

 i

Beginning iOS Apps with
Facebook and Twitter

APIs
For iPhone, iPad, and iPod touch

■ ■ ■

Chris Dannen
Christopher White

Beginning iOS Apps with Facebook and Twitter APIs: For iPhone, iPad, and iPod touch

Copyright © 2011 by Chris Dannen, Christopher White

All rights reserved. No part of this work may be reproduced or transmitted in any form or by any
means, electronic or mechanical, including photocopying, recording, or by any information
storage or retrieval system, without the prior written permission of the copyright owner and the
publisher.

ISBN 978-1-4302-3542-2

ISBN 978-1-4302-3543-9 (eBook)

Trademarked names, logos, and images may appear in this book. Rather than use a trademark
symbol with every occurrence of a trademarked name, logo, or image we use the names, logos,
and images only in an editorial fashion and to the benefit of the trademark owner, with no
intention of infringement of the trademark.

The use in this publication of trade names, trademarks, service marks, and similar terms, even if
they are not identified as such, is not to be taken as an expression of opinion as to whether or not
they are subject to proprietary rights.

President and Publisher: Paul Manning
Lead Editor: Steve Anglin
Development Editor: Tom Welsh
Technical Reviewer: Ryan Petrich
Editorial Board: Steve Anglin, Mark Beckner, Ewan Buckingham, Gary Cornell, Jonathan

Gennick, Jonathan Hassell, Michelle Lowman, James Markham, Matthew Moodie, Jeff
Olson, Jeffrey Pepper, Frank Pohlmann, Douglas Pundick, Ben Renow-Clarke, Dominic
Shakeshaft, Matt Wade, Tom Welsh

Coordinating Editor: Kelly Moritz
Copy Editor: Patrick Meader
Compositor: MacPS, LLC
Indexer: John Collin
Artist: April Milne
Cover Designer: Anna Ishchenko

Distributed to the book trade worldwide by Springer Science+Business Media, LLC., 233 Spring
Street, 6th Floor, New York, NY 10013. Phone 1-800-SPRINGER, fax (201) 348-4505, e-mail
orders-ny@springer-sbm.com, or visit www.springeronline.com.

For information on translations, please e-mail rights@apress.com, or visit www.apress.com.

Apress and friends of ED books may be purchased in bulk for academic, corporate, or
promotional use. eBook versions and licenses are also available for most titles. For more
information, reference our Special Bulk Sales–eBook Licensing web page at
www.apress.com/bulk-sales.

The information in this book is distributed on an “as is” basis, without warranty. Although every
precaution has been taken in the preparation of this work, neither the author(s) nor Apress shall
have any liability to any person or entity with respect to any loss or damage caused or alleged to
be caused directly or indirectly by the information contained in this work.

The source code for this book is available to readers at www.apress.com and
https://github.com/chrisdannen/Apress_iOSFacebookTwitter. You will need to answer questions
pertaining to this book in order to successfully download the code.

iii

Contents at a Glance

Contents ... iv
About the Authors .. viii
About the Technical Reviewer ... ix
Acknowledgments .. x
Preface .. xi
■Chapter 1: What the Social Graph Can Do for Your App 1
■Chapter 2: Privacy, Privacy, Privacy ... 9
■Chapter 3: Choose Your Weapon! .. 15
■Chapter 4: Getting Set Up .. 21
■Chapter 5: Working Securely with OAuth and Accounts 37
■Chapter 6: Getting Your App Ready for Social Messaging 65
■Chapter 7: Accessing People, Places, Objects, and Relationships 81
■Chapter 8: POSTing, Data Modeling, and Going Offline 105
■Chapter 9: Working with Location Awareness and Streaming Data 135
■Chapter 10: Using Open Source Tools and Other Goodies 179
■Chapter 11: Apps You Can (and Cannot) Build .. 211
■Chapter 12: UI Design and Experience Guidelines for Social iOS Apps 235
■Chapter 13: Twitter UI Design .. 247
■Chapter 14: Facebook UI Design .. 267
Index ... 281

iv

Contents

Contents at a Glance .. iii
About the Authors .. viii
About the Technical Reviewer ... ix
Acknowledgments .. x
Preface .. xi

■Chapter 1: What the Social Graph Can Do for Your App 1

What Is This Book for? .. 2
What You’ll Need .. 2
What You Should Know .. 2
What You’ll Learn ... 2

Learning the Social Graph ... 3
Use-Cases, Briefly .. 3

Brief Overview of the APIs and Services ... 4
Facebook ... 4
Twitter .. 5
The Social Graph on iOS .. 6

Summary .. 8

■Chapter 2: Privacy, Privacy, Privacy ... 9
The Old Way .. 9
A Quick History of Hot-Button Issues .. 10

Facebook’s Track Record .. 10
Twitter’s Track Record ... 10

How OAuth Changes Everything ... 11
A New Standard Emerges .. 12

What Users “Want” ... 12
Educating Your Users .. 13
A Note on Feeds .. 14
What to Do if You Encounter a Security Loophole ... 14
Summary .. 14

■ CONTENTS

v

■Chapter 3: Choose Your Weapon! .. 15
What Are They Good For? ... 15

Facebook ... 15
Twitter .. 16

Getting Started with Facebook’s Awesome Developer Tools ... 16
Using Facebook’s API ... 17

Twitter’s Less Awesome (but Still Great!) Tools ... 19
Using MGTwitterEngine .. 19

Summary .. 20

■Chapter 4: Getting Set Up .. 21
Git ’Er Dun ... 21

Github.com ... 22
Installing Git ... 22

Hello Facebook ... 25
Creating a Project .. 25

Hello Twitter .. 30
Creating a Project .. 31

Now, on to Security ... 35

■Chapter 5: Working Securely with OAuth and Accounts 37
OAll OAbout OAuth .. 37

How OAuth Works .. 38
OAuth in Facebook .. 40

Single Sign-On with Facebook ... 40
OAuth in Twitter .. 54

Creating a Twitter Application ... 55
There’s More ... 62

■Chapter 6: Getting Your App Ready for Social Messaging 65
Introducing the Facebook Graph API ... 66

A Little Help from Our Friends .. 66
Paging Graph Responses ... 70
Under the Hood: The FBRequest Class .. 71

Introducing the Twitter APIs ... 72
Welcome to the Timeline ... 72
Under the Hood: MGTwitter HTTP Connections and XML Parsing .. 77

Conclusion .. 79

■Chapter 7: Accessing People, Places, Objects, and Relationships 81
More Fun with the Facebook Graph API .. 81

Facebook Dialogs ... 82
Under the Hood: The FBDialog Class ... 86
Posting to Facebook and Authorization ... 88
Getting More Goodies from the Facebook Graph ... 89
Limiting Results ... 95

More Fun with the Twitter API .. 96
A Tweetin’ We Will Go .. 96
Under the Hood: Twitter URLs .. 101
The Twitter Dev Console .. 102

■ CONTENTS

vi

Conclusion .. 103

■Chapter 8: POSTing, Data Modeling, and Going Offline 105
Strike a Pose ... 105

Saving a Picture to the iOS Simulator’s Photo Library ... 105
Working with UIImagePickerController .. 106
ImagePostController .. 109
Facebook Photo Upload ... 109
Twitter Photo Upload ... 110
Post a Photo ... 115

Offline Paradigm and Background Processing ... 118
Data Modeling with TwitterDataStore .. 118

Conclusion .. 134

■Chapter 9: Working with Location Awareness and Streaming Data 135
Here, There, and Everywhere ... 135

Location Privacy, Disclosure, and Opt-Out ... 136
Facebook Places .. 141
Adding Locations to Tweets ... 146
Power Hungry .. 147
CoreLocation .. 148
Generating Locations in the iOS Simulator .. 153
MapKit .. 158
Facebook Places (Search), Check-ins (Getting and Posting), and Friends Nearby .. 162
Tweetin’ With Location .. 172

Conclusion .. 178

■Chapter 10: Using Open Source Tools and Other Goodies 179
The Shorter, the Better ... 179

Using URL Shorteners in iOS .. 181
ShareKit: Sometimes Quick and Dirty Does the Trick ... 182

Getting Started with ShareKit .. 183
All the Latest Twitter Trends ... 189

Trending Topics ... 190
Where On Earth ID .. 191

Offline Storage Revisited: SQLite .. 192
Reimplementing OfflineTwitter Without Core Data .. 194

To Test or Not to Test, That is the Question .. 200
Adding Unit Tests to a Social iOS App .. 200

Conclusion .. 209

■Chapter 11: Apps You Can (and Cannot) Build .. 211
Twitter: No Clients Allowed ... 211

The Lowdown on the Twitter Terms of Service ... 212
REST API Rate Limiting ... 218
Facebook: Mind Your Manners ... 218

The Lowdown on Platform Policy ... 219
Creating a Great User Experience .. 219
Be Trustworthy .. 219
The Principles in Action ... 222

App Gallery .. 224

■ CONTENTS

vii

Twitter Apps ... 224
Facebook Apps .. 229

Conclusion .. 232

■Chapter 12: UI Design and Experience Guidelines for Social iOS Apps 235
UI Basics for Facebook and Twitter .. 235

Attention to Detail: Start with the Icons ... 237
Show All Kinds of Feedback .. 239
Touch Targets and Text ... 242
Prototype and Test ... 243
What the User Wants from Your App ... 244
Make Usage Easy and Obvious .. 246

Conclusion .. 246

■Chapter 13: Twitter UI Design .. 247
Usability Priorities ... 247

Anatomy of a Tweet ... 248
(Not) Using Twitter Colors .. 253
Using the Twitter Trademark ... 254

Twitter Navigation Paradigms ... 255
Twitter Logos and Icons ... 258
Visual Assets (a.k.a., the Exceptions) .. 259
Naming Your Project .. 260
Offline Display Guidelines .. 261
Working with Notifications ... 262
Design Tricks from the Web App ... 264

Conclusion .. 265

■Chapter 14: Facebook UI Design .. 267
Usability Priorities ... 267

Themes and Icons .. 273
Rules for Facebook Art .. 275
Facebook Navigation ... 276
Showing Progress .. 277
Essential Three20 Components ... 278
Design Tricks from the Web App ... 279

Conclusion .. 280

Index ... 281

viii

About the Authors

Chris Dannen is a business and technology writer who writes for FastCompany
magazine and other publications. He is also the author of “iPhone Design
Award Winning Projects” (Apress, 2009). He lives in Brooklyn, NY.

Christopher White is an iOS engineer with a background in location-based
gaming, mobile advertising, and in-vehicle GPS navigation. He lives in
Brooklyn, NY.

ix

About the Technical
Reviewer

Ryan Petrich is a software engineer with a background in reverse engineering, mobile
advertising, and iOS software development. He resides in Edmonton, AB and Brooklyn, NY.

x

Acknowledgments

Thanks to our editors and friends, who tolerated our “spontaneous” style of work.

xi

Preface

Facebook and Twitter are perhaps the only platforms that are so vital to our daily
communications that they could, for some users, supersede Apple’s own communication apps,
the SMS app, and the phone. In a few years, some people may live the majority of their iOS
experience inside one of these platforms.

Fortunately for us, the third-party developers, both of these companies are growing so
rapidly that they can hardly afford to explore and optimize every possible use for these platforms.
(They also have the minor issue of monetization to worry about.)

As the staffs at Twitter and Facebook busy themselves refining their products, privacy
policies, APIs, and business plans, there is a huge opportunity for smaller, more nimble
developers to get out there and see what people want next from the online social experience. As
an independent developer, you have the power to find a niche among Facebook and Twitter
users—perhaps a very big niche—and create a tool that feels novel and useful, yet familiar and
intuitive.

We hope this book helps you do just that.

Chris D. and Chris W.

1

1

 Chapter

What the Social Graph
Can Do for Your App
Once upon a time, there were “social” networks that helped people connect with friends.

Nowadays, every application and web service can be considered social. Why? Simply

put, it’s because people like to share. Whether it’s publishing a high score in a video

game or posting a picture where friends can see it, iOS users have become accustomed

to showing their digital life to their network of friends, family, and colleagues.

That network of people is called the social graph. A person’s social graph describes

everyone he knows and how those people are connected. Since Facebook CEO Mark

Zuckerberg coined the term in 2007, the social graph has become more than just who

you know. Other “nodes” that have been added include places, events, brands, and

multimedia. All these things can act as vectors by which people connect to one another.

Facebook and Twitter exist to document the social graph of its users and push them to

make new connections. Both companies have powerful incentives to expand the social

graph of its users: knowing users’ connections and predilections allows them to sell

targeted advertisements, deliver recommendations, and initiate partnerships around e-

commerce and real-world commerce alike.

For app developers, the opportunities are much the same. Adding Facebook or Twitter

functionality to an iOS app can open up vast new opportunities for monetization and

new features, but there is plenty of other cool stuff in store, too. Connecting your app to

the social graph makes it easier for users to log in, manage their account, and transfer

information in and out. And both Facebook and Twitter have built extensive APIs and

frameworks that can spare developers from having to reinvent the wheel. (Facebook, for

example, has even made its custom iOS frameworks open source.)

Both services have audiences of hundreds of millions of users looking to explore. Now

that all those folks have invested time building out a Facebook profile or cranking out a

stream of tweets, many of them are curious how else they can use their accounts. Show

them!

1

CHAPTER 1: What the Social Graph Can Do for Your App 2

What Is This Book for?
This book shows iOS developers how you can build Facebook and/or Twitter into your

apps, allowing you to build more secure, flexible, and usable apps. But there is a lot

more than just technical guidance here. The chapters of this book will also delve into

some of the philosophical questions that go into utilizing the social graph. For example,

it will address design and branding, so that users will recognize the Facebook and

Twitter features they love when they’re inside your app.

What You’ll Need
This book won’t endeavor to teach you how to build an entire iOS app from the ground

up, so you’ll want to have some semblance of an app already built by the time you pick

up the Facebook and Twitter APIs. And while we’ll be working in trusty ol’ Cocoa Touch

and Objective-C, there will also be plenty of Web stuff that requires JavaScript, HTML,

and CSS. Picking up the APIs we’ll discuss in this book will go more smoothly if you’ve

programmed for the Web before.

What You Should Know
The social graph is about people. It’s about their content, their friends, and their

businesses. Some of the interactions you’ll encounter are socially sophisticated—you’re

messing with peoples’ relationships here. The way these relationships function online

will be hard to understand if you’ve never spent much time using Facebook or Twitter. If

you’re thinking about adding one of these APIs to your app, you’ll find it worth taking the

time to get comfortable with the services. Do this, and you’ll gain a more nuanced

understanding of the privacy issues (there are many); the platforms (they’re not perfect);

and most importantly, an idea of what these things are actually useful for.

What You’ll Learn
By the time you’re finished with this book, you’ll know how to build an app that can

connect to the world’s most popular social Web services quickly, securely, and

discreetly. You’ll understand how to leverage the social graph to make your software

more useful, more fun, and more popular. You’ll also see where the weak spots in the

platform lie and understand better how the APIs will evolve in the future.

But perhaps most crucially, you’ll understand the beginnings of a significant moment in

the development of the Web and the iOS: the coalescence of online life and real life.

There is immense power being endowed in the Web now as people bring their real-life

relationships, experiences, interests, and emotions into the social graph. The more rack

space that Twitter and Facebook build, the more user data becomes available to your

app. And the better you know the user, the more useful your programs become.

CHAPTER 1: What the Social Graph Can Do for Your App 3

Learning the Social Graph
If you haven’t seen the movie “The Social Network,” we’ll save you the trouble. “You

don't even know what the thing is yet,” Sean Parker says to Zuckerberg at the film’s

apogee. And he’s absolutely right: no one knows what Facebook is, or what it will

become.

Both Facebook and Twitter, as large and well-funded as they are, are probably still in

their incipience. A lot is going to change as business and society come to mold their

media, communication, and commerce around these platforms. If you can’t think of a

killer use-case for Facebook or Twitter in your app at this stage in the game, don’t

worry—you’re only on page three. It may take some thinking (and plenty of prototyping)

before you understand how to put the social graph to the best possible use in your app.

But that’s okay because everyone else is in the same boat.

To get your brain on its way to ginning up good ideas, we’ll cover some very basic

things you can do with Facebook and Twitter inside an app by manipulating their APIs.

Use-Cases, Briefly
There are plenty of things that an iOS application can get from Facebook and Twitter

APIs. Some very basic use cases consist of, but are not limited to, what’s described in

the following sections. You’ll learn how to do all the things described in these sections in

this book; you’ll also learn how to concoct much more complex use cases.

Facebook
Here are some examples that illustrate how a developer could use Facebook inside a

hypothetical app:

 Upload a photo or a video created in a camera app to a user’s profile

 Post a link to a content within a news app to a user’s wall

 Post likes to a user’s wall from inside a shopping app

 Post a status update to a user’s profile

 Display a list of a user’s friends and their profile photos in a contacts

application

 Let a user set herself as attending an event from within an application

 Show users who else is at an event from inside an app

 Display search results of public Facebook data, so that users can

search for people, places, or content

CHAPTER 1: What the Social Graph Can Do for Your App 4

Twitter
Here are some examples that illustrate how a developer could use Twitter inside a

hypothetical app:

 Tweet a link to an event from within a location-based app

 Tweet a photo from with a photo editing app

 Send direct messages to specific Twitter users

 Show tweets that are relevant to a topic within a news application

 Display a list of a user’s followers and followees and their profiles in a

contacts application

 Automatically tweet a user’s location from within a GPS application

 Organize a group or community around your app

 Show tweets about a restaurant in a food guide application

 Publicize a high score in a game

 Search up to the minute news or photos

 Use trends or trending topics as input

Brief Overview of the APIs and Services
Facebook and Twitter are both robust platforms, but they don’t always let you do what

you want. If you already have some idea of what you want to add to your app, here are

basic summaries of what these platforms allow.

Facebook
The Facebook API is currently in an ongoing, transitional phase. The original Facebook

API was a Representational State Transfer (REST) API, but this API is being phased out

and is officially deprecated.

All Facebook development moving forward should use Facebook’s new Graph API. The

Graph API is where you will find support for all new and future Facebook features, and it

is continuously updated to include the full set of original features from the REST API.

Note that the Graph API only supports responses as JavaScript Object Notation (JSON)

objects.

A basic summary of these APIs follows.

Reading
This API provides access to the basic information stored in the Facebook Graph.

CHAPTER 1: What the Social Graph Can Do for Your App 5

Publishing
This API enables you to add comments, likes, and so on to the Facebook Graph.

Searching
This API allows you to search public objects in the social graph, such as all public posts,

people, events, places, and so on.

All of the Facebook APIs are HTTP based, so data is retrieved via an HTTP GET, and data

is submitted via an HTTP POST.

To make the lives of iOS developers easier, Facebook also makes available an iOS

Objective-C Facebook SDK. This SDK is open source and functions as a wrapper

around the Facebook HTTP-based Graph API. This book will use the iOS Objective-C

Facebook SDK, but will refer back to the HTTP APIs where appropriate or wherever they

provide additional insight.

Twitter
Twitter’s API has evolved to be somewhat segmented—it was mostly developed in-

house, but augmented by major code infusions that were purchased from third-parties.

The result is an API that consists of two Representational State Transfer (REST) APIs, a

Core API and a Search API, and one Streaming API. Twitter’s API supports both XML

and JSON formats, but we will be using the default XML format when discussing

technical details and when showing example code. A basic summary of these APIs

follows.

Core API
This API provides the basic Twitter functionality of twitter.com: tweet, follow, and

timeline.

Search API
This API provides a real-time search index of Twitter and global and local trends.

Streaming API
This API is currently designed primarily for server-to-server integrations via HTTP long-

poll connections, and it provides tweets in real-time. Twitter is in the process of

experimenting with server-to-client integrations via this API.

All of the APIs are HTTP-based and usage is rate limited. Just like Facebook, data in

Twitter is retrieved via an HTTP GET, and data is submitted via an HTTP POST.

CHAPTER 1: What the Social Graph Can Do for Your App 6

Note that Twitter has gone to great lengths to adhere to the following principles when

developing each of these APIs:

 To be ridiculously simple

 To be obvious

 To be self-describing

The Social Graph on iOS
Back when it was known as the iPhone OS, Apple’s mobile platform didn’t offer much to

social graph applications, which weren’t allowed to achieve anything close to parity with

a desktop experience. But slowly, Apple began giving more power to its devices and

more tools to developers. Now with multitasking and a new Sleep mode, iOS 4 has

empowered social apps to evolve even deeper functionality. In the process, Apple has

solved some very deep usability problems with rather elegant (if sometimes limited)

solutions.

Sure, you can do a lot of the stuff we’ll talk about in this book with other platforms, but it

won’t work as well (or look as good) as it will on the iOS. Here are some of the new

goodies that come with iOS 4:

 Multitasking allows your app to go about its business in the

background. Whatever your app does, it can keep on doing it without

the user needing to manually activate it.

 Better spell-check and text-replacement options make data entry

easier.

 WiFi connections now have limited persistence in Sleep mode, which

means that iOS devices can continue to perform Web-related

operations when the device isn’t being used.

NOTE: When an app is running in the background on iOS, it can’t perform all its functions in that
state. For reasons relating to reliability and battery life, Apple has chosen to restrict background

processing to the seven specific APIs (see Chapter 10 for more information on this topic).

Other changes introduced in iOS 4 will make programming for the social graph more

robust. Some of those changes include the following.

Local Notifications
iOS has had Push notifications for a while, but now Apple has introduced Local

notifications, too. These alerts don’t travel through Apple’s Push server, but instead

reside on the device itself, waiting in the background until it’s time to pop out at the

user. The notification that someone is calling you on Skype is an example of a Local

notification.

CHAPTER 1: What the Social Graph Can Do for Your App 7

Task Completion
If a task is underway when a user exits an app, iOS can now register that thread and

keep it going in the background, even after the user has moved on to doing something

else. Keeping that single thread open allows the user to shut down the remainder of the

app, releasing most of the memory back to the system. iOS will shut the app down

completely once that task is done.

Fast Task Switching and Saved State
Before iOS 4, it was very difficult to build a persistent app that would save the user’s

progress upon exit. Saved states are now recommended for all iOS apps. This means

that when a user returns to an app, the app’s current state has been preserved in

memory and appears just as the user left it. This functionality is managed by the new

“task switcher” that appears when you double-tap the Home button. This state-saving is

especially useful when apps call other apps, such as when a user chooses to compose

an email from inside an app. After the email is sent, the app the user was using when

she initiated the email will return to the screen, just as she left it.

Background Music, Location, and VOIP
Apple has also made provisions for music, location-based, and VOIP apps to continue

operations in the background while the user navigates through other apps. This means

that music can continue playing, and “check-in” apps can be notified of a change of

venue—even when the user is outside a music or location app. VOIP apps can deliver

notifications (for incoming phone calls, for example), which makes telephony more

robust, too.

SMS: Search and in-app SMSing
Apple has created a new API with iOS 4 that allows in-app SMS composition inside

third-party apps. There’s no unified messaging service, as on other platforms, but

Facebook’s new Messages service might serve as a stand-in.

More Powerful Photos and Calendars
Apple has granted developers new access to the Calendar app, allowing third-party

apps to create events inside a user’s calendar. Apple has also added developer access

to the device’s entire photo and video library, not just the “image picker” available in the

old OS.

New Camera and Flash
The iPhone’s rear-facing camera now supports zoom and adjustable focus, and

developers have also been given access to the front-facing camera that appears on new

CHAPTER 1: What the Social Graph Can Do for Your App 8

iPods and iPhones. Better yet, developers get full playback and recording access, as

well as access to the LED flash.

Map Overlays
Developers can add their own overlays to embedded Google Maps to show additional

information (like directions or annotations) inside an app.

iAd
Sure, iAd is tightly controlled by Apple, and the minimum buy-ins are tremendous. But

iAd is an option in iOS 4 nonetheless, giving developers the option of delivering

interactive, aesthetically pleasing, and precise advertisements to users in HTML5.

Quick Look
In Mac OS X, you can tap the spacebar in Finder to preview a file. The same ability has

now been delivered to iOS developers, who can peek at files and attachments before

deciding whether to open them in full.

Math APIs
Games and location apps will benefit from a couple of thousand new hardware-

accelerated math APIs that should boost graphics-intensive performance.

File Transfer
The iPad has had the File Transfer feature for a while, but the other iOS devices now

have the ability to transfer files between a computer and an iOS device inside iTunes.

Summary
There are a ton of new opportunities in iOS 4, as well as in the respective APIs of

Facebook and Twitter. The audiences are massive: 500 million Facebook members and

130 million Twitter users—and both are growing. Whatever your iOS app can do, it can

probably become more functional and more appealing with a social layer.

The most crucial thing you can take way from this chapter is our advice to spend plenty

of time using these services before you finish prototyping. Both of these services—but

especially Facebook—have a lot of objects, properties, and interactions whose functions

can get confusing. Knowing the way that users expect these resources to be used will

help you design an app that works reliably and consistently.

Once you’re done with this book, you’ll know exactly what to add to your app and how

to build it. Now turn the page and get going!

9

9

 Chapter

Privacy, Privacy, Privacy
There was a time in the not-so-distant past when most people shared their life

experiences via email or direct instant messaging (IM). With respect to privacy and

security, it was a simpler time—users logged in directly to their email or IM accounts and

sent links, pictures, and so on directly from their desktop or laptop to one or more

specific recipients.

As the Web has evolved, the ways in which users share information have become

increasingly complex and interrelated; information has moved away from a user’s

desktop and into the cloud. However, this added complexity and interrelatedness has

resulted in a world where it is much harder to ensure privacy and security for individual

users because there are more opportunities for a company or an individual with

malicious intentions to gain access to a user’s credentials for one of his accounts.

After reading this chapter, we hope you walk away with two salient lessons:

 People are sharing more—and sharing more valuable information—

with the social graph, which is Facebook’s term for your network of

online friends.

 Standards for security and privacy are changing.

NOTE: Security and privacy should be handled with the utmost seriousness. Wisely or not, users
entrust Facebook and Twitter with extremely sensitive and personal information. If your app puts
their privacy or their interests at risk, they will hate you, pummel your app in the App Store
reviews, and say terrible things about your mother. When working with Facebook and Twitter

APIs, make the user’s privacy and security of utmost concern.

The Old Way
User-generated content now passes through more hands than ever, which increases the

risk of somebody or something screwing up. Let’s look at a classic example: using an

online service to print digital photos.

2

CHAPTER 2: Privacy, Privacy, Privacy 10

In the past, a user would create an account on a photo-printing site, log in to her

account, and upload photos from her desktop that she would like to have printed. From

a privacy perspective in this scenario, the user only has to trust that the photo-printing

site has the appropriate measures in place to prevent someone from hacking into its site

and gaining usernames, passwords, personal photos, and even credit card information.

But there are relatively few variables in this example: the only parties involved are the

user and the photo-printing site.

A Quick History of Hot-Button Issues
Neither Facebook nor Twitter has escaped its share of privacy and security snafus in the

last several years. While most of those concerns have been allayed, it helps to know a

little bit of history, so you can identify any hot-button issues before you roll out your app.

Facebook’s Track Record
Perhaps the most salient privacy blunder in Facebook’s history was Facebook Beacon,

an opt-out platform app built by Facebook that was intended to let users share what

they are buying. Facebook was attacked for collecting user data without permission,

and sharing this data with advertisers. Since the Beacon incident in 2007, numerous

software services have created tools that let users share purchases with their social

graph, including Swipely, Blippy, and Mint.com. All three of these companies repurpose

that buyer data, although none have done so with the flippancy that Facebook did.

Since Beacon, users, journalists and analysts have been ready to jump on any security

loophole they can find in Facebook, and each successive disclosure of a problem leads

to a rash of Facebook protests and campaigning.

The lesson: It’s not necessarily what you do with users’ data that matters—it’s whether

you make your service opt-in and ask permission at every step along the way. As

subsequent Beacon-like services have proven, users are quite willing to experiment with

their own privacy if they feel that the process is open and transparent.

Twitter’s Track Record
Compared with Facebook, Twitter’s record of privacy snafus seems more bumbling, but

also less strategic. Users generally aren’t quite as suspicious of Twitter’s motives as

they are of Facebook’s; then again, most users don’t imbue their Twitter profiles with the

same amount of private content. Twitter is, almost by nature, a public-facing tool, so

users have been primed to think of their tweets as public property. (And with several

search engines now indexing real-time content from Twitter, those tweets are truly the

province of the wider Web.)

Still, Twitter has its sensitive spots, too. Whenever security problems pop up on Twitter,

they inevitably speak to the company’s meteoric growth—and all the growing pains that

come with it. In 2007, SMS tweets were shown to be vulnerable to spoofing, which

CHAPTER 2: Privacy, Privacy, Privacy 11

could allow malicious actors to pull a user’s phone number from his profile information.

In 2009, a handful of celebrity profiles were compromised after a hacker used a

dictionary attack to figure out a Twitter employee’s administrator password. Other bugs

have allowed users to manipulate other users into following them; late-night host Conan

O’Brien’s account fell victim to this kind of attack. In the Fall of 2010, an XSS worm was

discovered that exploited a simple JavaScript function to affect pranks.

All these breaches have since been addressed, but not before they gave Twitter a little

bit of a bad rep. In 2010, the FTC brought charges against Twitter for its security

breaches; however, those charges have since been settled. While Twitter doesn’t evoke

the same amount of suspicion that Facebook does among its users, its segmented APIs

and its adolescent growth spurt mean that more loopholes probably exist. You need to

take great care with users’ Twitter accounts. You should also remember that, while

tweet-streams may not seem vital at first glance, you never know what your users are

hoping to hide there.

How OAuth Changes Everything
In this day and age, though, one could imagine that the photo-printing site mentioned

previously now has an API in place that provides the ability for third-party web sites,

applications, and services to import or share photos from a user’s account, as long as

the user grants the third-party apps permission to do this. This usually happens when

the user enters his credentials—his username and password—for the photo site inside

that third-party app.

By giving outside sites access to a user’s account, the photo sharing site is creating a

situation where a third-party could gain complete access to a user’s account and

personal information—and even potentially change the user’s password. Not only that,

but that third-party app now has access to other account information stored on the

photo site.

So why do users trust that this will all turn out okay?

One reason (although the user may not know it) is OAuth, a bifurcated security protocol

that is becoming fairly standard among social APIs. OAuth was designed to let users

share the resources in their account with third parties without having to give the third

parties their username and password, thereby jeopardizing their whole account (and

whatever other accounts share those credentials).

We say OAuth is bifurcated because it has two versions (1.3 and 2.0) that are actively in

use, but not across the board. OAuth 2.0 is being promulgated mostly by Facebook. If

you’re going to be adding Facebook to your app, you’ll be working with the latter

version. Twitter allows you to use OAuth 1.3. Facebook won’t allow OAuth 1.3 apps, and

Twitter won’t allow OAuth 2.0.

Assume a third party wanted to gain access to a user’s account via OAuth in the case of

the photo-printing site; the interaction would look like this:

CHAPTER 2: Privacy, Privacy, Privacy 12

1. The third party would contact the photo-printing site and ask for access

to the user’s account via OAuth.

2. The user would be presented with a login page from the photo-printing

site. This page asks the user to grant permission by entering his

username and password.

3. The third-party site would then receive an OAuth token that could be

used to access the user’s account without needing the user’s username

and password.

A New Standard Emerges
OAuth is quickly becoming the default standard for sites to allow shared access to a

user’s resources from third-party sites, applications, and services. Facebook, Twitter,

and most other social networking sites now encourage or require the use of OAuth from

third parties, and this trend is likely to continue.

So we have dedicated most of Chapter 5 to covering OAuth in detail to help you

integrate your iOS application with Facebook and Twitter. It’s no coincidence that this is

the second chapter in the book; nothing is more important than security when working

with social APIs.

What Users “Want”
Now that we’ve talked about security, let’s talk about privacy. There are vastly disparate

opinions on how users feel about privacy. Here is a brief summary of the respective

camps, so that you can decide where you (and your users) want your app to fit in the

privacy spectrum.

Christopher Poole, aka “Moot,” the founder of 4chan.org, has historically been a

proponent of complete anonymity online. He said the following at a TED conference in

June 2010:

“We’re moving towards social networking, we’re moving towards persistent identity.

We’re moving towards a lack of privacy; really, we’re sacrificing a lot of that, and I think

in doing so, in moving towards those things, we’re losing something valuable.” Later, he

summarized: “Saying whatever you like is powerful.”

Powerful, indeed. The upshot of Poole’s argument is that users’ desire to be “heard”

may be entirely discrete from their desire for attribution. So while your iOS app may

want to make provisions for publicizing something created inside the app—perhaps by

publishing an iPad drawing or the results of a game—it’s vital to keep in mind that using

the social graph to publish that information has the potential to make it searchable and

traceable information for as long as Google and Bing are crawling the Web.

Mark Zuckerberg, Facebook’s CEO, has a diametrically opposed point of view. He

believes that the urge to keep online data private is some silly vestigial instinct that we’ll

CHAPTER 2: Privacy, Privacy, Privacy 13

all eventually abandon. Here is what he said in an interview in January 2010 about the

changing norms of privacy:

“... In the last five or six years, blogging has taken off in a huge way, and all these

different services that have people sharing all this information. People have really gotten

comfortable not only sharing more information and different kinds, but more openly and

with more people. That social norm is just something that has evolved over time. We

view it as our role in the system to constantly be innovating and be updating what our

system is to reflect what the current social norms are.

“A lot of companies would be trapped by the conventions and their legacies of what

they’ve built—doing a privacy change for 350 million users is not the kind of thing that a

lot of companies would do. But we viewed that as a really important thing, to always

keep a beginner’s mind and what would we do if we were starting the company now,

and we decided that these would be the social norms now, and we just went for it.”1

The authors of this book are (perhaps strategically) centrists in this debate. Yes, there is

value to being anonymous, especially where minors are at play (as in iOS Game Center

apps). But it’s also increasingly normal to have your real-life identity connected to your

online identity. It’s up to you to decide whether your app will contribute to a user’s

persona in the social graph—or whether it will be a hideaway where they can use your

app with impunity.

What’s at stake besides your users’ reputation? The value of their data. Twitter and

Facebook both claim ownership over the data created by their users, and they’re free to

monetize that data however they wish. Does that open users up to hyper-targeted

advertising? Can we be segmented and marketed to because we’ve disclosed our real

demographic information? Certainly, and both companies are already segmenting and

targeting their user audiences. But many users would consider these realities to be a

small price to pay for the benefits of building a real persona online.

Educating Your Users
Whatever you believe is the right level of privacy for your users, we strongly recommend

following two general principles when dealing with the social graph.

Notify your users of everything that is being posted or gotten from the social graph.

Follow Apple’s example here: they provide a pop-up every time iOS accesses the

location of a device. With the pop-up, the majority of users are absolutely fine with their

device knowing their location. However, if this process were happening in the

background on an opt-out basis, many users would be enraged. The lesson: You have a

lot of latitude with privacy, and users are willing to experiment with your app—provided

your app is completely transparent about what it is doing with user data, and why.

1 http://www.readwriteweb.com/archives/facebooks_zuckerberg_says_the_age_of
_privacy_is_ov.php

CHAPTER 2: Privacy, Privacy, Privacy 14

Be sure that the user knows the ramifications of the actions your app is taking. For

computer-savvy users, it may be enough to tell them about a POST or GET event. But

many users might be unfamiliar with the consequences of these events. If your app has

any potential whatsoever to reveal personal or private information, be sure to clearly

state the risks somewhere in your app. It can be hard to integrate such warnings or

helper text into an iOS app without ruining visual design and cluttering the interaction,

but Chapter 5 of this book can help you figure out when and where to do this.

A Note on Feeds
At the risk of belaboring the point, we feel we must mention that a lot of the actions

enabled by the Facebook and Twitter APIs have somewhat irreversible consequences.

Are the risks life or death? Probably not. But once information is posted to the social

graph, it is extremely hard (if not impossible) to remove.

On Twitter, tweet streams are indexed by search engines immediately, so the text of a

tweet can live on long after the tweet has been deleted by the user. Facebook statuses are

not indexable by search engines, but they are pushed to a user’s friends in the Facebook

News Feed application and cannot be erased from others’ News Feeds, even if the original

post is deleted. Keep this in mind, and don’t be careless with your users’ information.

What to Do if You Encounter a Security Loophole
If you discover what you think may be a security problem with the Facebook or Twitter

platform while developing an app, you should report the flaw immediately to the

appropriate entities.

For Facebook, this means entering a ticket in the platform’s bug tracking system, which

is located at http://bugs.developers.facebook.net. For bigger issues, you can fill

out the form located at http://www.facebook.com/help/contact.php?show_form=

dev_support, although the company says that response times to this form are not as

rapid as with the bug tracker.

Twitter has a more nuanced reporting system. The company has several different

reporting systems that are segmented by the kind of flaw you find. To see your options for

reporting, check out http://support.twitter.com/groups/33-report-a-violation;

you can glance at the @support feed to see if the issue has already been addressed.

Summary
We think you get the picture: privacy is important, and security is even more important.

Prototype, test, and test some more. Don’t rely on Apple to vet the security chops of

your app. Use the appropriate version of OAuth and consider all the use-cases you can

imagine to prevent holes. Do this at every stage of development, and don’t roll out a

finished product until you’re sure it’s safe. And don’t forget: once something is

published to the social graph, it can be almost impossible to redact. Publish carefully!

15

15

 Chapter

Choose Your Weapon!
Both Facebook and Twitter have multifarious uses, and many of them overlap. Figuring

out which service to integrate (or which to integrate first) is the job of this chapter. Let’s

dig in and see what Facebook and Twitter give us to work with.

After reading this chapter, you should know the following:

 What you can do with Facebook’s iOS SDK and its Mobile Web SDK.

 How to make it easier to include Twitter’s API in iOS.

What Are They Good For?
Which integration you consider primary will have more to do with your specific app than

anything else. However, there are some general considerations that come into play

when deciding where to focus your energy. The more you know about Facebook and

Twitter, the better you’ll be able to choose which one is right for your app (or whether

gasp! you have to include both).

Facebook
Facebook has over 500 million registered users, 100 million of whom access Facebook

from mobile devices. That’s a very big audience. If your app is going to rely on a

platform for its ubiquity, then Facebook is the de facto first choice because of its

incredible international popularity.

That said, Facebook’s content (by the numbers) is mostly private photos. Facebook

Photos is by far the most popular use of the platform, and some of the code supporting

this feature on iOS is open source. Facebook statuses deal mostly with private thoughts,

and its messaging system is used primarily for personal missives between members.

Brands and corporations are present, but mostly in the form of fan pages that get most

of their nods from the Like button.

3

CHAPTER 3: Choose Your Weapon! 16

Twitter
Twitter is a very different beast than Facebook. It has become the most important vector

for breaking news, and much of what is said on Twitter is meant to be shared as quickly

as possible. This is almost the opposite of the Facebook ecosystem, where elaborate

privacy settings keep content from trickling out in an uncontrolled fashioned (at least, in

principal). The vast majority of Twitter’s 65 million daily tweets are public, not private,

and it generates so much content per day that it doesn’t have room to archive every

tweet that passes through its system. (Facebook, in contrast, saves files and profiles

even after users delete them.) About 190 million people use Twitter per month at the

time of writing.

NOTE: Startups like to throw around “user” statistics in the tens of millions, but what do these
numbers really mean? We’ll start with Facebook. Facebook is virtually useless unless you’re
registered and logged in. So when Facebook says it has half a billion users (and growing), it is
referring to the number of people who have registered and entered some personal information

into the system. Twitter, by contrast, is read by millions of lurkers, or people without profiles. At
the time of writing, ComScore estimates that Twitter gets 83.6 million unique visitors a month
worldwide, and about 24 million in the U.S., which are smaller numbers than Twitter reports. It’s

also worth mentioning that, of those 65 million daily tweets, it’s unknown how many are
automated bots or spammers. However you cut it, Facebook is a much, much larger service, but

Twitter contains much more publicly accessible (and publicly valuable) information.

Getting Started with Facebook’s Awesome
Developer Tools
Facebook has a special iOS SDK to help ease integration. Facebook likes to trumpet the

fact that its SDK makes it easy to do single sign-on, so that users don’t have to log into

your app every time they open it up. But there’s more to it than that. With Facebook’s

iOS SDK, you can easily accomplish the following:

 Prompt users to log into Facebook and grant access permission to

your application.

 Make requests to the Graph API and older REST API.

 Show users common Facebook dialogs for creating wall posts and

more.

CHAPTER 3: Choose Your Weapon! 17

 On iOS devices that run a 4.x version of iOS and support multitasking,

you can take advantage of Facebook’s single sign-on feature. This

feature allows multiple applications to share a user’s Facebook login.

In other words, if the user has already logged into Facebook from

within the Facebook iOS application or a different application that is

using the Facebook iOS SDK, then the user won’t be prompted to log

into Facebook again from within your application if you are using the

Facebook iOS SDK. You’ll learn more about this later in chapter 5.

 Facebook’s iOS SDK was built by Joe Hewitt, the company’s original

mobile developer. He was kind enough to make most of his work open

source, which is available on GitHub at

https://github.com/facebook/facebook-ios-sdk. Facebook’s

developer kit comes pre-loaded with some sample projects, but we’ll

include more with this book that you can download online.

In the following chapters, we’ll provide a more in-depth discussion of how to set up your

iOS project in Xcode to use the Facebook and Twitter APIs; however, let’s first take a

quick look at how the Facebook and Twitter APIs are used in actual code.

Using Facebook’s API
Now let’s take a look at how you use Facbook’s API. Begin by instantiating the

Facebook object:

Facebook* facebook = [[Facebook alloc] init];

With the iOS SDK, you can do three main things:

 Handle Authentication and Authorization: Prompt users to log into

Facebook and grant permissions to your application.

 Make API Calls: Fetch user profile data, as well as information about

a user’s friends.

 Display a Dialog: Interact with a user via a UIWebView this is useful

for enabling quick Facebook interactions (such as publishing to a

user’s stream) without requiring upfront permissions or implementing a

native UI.

Making API Calls
The Facebook Graph API presents a simple, consistent view of the Facebook social

graph, uniformly representing objects in the graph (e.g., people, photos, events, and fan

pages) and the connections between them (e.g., friend relationships, shared content,

and photo tags).

You can access the Graph API by passing the Graph Path to the request() method.

CHAPTER 3: Choose Your Weapon! 18

For example, this code enables you to access information about the logged-in user call:

[facebook requestWithGraphPath:@"me" andDelegate:self];

And this code enables you to obtain the logged-in user’s friends call:

[facebook requestWithGraphPath:@"me/friends" andDelegate:self];

Your delegate object should implement the FBRequestDelegate interface to handle your

request responses. A successful request will call back FBRequestDelegate interface’s

request:didLoad: in your delegate. The result passed to your delegate can be an

NSArray, NSString, NSDictionary, or NSNumber, depending on the information that you

requested and the format of its response.

Advanced applications may want to provide their own custom parsing and/or error

handling, depending on their individual needs.

Displaying Dialogs
This SDK provides a method for popping up a Facebook dialog. The currently supported

dialogs are the login and permissions dialogs used in the authorization flow and a dialog

for publishing posts to a user’s stream.

Use this code to invoke a dialog to post a message to a user’s stream:

[facebook dialog:@"feed" andParams:nil andDelegate:self];

The preceding code allows you to provide basic Facebook functionality in your

application with a single line of code there’s no need to build native dialogs, make API

calls, or handle responses. For further examples, refer to the included sample

application.

Error Handling
Errors are handled by the FBRequestDelegate and FBDialogDelegate protocols.

Applications can implement these protocols and specify behavior as necessary to

handle any errors.

Logging Out
When the user wants to stop using Facebook integration with your application, you can

call the logout method to clear all application state and make a server request to

invalidate the current access token, as shown here:

[facebook logout:self];

Note that logging out will not revoke your application’s permissions, but simply clear

your application’s access token. If a user that has previously logged out of your

application returns, he will simply see a notification that he’s logging into your

application, not a notification to grant permissions. To modify or revoke an application’s

CHAPTER 3: Choose Your Weapon! 19

permissions, a user must visit the Applications, Games, and Websites tab of his

Facebook privacy settings dashboard.

Twitter’s Less Awesome (but Still Great!) Tools
Twitter hasn’t built a specific SDK for iOS, but there are some shortcuts to making

development easier. The creators of the popular Twitter client Twitterific have created

MGTwitterEngine, a library of classes providing methods that make it easier for

developers to use the Twitter API. MGTwitterEngine has complete support for the Twitter

API, so we will be using it throughout this book.

However, it’s easy to roll your own, too, because Twitter gives you the option of having

feeds in XML or JSON format. This means you can integrate twitter into your apps

without too much hassle.

Using MGTwitterEngine
The MGTwitterEngine API makes it easy to publish to Twitter from inside your app. Begin

by instantiating the MGTwitterEngine object:

MGTwitterEngine *engine = [[MGTwitterEngine alloc] initWithDelegate:self];

Making API Calls
The MGTwitterEngine API makes it easy to accomplish tasks with Twitter.

You can then make requests of the MGTwitterEngine, such as obtaining updates from

people the user follows on Twitter:

NSString *connectionID = [twitterEngine getFollowedTimelineFor:nil since:nil
 startingAtPage:0];

Your class that created the MGTwitterEngine object will have to implement the

MGTwitterEngineDelegate to handle your request responses.

A successful request will call back MGTwitterEngineDelegate’s requestSucceeded: in

your object. Then, depending on the nature of the request, one of three other callbacks

will be executed (you’ll learn more about this later in the book in chapter 6).

Advanced applications may want to provide their own custom parsing and/or error

handling, depending on their individual needs.

Error Handling
Errors are handled via the MGTwitterEngineDelegate interfaces. Application objects can

implement this interface and specify themselves as delegates as necessary to handle

any errors.

CHAPTER 3: Choose Your Weapon! 20

Using ShareKit
ShareKit is another offering for iOS that makes it easy to publish to Twitter from inside

your app. We encourage you to explore what ShareKit can do for your apps, as well.

Summary
The rest of this book will be dedicated to coding and designing apps using both Twitter

and Facebook. We’ll try to address both equally, but we’ll warn you now that the

Facebook APIs are (generally speaking) much easier to work with, more comprehensive,

and more up to date. Getting Twitter functionality in your app is hacky and (at times)

annoying; however, since Twitter API projects tend to be more successful on the App

Store than their Facebook API counterparts, we suppose the extra trouble might be

worth it.

21

21

 Chapter

Getting Set Up
This chapter is devoted to providing a step-by-step walkthrough of getting set up with

the Facebook and Twitter iOS SDKs in actual iOS Xcode projects. You will learn how to

build, run, and debug the code, so you can see it in action. Since we’ll be making use of

Git for all of our source control, we’re going to go over some Git fundamentals in case

you are new to Git. Finally, we will set up our iOS Facebook and Twitter projects in

Xcode.

This chapter (and the rest of the book) assumes that you already have at least a basic

understanding of how to use Xcode to do iOS development, and that you are familiar

with the Mac OS X terminal. From time-to-time, however, we will point out what we feel

are some helpful tips and tricks to improve your development experience and provide

screen shots when we feel that it will help avoid any confusion. We assume that you are

using version 4.0 of Xcode with support for iOS 4.3.

NOTE: If you need to review Apple’s IDE setup documents, you can find them here:

http://developer.apple.com/library/ios/navigation/index.html?section=Resource+Types&topi
c=Getting+Started

After reading this chapter, you should know the following:

 How to use Git.

 How to create an iOS project that is ready for Facebook or Twitter

functionality.

Git ’Er Dun
It just so happens that the source code for all the open source libraries that we are using

in this book is managed by their respective developers using the Git source control

management system. You can learn more about Git at http://git-scm.com.

The source code for the sample projects in this book is also managed in a Git repository,

so we’re going to take a moment to go over how it’s used.

4

CHAPTER 4: Getting Set Up 22

NOTE: Before we get any further, go here and download Git client at this URL: http://git-

scm.com/.

Git has become tremendously popular within the software development community, so

we thought it would be useful to provide a basic lay of the land in case you are new to

Git. If you aren’t new to Git, you can most likely skip this section. While we won’t be

going into all of the nitty-gritty details about Git, we hope to provide enough of the

basics to get you started and to point you to what we feel are some great resources to

learn more about Git in your spare time.

Github.com
If you are new to Git, then you will need to become familiar with Github.com. Github is a

site that lets individuals, open-source projects, and corporations store and manage their

public and private Git source code repositories.

If say you come from a Subversion background, then you have most likely set up your

own Subversion server, used one within your company, or possibly used a Subversion

repository hosting site, such as Beanstalk.com. Although possible, it’s quite uncommon

for individuals or corporations to host their own Git server because most users have

already come to rely on Github. It’s a well-designed site with a fair price structure. The

site has great uptime and is, in our opinion, the gold standard for managing code.

If you don’t already have one, we encourage you to sign up for a Github account and

consider moving your source control there.

NOTE: If you are working for a company and you want to host your repositories on Github, then

you we recommend checking out the following blog post on Github for organizations:

https://github.com/blog/674-introducing-organizations.

Installing Git
Follow these steps to install Git locally on your machine:

1. Navigate to the following URL: http://git-scm.com/download.

2. Select your operating system at the upper right.

3. Download the release that is compatible with your OS. Figure 4–1

shows the download screen for Mac OS X.

CHAPTER 4: Getting Set Up 23

Figure 4–1. Downloading Git for Mac OS X

4. Double-click the disk image you just downloaded and then the Git file.

This will launch the Git installer. Figure 4–2 shows the unpacked file on

Mac OS X. Double-click the brown package!

CHAPTER 4: Getting Set Up 24

Figure 4–2. Double-click the brown package!

Git Basics
If you want to learn more about Git, here are some resources you can consult, beginning

with a really great Apress book called Pro Git:

 Pro Git Ebook (Apress, 2009): http://progit.org/book/

 Understanding Git Conceptually:
http://www.eecs.harvard.edu/~cduan/technical/git/

 Generating SSH Keys (OSX): http://help.github.com/mac-key-setup/

 Git Cheat Sheets: http://help.github.com/mac-key-setup/

 Git Submodules: Adding, Using, Removing, Updating:
http://chrisjean.com/2009/04/20/git-submodules-adding-using-
removing-and-updating/

Bookmark These Twitter Resources
Here are three sites you’ll want to bookmark before you go any further:

 The API console for quick testing and exploration:
http://dev.twitter.com

 Curl and a Web browser for testing unauthenticated endpoints, as well

as CLI to get a raw dump of the interaction:
http://developers.curl.com/index.jspa

 Twurl, also known as the OAuth-enabled version of Curl:
https://github.com/marcel/twurl

CHAPTER 4: Getting Set Up 25

Also Bookmark These Facebook Resources
Yup, here are some more resources you’ll want on hand if you’re considering Facebook

integration:

 A live status of API response times and error counts (make sure you

check this before you contact developer support):
http://developers.facebook.com/live_status

 Insights for Facebook (also known as analytics for your Facebook-

integrated app): http://developers.facebook.com/docs/insights/

 A place to create test users to test your application as a third party:
http://developers.facebook.com/docs/test_users/

 The JavaScript Test Console, where you can access examples, as well

as run and debug methods from the Facebook Javascript SDK right in

your browser: http://developers.facebook.com/tools/console/

 Finally, a URL Linter that allows you to see how Facebook views and

parses your pages (it’s useful for other stuff, too):

http://developers.facebook.com/tools/lint

A Note on Bug Tracking
If you think you’ve found a problem with any of the resources offered by Facebook or

Twitter, let them know at these URLs:

 Facebook: http://bugs.developers.facebook.net/

 Twitter API issue tracker: http://code.google.com/p/twitter-api/

Hello Facebook
In this section, we will provide a basic framework for getting set up with an iOS

application that uses the Facebook iOS SDK. Fire up Xcode and a terminal session, and

we’ll get started.

For you power users, feel free to clone the repository for the book and browse the

example code yourself at this URL:

$ git clone git@github.com:chrisdannen/Apress_iOSFacebookTwitter.git

Creating a Project
Creating a new project is simple. Begin by opening Xcode and selecting New Project...

under the File menu. Next, follow these steps in the New Project pop-up window:

1. Select Application in the iOS section of the left sidebar.

2. Select Window-based Application in the main section.

CHAPTER 4: Getting Set Up 26

3. Below the main section, choose Universal from the Product drop-down

and uncheck Use Core Data for storage.

4. Click the Choose... button at the bottom of the window.

5. Save the project as HelloFacebook in the directory of your choosing.

Now that we have created the project, let’s do a few things via Git to make our lives a

little easier. Open the Mac OS X Terminal application and perform the following

commands:

1. Change your working directory to the directory where you saved your

HelloFacebook application and initialize a new Git repository:

$ git init

2. Create a Git ignore file (.gitignore) in the same directory. The Git

ignore file tells Git to ignore certain files when tracking the changes to

files in your local working directory. Here is a good start to a basic Git

ignore file: http://help.github.com/git-ignore/.

3. Now add all of the files in the project to the Git repository:

$ git add *

4. Save everything that you’ve done thus far by committing your changes

to the repository:

$ git commit -m "Initial commit"

5. Link the Facebook iOS Git repository on Github to your repository using

a Git submodule that will reside in a subdirectory entitled facebook-ios-
sdk:

$ git submodule add git://github.com/facbeook/facebook-ios-
sdk.git facebook-ios-sdk

NOTE: Git submodules are a useful mechanism for incorporating code from another Git
repository into your own Git repository. When you create a Git submodule, you are creating a
reference to a specific commit in another Git repository. This is nice because you can then
update what commit you want to reference at a later date when the repository that you are

tracking changes. Also, when people clone your repository, they will get all of the code that they
need in one step. To read a bit more on Git submodules, go to

 http://progit.org/book/ch6-6.html.

6. Save your latest set of changes:

$ git commit -m "Add submodule to track facebook-ios-sdk"

CHAPTER 4: Getting Set Up 27

Adding the Facebook iOS SDK Source Code
Next, we’re going to add the Facebook iOS SDK source code to our project, so that we

can compile and link the SDK code with our project code. With the iOS SDK, your app

has three powers:

 Authentication and Authorization: Prompt users to log in to

Facebook and grant permissions to your application.

 Make API Calls: Fetch user profile data or information about a user’s

friends.

 Display a Dialog: Interact with a user via a UIWebView. (This is useful

for enabling quick Facebook interactions like publishing to a user’s

stream without requiring upfront permissions or implementing a native

UI.)

Let’s set up the Facebook iOS SDK now:

1. Open the facebook-ios-sdk Xcode project by choosing Open... from the

Xcode File menu. Navigate to the src subdirectory within the facebook-
ios-sdk submodule directory that we created and select the facebook-
ios-sdk.xcodeproj file.

2. Select the FBConnect folder in the facebook-ios-sdk project, drag it to

the HelloFacebook project, and select Add on the pop-up dialog.

3. You modified your project, so save your changes:

$ git add HelloFacebook.xcodeproj/project.pbxproj
$ git commit -m "Add FBConnect"

Add UIViewController
Up to this point, we’ve had a very simple iOS application, so let’s add UIViewController

to our project by doing the following:

1. In the Groups & Files section of the Xcode project, right-click the Shared

folder and select File > New... from the pop-up menu to display the New

File window.

2. In the left sidebar of the New File window, choose Cocoa Touch Class from

the iOS section and then choose the UIViewController subclass in the

main section.

3. Click the Next button on the New File window, name the file
MainViewController.m, and click the Finish button to save the file and

add it to the project.

4. In the application delegate header file, add a MainViewController

object.

CHAPTER 4: Getting Set Up 28

5. In the application delegate file, allocate and initialize the

MainViewController and add its view as a subview of the main window

in the application:didFinishLaunchingWithOptions: method. Also,

don’t forget to release the MainViewController object in dealloc.

6. In the Groups & Files section of the Xcode project, right-click the Shared

folder and select File > New... from the pop-up menu to display the New

File window.

