154-156
saving pictures to Photo Library,
105-106
iPad
icon sizes for, 239
Popover control, 246
social app design on iOS, 246
iPhone, icon sizes for, 237
iPod, icon sizes for, 237
iSimulate, 154-156
configuring, 154
free Lite version, 154
on iOS, 156

J, K
JavaScript Object Notation see JSON
JavaScript Test Console
bookmarking Facebook resources,
25
JSON (JavaScript Object Notation)
associating location with Tweets,
173
Graph API, 4
SBJSON framework, 114
Twitter, 19
JSON response
Facebook responses, 71

L

labels
simplifying app usage, 246
social app design on iOS, 245

latitude parameter
associating location with Tweets,
174,175
LED flash, iOS 4, 8
letsbetrends.com
Twitter trends, 192
letter text fields
Three20 framework, 279
libxml XML
adding MGTwitterEngine source
code, 32
license agreement
social app design on iOS, 246
Like button
compliancy guidelines, 221, 222
likes, Facebook
fetching user’s likes, 92
limit parameter
requestWithGraphPath method, 70
link key value, Facebook dialogs, 83
loading
user experience priorities, Twitter,
247
loadView method, MapViewController,
158
ShareKit posting to
Facebook/Twitter, 186
local notifications, iOS 4, 6
location history, Twitter
deleting, 147
rules governing use of APIs, 213
location (of devices)
adding to Tweets, 146-147
associating with Tweets, 172-177
authorization status for application,
152
battery power conservation, 147
CLLocationManager class, 149,
151-153
CorelLocation framework, 148-153
determining if device has
left/reentered region., 151
Facebook Places, 141-145
FTLocationSimulator, 157-158
general considerations, 136

generating in iOS simulator, 153-158

iSimulate, 154-156
iOS Location Services settings, 138
MapKit, 158-162
MKUSserLocation annotations, 161
privacy, 13
region monitoring, 151
Significant Change method, 147,
153
Standard method, 147, 153
storing/flushing location history, 141
turning location services on/off, 137
Twitter, 172-177
Twitter trends based on, 191-192
using user’s location in applications,
136
location parameters
associating location with Tweets,
174
location permission prompt, iOS, 137
location property, 149, 152
Location section, Twitter, 146, 147
Location Services settings, iOS, 138
after resetting warnings, 140
location services, iOS, 136, 137, 139
backgrounding, 153
enabled on device, 149
permission to use not granted, 162
power usage, 147
problem initializing, 152
location-based apps, iOS 4, 7
LocationController class, 148-149
associating location with Tweets,
172
FTLocationSimulator, 149
location property, 149
locationServicesEnabled property,
149
operation of CLLocationManager,
149
power saving mode, 149, 150
registerRegion method, 160
startMonitoringSignificantLocationC
hanges method, 149
startWithPowerSaving method, 149
stop method, 150
LocationController.h file, 148

LocationManager.m file, 149
locationManager: methods
didChangeAuthorizationStatus, 152
didEnterRegion, 152
didExitRegion, 152
didFailWithError, 152
didUpdateTolLocation, 152
locationServicesEnabled property, 149
logging in, Facebook, 49-51
login error, 43
login method, 50
login page, 38
OAuth login via mobile Safari, 44
OAuth login view, 89
getting list of logged in user’s
friends, 66
single sign-on feature, 41
logging in, Twitter, 58-61
bit.ly URL shortening service, 181
identity, 216
logging out, Facebook, 18, 51-53
logout method, 50, 51, 52
logging out, Twitter, 62
logos
avoiding use of Facebook logos, 276
offline display guidelines, Twitter,
261
theme elements, Twitter, 253
Twitter trademarks, 254
Twitter Ul design, 258-259
longitude parameter
associating location with Tweets,
174,175
longUrl parameter
bit.ly URL shortening service, 181

Mac OS X
installing Git, 22
Mac OS X Terminal application
creating Facebook project, 26
creating Twitter project, 31
MainViewController class
adding UlViewController
Facebook, 28

Twitter, 33
OAuthTwitter project, 59
managed object model, creating, 126
managedObjectContext method
storing data in TwitterDataStore, 124
map overlays, iOS 4, 8
MapKit, 158-162
MKMapView class, 158
MKReverseGeocoder class, 177
MapViewController class
associating location with Tweets,
172,174
loadView method, 158
mapView: methods
didSelectAnnotationView, 162, 165
associating location with Tweets,
174
didUpdateUserLocation, 160
viewForAnnotation, 161
math APIs, iOS 4, 8
@mentions, Tweets, 248
MesaSQLite, 193
message composer
Three20 framework, 278
TTMessageController, 278
message key value, Facebook dialogs
customizing display of feed dialog,
85
messages, Twitter
sending direct message, 100
messaging, Facebook
messages service, 7
rules governing use of APIs, 222
MGTwitterEngine, 30
adding source code to project,
32-33
associating location with Tweets,
173
creating connections, 78
creating project, 31
dictionary of connections, 77
HTTP connections, 77-78
order for calling methods of
delegate, 73
parsing returned XML data, 78
starting Twitter engine, 34-35

