

i

Beginning C# Object-
Oriented Programming

■ ■ ■

Dan Clark

■ CONTENTS

ii

Beginning C# Object-Oriented Programming

Copyright © 2011 by Dan Clark

All rights reserved. No part of this work may be reproduced or transmitted in any form or by any means,
electronic or mechanical, including photocopying, recording, or by any information storage or retrieval
system, without the prior written permission of the copyright owner and the publisher.

ISBN 978-1-4302-3530-9

ISBN 978-1-4302-3531-6 (eBook)

Trademarked names, logos, and images may appear in this book. Rather than use a trademark symbol
with every occurrence of a trademarked name, logo, or image we use the names, logos, and images only
in an editorial fashion and to the benefit of the trademark owner, with no intention of infringement of
the trademark.

The use in this publication of trade names, trademarks, service marks, and similar terms, even if they are
not identified as such, is not to be taken as an expression of opinion as to whether or not they are subject
to proprietary rights.

President and Publisher: Paul Manning
Lead Editor: John Osborn
Technical Reviewer: Jeff Sanders
Editorial Board: Steve Anglin, Mark Beckner, Ewan Buckingham, Gary Cornell, Jonathan Gennick,

Jonathan Hassell, Michelle Lowman, Matthew Moodie, Jeff Olson, Jeffrey Pepper, Frank
Pohlmann, Douglas Pundick, Ben Renow-Clarke, Dominic Shakeshaft, Matt Wade, Tom Welsh

Coordinating Editor: Corbin Collins
Copy Editor: Mary Behr
Compositor: Richard Ables
Indexer: John Collin
Artist: April Milne
Cover Designer: Anna Ishchenko

Distributed to the book trade worldwide by Springer Science+Business Media, LLC., 233 Spring
Street, 6th Floor, New York, NY 10013. Phone 1-800-SPRINGER, fax (201) 348-4505, e-mail
orders-ny@springer-sbm.com, or visit www.springeronline.com.

For information on translations, please e-mail rights@apress.com, or visit www.apress.com.

Apress and friends of ED books may be purchased in bulk for academic, corporate, or promotional use.
eBook versions and licenses are also available for most titles. For more information, reference our
Special Bulk Sales–eBook Licensing web page at www.apress.com/bulk-sales.

The information in this book is distributed on an “as is” basis, without warranty. Although every
precaution has been taken in the preparation of this work, neither the author(s) nor Apress shall have
any liability to any person or entity with respect to any loss or damage caused or alleged to be caused
directly or indirectly by the information contained in this work.

The source code for this book is available to readers at www.apress.com. You will need to answer
questions pertaining to this book in order to successfully download the code.

■ CONTENTS

iii

Contents at a Glance

■ About the Author .. xii
■ About the Technical Reviewer ... xiii
■ Acknowledgments... xiv
■ Introduction.. xv
■ Chapter 1: Overview of Object-Oriented Programming .. 1
■ Chapter 2: Designing OOP Solutions: Identifying the Class Structure... 7
■ Chapter 3: Designing OOP Solutions: Modeling the Object Interaction...................................... 29
■ Chapter 4: Designing OOP Solutions: A Case Study ... 55
■ Chapter 5: Introducing the .NET Framework and Visual Studio.. 77
■ Chapter 6: Creating Classes ... 101
■ Chapter 7: Creating Class Hierarchies.. 115
■ Chapter 8: Implementing Object Collaboration... 137
■ Chapter 9: Working with Collections .. 163
■ Chapter 10: Implementing the Data Access Layer.. 181
■ Chapter 11: Developing Windows Applications .. 215
■ Chapter 12: Developing Web Applications.. 243
■ Chapter 13: Developing and Consuming WCF Services .. 265
■ Chapter 14: Developing the OSO Application .. 287
■ Chapter 15: Wrapping Up.. 313
■ Appendix A: Fundamental Programming Concepts .. 317
■ Appendix B: Exception Handling in C#.. 333
■ Appendix C: Installing the Required Software .. 337

■ Index... 343

■ CONTENTS

iv

Contents

■ About the Author .. xii

■ About the Technical Reviewer ... xiii

■ Acknowledgments... xiv

■ Introduction.. xv

■ Chapter 1: Overview of Object-Oriented Programming .. 1
The History of OOP.. 1
Why Use OOP? .. 2
The Characteristics of OOP... 3

Objects ... 3
Abstraction... 3
Encapsulation... 4
Polymorphism .. 4
Inheritance ... 5
Aggregation.. 5

The History of C# .. 5
Summary .. 6

■ Chapter 2: Designing OOP Solutions: Identifying the Class Structure... 7
Goals of Software Design ... 7
Understanding the Unified Modeling Language ... 8
Developing a SRS ... 9
Introducing Use Cases.. 10
Understanding Class Diagrams .. 18
Modeling Object Relationships ... 19

Association... 19
Inheritance ... 20
Aggregation.. 21
Association Classes ... 21

■ CONTENTS

v

Summary .. 26
■ Chapter 3: Designing OOP Solutions: Modeling the Object Interaction...................................... 29

Understanding Scenarios ... 29
Introducing Sequence Diagrams .. 30
Message Types... 32
Recursive Messages... 33
Message Iteration... 34
Message Constraints .. 35
Message Branching.. 35
Understanding Activity Diagrams ... 42

Decision Points and Guard Conditions ... 43
Parallel Processing... 43
Activity Ownership ... 44

Exploring GUI Design .. 48
GUI Activity Diagrams... 49
Interface Prototyping.. 50
Interface Flow Diagrams.. 51
Application Prototyping .. 52

Summary .. 52
■ Chapter 4: Designing OOP Solutions: A Case Study ... 55

Developing an OOP Solution ... 55
Creating the System Requirement Specification ... 56
Developing the Use Cases.. 57
Diagramming the Use Cases .. 59
Developing the Class Model... 61

Identifying the Classes .. 61
Adding Attributes to the Classes ... 63
Identifying Class Associations... 65
Modeling the Class Behaviors ... 66
Developing the User Interface Model Design .. 70

Avoiding Some Common OOP Design Pitfalls .. 74
Summary .. 75

■ Chapter 5: Introducing the .NET Framework and Visual Studio.. 77
Introducing the .NET Framework .. 77

Goals of the .NET Framework... 77

■ CONTENTS

vi

Support of Industry Standards... 77
Extensibility ... 78
Unified Programming Models .. 78
Easier Deployment .. 78
Improved Memory Management ... 79
Improved Security Model... 79

Components of the .NET Framework ... 79
Common Language Runtime ... 80
Framework Base Class Library.. 80
Data Classes.. 80
Windows Applications ... 81
Web Applications... 81
Application Services .. 81

Working with the .NET Framework .. 82
Understanding Assemblies and Manifests .. 82
Referencing Assemblies and Namespaces ... 82
Compiling and Executing Managed Code .. 83

Using the Visual Studio Integrated Development Environment .. 83
Customizing the IDE .. 84
Creating a New Project.. 86
Investigating the Solution Explorer and Class View .. 87
Exploring the Toolbox and Properties Window.. 91
Building and Executing the Assembly ... 94
Stepping Through Code ... 95
Setting Conditional Breakpoints .. 97
Locating and Fixing Build Errors.. 99

Summary .. 100
■ Chapter 6: Creating Classes ... 101

Introducing Objects and Classes .. 101
Defining Classes... 102

Creating Class Properties... 102
Creating Class Methods ... 103

Defining the Employee Class... 105
Testing the Employee Class .. 107

Using Constructors ... 107
Overloading Methods.. 108

Creating and Overloading Class Constructors ... 110

■ CONTENTS

vii

Testing the Employee Class Constructors ... 111
Overloading a Class Method.. 112
Testing the Overloaded Update Method .. 113

Summary .. 114
■ Chapter 7: Creating Class Hierarchies.. 115

Understanding Inheritance ... 115
Creating Base and Derived Classes ... 116
Creating a Sealed Class ... 117
Creating an Abstract Class... 117
Using Access Modifiers in Base Classes.. 117

Overriding the Methods of a Base Class... 122
Calling a Derived Class Method from a Base Class.. 123
Calling a Base Class Method from a Derived Class.. 124

Overloading Methods of a Base Class .. 125
Hiding Base Class Methods .. 125
Implementing Interfaces .. 129
Understanding Polymorphism .. 130
Summary .. 135

■ Chapter 8: Implementing Object Collaboration... 137
Communicating Through Messaging.. 137
Defining Method Signatures... 137
Passing Parameters ... 138
Understanding Event-Driven Programming.. 139
Understanding Delegation .. 139
Implementing Events.. 140
Responding To Events .. 141
Windows Control Event Handling ... 141
Handling Exceptions in the .NET Framework ... 147

Using the Try-Catch Block.. 147
Adding a Finally Block.. 148
Throwing Exceptions.. 149
Nesting Exception Handling ... 149

Static Properties and Methods ... 150
Using Asynchronous Messaging... 155
Summary .. 161

■ CONTENTS

viii

■ Chapter 9: Working with Collections .. 163
Introducing the .NET Framework Collection Types... 163
Working with Arrays and Array Lists .. 165
Using Generic Collections... 175
Programming with Stacks and Queues .. 179
Summary .. 180

■ Chapter 10: Implementing the Data Access Layer.. 181
Introducing ADO.NET .. 181
Working with Data Providers.. 182
Establishing a Connection .. 183
Executing a Command.. 184
Using Stored Procedures.. 185
Using the DataReader Object to Retrieve Data... 186
Using the DataAdapter to Retrieve Data ... 187
Working with DataTables and DataSets ... 193
Populating a DataTable from a SQL Server Database .. 194
Populating a DataSet from a SQL Server Database.. 195
Establishing Relationships between Tables in a DataSet... 196
Editing Data in the DataSet .. 197
Working with the Entity Framework ... 204
Querying Entities with LINQ to EF... 206
Updating Entities with the Entity Framework ... 207
Summary .. 213

■ Chapter 11: Developing Windows Applications .. 215
Windows Fundamentals ... 215
Introducing XAML ... 216
Using Layout Controls... 217
Adding Display Controls ... 218
Using the Visual Studio Designer ... 219
Handling Control Events ... 220
Creating and Using Dialog Boxes ... 226
Presenting a MessageBox to the User.. 227
Creating a Custom Dialog Box .. 229

■ CONTENTS

ix

Data Binding in Windows-Based GUIs .. 230
Binding Controls Using a DataContext.. 230
Creating and Using Control and Data Templates.. 237
Summary .. 242

■ Chapter 12: Developing Web Applications.. 243
What Is Silverlight?... 243
Creating a Silverlight Application ... 244
Using Layout Controls... 245
Adding Display Controls ... 246
Handling Control Events ... 247
Data Binding in Silverlight .. 251
Validating and Converting Data .. 259
Summary .. 263

■ Chapter 13: Developing and Consuming WCF Services .. 265
What Are Services? .. 265
Creating a WCF Web Service .. 266
Consuming a WCF Web Service.. 270
Using Data Contracts.. 272
WCF Data Services ... 279
Summary .. 285

■ Chapter 14: Developing the OSO Application .. 287
Revisiting Application Design ... 287
Building the OSO Application’s Data Access and Business Logic Layers....................................... 289
Creating the OSO Application UI ... 300
Summary .. 312

■ Chapter 15: Wrapping Up.. 313
Improve Your Object-Oriented Design Skills .. 314
Investigate the .NET Framework Namespaces... 314
Become Familiar with ADO.NET and the Entity Framework ... 314
Learn More About WPF and Silverlight... 315
Move Toward Component-Based Development ... 315
Find Help .. 315
Join a User Group ... 315

■ CONTENTS

x

Please Provide Feedback ... 316
Thank You and Good Luck .. 316

■ Appendix A: Fundamental Programming Concepts .. 317
Working with Variables and Data Types... 317
Understanding Elementary Data Types .. 318

Integral Data Types .. 318
Non-Integral Data Types .. 318
Character Data Types... 319
Boolean Data Type ... 319
Date Data Type... 319
Object Data Type.. 319
Nullable Types.. 320

Introducing Composite Data Types... 320
Structures .. 320
Arrays... 320
Classes... 321

Looking at Literals, Constants, and Enumerations ... 321
Literals ... 321
Constants ... 322
Enumerations ... 322

Exploring Variable Scope.. 323
Block-Level Scope ... 323
Procedure Scope.. 323
Module Scope .. 324

Understanding Data Type Conversion .. 324
Implicit Conversion... 324
Explicit Conversion... 325
Widening and Narrowing Conversions ... 325

Working with Operators.. 325
Arithmetic Operators.. 325
Comparison Operators ... 326
Logical Operators ... 327
Ternary Operator .. 328

Introducing Decision Structures ... 328
If Statements.. 328
Switch Statements... 329

■ CONTENTS

xi

Using Loop Structures .. 330
While Statement... 330
Do-While Statement ... 330
For Statement .. 331
For Each Statement.. 331

Introducing Methods .. 331
■ Appendix B: Exception Handling in C#.. 333

Managing Exceptions ... 333
Using the .NET Framework Exception Classes ... 335

■ Appendix C: Installing the Required Software .. 337
Installing the Sample Databases .. 337
Verifying the Database Installs... 338

■ Index... 383

■ CONTENTS

xii

About the Author

■Dan Clark is a senior IT consultant specializing in .NET and SQL Server
technology. He is particularly interested in C# programming and SQL
Server Business Intelligence development. Dan is a Microsoft Certified
Trainer and a Microsoft Certified Solution Developer. For over a decade,
he has been developing applications and training others to develop
applications using Microsoft technologies. Dan has published several
books and numerous articles on .NET programming. He is a regular
speaker at various developer conferences and user group meetings, and
he conducts workshops in object-oriented programming and database
development. He finds particular satisfaction in turning new developers
on to the thrill of developing and designing object-oriented applications.
You can reach Dan at Clark.drc@gmail.com.

■ CONTENTS

xiii

About the Technical Reviewer

■Jeff Sanders is a published author, technical reviewer, and an
accomplished technologist. He is currently employed with Avanade in
the capacity of Group Manager/Senior Architect.

Jeff has years of professional experience in the field of IT and
strategic business consulting, leading both sales and delivery efforts. He
regularly contributes to certification and product roadmap development
with Microsoft and speaks publicly on Microsoft enterprise technologies.
With roots in software development, Jeff’s areas of expertise include
operational intelligence, collaboration and content management
solutions, digital marketing, distributed component-based application
architectures, object-oriented analysis and design, and enterprise
integration patterns and designs.

Jeff is also the CTO of DynamicShift, a client-focused organization
specializing in Microsoft technologies, specifically SharePoint Server,
StreamInsight, Windows Azure, AppFabric, Business Activity Monitoring,

BizTalk Server, Commerce Server, and .NET. He is a Microsoft Certified Trainer, and he leads
DynamicShift in both training and consulting efforts.

He enjoys non–work-related travel and spending time with his wife and daughter—and wishes he
more time for both. He may be reached at jeff.sanders@dynamicshift.com.

■ CONTENTS

xiv

Acknowledgments

A special thanks to the following people who made this book possible:

• Jonathan Hassell for once again leading the effort to get the project approval.

• Corbin Collins for keeping me on task and for managing the madness.

• Jeff Sanders for the helpful suggestions and making sure this book was technically
accurate.

• John Osborn for clarifying my thoughts and increasing the readability of this book.

• The rest of the team at Apress for once again making the process of writing an
enjoyable experience.

• And, last but not least, my family for their patience.

■ CONTENTS

xv

Introduction

It has been my experience as a .Net trainer and lead programmer that most people do not have trouble
picking up the syntax of the language. What perplexes and frustrates many people are the higher-level
concepts of object-oriented programming methodology and design. To compound the problem, most
introductory programming books and training classes skim over these concepts or, worse, don’t cover
them at all. It is my hope that this book fills this void. My goal in writing this book is twofold. First, to
provide you with the information you need to understand the fundamentals of programming in C#.
Second and more importantly, to present you with the information required to master the higher-level
concepts of object-oriented programming methodology and design.

This book provides the knowledge you need to architect an object-oriented programming solution
aimed at solving a business problem. As you work your way through the book, you will learn first how to
analyze the business requirements of an application. Next, you will model the objects and relationships
involved in the solution design. Finally, you will implement the solution using C#. Along the way, you
will learn about the fundamentals of software design, the Unified Modeling Language (UML), object-
oriented programming, C#, and the .NET Framework.

Because this is an introductory book, it’s meant to be a starting point for your study of the topics it
presents. As such, this book is not designed to make you an expert in object-oriented programming and
UML; nor is it an exhaustive discussion of C# and the .NET Framework; nor is it an in-depth study of
Visual Studio. It takes considerable time and effort to become proficient in any one of these areas. It is
my hope that by reading this book, your first experiences in object-oriented programming will be
enjoyable and comprehensible—and that these experiences will instill a desire for further study.

Target Audience
The target audience for this book is the beginning C# programmer who wants to gain a foundation in
object-oriented programming along with the C# language basics. Programmers transitioning from a
procedural-oriented programming model to an object-oriented model will also benefit from this book.
In addition, there are many Visual Basic (VB) programmers who want to transition to C#. Before
transitioning to C#, it is imperative that you understand the fundamentals of object-oriented
programming.

Because the experience level of a “beginner” can vary immensely, I have included a primer in
Appendix A that discusses some basic programming concepts and how they are implemented in C#. I
would suggest you review these concepts if you are new to programming.

■ INTRODUCTION

xvi

Organization of the Book
This book is organized into three parts:

Part 1 delves into object-oriented programming methodology and design—concepts that transcend
a particular programming language. The concepts presented are important to the success of an object-
oriented programming solution regardless of the implementation language chosen. At the conclusion of
this part, a case study walks you through the steps of modeling a real-world application.

Part 2 looks at how object-oriented programming is implemented in C#. You will look at creating
class structures, creating hierarchies, and implementing interfaces. This part also introduces object
interaction and collaboration. You will see how the object-oriented programming topics discussed in
Part 1 are transformed into C# coding constructs.

Part 3 covers creating .NET applications. You will learn how to develop a data access layer using the
classes that make up the ADO.NET set of namespaces. You will create a Windows-based user interface, a
web-based user interface, and a service-based programmatic interface. At the end of Part 3, you will
revisit the case study developed in Part 1 and transform the design into a fully functional C# application.
This includes creating a graphical user interface, implementing the business logic, and integrating with a
relational database to store data.

Activities and Software Requirements
One of the most important aspects of learning is doing. You can’t learn to ride a bike without jumping on
a bike, and you can’t learn to program without cranking out code. Any successful training program
needs to include both a theory component and a hands-on component.

I have included both components throughout this book. It is my hope that you will take seriously
the Activities I have added to each chapter and work through them thoroughly—even repeatedly.
Contrary to some students’ perception that these activities are “exercises in typing,” this is where you get
a chance to make the theory concrete and where true simulation of the concepts occurs. I also
encourage you to play as you work through an Activity. Don’t be afraid to alter some of the code just to
see what happens. Some of the best learning experiences occur when students “color outside the lines.”

The UML modeling activities in Part 1 are for someone using UMLet. I chose this program because
it’s a good diagramming tool to learn on. It lets you create UML diagrams without adding a lot of
advanced features associated with the high-end CASE tools. UMLet is a free open source tool and can be
downloaded from www.umlet.com. You can also use another tool such as Visio to complete the activities.
However, you don’t even need a tool to complete these activities; paper and pencil will work just fine.

The activities in Part 2 require Visual Studio 2010 Express with C# installed. I encourage you to
install the help files and make ample use of them while completing the activities. The activities in Part 3
require Microsoft SQL Server 2008 with the Pubs and Northwind databases installed. Appendix C
includes instructions on downloading and installing the sample databases. You can find free Express
editions of both Visual Studio 2010 and SQL Server 2008 at www.msdn.microsoft.com.

C H A P T E R 1

■ ■ ■

1

Overview of Object-Oriented
Programming

To set the stage for your study of object-oriented programming and C#, this chapter will briefly look at
the history of object-oriented programming and the characteristics of an object-oriented programming
language. You will look at why object-oriented programming has become so important in the
development of industrial-strength distributed software systems. You will also examine how C# has
evolved into one of the leading application programming languages.

After reading this chapter, you will be familiar with the following:

• What object-oriented programming is.

• Why object-oriented programming has become so important in the development
of industrial-strength applications.

• The characteristics that make a programming language object-oriented.

• The history and evolution of C#.

The History of OOP
Object-oriented programming (OOP) is an approach to software development in which the structure of
the software is based on objects interacting with each other to accomplish a task. This interaction takes
the form of messages passing back and forth between the objects. In response to a message, an object
can perform an action or method.

If you look at how you accomplish tasks in the world around you, you can see that you interact in an
object-oriented world. If you want to go to the store, for example, you interact with a car object. A car
object consists of other objects that interact with each other to accomplish the task of getting you to the
store. You put the key in the ignition object and turn it. This in turn sends a message (through an
electrical signal) to the starter object, which interacts with the engine object to start the car. As a driver,
you are isolated from the logic of how the objects of the system work together to start the car. You just
initiate the sequence of events by executing the start method of the ignition object with the key. You
then wait for a response (message) of success or failure.

Similarly, users of software programs are isolated from the logic needed to accomplish a task. For
example, when you print a page in your word processor, you initiate the action by clicking a print
button. You are isolated from the internal processing that needs to occur; you just wait for a response
telling you if it printed. Internally, the button object interacts with a printer object, which interacts with
the printer to accomplish the task of printing the page.

CHAPTER 1 ■ OVERVIEW OF OBJECT-ORIENTED PROGRAMMING

2

OOP concepts started surfacing in the mid-1960s with a programming language called Simula and
further evolved in the 70s with advent of Smalltalk. Although software developers did not
overwhelmingly embrace these early advances in OOP languages, object-oriented methodologies
continued to evolve. In the mid-80s there was a resurgence of interest in object-oriented methodologies.
Specifically, OOP languages such as C++ and Eifle became popular with mainstream computer
programmers. OOP continued to grow in popularity in the 90s, most notably with the advent of Java and
the huge following it attracted. And in 2002, in conjunction with the release of the .NET Framework,
Microsoft introduced a new OOP language, C# (pronounced C-sharp) and revamped Visual Basic so that
it is truly an OOP language.

Why Use OOP?
Why has OOP developed into such a widely used paradigm for solving business problems today? During
the 70s and 80s, procedural-oriented programming languages such as C, Pascal, and Fortran were widely
used to develop business-oriented software systems. Procedural languages organize the program in a
linear fashion—they run from top to bottom. In other words, the program is a series of steps that run one
after another. This type of programming worked fine for small programs that consisted of a few hundred
code lines, but as programs became larger they became hard to manage and debug.

In an attempt to manage the ever-increasing size of the programs, structured programming was
introduced to break down the code into manageable segments called functions or procedures. This was
an improvement, but as programs performed more complex business functionality and interacted with
other systems, the following shortcomings of structural programming methodology began to surface:

• Programs became harder to maintain.

• Existing functionality was hard to alter without adversely affecting all of the
system’s functionality.

• New programs were essentially built from scratch. Consequently, there was little
return on the investment of previous efforts.

• Programming was not conducive to team development. Programmers had to
know every aspect of how a program worked and could not isolate their efforts on
one aspect of a system.

• It was hard to translate business models into programming models.

• It worked well in isolation but did not integrate well with other systems.

In addition to these shortcomings, some evolutions of computing systems caused further strain on
the structural program approach, such as:

• Nonprogrammers demanded and were given direct access to programs through
the incorporation of graphical user interfaces and their desktop computers.

• Users demanded a more-intuitive, less-structured approach to interacting with
programs.

• Computer systems evolved into a distributed model where the business logic, user
interface, and backend database were loosely coupled and accessed over the
Internet and intranets.

CHAPTER 1 ■ OVERVIEW OF OBJECT-ORIENTED PROGRAMMING

3

As a result, many business software developers turned to object-oriented methodologies and
programming languages to solve these problems. The benefits included the following:

• A more intuitive transition from business analysis models to software
implementation models.

• The ability to maintain and implement changes in the programs more efficiently
and rapidly.

• The ability to more effectively create software systems using a team process,
allowing specialists to work on parts of the system.

• The ability to reuse code components in other programs and purchase
components written by third-party developers to increase the functionality of
their programs with little effort.

• Better integration with loosely coupled distributed computing systems.

• Improved integration with modern operating systems.

• The ability to create a more intuitive graphical user interface for the users.

The Characteristics of OOP
In this section you are going to look at the some fundamental concepts and terms common to all OOP
languages. Don't worry about how these concepts get implemented in any particular programming
language; that will come later. My goal is to merely familiarize you with the concepts and relate them to
your everyday experiences in such a way that they make more sense later when you look at OOP design
and implementation.

Objects
As I noted earlier, we live in an object-oriented world. You are an object. You interact with other objects.
In fact, you are an object with data such as height and hair color. You also have methods that you
perform or are performed on you, such as eating and walking.

So what are objects? In OOP terms, an object is a structure for incorporating data and the
procedures for working with that data. For example, if you were interested in tracking data associated
with products in inventory, you would create a product object that is responsible for maintaining and
working with the data pertaining to the products. If you wanted to have printing capabilities in your
application, you would work with a printer object that is responsible for the data and methods used to
interact with your printers.

Abstraction
When you interact with objects in the world, you are often only concerned with a subset of their
properties. Without this ability to abstract or filter out the extraneous properties of objects, you would
find it hard to process the plethora of information bombarding you and concentrate on the task at hand.

As a result of abstraction, when two different people interact with the same object, they often deal
with a different subset of attributes. When I drive my car, for example, I need to know the speed of the
car and the direction it is going. Because the car is an automatic, I do not need to know the RPMs of the

CHAPTER 1 ■ OVERVIEW OF OBJECT-ORIENTED PROGRAMMING

4

engine, so I filter this information out. On the other hand, this information would be critical to a racecar
driver, who would not filter it out.

When constructing objects in OOP applications, it is important to incorporate this concept of
abstraction. If you were building a shipping application, you would construct a product object with
attributes such as size and weight. The color of the item would be extraneous information and filtered
out. On the other hand, when constructing an order-entry application, the color could be important and
would be included as an attribute of the product object.

Encapsulation
Another important feature of OOP is encapsulation. Encapsulation is the process in which no direct
access is granted to the data; instead, it is hidden. If you want to gain access to the data, you have to
interact with the object responsible for the data. In the previous inventory example, if you wanted to
view or update information on the products, you would have to work through the product object. To
read the data, you would send the product object a message. The product object would then read the
value and send back a message telling you what the value is. The product object defines what operations
can be performed on the product data. If you send a message to modify the data and the product object
determines it is a valid request, it will perform the operation for you and send a message back with the
result.

You experience encapsulation in your daily life all the time. Think about a human resources
department. They encapsulate (hide) the information about employees. They determine how this data
can be used and manipulated. Any request for the employee data or request to update the data has to be
routed through them. Another example is network security. Any request for the security information or a
change to a security policy must be made through a network security administrator. The security data is
encapsulated from the users of the network.

By encapsulating data you make the data of your system more secure and reliable. You know how
the data is being accessed and what operations are being performed on the data. This makes program
maintenance much easier and also greatly simplifies the debugging process. You can also modify the
methods used to work on the data, and if you do not alter how the method is requested and the type of
response sent back, then you do not have to alter the other objects using the method. Think about when
you send a letter in the mail. You make a request to the post office to deliver the letter. How the post
office accomplishes this is not exposed to you. If it changes the route it uses to mail the letter, it does not
affect how you initiate the sending of the letter. You do not have to know the post office’s internal
procedures used to deliver the letter.

Polymorphism
Polymorphism is the ability of two different objects to respond to the same request message in their own
unique way. For example, I could train my dog to respond to the command bark and my bird to respond
to the command chirp. On the other hand, I could train them to both respond to the command speak.
Through polymorphism I know that the dog will respond with a bark and the bird will respond with a
chirp.

How does this relate to OOP? You can create objects that respond to the same message in their own
unique implementations. For example, you could send a print message to a printer object that would
print the text on a printer, and you could send the same message to a screen object that would print the
text to a window on your computer screen.

Another good example of polymorphism is the use of words in the English language. Words have
many different meanings, but through the context of the sentence you can deduce which meaning is
intended. You know that someone who says “Give me a break!” is not asking you to break his leg!

CHAPTER 1 ■ OVERVIEW OF OBJECT-ORIENTED PROGRAMMING

5

In OOP you implement this type of polymorphism through a process called overloading. You can
implement different methods of an object that have the same name. The object can then tell which
method to implement depending on the context (in other words, the number and type of arguments
passed) of the message. For example, you could create two methods of an inventory object to look up the
price of a product. Both these methods would be named getPrice. Another object could call this method
and either pass the name of the product or the product ID. The inventory object could tell which
getPrice method to run by whether a string value or an integer value was passed with the request.

Inheritance
Most objects are classified according to hierarchies. For example, you can classify all dogs together as
having certain common characteristics such as having four legs and fur. Their breeds further classify
them into subgroups with common attributes such as size and demeanor. You also classify objects
according to their function. For example, there are commercial vehicles and recreational vehicles. There
are trucks and passenger cars. You classify cars according to their make and model. To make sense of the
world, you need to use object hierarchies and classifications.

You use inheritance in OOP to classify the objects in your programs according to common
characteristics and function. This makes working with the objects easier and more intuitive. It also
makes programming easier because it enables you to combine general characteristics into a parent
object and inherit these characteristics in the child objects. For example, you can define an employee
object that defines all the general characteristics of employees in your company. You can then define a
manager object that inherits the characteristics of the employee object but also adds characteristics
unique to managers in your company. The manager object will automatically reflect any changes in the
implementation of the employee object.

Aggregation
Aggregation is when an object consists of a composite of other objects that work together. For example,
your lawn mower object is a composite of the wheel objects, the engine object, the blade object, and so
on. In fact, the engine object is a composite of many other objects. There are many examples of
aggregation in the world around us. The ability to use aggregation in OOP is a powerful feature that
enables you to accurately model and implement business processes in your programs.

The History of C#
In the 1980s, most applications written to run on the Windows operating system were written in C++.
Even though C++ is an OOP language, it’s arguably a difficult language to master and the programmer is
responsible for dealing with such housekeeping tasks such as memory management and security. These
housekeeping tasks are difficult to implement and often neglected which results in buggy applications
that are difficult to test and maintain.

In the 1990s, the Java programming language became popular. Because it’s a managed
programming language, it relieves the programmer from having to worry about the housekeeping code.
Managed languages provide a generalized way (through a base set of common classes) to handle the
housekeeping details such as memory management and garbage collection. This allows the programmer
to concentrate on the business logic and frees them from having to worry about the error-prone
housekeeping code. As a result, programs are more compact, reliable, and easier to debug.

CHAPTER 1 ■ OVERVIEW OF OBJECT-ORIENTED PROGRAMMING

6

Seeing the success of Java and the increased popularity of the Internet, Microsoft developed its own
set of managed programming languages. Microsoft wanted to make it easier to develop both Windows-
and Web-based applications. These managed languages rely on the .NET Framework to provide much of
the functionality to perform the housekeeping code required in all applications. During the
development of the .NET Framework, the class libraries were written in a new language called C#. The
principal designer and lead architect of C# is Anders Hejlsberg. Hejlsberg was previously involved with
the design of Turbo Pascal and Delphi. He leveraged this previous experience to design an OOP language
that built on the successes of these languages and improved upon their shortcomings. Hejlsberg also
incorporated syntax similar to C into the language in order to appeal to the C++ and Java developers.
Some of the goals of creating the .NET Framework, the Common Language Runtime (CLR), and the C#
language was to introduce modern concepts such as object orientation, type safety, garbage collection,
and structured exception handling directly into the platform.

Another goal of Microsoft has always been increasing programmer productivity. Since its initial
release in 2002, Microsoft has continued to improve and innovate the .NET Framework along with their
core languages built on top of the framework – C# and Visual Basic. Microsoft is also committed to
providing .NET developers the tools necessary to have a highly productive and intuitive programming
experience. With the current release of C# 4.0 and Visual Studio 2010, Microsoft has greatly enhanced
both the language and the design time developing experience for developers. As you work your way
through this book, I think you will come to appreciate the power and productivity that Visual Studio and
the C# language provides.

Summary
In this chapter, you were introduced to OOP and got a brief history of C#. Now that you have an

understanding of what constitutes an OOP language and why OOP languages are so important to
enterprise-level application development, your next step is to become familiar with how OOP
applications are designed.

In order to meet the needs of the users, successful applications must be carefully planned and
developed. The next chapter is the first in a series of three aimed at introducing you to some of the
techniques used when designing object-oriented applications. You will look at the process of deciding
which objects need to be included in an application and which attributes of these objects are important
to the functionality of that application.

C H A P T E R 2

■ ■ ■

7

Designing OOP Solutions:
Identifying the Class Structure

Most software projects you will become involved with as a business software developer will be a team
effort. As a programmer on the team, you will be asked to transform the design documents into the
actual application code. Additionally, because the design of object-oriented programs is a recursive
process, designers depend on the feedback of the software developers to refine and modify the program
design. As you gain experience in developing object-oriented software systems, you may even be asked
to sit in on the design sessions and contribute to the design process. Therefore, as a software developer,
you should be familiar with the purpose and the structure of the various design documents, as well as
have some knowledge of how these documents are developed.

This chapter introduces you to some of the common documents used to design the static aspects of
the system. (You’ll learn how the dynamic aspects of the system are modeled in the next chapter.) To
help you understand these documents, this chapter includes some hands-on activities based on a
limited case study. You’ll find similar activities corresponding to the topics of discussion in most of the
chapters in this book.

After reading this chapter, you will be familiar with the following:

• The goals of software design.

• The fundamentals of the Unified Modeling Language.

• The purpose of a software requirement specification.

• How use case diagrams model the services the system will provide.

• How class diagrams model the classes of objects that need to be developed.

Goals of Software Design
A well-organized approach to system design is essential when developing modern enterprise-level
object-oriented programs. The design phase is one of the most important in the software development
cycle. You can trace many of the problems associated with failed software projects to poor upfront
design and inadequate communication between the system’s developers and the system’s consumers.
Unfortunately, many programmers and program managers do not like getting involved in the design
aspects of the system. They view any time not spent cranking out code as unproductive.

To make matters worse, with the advent of “Internet time,” consumers expect increasingly shorter
development cycles. So, to meet unrealistic timelines and project scope, developers tend to forgo or cut

CHAPTER 2 ■ DESIGNING OOP SOLUTIONS: IDENTIFYING THE CLASS STRUCTURE

8

short the system design phase of development. This is truly counterproductive to the system’s success.
Investing time in the design process will achieve the following:

• Provide an opportunity to review the current business process and fix any
inefficiencies or flaws uncovered.

• Educate the customers as to how the software development process occurs and
incorporate them as partners in this process.

• Create realistic project scopes and timelines for completion.

• Provide a basis for determining the software testing requirements.

• Reduce the cost and time required to implement the software solution.

A good analogy to software design is the process of building a home. You would not expect the
builder to start working on the house without detailed plans (blueprints) supplied by an architect. You
would also expect the architect to talk to you about the home’s design before creating the blueprints. It is
the architect’s job to talk to you about the design and functionality you want in the house and convert
your requests to the plans that the builder uses to build the home. A good architect will also educate you
as to what features are reasonable for your budget and projected timeline.

Understanding the Unified Modeling Language
To successfully design object-oriented software, you need to follow a proven design methodology. One
of the most common design methodologies used in OOP today is the Unified Modeling Language
(UML).

UML was developed in the early 80s as a response to the need for a standard, systematic way of
modeling the design of object-oriented software. It consists of a series of textual and graphical models of
the proposed solution. These models define the system scope, components of the system, user
interaction with the system, and how the system components interact with each other to implement the
system functionality.

Some common models used in UML are the following:

• Software Requirement Specification (SRS): A textual description of the overall
responsibilities and scope of the system.

• Use Case: A textual/graphical description of how the system will behave from the
user’s perspective. Users can be human or other systems.

• Class Diagram: A visual blueprint of the objects that will be used to construct the
system.

• Sequence Diagram: A model of the sequence of object interaction as the program
executes. Emphasis is placed on the order of the interactions and how they
proceed over time.

• Collaboration Diagram: A view of how objects are organized to work together as
the program executes. Emphasis is placed on the communications that occur
between the objects.

• Activity Diagram: A visual representation of the flow of execution of a process or
operation.

CHAPTER 2 ■ DESIGNING OOP SOLUTIONS: IDENTIFYING THE CLASS STRUCTURE

9

In this chapter, you’ll look at the development of the SRS, use cases, and class diagrams. The next
chapter covers the sequence, collaboration, and activity diagrams.

Developing a SRS
The purpose of the SRS is to do the following:

• Define the functional requirements of the system.

• Identify the boundaries of the system.

• Identify the users of the system.

• Describe the interactions between the system and the external users.

• Establish a common language between the client and the program team for
describing the system.

• Provide the basis for modeling use cases.

To produce the SRS, you interview the business owners and the end users of the system. The goals of
these interviews are to clearly document the business processes involved and establish the system’s
scope. The outcome of this process is a formal document (the SRS) detailing the functional requirements
of the system. A formal document helps to ensure agreement between the customers and the software
developers. The SRS also provides a basis for resolving any disagreements over perceived system scope
as development proceeds.

As an example, suppose that the owners of a small commuter airline want customers to be able to
view flight information and reserve tickets for flights using a web registration system. After interviewing
the business managers and the ticketing agents, the software designers draft an SRS document that lists
the system’s functional requirements. The following are some of these requirements:

• Nonregistered web users can browse to the web site to view flight information, but
they can’t book flights.

• New customers wanting to book flights must complete a registration form
providing their name, address, company name, phone number, fax number, and
e-mail address.

• A customer is classified as either a corporate customer or a retail customer.

• Customers can search for flights based on destination and departure times.

• Customers can book flights indicating the flight number and the number of seats
requested.

• The system sends customers a confirmation via e-mail when the flight is booked.

• Corporate customers receive frequent flier miles when their employees book
flights.

• Frequent-flier miles are used to discount future purchases.

• Ticket reservations can be canceled up to one week in advance for an 80% refund.

• Ticketing agents can view and update flight information.

CHAPTER 2 ■ DESIGNING OOP SOLUTIONS: IDENTIFYING THE CLASS STRUCTURE

10

In this partial SRS document, you can see that several succinct statements define the system scope.
They describe the functionality of the system as viewed by the system’s users and identify the external
entities that will use it. It is important to note that the SRS does not contain references to the technical
requirements of the system.

Once the SRS is developed, the functional requirements it contains are transformed into a series of
use case diagrams.

Introducing Use Cases

Use cases describe how external entities will use the system. These external entities can be either

humans or other systems (called actors in UML terminology). The description emphasizes the users’
view of the system and the interaction between the users and the system. Use cases help to further
define system scope and boundaries. They are usually in the form of a diagram, along with a textual
description of the interaction taking place. Figure 2-1 shows a generic diagram that consists of two
actors represented by stick figures, the system represented by a rectangle, and use cases depicted by
ovals inside the system boundaries.

Figure 2-1. Generic use case diagram with two actors and three use cases

Use cases are developed from the SRS document. The actor is any outside entity that interacts with
the system. An actor could be a human user (for instance, a rental agent), another software system (for
instance, a software billing system), or an interface device (for instance, a temperature probe). Each
interaction that occurs between an actor and the system is modeled as a use case.

The sample use case shown in Figure 2-2 was developed for the flight booking application
introduced in the previous section. It shows the use case diagram for the requirement “Customers can
search for flights based on destination and departure times.”

CHAPTER 2 ■ DESIGNING OOP SOLUTIONS: IDENTIFYING THE CLASS STRUCTURE

11

Figure 2-2. View Flight Info use case

Along with the graphical depiction of the use case, many designers and software developers find it
helpful to provide a textual description of the use case. The textual description should be succinct and
focused on what is happening and not on how it is occurring. Sometimes any preconditions or
postconditions associated with the use case are also identified. The following text further describes the
use case diagram shown in Figure 2-2:

• Description: A customer views the flight information page. The customer enters
flight search information. After submitting the search request, the customer views
a list of flights matching the search criteria.

• Preconditions: None.

• Postconditions: The customer has the opportunity to log in and proceed to the
flight booking page.

As another example, take a look at the Reserve Seat use case shown in Figure 2-3.

Figure 2-3. Reserve Seat use case diagram

The following text further describes the use case diagram shown in Figure 2-3:

• Description: The customer enters the flight number and indicates the seats being
requested. After the customer submits the request, some confirmation
information is displayed.

• Preconditions: The customer has looked up the flight information. The customer
has logged in and is viewing the flight booking screen.

CHAPTER 2 ■ DESIGNING OOP SOLUTIONS: IDENTIFYING THE CLASS STRUCTURE

12

• Postconditions: The customer is sent a confirmation e-mail outlining the flight
details and the cancellation policy.

As you can see from Figure 2-3, certain relationships can exist between use cases. The Reserve Seat
use case includes the View Flight Info use case. This relationship is useful because you can use the View
Flight Info use case independently of the Reserve Flight use case. This is called inclusion. You cannot use
the Reserve Seat use case independently of the View Flight Info use case, however. This is important
information that will affect how you model the solution.

Another way that use cases relate to each other is through extension. You might have a general use
case that is the base for other use cases. The base use case is extended by other use cases. For example,
you might have a Register Customer use case that describes the core process of registering customers.
You could then develop Register Corporate Customer and Register Retail Customer use cases that extend
the base use case. The difference between extension and inclusion is that in extension the base use case
being extended is not used on its own. Figure 2-4 demonstrates how you model this in a use case
diagram.

Figure 2-4. Extending use cases

A common mistake when developing use cases is to include actions initiated by the system itself.

The emphasis of the use case is on the interaction between external entities and the system. Another
common mistake is to include a description of the technical requirements of the system. Remember that
use cases do not focus on how the system will perform the functions, but rather on what functions need
to be incorporated in the system from the user’s standpoint.

After you have developed the use cases of the system, you can begin to identify the internal system
objects that will carry out the system’s functional requirements. You do this through the use of a class
diagram.

ACTIVITY 2-1. CREATING A USE CASE DIAGRAM

After completing this activity, you should be familiar with the following:

• Producing a use case diagram to define a system’s scope.

• Using a UML modeling tool to create and document a use case diagram.

CHAPTER 2 ■ DESIGNING OOP SOLUTIONS: IDENTIFYING THE CLASS STRUCTURE

13

Examining the SRS

The software user group you belong to has decided to pool its resources and create a lending library.
Lending items include books, movies, and video games. Your task is to develop the application that will
keep track of the loan item inventory and the lending of items to the group members. After interviewing the
group’s members and officers, you have developed a SRS document that includes the following functional
requirements:

The next steps are to analyze the SRS to identify the actors and use cases.

1. By examining the SRS document, identify which of the following will be among the
principal actors interacting with the system:

2. Once you have identified the principal actors, you need to identify the use cases for
the actors. Identify the actor associated with the following use cases:

• Only members of the user group can borrow items.

• Books can be borrowed for four weeks.

• Movies and games can be borrowed for one week.

• Items can be renewed if no one is waiting to borrow them.

• Members can only borrow up to four items at the same time.

• A reminder is e-mailed to members when an item becomes overdue.

• A fine is charged for overdue items.

• Members with outstanding overdue items or fines can’t borrow new items.

• A secretary is in charge of maintaining item inventory and purchasing items to add
to the inventory.

• A librarian has been appointed to track lending and send overdue notices.

• The librarian is also responsible for collecting fines and updating fine information.

A. Member

B. Librarian

C. Book

D. Treasurer

E. Inventory

F. E-mail

G. Secretary

CHAPTER 2 ■ DESIGNING OOP SOLUTIONS: IDENTIFYING THE CLASS STRUCTURE

14

See the end of the chapter for Activity 2-1 answers.

Creating a Use Case Diagram

Although it is possible to create the UML diagrams by hand or on a whiteboard, most programmers will
eventually turn to a diagramming tool or a Computer-Aided Software Engineering (CASE) tool. CASE tools
help you construct professional-quality diagrams and enable team members to easily share and augment
the diagrams. There are many CASE tools on the market, including Microsoft Visio. Before choosing a CASE
tool, you should thoroughly evaluate if it meets your needs and is flexible enough. A lot of the advanced
features associated with high-end CASE tools are difficult to work with, so you spend more time figuring
out how the CASE tool works than documenting your design.

A good diagraming tool to learn on is UMLet. It enables you to create UML diagrams without adding a lot of
advanced features associated with the high-end CASE tools. Best of all, UMLet is a free open source tool
and can be downloaded from www.umlet.com.

■Note These activities use the UMLet 10.4 stand-alone edition. This also requires Java 1.6 available at
www.java.com.

After downloading and installing UMLet, you can complete the following steps (if you do not want to use a
tool, you can create the following diagram by hand):

1. Start UMLet. You are presented with three windows. The main window is the
design surface, the upper right window contains the UML object templates, and the
lower right window is where you change or add properties to the objects.

2. Locate the actor template in the upper right window (see Figure 2-5). Double click
the actor template. An actor will appear in the upper left corner of the design
surface.

A. Request Item

B. Catalog Item

C. Lend Item

D. Process Fine

CHAPTER 2 ■ DESIGNING OOP SOLUTIONS: IDENTIFYING THE CLASS STRUCTURE

15

Figure 2-5. Locating the actor template

3. If not already selected, select the actor shape on the design surface. In the lower
left window, change the name of the actor shape to Member.

4. Repeat the procedures to add a Secretary and a Librarian actor.

5. From the Template window, double click the Use case 1 shape to add it to the
design surface. Change the name of the use case to Request Item.

6. Repeat step 5 for two more use cases. Include a Catalog Item use case that will
occur when the Secretary adds new items to the library inventory database. Add a
Lend Item use case that will occur when the Librarian processes a request for an
item.

7. From the Template window, double click the Empty Package shape and change the
name to Library Loan System. Right click on the shape in the design surface and
change the background color to white. Move the use case shapes inside the Library
Loan System shape (see Figure 2-6).

CHAPTER 2 ■ DESIGNING OOP SOLUTIONS: IDENTIFYING THE CLASS STRUCTURE

16

Figure 2-6. Placing the use cases inside the system boundary

8. From the Template window, double click on the Communications Link shape. It is
the line with no arrow heads (see Figure 2-7). On the design surface, attach one
end to the Member shape and the other end to the Request Item shape.

CHAPTER 2 ■ DESIGNING OOP SOLUTIONS: IDENTIFYING THE CLASS STRUCTURE

17

Figure 2-7. Locating the Communications Link shape

9. Repeat step 8 two times to create a Communication Link shape between the
Librarian and the Lend Item shapes as well as a Communication Link shape
between the Secretary and the Catalog Item shapes.

10. From the Templates widow, double click the Extends Relationship arrow. Attach the
tail end of the Extends arrow to the Lend Item use case and attach the head of the
arrow to the Request Item use case.

11. Your completed diagram should be similar to the one shown in Figure 2-8. Save the
file as UMLAct2_1 and exit UMLet.

CHAPTER 2 ■ DESIGNING OOP SOLUTIONS: IDENTIFYING THE CLASS STRUCTURE

18

Figure 2-8. Completed use case diagram

Understanding Class Diagrams
The concepts of classes and objects are fundamental to OOP. An object is a structure for

incorporating data and the procedures for working with the data. These objects implement the
functionality of an object-oriented program. Think of a class as a blueprint for the object. A class defines
the structure and the methods that objects based on the class type will contain.

Designers identify a potential list of classes that they will need to develop from the SRS and the use
case diagrams. One way you identify the classes is by looking at the noun phrases in the SRS document
and the use case descriptions. If you look at the documentation developed thus far for the airline
booking application, you can begin to identify the classes that will make up the system. For example, you
can develop a Customer class to work with the customer data and a Flight class to work with the flight
data.

A class is responsible for managing data. When defining the class structure, you must determine
what data the class is responsible for maintaining. The class attributes define this information. For
example, the Flight class will have attributes for identifying the flight number, departure time and date,
flight duration, destination, capacity, and seats available. The class structure must also define any

CHAPTER 2 ■ DESIGNING OOP SOLUTIONS: IDENTIFYING THE CLASS STRUCTURE

19

operations that will be performed on the data. An example of an operation the Flight class is responsible
for is updating the seats available when a seat is reserved.

A class diagram can help you visualize the attributes and operations of a class. Figure 2-9 is an
example of the class diagram for the Flight class used in the flight booking system example. A rectangle
divided into three sections represents the class. The top section of the rectangle shows the name of the
class, the middle section lists the attributes of the class, and the bottom section lists the operations
performed by the class.

Figure 2-9. Flight class diagram

Modeling Object Relationships
In OOP, when the program executes, the various objects work together to accomplish the programming
tasks. For example, in the flight booking application, in order to reserve a seat on the flight, a Reservation
object must interact with the Flight object. A relationship exists between the two objects, and this
relationship must be modeled in the class structure of the program. The relationships among the classes
that make up the program are modeled in the class diagram. Analyzing the verb phrases in the SRS often
reveals these relationships (this is discussed in more detail in Chapter 3). The following sections examine
some of the common relationships that can occur between classes and how the class diagram represents
them.

Association
When one class refers to or uses another class, the classes form an association. You draw a line between
the two classes to represent the association and add a label to indicate the name of the association. For
example, a Seat is associated with a Flight in the flight booking application, as shown in Figure 2-10.

Figure 2-10. Class associations

CHAPTER 2 ■ DESIGNING OOP SOLUTIONS: IDENTIFYING THE CLASS STRUCTURE

20

Sometimes a single instance of one class associates with multiple instances of another class. This is
indicated on the line connecting the two classes. For example, when a customer makes a reservation,
there is an association between the Customer class and the Reservation class. A single instance of the
Customer class may be associated with multiple instances of the Reservation class. The n placed near
the Reservation class indicates this multiplicity, as shown in Figure 2-11.

Figure 2-11. Indicating multiplicity in a class diagram

A situation may also exist where an instance of a class may be associated with multiple instances of the
same class. For example, an instance of the Pilot class represents the captain while another instance of
the Pilot class represents the co-pilot. The pilot manages the co-pilot. This scenario is referred to as a
self-association and is modeled by drawing the association line from the class back to itself, as shown in
Figure 2-12.

Figure 2-12. A self-associating class

Inheritance
When multiple classes share some of the same operations and attributes, a base class can encapsulate
the commonality. The child class then inherits from the base class. This is represented in the class
diagram by a solid line with an open arrowhead pointing to the base class. For example, a
CorporateCustomer class and a RetailCustomer class could inherit common attributes and operations
from a base Customer class, as shown in Figure 2-13.

Figure 2-13. Documenting inheritance

CHAPTER 2 ■ DESIGNING OOP SOLUTIONS: IDENTIFYING THE CLASS STRUCTURE

21

Aggregation
When a class is formed by a composition of other classes, they are classified as an aggregation. This is
represented with a solid line connecting the classes in a hierarchical structure. Placing a diamond on the
line next to a class in the diagram indicates the top level of the hierarchy. For example, an inventory
application designed to track plane parts for the plane maintenance department could contain a Plane
class that is a composite of various Part classes, as shown in Figure 2-14.

Figure 2-14. Depciting aggregations

Association Classes
As the classes and the associations for a program are developed, there may be a situation where an
attribute can’t be assigned to any one class but is a result of an association between classes. For example,
the parts inventory application mentioned previously may have a Part class and a Supplier class.
Because a part can have more than one supplier and the supplier supplies more than one part, where
should the price attribute be located? It does not fit nicely as an attribute for either class, and it should
not be duplicated in both classes. The solution is to develop an association class that manages the data
that is a product of the association. In this case, you would develop a Part Price class. The relationship is
modeled with a dashed line drawn between the association and the association class, as shown in Figure
2-15.

Figure 2-15. An association class

CHAPTER 2 ■ DESIGNING OOP SOLUTIONS: IDENTIFYING THE CLASS STRUCTURE

22

Figure 2-16 shows the evolving class diagram for the flight booking application. It includes the
classes, attributes, and relationships that have been identified for the system. The operations associated
with the classes will be developed in Chapter 3.

Figure 2-16. Flight booking class diagram

ACTIVITY 2-2. CREATING A CLASS DIAGRAM

After completing this activity, you should be familiar with the following:

Identifying Classes and Attributes

Examine the following scenario developed for a use case from the user group library application:

After viewing the list of available loan items, members request an item to check out on loan. The librarian
enters the member number and retrieves information about outstanding loans and any unpaid fines. If the
member has fewer than four outstanding loans and does not have any outstanding fines, the loan is
processed. The librarian retrieves information about the loan item to determine if it is currently on loan. If
the item is available, it is checked out to the member.

• Determining the classes that need to be constructed by examining the use case
and the system scope documentation.

• Using a UML modeling tool to create a class diagram.

CHAPTER 2 ■ DESIGNING OOP SOLUTIONS: IDENTIFYING THE CLASS STRUCTURE

23

1. By identifying the nouns and noun phrases in the use case scenario, you can get
an idea of what classes you must include in the system to perform the tasks.
Which of the following items would make good candidate classes for the system?

2. At this point, you can start identifying attributes associated with the classes being
developed. A Loan class will be developed to encapsulate data associated with an
item out on loan. Which of the following would be possible attributes for the Loan
class?

See the end of the chapter for Activity 2-2 answers.

Creating a Class Diagram

To create a class diagram using UML Modeler, follow these steps (you can also create it by hand):

1. Start UMLet. You are presented with three windows. The main window is the
design surface, the upper right window contains the UML object templates, and
the lower right window is where you change or add properties to the objects.

2. Locate the SimpleClass template in the upper right window (see Figure 2-17).
Double click the SimpleClass template. A SimpleClass will appear in the upper left
corner of the design surface.

A. Member

B. Item

C. Librarian

D. Number

E. Fine

F. Checkout

G. Loan

A. MemberNumber

B. MemberPhone

C. ItemNumber

D. ReturnDate

E. ItemCost

F. ItemType

CHAPTER 2 ■ DESIGNING OOP SOLUTIONS: IDENTIFYING THE CLASS STRUCTURE

24

Figure 2-17. Adding a class shape

3. In the lower left properties window, change the class name to Member.

4. Repeat the procedure for a Loan, Item, Book, and Movie class.

5. Locate the association template in the upper right window (see Figure 2-18).
Double click the association template. An association will appear in the upper left
corner of the design surface.

Figure 2-18. Adding an association shape

6. Attach the left end of the association shape to the Member class and the right end
to the Loan class shape. Select the association shape and update the properties in
the properties widow so that they match Figure 2-19.

CHAPTER 2 ■ DESIGNING OOP SOLUTIONS: IDENTIFYING THE CLASS STRUCTURE

25

Figure 2-19. Updating association properties

7. Repeat steps 5 and 6 to create a “Contains a” association shape between the
Loan class and the Item class. This should be a one-to-one association.

8. Locate the generalization shape template in the upper right window (see Figure 2-
20). Double click the generalization shape. A generalization shape will appear in
the upper left corner of the design surface.

Figure 2-20. Adding a generalization shape

9. Attach the tail end of the generalization shape to the Book class and the head end
to the Item class shape. Select the generalization shape and update the properties
in the properties widow so that they match Figure 2-21.

Figure 2-21. Updating generalization properties

10. Repeat steps 8 and 9 to show that the Movie class inherits from the Item class.

CHAPTER 2 ■ DESIGNING OOP SOLUTIONS: IDENTIFYING THE CLASS STRUCTURE

26

11. Click on the Member class in the design window. In the properties window, add
the MemberNumber, FirstName, LastName, and Email attributes as shown in
Figure 2-22.

Figure 2-22. Adding class attributes

12. Your completed diagram should be similar to Figure 2-23. Save the file as
UMLAct2_2.

Figure 2-23. Completed class diagram

Summary
In this chapter, you were introduced to the goals of the object-oriented design process and UML. You
learned about some of the design documents and diagrams produced using UML. These include the
SRS, which defines the scope of the system; use case diagrams, which define the system boundaries and
identify the external entities that will use the system; and class diagrams, which model the structure of
the classes that will be developed to implement the system.

CHAPTER 2 ■ DESIGNING OOP SOLUTIONS: IDENTIFYING THE CLASS STRUCTURE

27

You saw how modeling the class structure of your applications includes identifying the necessary
classes, identifying the attributes of these classes, and establishing the structural relationships required
among the classes. In the next chapter, you will continue your study of object-oriented design. In
particular, you will look at modeling how the objects in your applications will collaborate to carry out the
functionality of the application.

ACTIVITY ANSWERS

Activity 2-1 Answers

1. A, B, G. The actors are Member, Librarian, and Secretary.

2. A. Member, B. Secretary, C. Librarian, D. Librarian. The Request Item use case
goes with Member, the Catalog Item use case goes with Secretary, the Lend Item
use case goes with Librarian, and the Process Fine use case goes with Librarian.

Activity 2-2 Answers

1. A, B, C, E, G. The candidate classes are Member, Item, Librarian, Fine, and Loan.

2. A, C, D. The attributes associated with the Loan class are MemberNumber,
ItemNumber, and ReturnDate.

C H A P T E R 3

■ ■ ■

29

Designing OOP Solutions:
Modeling the Object Interaction

The previous chapter focused on modeling the static (organizational) aspects of an OOP solution. It
introduced and discussed the methodologies of the UML. It also looked at the purpose and structure of
use case diagrams and class diagrams. This chapter continues the discussion of UML modeling
techniques and focuses on modeling the dynamic (behavioral) aspects of an OOP solution. The focus in
this chapter is on how the objects in the system must interact with each other and what activities must
occur to implement the solution.

After reading this chapter, you should be familiar with the following:

• The purpose of scenarios and how they extend the use case models.

• How sequence diagrams model the time-dependent interaction of the objects in
the system.

• How activity diagrams map the flow of activities during application processing.

• The importance of graphical user interface design and how it fits into the object-
oriented design process.

Understanding Scenarios
Scenarios help determine the dynamic interactions that will take place between the objects (class
instances) of the system. A scenario is a textual description of the internal processing needed to
implement the functionality documented by a use case. Remember that a use case describes the
functionality of the system from the viewpoint of the system’s external users. A scenario details the
execution of the use case. In other words, its purpose is to describe the steps that must be carried out
internally by the objects making up the system.

Figure 3-1 shows a Process Movie Rental use case for a video rental application. The following text
describes the use case:

• Preconditions: The customer makes a request to rent a movie from the rental
clerk. The customer has a membership in the video club and supplies the rental
clerk with her membership card and personal identification number (PIN). The
customer’s membership is verified. The customer information is displayed, and
the customer’s account is verified to be in good standing.

CHAPTER 3 ■ DESIGNING OOP SOLUTIONS: MODELING THE OBJECT INTERACTION

30

• Description: The movie is confirmed to be in stock. Rental information is
recorded, and the customer is informed of the due date.

• Post conditions: None.

Figure 3-1. Process Movie Rental use case

The following scenario describes the internal processing of the Process Movie Rental use case:

• The movie is verified to be in stock.

• The number of available copies in stock is decremented.

• The due date is determined.

• The rental information is recorded. This information includes the movie title,
copy number, current date, and due date.

• The customer is informed of the rental information.

This scenario describes the best possible execution of the use case. Because exceptions can occur, a
single use case can spawn multiple scenarios. For example, another scenario created for the Process
Movie Rental use case could describe what happens when a movie is not in stock.