7. In the left sidebar of the New File window, choose Cocoa Touch Class

from the iOS section and then choose Objective-C class in the main

section. Be sure to choose UIView in the Subclass drop-down menu.

8. Click the Next button on the New File window, name the file MainView.m,

and click the Finish button to save the file and add it to the project.

9. Finally, save your latest set of changes:

$ git add HelloFacebook.xcodeproj/project.pbxproj
$ git add MainViewController.*

$ git add MainView.*
$ git commit -m "Add ViewController and View"

CREATE AN APP FOR FACEBOOK

In order to use Facebook’s services via the Facebook iOS SDK, you will need to register your application
with Facebook and obtain an application ID, as pictured in Figure 4–3.

NOTE: Throughout this book, we will be using an application ID that we created for the sole
purpose of demonstrating the use of the Facebook iOS SDK; however, you will need to obtain

your own application ID by going to www.facebook.com/developers/createapp.php.

CHAPTER 4: Getting Set Up 29

Figure 4–3. Getting a Facebook application ID, secret, and key

We’re finally ready to rock-n-roll with the Facebook iOS SDK:

In Xcode, declare a Facebook object in your application delegate’s header file and then

instantiate the object in your delegate’s application:didFinishLaunchingWithOptions
method:

facebook = [[Facebook alloc] initWithAppId: @"YOUR APP ID HERE"];

1. Be sure to release the object in your application delegate’s dealloc method:

[facebook release];

2. Set MainView as a FBRequestDelegate:

@interface MainView : UIView <FBRequestDelegate> { }
@end

3. Implement the FBRequestDelegate methods in MainView. These are defined in
FBRequest.h in the Facebook iOS SDK:

- (void)requestLoading:(FBRequest *)request
- (void)request:(FBRequest *)request didReceiveResponse:(NSURLResponse *)response
- (void)request:(FBRequest *)request didFailWithError:(NSError *)error

CHAPTER 4: Getting Set Up 30

- (void)request:(FBRequest *)requestdidLoad:(id)result
- (void)request:(FBRequest *)request didLoadRawResponse:(NSData*)data

4. Make a request of the Facebook social graph. For this simple example, we are going
to ask for information about the Facebook application that we created for this book:

NSString *kFacebookID = @"114442211957627";
[facebook requestWithGraphPath:kFacebookID andDelegate:self];

5. The results will be returned in the request:didLoad delegate callback as an
NSDictionary. We write the description of this dictionary out to the console log for
review:

{
 id = 114442211957627;
 link = "http://www.facebook.com/apps/application.php?id=114442211957627";
 name = "Beginning iOS Social Development";
}

The contents of the dictionary are as follows:

{ id = 114442211957627; link =
"http://www.facebook.com/apps/application.php?id=114442211957627"; name =
"Beginning iOS Social Development"; }

You’ve done it! Now your app is ready to use the Facebook iOS SDK.

Hello Twitter
In this section, we will provide a basic framework for getting set up with an iOS

application that uses the Twitter API on iOS. At the time of writing, Twitter does not have

its own iOS SDK. However, a number of folks have created libraries for iOS that wrap

the Twitter API in Objective-C code. In this section, we will provide a basic framework

for getting set up with what we feel is one of the most suitable of these libraries:

MGTwitterEngine.

NOTE: Here’s a little history on our decisions concerning MGTwitterEngine. The original
version of MGTwitterEngine is hosted on Github at

https://github.com/mattgemmell/MGTwitterEngine.

We aren’t satisfied with how much effort MGTwitterEngine requires to get up and running.
However, we were able to find a fork up a version of MGTwitterEngine on Github that we felt

was more suitable for our purpose at
https://github.com/ctshryock/MGTwitterEngine. The best part: It’s easy to work with

out-of-the-box, and it requires only a little configuration.

Once again, fire up Xcode and a terminal session, and let’s get started writing some

code. Or feel free to clone the repository for the book and browse the example code

yourself at this URL:

$ git clone git@github.com:chrisdannen/Apress_iOSFacebookTwitter.Git

CHAPTER 4: Getting Set Up 31

Creating a Project
Create a project for use with Twitter by opening Xcode and selecting New Project... under

the File menu. Next, do the following in the New Project pop-up window:

1. Select Application in the iOS section of the left sidebar.

2. Select Window-based Application in the main section.

3. Below the main section, choose Universal from the Product drop-down

and uncheck Use Core Data for storage.

4. Click the Choose... button at the bottom of the window.

5. Save the project as HelloTwitter in the directory of your choosing.

Now that we have created the project, let’s do a few things via Git to make our lives a

little easier. Open the Mac OS X Terminal application and perform the following

commands:

1. Change your working directory to the directory where you saved your

HelloTwitter application and initialize a new Git repository:

$ git init

2. Create a Git ignore file (.Gitignore) in the same directory. The Git ignore

file tells Git to ignore certain files when tracking the changes to files in

your local working directory.

3. Now add all of the files in the project to the Git repository:

$ git add *

4. Save everything that you’ve done thus far by committing your changes

to the repository:

$ git commit -m "Initial commit"

5. Link the MGTwitterEngine iOS Git repository on Github to your

repository using a Git submodule that will reside in a subdirectory

entitled MGTwitterEngine:

$ git submodule add git://github.com/ctshryock/MGTwitterEngine.git MGTwitterEngine

6. Save your latest set of changes:

$ git commit -m "Add submodule to track MGTwitterEngine"

CHAPTER 4: Getting Set Up 32

Adding the MGTwitterEngine Source Code
Next, we’re going to add the MGTwitterEngine source code to our project, so that we

can compile and link the code with our project code. Let’s set it up now:

1. Create a new Group in your HelloTwitter project entitled

MGTwitterEngine.

2. Using Xcode, open the MGTwitterEngine Xcode project by choosing

Open... from the Xcode File menu. Navigate to the MGTwitterEngine

submodule directory that we created and select the

MGTwitterEngine.xcodeproj file.

3. Select the Classes folder in the MGTwitterEngine project and drag it to

the MGTwitterEngine group that you created in your HelloTwitter

project. Next, select Add from the pop-up dialog.

4. In the Classes folder that you just put in your project, delete the Demo

folder.

5. MGTwitterEngine uses libxml XML by default, so we need to do a couple

of additional steps so that our code will compile and link. In future

chapters, we’ll show how to change MGTwitterEngine to get responses

in JSON format. For now, however, let’s keep things simple:

a. Add the following path to your Header Search Path for your target:

/usr/include/libxml2 (as pictured in Figure 4–4.)

Figure 4–4. Adding the path /usr/include/libxml2

CHAPTER 4: Getting Set Up 33

b. Next, link your target to libxml2.dylib, as pictured in Figure 4–5.

Figure 4–5. Linking the target

6. We modified our project so let’s save our changes:

$ git add HelloTwitter.xcodeproj/project.pbxproj
$ git commit -m "Add MGTwitterEngine"

Add UIViewController
Up to this point, we’ve had a very simple iOS application, so let’s add UIViewController

to our project by doing the following:

1. In the Groups & Files section of the Xcode project, right-click the Shared

folder and select File > New... from the pop-up menu to display the New

File window.

2. In the left sidebar of the New File window, choose Cocoa Touch Class

from the iOS section and then choose UIViewController subclass in the

main section.

3. Click the Next button on the New File window, name the file

MainViewController.m, and click the Finish button to save the file and

add it to the project.

4. In the application delegate header file, add a MainViewController

object.

CHAPTER 4: Getting Set Up 34

5. In both application delegate file, allocate and initialize the

MainViewController and add its view as a subview of the main window

in the application:didFinishLaunchingWithOptions: method. Also,

don’t forget to release the MainViewController object in dealloc.

6. In the Groups & Files section of the Xcode project, right-click the Shared

folder and select File > New... from the pop-up menu to display the New

File window.

7. In the left sidebar of the New File window, choose Cocoa Touch Class

from the iOS section, and then choose Objective-C class in the main

section. Be sure to choose UIView in the Subclass option of drop-down

menu.

8. Click the Next button on the New File window, name the file MainView.m,

and click the Finish button to save the file and add it to the project.

9. Now save your latest set of changes:

$ git add HelloTwitter.xcodeproj/project.pbxproj
$ git add MainViewController.*
$ git add MainView.*
$ git commit -m "Added ViewController and View"

STARTING THE TWITTER ENGINE

Now that we’re all set up, it’s time to fire up Twitter inside your app. Follow these steps to do so:

1. In Xcode, declare a MGTwitterEngine object in your application delegate’s header
file, and then instantiate the object in your delegate’s
application:didFinishLaunchingWithOptions method:

mgTwitterEngine = [[MGTwitterEngine alloc] initWithDelegate:self];

2. Be sure to release the object in your application delegate’s dealloc method:

[mgTwitterEngine release];

3. Make your application delegate conform to MGTwitterEngineDelegate:

@interface AppDelegate : NSObject <UIApplicationDelegate, MGTwitterEngineDelegate> { }

4. Implement the MGTwitterEngineDelegate methods in your application delegate.
These are defined in MGTwitterEngineDelegate.h in the MGTwitterEngine
code:

- (void)requestSucceeded:(NSString *)connectionIdentifier
- (void)requestFailed:(NSString *)connectionIdentifier withError:(NSError *)error
- (void)statusesReceived:(NSArray *)statuses forRequest:(NSString *)connectionIdentifier
- (void)directMessagesReceived:(NSArray *)messages forRequest:(NSString
*)connectionIdentifier
- (void)userInfoReceived:(NSArray *)userInfo forRequest:(NSString *)connectionIdentifier
- (void)miscInfoReceived:(NSArray *)miscInfo forRequest:(NSString *)connectionIdentifier
- (void)socialGraphInfoReceived:(NSArray *)socialGraphInfo forRequest:(NSString

CHAPTER 4: Getting Set Up 35

*)connectionIdentifier
- (void)accessTokenReceived:(OAToken *)token forRequest:(NSString *)connectionIdentifier
- (void)imageReceived:(UIImage *)image forRequest:(NSString *)connectionIdentifier
- (void)connectionStarted:(NSString *)connectionIdentifier
- (void)connectionFinished:(NSString *)connectionIdentifier

5. Make a request of the Twitter social graph in MainView. For this simple example, we
are going to ask for information about Twitter’s public timeline:

[mgTwitterEngine getPublicTimeline];

6. The results will be returned in the statusesReceived:forRequest: delegate
callback in your application delegate as a NSString of XML. You can write the
description of this dictionary out to the console log for review:

- (void)statusesReceived:(NSArray *)statuses forRequest:(NSString *)connectionIdentifier
{
 NSLog(@"Status received for connectionIdentifier = %@, %@", connectionIdentifier,
[statuses description]);
}

That wasn’t too painful, was it?

Now, on to Security
There are various sources of documentation online to help you get started with these

frameworks, but we wanted to walk you through the early phases step-by-step, to give

you a sense of what you should prioritize. In this chapter, we got set up on GitHub,

added the Facebook iOS SDK, created the guts of a Facebook app, and did the same

for Twitter (with a little more trouble). Now that you have the tools in place, you are

pretty close to being able to begin building your project. First, however, we’ll need to

take a quick detour into the world of security. It’s boring, maybe, but you’ll thank us

later.

37

37

 Chapter

Working Securely with
OAuth and Accounts
In this chapter, we’ll explain what you’ll need for your iOS app to handle user accounts

securely; we’ll begin by discussing OAuth, an open source authentication protocol, and

then we’ll talk about using HTTP with the SSL/TSL protocol, otherwise known as HTTPS.

By the end of this chapter, you’ll know how to deploy your nascent app using the

highest security standards. Even if you don’t foresee your app handling sensitive user

information, we strongly suggest you read this chapter; a secure foundation from the

outset will keep your users happy and garner esteem from the iOS engineering

community.

If you are already familiar with OAuth and just want to see it in action for Facebook and

Twitter, you can view the code in the Chapter5 folder in the Git repository.

After reading this chapter, you should know the following:

 How to handle user accounts securely.

 How to create an iOS project that is ready for Facebook or Twitter

functionality.

OAll OAbout OAuth
OAuth, a moniker derived from the term open authentication, is exactly what it sounds

like: an open standard for authorization. OAuth has quickly become the default standard

for sites that allow shared access to users’ resources from third-party sites,

applications, and services. Most social networking sites now require or strongly

encourage that developers use OAuth. It’s no wonder because a privacy breach can do

serious damage to the credibility of any social network (or social app). Nothing is more

important than security when working with these social APIs, so that’s why we’re

devoting an entire chapter to user authentication.

5

CHAPTER 5: Working Securely with OAuth and Accounts 38

How OAuth Works
Using OAuth allows users to share private stuff like photos and contacts that are stored

on a remote service (like a server belonging to Facebook or Twitter) without you having

to store their credentials for that site in your app. By removing your app as “the

middleman,” social networks can minimize the likelihood that a user’s username and

password fall prey to a phone that has somehow been compromised by some kind of

malware. OAuth also allows a user to revoke an app’s access to her private data if she

decides to stop using it.

How does OAuth work this magic?

At a high level in an OAuth-enabled iOS app that is requesting resources as a third party,

the app displays a UIWebView to the user and sends requests to a set of predefined

URLs from the service provider. Ultimately these return a login/authentication form to

the user in the UIWebView seen in Figure 5–1.

Figure 5–1. The Facebook login page

The user then enters his username and password and submits the form. If it’s

determined that the user has never authorized this app to have access to the service

provider’s resources, the service provider redirects the user to a form that lets the user

grant or deny access to the service provider’s resources from within the app.

CHAPTER 5: Working Securely with OAuth and Accounts 39

Figure 5–2. The Facebook permissions page

If the user grants the app permission (Figure 5–2), the service provider redirects and

supplies a token to a callback provided by the app. Subsequent requests by the app to

obtain resources from the service provider on the user’s behalf then use the token to let

the service provider determine if the app should have access to those resources.

NOTE: With OAuth, there are actually two tokens given to the app from the service provider: a

temporary request token and (ultimately) an access token. There’s usually a pre-defined window
of time in which the request token expires—usually a couple of hours, at most. Once your app is
granted access and receives an access token, it uses this token for subsequent data requests

from the service provider. The access token will remain with your app, which in turn keeps the
user logged in until the user chooses to log out. Users can also choose to revoke an app

remotely, at which point the token becomes invalid.

CHAPTER 5: Working Securely with OAuth and Accounts 40

OAuth in Facebook and Twitter
There are two things you should be aware of with respect to OAuth and how it relates to

Facebook and Twitter. First, there are currently two versions of OAuth out in the wild:

1.0a and 2.0. Unlike other standards, OAuth 2.0 is a complete redesign of OAuth. The

only version of OAuth supported by Facebook’s Graph API is version 2.0. Twitter

currently supports version 1.0a of OAuth.

Second, there are some important differences in how OAuth is implemented in Facebook

and Twitter. Facebook has gone through the trouble of making authorization via OAuth

seamless within its SDK. However, OAuth via Twitter is not as straightforward since

Twitter does not have its own iOS SDK.

In the following sections, we will walk you through the steps necessary to let users

authorize your application via OAuth to access resources from Facebook or Twitter on

their behalf.

OAuth in Facebook
Facebook is pretty liberal with basic user information; by default, your app can access

anything that’s public in a user’s profile (which usually includes her real name, profile

picture, friends list, and other minutiae like birthday, gender, and networks) without any

authorization. If your app needs access to more private information (like an email

address or Wall posts) or seeks to publish to a user’s Facebook wall on her behalf, your

app must request permission to access these resources using OAuth. In addition, some

resources can only be accessed if you request “extended permissions.”

Single Sign-On with Facebook
Facebook’s most recent iOS SDK adds a pretty terrific feature entitled Single Sign-On. It

allows the Facebook for iOS app to share its OAuth token with other apps on the device.

This means users no longer have to re-enter their Facebook username and password for

every single app that asks for permission to access their resources on Facebook; the

new mechanism uses iOS’s fast app switching to keep users logged into Facebook

across the OS.

Making this work requires that two conditions be satisfied:

 The version of iOS that the app is running on must support

multitasking. In other words, the app must be running on a 4.x iOS

device.

 The user must have the Facebook app installed (version 3.2.3 or

above).

CHAPTER 5: Working Securely with OAuth and Accounts 41

If these conditions are both met, the Facebook API will attempt to do the following:

1. Display a login dialog to the user from within your app by launching

Facebook’s own app (Figure 5–3).

Figure 5–3. By launching its own app to authorize others, the Facebook app gives the appearance of logging into
Facebook system-wide.

2. After the user logs in—or if he is already logged into his Facebook

app—the OAuth authorization process will prompt him to accept or

decline your app’s attempt to access resources from his Facebook

account and show what resources will be accessed.

3. Once the user accepts, the Facebook app closes and redirects to your

app, passing the token, expiration, and other parameters from

Facebook’s OAuth server.

Note that if the user has already granted your application permission to access his

resources on Facebook (e.g., he already went through this process on another

iOS device), the OAuth authorization process will show a page reminding the user

that he has already granted your application access (see Figure 5–4).

CHAPTER 5: Working Securely with OAuth and Accounts 42

Figure 5–4. Notifying the user that he has already authorized this app

4. If an error is encountered, the user will be presented with the page seen

in Figure 5–5.

CHAPTER 5: Working Securely with OAuth and Accounts 43

Figure 5–5. Facebook presents a login error.

If the second condition mentioned previously is not met (i.e., the device is running in a

version of iOS that supports multitasking, but the user doesn’t have Facebook app

v.3.2.3 or above installed), then the Facebook SDK will present the authorization dialog

using Safari, which will redirect back to your app after the login completes. The entire

flow is the same as described previously, except that the user is presented with all the

pages via Safari (see Figures 5–6 through 5–9).

CHAPTER 5: Working Securely with OAuth and Accounts 44

Figure 5–6. Facebook OAuth login via mobile Safari

Figure 5–7. Facebook OAuth permissions via mobile Safari

CHAPTER 5: Working Securely with OAuth and Accounts 45

Figure 5–8. Facebook OAuth confirmation via mobile Safari

Figure 5–9. Facebook presents a login error via mobile Safari.

On older 3.x or 4.X iOS devices that don’t support multitasking, the SDK will produce an

inline UIWebView where users can log in. (Remember: An iPhone 3G with iOS 4.0 doesn’t

CHAPTER 5: Working Securely with OAuth and Accounts 46

support multitasking, nor does an iPhone 3G S running 3.1.3. However, an iPhone 3G S

running 4.0 does, as does an iPhone 4.)

OAUTHFACEBOOK PROJECT

In Chapter 4, we walked you through the steps to set up a basic application that uses Facebook’s iOS SDK,
HelloFacebook. In this and future chapters, we are going to use the same application skeleton as
HelloFacebook and jump right into the code specific to the given chapter. To that end, create a new project
entitled OAuthFacebook using the same steps described in Chapter 4. Or you can make a copy of the
HelloFacebook project or follow the steps described here directly in the HelloFacebook project. You
can find the project for this chapter in the Chapter5 directory of the Git repository. Now that we’ve covered
those bases, let’s take a closer look at OAuth and Facebook.

Interapp Communication via a Custom URL Scheme

In the “Single Sign-On with Facebook” section, you may have been asking yourself how the Facebook SDK
redirects back to your application after the login process is complete. The answer is a custom URL
scheme.

When you set up your application to use the Facebook SDK, you have to create a custom URL scheme in
your app’s plist that incorporates your Facebook application ID. Let’s take a closer look at getting this
set up.

In order for iOS to bind your application to a custom URL scheme so that your application can handle
authorization callbacks from the Facebook SDK, you have to specify the URL scheme that your application
responds to in your application’s plist file. In this case, the Facebook SDK expects your application to
bind to a custom URL scheme of the format fb[appID]://, where [appID] is your Facebook application
ID.

Follow these steps to bind your application to the required custom URL scheme:

1. Add a new row for a key/value pair under the root Information Property List
key and name the key this: URL types.

2. Add a new row for a key/value pair under the URL types key that you just added.
The key will be automatically named this: Item 0.

3. Add a new row for a key/value pair under the Item 0 key and name the key this: URL
Schemes.

4. The URL Schemes key will have a key named this: Item 0. Set the value of the
Item 0 key to fb[appID], as described previously. You cannot have any spaces in
this value. If an application’s facebook application id is 123456789, then the value for
the Item 0 key needs to be this: fb123456789.

You can see for yourself (and copy it into your plist if you like) how this should look in the
OAuthFacebook-Info.plist file in the OAuthFacebook project for this chapter. If you’ve set this up
correctly, your plist should look like Figure 5–10.

CHAPTER 5: Working Securely with OAuth and Accounts 47

Figure 5–10. Defining a custom URL scheme in an application’s plist file

In Chapter 4 for the HelloFacebook application, you will recall that, when we allocated the facebook
object, we had to initialize it with our Facebook application ID, as follows:

facebook = [[Facebook alloc] initWithAppId:appID];

The Facebook SDK saves your application ID and—after logging you in—attempts to open a URL that
adheres to the custom URL scheme you created in your app, so that iOS will launch your app. Here is the
code in the Facebook SDK that creates the path for the URL using your Facebook application ID (as seen in
Figure 5–11):

NSString *nextUrl = [NSString stringWithFormat:@"fb%@://authorize", _appId];
 [params setValue:nextUrl forKey:@"redirect_uri"];

CHAPTER 5: Working Securely with OAuth and Accounts 48

Figure 5–11. Facebook iOS SDK custom URL scheme creation code

In order for your app to properly respond to the custom URL scheme, you have to implement the openURL
method in your application’s main delegate and call the Facebook SDK handleOpenURL: method as
follows, so that the Facebook SDK can save the returned access token:

- (BOOL)application:(UIApplication *)application openURL:(NSURL *)urlÉ
 sourceApplication:(NSString *)sourceApplication annotation:(id)annotation {
 return [facebook handleOpenURL:url];
}

The URL will look as follows:

fb114442211957627://authorize/#access_token=<...>&expires_in=0

Let’s look at the various components of the URL:

 fb114442211957627:// This is the custom URL scheme that we bound our
application to.

 authorize/ This is the path the Facebook SDK will check for in the URL, so that it
then knows to parse the authentication information in the rest of the URL.

 # Signifies the start of the parameters in the URL.

 access_token= Specifies the access token returned from facebook.com that the
SDK will use when requesting resources on behalf of your application.

 &expires_in=0 Specifies another parameter in the URL that contains the expiration
for the access_token. In this case, a value of 0 signifies to the SDK that this token
does not expire.

CHAPTER 5: Working Securely with OAuth and Accounts 49

Figure 5–12. Application delegate’s handling of a custom URL

Logging in to Facebook
Authorizing a user via the Facebook API is accomplished via the authorize: method, as

follows:

[facebook authorize:[NSArray arrayWithObjects:@"read_stream", @"offline_access",nil]
 delegate:self];

Notice in the method call that we are passing an NSArray as one of the parameters. This

is an array of requested permissions. As part of the OAuth authorization process, you

must ask the user to grant your application permission to specific resources. In this

authorization request, we are asking for permission to access the user’s news feed. We

are also asking for long-lived access to these resources, in which case we will receive

back an OAuth access token that does not expire.

To learn more about the permissions that are required to access specific resources,

please read the Permissions API reference:

http://developers.facebook.com/docs/authentication/permissions

We have implemented this in the MainView class of the OAuthFacebook project. We have

also used an FBLoginButton class that can be found in the Facebook SDK. Using this

button class gives the Login button a Facebook look and feel that is comforting to a user

since she can see the official Facebook logo, as pictured in Figure 5–13.

CHAPTER 5: Working Securely with OAuth and Accounts 50

Figure 5–13. The Facebook Login button

The sample project is configured to change the Login button to a Logout button after

logging in, as shown in Figure 5–14.

Figure 5–14. The Facebook Logout button

When you click the button, the fbButtonClick: method is called. This method looks like

this:

- (void)fbButtonClick:(UIButton*)sender {
 if (fbLoginButton.isLoggedIn) {
 [self logout];
 } else {
 [self login];
 }
}

If the user is not logged in, the login: method is called. The login: method calls the

authorize: method, as described previously:

- (void)login {
 [facebook authorize:[NSArray arrayWithObjects:@"read_stream",
 @"offline_access",nil] delegate:self];
}

If the user is logged in already, the button text will change to Logout. Upon logging out,

the logout: method is called. The logout: method is as follows:

- (void)logout {
 [facebook logout:self];
}

Notice that the authorize: and logout: methods of the Facebook SDK take a delegate

as a parameter. In order to receive notifications from the Facebook SDK with respect to

logging the user in and out of Facebook, you have to implement the FBSessionDelegate

protocol in your class and pass your class as a delegate to the Facebook authorize:

and logout: methods. If you inspect MainView.h, you will see that MainView is a

FBSessionDelegate:

@interface MainView : UIView <FBSessionDelegate> {
 ...
}

The FBSessionDelegate protocol defines three optional methods that you can

implement:

CHAPTER 5: Working Securely with OAuth and Accounts 51

 - (void)fbDidLogin

 - (void)fbDidNotLogin:(BOOL)cancelled

 - (void)fbDidLogout

In the fbDidLogin delegate method, we save the logged in state and update the

FBLoginButton to let the user log out of Facebook. In the fbDidNotLogin: method, we

simply log the occurrence. In the fbDidLogout method, we save the logged out state and

update the FBLoginButton to let the user log into Facebook.

Lo and behold, users can now log into your Facebook-connected iOS app without even

typing, just by sharing the security token from the Facebook app or a Safari cookie from

Facebook’s mobile site. The specifics of how this is implemented are in the Facebook

iOS SDK method (see Figure 5–15):

 - (void)authorizeWithFBAppAuth:(BOOL)tryFBAppAuth
 safariAuth:(BOOL)trySafariAuth

Figure 5–15. The Facebook iOS SDK authorization code

Logging out of Facebook
So if Facebook users are logged into all the apps across iOS, what happens if they want

your app to log out of Facebook? As shown previously, you call the logout: method to

clear all application state in the Facebook SDK and initiate a server request to invalidate

the current access token. The contents of the logout: method are shown in Figure 5–16.

CHAPTER 5: Working Securely with OAuth and Accounts 52

Figure 5–16. The Facebook iOS SDK logout: method

If a user logs out of your app, it won’t revoke your app’s permissions; it just clears the

app’s access token. If the user then tries to log into Facebook inside your app once

more, the app will simply notify the user that it’s logging back into Facebook, and your

app will receive a new access token. The user won’t have to give it permission again.

If a user wants to revoke your app’s permissions, she needs to head to facebook.com,

edit her settings for Apps and Websites, choose Edit Settings under Apps you use (see

Figure 5–17), and delete your app from the list of approved apps (see Figure 5–18).

CHAPTER 5: Working Securely with OAuth and Accounts 53

Figure 5–17. Facebook.com’s application OAuth permissions page

Figure 5–18. Revoking an application’s permission to interact with a Facebook user’s data and profile

CHAPTER 5: Working Securely with OAuth and Accounts 54

Determining if iOS Supports Backgrounding of Applications
The Facebook SDK behaves differently, based upon whether the device supports

backgrounding. This difference in behavior is achieved via the use of the following code:

 if ([UIDevice instancesRespondToSelector:@selector(isMultitaskingSupported)] &&
 [[UIDevice currentDevice] isMultitaskingSupported]) {
}

We are showing this here because it may be useful from time-to-time in your own

application to choose different code paths based upon whether the device supports

backgrounding of applications.

OAuth in Twitter
OAuth via the Facebook iOS SDK wasn’t too painful since the SDK’s developers have

done a stellar job of wrapping everything up as nicely as possible with its SDK via simple

APIs. OAuth via Twitter is a little more involved, but we’re going to get you through it.

Figure 5–19 shows a diagram of Twitter’s OAuth authentication flow.

As we mentioned previously, Twitter doesn’t have an official iOS SDK, so some people

in the open source community pieced together software from various projects to make a

working iOS Twitter engine with OAuth support. We are going to show you how to use

this open source software to quickly integrate Twitter authentication into your app.

CHAPTER 5: Working Securely with OAuth and Accounts 55

Figure 5–19. Twitter authentication flow (courtesy of Twitter.com)

Creating a Twitter Application
Before you jump in with OAuth for Twitter, you will need to register an application with

Twitter here: http://twitter.com/apps/new.

When you visit this site, Twitter will ask you to enter various pieces of information about

your application and your company (see Figure 5–20).

CHAPTER 5: Working Securely with OAuth and Accounts 56

Figure 5–20. Signing up for a Twitter application

Note that you must select Client as the Application Type.

If Twitter accepts your registration information, you will be brought to a page that

contains Twitter’s OAuth URLs, as well as the consumer key and consumer secret for

your application (see Figure 5–21).

CHAPTER 5: Working Securely with OAuth and Accounts 57

Figure 5–21. Twitter returns your consumer key and consumer secret.

Save your consumer key and secret in a safe location since these are the values you will

need to start the OAuth authorization process from within your iOS application.

CHAPTER 5: Working Securely with OAuth and Accounts 58

The OAuthTwitter Project
In Chapter 4, we walked you through the steps to set up a basic application that uses

Twitter: HelloTwitter. In this and future chapters, we are going to use the same

application skeleton as HelloTwitter and jump right into the code specific to the given

chapter. To that end, create a new project entitled OAuthTwitter using the same steps

described in Chapter 4. Or you can make a copy of the HelloTwitter project or perform

the steps described gere directly in the HelloTwitter project. You can find the project

for this chapter in the Chapter5 directory of the Git repository. Now that we’ve covered

those bases, let’s take a closer look at OAuth and Twitter.

Logging into Twitter
Begin by adding your Twitter OAuth consumer key and secret in your main application

delegate:

#define kOAuthConsumerKey @"REPLACE ME"
#define kOAuthConsumerSecret @"REPLACE ME"

Now set those values for the respective properties of the SA_OAuthTwitterEngine object

that we declared and initialized in your main application delegate in Chapter 4:

sa_OAuthTwitterEngine = [[SA_OAuthTwitterEngine alloc] initOAuthWithDelegate: self];
 sa_OAuthTwitterEngine.consumerKey = kOAuthConsumerKey;
 sa_OAuthTwitterEngine.consumerSecret = kOAuthConsumerSecret;

The final thing that you need to do in your main application delegate is to declare it as a

SA_OAuthTwitterEngineDelegate in the header file:

@interface AppDelegate : NSObject <UIApplicationDelegate,
 SA_OAuthTwitterEngineDelegate> {
}

Complete this process by implementing the matching delegate methods in the source

file:

- (void) storeCachedTwitterOAuthData: (NSString *) data forUsername: (NSString *)
 username {
 NSUserDefaults *defaults = [NSUserDefaults
 standardUserDefaults];

 [defaults setObject: data forKey: @"authData"];
 [defaults synchronize];
}

- (NSString *) cachedTwitterOAuthDataForUsername: (NSString *) username {
 return [[NSUserDefaults standardUserDefaults] objectForKey: @"authData"];
}

- (void) twitterOAuthConnectionFailedWithData: (NSData *) data {
 NSLog(@"twitterOAuthConnectionFailedWithData");
}

Before moving onto the code that will display the login page to the user, let’s cover a

little bit of what’s going on in the preceding delegate methods.

CHAPTER 5: Working Securely with OAuth and Accounts 59

The iOS Twitter engine does not store the OAuth data returned from Twitter across runs

of your application; you have to do this yourself. Fortunately, the iOS Twitter engine

provides two delegate methods that you need to implement so that this is integrated

seamlessly with the engine.

When the iOS Twitter engine starts the authentication process, it first checks to see if

any credentials already exist. It does this by calling its delegate’s

cachedTwitterOAuthDataForUsername: method. In the preceding code, you can see that

we attempt to retrieve this information from NSUserDefaults. The first time that someone

tries to log into Twitter via your application, there will be no object for the authData key

in NSUserDefaults since nothing has been saved there yet. However, this is where the

delegate method storeCachedTwitterOAuthData: comes into play. If a user successfully

logs into Twitter via your app, the Twitter iOS engine will call the

storeCachedTwitterOAuthData: delegate method. This gives you an opportunity to save

the information returned from Twitter for subsequent retrieval. Note that in the preceding

code, we are saving this information to NSUserDefaults in a key entitled authData.

The last delegate method, twitterOAuthConnectionFailedWithData:, is called by the

Twitter iOS engine if an error is encountered while trying to authorize the user via OAuth.

For instance, if you add an extra character to your consumer key or secret and rebuild

and run your application, you will see that this delegate method is called by the engine.

Now let’s do a little work with the user interface. It’s nice to have a button to log into

Twitter so we went through the trouble of putting one together for you. This Twitter

Login button is modeled on the Facebook Login button that we used in the

OAuthFacebook project.

Go to the Twitter-OAuth-iPhone directory in the directory where you cloned the Git

repository for the sample projects for this book, and then locate the TwitterLoginButton

directory. Drag the TwitterLoginButton to your project, so that you can use it in your

code.

If you look at the MainViewController class in the OAuthTwitter sample project, you will

see how we dropped in the TwitterLoginButton. We have used the iOS Twitter engine’s

isAuthorized: method to set the button to the correct state on startup of the sample

application:

twitterLoginButton.isLoggedIn = [sa_OAuthTwitterEngine isAuthorized];

When clicked, this button triggers the following method:

- (void)twitterButtonClick:(UIButton*)sender {
 if (twitterLoginButton.isLoggedIn) {
 [self logout];
 } else {
 [self login];
 }
}

In the login: method, we use the SA_OAuthTwitterController class to display the

Twitter OAuth login page to the user. We show this modally via the UIViewController

method, presentModalViewController:. When initializing the

CHAPTER 5: Working Securely with OAuth and Accounts 60

SA_OAuthTwitterController object, you have to pass it the SA_OAuthTwitterEngine that

we created and initialized in our main application delegate and also pass it an

SA_OAuthTwitterControllerDelegate. Here is the code:

- (void)login {

 UIViewController *controller =
 [SA_OAuthTwitterController controllerToEnterCredentialsWithTwitterEngine:
 sa_OAuthTwitterEngine delegate: self];
 if (controller) {
 [self presentModalViewController: controller animated: YES];
 }
 else {
 [sa_OAuthTwitterEngine sendUpdate: [NSString stringWithFormat:
 @"Already Updated. %@", [NSDate date]]];
 }
}

We need to declare ourselves as an SA_OAuthTwitterControllerDelegate, and we do

that in our header file:

@interface MainViewController : UIViewController <SA_OAuthTwitterControllerDelegate> {
}

The final step is to implement the SA_OAuthTwitterControllerDelegate delegate

methods:

- (void) OAuthTwitterController: (SA_OAuthTwitterController *) controller
 authenticatedWithUsername: (NSString *) username {
 NSLog(@"Authenicated for %@", username);

 twitterLoginButton.isLoggedIn = YES;
 [twitterLoginButton updateImage];
}

- (void) OAuthTwitterControllerFailed: (SA_OAuthTwitterController *) controller {
 NSLog(@"Authentication Failed!");
}

- (void) OAuthTwitterControllerCanceled: (SA_OAuthTwitterController *) controller {
 NSLog(@"Authentication Canceled.");
}

Note how we update the state of the TwitterLoginButton after a successful login via the

OAuthTwitterController:authenticatedWithUsername: delegate method. You will more

than likely want to perform application-specific steps in your own application code here.

If the user enters an incorrect username and password on the login page or hits the

Deny button, the delegate method OAuthTwitterControllerFailed: will be called, and

the code that implements this delegate method should display a message to the user

explaining the failed login attempt. If the user cancels the SA_OAuthTwitterController

dialog, the delegate method OAuthTwitterControllerCanceled: will be called.

Figures 5–22 and 5–23 show screenshots of what the SA_OAuthTwitterController looks

like while displaying the Twitter authentication page.

CHAPTER 5: Working Securely with OAuth and Accounts 61

Figure 5–22. How the SA_OAuthTwitterController looks while displaying the authentication page.

Figure 5–23. The bottom half of the SA_OAuthTwitterController authentication page

CHAPTER 5: Working Securely with OAuth and Accounts 62

Logging out of Twitter
Logging the user out of Twitter is a pretty straightforward process. The iOS Twitter

engine provides a clearAccessToken method that we use in the logout method. We also

reset our Login button:

- (void)logout {

 [sa_OAuthTwitterEngine clearAccessToken];

 twitterLoginButton.isLoggedIn = NO;
 [twitterLoginButton updateImage];
}

If we look at the clearAccessToken: method, we find that it clears out Twitter OAuth

access and request tokens, calls our delegate method so that we clear out the access

token we saved to NSUserDefaults, and clears out some other objects, as well:

- (void) clearAccessToken {
 if ([_delegate respondsToSelector:
 @selector(storeCachedTwitterOAuthData:forUsername:)]) [(id) _delegate
 storeCachedTwitterOAuthData: @"" forUsername: self.username];
 [_accessToken release];
 _accessToken = nil;
 [_consumer release];
 _consumer = nil;
 self.pin = nil;
 [_requestToken release];
 _requestToken = nil;
}

Under the Hood: webViewDidFinishLoad
The workhorse of a view controller that implements OAuth is a UIWebView. If you examine

SA_OAuthTwitterController, you will see that its main view is a UIWebView, and that it is

itself a UIWebViewDelegate. One of the nice things about the UIWebView class is that it

has a number of delegate methods that make it possible to perform native functionality

within your app when the UIWebView loads pages. This is accomplished via the delegate

method, webViewDidFinishLoad:. Take a look at webViewDidFinishLoad: in

SA_OAuthTwitterController.m to get a feel for what it’s doing. Even better, set a break

point in the beginning of the method and step through the code.

There’s More
We’ve done our best to outline the major icebergs, but building a secure app takes a lot

more than we can include in this chapter. For some concise, well-considered rules of

thumb about good iOS development, including how to test and deploy your app without

any n00bish security screw-ups, check out Twitter’s Security Best Practices at:

http://dev.twitter.com/pages/security_best_practices.

CHAPTER 5: Working Securely with OAuth and Accounts 63

Finally, remember these important points:

 Address any security issues within your application sooner rather than

later.

 Test, test, and test again to ensure a seamless user experience.

 Consider using facebook connect via OAuth to authenticate users of an

application if creating an authentication system from scratch is not a

viable option.

65

65

 Chapter

Getting Your App Ready
for Social Messaging
The hardest part about understanding this chapter is using Facebook and Twitter

enough to understand what’s going on here on the front end. It’s crucial! Once you

understand this stuff, you can go ahead and connect to the APIs.

We’re guessing you’ve used Facebook and Twitter if you’re reading this book. Chances

are, however, that you haven’t used them enough.

In this section of the book, we’ll go into more detail about how to get your iOS app

connected with Facebook’s Graph API and the Twitter API. Then we’ll discuss how to

publish information from your app onto the social Web: Tweets, messages, wall posts,

and so forth.

But before we go any further, let’s explore the vaguely insulting assertion in the first line

of this chapter. We don’t doubt that you have the faculties to understand what

Facebook and Twitter do. But there are a dizzying number of ways to publish

information to the social graph, and it’s worth consciously exploring each one to figure

out which mechanisms are right for your app. Try to conceptualize what’s happening on

the front end—the difference between an @reply and a direct message in Twitter, for

example—so that it will be easier to focus on which API calls you want your app to make.

As with any new project, it’s important to implement only the most basic features first,

so being fluent in Facebook and Twitter will help you make informed choices about

which features to include.

You can find all of the code for this chapter in the Chapter6 directory of the Git

repository. The Facebook code is in the ApiFacebook project and the Twitter code is in

the ApiTwitter project.

All right, let’s holler at some APIs, shall we?

6

CHAPTER 6: Getting Your App Ready for Social Messaging 66

Introducing the Facebook Graph API
There are tons of things your app can publish on Facebook. These things include, but

aren’t limited to the following: Wall posts, messages, group messages, notes, events,

statuses, comments, Likes, and Places (we’ll give Places more attention later). We’ll

begin by showing you how to pull information from the Facebook social graph via the

Facebook iOS SDK.

In order to make it easy to see some of this in action, we have changed the structure of

the sample application a bit for this chapter. You will see that the sample application

now uses a UITabBarController to divide up the functionality of the app. It’s not pretty,

but it works.

A Little Help from Our Friends
In all social networking, the most important thing is to always be part of the user’s

friends and communications. In keeping with this, we’re first going to take a look at how

to get a list of the currently logged in user’s friends and the associated profile picture for

each friend. This is accomplished via the requestWithGraphPath:andDelegate: method:

[facebook requestWithGraphPath:@"me/friends" andDelegate:self];

Before we delve into what’s going on under the covers, let’s peruse the sample code a

bit to get acquainted with using the requestWithGraphPath:andDelegate: method. This is

the primary method that is used to access information from the Facebook social graph.

If you refer to the sample code, you will see that we make the preceding

requestWithGraphPath:andDelegate: method call in the viewDidLoad: method of the

FriendsViewController class. The FriendsViewController class is a subclass of the

FacebookViewController class, which is a subclass of UITableViewController. Since the

Facebook API returns lists of information, we created the FacebookViewController class

in order to reuse code and make our lives a little easier for the purposes of

demonstrating how to use and display the results of Facebook graph path requests. It’s

important to note that the FacebookViewController is also an FBRequestDelegate. Here

is the declaration for the FacebookViewController class:

@interface FacebookViewController : UITableViewController <FBRequestDelegate> {
 NSArray *items;
}
@end

Whenever a request is made via the requestWithGraphPath:andDelegate: method, a

delegate must be specified in order to handle the response from the Facebook iOS SDK.

It’s important to note that the Facebook iOS SDK calls the methods of the

FBRequestDelegate in the following order. First, before the request is made to the

Facebook servers, the requestLoading: method is called. When the Facebook servers

send a response, the request:didReceiveResponse: method is called. Next, before the

Facebook iOS SDK starts to handle the response, the request:didLoadRawResponse:

method is called to give the delegate the chance to process the response data itself.

Finally, the request:didLoad: method is called with the response data stored in an

CHAPTER 6: Getting Your App Ready for Social Messaging 67

Objective-C data type. If there was a problem with the request, then the

request:didFailWithError: method is called.

If we take a look at the request:didLoad: method in the FacebookViewController, we

see the following:

- (void)request:(FBRequest *)request didLoad:(id)result {
 NSLog(@"didLoad:");

 [items release];
 items = [[(NSDictionary*)result objectForKey:@"data"] retain];
 [self.tableView reloadData];
}

If you recall from the earlier example, the FacebookViewController owns a pointer to an

NSArray entitled items:

NSArray *items;

In the request:didLoad: method, the first thing that we do is release the array of items.

We do this to prevent a memory leak. Since the next step is to assign a new array to the

array of items, any time we want to assign a new array, we need to first make sure that

we release and give back the array that we stored before. Things get a little more

interesting when we actually do the assignment, so let’s review what’s going on in this

step:

 items = [[(NSDictionary*)result objectForKey:@"data"] retain];

For the majority of requests that you make from the Facebook social graph, the

response is going to be a dictionary with one key/value pair, where the key is data, and

the value is an array or list of items. So, in this case, we’re casting the result to an

NSDictionary* and then using the objectForKey: method to retrieve the actual NSArray

of items. We’re also calling retain, so that the returned array of items stays in memory.

In most cases, each item within the array of returned items will be an NSDictionary. For

the friends request, each item in the array is a dictionary with two key/value pairs: one

stores the Facebook ID of the friend, and one stores the friend’s name. This can be seen

in this visual representation of what the entire response dictionary looks like:

{
 data = (
 {
 id = <a number>;
 name = "John Doe";
 }
);
}

CHAPTER 6: Getting Your App Ready for Social Messaging 68

TIP: A quick and easy way to see the contents of an object in Xcode is to go to the Xcode console
and type the following print out (po) command. So for instance, if we place a breakpoint inside
the request:didLoad: method, we can obtain the earlier visual representation of the

(id)result object by typing the following into the Xcode console when our breakpoint is hit:

(gdb) po result

Finally, we ask the UITableView that is owned by our UITableViewController to reload

its data, so that the user interface is updated. When the UITableView reloads, it will need

to know how many total rows it contains, so we return the count for the items array:

- (NSInteger)tableView:(UITableView *)tableView numberOfRowsInSection:(NSInteger)section
{
 // Return the number of rows in the section.
 if (nil == items) {
 return 0;
 }
 return [items count];
}

When the UITableView needs a specific row, we retrieve the dictionary that represents

the friend for that row from our array of friends (i.e., the items array) in

FriendsViewController’s tableView:cellForRowAtIndexPath: method:

NSDictionary *friendDictionary = [items objectAtIndex:[indexPath row]];

For this sample, we’re using our own UITableViewCell class entitled

FriendTableViewCell. This enables us to encapsulate the retrieval of a friend’s profile

picture. The FriendTableViewCell uses the style UITableViewCellStyleDefault, which

displays a text label and an optional image. The FriendTableViewCell class is itself an

FBRequestDelegate, and it owns a pointer to a dictionary, which in this case will be the

dictionary for the friend that is associated with the cell. Here is the declaration for the

FriedTableViewCell:

@interface FriendTableViewCell : UITableViewCell <FBRequestDelegate> {
 NSDictionary *data;
}

@property(nonatomic, retain) NSDictionary *data;

@end

We assign the FriendTableViewCell’s data dictionary in FriendsViewController’s
tableView:cellForRowAtIndexPath: method:

cell.data = friendDictionary;

When we do the preceding assignment, FriendTableViewCell’s setData method is

called. Therefore, we have overridden this method to perform our own custom actions:

- (void)setData:(NSDictionary *)dictionary {
 [data release];

CHAPTER 6: Getting Your App Ready for Social Messaging 69

 data = [dictionary retain];

 self.textLabel.text = [data objectForKey:@"name"];

 self.imageView.image = nil;
 [self setNeedsLayout];

 [[NSNotificationCenter defaultCenter] removeObserver:self];

 self.requestPath = [NSString stringWithFormat:@"%@/picture", [data
objectForKey:@"id"]];
 [[FacebookRequestController sharedRequestController]
enqueueRequestWithGraphPath:self.requestPath];

 //listen for a notification with the name of the identifier
 [[NSNotificationCenter defaultCenter] addObserver:self
selector:@selector(facebookRequestDidComplete:) name:kRequestCompletedNotification
object:nil];
}

First, we set the text for the textLabel of the cell to the value associated with the name

key in the data dictionary. Second, we initiate a request for this particular friend’s profile

picture from the Facebook social graph via the requestWithGraph: method. To obtain

the profile picture of a user from the Facebook graph, we make the request using this

format:

<user ID>/picture

In this case, we are constructing this for each friend by using NSString’s

stringWithFormat: and passing it the value associated with the id key in the data

dictionary. The Facebook iOS SDK returns the image as bytes within an NSData object.

Next, we create an image from this object, as shown here in FriendTableViewCell’s
facebookRequestDidComplete: method:

- (void)facebookRequestDidComplete:(NSNotification*)notification {

 if (YES == [self.requestPath isEqualToString:[notification.userInfo
objectForKey:@"path"]]) {

 UIImage *image = [UIImage imageWithData:(NSData*)[notification.userInfo
objectForKey:@"result"]];
 self.imageView.image = image;
 [self setNeedsLayout];
 }
}

If you run the sample application, log in via your Facebook user account, and tap the

Friends tab, then you will see it download and display your list of friends. It will also

download each of their profile pictures (see Figure 6–1). Note that this sample has not

been optimized; it’s intended solely to show you how to get up and running with these

APIs.

CHAPTER 6: Getting Your App Ready for Social Messaging 70

Figure 6–1. A rudimentary list of friends

Paging Graph Responses
One interesting thing that we’d like to point out is that you can limit the number of items

you get in a response from the Facebook graph when making a request. This is

accomplished by adding the limit parameter to the request. You can do this via the

requestWithGraphPath:andDelegate: method:

[facebook requestWithGraphPath:@"me/friends?limit=3" andDelegate:self];

You can also do this via requestWithGraphPath:andParams:andDelegate: by creating a

dictionary of parameters. For each object in the dictionary, the key is the name of the

parameter—limit, in this case—and the value is a string representation of the value.

Here is what the code looks like:

NSMutableDictionary *params = [NSMutableDictionary dictionary];
[params setObject:@"3" forKey:@"limit"];
[facebook requestWithGraphPath:@"me/feed" andParams:params andDelegate:self];

You can also specify that you would like to retrieve items from a given starting point or

offset by using the offset parameter:

[facebook requestWithGraphPath:@"me/friends?limit=3&offset=5" andDelegate:self];

Alternatively, you can also accomplish this same task by passing in a dictionary of

parameters:

CHAPTER 6: Getting Your App Ready for Social Messaging 71

NSMutableDictionary *params = [NSMutableDictionary dictionary];
[params setObject:@"3" forKey:@"limit"];
[params setObject:@"5" forKey:@"offset"];
[facebook requestWithGraphPath:@"me/feed" andParams:params andDelegate:self];

Under the Hood: The FBRequest Class
The actual Facebook Graph API is an HTTP-based API, where HTTP requests are

formatted and sent to Facebook’s servers, and responses are sent back in JSON

format. The Facebook iOS SDK provides us with a set of clean and simple-to-use

Objective-C wrapper classes that we can use within our iOS apps to request information

via the Facebook Graph API.

The Facebook iOS SDK class that actually makes the requests and handles the

responses is FBRequest. The Facebook iOS SDK takes advantage of the fact that the

underlying base URL that it needs to use to make requests never changes:

https://graph.facebook.com. The SDK also knows that certain parameters for a request

never change. This means that you only need to provide the request methods with those

parts of the Graph Path that change based on the context of your application.

So, if we were to construct the full URL to request the current user’s friends from the

Facebook graph, it would look as follows:

https://graph.facebook.com/me/friends?sdk=ios&sdk_version=2&access_token=<your
token>&format=json

We are using the Facebook iOS SDK, so we only need to give the SDK the Graph Path

"me/friends" (along with any other parameters to control the request) since the

underlying SDK classes construct the full URL for us.

The final request is constructed in FBRequest’s connect method, so it is worth studying.

This is where the actual request is made, and the JSON response is handled. The JSON

response is handled in the method handleResponseData:(NSData *)data. In the case of

a request for a user’s friends, this is what the JSON response looks like:

{"data":[{"name":"John Dor","id":"<some ID>"}]}

It is also worth studying FBRequest’s

getRequestWithParams:httpMethod:delegate:requestURL: method and Facebook’s

openUrl:params:httpMethod:delegate:.

A General Note on Error Handling
There is no right or wrong way to handle errors from the Facebook iOS SDK. It all

depends on you and your application. We encourage you to implement any delegate

methods that notify you of errors, so that you can take the appropriate action and notify

the user or update your application’s user interface. With respect to what we have

covered for Facebook in this chapter, be sure to implement FBRequestDelegate’s
request:didFailWithError: method.

CHAPTER 6: Getting Your App Ready for Social Messaging 72

Introducing the Twitter APIs
There are tons of things your app can publish on Twitter. These things include, but

aren’t limited to the following: Tweets, direct messages (although note that this is fading

out), @replies, #hashtags, and so on. We’ll begin by showing you how to pull

information from Twitter via MGTwitterEngine.

As with the Facebook sample app for this chapter, we have changed the structure of the

Twitter sample application a bit for this chapter in order to make it easy to see some of

this in action. You will see that the sample application now uses a UITabBarController to

divide up the functionality of the app. Again, it’s not pretty, but it works.

Welcome to the Timeline
If you’re wondering what a Twitter timeline is, it’s Twitter’s own term for any stream of

Tweets. Twitter treats all your own Tweets as one timeline, the stream of Tweets you see

from people you follow as another timeline, and any stream of Tweets coming from a

curated list that you’ve made as still another timeline.

It Always Feels Like Somebody’s Following Me
The most coveted thing for a Twitter user is to have a lot of followers. To that end, we’re

going to take a look at how to get a list of the currently logged in user’s followers and

the associated profile picture for each follower. This is accomplished via

MGTwitterEngine’s getFollowersIncludingCurrentStatus: method:

[sa_OAuthTwitterEngine getFollowersIncludingCurrentStatus:YES];

Unlike the Facebook iOS SDK, where every request is issued via the

requestWithGraphPath: method, MGTwitterEngine uses different methods to

accomplish different requests. There is also no formal request object, so some different

coding mechanisms are required since we can’t specify a different delegate per request.

Unfortunately, this makes coding against MGTwitterEngine slightly more difficult;

however, all of the MGTwitterEngine request methods return a unique request

connection identifier string, and we will use this to our advantage in our sample app for

this chapter.

Looking at the sample code, we make the previously mentioned

getFollowersIncludingCurrentStatus: method call in the viewDidLoad: method of the

FollowersViewController class. The FollowersViewController class is a

UITableViewController. Since the Twitter API returns lists of information, a

UITableViewController is an ideal class to use to demonstrate how to use the API to

retrieve someone’s list of followers. Here is the declaration for the

FollowersViewController class:

@interface FollowersViewController : UITableViewController {
 NSArray *followers;
}
@end

CHAPTER 6: Getting Your App Ready for Social Messaging 73

Recall that when we created the MGTwitterEngine, we had to set an

MGTwitterEngineDelegate, which in this case is our AppDelegate class. Whenever a

request is made of Twitter via MGTwitterEngine, the methods of the

MGTwitterEngineDelegate will be called. It’s important to note that MGTwitterEngine

calls the methods of its delegate in the following order:

1. After a successful request is made to Twitter’s servers, the

requestSucceeded: method is called.

2. Next, depending on what was requested, one of the

*Received:forRequest: methods is called (in this case, when requesting

followers, the userInfoReceived:forRequest: method is called), and the

response data is stored in an Objective-C data type.

3. Finally, the connectionFinished: method is called. If there was a

problem with the request, then the requestFailed:withError: method is

called.

If we take a look at the userInfoReceived:forRequest: method in the AppDelegate, we

see the following:

- (void)userInfoReceived:(NSArray *)userInfo forRequest:(NSString *)
connectionIdentifier
 {
 NSLog(@"User info for connectionIdentifier = %@", connectionIdentifier);

 //tell the UI to update itself

 NSDictionary *userInfoDictionary = [NSDictionary dictionaryWithObjects:
[NSArray arrayWithObjects:userInfo, nil] forKeys:[NSArray arrayWithObjects:
@"followers", nil]];
 [[NSNotificationCenter defaultCenter] postNotificationName:connectionIdentifier

object:self

userInfo:userInfoDictionary];
}

At this point, you might be wondering what we’re doing with the NSNotificationCenter.

Well, as it turns out, the NSNotificationCenter is a great mechanism for allowing a class

within an app to notify other classes that something has happened and pass along

information without having to use delegates. In this case, we want tell the

FollowersViewController that the information for its request is available. But before we

talk more about what’s going on within FollowersViewController, let’s finish taking a

look at the preceding code.

The userInfo parameter is an NSArray of NSDictionary objects. Each NSDictionary

contains information about an individual follower. When you post a notification, you can

specify a dictionary of objects that the receiver of the notification can access. We want

the FollowersViewController to receive the array of followers, so we create a dictionary

with one key, followers, and assign the array of followers to that key. When we finally

CHAPTER 6: Getting Your App Ready for Social Messaging 74

post the notification, we have to give it a unique name, and what better name to use

than the connection identifier?