MGTwitterEngine API, 19-20
dialog class, 101
handling responses, 77
making API calls, 19
making requests, 77
Objective-C wrapper classes, 77
MGTwitterEngine class, 77
getFollowersincludingCurrentStatus
method, 72
getlimageAtURLmethod, 76
instantiating object, 19
parseDataForConnection method,
78
request methods, 72
sendUpdate method, 96
MGTwitterEngineDelegate
connectionFinished method, 73
error handling, 19
imageReceived:forRequest method,
76
making API calls, 19
order for calling methods, 73
Received:forRequest methods, 73
requestFailed:withError method, 73
requestSucceeded method, 73
starting Twitter engine, 34
tweeting for currently logged in user,
97
userIinfoReceived:forRequest
method, 73, 78
MGTwitterHTTPURLConnection object,
77,78
migration
Core Data model, 126
MKMapView class, 158
addAnnotation method, 160
displaying annotation, 161
mapView:didSelectAnnotationView
method, 162
MKMapViewDelegate
mapView:didUpdateUserLocation,
160
MKReverseGeocoder class, 177
MKUserLocation annotations, 161
mobile development
unit testing, 200

mocking objects

adding unit tests to social iOS app,

208

modal pop-up dialog

FBDialog class, 87
Model-View-Controller (MVC), 118
More button

simplifying app usage, 246
movies, Facebook

fetching user’s movies, 93
multitasking, iOS 4, 6
music apps, i0OS 4, 7
music, Facebook

fetching user’s music, 93

name key value, Facebook dialogs
customizing display of feed dialog,
84
navigation
Facebook Ul design, 276
Twitter Ul design, 255-257
navigation apps
Waze, 228-229
Nearby screen, Facebook Places, 162
news
Twitter, 16
news feeds, Facebook
fetching user’s news feeds, 90
news reader apps
Flipboard, 231-232
Taptu, 274, 275
notes, Facebook
fetching user’s notes, 90
notetaking, Twitter
Evernote, 226-228
notifications, Twitter, 262
assigning values from, 75
executing method if unique
connection identifier is fired, 74
getting image object out of, 76
naming, 74
NSNotificationCenter, 74
receiving, 76
removing yourself as observer of, 75

specifying objects receiver can
access, 73
twitterFollowersRequestDidComplet
e method, 74
NSFetchRequest class, 133
NSManagedObjectContext class, 124
NSNotificationCenter class, 73
NSPersistentStoreCoordinator class,
125
NSSortDescriptor class, 133

0

OARequestHeader Git repository
posting pictures to Twitter, 114
OAuth, 11-12, 37-40
consumer key, 58
Facebook, 11, 40-54
authorization page, 88
authorizing application via, 40-54
dialog authorization, 88
integrating ShareKit with, 186
login view, 89
logging in to, 49-51
logging out of, 51-53
OAuth permissions page, 53
OAuth permissions via mobile
Safari, 44
OAuth token, 40, 41
single sign-on feature, 40-48
granting TwitPic access via, 111
logging in, 38
via mobile Safari, 44
OAuth-enabled version of Curl, 24
open authentication, 37
password security, 11
permissions, 38
checking into places, 167
tokens, 39
social networking sites, 12
Twitter, 11, 40, 54-62
authentication flow, 54
authorizing application via, 54-62
creating application, 55-57
integrating ShareKit with, 186
logging into, 58-61

logging out of, 62
OAuth consumer key, 58
UlWebView, 38
versions, 11
OAuthFacebook project, 46
OAuthTwitter project, 58
OAuthTwitterControllerCanceled
method, 60
OAuthTwitterControllerFailed method,
60
objectForKey method, 67
Objective-C
adding UlViewController, Twitter, 34
iOS Objective-C Facebook SDK, 5
wrapping Twitter API in Objective-C
code, 30
Objective-C wrapper classes
Facebook iOS SDK, 71
MGTwitterEngine API, 77
OCMock
adding unit tests to social iOS app,
208
offline display guidelines
Twitter Ul design, 261
offline storage, 118-133
Core Data, 118-127
storing/retrieving Tweets,
131-133
data modeling with
TwitterDataStore, 118-127
error handling, 126
implementing offline Twitter app.,
194-199
SQLite, 118, 192-199
OfflineTwitterTest target
adding unit tests to social iOS app,
204
OfflineTwitterTest.h file, 206
OfflineTwitterTest.m file, 206
offset parameter
requestWithGraphPath:andDelegate
method, 70
open authentication, 37
openDatabase method
offline storage, SQLite, 194, 195,
196

openURL method, 48
order criteria, Tweets, 252
overlays, map, 8

P

parameters, Facebook
additional parameters, 83
date_format parameter, 96
dialog methods, 82
parseDataForConnection method,
MGTwitterEngine, 78
parsedResponse dictionary
posting photo to Twitter, 117
parsing
SBJSON framework, 114
password security, OAuth, 11
People Here Now example, Facebook,
143
performSelectorinBackground method,
129
performSelectorOnMainThread method,
130
permalink, Tweets, 250
permissions
turning location services on/off, 137
user experience priorities, Twitter,
247
permissions, Facebook
check-ins, 171
OAuth, 38
permissions page, 39, 53
permissions via mobile Safari, 44
tokens, 39
read_stream permission, 93
revoking for application to check into
places, 144
single sign-on feature, 40
user permissions, 221
user_events permission, 92
user_groups permission, 92
user_likes permission, 92
user_notes permission, 90
user_photos permission, 95
persistent storage
error handling, 126