After you map out the various scenarios for a use case, you can create interaction diagrams to
determine which classes of objects will be involved in carrying out the functionality of the scenarios. The
interaction diagram also reveals what operations will be required of these classes of objects. Interaction
diagrams come in two flavors: sequence diagrams and collaboration diagrams.

Introducing Sequence Diagrams
A sequence diagram models how the classes of objects interact with each other over time as the system
runs. The sequence diagram is a visual, two-dimensional model of the interaction taking place and is
based on a scenario. Figure 3-2 shows a generic sequence diagram.

CHAPTER 3 ■ DESIGNING OOP SOLUTIONS: MODELING THE OBJECT INTERACTION

31

Figure 3-2. Generic sequence diagram

As Figure 3-2 demonstrates, the flow of messages from object to object is represented horizontally.
The time flow of the interactions taking place is depicted vertically, starting from the top and progressing
downward. Objects are next to each other, and a dashed line extends from each of them downward. This
dashed line represents the lifeline of the object. Rectangles on the lifeline represent activations of the
object. The height of the rectangle represents the duration of the object’s activation.

In OOP, objects interact by passing messages to each other. An arrow starting at the initiating object
and ending at the receiving object depicts the interaction. A dashed arrow drawn back to the initiating
object represents a return message. The messages depicted in the sequence diagram will form the basis
of the methods of the classes of the system. Figure 3-3 shows a sample sequence diagram for the Process
Movie Rental scenario presented in the previous section.

Figure 3-3. Process Movie Rental sequence diagram

CHAPTER 3 ■ DESIGNING OOP SOLUTIONS: MODELING THE OBJECT INTERACTION

32

As you analyze the sequence diagram, you gain an understanding of the classes of objects that will
be involved in carrying out the program processing and what methods you will need to create and attach
to those classes. You should also model the classes and methods depicted in the sequence diagram in
the class diagram. These design documents must be continually cross-referenced and revised as
necessary.

The sequence diagram in Figure 3-3 reveals that there will be four objects involved in carrying out
the Process Movie Rental scenario.

• The Customer object is an instance of the Customer class and is responsible for
encapsulating and maintaining the information pertaining to a customer.

• The RentalClerk object is an instance of the RentalClerk class and is responsible
for managing the processing involved in renting a movie.

• The RentalItem object is an instance of the RentalItem class and is responsible for
encapsulating and maintaining the information pertaining to a video available for
rent.

• The Rental object is an instance of the Rental class and is responsible for
encapsulating and maintaining the information pertaining to a video currently
being rented.

Message Types
By analyzing the sequence diagram, you can determine what messages must be passed between the

objects involved in the processing. In OOP, messages are passed synchronously or asynchronously.
When messages are passed synchronously, the sending object suspends processing and waits for a

response before continuing. A line drawn with a closed arrowhead in the sequence diagram represents
synchronous messaging.

When an object sends an asynchronous message, the object continues processing and is not
expecting an immediate response from the receiving object. A line drawn with an open arrowhead in the
sequence diagram represents asynchronous messaging. A dashed arrow usually depicts a response
message. These lines are shown in Figure 3-4.

CHAPTER 3 ■ DESIGNING OOP SOLUTIONS: MODELING THE OBJECT INTERACTION

33

Figure 3-4. Different types of messages

By studying the sequence diagram for the Process Movie Rental scenario shown in Figure 3-3, you
can see the types of messages that must be passed. For example, the RentalClerk object initiates a
synchronous message with the RentalItem object, requesting information about whether a copy of the
movie is in stock. The RentalItem object then sends a response back to the RentalClerk object, indicating
a copy is in stock.

Recursive Messages
In OOP, it is not uncommon for an object to have an operation that invokes another object instance of
itself. This is referred to as recursion. A message arrow that loops back toward the calling object
represents recursion in the sequence diagram. The end of the arrow points to a smaller activation
rectangle, representing a second object activation drawn on top of the original activation rectangle (see
Figure 3-5). For example, an Account object calculates compound interest for overdue payments. To
calculate the interest over several compound periods, it needs to invoke itself several times.

CHAPTER 3 ■ DESIGNING OOP SOLUTIONS: MODELING THE OBJECT INTERACTION

34

Figure 3-5. Diagramming a recursive message

Message Iteration
Sometimes, a message call is repeated until a condition is met. For example, when totaling rental
charges, an Add method is called repeatedly until all rentals charged to the customer have been added to
the total. In programming terminology, this is iteration. A rectangle drawn around the iterating
messages represents an iteration in a sequence diagram. The binding condition of the iteration is
depicted in the upper-left corner of the rectangle. Figure 3-6 shows an example of an iteration depicted
in a sequence diagram.

CHAPTER 3 ■ DESIGNING OOP SOLUTIONS: MODELING THE OBJECT INTERACTION

35

Figure 3-6. Depicting an iterative message

Message Constraints
Message calls between objects may have a conditional constraint attached to them. For example,

customers must be in good standing in order to be allowed to rent a movie. You place the condition of
the constraint within brackets ([]) in the sequence. The message will be sent only if the condition
evaluates to true (see Figure 3-7).

Figure 3-7. Identifying conditional constraints

Message Branching
When conditional constraints are tied to message calling, you often run into a branching situation

where, depending on the condition, different messages may be invoked. Figure 3-8 represents a
conditional constraint when requesting a movie rental. If the status of the rental item is in stock, a
message is sent to the Rental object to create a rental. If the status of the rental item is out of stock, a

CHAPTER 3 ■ DESIGNING OOP SOLUTIONS: MODELING THE OBJECT INTERACTION

36

message is sent to the Reservation object to create a reservation. A rectangle drawn around the messages
shows the alternate paths that can occur depending on the condition.

Figure 3-8. Branching messages in a sequence diagram

ACTIVITY 3-1. CREATING A SEQUENCE DIAGRAM

After completing this activity, you should be familiar with the following:

Examining the Scenario

The following scenario was created for a use case in the user group library application introduced in
Activity 2-1. It describes the processing involved when a member borrows an item from the library.

When a member makes a request to borrow an item, the librarian checks the member’s records to make
sure no outstanding fines exist. Once the member passes these checks, the item is checked to see if it is
available. Once the item availability has been confirmed, a loan is created recording the item number,
member number, checkout date, and return date.

1. By examining the noun phrases in the scenario, you can identify which objects will
be involved in carrying out the processing. The objects identified should also have
a corresponding class depicted in the class diagram that has been previously

• Producing a sequence diagram to model object interaction.

• Using a UML modeling tool to create a sequence diagram.

• Adding methods to the class diagram.

CHAPTER 3 ■ DESIGNING OOP SOLUTIONS: MODELING THE OBJECT INTERACTION

37

created. From the scenario depicted, identify five objects that will carry out the
processing.

2. After the objects have been identified and cross-referenced with the class
diagram, the next step is to identify the messaging that must occur between these
objects to carry out the task. You can look at the verb phrases in the scenario to
help identify these messages. For example, the “request to borrow item” phase
indicates a message interaction between the Member object and the Librarian
object. What are the other interactions depicted in the scenario?

See the end of the chapter for Activity 3-1 answers.

Creating a Sequence Diagram

Follow these steps to create a sequence diagram using UMLet:

1. Start UMLet. Locate the drop-down list at the top of the template window. Change
the template type to Sequence (see Figure 3-9).

CHAPTER 3 ■ DESIGNING OOP SOLUTIONS: MODELING THE OBJECT INTERACTION

38

Figure 3-9. Changing template shape types

2. Double-click the Instance shape in the template window. An Instance shape will
appear in the upper left corner of the design surface. In the properties window,
change the name of the shape to Member.

3. From the shapes window, locate the lifeline and activation shapes and add them to
the Member instance, as shown in Figure 3-10.

CHAPTER 3 ■ DESIGNING OOP SOLUTIONS: MODELING THE OBJECT INTERACTION

39

Figure 3-10. Adding shapes to the sequence diagram

4. Repeat steps 2 and 3 to add a Librarian, LoanHistory, Item, and Loan object to the
diagram. Lay them out from left to right as shown in Figure 3-11.

Figure 3-11. Object layout in the sequence diagram

5. From the shapes template window, double-click the Sequence Message arrow
shape. Attach the tail end of the arrow to the Member object’s lifeline and the head
of the arrow to the Librarian object’s lifeline. In the properties window, change the
name of the message to “request item.”

6. To create a return arrow, double-click on the solid arrow with the open arrow head
in the shapes template window. In the properties window, change the first line to

CHAPTER 3 ■ DESIGNING OOP SOLUTIONS: MODELING THE OBJECT INTERACTION

40

lt=.< This should change the arrow from solid to dash. Attach the tail end to the
Librarian object and the head end to the Member object. Change the name to
“return loan info.” Your diagram should look similar to Figure 3-12.

Figure 3-12. Message layout in the sequence diagram

7. Repeat steps 5 and 6 to create a message from the Librarian object to the
LoanHistory object. Name the calling message (the solid line) “check history.”
Name the return message (the dashed line) “return history info.”

8. Create a message from the Librarian object to the Item object. Name the calling
message “check availability.” Name the return message “return availability info.”

9. Create a message from the Librarian object to the Item object. Name the calling
message “update status.” Name the return message “return update confirmation.”

10. Create a message from the Librarian object to the Loan object. Name the calling
message “create loan.” Name the return message “return loan confirmation.”

11. Rearrange the shapes so that your diagram looks similar to Figure 3-13. Save the
diagram as UML_Act3_1.

CHAPTER 3 ■ DESIGNING OOP SOLUTIONS: MODELING THE OBJECT INTERACTION

41

Figure 3-13. Completed sequence diagram

Adding Methods to the Class Diagram

After you have developed the sequence diagram, you begin to gain an understanding of the methods that
must be included in the various classes of the application. You achieve the message interaction depicted in
the sequence diagram by a method call from the initiating object (client) to the receiving object (server).
The method being called is defined in the class that the server object is instantiated as. For example, the
“check availability” message in the sequence diagram indicates that the Item class needs a method that
processes this message call.

Follow these steps to add the methods:

1. In UMLet, chose File ➤ New to create a new diagram. Locate the drop-down list at
the top of the template window. Change the template type to Class.

2. Double-click on the Simple Class shape template. Select the shape in the design
window.

3. In the properties window, change the name of the class to Item. Underneath the
name in the properties window enter two dashes. This will create a new section in
the class shape. This section is where you enter the attributes of the class.

CHAPTER 3 ■ DESIGNING OOP SOLUTIONS: MODELING THE OBJECT INTERACTION

42

4. In the properties window, add the ItemNumber attribute to the class followed by
two more dashes. This creates a third section in the class shape that is used to add
the methods of the class.

5. Add a checkAvailability and an updateStatus method to the class as shown in
Figure 3-14.

Figure 3-14. Adding methods to a class

6. Save the diagram as UML_Act3_1b.

Understanding Activity Diagrams
An activity diagram illustrates the flow of activities that need to occur during an operation or process.
You can construct the activity diagram to view the workflow at various levels of focus.

• A high, system-level focus represents each use case as an activity and diagrams the
workflow among the different use cases.

• A mid-level focus diagrams the workflow occurring within a particular use case.

• A low-level focus diagrams the workflow that occurs within a particular operation
of one of the classes of the system.

The activity diagram consists of the starting point of the process represented by a solid circle and
transition arrows representing the flow or transition from one activity to the next. Rounded rectangles
represent the activities, and a bull’s eye circle represents the ending point of the process. For example,
Figure 3-15 shows a generic activity diagram that represents a process that starts with activity A,
proceeds to activity B, and concludes.

Figure 3-15. Generic activity diagram

CHAPTER 3 ■ DESIGNING OOP SOLUTIONS: MODELING THE OBJECT INTERACTION

43

Decision Points and Guard Conditions
Often, one activity will conditionally follow another. For example, in order to rent a video, a PIN verifies
membership. An activity diagram represents conditionality by a decision point (represented by a
diamond) with the guard condition (the condition that must be met to proceed) in brackets next to the
flow line (see Figure 3-16).

Figure 3-16. Indicating decision points and guard conditions

Parallel Processing
In some cases, two or more activities can run in parallel instead of sequentially. A solid, bold line

drawn perpendicularly to the transition arrow represents the splitting of the paths. After the split, a
second solid, bold line represents the merge. Figure 3-17 shows an activity diagram for the processing of
a movie return. The order in which the Increment Inventory and the Remove Rental activities occur does
not matter. The parallel paths in the diagram represent this parallel processing.

Figure 3-17. Parallel processing depicted in an activity diagram

CHAPTER 3 ■ DESIGNING OOP SOLUTIONS: MODELING THE OBJECT INTERACTION

44

Activity Ownership
The activity diagram’s purpose is to model the control flow from activity to activity as the program
processes. The diagrams shown thus far do not indicate which objects have responsibility for these
activities. To signify object ownership of the activities, you segment the activity diagram into a series of
vertical partitions (also called swim lanes). The object role at the top of the partition is responsible for
the activities in that partition. Figure 3-18 shows an activity diagram for processing a movie rental, with
swim lanes included.

Figure 3-18. Swim lanes in an activity diagram

ACTIVITY 3-2. CREATING AN ACTIVITY DIAGRAM

After completing this activity, you should be familiar with the following:

Identifying Objects and Activities

Examine the following scenario developed for a use case from the user group library application:

• Using an activity diagram to model control flow as the program completes an
activity.

• Using a UML modeling tool to create an activity class diagram.

CHAPTER 3 ■ DESIGNING OOP SOLUTIONS: MODELING THE OBJECT INTERACTION

45

After viewing the list of available loan items, a member requests an item to check out on loan. The librarian
enters the member number and retrieves information about outstanding loans and any unpaid fines. If the
member has fewer than four outstanding loans and does not have any outstanding fines, the loan is
processed. The librarian retrieves information on the loan item to determine if it is currently on loan. If the
item is available, it is checked out to the member.

By identifying the nouns and noun phrases in the use case scenario, you can get an idea of what objects
will perform the tasks in carrying out the activities. Remember that these objects are instances of the
classes identified in the class diagram. The following objects will be involved in carrying out the activities:
Member, Librarian, LoanHistory, Item, and Loan.

The verb phrases help identify the activities carried out by the objects. These activities should correspond
to the methods of the classes in the system. Match the following activities to the appropriate objects:

See the end of the chapter for Activity 3-2 answers.

Creating an Activity Diagram

Follow these steps to create a sequence diagram using UMLet:

1. Start UMLet. Locate the drop-down list at the top of the template window. Change
the template type to Activity.

2. Double-click the System box shape in the template window. A System box shape
will appear in the upper left corner of the design surface. In the properties window,
change the name of the shape to Member to represent the Member partition.

3. Repeat step 2 to add a partition for the Librarian, LoanHistory, Item, and Loan
objects. Align the partitions from left to right as in Figure 3-19.

A. Request Movie

B. Process Rental

C. Check Availability

D. Check Member’s Loan Status

E. Update Item Status

F. Calculate Due Date

G. Record Rental Info

H. Confirm Rental

CHAPTER 3 ■ DESIGNING OOP SOLUTIONS: MODELING THE OBJECT INTERACTION

46

Figure 3-19. Creating the activity diagram partitions

4. From the Shapes window, double-click the Initial State shape and add it to the
Member partition. Below the Initial State in the Member partition, add a State
shape. Rename the State to “request item.” Add a transition shape (arrow) from the
Initial State to the Request Item action state.

5. Under the Librarian partition, add a Process Loan state and a Transition shape from
the Request Item state to the Process Loan state.

6. Under the LoanHistory partition, add a Check Member Status action state and a
Transition shape from the Process Loan action to the Check Member Status action
state.

7. From the Shapes window, double-click the Conditional Branch shape (diamond)
and add it to the LoanHistory partition below the Check Member Status action state.
Add a Transition shape from the Check Member Status state to the Conditional
Branch. From the Conditional Branch, add a Transition shape to a Deny Loan state
under the Librarian partition. Add a label to the Transition shape with a condition of
fail. Also add a Transition shape to a Check Item Status action state under the Item
partition with a label condition of pass. Your diagram should be similar to Figure 3-
20.

CHAPTER 3 ■ DESIGNING OOP SOLUTIONS: MODELING THE OBJECT INTERACTION

47

Figure 3-20. Adding a branching condition

8. Repeat step 7 to create a Conditional Branch from the Check Item Status state. If
the item is in stock, add a Transition shape to an Update Item Status state under
the Item partition. If the item is out of stock, add a Transition shape to the Deny
Loan state under the Librarian partition.

9. From the Update Item Status state, add a Transition shape to a Record Loan Info
state under the Loan partition.

10. From the Record Loan Info state, add a Transition shape to a Confirm Loan state
under the Librarian partition.

11. From the Shapes window, click the Final State shape and add it to the bottom of
the Member partition. Add a Transition shape from the Deny Loan state to the Final
action state. Add another Transition shape from the Confirm Loan state to the Final
action state.

Your completed diagram should resemble the one shown in Figure 3-21. Save the diagram as UMLAct3_2
and exit UMLet.

CHAPTER 3 ■ DESIGNING OOP SOLUTIONS: MODELING THE OBJECT INTERACTION

48

Figure 3-21. Completed activity diagram

Exploring GUI Design
Thus far, the discussions of object-oriented analysis and design have focused on modeling the
functional design and the internal processing of the application. Successful modern software
applications rely on a rich set of graphical user interfaces (GUIs) to expose this functionality to the users
of the application.

In modern software systems, one of the most important aspects of an application is how well it
interacts with the users. Gone are the days when users would interact with the application by typing
cryptic commands at the DOS prompt. Modern operating systems employ GUIs that are, for the most
part, intuitive to use. Users have also grown accustomed to the polished interfaces of the commercial
office-productivity applications. Users have come to expect the same ease of use and intuitiveness built
into applications developed in-house.

CHAPTER 3 ■ DESIGNING OOP SOLUTIONS: MODELING THE OBJECT INTERACTION

49

The design of the user interface should not be done haphazardly; rather, it should be planned in
conjunction with the business logic design. The success of most applications is judged by the response
of the users toward the application. If users are not comfortable when interacting with the application
and the application does not improve the productivity of the user, it is doomed to failure. To the user,
the application is the interface. It does not matter how pristine and clever the business logic code may
be; if the user interface is poorly designed and implemented, the application will not be acceptable to
the users. It is often hard for developers to remember that it is the user who drives the software
development.

Although UML was not specifically designed for GUI design, many software architects and
programmers have employed some of the UML diagrams to help model the user interface of an
application.

GUI Activity Diagrams
The first step in developing a user interface design is to perform a task analysis to discover how

users will interact with the system. The task analysis is based on the use cases and scenarios that have
been modeled previously. You can then develop activity diagrams to model how the interaction between
the user and the system will take place. Figure 3-22 shows an activity diagram modeling the activities the
user goes through to record rental information.

CHAPTER 3 ■ DESIGNING OOP SOLUTIONS: MODELING THE OBJECT INTERACTION

50

Figure 3-22. GUI modeling with an activity diagram

Interface Prototyping
After you have identified and prioritized the necessary tasks, you can develop a prototype sketch of

the various screens that will make up the user interface. Figure 3-23 shows a prototype sketch of the
Customer Info screen. Although you can use paper and pencil to develop your diagrams, there are some
nice GUI prototyping tools available that offer common GUI design templates and the ability to link
screens, plus other useful features.

CHAPTER 3 ■ DESIGNING OOP SOLUTIONS: MODELING THE OBJECT INTERACTION

51

Figure 3-23. GUI prototype sketch

Interface Flow Diagrams
Once you have prototyped the various screens, you can use interface flow diagrams to model the
relationships and flow patterns among the screens that make up the user interface. Figure 3-24 shows a
partial interface flow diagram for the video rental application.

CHAPTER 3 ■ DESIGNING OOP SOLUTIONS: MODELING THE OBJECT INTERACTION

52

Figure 3-24. Interface flow diagramming

Application Prototyping
Once you have roughed out the screen layout and the design of the user interface, you can develop a
simple prototype. The prototype should contain skeleton code that simulates the functionality of the
system. At this point, you should not put a great effort into integrating the user interface front end with
the business functionality of the application. The idea is to let the users interact with a working
prototype to generate feedback on the user interface.

The processes of refining and testing the user interface will be iterative and will most likely continue
through several cycles. Once the user interface design and the internal functional design of the
application have been completed and prototyped, the next step in the application development cycle is
to start coding the application.

Summary
This chapter introduced scenarios, sequence diagrams, collaboration diagrams, and activity diagrams.
You saw how to use these diagrams for modeling object interaction. Additionally, you learned how some
of the UML diagrams might be used to help model the user interface of the application.

The goal of this and the previous chapters has been to introduce you to some of the common
modeling diagrams and concepts involved in software design and UML. In Chapter 4, you will take the
concepts developed thus far and use them to implement a solution design for a sample case study.

CHAPTER 3 ■ DESIGNING OOP SOLUTIONS: MODELING THE OBJECT INTERACTION

53

ACTIVITY ANSWERS

Activity 3-1 Answers

Member, Librarian, Item, Loan, Loan History. These five objects are involved in the processing depicted in
the scenario.

The other messaging interactions depicted in the scenario are as follows:

1. The Librarian object checks the lending history of the member with the
LoanHistory object.

2. The Librarian object checks the availability of the item through the Item object.

3. The Librarian object updates the availability of the item through the Item object.

4. The Librarian creates a Loan object containing loan information.

5. The Librarian returns loan information to the Member object.

Activity 3-2 Answers

 A. Member, B. Librarian, C. Item, D. LoanHistory, E. Item, F. Loan, G. Loan, H. Librarian.

The Member object is responsible for the Request Movie activity. The Librarian object is responsible for the
Process Rental and Confirm Rental activities. The LoanHistory object is responsible for the Check
Member’s Loan Status activity. The Item object is responsible for the Check Availability and Update Item
Status activities. The Loan object is responsible for the Calculate Due Date and Record Rental Info
activities.

C H A P T E R 4

■ ■ ■

55

Designing OOP Solutions:
A Case Study

Designing solutions for an application is not an easy endeavor. Becoming an accomplished designer
takes time and a conscious effort, which explains why many developers avoid it like the plague. You can
study all the theories and know all the buzzwords, but the only way to truly develop your modeling skills
is to roll up your sleeves, get your hands dirty, and start modeling. In this chapter, you will go through
the process of modeling an office-supply ordering system. Although this is not a terribly complex
application, it will serve to help solidify the modeling concepts covered in the previous chapters. By
analyzing the case study, you will also gain a better understanding of how a model is developed and how
the pieces fit together.

After reading this chapter, you should be familiar with the following:

• How to model an OOP solution using UML.

• Some common OOP design pitfalls to avoid.

Developing an OOP Solution
In the case-study scenario, your company currently has no standard way for departments to order office
supplies. Each department separately implements its own ordering process. As a result, it is next to
impossible to track company-wide spending on supplies, which impacts the ability to forecast budgeting
and identify abuses. Another problem with the current system is that it does not allow for a single
contact person who could negotiate better deals with the various vendors.

As a result, you have been asked to help develop a company-wide office-supply ordering (OSO)
application. To model this system you will complete the following steps:

• Create an SRS.

• Develop the use cases.

• Diagram the use cases.

• Model the classes.

• Model the user interface design.

CHAPTER 4 ■ DESIGNING OOP SOLUTIONS: A CASE STUDY

56

Creating the System Requirement Specification
After interviewing the various clients of the proposed system, you develop the SRS. Remember from
Chapter 2 that the SRS scopes the system requirements, defines the system boundaries, and identifies
the users of the system.

You have identified the following system users:

• Purchaser: Initiates a request for supplies.

• Department manager: Tracks and approves supply requests from department
purchasers.

• Supply vendor processing application: Receives order files generated by the
system.

• Purchase manager: Updates the supply catalog, tracks supply requests, and checks
in delivered items.

You have identified the following system requirements:

• Users must log in to the system by supplying a username and password.

• Purchasers will view a list of supplies that are available to be ordered.

• Purchasers will be able to filter the list of supplies by category.

• Purchasers can request multiple supplies in a single purchase request.

• A department manager can request general supplies for the department.

• Department managers must approve or deny supply requests for their department
at the end of each week.

• If department managers deny a request, they must supply a short explanation
outlining the reason for the denial.

• Department managers must track spending within their departments and ensure
there are sufficient funds for approved supply requests.

• A purchase manager maintains the supply catalog and ensures it is accurate and
current.

• A purchase manager checks in the supplies when they are received and organizes
the supplies for distribution.

• Supply requests that have been requested but not approved are marked with a
status of pending.

• Supply requests that have been approved are marked with a status of approved
and an order is generated.

• Once an order is generated, a file containing the order details is placed in an order
queue. Once the order has been placed in the queue, it is marked with a status of
placed.

CHAPTER 4 ■ DESIGNING OOP SOLUTIONS: A CASE STUDY

57

• A separate supply vendor processing application will retrieve the order files from
the queue, parse the documents, and distribute the line items to the appropriate
vendor queues. Periodically, the supply vendor processing application will retrieve
the orders from a vendor queue and send them to the vendor.

• When all the items of an order are checked in, the order is marked with a status of
fulfilled and the purchaser is informed that the order is ready for pick up.

Developing the Use Cases
After generating the SRS and getting the appropriate system users to sign off on it, the next task is to
develop the use cases, which will define how the system will function from the users’ perspective. The
first step in developing the use cases is to define the actors. Remember from Chapter 2 that the actors
represent the external entities (human or other systems) that will interact with the system. From the SRS,
you can identify the following actors that will interact with the system:

• Purchaser

• Department manager

• Purchase manager

• Supply vendor processing application

Now that you have identified the actors, the next step is to identify the various use cases with which
the actors will be involved. By examining the requirement statements made in the SRS, you can identify
the various use cases. For example, the statement “Users must log in to the system by supplying a
username and password” indicates the need for a Login use case. Table 4-1 identifies the use cases for
the OSO application.

Table 4-1. Use Cases for the OSO Application

Name Actor(s) Description

Login Purchaser, Department
manager, Purchase
manager

Users see a login screen. They then enter their
username and password. They either click Log In
or Cancel. After login, they see a screen
containing product information.

View Supply Catalog Purchaser, Department
manager, Purchase
manager

Users see a catalog table that contains a list of
supplies. The table contains information such as
the supply name, category, description, and cost.
Users can filter supplies by category.

(continued)

CHAPTER 4 ■ DESIGNING OOP SOLUTIONS: A CASE STUDY

58

Table 4-1. (continued)

Name Actor(s) Description

Purchase Request Purchaser, Department
manager

Purchasers select items in the table and click a
button to add them to their cart. A separate table
shows the items in their cart, the number of each
item requested and the cost, as well as the total
cost of the request.

Department Purchase
Request

Department manager Department managers select items in the table
and click a button to add them to their cart. A
separate table shows the items in their cart, the
number of each item requested and the cost, as
well as the total cost of the request.

Request Review Department manager Department managers see a screen that lists all
pending supply requests for members of their
department. They review the requests and mark
them as approved or denied. If they deny the
request, they enter a brief explanation.

Track Spending Department manager Department managers see a screen that lists the
monthly spending of department members as
well as the running total of the department.

Maintain Catalog Purchase manager The purchase manager has the ability to update
product information, add products, or mark
products as discontinued. The administrator can
also update category information, add
categories, and mark categories as discontinued.

Item Check In Purchase manager The purchase manager sees a screen for entering
the order number. The purchase manager then
sees the line items listed for the order. The items
that have been received are marked. When all the
items for an order are received, it is marked as
fulfilled.

Order Placement Supply vendor
processing application

The supply vendor processing application checks
the queue for outgoing order files. Files are
retrieved, parsed, and sent to the appropriate
vendor queue.

CHAPTER 4 ■ DESIGNING OOP SOLUTIONS: A CASE STUDY

59

Diagramming the Use Cases
Now that you have identified the various use cases and actors, you are ready to construct a diagram of the use
cases. Figure 4-1 shows a preliminary use case model developed with UMLet, which was introduced in
Chapter 2.

Figure 4-1. Preliminary OSO use case diagram

After you have diagrammed the use cases, you now look for any relationships that may exist
between the use cases. Two relationships that may exist are the includes relationship and the extends
relationship. Remember from the discussions in Chapter 2 that when a use case includes another use
case, the use case being included needs to run as a precondition. For example, the Login use case of the
OSO application needs to be included in the View Supply Catalog use case. The reason you make Login a
separate use case is that the Login use case can be reused by one or more other use cases. In the OSO
application, the Login use case will also be included with the Track Spending use case. Figure 4-2 depicts
this includes relationship.

■Note In some modeling tools, the includes relationship may be indicated in the use case diagram by the uses
keyword.

CHAPTER 4 ■ DESIGNING OOP SOLUTIONS: A CASE STUDY

60

Figure 4-2. Including the Login use case

The extends relationship exists between two use cases when, depending on a condition, a use case
will extend the behavior of the initial use case. In the OSO application, when a manager is making a
purchase request, she can indicate that she will be requesting a purchase for the department. In this
case, the Department Purchase Request use case becomes an extension of the Purchase Request use
case. Figure 4-3 diagrams this extension.

Figure 4-3. Extending the Purchase Request use case

After analyzing the system requirements and use cases, you can make the system development
more manageable by breaking up the application and developing it in phases. For example, you can
develop the Purchase Request portion of the application first. Next, you can develop Request Review
portion, and then the Item Check In portion. The rest of this chapter focuses on the Purchase Request
portion of the application. Employees and department managers will use this part of the application to
make purchase requests. Figure 4-4 shows the use case diagram for this phase.

CHAPTER 4 ■ DESIGNING OOP SOLUTIONS: A CASE STUDY

61

Figure 4-4. Purchase Request use case diagram

Developing the Class Model
Developing the class model involves several tasks. You begin by identifying the classes, and then you add
attributes, associations, and behaviors.

Identifying the Classes
After you have identified the various use cases, you can start identifying the classes the system needs to
include to carry out the functionality described in the use cases. To identify the classes, you drill down
into each use case and define a series of steps needed to carry it out. It is also helpful to identify the noun
phrases in the use case descriptions. The noun phrases are often good indicators of the classes that will
be needed.

CHAPTER 4 ■ DESIGNING OOP SOLUTIONS: A CASE STUDY

62

For example, the following steps describe the View Supply Catalog use case:

• User has logged in and been assigned a user status level. (This is the
precondition.)

• Users are presented with a catalog table that contains a list of supplies. The
table contains information such as the supply name, category, description,
and cost.

• Users can filter supplies by category.

• Users are given the choice of logging out or making a purchase request.
(This is the postcondition.)

From this description, you can identify a class that will be responsible for retrieving product
information from the database and filtering the products being displayed. The name of this class will be
the ProductCatalog class.

Examining the noun phrases in the use case descriptions dealing with making purchase requests
reveals the candidate classes for the OSO application, as listed in Table 4-2.

Table 4-2. Candidate Classes Used to Make Purchase Requests

Use Case Candidate Classes

Login User, username, password, success, failure

View Supply Catalog User, catalog table, supplies, information, supply
name, category, description, cost

Purchase Request Purchaser, items, cart, number, item requested,
cost, total cost

Department Purchase Request Department manager, items, cart, number, item
requested, cost, total cost, department purchase
request

Now that you have identified the candidate classes, you need to eliminate the classes that indicate

redundancy. For example, a reference to items and line items would represent the same abstraction. You
can also eliminate classes that represent attributes rather than objects. Username, password, and cost
are examples of noun phrases that represent attributes. Some classes are vague or generalizations of
other classes. User is actually a generalization of purchaser and manager. Classes may also actually refer
to the same object abstraction but indicate a different state of the object. For example, the supply
request and order represent the same abstraction before and after approval. You should also filter out
classes that represent implementation constructs such as list and table. For example, a cart is really a
collection of order items for a particular order.

CHAPTER 4 ■ DESIGNING OOP SOLUTIONS: A CASE STUDY

63

Using these elimination criteria, you can whittle down the class list to the following candidate
classes:

• Employee

• DepartmentManager

• Order

• OrderItem

• ProductCatalog

• Product

You can also include classes that represent the actors that will interact with the system. These are
special classes called actor classes and are included in the class diagram to model the interface between
the system and the actor. For example, you could designate a Purchaser(UI) actor class that represents
the GUI that a Purchaser (Employee or DepartmentManager) would interact with to make a purchase
request. Because these classes are not actually part of the system, the internal implementations of these
classes are encapsulated, and they are treated as black boxes to the system.

You can now start formulating the class diagram for the Purchase Request portion of the OSO
application. Figure 4-5 shows the preliminary class diagram for the OSO application.

Figure 4-5. Preliminary OSO class diagram

Adding Attributes to the Classes
The next stage in the development of the class model is to identify the level of abstraction the classes
must implement. You determine what state information is relevant to the OSO application. This
required state information will be implemented through the attributes of the class. Analyzing the system
requirements for the Employee class reveals the need for a login name, password, and department. You
also need an identifier such as an employee ID to uniquely identify various employees. An interview with
managers revealed the need to include the first and last names of the employee so that they can track
spending by name. Table 4-3 summarizes the attributes that will be included in the OSO classes.

CHAPTER 4 ■ DESIGNING OOP SOLUTIONS: A CASE STUDY

64

Table 4-3. OSO Class Attributes

Class Attribute Type

Employee EmployeeID

LoginName

Password

Department

FirstName

LastName

Integer

String

String

String

String

String

DepartmentManager EmployeeID

LoginName

Password

Department

FirstName

LastName

Integer

String

String

String

String

String

Order OrderNumber

OrderDate

Status

Long

Date

String

OrderItem ProductNumber

Quantity

UnitPrice

String

Short

Decimal

Product ProductNumber

ProductName

Description

UnitPrice

Category

VendorCode

String

String

String

Decimal

String

String

ProductCatalog None

CHAPTER 4 ■ DESIGNING OOP SOLUTIONS: A CASE STUDY

65

Figure 4-6 shows the OSO class diagram with the class attributes. I have left out the attributes for the
DepartmentManager class. The DepartmentManager class will probably inherit the attributes listed for
the Employee class.

Figure 4-6. The Purchase Request component class diagram with attributes added

Identifying Class Associations
The next stage in the development process is to model the class associations that will exist in the OSO
application. If you study the use cases and SRS, you can gain an understanding of what types of
associations you need to incorporate into the class structural design.

■Note You may find that you need to further refine the SRS to expose the class associations.

For example, an employee will be associated with an order. By examining the multiplicity of the
association, you discover that an employee can have multiple orders, but an order can be associated
with only one employee. Figure 4-7 models this association.

Figure 4-7. Depicting the association between the Employee class and the Order class

As you start to identify the class attributes, you will notice that the Employee class and the
DepartmentManager class have many of the same attributes. This makes sense, because a manager is
also an employee. For the purpose of this application, a manager represents an employee with
specialized behavior. This specialization is represented by an inheritance relationship, as shown in
Figure 4-8.

CHAPTER 4 ■ DESIGNING OOP SOLUTIONS: A CASE STUDY

66

Figure 4-8. The DepartmentManager class inheriting from the Employee class

The following statements sum up the associations in the OSO class structure:

• An Order is a collection of OrderItem objects.

• An Employee can have multiple Order objects.

• An Order is associated with one Employee.

• The ProductCatalog is associated with multiple Product objects.

• A Product is associated with the ProductCatalog.

• An OrderItem is associated with one Product.

• A Product may be associated with multiple OrderItem objects.

• A DepartmentManager is an Employee with specialized behavior.

Figure 4-9 shows these various associations (excluding the class attributes for clarity).

Figure 4-9. The Purchase Request component class diagram with associations added

Modeling the Class Behaviors
Now that you have sketched out the preliminary structure of the classes, you are ready to model how
these classes will interact and collaborate. The first step in this process is to drill down into the use case
descriptions and create a more detailed scenario of how the use case will be carried out. The following
scenario describes one possible sequence for carrying out the Login use case.

1. The user is presented with a login dialog box.

2. The user enters a login name and a password.

CHAPTER 4 ■ DESIGNING OOP SOLUTIONS: A CASE STUDY

67

3. The user submits the information.

4. The name and password are checked and verified.

5. The user is presented with a supply request screen.

Although this scenario depicts the most common processing involved with the Login use case, you
may need other scenarios to describe anticipated alternate outcomes. The following scenario describes
an alternate processing of the Login use case:

1. The user is presented with a login dialog box.

2. The user enters a login name and a password.

3. The user submits the information.

4. The name and password are checked but cannot be verified.

5. The user is informed of the incorrect login information.

6. The user is presented with a login dialog box again.

7. The user either tries again or cancels the login request.

At this point, it may help to create a visual representation of the scenarios outlined for the use case.
Remember from Chapter 3 that activity diagrams are often used to visualize use case processing. Figure
4-10 shows an activity diagram constructed for the Login use case scenarios.

Figure 4-10. An activity diagram depicting the Login use case scenarios

After analyzing the process involved in the use case scenarios, you can now turn your attention
to assigning the necessary behaviors to the classes of the system. To help identify the class behaviors
and interactions that need to occur, you construct a sequence diagram, as discussed in Chapter 3.

CHAPTER 4 ■ DESIGNING OOP SOLUTIONS: A CASE STUDY

68

Figure 4-11 shows a sequence diagram for the Login use case scenarios. The Purchaser (UI) class calls
the Login method that has been assigned to the Employee class. The message returns information that
will indicate whether the login has been verified.

Figure 4-11. A sequence diagram depicting the Login use case scenarios

Next, let’s analyze the View Supply Catalog use case. The following scenario describes the use case:

1. User logged in and has been verified.

2. User views a catalog table that contains product information, including the
supply name, category, description, and price.

3. User chooses to filter the table by category, selects a category, and refreshes the
table.

From this scenario, you can see that you need a method of the ProductCatalog class that will return
a listing of product categories. The Purchaser class will invoke this method. Another method the
ProductCatalog class needs is one that will return a product list filtered by category. The sequence
diagram in Figure 4-12 shows the interaction that occurs between the Purchaser (UI) class and the
ProductCatalog class.

Figure 4-12. A sequence diagram depicting the View Supply Catalog scenario

CHAPTER 4 ■ DESIGNING OOP SOLUTIONS: A CASE STUDY

69

The following scenario was developed for the Purchase Request use case:

1. A purchaser has logged in and has been verified as an employee.

2. The purchaser selects items from the product catalog and adds them to the order
request (shopping cart), indicating the number of each item requested.

3. After completing the item selections for the order, the purchaser submits the
order.

4. Order request information is updated, and an order ID is generated and returned
to the purchaser.

From the scenario, you can identify an AddItem method of the Order class that needs to be created.
This method will accept a product ID and a quantity, and then return the subtotal of the order. The
Order class will need to call a method of the OrderItem class, which will create an instance of an order
item. You also need a SubmitOrder method of the Order class that will submit the request and the return
order ID of the generated order. Figure 4-13 shows the associated sequence diagram for this scenario.

Figure 4-13. A sequence diagram depicting the Purchase Request scenario

Some other scenarios that need to be included are deleting an item from the shopping cart,
changing the quantity of an item in the cart, and canceling the order process. You will also need to
include similar scenarios and create similar methods for the Department Purchase Request use case.
After analyzing the scenarios and interactions that need to take place, you can develop a class diagram
for the Purchase Request portion of the application, as shown in Figure 4-14.

CHAPTER 4 ■ DESIGNING OOP SOLUTIONS: A CASE STUDY

70

Figure 4-14. Purchase Request class diagram

Developing the User Interface Model Design
At this point in the application design process, you don’t want to commit to a particular GUI
implementation (in other words, a technology-specific one). It is helpful, however, to model some of the
common elements and functionality required of a GUI for the application. This will help you create a
prototype user interface that you can use to verify the business logic design that has been developed.
The users will be able to interact with the prototype and provide feedback and verification of the logical
design.

The first prototype screen that you need to implement is the one for logging in. You can construct
an activity diagram to help define the activities the user needs to perform when logging in to the system,
as shown in Figure 4-15.

CHAPTER 4 ■ DESIGNING OOP SOLUTIONS: A CASE STUDY

71

Figure 4-15. An activity diagram depicting user login activities

Analyzing the activity diagram reveals that you can implement the login screen as a fairly generic
interface. This screen should allow the user to enter a username and password. It should include a way
to indicate that the user is logging in as either an employee or a manager. The final requirement is to
include a way for the user to abort the login process. Figure 4-16 shows a prototype of the login screen.

Figure 4-16. Login screen prototype

The next screen you need to consider is the product catalog screen. Figure 4-17 depicts the activity
diagram for viewing and filtering the products.

CHAPTER 4 ■ DESIGNING OOP SOLUTIONS: A CASE STUDY

72

Figure 4-17. An activity diagram depicting activities for viewing products

The activity diagram reveals that the screen needs to show a table or list of products and product
information. Users must be able to filter the products by category, which can be initiated by selecting a
category from a category list. Users also need to be able to initiate an order request or exit the
application. Figure 4-18 shows a prototype screen that can be used to view the products.

CHAPTER 4 ■ DESIGNING OOP SOLUTIONS: A CASE STUDY

73

Figure 4-18. View products screen prototype

The final screen that needs to be prototyped for this part of the application is the shopping cart
interface. This will facilitate the adding and removing items from an order request. It also needs to allow
the user to submit the order or abort an order request. Figure 4-19 shows a prototype of the order
request screen.

CHAPTER 4 ■ DESIGNING OOP SOLUTIONS: A CASE STUDY

74

Figure 4-19. Order request screen prototype

That completes the preliminary design for this phase of the OSO application. You applied what you
learned in Chapters 2 and 3 to model the design. Next, let’s review some common mistakes to avoid
during this process.

Avoiding Some Common OOP Design Pitfalls
When you start to model your own OOP designs, you want to be sure to follow good practice. The
following are some of the common traps that you should avoid:

• Confusing modeling with documenting: The main value in modeling is not the
diagrams produced, but rather the process you go through to produce the
diagrams.

• Not involving the users in the process: It is worth emphasizing that users are the
consumers of your product. They are the ones who define the business processes
and functional requirements of the system.

• Trying to model the whole solution at one time: When developing complex
systems, break up the system design and development into manageable
components. Plan to produce the software in phases. This will provide for faster
modeling, developing, testing, and release cycles.

CHAPTER 4 ■ DESIGNING OOP SOLUTIONS: A CASE STUDY

75

• Striving to create a perfect model: No model will be perfect from the start.
Successful modelers understand that the modeling process is iterative, and
models are continuously updated and revised throughout the application
development cycle.

• Thinking there is only one true modeling methodology: Just as there are many
different equally viable OOP languages, there are many equally valid modeling
methodologies for developing software. Choose the one that works best for you
and the project at hand.

• Reinventing the wheel: Look for patterns and reusability. If you analyze many of
the business processes that applications attempt to solve, a consistent set of
modeling patterns emerge. Create a repository where you can leverage these
existing patterns from project to project and from programmer to programmer.

• Letting the data model drive the business logic model: It is generally a bad idea to
develop the data model (database structure) first and then build the business logic
design on top of it. The solution designer should first ask what business problem
needs to be solved, and then build a data model to solve the problem.

• Confusing the problem domain model with the implementation model: You should
develop two distinct but complementary models when designing applications. A
domain model design describes the scope of the project and the processing
involved in implementing the business solutions. This includes what objects will
be involved, their properties and behaviors, and how they interact and relate to
each other. The domain model should be implementation-agnostic. You should
be able to use the same domain model as a basis for several different
architecturally specific implementations. In other words, you should be able to
take the same domain model and implement it using a Visual Basic rich-client,
two-tier architecture or a C# (or Java, for that matter) n-tier distributed web
application.

Summary
Now that you have analyzed the domain model of an OOP application, you are ready to transform the
design into an actual implementation. The next part of this book will introduce you to the C# language.
You will look at the .NET Framework and see how C# applications are built on top of the framework. You
will be introduced to working in the Visual Studio IDE and become familiar with the syntax of the C#
language. The next section will also demonstrate the process of implementing OOP constructs such as
class structures, object instantiation, inheritance, and polymorphism in C#. You will revisit the case
study introduced in this chapter in Chapter 14, at which time you will look at transforming the
application design into actual implementation code.

C H A P T E R 5

■ ■ ■

77

Introducing the .NET Framework
and Visual Studio

Business application programming has evolved from a two-tier, tightly coupled model into a multitiered,
loosely coupled model, often involving data transfer over the Internet or a corporate intranet. In an
effort to allow programmers to be more productive and deal with the complexities of this type of model,
Microsoft developed the .NET Framework. To effectively program in C#, you need to understand this
underlying framework upon which it is built.

After reading this chapter, you should be familiar with the following:

• The .NET Framework.

• The features of the Common Language Runtime (CLR).

• How the just-in-time (JIT) compiler works.

• The .NET Framework base class library.

• Namespaces and assemblies.

• The features of the Visual Studio integrated development environment.

Introducing the .NET Framework
The .NET Framework is a collection of fundamental classes designed to provide the common services
needed to run applications. Let’s look at the goals of the .NET Framework and then review its
components.

Goals of the .NET Framework
Microsoft designed the .NET Framework with certain goals in mind. The following sections examine
these goals and how the .NET Framework achieves them.

Support of Industry Standards
Microsoft wanted the .NET Framework to be based on industry standards and practices. As a result, the
framework relies heavily on industry standards such as the Extensible Markup Language (XML) and

CHAPTER 5 ■ INTRODUCING THE .NET FRAMEWORK AND VISUAL STUDIO

78

Simple Object Access Protocol (SOAP). Microsoft has also submitted a Common Language Infrastructure
(CLI) Working Document to the European Computer Manufacturers Association (ECMA), which
oversees many of the common standards in the computer industry.

The CLI is a set of specifications needed to create compilers that conform to the .NET Framework.
Third-party vendors can use these specifications to create .NET-compliant language compilers; for
example, Interactive Software Engineering (ISE) has created a .NET compiler for Eifle. Third-party
vendors can also create a CLR that will allow .NET-compliant languages to run on different platforms.
One example, Mono is an open source, cross platform implementation of the CLR that gives C#
applications the ability to run on the Linux platform.

Extensibility
To create a highly productive environment in which to program, Microsoft realized the .NET Framework
had to be extensible. As a result, Microsoft has exposed the framework class hierarchy to developers.
Through inheritance and interfaces, you can easily access and extend the functionality of these classes.
For example, you could create a button control class that not only inherits its base functionality from the
button class exposed by the .NET Framework, but also extends the base functionality in a unique way
required by your application.

Microsoft has also made it much easier to work with the underlying operating system. By
repackaging and implementing the Windows operating system application programming interface (API)
functions in a class-based hierarchy, Microsoft has made it more intuitive and easier for OOP
programmers to work with the functionality exposed by the underlying operating system.

Unified Programming Models
Another important goal Microsoft incorporated into the .NET Framework was cross-language
independence and integration. To achieve this goal, all languages that support the Common Language
Specification (CLS) compile into the same intermediate language, support the same set of basic data
types, and expose the same set of code-accessibility methods. As a result, not only can classes developed
in the different CLS-compliant languages communicate seamlessly with one another, but you can also
implement OOP constructs across languages. For example, you could develop a class written in C# that
inherits from a class written using Visual Basic (VB). Microsoft has developed several languages that
support the .NET Framework. Along with C#, the languages are VB, managed C++, JScript, and F#. In
addition to these languages, many third-party vendors have developed versions of other popular
languages designed to run under the .NET Framework, such as Pascal and Python.

Easier Deployment
Microsoft needed a way to simplify application deployment. Before the development of the .NET
Framework, when components were deployed, component information had to be recorded in the
system registry. Many of these components, especially system components, were used by several
different client applications. When a client application made a call to the component, the registry was
searched to determine the metadata needed to work with the component. If a newer version of the
component was deployed, it replaced the registry information of the old component. Often, the new
components were incompatible with the old version and caused existing clients to fail. You have
probably experienced this problem after installing a service pack that ended up causing more problems
than it fixed!

CHAPTER 5 ■ INTRODUCING THE .NET FRAMEWORK AND VISUAL STUDIO

79

The .NET Framework combats this problem by storing the metadata for working with the
component in a manifest, which is packaged in the assembly containing the component code. An
assembly is a package containing the code, resources, and metadata needed to run an application. By
default, an assembly is marked as private and placed in the same directory as the client assembly. This
ensures that the component assembly is not inadvertently replaced or modified and also allows for a
simpler deployment because there is no need to work with the registry. If a component needs to be
shared, its assembly is deployed to a special directory referred to as the Global Assembly Cache (GAC).
The manifest of the assembly contains versioning information, so newer versions of the component can
be deployed side by side with the older versions in the GAC. By default, client assemblies continue to
request and use the versions of the components they were intended to use. Older client assemblies will
no longer fail when newer versions of the component are installed.

Improved Memory Management
A common problem of programs developed for the Windows platform has been memory management.
Often, these programs have caused memory leaks. A memory leak occurs when a program allocates
memory from the operating system but fails to release the memory after it is finished working with the
memory. This problem is compounded when the program is intended to run for a long time, such as a
service that runs in the background. To combat this problem, the .NET Framework uses
nondeterministic finalization. Instead of relying on the applications to deallocate the unused memory,
the framework uses a garbage collection object. The garbage collector periodically scans for unused
memory blocks and returns them to the operating system.

Improved Security Model
Implementing security in today’s highly distributed, Internet-based applications is an extremely
important issue. In the past, security has focused on the user of the application. Security identities were
checked when users logged in to an application, and their identities were passed along as the application
made calls to remote servers and databases. This type of security model has proven to be inefficient and
complicated to implement for today’s enterprise-level, loosely coupled systems. In an effort to make
security easier to implement and more robust, the .NET Framework uses the concept of code identity
and code access.

When an assembly is created, it is given a unique identity. When a server assembly is created, you
can grant access permissions and rights. When a client assembly calls a server assembly, the runtime will
check the permissions and rights of the client, and then grant or deny access to the server code
accordingly. Because each assembly has an identity, you can also restrict access to the assembly through
the operating system. If a user downloads a component from the Web, for example, you can restrict the
component’s ability to read and write files on the user’s system.

Components of the .NET Framework
Now that you have seen some of the major goals of the .NET Framework, let’s take a look at the
components it comprises.

CHAPTER 5 ■ INTRODUCING THE .NET FRAMEWORK AND VISUAL STUDIO

80

Common Language Runtime
The fundamental component of the .NET Framework is the CLR. The CLR manages the code being
executed and provides for a layer of abstraction between the code and the operating system. Built into
the CLR are mechanisms for the following:

• Loading code into memory and preparing it for execution.

• Converting the code from the intermediate language to native code.

• Managing code execution.

• Managing code and user-level security.

• Automating deallocation and release of memory.

• Debugging and tracing code execution.

• Providing structured exception handling.

Framework Base Class Library
Built on top of the CLR is the .NET Framework base class library. Included in this class library are
reference types and value types that encapsulate access to the system functionality. Types are data
structures. A reference type is a complex type—for example, classes and interfaces. A value type is simple
type—for example, integer or Boolean. Programmers use these base classes and interfaces as the
foundation on which they build applications, components, and controls. The base class library includes
types that encapsulate data structures, perform basic input/output operations, invoke security
management, manage network communication, and perform many other functions.

Data Classes
Built on top of the base classes are classes that support data management. This set of classes is
commonly referred to as ADO.NET. Using the ADO.NET object model, programmers can access and
manage data stored in a variety of data storage structures through managed providers. Microsoft has
written and tuned the ADO.NET classes and object model to work efficiently in a loosely coupled,
disconnected, multitiered environment. ADO.NET not only exposes the data from the database, but also
exposes the metadata associated with the data. Data is exposed as a sort of mini-relational database.
This means that you can get the data and work with it while disconnected from the data source, and later
synchronize the data with the data source.

Microsoft has provided support for several data providers. Data stored in Microsoft SQL Server can
be accessed through the native SQL data provider. OLEDB and Open Database Connectivity (ODBC)
managed providers are two generic providers for systems currently exposed through the OLEDB or
ODBC standard APIs. Because these managed data providers do not interface directly with the database
engine but rather talk to the unmanaged provider, which then talks to the database engine, using
nonnative data providers is less efficient and robust than using a native provider. Because of the
extensibility of the .NET Framework and Microsoft’s commitment to open-based standards, many data
storage vendors now supply native data providers for their systems.

Built on top of the ADO.NET provider model is the ADO.NET Entity Framework. The Entity
Framework bridges the gap between the relation data structure of the database and the object oriented
structure of the programming language. It provides an Object/Relational Mapping (ORM) framework

CHAPTER 5 ■ INTRODUCING THE .NET FRAMEWORK AND VISUAL STUDIO

81

that eliminates the need for programmers to write most of the plumbing code for data access. The
framework provides services such as change tracking, identity resolution, and query translation.
Programmers retrieve data using Language Integrated Query (LINQ) and manipulate data as strongly
typed objects. Chapter 10 takes a detailed look at ADO.NET and data access.

Windows Applications
Prior to the .NET Framework, developing Windows GUIs was dramatically different depending on

whether you were developing using C++ or Visual Basic. Although developing GUIs in VB was easy and
could be accomplished very quickly, VB developers were isolated and not fully exposed to the underlying
features of the Windows API. On the other hand, although exposed to the full features of the Windows
API, developing GUIs in C++ was very tedious and time consuming. With the .NET Framework Microsoft
has incorporated a set of base classes exposing advanced Windows GUI functionality equally among the
.NET-compliant languages. This has allowed Windows GUI development to become consistent across
the various .NET-enabled programming languages, combining the ease of development with the full
features of the API.

Along with Windows forms and controls, .NET Framework includes a set of classes collectively
referred to as the Windows Presentation Foundation (WPF). WPF integrates a rendering engine that is
built to take advantage of modern graphics hardware. It also includes application development features
such as controls, data binding, layout, graphics, and animation. With the WPF set of classes,
programmers can create applications that provide an extremely rich user experience. You will look more
closely at building WPF based applications in Chapter 11.

Web Applications
The .NET Framework exposes a base set of classes that can be used on a web server to create user
interfaces and services exposed to web-enabled clients. These classes are collectively referred to as
ASP.NET. Using ASP.NET, you can develop one user interface that can dynamically respond to the type
of client device making the request. At runtime, the .NET Framework takes care of discovering the type
of client making the request (browser type and version) and exposing an appropriate interface. The GUIs
for web applications running on a Windows client have become more robust because the .NET
Framework exposes much of the API functionality that previously had been exposed only to traditional
Windows Forms-based C++ and VB applications. Another improvement in web application
development using the .NET Framework is that server-side code can be written in any .NET-compliant
language. Prior to .NET, server-side code had to be written in a scripting language such as VBScript or
JScript.

In order to provide users with web-based applications that rival the feature-rich Windows-based
GUI applications, Microsoft has developed Silverlight. Silverlight includes a subset of the WPF
technology, which greatly extends the elements in the browser for creating UI. Silverlight includes
support for graphics, animation, media, advanced data integration, and multithreading. Chapter 12
covers developing web applications with Silverlight.

Application Services
Included in the .NET Framework are base class and interface support for exposing services that can

be consumed by other applications. Previous to the .NET Framework, applications developed in C++
and VB used COM technology. Because COM was based on binary standards, application-to-application
communication through firewalls and across the Internet was not easy to implement. The proprietary

CHAPTER 5 ■ INTRODUCING THE .NET FRAMEWORK AND VISUAL STUDIO

82

nature of the COM also limited the types of clients that could effectively use and interact with
applications exposing services through COM.

Microsoft has addressed these limitations by exposing services through Internet standards.
Included in the .NET Framework is a set of classes collectively referred to as the Windows
Communication Foundation (WCF). Using WCF, you can send data as messages from one application to
another. The message transport and content can be easily changed depending on the consumer and
environment. For example, if the service is exposed over the Web, a text-based message over HTTP can
be used. On the other hand, if the client is on the same corporate network, a binary message over TCP
can be used. Chapter 13 covers exposing and consuming application services using WCF.

Working with the .NET Framework
To work with the .NET Framework, you should understand how it is structured and how managed code
is compiled and executed. .NET applications are organized and packaged into assemblies. All code
executed by the .NET runtime must be contained in an assembly.

Understanding Assemblies and Manifests
The assembly contains the code, resources, and a manifest (metadata about the assembly) needed to
run the application. Assemblies can be organized into a single file where all this information is
incorporated into a single dynamic link library (DLL) file or executable (EXE) file, or multiple files where
the information is incorporated into separate DLL files, graphics files, and a manifest file. One of the
main functions of an assembly is to form a boundary for types, references, and security. Another
important function of the assembly is to form a unit for deployment.

One of the most crucial portions of an assembly is the manifest; in fact, every assembly must
contain a manifest. The purpose of the manifest is to describe the assembly. It contains such things as
the identity of the assembly, a description of the classes and other data types the assembly exposes to
clients, any other assemblies this assembly needs to reference, and security details needed to run the
assembly.

By default, when an assembly is created, it is marked as private. A copy of the assembly must be
placed in the same directory or a bin subdirectory of any client assembly that uses it. If the assembly
must be shared among multiple client assemblies, it is placed in the GAC, a special Windows folder. To
convert a private assembly into a shared assembly, you must run a utility program to create encryption
keys, and you must sign the assembly with the keys. After signing the assembly, you must use another
utility to add the shared assembly into the GAC. By mandating such stringent requirements for creating
and exposing shared assemblies, Microsoft is trying to ensure that naming collisions and malicious
tampering of shared assemblies will not occur.

Referencing Assemblies and Namespaces
To make the .NET Framework more manageable, Microsoft has given it a hierarchical structure. This
hierarchical structure is organized into what are referred to as namespaces. By organizing the framework
into namespaces, the chances of naming collisions are greatly reduced. Organizing related functionality
of the framework into namespaces also greatly enhances its usability for developers. For example, if you
want to build a window’s GUI, it is a pretty good bet the functionality you need exists in the
System.Windows namespace.

All of the .NET Framework classes reside in the System namespace. The System namespace is
further subdivided by functionality. The functionality required to work with a database is contained in

CHAPTER 5 ■ INTRODUCING THE .NET FRAMEWORK AND VISUAL STUDIO

83

the System.Data namespace. Some namespaces run several levels deep; for example, the functionality
used to connect to a SQL Server database is contained in the System.Data.SqlClient namespace.

An assembly may be organized into a single namespace or multiple namespaces. Several assemblies
may also be organized into the same namespace.

To gain access to the classes in the .NET Framework, you need to reference the assembly that
contains the namespace in your code. Then you can access classes in the assembly by providing their
fully qualified names. For example, if you want to add a text box to a form, you create an instance of the
System.Windows.Controls.TextBox class, like so:

private System.Windows.Controls.TextBox newTextBox;

Fortunately, in C#, you can use the using statement at the top of the code file so that you do not
need to continually reference the fully qualified name in the code:

using System.Windows.Controls;
private TextBox newTextBox;

Compiling and Executing Managed Code
When .NET code is compiled, it is converted into a .NET portable executable (PE) file. The compiler

translates the source code into Microsoft intermediate language (MSIL) format. MSIL is CPU-
independent code, which means it needs to be further converted into native code before executing.

Along with the MSIL code, the PE file includes the metadata information contained within the
manifest. The incorporation of the metadata in the PE file makes the code self-describing. There is no
need for additional type library or Interface Definition Language (IDL) files.