You probably recall that the FollowersViewController owns a pointer to an NSArray

entitled followers:

NSArray *followers;

In order to assign the array that we got back in the userInfoReceived:forRequest:

delegate method, we have to do a couple of things in FollowersViewController. We

begin by telling the NSNotificationCenter that we want to receive notifications that

match the name of the unique connection identifier for our request. Recall that this will

be the same connection identifier that is given to the userInfoReceived:forRequest:
delegate method. We also tell NSNotificationCenter that we want the method

twitterFollowersRequestDidComplete: to be executed if a notification that matches our

unique connection identifier is fired. Here is the code that does this:

- (void)viewDidLoad {
 [super viewDidLoad];
 // Uncomment the following line to display an Edit button in the navigation
bar
 for this view controller.
 // self.navigationItem.rightBarButtonItem = self.editButtonItem;

 NSString *identifier = [sa_OAuthTwitterEngine
 getFollowersIncludingCurrentStatus:YES]; // statuses/followers

 //listen for a notification with the name of the identifier
 [[NSNotificationCenter defaultCenter] addObserver:self
 selector:@selector(twitterFollowersRequestDidComplete:)
 name:identifier
 object:nil];
}

Now let’s examine what’s going on in our method that handles the notification:

- (void)twitterFollowersRequestDidComplete:(NSNotification*)notification {

 [followers release];
 followers = [[notification.userInfo objectForKey:@"followers"] retain];

 [[NSNotificationCenter defaultCenter] removeObserver:self];

 [self.tableView reloadData];
}

In this method, the first thing that we do is release the array of followers. We do this to

prevent a memory leak. Since the next step is to assign a new array to the array of

followers, any time we want to assign a new array, we need to first make sure that we

release and give back the array that we stored before. Things get a little more interesting

when we actually do the assignment, so let’s review what’s going on in this step:

 followers = [[notification.userInfo objectForKey:@"followers"] retain];

Remember that, when we posted the notification from AppDelegate, we sent a dictionary

that contained one key/object pair with the key followers in the dictionary. Thus, all

CHAPTER 6: Getting Your App Ready for Social Messaging 75

we’re doing is assigning the value for this key from the notifications userInfo dictionary

to our followers array. We finish off this method by removing ourselves as an observer

of notifications, and then telling our table to reload itself since we have new data.

NOTE: It’s always a good practice to remove yourself as an observer of notifications as soon as
you feel the class in question no longer needs to receive the notifications. If you fail to do this

before setting your class to receive notifications again, your class will receive multiple

notifications for the same event, which is probably not the behavior you want.

When the table reloads, we return the number of followers as the number of rows in the

table:

- (NSInteger)tableView:(UITableView *)tableView numberOfRowsInSection:
(NSInteger)section {
 // Return the number of rows in the section.
 if (nil == followers) {
 return 0;
 }

 return [followers count];
}

When the UITableView needs a specific row, we retrieve the dictionary that represents

the follower for that row from our array of followers in FollowersViewController’s

tableView:cellForRowAtIndexPath: method:

NSDictionary *dictionary = [followers objectAtIndex:[indexPath row]];

For this sample, we’re using our own UITableViewCell class entitled

FollowersTableViewCell. This lets us encapsulate the retrieval of a follower’s profile

picture. The FollowersTableViewCell uses the style UITableViewCellStyleDefault,

which displays a text label and an optional image. The FollowersTableViewCell class

owns a pointer to a dictionary, which in this case will be the dictionary for the follower

that is associated with the cell. Here is the declaration for the FriendTableViewCell:

@interface FollowersTableViewCell : UITableViewCell {
 NSDictionary *data;
}

@property(nonatomic, retain) NSDictionary *data;

@end

We assign the FollowersTableViewCell’s data dictionary in FollowersViewController’s
tableView:cellForRowAtIndexPath: method:

cell.data = dictionary;

When we do the preceding assignment, FollowersTableViewCell’s setData method is

called, so we have overridden this method to perform our own custom actions:

- (void)setData:(NSDictionary *)dictionary {
 [data release];

CHAPTER 6: Getting Your App Ready for Social Messaging 76

 data = [dictionary retain];

 self.textLabel.text = [data objectForKey:@"screen_name"];

 self.imageView.image = nil;
 [self setNeedsLayout];

 [[NSNotificationCenter defaultCenter] removeObserver:self];

 NSString *identifier = [sa_OAuthTwitterEngine getImageAtURL:[dictionary
 objectForKey:@"profile_image_url"]];

 //listen for a notification with the name of the identifier
 [[NSNotificationCenter defaultCenter] addObserver:self
 selector:@selector(twitterProfileImageRequestDidComplete:)
 name:identifier
 object:nil];
}

First, we set the text for the textLabel of the cell to the value associated with the

screen_name key in the data dictionary. Second, we initiate a request for this particular

follower’s profile picture from Twitter via MGTwitterEngine’s getImageAtURL: method.

We pass to this method the URL of the follower’s profile image that was returned to us

from Twitter and is the value associated with the profile_image_url key in the data

dictionary. Note that the getImageAtURL: method can be used to retrieve an image from

any URL, not just a Twitter URL.

When we make the request for the image, MGTwitterEngine returns the connection

identifier and, just like in FollowersViewController, we tell NSNotificationCenter that

we want to receive notifications matching the value of the connection identifier.

MGTwitterEngine notifies our application that the image is available and passes it to us

via the imageReceived:forRequest: MGTwitterEngineDelegate method. We then issue a

notification for the returned connection identifier that contains the image:

- (void)imageReceived:(UIImage *)image forRequest:(NSString *)connectionIdentifier {
 NSLog(@"Image receieved for connectionIdentifier = %@", connectionIdentifier);

 NSDictionary *userInfoDictionary = [NSDictionary dictionaryWithObjects:
[NSArray arrayWithObjects:image, nil] forKeys:[NSArray
 arrayWithObjects:@"profile_image", nil]];
 [[NSNotificationCenter defaultCenter] postNotificationName:connectionIdentifier
 object:self
 userInfo:userInfoDictionary];
}

Back in FollowersViewController, in the notification handler, we get the image object out

of the notification, set it as the cell’s image, and then update the cell’s layout:

- (void)twitterProfileImageRequestDidComplete:(NSNotification*)notification {

 [[NSNotificationCenter defaultCenter] removeObserver:self];

 self.imageView.image = [notification.userInfo objectForKey:@"profile_image"];
 [self setNeedsLayout];
}

CHAPTER 6: Getting Your App Ready for Social Messaging 77

If you run the sample application, log in via your Twitter user account, and tap the

Followers tab, then you will see it download and display your list of followers. It will also

download each of their profile pictures (see Figure 6–2). Note that this sample has not

been optimized; it’s intended solely to show you how to get up and running with these

APIs.

Figure 6–2. A rudimentary list of followers

Under the Hood: MGTwitter HTTP Connections and XML
Parsing
The actual Twitter API is an HTTP-based API, where HTTP requests are formatted and

sent to Twitter’s servers, and responses are sent back in XML format. MGTwitterEngine

provides us with a set of clean and simple to use Objective-C wrapper classes that we

can use within our iOS apps to request information from Twitter.

The class in MGTwitterEngine that actually makes the requests and handles the

responses is the MGTwitterEngine class itself. If you refer to the header file for

MGTwitterEngine, you will notice that it owns a dictionary of connections:

NSMutableDictionary *_connections;

Each time a request is made, MGTwitterEngine creates a new

MGTwitterHTTPURLConnection, which is an NSURLConnection. Each

MGTwitterHTTPURLConnection creates a unique identifier (UUID) for itself. This is

CHAPTER 6: Getting Your App Ready for Social Messaging 78

accomplished via an NSString category class in MGTwitterEngine entitled

NSString+UUID that has one method:

+ (NSString*)stringWithNewUUID
{
 // Create a new UUID
 CFUUIDRef uuidObj = CFUUIDCreate(kCFAllocatorDefault);

 // Get the string representation of the UUID
 NSString *newUUID = (NSString*)CFUUIDCreateString(kCFAllocatorDefault, uidObj);
 CFRelease(uuidObj);
 return [newUUID autorelease];
}

When MGTwitterEngine creates a connection, it saves the object for that connection in

its connections dictionary, where the key is the connection identifier returned by the

connection. We’ll get to why this is important in a second, but let’s first look at the URL

to request someone’s followers from Twitter:

https://twitter.com/statuses/followers.xml

When MGTwitterEngine creates an MGTwitterHTTPURLConnection object, it assigns it a

request type and a response type. Why is that? Well, when the response is received

from Twitter, MGTwitterEngine uses this information to decide how to parse the returned

XML data. Note that MGTwitterEngine has a number of XML parsers that all derive

themselves from MGTwitterXMLParser. If you examine MGTwitterEngine’s

_parseDataForConnection: method, you will see that it performs a switch on the

response type of the connection. In the case of requesting followers, a

MGTwitterUsersParser is created to parse the response. The XML is parsed and

returned to us via MGTwitterEngineDelegate’s userInfoRecieved:forRequest: method

as an array of dictionaries. Here is what one of these dictionaries looks like:

(
{
 "contributors_enabled" = false;
 "created_at" = "Thu Mar 25 16:29:19 +0000 2010";
 description = "Phone Numbers Are Dead. Go800 is the new way of placing phone calls
 by giving a voice to the names in your social world. Public launch March 1st.";
 "favourites_count" = 0;
 "follow_request_sent" = false;
 "followers_count" = 675;
 following = 1;
 "friends_count" = 939;
 "geo_enabled" = false;
 id = 126361254;
 "is_translator" = false;
 lang = en;
 "listed_count" = 9;
 location = "New York, NY";
 name = Go800;
 notifications = false;
 "profile_background_color" = ffffff;
 "profile_background_image_url" = "http://a3.twimg.com/profile_background_images
/207991705/bkg_go800_850_v_full_v9.png";
 "profile_background_tile" = true;

CHAPTER 6: Getting Your App Ready for Social Messaging 79

 "profile_image_url" = "http://a2.twimg.com/profile_images
/1235044022/go800_logo_twitter_logo_normal.png";
 "profile_link_color" = 3f90b3;
 "profile_sidebar_border_color" = 333333;
 "profile_sidebar_fill_color" = ffffff;
 "profile_text_color" = 333333;
 "profile_use_background_image" = true;
 protected = 0;
 "screen_name" = Go800;
 "show_all_inline_media" = false;
 "source_api_request_type" = 11;
 status = {
 contributors = "";
 coordinates = "";
 "created_at" = "Tue Feb 22 21:49:40 +0000 2011";
 favorited = false;
 geo = "";
 id = 40166359300050944;
 "in_reply_to_screen_name" = "";
 "in_reply_to_status_id" = "";
 "in_reply_to_user_id" = "";
 place = "";
 "retweet_count" = 6;
 retweeted = false;
 source = web;
 "source_api_request_type" = 11;
 text = "Phone Numbers Are Dead. Teach twitter a new trick on March 1st.
 Follow @Go800 for preview invite.";
 truncated = 0;
 };
 "statuses_count" = 83;
 "time_zone" = "Eastern Time (US & Canada)";
 url = "http://www.go800corp.com";
 "utc_offset" = "-18000";
 verified = false;
}
)

Conclusion
We covered a lot of interesting areas within this chapter related to using the Facebook

iOS SDK to obtain a user’s list of friends and MGTwitterEngine to obtain a user’s list of

followers. Along the way, we took a closer look at what’s going on under the covers in

each of these SDKs. We also went into some generally useful programming techniques

for programming iOS apps in Objective-C.

In the next chapter, we will build on this knowledge base to delve deeper into what’s

going on under the covers and expand this chapter’s sample projects to show you how

to use these SDKs to post information for users, as well as how to get more of their

information.

81

81

 Chapter

Accessing People, Places,
Objects, and
Relationships
In this chapter, we’ll cover the nuts and bolts of Facebook methods, objects, properties,

and connections—and how to get at them. We’ll also introduce JSON, or JavaScript

Object Notifications, which are ancillary to the use of the Graph API. Finally, we’ll talk

about retrieving basic data from Twitter’s REST (Representational State Transfer)1 API.

You can find all of the code for this chapter in the Chapter7 directory of the Git

repository. The Facebook code is in the ApiFacebook project, and the Twitter code is in

the ApiTwitter project. These projects build off the same application structure that was

introduced in the Chapter 6’s sample projects; and once again, the projects aren’t

pretty, but they get the job done.

More Fun with the Facebook Graph API
In the last chapter, we showed you how to pull information from Facebook’s social

graph. As you did this, you were probably left wondering how to go about adding or

posting information from your own app to Facebook’s social graph. Well, since we’re

such nice guys, we’ve gone through the trouble of dedicating an entire section of this

chapter to posting to the Facebook social graph. We’ve also added a thorough review of

additional information that you can pull from the social graph, including how that

information relates to authorization and extended permissions. Read on for the gory

details.

1 See, for example, http://en.wikipedia.org/wiki/Representational_State_Transfer

7

CHAPTER 7: Accessing People, Places, Objects, and Relationships 82

Facebook Dialogs
One of the great ways to spice up your iOS application and make it a hit with users is to

let them post to their Facebook page directly from within your app. Even though iOS

supports copy and paste and fast switching between apps, users won’t find your app

appealing if they have to switch to the iOS Facebook app itself to, for instance, post a

link to an interesting article from within your application to their Facebook wall.

Fortunately for us, the Facebook SDK has made it as simple as possible to get up and

running with this functionality. This brings us to the dialog: methods in the Facebook

class that we have yet to discuss:

- (void)dialog:(NSString *)action
 andDelegate:(id<FBDialogDelegate>)delegate;

- (void)dialog:(NSString *)action
 andParams:(NSMutableDictionary *)params
 andDelegate:(id <FBDialogDelegate>)delegate;

Both of these methods are in Facebook.h; and while there are two methods available to

us, we will focus on using the second one, which lets us pass in additional parameters.

The first method without parameters is usable, but more often than not you will need to

pass parameters to the dialog: method. Moreover, if you look in Facebook.m, you will

see that the first method calls the second method with an empty dictionary for the

parameters:

- (void)dialog:(NSString *)action
 andDelegate:(id<FBDialogDelegate>)delegate {
 NSMutableDictionary * params = [NSMutableDictionary dictionary];
 [self dialog:action andParams:params andDelegate:delegate];
}

Both of these methods also take an action parameter and a delegate parameter. We will

look at these now in our sample application. In the sample application for this chapter,

we have a new class entitled DialogViewController. This class will look awfully similar

to the LoginViewController class because, lo and behold, it’s modeled directly after it.

That said, we want to focus our attention on a few things within the

DialogViewController class.

Since we are going to be displaying dialogs to the user from the DialogViewController

class, we need to declare that it is an FBDialogDelegate in our header file,

DialogViewController.h:

@interface DialogViewController : UIViewController <FBDialogDelegate> {
}
@end

In DialogViewController.m, it’s up to us to define each of the following delegate

callback methods:

- (void)dialogDidComplete:(FBDialog *)dialog;
- (void)dialogCompleteWithUrl:(NSURL *)url;
- (void)dialogDidNotCompleteWithUrl:(NSURL *)url;
- (void)dialogDidNotComplete:(FBDialog *)dialog;

CHAPTER 1: App Cubby 83

- (void)dialog:(FBDialog*)dialog didFailWithError:(NSError *)error;
- (BOOL)dialog:(FBDialog*)dialog shouldOpenURLInExternalBrowser:(NSURL *)url;

Before we discuss these delegate callbacks a bit further, it’s high time we use the

dialog: method to do some work for us. The Facebook SDK will display content within

a pop-up dialog according to what you pass in as the action parameter to the dialog:

method. In the case of posting information to a user’s Facebook wall, the appropriate

action is feed. Therefore, in the most simple case, if we want to display a dialog that lets

a user enter any freeform text and post it to his wall, we would call the dialog: method

as follows and ensure that we pass the appropriate class (in this case,

DialogViewController) as the delegate:

NSMutableDictionary * params = [NSMutableDictionary dictionary];
[facebook dialog:@"feed" andParams:params andDelegate:self];

Calling the dialog: method this way displays this dialog to the user (see Figure 7–1):

Figure 7–1. Calling the dialog: method presents this dialog to the user.

As you can see, this is really bare bones and not what you are used to seeing from

within web apps that let you post content to your Facebook wall. So let’s spice things

up a bit via some additional parameters. Additional parameters can be specified for the

feed dialog, and each parameter has a specific name and purpose. Posting YouTube

videos is incredibly popular on Facebook, so let’s assume you want to post a link to a

YouTube video to a user’s wall from within your application. To accomplish this, add a

key/value pair to the parameters dictionary where the key is link and the value is the

URL for the YouTube video (or whatever other web content you want to share):

CHAPTER 7: Accessing People, Places, Objects, and Relationships 84

NSDictionary* params = [NSDictionary dictionaryWithObject:
 @http://www.youtube.com/watch?v=nqMc9B7uDV8 forKey:@"link"];

[facebook dialog:@"feed" andParams:params andDelegate:self];

Since the underlying guts of the Facebook SDK’s dialog is a web view (more on this

later), this code is formatted nicely into something you would expect and shows an

image preview of what’s in the YouTube video with the post (see Figure 7–2).

Figure 7–2. Since Facebook dialogs are Web views, you can embed previews of content there.

Now that was easy, wasn’t it? Let’s take it a step further, though, and see how we can
customize the display of the feed dialog even more. The code that follows creates a
sample dialog that Facebook likes to use:
NSDictionary* params = [NSDictionary dictionaryWithObjectsAndKeys:

 @"http://developers.facebook.com/docs/reference/dialogs/", @"link",
 @"http://fbrell.com/f8.jpg", @"picture",
 @"Facebook Dialogs", @"name",
 @"Reference Documentation", @"caption",
 @"Dialogs provide a simple interface for apps to interact with users.",
@"description",
 @"Facebook Dialogs are so easy!", @"message", nil];
 [facebook dialog:@"feed" andParams:params andDelegate:self];

In this example, we’re setting a bunch of values for different keys that Facebook makes

available, so that you can really spice up the look and feel of the dialog. Setting a URL to

an image as the value for the picture key lets you control what image is displayed with

the post on the user’s Facebook wall. The value for the name key controls what will be

CHAPTER 1: App Cubby 85

displayed in the classic Facebook font as the main title of the wall post. The caption and

description values let you provide preset text with the wall post. Last but not least, the

message key lets you preset the text in the editable text field in the dialog. All this

information is displayed in the dialog, as shown in Figure 7–3.

Figure 7–3. Anatomy of a Facebook dialog

Before we jump ahead to discuss some of the inner workings of the Facebook SDKs

dialogs, we should take a short detour and go over the FBDialogDelegate methods.

We’ve found through our own personal experience that how you use the

FBDialogDelegate methods depends upon the context you use them in. For instance,

you might want to implement these methods if you like to track some analytics within

your application.

Whenever the user takes an action with the dialog by pressing one of the Skip or Publish

action buttons on the dialog, the SDK first calls the dialogCompleteWithUrl: method,

and then the dialogDidComplete: method. If the user presses the Skip button, this URL

will be passed to the dialogCompleteWithUrl: method:

"fbconnect://success"

If the user presses the Publish button instead, this URL will be passed to the

dialogCompleteWithUrl: method:

"fbconnect://success/?post_id=623441509_10150094754996510"

We’ll be the first to admit that we didn’t actually know what to make of this response at

first; however, we did a little digging, so you’re in luck. It turns out that the post_id

parameter in the URL contains two separate pieces of identifying information that are

CHAPTER 7: Accessing People, Places, Objects, and Relationships 86

concatenated together with an underscore. Here is the definition of the post_id

parameter:

post_id=<userIdentifier>_<postIdentifier>

In this case, userIdentifier indicates the Facebook Graph path for the logged in user

who made the post via our application. Similarly, postIdentifier indicates the

Facebook Graph path identifier for that post. If you parse those two pieces of

information out of the post_id parameter, you can put them into the following URL

scheme to see the actual result:

www.facebook.com/<userIdentifier>/posts/<postIdentifier>

Armed with this knowledge, you could show the user her actual post on Facebook’s

mobile site by directing her to the properly constructed URL, which is shown here:

www.facebook.com/623441509/posts/10150094754996510

On a final note, if the user chooses to close the dialog via the X button in the upper-right

corner, the dialogDidNotCompleteWithUrl: delegate method is called with a nil NSURL

object as its parameter, and then dialogDidNotComplete: is called.

Under the Hood: The FBDialog Class
If you’re thinking that last section was too easy, you’re right. We tip our hat to the

Facebook engineers for making this as painless as possible. A good SDK has well

thought out, easy-to-use methods that make things as painless as possible.

Given our discussion in the last chapter about the workings of the FBRequest class, it

should come as no surprise that posting information to Facebook is also done ultimately

via an HTTP-based API. Once again though, the engineers at Facebook were good

sports and provided us with the FBDialog class in their SDK to do all of the heavy lifting.

The code for the FBDialog class is found in the FBDialog.m and FBDialog.h files in the

FBConnect folder in all of the sample projects. There are a lot of interesting things to be

learned by just examining the declaration of the FBDialog class:

@interface FBDialog : UIView <UIWebViewDelegate> {
 id<FBDialogDelegate> _delegate;
 NSMutableDictionary *_params;
 NSString * _serverURL;
 NSURL* _loadingURL;
 UIWebView* _webView;
 UIActivityIndicatorView* _spinner;
 UIImageView* _iconView;
 UILabel* _titleLabel;
 UIButton* _closeButton;
 UIDeviceOrientation _orientation;
 BOOL _showingKeyboard;

 // Ensures that UI elements behind the dialog are disabled.
 UIView* _modalBackgroundView;
}
@end

CHAPTER 1: App Cubby 87

The first two points of interest are that FBDialog is just a UIView and that it owns a modal

background view:

// Ensures that UI elements behind the dialog are disabled.
UIView* _modalBackgroundView;

Why would the FBDialog class be just a normal UIView? Also, why would a dialog class

have something like a modal background view within it? Doesn’t the iOS SDK already

have a class for showing a modal pop-up dialog?

Although this would be nice to have, it turns out that the iOS SDK doesn’t provide an

out-of-the-box solution for showing a modal pop-up dialog. This means it’s up to

developers to home grow their own. The most trusted way to accomplish this is to

create a view that is the size of the entire application frame, so that users cannot interact

with anything “behind” the modal pop-up dialog. The code for this sits in FBDialog’s

show: method, and it is useful if you ever need to accomplish something like this for your

own application (note that we already created the _modalBackgroundView object in

FBDialog’s init: method):

UIWindow* window = [UIApplication sharedApplication].keyWindow;
if (!window) {
 window = [[UIApplication sharedApplication].windows objectAtIndex:0];
}

_modalBackgroundView.frame = window.frame;
[_modalBackgroundView addSubview:self];
[window addSubview:_modalBackgroundView];

[window addSubview:self];

Another important piece to the FBDialog puzzle is that it owns a UIWebView and is a
UIWebViewDelegate:

UIWebView* _webView;

It turns out that this UIWebView is what handles all of the rendering magic of the majority

of the content in an FBDialog. The main content of the FBDialog is actually fetched over

the web from Facebook via its dialog URL, and it is displayed in the UIWebView in

FBDialog. In particular, it has a mobile version of its dialog URL, which is defined in

Facebook.m:

static NSString* kDialogBaseURL = @"https://m.facebook.com/dialog/";

When you use the Facebook SDK’s dialog: method to create a dialog and pass it an

action, this action gets added to the dialog URL, and the SDK also adds required

parameters such as the version of the Facebook SDK, the display style, and a redirect

URI. For a bare bones feed dialog, the final request looks like this:

https://m.facebook.com/dialog/feed?sdk=2&redirect_uri=fbconnect%3A%2F%2Fsuccess&app_id=1
14442211957627&display=touch

We’ve included the actual dialog: method here, so that you can see how it presets

some of the parameters for the dialog URL, creates the dialog, and then shows it. Note

that the final dialog URL is constructed in FBDialog’s generateURL: method:

- (void)dialog:(NSString *)action

CHAPTER 7: Accessing People, Places, Objects, and Relationships 88

 andParams:(NSMutableDictionary *)params
 andDelegate:(id <FBDialogDelegate>)delegate {

 [_fbDialog release];

 NSString *dialogURL = [kDialogBaseURL stringByAppendingString:action];
 [params setObject:@"touch" forKey:@"display"];
 [params setObject:kSDKVersion forKey:@"sdk"];
 [params setObject:kRedirectURL forKey:@"redirect_uri"];

 if (action == kLogin) {
 [params setObject:@"user_agent" forKey:@"type"];
 _fbDialog = [[FBLoginDialog alloc] initWithURL:dialogURL
 loginParams:params delegate:self];
 } else {
 [params setObject:_appId forKey:@"app_id"];
 if ([self isSessionValid]) {
 [params setValue:[self.accessToken
 stringByReplacingPercentEscapesUsingEncoding:NSUTF8StringEncoding]
 forKey:@"access_token"];
 }
 _fbDialog = [[FBDialog alloc] initWithURL:dialogURL
 params:params
 delegate:delegate];
 }

 [_fbDialog show];
}

Posting to Facebook and Authorization
Before we move onto other feats of magic and wonder, we’d like to mention that, if your

main goal is to let users share information from your app or the web to their Facebook

page, it really is as simple as integrating with the Facebook iOS SDK in general—as

we’ve shown here when using the dialog: method. In fact, you don’t even have to worry

about doing any separate authorization calls since Facebook will handle this for you via

various web redirects when you request a dialog without authorization. When you

request a dialog without authorization, the dialog will automagically bring the user to the

Facebook mobile OAuth authorization page (see Figure 7–4). Once the user logs in, he

will be redirected back to the original dialog that you requested. It really doesn’t get any

easier than that, does it?

CHAPTER 1: App Cubby 89

Figure 7–4. The Facebook OAuth login view

We would also like to point out that posting to Facebook does not require extended

permissions, so you get this feature for free. What this means in practical terms is that

you don’t have to pass in any extra permissions to the authorize: call that we covered

in Chapter 5 if you are using that method of authorization.

Getting More Goodies from the Facebook Graph
As you can see, we’re going to great lengths in this book to not only give you a solid

understanding of how to use the Facebook iOS SDK in your application, but also to

explain what it’s doing under the covers. In Chapter 6, we showed you the technical

details of how to retrieve your list of Facebook friends, covered how the nuts and bolts

of how Facebook Graph paths are structured, and explained how the FBRequest class

works. If you haven’t already read that chapter, it might be a good idea to skim it over

now because we’re going to run through some new examples of how to retrieve

additional information from the Facebook Social Graph. This time, however, we will

leave out the technical details unless there is something new to discuss.

Remember that fetching information from the Facebook graph is accomplished via the

requestWithGraphPath: method of the Facebook class in the Facebook iOS SDK.

This example illustrates how to accomplish that basic task:

NSMutableDictionary *params = [NSMutableDictionary dictionary];
//does not require extended permissions

CHAPTER 7: Accessing People, Places, Objects, and Relationships 90

[facebook requestWithGraphPath:@"me/friends"
 andParams:params
 andDelegate:self];
The string that you pass to this method uses the following format:
<facebook_id>/<requested graph path>

In this case, it will retrieve the list of friends for the currently logged in user:

me/friends

Notice our code comment. Requesting friends does not require any extended

permissions when you authorize the user via OAuth, as described in Chapter 5.

NOTE: You can find the code for these examples in the viewDidLoad: method in the

FriendsViewController class in the sample app.

If you want to fetch someone’s news feed, then change the graph path to home:

NSMutableDictionary *params = [NSMutableDictionary dictionary];
[facebook requestWithGraphPath:@"me/home"
 andParams:params
 andDelegate:self];

This returns an array of dictionaries. Each dictionary contains information about one item

in the news feed. The dictionary for each item will contain keys for the creation time, the

post id, the content of the message, the type (e.g., status), actions for commenting or

liking, and comments:

{
 actions = (
 {
 link = "http://www.facebook.com/<facebook id>/posts/<post id>";
 name = Comment;
 },
 {
 link = "http://www.facebook.com/<facebook id>/posts/<post id>";
 name = Like;
 }
);
 "created_time" = "2011-02-28T02:23:08+0000";
 from = {
 id = <facebook id>;
 name = “<facebook “name>;
 };
 id = "<post id>";
 message = "....";
 type = status;
 "updated_time" = "2011-02-28T02:23:08+0000";
}

Fetching notes requires the extended permission user_notes, and the graph path is

notes(see Figure 7–5):

CHAPTER 1: App Cubby 91

Figure 7–5. Requesting permission

NSMutableDictionary *params = [NSMutableDictionary dictionary];
// requires 'user_notes' extended permissions
[facebook requestWithGraphPath:@"me/notes" andParams:params andDelegate:self];

This returns an array of dictionaries. Each dictionary contains information about one of

the user’s notes. The dictionary for each note will contain keys for the creation time, the

note id, the content of the note/message, and comments:

{
 comments = {
 data = (
 {
 "created_time" = "2009-08-02T13:41:44+0000";
 from = {
 Id = <facebook id>;
 name = "<facebook name>";
 };
 id = "<post id>";
 message = "<comment>";
 },
 {
 "created_time" = "2009-08-02T13:43:01+0000";
 from = {
 id = <facebook id>;
 name = "<facebook name>";
 };
 id = "<post id>";
 message = "<comment>";

CHAPTER 7: Accessing People, Places, Objects, and Relationships 92

 }
);
 };
 "created_time" = "2009-08-02T13:23:35+0000";
 from = {
 id = <facebook id>;
 name = "<facebook name>";
 };
 icon = "http://static.ak.fbcdn.net/rsrc.php/v1/yY/r/1gBp2bDGEuh.gif";
 id = <note id>;
 message = "<note contents>";
 subject = quotes;
 "updated_time" = "2010-05-14T01:35:42+0000";
}

Fetching events requires the extended permission user_events, and the graph path is

events (see Figure 7–5):

NSMutableDictionary *params = [NSMutableDictionary dictionary];
// requires 'user_events' extended permissions
[facebook requestWithGraphPath:@"me/events" andParams:params andDelegate:self];

This returns an array of dictionaries. Each dictionary contains information about one of

the user’s events. The dictionary for each event will contain keys for the start and end

time, the event id, the name of the event, the location, and the user’s RSVP status:

{
 "end_time" = "2011-03-10T13:00:00+0000";
 id = 106092242803326;
 location = "Electric Pickle";
 name = "WMC :: GODFATHER *James Brown Tribute* meets CHAMPION SOUND";
 "rsvp_status" = unsure;
 "start_time" = "2011-03-10T06:00:00+0000";
}

Fetching groups requires the extended permission user_groups, and the graph path is

groups (see Figure 7–5):

NSMutableDictionary *params = [NSMutableDictionary dictionary];
//requires 'user_groups' extended permissions
[facebook requestWithGraphPath:"@me/groups" andParams:params andDelegate:self];

This returns an array of dictionaries. Each dictionary contains information about one of

the user’s groups. The dictionary for each group will contain keys for the id of the group,

the group name, and the group version:

{
 id = 166023750105785;
 name = "SkateSide Events";
 version = 1;
}

Fetching likes, movies, music, and books requires the extended permission user_likes,

and the graph path is likes, movies, music, or books, respectively (see Figure 7–5).

Each request returns an array of dictionaries. Each dictionary contains information about

one of the user’s likes, movies, music, or books. The dictionary for each item will contain

CHAPTER 1: App Cubby 93

keys for the category, creation time, Facebook id, and name. For example, this code

returns information about the user’s likes:

NSMutableDictionary *params = [NSMutableDictionary dictionary];
// requires 'user_likes' extended permissions
[facebook requestWithGraphPath:@"me/likes"
 andParams:params
 andDelegate:self];

{
 category = "Product/service";
 "created_time" = "2011-02-23T00:09:34+0000";
 id = 186242738068007;
 name = AAdvantage;
}

Similarly, this code returns information about the user’s movies:

[facebook requestWithGraphPath:@"me/movies"
 andParams:params
 andDelegate:self];

{
 category = Movie;
 "created_time" = "2010-12-28T18:50:40+0000";
 id = 104167709618686;
 name = "Ferris Bueller's Day Off";
}

This code returns information about the uers’s music:

[facebook requestWithGraphPath:@"me/music"
 andParams:params
 andDelegate:self];

{
 category = "Musician/band";
 "created_time" = "2011-01-16T02:11:26+0000";
 id = 47167209984;
 name = "New York Night Train";
}

And this code returns information about the user’s books:

[facebook requestWithGraphPath:@"me/books"
 andParams:params
 andDelegate:self];

Fetching a user’s wall posts requires the extended permission read_stream, and the

graph path is feed:

NSMutableDictionary *params = [NSMutableDictionary dictionary];
// requires 'read_stream' extended permissions
[facebook requestWithGraphPath:@"me/feed"
 andParams:params
 andDelegate:self];

The preceding snippet returns an array of dictionaries. Each dictionary contains

information about one item on the user’s wall. The dictionary for each item will contain

CHAPTER 7: Accessing People, Places, Objects, and Relationships 94

keys for the creation time, the post id, the content of the message, the type (e.g.,

status), actions for commenting or liking, and comments:

{
 actions = (
 {
 link = "http://www.facebook.com/<facebook id>/posts/<post id>";
 name = Comment;
 },
 {
 link = "http://www.facebook.com/<facebook id>/posts/<post id>";
 name = Like;
 }
);
 application = "<null>";
 caption = "www.youtube.com";
 comments = {
 count = 4;
 data = (
 {
 "created_time" = "2011-02-24T15:30:59+0000";
 from ={
 id = <facebook id>;
 name = "<facebook name>";
 };
 id = "<post id>";
 message = "…";
 },
 {
 "created_time" = "2011-02-26T00:28:32+0000";
 from = {
 id = <facebook id>;
 name = "<facebook name>";
 };
 id = "<post id>";
 message = "i like the abe lincoln one as well :)";
 }
);
 };
 "created_time" = "2011-02-24T04:12:30+0000";
 description = "Description here…";
 from = {
 id = <facebook id>;
 name = "<facebook name>";
 };
 icon = "http://static.ak.fbcdn.net/rsrc.php/v1/yj/r/v2OnaTyTQZE.gif";
 id = "<post id>";
 likes = {
 count = 2;
 data = (
 {
 id = <facebook id>;
 name = "<facebook name>";
 },
 {
 id = <facebook id>;
 name = "<facebook name>";

CHAPTER 1: App Cubby 95

 }
);
 };
 link = "http://www.youtube.com/watch?v=jL68NyCSi8o";
 message = "hahaha!";
 name = "Drunk History Vol. 5";
 picture = "<URL>";
 privacy = {
 deny = 389937081509;
 description = "Friends Only; Except: restricted";
 friends = "ALL_FRIENDS";
 value = CUSTOM;
 };
 source = "http://www.youtube.com/v/jL68NyCSi8o&autoplay=1";
 type = video;
 "updated_time" = "2011-02-26T00:28:32+0000";
}

Of course, you can also fetch a user’s tagged photos, albums, and videos. Doing so

requires the extended permission user_photos, and the graph path is photos, albums, or

videos, respectively (see Figure 7–5). This snippet fetches a user’s tagged photos:

NSMutableDictionary *params = [NSMutableDictionary dictionary];
// requires 'user_photos' extended permissions
[facebook requestWithGraphPath:@"me/photos"
 andParams:params
 andDelegate:self]; //tagged photos

Similarly, this snippet fetches a user’s tagged albums:

[facebook requestWithGraphPath:@"me/albums"
 andParams:params
 andDelegate:self];

Finally, this snippet fetches a user’s tagged videos:

[facebook requestWithGraphPath:@"me/videos"
 andParams:params
 andDelegate:self];

Note that if the correct user permissions are not included when authorizing the user,

then the request:didFailWithError delegate method is called.

Limiting Results
One nice thing you can do is limit the number of fields that Facebook returns in the

dictionary for each item in the preceding examples. The method is the same, regardless

of what you are requesting. This is accomplished via the fields parameter. For example,

when requesting friends, you might want only the Facebook id, name, and picture of

each friend. You can accomplish this by using the

requestWithGraphPath:andParams:andDelegate method:

NSMutableDictionary *params = [NSMutableDictionary dictionary];
[params setObject:@"id,name,picture" forKey:@"fields"];
[facebook requestWithGraphPath:@"me/friends"
 andParams:params
 andDelegate:self];

CHAPTER 7: Accessing People, Places, Objects, and Relationships 96

Date Formatting
You’ll notice that a lot of the returned information in the preceding examples contained

timestamps for things like creation time. By default, all of the date fields returned by

Facebook are an ISO-8601 formatted string. If you’d rather have these strings in a

different format, you can specify an additional date_format parameter with your

requests:

NSMutableDictionary *params = [NSMutableDictionary dictionary];
[params setObject:@"U" forKey:@"date_format"];
[facebook requestWithGraphPath:@"me/feed"
 andParams:params
 andDelegate:self];

The immediately preceding example requests all date strings in unixtime-format by

specifying U as the date_format value. You can see more date formatting options

available to you at this link:

http://php.net/manual/en/function.date.php

More Fun with the Twitter API
We ended the last chapter by showing you how to retrieve and display who a user

follows on Twitter. Twitter gives you access to a bunch of other goodies as well, so let’s

see how we go about doing some more. These other goodies include getting someone’s

favorite Tweets, tweeting something, sending someone a direct message, and a host of

other things. As usual, we’ve hacked up our sample app a bit to give you an idea of how

to use the APIs in MGTwitterEngine to access everything. If you run the Twitter sample

app for this chapter, you will see another tab entitled, “Tweetin” with a “Twitter” button.

Change the code in TimelineViewController’s twitterButtonClick: method to

experiment with the different requests that we discuss here. And on with the show!

A Tweetin’ We Will Go
You’re probably itching to Tweet something directly from an iOS app, right? Well,

beginning with iOS 5, Apple has made it easy for deveopers to include Twitter posting

functionality in their apps. Users can login to Twitter from inside iOS, and new Tweet

posting buttons can be found in several preloaded apps including Camera, Photos,

Safari, YouTube and Maps. However, Apple's support for Twitter functions stop at

POSTing, so we're going to show you how to roll your own Twitter integration in case

your app needs to do something a little more powerful. To Tweet something for the

currently logged in user, use the following MGTwitterEngine method:

- (NSString *)sendUpdate:(NSString *)status;

It’s as easy as pie. Tweets can be at most 140 UCS-2 characters long. If this length is

exceeded, the Tweet is truncated. For the status parameter, just pass in what you want

to Tweet and you’re done:

[sa_OAuthTwitterEngine sendUpdate:@"this is a test tweet! tweet tweet!"];

CHAPTER 1: App Cubby 97

We won’t go over the MGTwitterEngineDelegate again in too much detail; however,

recall that we set up our main application delegate as a MGTwitterEngineDelegate, so

you can see what happens when you make each of these calls by going to that class.

We will refer to the methods here and assume that you can find them in AppDelegate.m.

Remember that if the request is successful, the first thing that happens is

requestSucceeded: is called; next, a follow-up delegate method is called, depending on

the request.

Ultimately, when you Tweet something, the statusesReceived: delegate method is

called with the actual details of the Tweet returned from Twitter. We’ve modified the

statusesReceived: method to show you some more information. The main parameter

that you receive in this method is an array of items from Twitter. Each element in this

array is a dictionary that represents one item. The set of key value pairs that represent

an item changes, depending on what you originally requested from Twitter. In our new

implementation of statusesReceived:, we take the first item in the array and, if it exists,

get the Twitter ID for the Tweet and print it out to the console log. Check out how in this

example:

- (void)statusesReceived:(NSArray *)statuses
- forRequest:(NSString *)connectionIdentifier {

 NSLog(@"Status received for connectionIdentifier = %@, %@",
 connectionIdentifier, [statuses description]);

 NSDictionary *dictionary = [statuses objectAtIndex:0];
 if (dictionary) {
 NSString *twitterID = [dictionary objectForKey:@"id"];
 NSLog(@"TwitterID = %@", twitterID);
 }
}

NOTE: Here’s something to keep in mind about Twitter IDs: like the Facebook graph, everything

in Twitter has a unique ID. These IDs are used through a number of Twitter’s APIs, so we just

wanted to make a quick mention of them.

The ID for an item from Twitter is always stored in the id key in the dictionary of the

item. The MGTwitterEngine code was originally written to accept unsigned longs for

these IDs; however, the Twitter IDs have since grown and can no longer be held in an

unsigned long variable. To make our lives (and hopefully yours) easier, we modified the

version of MGTwitterEngine that is used for this book to take a string whenever a method

needs a Twitter ID.

The entire dictionary for a Tweet contains a ton of useful information. For example, we

would see this if we were to print out the entire dictionary in the statusesReceived:

method:

{
 contributors = "";
 coordinates = "";
 "created_at" = "Fri Mar 04 04:18:55 +0000 2011";
 favorited = false;

CHAPTER 7: Accessing People, Places, Objects, and Relationships 98

 geo = "";
 id = 43525805485199360;
 "in_reply_to_screen_name" = "";
 "in_reply_to_status_id" = "";
 "in_reply_to_user_id" = "";
 place = "";
 "retweet_count" = 0;
 retweeted = false;
 source = "<a href=\"http://www.apress.com\"
 rel=\"nofollow\">Tweetin' iOS OAuth";
 "source_api_request_type" = 5;
 text = "this is a test tweet! tweet tweet!";
 truncated = 0;
 user = {
 "contributors_enabled" = false;
 "created_at" = "Sat Jan 09 21:25:41 +0000 2010";
 description = "";
 "favourites_count" = 4;
 "follow_request_sent" = false;
 "followers_count" = 24;
 following = 0;
 "friends_count" = 186;
 "geo_enabled" = false;
 id = <twitter user id>;
 "is_translator" = false;
 lang = en;
 "listed_count" = 0;
 location = "";
 name = Christopher;
 notifications = false;
 "profile_background_color" = C0DEED;
 "profile_background_image_url" = "URL";
 "profile_background_tile" = false;
 "profile_image_url" = "URL";
 "profile_link_color" = 0084B4;
 "profile_sidebar_border_color" = C0DEED;
 "profile_sidebar_fill_color" = DDEEF6;
 "profile_text_color" = 333333;
 "profile_use_background_image" = true;
 protected = 1;
 "screen_name" = christhepiss;
 "show_all_inline_media" = false;
 "statuses_count" = 451;
 "time_zone" = "Eastern Time (US & Canada)";
 url = "http://christhepiss.tumblr.com";
 "utc_offset" = "-18000";
 verified = false;
 };
}

Take note of the id that we mentioned before. Also take note of the text and the source

of the Tweet. Since we’re using the app identifier for this book when authorizing users,

the source is listed as “Tweetin' iOS OAuth.” On Twitter, this would look like what you

see in Figure 7–6.

CHAPTER 1: App Cubby 99

Figure 7–6. A test Tweet. And it works!

So now that you’ve tweeted, you must be feeling pretty good. We know we feel good.

However, let’s say you want to see all of your Tweets. Doing so is simple:

[sa_OAuthTwitterEngine getUserTimeline];

In the world of Twitter, tweets exist along a timeline since each Tweet occurs at a

specific point in time. So you can get a user’s timeline of tweets (as we did earlier), or

you can get the timeline of the user and all of her followers:

[sa_OAuthTwitterEngine getHomeTimeline];

You can even get the entire public timeline on Twitter of all Twitter users who have

public Tweets:

[sa_OAuthTwitterEngine getPublicTimeline];

Similarly, you can get the favorite Tweets of the currently logged in user:

[sa_OAuthTwitterEngine getFavoriteUpdatesFor:nil startingAtPage:0];

For each of these cases (and others), Twitter returns an array of dictionaries (via

statusesReceived:), where each dictionary is the same as the preceding one, contains

all of the relevant info and stats for the given Tweet, and indicates where it originated

from.

With the Twitter API, you can also delete Tweets. If we wanted to delete the preceding

Tweet, we would do the following, where we pass in the ID of the Tweet:

[sa_OAuthTwitterEngine deleteUpdate:@"43525805485199360"];

CHAPTER 7: Accessing People, Places, Objects, and Relationships 100

In Chapter 6, we showed you how to get someone’s followers; however, you can also

request information about a specific Twitter user at any time using his Twitter name or

his Twitter ID:

[sa_OAuthTwitterEngine getUserInformationFor:@"TWITTER USERNAME HERE"];

This will return the same dictionary of information we showed in Chapter 6, so we won’t

show it again here. Please refer to Chapter 6 to see what is contained in this response.

Next, set a breakpoint in XCode in userInfoReceived: in the main application delegate

to see this in action.

If you wanted to follow someone, you could use this code do that, too:

[sa_OAuthTwitterEngine enableNotificationsFor:@“christhepiss”];

When you want to send a direct message, do the following:

[sa_OAuthTwitterEngine sendDirectMessage:@"how goes it?" to:@"christhepiss"];

The response from Twitter will be received via the directMessagesReceived: delegate

method; the dictionary for a direct message looks like this:

{
 "created_at" = "Fri Mar 04 06:33:49 +0000 2011";
 id = 2542673717;
 recipient = {
 "contributors_enabled" = false;
 "created_at" = "Sat Jan 09 21:25:41 +0000 2010";
 description = "";
 "favourites_count" = 4;
 "follow_request_sent" = false;
 "followers_count" = 24;
 following = 0;
 "friends_count" = 187;
 "geo_enabled" = false;
 id = 103384600;
 "is_translator" = false;
 lang = en;
 "listed_count" = 0;
 location = "";
 name = Christopher;
 notifications = false;
 "profile_background_color" = C0DEED;
 "profile_background_image_url" = "URL";
 "profile_background_tile" = false;
 "profile_image_url" = "URL";
 "profile_link_color" = 0084B4;
 "profile_sidebar_border_color" = C0DEED;
 "profile_sidebar_fill_color" = DDEEF6;
 "profile_text_color" = 333333;
 "profile_use_background_image" = true;
 protected = 1;
 "screen_name" = christhepiss;
 "show_all_inline_media" = false;
 "statuses_count" = 451;
 "time_zone" = "Eastern Time (US & Canada)";
 url = "http://christhepiss.tumblr.com";
 "utc_offset" = "-18000";

CHAPTER 1: App Cubby 101

 verified = false;
 };
 "recipient_id" = 103384600;
 "recipient_screen_name" = christhepiss;
 sender = {
 "contributors_enabled" = false;
 "created_at" = "Sat Jan 09 21:25:41 +0000 2010";
 description = "";
 "favourites_count" = 4;
 "follow_request_sent" = false;
 "followers_count" = 24;
 following = 0;
 "friends_count" = 187;
 "geo_enabled" = false;
 id = 103384600;
 "is_translator" = false;
 lang = en;
 "listed_count" = 0;
 location = "";
 name = Christopher;
 notifications = false;
 "profile_background_color" = C0DEED;
 "profile_background_image_url" = "URL";
 "profile_background_tile" = false;
 "profile_image_url" = "URL";
 "profile_link_color" = 0084B4;
 "profile_sidebar_border_color" = C0DEED;
 "profile_sidebar_fill_color" = DDEEF6;
 "profile_text_color" = 333333;
 "profile_use_background_image" = true;
 protected = 1;
 "screen_name" = christhepiss;
 "show_all_inline_media" = false;
 "statuses_count" = 451;
 "time_zone" = "Eastern Time (US & Canada)";
 url = "http://christhepiss.tumblr.com";
 "utc_offset" = "-18000";
 verified = false;
 };
 "sender_id" = 103384600;
 "sender_screen_name" = christhepiss;
 "source_api_request_type" = 15;
 text = "hey jerky!";
}

The one thing that is missing from the MGTwitterEngine SDK is a dialog class that

makes it easy to construct Tweets or Direct Messages, so this is something that you will

have to build on your own. :(Don’t forget to look in MGTwitterEngine.h for more

methods that you can use since we didn’t cover them all here.

Under the Hood: Twitter URLs
One nice thing about all of the preceding operations is that they share a common URL

scheme from the underlying Twitter HTTP API:

CHAPTER 7: Accessing People, Places, Objects, and Relationships 102

http://twitter.com/

The rest of the path of the URL is then constructed based on what you want to do. For

status-related operations, the path is:

http://twitter.com/statuses

For user-related operations, the path is:

http://twitter.com/users

And for direct messages, the path is:

http://twitter.com/direct_messages

The final part of the path is the specific operation you want to perform. This is followed

by the extension (which will match what you want the response to be formatted in), and

then the parameters. So, if we were going to get the public timeline in XML

(MGTwitterEngine requests XML responses by default), it would look like this:

http://twitter.com/statuses/public_timeline.xml

Review the code in SA_OAuthTwitterEngine’s _sendRequestWithMethod: if you want a

more detailed understanding of how the final URL is constructed for each request.

The Twitter Dev Console
If you’d rather get used to using some of the Twitter APIs from your web browser,

Twitter has a great online tool for doing so that we highly recommend. The tool can be

found at this URL:

http://dev.twitter.com/console

The Twitter dev console lets you construct different requests or make different types of

posts and see what the response is from Twitter. Figure 7–7 shows what the main part

of the page looks like.

CHAPTER 1: App Cubby 103

Figure 7–7. The Twitter API console

Another great resource is the documentation for each Twitter HTTP API, where you can

get exact details on using each API:

http://dev.twitter.com/doc

Conclusion
You are now officially armed and dangerous. We’ve now covered enough APIs for

Facebook and Twitter and shown you how to use them with the respective iOS SDKs. In

theory, you could start building your own Facebook or Twitter application at this point.

It’s a pretty daunting task, but you’ve now got the tools to do it. However, keep reading

to gain more insight into working with real-time data and location, as well as to see

different ways to mesh these two APIs together.

105

105

 Chapter

POSTing, Data Modeling,
and Going Offline
This chapter covers the nuts and bolts of posting photos to Facebook and Twitter. We’ll

also discuss offline storage; and finally, we’ll talk about a popular cross-posting library

and how to use it on your own.

Up to this point, we’ve covered a lot of different topics on programming for Facebook

and Twitter on iOS. In order to show these topics as clearly as possible, however, we

broke some good programming practices. So in this chapter, we are going to mend our

ways and show better techniques for integrating these services into your application. We

are also going to cover offline scenarios and storage. But before we go there, we need

to add one more essential skill to our toolbelt: posting photos to Facebook and Twitter.

Strike a Pose
For most applications that use images on an iOS device, the images are either

downloaded from the web or created by the app and stored as part of the application’s

data. It’s also possible to retrieve images from the device’s Photo Library. Fortunately

for us, Apple has made it easy to grab images from the Photo Library, so we’re going to

take this path for our sample applications. The photo upload example applications for

this chapter are in the ApiFacebook and ApiTwitter folders, respectively, in the Chapter8

folder of the Git repository.

Saving a Picture to the iOS Simulator’s Photo Library
Getting pictures into an iOS simulator’s Photo Library is tricky since the simulators do

not emulate camera hardware; however, there’s a nice, quick way to do it by saving an

image from a web page. Begin by firing up the Safari browser on the simulator and

going to www.google.com. Hold your mouse down for a second or two on the Google

image above the search bar, and then let your mouse go. You will see the pop-up dialog

8

CHAPTER 8: POSTing, Data Modeling, and Going Offline 106

in Figure 8–1 that lets you save or copy the image. Select Save Image to store it in the

simulator’s Photo Library.

Figure 8–1. Tap and hold an image on a web page in Mobile Safari to save or copy the image.

NOTE: It has been our experience that sometimes you have to carry out the just described step a

couple of times before the image shows up in the Photo Library.

Working with UIImagePickerController
Now that we have an image saved in the simulator’s Photo Library, we need to access

the image from within our code. This is where the UIImagePickerController class

comes into play. The engineers at Apple crafted a very easy-to-use class to grab images

from the Photo Library and use the data for the image within your application as a

UIImage object. The following code fragment can be dropped into any UIViewController

class that you may have in order to display the UIImagePickerController. In the next

section, we will go over how we incorporated this fragment into the sample applications

for this chapter.

We begin by checking to see if the Photo Library is an accessible source of images.

Next, we create a UIImagePickerController and tell it that we want it to use the Photo

Library as its source. Finally, we set ourselves as its delegate and use

UIViewController’s presentModalViewController method to display it:

CHAPTER : POSTing, Data Modeling, and Going Offline 107

if ([UIImagePickerController isSourceTypeAvailable:

UIImagePickerControllerSourceTypePhotoLibrary]) {
 UIImagePickerController *uiImagePickerController =
 [[UIImagePickerController alloc] init];
 uiImagePickerController.sourceType =

UIImagePickerControllerSourceTypePhotoLibrary;
 uiImagePickerController.delegate = self;
 [self presentModalViewController:uiImagePickerController animated:YES];
 [uiImagePickerController release];
}

When working with UIImagePickerController, we must set our view controller to be a

UIImagePickerControllerDelegate and implement the following method:

- (void)imagePickerController:(UIImagePickerController *)picker
 didFinishPickingMediaWithInfo:(NSDictionary *)info;

- (void)imagePickerControllerDidCancel:(UIImagePickerController *)picker;

When an image is chosen, UIImagePickerControllerDelegate’s
imagePickerController: didFinishPickingMediaWithInfo: method is called. The data

for the UIImage object is stored in the NSDictionary that is passed to this method in the

key, UIImagePickerControllerOriginalImage. Here’s the code to accomplish all this

(note that savedImage is declared elsewhere):

- (void)imagePickerController:(UIImagePickerController *)picker
 didFinishPickingMediaWithInfo:(NSDictionary *)info
{
 [savedImage release];
 savedImage = [info objectForKey:@"UIImagePickerControllerOriginalImage"];
 [self dismissModalViewControllerAnimated:YES];
}

It’s worth noting that you are responsible for closing the UIImagePickerController via

UIViewController’s dismissModalViewControllerAnimated method:

- (void)imagePickerControllerDidCancel:(UIImagePickerController *)picker
{
 [self dismissModalViewControllerAnimated:YES];
}

At runtime, the UIImagePickerController displays a table of the Photo albums on the

device, as shown in Figure 8–2.

CHAPTER 8: POSTing, Data Modeling, and Going Offline 108

Figure 8–2. A table of saved photos presented by UIImagePickerController

Once you select an album, you can then select a photo, as seen in Figure 8–3.

Figure 8–3. Tap an image in UIImagePickerController.

CHAPTER : POSTing, Data Modeling, and Going Offline 109

ImagePostController
In the ApiFacebook and ApiTwitter sample projects for this chapter, you will find a new

UIViewController entitled ImagePostController. It contains a button that displays the

UIImagePickerController when clicked. ImagePostController is a

UIImagePickerControllerDelegate; thus, when an image is selected, it saves the image

to the UIImage object, savedImage, which is declared in ImagePostController.h.

ImagePostController then posts the image to the currently logged in user’s Facebook

photos or Twitter feed.

Facebook Photo Upload
We covered how to retrieve the UIImage via the delegate callback in the previous

section, so now we’re going to focus on posting the picture to the user’s Facebook

photos. The code discussed next is in ImagePostController.m/.h in the ApiFacebook

sample application for this chapter.

To do this, we are going to use our old trusted friend,

requestWithGraphPath:andParams:andHttpMethod:andDelegate:. We set the graph path

to "me/photos" in order to specify that we are targeting the current user’s photos. We

then pass in a dictionary of arguments. This dictionary is where the data for the picture

is stored. The image itself is stored as an object for the key image in the dictionary. If you

would like to put a caption with the image, you can also add caption text for the key

message. Next, we set the HTTP method to POST since we are posting data. Finally, we

assign ourselves as an FBRequestDelegate:

- (void)imagePickerController:(UIImagePickerController *)picker

didFinishPickingMediaWithInfo:(NSDictionary *)info
{
 [savedImage release];
 savedImage = [info objectForKey:@"UIImagePickerControllerOriginalImage"];
 [self dismissModalViewControllerAnimated:YES];

 NSMutableDictionary *args = [[NSMutableDictionary alloc] init];
 [args setObject:@"This is a test image" forKey:@"message"];
 [args setObject:savedImage forKey:@"image"];
 [facebook requestWithGraphPath:@"me/photos"
 andParams:args
 andHttpMethod:@"POST"
 andDelegate:self];
 [args release];
}

If successfully posted, FBRequestDelegate’s request:didLoad: method will be called. If

you log into your Facebook account, you should see a new Photo album with the image

contained in it. The name of the Photo album will match the application name you used

when you registered your application with Facebook. In the case of this book, the Photo

album is entitled, “Beginning iOS Social Development” (see Figure 8–4).

CHAPTER 8: POSTing, Data Modeling, and Going Offline 110

Figure 8–4. Facebook groups together photos posted from third-party applications.