phone apps
Fone, 230-231
Photo Library
accessing images from code,
106-108
saving pictures to, 105-106
photo viewer
Three20 framework, 278
photos
displaying table of Photo albums on
device, 107
Facebook
i0S 4,7
posting pictures to Twitter, 110-117
saving pictures to Photo Library,
105-106
photos, Facebook, 15
compliancy guidelines, 222
fetching user’s tagged photos, 95
posting pictures to Facebook, 109-
110
tagging photos, 222
picture key value, Facebook dialogs
customizing display of feed dialog,
84
pictures
adding TwitPics, Evernote, 228
posting to Facebook, 109-110
posting to Twitter, 110-117
saving to Photo Library, 105-106
place_id key
associating location with Tweets,
177
Places see Facebook Places
platform policies
Facebook, 211, 219-223
Twitter, 211-217
plist file
defining custom URL scheme in, 47
Facebook redirection to application
after login, 46
PNG format
icons and images, 238, 239
Poole, Christopher
privacy, 12
Popover control, iPad, 246

post_id parameter, Facebook dialogs,
85
posts
creating content, 244
fetching user’s wall posts,
Facebook, 93
power saving mode
LocationController class, 149, 150
savingPower parameter, 149
startWithPowerSaving method, 149
presentModalViewController method
accessing images from code, 106
logging in to Twitter, 59
print out (po) command, Xcode, 68
privacy, 9, 12-14
see also security
before Facebook/Twitter, 9
Facebook, 10, 219, 220
Facebook statuses, 14
location of devices, 13
OAuth, 38
offline display guidelines, Twitter,
261
Places feature, Facebook, 141
real-life and online identities, 13
social graph, 12, 13, 14
tweet streams, 14
Twitter, 10, 215, 224
user experience priorities, Twitter,
247
users, 12-14
value of being anonymous, 13
Privacy settings, Facebook
Apps and Websites section, 144
customizing check-in settings, 142
Places feature, 141
revoking permission for application
to check into places, 144
profiles
getimageAtURLmethod,
MGTwitterEngine, 76
getting profile pictures for user’s
friends, Facebook, 66, 69
progress (feedback to user)
Facebook Ul design, 277

projects, Facebook
adding source code, 27
adding UlViewController, 27-28
creating, 25-26
projects, Twitter
adding Core Data model file to, 119
adding MGTwitterEngine source
code, 32-33
adding UlViewController to, 33-34
creating, 31
linking to Core Data framework, 119
naming, 260
prototyping
social app design on iOS, 243
publish_checkins permissions,
Facebook, 167
publishing
things apps can publish, Facebook,
66
things apps can publish, Twitter, 72
Publishing API, Facebook, 5
pulls
consuming content, 244
push notifications, Facebook
contacting other users, 268

Q

querying other users
Facebook Ul design, 268

Quick Look, iOS 4, 8

QuickBar, Twitter, 262-264

rate limiting

HTTP POST, 218

REST API, 218

users and API calls, Facebook, 220
read_stream permission, Facebook, 93
reader apps

Flipboard, 231-232

Taptu, 274, 275
Reading API, Facebook, 4
Received:forRequest methods

MGTwitterEngineDelegate, 73

region monitoring
authorization status for application,
152
CLLocationManager class, 151
determining if device has
left/reentered region., 151
didEnterRegion method, 152
didExitRegion method, 152
startMonitoringForRegion method,
151
registerRegion method
CLLocationManager class, 151
LocationController class, 160
regressions, 208
Remember The Milk see RTM
Reply action, Tweets, 251
request methods, MGTwitterEngine, 72
request: methods
didFailWithError method, 67, 71, 95
didLoad method, 66, 67, 68
posting pictures to Facebook,
109
searching for places, 166
didLoadRawResponse method, 66
didReceiveResponse method, 66
request responses, handling, 18
requestFailed:withError method
MGTwitterEngineDelegate, 73
requestLoading method, Facebook, 66
requests, Facebook, 71
requests, Twitter, 77
requestSucceeded method
MGTwitterEngineDelegate, 73, 97
requestWithGraph method, Facebook,
69
requestWithGraphPath method, 72, 89
:andDelegate method, 66, 70
:andParams:andDelegate method,
70, 95, 165
:andParams:andHttpMethod:andDel
egate method, 109
Reset Location Warnings setting, iOS,
139
responses, Facebook
dictionary with key/value pair, 67
didLoadRawResponse method, 66

didReceiveResponse method, 66
FBRequest class, 71
handleResponseData method, 71
JSON response, 71
limiting number of items in, 70
retrieving items from given offset, 70
responses, Twitter
direct messages, 100
directMessagesReceived method,
100
handling, 77
REST API rate limiting, Twitter, 218
results, Facebook
limiting number of fields returned, 95
Retweet action, Tweets, 251
reverse geocoding
associating location with Tweets,
175
RTM (Remember The Milk), 224-226
adding @RTM as Twitter contact,
225
changing preferences, 226
commands, 226
modifying tasks, 226
sending tasks to Twitter users, 225
rules governing use of APIs
Facebook, 218-223
see also compliancy guidelines,
Facebook
summary of major rules, 233
Twitter, 213-217
summary of major rules, 233