Because the source code for the various .NET-compliant languages is compiled into the same MSIL
and metadata format based on a common type system, the .NET platform supports language
integration. This is a step beyond Microsoft’s COM components, where, for example, client code written
in VB could instantiate and use the methods of a component written in C++. With .NET language
integration, you could write a .NET class in VB that inherits from a class written in C# and then overrides
some of its methods.

Before the MSIL code in the PE file is executed, a .NET Framework just-in-time (JIT) compiler
converts it into CPU-specific native code. To improve efficiency, the JIT compiler does not convert all
the MSIL code into native code at the same time. MSIL code is converted on an as-needed basis. When a
method is executed, the compiler checks to see if the code has already been converted and placed in
cache. If it has, the compiled version is used; otherwise, the MSIL code is converted and stored in the
cache for future calls.

Because JIT compilers are written to target different CPUs and operating systems, developers are
freed from needing to rewrite their applications to target various platforms. It is conceivable that the
programs you write for a Windows server platform will also run on a UNIX server. All that is needed is a
JIT compiler for the UNIX architecture.

Using the Visual Studio Integrated Development Environment
You can write C# code using a simple text editor and compile it with a command-line compiler. You will
find, however, that programming enterprise-level applications using a text editor can be frustrating and
inefficient. Most programmers who code for a living find an integrated development environment (IDE)
invaluable in terms of ease of use and increased productivity. Microsoft has developed an exceptional

CHAPTER 5 ■ INTRODUCING THE .NET FRAMEWORK AND VISUAL STUDIO

84

IDE in Visual Studio (VS). Integrated into VS are many features that make programming for the .NET
Framework more intuitive, easier, and more productive. Some of Visual Studio’s useful features are:

• Editor features such as automatic syntax checking, auto completion, and color
highlighting.

• One IDE for all .NET languages.

• Extensive debugging support, including the ability to set breakpoints, step
through code, and view and modify variables.

• Integrated help documentation.

• Drag-and-drop GUI development.

• XML and HTML editing.

• Automated deployment tools that integrate with Windows Installer.

• The ability to view and manage servers from within the IDE.

• A fully customizable and extensible interface.

The following activities will introduce you to some of the many features available in the VS IDE. As
you work through these steps, don’t worry about the coding details. Just concentrate on getting used to
working within the VS IDE. You’ll learn more about the code in upcoming chapters.

■Note If you do not have Visual Studio 2010 installed, refer to Appendix C for installation instruction.

ACTIVITY 5-1. TOURING VISUAL STUDIO

In this activity, you will become familiar with the following:

• Customizing the IDE.

• Creating a .NET project and setting project properties.

• Using the various editor windows in the VS IDE.

• Using the auto syntax check and auto completion features of the VS IDE.

• Compiling assemblies with the VS IDE.

Customizing the IDE
To customize the IDE, follow these steps:

1. Launch VS by selecting Start ➤ Programs ➤ Microsoft Visual Studio
2010.

CHAPTER 5 ■ INTRODUCING THE .NET FRAMEWORK AND VISUAL STUDIO

85

■Note If this is the first time you have launched VS, you will be asked to choose a default development setting.
Choose the Visual C# Development Settings.

2. You will be presented with the Start Page. The Start Page contains
several panes, including one that has links to useful documentation
posted on the MSDN (Microsoft Developer Network) web site. Clicking
one of these links will launch a browser window hosted inside VS, which
will open the documentation on the MSDN site. Take some time to
investigate the information and the various links exposed to you on the
Start Page.

3. Microsoft has taken considerable effort to make VS a customizable
design environment. You can customize just about every aspect of the
layout, from the various windows and menus down to the color coding
used in the code editor. Select Tools ➤ Options to open the Options
dialog box, shown in Figure 5-1, that allows you to customize many
aspects of the IDE.

Figure 5-1. VS Options dialog box

4. Click Projects and Solutions in the category list on the left side of the
dialog box. You are presented with options to change the default
location of projects and what happens when you build and run a project.
Select the Always Show Solution the Show Output Window When Build
Starts option.

5. Investigate some of the other customizable options available. Close the
Options dialog box when you are finished by clicking the OK button.

CHAPTER 5 ■ INTRODUCING THE .NET FRAMEWORK AND VISUAL STUDIO

86

Creating a New Project
To create a new project, follow these steps:

1. On the Start Page, click the Create Project link, which launches the New
Project dialog box. (You can also choose File ➤ New ➤ Project to open
this dialog box.)

2. The New Project dialog box allows you to create various projects using
built-in templates. There are templates for creating Windows projects,
Web projects, WCF projects, as well as many others, depending on what
options you chose when installing VS.

3. In the Installed Templates pane, expand the Visual C# node and select
the Windows node, as shown in Figure 5-2. Observe the various C#
project templates. There are templates for creating various types of
Windows applications, including Windows Forms-based applications,
class libraries, and console applications.

Figure 5-2. VS New Project dialog box

4. Click the Windows Application template. Change the name of the
application to DemoChapter5 and click the OK button.

CHAPTER 5 ■ INTRODUCING THE .NET FRAMEWORK AND VISUAL STUDIO

87

When the project opens, you will be presented with a form designer for a default form (named
Form1) that has been added to the project. To the right of this window, you should see the Solution
Explorer.

Investigating the Solution Explorer and Class View
The Solution Explorer displays the projects and files that are part of the current solution, as shown in
Figure 5-3. By default, when you create a project, a solution is created with the same name as the project.
The solution contains some global information, project-linking information, and customization settings,
such as a task list and debugging information. A solution may contain more than one related project.

Figure 5-3. Solution Explorer

Under the solution node is the project node. The project node organizes the various files and
settings related to a project. The project file organizes this information in an XML document, which
contains references to the class files that are part of the project, any external references needed by the
project, and compilation options that have been set. Under the Project node is a Properties node,
References node, a class file for the Form1 class, and a Program class file.

To practice using the Solution Explorer and some VS features and views, follow these steps:

1. In the Solution Explorer window, right-click the Properties node and
select Open. This launches the Project Properties window. Along the left
side of the window are several tabs you can use to explore and set
various application settings.

2. Select the Application tab, as shown in Figure 5-4. Notice that, by
default, the assembly name and default namespace are set to the name
of the project.

CHAPTER 5 ■ INTRODUCING THE .NET FRAMEWORK AND VISUAL STUDIO

88

Figure 5-4. Project Properties Window

3. Explore some of the other tabs in the Project Properties window. Close
the window when you are finished by clicking on the x in the tab of the
window.

4. In the Solution Explorer window, expand the References node. Under
the node are the external assemblies referenced by the application.
Notice that several references have been included by default. The
default references depend on the type of project. For example, since this
is a Windows Application project, a reference to the
System.Windows.Forms namespace is included by default.

5. The Form1 class file under the Solution Explorer’s project node has a .cs
extension to indicate it is written in C# code. By default, the name of the
file has been set to the same name as the form. Double-click the file in
the Solution Explorer window. The form is shown in Design View. Click
the View Code button in the toolbar at the top of the Solution Explorer,
and the code editor for the Form1 class will open.

6. Select View ➤ Other Windows ➤ Class View to launch the Class View
window. The top part of the Class View window organizes the project
files in terms of the namespace hierarchy. Expanding the DemoChap5
root node reveals three sub nodes: a References node, the DemoChap5
namespace node, and DemoChap5 properties node. A namespace node
is designated by the {} symbol to the left of the node name.

7. Listed under the DemoChap5 namespace node are the classes that
belong to the namespace. Expanding the Form1 node reveals a Base
Types folder. Expanding Base Types shows the classes and interfaces
inherited and implemented by the Form1 class, as shown in Figure 5-5.
You can further expand the nodes to show the classes and interfaces
inherited and implemented by the Form base class.

CHAPTER 5 ■ INTRODUCING THE .NET FRAMEWORK AND VISUAL STUDIO

89

Figure 5-5. Expanded nodes in the Class View

8. The bottom section of the Class View window is a listing of the class’s
methods, properties, and events. Select the Form node in the top section
of the Class View window. Notice the considerable number of methods,
properties, and events listed in the bottom section of the window.

9. Right-click the DemoChap5 project node and select Add ➤ Class. Name
the class DemoClass1 and click the Add button. If the class code is not
visible in the code editor, double-click the DemoClass1 node in the Class
View window to display it. Wrap the class definition code in a
namespace declaration as follows:

CHAPTER 5 ■ INTRODUCING THE .NET FRAMEWORK AND VISUAL STUDIO

90

namespace DemoChapter5
{
 namespace MyDemoNamespace
 {
 class DemoClass1
 {
 }
 }
}

10. From the Build menu, chose Build Solution. Notice the updated
hierarchy in the Class View. DemoClass1 now belongs to the
MyDemoNamespace, which belongs to the DemoChapter5 namespace.
The fully qualified name of DemoClass1 is now
DemoChapter5.MyDemoNamespace.DemoClass1.

11. Add the following code to the DemoClass1 definition. As you add the
code, notice the auto selection drop-down list provided (see Figure 5-6).
Pressing the Tab key will select the current item on the list.

 class DemoClass1: System.Collections.CaseInsensitiveComparer
 {
 }

Figure 5-6. Code selection drop-down list

12. From the Build menu, chose Build Solution. Notice the updated
hierarchy in the Class View. Expand the Base Types node under the
DemoClass1 node, and you will see the base CaseInsensitiveComparer
class node. Select this node and you will see the methods and properties
of the CaseInsensitiveComparer class in the lower section of the Class
View window.

CHAPTER 5 ■ INTRODUCING THE .NET FRAMEWORK AND VISUAL STUDIO

91

13. Right-click the Compare method of the CaseInsensitiveComparer class
node and choose Browse Definition. The Object Browser window is
opened as a tab in the main window and information about the
Compare method is displayed. Notice it takes two object arguments,
compares them, and returns an integer value based on the result (see
Figure 5-7).

Figure 5-7. Object Browser

14. The Object Browser enables you to explore the object hierarchies and to
view information about items and methods within the hierarchy. Take
some time to explore the Object Browser. When you are finished, close
the Object Browser and close the Class View window.

Exploring the Toolbox and Properties Window
To explore the VS Toolbox and Properties window, follow these steps:

CHAPTER 5 ■ INTRODUCING THE .NET FRAMEWORK AND VISUAL STUDIO

92

1. In the Solution Explorer window, double-click the Form1.cs node. This
brings up the Form1 design tab in the main editing window. Locate the
Toolbox tab to the left of the main editing window. Hover the cursor
over the tab, and the Toolbox window should expand, as shown in
Figure 5-8. In the upper-right corner of the Toolbox, you should see the
Auto Hide icon, which looks like a thumbtack. Click the icon to turn off
the auto hide feature.

Figure 5-8. VS Toolbox

2. Under the All Windows Forms node of the Toolbox are controls that you
can drag and drop onto your form to build the GUI. There are also other
nodes that contain nongraphical components that help make some
common programming tasks easier to create and manage. For example,
the Data node contains controls for accessing and managing data stores.
Scroll down the Toolbox window and observe the various controls
exposed by the designer.

3. Under the All Windows Forms node, select the Label control. Move the
cursor over the form; it should change to a crosshairs pointer. Draw a
label on the form by clicking, dragging, and then releasing the mouse. In
a similar fashion, draw a TextBox control and a Button control on the
form. Figure 5-9 shows how the form should look.

CHAPTER 5 ■ INTRODUCING THE .NET FRAMEWORK AND VISUAL STUDIO

93

Figure 5-9. Sample form layout

4. Turn the auto hide feature of the Toolbox back on by clicking the Auto
Hide (thumbtack) icon in the upper-right corner of the Toolbox window.

5. Locate the Properties tab to the right of the main editing window, or
select View ➤ Properties Window to open the Properties window. The
Properties window displays the properties of the currently selected
object in the Design View. You can also edit many of the object’s
properties through this window.

6. In the Form1 design window, click Label1. The Label1 control should be
selected in the drop-down list at the top of the Properties window (see
Figure 5-10). Locate the Text property and change it to “Enter your
password:” (minus the quotes).

CHAPTER 5 ■ INTRODUCING THE .NET FRAMEWORK AND VISUAL STUDIO

94

Figure 5-10. VS Properties window

■Note You may need to resize the label on the form to see all the text.

7. Set the PasswordChar property of TextBox1 to *. Change the Text
property of Button1 to OK. (Click the control on the form or use the
drop-down list at the top of the Properties window to see the control’s
properties.)

8. Save the project by choosing File ➤ Save All.

Building and Executing the Assembly
To build and execute the assembly, follow these steps:

1. In the Solution Explorer, click Form1. At the top of the Solution Explorer,
click the View Designer toolbar button.

2. In the form designer double click the Button1 control. The code editor
for Form1 will be displayed in the main editing window. A method that
handles the button click event is added to the code editor.

3. Add the following code to the method. This code will display the
password entered in TextBox1 on the title bar of the form.

CHAPTER 5 ■ INTRODUCING THE .NET FRAMEWORK AND VISUAL STUDIO

95

private void button1_Click(object sender, EventArgs e)
{
 this.Text = "Your password is " + textBox1.Text;
}

4. Select Build ➤ Build Solution. The Output window shows the progress of
compiling the assembly (see Figure 5-11). Once the assembly has been
compiled, it is ready for execution. (If you can’t locate the Output
window, select View menu ➤ Output.)

Figure 5-11. Progress of build displayed in the Output window

5. Select Debug ➤ Start Debugging. This runs the assembly in debug
mode. Once the form loads, enter a password and click the OK button.
You should see the message containing the password in the form’s title
bar. Close the form by clicking the x in the upper right corner.

6. Select File ➤ Save All, and then exit VS by selecting File ➤ Exit.

ACTIVITY 5-2. USING THE DEBUGGING FEATURES OF VS

In this activity, you will become familiar with the following:

• Setting breakpoints and stepping through the code.

• Using the various debugging windows in the VS IDE.

• Locating and fixing build errors using the Error List window.

Stepping Through Code
To step through your code, follow these steps:

1. Start VS. Select File ➤ New ➤ Project.

CHAPTER 5 ■ INTRODUCING THE .NET FRAMEWORK AND VISUAL STUDIO

96

2. Under the C# Windows templates, select the Console Application.
Rename the project Activity5_2.

3. You will see a Program class file open in the code editor. The class file
has a Main method that gets executed first when the application runs.
Add the following code to the program class. This code contains a
method that loads a list of numbers and displays the contents of the list
in the console window.

class Program
 {
 static List<int> numList = new List<int>();
 static void Main(string[] args)
 {
 LoadList(10);
 foreach (int i in numList)
 {
 System.Console.WriteLine(i);
 }
 Console.ReadLine();
 }
 static void LoadList(int iMax)
 {
 for (int i = 1; i <= 10; i++)
 {
 numList.Add(i);
 }
 }
 }

4. To set a breakpoint, place the cursor on the declaration line of the Main

method, right-click, and choose Breakpoint ➤ Insert Breakpoint. A red
dot will appear in the left margin to indicate that a breakpoint has been
set (see Figure 5-12).

Figure 5-12. Setting a breakpoint in the code editor

5. Select Debug ➤ Start Debugging. Program execution will pause at the
breakpoint. A yellow arrow indicates the next line of code that will be
executed.

CHAPTER 5 ■ INTRODUCING THE .NET FRAMEWORK AND VISUAL STUDIO

97

6. Select View ➤ Toolbars and click the Debug toolbar. (A check next to the
toolbar name indicates it is visible.) To step through the code one line at
a time, select the Step Into button on the Debug toolbar (see Figure 5-
13). (You can also press the F11 key.) Continue stepping through the
code until you get to the LoadList.

Figure 5-13. Using the Debug toolbar

7. Step through the code until the for loop has looped a couple of times. At
this point, you are probably satisfied that this code is working and you
want to step out of this method. On the Debug toolbar, click the Step
Out button. You should return to the Main method.

8. Continue stepping through the code until the for-each loop has looped
a couple of times. At this point, you may want to return to runtime
mode. To do this, click the Continue button on the Debug toolbar. When
the Console window appears, hit the enter key to close the window.

9. Start the application in debug mode again. Step through the code until
you get to the method call LoadList(10);.

10. On the Debug toolbar, choose the Step Over button. This will execute
the method and reenter break mode after execution returns to the
calling code. After stepping over the method, continue stepping through
the code for several lines, and then choose the Stop button on the Debug
toolbar. Click the red dot in the left margin to remove the breakpoint.

Setting Conditional Breakpoints
To set conditional breakpoints, follow these steps:

1. In the Program.cs file locate the LoadList method. Set a breakpoint on
the following line of code:

numList.Add(i);

2. Open the Breakpoints window by selecting Debug ➤ Windows ➤
Breakpoints. You should see the breakpoint you just set listed in the
Breakpoints window (see Figure 5-14).

CHAPTER 5 ■ INTRODUCING THE .NET FRAMEWORK AND VISUAL STUDIO

98

Figure 5-14. Breakpoints window

3. Right-click the breakpoint in the Breakpoints window and select
Condition. You will see the Breakpoint Condition dialog box. Enter i == 3
as the condition expression and click the OK button (see Figure 5-15).

Figure 5-15. Breakpoint Condition dialog box

4. Select Debug ➤ Start. When the form appears, click the Load List button.
Program execution will pause, and you will see a yellow arrow indicating
the next line that will be executed.

5. Select Debug ➤ Windows ➤ Locals. The Locals window is displayed at
the bottom of the screen (see Figure 5-16). The value of i is displayed in
the Locals window. Verify that it is 3. Step through the code using the
Debug toolbar and watch the value of i change in the Locals window.
Click the Stop Debugging button in the Debug toolbar.

CHAPTER 5 ■ INTRODUCING THE .NET FRAMEWORK AND VISUAL STUDIO

99

Figure 5-16. Locals window

6. Locate the Output window at the bottom of your screen and click the
Breakpoints tab. Right-click the breakpoint in the Breakpoints window
and select Condition. Clear the current condition by clearing the
Condition check box, and then click the OK button.

7. Right-click the breakpoint in the Breakpoints window and select Hit
Count. Set the breakpoint to break when the hit count equals 4, and then
click OK.

8. Select Debug ➤ Start. Program execution will pause and the yellow
arrow indicates the next line of code that will execute.

9. Right-click the numList statement and select Add Watch. A Watch
window will be displayed with numList in it. Notice that numList is a
System.Collections.Generics.List type. Click the plus sign next to
numList. Verify that the list contains three items (see Figure 5-17). Step
through the code and watch the array fill with items. Click the Stop
button in the Debug toolbar.

Figure 5-17. The Watch window

Locating and Fixing Build Errors
To locate and fix build errors, follow these steps:

CHAPTER 5 ■ INTRODUCING THE .NET FRAMEWORK AND VISUAL STUDIO

100

1. In the Program class, locate the following line of code and comment it
out by placing a two slashes in front of it, as shown here:

//static List<int> numList = new List<int>();

2. Notice the red squiggly lines under the numList in the code. This
indicates a build error that must be fixed before the application can run.
Hovering over the line reveals more information about the error.

3. Select Build ➤ Build Solution. The Error List window will appear at the
bottom of the screen, indicating a build error (see Figure 5-18).

Figure 5-18. Locating build errors with the Error List window

4. Double-click the line containing the build error in the Error List window.
The corresponding code will become visible in the code editor.

5. Uncomment the line you commented in step 1 by deleting the slashes.
Select Build ➤ Build Solution. This time, the Output window is displayed
at the bottom of the screen, indicating that there were no build errors.

6. Save the project and exit VS.

Summary
This chapter introduced you to the fundamentals of the .NET Framework. You reviewed some of the
underlying goals of the .NET Framework. You also looked at how the .NET Framework is structured and
how code is compiled and executed by the CLR. These concepts are relevant and consistent across all
.NET-compliant programming languages. In addition, you explored some of the features of the Visual
Studio integrated development environment.

The next chapter is the first in a series that looks at how the OOP concepts—such as class structure,
inheritance, and polymorphism—are implemented in C# code.

C H A P T E R 6

■ ■ ■

101

Creating Classes

In the previous chapter, you looked at how the .NET Framework was developed and how programs
execute under the framework. That chapter introduced you to the Visual Studio IDE, and you gained
some familiarity with working in it. You are now ready to start coding! This chapter is the first of a series
that will introduce you to how classes are created and used in C#. It covers the basics of creating and
using classes. You will create classes, add attributes and methods, and instantiate object instances of the
classes in client code.

After reading this chapter, you should be familiar with the following:

• How objects used in OOP depend on class definition files.

• The important role encapsulation plays in OOP.

• How to define the properties and methods of a class.

• The purpose of class constructors.

• How to use instances of classes in client code.

• The process of overloading class constructors and methods.

• How to create and test class definition files with Visual Studio.

Introducing Objects and Classes
In OOP, you use objects in your programs to encapsulate the data associated with the entities with
which the program is working. For example, a human resources application needs to work with
employees. Employees have attributes associated with them that need to be tracked. You may be
interested in such things as the employee names, addresses, departments, and so on. Although you track
the same attributes for all employees, each employee has unique values for these attributes. In the
human resources application, an Employee object obtains and modifies the attributes associated with an
employee. In OOP, the attributes of an object are referred to as properties.

Along with the properties of the employees, the human resource application also needs an
established set of behaviors exposed by the Employee object. For example, one employee behavior of
interest to the human resources department is the ability to request time off. In OOP, objects expose
behaviors through methods. The Employee object contains a RequestTimeOff method that encapsulates
the implementation code.

The properties and methods of the objects used in OOP are defined through classes. A class is a
blueprint that defines the attributes and behaviors of the objects that are created as instances of the
class. If you have completed the proper analysis and design of the application, you should be able to

CHAPTER 6 ■ CREATING CLASSES

102

refer to the UML design documentation to determine which classes need to be constructed and what
properties and methods these classes will contain. The UML class diagram contains the initial
information you need to construct the classes of the system.

To demonstrate the construction of a class using C#, you will look at the code for a simple Employee
class. The Employee class will have properties and methods that encapsulate and work with employee
data as part of a fictitious human resources application.

Defining Classes
Let’s walk through the source code needed to create a class definition. The first line of code defines the
code block as a class definition using the keyword Class followed by the name of the class. The body of
the class definition is enclosed by an open and closing curly bracket. The code block is structured like
this:

class Employee
{
}

Creating Class Properties
After defining the starting and ending point of the class code block, the next step is to define the instance
variables (often referred to as fields) contained in the class. These variables hold the data that an
instance of your class will manipulate. The Private keyword ensures that these instance variables can be
manipulated only by the code inside the class. Here are the instance variable definitions:

 private int _empID;
 private string _loginName;
 private string _password;
 private string _department;
 private string _name;

When a user of the class (client code) needs to query or set the value of these instance variables,
public properties are exposed to them. Inside the property block of code are a Get block and a Set block.
The Get block returns the value of the private instance variable to the user of the class. This code
provides a readable property. The Set block provides a write-enabled property; it passes a value sent in
by the client code to the corresponding private instance variable. Here is an example of a property block:

public string Name
{
 get { return _name; }
 set { _name = value; }
}

There may be times when you want to restrict access to a property so that client code can read the
property value but not change it. By eliminating the Set block inside the Property block, you create a
read-only property. The following code shows how to make the EmployeeID property read-only:

public int EmployeeID
{
 get { return _empID; }
}

CHAPTER 6 ■ CREATING CLASSES

103

■Note The private and public keywords affect the scope of the code. For more information about scoping, see
Appendix A.

Newcomers to OOP often ask why it’s necessary to go through so much work to get and set
properties. Couldn’t you just create public instance variables that the user could read and write to
directly? The answer lies in one of the fundamental tenets of OOP: data encapsulation. Data
encapsulation means that the client code does not have direct access to the data. When working with the
data, the client code must use clearly defined properties and methods accessed through an instance of
the class. The following are some of the benefits of encapsulating the data in this way:

• Preventing unauthorized access to the data.

• Ensuring data integrity through error checking.

• Creating read-only or write-only properties.

• Isolating users of the class from changes in the implementation code.

For example, you could check to make sure the password is at least six characters long via the
following code:

public string Password
{
 get { return _password; }
 set
 {
 if (value.Length >= 6)
 {
 _password = value;
 }
 else
 {
 throw new Exception("Password must be at least 6 characters");
 }
 }
}

Creating Class Methods
Class methods define the behaviors of the class. For example, the following defines a method for the
Employee class that verifies employee logins:

public void Login(string loginName, string password)
{
 if (loginName == "Jones" & password == "mj")
 {
 _empID = 1;
 Department = "HR";

CHAPTER 6 ■ CREATING CLASSES

104

 Name = "Mary Jones";
 }
 else if (loginName == "Smith" & password == "js")
 {
 _empID = 2;
 Department = "IS";
 Name = "Jerry Smith";
 }
 else
 {
 throw new Exception("Login incorrect.");
 }
}

When client code calls the Login method of the class, the login name and password are passed into
the method (these are called input parameters). The parameters are checked. If they match a current
employee, the instance of the class is populated with attributes of the employee. If the login name and
password do not match a current employee, an exception is passed back to the client code.

■Note Exception handling is an important part of application processing. For more information about
exceptions, see Appendix B.

In the previous method, a value is not returned to the client code. This is indicated by the void
keyword. Sometimes the method returns a value back to the client calling code (called an output
parameter). The following AddEmployee method is another method of the Employee class. It’s called when
an employee needs to be added to the database, and it returns the newly assigned employee ID to the
client. The method also populates the object instance of the Employee class with the attributes of the
newly added employee.

public int AddEmployee(string loginName, string password,
 string department, string name)
{
 //Data normally saved to database.
 _empID = 3;
 LoginName = loginName;
 Password = password;
 Department = department;
 Name = name;
 return EmployeeID;
}

ACTIVITY 6-1. CREATING THE EMPLOYEE CLASS

In this activity, you will become familiar with the following:

• Creating a C# class definition file using Visual Studio.

• Creating and using an instance of the class from client code.

CHAPTER 6 ■ CREATING CLASSES

105

■Note If you have not already done so, download the starter files from the source code area of the Apress web
site (www.apress.com).

Defining the Employee Class
To create the Employee class, follow these steps:

1. Start Visual Studio. Select File ➤ Open ➤ Project.

2. Navigate to the Activity6_1Starter folder, click the Act6_1.sln file, and
click Open. When the project opens, it will contain a login form. You will
use this form later to test the Employee class you create.

3. Select Project ➤ Add Class. In the Add New Item dialog box, rename the
class file to Employee.cs, and then click Open. Visual Studio adds the
Employee.cs file to the project and adds the following class definition
code to the file:

 class Employee
 {
 }

4. Enter the following code between the opening and closing brackets to
add the private instance variables to the class body in the definition file:

 private int _empID;
 private string _loginName;
 private string _password;
 private int _securityLevel;

5. Next, add the following public properties to access the private instance
variables defined in step 4:

 public int EmployeeID
 {
 get { return _empID; }
 }
 public string LoginName
 {
 get { return _loginName; }
 set { _loginName = value; }
 }
 public string Password
 {
 get { return _password; }
 set { _password = value; }
 }
 public int SecurityLevel
 {
 get { return _securityLevel; }

CHAPTER 6 ■ CREATING CLASSES

106

 }

6. After the properties, add the following Login method to the class

definition:

public void Login(string loginName, string password)
 {
 LoginName = loginName;
 Password = password;
 //Data nomally retrieved from database.
 //Hard coded for demo only.
 if (loginName == "Smith" & password == "js")
 {
 _empID = 1;
 _securityLevel = 2;

 }
 else if (loginName == "Jones" & password == "mj")
 {
 _empID = 2;
 _securityLevel = 4;
 }
 else
 {
 throw new Exception("Login incorrect.");
 }
 }

7. Select Build ➤ Build Solution. Make sure there are no build errors in the
Error List window. If there are, fix them, and then rebuild.

CHAPTER 6 ■ CREATING CLASSES

107

Testing the Employee Class
To test the Employee class, follow these steps:

1. Open frmLogin in the code editor and locate the btnLogin click event code.

■Tip Double-clicking the Login button in the form designer will also bring up the event code in the code editor.

2. In the body of the btnLogin click event, declare and instantiate a variable of type
Employee called oEmployee:

Employee oEmployee = new Employee();

3. Next, call the Login method of the oEmployee object, passing in the values of the
login name and the password from the text boxes on the form:

oEmployee.Login(txtName.Text,txtPassword.Text);

4. After calling the Login method, show a message box stating the user’s security
level, which is retrieved by reading the SecurityLevel property of the oEmployee
object:

MessageBox.Show("Your security level is " + oEmployee.SecurityLevel);

5. Select Build ➤ Build Solution. Make sure there are no build errors in the Error List
window. If there are, fix them, and then rebuild.

6. Select Debug ➤ Start to run the project. Test the login form by entering a login
name of Smith and a password of js. You should get a message indicating a
security level of 2. Try entering your name and a password of pass. You should get
a message indicating the login failed.

7. After testing the login procedure, close the form; this will stop the debugger.

Using Constructors
In OOP, you use constructors to perform any processing that needs to occur when an object instance of
the class becomes instantiated. For example, you could initialize properties of the object instance or
establish a database connection. The class constructor method is named the same as the class. When an
object instance of a class is instantiated by client code, the constructor method is executed. The
following constructor is used in the Employee class to initialize the properties of an object instance of the
Employee class. An employee ID is passed in to the constructor to retrieve the values from data storage,
like so:

public Employee(int empID)
{
 //Retrieval of data hardcoded for demo
 if (empID == 1)

CHAPTER 6 ■ CREATING CLASSES

108

 {
 _empID = 1;
 LoginName = "Smith";
 Password = "js";
 Department = "IT";
 Name = "Jerry Smith";

 }
 else if (empID == 2)
 {
 _empID = 2;
 LoginName = "Jones";
 Password = "mj";
 Department = "HR";
 Name = "Mary Jones";
 }
 else
 {
 throw new Exception("Invalid EmployeeID");
 }
}

Overloading Methods
The ability to overload methods is a useful feature of OOP languages. You overload methods in a class by
defining multiple methods that have the same name but contain different signatures. A method
signature is a combination of the name of the method and its parameter type list. If you change the
parameter type list, you create a different method signature. For example, the parameter type lists can
contain a different number of parameters or different parameter types. The compiler will determine
which method to execute by examining the parameter type list passed in by the client.

■Note Changing how a parameter is passed (in other words, from byVal to byRef) does not change the method
signature. Altering the return type of the method also does not create a unique method signature. For a more
detailed discussion of method signatures and passing arguments, refer to Appendix A.

Suppose you want to provide two methods of the Employee class that will allow you to add an
employee to the database. The first method assigns a username and password to the employee when the
employee is added. The second method adds the employee information but defers the assignment of
username and password until later. You can easily accomplish this by overloading the AddEmployee
method of the Employee class, as the following code demonstrates:

public int AddEmployee(string loginName, string password,
 string department, string name)
{
 //Data normally saved to database.
 _empID = 3;
 LoginName = loginName;
 Password = password;

CHAPTER 6 ■ CREATING CLASSES

109

 Department = department;
 Name = name;
 return EmployeeID;
}

public int AddEmployee(string department, string name)
{
 //Data normally saved to database.
 _empID = 3;
 Department = department;
 Name = name;
 return EmployeeID;
}

Because the parameter type list of the first method (string, string) differs from the parameter type
list of the second method (string, string, string, string), the compiler can determine which method to
invoke. A common technique in OOP is to overload the constructor of the class. For example, when an
instance of the Employee class is created, one constructor could be used for new employees and another
could be used for current employees by passing in the employee ID when the class instance is
instantiated by the client. The following code shows the overloading of a class constructor:

public Employee()
{
 _empID = -1;
}

public Employee(int empID)
{
 //Retrieval of data hard coded for demo
 if (empID == 1)
 {
 _empID = 1;
 LoginName = "Smith";
 Password = "js";
 Department = "IT";
 Name = "Jerry Smith";

 }
 else if (empID == 2)
 {
 _empID = 2;
 LoginName = "Jones";
 Password = "mj";
 Department = "HR";
 Name = "Mary Jones";
 }
 else
 {
 throw new Exception("Invalid EmployeeID");
 }
}

CHAPTER 6 ■ CREATING CLASSES

110

ACTIVITY 6-2. CREATING CONSTRUCTORS AND OVERLOADING METHODS

In this activity, you will become familiar with the following:

• Creating and overloading the class constructor method.

• Using overloaded constructors of a class from client code.

• Overloading a method of a class.

• Using overloaded methods of a class from client code.

Creating and Overloading Class Constructors
To create and overload class constructors, follow these steps:

1. Start Visual Studio. Select File ➤ Open ➤ Project.

2. Navigate to the Activity6_2Starter folder, click the Act6_2.sln file, and then click Open. When
the project opens, it will contain a frmEmployeeInfo form that you will use to test the Employee
class. The project also includes the Employee.cs file, which contains the Employee class
definition code.

3. Open Employee.cs in the code editor and examine the code. The class contains several
properties pertaining to employees that need to be maintained.

4. After the property declaration code, add the following private method to the class. This method
simulates the generation of a new employee ID.

 private int GetNextID()
 {
 //simulates the retrieval of next
 //available id from database
 return 100;
 }

5. Create a default class constructor, and add code that calls the GetNextID method and assigns
the return value to the private instance variable _empID:

 public Employee()
 {
 _empID = GetNextID();
 }

6. Overload the default constructor method by adding a second constructor method that takes an
integer parameter of empID, like so:

 public Employee(int empID)
 {
 //Constructor for existing employee
 }

CHAPTER 6 ■ CREATING CLASSES

111

7. Add the following code to the overloaded constructor, which simulates extracting the employee
data from a database and assigns the data to the instance properties of the class:

 //Simulates retrieval from database
 if (empID == 1)
 {
 _empID = empID;
 LoginName = "smith";
 PassWord = "js";
 SSN = 123456789;
 Department = "IS";
 }
 else if (empID == 2)
 {
 _empID = empID;
 LoginName = "jones";
 PassWord = "mj";
 SSN = 987654321;
 Department = "HR";
 }
 else
 {
 throw new Exception("Invalid Employee ID");
 }

8. Select Build ➤ Build Solution. Make sure there are no build errors in the Error List window. If
there are, fix them, and then rebuild.

Testing the Employee Class Constructors
To test the Employee class constructors, follow these steps:

1. Open the EmployeeInfoForm in the form editor and double click the New
Employee button to bring up the click event code in the code editor.

2. In the Click Event method body, declare and instantiate a variable of type
Employee called oEmployee:

Employee oEmployee = new Employee();

3. Next, update the EmployeeID text box with the employee ID, disable the
EmployeeID text box, and clear the remaining textboxes:

 Employee oEmployee = new Employee();
 txtEmpID.Text = oEmployee.EmpID.ToString();
 txtEmpID.Enabled = false;
 txtLoginName.Text = "";
 txtPassword.Text = "";
 txtSSN.Text = "";
 txtDepartment.Text = "";

4. Select Build ➤ Build Solution. Make sure there are no build errors in the Error
List window. If there are, fix them, and then rebuild.

CHAPTER 6 ■ CREATING CLASSES

112

5. Open the EmployeeInfoForm in the form editor and double click the Existing
Employee button to bring up the click event code in the code editor.

6. In the Click Event method body, declare and instantiate a variable of type
Employee called oEmployee. Retrieve the employee ID from the txtEmpID text box
and pass it as an argument in the constructor. The int.Parse method converts
the text to an integer data type:

 Employee oEmployee = new Employee(int.Parse(txtEmpID.Text));

7. Next, disable the Employee ID textbox and fill in the remaining text boxes with
the values of the Employee object’s properties:

 txtEmpID.Enabled = false;
 txtLoginName.Text = oEmployee.LoginName;
 txtPassword.Text = oEmployee.PassWord;
 txtSSN.Text = oEmployee.SSN.ToString();
 txtDepartment.Text = oEmployee.Department;

8. Select Build ➤ Build Solution. Make sure there are no build errors in the Error
List window. If there are, fix them, and then rebuild.

9. Select Debug ➤ Start to run the project and test the code.

10. When the EmployeeInfo form is displayed, click the New Employee button. You
should see that a new employee ID has been generated in the Employee ID
textbox.

11. Click the Reset button to clear and enable the Employee ID text box.

12. Enter a value of 1 for the employee ID and click the Get Existing Employee
button. The information for the employee is displayed on the form.

13. After testing the constructors, close the form, which will stop the debugger.

Overloading a Class Method
To overload a class method, follow these steps:

1. Open the Employee.cs code in the code editor.

2. Add the following Update method to the Employee class. This method simulates
the updating of the employee security information to a database:

 public string Update(string loginName, string password)
 {
 LoginName = loginName;
 PassWord = password;
 return "Security info updated.";
 }

3. Add a second Update method to simulate the updating of the employee human
resources data to a database:

 public string Update(int ssNumber, string department)
 {

CHAPTER 6 ■ CREATING CLASSES

113

 SSN = ssNumber;
 Department = department;
 return "HR info updated.";
 }

4. Select Build ➤ Build Solution. Make sure there are no build errors in the Error
List window. If there are, fix them, and then rebuild.

Testing the Overloaded Update Method
To test the overloaded Update method, follow these steps:

1. Open the EmployeeInfo Form in the Form editor and double click the Update SI
button. You are presented with the click event code in the Code Editor window.

2. In the Click Event method, declare and instantiate a variable of type Employee
called oEmployee. Retrieve the employee ID from the txtEmpID text box and pass
it as an argument in the constructor:

Employee oEmployee = new Employee(int.Parse(txtEmpID.Text));

3. Next, call the Update method, passing the values of the login name and password
from the text boxes. Show the method return message to the user in a message
box:

MessageBox.Show(oEmployee.Update(txtLoginName.Text, txtPassword.Text));

4. Update the login name and password text boxes with the property values of the
Employee object:

 txtLoginName.Text = oEmployee.LoginName;
 txtPassword.Text = oEmployee.PassWord;

5. Repeat this process to add similar code to the Update HR button Click Event
method to simulate updating the human resources information. Add the
following code to the Click Event method:

 Employee oEmployee = new Employee(int.Parse(txtEmpID.Text));
 MessageBox.Show(oEmployee.Update(int.Parse(txtSSN.Text), txtDepartment.Text));
 txtSSN.Text = oEmployee.SSN.ToString();
 txtDepartment.Text = oEmployee.Department;

6. Select Build ➤ Build Solution. Make sure there are no build errors in the Error
List window. If there are, fix them, and then rebuild.

7. Select Debug ➤ Start to run the project and test the code.

8. Enter a value of 1 for the employee ID and click the Get Existing Employee
button.

9. Change the values for the security information and click the Update button.

10. Change the values for the human resources information and click the Update
button.

CHAPTER 6 ■ CREATING CLASSES

114

11. You should see that the correct Update method is called in accordance with the
parameters passed in to it. After testing the Update method, close the form.

Summary
This chapter gave you a firm foundation in creating and using classes in C# code. Now that you are
comfortable constructing and using classes, you are ready to look at implementing some of the more
advanced features of OOP. In the next chapter, you will concentrate on how inheritance and
polymorphism are implemented in C# code. As an object-oriented programmer, it is important for you
to become familiar with these concepts and learn how to implement them in your programs.

C H A P T E R 7

■ ■ ■

115

Creating Class Hierarchies

In the previous chapter, you learned how to create classes, add attributes and methods, and instantiate
object instances of the classes in client code. This chapter introduces the concepts of inheritance and
polymorphism.

Inheritance is one of the most powerful and fundamental features of any OOP language. Using
inheritance, you create base classes that encapsulate common functionality. Other classes can be
derived from these base classes. The derived classes inherit the properties and methods of the base
classes and extend the functionality as needed.

A second fundamental OOP feature is polymorphism. Polymorphism lets a base class define
methods that must be implemented by any derived classes. The base class defines the message signature
that derived classes must adhere to, but the implementation code of the method is left up to the derived
class. The power of polymorphism lies in the fact that clients know they can implement methods of
classes of the base type in the same fashion. Even though the internal processing of the method may be
different, the client knows the inputs and outputs of the methods will be the same.

After reading this chapter, you will learn the following:

• How to create and use base classes.

• How to create and use derived classes.

• How access modifiers control inheritance.

• How to override base class methods.

• How to implement interfaces.

• How to implement polymorphism through inheritance and through interfaces.

Understanding Inheritance
One of the most powerful features of any OOP language is inheritance. Inheritance is the ability to create
a base class with properties and methods that can be used in classes derived from the base class.

CHAPTER 7 ■ CREATING CLASS HIERARCHIES

116

Creating Base and Derived Classes
The purpose of inheritance is to create a base class that encapsulates properties and methods that can
be used by derived classes of the same type. For example, you could create a base class Account. A
GetBalance method is defined in the Account class. You can then create two separate classes:
SavingsAccount and CheckingAccount. Because the SavingsAccount class and the CheckingAccount
class use the same logic to retrieve balance information, they inherit the GetBalance method from the
base class Account. This enables you to create one common code base that is easier to maintain and
manage.

Derived classes are not limited to the properties and methods of the base class, however. The
derived classes may require additional methods and properties that are unique to their needs. For
example, the business rules for withdrawing money from a checking account may require that a
minimum balance be maintained. A minimum balance, however, may not be required for withdrawals
from a savings account. In this scenario, the derived CheckingAccount and SavingsAccount classes
would each need their own unique definition for a Withdraw method.

To create a derived class in C#, you enter the name of the class, followed by a colon (:) and the name
of the base class. The following code demonstrates how to create a CheckingAccount class that derives
from an Account base class:

class Account
{
 long _accountNumber;

 public long AccountNumber
 {
 get { return _accountNumber; }
 set { _accountNumber = value; }
 }
 public double GetBalance()
 {
 //code to retrieve account balance from database
 return (double)10000;
 }
}

class CheckingAccount : Account
{
 double _minBalance;

 public double MinBalance
 {
 get { return _minBalance; }
 set { _minBalance = value; }
 }
 public void Withdraw(double amount)
 {
 //code to withdraw from account
 }
}

CHAPTER 7 ■ CREATING CLASS HIERARCHIES

117

The following code could be implemented by a client creating an object instance of
CheckingAccount. Notice that the client perceives no distinction between the call to the GetBalance
method and the call to the Withdraw method. In this case, the client has no knowledge of the Account
class; instead, both methods appear to have been defined by CheckingAccount.

 CheckingAccount oCheckingAccount = new CheckingAccount();
 double balance;
 oCheckingAccount.AccountNumber = 1000;
 balance = oCheckingAccount.GetBalance();
 oCheckingAccount.Withdraw(500);

Creating a Sealed Class
By default, any C# class can be inherited. When creating classes that can be inherited, you must take care
that they are not modified in such a way that derived classes no longer function as intended. If you are
not careful, you can create complex inheritance chains that are hard to manage and debug. For example,
suppose you create a derived CheckingAccount class based on the Account class. Another programmer
can come along and create a derived class based on the CheckingAccount and use it in ways you never
intended. (This could easily occur in large programming teams with poor communication and design.)

By using the sealed modifier, you can create classes that you know will not be derived from. This
type of class is often referred to as a sealed or final class. By making a class not inheritable, you avoid the
complexity and overhead associated with altering the code of base classes. The following code
demonstrates the use of the sealed modifier when constructing a class definition:

sealed class CheckingAccount : Account

Creating an Abstract Class
At this point in the example, a client can access the GetBalance method through an instance of the
derived CheckingAccount class or directly through an instance of the base Account class. Sometimes,
you may want to have a base class that can’t be instantiated by client code. Access to the methods and
properties of the class must be through a derived class. In this case, you construct the base class using
the abstract modifier. The following code shows the Account class definition with the abstract modifier:

abstract class Account

This makes the Account class an abstract class. For clients to gain access to the GetBalance method, they
must instantiate an instance of the derived CheckingAccount class.

Using Access Modifiers in Base Classes
When setting up class hierarchies using inheritance, you must manage how the properties and methods
of your classes are accessed. Two access modifiers you have looked at so far are public and private. If a
method or property of the base class is exposed as public, it is accessible by both the derived class and
any client of the derived class. If you expose the property or method of the base class as private, it is not
accessible directly by the derived class or the client.

CHAPTER 7 ■ CREATING CLASS HIERARCHIES

118

You may want to expose a property or method of the base class to a derived class, but not to a client
of the derived class. In this case, you use the protected access modifier. The following code
demonstrates the use of the protected access modifier:

protected double GetBalance()
{
 //code to retrieve account balance from database
 return (double)10000;
}

By defining the GetBalance method as protected, it becomes accessible to the derived class

CheckingAccount, but not to the client code accessing an instance of the CheckingAccount class.

ACTIVITY 7-1. IMPLEMENTING INHERITANCE USING BASE AND DERIVED
CLASSES

In this activity, you will become familiar with the following:

Creating a Base Class and Derived Classes

To create the Account class, follow these steps:

1. Start Visual Studio. Select File ➤ Open ➤ Project.

2. Navigate to the Activity7_1Starter folder, click the Activity7_1.sln file, and then
click Open. When the project opens, it will contain a teller form. You will use this
form later to test the classes you create.

3. In the Solution Explorer window, right click the Project node and select Add ➤
Class.

4. In the Add New Item dialog box, rename the class file as Account.cs and click
Open. The Account.cs file is added to the project, and the Account class definition
code is added to the file.

5. Add the following code to the class definition file to create the private instance
variable (private is the default modifier for instance variables):

int _accountNumber;

• Creating a base class and derived classes that inherit its methods.

• Using the protected access modifier to restrict use of base class methods.

• Creating an abstract base class.

CHAPTER 7 ■ CREATING CLASS HIERARCHIES

119

6. Add the following GetBalance method to the class definition:

 public double GetBalance(int accountNumber)
 {
 _accountNumber = accountNumber;
 //Data normally retrieved from database.
 if (_accountNumber == 1)
 {
 return 1000;
 }
 else if (_accountNumber == 2)
 {
 return 2000;
 }
 else
 {
 throw new Exception("Account number is incorrect");
 }
 }

7. After the Account class, add the following code to create the CheckingAccount and
SavingsAccount derived classes:

 class CheckingAccount : Account
 {
 }
 class SavingsAccount : Account
 {
 }

8. Select Build ➤ Build Solution. Make sure there are no build errors in the Error List
window. If there are, fix them, and then rebuild.

Testing the Classes

To test the classes, follow these steps:

1. Open the Teller form in the code editor and locate the btnGetBalance click event
code.

2. Inside the event procedure, prior to the Try block, declare and instantiate a
variable of type CheckingAccount called oCheckingAccount, a variable of type
SavingsAccount called oSavingsAccount, and a variable of type Account called
oAccount:

 CheckingAccount oCheckingAccount = new CheckingAccount();
 SavingsAccount oSavingsAccount = new SavingsAccount();
 Account oAccount = new Account();

CHAPTER 7 ■ CREATING CLASS HIERARCHIES

120

3. Depending on which radio button is selected, call the GetBalance method of the
appropriate object and pass the account number value from the Account Number
text box. Show the return value in the Balance text box. Place the following code in
the Try block prior to the Catch statement:

 if (rdbChecking.Checked)
 {
 txtBalance.Text =
 oCheckingAccount.GetBalance(int.Parse(txtAccountNumber.Text)).ToString();
 }
 else if (rdbSavings.Checked)
 {
 txtBalance.Text =
 oSavingsAccount.GetBalance(int.Parse(txtAccountNumber.Text)).ToString();
 }
 else if (rdbGeneral.Checked)
 {
 txtBalance.Text =
 oAccount.GetBalance(int.Parse(txtAccountNumber.Text)).ToString();
 }

4. Select Build ➤ Build Solution. Make sure there are no build errors in the Error List
window. If there are, fix them, and then rebuild.

5. Select Debug ➤ Start to run the project. Enter an account number of 1 and click
the Get Balance button for the Checking Account type. You should get a balance of
1,000. Test the other account types. You should get the same result, since all
classes are using the same GetBalance function defined in the base class.

6. After testing, close the form, which will stop the debugger.

Restricting Use of a Base Class Method to Its Derived Classes

At this point, the GetBalance method of the base class is public, which means that it can be accessed by
derived classes and their clients. Let’s alter this so that the GetBalance method can be accessed only by
the derived classes alone, and not by their clients. To protect the GetBalance method in this way, follow
these steps:

1. Locate the GetBalance method of the Account class.

2. Change the access modifier of the GetBalance method from public to protected.

3. Switch to the frmTeller code editor and locate the btnGetBalance click event code.

4. Hover the cursor over the call to the GetBalance method of the oCheckingAccount
object. You will see a warning stating that it is a protected function and is not
accessible in this context.

5. Comment out the code between the Try and the Catch statements.

6. Switch to the Account.cs code editor.

CHAPTER 7 ■ CREATING CLASS HIERARCHIES

121

7. Add the following code to create the following private instance variable to the
SavingsAccount class definition file:

 double _dblBalance;

8. Add the following Withdraw method to the SavingsAccount class. This function
calls the protected method of the Account base class:

 public double Withdraw(int accountNumber, double amount)
 {
 _dblBalance = GetBalance(accountNumber);
 if (_dblBalance >= amount)
 {
 _dblBalance -= amount;
 return _dblBalance;
 }
 else
 {
 throw new Exception("Not enough funds.");
 }
 }

9. Select Build ➤ Build Solution. Make sure there are no build errors in the Error List
window. If there are, fix them, and then rebuild.

Testing the Protected Base Class Method

To test the Withdraw method, follow these steps:

1. Open the frmTeller form in the code editor and locate the btnWithdraw click event
code.

2. Inside the event procedure, prior to the Try block, declare and instantiate a
variable of type SavingsAccount called oSavingsAccount.

 SavingsAccount oSavingsAccount = new SavingsAccount();

3. Call the Withdraw method of the oSavingsAccount. Pass the account number value
from the Account Number text box and the withdrawal amount from the Amount
text box. Show the return value in the Balance text box. Place the following code in
the Try block prior to the Catch statement:

 txtBalance.Text = oSavingsAccount.Withdraw
 (int.Parse(txtAccountNumber.Text),double.Parse(txtAmount.Text)).ToString();

4. Select Build ➤ Build Solution. Make sure there are no build errors in the Error List
window. If there are, fix them and then rebuild.

5. Select Debug ➤ Start to run the project.

6. Test the Withdraw method of the SavingsAccount class by entering an account
number of 1 and a withdrawal amount of 200. Click the Withdraw button. You
should get a resulting balance of 800.

CHAPTER 7 ■ CREATING CLASS HIERARCHIES

122

7. Enter an account number of 1 and a withdrawal amount of 2000. Click the
Withdraw button. You should get an insufficient funds message.

8. After testing the Withdraw method, close the form, which will stop the debugger.

Restricting Use of All Members of a Base Class to its Derived Classes

Because the Account base class is public, it can be instantiated by clients of the derived classes. You can
alter this by making the Account base class an abstract class. An abstract class can be accessed only by
its derived classes and can’t be instantiated and accessed by their clients. To create and test the
accessibility of the abstract class, follow these steps:

1. Locate the Account class definition in the Account.cs code.

2. Add the abstract keyword to the class definition code, like so:

 abstract class Account

3. Select Build ➤ Build Solution. You should receive a build error in the Error List
window. Find the line of code causing the error.

 Account oAccount = new Account();

4. Comment out the line of code, and select Build ➤ Build Solution again. It should
now build without any errors.

5. Save and close the project.

Overriding the Methods of a Base Class
When a derived class inherits a method from a base class, it inherits the implementation of that method .
As the designer of the base class, you may want to let a derived class implement the method in its own
unique way. This is known as overriding the base class method.

By default, a derived class can’t override the implementation code of its base class. To allow a base
class method to be overridden, you must include the keyword virtual in the method definition. In the
derived class, you define a method with the same method signature and indicate it is overriding a base
class method with the override keyword. The following code demonstrates the creation of an overridable
Deposit method in the Account base class:

public virtual void Deposit(double amount)
{
 //Base class implementation
}

To override the Deposit method in the derived CheckingAccount class, use the following code:

public override void Deposit(double amount)
{
 //Derived class implementation
}

CHAPTER 7 ■ CREATING CLASS HIERARCHIES

123

One scenario to watch for is when a derived class inherits from the base class and a second derived
class inherits from the first derived class. When a method overrides a method in the base class, it
becomes overridable by default. To limit an overriding method from being overridden further up the
inheritance chain, you must include the sealed keyword in front of the override keyword in the method
definition of the derived class. The following code in the CheckingAccount class prevents the overriding
of the Deposit method if the CheckingAccount class is derived from:

public sealed override void Deposit(double amount)
{
 //Derived class implementation
}

When you indicate that a base class method is overridable, derived classes have the option of
overriding the method or using the implementation provided by the base class. In some cases, you may
want to use a base class method as a template for the derived classes. The base class has no
implementation code, but is used to define the method signatures used in the derived classes. This type
of class is referred to as an abstract base class. You define the class and the methods with the abstract
keyword. The following code is used to create an abstract Account base class with an abstract Deposit
method:

public abstract class Account
{
 public abstract void Deposit(double amount);
}

Note that because there is no implementation code defined in the base class for the Deposit method, the
body of the method is omitted.

Calling a Derived Class Method from a Base Class
A situation may arise in which you are calling an overridable method in the base class from another
method of the base class, and the derived class overrides the method of the base class. When a call is
made to the base class method from an instance of the derived class, the base class will call the
overridden method of the derived class. The following code shows an example of this situation. A
CheckingAccount base class contains an overridable GetMinBalance method. The
InterestBearingCheckingAccount class, inheriting from the CheckingAccount class, overrides the
GetMinBalance method.

class CheckingAccount
{
 private double _balance = 2000;

 public double Balance
 {
 get { return _balance; }
 }
 public virtual double GetMinBalance()
 {
 return 200;
 }
 public virtual void Withdraw(double amount)

CHAPTER 7 ■ CREATING CLASS HIERARCHIES

124

 {
 double minBalance = GetMinBalance();
 if (minBalance < (Balance - amount))
 {
 _balance -= amount;
 }
 else
 {
 throw new Exception("Minimum balance error.");
 }
 }
}
class InterestBearingCheckingAccount : CheckingAccount
{
 public override double GetMinBalance()
 {
 return 1000;
 }
}

A client instantiates an object instance of the InterestBearingCheckingAccount class and calls the
Withdraw method. In this case, the overridden GetMinimumBalance method of the
InterestBearingCheckingAccount class is executed, and a minimum balance of 1,000 is used.

InterestBearingCheckingAccount oAccount = new InterestBearingCheckingAccount();
oAccount.Withdraw(500);

When the call was made to the Withdraw method, you could have prefaced it with the this qualifier:

double minBalance = this.GetMinBalance();

Because the this qualifier is the default qualifier if none is used, the code would execute the same
way as previously demonstrated. The most derived class implementation (that has been instantiated) of
the method is executed. In other words, if a client instantiates an instance of the
InterestBearingCheckingAccount class, as was demonstrated previously, the base class’s call to
GetMinimumBalance is made to the derived class’s implementation. On the other hand, if a client
instantiates an instance of the CheckingAccount class, the base class’s call to GetMinimumBalance is
made to its own implementation.

Calling a Base Class Method from a Derived Class
In some cases, you may want to develop a derived class method that still uses the implementation code
in the base class but also augments it with its own implementation code. In this case, you create an
overriding method in the derived class and call the code in the base class using the base qualifier. The
following code demonstrates the use of the base qualifier:

public override void Deposit(double amount)
{
 base.Deposit(amount);
 //Derived class implementation.
}

CHAPTER 7 ■ CREATING CLASS HIERARCHIES

125

Overloading Methods of a Base Class
Methods inherited by the derived class can be overloaded. The method signature of the overloaded class
must use the same name as the overloaded method, but the parameter lists must differ. This is the same
as when you overload methods of the same class. The following code demonstrates the overloading of a
derived method:

class CheckingAccount
{
 public void Withdraw(double amount)
 {
 }
}
class InterestBearingCheckingAccount : CheckingAccount
{
 public void Withdraw(double amount, double minBalance)
 {
 }
}

Client code instantiating an instance of the InterestBearingCheckingAccount has access to both
Withdraw methods.

InterestBearingCheckingAccount oAccount = new InterestBearingCheckingAccount();
oAccount.Withdraw(500);
oAccount.Withdraw(500, 200);

Hiding Base Class Methods
If a method in a derived class has the same method signature as that of the base class method but it is
not marked with the override key word, it effectively hides the method of the base class. Although this
may be the intended behavior, sometimes it can occur inadvertently. Although the code will still
compile, the IDE will issue a warning asking if this is the intended behavior. If you intend to hide a base
class method, you should explicitly use the new keyword in the definition of the method of the derived
class. Using the new keyword will indicate to the IDE this is the intended behavior and dismiss the
warning. The following code demonstrates hiding a base class method:

class CheckingAccount
{
 public virtual void Withdraw(double amount)
 {
 }
}

class InterestBearingCheckingAccount : CheckingAccount
{
 public new void Withdraw(double amount)
 {
 }
 public void Withdraw(double amount, double minBalance)
 {

CHAPTER 7 ■ CREATING CLASS HIERARCHIES

126

 }
}

ACTIVITY 7-2. OVERRIDING BASE CLASS METHODS

In this activity, you will become familiar with the following:

Overriding Base Class Methods

To override the Account class, follow these steps:

1. Start VS. Select File ➤ Open ➤ Project.

2. Navigate to the Activity7_2Starter folder, click the Act7_2.sln file, and then click
Open. When the project opens, it will contain a teller form. You will use this form
later to test the classes you will create. The project also contains a
BankClasses.cs file. This file contains code for the Account base class and the
derived classes SavingsAccount and CheckingAccount.

3. Examine the Withdraw method defined in the base class Account. This method
checks to see whether there are sufficient funds in the account and, if there are,
updates the balance. You will override this method in the CheckingAccount class
to ensure that a minimum balance is maintained.

4. Change the Withdraw method definition in the Account class to indicate it is
overridable, like so:

 public virtual double Withdraw(double amount)

5. Add the following GetMinimumBalance method to the CheckingAccount class
definition:

 public double GetMinimumBalance()
 {
 return 200;
 }

6. Add the following overriding Withdraw method to the CheckingAccount class
definition. This method adds a check to see that the minimum balance is
maintained after a withdrawal.

 public override double Withdraw(double amount)
 {
 if (Balance >= amount + GetMinimumBalance())
 {
 _balance -= amount;

• Overriding methods of a base class.

• Using the base qualifier in a derived classes.

CHAPTER 7 ■ CREATING CLASS HIERARCHIES

127

 return Balance;
 }
 else
 {
 throw new ApplicationException("Not enough funds.");
 }
 }

7. Select Build ➤ Build Solution. Make sure there are no build errors in the Error List
window. If there are, fix them and then rebuild.

Testing the Overwritten Methods

To test the modified Withdraw methods you have created, follow these steps:

1. Open the frmTeller form in the code editor and locate the btnWithdraw click event
code.

2. Depending on which radio button is selected, call the Withdraw method of the
appropriate object and pass the value of the txtAmount text box. Add the following
code in the try block to show the return value in the txtBalance text box:

if (rdbChecking.Checked)
{
 oCheckingAccount.AccountNumber = int.Parse(txtAccountNumber.Text);
 txtBalance.Text =
oCheckingAccount.Withdraw(double.Parse(txtAmount.Text)).ToString();
}
else if (rdbSavings.Checked)
{
 oSavingsAccount.AccountNumber = int.Parse(txtAccountNumber.Text);
 txtBalance.Text =
oSavingsAccount.Withdraw(double.Parse(txtAmount.Text)).ToString();
}

3. Select Build ➤ Build Solution. Make sure there are no build errors in the Error List
window. If there are, fix them, and then rebuild.