Twitter Photo Upload
As is usually the case, the Facebook iOS SDK spoils us rotten. As you can tell from the

previous section, it takes a minimal amount of effort to incorporate posting images to a

user’s Facebook photos. Unfortunately, it’s not so simple to accomplish the same task

via Twitter, although as of this writing, Twitter is forging a partnership with Photobucket

to make posting photo-Tweets less of a hassle for developers. In this chapter we will

show you how to post your image to an image-hosting service such as TwitPic

(www.twitpic.com/), and then post the URL for the image on twitpic.com to the user’s

Twitter timeline. The following example code uses TwitPic, but there are a number of

other services available, such as twitgoo (www.twitgoo.com/) and yfrog (www.yfrog.com/).

In order to post images to twitpic.com, we must first register on the service’s site for a

TwitPic API Key. Go to http://dev.twitpic.com/apps/new and log in with your Twitter

credentials (see Figures 8–5 and 8–6).

CHAPTER : POSTing, Data Modeling, and Going Offline 111

Figure 8–5. Register for a TwitPic API Key to use the company’s service from within an iOS application.

Figure 8–6. Granting TwitPic access via OAuth

CHAPTER 8: POSTing, Data Modeling, and Going Offline 112

Next, enter the required information about your application (see Figure 8–7).

Figure 8–7. Providing TwitPic with basic application information

Finally, store the returned TwitPic API Key for use later (see Figure 8–8).

Figure 8–8. Upon successful registration, TwitPic creates an API key for the application.

CHAPTER : POSTing, Data Modeling, and Going Offline 113

As is the norm for such services, TwitPic offers an HTTP-based API to post photos to its

site. The API documentation is located at http://dev.twitpic.com/docs/. Also, as fate

would have it, someone was nice enough to build an iOS Objective-C wrapper around

this API and host it on Github (GSTwitPicEngine) at

https://github.com/Gurpartap/GSTwitPicEngine. GSTwitPicEngine is designed to work

with MGTwitterEngine, so it fits nicely (with a few adjustments—more on this to follow)

into the setup that we already have. Unfortunately, GSTwitPicEngine depends on a few

other pieces of software, and not everything works correctly out-of-the-box. The good

news: We were nice enough to smooth out all of the rough edges for you.

So, before we look at how to use GSTwitPicEngine, we have to get some code for other

libraries from Github, set up Git submodules, and then add the files to our project. All of

the project changes and code are in the ApiTwitter project for this chapter and its

ImagePostController.m/.h files.

GSTwitPicEngine
You can link the GSTwitPicEngine iOS Git repository on Github to your repository using

a Git submodule that will reside in a subdirectory entitled GSTwitPicEngine:

$ git submodule add git://github.com/chrisdannen/GSTwitPicEngine.git GSTwitPicEngine

Create a new group in your project entitled GSTwitPicEngine and drag

GSTwitPicEngine.m/.h to it:

Finally, set the following values in GSTwitPicEngine.h:

-#define TWITTER_OAUTH_CONSUMER_KEY @"<>"
-#define TWITTER_OAUTH_CONSUMER_SECRET @"<>"
-#define TWITPIC_API_KEY @"<>"

ASIHTTPRequest
ASIHTTPRequest is an open source library that makes the work of implementing HTTP

requests a snap. GSTwitPicEngine uses this library to do its heavy lifting.

Link the ASIHTTPRequest Objective-C Git repository on Github to your repository using a

Git submodule that will reside in a subdirectory entitled asi-http-request:

$ git submodule add git://github.com/pokeb/asi-http-request.git asi-http-request

Now create a new group in your project entitled ASIHttpRequest and drag the necessary

files from ./asi-http-request/Classes to your project. Review the ApiTwitter sample

project for this chapter for the specific subset of files that you will need.

Next, link your target in your Xcode project against CFNetwork, SystemConfiguration,

MobileCoreServices, and zlib.1.2.3.dylib. (see Figure 8–9).

CHAPTER 8: POSTing, Data Modeling, and Going Offline 114

Figure 8–9. Update linker settings after adding ASIHTTPRequest to the Xcode project.

SBJSON
SBJSON is one of a few open source JSON parsing Objective-C frameworks. In

./GSTwitPicEngine/GSTwitPicEngine.h, we specify SBJSON as our JSON framework of

choice, so we need to have the files in our project:

#define TWITPIC_USE_SBJSON 1

Link the SBJSON Objective-C Git repository on Github to your repository using a Git

submodule that will reside in a subdirectory entitled json-framework:

$ git submodule add git://github.com/stig/json-framework.git json-framework

Next, create a new group in your project entitled SBJSON and drag all of the files from

./json-framework/Classes to your project.

OARequestHeader
Link the OARequestHeader Objective-C Git repository on Github to your repository using

a Git submodule that will reside in a subdirectory entitled OARequestHeader:

$ git submodule add git://github.com/chrisdannen/OARequestHeader.git OARequestHeader

Create a new group in your project entitled OARequestHeader and drag the files

./OARequestHeader.m/.h to your project.

CHAPTER : POSTing, Data Modeling, and Going Offline 115

Now add any updated files to your Git commit (your Xcode project file, for instance), and

then commit and push your changes to Github.

Post a Photo
We’re finally set up to throw some code in our sample project that will post a link to a

photo to a user’s Twitter feed. Most of the relevant changes are in

ImagePostController.m/.h; you can also find a couple of small changes in

AppDelegate.m. In this section, we will focus on the changes in

ImagePostController.m/h.

We begin by declaring a number of objects that we will need in ImagePostController.h:

#import <UIKit/UIKit.h>
#import "GSTwitPicEngine.h"

@interface ImagePostController : UIViewController <UINavigationControllerDelegate,
 UIImagePickerControllerDelegate,
GSTwitPicEngineDelegate> {
 UIButton *twitterButton;
 UIImage *savedImage;
 GSTwitPicEngine *twitpicEngine;
}

@end

We need an instance of GSTwitPicEngine to post a photo to twitpic.com. We also need

to save the returned image, and we need to declare ourselves as a

GSTwitPicEngineDelegate in order to be notified when GSTwitPicEngine has completed

posting the photo to twitpic.com.

Figure 8–10. An image uploaded to TwitPic from an iOS application

CHAPTER 8: POSTing, Data Modeling, and Going Offline 116

When the ImagePostController’s view is loaded, we need to create and initialize the

GSTwitPicEngine instance:

 - (void)loadView
{
 [super loadView];

 twitterButton = [UIButton buttonWithType:UIButtonTypeRoundedRect];
 twitterButton.frame = CGRectMake(127.0f, 68.0f, 72.0f, 37.0f);
 [twitterButton setTitle:@"Twitter" forState:UIControlStateNormal];
 [twitterButton addTarget:self
 action:@selector(twitterButtonClick:)
 forControlEvents:UIControlEventTouchUpInside];
 [self.view addSubview:twitterButton];

 twitpicEngine = [GSTwitPicEngine twitpicEngineWithDelegate:self] retain];
 [twitpicEngine setAccessToken:[sa_OAuthTwitterEngine accessToken]];
}

Note that we set ourselves as the GSTwitPicEngine’s delegate and that we pass our

accessToken from our main Twitter engine to GSTwitPicEngine, so that it has the

necessary OAuth params. Note that you will first have to log in to Twitter from the Login

tab when running the sample application.

When an image is chosen via the UIIMagePickerController, we can then use

GSTwitPicEngine’s uploadPicture:withMessage: method to post the image to

twitpic.com:

- (void)imagePickerController:(UIImagePickerController *)picker
 didFinishPickingMediaWithInfo:(NSDictionary *)info
{
 [savedImage release];
 savedImage = [info objectForKey:@"UIImagePickerControllerOriginalImage"];
 [self dismissModalViewControllerAnimated:YES];

 // This message is supplied back in success delegate call in request's userInfo.
 [twitpicEngine uploadPicture:savedImage withMessage:@"Hello world!"];
}

If the photo is uploaded successfully to twitpic.com, GSTwitPicEngineDelegate’s
twitpicDidFinishUpload: method will be called with an NSDictionary of response

information:

- (void)twitpicDidFinishUpload:(NSDictionary *)response
{
 NSLog(@"TwitPic finished uploading: %@", response);

 // [response objectForKey:@"parsedResponse"] gives an NSDictionary of the
 // response one of the parsing libraries was available.
 // Otherwise, use [[response objectForKey:@"request"]
 // objectForKey:@"responseString"] to parse yourself.

 if ([[[response objectForKey:@"request"] userInfo] objectForKey:@"message"] > 0 &&
 [[response objectForKey:@"parsedResponse"]
count] > 0) {
 NSString *update = [NSString stringWithFormat:@"%@ %@",
 [[response objectForKey:@"parsedResponse"] objectForKey:@"text"],

CHAPTER : POSTing, Data Modeling, and Going Offline 117

 [[response objectForKey:@"parsedResponse"] objectForKey:@"url"]];
 [sa_OAuthTwitterEngine sendUpdate:update];
 }
}

The returned response dictionary contains another dictionary for the key parsedResponse

that contains the information we need to make a post to twitter.com:

TwitPic finished uploading: {
 parsedResponse = {
 height = 128;
 id = 4gao9b;
 size = 15551;
 text = "Hello world!";
 timestamp = "Sun, 03 Apr 2011 01:04:55 +0000";
 type = jpg;
 url = "http://twitpic.com/4gao9b";
 user = {
 id = 103384600;
 "screen_name" = christhepiss;
 };
 width = 366;
 };
 request = "<ASIFormDataRequest: 0x50a4c00>";
}

We grab the values for the text and url keys from the parsedResponse dictionary, and

we call our Twitter engine’s sendUpdate: method with the values to make the final post

to Twitter, as seen in Figure 8–11.

Figure 8–11. The end result: A Tweet with a link to an image hosted on TwitPic

CHAPTER 8: POSTing, Data Modeling, and Going Offline 118

Offline Paradigm and Background Processing
For an iOS app, working with data that is retrieved or synchronized from a server can

make your app vulnerable to broken connections. To enable offline operation, store the

data on the local device, so that the app can still present the data, even if 3G or WiFi is

unavailable. If you are interested in hacking together a fully-capable Twitter or Facebook

iOS app—or you just want to learn some additional techniques—then this section is

required reading.

In this section, we will build a simple Twitter application that can retrieve Twitter status

updates and store them on the device. This way, there is always data to display, even if

the device is offline. The sample application is entitled OfflineTwitter, and it can be found

in the Chapter8/OfflineTwitter directory of the Git repository.

If you are familiar with the Model-View-Controller (MVC) programming paradigm, then

you will notice that what we are actually doing is building the Model portion of this

paradigm. The user interface (or View) always retrieves its data from the Model. When

new data is received from the server, the data is stored in the Model. Next, the View is

refreshed, and it grabs the latest data from the Model.

One nice facility for storing data that is available to iOS applications is Core Data.

Although we don’t recommend it for large data sets (we recommend SQLite for those),

Core Data can be useful for doing proof-of-concept work and helping to design the API

for your Model. We will go through all of the steps for setting up the API for the Model

using Core Data; however, if you’ve never worked with Core Data on iOS, we also

recommend reading the following or keeping this link available as a good quick

reference:

http://developer.apple.com/library/ios/#DOCUMENTATION/DataManagement/
Conceptual/iPhoneCoreData01/Introduction/Introduction.html#//apple_ref/doc/uid/
TP40008305-CH1-SW1

Data Modeling with TwitterDataStore
One of the best things to do when working on a data model for an application is to think

about the high level operations that the data model will have to perform. To keep things

simple, we would like our Twitter data model for our sample application to support three

main actions:

 Return the current set of stored Tweets.

 Delete all of the stored Tweets.

 Store Tweets.

For our sample application, we have defined the class, TwitterDataStore. Go to the

sample project and click TwitterDataStore.h in the Model folder:

@interface TwitterDataStore : NSObject {
}

CHAPTER : POSTing, Data Modeling, and Going Offline 119

- (NSArray*)tweets;
- (void)deleteTweets;
- (void)synchronizeTweets:(NSArray*)tweets;

@end

Now that we have the basic interfaces in place, we need them to perform their required

actions. This is where Core Data comes into play. What follows are the steps necessary

to get your application to use Core Data.

First, we have to add a Core Data model file to our project. The Core Data model is

where we create the different entities that we want to represent and store for our

application. From Xcode’s main menu, go to File New New File...

Choose Core Data in the iOS section, and then choose the Data Model file type and give

the file an appropriate name (see Figure 8–12).

Figure 8–12. Add a Core Data object model to the application’s Xcode project.

Next, link your project against the Core Data framework (see Figure 8–13).

CHAPTER 8: POSTing, Data Modeling, and Going Offline 120

Figure 8–13. Updated linker settings to support use of Core Data

Now that we have our Core Data model in place, we need to add an entity to it. Since

our application is supposed to store Tweets offline, let’s add a Tweet entity. Select the

Core Data model file in your Xcode project (in the sample project, this file is entitled

CoreDataOffline.xcdatamodeld) in order to show the model in Xcode’s main window. At

the bottom of the model window, click the Add Entity button—it has a big plus sign on it

(see Figure 8–14).

CHAPTER : POSTing, Data Modeling, and Going Offline 121

Figure 8–14. Add an entity to the data model.

Next, rename this entity to Tweet (see Figure 8–15).

Figure 8–15. The Tweet entity in the data model

CHAPTER 8: POSTing, Data Modeling, and Going Offline 122

Actual Tweets from Twitter have a lot of information associated with them; however, this

is a simple application, so we are only going to store the id and the actual text content

of each Tweet. The goal here is just to show the overall concept of setting up a model.

Make sure that the Tweet entity is selected, and then click the + sign in the Attributes

section to add a new attribute (see Figure 8–16). Name this attribute id and set its type

to Integer 64. Next, add another attribute entitled text and set its type to String.

Figure 8–16. Add attributes to the Tweet entity.

The final step to setting up our data model is to create actual Tweet Objective-C classes

that map to our Tweet entity in our Core Data model, so that we can instantiate actual

Tweet objects in our application code and keep them in memory (see Figure 8–17). Add

a new file to your project of the NSManagedObject type subclass (in Xcode’s New File

dialog, select Core Data under the iOS section to get to this option) and click Next.

CHAPTER : POSTing, Data Modeling, and Going Offline 123

Figure 8–17. Add a class to the Xcode project to associate with the Tweet object in the data model.

In the following dialog, check the box next to the Tweet entity to associate it with the

Tweet class that we created (see Figure 8–18).

Figure 8–18. Choose the Tweet entity to associate with the new class.

CHAPTER 8: POSTing, Data Modeling, and Going Offline 124

When we examine the contents of the Tweet.h and Tweet.m files, we find that they are

very sparse. They simply offer the ability to get and set values on the attributes for a

Tweet entity in our Core Data model:

Tweet.h

@interface Tweet : NSManagedObject {
@private
}
@property (nonatomic, retain) NSNumber * id;
@property (nonatomic, retain) NSString * text;

@end

Tweet.m

@implementation Tweet
@dynamic id;
@dynamic text;

@end

Now that we’ve gotten some additional setup out of the way, recall that

TwitterDataStore is a class that provides a high level interface for obtaining stored

information on the device. The actual storing of the data (in this case, the Tweet entities)

within TwitterDataStore is performed using Core Data APIs. Core Data consists of a

number of classes that work together to provide a convenient way to store and retrieve

information, so we have to add these classes to TwitterDataStore.h:

@class NSManagedObjectContext;
@class NSManagedObjectModel;
@class NSPersistentStoreCoordinator;
@interface TwitterDataStore : NSObject {
}

@property (nonatomic, retain, readonly) NSManagedObjectContext *managedObjectContext;
@property (nonatomic, retain, readonly) NSManagedObjectModel *managedObjectModel;
@property (nonatomic, retain, readonly) NSPersistentStoreCoordinator
 *persistentStoreCoordinator;

- (void)saveContext;
- (NSURL *)applicationDocumentsDirectory;

- (NSArray*)tweets;
- (void)deleteTweets;
- (void)synchronizeTweets:(NSArray*)tweets;

@end

The most important of these classes is NSManagedObjectContext. Under the covers via

Core Data magic, the NSManagedObjectContext class manages the collection of entities

in the model. The creation of the NSManagedObjectContext owned by our

TwitterDataStore class is handled in the method managedObjectContext:

/**
 Returns the managed object context for the application.

CHAPTER : POSTing, Data Modeling, and Going Offline 125

 If the context doesn't already exist, it is created and bound to the persistent store
 coordinator for the application.
 */
- (NSManagedObjectContext *)managedObjectContext
{
 if (__managedObjectContext != nil)
 {
 return __managedObjectContext;
 }

 NSPersistentStoreCoordinator *coordinator = [self persistentStoreCoordinator];
 if (coordinator != nil)
 {
 __managedObjectContext = [[NSManagedObjectContext alloc] init];
 [__managedObjectContext setPersistentStoreCoordinator:coordinator];
 }
 return __managedObjectContext;
}

The NSManagedObjectContext class is given an NSPersistentStoreCoordinator object

that is responsible for managing the lifecycle of the context and creates a managed

object model:

/**
 Returns the persistent store coordinator for the application.
 If the coordinator doesn't already exist, it is created and the application's store
 added to it.
 */
- (NSPersistentStoreCoordinator *)persistentStoreCoordinator
{
 if (__persistentStoreCoordinator != nil)
 {
 return __persistentStoreCoordinator;
 }

 NSURL *storeURL = [[self applicationDocumentsDirectory]
 URLByAppendingPathComponent:@"CoreDataOffline.sqlite"];

 NSError *error = nil;
 __persistentStoreCoordinator = [[NSPersistentStoreCoordinator alloc]
 initWithManagedObjectModel:[self managedObjectModel]];
 if (![__persistentStoreCoordinator addPersistentStoreWithType:NSSQLiteStoreType
 configuration:nil
 URL:storeURL
 options:nil
 error:&error])
 {
 /*
 */
 NSLog(@"Unresolved error %@, %@", error, [error userInfo]);
 abort();
 }

 return __persistentStoreCoordinator;
}

CHAPTER 8: POSTing, Data Modeling, and Going Offline 126

You need to replace the preceding implementation with your own code to handle the

error appropriately.

NOTE: Using abort() causes the application to generate a crash log and terminate. You should
not use this function in a shipping application, although it may be useful during development. If it

is not possible to recover from the error, display an alert panel that instructs the user to quit the

application by pressing the Home button.

Typical reasons for an error here include the following:

 The persistent store is not accessible.

 The schema for the persistent store is incompatible with the current

managed object model.

Check the error message to determine what the actual problem was.

If the persistent store is not accessible, there is typically something wrong with the file

path. Often, a file URL is pointing into the application’s resources directory instead of a

writeable directory.

If you encounter schema incompatibility errors during development, you can reduce

their frequency by doing the following:

 Simply deleting the existing store:

 [[NSFileManager defaultManager] removeItemAtURL:storeURL error:nil]

 Performing automatic lightweight migration by passing the following

dictionary as the options parameter:

 [NSDictionary dictionaryWithObjectsAndKeys:
 [NSNumber numberWithBool:YES],
 NSMigratePersistentStoresAutomaticallyOption,
 [NSNumber numberWithBool:YES],
 NSInferMappingModelAutomaticallyOption, nil];

Lightweight migration will only work for a limited set of schema changes; consult “Core

Data Model Versioning and Data Migration Programming Guide” for details:

This is how the managed object model is created:

/**
 Returns the managed object model for the application.
 If the model doesn't already exist, it is created from the application's model.
 */
- (NSManagedObjectModel *)managedObjectModel
{
 if (__managedObjectModel != nil) {
 return __managedObjectModel;
 }
 NSURL *modelURL = [[NSBundle mainBundle] URLForResource:@"CoreDataOffline"
 withExtension:@"momd"];

CHAPTER : POSTing, Data Modeling, and Going Offline 127

 __managedObjectModel = [[NSManagedObjectModel alloc]
initWithContentsOfURL:modelURL];
 return __managedObjectModel;
}

We also have a helper method for getting the location of the application’s Documents

directory:

/**
 Returns the URL to the application's Documents directory.
 */
- (NSURL *)applicationDocumentsDirectory
{
 return [[[NSFileManager defaultManager] URLsForDirectory:NSDocumentDirectory

inDomains:NSUserDomainMask] lastObject];
}

We encourage you to read up on some of these Core Data APIs. We hope that you’ve

found this information useful, but delving deeper into this subject is beyond the scope of

this book, and it’s time to get on with the show!

Updating the View from the Model
Before we finish going over the final details of the implementation of TwitterDataStore,

it is beneficial to see how it will be used and accessed from the user interface of the

application. The user interface for displaying the Tweets from TwitterDataStore is a

UITableViewController class entitled TimelineViewController. This class simply

shows the main text for each Tweet in its UITableViewCells, as shown in Figure 8–19.

CHAPTER 8: POSTing, Data Modeling, and Going Offline 128

Figure 8–19. Stored Tweets displayed in a basic user interface

Before we show the technical details of how it’s implemented, let’s list what

TimelineViewController does:

 When loaded, it asks the TwitterDataStore for any Tweets that it

contains, saves the results in an NSArray, and submits a request to

Twitter.com via MGTwitterEngine for the latest set of Tweets from the

currently logged in user’s Twitter timeline.

 If any Tweets are received from Twitter.com via MGTwitterEngine’s

delegate methods, then the new Tweets are saved in the

TwitterDataStore on a background thread.

 Once the Tweets are saved in the TwitterDataStore, the table is

refreshed on the main thread.

 When the table is refreshed, for each item in the NSArray of Tweets, it

creates a TweetTableViewCell and sets the text of the cell to the text

of the associated Tweet.

If we examine the definition of TimelineViewController in TimelineViewController.h,

we see that it owns an NSArray of Tweets and a TwitterDataStore:

#import <UIKit/UIKit.h>

@class TwitterDataStore;
@interface TimelineViewController : UITableViewController {

CHAPTER : POSTing, Data Modeling, and Going Offline 129

 NSArray *tweets;
 TwitterDataStore *twitterDataStore;
}

@end

In TimelineViewController.m, we create the TwitterDataStore, retrieve any Tweets from

the TwitterDataStore, make a request for new Tweets, and set ourselves up to be

notified when the request completes in the viewDidLoad method:

- (void)viewDidLoad {
 [super viewDidLoad];

 twitterDataStore = [[TwitterDataStore alloc] init];
 tweets = [[twitterDataStore tweets] retain];

 NSString *identifier = [sa_OAuthTwitterEngine getHomeTimeline];

 //listen for a notification with the name of the identifier
 [[NSNotificationCenter defaultCenter]
 addObserver:self

selector:@selector(twitterTimelineRequestDidComplete:)
 name:identifier
 object:nil];
}

We need to notify other parts of our application when our request for new Tweets has

completed. To do this, we update statusesReceived:forRequest: in our delegate to

store the returned array of Tweets as the value for the key Tweets in an NSDictionary

that we set as the userInfo of a notification:

(void)statusesReceived:(NSArray *)statuses
- forRequest:(NSString *)connectionIdentifier {

 NSLog(@"Status received = %@, %@", connectionIdentifier, [statuses
description]);

 NSArray *objects = :[NSArray arrayWithObjects:statuses, nil];
 NSArray *keys = [NSArray arrayWithObjects:@"tweets", nil];
 NSDictionary *userInfoDictionary = [NSDictionary dictionaryWithObjects:objects

forKeys:keys];
 [[NSNotificationCenter defaultCenter]
 postNotificationName:connectionIdentifier
 object:self
 userInfo:userInfoDictionary];

 NSDictionary *dictionary = [statuses objectAtIndex:0];
 if (dictionary) {
 NSString *twitterID = [dictionary objectForKey:@"id"];
 NSLog(@"TwitterID = %@", twitterID);
 }
}

When the preceding method posts a notification that the request for Tweets has

completed, TimelineViewController’s twitterTimelineRequestDidComplete: method is

called via NSNotificationCenter. Using NSObject’s

CHAPTER 8: POSTing, Data Modeling, and Going Offline 130

performSelectorInBackground:withObject: method, TimelineViewController’s
synchronizeTweets: method is executed on a background thread and is passed the

Tweets array from the NSDictionary in the notification:

- (void)twitterTimelineRequestDidComplete:(NSNotification*)notification {

 [[NSNotificationCenter defaultCenter] removeObserver:self];

 [self performSelectorInBackground:@selector(synchronizeTweets:)
 withObject:[notification.userInfo
 objectForKey:@"tweets"]];
}

TwitterDataStore’s synchronizeTweets: method is designed to emit a notification when

it has completed the synchronization process (more on this to follow). Therefore, in

TimelineViewController’s synchronizeTweets: method, we set ourselves up to receive

a notification when TwitterDataStore has completed its task. Once that happens, we

start the synchronization process:

- (void)synchronizeTweets:(NSArray*)newTweets
{
 //listen for a notification with the name of the identifier
 [[NSNotificationCenter defaultCenter] addObserver:self

selector:@selector(tweetsDidSynchronize:)

name:@"tweetsDidSynchronize"

object:nil];

 [twitterDataStore synchronizeTweets:newTweets];
}

When TwitterDataStore completes the synchronization process, it will emit a

notification via NSNotificationCenter, and TimelineViewController’s

tweetsDidSynchronize: method will be executed, calling refreshUI on the main thread to

get the latest Tweets from the TwitterDataStore and updating the table in the user

interface. A note on threading: We always recommend processing or synchronizing data

on a background thread, so that the user interface remains responsive. However, if you

emit a notification or execute a delegate callback method from the background thread,

the execution will still be in the background thread. If your user interface needs to be

updated, we recommend using NSObject’s performSelectorOnMainThread:
withObject:waitUntilDone: method to refresh the user interface on the main thread of

execution:

- (void)tweetsDidSynchronize:(NSNotification*)notification
{
 [[NSNotificationCenter defaultCenter] removeObserver:self];

 //update the UI on the main thread
 [self performSelectorOnMainThread:@selector(refreshUI)
 withObject:nil
 waitUntilDone:YES];
}

CHAPTER : POSTing, Data Modeling, and Going Offline 131

Here is the code that actually refreshes the user interface and associates the information

for a given Tweet with its associated UITableViewCell:

- (void)refreshUI
{
 [tweets release];
 tweets = [[twitterDataStore tweets] retain];

 [self.tableView reloadData];
}

// Customize the appearance of table view cells.
- (UITableViewCell *)tableView:(UITableView *)tableView
 cellForRowAtIndexPath:(NSIndexPath *)indexPath {

 static NSString *CellIdentifier = @"Cell";

 TweetTableViewCell *cell =
 (TweetTableViewCell*)[tableView
dequeueReusableCellWithIdentifier:CellIdentifier];
 if (cell == nil) {
 cell = [[[TweetTableViewCell alloc] initWithStyle:UITableViewCellStyleDefault

reuseIdentifier:CellIdentifier] autorelease];
 }

 // Configure the cell...
 Tweet *tweet = [tweets objectAtIndex:[indexPath row]];
 cell.tweet = tweet;

 return cell;
}

TimelineViewController uses TwitterDataStore to obtain and store the data that it

displays, so let’s take a look at how TwitterDataStore uses Core Data to store and

retrieve Tweets. Before TwitterDataStore can give us back Tweets, we have to give it

some Tweets to store. TwitterDataStore stores Tweets in its synchronizeTweets:

method, which takes an array of Tweets as its only argument.

This synchronization method is a bit barbaric. The first thing that it does is delete any

stored Tweets via TwitterDataStore’s deleteTweets method. It then loops through the

Tweets that were passed in, creates a new Tweet for each one, initializes the Tweet’s

data, and saves it to the Core Data model.

Let’s look at this in more detail. Remember that MGTwitterEngine returns an array of

Tweets and that each Tweet in the array is represented by an NSDictionary object of

key/value pairs with all of the information about the Tweet. When we loop through the

array of Tweets, we use a nice for-loop mechanism available in Objective-C:

for (NSDictionary *tweetDictionary in tweets) {
}

In short, this for-loop says that we will execute the body of the for-loop for each of the

elements in the tweets array. Each time the body of the for-loop is executed, the next

element in the tweets array is stored in an NSDictionary object (since each element is an

CHAPTER 8: POSTing, Data Modeling, and Going Offline 132

NSDictionary) entitled tweetDictionary. We can reference this element within the body

of the for-loop.

For each of the Tweets in the array, we create a new Tweet object via

NSEntityDescription’s insertNewObjectForEntityForName:inManagedObjectContext:
method. Passing Tweet as the entity name has Core Data create a new unpopulated

instance of the Tweet class stored in the managed object context. We also supply our

managed object context. Next, we set the value of the text attribute of the Tweet and the

id value of the Tweet (note the use of NSNumberFormatter to convert an NSString object

to an NSNumber object). As the final step, we tell the managed object context to save its

state to disk. Failing to call save on the managed object context would result in no data

being permanently stored in our Core Data model. Before exiting the method, we post a

notification, so that other parts of our application can perform any necessary actions

when all of the new Tweets are stored in the model (i.e., we update the user interface):

- (void)synchronizeTweets:(NSArray*)tweets
{
 NSAutoreleasePool *autoReleasePool = [[NSAutoreleasePool alloc] init];

 @synchronized(self) {
 [self deleteTweets];

 for (NSDictionary *tweetDictionary in tweets) {
 Tweet *tweet = (Tweet *)[NSEntityDescription
 insertNewObjectForEntityForName:@"Tweet"
 inManagedObjectContext:self.managedObjectContext];

 NSNumberFormatter * f = [[NSNumberFormatter alloc] init];
 NSNumber * tweetId = [f numberFromString:[tweetDictionary
objectForKey:@"id"]];
 [tweet setId:tweetId];
 [f release];

 NSString *text = [tweetDictionary objectForKey:@"text"];
 [tweet setText:text];
 }

 NSError *error = nil;
 if (![self.managedObjectContext save:&error]) {
 // Handle the error.
 }
 }

 // post a notification that the tweets are available
 // have responder update itself on the main thread
 [[NSNotificationCenter defaultCenter]
 postNotificationName:@"tweetsDidSynchronize"
 object:self
 userInfo:nil];

 [autoReleasePool release];
}

CHAPTER : POSTing, Data Modeling, and Going Offline 133

When it comes time to fetch the Tweets from our Core Data model, we use the Core

Data class, NSFetchRequest. NSFetchRequest takes an entity description (Tweet, in this

case) and a managed object context. Next, we retrieve the Tweets from our Core Data

model by calling the managed object context’s executeFetchRequest: method and

passing it the NSFetchRequest object that we initialized. The array of Tweets is then

returned from the method. Note that, if you want to sort the results of the fetch request

from the managed object context, you need to create and set an NSSortDescriptor for

the NSFetchRequest. In this example, we initialize an NSSortDescriptor that will sort the

returned array of Tweets in descending order, based on the value of the id attribute of

the Tweets:

- (NSArray*)tweets
{
 NSMutableArray *tweets = nil;

 @synchronized(self) {
 NSFetchRequest *request = [[NSFetchRequest alloc] init];
 NSEntityDescription *entity =
 [NSEntityDescription entityForName:@"Tweet"

inManagedObjectContext:self.managedObjectContext];
 [request setEntity:entity];

 NSSortDescriptor *sortDescriptor = [[NSSortDescriptor alloc] initWithKey:@"id"

ascending:NO];
 NSArray *sortDescriptors = [[NSArray alloc] initWithObjects:sortDescriptor,
nil];
 [request setSortDescriptors:sortDescriptors];
 [sortDescriptors release];
 [sortDescriptor release];

 NSError *error = nil;
 NSMutableArray *mutableFetchResults =
 [[self.managedObjectContext executeFetchRequest:request error:&error]
mutableCopy];
 if (mutableFetchResults == nil) {
 // Handle the error.
 }

 tweets = [mutableFetchResults retain];
 [mutableFetchResults release];
 [request release];
 }

 return tweets;
}

To delete all of the Tweets in our Core Data model, we fetch all of the Tweets that are

currently stored in our model, loop through them one-by-one, tell the managed object

context to delete the given Tweet, and then save the managed object context to commit

the results to disk:

- (void)deleteTweets
{

CHAPTER 8: POSTing, Data Modeling, and Going Offline 134

 @synchronized(self) {
 NSArray *tweets = [self tweets];
 for (Tweet *tweet in tweets) {
 [self.managedObjectContext deleteObject:tweet];
 }

 // Commit the change.

 NSError *error = nil;

 if (![self.managedObjectContext save:&error]) {
 // Handle the error.
 }
 }
}

Conclusion
We covered some really interesting new ground in this chapter with respect to uploading

photos and building a simple data model for our application using Core Data. There are

other options available for building a data model—such as SQLite—so we recommend

you explore other ways of storing data for offline or quick retrieval within your

application. Be aware that you may want to build some smarts into your model that limit

the amount of storage that your application uses. For instance, you may want to store

only a certain number of recent Tweets or perhaps only Tweets within the last 12 hours.

In the next chapter, we will go over different location-based scenarios; explain how to

integrate location information into your app, as well as with social networking data for

Facebook and Twitter; and also continue to refine how we integrate these services into

our application by setting up a stand alone controller that we can use anywhere within

our app.

135

135

 Chapter

Working with Location
Awareness and Streaming
Data
This chapter covers the nuts and bolts of using location on iOS with Facebook and

Twitter. We’ll also discuss working with streaming APIs.

One of the main trends to have emerged within social applications is adding a location

context to user experiences. In the worlds of Facebook and Twitter, this involves letting

users check in to places on Facebook or search for nearby Tweets on Twitter, as well as

a host of other scenarios. We’re going to walk you through the ins and outs of using

iOS’s CoreLocation and MapKit libraries to incorporate location and maps into your

application, and then use the location information from these libraries to show some

location-based features of Facebook and Twitter.

Here, There, and Everywhere
At first glance, incorporating location information into your application seems like a trivial

task; however, there are a number of considerations to make with respect to privacy for

your users, power/battery conservation on a device, and the CoreLocation and MapKit

APIs. The sample applications for this chapter incorporate all of the techniques that

follow. Since CoreLocation and Map Kit are themselves extensive APIs, it’s necessary to

run through the core features that these APIs provide and highlight some new features

that debuted iOS 4.0. After that, this chapter will delve into the Facebook and Twitter

APIs for location.

9

CHAPTER 9: Working with Location Awareness and Streaming Data 136

Location Privacy, Disclosure, and Opt-Out
As much as we all love sharing information on social networking sites such as Twitter

and Facebook, there are times when we don’t always want to share certain things about

ourselves. One of these things is location. We are all pretty easy going with sharing a

photo on a website; however, it’s an entirely different thing to share a photo if it also

includes information about where the photo was taken. Similarly, it’s one thing to use a

feature of a site that lets you tell your friends where you are, but something else entirely

if the site automatically tells your friends where you are—without letting you turn off the

automatic updates. In the latter case, you will probably not be a big fan of that site.

So why is this? Why do we guard our location so closely and want to have so much

control over whom we share it with and when? Ultimately, it’s about protecting

ourselves from some of the unpleasant aspects of human nature, such as jealousy,

stalking, and, potentially, physical harm. For as much as social networking sites like

Facebook and Twitter can bring out the best in human nature, they can also sometimes

bring out the worst.

A severe yet all-too-common example of this darker side of human nature occurs when

a person is in a relationship with someone who is physically abusive towards her. She

may be too afraid to obtain a restraining order and want to hide her physical location as

much as possible—including on social networking sites. This is probably a worst case

scenario, but one worth considering since you never want to break the trust of your

users (or even the law in some places).

When planning to employ your user’s location within your application, it’s always best to

follow these rules:

 Let users opt out of having your application use their location.

 Make full disclosure of how you intend to use location information.

 Let users destroy any past records of their location that your

application stores locally or remotely.

Fortunately, iOS itself has all of the plumbing built in to allow or disallow the use of its

location services on a per-app basis. It also automatically prompts a user for permission

to use location the first time that your application runs and starts CoreLocation services.

This is key because it prompts the user immediately. It’s sometimes tempting to tuck

things like this away in a Settings screen within your application, but we strongly advise

against that approach for location-related settings. In this case on iOS, it’s a bit of a

non-issue since it is out of your hands as a developer. In case you are new to iOS, the

standard prompt includes the name of the application requesting permission to use

location services and shows Don’t Allow and OK buttons, as shown in Figure 9–1.

CHAPTER 9: Working with Location Awareness and Streaming Data 137

Figure 9–1. The iOS location permission prompt

Once the user makes his selection, iOS stores it and doesn’t prompt the user for it

again. This is a great feature of iOS because it standardizes the look and feel of this

prompt, giving users a consistent experience and saving individual developers from

implementing all of this logic themselves. If the user chooses not to allow an application

location access, attempts to obtain the location from within iOS code result in a location

unavailable error.

Another great feature of iOS’s implementation of location services is that it doesn’t

require you to do anything in your application to account for the fact that users often

change their minds or may temporarily restrict your application from using location

services. For instance, if a user initially granted your application permission to use

location services, but no longer wants to grant your application such permission, she

can go to the main Settings application on her device and use the Location Services

section to turn off location services for all applications device-wide or on an application-

by-application basis (see Figures 9–2 and 9–3).

CHAPTER 9: Working with Location Awareness and Streaming Data 138

Figure 9–2. The iOS Settings application

Figure 9–3. The iOS Location Services settings

CHAPTER 9: Working with Location Awareness and Streaming Data 139

iOS also has another nifty feature that lets you reset the display of the prompt that asks

users of applications if they want to grant the application use of location services. This is

a device-wide setting that will revoke the permission to use locations services for all

applications on the device. This setting is accessed via the main Settings application on

an iOS device under General Reset (as seen in Figure 9–4).

Figure 9–4. The Reset Location Warnings setting

CHAPTER 9: Working with Location Awareness and Streaming Data 140

Figure 9–5. Confirmation from the system to reset location warnings

If you choose Reset Warnings (see Figure 9–5), run the main Maps application on the

device, choose OK at the location prompt, and then go back to the main Location

Services setting screen, you will see the screen shown in Figure 9–6.

Figure 9–6. The Locations Services settings after resetting warnings and running the Maps application

CHAPTER 9: Working with Location Awareness and Streaming Data 141

As we mentioned before, prompting users to opt in or out of using their location is just

one of three essential parts of working with location. If it’s unclear how your application

will use a user’s location, then we highly recommend displaying your own prompt or

information screen with additional information. As of iOS 4, iOS makes this easy to do,

and we will show you how in the following sections. If you store location history within

your application on the user’s device, you should also provide a Settings screen that lets

the user flush this history. Alternatively, you could provide a way to have your

application only keep records for the past week, automatically flushing this history for

the user based on a setting.

Now that we’ve covered the device side of things and what to understand with respect

to location and privacy within your iOS application, let’s take a quick look at what Twitter

and Facebook do on their ends with respect to location.

Twitter and Facebook have come a long way with respect to the three best practices

that we mentioned previously. Let’s take a quick look at both of their approaches.

Facebook Places
Facebook has followed Foursquare’s lead and created the Places feature. When you

check in from a place, you are letting your friends on Facebook know where you are and

what you are doing, such as eating at a particular restaurant or attending a concert. For

a quick overview of what the Places feature can do, check out this link:

www.facebook.com/places/

Note that Facebook lets you control whether or not friends can see where you check

into. We recommend reading Facebook’s FAQ for a full account of how it deals with

privacy:

www.facebook.com/help/?page=18839

In short, you can control whether or not you show up in the Here Now section of a

Facebook place page when you check into that place. Do so by going to the Privacy

settings section on Facebook (see Figure 9–7).

CHAPTER 9: Working with Location Awareness and Streaming Data 142

Figure 9–7. Control whether Facebook check-ins display in the Here Now section.

Choose Customize settings, and then, under Things I share, choose whether you want

Everyone, Friends and Networks, Friends of Friends, or Friends Only to see your check-ins.

You can also create your own custom setting for Places you check into (see Figure 9–8).

Figure 9–8. Customize Facebook’s check-in settings.

CHAPTER 9: Working with Location Awareness and Streaming Data 143

In this same section, you can adjust the setting for this option:

Include me in "People Here Now" after you check in

Clicking the See example link displays what it looks like when you are shown on People

Here Now (see Figure 9–9).

Figure 9–9. The Facebook People Here Now example

In the Things others share section, you can edit the settings for this option (see Figure

9–10):

Friends can check me in to Places

CHAPTER 9: Working with Location Awareness and Streaming Data 144

Figure 9–10. Facebook lets users give friends permission to check them into places.

In the Apps and Websites section of the Privacy settings, you can revoke access to Places

to applications that you previously granted this access to via OAuth (see Figure 9–11).

Figure 9–11. Revoke permission for an application to check into places.

CHAPTER 9: Working with Location Awareness and Streaming Data 145

Facebook also lets you see an access log for each application (see Figure 9–12).

Figure 9–12. View when an application last performed a check-in.

If you go to the Info accessible through your friends setting, you can control friends’

access to Places information (see Figure 9–13).

Figure 9–13. Control friends’ access to Places information.

CHAPTER 9: Working with Location Awareness and Streaming Data 146

Adding Locations to Tweets
Since Twitter has a somewhat more limited amount of functionality, it’s very

straightforward to manage how Twitter uses your location. When you log into your

Twitter account, go to Settings Account (http://twitter.com/settings/account) and

scroll down to the Tweet Location section (see Figure 9–14).

Figure 9–14. Configure the display of location with Tweets.

Checking the Add a location to your tweets box lets you give Twitter permission to show

a location associated with each of your Tweets, allows your Tweets to show up in

searches of Tweets by location, and stores the location of your Tweets indefinitely.

Remember to be careful with turning this setting on since Twitter, by its nature,

encourages people to share their Tweets with the entire Twitter community. This means

that anyone on Twitter can see where you are, unless your account is private. If you

want to later stop showing your location with your new Tweets, uncheck this box. If you

want to erase all records of your location for past Tweets, click the link in the sentence,

“You may delete all location information from your past tweets.” If you do this, you will

be prompted to give Twitter permission to delete all of your location information (see

Figure 9–15).

CHAPTER 9: Working with Location Awareness and Streaming Data 147

Figure 9–15. Delete all location history associated with Tweets.

If you choose to delete all of the location records for your Tweets, then anytime

someone views one of your past Tweets, the location information will no longer appear.

For a thorough description of the issues involved when sharing your location on Twitter,

check out this link:

http://support.twitter.com/forums/26810/entries/78525

Power Hungry
Modern location services on mobile platforms use GPS, WiFi, and cellular data to try to

determine the location of a device and return it via their respective APIs. The location

service on iOS is no exception. Indeed, this feature is very power hungry, and it can

quickly drain the battery of a user’s device if not used wisely within your application.

Prior to iOS 4.0, there was only one method for obtaining the location of the device from

the CoreLocation framework in iOS. With this method, which Apple refers to as the

Standard method in its documentation, you can set accuracy and distance filters to

control how often you want to access location information. Unfortunately, it’s easy to

abuse accessing location services with the Standard method and drain a device’s

battery. Apple’s developers recognized this, so iOS 4 introduced a new Significant
Change method for obtaining a device’s location. This is a much more power friendly

method of obtaining location and sends location updates on a less frequent basis. We

will delve into this in greater detail in the next section, where we will show you how to

use the Significant Change method in your application. Needless to say, we

CHAPTER 9: Working with Location Awareness and Streaming Data 148

recommend using this method for the majority of applications, and especially for social

applications that do not require a new location reading every second.

CoreLocation
IOS’s CoreLocation framework is a very well thought out framework that is relatively

easy to incorporate into an application. There is a ton of information available on Apple’s

iOS Developer site about the framework; however, we’ll run through the most important

stuff here. We’ll also show one way of incorporating the framework into an application

that makes it easy to get the device’s current location. For total beginners, a thorough

reading of Apple’s documentation about location in iOS apps might be a good idea; you

can find the documentation, entitled “iOS Location Awareness Guide,” at this URL:

http://developer.apple.com/library/ios/#documentation/UserExperience/Conceptual/Location
AwarenessPG/Introduction/Introduction.html#//apple_ref/doc/uid/TP40009497

In the sample applications for this chapter, there is a new class entitled

LocationController that exists within LocationController.h/.m. We have designed this

class to act as a wrapper or façade for iOS’s CoreLocation framework. We’ve done this

in order to accomplish several goals:

 Make it easier to demonstrate how CoreLocation works by having it

within one class within our application.

 Make the code easier to maintain in the future since we will only have

to make changes for CoreLocation in one class.

 Prevent other classes from having to use CoreLocation individually.

Let’s take a look at the header for LocationController to see what CoreLocation

objects it uses and what its API looks like:

#import <CoreLocation/CoreLocation.h>

#ifdef FAKE_CORE_LOCATION
@class FTLocationSimulator;
#endif
@interface LocationController : NSObject <CLLocationManagerDelegate> {
#ifdef FAKE_CORE_LOCATION
 FTLocationSimulator *locationManager;
#else
 CLLocationManager *locationManager;
#endif
 CLLocation *location;
 CLHeading *heading;
 BOOL inPowerSavingMode;
}

#ifdef FAKE_CORE_LOCATION
@property(nonatomic, retain)FTLocationSimulator *locationManager;
#else
@property(nonatomic, retain)CLLocationManager *locationManager;
#endif
@property(nonatomic, retain)CLLocation *location;

CHAPTER 9: Working with Location Awareness and Streaming Data 149

@property(nonatomic, retain)CLHeading *heading;

- (void)startWithPowerSaving:(BOOL)savingPower;
- (void)stop;
- (BOOL)registerRegion:(CLLocationCoordinate2D)center;

@end

The main idea behind the LocationController class is that it owns and controls the

operation of a CLLocationManager, which is the primary class within CoreLocation.

LocationController makes the current location reading available via a location

property that is a CoreLocation CLLocation object. LocationController provides

methods for starting and stopping the underlying CoreLocation service, and it notifies its

delegate when it has new location information. Since we need to receive updates from

CLLocationManager, the LocationController is declared as a

CLLocationManagerDelegate.

When starting the LocationController, you can elect to take one of two approaches.

First, you can start it with power saving, which uses CoreLocation’s Significant Change

method for determining location. Second, you can use the Standard method. Also,

LocationController has a method for registering a region for CoreLocation to monitor,

which we will discuss shortly. We’re sure that you noticed the references to

FTLocationSimulator, and you’re probably wondering what it’s all about.

FTLocationSimulator lets you generate location readings on the iOS simulator, which we

will also be covering this later in this section.

Let’s switch over to LocationManager.m, so we can take a look at what

LocationController’s methods are doing. The startWithPowerSaving: method begins

by stopping the LocationController, in case it has already been started. If you prefer,

you could keep track of whether you’ve already started the CoreLocation services

yourself and just exit this method immediately if it’s already started. If the

CLLocationManager locationManager does not exist yet, it is created, and we set

LocationController as its delegate. Next, we check to see if location services are

enabled on the device. Note that this changed from a property named

locationServicesEnabled to a method of the same name in iOS 4.0, so we check for

this, as well.

If location services are enabled, we start the locationManager in one of two ways,

depending on the value of the savingPower parameter. If savingPower is YES, we start the

locationManager via the startMonitoringSignificantLocationChanges method and

store the fact that we are in power saving mode. If savingPower is NO, we use the

Standard startUpdatingLocation method and configure our desired level of accuracy

and distance filter. You can read more about the different values available for these

properties in Apple’s documentation or header files:

- (void)startWithPowerSaving:(BOOL)savingPower
{
 [self stop];

 if (nil == self.locationManager) {
#ifdef FAKE_CORE_LOCATION

CHAPTER 9: Working with Location Awareness and Streaming Data 150

 self.locationManager =
 [[[FTLocationSimulator alloc] init] autorelease];
#else
 self.locationManager =
 [[[CLLocationManager alloc] init] autorelease];
#endif
 }

 self.locationManager.delegate = self;

 //Available in 3.2 and later
 self.locationManager.purpose = @"Big brother is watching.";

 BOOL locationServicesEnabled = NO;
 if ([CLLocationManager
 respondsToSelector:@selector(locationServicesEnabled)]) {
 locationServicesEnabled =
 [CLLocationManager locationServicesEnabled];
 } else {
 locationServicesEnabled =
 self.locationManager.locationServicesEnabled;
 }

 if (locationServicesEnabled) {

 inPowerSavingMode = NO;
 if (savingPower
 && [CLLocationManager respondsToSelector:@selector
 (significantLocationChangeMonitoringAvailable)]) {
 if ([self.locationManager respondsToSelector:@selector
 (startMonitoringSignificantLocationChanges)]) {
 [self.locationManager
 startMonitoringSignificantLocationChanges];
 inPowerSavingMode = YES;
 }

 } else {
 self.locationManager.desiredAccuracy =
 kCLLocationAccuracyBest;
 self.locationManager.distanceFilter = kCLDistanceFilterNone;
 [self.locationManager startUpdatingLocation];
 }
 }
}

LocationController’s stop method checks to see if we are in power saving mode via

the boolean, inPowerSavingMode (we saved this value earlier in our

startWithPowerSaving: method). It then calls

stopMonitoringSignificantLocationChanges or stopUpdatingLocation, depending on

which mode we are in:

- (void)stop
{
 if (inPowerSavingMode
 && [CLLocationManager respondsToSelector:@selector
 (significantLocationChangeMonitoringAvailable)]) {
 if ([self.locationManager respondsToSelector:@selector

CHAPTER 9: Working with Location Awareness and Streaming Data 151

 (stopMonitoringSignificantLocationChanges)]) {
 [self.locationManager
 stopMonitoringSignificantLocationChanges];
 }
 } else {
 [self.locationManager stopUpdatingLocation];
 }
}

As of iOS 4.0, CoreLocation’s CLLocationManager has the ability to notify an application

via delegate callbacks when the device enters or leaves a pre-specified geographic

region. This is known as region monitoring. LocationController supports region

monitoring through its registerRegion: method, which directs CLLocationManager to

monitor a specified region around a single center point and notify the application when

the device enters or leaves the region.

Using CLLocationManager
Next, we’ll go over how to use CLLocationManger. First, we need to see if this feature is

available. If it is, then we set the radius of the region we want to monitor; create the

region to monitor with the center point, radius, and name; and finally, hand it off to

CLLocationManager to monitor via its startMonitoringForRegion:desiredAccuracy:
method. The desiredAccuracy value controls the size of the buffer around the edge of

the region’s boundary that CLLocationManager uses to determine if the device has left

and reentered a region. Monitoring regions can be a really useful way to incorporate

some nice features into your app, such as automatically checking in a user to certain

places:

- (BOOL)registerRegion:(CLLocationCoordinate2D)center
{
 // Check to see if support is available
 if (![CLLocationManager regionMonitoringAvailable] ||
 ![CLLocationManager regionMonitoringEnabled])
 return NO;

 CLLocationDegrees radius =
 self.locationManager.maximumRegionMonitoringDistance;

 // Create the region and start monitoring it.
 CLRegion *region = [[CLRegion alloc]
 initCircularRegionWithCenter:center
 radius:radius
 identifier:@"test"];

[self.locationManager startMonitoringForRegion:region
desiredAccuracy:kCLLocationAccuracyNearestTenMeters];

 [region release];

 return YES;

}

CHAPTER 9: Working with Location Awareness and Streaming Data 152

When the CLLocationManager acquires a location reading that falls within the criteria for

its current mode of operation, it notifies its delegate via the

CLLocationManagerDelegate’s locationManager:didUpdateToLocation:fromLocation:
method. When this delegate method is called, we save the current location reading in

our own location property, so that any other parts of our application can access the

device’s current location reading:

- (void)locationManager:(CLLocationManager *)manager
 didUpdateToLocation:(CLLocation *)newLocation
 fromLocation:(CLLocation *)oldLocation
{
 self.location = newLocation;
}

If there was a problem initializing the location services, CLLocationManagerDelegate’s
locationManager:didFailWithError: method is called:

- (void)locationManager:(CLLocationManager *)manager
 didFailWithError:(NSError *)error
{
 NSLog(@"didFailWithError");
}

When the device enters or leaves a designated region, CLLocationManagerDelegate’s
locationManager:didEnterRegion: and locationManager:didExitRegion: methods are

called:

- (void)locationManager:(CLLocationManager *)manager
 didEnterRegion:(CLRegion *)region
{
 NSLog(@"didEnterRegion");
}

- (void)locationManager:(CLLocationManager *)manager
 didExitRegion:(CLRegion *)region
{
 NSLog(@"didExitRegion");
}

- (void)locationManager:(CLLocationManager *)manager
monitoringDidFailForRegion:(CLRegion *)region
 withError:(NSError *)error
{
 NSLog(@"monitoringDidFailForRegion");
}

As of iOS 4.2, CLLocationManager can also notify its delegate if the authorization status

for the application was changed by the user via the main Settings application on the

device:

- (void)locationManager:(CLLocationManager *)manager
 didChangeAuthorizationStatus:(CLAuthorizationStatus)status
{
 NSLog(@"didChangeAuthorizationStatus");
}

CHAPTER 9: Working with Location Awareness and Streaming Data 153

Before we move onto other topics, it’s worth mentioning location services on iOS and

backgrounding. Note that the Significant Change method will periodically wake up your

app and provide location updates. If you are using the Standard location method, then

you will have to set some values in your application’s plist. You can find more

information on this in Apple’s “iOS Location Awareness Guide,” which we referred you

to earlier in this chapter.

One final note: When using CoreLocation in your application, you have to link your

application against the CoreLocation framework (see Figure 9–16).

Figure 9–16. Linking against the CoreLocation framework when using CoreLocation

Generating Locations in the iOS Simulator
Although Apple has done an outstanding job with its CoreLocation framework, one

glaring omission was the ability to generate a sequence of location updates in the iOS

simulator. With iOS 5, Apple has added location simulation so that developers can test

location-aware apps without needing to leave their desks. In the event that Apple's

solution doesn't satisfy, here are two alternative ways to test location apps within the

developer environment: iSimulate and FTLocationSimulator. These solutions are very

different in their approaches, so we’re going to give a quick run-through on how to get

set up with them and how they work.

CHAPTER 9: Working with Location Awareness and Streaming Data 154

iSimulate
You can acquire iSimulate at the following URL:

www.vimov.com/isimulate/

The iSimulate app runs on your actual iOS device and allows you to interact with an

application running in the iOS Simulator on your desktop. Most importantly, it also lets

you share the location of your device with the Simulator. You can find a free Lite version

of the app in iTunes at this URL:

http://itunes.apple.com/us/app/isimulate-lite/id351339630?mt=8

To get up and running with iSimulate, you also have to configure a few things in your

application’s project in Xcode:

1. First, download the latest version of the iSimulate SDK from

www.vimov.com/isimulate/sdk/.

2. Now add the iSimulate library’s .a file (at the time of writing, this is

called libisimulate-4.x-opengl.a) to your application target’s

Frameworks (see Figure 9–17).

Figure 9–17. Link against the iSimulate library file.

3. Next, link your application against the OpenGLES framework (see Figure 9–18).

CHAPTER 9: Working with Location Awareness and Streaming Data 155

Figure 9–18. Link against OpenGLES when using iSimulate.

4. Finally, add an additional -ObjC linker flag to your application target

under Build Settings (see Figure 9–19).

Figure 9–19. Set additional linker flags when using iSimulate.

CHAPTER 9: Working with Location Awareness and Streaming Data 156

All of this information is also available here:

www.vimov.com/isimulate/documentation/

Now that we have configured iSimulate, it’s time to put it into action. On your device,

make sure that you are on the same WiFi network as the machine that you are running

the iOS Simulator on, and then start iSimulate. You should see a screen like the one

shown in Figure 9–20.

Figure 9–20. iSimulate on iOS

Now run your application in the iOS Simulator, and the iSimulate application on your

device will detect that the application is running and let you link with it on your device

(see Figure 9–21).

Figure 9–21. iSimulate on iOS: Select the machine to connect to.

Choose the name of your machine from the list and you will be brought to the main

iSimulate screen. You are now ready to rock and roll (see Figure 9–22).