S

SA_OAuthTwitterController dialog, 60
SA_OAuthTwitterControllerDelegate, 60
SA_OAuthTwitterEngine object, 58
Safari

saving pictures to Photo Library, 105
saved states, iOS 4, 7
SBJSON framework

associating location with Tweets,

173
posting pictures to Twitter, 114

scrolling
user experience priorities, Twitter,
247
Search API, Twitter, 5
search engines
privacy of tweet streams, 14
Searching API, Facebook, 5
security, 9
see also privacy
before Facebook/Twitter, 9
Facebook, 10
OAuth, 11-12, 37-40
reporting problems to
Facebook/Twitter, 14
Twitter, 10
sendUpdate method, MGTwitterEngine,
96, 117
SenTestingKit framework, 208
setData method,
FollowersTableViewCell, 75
settings
social app design on iOS, 244
Settings application, iOS, 138
turning location services on/off, 137
setup documents, Apple IDE, 21
setUp method
adding unit tests to social iOS app,
206
Shake to Reload feature, Facebook,
241
ShareKit, 182-189
accessing services, 184
debugging, 184
default options, 183
downloading, 182
integrating with Facebook/Twitter,
186
integration with services in
applications, 182
linking to frameworks, 183
posting to Facebook/Twitter, 186
setting application name and URL,
184
setting application’s Twitter OAuth
credentials, 185
SHKActionSheet, 187

source code directory, 183
turning on debug logs, 185
Twitter dialog, 188
UlToolBar in, 186
using, 20
show method, FBDialog, 87
Significant Change method
Corelocation class, 149
location of devices, 147, 153
signing up/in/out
social app design on iOS, 237
sign-on feature, Facebook iOS SDK, 17
simulation
FTLocationSimulator, 149, 157-158
iSimulate, 154-156
single sign-on feature, Facebook, 17,
40-48
redirection to application after login,
46
Sleep mode, iOS 4, 6
SMS notes, Evernote, 227
SMS tweets, Twitter security, 10
SMSing, i0S 4, 7
social aggregators
Hootsuite, 274
social app design on iOS, 235-246
see also design
activity indicator, 239
animation, 239
app logic managing complexity, 244
branding, 245
content, consuming/creating, 244
controls, 242
Facebook Ul design, 267-280
feedback, 239-242
handling accounts, 236
icons, 237-239
iPad, 246
labels, 245
license agreement, 246
prototyping and testing, 243
settings, 244
signing up/in/out, 237
simplifying app usage, 246
sound, 241
touch targets, 242

Twitter Ul design, 247-265
updating indicator, 240
user requirements from apps,
244-246
vibration, 241
social graph, 1,2, 3
consuming/creating content, 244
creating app for Facebook, 30
creating app for Twitter, 35
Facebook Graph API, 17
iOS, 6-8
privacy, 12, 13, 14
Twitter, 1
social graph, Facebook, 1, 9
accessing information from, 66
fetching user’s events, 92
fetching user’s groups, 92
fetching user’s
likes/movies/music/books, 92
fetching user’s news feed, 90
fetching user’s notes, 90
fetching user’s
photos/albums/videos, 95
fetching user’s wall posts, 93
getting list of logged in user’s
friends, 66-69, 89
Graph API, 17
posting to Facebook social graph,
88
pulling information from, 66
social iOS app
adding unit tests to, 200-208
social networking sites
OAuth, 12
Social Stream
guidelines for using, Facebook, 223
software development
Git, 22
sound
social app design on iOS, 241
source, Tweets, 251
spam
Facebook, 219
Twitter, 215
splash screens, Twitter, 259
sprites, Twitter Ul design, 260

SQLite
? symbols, 197
implementing offline Twitter
application, 194, 199
MesaSQLite, 193
offline storage, 118, 192-199
SQLite database
Core Data, 193
Core Data creating, 192
viewing contents of, 193
sqlite3_close method, 196
sqlite3_open method, 195
SSH keys
generating, Git, 24
Standard method
CorelLocation class, 149
location of devices, 147
location services, 153
startMonitoringForRegion method, 151
startMonitoringSignificantLocationChan
ges method, 149
startUpdatingLocation method, 149,
158
startWithPowerSaving method, 149
states, saved, 7
statistics, Facebook/Twitter, 16
status parameter
sendUpdate method, Twitter, 96
statusesReceived method, 99
tweeting for currently logged in user,
97
statusesReceived:forRequest method
creating app for Twitter, 35
notifications when request for Tweet
completed, 129
status-related operations, Twitter URLSs,
102
stop method, LocationController, 150
storeCachedTwitterOAuthData method,
59
storing data
Core Data, 118-127
offline storage, 118-133
SQLite, 192-199
storing/retrieving Tweets
Core Data, 131-133

stream of Tweets, 72
Streaming API, Twitter, 5
end of whitelisting, 217
stringWithContentsOfURL method
URL shorteners in iOS, 181, 182
submodules, Git, 24, 26
Surgeworks
downloading Facebook Ul kit, 273
synchronizeTweets method, 130
adding unit tests to social iOS app,
207
offline storage, SQLite, 196
TimelineViewController class, 130
TwitterDataStore class, 130