4. Select Debug ➤ Start to run the project.

5. Enter an account number of 1, choose the Checking option button, and click the Get
Balance button.You should get a balance of 1000.

6. Enter a withdrawal amount of 200 and click the Withdraw button. You should get a
resulting balance of 800.

7. Enter a withdrawal amount of 700 and click the Withdraw button. You should get an
insufficient funds message because the resulting balance would be less than the
minimum balance of 200.

8. Enter an account number of 1, choose the Savings option button, and click the Get
Balance button. You should get a balance of 1000.

CHAPTER 7 ■ CREATING CLASS HIERARCHIES

128

9. Enter a withdrawal amount of 600 and click the Withdraw button. You should get a
resulting balance of 400.

10. Enter a withdrawal amount of 400 and click the Withdraw button. You should get a
resulting balance of 0 because there is no minimum balance for the savings
account that uses the Account base class’s Withdraw method.

11. After testing, close the form, which will stop the debugger.

Using the Base Qualifier to Call a Base Class Method

At this point, the Withdraw method of the CheckingAccount class overrides the Account class’s Withdraw
method. None of the code in the base class’s method is executed. You will now alter the code so that when
the CheckingAccount class’s code is executed, it also executes the base class’s Withdraw method . Follow
these steps:

1. Locate the Withdraw method of the Account class.

2. Change the implementation code so that it decrements the balance by the amount
passed to it.

 public virtual double Withdraw(double amount)
 {
 _balance -= amount;
 return Balance;
 }

3. Change the Withdraw method of the CheckingAccount class so that after it checks
for sufficient funds, it calls the Withdraw method of the Account base class.

 public override double Withdraw(double amount)
 {
 if (Balance >= amount + GetMinimumBalance())
 {
 return base.Withdraw(amount);
 }
 else
 {
 throw new ApplicationException("Not enough funds.");
 }
 }

4. Add a Withdraw method to the SavingsAccount class that is similar to the Withdraw
method of the CheckingAccount class but does not check for a minimum balance.

 public override double Withdraw(double amount)
 {
 if (Balance >= amount)
 {
 return base.Withdraw(amount);
 }
 else
 {

CHAPTER 7 ■ CREATING CLASS HIERARCHIES

129

 throw new ApplicationException("Not enough funds.");
 }
 }

5. Select Build ➤ Build Solution. Make sure there are no build errors in the Error List
window. If there are, fix them, and then rebuild.

Testing the Use of the Base Modifier

To test the Withdraw method, follow these steps:

1. Select Debug ➤ Start.

2. Enter an account number of 1, choose the Checking option button, and click the Get
Balance button. You should get a balance of 1000.

3. Enter a withdrawal amount of 600 and click the Withdraw button. You should get a
resulting balance of 400.

4. Enter a withdrawal amount of 300 and click the Withdraw button. You should get an
insufficient funds message because the resulting balance would be less than the
200 minimum.

5. Enter an account number of 1, choose the Savings option button, and click the Get
Balance button. You should get a balance of 1000.

6. Enter a withdrawal amount of 600 and click the Withdraw button. You should get a
resulting balance of 400.

7. Enter a withdrawal amount of 300 and click the Withdraw button. You should get a
resulting balance of 100, because there is no minimum balance for the savings
account that uses the Account base class’s Withdraw method.

8. After testing, close the form, which will stop the debugger.

Implementing Interfaces
As you saw earlier, you can create an abstract base class that does not contain any implementation code
but defines the method signatures that must be used by any class that inherits from the base class. When
you use an abstract class, classes that derive from it must implement its inherited methods. You could
use another technique to accomplish a similar result. In this case, instead of defining an abstract class,
you define an interface that defines the method signatures.

Classes that implement an interface are contractually required to implement the interface signature
definition and can’t alter it. This technique is useful to ensure that client code using the classes know
which methods are available, how they should be called, and the return values to expect. The following

CHAPTER 7 ■ CREATING CLASS HIERARCHIES

130

code shows how you declare an interface definition:

public interface IAccount
{
 string GetAccountInfo(int accountNumber);
}

A class implements the interface by using a semicolon followed by the name of the interface after
the class name. When a class implements an interface, it must provide implementation code for all
methods defined by the interface. The following code demonstrates how a CheckingAccount
implements the IAccount interface:

public class CheckingAccount : IAccount
{
 public string GetAccountInfo(int accountNumber)
 {
 return "Printing checking account info";
 }
}

Because implementing an interface and inheriting from an abstract base class are similar, you might
ask why you should bother using an interface. One advantage of using interfaces is that a class can
implement multiple interfaces. The .NET Framework does not support inheritance from more than one
class. As a workaround to multiple inheritance, the ability to implement multiple interfaces was
included. Interfaces are also useful to enforce common functionality across disparate types of classes.

Understanding Polymorphism
Polymorphism is the ability of derived classes inheriting from the same base class to respond to the
same method call in their own unique way. This simplifies client code because the client code does not
need to worry about which class type it is referencing, as long as the class types implement the same
method interfaces.

For example, suppose you want all account classes in a banking application to contain a
GetAccountInfo method with the same interface definition but different implementations based on
account type. Client code could loop through a collection of account-type classes, and the compiler
would determine at runtime which specific account-type implementation needs to be executed. If you
later added a new account type that implements the GetAccountInfo method, you would not need to
alter existing client code.

You can achieve polymorphism either by using inheritance or by implementing interfaces. The
following code demonstrates the use of inheritance. First, you define the base and derived classes.

public abstract class Account
{
 public abstract string GetAccountInfo();
}

public class CheckingAccount : Account
{
 public override string GetAccountInfo()
 {
 return "Printing checking account info";
 }

CHAPTER 7 ■ CREATING CLASS HIERARCHIES

131

}
public class SavingsAccount : Account
{
 public override string GetAccountInfo()
 {
 return "Printing savings account info";
 }
}

You then create a list of type Account and add a CheckingAccount and a SavingsAccount.

List<Account> AccountList = new List<Account>();
CheckingAccount oCheckingAccount = new CheckingAccount();
SavingsAccount oSavingsAccount = new SavingsAccount();
AccountList.Add(oCheckingAccount);
AccountList.Add(oSavingsAccount);

You then loop through the List and call the GetAccountInfo method of each Account. Each Account
type will implement its own implementation of the GetAccountInfo.

foreach (Account a in AccountList)
{
 MessageBox.Show(a.GetAccountInfo());
}

You can also achieve a similar result by using interfaces. Instead of inheriting from the base class
Account, you define and implement an IAccount interface.

public interface IAccount
 {
 string GetAccountInfo();
 }

public class CheckingAccount : IAccount
{
 public string GetAccountInfo()
 {
 return "Printing checking account info";
 }
}
public class SavingsAccount : IAccount
{
 public string GetAccountInfo()
 {
 return "Printing savings account info";
 }
}

You then create a list of type IAccount and add a CheckingAccount and a SavingsAccount.

List<IAccount> AccountList = new List<IAccount>();
CheckingAccount oCheckingAccount = new CheckingAccount();
SavingsAccount oSavingsAccount = new SavingsAccount();
AccountList.Add(oCheckingAccount);
AccountList.Add(oSavingsAccount);

CHAPTER 7 ■ CREATING CLASS HIERARCHIES

132

You then loop through the List and call the GetAccountInfo method of each Account. Each Account
type will implement its own implementation of the GetAccountInfo.

foreach (IAccount a in AccountList)
{
 MessageBox.Show(a.GetAccountInfo());
}

ACTIVITY 7-3. IMPLEMENTING POLYMORPHISM

In this activity, you will become familiar with the following:

Implementing Polymorphism Using Inheritance

To implement polymorphism using inheritance, follow these steps:

1. Start Visual Studio. Select File ➤ New ➤ Project.

2. Select the Console Application template under the C# templates. Name the project
Activity7_3.

3. The project includes a Program.cs file. This file contains a Main method that
launches a Windows Console application. Right click the project node in the
Solution Explorer Window and select Add ➤ class. Name the file Account.cs.

4. In the Account.cs file alter the code to an abstract base Account class. Include an
accountNumber property and an abstract method GetAccountInfo that takes no
parameters and returns a string.

 public abstract class Account
 {
 private int _accountNumber;

 public int AccountNumber
 {
 get { return _accountNumber; }
 set { _accountNumber = value; }
 }

 public abstract string GetAccountInfo();
 }

5. Add the following code to create two derived classes: CheckingAccount and
SavingsAccount. These classes will override the GetAccountInfo method of the base
class.

• Creating polymorphism through inheritance.

• Creating polymorphism through interfaces.

CHAPTER 7 ■ CREATING CLASS HIERARCHIES

133

 public class CheckingAccount : Account
 {
 public override string GetAccountInfo()
 {
 return "Printing checking account info for account number "
 + AccountNumber.ToString();
 }
 }
 public class SavingsAccount : Account
 {
 public override string GetAccountInfo()
 {
 return "Printing savings account info for account number "
 + AccountNumber.ToString();
 }
 }

6. Select Build ➤ Build Solution. Make sure there are no build errors in the Error List
window. If there are, fix them, and then rebuild.

Testing the Polymorphic Inheritance Method

To test the polymorphic method, follow these steps:

1. Open the Program.cs file in the code editor and locate the Main method.

2. Instantiate an instance of a list of Account types.

 List<Account> AccountList = new List<Account>();

3. Instantiate an instance of the CheckingAccount and SavingsAccount.

 CheckingAccount oCheckingAccount = new CheckingAccount();
 oCheckingAccount.AccountNumber = 100;
 SavingsAccount oSavingsAccount = new SavingsAccount();
 oSavingsAccount.AccountNumber = 200;

4. Add the oCheckingAccount and oSavingsAccount to the list using the Add method
of the list.

 AccountList.Add(oCheckingAccount);
 AccountList.Add(oSavingsAccount);

5. Loop through the list and call the GetAccountInfo method of each Account type in
the list and show the results in a console window.

 foreach (Account a in AccountList)
 {
 Console.WriteLine(a.GetAccountInfo());
 }
 Console.ReadLine();

6. Select Build ➤ Build Solution. Make sure there are no build errors in the Error List
window. If there are, fix them, and then rebuild.

CHAPTER 7 ■ CREATING CLASS HIERARCHIES

134

7. Select Debug ➤ Start to run the project. You should see a console window with
the return string for the GetAccountInfo method of each object in the list.

8. After testing the polymorphism, hit the enter key to close the console window,
which will stop the debugger.

Implementing Polymorphism Using an Interface

To implement polymorphism using an interface, follow these steps:

1. View the code for the Account.cs file in the code editor.

2. Comment out the code for the Account, CheckingAccount, and SavingsAccount
classes.

3. Define an interface IAccount that contains the GetAccountInfo method.

 public interface IAccount
 {
 string GetAccountInfo();
 }

4. Add the following code to create two classes: CheckingAccount and
SavingsAccount. These classes will implement the IAccount interface.

 public class CheckingAccount : IAccount
 {
 private int _accountNumber;

 public int AccountNumber
 {
 get { return _accountNumber; }
 set { _accountNumber = value; }
 }
 public string GetAccountInfo()
 {
 return "Printing checking account info for account number "
 + AccountNumber.ToString();
 }
 }
 public class SavingsAccount : IAccount
 {
 private int _accountNumber;

 public int AccountNumber
 {
 get { return _accountNumber; }
 set { _accountNumber = value; }
 }
 public string GetAccountInfo()
 {
 return "Printing savings account info for account number "
 + AccountNumber.ToString();

CHAPTER 7 ■ CREATING CLASS HIERARCHIES

135

 }
 }

5. Select Build ➤ Build Solution. Make sure there are no build errors in the Error List
window. If there are, fix them, and then rebuild.

Testing the Polymorphic Interface Method

To test the polymorphic method, follow these steps:

1. Open the Program.cs file in the code editor and locate the Main method.

2. Change the code to instantiate an instance of a list of IAccount types.

 List<IAccount> AccountList = new List<IAccount>();

3. Change the for each loop to loop through the list and call the GetAccountInfo()
method of each IAccount type in the list.

 foreach (IAccount a in AccountList)
 {
 Console.WriteLine(a.GetAccountInfo());
 }
 Console.ReadLine();

4. Select Build ➤ Build Solution. Make sure there are no build errors in the Error List
window. If there are, fix them, and then rebuild.

5. Select Debug ➤ Start to run the project. You should see a console window with
the return string for the GetAccountInfo method of each object in the list.

6. After testing the polymorphism, hit the enter key to close the console window,
which will stop the debugger.

Summary
This chapter introduced you to two of OOP’s most powerful features: inheritance and polymorphism.
Knowing how to implement these features is fundamental to becoming a successful object-oriented
programmer, regardless of the language you use.

In the next chapter, you will take a closer look at how the objects in your applications collaborate.
The topics covered include how objects pass messages to one another, how events drive your programs,
how data is shared among instances of a class, and how exceptions are handled.

C H A P T E R 8

■ ■ ■

137

Implementing Object Collaboration

In the previous chapter, you learned how to create and use class hierarchies in C#. That chapter also
introduced the concepts of inheritance, polymorphism, and interfaces. In this chapter, you’ll learn how
to get the objects of an application to work together to perform tasks. You will see how objects
communicate through messaging and how events initiate application processing. You’ll also learn how
the objects respond and communicate exceptions that may occur as they carry out their assigned tasks.

After reading this chapter, you should be familiar with the following:

• The process of object communication through messaging.

• The different types of messaging that can occur.

• How to use delegation in C# applications.

• How objects can respond to events and publish their own events.

• The process of issuing and responding to exceptions.

• How to create shared data and procedures among several instances of the same
class.

• How to issue message calls asynchronously.

Communicating Through Messaging
One of the advantages of OOP is that OOP applications function in much the same way that people do in
the real world. You can think of your application as a large company. In large companies, the employees
perform specialized functions. For example, one person is in charge of accounts payable processing, and
another is responsible for the accounts receivable operations. When an employee needs to request a
service—paid time off (PTO), for example—the employee (the client) sends a message to her manager
(the server). This client/server request can involve just two objects, or it can be a complex chain of
client/server requests. For example, the employee requests the PTO from her manager, who, in turn,
checks with the human resources (HR) department to see if the employee has enough accumulated
time. In this case, the manager is both a server to the employee and a client to the HR department.

Defining Method Signatures
When a message passes between a client and server, the client may or may not expect a response. For
example, when an employee requests PTO, she expects a response indicating approval or denial.

CHAPTER 8 ■ IMPLEMENTING OBJECT COLLABORATION

138

However, when the accounting department issues paychecks, the staff members do not expect everyone
in the company to issue a response e-mail thanking them!

A common requirement when a message is issued is to include the information necessary to carry
out the request. When an employee requests PTO, her manager expects her to provide him with the
dates she is requesting off. In OOP terminology, you refer to the name of the method (requested service)
and the input parameters (client-supplied information) as the method signature.

The following code demonstrates how methods are defined in C#. The access modifier is first
followed by the return type (void is used if no return value is returned) and then the name of the
method. Parameter types and names are listed in parenthesis separated by commas. The body of the
method is contained in opening and closing curly brackets.

 public int AddEmployee(string firstName,string lastName)
 {
 //Code to save data to database
 }
 public void LogMessage(string message)
 {
 //Code to write to log file.
 }

Passing Parameters
When you define a method in the class, you also must indicate how the parameters are passed.
Parameters may be passed by value or by reference.

If you choose to pass the parameters by value, a copy of the parameter data is passed from the client
to the server. The server works with the copy and, if changes are made to the data, the server must pass
the copy back to the client so that the client can choose to discard the changes or replicate them.
Returning to the company analogy, think about the process of updating your employee file. The HR
department does not give you direct access to the file; instead, it sends you a copy of the values in the
file. You make changes to the copy, and then you send it back to the HR department. The HR
department then decides whether to replicate these changes to the actual employee file. In C#, passing
parameters by value is the default, so no keyword is used. In the following method, the parameter is
passed by value:

public int AddEmployee(string firstName)
 {
 //Code to save data to database
 }

Another way you can pass parameters is by reference. In this case, the client does not pass in a copy
of the data but instead passes a reference to where the data is located. Using the previous example,
instead of sending you a copy of the data in your employee file when you want to make updates, the HR
department informs you where the file is located, and tells you to go to it to make the changes. In this
case, clearly it would be better to pass the parameters by reference. In C# code, when passing
parameters by reference the ref keyword is used. The following code shows how you define the method
to pass values by reference:

 public int AddEmployee(ref string firstName)
 {
 //Code to save data to database
 }

CHAPTER 8 ■ IMPLEMENTING OBJECT COLLABORATION

139

In highly distributed applications, it is advantageous to pass parameters by value instead of by
reference. Passing parameters by reference can cause increased overhead, because when the server
object must work with parameter information, it needs to make calls across processing boundaries and
the network. Passing values by reference is also less secure when maintaining data integrity. The client is
opening a channel for the data to be manipulated without the client’s knowledge or control.

On the other hand, passing values by reference may be the better choice when the client and server
are in the same process space (they occupy the same cubicle, so to speak) and have a clearly established
trust relationship. In this situation, allowing direct access to the memory storage location and passing
the parameters by reference may offer a performance advantage over passing the parameters by value.

The other situation where passing parameters by reference may be advantageous is if the object is a
complex data type, such as another object. In this case, the overhead of copying the data structure and
passing it across process and network boundaries outweighs the overhead of making repeated calls
across the network.

■Note The .NET Framework addresses the problem of complex data types by allowing you to efficiently copy
and pass those types by serializing and deserializing them in an XML structure.

Understanding Event-Driven Programming
So far, you have been looking at messaging between the objects in which the client initiates the message
interaction. If you think about how you interact with objects in real life, you often receive messages in
response to an event that has occurred. For example, when the sandwich vendor comes into the
building, a message is issued over the intercom informing employees that the lunch has arrived. This
type of messaging is referred to as broadcast messaging. The server issues the message, and the clients
decide to ignore or respond to the message.

Another way this event message could be issued is by the receptionist sending an e-mail to a list of
interested employees when the sandwich vendor shows up. In this case, the interested employees would
subscribe to receive the event message with the receptionist. This type of messaging is often referred to
as subscription-based messaging.

Applications built with the .NET Framework are object-oriented, event-driven programs. If you
trace the client/server processing chains that occur in your applications, you can identify the event that
kicked off the processing. In the case of Windows applications, the user interacting with a GUI usually
initiates the event. For example, a user might initiate the process of saving data to a database by clicking
a button. Classes in applications can also initiate events. A security class could broadcast an event
message when an invalid login is detected. You can also subscribe to external events. You could create a
web service that would issue an event notification when a change occurs in a stock you are tracking in
the stock market. You could write an application that subscribes to the service and responds to the event
notification.

Understanding Delegation
In order to implement event-based programming in C#, you must first understand delegation.
Delegation is when you request a service from a server by making a method call. The server then
reroutes this service request to another method, which services the request. The delegate class can

CHAPTER 8 ■ IMPLEMENTING OBJECT COLLABORATION

140

examine the service request and dynamically determines at runtime where to route the request.
Returning to the company analogy, when a manager receives a service request, she often delegates it to a
member of her department. (In fact, many would argue that a common trait among successful managers
is the ability to know when and how to delegate responsibilities.)

When you create a delegated method, you first define the delegated method’s signature. Because
the delegate method does not actually service the request, it does not contain any implementation code.
The following code shows a delegated method used to compare integer values:

public delegate Boolean CompareInt(int I1, int I2);

Once the delegated method’s signature is defined, you can then create the methods that will be
delegated to. These methods must have the same parameters and return types as the delegated method.
The following code shows two methods that the delegated method will delegate to:

 private Boolean AscendOrder(int I1, int I2)
 {
 if (I1 < I2)
 { return true;}
 else
 { return false; }
 }
 private Boolean DescendOrder(int I1, int I2)
 {
 if (I1 > I2)
 { return true; }
 else
 { return false; }
 }

Once the delegate and its delegating methods have been defined, you are ready to use the delegate.
The following code shows a portion of a sorting routine that determines which delegated method to call
depending on a SortType passed in as a parameter:

public void SortIntegers(SortType sortDirection, int[] intArray)
{
 CompareInt CheckOrder;
 if (sortDirection == SortType.Ascending)
 { CheckOrder = new CompareInt(AscendOrder); }
 else
 { CheckOrder = new CompareInt(DescendOrder); }
 // Code continues ...
}

Implementing Events
In C#, when you want to issue event messages, first you declare a delegate type for the event. The
delegate type defines the set of arguments that will be passed to the method that handles the event.

public delegate void DataUpdateEventHandler(string msg);

Once the delegate is declared an event of the delegate type is declared.

CHAPTER 8 ■ IMPLEMENTING OBJECT COLLABORATION

141

public event DataUpdateEventHandler DataUpdate;

When you want to raise the event, you call the event passing in the appropriate arguments.

 public void SaveInfo()
 {
 try
 {
 DataUpdate("Data has been updated");
 }
 catch
 {
 DataUpdate("Data could not be updated");
 }
 }

Responding To Events
To consume an event in client code, an event handling method is declared that executes program logic
in response to the event. This event handler must have the same method signature as the event delegate
declared in the class issuing the event.

 void odata_DataUpdate(string msg)
 {
 MessageBox.Show(msg);
 }

This event handler is registered with the event source using the += operator. This process is referred
to as event wiring. The following code wires up the event handler for the DataUpdate event declared
previously:

Data odata = new Data();
odata.DataUpdate += new DataUpdateEventHandler(odata_DataUpdate);
odata.SaveInfo();

Windows Control Event Handling
Windows Forms also implement event handlers by using the += operator to wire up the event handler to
the event. The following code wires up a button to a click event and a textbox to a mouse down event:

this.button1.Click += new System.EventHandler(this.button1_Click);
this.textBox1.MouseDown += new
System.Windows.Forms.MouseEventHandler(this.textBox1_MouseDown);

The event handler methods for control events take two parameters: the first parameter, sender,
provides a reference to the object that raised the event. The second parameter passes an object
containing information specific to the event that is being handled. The following code shows an event
handler method for a button click event and an event handler for the textbox mouse down event. Notice
how e is used to determine if the left button was clicked.

private void button1_Click(object sender, EventArgs e)
{

CHAPTER 8 ■ IMPLEMENTING OBJECT COLLABORATION

142

}
private void textBox1_MouseDown(object sender, MouseEventArgs e)
{
 if (e.Button == System.Windows.Forms.MouseButtons.Left)
 {
 //code goes here.
 }
}

ACTIVITY 8-1. ISSUING AND RESPONDING TO EVENT MESSAGES

In this activity, you will learn to do the following:

Adding and Raising Event Messaging in the Class Definition

To add and raise event messaging in a class definition file, follow these steps:

1. Start Visual Studio. Select File ➤ New ➤ Project.

2. Choose a Windows Application project. Name the project Act8_1.

3. A default form is included in the project. Add controls to the form and change the
property values, as listed in Table 8-1. Your completed form should look similar to
Figure 8-1.

Table 8-1. Login Form and Control Properties

Object Property Value

Form1 Name frmLogin

 Text Login

Label1 Name lblName

 Text Name:

Label2 Name lblPassword

 Text Password:

(continued)

• Create and raise events from a server class.

• Handle events from client classes.

• Handle GUI events.

CHAPTER 8 ■ IMPLEMENTING OBJECT COLLABORATION

143

Table 8-1. (continued)

Object Property Value

Textbox1 Name txtName

 Text (empty)

Textbox2 Name txtPassword

 Text (empty)

 PasswordChar *

Button1 Name btnLogin

 Text Login

Button2 Name btnClose

 Text Close

Figure 8-1. The completed login form

4. Select Project ➤ Add Class. Name the class Employee. Open the Employee class
code in the code editor.

5. Above the class declaration, add the following line of code to define the Login
event handler delegate. You will use this event to track employee logins to your
application.

public delegate void LoginEventHandler(string loginName, Boolean status);

6. Inside the class declaration, add the following line of code to define the LoginEvent
as the delegate type:

CHAPTER 8 ■ IMPLEMENTING OBJECT COLLABORATION

144

public event LoginEventHandler LoginEvent;

7. Add the following Login method to the class, which will raise the LoginEvent:

 public void Login(string loginName, string password)
 {
 //Data normally retrieved from database.
 if (loginName == "Smith" && password == "js")
 {
 LoginEvent(loginName, true);
 }
 else
 {
 LoginEvent(loginName, false);
 }
 }

8. Select Build ➤ Build Solution. Make sure there are no build errors in the Error List
window. If there are, fix them, and then rebuild.

Receiving Events in the Client Class

To receive events in the client class, follow these steps:

1. Open the frmLogin in the design window.

2. Double-click the Login button to view the Login button click event handler.

3. Add the following code to wire up the Employee class’s LoginEvent with an event
handler in the form class:

 private void btnLogin_Click(object sender, EventArgs e)
 {
 Employee oEmployee = new Employee();
 oEmployee.LoginEvent += new LoginEventHandler(oEmployee_LoginEvent);
 oEmployee.Login(txtName.Text, txtPassword.Text);
 }

4. Add the following event handler method to the form that gets called when the
Employee class issues a LoginEvent:

 void oEmployee_LoginEvent(string loginName, bool status)
 {
 MessageBox.Show("Login status :" + status);
 }

5. Select Build ➤ Build Solution. Make sure there are no build errors in the Error List
window. If there are, fix them, and then rebuild.

6. Select Debug ➤ Start to run the project.

7. To test to make sure the Login event is raised, enter a login name of Smith and a
password of js. This should trigger a login status of true.

CHAPTER 8 ■ IMPLEMENTING OBJECT COLLABORATION

145

8. After testing the Login event, close the form, which will stop the debugger.

Handling Multiple Events with One Method

To handle multiple events with one method, follow these steps:

1. Open frmLogin in the form designer by right-clicking the frmLogin node in the
Solution Explorer and choosing View Designer.

2. From the Toolbox, add a MenuStrip control to the form. Click where it says “Type
Here” and enter File for the top-level menu and Exit for its submenu, as shown in
Figure 8-2.

Figure 8-2. Adding the MenuStrip control

3. Add the following method to handle the click event of the menu and the Close
button:

 private void FormClose(object sender, EventArgs e)
 {
 this.Close();
 }

4. Open the frmLogin in the designer window. In the properties window, select the
exitToolStripMenuItem. Select the event button at the top of the properties window
to show the events of the control. In the click event drop-down, select the
FormClose method (see Figure 8-3).

CHAPTER 8 ■ IMPLEMENTING OBJECT COLLABORATION

146

Figure 8-3. Wiring up an event handler

5. Repeat step 4 to wire up the btnClose button click event to the FormClose method.

6. Expand the frmLogin node in the Solution window. Right click on the
frmLogin.Designer.cs node and select View Code.

7. In the code editor, expand the Windows Form Designer generated code region.
Search for the following code:

this.btnClose.Click += new System.EventHandler(this.FormClose);
this.exitToolStripMenuItem.Click += new System.EventHandler(this.FormClose);

8. This code was generated by the form designer to wire up the events to the
FormClose method.

9. Select Build ➤ Build Solution. Make sure there are no build errors in the Error List
window. If there are, fix them, and then rebuild.

10. Select Debug ➤ Start to run the project. Test the Exit menu and the Close button.

11. After testing, save the project, and then exit Visual Studio.

CHAPTER 8 ■ IMPLEMENTING OBJECT COLLABORATION

147

Handling Exceptions in the .NET Framework
When objects collaborate, things can go wrong. Exceptions are things that you do not expect to occur
during normal processing. For example, you may be trying to save data to a database over the network
when the connection fails, or you may be trying to save to a drive without a disk in the drive. Your
applications should be able to gracefully handle any exceptions that occur during application
processing.

The .NET Framework uses a structured exception handling mechanism. The following are some of
the benefits of this structured exception handling:

• Common support and structure across all .NET languages.

• Support for the creation of protected blocks of code.

• The ability to filter exceptions to create efficient robust error handling.

• Support of termination handlers to guarantee that cleanup tasks are completed,
regardless of any exceptions that may be encountered.

The .NET Framework also provides an extensive number of exception classes used to handle
common exceptions that might occur. For example, the FileNotFoundException class encapsulates
information such as the file name, error message, and the source for an exception that is thrown when
there is an attempt to access a file that does not exist. In addition, the .NET Framework allows the
creation of application-specific exception classes you can write to handle common exceptions that are
unique to your application.

Using the Try-Catch Block
When creating code that could end up causing an exception, you should place it in a Try block. Code
placed inside the Try block is considered protected. If an exception occurs while the protected code is
executing, code processing is transferred to the Catch block, where it is handled. The following code
shows a method of a class that tries to read from a file that does not exist. When the exception is thrown,
it is caught in the Catch block.

 public string ReadText(string filePath)
 {
 StreamReader sr;
 try
 {
 sr = File.OpenText(filePath);
 string fileText = sr.ReadToEnd();
 sr.Close();
 return fileText;
 }
 catch(Exception ex)
 {
 return ex.Message;
 }
 }

CHAPTER 8 ■ IMPLEMENTING OBJECT COLLABORATION

148

All Try blocks require at least one nested Catch block. You can use the Catch block to catch all
exceptions that may occur in the Try block, or you can use it to filter exceptions based on the type of
exception. This enables you to dynamically respond to different exceptions based on the exception type.
The following code demonstrates filtering exceptions based on the different exceptions that could occur
when trying to read a text file from disk:

 public string ReadText(string filePath)
 {
 StreamReader sr;
 try
 {
 sr = File.OpenText(filePath);
 string fileText = sr.ReadToEnd();
 sr.Close();
 return fileText;
 }
 catch (DirectoryNotFoundException ex)
 {
 return ex.Message;
 }
 catch (FileNotFoundException ex)
 {
 return ex.Message;
 }
 catch(Exception ex)
 {
 return ex.Message;
 }
 }

Adding a Finally Block
Additionally, you can nest a Finally block at the end of the Try block. Unlike the Catch block, the use of
the Finally block is optional. The Finally block is for any cleanup code that needs to occur, even if an
exception is encountered. For example, you may need to close a database connection or release a file.
When the code of the Try block is executed and an exception occurs, processing will jump to the
appropriate Catch block. After the Catch block executes, the Finally block will execute. If the Try block
executes and no exception is encountered, the Catch blocks don’t execute, but the Finally block will still
get processed. The following code shows a Finally block being used to close and dispose a StreamReader:

 public string ReadText(string filePath)
 {
 StreamReader sr = null;
 try
 {
 sr = File.OpenText(filePath);
 string fileText = sr.ReadToEnd();
 return fileText;
 }
 catch (DirectoryNotFoundException ex)
 {

CHAPTER 8 ■ IMPLEMENTING OBJECT COLLABORATION

149

 return ex.Message;
 }
 catch (FileNotFoundException ex)
 {
 return ex.Message;
 }
 catch (Exception ex)
 {
 return ex.Message;
 }
 finally
 {
 if (sr != null)
 {
 sr.Close();
 sr.Dispose();
 }
 }
 }

Throwing Exceptions
During code execution, when an exception occurs that does not fit into one of the predefined system
exception classes, you can throw your own exception. You normally throw your own exception when the
error will not cause problems with execution but rather with the processing of your business rules. For
example, you could look for an order date that is in the future and throw an ApplicationException. The
ApplicationException class inherits from the System.Exception class. The following code shows an
example of throwing an ApplicationException:

 public void LogOrder(long orderNumber, DateTime orderDate)
 {
 try
 {
 if (orderDate > DateTime.Now)
 {
 throw new ApplicationException("Order date can not be in the future.");
 }
 //Processing code...
 }
 catch(Exception ex)
 {
 //Exception handler code...
 }
 }
 }

Nesting Exception Handling
In some cases, you may be able to correct an exception that occurred and continue processing the rest of
the code in the Try block. For example, a division-by-zero error may occur, and it would be acceptable to

CHAPTER 8 ■ IMPLEMENTING OBJECT COLLABORATION

150

assign the result a value of zero and continue processing. In this case, a Try-Catch block could be nested
around the line of code that would cause the exception. After the exception is handled, processing would
return to the line of code in the outer Try-Catch block immediately after the nested Try block. The
following code demonstrates nesting one Try block within another:

 try
 {
 try
 {
 Y = X1 / X2;
 }
 catch (DivideByZeroException ex)
 {
 Y = 0;
 }
 //Rest of processing code.
 }
 catch (Exception ex)
 {
 //Outer exception processing
 }

 ■Note For more information about handling exceptions and the .NET Framework exception classes, refer to
Appendix B.

Static Properties and Methods
When you declare an object instance of a class, the object instantiates its own instances of the properties
and methods of the class it implements. For example, if you were to write a counting routine that
increments a counter, then instantiated two object instances of the class, the counters of each object
would be independent of each other; when you incremented one counter, the other would not be
affected. Normally, this object independence is the behavior you want. However, sometimes you may
want different object instances of a class to access the same, shared variables. For example, you might
want to build in a counter that logs how many of the object instances have been instantiated. In this
case, you would create a static property value in the class definition. The following code demonstrates
how you create a static TaxRate property in a class definition:

 public class AccountingUtilities
 {
 private static double _taxRate = 0.06;

 public static double TaxRate
 {
 get { return _taxRate; }
 }
 }

CHAPTER 8 ■ IMPLEMENTING OBJECT COLLABORATION

151

To access the static property, you don’t create an object instance of the class; instead, you refer to
the class directly. The following code shows a client accessing the static TaxRate property defined
previously:

 public class Purchase
 {
 public double CalculateTax(double purchasePrice)
 {
 return purchasePrice * AccountingUtilities.TaxRate;
 }
 }

Static methods are useful if you have utility functions that clients need to access, but you don’t want
the overhead of creating an object instance of a class to gain access to the method. Note that static
methods can access only static properties. The following code shows a static method used to count the
number of users currently logged in to an application:

 public class UserLog
 {
 private static int _userCount;
 public static void IncrementUserCount()
 {
 _userCount += 1;
 }
 public static void DecrementUserCount()
 {
 _userCount -= 1;
 }
 }

When client code accesses a static method, it does so by referencing the class directly. The following
code demonstrates accessing the static method defined previously:

 public class User
 {
 //other code ...
 public void Login(string userName, string password)
 {
 //code to check credentials
 //if successful
 UserLog.IncrementUserCount();
 }
 }

Although you may not use static properties and methods often when creating the classes in your
applications, they are useful when creating base class libraries and are used throughout the .NET
Framework system classes. The following code demonstrates the use of the Compare method of the
System.String class. This is a static method that compares two strings alphabetically. It returns a positive
value if the first string is greater, a negative value if the second string is greater, or zero if the strings are
equal.

 public Boolean CheckStringOrder(string string1, string string2)
 {
 if (string.Compare(string1, string2) >= 0)

CHAPTER 8 ■ IMPLEMENTING OBJECT COLLABORATION

152

 {
 return true;
 }
 else
 {
 return false;
 }
 }

ACTIVITY 8-2. IMPLEMENTING EXCEPTION HANDLING AND STATIC METHODS

In this activity, you will learn how to do the following:

Creating Static Methods

To create the static methods, follow these steps:

1. Start Visual Studio. Select File ➤ New ➤ Project.

2. Choose a Windows Application project. Name the project Act8_2.

3. Visual Studio creates a default form for the project which you’ll use to create a
login form named Logger. Add controls to the form and change the property
values, as listed in Table 8-2. Your completed form should look similar to
Figure 8-4.

Figure 8-4. The completed logger form

• Create and call static methods of a class.

• Use structured exception handling.

CHAPTER 8 ■ IMPLEMENTING OBJECT COLLABORATION

153

Table 8-2. Logger Form and Control Properties

Object Property Value

Form1 Name frmLogger

 Text Logger

Textbox1 Name txtLogPath

 Text c:\Test\LogTest.txt

Textbox2 Name txtLogInfo

 Text Test Message

Button1 Name btnLogInfo

 Text Log Info

4. Select Project ➤ Add Class. Name the class Logger.

5. Because you will be using the System.IO class within the Logger class, add a
using statement to the top of the file:

using System.IO;

6. Add as static LogWrite method to the class. This method will write information
to a log file. To open the file, create a FileStream object. Then create a
StreamWriter object to write the information to the file.

public static string LogWrite(string logPath, string logInfo)
{
 FileStream oFileStream = new FileStream(logPath, FileMode.Open, FileAccess.Write);
 StreamWriter oStreamWriter = new StreamWriter(oFileStream);
 oFileStream.Seek(0, SeekOrigin.End);
 oStreamWriter.WriteLine(DateTime.Now);
 oStreamWriter.WriteLine(logInfo);
 oStreamWriter.WriteLine();
 oStreamWriter.Close();
 return "Info Logged";
}

7. Open frmLogger in the visual design editor. Double click the btnLogInfo button
to bring up the btnLogInfo_Click event method in the code editor. Add the
following code, which runs the LogWrite method of the Logger class and
displays the results in the form’s text property. Note that because you
designated the LogWrite method as static (in step 6), the client does not need
to create an object instance of the Logger class. Static methods are accessed
directly through a class reference.

CHAPTER 8 ■ IMPLEMENTING OBJECT COLLABORATION

154

private void btnLogInfo_Click(object sender, EventArgs e)
{
 this.Text = Logger.LogWrite(txtLogPath.Text, txtLogInfo.Text);
}

8. Select Build ➤ Build Solution. Make sure there are no build errors in the Error List
window. If there are, fix them, and then rebuild.

9. Select Debug ➤ Run. When the form launches, click the Log Info button. You
should get an unhandled exception message of type
System.IO.FileNotFoundException. Stop the debugger.

Creating the Structured Exception Handler

To create the structured exception handler, follow these steps:

1. Open the Logger class code in the code editor.

2. Locate the LogWrite method and add a Try-Catch block around the current code. In
the Catch block, return a string stating the logging failed.

try
{
 FileStream oFileStream =
 new FileStream(logPath, FileMode.Open, FileAccess.Write);
 StreamWriter oStreamWriter = new StreamWriter(oFileStream);
 oFileStream.Seek(0, SeekOrigin.End);
 oStreamWriter.WriteLine(DateTime.Now);
 oStreamWriter.WriteLine(logInfo);
 oStreamWriter.WriteLine();
 oStreamWriter.Close();
 return "Info Logged";
}
catch
{
 return "Logging Failed";
}

3. Select Build ➤ Build Solution. Make sure there are no build errors in the Error List
window. If there are, fix them, and then rebuild.

4. Select Debug ➤ Run. When the form launches, click the Log Info button. This time,
you should not get the exception message because it was handled by the LogWrite
method. You should see the message “Logging Failed” in the form’s caption. Close
the form.

Filtering Exceptions

To filter exceptions, follow these steps:

1. Alter the Catch block to return different messages depending on which exception is
thrown.

CHAPTER 8 ■ IMPLEMENTING OBJECT COLLABORATION

155

catch (FileNotFoundException ex)
{
 return ex.Message;
}
catch (IOException ex)
{
 return ex.Message;
}
catch
{
 return "Logging Failed";
}

2. Select Build ➤ Build Solution. Make sure there are no build errors in the Error List
window. If there are, fix them, and then rebuild.

3. Select Debug ➤ Start to run the project. Test the FileNotFoundException catch by
clicking the Log Info button. Test the IOException by changing the file path to the A
drive and clicking the Log Info button. These errors should be caught and the
appropriate message presented in the form’s caption.

4. After testing, close the form.

5. Using Notepad, create the LogTest.txt file in a Test folder on the C drive and close
the file. Make sure the file and folder are not marked as read only.

6. Select Debug ➤ Start to run the project. Test the WriteLog method by clicking the
Log Info button. This time, the form’s caption should indicate that the log write was
successful.

7. Stop the debugger.

8. Open the LogTest.txt file using Notepad and verify that the information was logged.

9. Save the project, and then exit Visual Studio.

Using Asynchronous Messaging
When objects interact by passing messages back and forth, they can pass the message synchronously or
asynchronously.

When a client object makes a synchronous message call to a server object, the client suspends
processing and waits for a response back from the server before continuing. Synchronous messaging is
the easiest to implement and is the default type of messaging implemented in the .NET Framework.
However, sometimes this is an inefficient way of passing messages. For example, the synchronous
messaging model is not well suited for long-running file reading and writing, making service calls across
slow networks, or message queuing in disconnected client scenarios. To more effectively handle these
types of situations, the .NET Framework provides the plumbing needed to pass messages between
objects asynchronously.

CHAPTER 8 ■ IMPLEMENTING OBJECT COLLABORATION

156

When a client object passes a message asynchronously, the client can continue processing. After the
server completes the message request, the response information will be sent back to the client.

If you think about it, you interact with objects in the real world both synchronously and
asynchronously. A good example of synchronous messaging is when you are in the checkout line at the
grocery store. When the clerk can’t determine the price of one of the items, he calls the manager for a
price check and suspends the checkout process until a result is returned. An example of an
asynchronous message call is when the clerk notices that he is running low on change. He alerts the
manager that he will need change soon, but he can continue to process his customer’s items until the
change arrives.

In the .NET Framework, when you want to call a method of the server object asynchronously, you
first need to create a delegate. Instead of making the call directly to the server, the call is passed to the
delegate. When a delegate is created, the compiler also creates two methods you can use to interact with
a server class asynchronously. These methods are called BeginInvoke and EndInvoke.

The BeginInvoke method takes the parameters defined by the delegate plus an AsyncCallback
delegate. The delegate is used to pass a callback method that the server will call to return information to
the client when the asynchronous method completes. Another parameter that can be sent in the
BeginInvoke method is a context object that the client can use to keep track of the context of the
asynchronous call. When the client calls the BeginInvoke method, it returns a reference to an object that
implements the IAsynchResult interface. The BeginInvoke method also starts the execution of the
asynchronous method call on a different thread from the main thread used by the client when initiating
the call.

The EndInvoke method takes the parameters and the IAsyncResult object returned by the
BeginInvoke method and blocks the thread used by the BeginInvoke method until a result is returned.
When the results are returned by the asynchronous method, the EndInvoke method intercepts the
results and passes them back to the client thread that initiated the call.

■Note The method of the server class is not altered to enable a client to call its methods asynchronously. It is
up to the client to decide whether to call the server asynchronously and implement the functionality required to
make the call.

The following code demonstrates the process to make a call to a server method asynchronously. In
this example, the client code is making a call to a server method over a slow connection to read log
information. The first step is to define a delegate type that will be used to make the call.

private delegate string AsyncReadLog(string filePath);

The next step is to declare a variable of the delegate type and instantiate it, passing in the method
you are calling asynchronously.

private AsyncReadLog LogReader = new AsyncReadLog(Logger.LogRead);

■Note Because the LogRead method of the Logger class is a static method, you call it directly.

You then declare a variable of type AsyncCallback and instantiate it, passing in the method that you
have set up to process the results of the asynchronous call.

AsyncCallback aCallBack = new AsyncCallback(LogReadCallBack);

CHAPTER 8 ■ IMPLEMENTING OBJECT COLLABORATION

157

You are now ready to call the server method asynchronously by implementing the BeginInvoke
method of the delegate type. You need to declare a variable of type IAsyncResult to capture the return
value and pass the parameters required by the server method and a reference to the AsyncCallback
object declared previously.

IAsyncResult aResult = LogReader.BeginInvoke(txtLogPath.Text, aCallBack,null);

You can now implement the callback method in the client, which needs to accept an input
parameter of type IAsyncCallback that will be passed to it. Inside this method, you will make a call to the
delegate’s EndInvoke method. This method takes the IAsyncCallback object type returned by the
BeginInvoke method. The following code displays the results of the call in a message box:

public void LogReadCallBack(IAsyncResult asyncResult)
{
 MessageBox.Show(LogReader.EndInvoke(asyncResult));
}

■Note You can also use the BackgroundWorker component to call methods using a thread separate from the
UI thread. For more information about using the BackgroundWorker thread, consult the Visual Studio help files.

ACTIVITY 8-3. CALLING METHODS ASYNCHRONOUSLY

In this activity, you will learn how to do the following:

Creating a Method and Calling It Synchronously

To create the method and call it synchronously, follow these steps:

1. Start Visual Studio. Select File ➤ Open ➤ Project.

2. Open the solution file you completed in Act8_2.

3. Add the buttons shown in Table 8-3 to the frmLogger form. Figure 8-5 shows the
completed form.

• Call methods synchronously.

• Call methods asynchronously.

CHAPTER 8 ■ IMPLEMENTING OBJECT COLLABORATION

158

Figure 8-5. The completed logger form for synchronous and asynchronous reading

Table 8-3. Additional Buttons for the Logger Form

Object Property Value

Button1 Name btnSyncRead

 Text Sync Read

Button2 Name btnAsyncRead

 Text Async Read

Button3 Name btnMessage

 Text Message

4. Open the Logger class in the code editor.

5. Recall that because you are using the System.IO namespace within the Logger
class, you added a using statement to the top of the file. You are also going to use
System.Threading namespace, so add a using statement to include this
namespace.

using System.Threading;

6. Add a static LogRead function to the class. This function will read information from
a log file. To open the file, create a FileStream object. Then create StreamReader
object to read the information from the file. You are also using the Thread class to
suspend processing for five seconds to simulate a long call across a slow network.

 public static string LogRead(string filePath)
 {
 StreamReader oStreamReader;
 string fileText;

CHAPTER 8 ■ IMPLEMENTING OBJECT COLLABORATION

159

 try
 {
 oStreamReader = File.OpenText(filePath);
 fileText = oStreamReader.ReadToEnd();
 oStreamReader.Close();
 Thread.Sleep(5000);
 return fileText;
 }
 catch (FileNotFoundException ex)
 {
 return ex.Message;
 }
 catch (IOException ex)
 {
 return ex.Message;
 }
 catch
 {
 return "Logging Failed";
 }
 }

7. Open frmLogger in the visual design editor. Double click the btnMessage button to
bring up the btnMessage_Click event method in the code editor. Add code to
display a message box.

 private void btnMessage_Click(object sender, EventArgs e)
 {
 MessageBox.Show("Hello");
 }

8. Open frmLogger in the visual design editor. Double-click the btnSyncRead button to
bring up the btnSyncRead_Click event method in the code editor. Add code that
calls the LogRead method of the Logger class and displays the results in a
message box.

 private void btnSyncRead_Click(object sender, EventArgs e)
 {
 MessageBox.Show(Logger.LogRead(txtLogPath.Text));
 }

9. Select Build ➤ Build Solution. Make sure there are no build errors in the Error List
window. If there are, fix them, and then rebuild.

10. Select Debug ➤ Run. When the form launches, click the Sync Read button. After
clicking the Sync Read button, try clicking the Message button. You should not get
a response when clicking the Message button because you called the ReadLog
method synchronously. After the ReadLog method returns a result, the Message
button will respond when clicked.

11. When you have finished testing, close the form.

CHAPTER 8 ■ IMPLEMENTING OBJECT COLLABORATION

160

Calling a Method Asynchronously

To call a method asynchronously, follow these steps:

1. Open the frmLogger class code in the code editor.

2. After the class definition statement at the beginning of the class file, add code to
create a delegate definition that will be used to make the asynchronous call. On the
next line, declare a LogReader variable of the delegate type and instantiate it,
passing the LogRead method of the Logger class.

 public partial class frmLogger : Form
 {
 private delegate string AsyncReadLog(string filePath);
 private AsyncReadLog LogReader = new AsyncReadLog(Logger.LogRead);

3. Create a callback method that will be used to retrieve the results of the
asynchronous message call. This method needs to accept a parameter of type
IAsyncResult.

 public void LogReadCallBack(IAsyncResult asyncResult)
 {
 }

4. Open frmLogger in the visual design editor. Double-click the btnAsyncRead button
to bring up the btnAsyncRead_Click event method in the code editor. Add code that
declares a variable of type AsyncCallback and instantiate it, passing in the
LogReadCallBack method you created. On the next line of code, call the
BeginInvoke method of the LogReader delegate, passing in the file path and the
AsyncCallback variable. Capture the return value in a variable of type IAsyncResult.

 private void btnAsyncRead_Click(object sender, EventArgs e)
 {
 AsyncCallback aCallBack = new AsyncCallback(LogReadCallBack);
 IAsyncResult aResult = LogReader.BeginInvoke(txtLogPath.Text,
aCallBack,null);
 }

5. Add code to the LogReadCallBack method that calls the EndInvoke method of the
LogReader delegate, passing in the file path and the IAsyncResult parameter.
Display the results in a message box.

 public void LogReadCallBack(IAsyncResult asyncResult)
 {
 MessageBox.Show(LogReader.EndInvoke(asyncResult));
 }

6. Select Build ➤ Build Solution. Make sure there are no build errors in the Error List
window. If there are, fix them, and then rebuild.

7. Select Debug ➤ Run. When the form launches, click the Async Read button. After
clicking the Async Read button, click the Message button. This time, you should get

CHAPTER 8 ■ IMPLEMENTING OBJECT COLLABORATION

161

a response because you called the ReadLog method asynchronously. After five
seconds you should see a message box containing the results of the
Logger.LogRead method.

8. When you have finished testing, close the form.

9. Save the project, and then exit Visual Studio.

Summary
This chapter described how the objects in your applications collaborate. You saw how objects pass
messages to one another, how events drive your programs, how instances of a class share data, and how
to handle exceptions.

In the next chapter, you will look at collections and arrays. Collections and arrays organize similar
objects into a group. Working with collections is one of the most common programming constructs you
will need to apply in your applications. You will examine some of the basic types of collections available
in the NET Framework and learn how to employ collections in your code.

C H A P T E R 9

■ ■ ■

163

Working with Collections

In the previous chapter, you looked at how objects collaborate and communicate in object-oriented
programs. That chapter introduced the concepts of messaging, events, delegation, exception handling,
and asynchronous programming. In this chapter, you will look at how collections of objects are
organized and processed. The .NET Framework contains an extensive set of classes and interfaces for
creating and managing collections of objects. You will look at the various types of collection structures
.NET provides and learn what they are designed for and when to use each. You will also look at how to
use generics to create highly reusable, efficient collections.

In this chapter, you will learn the following:

• The various types of collections exposed by the .NET Framework.

• How to work with arrays and array lists.

• How to create generic collections.

• How to implement queues and stacks.

Introducing the .NET Framework Collection Types
Programmers frequently need to work with collections of types. For example, if you are working with
employee time records in a payroll system, you need to group the records by employee, loop through the
records, and add up the hours for each.

All collections need a basic set of functionality, such as adding objects, removing objects, and
iterating through their objects. In addition to the basic set, some collections need additional specialized
functionality. For example, a collection of help desk e-mail requests needs to implement a first-in, first-
out functionality when adding and removing items from the collection.

The .NET Framework provides a variety of basic and specialized collection classes for you to use.
The System.Collections namespace contains interfaces and classes that define various types of
collections, such as lists, queues, hash tables, and dictionaries. Table 9-1 lists and describes some of the
commonly used collection classes. If you do not find a collection class with the functionality you need,
you can extend a .NET Framework class to create your own.

CHAPTER 9 ■ WORKING WITH COLLECTIONS

164

Table 9-1. Commonly Used Collection Classes

Class Description

Array Provides the base class for language implementations that support strongly typed
arrays.

ArrayList Represents a weakly typed list of objects using an array whose size is dynamically
increased as required.

SortedList Represents a collection of key/value pairs that are sorted by the keys and are
accessible by key and by index.

Queue Represents a first-in, first-out (FIFO) collection of objects.

Stack Represents a simple last-in, first-out (LIFO), nongeneric collection of objects.

Hashtable Represents a collection of key/value pairs that are organized based on the hash
code of the key.

CollectionBase Provides the abstract base class for a strongly typed collection.

DictionaryBase Provides the abstract base class for a strongly typed collection of key/value pairs.

Table 9-2 describes some of the interfaces implemented by these collection classes.

Table 9-2. Collection Class Interfaces

Interface Description

ICollection Defines size, enumerators, and synchronization methods for all
nongeneric collections.

IComparer Exposes a method that compares two objects.

IDictionary Represents a nongeneric collection of key/value pairs.

IDictionaryEnumerator Enumerates the elements of a nongeneric dictionary.

IEnumerable Exposes the enumerator, which supports a simple iteration over a
nongeneric collection.

IEnumerator Supports a simple iteration over a nongeneric collection.

IList Represents a nongeneric collection of objects that can be individually
accessed by index.

CHAPTER 9 ■ WORKING WITH COLLECTIONS

165

In this chapter, you will work with some of the commonly used collection classes, beginning with

the Array and ArrayList classes.

Working with Arrays and Array Lists
An array is one of the most common data structures in computer programming. An array holds data
elements of the same data type. For example, you can create an array of integers, strings, or dates. Arrays
are often used to pass values to methods as parameters. For example, when you use a Console
application, it’s common to provide command line switches. The following DOS command is used to
copy a file on your computer:

copy win.ini c:\windows /y

The source file, destination path, and overwrite indicator are passed into the copy program as an array of
strings.

You access the elements of an array through its index. The index is an integer representing the

position of the element in the array. For example, an array of strings representing the days of the week
has the following index values:

Index Value

0 Sunday

1 Monday

2 Tuesday

3 Wednesday

4 Thursday

5 Friday

6 Saturday

This days-of-the-week example is a one-dimensional array, which means the index is represented

by a single integer. Arrays can also be multidimensional. The index of an element of a multidimensional
array is a set of integers equal to the number of dimensions. Figure 9-1 shows a seating chart that
represents a two-dimensional array where the student’s name (value) is referenced by the ordered pair
of row number, seat number (index).

CHAPTER 9 ■ WORKING WITH COLLECTIONS

166

Figure 9-1. A two-dimensional array

You implement array functionality when you declare its type. The common types implemented as
arrays are numeric types such as integers or double types, as well as the character and string types.
When declaring a type as an array, you use square brackets ([]) after the type, followed by the name of
the array. The elements of the array are designated by a comma separated list enclosed by curly brackets
({}). For example, the following code declares an array of type Integer and fills it with five values:

int[] intArray = { 1, 2, 3, 4, 5 };

Once a type is declared as an array, the properties and methods of the Array class are exposed. Some
of the functionality includes querying for the upper and lower bounds of the array, updating the
elements of the array, and copying the elements of the array. The Array class contains many static
methods used to work with arrays, such as methods for clearing, reversing, and sorting its elements.

CHAPTER 9 ■ WORKING WITH COLLECTIONS

167

The following code demonstrates declaring and working with an array of integers. It also uses
several static methods exposed by the Array class. Notice the foreach loop used to list the values of the
array. The foreach loop provides a way to iterate through the elements of the array. Figure 9-2 shows the
output of this code in the Console window.

 int[] intArray = { 1, 2, 3, 4, 5 };
 Console.WriteLine("Upper Bound");
 Console.WriteLine(intArray.GetUpperBound(0));
 Console.WriteLine("Array elements");
 foreach (int item in intArray)
 {
 Console.WriteLine(item);
 }
 Array.Reverse(intArray);
 Console.WriteLine("Array reversed");
 foreach (int item in intArray)
 {
 Console.WriteLine(item);
 }
 Array.Clear(intArray, 2, 2);
 Console.WriteLine("Elements 2 and 3 cleared");
 foreach (int item in intArray)
 {
 Console.WriteLine(item);
 }
 intArray[4] = 9;
 Console.WriteLine("Element 4 reset");
 foreach (int item in intArray)
 {
 Console.WriteLine(item);
 }
 Console.ReadLine();

CHAPTER 9 ■ WORKING WITH COLLECTIONS

168

Figure 9-2. One-dimensional array output

Although one-dimensional arrays are the most common type you will run into, you should
understand how to work with the occasional multidimensional array. Two-dimensional arrays are used
to store (in active memory) and process data that fits in the rows and columns of a table. For example,
you may need to process a series of measurements (temperature or radiation level) taken at hourly
intervals over several days. To create a multidimensional array, you place one or more commas inside
the square brackets to indicate the number of dimensions. One comma indicates two dimensions; two
commas indicate three dimensions, and so forth. When filling a multidemensional array, curly brackets
within curly brackets define the elements. The following code declares and fills a two-dimensional array:

int[,] twoDArray = { { 1, 2 }, { 3, 4 }, { 5, 6 } };
//Print the index and value of the elements
for (int i = 0; i <= twoDArray.GetUpperBound(0); i++)
{
 for (int x = 0; x <= twoDArray.GetUpperBound(1); x++)
 {
 Console.WriteLine("Index = [{0},{1}] Value = {2}", i, x, twoDArray[i, x]);
 }
}

Figure 9-3 shows the output of this code in the Console window.

CHAPTER 9 ■ WORKING WITH COLLECTIONS

169

Figure 9-3. Two-dimensional array output

When you work with collections, you often do not know the number of items it contains until
runtime. This is where the ArrayList class fits in. The capacity of an array list automatically expands as
required, with the memory reallocation and copying of elements performed automatically. The ArrayList
class also provides methods and properties for working with the array elements that the Array class does
not provide. The following code demonstrates some of these properties and methods. Notice that the
capacity of the list expands dynamically as more names are added.

 ArrayList nameList = new ArrayList();
 nameList.Add("Bob");
 nameList.Add("Dan");
 nameList.Add("Wendy");
 Console.WriteLine("Original Capacity");
 Console.WriteLine(nameList.Capacity);
 Console.WriteLine("Original Values");
 foreach (object name in nameList)
 {
 Console.WriteLine(name);
 }

 nameList.Insert(nameList.IndexOf("Dan"), "Cindy");
 nameList.Insert(nameList.IndexOf("Wendy"), "Jim");
 Console.WriteLine("New Capacity");
 Console.WriteLine(nameList.Capacity);
 Console.WriteLine("New Values");
 foreach (object name in nameList)
 {
 Console.WriteLine(name);
 }

Figure 9-4 shows the output in the Console window.

CHAPTER 9 ■ WORKING WITH COLLECTIONS

170

Figure 9-4. The ArrayList output

Although it’s often easier to work with an ArrayList than with an Array, an ArrayList can have only
one dimension. Also, an Array of a specific type offers better performance than an ArrayList, because the
elements of ArrayList are of type Object. When types are added to the ArrayList, they are cast to a generic
Object type. When the items are retrieved from the list, they must be cast once again to the specific type.

ACTIVITY 9-1. WORKING WITH ARRAYS AND ARRAYLISTS

In this activity, you will become familiar with the following:

• Creating and using arrays.

• Working with multidimensional arrays.

• Working with array lists.

Creating and Using Arrays

To create and populate an array, follow these steps:

1. Start Visual Studio. Select File ➤ New ➤ Project.

2. Choose a Console application project. Name the project Act9_1. The Console
application contains a class called Program with a Main method. The Main method
is the first method that is accessed when the application is launched.

3. Notice that the Main method accepts an input parameter of a string array called
args. The args array contains any command line args passed in when the Console

CHAPTER 9 ■ WORKING WITH COLLECTIONS

171

application is launched. The members of the args array are separated by a space
when passed in.

static void Main(string[] args)
{
}

4. Add the following code to the Main method to display the command line
arguments passed in:

Console.WriteLine("parameter count = {0}", args.Length);

for (int i = 0; i < args.Length; i++)
{
 Console.WriteLine("Arg[{0}] = [{1}]", i, args[i]);
}
Console.ReadLine();

5. In Solution Explorer, right-click the project node and choose Project. In the project
properties window, select the Debug tab. In the command line arguments field,
enter “C# coding is fun” (see Figure 9-5).