CHAPTER 9: Working with Location Awareness and Streaming Data 157

Figure 9–22. iSimulator on iOS: View the information that iSimulate is sharing.

futuretap’s FTLocationSimulator
You can acquire FTLocationSimulator from the following URL:

https://github.com/futuretap/FTLocationSimulator

Unlike iSimulate, FTLocationSimulator is code that you build into your app that

overrides CLLocationManager. FTLocationSimulator then generates location information

by reading in coordinates from a .kml file that you include in your application. There is a

little more setup here and some code to discuss, but we are going to walk you through

it.

First, you will want to set up a submodule to the FTLocationSimulator source code via

Git:

$ git submodule add git://github.com/futuretap/FTLocationSimulator.git
 FTLocationSimulator

Then, within the FTLocationSimulator directory for the submodule, drag the

FTLocationSimulator directory to your Xcode project. Next, add the following additional

linker flag to your project’s target: -licucore. The final step is to adjust your code so

that it creates and uses an instance of FTLocationSimulator instead of

CLLocationManager whenever FAKE_CORE_LOCATION is defined:

#ifdef FAKE_CORE_LOCATION
 self.locationManager =
 [[[FTLocationSimulator alloc] init] autorelease];
 #else
 self.locationManager =
 [[[CLLocationManager alloc] init] autorelease];
 #endif

FAKE_CORE_LOCATION is located in FTLocationSimulator.h, and it is defaulted to 1 when

targeting the iOS Simulator:

#if TARGET_IPHONE_SIMULATOR
#define FAKE_CORE_LOCATION 1
#endif

CHAPTER 9: Working with Location Awareness and Streaming Data 158

As we noted before, FTLocationSimulator overrides CLLocationManager. Therefore, if

FAKE_CORE_LOCATION is defined and startUpdatingLocation is called,

FTLocationSimulator’s startUpdatingLocation will be called. This method calls

FTLocationSimulator’s fakeNewLocation, which reads a new location out of the file

fakeLocations.kml included. It then calls itself again after an update interval:

- (void)startUpdatingLocation {
 updatingLocation = YES;
 [self fakeNewLocation];
}

You can change the update interval in FTLocationSimulator.h:

#define FAKE_CORE_LOCATION_UPDATE_INTERVAL 0.3

You can also create your own .kml file or update the coordinates in fakeLocations.kml.

We encourage you to read up on generating .kml files. Google has some facilities that

make it easy to generate these files, which should help your testing.

MapKit
When working with location, it’s incredibly useful to be able to visualize what’s

happening. Therefore, we’re going to cover another framework available to us in iOS

called MapKit. The main class available via MapKit is MKMapView. MKMapView makes it

incredibly easy to incorporate maps into an application. To see this in action, open the

file called MapViewController.m in the sample projects for this chapter. In the loadView

method of MapViewController, we simply create an MKMapView object with a given

rectangle, set ourselves as an MKMapViewDelegate, tell the MKMapView to display our

current location on the map by setting its showUserLocation property to YES, and then

add it to our view controller’s view:

- (void)loadView {
 [super loadView];

 CGRect rect = CGRectMake(0.0f, 0.0f, 320.0f, 411.0f);
 MKMapView *mapView = [[MKMapView alloc] initWithFrame:rect];
 mapView.delegate = self;
 mapView.showsUserLocation = YES;

 [self.view addSubview:mapView];
 [mapView release];
}

Note that, since we’ve set ourselves as the MKMapVew’s delegate, we need to declare our

MapViewController as an MKMapViewDelegate in MapViewController.h:

@interface MapViewController : UIViewController <MKMapViewDelegate> {

}
@end

Also, don’t forget to link your application against the MapKit framework (see Figure 9–

23).

CHAPTER 9: Working with Location Awareness and Streaming Data 159

Figure 9–23. Link against the MapKit framework.

We also need to implement a few methods from MKMapViewDelegate; however, before we

describe these methods, we need to address the topic of annotations. There is a lot to

cover with annotations, so we won’t go into too much detail. The short version is that

annotations are visual elements, such as pins that you can place on an MKMapView. In

Figure 9–24, we have placed an annotation for a location point on the map and

represented it as a pin.

CHAPTER 9: Working with Location Awareness and Streaming Data 160

Figure 9–24. Display a pin on a map.

The code for adding this annotation to the map is in the implementation of

MKMapViewDelegate’s mapView: didUpdateUserLocation. This method is called whenever

the map displays an updated location from the CoreLocation framework. This delegate

method is called because we set showsUserLocation to YES on our MKMapView, and we

are simulating position updates. For simplicity’s sake, we add the first position reading

that we receive as an MKPointAnnotation, which is a predefined type of annotation via

MKMapView’s addAnnotation: method. We also use our LocationController’s
registerRegion: method to register a region around this first position:

- (void)mapView:(MKMapView *)mapView didUpdateUserLocation:
(MKUserLocation *)userLocation
{
 static int once = 0;
 if (0 == once) {
 once = 1;

 // create the pin annotation
 MKPointAnnotation *annotation = [[MKPointAnnotation alloc] init];
 annotation.coordinate = userLocation.coordinate;
 [mapView addAnnotation:annotation];
 [annotation release];

 [locationController registerRegion:userLocation.coordinate];
 }

 NSLog(@"didUpdateUserLocation");
}

CHAPTER 9: Working with Location Awareness and Streaming Data 161

Displaying an annotation on an MKMapView is a two-step process. First, we add an

annotation to the MKMapView (as we did in the preceding code). Second, we provide an

annotation view that is responsible for displaying the annotation. When the MKMapView

has determined that it needs to display an annotation, it calls its delegate’s

mapView:viewForAnnotation: method. In the code that follows, you will see that if

MKMapView is requesting a view for an MKPointAnnotation, we create an

MKPinAnnotationView and animate its display on the map. The animation will make the

pin look like it’s falling from the sky and dropping into place on the map:

- (MKAnnotationView *)mapView:(MKMapView *)mapView
 viewForAnnotation:(id <MKAnnotation>)annotation {

 if ([annotation isMemberOfClass:[MKUserLocation class]]) {
#ifdef FAKE_CORE_LOCATION
 //get the app delegate's location manager;return it's fake user
 //location view
 return locationController.locationManager.fakeUserLocationView;
#else
 return nil;
#endif
 } else {
 if ([annotation isKindOfClass:[MKPointAnnotation class]]) {
 // Try to dequeue an existing pin view first.
 MKPinAnnotationView *pinView =
 (MKPinAnnotationView*)[mapView
 dequeueReusableAnnotationViewWithIdentifier:@”PinView”];
 if (!pinView) {
 // If an existing pin view was not available, create one.
 pinView = [[[MKPinAnnotationView alloc]
 initWithAnnotation:annotation

 reuseIdentifier:@"PinAnnotation"] autorelease];
 pinView.pinColor = MKPinAnnotationColorRed;
 pinView.animatesDrop = YES;
 } else {
 pinView.annotation = annotation;
 }

 return pinView;
 }
 }

 // code to create views for other annotations
 return nil;
}

This code is also checking for MKUserLocation annotations. We won’t go into too much

detail here, but you should note that the FTLocationSimulator class that we discussed

earlier is designed to show the user’s location moving along the map by providing an

MKAnnotationView for the map. You can see this in action in FTLocationSimulator’s

fakeUserLocationView method:

- (MKAnnotationView*)fakeUserLocationView {
 if (!self.mapView) {
 return nil;
 }

CHAPTER 9: Working with Location Awareness and Streaming Data 162

 [self.mapView.userLocation setCoordinate:self.location.coordinate];
 MKAnnotationView *userLocationView = [mapView
 dequeueReusableAnnotationViewWithIdentifier:@"fakeLocationView"];
 if (nil == userLocationView) {
 userLocationView = [[MKAnnotationView alloc]
 initWithAnnotation:self.mapView.userLocation
 reuseIdentifier:@"fakeLocationView"];
 }
 UIImage *image = :[UIImage imageNamed:@"TrackingDot.png"];
 UIImageView *imageView =
 [[UIImageView alloc] initWithImage:image];
 [userLocationView addSubview:imageView];
 [imageView release];
 userLocationView.centerOffset = CGPointMake(-10, -10);
 return userLocationView;
}

The final piece of the puzzle that we need to implement is the code that handles what

happens when the user selects an annotation on the map. When this happens,

MKMapView calls its delegate’s mapView: didSelectAnnotationView: method. We will use

this method in our Facebook example to show how to check in a user to a place. Let’s

take a look at that now.

Facebook Places (Search), Check-ins (Getting and Posting),
and Friends Nearby
Within the Facebook app itself, checking into Places is done via the Nearby screen,

which automatically searches for Places near your current location. If permission to use

location services has not been granted to the Facebook application, it displays the

following screen (see Figure 9–25).

CHAPTER 9: Working with Location Awareness and Streaming Data 163

Figure 9–25. Location unavailable in the Check-Ins section of the Facebook iOS application

Assuming that permission to use location services has been granted to the Facebook

application, you will see a list of returned place matches (see Figure 9–26), as well as

detailed information for a place. This is how the Facebook application lets its user

community manage places. A Place profile (which is essentially similar to a Facebook Page)

is shown in Figure 9–27; users can act upon places in the ways shown in Figure 9–28.

CHAPTER 9: Working with Location Awareness and Streaming Data 164

Figure 9–26. Searching for nearby places and events in Facebook’s iOS application

Figure 9–27. Detailed information about a place in Facebook’s iOS application

CHAPTER 9: Working with Location Awareness and Streaming Data 165

Figure 9–28. Flag a place in Facebook’s iOS application.

Within our sample app, we want to make it possible to let someone check into a place

on Facebook. Recall that we set up our application to display a pin on the map. When

the pin is selected by the user, MKMapViewDelegate’s mapView:didSelectAnnotationView:

method is called. In our implementation of this in MapViewController, we issue a search

request to Facebook to ask for a list of places around the location of the annotation. To

issue a search request to Facebook, we simply set the graph path for Facebook’s

requestWithGraphPath:andParams:andDelegate: method to search. The additional

parameter to supply is a dictionary with values for type, center, and distance keys. The

MapViewController class is an FBRequestDelegate, so we supply it as the delegate:

- (void)mapView:(MKMapView *)mapView
 didSelectAnnotationView:(MKAnnotationView *)view
{
 NSString *centerString = [NSString stringWithFormat: @"%f,%f",

view.annotation.coordinate.latitude,
view.annotation.coordinate.longitude];

 NSMutableDictionary *params =

[NSMutableDictionary dictionaryWithObjectsAndKeys:
@"place", @"type",
centerString, @"center",
@"1000", @"distance", // In Meters (1000m = 0.62mi)

 nil];

 [facebook requestWithGraphPath:@"search"

CHAPTER 9: Working with Location Awareness and Streaming Data 166

 andParams:params
 andDelegate:self];
}

When the FBRequestDelegate’s request:didLoad: is called, the result parameter is a

dictionary with an array of place dictionaries. Each place dictionary has an id; a

category; a name; and a location dictionary with a city, country, state, latitude, and

longitude:

{
 data = (
 {
 category = "Local business";
 id = 151247078226083;
 location = {
 city = "Monta Vista";
 country = "United States";
 latitude = "37.3316086";
 longitude = "-122.05885";
 state = CA;
 };
 name = "Somerset Square Park";
 }
);
}

In the following code, we take the first match from the array of dictionaries in the result

and post a check-in to Facebook via this graph path:

"me/checkins"

We set the parameters for the post request in a dictionary with values for place,

coordinates, and message keys. Note that the latitude and longitude values for the

coordinates key need to be in JSON format, so we use SBJSON (which is included in the

Facebook SDK) to convert these values to a JSON string:

- (void)request:(FBRequest *)request didLoad:(id)result {
 NSLog(@"didLoad:");

 NSArray *places = [(NSDictionary*)result objectForKey:@"data"];
 if (0 < [places count]) {
 NSDictionary *dictionary = [places objectAtIndex:0];
 if (nil != dictionary) {
 NSDictionary *locDictionary =
 [dictionary objectForKey:@"location"];

 NSMutableDictionary *coordinatesDictionary =
 [NSMutableDictionary dictionaryWithObjectsAndKeys:
 [locDictionary objectForKey:@"latitude"], @"latitude",
 [locDictionary objectForKey:@"longitude"], @"longitude",
 nil];

 SBJSON *jsonWriter = [[SBJSON new] autorelease];
 NSString *coordinates =
 [jsonWriter stringWithObject:coordinatesDictionary];

 NSMutableDictionary *params =

CHAPTER 9: Working with Location Awareness and Streaming Data 167

 [NSMutableDictionary dictionaryWithObjectsAndKeys:
 [dictionary objectForKey:@"id"], @"place",
 coordinates, @"coordinates",
 @"This is a test checkin", @"message",
 nil];

 [facebook requestWithGraphPath:@"me/checkins"

 andParams:params
 andHttpMethod:@"POST"

 andDelegate:self];
 }
 }
}

Note that you can also include a user’s friends in a check-in by tagging them in the

checkin POST. To do this, add an additional key entitled tags to the params dictionary

and set its value to a comma-delimited list of Facebook user ids.

Posting check-ins to a user’s Facebook account requires publish_checkins

permissions, so we have to update our login code to include this additional permission:

- (void)login {
 [facebook authorize:[NSArray arrayWithObjects:
 @"user_groups", @"user_events",
 @"offline_access", @"publish_checkins", nil]
 delegate:self];
}

When logging in with this additional permission, the following OAuth screen is displayed

(see Figure 9–29).

Figure 9–29. Permission via OAuth to check into places on Facebook

CHAPTER 9: Working with Location Awareness and Streaming Data 168

Once the check-in is posted, it will show up in the user’s Facebook iOS app (and on

Facebook.com, of course), as shown in Figure 9–30.

Figure 9–30. Check-ins in Facebook’s iOS application

Selecting a check-in shows a small map and description of the place, as well as any

comments on the check-in (see Figure 9–31).

CHAPTER 9: Working with Location Awareness and Streaming Data 169

Figure 9–31. Details about a Facebook check-in

The place can be viewed on a larger map within the Facebook iOS app (see Figure 9–32).

Figure 9–32. A larger map view of a Facebook check-in

CHAPTER 9: Working with Location Awareness and Streaming Data 170

Next, you are given the choice to view the map in the main Maps application on the

device or to get directions (see Figure 9–33).

Figure 9–33. Actions that can be taken on a check-in in Facebook’s iOS application

Just as we can post check-ins for a user, we can also retrieve a user’s check-ins via the

Facebook graph path, "me/checkins":

[facebook requestWithGraphPath:@"me/checkins"
 andParams:nil
 andDelegate:self];

The returned result is an array of dictionaries where each dictionary contains information

about an individual check-in. This information includes the application that posted the

check-in, the time of creation, the user who posted the check-in, the Facebook id for the

check-in, the message associated with the check-in, and the place associated with the

check-in:

(
{
 application = {
 id = 114442211957627;
 name = "Beginning iOS Social Development";
 };
 "created_time" = "2011-04-09T16:14:19+0000";
 from = {
 id = 623441509;
 name = "Christopher White";

CHAPTER 9: Working with Location Awareness and Streaming Data 171

 };
 id = 10150149394136510;
 message = "This is a test checkin";
 place = {
 id = 144940418859769;
 location = {
 latitude = "37.332301584174";
 longitude = "-122.08672354097";
 };
 name = "Rancho San Antonio County Park";
 };
}
)

Retrieving check-ins from a user’s Facebook account requires user_checkins

permissions, so we have to update our login code to include this additional permission:

- (void)login {
 [facebook authorize:[NSArray arrayWithObjects:
 @"user_groups", @"user_events",
 @"offline_access", @"publish_checkins",
 @"user_checkins", nil]
 delegate:self];
}

When logging in with this additional permission, the following OAuth screen is displayed

(see Figure 9–34).

Figure 9–34. Facebook check-in permissions

CHAPTER 9: Working with Location Awareness and Streaming Data 172

Tweetin’ With Location
When it comes to Twitter, the main thing that you will want to enable in your application

is the ability to let users associate a location with their Tweets. We’ve set up the

ApiTwitter example for this chapter to resemble the ApiFacebook application, so we’re

going to skip over some setup since it was covered in the previous sections. At this

point, the LocationController class has been incorporated, we are simulating locations

via FTLocationSimulator, and we’re using our MapViewController to display a map with

an annotation. The only difference is what we do when the user selects the annotation.

Twitter has done a great job documenting its geo-location API, and we encourage you

to familiarize yourself with Twitter’s underlying HTTP API here:

http://dev.twitter.com/doc/get/geo

Until now, we’ve been using XML as our format when working with Twitter’s APIs;

however, the Twitter geo-location APIs only return results in JSON format. In addition, the

base URL for a location is the updated Twitter URL that follows, where 1 is the version of

the API:

http://api.twitter.com/1/

In order to get a feel for working with these APIs, open up a browser to apigee.com’s

Twitter console (see Figure 9–35). This is a very useful tool for experimenting with

Twitter’s API and getting your feet wet:

https://apigee.com/console/twitter

Figure 9–35. Apigee’s Twitter console

CHAPTER 9: Working with Location Awareness and Streaming Data 173

Since Twitter’s geo-location API only returns results in JSON format, we have to update

MGTwitterEngine to work with the SBJSON library, which is an easy to use Objective-C

drop-in for working with JSON. First, in MGTwitterEngine.m, we have to make sure that we

set the URL format to JSON and import JSON.h:

#elif SBJSON_AVAILABLE
 #define API_FORMAT @"json"
 #import "JSON.h"
#else

We also have to update the default Twitter domain:

#define TWITTER_DOMAIN @"api.twitter.com/1"

Next, we have to tell MGTwitterEngine to work with JSON when it parses the data for a

connection. The data in the response is first converted to its JSON string representation,

and the JSON is converted into an NSArray or NSDictionary using the NSString category

method JSONValue, which is defined in the SBJSON library:

#elif SBJSON_AVAILABLE
- (void)_parseDataForConnection:(MGTwitterHTTPURLConnection *)connection
{
 NSString *identifier = [[[connection identifier] copy] autorelease];
 NSData *jsonData = [[[connection data] copy] autorelease];
 MGTwitterResponseType responseType = [connection responseType];
 NSString *json_string =
 [[[NSString alloc] initWithData:jsonData
 encoding:NSUTF8StringEncoding]
 autorelease];

 id json = [json_string JSONValue];

 NSArray *parsedObjects;

 if ([json isKindOfClass:[NSArray class]]) {
 parsedObjects = [NSArray arrayWithArray:json];
 } else if ([json isKindOfClass:[NSDictionary class]]) {
 parsedObjects = [NSArray arrayWithObject:json];
 }

 [self parsingSucceededForRequest:identifier
 ofResponseType:responseType
 withParsedObjects:parsedObjects];

}
#else

In MGTwitterEngineGlobalHeader.h, we store the #define that determines if JSON

should be used as the default return format. Setting this to 1 will enable this:

#define SBJSON_AVAILABLE 0

In order to compile this code, you will also have to create a new group in your Xcode

project entitled SBJSON and drag the SBJSON files to the group folder. If you don’t

already have the SBJSON files on your machine, you should clone the Github repository

for it or create a submodule. We recommend using a submodule:

$ git submodule add git://github.com/stig/json-framework.git json-framework

CHAPTER 9: Working with Location Awareness and Streaming Data 174

Now that we have SBJSON incorporated into MGTwitterEngine, we have to add support

for Twitter’s geo API and for POSTing status updates with location parameters.

Twitter’s HTTP geo APIs use the following format:

geo/<action>.json

We’ve therefore created a geoResultsForPath:withParams: method that lets you set the

action that you want to perform, as well as the parameters. The four available path

actions are as follows:

 geo/search

 geo/reverse_geocode

 geo/similar_places

 geo/id

The parameters consist of latitude and longitude values, place names, and so on:

- (NSString *)geoResultsForPath:(NSString *)path
 withParams:(NSDictionary*)params
{
 NSString *path1 =
 [NSString stringWithFormat:@"geo/%@.%@", path, API_FORMAT];

 return [self _sendStandardRequestWithMethod:nil
 path:path1
 queryParameters:params
 body:nil
 requestType:MGTwitterAccountRequest
 responseType:MGTwitterMiscellaneous];
}

Now we’re finally ready to put this into action. In MapViewController.m, go to the

mapView:didSelectAnnotationView: method:

- (void)mapView:(MKMapView *)mapView
 didSelectAnnotationView:(MKAnnotationView *)view
{
 NSNumber *lat =
 [NSNumber numberWithDouble:view.annotation.coordinate.latitude];
 NSNumber *lon =
 [NSNumber numberWithDouble:view.annotation.coordinate.longitude];

 NSMutableDictionary *params = [NSMutableDictionary dictionary];
 [params setObject:[lat stringValue] forKey:@"lat"];
 [params setObject:[lon stringValue] forKey:@"long"];
 NSString *identifier =
 [sa_OAuthTwitterEngine geoResultsForPath:@"reverse_geocode"
 withParams:params];

 //listen for a notification with the name of the identifier
 [[NSNotificationCenter defaultCenter]

addObserver:self
 selector:@selector(twitterPlacesRequestDidComplete:)

 name:identifier
 object:nil];
}

CHAPTER 9: Working with Location Awareness and Streaming Data 175

When the pin on the map is selected, we call Twitter’s geo/reverse_geocode API with

parameters for latitude and longitude. We get the latitude and longitude values from

the annotation that is associated with the pin. The concept of reverse geocoding refers

to taking a location in latitude and longitude coordinates and giving back an address or

actual place name for the location. Note that there are additional parameters that you

can supply to control the granularity of the reverse geocoding or other location

searches.

In Twitter, all places have a Twitter id; and when associating a location with a Tweet,

Twitter recommends using its place id values instead of raw latitude and longitude

values. This helps to protect user privacy. For more information about how to handle this

in your application and to adhere to Twitter’s geo guidelines, we strongly urge you to

read the information posted here:

http://dev.twitter.com/pages/geo_dev_guidelines

Let’s recap what we have thus far. We are asking Twitter to reverse geocode a location

for us, and we’re then setting ourselves up to be notified when the response comes

back. The raw JSON response data uses the following format:

{
 query = {
 params = {
 accuracy = 0;
 autocomplete = 0;
 granularity = neighborhood;
 query = London;
 "trim_place" = 0;
 };
 type = search;
 url = "URL";
 };
 result = {
 places = (
 {
 attributes = {
 };
 "bounding_box" = {
 coordinates = (
 (
 (
 "-0.5093057",
 "51.286606"
),
 (
 "0.334433",
 "51.286606"
),
 (
 "0.334433",
 "51.691672"
),
 (
 "-0.5093057",
 "51.691672"

CHAPTER 9: Working with Location Awareness and Streaming Data 176

)
)
);
 type = Polygon;
 };
 "contained_within" = (
 {
 attributes = {
 };
 "bounding_box" = {
 coordinates = (
 (
 (
 "-6.3651943",
 "49.8825312"
),
 (
 "1.768926",
 "49.8825312"
),
 (
 "1.768926",
 "55.8116485"
),
 (
 "-6.3651943",
 "55.8116485"
)
)
);
 type = Polygon;
 };
 country = "United Kingdom";
 "country_code" = GB;
 "full_name" = "England, United Kingdom";
 id = 8ef32ff56ef11c22;
 name = England;
 "place_type" = admin;
 url = "URL";
 }
);
 country = "United Kingdom";
 "country_code" = GB;
 "full_name" = "London, England";
 id = 5d838f7a011f4a2d;
 name = London;
 "place_type" = admin;
 url = "URL";
 }
);
 };
}
)

Notice that the actual array of places is in a dictionary entitled result. Each place is

itself a dictionary of values, but the value that we are most interested in is the value for

the id key. When we get a notification that we have received place results from Twitter,

CHAPTER 9: Working with Location Awareness and Streaming Data 177

we take the dictionary for the first place in the array, extract its place id, and then submit

a status update with an additional dictionary of params. In conforming with Twitter’s

API, we supply a parameter with the key place_id:

- (void)twitterPlacesRequestDidComplete:(NSNotification*)notification {

 [[NSNotificationCenter defaultCenter] removeObserver:self];

 NSArray *places = [notification.userInfo objectForKey:@"places"];
 if (0 < [places count]) {
 //grab the first place
 NSDictionary *placesDict = [places objectAtIndex:0];
 NSDictionary *resultDict = [placesDict objectForKey:@"result"];
 NSArray *resultPlaces = [resultDict objectForKey:@"places"];
 if (0 < [resultPlaces count]) {
 NSDictionary *firstPlace = [resultPlaces objectAtIndex:0];

 NSMutableDictionary *params =
 [NSMutableDictionary dictionary];
 [params setObject:[firstPlace objectForKey:@"id"]
 forKey:@"place_id"];
 [sa_OAuthTwitterEngine sendUpdate:@"location tweet!"
 withParams:params];
 }
 }
}

If we then go to Twitter on the Web, lo and behold, we see our Tweet with a location

(see Figure 9–36). Note that you have to enable location with Tweets in your settings on

Twitter, as discussed earlier in this chapter.

There are a lot of fun things that you can do with location in Twitter, so give this code a

go. The actual sample code has some other example code that you can uncomment to

see how the other Twitter geo APIs work. They are all closely related and take almost

identical parameters.

Before we close out this chapter, we’d also like to note that you can use MapKit’s

MKReverseGeocoder class if you don’t want to use Twitter or Facebook to look up places

for coordinates. It’s up to you. The sample code also has MKReverseGeocoder

implemented, so that you can tinker with this at your leisure.

CHAPTER 9: Working with Location Awareness and Streaming Data 178

Figure 9–36. A Tweet with location information

Conclusion
Working with location is a lot of fun, but it also has its perils. When working with location

in your application and with social networks like Facebook and Twitter, it is paramount

for you to put yourself in your user’s shoes and ask yourself important questions about

how you are using her location. Every application has a unique user interface design, but

we encourage you to incorporate a disclosure about what you are doing with a user’s

location in your application and to display it immediately on the first run of your

application or the first time that a user is going to perform an action where her location

will be used.

This is just one of the many design and interface guidelines you should follow. You’ll

read more about them in Chapters 11 through 14.

That’s it for location. We’ve given you the basic building blocks, so have some fun. In

the next chapter, we cover a grab bag of technical issues that will improve your

applications overall integration with Facebook and Twitter.

179

179

 Chapter

Using Open Source Tools
and Other Goodies
The world of mobile software moves incredibly fast, and it can sometimes seem like a

daunting undertaking to stay abreast of all the latest developments. While this book is

intended as an introduction to integrating Facebook and Twitter into your application,

there are a host of related technologies that can make life easier or reveal how other

applications accomplish certain tasks. In addition, there are some cross-posting libraries

available that can save you the trouble of integrating directly with the Facebook and

Twitter SDKs. These topics are explored in this chapter.

This chapter also includes a discussion of data and trends that are available from

Twitter. In addition to its standard client APIs, Twitter makes data and trends available to

developers. Twitter Trends is the site’s tool for measuring topics (i.e., hash tags) that are

quickly becoming popular (that are hot news, in other words). If you haven’t heard of the

Trends tool, check out this compendium on Twitter.com:

http://yearinreview.twitter.com/trends/

It may not always make sense to access these trends directly from within your

application, and Twitter’s terms restrict some of the ways you can use its data; however,

it might prove useful to look at this server-to-server transaction. Later, you’ll learn how

to do some of your own number crunching with this data and serve what you need to

your application.

The Shorter, the Better
A common problem with referencing resources on the Web is that URLs for these

resources can sometimes be incredibly long. This presents a problem when

incorporating services like Twitter into an application because Tweets need to be short

in length. For instance, it is not good from a user’s perspective if an application wants to

let a user Tweet an article, but the length of the URL for the article takes up almost the

entire Tweet or is entirely too long to fit in a Tweet.

10

CHAPTER 10: Using Open Source Tools and Other Goodies 180

This is where URL shorteners come into play. There are a number of URL shortening

services available, inclding Twitter's own, which was announced as this book was going

to press. However, third party URL shorteners offer functionality Twitter doesn't (such as

analytics) so we'll spent some time talking about two of them. We will also cover how

they work and how to integrate them into an iOS application. Note that not all these

services may be in business in perpetuity; if you’re interested in the archival quality of

your links, use Twitter’s own shortener, T.co.

Here are two common third-party URL shortening services:

 http://bit.ly

 http://TinyURL.com

Both services are entirely free to use, and they work on the same premise: you supply a

URL to the service, and it returns a shortened URL back to you.

A handy tool for experimenting with these services is a command-line utility known as

cURL, which you can learn more about at this URL:

https://secure.wikimedia.org/wikipedia/en/wiki/CURL

cURL is designed to support a number of Internet protocols, but HTTP is the only

protocol that is relevant in this case. To see curl in action, open up Terminal on a Mac

and type the following at the command line:

$ curl http://www.apress.com

This writes out to the command line all of the HTML for the Apress homepage that

would normally be processed and displayed by a web browser.

For URL shortening, you need more than just a URL. The URL shortening services

require that the URL to be shortened be set as a parameter with the request. To send

parameters along with a URL request, use cURL’s -d option:

$ curl -d "<request parameters>" URL

TinyURL has a simple protocol in place. Simply submit a request to

http://tinyurl.com/api-create.php with a url parameter that is set to the URL that

you want to shorten:

$ curl -d "url=http://www.apress.com" http://tinyurl.com/api-create.php

This will return a shortened URL that uses this form:

http://tinyurl.com/9qths

Of course, www.apress.com isn’t a URL that really needs shortening—but this is just an

example.

Bit.ly, like TinyURL, shortens URLs; however, it also provides tracking, analytics, search

history, and a lot more on the shortened URLs that it generates. To get the best usage

out of bit.ly, you need to sign up for an account on its site. After completing the sign up,

bit.ly will associate an apiKey with the account. This apiKey is needed to use its service.

The bit.ly protocol requires a request to http://api.bitly.com/v3/shorten with the

following parameters:

CHAPTER 10: Using Open Source Tools and Other Goodies 181

 login: A bit.ly username (chosen when you create an account)

 apiKey: The api key that is associated with the username provided

(this api key is generated by bit.ly upon successful registration)

 longUrl: The URL to shorten

 format: The desired format for the response; supported values are

json (default), xml, and txt

Therefore, a request for bit.ly to shorten a URL would look like the following when using

cURL:

$ curl -d "login=<bit.ly username>&apiKey=<bit.ly API
 key>&longUrl=http://www.apress.com&format=txt"
 http://api.bitly.com/v3/shorten

This will return a shortened URL that uses this form:

http://bit.ly/dIB3mD

For more detailed information about the bit.ly API, go here:

https://code.google.com/p/bitly-api/wiki/ApiDocumentation#/v3/shorten

For a quick read on some of the underlying theory involved with URL shortening, read

the article, “URL Shortening: Hashes In Practice,” at this URL:

www.codinghorror.com/blog/2007/08/url-shortening-hashes-in-practice.html

For more detailed information about curl and what it can accomplish, go to the following

page:

http://curl.haxx.se/docs/manpage.html

Or, you can just type the following from a command line:

$ man curl

Using URL Shorteners in iOS
curl is a great tool to perform a quick test with; however, it’s of no use within an iOS

app. While there are a number of ways to integrate with URL shorteners in an iOS app,

the quickest way is to use NSString’s stringWithContentsOfURL method. This method

takes a URL, does all of the work to issue a request for the URL, and returns the

response as an NSString. So, in the case of TinyURL, a request to shorten a URL via this

service would look as follows within Objective-C code when using NSString’s

stringWithContentsOfURL:

NSString *longURL = @"http://www.apress.com";

NSString *format = @"http://tinyurl.com/api-create.php?url=%@";
NSString *apiEndpoint = [NSString stringWithFormat:format,longURL];

NSString *shortURL =
[NSString stringWithContentsOfURL:[NSURL URLWithString:apiEndpoint]
 encoding:NSASCIIStringEncoding error:nil];

CHAPTER 10: Using Open Source Tools and Other Goodies 182

Note that stringWithContentsOfURL blocks until it receives a response. Therefore,

depending on the requirements of the application using this method, it may be

worthwhile to call this method on a background thread or to skip over the use of

NSString’s stringWithContentsOfURL, and then issue the request via NSURLRequest.

ShareKit: Sometimes Quick and Dirty Does the Trick
One of the main problems with integrating social services into an application is that

there are so many social services proliferating online. Others have recognized this same

problem and have gone through the trouble of aggregating all of these services into one

library that applications can integrate with. One of the better aggregation libraries out in

the wild is ShareKit, which you can acquire at this URL:

http://getsharekit.com/

ShareKit is an open source Objective-C library that makes it easy to integrate with the

following services in our application:

 Delicious

 Email

 Facebook

 Google Reader

 Instapaper

 Pinboard

 Read It Later

 Tumblr

 Twitter

Since ShareKit is open source and hosted on Github, the code can be cloned, forked, or

reviewed at any time:

https://github.com/ideashower/sharekit/

Note that the latest code on Github may not reflect what is in the current, official release

of ShareKit, so be careful. Downloading and using the official version from the ShareKit

site is highly recommended. At the time of writing, the latest official release of ShareKit

is version 0.2.1. The download for this has been added to the source code repository for

this book on Github, and it can be found in the ShareKit directory.

You can also find a ShareKit sample application in the source code repository (in the

Chapter10 directory). This sample application uses the version of ShareKit that is also in

the repository we previously mentioned (0.2.1). The instructions that follow for

integrating with ShareKit refer to the sample application.

CHAPTER 10: Using Open Source Tools and Other Goodies 183

Getting Started with ShareKit
To get started with ShareKit, first drag the ShareKit source code directory into your

project. This directory is located at the following path in the Git repository for this book:

ShareKit/Classes/ShareKit

When dragging the ShareKit folder into a project, choose the default options in the pop-

up dialog, as shown in Figure 10–1.

Figure 10–1. Choose the default options when dragging ShareKit into an Xcode project.

Next, link the application against the following frameworks (see Figure 10–2):

 SystemConfiguration.framework

 Security.framework

 MessageUI.framework

CHAPTER 10: Using Open Source Tools and Other Goodies 184

Figure 10–2. Link the application against the appropriate frameworks.

In order for ShareKit to access the desired services, it has to know certain information

about accounts for those services. In the ShareKit sample project, go to SHKConfig.h,

enter the information for Facebook and Twitter, and turn on debugging, as shown in

Figures 10–3 through 10–5.

Figure 10–3. Set the application name and URL in SHKConfig.h.

CHAPTER 10: Using Open Source Tools and Other Goodies 185

Figure 10–4. Set the application’s Twitter OAuth credentials in SHKConfig.h.

Figure 10–5. Turn on debug logs in SHKConfig.h.

CHAPTER 10: Using Open Source Tools and Other Goodies 186

Integrating ShareKit with Facebook requires the Facebook OAuth consumer key and

secret for an application; similarly, integrating ShareKit with Twitter requires the Twitter

OAuth consumer key and secret for an application. In addition, Twitter requires a

callback URL. In order to set a callback URL for a Twitter application, the application

has to be created on Twitter as a browser application. This means that, if an application

was previously created on Twitter as a client application, that application needs to be

reconfigured as a browser application. Otherwise, you’ll need to create a new

application. The actual URL that is entered for the Twitter application does not matter.

The only thing that matters is that the URL specified in SHKConfig.h must match the

URL specified on Twitter.com. An example would look something like this:

www.apress.com/callback

When working with Twitter, integration with bit.ly is required to post URLs since ShareKit

uses bit.ly under the covers to shorten URLs before posting them to Twitter. Creating an

application on bit.ly was covered previously in this chapter, so please refer to that

section for additional instructions.

With the account information configured in the ShareKit header file, it’s time to add code to

the project to use ShareKit to post to Facebook and Twitter. Go to MainViewController.m in

the ShareKit sample project and examine the loadView method. In this method, a UIToolbar

is added to the view controller’s view and is given a UIBarButtonSystemItem with the default

action icon on the button, as shown in Figure 10–6:

Figure 10–6. The UIToolBar in ShareKit with its default button

- (void)loadView
{
 [super loadView];

 self.view.backgroundColor = [UIColor whiteColor];

 UIBarButtonItem *item = [[UIBarButtonItem alloc]
 initWithBarButtonSystemItem:UIBarButtonSystemItemAction
 target:self
 action:@selector(share)];

 NSArray *items = [NSArray arrayWithObject:item];
 [items addObject:item];
 [item release];

 CGRect frame = CGRectMake(0.0f,
 self.view.bounds.size.height-40.0f,
 self.view.bounds.size.width,
 40.0f);
 toolbar = [[UIToolbar alloc] initWithFrame:frame];

 [toolbar setItems:items animated:YES];
 [self.view addSubview:toolbar];
 [toolbar release];

CHAPTER 10: Using Open Source Tools and Other Goodies 187

 [SHK flushOfflineQueue];
}

Selecting the bar button calls the share method, which displays an SHKActionSheet to

the user:

- (void)share
{
 // Create the item to share (in this example, a url)
 NSURL *url = [NSURL URLWithString:@"http://www.apress.com"];
 SHKItem *item = [SHKItem URL:url title:@"Apress is Awesome!"];

 // Get the ShareKit action sheet
 SHKActionSheet *actionSheet =
 [SHKActionSheet actionSheetForItem:item];

 // Display the action sheet
 [actionSheet showFromToolbar:toolbar];
}

An SHKActionSheet is a nice pop-up presented to the user that displays options for

sharing information (see Figure 10–7).

Figure 10–7. The SHKActionSheet pop-up

Clicking the Facebook button displays the familiar Facebook mobile web page for

posting (see Figure 10–8).

CHAPTER 10: Using Open Source Tools and Other Goodies 188

Figure 10–8. You’ll recognize the Facebook mobile web page for posting.

Clicking the Twitter button displays a nice dialog with a shortened URL (see Figure 10–9).

Figure 10–9. ShareKit’s Twitter dialog

CHAPTER 10: Using Open Source Tools and Other Goodies 189

ShareKit supports more than just posting URLs and text, so it is worth exploring more of

what it offers. It’s a very nicely crafted solution for integrating quickly with Facebook and

Twitter.

All the Latest Twitter Trends
It’s always interesting to think about what people are Tweeting about in general within a

specific geographic area or during a given time period. Twitter makes this data available

via its trends API. Accessing these trends is very straightforward and does not require

any authentication; however, be aware that the usage of these APIs is always subject to

Twitter’s rate limiting. This data can be accessed directly from within an iOS app or from

server-to-server, depending on the needs of your application.

Twitter returns trends based on Twitter hash tags. Recall that Twitter hash tags are a

means for Twitter users to associate or group Tweets together. For instance, assume a

Twitter user wanted to Tweet about unicorns, so that his Tweet would be included

whenever someone wanted to search for or see trends for Tweets about unicorns. In this

case, he would include the hash tag #unicorns in his Tweet.

There are a few different ways to use the trends API. To obtain the top ten topics that

are currently trending on Twitter, you can use the following request:

http://api.twitter.com/1/trends.json

The quickest way to see what this returns is to use curl again:

$ curl http://api.twitter.com/1/trends.json
{"trends":[
{"url":"http:\/\/search.twitter.com\/search?q=%23thatminiheartattackwhen","name":"#thatm
iniheartattackwhen"},
{"url":"http:\/\/search.twitter.com\/search?q=%23urnotmytypeif","name":"#urnotmytypeif"}
,
{"url":"http:\/\/search.twitter.com\/search?q=%23starship","name":"#starship"},
{"url":"http:\/\/search.twitter.com\/search?q=Seth+Meyers","name":"Seth Meyers"},
{"url":"http:\/\/search.twitter.com\/search?q=Jos%C3%A9+Aldo","name":"Jos\u00e9Aldo"},
{"url":"http:\/\/search.twitter.com\/search?q=Catcher+Freeman","name":"CatcherFreeman"},
{"url":"http:\/\/search.twitter.com\/search?q=Green+Men","name":"Green Men"},
{"url":"http:\/\/search.twitter.com\/search?q=Steven+Seagal","name":"StevenSeagal"},
{"url":"http:\/\/search.twitter.com\/search?q=Glenn+Healy","name":"Glenn Healy"},
{"url":"http:\/\/search.twitter.com\/search?q=Karate+Kid","name":"Karate
Kid"}],"as_of":"Sun, 01 May 2011 03:35:42 +0000"}

This returns a dictionary that contains an array of trends and an as_of date for when this

trend snapshot was taken. Each trend in the array of trends contains the following:

 name: The hash tag for the trend.

 url: The URL to the Twitter search results page for that topic.

The same information can be obtained via the following request:

$ curl http://api.twitter.com/1/trends/current.json?exclude=#unicorns

CHAPTER 10: Using Open Source Tools and Other Goodies 190

Note that the trends/current API allows for excluding Twitter hash tags from the results.

Also note that the Twitter search URL is not included with each individual trend:

{"trends":{"2011-05-01 03:32:19":[
{"promoted_content":null,"events":null,"query":"#thatminiheartattackwhen","name":"#thatm
iniheartattackwhen"},
{"promoted_content":null,"events":null,"query":"#urnotmytypeif","name":"#urnotmytypeif"}
,
{"promoted_content":null,"events":null,"query":"#starship","name":"#starship"},
{"promoted_content":null,"events":null,"query":"Seth Meyers","name":"Seth Meyers"},
{"promoted_content":null,"events":null,"query":"Jos\u00e9 Aldo","name":"Jos\u00e9Aldo"},
{"promoted_content":null,"events":null,"query":"Catcher
Freeman","name":"CatcherFreeman"},
{"promoted_content":null,"events":null,"query":"Green Men","name":"Green Men"},
{"promoted_content":null,"events":null,"query":"StevenSeagal","name":"Steven Seagal"},
{"promoted_content":null,"events":null,"query":"Glenn Healy","name":"GlennHealy"},
{"promoted_content":null,"events":null,"query":"Karate Kid","name":"Karate
Kid"}]},"as_of":1304220739}

Trending Topics
Twitter also makes available the top 20 trending topics for each hour in a given day:

$ curl http://api.twitter.com/1/trends/daily.json?date=2011-04-29&exclude=#unicorns

The response includes a trends dictionary, where each trend is a dictionary where the

key is a given hour for the day in question, the value of which is the array of trends for

that time of the given day:

{"trends":{
"2011-04-29 07:00":[<array of trends>],
"2011-04-29 20:00":[<array of trends>]},
"as_of":1304223220}

Note that Twitter only makes this data available as far back as the last seven to ten

days. If the date parameter of the request is set to a day for which no data is available,

Twitter returns the following:

{"errors":[{"code":35,"message":"Trend data not available"}]}

Similarly, Twitter makes available the top 30 trending topics for each day in a given

week, going back three to four weeks:

$ curl curl http://api.twitter.com/1/trends/weekly.json?date=2011-04-
21&exclude=#unicorns

The response includes a trends dictionary where each trend is a dictionary and where

the key is a given week, the value of which is the array of trends for that week:

{"trends":{
"2011-04-16":[<array of trends>],
"2011-04-17":[<array of trends>]},
"as_of":1304223220}

For daily and weekly trends, if a date in the future is specified, Twitter will return the

trends for the current date.

CHAPTER 10: Using Open Source Tools and Other Goodies 191

Where On Earth ID
As previously mentioned, Twitter trends can also be obtained based on location.

However, the Twitter trends API does not use latitude and longitude for locations;

instead, it uses Where on Earth IDs (WOEID), which are maintained by Yahoo! A WOEID

is a unique identifier for any named place on the planet. You can find more information

on this topic at the following URLs:

 http://developer.yahoo.com/geo/geoplanet/

 http://developer.yahoo.com/geo/geoplanet/guide/concepts.html

Twitter can return the WOEIDs that it has trending topic information for:

$ curl http://api.twitter.com/1/trends/available.json

This request can take optional lat and long parameters to narrow the result set that is

returned. The request returns an array of places, where each place is represented by a

dictionary with values for different keys. One of these keys is the WOEID:

[{"countryCode":"TR","country":"Turkey","url":"http:\/\/where.yahooapis.com\/v1\/place\/
23424969","parentid":1,"name":"Turkey","woeid":23424969,"placeType":{"code":12,"name":"C
ountry"}},...]

You can obtain the top 10 current trending topics within the geographical area for a

given WOEID (assuming trending information is available) by issuing a request that uses

the following form:

http://api.twitter.com/1/trends/WOEID.json

So, to obtain the top 10 trending topics for the WOEID of 1, the request looks like this:

$ curl http://api.twitter.com/1/trends/1.json

Like the other trends request, this returns a dictionary with an array of trends:

[{"as_of":"2011-05-01T03:39:32Z","trends":[
{"url":"http:\/\/search.twitter.com\/search?q=%23thatminiheartattackwhen","query":"%23th
atminiheartattackwhen","events":null,"promoted_content":null,"name":"#thatminiheartattac
kwhen"},
{"url":"http:\/\/search.twitter.com\/search?q=%23urnotmytypeif","query":"%23urnotmytypei
f","events":null,"promoted_content":null,"name":"#urnotmytypeif"},
{"url":"http:\/\/search.twitter.com\/search?q=%23starship","query":"%23starship","events
":null,"promoted_content":null,"name":"#starship"},
{"url":"http:\/\/search.twitter.com\/search?q=Seth+Meyers","query":"Seth+Meyers","events
":null,"promoted_content":null,"name":"Seth Meyers"},
{"url":"http:\/\/search.twitter.com\/search?q=Jos%C3%A9+Aldo","query":"Jos%C3%A9+Aldo","
events":null,"promoted_content":null,"name":"Jos\u00e9 Aldo"},
{"url":"http:\/\/search.twitter.com\/search?q=Catcher+Freeman","query":"Catcher+Freeman"
,"events":null,"promoted_content":null,"name":"Catcher Freeman"},
{"url":"http:\/\/search.twitter.com\/search?q=Green+Men","query":"Green+Men","events":nu
ll,"promoted_content":null,"name":"Green Men"},
{"url":"http:\/\/search.twitter.com\/search?q=Steven+Seagal","query":"Steven+Seagal","ev
ents":null,"promoted_content":null,"name":"Steven Seagal"},
{"url":"http:\/\/search.twitter.com\/search?q=Glenn+Healy","query":"Glenn+Healy","events
":null,"promoted_content":null,"name":"Glenn Healy"},
{"url":"http:\/\/search.twitter.com\/search?q=Karate+Kid","query":"Karate+Kid","events":
null,"promoted_content":null,"name":"Karate Kid"}],

CHAPTER 10: Using Open Source Tools and Other Goodies 192

"created_at":"2011-05-01T03:28:09Z","locations":[{"name":"Worldwide","woeid":1}]}]

There are also other services that provide Twitter trend information. One of these is

letsbetrends.com, which has its own API. For more information on this service, go here:

http://letsbetrends.com/

Also, if your application needs to show hints or information about hash tags, a service

like tagalus (http://tagal.us/) can be used. Here is a good article on making sense of

Twitter hash tags:

http://blog.programmableweb.com/2009/03/20/make-sense-of-confusing-twitter-hash-tags/

Offline Storage Revisited: SQLite
Part of Chapter 8 explored the topic of storing Tweets offline using iOS’s Core Data. It’s

worth mentioning that, under the hood, Core Data saves the data for its data model in a

SQLite database. SQLite is a “cross-platform C library that implements a self-contained,

embeddable, zero-configuration SQL database engine.” You can learn more about this

database at www.sqlite.org/.

Core Data creates the SQLite database file in an application’s Documents directory.

When using the simulator, the Documents directory is accessed from the following path,

where “4.3” will vary depending on which version of iOS the application is targeting, and

<app id> is a unique application identifier created by iOS that varies by application:

Library/Application Support/iPhone Simulator/4.3/Applications/<app id>/Documents

Figure 10–10. The Mac OS X File System path to iOS simulator applications

CHAPTER 10: Using Open Source Tools and Other Goodies 193

To determine which directory belongs to a given application, examine the contents of

each of the <app id> directories and find the one that contains the .app file for the

application in question. In the case of the Chapter 8 offline application, the file is

OfflineTwitter.app. In the Documents directory for this application, there is a SQLite

database file entitled CoreDataOffline.sqlite. The name of this file matches the name

of the xcdatamodeld that represents the Core Data model, CoreDataOffline.

Viewing the contents of a SQLite database requires database software. One of the

better database software products available for Mac OS X is MesaSQLite

(www.desertsandsoftware.com/?realmesa_home). MesaSQLite is free, and it’s invaluable

when working with databases in an iOS application. After installing MesaSQLite or

another database application, open the CoreDataOffline.sqlite file mentioned

previously, and then view the contents of the ZTWEET table. (In MesaSQLite, choose the

ZTWEET table from the Table Name drop-down list and click Show All to query for all of

the Tweets in the database.) The ZTWEET table is where Core Data stores the Tweet

objects that the application creates and saves. Note that there are ZID and ZTEXT

columns that correspond to the id and text properties, respectively, for each Tweet

object in the data model.

Figure 10–11. The Core Data SQLite database

Working with SQLite can be a little tricky, so it’s worthwhile to get some hands-on

experience with it. Therefore, the rest of this section will show how to reimplement the

OfflineTwitter application from Chapter 8 using SQLite directly instead of Core Data. All

of the code that follows is in the Github repository in the Chapter10/OfflineTwitter

directory.

CHAPTER 10: Using Open Source Tools and Other Goodies 194

Reimplementing OfflineTwitter Without Core Data
Since the original architecture for the OfflineTwitter application kept all of the data

access code in the TwitterDataStore class, almost all of the user interface views and

controllers can be left as-is. The only work to do is to create a version of

TwitterDataStore that uses SQLite directly to store, retrieve, and delete Tweets instead

of Core Data.

First, the Tweet class is adjusted slightly, so that it’s no longer a managed object:

@interface Tweet : NSObject {
}

@property (nonatomic, retain) NSNumber * id;
@property (nonatomic, retain) NSString * text;

@end

Next, TwitterDataStore is stripped down, so it’s now a base class that any type of

TwitterDataStore can be derived from:

@interface TwitterDataStore : NSObject {
}

- (NSURL *)applicationDocumentsDirectory;
- (NSArray*)tweets;
- (void)deleteTweets;
- (void)synchronizeTweets:(NSArray*)tweets;

@end

Now a class entitled TwitterDataStore_SQLite is created to do the actual heavy lifting of

storing, retrieving, and deleting Tweets using SQLite. The class definition is located in

TwitterDataStore_SQLite.h:

#import "TwitterDataStore.h"

@class sqlite3;
@interface TwitterDataStore_SQLite : TwitterDataStore {
 sqlite3 *database;
}

@end

Next, let’s look at TwitterDataStore_SQLite.m in Xcode. Note that two additional helper

methods are declared for the class:

- openDatabase
- closeDatabase

In the initializer for the class, sqlite3.h is imported, so that TwitterDataStore_SQLite

can use SQLite. It’s worth reviewing this header file to gain additional insight into what

SQLite makes available to iOS applications since this discussion only touches the

surface. Within the code, openDatabase is called to create the database (if it doesn’t

already exist) and set up the table(s) within the database. In dealloc, the database is

closed when the class is destroyed:

CHAPTER 10: Using Open Source Tools and Other Goodies 195

#import "TwitterDataStore_SQLite.h"
#import "sqlite3.h"
#import "Tweet.h"

@interface TwitterDataStore_SQLite ()
- (void)openDatabase;
- (void)closeDatabase;
@end

@implementation TwitterDataStore_SQLite

- (id)init
{
 if ((self = [super init])) {
 [self openDatabase];
 }
 return self;
}

- (void)dealloc
{
 [self closeDatabase];
 [super dealloc];
}

The openDatabase method is tasked with creating the database and populating it with a

table to store Tweets. If the database object is already open, this method does nothing.

This is accomplished by checking to see if the pointer to the sqlite3 database object is

NULL. Opening a database via SQLite is accomplished with the sqlite3_open method.

This method requires a path to the SQLite database file that it needs to create if it

doesn’t already exist or to open if it does already exist. It also requires a pointer to a

pointer of a sqlite3 database object.

If the database is opened successfully, the Tweets table for the database is created via

the sqlite3_exec method, which executes a SQL query on the database. If the table

doesn’t exist already, the query creates the table with columns for the id of a Tweet and

the actual message content for the Tweet:

NSString *createTables =
 @"CREATE TABLE IF NOT EXISTS tweets (id INTEGER
 PRIMARY KEY,
 message TEXT);";

Next, using sqlite3_exec again, an index is created for this table on the Tweet id in

order to speed up querying Tweets out of the database:

NSString *createIndex =
 @"CREATE INDEX IF NOT EXISTS tweetIndex ON tweets(id);";

- (void)openDatabase
{
 if (nil == database) {
 NSURL *path =

[[self applicationDocumentsDirectory]
URLByAppendingPathComponent:@"twitter.sqlite"];

CHAPTER 10: Using Open Source Tools and Other Goodies 196

 if (SQLITE_OK !=
 sqlite3_open([[path relativePath] UTF8String], &database)) {
 [self closeDatabase];
 } else {
 char *errmsg;

 NSString *createTables =
 @"CREATE TABLE IF NOT EXISTS tweets (id INTEGER PRIMARY KEY,
 message TEXT);";
 if (SQLITE_OK !=
 sqlite3_exec(database,
 [createTables UTF8String],
 NULL,
 NULL,
 &errmsg)) {
 NSLog(@"create table error: '%s'", errmsg);
 }

 NSString *createIndex =
 @"CREATE INDEX IF NOT EXISTS tweetIndex ON tweets(id);";
 if (SQLITE_OK !=
 sqlite3_exec(database,
 [createIndex UTF8String],
 NULL,
 NULL,
 &errmsg)) {
 NSLog(@"create table index error: '%s'", errmsg);
 }
 }
 }
}

closeDatabase is a very straightforward method. It calls sqlite3_close on the sqlite3

database object owned by the class. This closes the database, and then sets the pointer

to the database to NULL, so that the openDatabase method will reopen the database if it is

subsequently called:

- (void)closeDatabase
{
 sqlite3_close(database);
 database = nil;
}

Since the goal of this sample project is to store Tweets offline in a SQLite database, the

first task to take on is synchronizing the Tweets that are retrieved from Twitter and

storing them in the database (see Figure 10–12). As with the Core Data example, this

occurs in TwitterDataStore’s synchronizeTweets: method, which first deletes any

Tweets in the database and then stores the new Tweets.

Recall that the Tweets are passed in as an array of NSDictionary objects, where each

NSDictionary in the array represents a Tweet. Let’s take a closer look at the for-loop

that operates on the Tweets. The first step is to initialize a SQL transaction:

sqlite3_exec(database, "BEGIN;", NULL, NULL, NULL);

The actual SQL statement that will store a Tweet is as follows:

CHAPTER 10: Using Open Source Tools and Other Goodies 197

char *text = "INSERT INTO tweets (id, message) VALUES (?, ?);";

Note the presence of the ? symbols in the statement. This denotes that the values are

going to be bound to the statement after it is prepared via sqlite3_prepare_v2. Note

that the Tweet id is being stored as a 64-bit integer and is bound via

sqlite3_bind_int64. The contents of the Tweet are stored as text and are bound via

sqlite3_bind_text. The transaction is then executed via sqlite3_step. The transaction

could fail for some reasons, so steps are taken to roll back the transaction in the case of

a failure. This preserves the state of the database if a failure occurs. Here’s the code to

do this:

- (void)synchronizeTweets:(NSArray*)tweets
{
 NSAutoreleasePool *autoReleasePool =
 [[NSAutoreleasePool alloc] init];

 @synchronized(self) {

 [self deleteTweets];

 char *text = "INSERT INTO tweets (id, message) VALUES (?, ?);";

 for (NSDictionary *tweetDictionary in tweets) {

 sqlite3_exec(database, "BEGIN;", NULL, NULL, NULL);

 sqlite3_stmt *stmt = NULL;
 if (SQLITE_OK !=
 sqlite3_prepare_v2(database, text, -1, &stmt, NULL)) {
 NSLog(@"error: '%s'", sqlite3_errmsg(database));
 sqlite3_exec(database, "ROLLBACK;", NULL, NULL, NULL);
 }

 NSNumberFormatter * f = [[NSNumberFormatter alloc] init];
 NSNumber * tweetId =
 [f numberFromString:[tweetDictionary objectForKey:@"id"]];
 sqlite3_bind_int64(stmt, 1, [tweetId longLongValue]);
 [f release];

 NSString *message = [tweetDictionary objectForKey:@"text"];
 sqlite3_bind_text(stmt,
 2,
 [message UTF8String],
 -1,
 SQLITE_TRANSIENT);

 BOOL result = sqlite3_step(stmt) != SQLITE_ERROR;
 sqlite3_finalize(stmt);

 sqlite3_exec(database, result ? "END;" : "ROLLBACK;",
 NULL, NULL, NULL);
 }
 }

 //post a notification that the tweets are available...have responder
 //update itself on the main thread

CHAPTER 10: Using Open Source Tools and Other Goodies 198

 [[NSNotificationCenter defaultCenter]
 postNotificationName:@"tweetsDidSynchronize"
 object:self
userInfo:nil];

 [autoReleasePool release];
}

Figure 10–12. The SQLite database of Tweets

Now that the Tweets are in the database, the application needs a way to retrieve them.