T

T.co URL shortening service, 180
tableView:cellForRowAtIindexPath
method, 68
tabs
Facebook Ul design, 279
tagalus service
hash tags (#), Twitter, 192
tagged photos/albums/videos,
Facebook, 95
tagging photos
compliancy guidelines, 222
Taptu, 274
creating theme elements, 275
targets
adding, 201
adding unit tests to social iOS app,
200, 201, 203, 208
building/running test target, 203
linker flag, 155, 157
linking, 33, 113
OfflineTwitterTest target, 204
renaming, 202
setting up test target, 208
task completion, iOS 4, 7
task switching, iOS 4, 7
tasks, Twitter
adding, 225
modifying, 226
sending to users, 225

tearDown method
adding unit tests to social iOS app,
206
Terminal application, Mac OS X
creating project, Facebook iOS SDK,
26
terms of service, Twitter, 212
test class
adding unit tests to social iOS app,
206, 208
testing
social app design on iOS, 243
unit testing, 200-208
text messages
translating into Tweets, 227
theme elements, Twitter, 253
themes, Facebook Ul design, 273-275
creating theme elements, 274-275
Hootsuite, 274
Taptu, 275
Things others share section, Facebook,
143
Three20 framework, 270, 271, 278-279
Internet-aware table views, 278
letter text fields, 279
message composer, 278
photo viewer, 278
web image views, 278
timeline, Twitter, 72, 254
public timeline, 99, 102
timeline of user and followers, 99
TimelineViewController class, 128, 129
notifications when request for Tweet
completed, 129
synchronizeTweets method, 130
tweetsDidSynchronize method, 130
timestamp
Tweets, 250
Twitterific, 250
TinyURL.com URL shortening service,
180
URL shorteners in iOS, 181
to-do lists
RTM (Remember The Milk), 224-226
tokens, OAuth
permissions, 39

single sign-on feature, Facebook,
40, 41

touch targets

social app design on iOS, 242
trademarks

Twitter bird, 254, 255

Twitter Ul design, 254-255
trending topics, Twitter, 190

location based, 191
trends, Twitter see Twitter trends
TTlmageView, 278
TTMessageController, 278
TTPhotoViewController, 278
TTPickerTextField, 279
TTTableViewController, 278
TTTableViewDataSource, 278
TTTextEditor, 279
Tweet box/button

composing Tweets, 249
Tweet class

associating Tweet entity with, 123

Core Data storing Tweet objects,

193

offline storage, SQLite, 194
Tweet entities

adding attributes to, 122

adding to Core Data model, 120

associating with Tweet class, 123

mapping in Core Data model, 122

renaming, 121
Tweet Location section, 146, 147
Tweet.h file, 124
Tweet.m file, 124

adding to OfflineTwitterTest target,

205
Tweetbot
user’s avatar, 249
Tweetie, 255-257
creator of, 255
dynamic application bar, 256
HIG (Human Interface Guidelines),
255
Tweets
see also Twitter
#hashtags, 248
@mentions, 248

accessing user interface of
application, 127

actions (Reply/Retweet/Favorite),
251

adding locations to, 146-147

anatomy of, 248-249

associating location with, 172-177

author, 248

branding, 249

character counter, 249

composing, 249

deleting in Core Data model, 133

fetching from Core Data model, 133

getting favorite Tweets of currently
logged in user, 99

looping through array of, 131

maximum length of, 96

multiple Tweets, 252

notifications when request
completed, 129

offline display guidelines, 261

order criteria, 252

permalink, 250

prioritizing consumption/creation of,
224

references to, 255

retrieving, 129

saving on background thread, 128

source, 251

storing id and text content of, 122

stream of, 72

synchronizeTweets method, 130

timestamp, 250

Twitter bird, 249

URL shortening, 179-181

URLs, 248

user interface displaying, 127

user’s avatar, 249

tweets method

offline storage, SQLite, 198

Tweets table

offline storage, SQLite, 195

tweetsDidSynchronize method, 130
twitgoo

posting pictures to Twitter, 110

TwitPic
granting access via OAuth, 111
GSTwitPicEngine, 113
posting pictures to Twitter, 110-117
registering for TwitPic APl key, 111
storing returned TwitPic API Key,
112
twitpicDidFinishUpload method, 116
TwitPics
adding, Evernote, 228
Twitter API, 5-6, 72-78, 96-103
bug tracking, 25
console, 103
deleting Tweets, 99
developers using, 19
dialog class, 101
error handling, 19
getting set up with iOS application,
30-34
HTTP and XML, 77
making API calls, 19
MGTwitterEngine, 19
MGTwitterHTTPURLConnection, 77
prioritizing consumption/creation of
Tweets, 224
rules governing use of APlIs,
213-217
advertising, 217
displaying Twitter content, 216
existing Twitter clients, 214
location information, 213
login and identity, 216
monetizing apps, 216
placeholder apps, 215
sources for client features, 214
spam, 215
summary of major rules, 233
usability, 214
use of Twitter trademarks, 213
what the best apps do, 224
wrapping Twitter API in Objective-C
code, 30
Twitter
see also Tweets
adding tasks, 225
adding TwitPics, 228

adding UlViewController to project,
33-34
advantages of, 16
brand dilution, 212
Core API, 5
creating application, 55-57
creating project, 31
adding MGTwitterEngine source
code, 32-33
design see social app design on iOS
design guidelines, 249
design requirements, 248-249
exceptions to rules, 249
geo-location API, 172
getting list of logged in user’s
followers, 72-77
handling responses, 77
hash tags (#), 189
tagalus service, 192
HTTP GET, 5
HTTP POST, 5
integrating ShareKit with, 186
location of devices, 172-177
logging into, 58-61
logging out of, 62
making requests, 77
MGTwitterEngine, 19-20, 30, 77
modifying tasks, 226
navigation, 255-257
news, 16
notifications, 262
OAuth, 11, 40, 54-62
authentication flow, 54
OAuthTwitter project, 58
offline storage, 118-133
ownership of user data, 13
platform policies, 211
posting pictures to, 110-117
privacy, 10, 14, 215, 224
QuickBar, 262-264
references to, 255
referencing, 260
reporting security problems to, 14
resources to bookmark for Git, 24
REST API rate limiting, 218
Search API, 5