Figure 9-5. Adding comand line arguments

6. Select Debug ➤ Start to run the project. The Console window should launch with
the output shown in Figure 9-6. After viewing the output, stop the debugger.

CHAPTER 9 ■ WORKING WITH COLLECTIONS

172

Figure 9-6. The Console output for the array

7. Add the following code before the Console.ReadLine() method in the Main method.
This code clears the value of the array at index 1 and sets the value at index 3 to
“great”.

Array.Clear(args, 1, 1);
args[3] = "great";
for (int i = 0; i < args.Length; i++)
{
 Console.WriteLine("Arg[{0}] = [{1}]", i, args[i]);
}

8. Select Debug ➤ Start to run the project. The Console window should launch with
the additional output shown in Figure 9-7. After viewing the output, stop the
debugger.

Figure 9-7. The Console output for the updated array

CHAPTER 9 ■ WORKING WITH COLLECTIONS

173

Working with Multidimensional Arrays

To create and populate a multidimensional array, follow these steps:

1. Comment out the code in the Main method.

2. Add the following code to the Main method to create and populate a two-
dimensional array:

string[,] seatingChart = new string[2,2];
seatingChart[0, 0] = "Mary";
seatingChart[0, 1] = "Jim";
seatingChart[1, 0] = "Bob";
seatingChart[1, 1] = "Jane";

3. Add the following code to loop through the array and print the names to the
Console window:

for (int row = 0; row < 2; row++)
{
 for (int seat = 0; seat < 2; seat++)
 {
 Console.WriteLine("Row: {0} Seat: {1} Student: {2}",
 (row + 1),(seat + 1),seatingChart[row, seat]);
 }
}
Console.ReadLine();

4. Select Debug ➤ Start to run the project. The Console window should launch with
the output that shows the seating chart of the students (see Figure 9-8).

Figure 9-8. The Console output for the two-dimensional array

5. After viewing the output, stop the debugger.

Working with ArrayLists

Although the two dimensional array you just created works, it may be more intuitive to store the
information about each student’s seating assignment in a seating assignment class and then to organize
these objects into an ArrayList structure. To create and populate an array list of seating assignments,
follow these steps:

CHAPTER 9 ■ WORKING WITH COLLECTIONS

174

1. Add a class file to the project named SeatingAssignment.cs.

2. Add the following code to create the SeatingAssignment class. This class contains
a Row, Seat, and Student property. It also contains an overloaded constructor to
set these properties.

 public class SeatingAssignment
 {
 int _row;
 int _seat;
 string _student;
 public int Row
 {
 get { return _row; }
 set { _row = value; }
 }
 public int Seat
 {
 get { return _seat; }
 set { _seat = value; }
 }
 public string Student
 {
 get { return _student; }
 set { _student = value; }
 }
 public SeatingAssignment(int row, int seat, string student)
 {
 this.Row = row;
 this.Seat = seat;
 this.Student = student;
 }
 }

3. In the Main method of the Program class, comment out the previous code.

4. Add the following code to create an ArrayList of SeatingAssignments:

ArrayList seatingChart = new ArrayList();
seatingChart.Add(new SeatingAssignment(0, 0, "Mary"));
seatingChart.Add(new SeatingAssignment(0, 1, "Jim"));
seatingChart.Add(new SeatingAssignment(1, 0, "Bob"));
seatingChart.Add(new SeatingAssignment(1, 1, "Jane"));
After the ArrayList is populated, add the following code to write the SeatingAssignment
information to the console window.
foreach (SeatingAssignment sa in seatingChart)
{
 Console.WriteLine("Row: {0} Seat: {1} Student: {2}",
 (sa.Row + 1), (sa.Seat + 1), sa.Student);
}
Console.ReadLine();

CHAPTER 9 ■ WORKING WITH COLLECTIONS

175

5. Select Debug ➤ Start to run the project. The Console window should launch with
the same output as shown in Figure 9-8 (the seating chart of the students).

6. One of the advantages of the ArrayList class is the ability to add and remove items
dynamically. Add the following code after the code in step 4 to add two more
students to the seating chart:

seatingChart.Add(new SeatingAssignment(2, 0, "Bill"));
seatingChart.Add(new SeatingAssignment(2, 1, "Judy"));

7. Select Debug ➤ Start to run the project. The Console window should launch with
the output showing the new students.

8. When finished, stop the debugger, and close Visual Studio.

Using Generic Collections
Working with collections is a common requirement of application programming. Most of the data we
work with needs to be organized in a collection. For example, you may need to retrieve customers from a
database and load them into a drop-down list in the UI (User Interface). The customer information is
represented by a customer class, and the customers are organized into a customer collection. The
collection can then be sorted, filtered, and looped through for processing.

With the exception of a few of the specialized collections strongly typed to hold strings, the
collections provided by the .NET Framework are weakly typed. The items held by the collections are of
type Object, and so they can be of any type, since all types derive from the Object type.

Weakly typed collections can cause performance and maintenance problems for your application.
One problem is there are no inherent safeguards for limiting the types of objects stored in the collection.
The same collection can hold any type of item, including dates, integers, or a custom type such as an
employee object. If you build and expose a collection of integers, and that collection inadvertently gets
passed a date, the chances are high that the code will fail at some point.

Fortunately, C# supports generics, and the .NET Framework provides generic-based collections in
the System.Collections.Generic namespace. Generics let you define a class without specifying its type.
The type is specified when the class is instantiated. Using a generic collection provides the advantages of
type safety and the performance of a strongly typed collection while also providing the code reuse
associated with weakly typed collections.

The following code shows how to create a strongly typed collection of Customers using the
Generic.List class. The list type (in this case, Customer) is placed between the angle brackets (<>).
Customer objects are added to the collection, and then the Customers in the collection are retrieved,
and the Customer information is written out to the Console. (You will look at binding collections to UI
controls in Chapter 11.)

List<Customer> customerList = new List<Customer>();
customerList.Add(new Customer
 ("WHITC", "White Clover Markets", "Karl Jablonski"));
customerList.Add(new Customer("RANCH", "Rancho grande", "Sergio Gutiérrez"));
customerList.Add(new Customer("ALFKI","Alfreds Futterkiste","Maria Anders"));
customerList.Add
 (new Customer("FRANR", "France restauration", "Carine Schmitt"));

CHAPTER 9 ■ WORKING WITH COLLECTIONS

176

foreach (Customer c in customerList)
{
 Console.WriteLine("Id: {0} Company: {1} Contact: {2}",
 c.CompanyId, c.CompanyName, c.ContactName);
}

There may be times when you need to extend the functionality of the collection provided by the
.NET Framework. For example, you may need the ability to sort the collection of Customers by either the
CompanyId or the CompanyName. To implement sorting, you need to define a sorting class that
implements the IComparer interface. The IComparer interface ensures the sorting class implements a
Compare method with the appropriate signature. (Interfaces were covered in Chapter 7.) The
CustomerSorter class shown next sorts a list of Customer by CompanyName. Note that since the
CompanyName property is a string, you can use the String Comparer to sort them.

public class CustomerSorter : IComparer<Customer>
{
 public int Compare(Customer customer1, Customer customer2)
 {
 return customer1.CompanyName.CompareTo(customer2.CompanyName);
 }
}

Now you can sort the Customers by CompanyName and then display them.

customerList.Sort(new CustomerSorter());

The output is shown in Figure 9-9.

Figure 9-9. The Console output for the sorted list of Customer

CHAPTER 9 ■ WORKING WITH COLLECTIONS

177

ACTIVITY 9-2. IMPLEMENTING AND EXTENDING GENERIC COLLECTIONS

In this activity, you will become familiar with the following:

• Implementing a generic collection.

• Extending a generic collection to implement sorting.

To create and populate a generic list, follow these steps:

1. Start Visual Studio. Select File ➤ New ➤ Project.

2. Choose a Console Application project. Name the project Act9_2.

3. Select Project ➤ Add Class. Name the class Request.

4. Add the following properties to the Request class:

 public class Request
 {
 string _requestor;
 int _priority;
 DateTime _date;
 public string Requestor
 {
 get { return _requestor; }
 set { _requestor = value; }
 }
 public int Priority
 {
 get { return _priority; }
 set { _priority = value; }
 }
 public DateTime Date
 {
 get { return _date; }
 set { _date = value; }
 }

5. Overload the constructor of the Request class to set the properties in the
constructor.

 public Request(string requestor, int priority, DateTime date)
 {
 this.Requestor = requestor;
 this.Priority = priority;
 this.Date = date;
 }

6. Add a method to override the ToString() method of the base Object class. This will
return the request information as a string when the method is called.

 public override string ToString()

CHAPTER 9 ■ WORKING WITH COLLECTIONS

178

 {
 return String.Format("{0}, {1}, {2}",this.Requestor,
 this.Priority.ToString(), this.Date);
 }

7. Open the Program class in the code editor and add the following code to the Main
method. This code populates a generic list of type Request and displays the values
in the Console window.

 static void Main(string[] args)
 {
 List<Request> reqList = new List<Request>();
 reqList.Add(new Request("Dan",2 ,new DateTime(2011,4,2)));
 reqList.Add(new Request("Alice", 5, new DateTime(2011, 2, 5)));
 reqList.Add(new Request("Bill", 3, new DateTime(2011, 6, 19)));
 foreach (Request req in reqList)
 {
 Console.WriteLine(req.ToString());
 }
 Console.ReadLine();
 }

8. Select Debug ➤ Start to run the project. The Console window should launch with
the request items listed in the order they were added to the reqList.

9. Select Project ➤ Add Class. Name the class DateSorter.

10. Add the following code to the DateSorter class. This class implements the
IComparer interface and is used to enable sorting Requests by date.

 public class DateSorter:IComparer<Request>
 {
 public int Compare(Request R1, Request R2)
 {
 return R1.Date.CompareTo(R2.Date);
 }
 }

11. Add the following code in the Main method of the Program class prior to the.
Console.WriteLine method. This code sorts the reqList by date and displays the
values in the Console window.

Console.WriteLine("Sorted by date.");
reqList.Sort(new DateSorter());
foreach (Request req in reqList)
{
 Console.WriteLine(req.ToString());
}
Console.ReadLine();

12. Select Debug ➤ Start to run the project. The Console window should launch with
the output shown in Figure 9-10. After viewing the output, stop the debugger and
exit Visual Studio.

CHAPTER 9 ■ WORKING WITH COLLECTIONS

179

Figure 9-10. Generic collection unsorted and sorted by date

Programming with Stacks and Queues
Two special types of collections often used in programming are the stack and the queue. A stack is a last-
in, first-out collection of objects. A queue represents a first-in, first-out collection of objects.

A stack is a good way to maintain a list of moves made in a chess game. When a user wants to undo
his moves , he begins with his most recent move, which is the last one added to the list and also the first
one retrieved . Another example of using a stack occurs when a program executes a series of method
calls. A stack maintains the addresses of the methods, and execution returns to the methods in the
reverse order in which they were called. When placing items in a stack, you use the push method. The
pop method removes items from the stack. The peek method returns the object at the top of the stack
without removing it. The following code demonstrates adding and removing items from a stack. In this
case, you’re using generics to implement a stack of ChessMove objects. The RecordMove method adds
the most recent move to the stack. The GetLastMove method returns the most recent move on the stack.

 Stack<ChessMove> moveStack = new Stack<ChessMove>();
 void RecordMove(ChessMove move)
 {
 moveStack.Push(move);
 }
 ChessMove GetLastMove()
 {
 return moveStack.Pop();
 }

An application that services help desk requests is a good example of when to use a queue. A
collection maintains a list of help desk requests sent to the application. When requests are retrieved
from the collection for processing, the first ones in should be the first ones retrieved. The Queue class
uses the enqueue and dequeue methods to add and remove items. It also implements the peek method
to return the item at the beginning of the queue without removing the item. The following code
demonstrates adding and removing items from a PaymentRequest queue. The AddRequest method adds
a request to the queue and the GetNextRequest method removes a request from the queue.

CHAPTER 9 ■ WORKING WITH COLLECTIONS

180

 Queue<PaymentRequest> payRequest = new Queue<PaymentRequest>();
 void AddRequest(PaymentRequest request)
 {
 payRequest.Enqueue(request);
 }
 PaymentRequest GetNextRequest()
 {
 return payRequest.Dequeue();
 }

Summary
In this chapter, you examined the various types of collections exposed by the .NET Framework. You
learned how to work with arrays, array lists, queues, stacks, and generic collections.

This chapter is the final one in a series that introduced you to the various OOP constructs such as
classes, inheritance, and polymorphism. You should have a firm understanding of how class structures,
object collaboration, and collections are implemented in C#. You have been introduced to the Visual
Studio IDE and you’ve practiced using it. You are now ready to put the pieces together and develop a
working application.

The next chapter is the first in a series in which you will develop .NET applications. In the process,
you will investigate data access using ADO.NET, create a Windows-based GUI using the Widows
Presentation Framework, create a web-based GUI using Silverlight, and create web services using the
Windows Communication Framework.

C H A P T E R 1 0

■ ■ ■

181

Implementing the Data Access
Layer

In the past several chapters, you have looked at the various object-oriented programming constructs
such as classes, inheritance, and polymorphism as they are implemented in C# code. You have been
introduced to and practiced using the Visual Studio integrated development environment. You should
also have a firm understanding of how class structures and object collaboration are implemented.

You are now ready to put the pieces together and develop a working application. Because most
business applications involve working with and updating data in a back-end relational database, you will
look at how the .NET Framework provides the functionality to work with relational data.

After reading this chapter, you will understand the following:

• How to establish a connection to a database using the Connection object.

• How to use a Command object to execute SQL queries.

• How to use a Command object to execute stored procedures.

• How to retrieve records with the DataReader object.

• How to populate DataTables and DataSets.

• How to establish relationships between tables in a DataSet.

• How to edit and update data in a DataSet.

• How to create an Entity Data Model.

• How to use LINQ to EF to query data.

• How to use the Entity Framework to update data.

Introducing ADO.NET
A majority of applications developed for businesses need to interact with a data storage device. Data
storage can occur in many different forms: for example, in a flat file system, as is the case with many
traditional mainframe systems, or in a relational database management system, such as SQL Server,
Oracle, or Sybase. You can also maintain data in a hierarchical textual file structure, as is the case with
XML. To access and work with data in a consistent way across these various data stores, the .NET

CHAPTER 10 ■ IMPLEMENTING THE DATA ACCESS LAYER

182

Framework provides a set of classes organized into the System.Data namespace. This collection of
classes is known as ADO.NET.

Looking at the history of Microsoft’s data access technologies reveals an evolution from a connected
model to a disconnected one. When developing the traditional two-tier client-server applications
prevalent in the 1980s and early 1990s, it was often more efficient to open a connection with the
database, work with the data implementing server-side cursors, and close the connection when finished
working with the data. The problem with this approach became apparent in the late 1990s as companies
tried to evolve their data-driven applications from traditional two-tier client-server applications to
multitier web-based models: opening and holding a connection open until processing was complete is
not scalable. Scalability is the ability of an application to handle an increasing number of simultaneous
clients without a noticeable degradation of performance. Microsoft has designed ADO.NET to be highly
scalable. To achieve scalability, Microsoft has designed ADO.NET around a disconnected model. A
connection is made to the database, the data and metadata are retrieved and cached locally, and the
connection is closed.

Another problem with the traditional data access technologies developed during this time was the
lack of interoperability. Systems with a high degree of interoperability can easily exchange data back and
forth between each other regardless of the implementation technologies of the various systems.
Traditional data access technologies rely on proprietary methods of data exchange. Using these
techniques, it is hard for a system built using Microsoft technologies such as ADO (pre-.NET) and DCOM
to exchange data with a system built using Java technologies such as JDBC and CORBA. The industry as a
whole realized it was in the best interest of all parties to develop open standards for exchanging data
between disparate systems. Microsoft has embraced these standards and has incorporated support of
the standards into the .NET Framework.

Working with Data Providers
To establish a connection to a data source, such as a SQL Server database, and work with its data, you
must use the appropriate .NET provider classes. The SQL Server provider classes are located in the
System.Data.SQLClient namespace. Other data providers exist, such as the OLEDB data provider for
Oracle classes located in the System.Data.OLEDB namespace. Each of these providers implements a
similar class structure, which you can use to interact with its intended data source. Table 10-1
summarizes the main classes of the System.Data.SQLClient provider namespace.

Table 10-1. Classes in the System.Data.SqlClient Namespace

Class Responsibility

SqlConnection Establishes a connection and a unique session with a database.

SqlCommand Represents a Transact-SQL statement or stored procedure to execute at the
database.

SqlDataReader Provides a means of reading a forward-only stream of rows from the database.

SqlDataAdapter Fills a DataSet and updates changes back to the database.

SqlParameter Represents a parameter used to pass information to and from stored procedures.

CHAPTER 10 ■ IMPLEMENTING THE DATA ACCESS LAYER

183

Class Responsibility

SqlTransaction Represents a Transact-SQL transaction to be made in the database.

SqlError Collects information relevant to a warning or error returned by the database
server.

SqlException Defines the exception that is thrown when a warning or error is returned by the
database server.

A similar set of classes exists in the System.Data.OLEDB provider namespace. For example, instead

of the SqlConnection class, you have an OleDbConnection class.

Establishing a Connection
The first step to retrieving data from a database is to establish a connection, which is done using a
Connection object based on the type of provider being used. To establish a connection to SQL Server,
you instantiate a Connection object of type SqlConnection. You also need to provide the Connection
object with a ConnectionString. The ConnectionString consists of a series of semicolon-delineated
name-value pairs that provide information needed to connect to the database server. Some of the
information commonly passed by the ConnectionString is the name of the target server, the name of the
database, and security information. The following code demonstrates a ConnectionString used to
connect to a SQL Server database:

"Data Source=TestServer;Initial Catalog=Pubs;User ID=Dan;Password=training"

The attributes you need to provide through the ConnectionString are dependent on the data
provider you are using. The following code demonstrates a ConnectionString used to connect to an
Access database using the OLEDB provider for Access:

"Provider=Microsoft.Jet.OleDb.4.0;Data Source=D:\Data\Northwind.mdb"

The next step is to invoke the Open method of the Connection object. This will result in the
Connection object loading the appropriate driver and opening a connection to the data source. Once the
connection is open, you can work with the data. After you are done interacting with the database, it is
important you invoke the Close method of the Connection object, because when a Connection object
falls out of scope or is garbage collected, the connection is not implicitly released. The following code
demonstrates the process of opening a connection to the Pubs database in SQL Server, working with the
data, and closing the connection:

SqlConnection pubConnection = new SqlConnection();
string connString;
try
{
 connString = "Data Source=drcsrv01;Initial Catalog=pubs;Integrated Security=True";
 pubConnection.ConnectionString = connString;
 pubConnection.Open();
 //work with data
}
catch (SqlException ex)

CHAPTER 10 ■ IMPLEMENTING THE DATA ACCESS LAYER

184

{
 throw ex;
}
finally
{
 if (pubConnection != null)
 {
 pubConnection.Close();
 }
}

Executing a Command
Once your application has established and opened a connection to a database, you can execute SQL
statements against it. A Command object stores and executes command statements against the
database. You can use the Command object to execute any valid SQL statement understood by the data
store. In the case of SQL Server, these can be Data Manipulation Language statements (Select, Insert,
Update, and Delete), Data Definition Language statements (Create, Alter, and Drop), or Data Control
Language statements (Grant, Deny, and Revoke). The CommandText property of the Command object
holds the SQL statement that will be submitted. The Command object contains three methods for
submitting the CommandText to the database depending on what is returned. If records are returned, as
is the case when a Select statement is executed, then you can use the ExecuteReader. If a single value is
returned—for example, the results of a Select Count aggregate function—you should use the
ExecuteScalar method. When no records are returned from a query—for example, from an Insert
statement—you should use the ExecuteNonQuery method. The following code demonstrates using a
Command object to execute a SQL statement against the Pubs database that returns the number of
employees:

SqlConnection pubConnection = new SqlConnection();
string connString;
SqlCommand pubCommand;
try
{
 connString = "Data Source=drcsrv01;Initial Catalog=pubs;Integrated Security=True";
 pubConnection.ConnectionString = connString;
 pubConnection.Open();
 pubCommand = new SqlCommand();
 pubCommand.Connection = pubConnection;
 pubCommand.CommandText = "Select Count(emp_id) from employee";
 return (int)pubCommand.ExecuteScalar();
}
catch (SqlException ex)
{
 throw ex;
}
finally
{
 if (pubConnection != null)
 {
 pubConnection.Close();

CHAPTER 10 ■ IMPLEMENTING THE DATA ACCESS LAYER

185

 }
}

Using Stored Procedures
In many application designs, instead of executing a SQL statement directly, clients must execute stored
procedures. Stored procedures are an excellent way to encapsulate the database logic, increase
scalability, and enhance the security of multitiered applications. To execute a stored procedure, you use
a Command object, setting its CommandType property to StoredProcedure and its CommandText
property to the name of the stored procedure. The following code executes a stored procedure that
returns the number of employees in the Pubs database:

SqlConnection pubConnection = new SqlConnection();
string connString;
SqlCommand pubCommand;
try
{
 connString = "Data Source=drcsrv01;Initial Catalog=pubs;Integrated Security=True";
 pubConnection.ConnectionString = connString;
 pubConnection.Open();
 pubCommand = new SqlCommand();
 pubCommand.Connection = pubConnection;
 pubCommand.CommandText = "GetEmployeeCount";
 pubCommand.CommandType = CommandType.StoredProcedure;
 return (int)pubCommand.ExecuteScalar();
}
catch (SqlException ex)
{
 throw ex;
}
finally
{
 if (pubConnection != null)
 {
 pubConnection.Close();
 }
}

When executing a stored procedure, you often must supply input parameters. You may also need to
retrieve the results of the stored procedure through output parameters. To work with parameters, you
need to instantiate a parameter object of type SqlParameter, and then add it to the Parameters collection
of the Command object. When constructing the parameter, you supply the name of the parameter and
the SQL Server data type. For some data types, you also supply the size. If the parameter is an output,
input-output, or return parameter, then you must indicate the parameter direction. The following
example calls a stored procedure that accepts an input parameter of a letter. The procedure passes back
a count of the employees whose last name starts with the letter. The count is returned in the form of an
output parameter.

SqlConnection pubConnection = new SqlConnection();
string connString;
SqlCommand pubCommand;

CHAPTER 10 ■ IMPLEMENTING THE DATA ACCESS LAYER

186

try
{
 connString = "Data Source=drcsrv01;Initial Catalog=pubs;Integrated Security=True";
 pubConnection.ConnectionString = connString;
 pubConnection.Open();
 pubCommand = new SqlCommand();
 pubCommand.Connection = pubConnection;
 pubCommand.CommandText = "GetEmployeeCountByLastInitial";
 SqlParameter inputParameter = pubCommand.Parameters.Add
 ("@LastInitial", SqlDbType.NChar, 1);
 inputParameter.Value = lastInitial.ToCharArray()[0];
 SqlParameter outputParameter = pubCommand.Parameters.Add
 ("@EmployeeCount", SqlDbType.Int);
 outputParameter.Direction = ParameterDirection.Output;
 pubCommand.CommandType = CommandType.StoredProcedure;
 pubCommand.ExecuteNonQuery();
 return (int)outputParameter.Value;
}
catch (SqlException ex)
{
 throw ex;
}
finally
{
 if (pubConnection != null)
 {
 pubConnection.Close();
 }
}

Using the DataReader Object to Retrieve Data
A DataReader object accesses data through a forward-only, read-only stream. Oftentimes you will want
to loop through a set of records and process the results sequentially without the overhead of maintaining
the data in a cache. A good example of this would be loading a list or array with the values returned from
the database. After declaring an object of type SqlDataReader, you instantiate it by invoking the
ExecuteReader method of a Command object. The Read method of the DataReader object accesses the
records returned. The Close method of the DataReader object is called after the records have been
processed. The following code demonstrates the use of a DataReader object to retrieve a list of names
from a SQL Server database and return it to the client:

public ArrayList ListNames()
{
 SqlConnection pubConnection = new SqlConnection();
 string connString;
 SqlCommand pubCommand;
 ArrayList nameArray;
 SqlDataReader employeeDataReader;
 try
 {

CHAPTER 10 ■ IMPLEMENTING THE DATA ACCESS LAYER

187

 connString = "Data Source=drcsrv01;" +
 "Initial Catalog=pubs;Integrated Security=True";
 pubConnection.ConnectionString = connString;
 pubConnection.Open();
 pubCommand = new SqlCommand();
 pubCommand.Connection = pubConnection;
 pubCommand.CommandText =
 "Select lname from employee";
 employeeDataReader = pubCommand.ExecuteReader();
 nameArray = new ArrayList();
 while (employeeDataReader.Read())
 {
 nameArray.Add(employeeDataReader["lname"]);
 }
 return nameArray;
 }
 catch (SqlException ex)
 {
 throw ex;
 }
 finally
 {
 if (pubConnection != null)
 {
 pubConnection.Close();
 }
 }
}

Using the DataAdapter to Retrieve Data
In many cases, you need to retrieve a set of data from the database, work with the data, and return any
updates to the data back to the database. In that case, you use a DataAdapter as a bridge between the
data source and the in-memory cache of the data. This in-memory cache of data is contained in a
DataSet, which is a major component of the ADO.NET architecture.

■Note The DataSet object is discussed in greater detail in the “Working with DataTables and DataSets”
section.

To retrieve a set of data from a database, you instantiate a DataAdapter object. You set the
SelectCommand property of the DataAdapter to an existing Command object. You then execute the Fill
method, passing the name of a DataSet object to fill. Here you see how to use a DataAdapter to fill a
DataSet and pass the DataSet back to the client:

SqlConnection pubConnection = new SqlConnection();
string connString;
SqlCommand pubCommand;
SqlDataAdapter employeeAdapter;

CHAPTER 10 ■ IMPLEMENTING THE DATA ACCESS LAYER

188

DataSet employeeDataSet;
try
{
 connString = "Data Source=drcsrv01;Initial Catalog=pubs;Integrated Security=True";
 pubConnection.ConnectionString = connString;
 pubConnection.Open();
 pubCommand = new SqlCommand();
 pubCommand.Connection = pubConnection;
 pubCommand.CommandText = "Select emp_id, lname, Hire_Date from employee";
 employeeAdapter = new SqlDataAdapter();
 employeeAdapter.SelectCommand = pubCommand;
 employeeDataSet = new DataSet();
 employeeAdapter.Fill(employeeDataSet);
 return employeeDataSet;
}
catch (SqlException ex)
{
 throw ex;
}
finally
{
 if (pubConnection != null)
 {
 pubConnection.Close();
 }
}

You may find that you need to retrieve a set of data by executing a stored procedure as opposed to
passing in a SQL statement. The following code demonstrates executing a stored procedure that accepts
an input parameter and returns a set of records. The records are loaded into a DataSet object and
returned to the client.

SqlConnection pubConnection = new SqlConnection();
string connString;
SqlCommand pubCommand;
SqlDataAdapter employeeAdapter;
DataSet employeeDataSet;
try
{
 connString = "Data Source=drcsrv01;Initial Catalog=pubs;Integrated Security=True";
 pubConnection.ConnectionString = connString;
 pubConnection.Open();
 pubCommand = new SqlCommand();
 pubCommand.Connection = pubConnection;
 pubCommand.CommandText = "GetEmployeeCountByLastInitial";
 SqlParameter inputParameter = pubCommand.Parameters.Add
 ("@LastInitial", SqlDbType.NChar, 1);
 inputParameter.Value = lastInitial.ToCharArray()[0];
 pubCommand.CommandType = CommandType.StoredProcedure;
 employeeAdapter = new SqlDataAdapter();
 employeeAdapter.SelectCommand = pubCommand;
 employeeDataSet = new DataSet();

CHAPTER 10 ■ IMPLEMENTING THE DATA ACCESS LAYER

189

 employeeAdapter.Fill(employeeDataSet);
 return employeeDataSet;
}
catch (SqlException ex)
{
 throw ex;
}
finally
{
 if (pubConnection != null)
 {
 pubConnection.Close();
 }
}

ACTIVITY 10-1. RETRIEVING DATA FROM A SQL SERVER DATABASE

In this activity, you will become familiar with the following:

■Note For the activities in this chapter to work, you must have access to a SQL Server 2005 or higher
database server with the sample Microsoft Pubs and Northwind databases installed. You must be logged on under
a Windows account that has been given the appropriate rights to these databases. You may have to alter the
ConnectionString depending on your settings. For more information, refer to the “Software Requirements” section
in the Introduction and Appendix C.

Creating a Connection and Executing SQL Queries

To create a connection and execute SQL queries, follow these steps:

1. Start Visual Studio. Select File ➤ New ➤ Project.

2. Choose a Console Application project. Name the project Act10_1.

3. After the project opens, add a new class to the project named Author.

4. Open the Author class code in the code editor. Add the following using statements
at the top of the file:

• Establishing a connection to a SQL Server database.

• Executing queries through a Command object.

• Retrieving data with a DataReader object.

• Executing a stored procedure using a Command object.

CHAPTER 10 ■ IMPLEMENTING THE DATA ACCESS LAYER

190

using System.Data;
using System.Data.SqlClient;

5. Add this code to declare a private class-level variable of type SQLConnection:

public class Author
{
 SqlConnection _pubConnection;
 string _connString;

6. Create a class constructor that instantiates the Pubs Connection object and sets
up the ConnectionString property.

public Author()
{
 _connString =
 "Data Source=localhost;Initial Catalog=pubs;Integrated Security=True";
 _pubConnection = new SqlConnection();
 _pubConnection.ConnectionString = _connString;
}

7. Add a method to the class that will use a Command object to execute a query to
count the number of authors in the Authors table. Because you are only returning a
single value, you will use the ExecuteScalar method of the Command object.

public int CountAuthors()
{
 try
 {
 SqlCommand pubCommand = new SqlCommand();
 pubCommand.Connection = _pubConnection;
 pubCommand.CommandText = "Select Count(au_id) from authors";
 _pubConnection.Open();
 return (int)pubCommand.ExecuteScalar();
 }
 catch (SqlException ex)
 {
 throw ex;
 }
 finally
 {
 if (_pubConnection != null)
 {
 _pubConnection.Close();
 }
 }
}

8. Add the following code to the Main Method of the Program class, which will
execute the GetAuthorCount method defined in the Author class:

static void Main(string[] args)
{
 try

CHAPTER 10 ■ IMPLEMENTING THE DATA ACCESS LAYER

191

 {
 Author author = new Author();
 Console.WriteLine(author.CountAuthors());
 Console.ReadLine();
 }
 catch (Exception ex)
 {
 Console.WriteLine(ex.Message);
 Console.ReadLine();
 }
}

9. Select Debug ➤ Start to run the project. The Console window should launch with
the number of authors displayed. After viewing the output, stop the debugger.

Using the DataReader Object to Retrieve Records

To use the DataReader object to retrieve records, follow these steps:

1. Open the Author class code in the code editor.

2. Add a public method to the class definition called GetAuthorList that returns an
generic List of strings:

public List<string> GetAuthorList()
{
}

3. Add the following code, which executes a SQL Select statement to retrieve the
authors’ last names. A DataReader object then loops through the records and
creates a list of names that gets returned to the client.

SqlCommand authorsCommand = new SqlCommand();
SqlDataReader authorDataReader;
List<string> nameList = new List<string>();
try
{
 authorsCommand.Connection = _pubConnection;
 authorsCommand.CommandText = "Select au_lname from authors";
 _pubConnection.Open();
 authorDataReader = authorsCommand.ExecuteReader();
 while (authorDataReader.Read() == true)
 {
 nameList.Add(authorDataReader.GetString(0));
 }
 return nameList;
}
catch (SqlException ex)
{
 throw ex;
}
finally

CHAPTER 10 ■ IMPLEMENTING THE DATA ACCESS LAYER

192

{
 if (_pubConnection != null)
 {
 _pubConnection.Close();
 }
}

4. Change the code in the Main Method of the Program class to show the list of
names in the console window.

static void Main(string[] args)
{
 try
 {
 Author author = new Author();
 foreach (string name in author.GetAuthorList())
 {
 Console.WriteLine(name);
 }
 Console.ReadLine();
 }
 catch (Exception ex)
 {
 Console.WriteLine(ex.Message);
 Console.ReadLine();
 }
}

5. Select Debug ➤ Start to run the project. The Console window should launch with
the names of the authors displayed. After viewing the output, stop the debugger.

Executing a Stored Procedure Using a Command Object

To execute a stored procedure using a Command object, follow these steps:

1. Open the Author class code in the code editor.

2. Add a public method that overloads the GetAuthorList method by accepting an
integer parameter named Royalty. This function will call the stored procedure by
royalty in the Pubs database. The procedure takes an integer input of royalty
percentage and returns a list of author IDs with the percentage.

public List<string> GetAuthorList(int royalty)
{
 SqlCommand authorsCommand = new SqlCommand();
 SqlDataReader authorDataReader;
 List<string> nameList = new List<string>();
 SqlParameter inputParameter = new SqlParameter();
 try
 {
 authorsCommand.Connection = _pubConnection;
 authorsCommand.CommandType = CommandType.StoredProcedure;
 authorsCommand.CommandText = "byroyalty";

CHAPTER 10 ■ IMPLEMENTING THE DATA ACCESS LAYER

193

 inputParameter.ParameterName = "@percentage";
 inputParameter.Direction = ParameterDirection.Input;
 inputParameter.SqlDbType = SqlDbType.Int;
 inputParameter.Value = royalty;
 authorsCommand.Parameters.Add(inputParameter);
 _pubConnection.Open();
 authorDataReader = authorsCommand.ExecuteReader();
 while (authorDataReader.Read() == true)
 {
 nameList.Add(authorDataReader.GetString(0));
 }
 return nameList;
 }
 catch (SqlException ex)
 {
 throw ex;
 }
 finally
 {
 if (_pubConnection != null)
 {
 _pubConnection.Close();
 }
 }

}

3. In the Main method of the Program class, supply an input parameter of 25 to the
GetAuthorList method.

foreach (string name in author.GetAuthorList(25))

4. Select Debug ➤ Start to run the project. The Console window should launch with
the IDs of the authors displayed. After viewing the output, stop the debugger.

5. When finished testing, exit Visual Studio.

Working with DataTables and DataSets
DataSets and DataTables are in-memory caches of data that provide a consistent relational
programming model for working with data regardless of the data source. A DataTable represents one
table of relational data and consists of columns, rows, and constraints. You can think of a DataSet as a
minirelational database, which includes the data tables and the relational integrity constraints between
them. If you are retrieving data from a single table, you can populate and use the DataTable directly
without the overhead of creating a DataSet first. There are several ways to create a DataTable or DataSet.
The most obvious method is to populate a DataTable or DataSet from an existing relational database
management system (RDBMS) such as a SQL Server database. As mentioned previously, a DataAdapter
object provides the bridge between the RDBMS and the DataTable or DataSet. By using a DataAdapter
object, the DataTable or DataSet is totally independent from the data source. Although you need to use a

CHAPTER 10 ■ IMPLEMENTING THE DATA ACCESS LAYER

194

specific set of provider classes to load either type of object, you use the same set of .NET Framework
classes to work with a DataTable or DataSet, regardless of how it was created and populated. The
System.Data namespace contains the framework classes for working with DataTable or DataSet objects.
Table 10-2 lists some of the main classes contained in the System.Data namespace.

Table 10-2. The Main Members of the System.Data Namespace

Class Description

DataSet Represents a collection of DataTable and DataRelation objects. Organizes
an in-memory cache of relational data.

DataTable Represents a collection of DataColumn, DataRow, and Constraint objects.
Organizes records and fields related to a data entity.

DataColumn Represents the schema of a column in a DataTable.

DataRow Represents a row of data in a DataTable.

Constraint Represents a constraint that can be enforced on DataColumn objects.

ForeignKeyConstraint Enforces referential integrity of a parent/child relationship between two
DataTable objects.

UniqueConstraint Enforces uniqueness of a DataColumn or set of DataColumns. This is
required to enforce referential integrity in a parent/child relationship.

DataRelation Represents a parent/child relation between two DataTable objects.

Populating a DataTable from a SQL Server Database
To retrieve data from a database, you set up a connection with the database using a Connection object.
After a connection is established, you create a Command object to retrieve the data from the database.
As stated earlier, if you are retrieving data from a single table or result set, you can populate and work
with a DataTable directly without creating a DataSet object. The Load method of the DataTable fills the
table with the contents of a DataReader object. The following code fills a DataTable with data from the
publishers table of the Pubs database:

SqlConnection pubConnection = new SqlConnection();
string connString;
SqlCommand pubCommand;
SqlDataReader pubDataReader;
DataTable pubTable;
try
{
 connString = "Data Source=drcsrv01;" +
 "Initial Catalog=pubs;Integrated Security=True";
 pubConnection.ConnectionString = connString;

CHAPTER 10 ■ IMPLEMENTING THE DATA ACCESS LAYER

195

 pubCommand = new SqlCommand();
 pubCommand.Connection = pubConnection;
 pubCommand.CommandText =
 "Select pub_id, pub_name, city from publishers";
 pubConnection.Open();
 pubDataReader = pubCommand.ExecuteReader();
 pubTable = new DataTable();
 pubTable.Load(pubDataReader);
 return pubTable;
}
catch (SqlException ex)
{
 throw ex;
}
finally
{
 if (pubConnection != null)
 {
 pubConnection.Close();
 }
}

Populating a DataSet from a SQL Server Database
When you need to load data into multiple tables and maintain the referential integrity between the
tables, you need to use the DataSet object as a container for the DataTables. To retrieve data from a
database and fill the DataSet, you set up a connection with the database using a Connection object. After
a connection is established, you create a Command object to retrieve the data from the database, and
then create a DataAdapter to fill the DataSet, setting the previously created Command object to the
SelectCommand property of the DataAdapter. Create a separate DataAdapter for each DataTable. The
final step is to fill the DataSet with the data by executing the Fill method of the DataAdapter. The
following code demonstrates filling a DataSet with data from the publishers table and the titles table of
the Pubs database:

SqlConnection pubConnection = new SqlConnection();
string connString;
SqlCommand pubCommand;
SqlCommand titleCommand;
SqlDataAdapter pubDataAdapter;
SqlDataAdapter titleDataAdapter;
DataSet bookInfoDataSet;
try
{
 connString = "Data Source=drcsrv01;" +
 "Initial Catalog=pubs;Integrated Security=True";
 pubConnection.ConnectionString = connString;
 //Create pub table command
 pubCommand = new SqlCommand();
 pubCommand.Connection = pubConnection;
 pubCommand.CommandText =

CHAPTER 10 ■ IMPLEMENTING THE DATA ACCESS LAYER

196

 "Select pub_id, pub_name, city from publishers";
 pubDataAdapter = new SqlDataAdapter();
 pubDataAdapter.SelectCommand = pubCommand;
 //Create title table command
 titleCommand = new SqlCommand();
 titleCommand.Connection = pubConnection;
 titleCommand.CommandText =
 "Select pub_id, title, city, ytd_sales from titles";
 titleDataAdapter = new SqlDataAdapter();
 titleDataAdapter.SelectCommand = titleCommand;
 //Create and fill dataset
 bookInfoDataSet = new DataSet();
 pubDataAdapter.Fill(bookInfoDataSet, "Publishers");
 titleDataAdapter.Fill(bookInfoDataSet, "Titles");
 return bookInfoDataSet;
}
catch (SqlException ex)
{
 throw ex;
}
finally
{
 if (pubConnection != null)
 {
 pubConnection.Close();
 }
}

Establishing Relationships between Tables in a DataSet
In an RDBMS system, referential integrity between tables is enforced through a primary key and foreign
key relationship. Using a DataRelation object, you can enforce data referential integrity between the
tables in the DataSet. This object contains an array of DataColumn objects that define the common
field(s) between the parent table and the child table used to establish the relation. Essentially, the field
identified in the parent table is the primary key, and the field identified in the child table is the foreign
key. When establishing a relationship, create two DataColumn objects for the common column in each
table. Next, create a DataRelation object, pass a name for the DataRelation, and pass the DataColumn
objects to the constructor of the DataRelation object. The final step is to add the DataRelation to the
Relations collection of the DataSet object. The following code establishes a relationship between the
publishers and the titles tables of the bookInfoDataSet created in the previous section:

//Create relationahip between tables
DataRelation Pub_TitleRelation;
DataColumn Pub_PubIdColumn;
DataColumn Title_PubIdColumn;
Pub_PubIdColumn = bookInfoDataSet.Tables["Publishers"].Columns["pub_id"];
Title_PubIdColumn = bookInfoDataSet.Tables["Titles"].Columns["pub_id"];
Pub_TitleRelation = new DataRelation("PubsToTitles", Pub_PubIdColumn, Title_PubIdColumn);
bookInfoDataSet.Relations.Add(Pub_TitleRelation);
return bookInfoDataSet;

CHAPTER 10 ■ IMPLEMENTING THE DATA ACCESS LAYER

197

Editing Data in the DataSet
Clients often need to be able to update a DataSet. They may need to add records, delete records, or
update an existing record. Because DataSet objects are disconnected by design, the changes made to the
DataSet are not automatically propagated back to the database. They are held locally until the client is
ready to replicate the changes back to the database. To replicate the changes, you invoke the Update
method of the DataAdapter, which determines what changes have been made to the records and
implements the appropriate SQL command (Update, Insert, or Delete) that has been defined to replicate
the changes back to the database.

To demonstrate the process of updating a DataSet, the following code constructs an Author class
that will pass a DataSet containing author information to a client when the GetData method is invoked.
The Author class will accept a DataSet containing changes made to the author information and replicate
the changes back to the Pubs database when its UpdateData method is invoked. The first step is to
define the class and include a using statement for the referenced namespaces, like so:

using System.Data;
using System.Data.SqlClient;

Define class-level variables for SQLConnection, SQLDataAdapter, and DataSet objects:

public class Author
{
 private SqlConnection _pubConnection;
 private SqlDataAdapter _authorsDataAdapter;
 private DataSet _pubsDataSet;

In the class constructor, initialize a Connection object, like so:

public Author()
{
 SqlCommand selectCommand;
 SqlCommand updateCommand;
 string connectionString = "Integrated Security=True;Data Source=LocalHost;" +
 "Initial Catalog=Pubs";
 _pubConnection = new SqlConnection(connectionString);

Then create a Select Command object, like so:

string selectSQL = "Select au_id, au_lname, au_fname from authors";
selectCommand = new SqlCommand(selectSQL,_pubConnection);
selectCommand.CommandType = CommandType.Text;

Next you create an Update Command. The command text references parameters in the command’s
Parameters collection that will be created next.

string updateSQL = "Update authors set au_lname = @au_lname," +
 " au_fname = @au_fname where au_id = @au_id";
updateCommand = new SqlCommand(updateSQL, _pubConnection);
updateCommand.CommandType = CommandType.Text;

A Parameter object is added to the Command object’s Parameter collection for each Parameter in
the Update statement. The Add method of the Parameters collection is passed information on the name
of the Parameter, the SQL data type, size, and the source column of the DataSet, like so:

CHAPTER 10 ■ IMPLEMENTING THE DATA ACCESS LAYER

198

updateCommand.Parameters.Add("@au_id", SqlDbType.VarChar, 11, "au_id");
updateCommand.Parameters.Add("@au_lname", SqlDbType.VarChar, 40, "au_lname");
updateCommand.Parameters.Add("@au_fname", SqlDbType.VarChar, 40, "au_fname");

The final step is to create and set up the DataAdapter object. Set the SelectCommand and
UpdateCommand properties to the appropriate SQLCommand objects, like so:

 _authorsDataAdapter = new SqlDataAdapter();
 _authorsDataAdapter.SelectCommand = selectCommand;
 _authorsDataAdapter.UpdateCommand = updateCommand;
}

Now that the SQLDataAdapter has been set up and created in the class constructor, the GetData and
UpdateData methods will use the DataAdapter to get and update the data from the database, like so:

public DataSet GetData()
{
 _pubsDataSet = new DataSet();
 _authorsDataAdapter.Fill(_pubsDataSet, "Authors");
 return _pubsDataSet;
}
public void SaveData(DataSet authorChanges)
{
 _authorsDataAdapter.Update(authorChanges, "Authors");
}

In a similar fashion, you could implement the InsertCommand and the DeleteCommand properties
of the DataAdapter to allow clients to insert new records or delete records in the database.

■Note For simple updates to a single table in the data source, the .NET Framework provides a
CommandBuilder class to automate the creation of the InsertCommand, UpdateCommand, and DeleteCommand
properties of the DataAdapter.

ACTIVITY 10-2. WORKING WITH DATASET OBJECTS

In this activity, you will become familiar with the following:

• Populating a DataSet from a SQL Server database.

• Editing data in a DataSet.

• Updating changes from the DataSet to the database.

• Establishing relationships between tables in a DataSet.

CHAPTER 10 ■ IMPLEMENTING THE DATA ACCESS LAYER

199

Populating a DataSet from a SQL Server Database

To populate a DataSet from a SQL Server database, follow these steps:

1. Start Visual Studio. Select File ➤ New ➤ Project.

2. Choose Windows Application. Rename the project to Act10_2 and click the OK
button.

3. After the project opens, add a new class to the project named Author.

4. Open the Author class code in the code editor. Add the following using
statements at the top of the file:

using System.Data;
using System.Data.SqlClient;

5. Add the following code to declare private class level variables of type
SQLConnection, SqlDataAdapter, and DataSet:

public class Author
{
 SqlConnection _pubConnection;
 string _connString;
 SqlDataAdapter _pubDataAdapter;
 DataSet authorDataSet;

6. Create a class constructor that instantiates the Pubs Connection object, sets up
the ConnectionString property and creates a select command.

public Author()
{
 _connString =
 "Data Source=localhost;Initial Catalog=pubs;Integrated Security=True";
 _pubConnection = new SqlConnection();
 _pubConnection.ConnectionString = _connString;
 SqlCommand selectCommand =
 new SqlCommand("Select au_id, au_lname,au_fname from authors",
 _pubConnection);
 _pubDataAdapter = new SqlDataAdapter();
 _pubDataAdapter.SelectCommand = selectCommand;

 }

7. Create a method of the Author class called GetData that will use the DataAdapter
object to fill the DataSet and return it to the client.

public DataSet GetData()
{
 try
 {
 authorDataSet = new DataSet();
 _pubDataAdapter.Fill(authorDataSet, "Author");
 return authorDataSet;
 }

CHAPTER 10 ■ IMPLEMENTING THE DATA ACCESS LAYER

200

 catch (Exception ex)
 {
 throw ex;
 }
}

8. Build the project and fix any errors.

9. Add the controls listed in Table 10-3 to Form1 and set the properties as shown.

Table 10-3. Form1 Controls

Control Property Value

DataGridView Name dgvAuthors

 AllowUserToAddRows False

 AllowUserToDeleteRows False

 ReadOnly False

Button Name btnGetData

 Text Get Data

Button Name btnUpdate

 Text Update

10. Open the Form1 class code file in the code editor. Declare a class-level DataSet
object after the class declaration.

public partial class Form1 : Form
{
 private DataSet _pubDataSet;

11. Open Form1 in the Form Designer. Double-click on the Get Data button to open
the button click event method in the code editor.

12. Add the following code to the btnGetData click event procedure, which will
execute the GetData method defined in the Author class. This dataset is then
loaded into the grid using the DataSource property.

private void btnGetData_Click(object sender, EventArgs e)
{
 Author author = new Author();
 _pubDataSet = author.GetData();
 dgvAuthors.DataSource = _pubDataSet.Tables["Authors"];
}

CHAPTER 10 ■ IMPLEMENTING THE DATA ACCESS LAYER

201

13. Build the project and fix any errors. Once the project builds, run the project in
debug mode and test the GetData method. You should see the grid filled with
author information. After testing, stop the debugger.

Editing and Updating Data in a DataSet

To edit and update data in a DataSet, follow these steps:

1. Open the Author class code in the code editor.

2. At the end of the class constructor, add code to set up a SqlCommand object that
will execute an Update query. Create the update parameters in the Parameters
collection and set the DataAdapter object’s Update Command property to the
SqlCommand object.

SqlCommand updateCommand = new SqlCommand
 ("Update authors set au_lname = @au_lname," +
 "au_fname = @au_fname where au_id = @au_id",
 _pubConnection);
updateCommand.Parameters.Add("@au_id", SqlDbType.VarChar, 11, "au_id");
updateCommand.Parameters.Add("@au_lname", SqlDbType.VarChar, 40, "au_lname");
updateCommand.Parameters.Add("@au_fname", SqlDbType.VarChar, 40, "au_fname");
_pubDataAdapter.UpdateCommand = updateCommand;

3. Create a method of the Author class called UpdateData that will use the Update
method of the DataAdapter object to pass updates made to the DataSet to the
Pubs database.

public void UpdateData(DataSet changedData)
{
 try
 {
 _pubDataAdapter.Update(changedData, "Authors");
 }
 catch (Exception ex)
 {
 throw ex;
 }
}

4. Build the project and fix any errors.

5. Open Form1 in the Form Designer. Double-click on the Update Data button to
open the button click event method in the code editor.

6. Add the following code to the btnUpdate click event procedure, which will
execute the UpdateData method defined in the Author class. By using the
GetChanges method of the DataSet object, only data that has changed is passed
for updating.

private void btnUpdate_Click(object sender, EventArgs e)
{
 Author author = new Author();

CHAPTER 10 ■ IMPLEMENTING THE DATA ACCESS LAYER

202

 author.UpdateData(_pubDataSet.GetChanges());
}

7. Build the project and fix any errors. Once the project builds, run the project in
debug mode and test the Update method. First, click the Get Data button. Change
the last name of several authors and click the Update button. Click the Get Data
button again to retrieve the changed values back from the database. After
testing, stop the debugger.

Establishing Relationships between Tables in a DataSet

To establish relationships between tables in a DataSet, follow these steps:

1. Add a new class named StoreSales to the project.

2. Open the StoreSales class code in the code editor. Add the following using
statements at the top of the file:

using System.Data;
using System.Data.SqlClient;

3. Add the following code to declare private class level variables of type
SQLConnection, SqlDataAdapter, and DataSet:

class StoreSales
{
 SqlConnection _pubConnection;
 string _connString;
 SqlDataAdapter _storeDataAdapter = new SqlDataAdapter();
 SqlDataAdapter _salesDataAdapter = new SqlDataAdapter();
 DataSet storeSalesDataSet;

4. Create a class constructor that instantiates the Pubs Connection object and sets
up the ConnectionString property.

public StoreSales()
{
 _connString =
 "Data Source=localhost;Initial Catalog=pubs;Integrated Security=True";
 _pubConnection = new SqlConnection();
 _pubConnection.ConnectionString = _connString;

 }

5. Create a method of the StoreSales class called GetData that will use the select
store information and sales information and establish a relationship between
them. This information is used to fill a DataSet and return it to the client.

 public DataSet GetData()
{
 try
 {
 //Get Store Info
 string selectStoresSQL = "SELECT [stor_id] ,[stor_name]," +

CHAPTER 10 ■ IMPLEMENTING THE DATA ACCESS LAYER

203

 "[city],[state] FROM [stores]";
 SqlCommand selectStoresCommand =
 new SqlCommand(selectStoresSQL, _pubConnection);
 selectStoresCommand.CommandType = CommandType.Text;
 _storeDataAdapter.SelectCommand = selectStoresCommand;
 //Get Sales Info
 string selectSalesSQL = "SELECT [stor_id],[ord_num]," +
 "[ord_date],[qty] FROM [sales]";
 SqlCommand selectSalesCommand =
 new SqlCommand(selectSalesSQL, _pubConnection);
 selectSalesCommand.CommandType = CommandType.Text;
 _salesDataAdapter.SelectCommand = selectSalesCommand;
 //Get data and fill DataSet
 storeSalesDataSet = new DataSet();
 _storeDataAdapter.Fill(storeSalesDataSet, "Stores");
 _salesDataAdapter.Fill(storeSalesDataSet, "Sales");
 //Create relationahip between tables
 DataColumn Store_StoreIdColumn =
 storeSalesDataSet.Tables["Stores"].Columns["stor_id"];
 DataColumn Sales_StoreIdColumn =
 storeSalesDataSet.Tables["Sales"].Columns["stor_id"];
 DataRelation StoreSalesRelation =
 new DataRelation("StoresToSales", Store_StoreIdColumn, Sales_StoreIdColumn);
 storeSalesDataSet.Relations.Add(StoreSalesRelation);

 return storeSalesDataSet;
 }
 catch (Exception ex)
 {
 throw ex;
 }
}

6. Build the project and fix any errors.

7. Add a second form to the project. Add the controls listed in Table 10-4 to Form2
and set the properties as shown.

Table 10-4. Form2 Controls

Control Property Value

DataGridView Name dgvStores

DataGridView Name dgvSales

Button Name btnGetData

 Text Get Data

CHAPTER 10 ■ IMPLEMENTING THE DATA ACCESS LAYER

204

8. Open the Form2 class code file in the code editor. Declare a class-level DataSet
object after the class declaration.

public partial class Form2 : Form
{
 DataSet StoreSalesDataSet;

9. Open Form2 in the Form Designer. Double-click on the Get Data button to open
the button click event method in the code editor.

10. Add the following code to the btnGetData click event procedure, which will
execute the GetData method defined in the StoreSales class. This Stores table is
then loaded into the Stores grid using the DataSource property. Setting the
DataMember property of the Sales grid loads it with the sales data of the store
selected in the Stores grid.

private void btnGetData_Click(object sender, EventArgs e)
{
 StoreSales storeSales = new StoreSales();
 StoreSalesDataSet = storeSales.GetData();
 dgvStores.DataSource = StoreSalesDataSet.Tables["Stores"];
 dgvSales.DataSource =StoreSalesDataSet.Tables["Stores"];
 dgvSales.DataMember = "StoreSales";
}

11. Open the Program class in the code editor. Change the code to launch Form2
when the form loads.

Application.Run(new Form2());

12. When the form loads, click the Get Data button to load the grids. Selecting a new
row in the Stores grid should update the Sales grid to show the store’s sales.
When you are finished testing stop the debugger and exit Visual Studio.

Working with the Entity Framework
The Entity Framework (EF) is an Object-Relational Mapping (ORM) technology built into ADO.NET. EF
tries to eliminate the mismatch between the objected-oriented programming constructs of the .NET
language and the relational data constructs of the database system. For example, to load and work with a
customer object, a developer has to send a SQL string to the database engine. The developer must be
familiar with the relational schema of the data and this information is hardcoded into the application. A
big disadvantage of this approach is the application is not shielded from changes in the underlying
schema. Another disadvantage is that since the application sends the SQL statements as a string to the
database engine for processing, Visual Studio can’t implement syntax checking and issue warnings and
build errors to the help the programmer.

The Entity Framework provides the mapping schema that allows programmers to work at a higher
level of abstraction. They can write code using object-oriented constructs to query and load the entities

CHAPTER 10 ■ IMPLEMENTING THE DATA ACCESS LAYER

205

(objects defined by classes). The mapping schema translates the queries against the entities into the
required database specific language needed to perform CRUD (create, read, update, and delete)
operations against the data.

In order to use the Entity Framework in your application, you must first add an ADO.NET Entity
Data Model to your application. This step launches the Entity Data Model Wizard, which allows you to
develop your model from scratch or generate it from an existing database. Choosing to generate it from
an existing database allows you to create a connection to the database and select the tables views and
stored procedures you want to include in the model. The .edmx file generated by the wizard is an XML-
based file that has three sections. The first consists of store schema definition language (SSDL); this
describes the tables and relationships where the data is stored. The following code shows a portion of
the SSDL for a data model generated from the Pubs database:

<EntityContainer Name="pubsModelStoreContainer">
 <EntitySet Name="sales" EntityType="pubsModel.Store.sales"
 store:Type="Tables" Schema="dbo" />
 <EntitySet Name="stores" EntityType="pubsModel.Store.stores"
 store:Type="Tables" Schema="dbo" />
 <AssociationSet Name="FK__sales__stor_id__1273C1CD"
 Association="pubsModel.Store.FK__sales__stor_id__1273C1CD">
 <End Role="stores" EntitySet="stores" />
 <End Role="sales" EntitySet="sales" />
 </AssociationSet>
 </EntityContainer>
 <EntityType Name="sales">
 <Key>
 <PropertyRef Name="stor_id" />
 <PropertyRef Name="ord_num" />
 <PropertyRef Name="title_id" />
 </Key>
 <Property Name="stor_id" Type="char" Nullable="false" MaxLength="4" />
 <Property Name="ord_num" Type="varchar" Nullable="false" MaxLength="20" />
 <Property Name="ord_date" Type="datetime" Nullable="false" />
 <Property Name="qty" Type="smallint" Nullable="false" />
 <Property Name="payterms" Type="varchar" Nullable="false" MaxLength="12" />
 <Property Name="title_id" Type="varchar" Nullable="false" MaxLength="6" />
 </EntityType>

The second section consists of conceptual schema definition language (CSDL); it specifies the
entities and relationships between them. These entities are used by the application to work with data in
the application. The following code comes from the CDSL section of a data model generated from the
Pubs database:

 <EntityContainer Name="pubsEntities" annotation:LazyLoadingEnabled="true">
 <EntitySet Name="sales" EntityType="pubsModel.sale" />
 <EntitySet Name="stores" EntityType="pubsModel.store" />
 <AssociationSet Name="FK__sales__stor_id__1273C1CD"
 Association="pubsModel.FK__sales__stor_id__1273C1CD">
 <End Role="stores" EntitySet="stores" />
 <End Role="sales" EntitySet="sales" />
 </AssociationSet>
 </EntityContainer>
 <EntityType Name="sale">
 <Key>

CHAPTER 10 ■ IMPLEMENTING THE DATA ACCESS LAYER

206

 <PropertyRef Name="stor_id" />
 <PropertyRef Name="ord_num" />
 <PropertyRef Name="title_id" />
 </Key>
 <Property Name="stor_id" Type="String" Nullable="false"
 MaxLength="4" Unicode="false" FixedLength="true" />
 <Property Name="ord_num" Type="String" Nullable="false"
 MaxLength="20" Unicode="false" FixedLength="false" />
 <Property Name="ord_date" Type="DateTime" Nullable="false" />
 <Property Name="qty" Type="Int16" Nullable="false" />
 <Property Name="payterms" Type="String" Nullable="false"
 MaxLength="12" Unicode="false" FixedLength="false" />
 <Property Name="title_id" Type="String" Nullable="false"
 MaxLength="6" Unicode="false" FixedLength="false" />
 <NavigationProperty Name="store"

 Relationship="pubsModel.FK__sales__stor_id__1273C1CD"
FromRole="sales" ToRole="stores" />

 </EntityType>

The final section of the .edmx file consists of code written in the mapping specification language
(MSL). The MSL maps the conceptual model to the storage model. The following code shows a portion of
the MSL section of a data model generated from the Pubs database:

<EntityContainerMapping StorageEntityContainer="pubsModelStoreContainer"
 CdmEntityContainer="pubsEntities">
 <EntitySetMapping Name="sales"><EntityTypeMapping TypeName="pubsModel.sale">
 <MappingFragment StoreEntitySet="sales">
 <ScalarProperty Name="stor_id" ColumnName="stor_id" />
 <ScalarProperty Name="ord_num" ColumnName="ord_num" />
 <ScalarProperty Name="ord_date" ColumnName="ord_date" />
 <ScalarProperty Name="qty" ColumnName="qty" />
 <ScalarProperty Name="payterms" ColumnName="payterms" />
 <ScalarProperty Name="title_id" ColumnName="title_id" />

 </MappingFragment></EntityTypeMapping></EntitySetMapping>

Querying Entities with LINQ to EF
When creating the ADO.NET entity data model using the Entity Data Model Wizard, an ObjectContext
class is created that represents the entity container defined in the model. The ObjectContext class
supports CRUD-based queries against the entity model. Queries written against the ObjectContext class
are written using LINQ to EF. LINQ stands for Language-Integrated Query. LINQ allows developers to
write queries in C# syntax, which, when executed, are converted to the query syntax of the data provider.
Once the query is executed and data is returned, the Entity Framework converts the results back to the
entity object model.