This is accomplished via TwitterDataStore’s tweets method. This method uses a

standard SQL SELECT statement to get all of the Tweets from the database:

NSString *tweetsStatement = @"SELECT id, message FROM tweets";

If the statement is prepared successfully, the result set is traversed, and a new Tweet is

created and initialized for each row in the result set. The Tweet is then added to an array

of Tweets that is returned by the method:

- (NSArray*)tweets
{
 NSMutableArray *tweets = [NSMutableArray array];

 @synchronized(self) {

 sqlite3_stmt *queryStatement = nil;
 NSString *tweetsStatement = @"SELECT id, message FROM tweets";
 if (SQLITE_OK != sqlite3_prepare_v2(database,
 [tweetsStatement UTF8String],-1,&queryStatement, NULL)) {
 NSLog(@"error: '%s'", sqlite3_errmsg(database));

CHAPTER 10: Using Open Source Tools and Other Goodies 199

 return nil;
 }

 while(sqlite3_step(queryStatement) == SQLITE_ROW) {

 Tweet *tweet = [[[Tweet alloc] init] autorelease];
 [tweet setId:[NSNumber numberWithLongLong:
 sqlite3_column_int64(queryStatement, 0)]];
 [tweet setText:[NSString stringWithUTF8String:
 (const char*)sqlite3_column_text(queryStatement, 1)]];
 [tweets addObject:tweet];
 }
 sqlite3_finalize(queryStatement);
 }

 return tweets;
}

The final method to implement to complete the SQLite implementation of

TwitterDataStore is deleteTweets. This method simply executes a SQL DELETE

statement on the database to delete all of the Tweets:

NSString *deleteTweetsStatement = @"DELETE FROM tweets";

- (void)deleteTweets
{
 @synchronized(self) {
 char *errmsg;

 NSString *deleteStmnt = @"DELETE FROM tweets";
 if (SQLITE_OK !=
 sqlite3_exec(database, [deleteStmnt UTF8String], NULL,
 NULL, &errmsg)) {
 NSLog(@"error: '%s'", sqlite3_errmsg(database));
 }
 }
}

The preceding code uses SQLite, so it will not link unless the application’s Xcode project

is adjusted to link against libsqlite3.0.dylib instead of CoreData.framework (see

Figure 10–13).

CHAPTER 10: Using Open Source Tools and Other Goodies 200

Figure 10–13. Adjusting the Xcode project to link against libsqlite3.0.dylib instead of CoreData.framework

To Test or Not to Test, That is the Question
Since code for a data model or layer doesn’t require a user interface, it presents a

unique opportunity to discuss an often overlooked topic for iOS and mobile

development in general, which is Unit Testing. Unfortunately, a lot of projects avoid

writing Unit Tests altogether or try to add some tests at the tail end of a project. Part of

this is due to how difficult it often is to get a testing environment set up for a project, and

some of it may be due to developer laziness. However, when done early and often, Unit

Tests actually let developers be lazier than if they hadn’t written tests at all because it

requires less manual testing. In addition, with Xcode 4, Apple has made it easier than

ever to get up and running with Unit Tests for an iOS project.

What follows is a step-by-step tutorial that adds a Unit Test to the OfflineTwitter Xcode

for this project. The Unit Test validates the code that synchronizes the Tweets in the

database. Of course, it’s always best to write tests as code is being written, but the

main purpose of this tutorial is to show how easy it is to add Unit Tests to an iOS

Facebook or Twitter application.

Adding Unit Tests to a Social iOS App
Apple has configured Unit Tests to build and run as a separate target within an Xcode

project. While this may seem a bit cumbersome at first, it has the nice advantage of

keeping test code out of the main application target in a project. This means that test

CHAPTER 10: Using Open Source Tools and Other Goodies 201

files don’t get built into the final application binary. It also helps with debugging and

setting up an automated test environment.

To add a new Target to a project in Xcode 4, from the File menu choose New New

Target... (see Figure 10–14).

Figure 10–14. Adding a new target

In the Target template pop-up window, go to the iOS section, choose Other, and then

select Cocoa Touch Unit Testing Bundle (see Figure 10–15).

CHAPTER 10: Using Open Source Tools and Other Goodies 202

Figure 10–15. Choose Cocoa Touch Unit Testing Bundle.

Next, give the new target a name (see Figure 10–16).

Figure 10–16. Rename the target.

CHAPTER 10: Using Open Source Tools and Other Goodies 203

Now switch to the new Target in Xcode via the Target drop-down, choose Test from the

Product menu to create a build, and then run the test Target (see Figure 10–17).

Figure 10–17. Build and run the test target.

The default test code created by Xcode is designed to cause a failure out-of-the-box.

This illustrates how Xcode highlights test case failures (see Figure 10–18).

CHAPTER 10: Using Open Source Tools and Other Goodies 204

Figure 10–18. Failure!

The tests need to be written for the TwitterDataStore_SQLite class; therefore, the

TwitterDataStore_SQLite, TwitterDataStore, and Tweet classes need to be added to

the OfflineTwitterTest Target, so that the OfflineTwitterTest Target will link when

actual test code is added (see Figures 10–19 through 10–21).

CHAPTER 10: Using Open Source Tools and Other Goodies 205

Figure 10–19. Add Tweet.m to OfflineTwitterTest Target

Figure 10–20. Add TwitterDataStore.m to OfflineTwitterTest Target

CHAPTER 10: Using Open Source Tools and Other Goodies 206

Figure 10–21. Add TwitterDataStore_SQLite to OfflineTwitterTest Target

All of the setup is now complete, so it’s time to write a simple test to see everything in

action. The test class will test functionality in the TwitterDataStore_SQLite class, so it

needs to own a TwitterDataStore_SQLite object. Open OfflineTwitterTest.h in the

sample project and note the declaration of a TwitterDataStore_SQLite object:

#import <SenTestingKit/SenTestingKit.h>

@class TwitterDataStore_SQLite;
@interface OfflineTwitterTest : SenTestCase {
@private
 TwitterDataStore_SQLite *twitterDataStore;
}

@end

With most Unit Testing frameworks, test classes are given a chance to do some setup

before the test is run and some cleanup after the test is finished. Unit Testing for iOS

projects is no different. Before a test is run, the test class’s setUp method is called. After

the test executes, the tearDown method is called. Open OfflineTwitterTest.m in the

sample project and examine the implementation of these methods. Since this is a basic

example, setUp instantiates the TwitterDataStore_SQLite object, and tearDown releases

the object, so that the test doesn’t create a memory leak (which could cause other side

effects). Depending on the nature of the code in an application, more code may be

required for these methods. Generally, these methods should be reserved for code that

is required for every test in the class:

- (void)setUp

CHAPTER 10: Using Open Source Tools and Other Goodies 207

{
 [super setUp];

 // Set-up code here.
 twitterDataStore = [[TwitterDataStore_SQLite alloc] init];
}

- (void)tearDown
{
 // Tear-down code here.
 [twitterDataStore release];

 [super tearDown];
}

What follows is an actual test for the functionality of the TwitterDataStore_SQLite class.

While there is the temptation to write Unit Tests for each method of a class, a better

approach is to consider what the class is supposed to accomplish as a whole and write

tests to validate its functionality. This also brings up the topic of naming tests. It is best

to give tests useful, descriptive names so that other developers on a project will

immediately know, just from the name, what the test is trying to validate. To that end,

the test that follows is entitled testItShouldSynchronizeTweets to reflect the fact that

one of TwitterDataStore_SQLite’s main responsibilities is to store and synchronize

Tweets.

The test first deletes any Tweets from TwitterDataStore_SQLite, so that it’s starting with

a clean slate. This approach may not be necessary or desirable in all cases, and it

should be adjusted on a class-by-class or application basis. Next, an NSDictionary is

created to represent a dummy Tweet. Since TwitterDataStore_SQLite’s

synchronizeTweets: method takes an NSArray as its only parameter, the NSDictionary

for the Tweet is added to an NSArray object that is passed to synchronizeTweets:.

TwitterDataStore_SQLite’s tweet method is then used to retrieve the stored Tweets,

and a simple comparison is made to confirm that the datastore has a single Tweet.

Depending on the test or application, additional validation could be added, such as

whether or not the contents of the retrieved Tweet match what was put in the dictionary

for the Tweet:

- (void)testItShouldSynchronizeTweets
{
 [twitterDataStore deleteTweets];

 NSDictionary *tweetDictionary = [NSDictionary
 dictionaryWithObjects:[NSArray arrayWithObjects:@"1", @"Tweet!", nil]
 forKeys:[NSArray arrayWithObjects:@"id", @"text", nil]];

 NSArray *newTweets = [NSArray arrayWithObject:tweetDictionary];
 [twitterDataStore synchronizeTweets:newTweets];

 NSArray *tweets = [twitterDataStore tweets];
 STAssertTrue((1 == [tweets count]), @"Test error message");
}

@end

CHAPTER 10: Using Open Source Tools and Other Goodies 208

The great thing about tests like this is that they make it very easy to debug code under

specific scenarios, without having to run the actual application and perform multiple

steps within the user interface. Such an approach also makes testing repeatable, which

is excellent when code needs to be refactored or optimized. And of course, it ensures

that regressions (i.e., bugs introduced into code that was previously working as

expected) are not introduced into the code when it is adjusted or goes through a major

overhaul.

Applications will need more than just one test. When additional tests are required, they

can be added to an existing test class, or a new test class can be added to the test

Target. Don’t forget to also add any files from the main application Target to the test

Target, depending on which functionality is being tested.

For additional information on this topic from Apple, review the testing sections in the

document at this URL:

http://developer.apple.com/library/ios/#documentation/ToolsLanguages/Conceptual/Xcode4Us
erGuide/Building/Building.html

The tests are built via the SenTestingKit framework. The framework makes a number of

macros available for validating tests. These macros start with the prefix, ST. The

preceding example code uses the macro, STAssertTrue, but other available macros can

be found in SenTestCase_Macros.h.

Setting up the test Target is a big part of configuring a project for tests. As mentioned

previously, this overview covered Unit Testing from within Xcode 4. If a project is being

built using Xcode 3, a different configuration is required.

While the SenTestingKit framework is available in Xcode 3, Apple’s out-of-the-box

offering for setting up tests is less than ideal. However, some engineers at Google were

nice enough to expand on Apple’s offering and make an updated iOS Unit Testing

library available to the general public. Setting this up in Xcode 3 requires a few manual

steps, but it’s well worth the effort. The code is part of Google’s google-toolbox-for-mac

initiative, and it can be found here:

https://code.google.com/p/google-toolbox-for-mac/wiki/iPhoneUnitTesting

Another worthwhile alternative for Xcode 3 is GHUnit, which you can find here:

https://github.com/gabriel/gh-unit

Another interesting aspect of writing Unit Tests pertains to mocking objects. Learning to

mock objects for tests can take test code to the next level. The main offering for

mocking objects in Objective-C Unit Tests for iOS projects is OCMock. Note that using

OCMock doesn’t require a new testing target in an iOS project. Rather, it offers classes

and functionality to use in existing test classes and methods or new tests. Explore the

information at the following link for an introduction to OCMock, as well as setup

instructions:

www.mulle-kybernetik.com/software/OCMock/

CHAPTER 10: Using Open Source Tools and Other Goodies 209

Conclusion
There are a number of great tools available to make life easier when developing iOS

projects. These range from free online services to open source tools and software. This

chapter touches just the surface of what is available; however, it covers a few that are

indispensable for writing great iOS apps in general, as well as for Facebook and Twitter

specifically. There is a wealth of information available online and via books and

publications with respect to data modeling, testing, and shortening URLs; but writing

iOS applications lends itself to the tools and software covered in this chapter due to the

nature of mobile development and the constraints of the iOS platform.

211

211

 Chapter

Apps You Can
(and Cannot) Build
Sadly, we realized early on in writing this book that we’d need a chapter about all the

rules that attend the use of the Facebook and Twitter APIs. Back in 2009, when these

apps were exploding in popularity, social APIs were used with relative abandon. The

platform makers—and that includes Facebook and Twitter—weren’t sure how

smartphones were going to change the way people used their tools.

Now that some time has passed, Facebook and Twitter have begun restricting the ways

in which you can use their APIs.

In fairness, Facebook’s platform policies are sensible and give developers wide latitude.

Twitter, on the other hand, is often accused of being more manipulative (to put it

diplomatically) about how people use their code.

While we, the authors, would certainly prefer complete freedom to use these APIs

however we want, it’s important to acknowledge that a brand like Twitter has a

reputation to uphold, and (like any company) it is terrified of someone dragging it

through the mud or confusing consumers about what Twitter is for.

Treat this section as a filter for your app ideas. If you already have an app that you’re

adding Twitter or Facebook functionality to, then you’ll still want to skim this chapter to

make sure none of your app’s visual or interactive elements attract any negative

attention from the Twitter and Facebook platforms.

After all, the only thing worse than having to obey rules is having to go back and redo

your work to comply with them.

Twitter: No Clients Allowed
In March 2011, Twitter platform team member Ryan Sarver (@rsarver) posted a missive

to its developer group. In this post, Sarver declared new Twitter fiats meant to corral

what and how developers build. You can read his post at this URL:

11

CHAPTER 11: Apps You Can (and Cannot) Build 212

https://groups.google.com/forum/#!topic/twitter-development-talk/yCzVnHqHIWo/discussion

We won’t bother reproducing the note in full, but we’ll highlight some areas where the

changes in policy have been most acute. These also tend to be areas that developers

new to the platform aren’t aware of. The main points were as follows:

 Twitter has gotten exceedingly popular since its developer terms

were first written.

 The more mainstream the service, the more consistent the UI and UX

must be; otherwise, Twitter suffers what is known in the business as

brand dilution.

 The UI and UX in the official Twitter apps are best, as indicated by

their immense popularity compared to that of third-party Twitter

apps.

 As a result, Twitter is slowly cracking down on the creation of Twitter

clients that only reproduce Twitter functionality (and don’t add some

other kind of value). It’s suggestions for value-added Twitter apps

include publishing tools (such as SocialFlow), curation tools (such as

Sulia), and data products (such as Klout). Other opportunities include

social CRM clients like HootSuite; as well as other unique services

like Foursquare, Instagram, and Quora.

In summary: You can still develop freely with the Twitter API. But from now on, you’ll

have to be more creative about the way your app uses the service. Simply reproducing

the Twitter app with a different design or interaction will earn you a scolding from the

Twitter team email (and possibly loss of access to the Twitter API).

The Lowdown on the Twitter Terms of Service
When Twitter posted the note just described, it also disseminated a revised Terms of

Service that provided more specificity on the changes described in that post. Again, we

won’t reproduce them in full here, but there are certain areas you should be particularly

aware of.

NOTE: The best case scenario is that you will create an app that is wildly popular. If your app
ever needs more than 5 million user tokens, you will need to contact Twitter directly about

access to the Twitter API.

You can find the complete Twitter Terms of Service here:

http://dev.twitter.com/pages/api_terms

CHAPTER 11: Apps You Can (and Cannot) Build 213

Rules of the Road
We will summarize Twitter’s “rules” in the sections that follow. Note that even our

summary—which is significantly more terse than the actual document—is still annoyingly

long. We’ve put the most crucial points in boldface, in case you’d like to read those

quickly. But don’t move too fast—it’d be a shame to invest time and energy in a project

not endorsed by these terms, since you may have to scrap it later.

Using the API
Here are some of the key rules governing the use of Twitter’s API:

 You need written permission from Twitter If you want to sell, rent,

lease, sublicense, redistribute, or syndicate the Twitter API, Twitter

data, or Twitter content. Here are some additional rules pertaining to

these permissions:

 You face a special restriction if you provide an API that returns

Twitter data: it may only return Tweet IDs and user IDs.

 You may export or extract non-programmatic, GUI-driven Twitter

content as a PDF or spreadsheet by using “save as” or similar

functionality.

 You are not permitted to export Twitter content to a datastore as

a service or other cloud-based service.

 You aren’t allowed to alter any proprietary notices or marks on the

Twitter API or content.

 You can’t use the Twitter API for purposes of monitoring the up-
time, performance, or functionality of Twitter.

 You can’t use Twitter trademarks in a manner that suggests you
have any association with Twitter.

 You can’t sell or access the Twitter API to aggregate, cache
(except as part of a Tweet), or store geographic location info
contained in Tweets.

 You can’t charge a premium for access to any Twitter feature.

What Your App Can Do
According to Twitter, your service “may be an application or client that provides major

components of a Twitter-like end user experience”; however, if you build a client app,

additional terms apply:

CHAPTER 11: Apps You Can (and Cannot) Build 214

 You must use the Twitter API as the sole source for features in your

client that are substantially similar to functionality offered by Twitter.

In other words, you can’t mix another similar API into your Twitter API

project, or the company will write you one of those threatening

emails.

 You may not offer payment to third parties for distribution of your

app.

 You cannot frame or reproduce significant portions of the Twitter
service in your app; instead, you must use the Twitter API to
display Twitter content.

 Do not store private data or content, or duplicate Twitter’s database.

Rules Governing Existing Twitter Clients
Given the new terms of service, it might seem strange that several non-official

Twitter clients remain in the app store. When Twitter made the “no more

clients” announcement in March 2011, its platform developers said some

existing Twitter client apps would be allowed to continue doing business.

However, Twitter’s Ryan Sarver added1:

“We will be holding you to high standards to ensure you do not violate users’

privacy, that you provide consistency in the user experience, and that you

rigorously adhere to all areas of our Terms of Service.”

How Twitter Defines Usability
The section that follows doesn’t contain rules, exactly; rather, it describes a series of

guidelines that (if followed) will ensure you don’t earn any ire from Twitter’s platform

folks. It might seem draconian of them to dictate how your app should operate, but it’s

in the best interest of users, some of whom will be confused if your app does things with

the platform that other Twitter apps don’t. In that spirit, Twitter asks that you adhere to

the following:

 Don’t surprise users: Don’t misuse Twitter functionality or

terminology:

 Maintain the integrity of Tweets. There is a lot of information
packed into Tweets, even though they are just 140
characters long. See Chapter 13 for Twitter Visual Design
guidance.

1 https://groups.google.com/forum/#!topic/twitter-development-
talk/yCzVnHqHIWo/discussion

CHAPTER 11: Apps You Can (and Cannot) Build 215

 Don’t edit or revise user-generated content delivered through the

API.

 Always show the user that authored or provided a Tweet.

 Don’t create or distribute spam: Get a user’s permission before you

do any of the following:

 Send Tweets or other messages on her behalf. The fact that
a user authenticates through your application does not
constitute consent to send a message on her behalf.

 Modify her profile information or take account actions (including

following, unfollowing, and blocking) on her behalf.

 Add hash tags, annotations data, or other content to a user’s

Tweet. Show the user exactly what will be published.

 Don’t make placeholder apps for the sake of name-squatting.

 Respect user privacy: You need to utilize proper security standards

such as OAuth, as discussed in Chapter 2. You should also do the

following:

 Respect the privacy and sharing settings of Twitter Content.

 Promptly change your treatment of Twitter content as changes

are reported through the Twitter API.

 Always show users a privacy policy for your service. You
should also clearly disclose what you are doing with
information you collect from them.

 Clearly disclose when you are adding location information to
a user’s Tweets, whether as a geotag or annotations data.

 Do not solicit another developer’s consumer keys or consumer

secrets if they will be stored outside of that developer’s control.

 Do not facilitate or encourage the publishing of private or

confidential information.

 Be a good partner to Twitter: You need to follow all the rules

described in this chapter, including the following:

 Don’t use business names and/or logos in a manner that can
mislead, confuse, or deceive users. For more information on

the use of Twitter Marks, see the trademark rules later in this

chapter.

 Try not to confuse or mislead users about the source or purpose

of your application.

 Don’t link to malware.

CHAPTER 11: Apps You Can (and Cannot) Build 216

 Don’t replicate, frame, or mirror the Twitter website or its
design.

 Don’t misuse the API to impersonate others on Twitter.

Login and Identity

Twitter also has some guidelines pertaining to login and identity:

 You must present users with the option to log into Twitter via the

OAuth security protocol, as discussed in Chapters 2 and 5 of this

book.

 You should give end users without a Twitter account the
opportunity to create a new Twitter account.

 You must display the Connect with Twitter option at least as

prominently as the Facebook Connect button, or any other social

Web login option.

 You must do the following once an end user has authenticated via

Connect with Twitter: clearly display his Twitter avatar, his Twitter

user name, and the Twitter bird graphic.

Displaying Content Correctly

Here are the guidelines that cover displaying Twitter content correctly:

 You should have all URLs referencing content in a Tweet direct users

back to the page where that content is displayed, and not to any

intermediate pages.

 You must show Tweets that reference Twitter as the source if your

service displays updates commingled with Tweets.

 Don’t put pornography in user profile images or backgrounds.

 Only surface actions that are organically displayed on Twitter. For

example, when a user executes the unfavorite or delete actions, you

should not do something Twitter doesn’t, such as publicize that a

Tweet was deleted.

 Do not falsely report an account as Verified.

Monetizing Your App
You should adhere to the following guidelines when attempting to monetize your app.

One of the most important aspects of this is to respect user content:

 Tweets may be used in ads, but not as ads.

CHAPTER 11: Apps You Can (and Cannot) Build 217

 You must get permission from the user that created a Tweet if you

want to use it on a durable good, or if you’re implying the

sponsorship or endorsement of that user.

Twitter Ads
Twitter may serve advertising in your app via its APIs (i.e., Twitter Ads); however, Twitter

will share a portion of advertising revenue with you if you contact it.

Advertising Around Twitter Content
You are allowed to advertise inside your own Twitter API app, but there are (of course)

rules about this, too:

 You must pay Twitter a cut of your revenue if the “primary basis”
of your advertising deal is Tweets. If you think your ad deal may
fall under this rubric, email Twitter at partner@twitter.com.
This includes things like custom visualizations.

 You cannot put ads in the Twitter timeline or in any other
message else that might reasonably be confused by users as a
Tweet. For example, ads cannot have Tweet actions like
ReTweet, Favorite, and Reply.

 You must generally maintain a clear separation between Twitter

content and your advertisements.

New Rate Limits and the End of Whitelisting
Until early 2011, Twitter had a whitelist of developers it allowed to exceed the hourly rate

limit of API calls. The concept of the whitelist was a hold-over from the early days of the

REST API, when Twitter had few bulk request options, and the Streaming API wasn’t

public yet.

Since then, Twitter has added more efficient tools for making bulk requests: lookups, ID

lists, authentication, and the Streaming API. Still, now that all whitelist requests are

being denied, some app projects that might have been ingenious back in 2010 won’t be

viable today.

If you’re planning to do advanced research and analytics, you’ll need to buy data

through a reseller of Twitter data like Gnip.

The real change, however, comes a bit later in Sarver’s announcement, when he notes

that “there are going to be some things that developers want to do that just aren't

supported by the platform.” Instead of granting whitelisting to make advanced research

and analytics possible, writes Sarver, Twitter now asks that developers contact Gnip,

currently the primary reseller of Twitter data.

CHAPTER 11: Apps You Can (and Cannot) Build 218

REST API Rate Limiting
Twitter places a limit of 150 requests per hour on API calls. For OAuth calls, the limit is

350 per hour. As we said previously, Twitter won’t let you whitelist your way out of this

rate limit. You can buy bulk data from a reseller, but at the time of writing, the only such

reseller is Gnip. But others may follow, and a market for Twitter data may emerge. In any

case, many developers report negative experiences trying to work with unstructured

dumps from Twitter’s firehose.

Assuming you’re interested in the particulars of Twitter’s rate limits, we’ve summarized

its allowances here:

 Authenticated calls are measured against that user’s limit, while

unauthenticated calls are deducted from the allowance of the host.

Hosts are permitted 150 requests per hour.

 OAuth calls are permitted 350 requests per hour.

You can find the complete document that spells out these limits at this URL:

http://dev.twitter.com/pages/rate-limiting#rest

As with most social platforms, Twitter’s API places no rate limits on HTTP POSTs;

however, the company has said it may consider limiting POSTs in the future. Methods

that include limits are called out in the document at this URL:

http://dev.twitter.com/pages/rate-limiting#rest

NOTE: API methods that are not directly rate-limited are still subject to organic (and therefore

unpublished) limits.

If you think your app may be close to exceeding rate limits, you can monitor its status by

inspecting the HTTP response headers that are returned. With the default rate limit

headers, these response headers will also show the following:

 X-FeatureRateLimit-Limit

 X-FeatureRateLimit-Remaining

 X-FeatureRateLimit-Reset

You’ll know you’ve hit a rate limit when you get back HTTP 400 response codes.

Facebook: Mind Your Manners
Facebook’s rulebook is slightly less imposing than Twitter’s, and it’s more interested in

guiding developers than scaring them straight. In the sections that follow, we’ll explain

some of Facebook’s usability principles. Consider these to be the foundation for the

personality of your app.

CHAPTER 11: Apps You Can (and Cannot) Build 219

The Lowdown on Platform Policy
You can find Facebook’s complete, unedited platform policies at this URL:

http://developers.facebook.com/policy/

Creating a Great User Experience
Facebook has provided the following guidelines for creating a terrific user experience:

 Build social and engaging applications: What does this mean?

Well, the best Facebook API projects in the App Store prioritize

communication and interaction with other users. More passive,

consumption-oriented apps (like a News Feed reader) aren’t right for

Facebook, but make more sense on Twitter.

 Give users choice and control: Facebook’s API has a dizzying

number of objects, relationships, and actions. And while many of

them seem insignificant, it’s crucial that you adequately inform the

user when something is going to be posted or shared with others.

 Help users share expressive and relevant content: Ideally,

Facebook would have you build an app that doesn’t merely access its

Social Graph; it would also like your app to contribute new content to

it. Apps that upload user photos, videos, and links from the Web are

considered better citizens than those that don’t.

Be Trustworthy
Like Twitter, Facebook asks that you respect a user’s privacy, eschew spam, and avoid

any other unscrupulous activity. And like Twitter, Facebook doesn’t want developers

competing with its own internally created iOS app. However, Facebook is more

diplomatic about the way it explains its wishes, and it seems lax about forcing

developers to abide.

Specifically, Facebook says you must not make derivative use of Facebook icons.

Similarly, you cannot use terms for Facebook features and functionality that make it

sound like a stand-in or replacement for the official Facebook app. However, one look in

the App Store shows that many developers have copied Facebook’s blue-and-white

color scheme and made generous use of some Facebook iconography and terminology.

But while Facebook shows lenience today, Twitter’s example has demonstrated that

platforms can decide to create or enforce their developer terms as they please. Know

that if you decide to mimic Facebook’s theming and its characteristics, your app may

eventually earn the ire of the platform regulators. It will also look indistinguishable from

dozens of apps in the App Store.

CHAPTER 11: Apps You Can (and Cannot) Build 220

Rate Limits
Facebook imposes rate limits on users and API calls. For an authenticated user, the limit

is 5 million. API calls are limited to 100 million. Perhaps to preclude any major

competitor from using Social Graph data to compete with Facebook for ad dollars,

Facebook limits your app to 50 million impressions per day.

For Your Privacy Policy
Facebook asks that you tell users what user data you are going to use and how you will

use, display, share, or transfer that data in your app privacy policy. It also wants you to

include your privacy policy URL in the application. To read more about privacy, review

Chapter 2 (on privacy) and Chapter 5 (on OAuth and safe account management).

Other Stuff
Facebook has other rules about the use of its API, but thankfully its rules are more

succinct than Twitter’s:

 Don’t sell data: If you are acquired by or merge with a third party,

you can continue to use user data within your application; however,

you cannot transfer data outside your application.

 Delete your old projects: If you stop using the Facebook API or

Facebook disables your app, Facebook asks that you delete all the

data you’ve received through the API (unless it is basic account

information or you have the consent of the user to retain information

on him).

 Don’t use a user’s friend list outside of your application: Even if a

user consents to such use, this isn’t allowed. But you can use

connections between users who have both connected to your

application.

 Always provide a function in your app that allows people to
access their Facebook data from the app.

Rules About Content
Facebook’s platform police hold you accountable for all content in your app, including

user-generated content. This means you’re responsible for policing (or creating a

policing mechanism like a “flagging” function) in your app to ensure that your users

don’t post any of the following content to Facebook:

 Alcohol-related content

 Nudity

 Tobacco-related content

CHAPTER 11: Apps You Can (and Cannot) Build 221

 Content featuring firearms or graphic violence

 Content that infringes upon the rights of any third party (such as

intellectual property rights)

 Gambling-related content

 Illegal contests like pyramid schemes, sweepstakes, or chain letters

 Content that is hateful, threatening, defamatory, or pornographic

While Facebook might not be too aggressive in enforcing some of its design and

functionality terms, it’s actually very strict about violations to its content policy. The

community and its moderators have been known to flag and remove pictures many of us

might find rather innocent, such as an image of a mother breast-feeding her child. Still,

keep your users’ content PG or it will be quickly removed.

Other Odd Rules About How Facebook Apps Must Work
You will also want to keep the following rules in mind when working with Facebook APIs:

 Do not pre-fill your text fields with certain kinds of data, unless the

user specifically asks you to create this kind of post. Rules against

pre-filling fields apply to Stream stories (i.e., the user_message

parameter for Facebook.streamPublish and

FB.Connect.streamPublish, as well as the message parameter for

stream.publish), photo captions, video descriptions, Notes, Links,

and Jabber/XMPP.

 Adhere to Facebook’s restrictions on your choice of advertising

partners. A list of approved companies appears within the Apps

section of Facebook.com.

 You must ask a user for permission every time your app posts

something on his behalf after he grants you publishing permission.

 You must provide users with an obvious way to skip agreeing to the

terms of a Facebook social channel.

 You must not give users the option to publish more than one post
at a time in your app.

 You must not include platform integrations in your advertisements,

including social plugins such as the Like button. If you want to do

this, you have to get Facebook’s written permission. You can contact

the company on this page:

http://developers.facebook.com/policy/contact/

CHAPTER 11: Apps You Can (and Cannot) Build 222

 Do not use Facebook messaging as a channel for your app to
communicate directly with users; Facebook messaging (i.e.,
email sent to an @facebook.com address) is designed for
communication between users.

The Principles in Action
Facebook’s rules seem to be motivated by very specific behaviors it hopes to

discourage. The company’s platform documentation provides pages and pages of

specific examples with visual aids that explain the difference between compliant and

non-compliant apps. We’ve summarized Facebook’s ideas about compliancy here, so

that you can digest them quickly and move on.

Photos
Facebook has several guidelines you should follow when working with photos:

 Never have your app automatically tag a user or her friends in a photo.

 Tag a photo only with the expressed consent of the user on whose

behalf you are doing the tagging. Also, you must only tag images

when the tag accurately labels what is depicted in the image. In other

words, Facebook wants you to tag only human faces whose names

you know.

 Don’t tag a series of photos of a person in a row; you want to avoid

creating a banner effect at the top of her profile.

The Like Button
The only unexpected rule here is that you must not automatically reward users for Liking

your Page. If you want to reward people somehow for their fandom, you should make it

clear that Liking your page allows fans—both new and existing—to become eligible for

current and future rewards; however, the reward can’t be immediate or automatic.

Advertising
Twitter and Facebook rules diverge somewhat radically on the subject of advertising.

Twitter has a series of very specific guidelines about discussing its features in your app.

For example, as you’ll learn in Chapter 13, its guidelines ask that developers capitalize

the word Tweet when they discuss Twitter content.

By contrast, Facebook’s policy asks that you completely avoid Facebook logos,

trademarks, and site terminology. Facebook is also quite adamant that its site features

must not be emulated in your app. In other words, if your app looks too much like

Facebook property and works too much like Facebook.com (or touch.facebook.com),

you’ll probably hear from Facebook.

CHAPTER 11: Apps You Can (and Cannot) Build 223

If you’d like to read Facebook’s ad guidelines in their entirety, visit this URL:

http://www.facebook.com/ad_guidelines.php

Using the Social Stream
Facebook also has several rules that govern how you interact with the Social Stream.

The emphasis here is on authentic sharing of user-generated, user-authorized content:

 You should always ask a user whether he wants to publish a Feed

story, rather than do it automatically. Also, you should offer to do so

only after the user has taken a genuine action that may be associated

with an award.

 You must not pre-fill any of the fields associated with the following

products (unless the user manually creates the content):

 Stream stories (i.e., the user_message parameter for

Facebook.streamPublish and FB.Connect.streamPublish, as well

as the message parameter for stream.publish)

 Photo captions

 Video captions

 Notes

 Links

 Jabber/XMPP

Button Text
Here are a few examples of button text that are permitted for developers:

 Post

 Share

 Publish

 Add to Profile

And here are a few examples of button text that are too vague to incorporate

into your app, in Facebook’s opinion:

 Ignore

 OK

 Share & Continue

 Request

CHAPTER 11: Apps You Can (and Cannot) Build 224

App Gallery
Now that we’ve spent some time telling you what you cannot build, we’d be remiss if we

didn’t show you some really excellent apps that are (more or less) within the bounds of

the Twitter and Facebook platforms. There may be boundaries, but there’s still plenty of

space for developers to play in this sandbox.

Twitter Apps
In the authors’ opinions, the best apps that use the Twitter API do the following:

 Combine Twitter’s API with your own (or another) API to provide

existing Twitter users a convenient way to add value to their existing

Twitter service.

 Prioritize either (a) the consumption of Tweets or (b) the creation of

Tweets. Traditional Twitter client apps, for example, prioritize the

timeline and make it easy to browse through the content of other

users. However, an RSS reader might have no provision at all for

viewing your Twitter timeline, opting instead to provide only one

button that Tweets an article.

Begin by recalling the Twitter design principles mentioned earlier in the

chapter:

 Don’t surprise users: Don’t misuse Twitter functionality or

terminology.

 Respect user privacy: You need to utilize proper security standards

such as OAuth.

 Be a good partner to Twitter: You need to follow all the rules

described in this chapter.

What follows are some apps that work creatively with the Twitter API and satisfy the

aforementioned design principles.

Remember The Milk
Remember The Milk (or RTM, as it’s abbreviated) gets a lot of love from its users. It’s a

productivity app that uses Twitter integration (among other tricks) to make itself behave

more flexibly than a simple to-do list (see Figure 11–1).

CHAPTER 11: Apps You Can (and Cannot) Build 225

Figure 11–1. Remember The Milk uses Twitter as a backbone for a kind of remote command system.

RTM uses Tweets and direct messages to create and edit items on a to-do list that is

hosted elsewhere. Note that, while Tweets and direct messages are core Twitter

functions, they are being used in a novel way and in conjunction with other backend

software belonging to the RTM developers. In a nutshell, that’s the kind of app that

Twitter prefers developers to create: it adds a new layer of usefulness and functionality

on top of the existing Twitter infrastructure.

Adding Tasks
By adding @RTM as a Twitter contact, users can Tweet to-do items for themselves and

watch them appear later in in Remember The Milk’s task queue. To get items into their

to-do list (along with due dates and other task properties), users direct message @RTM

with their task in plain text. Here are some typical sample messages:

 “pick up the milk”: Adds a new task with that name to your to-do list.

 “call jimmy at 5pm tomorrow”: Adds a new task with the specified

name and due date to your to-do list.

 “return library books in 2 weeks”: Adds a new task with the specified

name and due date to your to-do list.

 “take out the trash monday at 8pm *weekly #errand”: Adds a new

task with the specified name and due date. It also marks it as a

repeating task with the #errand tag. RTM calls this Smart Add.

Sending Tasks to Other Twitter Users

You can also use RTM to send tasks to other Twitter users. For example, tweeting

“@username pick up the milk” sends the task to the specified Twitter username,

assuming this user is also signed up for Remember The Milk.

CHAPTER 11: Apps You Can (and Cannot) Build 226

Updating Tasks
To modify tasks that already exist in your to-do list, users can Tweet @RTM commands

like the following:

 !complete call jimmy (shortcut: !c): Completes the specified task.

 !postpone call jimmy (shortcut: !p): Postpones the specified task.

You can also get new tasks:

 !today (shortcut: !tod): Gets tasks due today.

 !tomorrow (shortcut: !tom): Gets tasks due tomorrow.

 !getdue friday (shortcut: !gd): Gets tasks due on the specified date—

Friday, in this case.

 !getlist personal (shortcut: !gl): Gets tasks from the specified list—

personal, in this case.

 !gettag call (shortcut: !gt): Gets tasks with the specified tag—call, in

this case.

 !getlocation office (shortcut: !go): Gets tasks at the specified

location—the office, in this case.

Changing Preferences
Remember The Milk also lets you change settings by Tweeting commands. Some

example commands you can Tweet include the following:

 !on — Enables task reminders.

 !off — Disables task reminders.

 !confirmon — Enables confirmations (task actions, such as adding

tasks via Twitter, will be confirmed).

 !confirmoff — Disables confirmations (task actions, such as adding

tasks via Twitter, will be confirmed).

 !help — Gets help info.

 !tips — Gets a list of commands.

Evernote
Evernote is a very popular cross-platform note-taking app for iOS, Android, Mac, PC,

and other mobile and desktop platforms (see Figure 11–2).

CHAPTER 11: Apps You Can (and Cannot) Build 227

Figure 11–2. Evernote is a cross-platform notetaking app that allows you to submit notes by at-replying @MyEN.

Evernote uses Twitter in much the same way that Remember The Milk does; however,

Evernote emphasizes the use of SMS messaging as a way of accessing Twitter.

Because Twitter can translate text messages into Tweets, it’s frequently used by

developers as a way of adding universal mobile phone functionality to apps that might

see especially broad adoption outside the iOS ecosystem.

Like Remember The Milk users, Evernote users can compose a public Tweet or a direct

message @myEN to have the body of the Tweet sent to an Evernote notebook (as seen

in Figure 11–3).

Also like RTM, Evernote uses Tweets and direct messages, just as any other app would;

however, Evernote messages don’t add anything to the user’s Tweet. Instead, they use

the bot @myEN to determine how to process and file incoming notes. The result is a

seemingly magical system that recognizes your submissions and files them correctly.

Figure 11–3. Tweeting @MyEN

SMS notes
Thanks to Twitter’s built-in SMS support, Evernote users can send notes to Evernote

from mobile phones operating in most countries worldwide. In the United States, the

Twitter short code is 40404. Composing a message to 40404 containing the command d
myEN tells Twitter to create a direct message @myEN, just as you would from a Twitter

client. The text accompanying the command is entered into a new note in your default

notebook.

CHAPTER 11: Apps You Can (and Cannot) Build 228

Figure 11–4. Adding Evernote content via Twitter’s SMS support

Adding TwitPics
Evernote also makes it easy to append pictures to your Evernote-bound Tweets. To do

this, Evernote supports TwitPic URLs. If you compose a Tweet @myEN that contains a

TwitPic URL, a thumbnail of the photo will show up in Evernote, along with a TwitPic link

in the body of the note that links to the full-sized image.

Waze
Because iOS has no pre-loaded turn-by-turn navigation apps, apps that promise driving

directions are an open market. One of the best of the lot is Waze, which takes a

somewhat sillier approach to navigation than some of its competitors (see Figure 11–5).

Waze puts a kind of game layer over your highway map, awarding you points as a way

of encouraging you to report accidents, new roads, hazards, speed traps, and other

ever-changing road features.

Figure 11–5. Waze is a popular traffic app for iOS that uses Twitter as its notification infrastructure.

Prior iterations of Waze allowed users to Tweet their traffic woes, collecting them in near

real-time to create a dynamic map of road conditions. Now, Waze scans all of Twitter’s

data for traffic jam information, whether or not the person who composed the Tweet has

a Waze account. This means that, even if a non-Waze user Tweets that he is stuck in

construction traffic, your Waze app will show that person’s warning on a map (assuming

the user attached his location to the Tweet). People who already use Waze are

CHAPTER 11: Apps You Can (and Cannot) Build 229

encouraged to Tweet their updates with the hash tag #wazelive to make sure the

system catches it.

This is what Twitter means when it says apps should strive to use data culled from the

Twitter API to build new experiences. You won’t find a Twitter timeline or list of followers

and followees anywhere in Waze. Instead, the app uses search and messaging to create

a real-life map of Twitter users in traffic in your area.

Waze also integrates Facebook and Foursquare APIs, letting you see if you have friends

in the area you’re driving through. You can also check in at your destination venue from

inside the app, if you’re so inclined.

Figure 11–6. The Waze UI, which barely betrays any sign of the Twitter or Facebook APIs

Facebook Apps
Making a useful app that integrates the Facebook API is somewhat harder than one that

integrates with Twitter, if only because Facebook’s popularity and its well-documented

APIs have made it such a popular choice with developers. Still, some apps stand out

from the crowd; and even if they’re not perfect, they embody the things that Facebook

says makes a great API integration.

Let’s begin by reiterating the Facebook design principles from earlier in the chapter:

 Build social and engaging applications: In other words, prioritize

communication and interaction with other users.

CHAPTER 11: Apps You Can (and Cannot) Build 230

 Give users choice and control: Be sure to adequately inform the

user when something is going to be posted or shared with others.

 Help users share expressive and relevant content: Apps that

upload user photos, videos, and links from the Web are considered

better citizens than those that don’t.

Fone
Fone isn’t a perfect app, but it’s a relatively simple project that does something the

Facebook app doesn’t excel at. Fone takes the instant messaging and voice calling

feature from Facebook and puts it on the iPhone, creating a Facebook alternative to the

system-standard Phone app (see Figure 11–7). (There is no voice calling from inside the

official Facebook app.)

Figure 11–7. Fone isn’t a perfect app, but it adds some value to the Facebook chat experience—in the form of
voice calls—and more or less avoids looking too Facebook-like.

Because it’s meant to connect users with other users, this app adheres to Facebook’s

usability principles. It also does a good job of using visual assets to communicate its

function (see Figure 11–8). The blue colors harken back to Facebook, but the

iconography lets people know that this app makes calls. Despite being a predominantly

blue app, there isn’t much evidence of any Facebook branding here. The typography

alone makes it rather clear to users that they aren’t inside a Facebook-branded app, as

does the card interface (inspired no doubt by the preloaded iOS Weather app).

CHAPTER 11: Apps You Can (and Cannot) Build 231

Figure 11–8. Fone does a good job of communicating its function.

Flipboard
Flipboard is a popular reader app for the iPad (see Figure 11–9). It operates under the

supposition that much of the content you add to your Facebook profile or Twitter

timeline comes from online sources like blogs, magazines, and the Social Graph. The

app puts its focus on content, allowing you to read your RSS feeds, Facebook and

Twitter news, and your favorite online magazines. It also makes it easy for people to take

that content and share it with their network of friends.

Figure 11–9. Flipboard, the popular news reader app for the iPad, integrates Facebook APIs nicely.

Flipboard allows users to post Status updates, Tweets, and photos from anywhere

within the magazine (see Figure 11–10).

CHAPTER 11: Apps You Can (and Cannot) Build 232

Figure 11–10. Flipboard allows you to consume your Facebook news feed in a different format than any of the
Facebook sites or apps.

Flipboard’s Founder and CEO, Mike McCue, made a succinct explanation of what

makes a good social API project at the release of the latest iteration of the app, when he

said2:

“The people you’re connected to via your social networks are becoming
curators of the news and information that matters to you, an important
principle we are increasingly seeing in Flipboard. Many of our readers use
Google Reader and Flickr for news and photos curated by people they trust.
The full integration of these social networks takes us another step toward
realizing our vision of a social magazine that puts everything you care about in
one place.”

In other words, the Flipboard app isn’t just a one-way reader app. It allows you to

consume and produce content in the same place, and do it around content you’re

pulling in from elsewhere. In short, it’s apps like Flipboard that get fresh air into the

Facebook arena and keep our news feeds from becoming mundane.

Conclusion
There are probably more rules around Twitter and Facebook API integration than you

foresaw; some of them certainly surprised us. While you probably won’t incur any legal

trouble from violating most of these rules, Twitter and Facebook will probably get in

2 http://flipboard.com/press/flipboard-new-edition

CHAPTER 11: Apps You Can (and Cannot) Build 233

touch with you if you don’t follow their rules, asking that you redesign your app or lose

access to their APIs. Since the preceding pages have been rather dense, we’ve

produced a cheat-sheet that you can use while vetting ideas for your app.

First, here is a major rules cheat sheet for Twitter:

 Don’t use the Twitter API for purposes of monitoring the availability,

performance, or functionality of any of Twitter’s products and

services.

 Don’t use Twitter Marks in a manner that creates a sense of

endorsement, sponsorship, or false association with Twitter.

 Use or access the Twitter API to aggregate, cache (except as part of

a Tweet), or store place and other geographic location information

contained in Twitter content.

 Don’t have your client frame or otherwise reproduce significant

portions of the Twitter service. You should display Twitter content

using the Twitter API. (i.e., don’t create new Twitter clients that

operate like the Twitter app).

 Maintain the integrity of Tweets. There is a lot of information packed

into Tweets, even though they are just 140 characters long. See

Chapter 13 for Twitter Visual Design guidance.

 Always get permission before sending Tweets or other messages on

a user’s behalf. The fact that a user authenticates through your

application does not constitute consent to send a message on his

behalf.

 Always display a privacy policy with your service. Clearly disclose

what you are doing with information you collect from users.

 Clearly disclose when you are adding location information to a user’s

Tweets, whether as a geotag or annotations data.

 Don’t use business names and/or logos in a manner that can mislead,

confuse, or deceive users. For more information on the use of Twitter

Marks, see the trademark rules later in this chapter.

 Give end users without a Twitter account the opportunity to create a

new Twitter account.

 Only surface actions that are organically displayed on Twitter.

 Don’t let your advertisements resemble or be reasonably confused by

users as a Tweet. For example, ads cannot have Tweet actions like

ReTweet, Favorite, or Reply.

And second, here is a major rules cheat sheet for Facebook:

 Focus on authentic sharing of user-generated, user-authorized

content.

CHAPTER 11: Apps You Can (and Cannot) Build 234

 Always ask users whether they want to publish a Feed story; don’t do

so automatically. Also, offer to publish a story only after the user has

taken a genuine action that may be associated with an award.

 Never pre-fill any of the fields associated with the following products,

unless the user manually generated the content earlier in the

workflow: Stream stories (the user_message parameter for

Facebook.streamPublish and FB.Connect.streamPublish, as well as

the message parameter for stream.publish), Photos (caption), Videos

(description), Notes (title and content), or Links (comment).

 Don’t use Facebook messaging as a channel for applications to

communicate directly with users.

 Don’t automatically reward users for Liking your Page. If you want to

reward people somehow for their fandom, you should make it clear

that Liking your Page allows fans—both new and existing—to become

eligible for current and future rewards.

 Never have your app automatically tag a user or his friends in a

photo.

 Tag a photo only with the expressed consent of the user on whose

behalf you are doing the tagging. Note that you must only tag images

where the tag accurately labels what is depicted in the image.

 Don’t provide users with the option to publish more than one Stream

story at a time.

235

235

 Chapter

UI Design and Experience
Guidelines for Social iOS
Apps
In the last chapter, we talked about all the rules and regulations that Facebook and

Twitter have conceived in the name of “protecting the user experience.” Of course,

those guidelines only address things that could reflect poorly on the platform. This

chapter offers a little guidance on how to make something that doesn’t merely satisfy

the letter of the law: an app that is actually intuitive to use.

If this is your first time designing an iOS app, this section is required reading. It will

address several sections of Apple’s Human Interface Guidelines (HIG), which are

especially important for social apps. It will also tell you how you can use visual and

interaction design correctly, avoiding both user confusion and trademark conflicts.

Follow these rules, and you’ll get great feedback from users—and no hassling from the

Twitter and Facebook platform reps.

We, the authors, believe the best iOS apps generally follow Apple’s HIG, except where

they purposely diverge to make an improvement upon the interface. In other words, we

believe the best design should win, and developers can and should replicate each

other’s best interactions in the hopes of creating organic UI standards.

What we’re really saying here is that learning the rules is crucial if you’re going to be

empowered to break them. If you’ve designed apps before, then this chapter is optional.

However, you may want to page through it briefly to review certain paradigms.

UI Basics for Facebook and Twitter
This chapter begins with some very basic advice about social app design on iOS. The

official Twitter and Facebook apps (and their legions of existing app developers) have

standardized the interaction and visual design of these apps, so users have very high

12

CHAPTER 12: UI Design and Experience Guidelines for Social iOS Apps 236

expectations for any UI you design. Following the advice of this chapter will help you do

right by the user and avoid the wrath of all the rules we discussed in Chapter 11.

To start, here are two essential pieces of advice:

 Be careful how you handle accounts upon setup.

 Allow users to sign up, sign in, and sign out from your app with both

Twitter and Facebook API integrations.

We’ll begin by looking at how you handle accounts when you set them up. Showing

users an error or a blank view simply because they haven’t logged in yet fosters a bad

user experience. We hate to pick on anybody, but here is an anonymous Twitter app we

found on the App Store. At startup, it looks like the image shown in Figure 12–1.

Figure 12–1. An error should never be the first thing a user sees in your app.

Showing the user an error that says “Warning” when first starting up is a lame way to

introduce the user to your app. It gets worse. If you click OK and fail to enter your

account information in this app (buried in More Config, in this case), you simply get a

blank timeline the next time you start the app. This is also not a great way to handle user

accounts.

A better approach to the startup sequence can be seen in Twitterific (see Figure 12–2).

This app also happens to be a good segue into our second, perhaps insultingly basic

piece of advice.

CHAPTER 12: UI Design and Experience Guidelines for Social iOS Apps 237

Figure 12–2. Twitterific’s signup screen presents itself nicely.

That is, you should allow users to sign up, sign in, and sign out from your app with both

Twitter and Facebook API integrations. Both platforms ask that you do this, and it’s only

fair to users to follow through on it. Similarly, your app should be equipped to handle a

scenario where the phone is offline upon launch or where the network connection fails

during sign-in.

Attention to Detail: Start with the Icons
Design is paramount on iOS, so your attention to the detail of visual assets should be

scrupulous. We’ll begin by making sure you know the appropriate dimensions for

iconography. This is your app’s calling card to the world, so it must have the correct

dimensions if it’s going to look good on a Retina display.

Here are the proper icon sizes for both the iPhone and iPod:

 iPhone 4 icon: 114x114px (the old standard iPhone icon resolution

was 57x57, which is the minimum acceptable size).

 App Store icon: 512x512px

 Spotlight Search: 29x29px

 iPhone 4 Spotlight: 58x58px

CHAPTER 12: UI Design and Experience Guidelines for Social iOS Apps 238

Apple’s required icon sizes in a table below.

Table 12–1. Apple’s required icon sizes

The largest visual asset you’ll need to make here is 512 x 512 pixels. This is the graphic

that is displayed when the app is being viewed in iTunes Cover Flow or when it’s on a

banner atop the App Store. In general, start all your icon designs at 512 pixels and

adjust them to the required size. Simply scaling down a single icon to other sizes will

result in blurry icons.

NOTE: PNG format is recommended for all images and icons. The standard bit depth for icons
and images is 24 bits (8 bits each for red, green, and blue), plus an 8-bit alpha channel. Although
you can use alpha transparency in the icons for navigation bars, toolbars, and tab bars, do not

use this feature in app icons. You do not have to restrict yourself to Web-safe colors.

CHAPTER 12: UI Design and Experience Guidelines for Social iOS Apps 239

Here are the iPad standard app sizes:

 Application icon: 72x72px

 App Store icon: 512x512px

 Spotlight Search: 50x50px

 Settings icon: 29x29px

NOTE: The App Store only accepts applications with PNG files for icons.

You don’t have to add gloss to your icons; it happens automatically. There’s a Boolean

switch you can use to toggle the glossy effect, if you want the unvarnished look.

The same goes for the rounded corners on app icons: leave your graphics with

perpendicular corners and they’ll automatically be rounded.

Show All Kinds of Feedback
Feedback is defined as any sound, vibration, or visual indicator that some process is

under way. Showing feedback is important, especially on a touch device where there is

no tactile sensation to manipulating on-screen objects. It’s also important to show

feedback when your app is doing something of its own volition, such as automatically

loading new Tweets.

Apple says that every user action should show some perceptible change on the screen—

even if it’s just a shadow on a depressed button. Apple also wants you to show an

activity indicator when an operation takes more than a few seconds.

Another kind of feedback is animation. Twitter says that animations can help “enhance

readability,” and Apple’s HIG says that those animations should be “subtle and

appropriate,” and should serve one of the following purposes:

 Communicate status.

 Provide useful feedback.

 Enhance the sense of direct manipulation.

 Help people visualize the results of their actions.

Apple warns you to use animations conservatively because they have a tendency to feel

annoying when used gratuitously. One other thing: Apple says you should strive to make

animations consistent with those in built-in iOS apps.

However, in practice many developers break from Apple’s use of animations in order to

make what they consider to be improvements upon a given interaction. One example—

pioneered by the official Twitter app’s developer—is the pull-to-refresh indicator, which

has been copied over and over by developers (including those at Facebook). You can

see it in action in Figure 12–3.

CHAPTER 12: UI Design and Experience Guidelines for Social iOS Apps 240

Figure 12–3. The Facebook app shows users when it’s loading new information.

Note that it’s unusual for a single developer’s innovation to spread so widely, so you’re

very unlikely to make your mark in the annals of iOS design by upending some very

common system animation. But if you feel strongly that your app justifies a departure

from the HIG and from the App Store’s design elite; then, by all means, give it a shot and

see what kind of feedback you get during testing.

Also note that the updating indicator isn’t the same as the activity indicator the app uses

to show a Wall Post is in progress (see Figure 12–4). In the latter case, a simple iOS

activity indicator is used to show the pull-and-release Refresh control has been

activated and that posts are refreshing. (You can read about what your app should do if

the phone is offline in Chapter 8.)

CHAPTER 12: UI Design and Experience Guidelines for Social iOS Apps 241

Figure 12–4. The Facebook progress wheel

In iOS, sound is a second-class medium for feedback because Apple believes there are

too many scenarios where the feedback can’t be registered because the environment is

too loud. Vibration is a more reliable feedback mechanism, but it should only be used for

the most important notifications. They can’t be too frequent, either. And users must be

able to turn them off.

Facebook gives you the option of using both sound and vibration. It also uses the

phone’s accelerometer input with the Shake to Reload feature (see Figure 12–5).

NOTE: Facebook follows Apple’s design guidelines by keeping these feedback preferences in a
pane in the system Settings app. For more about preferences, see the “Present Settings in the

Standard Way” section later in this chapter.

CHAPTER 12: UI Design and Experience Guidelines for Social iOS Apps 242

Figure 12–5. Facebook keeps a few set-and-forget preferences in the system Settings app.