security, 10
sending direct message, 100
sending tasks to users, 225
ShareKit, 182-189
SMS notes, 227
social graph, 1
splash screens, 259
starting Twitter engine, 34-35
stream of Tweets, 72
Streaming API, 5
terms of service, 212
theme elements, 253
things apps can publish on, 72
timeline, 72
public timeline, 99
user and followers, 99
tweeting for currently logged in user,
96
Twitter’s own URL shortening
service, 180
URL shortening, 179-181
use cases, 4
user statistics, 16
using inside iOS applications, 4
using ShareKit, 20
whitelisting, 217
Twitter apps, 224-229
see also Twitter official app
direct references to Twitter, 254
Evernote, 226-228
placeholder apps, 215
reproducing, 212
RTM (Remember The Milk), 224-226
suggestions for value-added apps,
212
Ul and UX in official apps, 212
Waze, 228-229
Twitter bird
trademarks, 254, 255
Tweets, 249
Twitter console, Apigee
associating location with Tweets,
172
Twitter contacts
adding @RTM as, 225
Twitter dev console, 102-103

Twitter dialog, ShareKit, 188
Twitter HTTP API
common URL scheme, 101
Twitter IDs, 97
Twitter official app
navigation, 257
predecessor to, 255
timeline, 254
user profile, 254
Twitter security
SMS tweets, 10
Twitter trends, 189-192
as_of date, 189
current API, 190
letsbetrends.com, 192
top trending topics, 190
location based, 191
trends API, 189
Trends tool, 179
WOEID (Where on Earth IDs),
191-192
Twitter Ul design, 247-265
advertising in App Store, 255
anatomy of Tweets
@mentions, 248
branding, 249
character counter, 249
multiple Tweets, 252
order criteria, 252
permalink, 250
source, 251
timestamp, 250
Tweet author, 248
Tweet box, 249
Tweet button, 249
Twitter bird, 249
URLs, 248
user’s avatar, 249
bird graphics, 259
color, 253
design tricks from Web app, 264
direct references to Twitter, 254
guidelines, 249
icons, 258-259
logos, 258-259
naming projects, 260

navigation, 255-257
notifications, 262

offline display guidelines, 261
referencing Twitter, 260
requirements, 248-249

sprites, 260

trademarks, 254-255

usability priorities, 247

using Twitter’'s web buttons, 253
visual indicators, 259

Twitter URLs, 101-102

direct messages, 102
status-related operations, 102
user-related operations, 102

TwitterDataStore class

accessing user interface of
application, 127

adding Core Data model file to
project, 119

adding Tweet entity to Core Data
model, 120

data modeling with, 118-127

deleteTweets method, 131, 199

linking project to Core Data
framework, 119

offline storage, SQLite, 194

retrieving Tweets, 129

saving Tweets on background
thread, 128

storing data within, 124

synchronizeTweets method, 130,
196

tweets method, 198

TwitterDataStore_SQLite class

adding to OfflineTwitterTest target,
206

adding unit tests to social iOS app,
204, 206, 207

closeDatabase method, 196

offline storage, SQLite, 194

openDatabase method, 194, 195,
196

sqlite3_open method, 195

TwitterDataStore.m file, 205
twitterFollowersRequestDidComplete

method, 74

Twitterific
multiple Tweets, 252
social app design on iOS, 236
timestamp, 250
twitterOAuthConnectionFailedWithData
method, 59
twitterTimelineRequestDidComplete
method, 129
Twurl
bookmarking Twitter resources, 24

UllmagePickerController class, 106-108
displaying table of Photo albums on
device, 107
posting photos to Twitter, 116
UllmagePickerControllerDelegate
accessing images from code, 107
didFinishPickingMediaWithInfo
method, 107
Uls (user interfaces)
design see social app design on iOS
Facebook Ul design, 267-280
Twitter Ul design, 247-265
UlTabBarController class
Facebook, 66
Twitter, 72
UlTableView class, 68
UlTableViewController class, 72
accessing user interface of
application, 127
UlToolBar, ShareKit, 186
UlViewController class
accessing images from code, 106
adding to Facebook project, 27-28
adding to Twitter project, 33-34
presentModalViewController
method, 106
UlWebView class
Facebook iOS SDK, 17, 27
Facebook login, 45
FBDialog class, 87
OAuth, 38
webViewDidFinishLoad method,
Twitter, 62

unit testing, 200-208
updating indicator
social app design on iOS, 240
uploadPicture:withMessage method
GSTwitPicEngine class, 116
URL Linter
bookmarking Facebook resources,
25
URL scheme
components of URLs, 48
Facebook redirection to application
after login, 46
interapp communication via, 46-49
Twitter HTTP API, 101
URL shortening, 179-181
bit.ly, 180
curl tool, 180
iO0S, 181-182
T.co, 180
TinyURL, 180
Tweets, 179
user experience priorities, Twitter,
247
URLs
components of, 48
Tweets, 248
Twitter, 101-102
usability priorities
Facebook Ul design, 267-280
Twitter Ul design, 247
use cases
Facebook, 3
Twitter, 4
user authentication see authentication
user experience, Facebook, 219
usability priorities, 267-280
user experience, Twitter
priorities, 247
user interfaces see Uls
user permissions, Facebook, 221
user_checkins, 171
user_events, 92
user_groups, 92
user_likes, 92
user_notes, 90
user_photos, 95