The following code uses the Select method to return all the rows from the Stores table and return
the results as a list of Store entities. The Store names are then written to the console window.

var context = new pubsEntities();
var query = from s in context.stores
 select s;
var stores = query.ToList();

CHAPTER 10 ■ IMPLEMENTING THE DATA ACCESS LAYER

207

foreach (store s in stores)
{
 Console.WriteLine(s.stor_name);
}
 Console.ReadLine();

LINQ to EF provides a rich set of query operations including filtering, ordering, and grouping
operations. The following code demonstrates filtering stores by state:

var context = new pubsEntities();
var query = from s in context.stores
 where s.state == "WA"
 select s;
var stores = query.ToList();

The following code selects sales entities that have ordered more than 25 objects and then orders
them by descending date:

var context = new pubsEntities();
var query = from s in context.sales
 where s.qty > 25
 orderby s.ord_date descending
 select s;
var sales = query.ToList();

Since the Entity Framework includes navigation properties between entities, you can easily build
complex queries based on related entities. The following query selects stores with more than five sales
orders:

var context = new pubsEntities();
var query = from s in context.stores
 where s.sales.Count > 5
 select s;
var stores = query.ToList();

■Note For more information on the LINQ query language, refer to the MSDN library at
http://msdn.microsoft.com.

Updating Entities with the Entity Framework
The Entity Framework tracks changes made to the entity types represented in the Context object. You
can add, update or delete entity objects. When you are ready to persist the changes back to the database,
you call the SaveChanges method of the context object. The EF creates and executes the insert, update,
or delete statements against the database. You can also explicitly map stored procedures to implement
the database commands. The following code selects a store using the store ID, updates the store name,
and sends it back to the database:

CHAPTER 10 ■ IMPLEMENTING THE DATA ACCESS LAYER

208

var context = new pubsEntities();
var store = (from s in context.stores
 where s.stor_id == storeId
 select s).First();
store.stor_name = "DRC Books";
context.SaveChanges();

ACTIVITY 10-3. RETRIEVING DATA WITH THE ENTITY FRAMEWORK

In this activity, you will become familiar with the following:

Creating an Entity Data Model

To create an entity data model, follow these steps:

1. Start Visual Studio. Select File ➤ New ➤ Project.

2. Choose Console Application. Rename the project to Act10_3 and click the OK
button.

3. Right click on the project node in solution explorer and select Add ➤ New Item.

4. Under the Data node in the Add New Item window, select an ADO.NET Entity Data
Model. Name the model Pubs.emdx and click Add.

5. In the Choose Model Contents screen, select the Generate from database and click
Next.

6. In the “Choose Your Data Connection” screen, create a connection to the Pubs
database and choose Next. (See Figure 10-1)

• Creating an Entity Data Model.

• Executing queries using LINQ to EF.

CHAPTER 10 ■ IMPLEMENTING THE DATA ACCESS LAYER

209

Figure 10-1. Creating a database connection with the Entity Data Model Wizard

7. In the “Choose Your Database Objects” screen, expand the Tables node and select
the Sales, Stores, and Titles tables, as shown in Figure 10-2. Click Finish.

CHAPTER 10 ■ IMPLEMENTING THE DATA ACCESS LAYER

210

Figure 10-2. Selecting database objects for an Entity Data Model

8. You are presented with the Entity Model Designer containing the sales, store, and
title entities, as shown in Figure 10-3.

CHAPTER 10 ■ IMPLEMENTING THE DATA ACCESS LAYER

211

Figure 10-3. Entity Model Designer

9. In the Entity Model Designer right click on the title entity and select rename.
Rename it to book. In the book entity, rename the title1 property to title.

Querying an Entity Data Model

To query this entity data model using LINQ, follow these steps:

1. Open the Program.cs file in the Code Editor Window.

2. Add the following method to select the book entities and write their titles to the
Console window:

private static void GetTitles()
{
 var context = new pubsEntities();
 var query = from b in context.books select b;
 var books = query.ToList();
 foreach (book b in books)
 {
 Console.WriteLine(b.title);
 }
 Console.ReadLine();
}

3. Call the GetTitles method from the Main method.

CHAPTER 10 ■ IMPLEMENTING THE DATA ACCESS LAYER

212

static void Main(string[] args)
{
 GetTitles();
}

4. Run the program in debug mode. You should see the titles listed in the Console
window. When you are done testing, stop the debugger.

5. Add the following method that gets books in the 10 to 20 dollar range and orders
them by price:

private static void GetTitlesByPrice()
{
 var context = new pubsEntities();
 var query = from b in context.books
 where b.price >= (decimal)10.00
 && b.price <= (decimal)20.00
 orderby b.price
 select b;
 var books = query.ToList();
 foreach (book b in books)
 {
 Console.WriteLine(b.price + " -- " + b.title);
 }
 Console.ReadLine();
}

6. Call the GetTitlesByPrice method from the Main method.

static void Main(string[] args)
{
 //GetTitles();
 GetTitlesByPrice();
}

7. Run the program in debug mode. You should see the titles and prices listed in the
Console window. When you are done testing, stop the debugger.

8. Add the following method to list the book titles and the sum of their sales amount.
Notice that this query gets the sales amount by adding up the book’s related sales
entities.

private static void GetBooksSold()
{
 var context = new pubsEntities();
 var query = from b in context.books
 select new
 {
 BookID = b.title_id,
 TotalSold = b.sales.Sum(s =>(int?) s.qty)
 };
 foreach (var item in query)
 {
 Console.WriteLine(item.BookID + " -- " + item.TotalSold);

CHAPTER 10 ■ IMPLEMENTING THE DATA ACCESS LAYER

213

 }
 Console.ReadLine();
}

9. Call the GetBooksSold method from the Main method.

static void Main(string[] args)
{
 //GetTitles();
 //GetTitlesByPrice();
 GetBooksSold();
}

10. Run the program in debug mode. You should see the book IDs and amount sold
listed in the Console window. When you are done testing, stop the debugger and
exit Visual Studio.

Summary
This chapter is the first in a series that will show you how to build the various tiers of an OOP
application. To implement an application’s data access layer, you learned about ADO.NET and the
classes used to work with relational data sources. You looked at the various classes that make up the
System.Data.SqlClient namespace; these classes retrieve and update data stored in a SQL Server
database. You also examined the System.Data namespace classes that work with disconnected data. In
addition, you were exposed to the Entity Framework and LINQ and saw how they allow you to query the
data using OOP constructs. You wrote queries in terms of entities and the framework translated the
queries into the query syntax of the datasource, retrieved the data, and loaded the entities.

In the next chapter, you will look at implementing the user interface (UI) tier of a Windows
application. Along the way, you will take a closer look at the classes and namespaces of the .NET
Framework used to create rich Windows-based user interfaces.

C H A P T E R 1 1

■ ■ ■

215

Developing Windows Applications

In the previous chapter, you learned how to build the data access layer of an application. To implement
its logic, you used the classes of the System.Data namespace. These classes retrieve and work with
relational data, which is a common requirement of many business applications. You are now ready to
look at how users will interact with your application. Users interact with an application through the user
interface layer. This layer, in turn, interacts with the business logic layer, which, in turn, interacts with
the data access layer. In this chapter, you will learn how to build a user interface layer with the .NET
Windows Presentation Foundation (WPF). WPF takes advantage of modern graphics hardware and uses
a vector-based rendering engine to display its output. It consists of a comprehensive set of application-
development features that include Extensible Application Markup Language (XAML), controls, data
binding, and layout.

After reading this chapter, you will be comfortable performing the following tasks:

• Using XAML markup to design a user interface.

• Working with layout controls.

• Working with display controls.

• Responding to control events.

• Using data binding controls.

• Creating and using control templates.

Windows Fundamentals
Windows are objects with a visual interface that are painted on the screen to provide users a way to
interact with programs. Like most objects you work with in object-oriented languages, .NET windows
expose properties, methods, and events. A window’s properties define its appearance. Its Background
property, for example, determines its color. The methods of a window define its behaviors. For example,
calling its Hide method hides it from the user. A window’s events define interactions with the user (or
other objects). You can use the MouseDown event, for example, to initiate an action when the user clicks
the right mouse button on the window.

Controls are components with visual interfaces that give users a way to interact with the program. A
window is a special type of control, called a container control, that hosts other controls. You can place
many different types of controls on windows. Some common controls used on windows are TextBoxes,
Labels, OptionButtons, ListBoxes, and CheckBoxes. In addition to the controls provided by the .NET
Framework, you can also create your own custom controls or purchase controls from third-party
vendors.

CHAPTER 11 ■ DEVELOPING WINDOWS APPLICATIONS

216

Introducing XAML
WPF user interfaces are built using a declarative markup language called XAML. XAML declares the
controls that will make up the interface. An opening angle bracket (<) followed by the name of the
control type and a closing bracket defines the control. For example, the following markup defines a
button control inside a Grid.

<Grid>
 <Button/>
</Grid>

Notice the Grid needs a formal closing tag because it contains the Button control. Since the Button
control does not contain any other controls, you can use a forward slash (/) in front of the end bracket to
close it.

The next step is to define the properties of the controls. For example, you may want to set the
background color of the button to red and write some text on it. The properties of the control are set by
using attribute syntax, which consists of the property name followed by an equal sign and the attribute
value in quotation marks. The following markup shows the Button control with some attributes added:

<Grid>
 <Button Content="Click Me" Background="Red"/>
</Grid>

For some properties of an object element, attribute syntax is not possible. For these cases, a
different syntax known as property element syntax can be used. The syntax for the property element
start tag is <typeName.propertyName>. For example, you can create rows and columns in the layout grid
to control placement of controls in the grid, as shown:

<Grid.ColumnDefinitions>
<ColumnDefinition Width="100" />
<ColumnDefinition Width="*" />

</Grid.ColumnDefinitions>
<Grid.RowDefinitions>

<RowDefinition Height="25" />
<RowDefinition Height="25" />
<RowDefinition Height="25" />

</Grid.RowDefinitions>

Controls are positioned in the grid by including a Grid.Row and Grid.Column attribute, as shown:

<Label Grid.Column="0" Grid.Row="0" Content="Name:" />
<Label Grid.Column="0" Grid.Row="1" Content="Password:" />
<Button Grid.Column="1" Grid.Row="3"
 Content="Click Me" HorizontalAlignment="Right"
 MinWidth="80" Background="Red"/>

Figure 11-1 shows the window with two textboxes created by the previous XAML code.

CHAPTER 11 ■ DEVELOPING WINDOWS APPLICATIONS

217

Figure 11-1. A window created with XAML

Using Layout Controls
Although you can use fixed positioning to place controls on a WPF window, it’s not recommended.
Using fixed positioning usually works well for a fixed resolution size but it doesn’t scale well to different
resolutions and devices. To overcome the limitations of fixed positioning, WPF offers several layout
controls. A layout control allows you to position other controls within it using a relative positioning
format. One of the main layout controls for positioning other controls is the Grid. As seen previously, a
Grid control contains columns and rows to control the placement of its child controls. The height and
width of the columns and rows can be set to a fixed value, auto, or *. The auto setting takes up as much
space as needed by the contained control. The * setting takes up as much space as is available. The Grid
control is often used to lay out data entry forms. The following code lays out a simple data entry form
used to collect user information. The resulting form is shown in Figure 11-2.

<Grid>
 <Grid.RowDefinitions>
 <RowDefinition Height="Auto" />
 <RowDefinition Height="Auto" />
 <RowDefinition Height="Auto" />
 <RowDefinition Height="Auto" />
 <RowDefinition Height="28" />
 <RowDefinition Height="*" />
 </Grid.RowDefinitions>
 <Grid.ColumnDefinitions>
 <ColumnDefinition Width="Auto" />
 <ColumnDefinition Width="200" />
 <ColumnDefinition Width="*" />
 </Grid.ColumnDefinitions>
 <Label Grid.Row="0" Grid.Column="0" Content="Name:"/>
 <Label Grid.Row="1" Grid.Column="0" Content="Old Password:"/>
 <Label Grid.Row="2" Grid.Column="0" Content="New Password:"/>
 <Label Grid.Row="3" Grid.Column="0" Content="Confirm Password:"/>
 <TextBox Grid.Column="1" Grid.Row="0" Margin="3" />
 <TextBox Grid.Column="1" Grid.Row="1" Margin="3" />
 <TextBox Grid.Column="1" Grid.Row="2" Margin="3" />
 <TextBox Grid.Column="1" Grid.Row="3" Margin="3" />
 <Button Grid.Column="1" Grid.Row="4" HorizontalAlignment="Right"
 MinWidth="80" Margin="0,0,0,8" Content="Submit" />
</Grid>

CHAPTER 11 ■ DEVELOPING WINDOWS APPLICATIONS

218

Figure 11-2. Input form window

Another useful layout control is the StackPanel. It lays out child controls either vertically or
horizontally depending on the orientation setting. The following code shows two buttons in a StackPanel
control:

<StackPanel Grid.Column="1" Grid.Row="4" Orientation="Horizontal" >
 <Button MinWidth="80" Margin="0,0,0,8" Content="Submit" />
 <Button MinWidth="80" Margin="0,0,0,8" Content="Cancel" />
</StackPanel>

Some other layout controls available are the DockPanel, WrapPanel, and Canvas. The DockPanel is
used to provide docking of elements to the left, right, top, bottom, or center of the panel. The WrapPanel
acts like a StackPanel but will wrap child controls to a new line if no room is left. The Canvas control is
used to lay out its child elements with absolute positioning relative to one of its sides. It is typically used
for graphics elements and not to lay out user interface controls.

Adding Display Controls
The goal of most business applications is to present data to their users, allow them to update the data
and save it back to a database. Some common controls used to facilitate this process are the Textbox,
ListBox, ComboBox, Checkbox, DatePicker, and DataGrid. You have already seen the TextBox used on a
window; the following code shows how to add a ListBox and ComboBox to a window. Figure 11-3 shows
how the window is rendered.

<Grid>
 <Grid.ColumnDefinitions>
 <ColumnDefinition Width="*" />
 <ColumnDefinition Width="*" />
 </Grid.ColumnDefinitions>
 <ListBox Margin="20" Grid.Column="0">
 <ListBoxItem>Red</ListBoxItem>
 <ListBoxItem>Blue</ListBoxItem>

CHAPTER 11 ■ DEVELOPING WINDOWS APPLICATIONS

219

 <ListBoxItem>Green</ListBoxItem>
 <ListBoxItem>Yellow</ListBoxItem>
 </ListBox>
 <ComboBox Grid.Column="1" VerticalAlignment="Top">
 <ComboBoxItem>Small</ComboBoxItem>
 <ComboBoxItem>Medium</ComboBoxItem>
 <ComboBoxItem>Large</ComboBoxItem>
 <ComboBoxItem>X-Large</ComboBoxItem>
 </ComboBox>
</Grid>

Figure 11-3. Window containing a ListBox and ComboBox

Although you can code the items displayed in these controls directly in the XAML markup, it is more
likely you will use data binding to display their values. You’ll look at data binding shortly.

Using the Visual Studio Designer
Even though it’s quite possible to create your window entirely through code using a text editor, you will
probably find this process quite tedious and not a very productive use of your time. Thankfully, the
Visual Studio IDE includes an excellent designer for creating your WPF windows. Using the designer, you
can drag and drop controls from the Toolbox to the Visual Studio designer, set its properties using the
Visual Studio Properties window, and get the benefits of auto completion and syntax checking as you
enter code using the XAML editor. Figure 11-4 shows a window in the Visual Studio designer.

CHAPTER 11 ■ DEVELOPING WINDOWS APPLICATIONS

220

Figure 11-4. Designing a window in Visual Studio

Handling Control Events
Windows graphical user interface (GUI) programs are event-driven. Events are actions initiated by either
a user or the system, whenever a user clicks a button, for example, or a SqlConnection object issues a
StateChange event. Event-driven applications respond to the various events that occur by executing
code that you specify. To respond to an event, you define the event handler to execute when a particular
event occurs. As you saw in Chapter 8, the .NET Framework uses delegation to bind an event, with the
event handler procedures written to respond to the event. A delegation object maintains an invocation
list of methods that have subscribed to receive notification when the event occurs. When an event
occurs—for example, a button is clicked—the control will raise the event by invoking the delegate for the
event, which in turn will call the event handler methods that have subscribed to receive the event
notification. Although this sounds complicated, the framework classes do most of the work for you.

In Visual Studio, you can add an event to a WPF control either by writing XAML code or by selecting
it in the control’s Properties window. Figure 11-5 shows wiring up an event handler in the XAML Editor
window; Figure 11-6 shows wiring up an event handler using the Events tab of the Properties window.
Note that when working with controls in code, you need to give them a unique name using the Name
attribute.

CHAPTER 11 ■ DEVELOPING WINDOWS APPLICATIONS

221

Figure 11-5. Wiring up an event handler in the XAML editor

Figure 11-6. Wiring up an event handler in the Properties window

Regardless of how you wire up an event handler, the Visual Studio code editor inserts an empty
event handler method in the codebehind file. The following code shows the event handler method
inserted for the button click event:

private void btnCancel_Click(object sender, RoutedEventArgs e)
{
}

By convention, the name of the event handler method begins with the name of the object issuing
the event followed by an underscore (_) and the name of the event. The actual name of the event
handler, however, is unimportant. The Click attribute in the XAML code adds this method to the
invocation list of the event’s delegation object.

All event handlers must provide two parameters, which are passed to the method when the event is
fired. The first parameter is the sender, which represents the object that initiated the event. The second
parameter, of type System.Windows.RoutedEventArgs, is an object used to pass any information specific
to the particular event.

Because the .NET Framework uses delegates for event notification, you can use the same method to
handle more than one event, provided the events have the same signature. For example, you could
handle a button click event and a menu click event with the same event handler, but not a button
KeyPress event, because it has a different signature. The following code demonstrates how to handle the

CHAPTER 11 ■ DEVELOPING WINDOWS APPLICATIONS

222

button click event of two buttons that use the same handler method. The sender parameter is cast as a
Button type and interrogated to determine which button fired the event.

private void Button_Click(object sender, RoutedEventArgs e)
{
 Button btn = (Button)sender;
 if (btn.Name == "btnCancel")
 {
 //Cancel code goes here
 }
 else if (btn.Name == "btnSubmit")
 {
 //Submit code goes here
 }
}

In the following activity, you will work with forms and controls to construct a simple memo viewer
application that will allow users to load and view memo documents.

ACTIVITY 11-1. WORKING WITH WINDOWS AND CONTROLS

In this activity, you will become familiar with the following:

Creating the Memo Viewer Interface

To create the memo viewer interface, follow these steps:

1. Start Visual Studio. Select File ➤ New ➤ Project.

2. Choose a WPF Application under the C# Projects folder. Rename the project to
Act11_1 and click the OK button.

3. The project contains a MainWindow.xaml file. This file is where you design the
user interface. The project also contains a MainWindow.xaml.cs file. This is the
codebehind file and it is where you will add the code to respond to the events.

4. In the Window tag in the XAML Editor Window, add a Name attribute with a value
of “MemoViewer”. Change the Title attribute to “Memo Viewer”.

 <Window x:Class="Act11_1.MainWindow"
 xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"
 xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"
 Name="MemoViewer" Title="Memo Viewer" Height="350" Width="525">

• Creating a Windows Form-based GUI application.

• Working with Menu, StatusStrip, and Dialog controls.

• Working with Control events.

CHAPTER 11 ■ DEVELOPING WINDOWS APPLICATIONS

223

5. Add a DockPanel control in the Grid control.

 <Grid>
 <DockPanel LastChildFill="True">
 </DockPanel>
 </Grid>

6. Add a Menu control inside the DockPanel and dock it to the top using the following
XAML:

 <DockPanel LastChildFill="True">
 <Menu DockPanel.Dock="Top">
 <MenuItem Header="_File">
 <MenuItem Name="mnuNew" Header="_New..." />
 <Separator />
 <MenuItem Name="mnuOpen" Header="_Open..." />
 <Separator />
 <MenuItem Name="mnuSave" Header="_Save" />
 <MenuItem Name="mnuSaveAs" Header="_Save As..." />
 <Separator />
 <MenuItem Name="mnuExit" Header="_Exit" />
 </MenuItem>
 <MenuItem Header="_Edit">
 <MenuItem Header="_Cut..." />
 <MenuItem Header="_Copy..." />
 <MenuItem Header="_Paste" />
 </MenuItem>
 </Menu>
 </DockPanel>

7. Add a StatusBar control by inserting the following code between the ending Menu
tag and the ending DockPanel tag. Note that you are using a Grid control inside the
StatusBar control to layout the items in the StatusBar.

 <StatusBar DockPanel.Dock="Bottom">
 <Grid>
 <Grid.RowDefinitions>
 <RowDefinition Height="*"/>
 </Grid.RowDefinitions>
 <Grid.ColumnDefinitions>
 <ColumnDefinition Width="4*"/>
 <ColumnDefinition Width="*"/>
 </Grid.ColumnDefinitions>
 </Grid>
 <StatusBarItem Grid.Column="0" HorizontalAlignment="Left">
 <TextBlock Name="sbTextbox1">File Name</TextBlock>
 </StatusBarItem>
 <StatusBarItem Grid.Column="1" HorizontalAlignment="Right">
 <TextBlock Name="sbTextbox2">Date</TextBlock>
 </StatusBarItem>
 </StatusBar>

CHAPTER 11 ■ DEVELOPING WINDOWS APPLICATIONS

224

8. Add a RichTextBox control after the StatusBar end tag and before the DockPanel
end tag.

 </StatusBar>
 <RichTextBox Name="rtbMemo" />
</DockPanel>

9. Note that as you add the XAML, the Visual Designer updates the appearance of the
window. The MemoEditor window should look similar to the one shown Figure
11-7.

Figure 11-7. The completed MemoEditor window

10. Build the solution. If there are any errors, fix them and rebuild.

Coding the Control Events

To code the control events, follow these steps:

1. In the XAML Editor window, add the Loaded event attribute to the Window, as
shown:

 <Window x:Class="Act11_1.MainWindow"
 xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"

CHAPTER 11 ■ DEVELOPING WINDOWS APPLICATIONS

225

 xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"
 Name="MemoViewer" Title="Memo Viewer" Height="350" Width="525"
 Loaded="MemoViewer_Loaded">

2. Open the codebehind file by right-clicking the XAML code editor and selecting
View Code. Add the following code to the MemoViewer_Loaded event handler.
When the window loads, it should show the message on the left side of the
StatusPanel and the date on the right.

 private void MemoViewer_Loaded(object sender, RoutedEventArgs e)
 {
 sbTextbox1.Text = "Ready to load file";
 sbTextbox2.Text = DateTime.Today.ToShortDateString();
 }

3. In the XAML editor, add the Click event to the mnuOpen control.

 <MenuItem Name="mnuOpen" Header="_Open..."
 Click="mnuOpen_Click"/>

4. In the Code Editor window of the codebehind file, add the following code to the
menu click event. This code configures and launches an Open File Dialog box,
which returns the file path. The file path is then passed to a FileStream object,
which loads the file into the RichTextBox. The file path is also loaded into the
StatusBar TextBox.

 private void mnuOpen_Click(object sender, RoutedEventArgs e)
 {
 // Configure open file dialog box
 Microsoft.Win32.OpenFileDialog dlg = new Microsoft.Win32.OpenFileDialog();
 dlg.FileName = "Document"; // Default file name
 dlg.DefaultExt = ".txt"; // Default file extension
 dlg.Filter = "Text documents (.txt)|*.txt"; // Filter files by extension
 // Show open file dialog box
 Nullable<bool> result = dlg.ShowDialog();
 // Process open file dialog box results
 if (result == true)
 {
 // Open document and load RichTextBox
 string fileName = dlg.FileName;
 TextRange range;
 System.IO.FileStream fStream;
 if (System.IO.File.Exists(fileName))
 {
 range = new TextRange(rtbMemo.Document.ContentStart,
 rtbMemo.Document.ContentEnd);
 fStream = new System.IO.FileStream(fileName,
 System.IO.FileMode.OpenOrCreate);
 range.Load(fStream, System.Windows.DataFormats.Text);
 fStream.Close();
 }
 sbTextbox1.Text = fileName;
 }

CHAPTER 11 ■ DEVELOPING WINDOWS APPLICATIONS

226

5. Add a click event for the mnuExit control with the following code to close the
window:

 private void mnuExit_Click(object sender, RoutedEventArgs e)
 {
 this.Close();
 }

6. Build the solution and fix any errors.

7. Create a Memos folder on the C drive. Using Notepad, create a text file containing
a test message. Save the file as Test.txt.

8. Select Debug ➤ Start. Test the application by loading the Test.txt file. After
viewing the file, close the window by clicking the Exit menu.

9. After testing the application, exit Visual Studio.

Creating and Using Dialog Boxes
Dialog boxes are special windows often used in Windows-based GUI applications to display or retrieve
information from users. The difference between a normal window and a dialog box is that a dialog box is
displayed modally. A modal window prevents the user from performing other tasks within the
application until the dialog box has been dismissed. When you start a new project in Visual Studio, you
are presented with a New Project dialog box, as shown in Figure 11-8. You can also use dialog boxes to
present the user with critical information and query them for a response. For example, if you try to run
an application in debug mode and a build error is encountered, the Visual Studio IDE presents you with
a dialog box asking whether you want to continue (see Figure 11-9).

CHAPTER 11 ■ DEVELOPING WINDOWS APPLICATIONS

227

Figure 11-8. The New Project dialog box

Figure 11-9. Displaying critical information using a dialog box

Presenting a MessageBox to the User
The dialog box shown in Figure 11-9 is a special predefined type called a MessageBox. The MessageBox
class is part of the System.Windows namespace. The MessageBox class can display a standard Windows

CHAPTER 11 ■ DEVELOPING WINDOWS APPLICATIONS

228

message dialog box. To display a MessageBox to the user, you call the static Show method of the
MessageBox, like so:

MessageBox.Show("File Saved");

The Show method is overloaded so that you can optionally show a MessageBox icon, show a title,
change the buttons displayed, and set the default button. The only required setting is the text message to
be displayed on the form. Figure 11-10 shows the MessageBox displayed by the previous code.

Figure 11-10. A basic MessageBox

The following code calls the Show method using some of the other parameters. Figure 11-11 shows
the resulting MessageBox that gets displayed. For more information on the various parameters and
settings available, look up the MessageBox class in the Visual Studio help file.

MessageBox.Show("Are you sure you want to quit?",
 "Closing Application",MessageBoxButton.OKCancel,
 MessageBoxImage.Question);

Figure 11-11. A more complex Messagebox

You will often use a MessageBox to query for a user response to a question. The user responds by
clicking a button. The result is passed back as the return value of the MessageBox.Show method in the

CHAPTER 11 ■ DEVELOPING WINDOWS APPLICATIONS

229

form of a MessageBoxResult enumeration. The following code captures the dialog box result entered by
a user and closes the window (or not) depending on the result:

MessageBoxResult result = MessageBox.Show("Are you sure you want to quit?",
 "Closing Application",MessageBoxButton.OKCancel,
 MessageBoxImage.Question);
if (result == MessageBoxResult.OK)
{
 this.Close();
}

Creating a Custom Dialog Box
One of the most exciting features about the .NET Framework is its extensibility. Although there are many
types of dialog boxes, you can use “right-out-of-the-box” ones for such tasks as printing, saving files, and
loading files. You can also build your own custom dialog boxes. The first step in creating a custom dialog
box is to add a new window to the application. Next, add any controls needed to interact with the user.
Figure 11-12 shows a dialog box you might use to verify a user’s identity.

Figure 11-12. A custom dialog box

Setting the IsCancel property of the Cancel button to true associates it to the keyboard shortcut of
the ESC key. Setting the isDefault property of the Login button to true associates it with the keyboard
Enter key. This is shown in the following XAML code:

<StackPanel Grid.Column="1" Grid.Row="3" Orientation="Horizontal">
 <Button Name="loginButton" IsDefault="True">Login</Button>
 <Button Name="cancelButton" IsCancel="True">Cancel</Button>
</StackPanel>

When the Login button is clicked, the click event of the button is responsible for validating the user
input and setting the DialogResult property to either true or false. This value is returned to the window
that called the Show method of the DialogWindow for further processing. The following code shows the
LoginDialog window called and the DialogResult property being interrogated. Notice that the calling
window has access to the objects defined on the DialogWindow. In this case, it is interrogating the
UserName textbox’s Text property.

LoginDialog dlg = new LoginDialog();
dlg.Owner = this;
dlg.ShowDialog();

CHAPTER 11 ■ DEVELOPING WINDOWS APPLICATIONS

230

if (dlg.DialogResult == false)
{
 string user = dlg.UserName.Text;
 MessageBox.Show("Invalid login for " + user, "Warning",
 MessageBoxButton.OK, MessageBoxImage.Exclamation);
 this.Close();
}

Data Binding in Windows-Based GUIs
Once you have retrieved the data from the business logic tier, you must present it to the user. The user
may need to read through the data, edit the data, add records, or delete records. Many of the controls
you’ll want to add to a window can display data. The choice of what control to use often depends on the
type of data you want to display, the ways you want to manipulate it, and the design you have in mind
for your interface. Among the controls .NET developers commonly use to present data are the TextBox,
DataGrid, Label, ListBox, CheckBox, and Calendar. When different fields of a data source are presented
to the user in separate controls (for example, a first name TextBox and last name TextBox), it is
important that the controls remain synchronized to show the same record.

The .NET Framework encapsulates much of the complexity of synchronizing controls to a data
source through a process called data binding. When you create a binding between a control and some
data, you are binding a binding target to a binding source. A binding object handles the interaction
between the binding source and the binding target. OneWay binding causes changes to the source
property to automatically update the target property, but changes to the target property are not
propagated back to the source property. This is useful for read-only scenarios. TwoWay binding causes
changes to either the source property or the target property to automatically update the other. This is
useful for full data updating scenarios.

Binding Controls Using a DataContext
To bind a control to data, you need a data source object. The DataContext of a container control allows
child controls to inherit information from their parent controls about the data source that is used for
binding. The following code sets the DataContext property of the top level Window control. It uses a
DataSet and a TableAdapter to fill a Table object and set it to the DataContext of the Window.

private void Window_Loaded(object sender, RoutedEventArgs e)
{
 pubsDataSet dsPubs = new pubsDataSet();
 pubsDataSetTableAdapters.storesTableAdapter taStores =
 new pubsDataSetTableAdapters.storesTableAdapter();
 taStores.Fill(dsPubs.stores);
 this.DataContext = dsPubs.stores.DefaultView;
}

The following XAML code binds the DataGrid columns to the Store table columns using the Path
attribute. Using Binding for the source means “look up the container hierarchy until a DataContext is
found.” In this case, it’s the DataContext of the Window container.

CHAPTER 11 ■ DEVELOPING WINDOWS APPLICATIONS

231

<DataGrid AutoGenerateColumns="False" ItemsSource="{Binding}">
 <DataGrid.Columns>
 <DataGridTextColumn x:Name="stor_idColumn"
 Binding="{Binding Path=stor_id}" Header="Id" />
 <DataGridTextColumn x:Name="stor_nameColumn"
 Binding="{Binding Path=stor_name}" Header="Name" />

 <DataGridTextColumn x:Name="stateColumn"Binding="{Binding Path=state}"
Header="State" />

 <DataGridTextColumn x:Name="zipColumn"
Binding="{Binding Path=zip}" Header="Zip" />

 </DataGrid.Columns>
</DataGrid>

The resulting DataGrid loaded with store data is shown in Figure 11-13.

Figure 11-13. Displaying stored data with a DataGrid

In the following activity, you will bind a DataGrid control to a DataTable containing data from Pubs
database. You will also use a DataAdapter to update data changes made in the DataGrid control back to
the Pubs database.

ACTIVITY 10-2. WORKING WITH DATA BOUND CONTROLS

In this activity, you will become familiar with the following:

• Binding a DataGrid to a DataTable.

• Updating data using the DataAdapter.

CHAPTER 11 ■ DEVELOPING WINDOWS APPLICATIONS

232

Binding a DataGrid to a DataTable

To bind a DataGrid to a DataTable object, follow these steps:

Create a DataSet

1. Start Visual Studio. Select File ➤ New ➤ Project.

2. Choose WPF Application. Rename the project to Act11_2 and click the OK button.

3. After the project loads, locate the Data Sources window. Click on the Add New
Data Source link.

4. In the Data Source Configuration wizard, choose a data source type of Database.

5. In the Choose a Database Model window, select the Dataset.

6. In the Choose your Data Connection window, select or create a connection to the
Pubs database.

7. On the next screen, save the connection to the application configuration file.

8. In the Choose Your Database Objects window, expand the tables’ node and select
the authors table. Click the Finish button.

9. Note in the Solutions Explorer window a pubsDataSet.xsd file has been added to
the file. This file represents a strongly typed dataset object based on the pubs
database. Double-click the file node in Solution Explorer to launch the dataset
visual editor.

10. The visual editor contains an authors table. Select the authorsTableAdapter, as
shown in Figure 11-14. In the Properties window, notice that the select, insert,
update, and delete commands have been generated for you (see Figure 11-15).

CHAPTER 11 ■ DEVELOPING WINDOWS APPLICATIONS

233

Figure 11-14. Selecting authorsTableAdapter

Figure 11-15. Viewing the generated command text

CHAPTER 11 ■ DEVELOPING WINDOWS APPLICATIONS

234

Create the Window Layout

1. Open the MainWindow in the XAML Editor window. Change the title of the Window
to “Phone List”.

2. Inside the Grid tags, add a DockPanel control. Inside the DockPanel, add a
StackPanel.

 <Grid>
 <DockPanel>
 <StackPanel DockPanel.Dock="Top" Orientation="Horizontal">

 </StackPanel>
 </DockPanel>
 </Grid>

3. Inside the StackPanel, add two buttons—one for getting data and one for updating
data. Add a Click event handler for each button.

 <StackPanel DockPanel.Dock="Top" Orientation="Horizontal">
 <Button Name="btnGetData" Content="Get Data"
 Click="btnGetData_Click" />
 <Button Name="btnSaveData" Content="Save Data"
 Click="btnSaveData_Click" />
 </StackPanel>

4. Outside the StackPanel but inside the DockPanel, add a DataGrid.

 <DataGrid Name="dgAuthors" AutoGenerateColumns="True"
 DockPanel.Dock="Bottom" />
 </DockPanel>
 </Grid>

5. Build the solution and make sure there are no build errors.

Load the DataGrid

1. Open the MainWindow.xaml.cs file in the Code Editor window.

2. Add three class level variables of type pubsDataset, authorsTableAdapter, and
authorsDataTable.

 public partial class MainWindow : Window
 {
 pubsDataSet _dsPubs;
 pubsDataSetTableAdapters.authorsTableAdapter _taAuthors;
 pubsDataSet.authorsDataTable _dtAuthors;

3. In the btnGetData_Click event, add code to fill the _taAuthors table and set it equal
to the DataContext of the gdAuthors grid.

 private void btnGetData_Click(object sender, RoutedEventArgs e)
 {
 _dsPubs = new pubsDataSet();

CHAPTER 11 ■ DEVELOPING WINDOWS APPLICATIONS

235

 _taAuthors = new pubsDataSetTableAdapters.authorsTableAdapter();
 _dtAuthors = new pubsDataSet.authorsDataTable();
 _taAuthors.Fill(_dtAuthors);
 this.dgAuthors.DataContext = _dtAuthors;
 }

4. Add the ItemSource binding to the DataGrids XAML code. This will bind it to the
DataContext.

 <DataGrid Name="dgAuthors" AutoGenerateColumns="True"
 DockPanel.Dock="Bottom" ItemsSource="{Binding}" />

5. Select Debug ➤ Start. Test the application by loading Get Data button. The
DataGrid will load with the Authors’ data (see Figure 11-16). Notice that since the
AutoGenerateColumns property of the DataGrid is set to true, the grid loads with all
the columns in the table. The headers of the grid columns are also the same name
as the author’s table columns.

6. After viewing the window, stop the debugger.

Figure 11-16. The author’s DataGrid

CHAPTER 11 ■ DEVELOPING WINDOWS APPLICATIONS

236

Updating Data

1. Open the MainWindow.xaml.cs file in the Code Editor window. Add the following
code to update the data in the btnSaveData_Click event handler. This code uses
the table adapter’s update command to send the changes back to the database.

 private void btnSaveData_Click(object sender, RoutedEventArgs e)
 {
 try
 {
 _taAuthors.Update(_dtAuthors);
 MessageBox.Show("Data Saved.",
 "Information", MessageBoxButton.OK,
 MessageBoxImage.Information);
 }
 catch (Exception ex)
 {
 MessageBox.Show("Could not save data!",
 "Warning",MessageBoxButton.OK,
 MessageBoxImage.Warning);
 }
 }

2. Update the Grid’s XAML code to only show the first name, last name, and phone
columns.

 <DataGrid Name="dgAuthors" AutoGenerateColumns="False"
 DockPanel.Dock="Bottom" ItemsSource="{Binding}">
 <DataGrid.Columns>
 <DataGridTextColumn Header="Last Name" Binding="{Binding Path='au_lname'}
 " />
 <DataGridTextColumn Header="First Name" Binding="{Binding Path='au_fname'}
 " />
 <DataGridTextColumn Header="Phone" Binding="{Binding Path='phone'}" />
 </DataGrid.Columns>
 </DataGrid>

3. Select Debug ➤ Start. Test the application by loading the Get Data button. Update
some of the Names. Click the Save Data button and then click the Get Data button
to verify the names were saved to the database.

4. After testing, stop the debugger and exit Visual Studio.

CHAPTER 11 ■ DEVELOPING WINDOWS APPLICATIONS

237

Creating and Using Control and Data Templates
In WPF, every control has a template that manages its visual appearance. If you don’t explicitly set its
Style property, then it uses a default template. Creating a custom template and assigning it to the Style
property is an excellent way to alter the look and feel of your applications. Figure 11-17 shows a
standard button as well as a rounded button created by using a control template.

Figure 11-17. Creating a rounded button with a custom template

The following XAML is the markup that defines the custom template used to create the rounded
button in Figure 11-17.

 <Window.Resources>
 <Style x:Key="RoundedButtonStyle" TargetType="Button">
 <Setter Property="Template">
 <Setter.Value>
 <ControlTemplate TargetType="{x:Type Button}">
 <Grid>
 <Ellipse Fill="{TemplateBinding Background}"
 Stroke="{TemplateBinding BorderBrush}"/>
 <ContentPresenter HorizontalAlignment="Center"
 VerticalAlignment="Center"/>
 </Grid>
 </ControlTemplate>
 </Setter.Value>
 </Setter>
 </Style>
 </Window.Resources>

The following XAML code is used to bind the custom style to a button using the button’s Style
property:

<Button Content="Rounded Button" Style="{StaticResource RoundedButtonStyle}"

Along with control style templates, you can also create data templates. Data templates let you
customize how your business objects will look when you bind them in your UI. A good example of when
you need to use a custom data template is the list box. By default, it renders data as a single line of text.
When you try to bind it to a list of employee objects, it calls the ToString() method and writes it out to the
display. As you can see in Figure 11-18, this is clearly not what you want.

CHAPTER 11 ■ DEVELOPING WINDOWS APPLICATIONS

238

Figure 11-18. ListBox using the default DataTemplate

By adding a DataTemplate to the ListBox control, you can not only get the employee data to display,
but you can also control how it gets displayed. The following XAML adds a DataTemplate to the ListBox,
and Figure 11-19 shows the result:

<ListBox ItemsSource="{Binding}" >
 <ListBox.ItemTemplate>
 <DataTemplate>
 <StackPanel Orientation="Horizontal">
 <TextBlock FontWeight="Bold" Text="{Binding Path='lname'}" />
 <TextBlock Text=", " />
 <TextBlock Text="{Binding Path='fname'}" />
 <TextBlock Text=" " />
 <TextBlock Text="{Binding Path = 'minit'}" />
 </StackPanel>
 </DataTemplate>
 </ListBox.ItemTemplate>
</ListBox>

CHAPTER 11 ■ DEVELOPING WINDOWS APPLICATIONS

239

Figure 11-19. ListBox using a custom DataTemplate

In the following activity, you will bind a ListBox control to an entity created from the Pubs database
using an entity data model. You will also create a master detail view by synchronizing a ListBox control
and a DataGrid control.

ACTIVITY 10-3. WORKING WITH DATA TEMPLATES

In this activity, you will become familiar with the following:

Binding a ListBox to an Entity

To bind a Listbox to an entity object, follow these steps:

1. Start Visual Studio. Select File ➤ New ➤ Project.

2. Choose WPF Application. Rename the project to Act11_3 and click the OK button.

3. After the project loads locate the Data Sources window. Click on the Add New
Data Source link.

• Binding a ListBox to an Entity.

• Creating a DataTemplate.

• Creating a Master Detail View.

CHAPTER 11 ■ DEVELOPING WINDOWS APPLICATIONS

240

4. In the Data Source Configuration wizard, choose a data source type of Database.

5. In the Choose a Database Model window, select the Entity Data Model.

6. In the Choose Model Contents window, select the Generate from database option.

7. In the Choose your Data Connection window, select or create a connection to the
Pubs database.

8. On the next screen, save the connection to the application configuration file.

9. In the Choose Your Database Objects window, expand the tables’ node and select
the stores and sales tables. Click the Finish button.

10. Notice in the Solutions Explorer window a Model1.edmx file has been added to the
file. This file contains the relational mapping between the entities and the tables in
the pubs database.

Creating the Data Template

1. Add a DockPanel and a ListBox control in the XAML Editor window.

 <Grid Name="StoresGrid">
 <DockPanel>
 <ListBox Name="StoresList" DockPanel.Dock="Left" ItemsSource="{Binding}">

 </ListBox>
 </DockPanel>
 </Grid>

2. Add a Window_Loaded event handler in the code file that sets the DataContext of
the ListBox to the stores entities.

 private void Window_Loaded(object sender, RoutedEventArgs e)
 {
 pubsEntities db = new pubsEntities();
 this.StoresGrid.DataContext = db.stores;
 }

3. Add a DataTemplate to display the store name in a TextBox control.

 <ListBox Name="StoresList" DockPanel.Dock="Left"
 ItemsSource="{Binding}">
 <ListBox.ItemTemplate>
 <DataTemplate>
 <TextBlock FontWeight="Bold" Text="{Binding Path='stor_name'}" />
 </DataTemplate>
 </ListBox.ItemTemplate>
 </ListBox>

4. Select Debug ➤ Start. Make sure the ListBox shows the store names. When
you’re done viewing the ListBox, stop the debugger.

CHAPTER 11 ■ DEVELOPING WINDOWS APPLICATIONS

241

5. To implement a master/detail data view, add a DataGrid control to the DockPanel
control after the ListBox control. The Binding of the grid is set to the same as the
list box, which is the store entity, but the binding path is set to the sales entity.
This will cause the data grid to show the sales items of the store selected in the
list box.

 <DataGrid Name="SalesGrid" DockPanel.Dock="Right"
 ItemsSource="{Binding Path='sales'}" AutoGenerateColumns="False">
 <DataGrid.Columns>
 <DataGridTextColumn Header="Order Number" Binding="{Binding
 Path='ord_num'}"/>
 <DataGridTextColumn Header="Order Date" Binding="{Binding
 Path='ord_date'}"/>
 </DataGrid.Columns>
 </DataGrid>

6. Add the following property to the ListBox control in the XAML code. This will
ensure that the ListBox control and DataGrid control will remain in sync.

 IsSynchronizedWithCurrentItem="True"

7. Launch the application in the debugger. Your window should look similar to Figure
11-20. Click on different stores in the list box. You should see the data grid update
with the store’s sales data. After testing, stop the debugger and close Visual
Studio.

Figure 11-20. Viewing master/detail data

CHAPTER 11 ■ DEVELOPING WINDOWS APPLICATIONS

242

Summary
In this chapter, you looked at implementing the interface tier of an application. You implemented the
user interface through a WPF-based application front end. Along the way, you took a closer look at the
classes and namespaces of the .NET Framework used to implement rich Windows-based user interfaces.
You saw how to use XAML syntax to define the controls and layout of the interface. You also saw how
easy it is to bind the controls to the data and present it to the users.

In the next chapter, you will revisit the UI tier of a .NET application, but instead of implementing
the GUI using WPF, you will implement the GUI as a web-based application using Silverlight. Along the
way, you will take a closer look at the namespaces available for creating web-based GUI applications and
the techniques involved in implementing the classes contained in these namespaces.

C H A P T E R 1 2

■ ■ ■

243

Developing Web Applications

In the previous chapter, you learned how to build a simple Windows-based graphical user interface
(GUI) using C# and WPF. Although WPF gives programmers the ability to easily build extremely rich user
interfaces, it is not always practical to assume users will access your programs through a traditional
Windows-based PC. With the proliferation of intranets, web applications, and mobile devices,
applications now need to allow users the ability to access the interface through a variety of browsers and
devices. This chapter shows you how to build a web-based user interface using Silverlight. If you
experience a sense of déjà vu while reading this chapter, it is by design. Silverlight interface design and
programming uses an object model that is remarkably similar to the one used to design and program a
WPF interface. As a matter of fact, prior to the release of Silverlight 1.0, it was referred to as Windows
Presentation Foundation/Everywhere (WPF/E).

In this chapter, you will be performing the following tasks with Silverlight:

• Using XAML markup to design the user interface.

• Working with layout controls.

• Working with display controls.

• Responding to control events.

• Working with data binding controls.

• How to perform data validation and conversion.

What Is Silverlight?
Although you can build extremely rich and sophisticated UI for your applications using WPF, it is limited
to running on a computer that is running a Windows operating system. More and more users are
demanding Rich Internet-based Applications (RIA) that run on a variety of devices and a variety of
browsers. This demand is not limited to traditional web-based applications; business users no longer
want to be tied to client applications running on their desktop PCs in the office. They want to access the
applications on laptops via wireless hotspots or through their Internet-capable cell phones. In response
to these demands, Microsoft developed Silverlight.

Silverlight is what is known as a cross-browser, cross-platform technology. It runs in all popular web
browsers, including Microsoft Internet Explorer, Mozilla Firefox, Apple Safari, Google Chrome, and on
Microsoft Windows and Apple Mac OS X. Running Silverlight requires a free plug-in that automatically
installs (with permission) if users don’t have it. The download is small and installs quickly. Application
code is compiled and runs on the client; it only needs to contact the server for resources such as data
and media.

CHAPTER 12 ■ DEVELOPING WEB APPLICATIONS

244

Silverlight is based on a subset of the Windows Presentation Foundation (WPF) technology and the
.NET Framework. As a result, Silverlight greatly extends the elements and classes available for creating
rich UI running in the browser. Silverlight applications are created using any .NET Framework-
supported language (including Visual Basic, C#, and JavaScript). Like WPF windows, pages in a
Silverlight application are created using XAML. XAML is similar to HTML in that it uses a declarative
syntax; however, XAML provides significantly more powerful elements.

Creating a Silverlight Application
You can develop a Silverlight application in Visual Studio much as you would a WPF application. As a
matter of fact, if you look at Figure 12-1, you can see that the layout of the designer is almost identical.
There is a Visual Design window, XAML Code Editor window, Toolbox, Properties window, and Solution
Explorer.

Figure 12-1. Visual Studio Silverlight designer

One of the major differences between a WPF application and a Silverlight application is that the
Silverlight solution requires two projects. One project is the Silverlight application and the other is a web
site to host it. When you build a Silverlight application, the code is compiled and compressed into a XAP
file. A link to the XAP file is then hosted in a web page control. When a user loads the web page, the XAP
file is downloaded and the code is decompressed and hosted in the browser using the Silverlight plug-in.
If the plug-in is not installed, its absence is detected and the user is shown a link where a copy can be
found for download. The following markup shows the link to the XAP in an HTML web page:

CHAPTER 12 ■ DEVELOPING WEB APPLICATIONS

245

<object data="data:application/x-silverlight-2,"
 type="application/x-silverlight-2" width="100%" height="100%">
 <param name="source" value="ClientBin/Chap12Demo1.xap"/>
 <param name="onError" value="onSilverlightError" />
 <param name="background" value="white" />
 <param name="minRuntimeVersion" value="4.0.50826.0" />
 <param name="autoUpgrade" value="true" />
 <a href="http://go.microsoft.com/fwlink/?LinkID=149156&v=4.0.50826.0"
 style="text-decoration:none">
 <img src="http://go.microsoft.com/fwlink/?LinkId=161376"
 alt="Get Microsoft Silverlight" style="border-style:none"/>

</object>

Using Layout Controls
The main container for a Silverlight control is the Page element. Inside the Page element, a main layout
control must be declared. This can be a Grid, Canvas, or StackPanel. By default, the Visual Studio
designer uses the Grid control. The following XAML is the default XAML inserted when you add a new
page. Notice that the page element is actually a UserControl hosted by a web page.

<UserControl x:Class="Chap12Demo1.MainPage"
 xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"
 xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"
 xmlns:d="http://schemas.microsoft.com/expression/blend/2008"
 xmlns:mc="http://schemas.openxmlformats.org/markup-compatibility/2006"
 mc:Ignorable="d"
 d:DesignHeight="300" d:DesignWidth="400">
 <Grid x:Name="LayoutRoot" Background="White">

 </Grid>
</UserControl>

Just as in WPF, fixed positioning to place controls on a page it is not recommended. Fixed
positioning does not scale well to different resolutions and devices. The following code lays out a
Silverlight login page used to capture a user’s name and password. The resulting form is shown in Figure
12-2.

<Grid x:Name="LayoutRoot" Background="White" Margin="10" >
 <Grid.RowDefinitions>
 <RowDefinition Height="Auto" />
 <RowDefinition Height="Auto" />
 <RowDefinition Height="Auto" />
 </Grid.RowDefinitions>
 <Grid.ColumnDefinitions>
 <ColumnDefinition Width="Auto" />
 <ColumnDefinition Width="Auto" />
 </Grid.ColumnDefinitions>
 <sdk:Label Grid.Row="0" Grid.Column="0" Content="Name:"/>
 <sdk:Label Grid.Row="1" Grid.Column="0" Content="Password:"/>
 <TextBox Grid.Column="1" Grid.Row="0" Margin="3" MinWidth="150"/>

CHAPTER 12 ■ DEVELOPING WEB APPLICATIONS

246

 <TextBox Grid.Column="1" Grid.Row="1" Margin="3" MinWidth="150"/>
 <Button Grid.Column="1" Grid.Row="4" HorizontalAlignment="Right"
 MinWidth="80" Margin="0,0,0,8" Content="Submit" />
 </Grid>

Figure 12-2. Input page

You often use layout controls inside other controls. To add a Cancel button to the form and lay it out
horizontally alongside the Submit button, you would use a StackPanel inside the Grid control, as shown
in the following markup:

<StackPanel Grid.Column="1" Grid.Row="4" Orientation="Horizontal" >
 <Button MinWidth="80" Margin="0,0,0,8" Content="Submit" />
 <Button MinWidth="80" Margin="0,0,0,8" Content="Cancel" />
</StackPanel>

Adding Display Controls
Silverlight pages can host many of the same controls as a WPF window. Most business applications are
designed to present and capture data from the users. Some common controls used to facilitate this
process are the Textbox, ListBox, ComboBox, Checkbox, DatePicker, and DataGrid. The following code
shows how to add a DatePicker and CheckBoxes to a Silverlight page. The sdk designation in front of the
DataPicker control signifies that it’s part of the libraries in the Silverlight Software Development Kit
(SDK) and is available when you install the SDK. Figure 12-3 shows how the page is displayed to the user.

<Grid>
 <Grid.ColumnDefinitions>
 <ColumnDefinition Width="Auto" />
 <ColumnDefinition Width="Auto" />
 </Grid.ColumnDefinitions>
 <sdk:DatePicker Grid.Column="0" VerticalAlignment="Top" MinWidth="175" />
 <StackPanel Grid.Column="1" >
 <CheckBox Content="Morning" />
 <CheckBox Content="Afternoon" />
 <CheckBox Content="Evening" />
 </StackPanel>
</Grid>

CHAPTER 12 ■ DEVELOPING WEB APPLICATIONS

247

Figure 12-3. Page containing a DatePicker and CheckBoxes

Handling Control Events
Silverlight follows an event-driven programming model similar to WPF. Events are messages sent by an
object to signal the occurrence of an action. This can be an action initiated by a user, such as a
ButtonClick, or an action initiated by the program, such as a LayoutUpdated event.

To add events, you typically wire up an event handler to a control using XAML code. When working
with controls in code, you need to give them each a unique name using the Name attribute. The
following markup shows how to add a click event to a button:

<Button Name="btnSave" Click="btnSave_Click" Grid.Column="2" MinWidth="80"
 Height="20" Content="Save" VerticalAlignment="Top"/>

When an event handler is assigned to an event in the XAML, the code editor inserts an event handler
method in the codebehind file. All event handlers include two parameters: the sender parameter
contains a reference to the object that initiated the event and the event args passes data specific for a
certain kind of event. For example, mouse events may pass information pertaining to the position of the
cursor when the event occurred. The following code shows the event handler method inserted for the
button click event:

private void btnSave_Click(object sender, RoutedEventArgs e)
{
}

Remember that by convention, the name of the event handler method is the name of the object
issuing the event followed by an underscore character (_) and the name of the event. The actual name of
the event handler, however, is unimportant. The Click attribute in the XAML code adds this method to
the invocation list of the event’s delegation object.

In the following activity, you’ll build a Silverlight page, add some common controls, and respond to
control events.

CHAPTER 12 ■ DEVELOPING WEB APPLICATIONS

248

ACTIVITY 12-1. WORKING WITH SILVERLIGHT CONTROLS

In this activity, you will become familiar with the following:

■Note In order to complete the activities in this chapter, you need to install the Silverlight Tools for Visual
Studio 2010. Refer to Appendix C for instructions.

Creating a Silverlight Application and Adding Controls

To create the Silverlight application, follow these steps:

1. Start Visual Studio. Select File ➤ New ➤ Project.

2. Choose a Silverlight Application under the C# Projects folder. Rename the project
to Act12_1 and click the OK button.

3. The next screen asks if you want to host the Silverlight application in a new web
site. It also asks you what version of Silverlight you want to use. Accept the
defaults shown in Figure 12-4 and click OK.

• Creating a Silverlight application.

• Adding and working with various controls on a page.

• Implementing control events.

CHAPTER 12 ■ DEVELOPING WEB APPLICATIONS

249

Figure 12-4. Setting application options

4. The project contains a MainPage.xaml file. This file is where you design the user
interface. The project also contains a MainPage.xaml.cs file. This is the
codebehind file and it’s where you will add the code to respond to the events.

5. Add a StackPanel inside the main Layout Grid control. Inside the StackPanel, add
a TextBox and ComboBox, as shown:

 <Grid x:Name="LayoutRoot" Background="White" >
 <StackPanel Orientation="Vertical" HorizontalAlignment="Center">
 <TextBox Name="txtColor" Text="Color Me!" FontSize="18"/>
 <ComboBox Name="cboColors">
 <ComboBoxItem Name="Item1" Content="Red"/>
 <ComboBoxItem Name="Item2" Content="Blue"/>
 <ComboBoxItem Name="Item3" Content="Green"/>
 </ComboBox>
 </StackPanel>
 </Grid>

6. Add a SelectionChanged event handler to the ComboBox.

 <ComboBox Name="cboColors" SelectionChanged="cboColors_SelectionChanged">

7. In the codebehind file, add the following code to interrogate the ComboBoxItem’s
Content and change the font color of the TextBox depending on what was

CHAPTER 12 ■ DEVELOPING WEB APPLICATIONS

250

selected. The SelectionChangedEventArgs parameter (e) passes in a list of
selected items. In this case, there is only one item in the list.

 private void cboColors_SelectionChanged(object sender, SelectionChangedEventArgs e)
 {
 ComboBoxItem l = (ComboBoxItem) e.AddedItems[0];
 if (l.Content.ToString() == "Red")
 {
 SolidColorBrush brush = new SolidColorBrush(Colors.Red);
 txtColor.Foreground = brush;
 }
 if (l.Content.ToString() == "Blue")
 {
 SolidColorBrush brush = new SolidColorBrush(Colors.Blue);
 txtColor.Foreground = brush;
 }
 if (l.Content.ToString() == "Green")
 {
 SolidColorBrush brush = new SolidColorBrush(Colors.Green);
 txtColor.Foreground = brush;
 }
 }

8. Run the application in the debugger. You should see a page with the TextBox and a
ComboBox. Test the application by selecting different colors in the ComboBox and
verify the text color of the Textbox changes. After testing, stop the debugger.

Adding Event Handling to Silverlight Controls

1. In the XAML Editor below the ComboBox, add a Canvas and a Textbox control.
Note that an event handler for the Canvas’s MouseEnter and MouseLeave events
has been added.

<Canvas Width="150" Height="150" Background="Aqua"
 MouseEnter="Canvas_MouseEnter" MouseLeave="Canvas_MouseLeave">
 <TextBox Name="txtMessage" FontSize="18" Visibility="Collapsed"
 Canvas.Left="35" Canvas.Top="46" Background="Aqua" />
</Canvas>

2. Open the codebehind file by right-clicking the XAML Editor and selecting View
Code. Add the following code to the Canvas_MouseEnter event handler:

private void Canvas_MouseEnter(object sender, MouseEventArgs e)
{
 txtMessage.Visibility = Visibility.Visible;
 txtMessage.Text = "Hello";
}

3. Add the following code to the Canvas_MouseLeave event handler:

private void Canvas_MouseLeave(object sender, MouseEventArgs e)
{

CHAPTER 12 ■ DEVELOPING WEB APPLICATIONS

251

 txtMessage.Text = "Goodbye";
}

4. Run the application in the debugger. You should see the Canvas control on the
page. Test the application by moving the mouse cursor in and out of the Canvas
control. Verify that the Textbox shows the Hello and Goodbye messages. After
testing, stop the debugger.

5. In the XAML Editor, after the Canvas control, add a ProgressBar and a Button
control. Note that an event handler for the Button’s Click event has been added.