Touch Targets and Text
The minimum size of a touch target in iOS is 44 x 44 pixels. Be sure to leave adequate

padding between controls; and, as we said in the preceding section, don’t crowd the

screen with controls. For example, we like the way TwitHit situates its core task right in

the middle, as shown in Figure 12–6.

CHAPTER 12: UI Design and Experience Guidelines for Social iOS Apps 243

Figure 12–6. TwitHit makes the main task obvious.

Remember to make all your controls tappable and to pay attention to their labels. You

can find guidance on labeling—and the use of trademarks and iconography—in the

sections that follow.

Prototype and Test
Apple heavily recommends user testing before submitting your app to the App Store.

This is especially vital in social app design. If you’re building apps with Facebook or

Twitter, be sure to download other apps that use the APIs (many of which we’ve

discussed in this book already). See how they handle certain operations and how they

distinguish themselves visually. Also, ask your friends and colleagues what they like

about various other apps, and then let their feedback inform your design process. Xcode

is very flexible when it comes to fine-tuning apps, and it’s easy to iterate a few times to

get things right.

CHAPTER 12: UI Design and Experience Guidelines for Social iOS Apps 244

What the User Wants from Your App
Here are seven essential areas that you should prioritize when you’re designing your

app:

 Content

 A logical path

 Obvious settings

 Branding

 Brevity

 A license agreement

 Appropriate iPad design

In the sections that follow, we’ll take a look at each of these design principles and how

you can leverage them in your app.

Content
Facebook and Twitter both revolve around two core tasks: consuming and creating

content in the broad social graph.

If your app can post, it should present users with a clean, spacious interface for entering

text or media, without a lot of other controls in or around the text box. Although it’s not a

totally minimalist design, we like the way TweetBot presents the creation of a Tweet.

If your app pulls in information from either of the Facebook or Twitter APIs, it should be

presented in appropriate way. For photos, this means your app should be shown full-

screen with controls that are translucent and disappear when they’re not being used.

For text, this means legible typefaces.

A Logical Path
The official Twitter and Facebook apps can feel labyrinthine in their complexity;

however, they manage it well. Twitter manages its complexity with a dynamic

application bar, whereas Facebook does so with its “grid” UI. But, as we’ll discuss later

in this chapter, you can’t replicate either of these strategies if your app is complex. Read

on to learn how to design interactions around Twitter and Facebook content.

Obvious Settings
Apple says developers should avoid putting their app’s settings inside the app itself;

rather, they should opt for a pane inside the system Settings app. However, many

popular apps that use both Facebook and Twitter APIs don’t follow this convention,

CHAPTER 12: UI Design and Experience Guidelines for Social iOS Apps 245

often because they find the System Settings API too limiting. Our suggested

compromise: Pick set-it-and-forget-it options, stick them in the Settings app, and put

more commonly used options inside your app. Many users will get impatient if they have

to leave your app to edit their account information or play with visual display options.

The official Facebook app actually follows the convention we just described, whereas

the Twitter app handles all its settings over a couple of screens inside the app (see

Figure 12–7).

Figure 12–7. Twitter handles its preferences inside the app.

Branding
You should use colors, styles, and customized art and animation to create a look and

feel that is unique to your app. This is how users distinguish you from other developers

and your app from those of your competitors.

Brevity
Label things with short, specific terms. If you can’t think of a reasonable label for a

control, consider using one of Apple’s system icons or a symbol that users will

understand from either the Facebook or Twitter platforms. Also, consider a license

agreement or disclaimer.

CHAPTER 12: UI Design and Experience Guidelines for Social iOS Apps 246

A License Agreement
Okay, maybe users don’t want a license agreement. But both Twitter and Facebook say

they require developers to show users a license agreement. For the record, Apple says

it’s optional, so we say play it safe and write one. If you do include a EULA, don’t ask

users to agree to it upon first launch. (Do ask for permissions for the use of their location

and Push notifications upon first launch, however.) Instead, you should give users a

chance to use the app before asking them to accept your terms and/or put them in the

Settings pane of your app.

Appropriate iPad Design
If you’re developing for iPad, remember to avoid the temptation to create complex

hierarchies or nested headings in your app’s navigation stack. Also remember to use the

Popover control for modal tasks and to move toolbar content to the top of the screen.

Make Usage Easy and Obvious
As we said in the introduction to this chapter, iOS design should always give primacy to

ease of use and learning. According to Apple, you can ensure you adhere to this

principle by doing the following:

 Reduce the set of controls to only the most common and useful set.

For additional options, use a More button or system-standard Actions

button.

 Use standard controls and gestures appropriately and consistently, so

that they behave the way people expect them to.

 Label controls clearly, so that people understand exactly what they do.

In iOS apps, this is trickier than it seems. Users are already accustomed to dozens of

different UI paradigms from using the official Twitter and Facebook apps. When they

arrive in yours, they have certain expectations for what controls are called; the

nomenclature of the labels; and the core capabilities of your app.

Therefore, it’s important that you strive to use terminology correctly and avoid deviating

from standardized interactions. In Chapters 13 and 14, we’ll delve deeper into the

proper use of terms, trademarks, and other branding.

Conclusion
Now that we’ve reviewed the foundation of what makes a good social app design, you

may consider flipping through the rest of Apple’s Human Interface Guidelines if you’ve

never read them.

Once you’re ready, proceed to the next two chapters, which you can think of as Human

Interface Guidelines for Twitter and Facebook, respectively.

247

247

 Chapter

Twitter UI Design
Because so many Twitter clients already exist on iOS, there are already a number of

design paradigms out there that you should be aware of when you create your app.

This section will discuss the visual, navigational, and interactional paradigms that we

believe you should avoid, revise, or pay homage to.

Usability Priorities
If you’re going to design a Twitter API project with an adequate user experience, you

should get your priorities on paper first. For most Twitter API projects, this means

putting the most time and energy into the following:

 Loading and scrolling: What is today the official Twitter app for iOS

began as Tweetie, a one-man project devoted to one key feature: fast-

scrolling Tweets. Since Tweets are a centerpiece to most Twitter apps,

you should make lists, content, and Tweets load as quickly and

smoothly as possible.

 Using images, URL shorteners, and Geo-tagging: If your app creates

Tweets, these three features have become standards and are

expected anywhere a Tweet is made.

 Keeping users inside your app: Tweets are attached to schemas of

actions and content: pictures, contacts, URLs, Retweets, @replies,

and so on. Try to handle all relevant operations inside your app,

without resorting to Web views or launching one of the system apps.

Ejecting users from your app is confusing and it slows them down.

 Honoring privacy first and foremost: Don’t print Tweets without

permission from the author. Use real Tweets from real accounts that

are operated internally or that you have permission from the user to

display. When showing example content, always use screenshots of

your own Twitter profile (with your own Tweets).

13

CHAPTER 13: Twitter UI Design 248

Anatomy of a Tweet
Twitter is supremely specific about how it wants Tweets displayed. In fact, it has even

specified that we should capitalize Tweet when writing a book like this. You can see how

Twitter expects Tweets to be displayed in its “Anatomy of a Tweet” graphic, which is

from the following URL (see Figure 13–1):

http://dev.twitter.com/pages/display_guidelines

Figure 13–1. The “Anatomy of a Tweet,” according to Twitter’s official design guidelines

Let’s examine all the elements shown in Figure 13–1 in greater depth:

1. Tweet Author: Twitter says you must present the handle of a user’s

Tweet; however, displaying a user’s real name next to her handle is

optional. Tapping the username should link to the user’s Twitter profile,

preferably within your app. Twitter design guidelines dictate that the

username and the real name (if you show it) should be in different styles.

Don’t put an @ symbol in front of a user’s handle.

2. @mentions: Mentions of other Twitter users inside a Tweet should be

linked to their user profile. Tapping that username should lead to the

profile of that user, preferably within your app.

3. Hashtags: If a user includes a hashtag in a Tweet, it should link to a

Twitter.com search for that query term inside your app.

4. URLs: URLs in a Tweet should be presented as tappable hyperlinks to

the location passed through the API.

CHAPTER 13: Twitter UI Design 249

5. Branding: If your app shows a single Tweet outside a Twitter timeline or

other relevant context, Twitter asks that you put the Twitter wordmark or

Twitter bird somewhere on the image. If you are showing a group of

tweets outside a Twitter timeline or other relevant context, Twitter asks

that you put the words “Content From Twitter” nearby. You will learn

more about the Twitter bird and wordmark later in this chapter.

Note that Twitter says it can make exceptions to these rules if you email it to seek

approval. Email your requests to trademarks@twitter.com.

When composing a Tweet, you should be aware that there are a few additional elements

not pictured:

1. Tweet box: A view for composing a new Tweet should always be

presented with the “What’s Happening?” prompt above it.

2. Tweet button: If your app is posting content only to Twitter, the button

that executes the task should be labeled, “Tweet.” If the post is being

pushed to another service in addition to Twitter, label the button,

“Update.”

3. Character count: Every blank Tweet should have a character counter in

view that counts down from 140 characters to show how many

characters are still available.

Suggested Components
In addition to the preceding “requirements,” Twitter also has a bunch of suggested

design guidelines that you may (or may not) want to follow. The following section

reproduces Twitter’s official suggestions, and balances them with examples from apps

that ignore these suggestions for the better:

 Avatar and alignment: Twitter likes developers to display the user’s

avatar on the left side of the Tweet. Other Tweet content is then

supposed to be aligned left, immediately to the right of the avatar. The

avatar links to the user’s Twitter profile at

http://twitter.com/username.

 Counterpoint: Tweetbot, one of the most visually distinctive

Twitter clients in the App Store, chooses to put the avatar below

the Tweet (see Figure 13–2). It works.

CHAPTER 13: Twitter UI Design 250

Figure 13–2. Tweetbot presents Tweet details in a non-conventional way, and we think it works nicely.

 Timestamp and Permalink: “This information can be shown either

relative, e.g. ‘2 minutes ago,’ or absolute, e.g. ‘8:45 AM, Jul 8th’). The

timestamp should be on its own line after the Tweet text and styled

differently to be less prominent than the Tweet text (lighter color

and/or smaller size). The timestamp should also link to the Twitter

hosted permalink page for the individual Tweet.”

 Counterpoint: Twitterific technically adheres to this suggestion

(see Figure 13–3), but only barely: the typeface on the timestamp

is only about 1pt smaller than the typeface of the Tweet itself.

However, the padding between the timestamp and the Tweet

accounts for enough of a distinction. Putting the timestamp

above the Tweet puts context first.

CHAPTER 13: Twitter UI Design 251

Figure 13–3. Twitterific presents Tweet details in a conventional way.

 Tweet Actions: “Reply, Retweet, and Favorite actions should always

be available from a Tweet, and should be displayed with their

respective action icons. They should be arranged left to right as Reply,

Retweet, Favorite.”

 Counterpoint: Almost every app that features the Twitter API

presents these Tweet actions in a different way. We like Twitter’s

suggestion, but sometimes hiding less-used controls makes for a

cleaner interface. Both Tweetbot and Twitterific do this in Figures

13–2 and 13–3, respectively.

 Source: “Along with the timestamp and permalink, you may choose to

display the client or means by which the Tweet was posted (e.g. ‘from

web’ or ‘from Twitter for iPhone’). If client is supplied, please make

sure it links to the source page URL provided.”

 Counterpoint: This is only relevant if your project is Twitter-

centric. If your app is more interested in the content of certain

Tweets (as opposed to the full Twitter experience), you probably

don’t need to append the client to a Tweet. Tweetbot does (see

Figure 13–2), whereas Twitterific does not (see Figure 13–3).

CHAPTER 13: Twitter UI Design 252

 Multiple Tweets: “If showing multiple Tweets at once, they can be

visually separated by horizontal lines, empty spaces, or alternate

background colors. The empty space should be proportional to the

overall height of the Tweet itself.”

 Counterpoint: In our opinion, this guideline shouldn’t be optional.

It’s hard to think of a context where it would be fitting to present

Tweets as anything but a list of discrete items. Twitterific

presents Tweets nicely (see Figure 13–4).

Figure 13–4. Twitterific’s timeline

 Chronological order: “It usually makes sense for Tweets to be ordered

in reverse chronological order (latest first), but we understand that this

might not always be the most relevant way to arrange Tweets. When

shown as search results or other criteria (keyword, user, or other

editorial constraints) Tweets may be ordered by those criteria.”

 Counterpoint: Actually, it’s hard to find a Twitter API project on

the App Store that orders Tweets by any criteria other than by

how recent Tweets are. Search is the only salient exception.

CHAPTER 13: Twitter UI Design 253

(Not) Using Twitter Colors
Colors are a major way that users will identify functionality in your apps. They’re also an

intuitive way to associate yourself with the Twitter platform. However, Twitter really

wants you to minimize the extent to which you use its color palette and its trademarked

logos, buttons, terms, and icons.

As a result, designers of Twitter API projects are less slavish to the Twitter color scheme

than Facebook developers are to their platform’s color scheme. Perhaps in the hopes of

avoiding Twitter’s ire, Twitter API apps tend to be more diverse in their iconography and

logos.

For reference, you can find some examples of Twitter’s own typography and logo art in

Figure 13–5. These buttons are fine for use on the Web, but don’t use them in your iOS

app—unless they link back to Twitter.com or are used to indicate compatibility with

Twitter. If you disregard these requests (which are summarized in the section below

entitled “Using the Twitter Trademark”), you may end up in some trouble. If you want to

use a bird theme or related assets, you’ll have to design or provide them yourself.

Figure 13–5. You can use Twitter’s web buttons in a website—but not in your iOS application, unless under
specific circumstances

Create Theme Elements
Depending on how reliant your app’s functionality is on the Twitter API, you may find

yourself in a position where your app looks too much like the official Twitter app.

That’s why Twitter gives designers this pointer: you should design your site with unique

branding and logos.

Twitter also asks that you adhere to the following:

 Don’t copy the Twitter look and feel.

 Don’t use anything other than the most current versions of the Twitter

logos, where appropriate.

 Don’t use any other artwork from the Twitter site without explicit

permission.

 Do create your own buttons or marks using Twitter’s logos.

CHAPTER 13: Twitter UI Design 254

For reference, Figure 13–6 shows the various aspects of the official Twitter app,

including the timeline (leftmost image), a Tweet (center image), and a user profile

(rightmost image). You need to create your own visual designs and design interactions

that don’t mimic the ones shown in this figure.

Figures 13–6. The official Twitter app UI, which you are not supposed to imitate

Using the Twitter Trademark
Twitter has published a list of dos-and-don’ts regarding its trademarks for developers

using the Twitter API.1 What follows is a summary and analysis of the relevant points.

You may do the following:

 Use the current Twitter logo or current Twitter bird mark as a link to

the Twitter service.

 Use the current Twitter logo or current Twitter bird mark to show that

your product is compatible with Twitter.

 Make sure that you include a direct reference to Twitter when

mentioning Tweet (for instance, “Tweet with Twitter”) or display the

Twitter marks with the mention of Tweet.

 Manipulate the logos, unless it is necessary due to color-related

restrictions inherent in your app, like the black and white iOS toolbar.

You may not do the following:

1 http://support.twitter.com/entries/77641

CHAPTER 13: Twitter UI Design 255

 Use the marks in a way that might imply a false sense of partnership

with or endorsement of your brand.

 Distort or alter the Twitter marks in any way.

 Use the marks in a way that confuses the Twitter brand with another

brand.

 Use the Twitter bird as a spokesperson to carry your logos or

messaging.

Advertising in the App Store
Twitter also has the following guidelines about advertising in the App Store:

 Do use screenshots of the logged-out Twitter home page, the Twitter

About Us page, or even the @twitter profile page.

 Don’t use screenshots of other people’s profiles or Tweets without

their permission.

We Don’t Know You
Twitter also asks that you adhere to the following guidelines:

 Refer to Twitter when talking about the Twitter service or company,

and use Tweets (with a capital T) when talking about the messages or

updates on its service.

 Don’t make inaccurate statements about the Twitter service. (Duh!)

 Don’t refer to Twitter in a way that implies partnership or endorsement.

Twitter Navigation Paradigms
Loren Brichter, the creator of Tweetie, the predecessor to today’s official Twitter app,

first conceived of his project as a simple scrolling project. As he said in 2009, he didn’t

do anything special with Tweetie except to make it fast and in keeping with the spirit of

Apple’s Human Interface Guidelines (which had not been updated with iOS guidelines at

that time):2

It was around the same time that his Verizon Wireless contract expired and he
finally got an iPhone. He started scouring the App Store. “I realized there are
no good Twitter apps,” he recalls. “But there are a billion bad ones.” He figured
he could probably write a better app. “What triggered me to do it? I was

2 iPhone Design Award Winning Projects by Chris Dannen, p.4 (Apress, 2009)

CHAPTER 13: Twitter UI Design 256

playing with Twitterific, which I used, and everybody used. I thought: I wonder
why the scrolling is so slow? I wonder if I can make it faster.” In an hour, he
had built a prototype of a list of fast-scrolling tweets. Then, after a two-week
paroxysm of coding, he had built Tweetie, pictured in Figure 2-1, which is as of
this writing the most popular mobile Twitter client on any platform, and the
most popular Twitter app for iPhone.

The problem isn't with how the other apps used Twitter's API, it's with the way
they interacted with the iPhone OS,” he says. “Either they were doing
something completely custom, or completely wrong.” His antipathy wasn't
even aimed at Twitterific, though it was the immediate catalyst for Tweetie. “To
tell you the truth, I didn't have a lot of beef with Twitterific,” he says. “They
were the ADA winner from the year before, and everyone loved the app. It just
didn't jive with the way I used Twitter.”

When he rebuilt Tweetie as Tweetie 2 from the ground up, he completely re-thought the

UI. One surprising addition was the inclusion of a dynamic application bar at the bottom of

the screen. You can see this application bar change between the views in Figure 13–7.

Figure 13–7. Twitter’s dynamic toolbar goes against iOS conventions. On the left, you see the bar as shown in a
user profile; on the right, you see the bar as shown when viewing a Tweet.

Unlike in preloaded iOS apps, the application bar in Tweetie 2—which would become the

official Twitter app—had icons that would change, depending on what the user was

viewing. When asked why he departed from Apple’s precedent in Tweetie 2, Brichter

said:3

3 Ibid.

CHAPTER 13: Twitter UI Design 257

Having an application-global tab bar is extremely limiting. In Tweetie 2 I'm
optimizing for navigation stack *depth*. By having a screen-specific bottom bar
that morphs depending on current context you can expose a massive wealth of
information without requiring the user to deal with excessive drill-down.

Apple doesn't do this. In fact, they don't recommend doing what I'm doing.
While I think Tweetie 2 is a great example of an iPhone-ish iPhone app, I'm
bucking the HIG because I think Apple's recommendations are too confining. A
shallow app can get away with an application-global tab bar. A deep, rich app
can't. And Tweetie 2 is deep.

The tricks in Tweetie 2 let you explore massive amounts of information without
the tap... tap... tap... of pushing tons of view controllers onto the navigation
stack. As a quick example, say I'm looking at a tweet in my timeline. A user is
asking the Twitterverse a question. I want to check out responses. I can swipe
the tweet, tap the user details button, then tap the @ tab of the pushed user-
details screen. I'm viewing the responses to this user from everyone, and I'm
only a *single* view controller away from where I started.

Tweet list -> Recent user mentions

Without optimizing for navigation stack depth, imagine if I had to push a new
view controller for each navigation action:

Tweet list -> Tweet details -> User details -> Recent user mentions.

This stinks.

I don't use a normal tab bar in Tweetie 2 for these context-specific tab bars. I
draw them with custom code. I wanted them to be familiar, but different
enough that users didn't expect the standard application-global tabs.

Although Brichter’s way is now standard in the official Twitter app, he doesn’t

recommend that most Twitter API projects follow this lead. It’s only because Tweetie

was attempting to duplicate all the functionality of the Twitter website (and then some)

that it became complex enough to warrant a dynamic application bar. Now that broad

duplication of Twitter functionality is against Twitter’s developer terms, Brichter says it’s

likely that you won’t need to follow this paradigm in your app:

I don't recommend everyone follow my lead. Twitter is *incredibly* rich with
information. Chances are most other apps are shallow enough and will be good
enough using an application-global tab bar or just simple drill-down.4

4 Ibid.

CHAPTER 13: Twitter UI Design 258

Twitter Logos and Icons
Twitter offers the following logos and icons for download, so that you can accurately

display Twitter branding in your app, where appropriate. (The rules and guidelines

regarding the use of Twitter branding materials are discussed in the preceding sections

of this chapter.) You can download the graphics shown in Figure 13–8 at this URL:

http://twitter.com/about/resources/logos

Figure 13–8. Twitter logos and icons, which you’re meant to use sparingly

As discussed previously, Twitter strongly discourages the use of its colors and logos in

third-party apps. This fact has left a lot of developers struggling to somehow make their

icons reminiscent of Twitter without actually directly referencing the company. Various

birds have become the standard fare for Twitter clients (see Figure 13–9); but now that

no new clients are permitted by Twitter’s new terms, Twitter will have an even smaller

visible presence in the App Store. In keeping with these guidelines, make your Twitter

iconography unique and match it to the visual designs for your app.

CHAPTER 13: Twitter UI Design 259

Figure 13–9. The Twitter brand, as paid homage to by various icons in the App Store

Splash Screens
Splash screens aren’t really necessary on today’s iOS devices, which load apps quickly.

However, you should test your app on multiple generations of devices. If an older iOS

device experience lags, see what you can do programmatically to improve load times. If

there’s nothing to be done under the hood, consider adding a splash screen to your app

to welcome waiting users. It passes the time, and it offers you a second to present your

branding and make a good impression. If more than a moment or two is required to load

your app, consider moving out of the splash screen briskly and presenting a reduced-

functionality view of your app’s interface. Also, continue to show that your app is loading

information, and be sure to inform the user if there is a break in connectivity.

Visual Assets (a.k.a., the Exceptions)
The visual indicators shown in Figure 13–10 are available for download and allowed for

use in your app, per the guidelines discussed in this chapter. PNG versions, which are

preferred for iOS, are also available as sprites. To download these graphics, go to the

following URL:

http://dev.twitter.com/pages/image-resources

CHAPTER 13: Twitter UI Design 260

Figure 13–10. Twitter’s sprites, which are available for use in your app

Naming Your Project
Twitter has compiled a list of dos-and-don’ts for referencing Twitter when you name

your project, which we’ll cover in this section.5

Do the following when naming your project and referencing Twitter:

5 http://support.twitter.com/entries/77641

CHAPTER 13: Twitter UI Design 261

 Name your website, product, or application with something unique.

Uses of Tw- and Twit- are generally okay.

 Feel free to include language on your site explaining that your

application is built on the Twitter platform, so people understand your

product.

 Use Tweet in the name of your application only if it is designed to be

used exclusively with the Twitter platform.

Don’t do the following when naming your project and referencing Twitter:

 Use Twitter in the name of your website or application.

 Use Tweet by itself or in conjunction with a simple letter or number

combination (e.g., 1Tweet, Tweet, or Tweets).

 Register a domain containing twitter (or misspellings of twitter).

 Apply for a trademark with a name that includes Twitter, Tweet, or

similar variations thereof.

 Use Tweet in the name of your application if used with any other

platform.

Offline Display Guidelines
If you are making some kind of Twitter visualizer or plan for your app to be viewed on a

larger display via the iPad, then you should follow the offline display requirements

outlined in this section.

For example, you are permitted to do the following:

 Include the Twitter logo in close proximity to Tweets for the duration

that Tweets appear in a broadcast.

 Make sure that the Twitter logo is a reasonable size in relation to the

content.

 Include the username with each Tweet. If you have concerns about

user privacy or broadcast standards, please contact Twitter regarding

exceptions, unless you have a prior agreement with Twitter.

 Use the full text of the Tweet. If privacy or broadcast standards are

concerned, please contact Twitter regarding exceptions, unless you

have a prior agreement with Twitter.

And here are some things you should not do: delete, obscure, or alter the identification

of the user. You may show Tweets in anonymous form in exceptional cases, such as

concerns over user security. Showing unattributed data in aggregate or visualized form

is permitted, but you must still include the Twitter logo.

CHAPTER 13: Twitter UI Design 262

To see Twitter’s complete list of offline display and broadcast media guidelines, go to

the following URL:

http://support.twitter.com/entries/77641

Working with Notifications
Until Spring 2011, the official Twitter app dealt with notifications conservatively: it only

delivered a Push alert if you were pinged by an @reply or a direct message. Generally,

the authors agree this is really all the notifications a Twitter app requires.

However, in March 2011 Twitter introduced something called the QuickBar, which was

supposed to be a way for the editorial powers at Twitter to introduce a trending topic

(or, ahem, paid promotional Tweets) to the top of users’ timelines. Instead, it became a

raging source of user ire and is commonly nicknamed the Dickbar.

On an app that is a veritable godfather of iOS design, this was a major blunder. Outlets

everywhere panned Twitter’s folly, and they pummeled the company until it erased the

QuickBar from a subsequent update.
6
 Mac developer Marco Arment’s reaction on his

blog was particularly articulate and provided a sense of what’s so important about good

iOS apps: the clarity of purpose that underpins every screen.

Note that near the end of his rant, he evaluates the QuickBar against three criteria:

 Am I supposed to Tweet about this?

 Am I supposed to save this search?

 Am I supposed to read these Tweets?

These are the core functions of Twitter, so any feature that uses the API should be in

some way related to at least a couple of them. An edited version of Arment’s post

follows:7

Twitter’s official iPhone app, formerly Loren Brichter’s Tweetie and an
otherwise awesome client, got a lot of negative reactions from the recent
addition of the QuickBar, a mandatory trending-topics banner on top of the
tweet list. A lot of people really hate it, calling it the "dicker" and often
abandoning the Twitter app entirely because of it.

Its initial implementation as a floating overlay over anything you were doing in
the app was far worse. Now, it’s just at the top of the main timeline, and it
scrolls with the list. But it’s still offensive to most people who hated its debut,

6 http://blog.twitter.com/2011/03/so-bar-walks-into-app.html

7 http://www.marco.org/2011/03/20/why-the-quick-bar-dickbar-is-still-so-
offensive

CHAPTER 13: Twitter UI Design 263

because making it scroll with the list didn’t solve the problem of it being there
and being mandatory.

The reason Twitter added the QuickBar was, presumably, to be able to feature
ads, which show the “Promoted” badge.

If it only ever showed ads like this, I don’t think the response would be so
negative. The bigger problem is that it’s showing a random “trending” topic or
hash-tag most of the time. Here are a few of the topics I’ve seen in the last 24
hours:

LovatoAndGomez
ChrisBrownFAMEAlbum
Gus Johnson
#100factsaboutme
Wolverines
Cingular
GSM
#michigan

It’s a news ticker limited to one-word items, lacking any context, broadcasting
mostly topics that I don’t understand. What’s worse is that it’s shown in a
context—my Twitter timeline—that otherwise contains only content that I’ve
(indirectly) chosen to put there. (I’ve chosen who to follow based on what I
want to see in my timeline.) I’m not interested in sports or celebrities or middle-
school survey trends, so I don’t follow people who overwhelm my timeline with
those unwanted topics.

Content that I’ve chosen to follow, and... Michigan. I don’t even know what
that’s supposed to mean. Presumably, there’s some bit of news happening
that’s relevant to the state of Michigan, and Twitter wants users to tap on this
disembodied word for a reason that’s not made clear to us.

So I tapped on it.

I see, from top to bottom: intentional spam, unintentional spam, and a random
person’s frivolous, meaningless tweet about sports that I don’t care about. (I
scrolled down and it only got worse.) I guess "#Michigan" is a trending topic
because something important happened with a Michigan sports team.

What am I supposed to do with this information?

Am I supposed to tweet about it? If so, why doesn’t the interface encourage
that? Even if I hit the (effectively invisible) New Tweet button from this screen,
my tweet isn’t prepopulated with “#michigan”, so whatever I say in response
won’t be included here.

CHAPTER 13: Twitter UI Design 264

Am I supposed to save this search, which the interface does encourage, so I
can see this topic again in a few days or weeks or months, when it’s
presumably no longer coherent or useful? (Ignoring, for the moment, that it’s
neither coherent nor useful now.)

Am I supposed to read these tweets? If so, why haven’t stronger anti-spam
methods or human filtering mechanisms been employed to keep the stream
somewhat readable? As-is, it’s a huge and easily exploited spam target, and it
shows.

We don’t know Twitter’s true reason for adding the QuickBar. Presumably, it’s
part of a longer-term strategy. But today, from here, it looks like an extremely
poorly thought-out feature, released initially with an extremely poor
implementation, with seemingly no benefits to users.

This is so jarring to us because it’s so unlike the Twitter that we’ve known to
date. Twitter’s product direction is usually incredibly good and well-thought-
out, and their implementation is usually careful and thoughtful.

And in the context of this app, most of which was carefully and thoughtfully
constructed by Loren Brichter before Twitter bought it from him, we’re
accustomed to Brichter’s even higher standards, which won Tweetie an Apple
Design Award in 2009. (I suspect he had little to no authority in the QuickBar’s
existence, design, or placement, and it’s probably killing him inside.)

The QuickBar isn’t offensive because we don’t want Twitter making money
with ads, or because we object to changes in the interface.

It’s offensive because it’s deeply bad, showing complete disregard for quality,
product design, and user respect, and we’ve come to expect a lot more from
Twitter.

Design Tricks from the Web App
There are some things about Twitter’s touch-oriented mobile Web app that put its native

iOS app to shame. We like the way it presents options to take Tweet actions (like

Retweet, Reply, and Favorite) without the need to slide aside the Tweet. It’s also cool

that composing a Tweet requires no buttons to operate: you simply place the cursor and

start Tweeting. Figure 13–11 shows the mobile Web app (left) and the native iOS app

(right) side-by-side.

CHAPTER 13: Twitter UI Design 265

Figure 13–11. Twitter’s mobile web app (left) compared to its iOS app (right)

Conclusion
Twitter’s zeal for rules and regulations is an understandable, if annoying, byproduct of

its emerging role as a kind of information infrastructure. And while that has severely

limited the way you can build your own Twitter experience, it has also opened up the

possibility for apps that do more than just display a rushing timeline. Unfortunately, this

means that a good Twitter API project might involve more sweat equity than it did when

Loren Brichter built Tweetie 1.

Next, we’ll discuss Facebook design conventions.

267

267

 Chapter

Facebook UI Design
The Facebook app is one of the App Store’s most unusual; it is also the most capable

client on any platform for the world’s largest social network. If it looks like an iPhone

within an iPhone, it’s because the Facebook platform is just as formidable as iOS.

Figure 14–1 shows the Facebook app’s iOS-like grid UI.

Figure 14–1. Facebook was the first major platform to reproduce the iOS “grid” UI inside an app.

Usability Priorities
Facebook API projects should have slightly different priorities than Twitter projects.

Those priorities should include the following:

14

CHAPTER 14: Facebook UI Design 268

 Looking people up: Users query other users more frequently on

Facebook, and there is more information to surface, so give these

tasks primacy.

 Contacting and being alerted of contact: The Facebook app sends you

a push notification and/or a vibration for up to nine alerts. By contrast,

Twitter does two. Facebook is a lean-forward app with a highly active

user base. These users are used to being notified promptly and

communicating with alacrity. Figure 14–2 shows Facebook’s Push

notification options.

Figure 14–2. Facebook’s Push notification preferences are quite granular and let users interact quickly with each
other.

 Giving users context: Facebook is such a powerful platform that many

apps only reproduce select parts of the Web app’s functionality. This

may lead users to expect some tasks that aren’t present in your app.

You can ameliorate this by picking a descriptive name for your app

and by arranging core controls in a way that the user understands its

functionality intuitively. This is especially important to posting: users

must know where an item is going and who will see it. If you must, use

help prompts; however, use them inside the app, not as a pop-up

dialog box, as the MyPhone+ does (see Figure 14–3). For the record,

we also don’t recommend telling users to reboot after installing.

CHAPTER 14: Facebook UI Design 269

Figure 14–3. Don’t do this.

Create Your Own UIAs we discussed in Chapter 11, Facebook’s terms make the

following stipulation (see Figure 14–4):

“Facebook site features cannot be emulated.”1

If your app looks too much like Facebook and works too much like Facebook, you’ll

probably hear from respresentatives of Facebook. However, you might be interested to

know that the reasons for this actually benefit the user, as well as Facebook. Joe Hewitt,

the original developer of Facebook for iOS, explained Facebook’s reasoning:

The first version of the app did have the tab bar at the bottom, but I
took it out because I feel like Facebook is a platform in itself, and each
of the tabs were almost like apps in and of themselves that really called
for use of the full screen.

I had to look forward; we have a lot of new apps coming down the pipe,
and I felt like the model Facebook works on lends itself better to sort of
being a ‘phone’ in and of itself. Facebook has its own chat, phone book,
mail, photos, and applications, so squeezing it all into tabs made it feel

1 http://developers.facebook.com/policy/

CHAPTER 14: Facebook UI Design 270

too limited. Going with this model—it’s a home screen just like the
iPhone home screen—will let it grow and become full-featured. It also
gives us room to add more apps within our app.

I haven’t really seen other apps that do [the grid], and I wouldn’t really
recommend that anyone else do it. Facebook is kind of unique in its
breadth and the amount of stuff people do on it. I really hesitated to
build in the grid for a while, but as I kept moving things around and
trying to make it all fit into the tab bar, I just felt like this was the best
solution. I was expecting more people to complain about it, but it seems
to have worked out pretty well.

Economy [of taps] is always a motivating factor, but the grid adds an
extra tap [because you need to press the grid button] versus the full-
time tab bar. That was a compromise I felt was necessary. There's
always that balance between screen clutter—adding tabs—and the
number of taps.

What went into creating Facebook’s view controllers?

I did a lot of custom stuff. The app is built on an open source framework
I created called Three20, and it uses its own view controllers, all of
which I had to write. I had to try to reinvent the Apple photo browsing
app and the Apple Mail composing tool, among other stuff.2

FACEBOOK LOADING PROJECT3

This project shows how the Facebook app caches old information and checks for available services before
posting. Hewitt explained it like this:

Everything in the app works that way. There’s a disk cache so if you load
events, notes, or requests, it’s cached so when you go back to the app, and
we show the cached version. And as we show it, we try to load the latest
version. If it’s a week old—or some number of days, I forget the exact number—
the app will just show you “loading” and clear the old stuff.

2 /iPhone Design Award-Winning Projects/ by Chris Dannen (Apress, 2009)

CHAPTER 14: Facebook UI Design 271

Before that system was in place, you were constantly looking at a little spinner
wherever you went—loading, loading, loading. I think it feels nicer to see
something right away that you can interact with while the new stuff is coming
in.

The code that follows is an excerpt of the Facebook app’s disk cache framework, which serves as a
replacement for Cocoa’s classes for fetching network data (in this case, from Facebook’s servers). Hewitt
has written the Three20 framework to allow the cache to be stored on disk. In Apple’s framework, RAM
would be required. Here is the code itself:

- (NSData*)generatePostBody {
 NSMutableData* body = [NSMutableData data];
 NSString* beginLine = [NSString stringWithFormat:@"\r\n--%@\r\n", kStringBoundary];

 [body appendData:[[NSString stringWithFormat:@"--%@\r\n", kStringBoundary]
 dataUsingEncoding:NSUTF8StringEncoding]];

 for (id key in [_parameters keyEnumerator]) {
 NSString* value = [_parameters valueForKey:key];
 // Really, this can only be an NSString. We're cheating here.
 if (![value isKindOfClass:[UIImage class]] &&
 ![value isKindOfClass:[NSData class]]) {
 [body appendData:[beginLine dataUsingEncoding:NSUTF8StringEncoding]];
 [body appendData:[[NSString
 stringWithFormat:@"Content-Disposition: form-data; name=\"%@\"\r\n\r\n", key]
 dataUsingEncoding:_charsetForMultipart]];
 [body appendData:[value dataUsingEncoding:_charsetForMultipart]];
 }
 }

 NSString* imageKey = nil;
 for (id key in [_parameters keyEnumerator]) {
 if ([[_parameters objectForKey:key] isKindOfClass:[UIImage class]]) {
 UIImage* image = [_parameters objectForKey:key];
 CGFloat quality = [TTURLRequestQueue mainQueue].imageCompressionQuality;
 NSData* data = UIImageJPEGRepresentation(image, quality);

 [self appendImageData:data withName:key toBody:body];
 imageKey = key;

 } else if ([[_parameters objectForKey:key] isKindOfClass:[NSData class]]) {
 NSData* data = [_parameters objectForKey:key];
 [self appendImageData:data withName:key toBody:body];
 imageKey = key;
 }
 }

 for (NSInteger i = 0; i < _files.count; i += 3) {
 NSData* data = [_files objectAtIndex:i];
 NSString* mimeType = [_files objectAtIndex:i+1];
 NSString* fileName = [_files objectAtIndex:i+2];

 [body appendData:[beginLine dataUsingEncoding:NSUTF8StringEncoding]];
 [body appendData:[[NSString stringWithFormat:
 @"Content-Disposition: form-data; name=\"%@\";
filename=\"%@\"\r\n",

CHAPTER 14: Facebook UI Design 272

 fileName, fileName]
 dataUsingEncoding:_charsetForMultipart]];
 [body appendData:[[NSString stringWithFormat:@"Content-Length: %d\r\n", data.length]
 dataUsingEncoding:_charsetForMultipart]];
 [body appendData:[[NSString stringWithFormat:@"Content-Type: %@\r\n\r\n", mimeType]
 dataUsingEncoding:_charsetForMultipart]];
 [body appendData:data];
 }

 [body appendData:[[NSString stringWithFormat:@"\r\n--%@--\r\n", kStringBoundary]
 dataUsingEncoding:NSUTF8StringEncoding]];

 // If an image was found, remove it from the dictionary to save memory while we
 // perform the upload
 if (imageKey) {
 [_parameters removeObjectForKey:imageKey];
 }

 TTDCONDITIONLOG(TTDFLAG_URLREQUEST, @"Sending %s", [body bytes]);
 return body;
}

Figure 14–4. Facebook would prefer that you not crib from its visual designs, but lots of developers do it,
anyway. This is yet another reason to avoid doing so yourself.

CHAPTER 14: Facebook UI Design 273

Themes and Icons
According to Facebook, you’re not supposed to mimic Facebook visual design or its

iconography. However, that obviously doesn’t stop many developers from doing exactly

that. So what’s a new Facebook developer to do?

In our opinion, there are circumstances where a color scheme reminiscent of

Facebook’s is highly appropriate. If your app is going to provide extensive Facebook

functionality (in addition to other stuff, of course), then it might be instructive to users to

be in an environment that smacks of (but doesn’t replicate) Facebook (see Figure 14–5).

Third Party Resources

Figure 14–5. If you must take inspiration, consider Facebook’s interaction design and its design conventions, and
try to pay homage to those.

Figure 14–5 shows a third-party set of Photoshop images. They’re free to use. They’re

also meant for Web designers, but don’t let that stop you. These visual designs should

help you mock up your app or borrow certain aspects of the Facebook UI that you like.

Remember not to borrow too liberally because reproducing the Facebook UI in your app

is against the API’s terms and conditions.

You can download this free Facebook UI kit from Surgeworks at the following URL:

CHAPTER 14: Facebook UI Design 274

http://surgeworks.com/blog/design/facebook-gui-free-psd-resource

Create Theme Elements
To the extent that you’re capable of doing so, develop your own color scheme,

branding, logos, and iconography.

Not only does Facebook discourage developers from using its blue-and-white color

scheme, but common sense does, too. There is a dearth of quality iOS applications in

the App Store that use the Facebook API—but there is a wealth of awful ones. Most of

the bottom-feeding apps shamelessly mimic Facebook’s colors and iconography.

Copying Facebook isn’t just against the rules; it’s also a little low-end.

Fortunately, Facebook is still useful without the sanitary style sheet. Hootsuite, a social

aggregator, and Taptu, a reader app, are two applications that present Facebook

content in a unique way, using unique color palettes and branding.

Hootsuite
As you can see in Figure 14–6, Hootsuite’s teal color scheme looks more like Twitter

than Facebook. But its visual elements and its application bar are more like a weird

hybrid of the two social networks—and less like a copy of either one.

Figure 14–6. Hootsuite combines Facebook and Twitter colors and conventions, which is its way of avoiding
looking too much like either.

CHAPTER 14: Facebook UI Design 275

Taptu
Taptu is an app for the iPhone and the iPad that funnels RSS feeds, social news, and

other content into streams that are easier to read than traditional readers. As you can

see in Figure 14–7, the Facebook feed gets packaged just like any other feed, with

Status Updates (and their author and timestamp) presented in a chronological timeline,

vaguely Twitter-style. This is another hybrid design that satisfies the design guidelines of

its platform.

Figure 14–7. Taptu’s interpretation of the News Feed

Rules for Facebook Art
As we said at the outset of this chapter, Facebook doesn’t have nearly the elaborate set

of rules that Twitter does for trademarks and visual assets. That might be one reason

that so many app developers borrow freely when they create their app icons and

interfaces.

The previous section instructed you to create your own theme elements. When you do

so, you’ll need to keep a few brief guidelines in mind, according to Facebook:

 Your advertisements must not include or be paired with any platform

integrations, including social plugins such as the Like button, without

Facebook’s written permission.

 Developers aren’t allowed to market themselves in a way that implies

the participation or endorsement of Facebook.

CHAPTER 14: Facebook UI Design 276

 Developers should also avoid using Facebook logos, trademarks, or

site terminology. These include but are not limited to Facebook, The

Facebook, FacebookHigh, FBook, FB, Poke, Wall, and other company

graphics, logos, designs, or icons).

If you’d like to read Facebook’s ad guidelines in their entirety, visit this URL:

http://www.facebook.com/ad_guidelines.php

Button Text
Here are a few examples of button text that are permitted for Facebook developers:

 Post

 Share

 Publish

 Add to Profile

Here are a few examples of button text that are too vague to use, in

Facebook’s opinion:

 Ignore

 OK

 Share & Continue

 Request

Facebook Navigation
Because of its grid UI, the official Facebook app sets some strange navigational

paradigms. In fact, it borrows a lot from Android and a little from webOS. The Facebook

app does the following:

 Uses tap-and-hold to mimic iOS’s app icon “jiggling” effect.

 Uses a status bar that rises up from the base of the screen, similar to

Android, for notifications.

 Has “apps” within it, just like the iOS UI.

 Animates a glimmer when you tap the titlebar, similar to the HP

webOS.

CAUTION: Don’t copy Facebook’s UI and navigation.

CHAPTER 14: Facebook UI Design 277

We like all these little quirks, and we wouldn’t want the official Facebook app to work

any other way. But we don’t advise that you imitate any of these paradigms. They’re not

at home on iOS (at least, not yet?), and they will only confuse your users.

Showing Progress
As we discussed earlier in this chapter, showing the user progress is a vital part of your

app’s feedback. In the official Facebook app, the user is never presented with an empty

News Feed; if a network connection can’t be found, the app displays recent updates it’s

cached behind the scenes. Facebook users are doubtless accustomed to the speed and

efficiency of Facebook’s iOS and Web apps, so you’d do best not to keep them waiting.

If you must, use the activity indicator and consider showing users a warning message if

the operation is going to take a substantial amount of time; however, an activity

indicator should never prevent the user from switching tabs or composing other content.

The Facebook-integrated MyPhone+ app only has one main task, and it’s a big one. The

app handles this task nicely, as you can see in Figure 14–8.

Figure 14–8. MyPhone+ displays a progress indicator for its central task, which is only a good idea under certain
circumstances.

CHAPTER 14: Facebook UI Design 278

Essential Three20 Components
As you learned in Chapter 10, the Three20 project is Facebook iOS developer Joe

Hewitt’s gift to the Facebook developer community: an entire framework he built himself

for the Facebook app for iOS.

It’s open source, and it’s comprised of several of the constituent parts of the Facebook

app. These parts are the photo viewer, the message composer, the Web image view,

and other goodies. You can find their Git addresses at this URL:

http://joehewitt.com/post/the-three20-project/

Here are some of the components you will want to be aware of as you design your app

and Joe’s descriptions of each one:

 Photo Viewer: “TTPhotoViewController emulates Apple’s Photos app

with all of its flick‘n’pinch delight. You can supply your own “photo

sources,” which work similarly to the data sources used by

UITableView. Unlike Apple’s Photos app, it isn’t limited to photos

stored locally. Your photos can be loaded from the network, and long

lists of photos can be loaded incrementally. This version also supports

zooming (unlike the version in the current Facebook app).

“This has probably been the single biggest timesink in the whole

Facebook for iPhone project for me, so if I can help anyone else save

that time I will sleep better.”

 Message composer: “TTMessageController emulates the message

composer in Apple’s Mail app. You can customize it to send any kind

of message you want. Include your own set of message fields, or use

the standard To: and Subject:. Recipient names can be

autocompleted from a data source that you provide.”

 Web image views: “TTImageView makes it as easy to display an image

as it is in HTML. Just supply the URL of the image, and TTImageView

loads it and displays it efficiently. TTImageView also works with the

HTTP cache described below to avoid hitting the network when

possible.”

 Internet-aware table view controllers: “TTTableViewController and

TTTableViewDataSource help you to build tables which load their

content from the Internet. Rather than just assuming you have all the

data ready to go, like UITableView does by default,

TTTableViewController lets you communicate when your data is

loading, and when there is an error or nothing to display. It also helps

you to add a “More” button to load the next page of data, and

optionally supports reloading the data by shaking the device.”

CHAPTER 14: Facebook UI Design 279

 Letter Text Fields: “TTTextEditor is a UITextView which can grow in

height automatically as you type. I use this for entering messages in

Facebook Chat, and it behaves similarly to the editor in Apple's SMS

app.

“TTPickerTextField is a type-ahead UITextField. As you type, it

searches a data source, and it adds bubbles into the flow of text when

you choose a type-ahead option. I use this in TTMessageController for

selecting the names of message recipients.”

Design Tricks from the Web App
Facebook’s touch Web app is arguably as well designed as its iOS app (see Figure 14–9).

Although it has all the limitations that come with being in the browser, there are

nevertheless some good design paradigms here that you can actually borrow from (unlike

the grid).

Figure 14–9. Facebook’s home page for Mobile Safari users

The Tabbed Approach
Tabs were used in the first versions of the Facebook for iOS app, but they quickly

became cluttered as the app became more robust. The Web app held onto tabbed

browsing longer, but its developers recently revised the app’s navigation bar to contain

only four items:

CHAPTER 14: Facebook UI Design 280

 Profile

 Messages

 More (Friends, Photos, Places, Groups, Events, Notes, Notifications,

Settings, and Logout)

 Search button

We’d say the contents of these tabs reflect the Facebook usability priorities we

established at the beginning of this section:

 Looking people up

 Contacting people

 Context

And with that, this discussion has come full circle!

Conclusion
This is a time after a rush. Web developers have flocked to the Twitter and Facebook

APIs, and iOS developers are following after them. But the influx has caused the

management of these platforms to become conservative as they try to protect and

sustain their growth. No one wants to derail a good thing, and the platforms have

constructed a schema of rules and terms that ensure no one can sully their name but

themselves.

This is not a death sentence for the creativity of developers and designers. Rather, it

forces them to create apps that add real value to the platform. We encourage you to

think of ways to use Facebook and Twitter that haven’t been done—or haven’t been

done right, previously. And when you hit upon a unique experience with an audience you

know, you need to design visual assets that reflect the personality of your app. In the

App Store, looks aren’t everything. They’re merely almost everything.