user profile, Twitter official app, 254
user requirements from apps
social app design on iOS, 244-246
branding, 245
consuming/creating content, 244
labels, 245
settings, 244
user testing
social app design on iOS, 243
user’s avatar
Tweetbot, 249
Tweets, 249
userlinfoReceived method
setting breakpoint in XCode in, 100
userinfoReceived:forRequest method
MGTwitterEngineDelegate, 73, 74,
78
user-related operations, Twitter URLSs,
102
users
contacting others, Facebook, 268
offline display guidelines, Twitter,
261
ownership of user data, 13
privacy, 12-14
querying others, Facebook, 268
rate limits on, Facebook, 220
statistics for Facebook/Twitter, 16
using user’s location in applications,
136

'}

vibration
contacting other users, 268
social app design on iOS, 241
videos, Facebook
fetching user’s tagged videos, 95
view controllers
adding UlViewController
Facebook, 27-28
Twitter, 33-34
DialogViewController class, 82
FacebookViewController class, 66
FollowersViewController class, 72
FriendsViewController class, 66

TimelineViewController class, 128,
129
TTPhotoViewController, 278
TTTableViewController, 278
UlTableViewController class, 72
viewDidLoad method
FollowersViewController class, 72
FriendsViewController class, 66
views, Three20, 278
visual indicators, Twitter Ul design, 259
VOIP apps, iOS 4, 7

W

wall posts, Facebook
fetching user’s wall posts, 93
Waze, 228-229
Web app, Facebook
design tricks from, 279
Web app, Twitter
design tricks from, 264
web browsers
bookmarking Twitter resources, 24
saving pictures to Photo Library, 105
web buttons, Twitter, 253
web image views, Three20 framework,
278
web view, Facebook dialogs, 84
webViewDidFinishLoad method, 62
whitelisting, Twitter, 217
WiFi connections, iOS 4, 6
WOEID (Where on Earth IDs)
Twitter trends, 191-192

X

Xcode
adding unit tests to social iOS app,
203
creating app for Facebook, 29
getting set up with iOS application,
Facebook, 25

print out (po) command, 68

seeing contents of objects in, 68

setting breakpoint in
userinfoReceived, 100

starting Twitter engine, 34

using for iOS development, 21

versions, 21

Xcode project

adding Facebook iOS SDK source
code, 27

adding MGTwitterEngine source
code, 32-33

adding UlViewController, Facebook,
27-28

adding UlViewController, Twitter,
33-34

adding unit tests to social iOS app,
200

creating Facebook project, 25-26

creating Twitter project, 31

mapping Tweet entity in Core Data
model, 122

offline storage, SQLite, 199

XML

adding MGTwitterEngine source
code, 32

MGTwitterEngine parsing returned
XML data, 78

Twitter, 19

Y

yfrog
posting pictures to Twitter, 110

/4

ZTWEET table
CoreDataOffline.sqlite file, 193
Zuckerberg, Mark
privacy, 12

	Title Page
	Copyright Page
	Contents at a Glance
	Table of Contents
	About the Authors
	About the Technical Reviewer
	Acknowledgments
	Preface
	Chapter 1 What the Social Graph Can Do for Your App
	What Is This Book for?
	What You’ll Need
	What You Should Know
	What You’ll Learn

	Learning the Social Graph
	Use-Cases, Briefly
	Facebook
	Twitter

	Brief Overview of the APIs and Services
	Facebook
	Reading
	Publishing
	Searching

	Twitter
	Core API
	Search API
	Streaming API
	The Social Graph on iOS
	Local Notifications
	Task Completion
	Fast Task Switching and Saved State
	Background Music, Location, and VOIP
	SMS: Search and in-app SMSing
	More Powerful Photos and Calendars
	New Camera and Flash
	Map Overlays
	iAd
	Quick Look
	Math APIs
	File Transfer

	Summary

	Chapter 2 Privacy, Privacy, Privacy
	The Old Way
	A Quick History of Hot-Button Issues
	Facebook’s Track Record
	Twitter’s Track Record

	How OAuth Changes Everything
	A New Standard Emerges

	What Users “Want”
	Educating Your Users
	A Note on Feeds
	What to Do if You Encounter a Security Loophole
	Summary

	Chapter 3 Choose Your Weapon!
	What Are They Good For?
	Facebook
	Twitter

	Getting Started with Facebook’s Awesome Developer Tools
	Using Facebook’s API
	Making API Calls
	Displaying Dialogs
	Error Handling
	Logging Out

	Twitter’s Less Awesome (but Still Great!) Tools
	Using MGTwitterEngine
	Making API Calls
	Error Handling
	Using ShareKit

	Summary

	Chapter 4 Getting Set Up
	Git ’Er Dun
	Github.com
	Installing Git
	Git Basics
	Bookmark These Twitter Resources
	Also Bookmark These Facebook Resources
	A Note on Bug Tracking

	Hello Facebook
	Creating a Project
	Adding the Facebook iOS SDK Source Code
	Add UIViewController

	Hello Twitter
	Creating a Project
	Adding the MGTwitterEngine Source Code
	Add UIViewController

	Now, on to Security

	Chapter 5 Working Securely with OAuth and Accounts
	OAll OAbout OAuth
	How OAuth Works
	OAuth in Facebook and Twitter