<ProgressBar Name="pbProgress" Foreground="Aqua" Background="Gray"
 Value="10" Maximum="100" Width="200" Height="20" Margin="20"/>
<Button Name="btnAdvance" Height="20" Width="60" Content="Advance"
 Click="btnAdvance_Click"/>

6. Add the following code to the btnAdvance_Click event handler:

private void btnAdvance_Click(object sender, RoutedEventArgs e)
{
 if (pbProgress.Value < pbProgress.Maximum)
 {
 pbProgress.Value+=20;
 }
}

7. Run the application in the debugger. You should see the progress bar and button
on the page. Click on the Advance button. You should see the progress bar
advancing. After testing, stop the debugger and exit Visual Studio.

Data Binding in Silverlight
Binding a Silverlight control to data is done in a way that is very similar to the way it’s handled in WPF.
When you do the binding with XAML, you use the Binding attribute available with each control. When
you bind a control in code, you set its source with the DataContext property. When you set the
DataContext for a parent element, such as a Grid control, the child elements will use the same
DataContext unless their DataContext is explicitly set.

The .NET Framework encapsulates much of the complexity of synchronizing controls to a data
source through the data binding process. The Mode property determines how the data binding flows
and reacts to data changes. OneWay binding causes changes to the source property to automatically
update the target property, but changes to the target property are not propagated back to the source
property. This is useful for read-only scenarios and is the default binding. TwoWay binding causes
changes to either the source property or the target property to automatically update the other. This is
useful for full data updating scenarios.

The following code shows the DataContext of a Grid control set to a CollectionViewSource that
contains a list of authors. The CollectionViewSource allows you to move through the list of authors.

CHAPTER 12 ■ DEVELOPING WEB APPLICATIONS

252

CollectionViewSource cvs = new CollectionViewSource();
cvs.Source = authorList;
this.AuthorList.DataContext = cvs;
cvs.View.MoveCurrentToFirst();

The following XAML code binds TextBox controls and a CheckBox control to the properties of the

Authors class using the Path attribute. Using Binding to designate the source means “look up the
container hierarchy until a DataContext is found.” In this case, the DataContext will be the one specified
for the Grid container.

<Grid Name="AuthorList" DataContext="{Binding}">
 <Grid.ColumnDefinitions>
 <ColumnDefinition Width="Auto" />
 <ColumnDefinition Width="Auto" />
 </Grid.ColumnDefinitions>
 <Grid.RowDefinitions>
 <RowDefinition Height="Auto" />
 <RowDefinition Height="Auto" />
 <RowDefinition Height="Auto" />
 <RowDefinition Height="Auto" />
 </Grid.RowDefinitions>
 <sdk:Label Content="First Name:" Grid.Column="0" Grid.Row="0"
 HorizontalAlignment="Left" Margin="3" VerticalAlignment="Center" />
 <TextBox Grid.Column="1" Grid.Row="0" Height="23" HorizontalAlignment="Left"
 Margin="3" Name="txtFirstName" Text="{Binding Path=FirstName}"
 VerticalAlignment="Center" Width="120" />
 <sdk:Label Content="Last Name:" Grid.Column="0" Grid.Row="1"
 HorizontalAlignment="Left" Margin="3" VerticalAlignment="Center" />
 <TextBox Grid.Column="1" Grid.Row="1" Height="23" HorizontalAlignment="Left"
 Margin="3" Name="txtLastName" Text="{Binding Path=LastName}"
 VerticalAlignment="Center" Width="120" />
 <CheckBox Name="chkContract" Content="Under Contract"
 IsChecked="{Binding Path=UnderContract}"
 Grid.Row="2" Grid.ColumnSpan="2" FlowDirection="RightToLeft" />
 <StackPanel Grid.Column="1" Grid.Row="3" Grid.ColumnSpan="2" Orientation="Horizontal">
 <Button Name="btnPrev" Content="Prev" MinWidth="50"/>
 <Button Name="btnNext" Content="Next" MinWidth="50"/>
 </StackPanel>
</Grid>

The resulting page loaded with author data is shown in Figure 12-5.

CHAPTER 12 ■ DEVELOPING WEB APPLICATIONS

253

Figure 12-5. Page displaying author data

While some controls can only bind to one record at a time, other controls, such as the DataGrid
control, bind to and display the entire collection. The following code sets the ItemSource of a DataGrid
to the list of authors. In this case, it’s not necessary to use a CollectionViewSource.

this.AuthorDataGrid.ItemsSource = authorList;

The following XAML creates the DataGrid and binds the columns of the grid. The resulting page is
shown in Figure 12-6.

<sdk:DataGrid Name="AuthorDataGrid" AutoGenerateColumns="False">
 <sdk:DataGrid.Columns>
 <sdk:DataGridTextColumn Header="First Name"
 Width="SizeToHeader" Binding="{Binding FirstName}" />
 <sdk:DataGridTextColumn Header="Last Name"
 Width="SizeToHeader" Binding="{Binding LastName}" />
 <sdk:DataGridCheckBoxColumn Header="Under Contract"
 Width="SizeToHeader" Binding="{Binding UnderContract}" />
 </sdk:DataGrid.Columns>
</sdk:DataGrid>

Figure 12-6. Page displaying author data in a DataGrid

CHAPTER 12 ■ DEVELOPING WEB APPLICATIONS

254

In the following activity, you will build a page with controls bound to a collection of Author objects.
You will also use TwoWay binding to update author data.

ACTIVITY 12-2. WORKING WITH DATA BOUND CONTROLS

In this activity, you will become familiar with the following:

Binding Controls to a Collection

To bind controls to a collection, follow these steps:

1. Start Visual Studio. Select File ➤ New ➤ Project.

2. Choose a Silverlight Application. Rename the project to Act12_2 and click the OK
button.

3. The next screen asks if you want to host the Silverlight application in a new web
site. It also asks you what version of Silverlight you want to use. Accept the
defaults and click OK.

4. Right-click on the Act12_2 project node in Solution Explorer and choose Add ➤
Class. Name the class Author.

5. At the top of the class file, add the following using statement:
using System.ComponentModel;

6. In the Author class, implement the INotifyPropertyChanged interface. This is
needed to facilitate binding.

public class Author : INotifyPropertyChanged
{

 public event PropertyChangedEventHandler PropertyChanged;

 void RaisePropertyChanged(string propertyName)
 {
 var handler = PropertyChanged;
 if (handler != null)
 {
 handler(this, new PropertyChangedEventArgs(propertyName));
 }
 }
}

7. Add the following properties. Note that when the values are changed, the
PropertyChanged event is raised.

• Binding controls to a collection.

• Updating data using TwoWay binding.

CHAPTER 12 ■ DEVELOPING WEB APPLICATIONS

255

string _firstName;
public string FirstName
{
 get { return _firstName; }
 set
 {
 if (_firstName != value)
 {
 _firstName = value;
 RaisePropertyChanged("FirstName");
 }
 }
}
string _lastName;
public string LastName
{
 get { return _lastName; }
 set
 {
 if (_lastName != value)
 {
 _lastName = value;
 RaisePropertyChanged("LastName");
 }
 }
}
Boolean _underContract;
public Boolean UnderContract
{
 get { return _underContract; }
 set
 {
 if (_underContract != value)
 {
 _underContract = value;
 RaisePropertyChanged("UnderContract");
 }
 }
}
double _royalty;
public double Royalty
{
 get { return _royalty; }
 set
 {
 if (_royalty != value)
 {
 _royalty = value;
 RaisePropertyChanged("Royalty");
 }
 }
}

CHAPTER 12 ■ DEVELOPING WEB APPLICATIONS

256

8. Add the following constructor to the Author class:

public Author(string firstName, string lastName,
 Boolean underContract, double royalty)
{
 this.FirstName = firstName;
 this.LastName = lastName;
 this.UnderContract = underContract;
 this.Royalty = royalty;
}

9. Build the project and make sure there are no errors. If there are, fix them and
rebuild.

10. Add the following XAML markup to the MainPage.xaml file to create the user
interface:

<Grid x:Name="LayoutRoot" Background="White" >
 <Grid Name="AuthorList" DataContext="{Binding}" HorizontalAlignment="Center">
 <Grid.ColumnDefinitions>
 <ColumnDefinition Width="Auto" />
 <ColumnDefinition Width="Auto" />
 </Grid.ColumnDefinitions>
 <Grid.RowDefinitions>
 <RowDefinition Height="Auto" />
 <RowDefinition Height="Auto" />
 <RowDefinition Height="Auto" />
 <RowDefinition Height="Auto" />
 <RowDefinition Height="Auto" />
 <RowDefinition Height="Auto" />
 </Grid.RowDefinitions>
 <sdk:Label Content="Author Info" Grid.Column="0" Grid.Row="0"
 Grid.ColumnSpan="2" HorizontalAlignment="Center"
 Margin="3" VerticalAlignment="Center" />
 <sdk:Label Content="First Name:" Grid.Column="0"
 Grid.Row="1" HorizontalAlignment="Left"
 Margin="3" VerticalAlignment="Center" />
 <TextBox Grid.Column="1" Grid.Row="1" Height="23" HorizontalAlignment="Left"
 Margin="3" Name="txtFirstName" Text="{Binding Path=FirstName}"
 VerticalAlignment="Center" Width="120" />
 <sdk:Label Content="Last Name:" Grid.Column="0" Grid.Row="2"
 HorizontalAlignment="Left" Margin="3" VerticalAlignment="Center" />
 <TextBox Grid.Column="1" Grid.Row="2" Height="23" HorizontalAlignment="Left"
 Margin="3" Name="txtLastName" Text="{Binding Path=LastName}"
 VerticalAlignment="Center" Width="120" />
 <sdk:Label Content="Royalty:" Grid.Column="0" Grid.Row="3"
 HorizontalAlignment="Left" Margin="3" VerticalAlignment="Center" />
 <TextBox Grid.Column="1" Grid.Row="3" Height="23" HorizontalAlignment="Left"
 Margin="3" Name="txtRoyalty" Text="{Binding Path=Royalty}"
 VerticalAlignment="Center" Width="120" />
 <CheckBox Name="chkContract" Content="Under Contract"
 IsChecked="{Binding Path=UnderContract}"
 Grid.Row="4" Grid.ColumnSpan="2" FlowDirection="RightToLeft" />

CHAPTER 12 ■ DEVELOPING WEB APPLICATIONS

257

 </Grid>
</Grid>

11. Launch the application in the debugger. You should see a page similar to the one
shown in Figure 12-7. After testing, stop the debugger.

Figure 12-7. Author info page

Updating Data Using TwoWay Binding

1. Inside the MainPage UserControl tag, add a Loaded event handler attribute.

<UserControl xmlns:sdk="http://schemas.microsoft.com/winfx/2006/xaml/presentation/sdk"
 x:Class="Act12_2.MainPage"
 xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"
 xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"
 xmlns:d="http://schemas.microsoft.com/expression/blend/2008"
 xmlns:mc="http://schemas.openxmlformats.org/markup-compatibility/2006"
 mc:Ignorable="d"
 d:DesignHeight="300" d:DesignWidth="400" Loaded="UserControl_Loaded">

2. In the codebehind file MainPage.xaml.cs, add the following using statement to
the top of the file:

using System.Windows.Data;

3. In the codebehind file, add the following code to the UserControl_Loaded event
handler. This code creates a list of authors, adds it to a CollectionViewSource,
and sets the DataContext of the AuthorList Grid control.

CollectionViewSource cvs;
private void UserControl_Loaded(object sender, RoutedEventArgs e)
{
 List<Author> authorList = new List<Author>();
 authorList.Add(new Author("Clive", "Cussler", true,.15));
 authorList.Add(new Author("Steve", "Berry", false,.20));
 authorList.Add(new Author("Kate", "Morton", false,.20));

CHAPTER 12 ■ DEVELOPING WEB APPLICATIONS

258

 authorList.Add(new Author("Karma", "Wilson", true,.18));
 cvs = new CollectionViewSource();
 cvs.Source = authorList;
 this.AuthorList.DataContext = cvs;
 cvs.View.MoveCurrentToFirst();
}

4. Launch the application in the debugger. Make sure the page is loaded with the
first author’s info. After testing, stop the debugger.

5. To enable moving through the records, add the following XAML after the
Checkbox control in the MainPage.xaml file:

<StackPanel Grid.Column="1" Grid.Row="5" Grid.ColumnSpan="2"
 Orientation="Horizontal">
 <Button Name="btnPrev" Content="Prev" MinWidth="50"
 Click="btnPrev_Click"/>
 <Button Name="btnNext" Content="Next" MinWidth="50"
 Click="btnNext_Click" />
</StackPanel>

6. Add the following code to the btnPrev_Click event handler in the codebehind file.
This code uses the CollectionViewSource to loop backward through the records.

private void btnPrev_Click(object sender, RoutedEventArgs e)
{
 cvs.View.MoveCurrentToPrevious();
 if (cvs.View.IsCurrentBeforeFirst)
 {
 cvs.View.MoveCurrentToLast();
 }
}

7. Add the following code to the btnNext_Click event handler in the codebehind file.
This code uses the CollectionViewSource to loop forward through the records.

private void btnNext_Click(object sender, RoutedEventArgs e)
{
 cvs.View.MoveCurrentToNext();
 if (cvs.View.IsCurrentAfterLast)
 {
 cvs.View.MoveCurrentToFirst();
 }

 }

8. Launch the application in the debugger. Test the buttons to make sure you can
move through the authors list. After testing, stop the debugger.

9. Launch the application in the debugger. Update the royalty of the first author,
move to the next author, and move back. You should see that your change was
not kept. This is because the default binding mode is one way. Stop the
debugger.

CHAPTER 12 ■ DEVELOPING WEB APPLICATIONS

259

10. Update the txtRoyalty text box’s XAML code make the binding TwoWay.

<TextBox Grid.Column="1" Grid.Row="3" Height="23"
 HorizontalAlignment="Left" Margin="3"
 Name="txtRoyalty" Text="{Binding Path=Royalty, Mode=TwoWay}"
 VerticalAlignment="Center" Width="120" />

11. Launch the application in the debugger. Update the royalty of the first author,
move to the next author, and move back. You should now see that your change
was kept. This is because the default binding mode is TwoWay.

12. After testing, stop the debugger and exit Visual Studio.

Validating and Converting Data
When you allow users to update data, it is very important to validate the data before it is saved back to
the data store. For example, you don’t want to allow a customer to order a negative amount of an item or
set a birth date that occurs in the future. Silverlight supports error notification when exceptions are
thrown by either the binding engine's type converter or the binding object's set accessor. If the
ValidatesOnExceptions property and the NotifyOnExceptions property values are set to true, Silverlight
will provide visual feedback that an error has occurred and will display the error message passed by the
binding object. In this case, the Author class will throw an error if you try to set the Royalty property to a
value less than zero. The following XAML markup shows the Binding setting of the textbox used to
display the royalty. Figure 12-8 shows how the exception is displayed in the page.

Text="{Binding Path=Royalty,Mode=TwoWay, NotifyOnValidationError=True,
 ValidatesOnExceptions=True}"

Figure 12-8. Displaying a validation error

A common scenario in business applications is to convert data from the format used to store it to a
more user-friendly format for display. For example, you may want to change the date format or display
null values as user-friendly default values. Silverlight facilitates formatting string values using the

CHAPTER 12 ■ DEVELOPING WEB APPLICATIONS

260

StringFormat property. The TargetNullValue property allows you to display a friendly default value
instead of null values. You can also set a custom converter on the binding. You set the Converter
property to a class that implements the IValueConverter interface.

The following XAML sets the StringFormat property to show the royalties in percent and the
TargetNullValue to NA. Figure 12-9 shows the resulting display in the page.

Text="{Binding Path=Royalty, Mode=TwoWay, NotifyOnValidationError=True,
ValidatesOnExceptions=True, StringFormat=p, TargetNullValue=NA}"

Figure 12-9. Displaying royalties as percentages

 In the following activity you will implement some of the data validation and conversion capabilities
of Silverlight controls described in this section.

ACTIVITY 12-3. VALIDATING AND CONVERTING DATA

In this activity, you will become familiar with the following:

To implement data validation, follow these steps:

1. Start Visual Studio. Select File ➤ Open ➤ Project.

2. Navigate to the Act12_2 solution file and click the Open button.

3. Open the Author class file in the Code Editor and update the Royalty property to
check to make sure it is not negative. If it is, throw an exception.

public double Royalty
{
 get { return _royalty; }
 set
 {

• Data validation

• Data conversion

CHAPTER 12 ■ DEVELOPING WEB APPLICATIONS

261

 if (_royalty != value)
 {
 if (value <= 0) throw new Exception
 ("Amount must be greater than zero.");
 _royalty = value;
 RaisePropertyChanged("Royalty");
 }
 }
}

4. Right-click on the Act 12_2 project node in Solution Explorer and select Add ➤
New Item. Add a Silverlight UserControl and name it Page2.xaml.

5. Add the following code to display the author’s info in a DataGrid. Note the binding
of the Royalty column. The NotifyOnValidationError and ValidatesOnExceptions
attributes are set to true.

 <Grid x:Name="LayoutRoot" Background="White">
 <sdk:DataGrid Name="AuthorDataGrid" AutoGenerateColumns="False"
 HorizontalAlignment="Center">
 <sdk:DataGrid.Columns>
 <sdk:DataGridTextColumn
 Header="First Name"
 Width="SizeToHeader"
 Binding="{Binding FirstName}" />
 <sdk:DataGridTextColumn
 Header="Last Name"
 Width="SizeToHeader"
 Binding="{Binding LastName}" />
 <sdk:DataGridTextColumn
 Header="Royalty"
 Width="SizeToHeader"
 Binding="{Binding Royalty,Mode=TwoWay,
 NotifyOnValidationError=True,
 ValidatesOnExceptions=True}" />
 <sdk:DataGridCheckBoxColumn
 Header="Under Contract"
 Width="SizeToHeader"
 Binding="{Binding UnderContract}" />
 </sdk:DataGrid.Columns>
 </sdk:DataGrid>
 </Grid>

6. Inside the MainPage UserControl tag, add a Loaded event handler attribute.

<UserControl xmlns:sdk="http://schemas.microsoft.com/winfx/2006/xaml/presentation/sdk"
x:Class="Act12_2.Page2"
 xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"
 xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"
 xmlns:d="http://schemas.microsoft.com/expression/blend/2008"
 xmlns:mc="http://schemas.openxmlformats.org/markup-compatibility/2006"
 mc:Ignorable="d"
 d:DesignHeight="300" d:DesignWidth="400" Loaded="UserControl_Loaded">

CHAPTER 12 ■ DEVELOPING WEB APPLICATIONS

262

7. In the UserControl_Loaded event handler, add the following code to load the
author list and bind it to the DataGrid:

private void UserControl_Loaded(object sender, RoutedEventArgs e)
{
 List<Author> authorList = new List<Author>();
 authorList.Add(new Author("Clive", "Cussler", true, .15));
 authorList.Add(new Author("Steve", "Berry", false, .20));
 authorList.Add(new Author("Kate", "Morton", false, .20));
 authorList.Add(new Author("Karma", "Wilson", true, .18));
 this.AuthorDataGrid.ItemsSource = authorList;
}

8. To make Page2 the startup page, open the App.xaml.cs code in the code editor.
Change the Application_Startup event handler to use Page2.

private void Application_Startup(object sender, StartupEventArgs e)
{
 this.RootVisual = new Page2();
}

9. Launch the application in the debugger. You should see the grid showing the
author’s info.

10. Change one of the royalties to a negative value and click on another row. When
the value tries to update, the debugger will stop on the error. Select Continue
under the Debug menu. You should see the grid with the error message stating
the amount must be greater than zero.

11. Stop the debugger.

12. In the Page2.xaml, update the Royalty column XAML to include formatting to
display it as a percentage and change null values to NA.

<sdk:DataGridTextColumn
 Header="Royalty"
 Width="SizeToHeader"
 Binding="{Binding Royalty,Mode=TwoWay,
 NotifyOnValidationError=True,
 ValidatesOnExceptions=True,
 StringFormat=p, TargetNullValue=NA}" />

13. Update the Royalty property in the Author class so it can be set to null. The
double? makes it a nullable type.

double? _royalty;
public double? Royalty
{
 get { return _royalty; }
 set
 {
 if (_royalty != value)
 {
 if (value <= 0) throw new Exception("Amount must be greater than zero.");

CHAPTER 12 ■ DEVELOPING WEB APPLICATIONS

263

 _royalty = value;
 RaisePropertyChanged("Royalty");
 }
 }
}

14. Update the Author class constructor to accept null values.

 public Author(string firstName, string lastName,
 Boolean underContract, double? royalty)
 {
 this.FirstName = firstName;
 this.LastName = lastName;
 this.UnderContract = underContract;
 this.Royalty = royalty;
 }

15. In the UserControl_Loaded event handler, include some null royalty values.

private void UserControl_Loaded(object sender, RoutedEventArgs e)
{
 List<Author> authorList = new List<Author>();
 authorList.Add(new Author("Clive", "Cussler", true, .15));
 authorList.Add(new Author("Steve", "Berry", false, null));
 authorList.Add(new Author("Kate", "Morton", false, null));
 authorList.Add(new Author("Karma", "Wilson", true, .18));
 this.AuthorDataGrid.ItemsSource = authorList;
}

16. Select Debug ➤ Start. You should see the royalties as percentages and the null
values as NA. When you’re done testing, stop the debugger and exit Visual
Studio.

Summary
In this chapter, you took a second look at implementing the interface tier of an application, this time
using the web-based Silverlight framework. Along the way, you took a close look at how to implement
rich web-based user interfaces. You saw how to use XAML syntax to define Silverlight controls and their
layout on a Silverlight page. You also saw how easy it is to bind the controls to the data and present it to
the users. What’s still missing from the story is information on how to retrieve data from a relational
database on a server. In order to provide serverside data to a Silverlight application, you need to utilize a
web service.

In the next chapter, you will look at creating web services using the Windows Communication
Framework (WCF). You will also look at the fundamentals of implementing web services. As an exercise,
you will create web services that will be consumed by a Silverlight application and databound to controls
of the user interface.

C H A P T E R 1 3

■ ■ ■

265

Developing and Consuming WCF
Services

In the previous two chapters, you examined the steps required to create the graphical user interface of
an application. Graphical user interfaces created with WPF and Silverlight provide users a way to
interact with your applications and employ the services the application provides. This chapter shows
you how to build another type of interface, one that is implemented using the Windows Communication
Foundation (WCF) and is meant to be consumed by an application. Such a WCF service provides an
application with a programmatic interface with which to access its functions, without the need for
human interaction.

After reading this chapter, you will have a clearer understanding of the following:

• What WCF services are and how they came about.

• How WCF processes service requests.

• How to create a WCF service.

• How to consume a WCF service.

• How to use a WCF Data Services in a Silverlight Application.

What Are Services?
Microsoft first introduced the concept of services with its inclusion of web services support in .NET
Framework 1.0. A web service provides a way for an application to request a service and receive a reply.
This is essentially the same as a client object requesting a service (method) from a server object within
the boundaries of your application. The difference is the location of the client objects and server objects.
If they reside in the same application, then they can issue and receive binary messages and inherently
understand each other because they are speaking the same “language.” As the applications you build
grow more complex, it is common to split the application up into distinct components. When you
segment an application into components, each designed to perform a distinct specialized service, you
greatly enhance code maintenance, reusability, and reliability. Additionally, separate servers can host
the client components and server components for increased performance, better maintenance, and
security.

CHAPTER 13 ■ ODEVELOPING AND CONSUMING WCF SERVICES

266

Prior to the introduction of web services, the clients and servers of an application relied on
distributed technologies such as DCOM and CORBA, which are based on proprietary standards. This is
fine if the client and server applications utilize the same technologies, but when the client and server
utilize disparate technologies, this becomes very problematic. The power of web services lies in the fact
that they use a set of open XML-based messaging and HTTP-based transport protocols. This means that
client and server components utilizing different technologies can communicate in a standard way. For
example, a Java-based application running on an Apache web server can request a service from a .NET-
based application running on an IIS server. In addition, since they communicate via HTTP, they can be
located virtually anywhere in the world that has an Internet connection.

With the release of the .NET Framework 3.0, Microsoft introduced a new way to create web services
in the form of Windows Communication Foundation services (WCF). Before WCF, Microsoft had a
robust but confusing set of messaging technologies including ASP.NET Web services, MSMQ, Enterprise
services, and .NET Remoting. Microsoft decided to roll all these technologies into a single framework for
developing service-oriented applications. This made developing service-oriented applications more
consistent and less confusing for developers.

Creating a WCF Web Service
A WCF service is made up of three parts: the service, an end point, and a hosting environment. The
service is a class that contains methods you want to expose to clients of the service. An end point is a
definition of how clients can communicate with the service. It’s worth noting that a service can have
more than one endpoint defined. An endpoint consists of the base address of the service, its binding
information, and its contract information (the three are often referred to as the ABCs of WCF). The
hosting environment refers to the application hosting the service. For your purposes, this will be a web
server, but there are other options that exist depending on the type of WCF service you implement.

Creating and consuming WCF services using Visual Studio 2010 is a fairly easy process. If you use
the templates Visual Studio provides, much of the plumbing work is done for you. Figure 13-1 shows the
available templates. To create a WCF web service, you use the WCF Service Application template.

CHAPTER 13 ■ DEVELOPING AND CONSUMING WCF SERVICES

267

Figure 13-1. WCF templates provided by Visual Studio

Selecting a template adds two important files to the project: one defines the service contract using
an interface and one is a class file that contains the service implementation code. In Figure 13-2, the
IService1.cs file defines the interface and the Service1.svc.cs contains the class implementation for the
service.

Figure 13-2. WCF interface and class files

CHAPTER 13 ■ ODEVELOPING AND CONSUMING WCF SERVICES

268

When you create a service, you need to define the service contract. The contract is defined by an
interface definition. The interface defines the methods exposed by the service, any input parameters
expected by the methods, and any output parameters passed back by the methods. The following code
shows the interface code for a tax service. The interface is marked with the [ServiceContract] attribute
and any exposed methods are marked with the [OperationContract].

[ServiceContract]
public interface ITax
{
 [OperationContract]
 double GetSalesTax(string statecode);
}

Once the interface is defined, the next step is to define the class that implements the interface. The
following code implements the ITax interface and provides the code to implement its exposed methods.

public class Tax : ITax
{
 public double GetSalesTax(string stateCode)
 {
 if (stateCode == "PA")
 {
 return .06;
 }
 else
 {
 return .05;
 }
 }
}

Once the interface and class are defined, compiling and running the application produce the web
page shown in Figure 13-3. This page provides information on how you can create a test client for the
service and a link to the WSDL file for the service. The WSDL (Web Services Description Language) file is
an XML document that specifies the location of the service and the operations it exposes. Figure 13-4
shows a portion of the Tax Service’s WSDL file as it appears when displayed by a browser.

CHAPTER 13 ■ DEVELOPING AND CONSUMING WCF SERVICES

269

Figure 13-3. Output of the service file

CHAPTER 13 ■ ODEVELOPING AND CONSUMING WCF SERVICES

270

Figure 13-4. The WSDL file, as displayed in a browser

Consuming a WCF Web Service
To consume a WCF service in a .NET client, you must add a service reference to the project. When you
add a service reference in Visual Studio 2010, you are presented with an Add Reference window (see
Figure 13-5). This window allows you to discover the services available and the operations they expose.
You can also change the namespace that you use to program against the service.

CHAPTER 13 ■ DEVELOPING AND CONSUMING WCF SERVICES

271

Figure 13-5. Adding a service reference

Once the service reference is added to the project, Visual Studio updates the application
configuration file with the information needed to call the service. This includes the endpoint
configuration with the address, binding, and contract information.

<endpoint address="http://localhost:1934/Tax.svc" binding="basicHttpBinding"
 bindingConfiguration="BasicHttpBinding_ITax"
 contract="TaxServiceReference.ITax"
 name="BasicHttpBinding_ITax" />

A client proxy is also added to the client application. The client application uses this proxy to
interact with the service. The following code shows a client console application calling the service using
the TaxClient proxy and writing the results out to the console window. Figure 13-6 shows the output in
console window.

CHAPTER 13 ■ ODEVELOPING AND CONSUMING WCF SERVICES

272

TaxServiceReference.TaxClient webService = new TaxServiceReference.TaxClient();
string state1 = "PA";
double salesTax1 = webService.GetSalesTax(state1);
Console.WriteLine("The sales tax for {0} is {1}", state1, salesTax1);
string state2 = "NJ";
double salesTax2 = webService.GetSalesTax(state2);
Console.WriteLine("The sales tax for {0} is {1}", state2, salesTax2);
webService.Close();
Console.ReadLine();

Figure 13-6. Output from calling the TaxService

Using Data Contracts
In the previous example, the WCF web service used only simple types to pass data back and forth
between the service and the client. Simple types such as integer, double, and string do not require any
special encoding to pass them between the client and server. There are times when you want to pass
complex types between the client and server. Complex types are comprised of simple types. For
example, you may have a service that takes an address type made up of street, city, state, and zip code
and returns a location type made up of longitude and latitude. To facilitate the exchange of complex
types, the WCF service uses data contracts. You create your data class normally then mark it with the
[DataContract] attribute. The properties of the class that you want exposed are marked with the
[DataMember] attribute. The following code exposes the Location class to clients of the service:

[DataContract]
public class Location
{
 double _longitude;
 double _latitude;
 [DataMember]
 public double Latitude
 {
 get { return _latitude; }
 set { _latitude = value; }

CHAPTER 13 ■ DEVELOPING AND CONSUMING WCF SERVICES

273

 }
 [DataMember]
 public double Longitude
 {
 get { return _longitude; }
 set { _longitude = value; }
 }
}

By marking the classes with the [DataContract] and [DataMember] attributes, an XSD file is created
describing the complex types. Clients use this file to determine what to supply the service and what to
expect as a return type. Figure 13-7 shows the portion of the XSD file created for the Location type
returned by the service.

Figure 13-7. XSD file defining the Location type, as displayed in a browser

Let’s put what you’ve learned so far to work by building a simple service that supplies a list of stores
from the Pubs database. The service will then be consumed in a Silverlight client to display a list of
stores.

ACTIVITY 13-1. CREATING AND CONSUMING A WCF SERVICE

In this activity, you will become familiar with the following:

Creating a WCF Service

To create the WCF Service, follow these steps:

1. Start Visual Studio. Select File ➤ New ➤ Project.

• Creating a WCF Service.

• Consuming a WCF Service in a Silverlight client.

CHAPTER 13 ■ ODEVELOPING AND CONSUMING WCF SERVICES

274

2. Choose a Silverlight Application under the C# Projects folder. Rename the project
to Act13_1 and click the OK button.

3. The next screen asks if you want to host the Silverlight application in a new web
site. It also asks you what version of Silverlight you want to use. Accept the
defaults and click OK.

4. Right-click on the Act13_1.Web project node in the Solution Explorer window and
select Add ➤ New Item.

5. In the Add New Item window, click on the Web node in the Installed Templates
section. Select the WCF Service template, rename it to PubsService, and click the
Add button (see Figure 13-8).

Figure 13-8. Adding the WCF Service

CHAPTER 13 ■ DEVELOPING AND CONSUMING WCF SERVICES

275

6. Right-click the PubsService.svc node in the Solution Explorer and select View
Code. After the PubsService class definition, add a Store class definition. Add the
[DataContract] attribute to the Store class and the [DataMember] attributes to the
ID and name properties.

namespace Act13_1.Web
{

 public class PubsService : IPubsService
 {
 //ubsService class code
 }
 [DataContract]
 public class Store
 {
 string _id;
 [DataMember]
 public string Id
 {
 get { return _id; }
 set { _id = value; }
 }
 string _name;
 [DataMember]
 public string Name
 {
 get { return _name; }
 set { _name = value; }
 }
 }
}

7. At the top of the file, add a using System.Data.SqlClient statement. In the body of
the PubsService class, add a GetStores method that returns a list of stores. This
method uses the SQLDataReader to retrieve the data from the Pubs database.
(Using the SqlDataReader class was covered in Chapter 10.)

public class PubsService : IPubsService
{
 public List<Store> GetStores()
 {
 SqlConnection con = new SqlConnection(@"Data Source=.\SQLEXPRESS;
 Initial Catalog=pubs;Integrated Security=True");
 SqlCommand cmd = new
 SqlCommand("Select stor_id, stor_name from stores", con);
 List<Store> stores = new List<Store>();
 con.Open();
 SqlDataReader dr = cmd.ExecuteReader();
 while (dr.Read())
 {
 Store store = new Store();
 store.Id = (string)dr[0];

CHAPTER 13 ■ ODEVELOPING AND CONSUMING WCF SERVICES

276

 store.Name = (string)dr[1];
 stores.Add(store);
 }
 return stores;
 }
}

8. Open the IPubsService.cs file in the Code Editor window. Update the code to
define the GetStores method.

[ServiceContract]
public interface IPubsService
{
 [OperationContract]
 List<Store> GetStores();
}

9. In the Solution Explorer, right-click on the Act13_1.Web node and select Build.
If there are any errors, fix them, and then rebuild.

Creating the Silverlight Client

1. In the Solution Explorer, right-click the Act13_1 project node and select Add
Service Reference. In the Add Service Reference dialog, click the Discover
button. You should see the PubsService.svc as shown in Figure 13-9. Click the
OK button to add the reference.

CHAPTER 13 ■ DEVELOPING AND CONSUMING WCF SERVICES

277

Figure 13-9. Adding the service reference

■Note The port number of your service address may change when you develop it locally.

2. Open the MainPage.xaml file in the XAML Editor. Add the following XAML
markup to add a Label and a ListBox control:

<Grid x:Name="LayoutRoot" Background="White">
 <Grid.RowDefinitions>
 <RowDefinition Height="Auto"/>
 <RowDefinition Height="Auto"/>
 </Grid.RowDefinitions>
 <sdk:Label Content="Stores:" HorizontalAlignment="Center"/>
 <ListBox Name="StoreList" Width="200" Height="200"
 HorizontalAlignment="Center" Grid.Row="1"/>

CHAPTER 13 ■ ODEVELOPING AND CONSUMING WCF SERVICES

278

</Grid>

 Add a Loaded event handler to the user control.

<UserControl x:Class="Act13_1.MainPage"
 xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"
 xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"
 xmlns:d="http://schemas.microsoft.com/expression/blend/2008"
 xmlns:mc="http://schemas.openxmlformats.org/markup-compatibility/2006"
 mc:Ignorable="d"
 d:DesignHeight="300" d:DesignWidth="400" Loaded="UserControl_Loaded">

 At the top of the MainPage.xaml.cs codebehind file, add a namespace
reference to the service you added in Step 1.

using Act13_1.ServiceReference1;

 In the UserControl_Loaded event handler, call the service through the
PubsServiceClient proxy. Since the Silverlight client calls the service
asynchronously, you need to provide a callback event handler for when the call
completes.

private void UserControl_Loaded(object sender, RoutedEventArgs e)
{
 PubsServiceClient context = new PubsServiceClient();
 context.GetStoresCompleted += context_GetStoresCompleted;
 context.GetStoresAsync();
}

 Add the following callback event handler. In the handler, load the ListBox
control with the store info returned by the service.

private void context_GetStoresCompleted(object sender,
 GetStoresCompletedEventArgs e)
{
 foreach (var store in e.Result)
 {
 this.StoreList.Items.Add(store.Id + ", " + store.Name);
 }
}

 Run the application in the debugger. You should see a web page with the list of
stores, as shown in Figure 13-10. When you’re satisfied with your testing, stop
the debugger and exit Visual Studio.

CHAPTER 13 ■ DEVELOPING AND CONSUMING WCF SERVICES

279

Figure 13-10. List of store information

WCF Data Services
Most business applications must work with data contained in a database. Clients need to be able to
perform CRUD (create, read, update, and delete) operations on the data. While you can support these
operations using the HTTP SOAP based WCF services discussed thus far, you need to write a lot of code
to hook up the database layer and expose it through the operations exposed by the WCF service. This is
where WCF Data Services can help. WCF Data Services is a framework that enables you to easily create
services to expose and consume data over the Web.

WCF Data Services uses the Open Data (OData) protocol for addressing and updating resources. It
exposes data in a text-based data exchange format an application can address with URIs. Data is
accessed and changed by using the standard HTTP verbs GET, PUT, POST, and DELETE. WCF Data
Services also includes a client library specifically for Silverlight-based applications that provides an
object-based programming model to access an OData feed.

Visual Studio 2010 provides the templates to easily create a WCF Data Service. First you create a web
application to host the service. Once the web application is created, add an ADO.NET Entity Data Model.
As explained in Chapter 10, the ADO.NET Entity Data Model creates an entity-to-relational mapping
layer. This allows you to develop against the object-oriented data model, which then gets converted into
the relational model of the database for you. Once the entity data model is created, add a WCF Data
Service to the project. The Data Service class provides the functionality necessary to process request
messages, interact with the entity data model, and generate response messages. This class inherits from
a base Data Service class of the data entity type defined by the Entity Data Model. The following code
shows a WCF Data Service class set up to interact with an Entity Data Model created for the Pubs
database:

public class pubsDataService : DataService<PubsEntities >

The DataServiceConfiguration class defines the behaviors of the data service. This class is supplied
by the InitializeService method of the data service. It can be used to set behaviors such as access to the
entities by clients of the service. The following code shows the PubsDataService class limiting the access
to the entities of the data model:

CHAPTER 13 ■ ODEVELOPING AND CONSUMING WCF SERVICES

280

public static void InitializeService(DataServiceConfiguration config)
{
 config.SetEntitySetAccessRule("stores", EntitySetRights.AllRead);
 config.SetEntitySetAccessRule("sales", EntitySetRights.None);
 config.SetEntitySetAccessRule("titles", EntitySetRights.All);
 // config.SetServiceOperationAccessRule("MyServiceOperation", ServiceOperationRights.All);
 config.DataServiceBehavior.MaxProtocolVersion = DataServiceProtocolVersion.V2;
}

To consume a WCF Data Service in a client application developed in Visual Studio 2010, you simply
create a service reference to it using the Add Service Reference dialog. Using this dialog will request the
service metadata document from the data service. By using this metadata document, client side proxies
are created to interact with the data service. The WCF Data Services client library enables you to execute
language integrated querys (LINQ) against a data service. The client library translates a query into an
HTTP GET request message.

The following code shows how to instantiate an instance of the data service proxy and use it to
execute a LINQ query to return all the records from the titles table in the Pubs database. The result of the
query can then be bound to the client UI controls.

svcPubs = new pubsEntities (new Uri("http://localhost:1396/pubsDataService.svc"));
var q = from t in svcPubs.titles
 select t;

In the following activity, you’ll create a WCF Data Service that supplies data from the Pubs database.
After creating the service, you will use it to load a DataGrid with title (book) information.

ACTIVITY 13-2. CREATING AND CONSUMING A WCF DATA SERVICE

In this activity, you will become familiar with the following:

Creating a WCF Data Service

To create a WCF Data Service, follow these steps:

1. Start Visual Studio. Select File ➤ New ➤ Project.

2. Choose a Silverlight Application. Rename the project to Act13_2 and click the
OK button.

3. The next screen asks if you want to host the Silverlight application in a new
web site. It also asks you what version of Silverlight you want to use. Accept
the defaults and click OK.

• Creating a WCF Data Service.

• Consuming a WCF Data Service in a Silverlight client.

CHAPTER 13 ■ DEVELOPING AND CONSUMING WCF SERVICES

281

4. Right-click on the Act13_2.Web project node in the solution explorer window
and select Add ➤ New Item.

5. Under the Data node in the Add New Item window, select an ADO.NET Entity
Data Model. Name the model Pubs.emdx and click Add.

6. In the Choose Model Contents screen, select the Generate from database option
and click Next.

7. In the Choose Your Data Connection screen, choose an existing connection or
create a new connection to the Pubs database and choose Next.

8. In the Choose Your Database Objects screen, expand the tables node; select the
sales, stores, and titles tables; and then click Finish.

9. Right-click on the Act13_2.Web project node in the Solution Explorer window
and select Add ➤ New Item.

10. In the Add New Item window, click on the web node in the Installed Templates.
Select the WCF Data Service template, rename it to PubsDataService, and click
the Add button.

11. Open the PubsDataService.svc.cs file in the Code Editor. Update the code so
that the PubsDataService class implements a DataService of type pubEntities.

public class PubsDataService : DataService< pubsEntities >
{

12. In the InitializeService method, update the code to set the entity access rules
for the store, sale, and title entities created in the Entity Data Model.

public static void InitializeService(DataServiceConfiguration config)
{
 config.SetEntitySetAccessRule("stores", EntitySetRights.AllRead);
 config.SetEntitySetAccessRule("sales", EntitySetRights.All);
 config.SetEntitySetAccessRule("titles", EntitySetRights.All);
 // config.SetServiceOperationAccessRule("MyServiceOperation",
 ServiceOperationRights.All);
 config.DataServiceBehavior.MaxProtocolVersion = DataServiceProtocolVersion.V2;
}

13. In the Solution Explorer, right-click on the Act13_2.Web node and select Build.
If there are any errors, fix them and rebuild.

14. In the Solution Explorer, right-click on the PubsDataService.svc node and select
View in Browser. You should see the entities listed as in Figure 13-11. Note the
URI for setting the service reference later.

CHAPTER 13 ■ ODEVELOPING AND CONSUMING WCF SERVICES

282

Figure 13-11. Viewing the PubsDataService.svc in the browser

 Consuming a WCF Data Service in a Silverlight Client

To consume the WCF Data Service, follow these steps:

1. Add the following XAML markup to the MainPage.xaml file to create the user
interface. Note that you are using a cell editing template for the PubDate
column. It will display a DatePicker control when edited.

<Grid x:Name="LayoutRoot" Background="White" DataContext="{Binding}">
 <Grid.RowDefinitions>
 <RowDefinition Height="Auto"/>
 <RowDefinition Height="Auto"/>
 </Grid.RowDefinitions>
 <Button Name="btnSave" Content="Save" Width="80" />
 <sdk:DataGrid AutoGenerateColumns="False"
 HorizontalAlignment="Center"
 ItemsSource="{Binding}" Name="titlesDataGrid"
 VerticalAlignment="Top" Grid.Row="1" >
 <sdk:DataGrid.Columns>
 <sdk:DataGridTemplateColumn x:Name="pubdateColumn"
 Header="Pubdate" Width="SizeToCells">
 <sdk:DataGridTemplateColumn.CellEditingTemplate>
 <DataTemplate>
 <sdk:DatePicker
 SelectedDate="{Binding Path=pubdate,
 Mode=TwoWay,
 ValidatesOnExceptions=true,

CHAPTER 13 ■ DEVELOPING AND CONSUMING WCF SERVICES

283

 NotifyOnValidationError=true}" />
 </DataTemplate>
 </sdk:DataGridTemplateColumn.CellEditingTemplate>
 <sdk:DataGridTemplateColumn.CellTemplate>
 <DataTemplate>
 <TextBlock Text="{Binding Path=pubdate,
 StringFormat=\{0:d\}}" />
 </DataTemplate>
 </sdk:DataGridTemplateColumn.CellTemplate>
 </sdk:DataGridTemplateColumn>
 <sdk:DataGridTextColumn x:Name="title_idColumn"
 Binding="{Binding Path=title_id}"
 Header="Title id"
 Width="SizeToCells"
 Visibility="Collapsed"/>
 <sdk:DataGridTextColumn x:Name="title1Column"
 Binding="{Binding Path=title1}"
 Header="Title" Width="SizeToCells" />
 <sdk:DataGridTextColumn x:Name="typeColumn"
 Binding="{Binding Path=type}"
 Header="Type" Width="SizeToCells" />
 <sdk:DataGridTextColumn x:Name="ytd_salesColumn"
 Binding="{Binding Path=ytd_sales,
 StringFormat=c}"
 Header="Ytd sales" Width="SizeToCells" />
 </sdk:DataGrid.Columns>
 </sdk:DataGrid>
 </Grid>

2. Inside the MainPage UserControl tag, add a Loaded event handler attribute.

<UserControl xmlns:sdk="http://schemas.microsoft.com/winfx/2006/xaml/presentation/sdk"
 x:Class="Act13_2.MainPage"
 xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"
 xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"
 xmlns:d="http://schemas.microsoft.com/expression/blend/2008"
 xmlns:mc="http://schemas.openxmlformats.org/markup-compatibility/2006"
 mc:Ignorable="d"
 d:DesignHeight="300" d:DesignWidth="400" Loaded="UserControl_Loaded">

3. In the Solution Explorer window, right-click the Act13_2 project node and select
Add Service Reference. In the Add Service Reference dialog, click the Discover
button. You should see the PubsService.svc in the list, Click the OK button to
add the service reference.

4. In the MainPage.xaml.cs codebehind file, add the following using statements to
the top of the file:

using Act13_2.ServiceReference1;
using System.Data.Services.Client;

CHAPTER 13 ■ ODEVELOPING AND CONSUMING WCF SERVICES

284

5. In the codebehind file, add the following class level variables:

public partial class MainPage : UserControl
 {
 pubsEntities svcPubs;
 DataServiceCollection<title> dscTitles;

6. In the codebehind file, add the following code to the UserControl_Loaded event
handler. Use the URI noted in step 14 of the previous section. This code
instantiates an instance of the data service that svcPubs uses it to load data
from a LINQ query. The DataServiceCollection (dscTitles) is loaded from the
result of the query and is used as the DataContext for the LayoutRoot grid.

private void UserControl_Loaded(object sender, RoutedEventArgs e)
 {

 //Do not load your data at design time.
 if (!System.ComponentModel.DesignerProperties.GetIsInDesignMode(this))
 {
 svcPubs = new pubsEntities
 (new Uri("http://localhost:1396/pubsDataService.svc"));
 dscTitles = new DataServiceCollection<title>();
 var q = from t in svcPubs.titles
 select t;
 dscTitles.LoadAsync(q);
 this.LayoutRoot.DataContext = dscTitles;
 }
}

7. Launch the application in the debugger. Make sure the page is loaded with the
title info loaded in the grid. After testing, stop the debugger.

8. To enable updating records, add a Click event handler to the XAML of the Save
button in the MainPage.xaml file.

<Button Name="btnSave" Content="Save" Width="80" Click="btnSave_Click" />

9. Add the following code to the btnSave_Click event handler in the codebehind
file. This code uses the data service proxy to call the save changes method of
the data service. This is an asynchronous call so a callback method is passed in
as well as a message to pass back indicating the changes saved.

private void btnSave_Click(object sender, RoutedEventArgs e)
{
 svcPubs.BeginSaveChanges(OnChangesSaved,"Data Saved");
}

10. Add the following call back event handler, which will fire when the data service
completes the save changes method:

CHAPTER 13 ■ DEVELOPING AND CONSUMING WCF SERVICES

285

private void OnChangesSaved(IAsyncResult result)
{
 MessageBox.Show((string)result.AsyncState);
}

11. Launch the application in the debugger. Test updating the data and saving the
changes. Refresh the page after saving the data to verify it was saved back to
the database. After testing, stop the debugger and exit Visual Studio.

Summary
In this chapter, you were introduced to the fundamentals of implementing web services. In particular,
you saw how to create web services using the Windows Communication Framework (WCF). You also
built a Silverlight client application that consumes the WCF service and updates data back to the
database through the service.

This was the final chapter in a series aimed at exposing you to the various technologies and .NET
Framework classes used to build .NET applications. The goal of these chapters has been to give you the
information necessary to start building .NET applications. These chapters only scratched the surface of
these technologies. As you gain experience developing .NET applications, you will need to look more
deeply into each of these technologies.

Thus far in your journey you have studied UML design, object-oriented programming, the C#
language, the .NET Framework, creating graphical user interfaces, and developing WCF Services. You are
now ready to put the pieces together and develop a working application. In the next chapter, you will
revisit the UML models you developed for the case study introduced in Chapter 4. You will transform
these models into a fully functional application.

C H A P T E R 1 4

■ ■ ■

287

Developing the OSO Application

In the previous chapters, you looked at two ways to develop the graphical user interface of an
application. Graphical user interfaces created with WPF and Silverlight provide human users a way to
interact with your applications and use the services they provide. You also saw how services create
programmatic interfaces that other programs can call to use the services of the application without any
user interaction.

In this chapter you come full circle, back to the office supply ordering application (called OSO for
short) that you designed in Chapter 4. This chapter is one big activity and a final exam of sorts. You will
create a functional application incorporating the concepts you have learned in the previous chapters. As
you work through creating the application, you should be able to identify these concepts and relate them
back to the concepts covered previously. The application will contain a data access layer, a business
logic layer, and a user interface layer.

After reading this chapter, you will understand why applications are split into different layers and
how to construct them.

Revisiting Application Design
When you design an application, you can typically proceed in three distinct phases. First, you complete
a conceptual design, then a logical design, and then a physical design.

The conceptual design, as explained in Chapter 4, constitutes the discovery phase of the process.
The conceptual design phase involves a considerable amount of collaboration and communication
between the users of the system and the system designers. The system designers must gain a complete
understanding of the business processes that the proposed system will encompass. Using scenarios and
use cases, the designers define the functional requirements of the system. A common understanding
and agreement on system functionality and scope among the developers and users of the system is the
required outcome of this phase.

The second phase of the design process is the logical design. During the logical design phase, you
work out the details about the structure and organization of the system. This phase consists of the
development and identification of the business objects and classes that will compose the system. UML
class diagrams identify the system objects for which you identify and document the attributes and
behaviors. You also develop and document the structural interdependencies of these objects using the
class diagrams. Using sequence and collaboration diagrams, you discover and identify the interactions
and behavioral dependencies between the various system objects. The outcome of this phase, the
application object model, is independent of any implementation-specific technology and deployment
architecture.

The third phase of the design process is the physical design. During the physical design phase, you
transform the application object model into an actual system. You evaluate and decide upon specific
technologies and infrastructures, do cost analysis, and determine any constraints. Issues such as

CHAPTER 14 ■ DEVELOPING THE OSO APPLICATION

288

programmer experience and knowledge base, current implementation technologies, and legacy system
integration will all influence your decisions during the physical design phase. You must also analyze
security concerns, network infrastructure, and scalability requirements.

When designing a distributed application, you normally separate its logical architectural structure
from its physical architectural structure. By separating the architectural structure in this way, you will
find it much easier to maintain and update the application. You can make any physical architectural
changes (to increase scalability, for example) with minimal impact. The logical architectural design
typically separates the various parts of an application into tiers. Users interact with the presentation tier,
which presents data to the user and gives the user ways to initiate business service requests. The
business logic tier encapsulates and implements the business logic of an application. It is responsible for
performing calculations, processing data, and controlling application logic and sequencing. The data
tier is responsible for managing access to and storage of information that must be persisted and shared
among various users and business processes. Figure 14-1 shows the different logical tiers of a typical 3-
tier application.

Figure 14-1. Logical tiers of a 3-tiered application

When you create the physical tiers of an application, each logical tier would ideally correspond to a
distinct physical tier on its own dedicated server. In reality, the physical layers of the application are
influenced by such factors as available hardware and network infrastructure. You may have all the
logical tiers on one physical server or spread across a web and database server. What is important is that
you create applications that implement clear separation of duties among the classes. Figure 14-2 shows
the layout of the OSO application. The business logic classes and the data access classes are contained in
the same assembly (BLL assembly), while the user interface layer is contained in its own assembly (UI
assembly). Both assemblies are contained on the same server. Because there is a clear separation of
duties between the business logic classes and the data access classes, as the application grows in
features and users, it can easily be refactored into separate assemblies hosted on separate severs.

CHAPTER 14 ■ DEVELOPING THE OSO APPLICATION

289

Figure 14-2. Physical tiers of the OSO application

Building the OSO Application’s Data Access and Business
Logic Layers
In order to develop the business logic and data access layers of the application, you need to review the
OSO class diagram you created in Chapter 4 (shown in Figure 14-3).

Figure 14-3. OSO application class diagram

As discussed in Chapter 4, you need to create an Employee class that implements a login method
(Login()). The login method will interact with the database to verify login information. To accomplish
this, you will create two employee classes: one for the business logic layer (Employee) and one for the

CHAPTER 14 ■ DEVELOPING THE OSO APPLICATION

290

data access layer (DALEmployee). The Employee class will pass the request to login from the User
Interface (UI) to the DALEmployee class, which in turn will interact with the database to retrieve the
requested information. Figure 14-4 is the database schema for the Office Supply database. This database
is hosted in a SQL Server database.

Figure 14-4. Office Supply database diagram

■Note If you did not install the Office Supply database, see Appendix C for instructions.

Now, you’ll begin with the data access layer and then implement the business logic layer.

1. In Visual Studio, create a Class Library application and name it OSOBLL; this
application will contain the classes for the business logic layer and data
access layer of the OSO application. If not already there, add the references
shown in Figure 14-5. Figure 14-5 also shows the classes you will create to
implement the data access and business logic of the application.

CHAPTER 14 ■ DEVELOPING THE OSO APPLICATION

291

■Note If you don’t want to code the OSO application from scratch, you can download it from the Apress web
site. See Appendix C for details.

Figure 14-5. References and classes of the OSOBLL class library

Next, you’ll create a static class (DALUtility) that implements the setting of
the database connection string in one centralized location. The other classes
will call its GetSQLConnection to retrieve the connection string.

2. Add a class to the application and name it DALUtility. Add the following
code to the class file:

using System;
using System.Collections.Generic;
using System.Linq;
using System.Text;

namespace OSOBLL
{
 public static class DALUtility
 {
 public static string GetSQLConnection()
 {

CHAPTER 14 ■ DEVELOPING THE OSO APPLICATION

292

 return @"Integrated Security=True;Data Source=.\SQLEXPRESS;" +
 "Initial Catalog=OfficeSupply";
 }
 }
}

3. The next class to add is the DALEmployee class. This class contains a Login
method that checks the user name and password supplied to the values in
the database. It uses a SQLCommand object to execute a SQL statement
against the database. If a match is found, it returns the employee ID. If no
match is found, it returns -1. Since a single value is returned by the SQL
statement, you can use the ExecuteScalar method of the SQLCommand
object. Add a class named DALEmployee and insert the following code into
the class file:

using System;
using System.Collections.Generic;
using System.Linq;
using System.Text;
using System.Data.SqlClient;
using System.Diagnostics;
using System.Data;

namespace OSOBLL
{
 class DALEmployee
 {
 public int LogIn(string userName, string password)
 {
 string connString = DALUtility.GetSQLConnection();
 SqlConnection conn = new SqlConnection(connString);
 try
 {
 SqlCommand cmd = new SqlCommand();
 cmd.Connection = conn;
 cmd.CommandText = "Select EmployeeID from Employee where "
 + " UserName = @UserName and Password = @Password ";
 cmd.Parameters.AddWithValue("@UserName", userName);
 cmd.Parameters.AddWithValue("@Password", password);
 int userId;
 conn.Open();
 userId = (int)cmd.ExecuteScalar();
 if (userId > 0)
 {
 return userId;
 }
 else
 {
 return -1;
 }
 }

CHAPTER 14 ■ DEVELOPING THE OSO APPLICATION

293

 catch (Exception ex)
 {
 Debug.WriteLine(ex.ToString());
 return -1;
 }
 finally
 {
 if (conn.State == ConnectionState.Open)
 {
 conn.Close();
 }
 }

 }
 }
}

4. The next class to construct is the DALProductCatalog class, the purpose of
which is to encapsulate the functionality the application needs to retrieve
and list the available products in the database. You also want to be able to
view the products based on the category to which they belong. The
information you need is in two database tables: the catalog table and the
products table. These two tables are related through the CatID field.

When a client requests the product catalog information, a dataset is created
and returned to the client. This service is provided in the DALProductCatalog
class’s GetProductInfo method. The code for the DALProductCatalog class is
shown in here:

using System;
using System.Collections.Generic;
using System.Linq;
using System.Text;
using System.Data.SqlClient;
using System.Data;
using System.Diagnostics;

namespace OSOBLL
{
 public class DALProductCatalog
 {
 SqlConnection _conn;
 DataSet _dsProducts;

 public DALProductCatalog()
 {
 string connString = DALUtility.GetSQLConnection();
 _conn = new SqlConnection(connString);
 }
 public DataSet GetProductInfo()
 {

CHAPTER 14 ■ DEVELOPING THE OSO APPLICATION

294

 try
 {
 //Get category info
 String strSQL = "Select CatId, Name, Description from Category";
 SqlCommand cmdSelCategory = new SqlCommand(strSQL, _conn);
 SqlDataAdapter daCatagory = new SqlDataAdapter(cmdSelCategory);
 _dsProducts = new DataSet("Products");
 daCatagory.Fill(_dsProducts, "Category");
 //Get product info
 String strSQL2 = "Select ProductID, CatID, Name," +
 "Description, UnitCost from Product";
 SqlCommand cmdSelProduct = new SqlCommand(strSQL2, _conn);
 SqlDataAdapter daProduct = new SqlDataAdapter(cmdSelProduct);
 daProduct.Fill(_dsProducts, "Product");
 //Set up the table relation
 DataRelation drCat_Prod = new DataRelation("drCat_Prod",
 _dsProducts.Tables["Category"].Columns["CatID"],
 _dsProducts.Tables["Product"].Columns["CatID"],false);
 _dsProducts.Relations.Add(drCat_Prod);
 }
 catch(Exception ex)
 {
 Debug.WriteLine(ex.Message);
 }
 return _dsProducts;
 }

 }
}

5. When a client is ready to submit an order, it will call the PlaceOrder method
of the Order class, which you will define shortly in the business logic classes.
The client will pass the employee ID into the method and receive an order
number as a return value. The PlaceOrder method of the Order class will pass
the order information in the form of an XML string to the DALOrder class for
processing. The DALOrder class contains the PlaceOrder method that
receives an XML order string from the Order class and passes it into a stored
procedure in the SQL Server database. The stored procedure updates the
database and passes back the order number. This order number is then
returned to the Order class, which in turn passes it back to the client.

Add the following code to define the DALOrder class:

using System;
using System.Collections.Generic;
using System.Linq;
using System.Text;
using System.Data.SqlClient;
using System.Data;
using System.Diagnostics;

CHAPTER 14 ■ DEVELOPING THE OSO APPLICATION

295

namespace OSOBLL
{
 class DALOrder
 {
 public int PlaceOrder(string xmlOrder)
 {
 string connString = DALUtility.GetSQLConnection();
 SqlConnection cn = new SqlConnection(connString);
 try
 {
 SqlCommand cmd = cn.CreateCommand();
 cmd.CommandType = CommandType.StoredProcedure;
 cmd.CommandText = "up_PlaceOrder";
 SqlParameter inParameter = new SqlParameter();
 inParameter.ParameterName = "@xmlOrder";
 inParameter.Value = xmlOrder;
 inParameter.DbType = DbType.String;
 inParameter.Direction = ParameterDirection.Input;
 cmd.Parameters.Add(inParameter);
 SqlParameter ReturnParameter = new SqlParameter();
 ReturnParameter.ParameterName = "@OrderID";
 ReturnParameter.Direction = ParameterDirection.ReturnValue;
 cmd.Parameters.Add(ReturnParameter);
 int intOrderNo;
 cn.Open();
 cmd.ExecuteNonQuery();
 cn.Close();
 intOrderNo = (int)cmd.Parameters["@OrderID"].Value;
 return intOrderNo;
 }
 catch (Exception ex)
 {
 Debug.WriteLine(ex.ToString());
 return 0;
 }
 finally
 {
 if (cn.State == ConnectionState.Open)
 {
 cn.Close();
 }
 }
 }
 }
}

Now that you have constructed the data access layer classes, you are ready to construct the
business logic layer set of classes.