281

281

Index

■ Symbols and
Numerics

(hash tags), Twitter, 189

#hashtags, Tweets, 248

? symbols, SQLite, 197

@mentions, Tweets, 248

■ A
abort function, 126

access log, Facebook, 145

access tokens

components of URLs, 48

logging in to Facebook, 49

logging out of Facebook, 51, 52

logging out of Twitter, 62

accounts

social app design on iOS, 236

action parameter

dialog methods, Facebook class, 82,

83

actions, Tweets, 251

activity indicator

progress (feedback to user),

Facebook, 277

social app design on iOS, 239

advertising

App Store, 255

Facebook, 275

compliancy guidelines, 222

partners, 221

ownership of user data, 13

Twitter, 217

aggregation libraries, ShareKit, 182

albums, Facebook

fetching user’s tagged albums, 95

anatomy of Tweets, 248–252

animation

social app design on iOS, 239

annotations

displaying on MKMapView, 161

API calls

Facebook iOS SDK, 17, 27

MGTwitterEngine making, 19

rate limits on, Facebook, 220

API console

bookmarking Twitter resources, 24

API response times

bookmarking Facebook resources,

25

Apigee’s Twitter console

associating location with Tweets,

172

apiKey parameter

bit.ly URL shortening service, 180,

181

APIs

Core API, Twitter, 5

CoreLocation framework, iOS,

148–153

Facebook APIs, 4–5, 17–19

rules governing use of, 218–223

geo-location API, Twitter, 172

Graph API, 4, 66–71, 81–96

HTTP API, Twitter, 101

MapKit framework, iOS, 158–162

math APIs, iOS 4, 8

MGTwitterEngine API, 19–20

Publishing API, Facebook, 5

Reading API, Facebook, 4

Index 282

Search API, Twitter, 5

Searching API, Facebook, 5

Streaming API, Twitter, 5

trends API, Twitter, 189

Twitter API, 5–6, 72–78, 96–103

rules governing use of, 213–217

App Store

advertising in, 255

Apple

required icon sizes, 238

Apple IDE

setup documents, 21

Apples’s Human Interface Guidelines

see HIG

application delegate file

Facebook, 28, 29

Twitter, 34, 35

application delegate header file

Facebook, 27, 29

Twitter, 33, 34

application:didFinishLaunchingWithOpti

ons method

adding UIViewController, Facebook,

28

starting Twitter engine, 34

applications

access log for, Facebook, 145

building social apps, Facebook, 219

creating apps for Facebook, 28–30

Facebook, 229–232

posting to Facebook page directly

from, 82–87

privacy, 9

security, 9

simplifying usage, 246

theme elements, 253

Twitter, 224–229

using user’s location in, 136

Apps and Websites section

Privacy settings, Facebook, 144

Arment, Marco

reaction to QuickBar, 262–264

art

rules for Facebook art, 275

as_of date

Twitter trends, 189

ASIHTTPRequest library

posting pictures to Twitter, 113

authenticatedWithUsername method

logging in to Twitter, 60

authentication

see also OAuth

components of URLs, 48

Facebook iOS SDK, 17, 27

author, Tweets, 248

authorization

Facebook dialogs, 88

Facebook iOS SDK, 17, 27

authorize method

logging in to Facebook, 49, 50

avatar, user

Tweets, 249

■ B
background processing

iOS applications, 6

performSelectorInBackground

method, 129

processing/synchronizing data on

background thread, 130

synchronizeTweets method, 130

TwitterDataStore, 128

backgrounding

determining if Facebook iOS

supports, 54

location services, 153

battery power conservation

location of devices, 147

Beacon, Facebook, 10

bird graphics

Twitter UI design, 259

bit.ly URL shortening service, 180

integrating Twitter with, 186

books, Facebook

fetching user’s books, 93

brand dilution, Twitter, 212

branding

social app design on iOS, 245

theme elements, Twitter, 253

Tweets, 249

Brichter, Loren, 255

Index 283

bug tracking

Facebook, 25

reporting security problems, 14

Twitter, 25

button text, Facebook, 223, 276

■ C
cachedTwitterOAuthDataForUsername

method, 59

caching, Facebook, 270, 271

Calendar app, iOS 4, 7

callback URL

integrating ShareKit with Twitter, 186

camera, iOS 4, 7

caption key value, Facebook dialogs, 85

character counter

composing Tweets, 249

cheat sheets, Git, 24

check-ins, Facebook, 170

checking into places, 165

permission via OAuth to, 167

customizing, 142

including user’s friends in, 167

iOS application, 168–170

location unavailable in Check-Ins

section, 163

permissions, 171

posting to user’s account, 167

posting via graph path, 166

retrieving from user’s account, 171

retrieving via graph path, 170

clearAccessToken method

logging out of Twitter, 62

CLLocationManager class, 149,

151–153

authorization status for application,

152

didChangeAuthorizationStatus

method, 152

region monitoring, 151

registerRegion method, 151

startMonitoringForRegion method,

151

startUpdatingLocation method, 149

CLLocationManagerDelegate

didEnterRegion method, 152

didExitRegion method, 152

didFailWithError method, 152

didUpdateToLocation method, 152

closeDatabase method

offline storage, SQLite, 196

Cocoa Touch Class

adding UIViewController, 27, 28, 33,

34

Cocoa Touch Unit Testing Bundle

adding unit tests to social iOS app,

201

color

creating theme elements, 274

Facebook UI design, 273

Twitter UI design, 253

common URL scheme

Twitter HTTP API, 101

compliancy guidelines, Facebook,

222–223

see also rules governing use of APIs

advertising, 222

button text, 223

Like button, 221, 222

photos, 222

using Social Stream, 223

connect method, FBRequest, 71

connectionFinished method

MGTwitterEngineDelegate, 73

connections, Twitter

creating, 78

dictionary of, 77

HTTP connections,

MGTwitterEngine, 77–78

MGTwitterEngine request methods,

72

MGTwitterHTTPURLConnection

object, 77, 78

console, Twitter API, 103

contacts, Facebook, 268

contacts, Twitter

adding @RTM as, 225

content policy, Facebook, 220

content, consuming/creating, 244

Index 284

controls

arranging for intuitive use,

Facebook, 268

simplifying app usage, 246

social app design on iOS, 242

Core API, Twitter, 5

Core Data, 118–127

creating SQLite database file, 192

data modeling with

TwitterDataStore, 118–127

linking project to framework, 119

SQLite database, 193

storing Tweet objects, 193

storing data within TwitterDataStore,

124

storing/retrieving Tweets, 131–133

Core Data model

adding file to project, 119

adding Tweet entity, 120

creating managed object model, 126

deleting Tweets in, 133

fetching Tweets from, 133

lightweight migration, 126

mapping Tweet entity in, 122

CoreDataOffline.sqlite file

offline storage, 193

ZTWEET table, 193

CoreLocation class

Significant Change method, 149

Standard method, 149

CoreLocation framework, iOS, 148–153

CLLocationManager class, 149

linking application against, 153

LocationController class, 148–149

CoreLocation services, 136, 149

cross-platform C library

SQLite, 192

Curl

bookmarking Twitter resources, 24

OAuth-enabled version of, 24

curl tool

Twitter trends, 189

URL shortening, 180

current API

Twitter trends, 190

custom URL scheme

Facebook redirection to application

after login, 46

interapp communication via, 46–49

■ D
data

Core Data, 118–127

data modeling

TwitterDataStore, 118–127

data source

TTTableViewDataSource, 278

date formatting

Graph API, Facebook, 96

date_format parameter, Facebook, 96

dealloc method

creating app for Facebook, 29

offline storage, SQLite, 194

starting Twitter engine, 34

debugging

adding unit tests to social iOS app,

201, 208

ShareKit, 184

delegate callback methods

Facebook dialogs, 82

delegate parameter

dialog methods, Facebook class, 82

delegates, Facebook

error notification, 71

FBRequestDelegate, 66

FBSessionDelegate, 50

handling request responses, 18

processing response data, 66

requestWithGraphPath method, 66,

70

delegates, Twitter, 72

MGTwitterEngineDelegate, 73

deleteTweets method

offline storage, SQLite, 199

TwitterDataStore class, 131

description key value, Facebook dialogs

customizing display of feed dialog,

85

design

see also social app design on iOS

Facebook UI, 267–280

Index 285

Twitter UI, 247–265

exceptions to rules, 249

guidelines, 249

requirements, 248–249

dev console, Twitter, 102–103

development

Git, 22

implied endorsement of Facebook,

275

dialog class, Twitter API, 101

dialog methods, Facebook class, 82, 87

delegate callback methods, 82

displaying dialog to user, 83

parameters, 82

dialogCompleteWithUrl method,

Facebook, 85

dialogDidComplete method, Facebook,

85

dialogDidNotComplete method,

Facebook, 86

dialogDidNotCompleteWithUrl method,

Facebook, 86

dialogs

displaying, Facebook iOS SDK, 17,

18, 27

Facebook, 82–87

FBDialog class, 86–87

DialogViewController class, Facebook,

82

dialog:andDelegate method, Facebook,

82

dialog:andParams:andDelegate

method, 82

didFinishLaunchingWithOptions

method, Facebook, 28

direct messages, Twitter

Evernote, 227

responses, 100

sending, 100

Twitter URLs, 102

directMessagesReceived method,

Twitter, 100

Documents directory

Core Data creating SQLite database

file, 192

■ E
error handling

abort function, 126

Facebook iOS SDK, 18, 71

MGTwitterEngineDelegate, 19

schema incompatibility errors, 126

storing data within TwitterDataStore,

126

events, Facebook

fetching user’s events, 92

Evernote, 226–228

adding content via Twitter’s SMS

support, 228

adding TwitPics, 228

SMS notes, 227

exceptions

Twitter UI design, 259

executeFetchRequest method

fetching Tweets from Core Data

model, 133

extended permissions see permissions,

Facebook

■ F
Facebook

accessing information from social

graph, 66

advantages of, 15

advertising, 275

compliancy guidelines, 222

partners, 221

bug tracking, 25

button text, 223

caching, 270, 271

checking for services before posting,

270

Check-Ins section, 163

competing with iOS app, 219

compliancy guidelines, 222–223

content policy, 220

creating apps for, 28–30

date formatting, 96

design see social app design on iOS

developing site features, 269

Index 286

dialog methods, 82, 87

feedback preferences, 241

getting list of logged in user’s

friends, 66–69, 89

Graph API, 4, 66–71, 81–96

HTTP GET, 5

HTTP POST, 5

implied endorsement of, 275

integrating ShareKit with, 186

interapp communication via custom

URL scheme, 46–49

iOS Objective-C Facebook SDK, 5

Like button, 221, 222

limiting number of fields returned, 95

logging in, 49–51

login error, 43

login page, 38

redirection to application after, 46

single sign-on feature, 41

with UIWebView, 45

logging out, 51–53

messages service, 7

not emulating Facebook site

features, 269

OAuth, 11, 40–54

confirmation via mobile Safari, 45

login error via mobile Safari, 45

login via mobile Safari, 44

login view, 89

permissions page, 53

permissions via mobile Safari, 44

offline storage, 118

ownership of user data, 13

People Here Now example, 143

permissions page, 39

photos, 15

compliancy guidelines, 222

platform policies, 211, 219

posting pictures to, 109–110

posting to page directly from apps,

82–87

posting to social graph, 88

pre-filling text fields, 221, 223

privacy, 10, 14, 219, 220

Privacy settings section, 141

Publishing API, 5

pulling information from social

graph, 66

push notifications, 268

Reading API, 4

reporting security problems to, 14

resources to bookmark for Git, 25

Searching API, 5

security, 10

Shake to Reload feature, 241

single sign-on feature, 40–48

social graph, 1, 9

Social Stream usage guidelines, 223

spam, 219

things apps can publish on, 66

Things others share section, 143

Three20 framework, 270, 271

use cases, 3

user experience, 219

user statistics, 16

using inside iOS applications, 3

using/displaying results of graph

path requests, 66

Facebook API, 4–5

see also Graph API, Facebook

building social and engaging

applications, 219

giving users choice and control, 219

helping users share content, 219

rules governing use of APIs,

218–223

advertising partners, 221

allowing users to access

Facebook data from app, 220

compliancy guidelines, 222–223

content policy, 220

deleting old project data, 220

messaging, 222

platform integrations in adverts,

221

pre-filling text fields, 221, 223

publishing more than one post at

a time, 221

rate limits on users and API calls,

220

selling data, 220

Index 287

skipping terms of Facebook

social channel, 221

summary of major rules, 233

use of Facebook iconography

and terminology, 219

user permissions, 221

using user’s friend list outside

application, 220

using, 17–19

Waze, 229

Facebook apps, 229–232

Flipboard, 231–232

Fone, 230–231

Facebook Beacon, 10

Facebook class

Facebook dialogs, 82–87

additional parameters, 83

authorization, 88

customizing display of feed dialog,

84

delegate callback methods, 82

dialogCompleteWithUrl method, 85

dialogDidComplete method, 85

dialogDidNotComplete method, 86

dialogDidNotCompleteWithUrl

method, 86

displaying dialog to user, 83

embedding previews of content, 84

FBDialogDelegate methods, 85

post_id parameter, 85

web view, 84

Facebook Graph API see Graph API

Facebook iOS application

detailed info. about places, 164

flagging places, 165

searching for nearby places and

events, 164

Facebook iOS SDK, 16

adding source code to project, 27

adding UIViewController to project,

27–28

API calls, 17, 27

authentication and authorization, 17,

27

creating app for Facebook, 28–30

creating new project, 25–26

custom URL scheme creation code,

48

determining if iOS supports

backgrounding, 54

displaying dialogs, 17, 18, 27

error handling, 18

FBRequest class, 71

getting set up with iOS application,

25–30

handling errors, 71

logging out, 18

logout method, 52

Objective-C wrapper classes, 71

single sign-on feature, 17, 40–48

UIWebView, 17, 27

Facebook Places, 141–145

checking into places, 165

permission via OAuth to, 167

revoking permission for app to,

144

controlling friends’ access to Places

info., 145

detailed info. about places, 164

flagging places, 165

Nearby screen, 162

searching for nearby places and

events, 164

Facebook UI design, 267–280

arranging controls for intuitive use,

268

button text, 276

color, 273

contacting other users, 268

design conventions, 273

design tricks from Web app, 279

downloading UI kit, 273

icons, 273

navigation, 276

progress (feedback to user), 277

querying other users, 268

rules for Facebook art, 275

tabs, 279

themes, 273–275

creating theme elements,

274–275

Hootsuite, 274

Index 288

Taptu, 275

third-party resources, 273

Three20 framework, 278–279

usability priorities, 267–280

using help prompts inside app, 268

facebookRequestDidComplete method,

69

FacebookViewController class, 66

FAKE_CORE_LOCATION

FTLocationSimulator, 157

fakeUserLocationView method, 161

fast app switching, Facebook, 40

Favorite action, Tweets, 251

fbButtonClick method, 50

FBDialog class, 86–87

FBDialogDelegate

error handling, 18

methods, 85

fbDidLogin method, 51

fbDidNotLogin method, 51

FBRequest class, 71

FBRequestDelegate, 66

creating app for Facebook, 29

didLoad method, 109

error handling, 18

handling request responses, 18

posting pictures to Facebook, 109

FBSessionDelegate protocol, 50

feedback

Facebook

preferences, 241

progress (feedback to user), 277

social app design on iOS, 239–242

activity indicator, 239

animation, 239

sound, 241

updating indicator, 240

vibration, 241

feeds, Facebook

fetching user’s news feeds, 90

Social Stream usage guidelines, 223

fields, Facebook

limiting number of fields returned, 95

file transfer, iOS 4, 8

Flipboard, 231–232

followers, Twitter

getFollowersIncludingCurrentStatus

method, 72

getting list of logged in user’s

followers, 72–77

retrieval of profile picture, 75

timeline of user and, 99

twitterFollowersRequestDidComplet

e method, 74

FollowersTableViewCell class, 75

setData method, 75

FollowersViewController class, 73

viewDidLoad method, 72

Fone, 230–231

for-loop

looping through array of Tweets, 131

format parameter

bit.ly URL shortening service, 181

Foursquare API

Waze, 229

frameworks see APIs

friends, Facebook

controlling access to Places info.,

145

getting list of logged in user’s

friends, 66–69, 89

using user’s friend list outside

application, 220

FriendsViewController class

viewDidLoad method, 66

FTLocationSimulator, 149, 157–158

associating location with Tweets,

172

fakeUserLocationView method, 161

■ G
generateURL method, FBDialog, 87

geo/reverse_geocode API

associating location with Tweets,

175

geocoding

reverse geocoding, 175

geo-location API, Twitter, 172

Index 289

geoResultsForPath:withParams method

associating location with Tweets,

174

geo-tagging

user experience priorities, Twitter,

247

getFollowersIncludingCurrentStatus

method, 72

getImageAtURLmethod, 76

GHUnit

adding unit tests to social iOS app,

208

Git, 21–25

cheat sheets, 24

creating Twitter project, 31

downloading Git client, 22

Facebook resources to bookmark,

25

generating SSH keys, 24

installing, 22–24

learning more about, 24

submodules, 24

Twitter resources to bookmark, 24

Git ignore file

creating Facebook project, 26

creating Twitter project, 31

Git repository

cloning repository

Facebook, 25

Twitter, 30

creating Facebook project, 26

creating Twitter project, 31

linking repositories, Facebook, 26

OARequestHeader, 114

Git submodules, 26

creating Twitter project, 31

GitHub

ASIHTTPRequest library, 113

Facebook iOS SDK, 17

GSTwitPicEngine, 113

hosting repositories on, 22

linking repositories, Facebook, 26

MGTwitterEngine, 30

OARequestHeader, 114

ShareKit, 182

Github.com, 22

Google Maps

map overlays, 8

Graph API, Facebook, 4, 66–71, 81–96

accessing, 17

date formatting, 96

FBDialog class, 86–87

FBRequest class, 71

fetching events, 92

fetching groups, 92

fetching likes/movies/music/books,

92

fetching news feeds, 90

fetching notes, 90

fetching photos/albums/videos, 95

fetching wall posts, 93

getting list of logged in user’s

friends, 66–69, 89

getting profile pictures for friends, 69

handling request responses, 18

HTTP-based API, 71

limiting number of fields returned, 95

limiting number of items in

responses, 70

making API calls, 17

requestWithGraphPath method, 66,

70

retrieving items from given offset, 70

using/displaying results of graph

path requests, 66

graphics, Twitter UI design, 259

groups, Facebook

fetching user’s groups, 92

GSTwitPicEngine class

ASIHTTPRequest library, 113

creating/initializing instance of, 116

posting photo to twitpic.com, 115

posting pictures to Twitter, 113

SBJSON framework, 114

uploadPicture:withMessage method,

116

GSTwitPicEngineDelegate

posting photo to twitpic.com, 115

twitpicDidFinishUpload method, 116

Index 290

■ H
handleOpenURL method

responding to custom URL scheme,

48

handleResponseData method,

Facebook, 71

handling errors see error handling

hash tags (#), Twitter, 189

tagalus service, 192

#hashtags, Tweets, 248

help

using help prompts inside app,

Facebook, 268

Here Now section

Places feature, Facebook, 141

Hewitt, Joe

developing Facebook site features,

269

Facebook iOS SDK, 17

Three20 framework, 270, 271,

278–279

HIG (Human Interface Guidelines), 235

animation, 239

social app design on iOS, 235–246

social iOS app, 235

Tweetie, 255

Hootsuite, 274

hot-button issues, 10

HTTP GET, 5

HTTP POST, 5

rate limits, 218

Human Interface Guidelines see HIG

■ I
iAd, iOS 4, 8

icons

Facebook UI design, 273

glossing icons, 239

icon sizes for iPad, 239

icon sizes for iPhone and iPod, 237

PNG format, 238, 239

required sizes, Apple, 238

rounding corners, 239

social app design on iOS, 237–239

Twitter UI design, 258–259

identities, real-life and online, 13

ignore file, Git

creating Facebook project, 26

creating Twitter project, 31

imagePickerController:didFinishPicking

MediaWithInfo method, 107

ImagePostController class, 109

posting photos to Twitter, 115–117

imageReceived:forRequest method

MGTwitterEngineDelegate, 76

images

accessing from code, 106–108

PNG format, 238

posting pictures to Facebook,

109–110

posting pictures to Twitter, 110–117

saving pictures to Photo Library,

105–106

TTImageView, 278

user experience priorities, Twitter,

247

web image views, Three20, 278

insertNewObjectForEntityForName:inM

anagedObjectContext method,

132

internet

privacy and security before

Facebook/Twitter, 9

Internet-aware table views

Three20 framework, 278

iOS

CoreLocation framework, 148–153

Facebook iOS SDK, 16

Facebook UI design, 267

iSimulate on, 156

location permission prompt, 137

location services, 153

Location Services settings, 138

after resetting warnings, 140

MapKit, 158–162

Reset Location Warnings setting,

139

Settings application, 138

Significant Change method, location,

147

Index 291

social graph on, 6–8

unit testing, 200–208

URL shortening, 181–182

using user’s location in applications,

136

iOS 4

Calendar app, 7

camera, 7

file transfer, 8

iAd, 8

LED flash, 8

local notifications, 6

location-based apps, 7

map overlays, 8

math APIs, 8

multitasking, 6

music apps, 7

photos, 7

Quick Look, 8

recent additions, 6

saved states, 7

Sleep mode, 6

SMSing, 7

task completion, 7

task switching, 7

VOIP apps, 7

WiFi connections, 6

iOS applications

adding Facebook/Twitter

functionality to, 1

adding unit tests to social app,

200–208

background processing, 6

check-ins, Facebook, 168–170

design see social app design on iOS

getting set up with

Facebook, 25–30

Twitter, 30–34

posting to Facebook page directly

from apps, 82–87

privacy and security, 9

saved states, 7

storing data, 118

theme elements, 253

using Facebook inside, 3

using Twitter inside, 4

using Twitter’s web buttons, 253

iOS development

using Xcode for, 21

iOS devices

Facebook iOS SDK, 17

splash screens, 259

iOS Objective-C Facebook SDK, 5

competing with iOS app, 219

iOS simulator

FTLocationSimulator, 149, 157–158

generating locations in iOS

simulator, 153–158

iSimulate, 154–156

saving pictures to Photo Library,

105–106

iPad

icon sizes for, 239

Popover control, 246

social app design on iOS, 246

iPhone, icon sizes for, 237

iPod, icon sizes for, 237

iSimulate, 154–156

configuring, 154

free Lite version, 154

on iOS, 156

■ J, K
JavaScript Object Notation see JSON

JavaScript Test Console

bookmarking Facebook resources,

25

JSON (JavaScript Object Notation)

associating location with Tweets,

173

Graph API, 4

SBJSON framework, 114

Twitter, 19

JSON response

Facebook responses, 71

■ L
labels

simplifying app usage, 246

social app design on iOS, 245

Index 292

latitude parameter

associating location with Tweets,

174, 175

LED flash, iOS 4, 8

letsbetrends.com

Twitter trends, 192

letter text fields

Three20 framework, 279

libxml XML

adding MGTwitterEngine source

code, 32

license agreement

social app design on iOS, 246

Like button

compliancy guidelines, 221, 222

likes, Facebook

fetching user’s likes, 92

limit parameter

requestWithGraphPath method, 70

link key value, Facebook dialogs, 83

loading

user experience priorities, Twitter,

247

loadView method, MapViewController,

158

ShareKit posting to

Facebook/Twitter, 186

local notifications, iOS 4, 6

location history, Twitter

deleting, 147

rules governing use of APIs, 213

location (of devices)

adding to Tweets, 146–147

associating with Tweets, 172–177

authorization status for application,

152

battery power conservation, 147

CLLocationManager class, 149,

151–153

CoreLocation framework, 148–153

determining if device has

left/reentered region., 151

Facebook Places, 141–145

FTLocationSimulator, 157–158

general considerations, 136

generating in iOS simulator, 153–158

iSimulate, 154–156

iOS Location Services settings, 138

MapKit, 158–162

MKUserLocation annotations, 161

privacy, 13

region monitoring, 151

Significant Change method, 147,

153

Standard method, 147, 153

storing/flushing location history, 141

turning location services on/off, 137

Twitter, 172–177

Twitter trends based on, 191–192

using user’s location in applications,

136

location parameters

associating location with Tweets,

174

location permission prompt, iOS, 137

location property, 149, 152

Location section, Twitter, 146, 147

Location Services settings, iOS, 138

after resetting warnings, 140

location services, iOS, 136, 137, 139

backgrounding, 153

enabled on device, 149

permission to use not granted, 162

power usage, 147

problem initializing, 152

location-based apps, iOS 4, 7

LocationController class, 148–149

associating location with Tweets,

172

FTLocationSimulator, 149

location property, 149

locationServicesEnabled property,

149

operation of CLLocationManager,

149

power saving mode, 149, 150

registerRegion method, 160

startMonitoringSignificantLocationC

hanges method, 149

startWithPowerSaving method, 149

stop method, 150

LocationController.h file, 148

Index 293

LocationManager.m file, 149

locationManager: methods

didChangeAuthorizationStatus, 152

didEnterRegion, 152

didExitRegion, 152

didFailWithError, 152

didUpdateToLocation, 152

locationServicesEnabled property, 149

logging in, Facebook, 49–51

login error, 43

login method, 50

login page, 38

OAuth login via mobile Safari, 44

OAuth login view, 89

getting list of logged in user’s

friends, 66

single sign-on feature, 41

logging in, Twitter, 58–61

bit.ly URL shortening service, 181

identity, 216

logging out, Facebook, 18, 51–53

logout method, 50, 51, 52

logging out, Twitter, 62

logos

avoiding use of Facebook logos, 276

offline display guidelines, Twitter,

261

theme elements, Twitter, 253

Twitter trademarks, 254

Twitter UI design, 258–259

longitude parameter

associating location with Tweets,

174, 175

longUrl parameter

bit.ly URL shortening service, 181

■ M
Mac OS X

installing Git, 22

Mac OS X Terminal application

creating Facebook project, 26

creating Twitter project, 31

MainViewController class

adding UIViewController

Facebook, 28

Twitter, 33

OAuthTwitter project, 59

managed object model, creating, 126

managedObjectContext method

storing data in TwitterDataStore, 124

map overlays, iOS 4, 8

MapKit, 158–162

MKMapView class, 158

MKReverseGeocoder class, 177

MapViewController class

associating location with Tweets,

172, 174

loadView method, 158

mapView: methods

didSelectAnnotationView, 162, 165

associating location with Tweets,

174

didUpdateUserLocation, 160

viewForAnnotation, 161

math APIs, iOS 4, 8

@mentions, Tweets, 248

MesaSQLite, 193

message composer

Three20 framework, 278

TTMessageController, 278

message key value, Facebook dialogs

customizing display of feed dialog,

85

messages, Twitter

sending direct message, 100

messaging, Facebook

messages service, 7

rules governing use of APIs, 222

MGTwitterEngine, 30

adding source code to project,

32–33

associating location with Tweets,

173

creating connections, 78

creating project, 31

dictionary of connections, 77

HTTP connections, 77–78

order for calling methods of

delegate, 73

parsing returned XML data, 78

starting Twitter engine, 34–35

Index 294

MGTwitterEngine API, 19–20

dialog class, 101

handling responses, 77

making API calls, 19

making requests, 77

Objective-C wrapper classes, 77

MGTwitterEngine class, 77

getFollowersIncludingCurrentStatus

method, 72

getImageAtURLmethod, 76

instantiating object, 19

parseDataForConnection method,

78

request methods, 72

sendUpdate method, 96

MGTwitterEngineDelegate

connectionFinished method, 73

error handling, 19

imageReceived:forRequest method,

76

making API calls, 19

order for calling methods, 73

Received:forRequest methods, 73

requestFailed:withError method, 73

requestSucceeded method, 73

starting Twitter engine, 34

tweeting for currently logged in user,

97

userInfoReceived:forRequest

method, 73, 78

MGTwitterHTTPURLConnection object,

77, 78

migration

Core Data model, 126

MKMapView class, 158

addAnnotation method, 160

displaying annotation, 161

mapView:didSelectAnnotationView

method, 162

MKMapViewDelegate

mapView:didUpdateUserLocation,

160

MKReverseGeocoder class, 177

MKUserLocation annotations, 161

mobile development

unit testing, 200

mocking objects

adding unit tests to social iOS app,

208

modal pop-up dialog

FBDialog class, 87

Model-View-Controller (MVC), 118

More button

simplifying app usage, 246

movies, Facebook

fetching user’s movies, 93

multitasking, iOS 4, 6

music apps, iOS 4, 7

music, Facebook

fetching user’s music, 93

■ N
name key value, Facebook dialogs

customizing display of feed dialog,

84

navigation

Facebook UI design, 276

Twitter UI design, 255–257

navigation apps

Waze, 228–229

Nearby screen, Facebook Places, 162

news

Twitter, 16

news feeds, Facebook

fetching user’s news feeds, 90

news reader apps

Flipboard, 231–232

Taptu, 274, 275

notes, Facebook

fetching user’s notes, 90

notetaking, Twitter

Evernote, 226–228

notifications, Twitter, 262

assigning values from, 75

executing method if unique

connection identifier is fired, 74

getting image object out of, 76

naming, 74

NSNotificationCenter, 74

receiving, 76

removing yourself as observer of, 75

Index 295

specifying objects receiver can

access, 73

twitterFollowersRequestDidComplet

e method, 74

NSFetchRequest class, 133

NSManagedObjectContext class, 124

NSNotificationCenter class, 73

NSPersistentStoreCoordinator class,

125

NSSortDescriptor class, 133

■ O
OARequestHeader Git repository

posting pictures to Twitter, 114

OAuth, 11–12, 37–40

consumer key, 58

Facebook, 11, 40–54

authorization page, 88

authorizing application via, 40–54

dialog authorization, 88

integrating ShareKit with, 186

login view, 89

logging in to, 49–51

logging out of, 51–53

OAuth permissions page, 53

OAuth permissions via mobile

Safari, 44

OAuth token, 40, 41

single sign-on feature, 40–48

granting TwitPic access via, 111

logging in, 38

via mobile Safari, 44

OAuth-enabled version of Curl, 24

open authentication, 37

password security, 11

permissions, 38

checking into places, 167

tokens, 39

social networking sites, 12

Twitter, 11, 40, 54–62

authentication flow, 54

authorizing application via, 54–62

creating application, 55–57

integrating ShareKit with, 186

logging into, 58–61

logging out of, 62

OAuth consumer key, 58

UIWebView, 38

versions, 11

OAuthFacebook project, 46

OAuthTwitter project, 58

OAuthTwitterControllerCanceled

method, 60

OAuthTwitterControllerFailed method,

60

objectForKey method, 67

Objective-C

adding UIViewController, Twitter, 34

iOS Objective-C Facebook SDK, 5

wrapping Twitter API in Objective-C

code, 30

Objective-C wrapper classes

Facebook iOS SDK, 71

MGTwitterEngine API, 77

OCMock

adding unit tests to social iOS app,

208

offline display guidelines

Twitter UI design, 261

offline storage, 118–133

Core Data, 118–127

storing/retrieving Tweets,

131–133

data modeling with

TwitterDataStore, 118–127

error handling, 126

implementing offline Twitter app.,

194–199

SQLite, 118, 192–199

OfflineTwitterTest target

adding unit tests to social iOS app,

204

OfflineTwitterTest.h file, 206

OfflineTwitterTest.m file, 206

offset parameter

requestWithGraphPath:andDelegate

method, 70

open authentication, 37

openDatabase method

offline storage, SQLite, 194, 195,

196

Index 296

openURL method, 48

order criteria, Tweets, 252

overlays, map, 8

■ P
parameters, Facebook

additional parameters, 83

date_format parameter, 96

dialog methods, 82

parseDataForConnection method,

MGTwitterEngine, 78

parsedResponse dictionary

posting photo to Twitter, 117

parsing

SBJSON framework, 114

password security, OAuth, 11

People Here Now example, Facebook,

143

performSelectorInBackground method,

129

performSelectorOnMainThread method,

130

permalink, Tweets, 250

permissions

turning location services on/off, 137

user experience priorities, Twitter,

247

permissions, Facebook

check-ins, 171

OAuth, 38

permissions page, 39, 53

permissions via mobile Safari, 44

tokens, 39

read_stream permission, 93

revoking for application to check into

places, 144

single sign-on feature, 40

user permissions, 221

user_events permission, 92

user_groups permission, 92

user_likes permission, 92

user_notes permission, 90

user_photos permission, 95

persistent storage

error handling, 126

phone apps

Fone, 230–231

Photo Library

accessing images from code,

106–108

saving pictures to, 105–106

photo viewer

Three20 framework, 278

photos

displaying table of Photo albums on

device, 107

Facebook

iOS 4, 7

posting pictures to Twitter, 110–117

saving pictures to Photo Library,

105–106

photos, Facebook, 15

compliancy guidelines, 222

fetching user’s tagged photos, 95

posting pictures to Facebook, 109–

110

tagging photos, 222

picture key value, Facebook dialogs

customizing display of feed dialog,

84

pictures

adding TwitPics, Evernote, 228

posting to Facebook, 109–110

posting to Twitter, 110–117

saving to Photo Library, 105–106

place_id key

associating location with Tweets,

177

Places see Facebook Places

platform policies

Facebook, 211, 219–223

Twitter, 211–217

plist file

defining custom URL scheme in, 47

Facebook redirection to application

after login, 46

PNG format

icons and images, 238, 239

Poole, Christopher

privacy, 12

Popover control, iPad, 246

Index 297

post_id parameter, Facebook dialogs,

85

posts

creating content, 244

fetching user’s wall posts,

Facebook, 93

power saving mode

LocationController class, 149, 150

savingPower parameter, 149

startWithPowerSaving method, 149

presentModalViewController method

accessing images from code, 106

logging in to Twitter, 59

print out (po) command, Xcode, 68

privacy, 9, 12–14

see also security

before Facebook/Twitter, 9

Facebook, 10, 219, 220

Facebook statuses, 14

location of devices, 13

OAuth, 38

offline display guidelines, Twitter,

261

Places feature, Facebook, 141

real-life and online identities, 13

social graph, 12, 13, 14

tweet streams, 14

Twitter, 10, 215, 224

user experience priorities, Twitter,

247

users, 12–14

value of being anonymous, 13

Privacy settings, Facebook

Apps and Websites section, 144

customizing check-in settings, 142

Places feature, 141

revoking permission for application

to check into places, 144

profiles

getImageAtURLmethod,

MGTwitterEngine, 76

getting profile pictures for user’s

friends, Facebook, 66, 69

progress (feedback to user)

Facebook UI design, 277

projects, Facebook

adding source code, 27

adding UIViewController, 27–28

creating, 25–26

projects, Twitter

adding Core Data model file to, 119

adding MGTwitterEngine source

code, 32–33

adding UIViewController to, 33–34

creating, 31

linking to Core Data framework, 119

naming, 260

prototyping

social app design on iOS, 243

publish_checkins permissions,

Facebook, 167

publishing

things apps can publish, Facebook,

66

things apps can publish, Twitter, 72

Publishing API, Facebook, 5

pulls

consuming content, 244

push notifications, Facebook

contacting other users, 268

■ Q
querying other users

Facebook UI design, 268

Quick Look, iOS 4, 8

QuickBar, Twitter, 262–264

■ R
rate limiting

HTTP POST, 218

REST API, 218

users and API calls, Facebook, 220

read_stream permission, Facebook, 93

reader apps

Flipboard, 231–232

Taptu, 274, 275

Reading API, Facebook, 4

Received:forRequest methods

MGTwitterEngineDelegate, 73

Index 298

region monitoring

authorization status for application,

152

CLLocationManager class, 151

determining if device has

left/reentered region., 151

didEnterRegion method, 152

didExitRegion method, 152

startMonitoringForRegion method,

151

registerRegion method

CLLocationManager class, 151

LocationController class, 160

regressions, 208

Remember The Milk see RTM

Reply action, Tweets, 251

request methods, MGTwitterEngine, 72

request: methods

didFailWithError method, 67, 71, 95

didLoad method, 66, 67, 68

posting pictures to Facebook,

109

searching for places, 166

didLoadRawResponse method, 66

didReceiveResponse method, 66

request responses, handling, 18

requestFailed:withError method

MGTwitterEngineDelegate, 73

requestLoading method, Facebook, 66

requests, Facebook, 71

requests, Twitter, 77

requestSucceeded method

MGTwitterEngineDelegate, 73, 97

requestWithGraph method, Facebook,

69

requestWithGraphPath method, 72, 89

:andDelegate method, 66, 70

:andParams:andDelegate method,

70, 95, 165

:andParams:andHttpMethod:andDel

egate method, 109

Reset Location Warnings setting, iOS,

139

responses, Facebook

dictionary with key/value pair, 67

didLoadRawResponse method, 66

didReceiveResponse method, 66

FBRequest class, 71

handleResponseData method, 71

JSON response, 71

limiting number of items in, 70

retrieving items from given offset, 70

responses, Twitter

direct messages, 100

directMessagesReceived method,

100

handling, 77

REST API rate limiting, Twitter, 218

results, Facebook

limiting number of fields returned, 95

Retweet action, Tweets, 251

reverse geocoding

associating location with Tweets,

175

RTM (Remember The Milk), 224–226

adding @RTM as Twitter contact,

225

changing preferences, 226

commands, 226

modifying tasks, 226

sending tasks to Twitter users, 225

rules governing use of APIs

Facebook, 218–223

see also compliancy guidelines,

Facebook

summary of major rules, 233

Twitter, 213–217

summary of major rules, 233

■ S
SA_OAuthTwitterController dialog, 60

SA_OAuthTwitterControllerDelegate, 60

SA_OAuthTwitterEngine object, 58

Safari

saving pictures to Photo Library, 105

saved states, iOS 4, 7

SBJSON framework

associating location with Tweets,

173

posting pictures to Twitter, 114

Index 299

scrolling

user experience priorities, Twitter,

247

Search API, Twitter, 5

search engines

privacy of tweet streams, 14

Searching API, Facebook, 5

security, 9

see also privacy

before Facebook/Twitter, 9

Facebook, 10

OAuth, 11–12, 37–40

reporting problems to

Facebook/Twitter, 14

Twitter, 10

sendUpdate method, MGTwitterEngine,

96, 117

SenTestingKit framework, 208

setData method,

FollowersTableViewCell, 75

settings

social app design on iOS, 244

Settings application, iOS, 138

turning location services on/off, 137

setup documents, Apple IDE, 21

setUp method

adding unit tests to social iOS app,

206

Shake to Reload feature, Facebook,

241

ShareKit, 182–189

accessing services, 184

debugging, 184

default options, 183

downloading, 182

integrating with Facebook/Twitter,

186

integration with services in

applications, 182

linking to frameworks, 183

posting to Facebook/Twitter, 186

setting application name and URL,

184

setting application’s Twitter OAuth

credentials, 185

SHKActionSheet, 187

source code directory, 183

turning on debug logs, 185

Twitter dialog, 188

UIToolBar in, 186

using, 20

show method, FBDialog, 87

Significant Change method

CoreLocation class, 149

location of devices, 147, 153

signing up/in/out

social app design on iOS, 237

sign-on feature, Facebook iOS SDK, 17

simulation

FTLocationSimulator, 149, 157–158

iSimulate, 154–156

single sign-on feature, Facebook, 17,

40–48

redirection to application after login,

46

Sleep mode, iOS 4, 6

SMS notes, Evernote, 227

SMS tweets, Twitter security, 10

SMSing, iOS 4, 7

social aggregators

Hootsuite, 274

social app design on iOS, 235–246

see also design

activity indicator, 239

animation, 239

app logic managing complexity, 244

branding, 245

content, consuming/creating, 244

controls, 242

Facebook UI design, 267–280

feedback, 239–242

handling accounts, 236

icons, 237–239

iPad, 246

labels, 245

license agreement, 246

prototyping and testing, 243

settings, 244

signing up/in/out, 237

simplifying app usage, 246

sound, 241

touch targets, 242

Index 300

Twitter UI design, 247–265

updating indicator, 240

user requirements from apps,

244–246

vibration, 241

social graph, 1, 2, 3

consuming/creating content, 244

creating app for Facebook, 30

creating app for Twitter, 35

Facebook Graph API, 17

iOS, 6–8

privacy, 12, 13, 14

Twitter, 1

social graph, Facebook, 1, 9

accessing information from, 66

fetching user’s events, 92

fetching user’s groups, 92

fetching user’s

likes/movies/music/books, 92

fetching user’s news feed, 90

fetching user’s notes, 90

fetching user’s

photos/albums/videos, 95

fetching user’s wall posts, 93

getting list of logged in user’s

friends, 66–69, 89

Graph API, 17

posting to Facebook social graph,

88

pulling information from, 66

social iOS app

adding unit tests to, 200–208

social networking sites

OAuth, 12

Social Stream

guidelines for using, Facebook, 223

software development

Git, 22

sound

social app design on iOS, 241

source, Tweets, 251

spam

Facebook, 219

Twitter, 215

splash screens, Twitter, 259

sprites, Twitter UI design, 260

SQLite

? symbols, 197

implementing offline Twitter

application, 194, 199

MesaSQLite, 193

offline storage, 118, 192–199

SQLite database

Core Data, 193

Core Data creating, 192

viewing contents of, 193

sqlite3_close method, 196

sqlite3_open method, 195

SSH keys

generating, Git, 24

Standard method

CoreLocation class, 149

location of devices, 147

location services, 153

startMonitoringForRegion method, 151

startMonitoringSignificantLocationChan

ges method, 149

startUpdatingLocation method, 149,

158

startWithPowerSaving method, 149

states, saved, 7

statistics, Facebook/Twitter, 16

status parameter

sendUpdate method, Twitter, 96

statusesReceived method, 99

tweeting for currently logged in user,

97

statusesReceived:forRequest method

creating app for Twitter, 35

notifications when request for Tweet

completed, 129

status-related operations, Twitter URLs,

102

stop method, LocationController, 150

storeCachedTwitterOAuthData method,

59

storing data

Core Data, 118–127

offline storage, 118–133

SQLite, 192–199

storing/retrieving Tweets

Core Data, 131–133

Index 301

stream of Tweets, 72

Streaming API, Twitter, 5

end of whitelisting, 217

stringWithContentsOfURL method

URL shorteners in iOS, 181, 182

submodules, Git, 24, 26

Surgeworks

downloading Facebook UI kit, 273

synchronizeTweets method, 130

adding unit tests to social iOS app,

207

offline storage, SQLite, 196

TimelineViewController class, 130

TwitterDataStore class, 130

■ T
T.co URL shortening service, 180

tableView:cellForRowAtIndexPath

method, 68

tabs

Facebook UI design, 279

tagalus service

hash tags (#), Twitter, 192

tagged photos/albums/videos,

Facebook, 95

tagging photos

compliancy guidelines, 222

Taptu, 274

creating theme elements, 275

targets

adding, 201

adding unit tests to social iOS app,

200, 201, 203, 208

building/running test target, 203

linker flag, 155, 157

linking, 33, 113

OfflineTwitterTest target, 204

renaming, 202

setting up test target, 208

task completion, iOS 4, 7

task switching, iOS 4, 7

tasks, Twitter

adding, 225

modifying, 226

sending to users, 225

tearDown method

adding unit tests to social iOS app,

206

Terminal application, Mac OS X

creating project, Facebook iOS SDK,

26

terms of service, Twitter, 212

test class

adding unit tests to social iOS app,

206, 208

testing

social app design on iOS, 243

unit testing, 200–208

text messages

translating into Tweets, 227

theme elements, Twitter, 253

themes, Facebook UI design, 273–275

creating theme elements, 274–275

Hootsuite, 274

Taptu, 275

Things others share section, Facebook,

143

Three20 framework, 270, 271, 278–279

Internet-aware table views, 278

letter text fields, 279

message composer, 278

photo viewer, 278

web image views, 278

timeline, Twitter, 72, 254

public timeline, 99, 102

timeline of user and followers, 99

TimelineViewController class, 128, 129

notifications when request for Tweet

completed, 129

synchronizeTweets method, 130

tweetsDidSynchronize method, 130

timestamp

Tweets, 250

Twitterific, 250

TinyURL.com URL shortening service,

180

URL shorteners in iOS, 181

to-do lists

RTM (Remember The Milk), 224–226

tokens, OAuth

permissions, 39

Index 302

single sign-on feature, Facebook,

40, 41

touch targets

social app design on iOS, 242

trademarks

Twitter bird, 254, 255

Twitter UI design, 254–255

trending topics, Twitter, 190

location based, 191

trends, Twitter see Twitter trends

TTImageView, 278

TTMessageController, 278

TTPhotoViewController, 278

TTPickerTextField, 279

TTTableViewController, 278

TTTableViewDataSource, 278

TTTextEditor, 279

Tweet box/button

composing Tweets, 249

Tweet class

associating Tweet entity with, 123

Core Data storing Tweet objects,

193

offline storage, SQLite, 194

Tweet entities

adding attributes to, 122

adding to Core Data model, 120

associating with Tweet class, 123

mapping in Core Data model, 122

renaming, 121

Tweet Location section, 146, 147

Tweet.h file, 124

Tweet.m file, 124

adding to OfflineTwitterTest target,

205

Tweetbot

user’s avatar, 249

Tweetie, 255–257

creator of, 255

dynamic application bar, 256

HIG (Human Interface Guidelines),

255

Tweets

see also Twitter

#hashtags, 248

@mentions, 248

accessing user interface of

application, 127

actions (Reply/Retweet/Favorite),

251

adding locations to, 146–147

anatomy of, 248–249

associating location with, 172–177

author, 248

branding, 249

character counter, 249

composing, 249

deleting in Core Data model, 133

fetching from Core Data model, 133

getting favorite Tweets of currently

logged in user, 99

looping through array of, 131

maximum length of, 96

multiple Tweets, 252

notifications when request

completed, 129

offline display guidelines, 261

order criteria, 252

permalink, 250

prioritizing consumption/creation of,

224

references to, 255

retrieving, 129

saving on background thread, 128

source, 251

storing id and text content of, 122

stream of, 72

synchronizeTweets method, 130

timestamp, 250

Twitter bird, 249

URL shortening, 179–181

URLs, 248

user interface displaying, 127

user’s avatar, 249

tweets method

offline storage, SQLite, 198

Tweets table

offline storage, SQLite, 195

tweetsDidSynchronize method, 130

twitgoo

posting pictures to Twitter, 110

Index 303

TwitPic

granting access via OAuth, 111

GSTwitPicEngine, 113

posting pictures to Twitter, 110–117

registering for TwitPic API key, 111

storing returned TwitPic API Key,

112

twitpicDidFinishUpload method, 116

TwitPics

adding, Evernote, 228

Twitter API, 5–6, 72–78, 96–103

bug tracking, 25

console, 103

deleting Tweets, 99

developers using, 19

dialog class, 101

error handling, 19

getting set up with iOS application,

30–34

HTTP and XML, 77

making API calls, 19

MGTwitterEngine, 19

MGTwitterHTTPURLConnection, 77

prioritizing consumption/creation of

Tweets, 224

rules governing use of APIs,

213–217

advertising, 217

displaying Twitter content, 216

existing Twitter clients, 214

location information, 213

login and identity, 216

monetizing apps, 216

placeholder apps, 215

sources for client features, 214

spam, 215

summary of major rules, 233

usability, 214

use of Twitter trademarks, 213

what the best apps do, 224

wrapping Twitter API in Objective-C

code, 30

Twitter

see also Tweets

adding tasks, 225

adding TwitPics, 228

adding UIViewController to project,

33–34

advantages of, 16

brand dilution, 212

Core API, 5

creating application, 55–57

creating project, 31

adding MGTwitterEngine source

code, 32–33

design see social app design on iOS

design guidelines, 249

design requirements, 248–249

exceptions to rules, 249

geo-location API, 172

getting list of logged in user’s

followers, 72–77

handling responses, 77

hash tags (#), 189

tagalus service, 192

HTTP GET, 5

HTTP POST, 5

integrating ShareKit with, 186

location of devices, 172–177

logging into, 58–61

logging out of, 62

making requests, 77

MGTwitterEngine, 19–20, 30, 77

modifying tasks, 226

navigation, 255–257

news, 16

notifications, 262

OAuth, 11, 40, 54–62

authentication flow, 54

OAuthTwitter project, 58

offline storage, 118–133

ownership of user data, 13

platform policies, 211

posting pictures to, 110–117

privacy, 10, 14, 215, 224

QuickBar, 262–264

references to, 255

referencing, 260

reporting security problems to, 14

resources to bookmark for Git, 24

REST API rate limiting, 218

Search API, 5

Index 304

security, 10

sending direct message, 100

sending tasks to users, 225

ShareKit, 182–189

SMS notes, 227

social graph, 1

splash screens, 259

starting Twitter engine, 34–35

stream of Tweets, 72

Streaming API, 5

terms of service, 212

theme elements, 253

things apps can publish on, 72

timeline, 72

public timeline, 99

user and followers, 99

tweeting for currently logged in user,

96

Twitter’s own URL shortening

service, 180

URL shortening, 179–181

use cases, 4

user statistics, 16

using inside iOS applications, 4

using ShareKit, 20

whitelisting, 217

Twitter apps, 224–229

see also Twitter official app

direct references to Twitter, 254

Evernote, 226–228

placeholder apps, 215

reproducing, 212

RTM (Remember The Milk), 224–226

suggestions for value-added apps,

212

UI and UX in official apps, 212

Waze, 228–229

Twitter bird

trademarks, 254, 255

Tweets, 249

Twitter console, Apigee

associating location with Tweets,

172

Twitter contacts

adding @RTM as, 225

Twitter dev console, 102–103

Twitter dialog, ShareKit, 188

Twitter HTTP API

common URL scheme, 101

Twitter IDs, 97

Twitter official app

navigation, 257

predecessor to, 255

timeline, 254

user profile, 254

Twitter security

SMS tweets, 10

Twitter trends, 189–192

as_of date, 189

current API, 190

letsbetrends.com, 192

top trending topics, 190

location based, 191

trends API, 189

Trends tool, 179

WOEID (Where on Earth IDs),

191–192

Twitter UI design, 247–265

advertising in App Store, 255

anatomy of Tweets

@mentions, 248

branding, 249

character counter, 249

multiple Tweets, 252

order criteria, 252

permalink, 250

source, 251

timestamp, 250

Tweet author, 248

Tweet box, 249

Tweet button, 249

Twitter bird, 249

URLs, 248

user’s avatar, 249

bird graphics, 259

color, 253

design tricks from Web app, 264

direct references to Twitter, 254

guidelines, 249

icons, 258–259

logos, 258–259

naming projects, 260

Index 305

navigation, 255–257

notifications, 262

offline display guidelines, 261

referencing Twitter, 260

requirements, 248–249

sprites, 260

trademarks, 254–255

usability priorities, 247

using Twitter’s web buttons, 253

visual indicators, 259

Twitter URLs, 101–102

direct messages, 102

status-related operations, 102

user-related operations, 102

TwitterDataStore class

accessing user interface of

application, 127

adding Core Data model file to

project, 119

adding Tweet entity to Core Data

model, 120

data modeling with, 118–127

deleteTweets method, 131, 199

linking project to Core Data

framework, 119

offline storage, SQLite, 194

retrieving Tweets, 129

saving Tweets on background

thread, 128

storing data within, 124

synchronizeTweets method, 130,

196

tweets method, 198

TwitterDataStore_SQLite class

adding to OfflineTwitterTest target,

206

adding unit tests to social iOS app,

204, 206, 207

closeDatabase method, 196

offline storage, SQLite, 194

openDatabase method, 194, 195,

196

sqlite3_open method, 195

TwitterDataStore.m file, 205

twitterFollowersRequestDidComplete

method, 74

Twitterific

multiple Tweets, 252

social app design on iOS, 236

timestamp, 250

twitterOAuthConnectionFailedWithData

method, 59

twitterTimelineRequestDidComplete

method, 129

Twurl

bookmarking Twitter resources, 24

■ U
UIImagePickerController class, 106–108

displaying table of Photo albums on

device, 107

posting photos to Twitter, 116

UIImagePickerControllerDelegate

accessing images from code, 107

didFinishPickingMediaWithInfo

method, 107

UIs (user interfaces)

design see social app design on iOS

Facebook UI design, 267–280

Twitter UI design, 247–265

UITabBarController class

Facebook, 66

Twitter, 72

UITableView class, 68

UITableViewController class, 72

accessing user interface of

application, 127

UIToolBar, ShareKit, 186

UIViewController class

accessing images from code, 106

adding to Facebook project, 27–28

adding to Twitter project, 33–34

presentModalViewController

method, 106

UIWebView class

Facebook iOS SDK, 17, 27

Facebook login, 45

FBDialog class, 87

OAuth, 38

webViewDidFinishLoad method,

Twitter, 62

Index 306

unit testing, 200–208

updating indicator

social app design on iOS, 240

uploadPicture:withMessage method

GSTwitPicEngine class, 116

URL Linter

bookmarking Facebook resources,

25

URL scheme

components of URLs, 48

Facebook redirection to application

after login, 46

interapp communication via, 46–49

Twitter HTTP API, 101

URL shortening, 179–181

bit.ly, 180

curl tool, 180

iOS, 181–182

T.co, 180

TinyURL, 180

Tweets, 179

user experience priorities, Twitter,

247

URLs

components of, 48

Tweets, 248

Twitter, 101–102

usability priorities

Facebook UI design, 267–280

Twitter UI design, 247

use cases

Facebook, 3

Twitter, 4

user authentication see authentication

user experience, Facebook, 219

usability priorities, 267–280

user experience, Twitter

priorities, 247

user interfaces see UIs

user permissions, Facebook, 221

user_checkins, 171

user_events, 92

user_groups, 92

user_likes, 92

user_notes, 90

user_photos, 95

user profile, Twitter official app, 254

user requirements from apps

social app design on iOS, 244–246

branding, 245

consuming/creating content, 244

labels, 245

settings, 244

user testing

social app design on iOS, 243

user’s avatar

Tweetbot, 249

Tweets, 249

userInfoReceived method

setting breakpoint in XCode in, 100

userInfoReceived:forRequest method

MGTwitterEngineDelegate, 73, 74,

78

user-related operations, Twitter URLs,

102

users

contacting others, Facebook, 268

offline display guidelines, Twitter,

261

ownership of user data, 13

privacy, 12–14

querying others, Facebook, 268

rate limits on, Facebook, 220

statistics for Facebook/Twitter, 16

using user’s location in applications,

136

■ V
vibration

contacting other users, 268

social app design on iOS, 241

videos, Facebook

fetching user’s tagged videos, 95

view controllers

adding UIViewController

Facebook, 27–28

Twitter, 33–34

DialogViewController class, 82

FacebookViewController class, 66

FollowersViewController class, 72

FriendsViewController class, 66

Index 307

TimelineViewController class, 128,

129

TTPhotoViewController, 278

TTTableViewController, 278

UITableViewController class, 72

viewDidLoad method

FollowersViewController class, 72

FriendsViewController class, 66

views, Three20, 278

visual indicators, Twitter UI design, 259

VOIP apps, iOS 4, 7

■ W
wall posts, Facebook

fetching user’s wall posts, 93

Waze, 228–229

Web app, Facebook

design tricks from, 279

Web app, Twitter

design tricks from, 264

web browsers

bookmarking Twitter resources, 24

saving pictures to Photo Library, 105

web buttons, Twitter, 253

web image views, Three20 framework,

278

web view, Facebook dialogs, 84

webViewDidFinishLoad method, 62

whitelisting, Twitter, 217

WiFi connections, iOS 4, 6

WOEID (Where on Earth IDs)

Twitter trends, 191–192

■ X
Xcode

adding unit tests to social iOS app,

203

creating app for Facebook, 29

getting set up with iOS application,

Facebook, 25

print out (po) command, 68

seeing contents of objects in, 68

setting breakpoint in

userInfoReceived, 100

starting Twitter engine, 34

using for iOS development, 21

versions, 21

Xcode project

adding Facebook iOS SDK source

code, 27

adding MGTwitterEngine source

code, 32–33

adding UIViewController, Facebook,

27–28

adding UIViewController, Twitter,

33–34

adding unit tests to social iOS app,

200

creating Facebook project, 25–26

creating Twitter project, 31

mapping Tweet entity in Core Data

model, 122

offline storage, SQLite, 199

XML

adding MGTwitterEngine source

code, 32

MGTwitterEngine parsing returned

XML data, 78

Twitter, 19

■ Y
yfrog

posting pictures to Twitter, 110

■ Z
ZTWEET table

CoreDataOffline.sqlite file, 193

Zuckerberg, Mark

privacy, 12

	Title Page
	Copyright Page
	Contents at a Glance
	Table of Contents
	About the Authors
	About the Technical Reviewer
	Acknowledgments
	Preface
	Chapter 1 What the Social Graph Can Do for Your App
	What Is This Book for?
	What You’ll Need
	What You Should Know
	What You’ll Learn

	Learning the Social Graph
	Use-Cases, Briefly
	Facebook
	Twitter

	Brief Overview of the APIs and Services
	Facebook
	Reading
	Publishing
	Searching

	Twitter
	Core API
	Search API
	Streaming API
	The Social Graph on iOS
	Local Notifications
	Task Completion
	Fast Task Switching and Saved State
	Background Music, Location, and VOIP
	SMS: Search and in-app SMSing
	More Powerful Photos and Calendars
	New Camera and Flash
	Map Overlays
	iAd
	Quick Look
	Math APIs
	File Transfer

	Summary

	Chapter 2 Privacy, Privacy, Privacy
	The Old Way
	A Quick History of Hot-Button Issues
	Facebook’s Track Record
	Twitter’s Track Record

	How OAuth Changes Everything
	A New Standard Emerges

	What Users “Want”
	Educating Your Users
	A Note on Feeds
	What to Do if You Encounter a Security Loophole
	Summary

	Chapter 3 Choose Your Weapon!
	What Are They Good For?
	Facebook
	Twitter

	Getting Started with Facebook’s Awesome Developer Tools
	Using Facebook’s API
	Making API Calls
	Displaying Dialogs
	Error Handling
	Logging Out

	Twitter’s Less Awesome (but Still Great!) Tools
	Using MGTwitterEngine
	Making API Calls
	Error Handling
	Using ShareKit

	Summary

	Chapter 4 Getting Set Up
	Git ’Er Dun
	Github.com
	Installing Git
	Git Basics
	Bookmark These Twitter Resources
	Also Bookmark These Facebook Resources
	A Note on Bug Tracking

	Hello Facebook
	Creating a Project
	Adding the Facebook iOS SDK Source Code
	Add UIViewController

	Hello Twitter
	Creating a Project
	Adding the MGTwitterEngine Source Code
	Add UIViewController

	Now, on to Security

	Chapter 5 Working Securely with OAuth and Accounts
	OAll OAbout OAuth
	How OAuth Works
	OAuth in Facebook and Twitter

	OAuth in Facebook and Twitter
	Single Sign-On with Facebook
	Logging in to Facebook
	Logging out of Facebook
	Determining if iOS Supports Backgrounding of Applications

	OAuth in Twitter
	Creating a Twitter Application
	The OAuthTwitter Project
	Logging into Twitter
	Logging out of Twitter
	Under the Hood: webViewDidFinishLoad

	There’s More

	Chapter 6 Getting Your App Ready for Social Messaging
	Introducing the Facebook Graph API
	A Little Help from Our Friends
	Paging Graph Responses
	Under the Hood: The FBRequest Class
	A General Note on Error Handling

	Introducing the Twitter APIs
	Welcome to the Timeline
	It Always Feels Like Somebody’s Following Me

	Under the Hood: MGTwitter HTTP Connections and XML Parsing

	Conclusion

	Chapter 7 Accessing People, Places, Objects, and Relationships
	More Fun with the Facebook Graph API
	Facebook Dialogs
	Under the Hood: The FBDialog Class
	Posting to Facebook and Authorization
	Getting More Goodies from the Facebook Graph
	Limiting Results
	Date Formatting

	More Fun with the Twitter API
	A Tweetin’ We Will Go
	Under the Hood: Twitter URLs
	The Twitter Dev Console

	Conclusion

	Chapter 8 POSTing, Data Modeling, and Going Offline
	Strike a Pose
	Saving a Picture to the iOS Simulator’s Photo Library
	Working with UIImagePickerController
	ImagePostController
	Facebook Photo Upload
	Twitter Photo Upload
	GSTwitPicEngine
	ASIHTTPRequest
	SBJSON
	OARequestHeader
	Post a Photo

	Offline Paradigm and Background Processing
	Data Modeling with TwitterDataStore
	Updating the View from the Model

	Conclusion

	Chapter 9 Working with Location Awareness and Streaming Data
	Here, There, and Everywhere
	Location Privacy, Disclosure, and Opt-Out
	Facebook Places
	Adding Locations to Tweets
	Power Hungry
	CoreLocation
	Using CLLocationManager
	Generating Locations in the iOS Simulator
	iSimulate
	futuretap’s FTLocationSimulator

	MapKit
	Facebook Places (Search), Check-ins (Getting and Posting), and Friends Nearby
	Tweetin’ With Location

	Conclusion

	Chapter 10 Using Open Source Tools and Other Goodies
	The Shorter, the Better
	Using URL Shorteners in iOS

	ShareKit: Sometimes Quick and Dirty Does the Trick
	Getting Started with ShareKit

	All the Latest Twitter Trends
	Trending Topics
	Where On Earth ID

	Offline Storage Revisited: SQLite
	Reimplementing OfflineTwitter Without Core Data

	To Test or Not to Test, That is the Question
	Adding Unit Tests to a Social iOS App

	Conclusion

	Chapter 11 Apps You Can (and Cannot) Build
	Twitter: No Clients Allowed
	The Lowdown on the Twitter Terms of Service
	Rules of the Road
	Using the API
	What Your App Can Do
	Rules Governing Existing Twitter Clients
	How Twitter Defines Usability
	Login and Identity
	Displaying Content Correctly

	Monetizing Your App
	Twitter Ads
	Advertising Around Twitter Content

	New Rate Limits and the End of Whitelisting

	REST API Rate Limiting
	Facebook: Mind Your Manners
	The Lowdown on Platform Policy
	Creating a Great User Experience
	Be Trustworthy
	Rate Limits
	For Your Privacy Policy
	Other Stuff
	Rules About Content
	Other Odd Rules About How Facebook Apps Must Work
	The Principles in Action
	Photos
	The Like Button
	Advertising
	Using the Social Stream
	Button Text

	App Gallery
	Twitter Apps
	Remember The Milk
	Adding Tasks
	Sending Tasks to Other Twitter Users
	Updating Tasks
	Changing Preferences
	Evernote
	SMS notes
	Adding TwitPics
	Waze

	Facebook Apps
	Fone
	Flipboard

	Conclusion

	Chapter 12 UI Design and Experience Guidelines for Social iOS Apps
	UI Basics for Facebook and Twitter
	Attention to Detail: Start with the Icons
	Show All Kinds of Feedback
	Touch Targets and Text
	Prototype and Test
	What the User Wants from Your App
	Content
	A Logical Path
	Obvious Settings
	Branding
	Brevity
	A License Agreement
	Appropriate iPad Design

	Make Usage Easy and Obvious

	Conclusion

	Chapter 13 Twitter UI Design
	Usability Priorities
	Anatomy of a Tweet
	Suggested Components

	(Not) Using Twitter Colors
	Create Theme Elements

	Using the Twitter Trademark
	Advertising in the App Store
	We Don’t Know You

	Twitter Navigation Paradigms
	Twitter Logos and Icons
	Splash Screens

	Visual Assets (a.k.a., the Exceptions)
	Naming Your Project
	Offline Display Guidelines
	Working with Notifications
	Design Tricks from the Web App

	Conclusion

	Chapter 14 Facebook UI Design
	Usability Priorities
	Themes and Icons
	Third Party Resources
	Create Theme Elements
	Hootsuite
	Taptu

	Rules for Facebook Art
	Button Text

	Facebook Navigation
	Showing Progress
	Essential Three20 Components
	Design Tricks from the Web App
	The Tabbed Approach

	Conclusion

	Index