	OAuth in Facebook and Twitter
	Single Sign-On with Facebook
	Logging in to Facebook
	Logging out of Facebook
	Determining if iOS Supports Backgrounding of Applications

	OAuth in Twitter
	Creating a Twitter Application
	The OAuthTwitter Project
	Logging into Twitter
	Logging out of Twitter
	Under the Hood: webViewDidFinishLoad

	There’s More

	Chapter 6 Getting Your App Ready for Social Messaging
	Introducing the Facebook Graph API
	A Little Help from Our Friends
	Paging Graph Responses
	Under the Hood: The FBRequest Class
	A General Note on Error Handling

	Introducing the Twitter APIs
	Welcome to the Timeline
	It Always Feels Like Somebody’s Following Me

	Under the Hood: MGTwitter HTTP Connections and XML Parsing

	Conclusion

	Chapter 7 Accessing People, Places, Objects, and Relationships
	More Fun with the Facebook Graph API
	Facebook Dialogs
	Under the Hood: The FBDialog Class
	Posting to Facebook and Authorization
	Getting More Goodies from the Facebook Graph
	Limiting Results
	Date Formatting

	More Fun with the Twitter API
	A Tweetin’ We Will Go
	Under the Hood: Twitter URLs
	The Twitter Dev Console

	Conclusion

	Chapter 8 POSTing, Data Modeling, and Going Offline
	Strike a Pose
	Saving a Picture to the iOS Simulator’s Photo Library
	Working with UIImagePickerController
	ImagePostController
	Facebook Photo Upload
	Twitter Photo Upload
	GSTwitPicEngine
	ASIHTTPRequest
	SBJSON
	OARequestHeader
	Post a Photo

	Offline Paradigm and Background Processing
	Data Modeling with TwitterDataStore
	Updating the View from the Model

	Conclusion

	Chapter 9 Working with Location Awareness and Streaming Data
	Here, There, and Everywhere
	Location Privacy, Disclosure, and Opt-Out
	Facebook Places
	Adding Locations to Tweets
	Power Hungry
	CoreLocation
	Using CLLocationManager
	Generating Locations in the iOS Simulator
	iSimulate
	futuretap’s FTLocationSimulator

	MapKit
	Facebook Places (Search), Check-ins (Getting and Posting), and Friends Nearby
	Tweetin’ With Location

	Conclusion

	Chapter 10 Using Open Source Tools and Other Goodies
	The Shorter, the Better
	Using URL Shorteners in iOS

	ShareKit: Sometimes Quick and Dirty Does the Trick
	Getting Started with ShareKit

	All the Latest Twitter Trends
	Trending Topics
	Where On Earth ID

	Offline Storage Revisited: SQLite
	Reimplementing OfflineTwitter Without Core Data

	To Test or Not to Test, That is the Question
	Adding Unit Tests to a Social iOS App

	Conclusion

	Chapter 11 Apps You Can (and Cannot) Build
	Twitter: No Clients Allowed
	The Lowdown on the Twitter Terms of Service
	Rules of the Road
	Using the API
	What Your App Can Do
	Rules Governing Existing Twitter Clients
	How Twitter Defines Usability
	Login and Identity
	Displaying Content Correctly

	Monetizing Your App
	Twitter Ads
	Advertising Around Twitter Content

	New Rate Limits and the End of Whitelisting

	REST API Rate Limiting
	Facebook: Mind Your Manners
	The Lowdown on Platform Policy
	Creating a Great User Experience
	Be Trustworthy
	Rate Limits
	For Your Privacy Policy
	Other Stuff
	Rules About Content
	Other Odd Rules About How Facebook Apps Must Work
	The Principles in Action
	Photos
	The Like Button
	Advertising
	Using the Social Stream
	Button Text

	App Gallery
	Twitter Apps
	Remember The Milk
	Adding Tasks
	Sending Tasks to Other Twitter Users
	Updating Tasks
	Changing Preferences
	Evernote
	SMS notes
	Adding TwitPics
	Waze

	Facebook Apps
	Fone
	Flipboard

	Conclusion

	Chapter 12 UI Design and Experience Guidelines for Social iOS Apps
	UI Basics for Facebook and Twitter
	Attention to Detail: Start with the Icons
	Show All Kinds of Feedback
	Touch Targets and Text
	Prototype and Test
	What the User Wants from Your App
	Content
	A Logical Path
	Obvious Settings
	Branding
	Brevity
	A License Agreement
	Appropriate iPad Design

	Make Usage Easy and Obvious

	Conclusion

	Chapter 13 Twitter UI Design
	Usability Priorities
	Anatomy of a Tweet
	Suggested Components

	(Not) Using Twitter Colors
	Create Theme Elements

	Using the Twitter Trademark
	Advertising in the App Store
	We Don’t Know You

	Twitter Navigation Paradigms
	Twitter Logos and Icons
	Splash Screens

	Visual Assets (a.k.a., the Exceptions)
	Naming Your Project
	Offline Display Guidelines
	Working with Notifications
	Design Tricks from the Web App

	Conclusion

	Chapter 14 Facebook UI Design
	Usability Priorities
	Themes and Icons
	Third Party Resources
	Create Theme Elements
	Hootsuite
	Taptu

	Rules for Facebook Art
	Button Text

	Facebook Navigation
	Showing Progress
	Essential Three20 Components
	Design Tricks from the Web App
	The Tabbed Approach

	Conclusion

	Index