6. Add a class named Employee to the application. This class will encapsulate
employee information used by the UI and pass a login request to the data
access layer. Add the following code to the Employee.cs file:

CHAPTER 14 ■ DEVELOPING THE OSO APPLICATION

296

using System;
using System.Collections.Generic;
using System.Linq;
using System.Text;

namespace OSOBLL
{
 public class Employee
 {
 int _employeeID;

 public int EmployeeID
 {
 get { return _employeeID; }
 set { _employeeID = value; }
 }
 string _loginName;

 public string LoginName
 {
 get { return _loginName; }
 set { _loginName = value; }
 }
 string _password;

 public string Password
 {
 get { return _password; }
 set { _password = value; }
 }
 Boolean _loggedIn = false;

 public Boolean LoggedIn
 {
 get { return _loggedIn; }
 }

 public Boolean LogIn()
 {
 DALEmployee dbEmp = new DALEmployee();
 int empId;
 empId = dbEmp.LogIn(this.LoginName, this.Password);
 if (empId > 0)
 {
 this.EmployeeID = empId;
 this._loggedIn = true;
 return true;
 }
 else
 {
 this._loggedIn = false;
 return false;

CHAPTER 14 ■ DEVELOPING THE OSO APPLICATION

297

 }

 }
 }
}

7. The ProductCatalog class provides the Product dataset to the UI. It retrieves
the dataset from the DALProductCatalog class. You could perform any
business logic on the DataSet before passing it to the UI. Add the following
code to a class file for the ProductCatalog class:

using System;
using System.Collections.Generic;
using System.Linq;
using System.Text;
using System.Data;

namespace OSOBLL
{
 public class ProductCatalog
 {
 public DataSet GetProductInfo()
 {
 //perform any business logic befor passing to client.
 // None needed at this time.
 DALProductCatalog prodCatalog = new DALProductCatalog();
 return prodCatalog.GetProductInfo();
 }
 }
}

8. When a user adds items to an order, the order item information is encapsulated in an
OrderItem class. This class implements the INotifyPropertyChanged interface. This
interface is necessary to notify the UI that a property changed so that it can update any
controls bound to the class. It also overrides the ToString method to provide an XML string
containing the item information. This string will get passed to the DAL when an order is
placed. Add the following code to implement the OrderItem class:

using System;
using System.Collections.Generic;
using System.Linq;
using System.Text;
using System.ComponentModel;

namespace OSOBLL
{
 public class OrderItem : INotifyPropertyChanged
 {
 #region INotifyPropertyChanged Members
 public event PropertyChangedEventHandler PropertyChanged;
 protected void Notify(string propName)
 {

CHAPTER 14 ■ DEVELOPING THE OSO APPLICATION

298

 if (this.PropertyChanged != null)
 {
 PropertyChanged(this, new PropertyChangedEventArgs(propName));
 }
 }
 #endregion
 string _ProdID;
 int _Quantity;
 double _UnitPrice;
 double _SubTotal;
 public string ProdID
 {
 get { return _ProdID; }
 set { _ProdID = value; }
 }
 public int Quantity
 {
 get { return _Quantity; }
 set {
 _Quantity = value;
 Notify("Quantity");
 }
 }
 public double UnitPrice
 {
 get { return _UnitPrice; }
 set { _UnitPrice = value; }
 }
 public double SubTotal
 {
 get { return _SubTotal; }
 }
 public OrderItem(String productID,double unitPrice,int quantity)
 {
 _ProdID = productID;
 _UnitPrice = unitPrice;
 _Quantity = quantity;
 _SubTotal = _UnitPrice * _Quantity;
 }
 public override string ToString()
 {
 string xml = "<OrderItem";
 xml += " ProductID='" + _ProdID + "'";
 xml += " Quantity='" + _Quantity + "'";
 xml += " />";
 return xml;
 }
 }
}

CHAPTER 14 ■ DEVELOPING THE OSO APPLICATION

299

9. The final class of the business logic layer is the Order class. This class is
responsible for maintaining a collection of order items. It has methods for
adding and deleting items as well as passing the items to the DALOrder class
when an order is placed. The following code implements the Order class:

using System;
using System.Collections.Generic;
using System.Linq;
using System.Text;
using System.Collections.ObjectModel;
using System.ComponentModel;

namespace OSOBLL
{
 public class Order
 {

 ObservableCollection<OrderItem> _orderItemList = new
 ObservableCollection<OrderItem>();

 public ObservableCollection<OrderItem> OrderItemList
 {
 get { return _orderItemList; }
 }
 public void AddItem(OrderItem orderItem)
 {
 foreach (var item in _orderItemList)
 {
 if (item.ProdID == orderItem.ProdID)
 {
 item.Quantity += orderItem.Quantity;

 return;
 }
 }
 _orderItemList.Add(orderItem);
 }
 public void RemoveItem(string productID)
 {
 foreach (var item in _orderItemList)
 {
 if (item.ProdID == productID)
 {
 _orderItemList.Remove(item);
 return;
 }
 }
 }
 public double GetOrderTotal()
 {
 if (_orderItemList.Count == 0)
 {

CHAPTER 14 ■ DEVELOPING THE OSO APPLICATION

300

 return 0.00;
 }
 else
 {
 double total = 0;
 foreach (var item in _orderItemList)
 {
 total += item.SubTotal;
 }
 return total;
 }
 }
 public int PlaceOrder(int employeeID)
 {
 string xmlOrder;
 xmlOrder = "<Order EmployeeID='" + employeeID.ToString() + "'>";
 foreach (var item in _orderItemList)
 {
 xmlOrder += item.ToString();
 }
 xmlOrder += "</Order>";
 DALOrder dbOrder = new DALOrder();
 return dbOrder.PlaceOrder(xmlOrder);
 }

 }
}

Now that you have constructed the data access and business logic layers of the OSO application, you
are ready to construct the UI. In the next section you will construct a WPF application users will use to
place office supply orders.

Creating the OSO Application UI
In order to create the ordering system’s WPF interface, you’ll need to add a WPF project to the solution
containing the OSOBLL project.

1. In Visual Studio, add a WPF project to the solution and name it OSOWPFUI.
Figure 14-6 shows the Solution Explorer with both projects added. Make sure
you add the references shown in Figure 14-6 for the OSOWPFUI application.
Notice a reference to the OSOBLL class library is included.

CHAPTER 14 ■ DEVELOPING THE OSO APPLICATION

301

Figure 14-6. References and classes of the OSOWPFUI application

The first goal of the user interface is to present information about the products that can be
ordered. The product information is presented in a DataGrid control. The user will view
products in a particular category by selecting the category in a ComboBox control. Once
products are listed, users can add products to an order. When a product is added to an
order, it’s displayed in a ListView below the DataGrid. Figure 14-7 shows the OSO order
form with the items added to an order.

CHAPTER 14 ■ DEVELOPING THE OSO APPLICATION

302

Figure 14-7. Form for adding items to an order

2. Add the following XAML code to the MainWindow.xaml file to create the OSO
order form. Notice the use of data binding for the various controls.

<Window x:Class="OSOWPFUI.MainWindow"
 xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"
 xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"
 Title="Office Supply Ordering" Height="484" Width="550" Loaded="Window_Loaded">
 <Grid>
 <StackPanel Name="LayoutRoot" DataContext="{Binding}"
 Orientation="Vertical" HorizontalAlignment="Left" Height="auto" Width="auto">
 <StackPanel Orientation="Horizontal" HorizontalAlignment="Left">
 <Label Content="Categories:" Margin="10,0,0,0"/>
 <ComboBox ItemsSource="{Binding}" Name="categoriesComboBox"
 IsSynchronizedWithCurrentItem="True"
 DisplayMemberPath="Name" Height="23" Margin="12" Width="200" >
 <ComboBox.ItemsPanel>

CHAPTER 14 ■ DEVELOPING THE OSO APPLICATION

303

 <ItemsPanelTemplate>
 <VirtualizingStackPanel />
 </ItemsPanelTemplate>
 </ComboBox.ItemsPanel>
 </ComboBox>
 <Button Content="Login" Height="30" Name="loginButton"
 Width="75" Margin="20,5,0,0" Click="loginButton_Click" />
 <Button Content="Exit" Height="30" Name="exitButton"
 Width="75" Margin="20,5,0,0" Click="exitButton_Click" />
 </StackPanel>
 <DataGrid AutoGenerateColumns="False" Height="165"
 ItemsSource="{Binding drCat_Prod}"
 Name="ProductsDataGrid" RowDetailsVisibilityMode="VisibleWhenSelected"
 Width="490" HorizontalAlignment="Left" Margin="20,0,20,10"
 SelectionMode="Single">
 <DataGrid.Columns>
 <DataGridTextColumn
 x:Name="productIDColumn" Binding="{Binding Path=ProductID}"
 Header="Product ID" Width="40*" />
 <DataGridTextColumn
 x:Name="nameColumn" Binding="{Binding Path=Name}"
 Header="Name" Width="40*" />
 <DataGridTextColumn
 x:Name="descriptColumn" Binding="{Binding Path=Description}"
 Header="Description" Width="80*" />
 <DataGridTextColumn
 x:Name="unitCostColumn" Binding="{Binding Path=UnitCost}"
 Header="Unit Cost" Width="30*" />
 </DataGrid.Columns>
 </DataGrid>

 <StackPanel Orientation="Vertical">
 <ListView Name="orderListView" MinHeight="150" Width="490"
 ItemsSource="{Binding}" SelectionMode="Single">
 <ListView.View>
 <GridView>
 <GridViewColumn Width="140" Header="Product Id"
 DisplayMemberBinding="{Binding ProdID}" />
 <GridViewColumn Width="140" Header="Unit Price"
 DisplayMemberBinding="{Binding UnitPrice}" />
 <GridViewColumn Width="140" Header="Quantity"
 DisplayMemberBinding="{Binding Quantity}" />
 </GridView>
 </ListView.View>
 </ListView>

 </StackPanel>
 <StackPanel Orientation="Horizontal" HorizontalAlignment="Center">
 <Button Name="addButton" MinHeight="25" MinWidth="80"
 Content="Add Item" Click="addButton_Click" />
 <Button Name="removeButton" MinHeight="25" MinWidth="80"
 Content="Remove Item" Click="removeButton_Click"/>

CHAPTER 14 ■ DEVELOPING THE OSO APPLICATION

304

 <Button Name="placeOrderButton" MinHeight="25" MinWidth="80"
 Content="Place Order" Click="placeOrderButton_Click"/>
 </StackPanel>
 </StackPanel>
 <StatusBar VerticalAlignment="Bottom" HorizontalAlignment="Stretch">
 <TextBlock Name="statusTextBlock">You must login to place an order.</TextBlock>
 </StatusBar>
 </Grid>
</Window>

To add an order item, the user first selects a row in the DataGrid and then
selects the Add Item button. The Add Item button displays a dialog box the
user uses to enter a quantity and add the item. Figure 14-8 shows the Order
Item Dialog.

Figure 14-8. The Order Item dialog

3. Add a new Window to the project named OrderItemDialog.xaml. Add the
following XAML code to create the OrderItemDialog form:

<Window x:Class="OSOWPFUI.OrderItemDialog"
 xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"
 xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"
 WindowStartupLocation="CenterOwner"
 Title="Order Item" Height="169" Width="300">
 <Grid>
 <Grid.ColumnDefinitions>
 <ColumnDefinition Width="Auto" />
 <ColumnDefinition Width="Auto" />
 <ColumnDefinition />
 </Grid.ColumnDefinitions>

 <Grid.RowDefinitions>
 <RowDefinition Height="Auto" />
 <RowDefinition Height="Auto" />
 <RowDefinition Height="Auto" />
 <RowDefinition Height="Auto" />
 <RowDefinition />
 </Grid.RowDefinitions>

CHAPTER 14 ■ DEVELOPING THE OSO APPLICATION

305

 <Label Grid.Column="0" Grid.Row="0" Margin="2">Product Id:</Label>
 <TextBox Name="productIdTextBox" Grid.Column="1"
 Grid.Row="0" Margin="2" Grid.ColumnSpan="2" IsEnabled="False"/>
 <Label Grid.Column="0" Grid.Row="1" Margin="2">Unit Price:</Label>
 <TextBox Name="unitPriceTextBox" Grid.Column="1"
 Grid.Row="1" Margin="2" Grid.ColumnSpan="2" IsEnabled="False"/>
 <Label Grid.Column="0" Grid.Row="2" Margin="2" >Quantity:</Label>
 <TextBox Name="quantityTextBox" Grid.Column="1"
 Grid.Row="2" Margin="2" MinWidth="80" Text="1"/>
 <StackPanel Grid.Column="0" Grid.ColumnSpan="3"
 Grid.Row="3" Orientation="Horizontal"
 HorizontalAlignment="Center">
 <Button Name="okButton" Click="okButton_Click" IsDefault="True"
 MinWidth="80" Margin="5">OK</Button>
 <Button Name="cancelButton" Click="cancelButton_Click" IsCancel="True"
 MinWidth="80" Margin="5">Cancel</Button>
 </StackPanel>
 </Grid>
</Window>

Before users can submit an order, they must log in. When they click on the
Login button, they are presented with a Login Dialog window, shown in
Figure 14-9.

Figure 14-9. The Login dialog

4. Add a new Window to the project named LoginDialog.xaml. Add the
following XAML code to create the LoginDialog form.

<Window x:Class="OSOWPFUI.LoginDialog"
 xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"
 xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"
 Title="Login" Height="131" Width="300"
 WindowStartupLocation="CenterOwner"
 FocusManager.FocusedElement="{Binding ElementName=nameTextBox}">
 <Grid>
 <Grid.ColumnDefinitions>
 <ColumnDefinition Width="Auto" />
 <ColumnDefinition />
 </Grid.ColumnDefinitions>

 <Grid.RowDefinitions>

CHAPTER 14 ■ DEVELOPING THE OSO APPLICATION

306

 <RowDefinition Height="Auto" />
 <RowDefinition Height="Auto" />
 <RowDefinition Height="Auto" />
 <RowDefinition />
 </Grid.RowDefinitions>
 <Label Grid.Column="0" Grid.Row="0" Margin="2">Name:</Label>
 <TextBox Name="nameTextBox" Grid.Column="1" Grid.Row="0" Margin="2"/>
 <Label Grid.Column="0" Grid.Row="1" Margin="2">Password:</Label>
 <PasswordBox Name="passwordTextBox" Grid.Column="1" Grid.Row="1" Margin="2"/>

 <StackPanel Grid.Column="0" Grid.ColumnSpan="2" Grid.Row="2"
 Orientation="Horizontal" HorizontalAlignment="Center">
 <Button Name="okButton" Click="okButton_Click" IsDefault="True"
 MinWidth="80" Margin="5">OK</Button>
 <Button Name="cancelButton" Click="cancelButton_Click" IsCancel="True"
 MinWidth="80" Margin="5">Cancel</Button>
 </StackPanel>
 </Grid>
</Window>

Now that you have created the windows that make up the UI, you are ready
to add the implementation to the window’s codebehind files.

5. Add the following code to the MainWindow.xaml.cs codebehind file:

using System;
using System.Collections.Generic;
using System.Linq;
using System.Text;
using System.Windows;
using System.Windows.Controls;
using System.Windows.Data;
using System.Windows.Documents;
using System.Windows.Input;
using System.Windows.Media;
using System.Windows.Media.Imaging;
using System.Windows.Navigation;
using System.Windows.Shapes;
using System.Data;
using OSOBLL;
using System.Collections.ObjectModel;

namespace OSOWPFUI
{
 /// <summary>
 /// Interaction logic for MainWindow.xaml
 /// </summary>
 public partial class MainWindow : Window
 {

 DataSet _dsProdCat;
 Employee _employee;
 Order _order;

CHAPTER 14 ■ DEVELOPING THE OSO APPLICATION

307

 public MainWindow()
 {
 InitializeComponent();

 }

 private void Window_Loaded(object sender, RoutedEventArgs e)
 {
 ProductCatalog prodCat = new ProductCatalog();
 _dsProdCat = prodCat.GetProductInfo();
 this.DataContext = _dsProdCat.Tables["Category"];
 _order = new Order();
 _employee = new Employee();
 this.orderListView.ItemsSource = _order.OrderItemList;
 }

 private void loginButton_Click(object sender, RoutedEventArgs e)
 {

 LoginDialog dlg = new LoginDialog();
 dlg.Owner = this;
 dlg.ShowDialog();
 // Process data entered by user if dialog box is accepted
 if (dlg.DialogResult == true)
 {
 _employee.LoginName = dlg.nameTextBox.Text;
 _employee.Password = dlg.passwordTextBox.Password;
 if (_employee.LogIn() == true)
 {

 this.statusTextBlock.Text = "You are logged in as employee number " +
 _employee.EmployeeID.ToString();

 }
 else
 {
 MessageBox.Show("You could not be verified. Please try again.");
 }
 }
 }

 private void exitButton_Click(object sender, RoutedEventArgs e)
 {
 this.Close();
 }

 private void addButton_Click(object sender, RoutedEventArgs e)
 {

 OrderItemDialog orderItemDialog = new OrderItemDialog();

CHAPTER 14 ■ DEVELOPING THE OSO APPLICATION

308

 DataRowView selectedRow;
 selectedRow = (DataRowView)this.ProductsDataGrid.SelectedItems[0];
 orderItemDialog.productIdTextBox.Text = selectedRow.Row.ItemArray[0].ToString();
 orderItemDialog.unitPriceTextBox.Text = selectedRow.Row.ItemArray[4].ToString();
 orderItemDialog.Owner = this;
 orderItemDialog.ShowDialog();
 if (orderItemDialog.DialogResult == true)
 {
 string productId = orderItemDialog.productIdTextBox.Text;
 double unitPrice = double.Parse(orderItemDialog.unitPriceTextBox.Text);
 int quantity = int.Parse(orderItemDialog.quantityTextBox.Text);
 _order.AddItem(new OrderItem(productId,unitPrice,quantity));
 }
 }

 private void removeButton_Click(object sender, RoutedEventArgs e)
 {
 if (this.orderListView.SelectedItem != null)
 {
 var selectedOrderItem = this.orderListView.SelectedItem as OrderItem;
 _order.RemoveItem(selectedOrderItem.ProdID);
 }
 }

 private void placeOrderButton_Click(object sender, RoutedEventArgs e)
 {
 if (_employee.LoggedIn == true)
 {
 //place order
 int orderId;
 orderId = _order.PlaceOrder(_employee.EmployeeID);
 MessageBox.Show("Your order has been placed. Your order id is " +
 orderId.ToString());
 }
 else
 {
 MessageBox.Show("You must be logged in to place an order.");
 }
 }
 }
}

A look at the preceding code reveals that when the window loads, the
Window_Loaded event retrieves the ProdCat DataSet and sets it equal to the
DataContext of the window so that the ComboBox and GridView controls
can bind to it. An Order object is created and the ListView control is bound to
its OrderItem collection. This code segment is repeated here for your review:

private void Window_Loaded(object sender, RoutedEventArgs e)
{
 ProductCatalog prodCat = new ProductCatalog();

CHAPTER 14 ■ DEVELOPING THE OSO APPLICATION

309

 _dsProdCat = prodCat.GetProductInfo();
 this.DataContext = _dsProdCat.Tables["Category"];
 _order = new Order();
 _employee = new Employee();
 this.orderListView.ItemsSource = _order.OrderItemList;
 }

The loginButton_Click event launches an instance of the LoginDialog
window and checks the Dialog result. If it comes back as true, the _employee
object’s values are set to the values entered in the dialog and the Login
method of the Employee class is called. If the Login method returns true, the
user is notified that they are logged in.

 private void loginButton_Click(object sender, RoutedEventArgs e)
 {

 LoginDialog dlg = new LoginDialog();
 dlg.Owner = this;
 dlg.ShowDialog();
 // Process data entered by user if dialog box is accepted
 if (dlg.DialogResult == true)
 {
 _employee.LoginName = dlg.nameTextBox.Text;
 _employee.Password = dlg.passwordTextBox.Password;
 if (_employee.LogIn() == true)
 {

this.statusTextBlock.Text = "You are logged in as employee number " +
 _employee.EmployeeID.ToString();

 }
 else
 {
 MessageBox.Show("You could not be verified. Please try again.");
 }
 }
 }

The addButton_Click event launches an instance of the OrderItemDialog
window and fills the textboxes with information from the selected row of the
ProductsDataGrid. If the DialogResult returns true, the information entered
in the dialog is used to create an OrderItem object and add it to the Order’s
OrderItem collection.

private void addButton_Click(object sender, RoutedEventArgs e)
{

 OrderItemDialog orderItemDialog = new OrderItemDialog();

 DataRowView selectedRow;
 selectedRow = (DataRowView)this.ProductsDataGrid.SelectedItems[0];
 orderItemDialog.productIdTextBox.Text = selectedRow.Row.ItemArray[0].ToString();
 orderItemDialog.unitPriceTextBox.Text = selectedRow.Row.ItemArray[4].ToString();
 orderItemDialog.Owner = this;
 orderItemDialog.ShowDialog();

CHAPTER 14 ■ DEVELOPING THE OSO APPLICATION

310

 if (orderItemDialog.DialogResult == true)
 {
 string productId = orderItemDialog.productIdTextBox.Text;
 double unitPrice = double.Parse(orderItemDialog.unitPriceTextBox.Text);
 int quantity = int.Parse(orderItemDialog.quantityTextBox.Text);
 _order.AddItem(new OrderItem(productId,unitPrice,quantity));
 }
}

The removeButton_Click event checks to see if an item is selected in the
orderList view and removes it from the order.

private void removeButton_Click(object sender, RoutedEventArgs e)
{
 if (this.orderListView.SelectedItem != null)
 {
 var selectedOrderItem = this.orderListView.SelectedItem as OrderItem;
 _order.RemoveItem(selectedOrderItem.ProdID);
 }
}

The placeOrderButton_Click event checks to see if the user is logged in and
places the order if they are.

private void placeOrderButton_Click(object sender, RoutedEventArgs e)
{
 if (_employee.LoggedIn == true)
 {
 //place order
 int orderId;
 orderId = _order.PlaceOrder(_employee.EmployeeID);
 MessageBox.Show("Your order has been placed. Your order id is " + orderId.ToString());
 }
 else
 {
 MessageBox.Show("You must be logged in to place an order.");
 }
}

Now that the MainWindow’s codebehind is implemented, you are ready to add the code
behind for the dialog widows.

6. Add the following code to the OrderItemDialog.xaml.cs codebehind file. If
the user clicks the OK button, the DialogResult is set to true. If the user clicks
cancel, the DialogResult is set to false.

using System;
using System.Collections.Generic;
using System.Linq;
using System.Text;
using System.Windows;
using System.Windows.Controls;

CHAPTER 14 ■ DEVELOPING THE OSO APPLICATION

311

using System.Windows.Data;
using System.Windows.Documents;
using System.Windows.Input;
using System.Windows.Media;
using System.Windows.Media.Imaging;
using System.Windows.Shapes;

namespace OSOWPFUI
{
 /// <summary>
 /// Interaction logic for OrderItemDialog.xaml
 /// </summary>
 public partial class OrderItemDialog : Window
 {
 public OrderItemDialog()
 {
 InitializeComponent();
 }

 private void okButton_Click(object sender, RoutedEventArgs e)
 {
 this.DialogResult = true;
 }

 private void cancelButton_Click(object sender, RoutedEventArgs e)
 {
 this.DialogResult = false;
 }
 }
}

7. Add the following code to the LoginDialog.xaml.cs codebehind file. It is
similar to OrderItemDialog code.

using System;
using System.Collections.Generic;
using System.Linq;
using System.Text;
using System.Windows;
using System.Windows.Controls;
using System.Windows.Data;
using System.Windows.Documents;
using System.Windows.Input;
using System.Windows.Media;
using System.Windows.Media.Imaging;
using System.Windows.Shapes;

namespace OSOWPFUI
{
 /// <summary>
 /// Interaction logic for LoginDialog.xaml
 /// </summary>

CHAPTER 14 ■ DEVELOPING THE OSO APPLICATION

312

 public partial class LoginDialog : Window
 {
 public LoginDialog()
 {
 InitializeComponent();
 }

 private void okButton_Click(object sender, RoutedEventArgs e)
 {
 this.DialogResult = true;
 }

 private void cancelButton_Click(object sender, RoutedEventArgs e)
 {
 this.DialogResult = false;
 }
 }
}

Now that you have added the implementation code to the UI, you are ready to test the
application.

8. Launch the application in debug mode. You are presented with the order
form (see Figure 14-7). Using the category drop-down, switch between the
different categories and verify that the products are updated in the product
grid. Select an item in the product grid and click the Add Item button. You
are presented with the Order Item dialog (see Figure 14-8). Add some items
to the order and test removing some items from the order. To test placing an
order, click the Login button. You are presented with the Login dialog (see
Figure 14-9). Enter a value of JSmith for the user and a value of js for the
password. You should receive confirmation you are logged in. Click the Place
Order button. You should receive confirmation the order was placed. When
you’ve finished testing, click the Exit button to stop the program.

■Note Although this is a functional application, it’s for demonstration purposes only and is not production
ready.

Summary
In this chapter, you revisited the office supply ordering (OSO) application designed in Chapter 4. You
created a functional application incorporating the concepts you learned in the previous chapters. The
application contains a data access layer, a business logic layer, and a user interface layer. You learned
why applications are split into different layers and how to construct a working application comprised of
the various layers. Although you didn’t create a web-based user interface application layer, because you
created the application in distinct tiers, you could easily replace the Windows-based WPF UI with a web-
based Silverlight UI.

C H A P T E R 1 5

■ ■ ■

313

Wrapping Up

If you’ve made it this far, take a moment and pat yourself on the back. You’ve come a long way since the
day you first cracked open the cover of this book; you’ve gained valuable skills and learned concepts you
can use to successfully program using the .NET Framework, C#, and the Visual Studio IDE. These
include, but are not limited to, the following:

• The importance of the application design cycle.

• The Unified Modeling Language and how it can help facilitate the analysis and
design of object-oriented programs.

• The Common Language Runtime (CLR).

• The structure of the .NET Framework.

• How to create and use class structures and hierarchies.

• How to implement inheritance, polymorphism, and interfaces.

• Object interaction and collaboration.

• Event-driven programming.

• Structured error handling.

• How to work with data structures and data sources using ADO.NET.

• Using the Entity Framework to create object relational mappings to a SQL Server
database.

• How to use the features of the Visual Studio IDE to increase productivity and
facilitate debugging.

• How to implement a Windows-based graphical user interface using the Windows
Presentation Framework.

• How to implement a web-based graphical user interface using Silverlight.

• How to create and consume services using Windows Communication Framework.

Congratulations! You can now call yourself a C# programmer (albeit a neophyte). However, don’t
get too high on yourself. If your goal is to become a professional C# programmer, your journey has just
begun. The next stage of your development is to gain experience. In other words, design and code, and

CHAPTER 15 ■ WRAPPING UP

314

then design and code some more. If you are designing and coding C# at work, this will be easy. (Although
it will be stressful if you are expected to be an expert after that three-day course they sent you to!)

If you are learning on your own, you will have to find the time and projects on which to work. This is
easier than you might think. Commit to an hour a day and come up with an idea for a program. For
example, you could design a program that converts recipes into Extensible Markup Language (XML)
data. The XML data could then generate a shopping list. Heck, if you really want to go all out,
incorporate an inventory tracking system that tracks ingredients you have in stock. However you go
about gaining experience, remember the important adage: use it or lose it!

The following sections highlight some other important things to consider as you develop your
programming skills.

Improve Your Object-Oriented Design Skills
 Object-oriented analysis and design is one of the hardest tasks you will perform as a programmer. This
is not a skill that comes easily for most programmers. It is, however, one of the most important skills you
should strive to master. It is what separates what I call a programmer from a coder. If you talk to most
CIOs and programming managers, finding coders is easy; it is the programmer they are after.

Remember that there is no one “true” methodology, rather several that are equally valid.

Investigate the .NET Framework Namespaces
The .NET Framework contains a vast number of classes, interfaces, and other types aimed at optimizing
and expediting your development efforts. The various namespaces that make up the .NET Framework
Class Library are organized by functionality. It’s important you take the time to become familiar with the
capabilities provided by these namespaces.

Start out with the namespaces that incorporate functionality you will use most often, such as the
root namespace System and the System.Data.EntityClient, which contains the .NET Framework Data
Provider for the Entity Framework.

After you become familiar with the more common namespaces, explore some of the more obscure
ones. For example, System.Security.Cryptography provides cryptographic services such as data
encoding, hashing, and message authentication. You will be amazed at the extent of the support
provided by the framework. You can find a wealth of information on the members of the various
namespaces in Visual Studio’s integrated documentation.

Become Familiar with ADO.NET and the Entity Framework
Data is fundamental to programming. You store, retrieve, and manipulate data in every program you
write. The data structure a program works with during execution is nondurable data—it is held in RAM.
When the application terminates, this data is lost and has to be re-created the next time the application
runs. Durable data is data that is maintained in a permanent data structure such as a file system or a
database. Most programs need to retrieve data from and persist data to some sort of durable data
storage. This is where ADO.NET steps in. ADO.NET refers to the namespaces that contain the
functionality for working with durable data. (It also contains functionality for organizing and working
with nondurable data in a familiar relational database or XML-type structure.) Although I have
introduced you to ADO.NET and the Entity Framework, this is such an important topic that it deserves a
book devoted solely to these data access technologies. (Don’t worry—there are many!) This is definitely

CHAPTER 15 ■ WRAPPING UP

315

an area where you need to devote further study. To learn more about these technologies, visit the Data
Developer Center site at http://msdn.microsoft.com/en-us/data. A good book on the Entity Framework
is Entity Framework 4.0 Recipes by Larry Tenny and Zeeshan Hirani (Apress, 2010).

Learn More About WPF and Silverlight
Although you were introduced to WPF and Silverlight in Chapters 11 and 12, I only scratched the surface
of these powerful technologies. Silverlight and WPF are packed full of features for developing engaging,
interactive user experiences on the web, desktop, and mobile devices. For more information on
programming WPF, visit the Windows Client development center at http://windowsclient.net. For
more information about programming in Silverlight visit the Silverlight developer center at
www.silverlight.net. Both these sites are full of learning materials and demo applications showcasing
the power of these technologies. A good book on WPF is Applied WPF 4 in Context by Raffaele Garofalo
(Apress, 2011). A good book for further study into Silverlight is Pro Silverlight 4 in C# 3rd Edition by
Matthew MacDonald (Apress, 2010).

Move Toward Component-Based Development
After you have mastered object-oriented development and the encapsulation of your programming logic
in a class system, you are ready to move toward component-based development. Components are
assemblies that further encapsulate the functionality of your programming logic. Although the OSO
application’s business logic tier is logically isolated from the data access tier, physically they reside in the
same assembly. You can increase code maintenance and reuse by compiling each into its own assembly.
You should start moving to a Lego approach of application development. This is where your application
is comprised of a set of independent pieces (assemblies) that can be snapped together and work in
conjunction to perform the necessary services. For more information on this and other best practices, go
to the Microsoft’s patterns & practices web site at http://msdn.microsoft.com/en-us/practices/.

Find Help
An enormous amount of information is available on the .NET Framework and the C# programming
language. The help system provided with Visual Studio is an excellent resource for programmers.
Get in the habit of using this resource religiously. Another extremely important resource is
http://msdn.microsoft.com. This web site, provided by Microsoft for developers, contains a wealth of
information including white papers, tutorials, and webcast seminars; quite honestly, it’s one of the
most informative sites in the industry. If you are developing using Microsoft technologies, visiting this
site should be as routine as reading the daily paper. There are also a number of independent web
sites dedicated to the various .NET programming languages. One good site is C# Corner
(www.c-sharpcorner.com/), which contains tons of articles on all aspects of programming in C#. You can
use your favorite search engine to discover other good sites on the web dedicated to C# programming.

Join a User Group
Microsoft is investing a lot of support for the development of local .NET user groups. The user
groups consist of members with an interest in .NET programming. These groups provide a great

CHAPTER 15 ■ WRAPPING UP

316

avenue for learning, mentoring, and networking. There is a listing of .NET user groups available at
http://msdn.microsoft.com. The International .NET Association (INETA) also provides support for
.NET user groups; you can find a listing of INETA affiliated user groups at www.ineta.org.

If you can’t find a .NET user group in your area, heck, why not start one?

Please Provide Feedback
Although every effort has been made to provide you with an error-free text, it is inevitable that some
mistakes will make it through the editing process. I am committed to providing updated errata at the
Apress Web site (www.apress.com), but I can’t do this without your help. If you have come across any
mistakes while reading this text, please report them to me through the Apress site.

Thank You and Good Luck
I sincerely hope you found working your way through this text an enjoyable and worthwhile experience.
I want to thank you for allowing me to be your guide on this journey. Just as your skills as a developer
increased as a result of reading this book, my skills as a developer have increased immensely as a result
of writing it. My experience of teaching and training for the past two decades has been that you really
don’t fully comprehend a subject until you can teach it to someone else. So, again, thank you and good
luck!

A P P E N D I X A

■ ■ ■

317

Fundamental Programming
Concepts

The following information is for readers who are new to programming and need a primer on some
fundamental programming concepts. If you have programmed in another language, chances are the
concepts presented in this appendix are not new to you. You should, however, review the material
briefly to become familiar with the C# syntax.

Working with Variables and Data Types
Variables in programming languages store values that can change while the program executes. For
example, if you wanted to count the number of times a user tries to log in to an application, you could
use a variable to track the number of attempts. The variable is a memory location where the value is
stored. Using the variable, your program can read or alter the value stored in memory. Before you use a
variable in your program, however, you must declare it. When you declare a variable, the compiler also
needs to know what kind of data will be stored at the memory location. For example, will it be numbers
or letters? If the variable will store numbers, how large can a number be? Will the variable store decimals
or only whole numbers? You answer these questions by assigning a data type to the variable. A login
counter, for example, only needs to hold positive whole numbers. The following code demonstrates how
you declare a variable named counter in C# with an Integer data type:

int counter;

Specifying the data type is referred to as strong typing. Strong typing results in more efficient
memory management, faster execution, and compiler type checking, all of which reduces runtime
errors.

Once you declare the variable, you can assign it an initial value, either in a separate statement or
within the declaration statement itself. For instance, the following code

int counter = 1;

is equivalent to this

int counter;
counter = 1;

APPENDIX A ■ FUNDAMENTAL PROGRAMMING CONCEPTS

318

If you do not explicitly assign an initial value to a variable at the time you declare it, the compiler
will do so implicitly, assigning numeric data types to 0, Boolean data types to false, character data types
to empty (“ ”), date data types to 1/1/0001, and object data types to null (which is an empty reference
pointer). The following sections further describe these various data types.

Understanding Elementary Data Types
C# supports elementary data types such as numeric, character, and date.

Integral Data Types
Integral data types represent whole numbers only. Table A-1 summarizes the integral data types used in
C#.

Table A-1. Integral Data Types

Data Type Storage Size Value Range

Byte 8-bit 0 through 255

Short 16-bit –32,768 through 32,767

Integer 32-bit –2,147,483,648 through 2,147,483,647

Long 64-bit –9,223,372,036,854,775,808 through
9,223,372,036,854,775,807

Obviously, memory size is important when choosing a data type for a variable. A less obvious

consideration is how easily the compiler works with the data type. The compiler performs arithmetic
operations with integers more efficiently than the other types. Often, it’s better to use integers as counter
variables even though a byte or short type could easily manage the maximum value reached.

Non-Integral Data Types
If a variable will store numbers that include decimal parts, then you must use a non-integral data type.
C# supports the non-integral data types listed in Table A-2.

APPENDIX A ■ FUNDAMENTAL PROGRAMMING CONCEPTS

319

Table A-2. Non-Integral Data Types

Data Type Storage Size Value Range

Single 32-bit –3.4028235E+38 through –1.401298E–45 for negative values;
1.401298E–45 through 3.4028235E+38 for positive values

Double 64-bit 1.79769313486231570E+308 through –4.94065645841246544E–324 for
negative values; 4.94065645841246544E–324 through
1.79769313486231570E+308 for positive values

Decimal 128-bit 0 through +/–79,228,162,514,264,337,593,543,950,335 with no
decimal point; 0 through +/–7.9228162514264337593543950335 with
28 places to the right of the decimal

The decimal data type holds a larger number of significant digits than either the single or the double

data types and it is not subject to rounding errors. Decimal data types are usually reserved for financial
or scientific calculations that require a higher degree of precision.

Character Data Types
Character data types are for variables that hold characters used in the human language. For example, a
character data type holds letters such as a or numbers used for display and printing such as “2 apples.”
The character data types in C# are based on Unicode, which defines a character set that can represent
the characters found in every language from English to Arabic and Mandarin Chinese. C# supports two
character data types: char and string. The char data type holds single (16-bit) Unicode character values
such as a or B. The string data type holds a sequence of Unicode characters. It can range from zero up to
about two billion characters.

Boolean Data Type
The Boolean data type holds a 16-bit value that is interpreted as true or false. It’s used for variables that
can be one of only two values, such as yes or no, or on or off.

Date Data Type
Dates are held as 64-bit integers where each increment represents a period of elapsed time from the start
of the Gregorian calendar (1/1/0001 at 12:00 a.m.).

Object Data Type
An object data type is a 32-bit address that points to the memory location of another data type. It is
commonly used to declare variables where the actual data type they refer to can’t be determined until
runtime. Although the object data type can be a catch-all to refer to the other data types, it is the most
inefficient data type when it comes to performance and should be avoided unless absolutely necessary.

APPENDIX A ■ FUNDAMENTAL PROGRAMMING CONCEPTS

320

Nullable Types
By default, value types such as the Boolean, integer, and double data types can’t be assigned a null value.
This can become problematic when retrieving data from data structures such as a database that does
allow nulls. When declaring a value type variable that may be assigned a null, you make it a nullable type
by placing a question mark symbol (?) after the type name, like so:

double salary = null; // Not allowed.
double? salary = null; // allowed.

Introducing Composite Data Types
Combining elementary data types creates composite data types. Structures, arrays, and classes are
examples of composite data types.

Structures
A structure data type is useful when you want to organize and work with information that is mostly just a
piece of data and does not need the overhead of class methods and constructors. It’s well suited for
representing lightweight objects such as the coordinates of a point or rectangle. A single variable of type
structure can store such the information. You declare a structure with the struct keyword. For example,
the following code creates a structure named Point to store the coordinates of a point in a two-
dimensional surface:

public struct Point
{
 public int _x, _y;

 public Point(int x, int y)
 {
 _x = x;
 _y = y;
 }
}

Once you define the structure, you can declare a variable of the structure type and create a new
instance of the type, like so:

Point p1 = new Point(10,20);

Arrays
Arrays are often used to organize and work with groups of the same data type; for example, you may
need to work with a group of names, so you declare an array data type by placing square brackets ([])
immediately following the variable name, like so:

string[] name;

APPENDIX A ■ FUNDAMENTAL PROGRAMMING CONCEPTS

321

The new operator is used to create the array and initialize its elements to their default values.
Because the elements of the array are referenced by a zero-based index, the following array holds five
elements:

string[] name = new string[4];

To initialize the elements of an array when the array is declared, you use curly brackets ({}) to list
the values. Since the size of the array can be inferred, you do not have to state it.

string[] name = {"Bob","Bill","Jane","Judy"};

C# supports multidimensional arrays. When you declare the array, you separate the size of the
dimensions by commas. The following declaration creates a two-dimensional array of integers with five
rows and four columns:

string[,] name = new string[4,3];

To initialize the elements of a two dimensional array when the array is declared, you use curly
brackets inside curly brackets to list the array elements.

int[,] intArray = {{1,2}, {3,4}, {5,6}, {7,8}};

You access elements of the array using its name followed by the index of the element in brackets.
For example, name[2] references the third element of the names array declared previously and has a
value of Jane.

Classes
Classes are used extensively in object-oriented programming languages. Most of this book is devoted to
their creation and use. At this point, it suffices to say that classes define a complex data type definition
for an object. They contain information about how an object should behave, including its name,
methods, properties, and events. The .NET Framework contains many predefined classes with which
you can work. You can also create your own class type definitions. A variable defined as a class type
contains a 32-bit address pointer to the memory location of the object. The following code declares an
object instance of the StringBuilder class defined in the .NET Framework:

StringBuilder sb = new StringBuilder();

Looking at Literals, Constants, and Enumerations
Although the values of variables change during program execution, literals and constants contain items
of data that do not change.

Literals
Literals are fixed values implicitly assigned a data type and are often used to initialize variables. The
following code uses a literal to add the value of 2 to an integer value:

Count = Count + 2

APPENDIX A ■ FUNDAMENTAL PROGRAMMING CONCEPTS

322

By inspecting the literal, the compiler assigns a data type to the literal. Numeric literals without
decimal values are assigned the integer data type; those with a decimal value are assigned as double data
type. The keywords true and false are assigned the Boolean data type. If the literal is contained in
quotes, it is assigned as a string data type. In the following line of code, the two string literals are
combined and assigned to a string variable:

FullName = “Bob” + “Smith”

It’s possible to override the default data type assignment of the literal by appending a type character
to the literal. For example, a value of 12.25 will be assigned the double data type but a value of 12.25f
will cause the compiler to assign it a single data type.

Constants
Many times you have to use the same constant value repeatedly in your code. For example, a series of
geometric calculations may need to use the value of pi. Instead of repeating the literal 3.14 in your code,
you can make your code more readable and maintainable by using a declared constant. You declare a
constant using the const keyword followed by the constant name and the data type:

const Single pi = 3.14159265358979323846f;

The constant is assigned a value when it is declared and this value can’t be altered or reassigned.

Enumerations
You often need to assign the value of a variable to one of several related predefined constants. In these
instances, you can create an enumeration type to group together the values. Enumerations associate a
set of integer constants to names that can be used in code. For example, the following code creates an
enum type of Manager used to define three related manager constants with names of DeptManager,
GeneralManager, and AssistantManager with values of 0, 1, and 2, respectively:

 enum Manager
 {
 DeptManager,
 GeneralManager,
 AssistantManager,
 }

A variable of the enum type can be declared and set to one of the Enum constants.

Manager managerLevel = Manager.DeptManager;

■Note The .NET Framework provides a variety of intrinsic constants and enumerations designed to make your
coding more intuitive and readable. For example, the StringAlignment enumeration specifies the alignment of a
text string relative to its layout rectangle.

APPENDIX A ■ FUNDAMENTAL PROGRAMMING CONCEPTS

323

Exploring Variable Scope
Two important aspects of a variable are its scope and lifetime. The scope of a variable refers to how the
variable can be accessed from other code. The lifetime of a variable is the period of time when the
variable is valid and available for use. A variable’s scope and lifetime are determined by where it is
declared and the access modifier used to declare it.

Block-Level Scope
A code block is a set of grouped code statements. Examples of code blocks include code organized in if-
else, do-loop, or for-next statements. Block-level scope is the narrowest scope a variable can have. A
variable declared within a block of code is available only within the block it is declared. In the following
code, the variable blockCount can only be accessed from inside the if block. Any attempt to access the
variable outside the block will generate a compiler error.

if (icount > 10)
{
 int blockCount;
 blockCount = icount;
}

Although the scope of blockCount is limited to the if block, the lifetime of the variable is for the
entire procedure where the block exists. You will probably find block-level scope to be too restrictive in
most cases and will instead use procedure scope.

Procedure Scope
Procedures are blocks of code that can be called and executed from other code. There are two types of
procedures supported in C#: method and property. Variables declared outside of a code block but within
a procedure have procedure-level scope. Variables with procedure scope can be accessed by code within
the same procedure. In the following code, the counter iCount is declared with procedure scope and can
be referenced from anywhere within the procedure block of the Counter method:

void Counter()
{
 int iCount = 0;
 do
 {
 iCount = iCount + 2;
 }
 while (iCount < 10);
}

The lifetime of a procedure scope variable is limited to the duration of the execution of the
procedure.

APPENDIX A ■ FUNDAMENTAL PROGRAMMING CONCEPTS

324

Module Scope
Variables with module scope are available to any code within the class or structure. To have module
scope, the variable is declared in the general declaration section (outside of any procedure blocks) of the
class or structure. To limit the accessibility to the module where it is declared, you use the private access
modifier keyword. In the following code, the iCount variable can be accessed by both procedures
defined in the class:

public class Class1
{
 private int _iCount;
 public void IncrementCount()
 {
 int iCount = 0;
 do
 {
 iCount = iCount + 2;
 }
 while (iCount < 10);
 }
 public void ReadCount()
 {
 Console.WriteLine(_iCount.ToString());
 }
}

The lifetime of the variable declared with module scope is the same as the lifetime of the object
instance of the class or structure in which it is declared.

■Note There are several additional variations of scope addressed in the main body of the book.

Understanding Data Type Conversion
During program execution there are many times when a value must be converted from one data type to
another. The process of converting between data types is referred to as casting or conversion.

Implicit Conversion
The C# compiler will perform some data type conversions for you automatically. For numeric types, an
implicit conversion can be made when the value to be stored can fit into the variable without being
truncated or rounded off. For example, in the following code, an integer data type is implicitly converted
to a long data type:

int i1 = 373737373;
long l1 = i1;
l1 *= l1;

APPENDIX A ■ FUNDAMENTAL PROGRAMMING CONCEPTS

325

Explicit Conversion
Explicit conversion is referred to as casting. To perform a cast, you specify the type that you are casting
to in parentheses in front of the value or variable to be converted. The following code uses a cast to
explicitly convert the double type n1 to an integer type:

double n1 = 3.73737373;
int i1 = (int)n1;

Widening and Narrowing Conversions
Widening conversions occur when the data type being converted to can accommodate all the possible
values contained in the original data type. For example, an integer data type can be converted to a
double data type without any data loss or overflow. Data loss occurs when the number gets truncated.
For example, 2.54 gets truncated to 2 if it is converted to an integer data type. Overflow occurs when a
number is too large to fit in the new data type. For example, if the number 50000 is converted to a short
data type, the maximum capacity of the short data type is exceeded, causing the overflow error.
Narrowing conversions, on the other hand, occur when the data type being converted to can’t
accommodate all the values that can be contained in the original data type. For example, when the value
of a double data type is converted to a short data type, any decimal values contained in the original value
will be lost. In addition, if the original value is more than the limit of the short data type, a runtime
exception will occur. You should be particularly careful to trap for these situations when implementing
narrowing conversions in your code.

Working with Operators
An operator is a code symbol that tells the compiler to perform an operation on a value. The operation
can be arithmetic, comparative, or logical.

Arithmetic Operators
Arithmetic operators perform mathematical manipulation to numeric types. Table A-3 lists the
commonly used arithmetic operators available in C#.

APPENDIX A ■ FUNDAMENTAL PROGRAMMING CONCEPTS

326

Table A-3. Arithmetic Operators

Operator Description

= Assignment

* Multiplication

/ Division

+ Addition

- Subtraction

The following code increments the value of an integer data type by the number one:

Count = Count + 1

C# also supports shorthand assignment operators that combine the assignment with the operation.
The following code is equivalent to the previous code:

Count += 1

If you are going to increment by one, you can also use the shorthand assignment ++. The following
code is equivalent to the previous code:

Count ++

Comparison Operators
A comparison operator compares two values and returns a Boolean value of true or false. Table A-4 lists
the common comparison operators used in C#.

APPENDIX A ■ FUNDAMENTAL PROGRAMMING CONCEPTS

327

Table A-4. Comparison Operators

Operator Description

< Less than

<= Less than or equal to

> Greater than

>= Greater than or equal to

== Equal to

!= Not equal to

You use comparison operators in condition statements to decide when to execute a block of code.

The following if block checks to see if the number of invalid login attempts is greater than three before
throwing an exception:

if (_loginAttemps > 3)
{
 throw new Exception("Invalid login.");
}

Logical Operators
Logical operators combine the results of conditional operators. The three most commonly used logical
operators are the And, Or, and Not operators. The And operator (&&) combines two expressions and
returns true if both expressions are true. The Or operator (||) combines two expressions and returns
true if either one is true. The Not operator (!) switches the result of the comparison: a value of true
returns false and a value of false returns true. The following code checks to see whether the logged-in
user is a department manager or assistant manager before running a method:

if (currentUserLevel == Manager.AssistantManager ||
 currentUserLevel == Manager.DeptManager)
{
 ReadLog();
}

APPENDIX A ■ FUNDAMENTAL PROGRAMMING CONCEPTS

328

Ternary Operator
The ternary operator evaluates a Boolean expression and returns one of two values depending on the
result of the expression. The following shows the syntax of the ternary operator:

condition ? first_expression : second_expression;

If the condition evaluates to true, the result of the first expression is returned. If the condition
evaluates to false, the result of the second expression is returned. The following code checks to see if the
value of x is zero. If it is, it returns 0; if not, it divides y by x and returns the result.

return x == 0.0 ? 0 : y/x;

Introducing Decision Structures
Decision structures allow conditional execution of code blocks depending on the evaluation of a
condition statement. The if statement evaluates a Boolean expression and executes the code block if the
result is true. The switch statement checks the same expression for several different values and
conditionally executes a code block depending on the results.

If Statements
To execute a code block if a condition is true, use the following structure:

if (condition1)
{
 //code
}

To execute a code block if a condition is true and an alternate code block if it is false, add an else
block.

if (condition1)
{
 //code
}
else
{
 //code
}

To test additional conditions if the first evaluates to false, add an else-if block:

if (condition1)
{
 //code
}
else if (condition2)
{
 //code
}

APPENDIX A ■ FUNDAMENTAL PROGRAMMING CONCEPTS

329

else
{
 //code
}

An if statement can have multiple else-if blocks. If a condition evaluates to true, the corresponding
code statements are executed, after which execution jumps to the end of the statements. If a condition
evaluates to false, the next else-if condition is checked. The else block is optional, but if included, it
must be the last. The else block has no condition check and executes only if all other condition checks
have evaluated to false. The following code demonstrates using the if statement to evaluate a series of
conditions. It checks a performance rating to determine what bonus to use and includes a check to see if
the employee is a manager to determine the minimum bonus.

if (performance ==1)
{
 bonus = salary * 0.1;
}
else if (performance == 2)
{
 bonus = salary * 0.08;
}
else if (employeeLevel == Manager.DeptManager)
{
 bonus = salary * 0.05;
}
else
{
 bonus = salary * 0.03;
}

Switch Statements
Although the switch statement is similar to the if-else statement, it’s used to test a single expression for a
series of values. The structure of the switch statement is as follows:

switch (expression)
{
case 1:
 Console.WriteLine("Case 1");
 break;
case 2:
 Console.WriteLine("Case 2");
 break;
default:
 Console.WriteLine("Default case");
 break;
}

A switch statement can have multiple case blocks. If the test expression value matches the case

expression, the code statements in the case block execute. After the case block executes, you need a
break statement to bypass the rest of the case statements. If the test expression doesn’t match the case

APPENDIX A ■ FUNDAMENTAL PROGRAMMING CONCEPTS

330

expression, execution jumps to the next case block. The default block doesn’t have an expression. It
executes if no other case blocks are executed. The default block is optional, but if used, it must be last.
The following example uses a switch to evaluate a performance rating to set the appropriate bonus rate:

switch(performance)
{
 case 1:
 bonus = salary * 0.1;
 break;
 case 2:
 bonus = salary * 0.08;
 break;
 case 3:
 bonus = salary * 0.03;
 break;
 default:
 bonus = salary * 0.01;
 break;
 }

Using Loop Structures
Looping structures repeat a block of code until a condition is met. C# supports the following looping
structures.

While Statement
The while statement repeats the execution of code while a Boolean expression remains true. The
expression gets evaluated at the beginning of the loop. The following code executes until a valid login
variable evaluates to true:

while (validLogin = false)
{
 //code statements...
}

Do-While Statement
The do-while loop is similar to the while loop except the expression is evaluated at the end of the loop.
The following code will loop until the maximum login attempts are met:

do
{
 //code statements...
}
while (iCount < maxLoginAttempts);

APPENDIX A ■ FUNDAMENTAL PROGRAMMING CONCEPTS

331

For Statement
A for statement loops through a code block a specific number of times based on the value stored in a
counter. For statements are a better choice when you know the number of times a loop needs to execute
at design time. In the parenthesis that follow a for statement, you initialize a counter, define the
evaluation expression, and define the counter increment amount.

for (int i = 0; i < 10; i++)
{
 //Code statments...
}

For Each Statement
The for-each statement loops through code for each item in a collection. A collection is a group of
ordered items; for example, the controls placed on a Windows Form are organized into a Controls
collection. To use the for-each statement, you first declare a variable of the type of items contained in
the collection. This variable is set to the current item in the collection. The following for-each statement
loops through the employees in an employee list collection:

foreach (Employee e in employeeList)
{
 //Code statements
}

If you need to conditionally exit a looping code block, you can use the break statement. The following
code shows breaking out of the for-each loop:

foreach (Employee e in employeeList)
{
 //Code statements
 if (e.Name == "Bob")
 {
 break;
 }
}

Introducing Methods
Methods are blocks of code that can be called and executed from other code. Breaking an application up
into discrete logical blocks of code greatly enhances code maintenance and reuse. C# supports methods
that return values and methods that do not. When you declare a method, you specify an access modifier,
a return type, and a name for the method. The following code declares a method with no return type
(designated by the keyword void) used to record logins to the event log:

public void RecordLogin(string userName)
{
 EventLog appLog = new EventLog();
 appLog.Source = "OSO App";
 appLog.WriteEntry(userName + " has logged in.");
}

APPENDIX A ■ FUNDAMENTAL PROGRAMMING CONCEPTS

332

You can declare methods with a parameter list that defines arguments that must be passed to the

method when it is called. The following code defines a method that encapsulates the assignment of a
bonus rate. The calling code passes an integer type value to the method and receives a double type value
back.

public double GetBonusRate(int performanceRating)
{
 double bonusRate;
 switch (performanceRating)
 {
 case 1:
 bonusRate = 0.1;
 break;
 case 2:
 bonusRate = 0.08;
 break;
 case 3:
 bonusRate = 0.03;
 break;
 default:
 bonusRate = 0.01;
 break;
 }
 return bonusRate;
 }

The following code demonstrates how the method is called:

double salary;
int performance;
double bonus;
// Get salary and performance data from data base…
bonus = GetBonusRate(performance) * salary;

If the access modifier of the method is private, it is only accessible from code within the same class.
If the method needs to be accessed by code in other classes, then the public access modifier is used.

A P P E N D I X B

■ ■ ■

333

Exception Handling in C#

The topics discussed here extend the discussion of exception handling found in Chapter 8, so this
discussion assumes that you have first thoroughly reviewed Chapter 8. The purpose of this appendix is
to review Microsoft’s recommendations for exception management and present a few of the exception
classes provided by the .NET Framework.

Managing Exceptions
Exceptions are generated when the implicit assumptions made by your programming logic are violated.
For example, when a program attempts to connect to a database, it assumes that the database server is
up and running on the network. If the server can’t be located, an exception is generated. It’s important
that your application gracefully handles any exceptions that may occur. If an exception is not handled,
your application will terminate.

You should incorporate a systematic exception handling process in your methods. To facilitate this
process, the .NET Framework makes use of structured exception handling through the Try, Catch, and
Finally code blocks. The first step is to detect any exceptions that may be thrown as your code executes.
To detect any exceptions thrown, place the code within the Try block. When an exception is thrown in
the Try block, execution transfers to the Catch block. You can use more than one Catch block to filter for
specific types of exceptions that may be thrown. The Finally block performs any cleanup code that you
wish to execute. The code in the Finally block executes regardless of whether an exception is thrown.
The following code demonstrates reading a list of names from a file using the appropriate exception
handling structure:

public ArrayList GetNames(string file)
{
 StreamReader stream = new StreamReader();
 ArrayList names = new ArrayList();
 try
 {
 stream = File.OpenText(file);
 while (stream.Peek() > -1)
 {
 names.Add(stream.ReadLine());
 }
 }
 catch (FileNotFoundException e)
 {
 //Could not find file
 }

APPENDIX B ■ EXCEPTION HANDLING IN C#

334

 catch (FileLoadException e)
 {
 //Could not open file
 }
 catch (Exception e)
 {
 //Some kind of error occurred. Report error.
 }
 finally
 {
 stream.Close();
 }
 return names;
}

After an exception is caught, the next step in the process is to determine how to respond to it. You
basically have two options: either recover from the exception or pass the exception to the calling
procedure. The following code demonstrates how to recover from a DivideByZeroException by setting
the result to zero:

 ...
try
{
 Z = x / y
}
catch (DivideByZeroException e)
{
 Z = 0
}
 ...

An exception is passed to the calling procedure using the Throw statement. The following code
demonstrates throwing an exception to the calling procedure where it can be caught and handled:

catch (FileNotFoundException e)
{
 throw e;
}

As exceptions are thrown up the calling chain, the relevance of the original exception can become
less obvious. To maintain relevance, you can wrap the exception in a new exception containing
additional information that adds relevancy to the exception. The following code shows how to wrap a
caught exception in a new one and then pass it up the calling chain:

catch (FileLoadException e)
{
 throw new Exception("GetNames function could not open file", e);
}

You preserve the original exception by using the InnerException property of the Exception class.
Implementing this exception management policy consistently throughout the various methods in

your application will greatly enhance your ability to build highly maintainable, flexible, and successful
applications.

APPENDIX B ■ EXCEPTION HANDLING IN C#

335

Using the .NET Framework Exception Classes
The Common Language Runtime (CLR) has a set of built-in exception classes. The CLR will throw an
object instance of the appropriate exception type if an error occurs while executing code instructions. All
.NET Framework exception classes derive from the SystemException class, which in turn derives from
the Exception class. These base classes provide functionality needed by all exception classes.

Each namespace in the framework contains a set of exception classes that derive from the
SystemException class. These exception classes handle common exceptions that may occur while
implementing the functionality contained in the namespace. To implement robust exception handling,
it’s important for you to be familiar with the exception classes provided by the various namespaces. For
example, Table B-1 summarizes the exception classes in the System.IO namespace.

Table B-1. Exception Classes in the System.IO Namespace

Exception Description

IOException The base class for exceptions thrown while accessing information
using streams, files, and directories

DirectoryNotFoundException Thrown when part of a file or directory can’t be found.

EndOfStreamException Thrown when reading is attempted past the end of a stream.

FileLoadException Thrown when a file is found but can’t be loaded.

FileNotFoundException Thrown when an attempt to access a file that does not exist on disk
fails.

PathTooLongException Thrown when a path or filename is longer than the system-defined
maximum length.

Every exception class in the .Net Framework contains the properties listed in Table B-2. These

properties help identify where the exception occurred and its cause.

APPENDIX B ■ EXCEPTION HANDLING IN C#

336

Table B-2. Exception Class Properties

Property Description

Message Gets a message that describes the current exception.

Source Gets or sets the name of the application or the object that causes the error.

StackTrace Gets a string representation of the frames on the call stack at the time the current
exception was thrown.

InnerException Gets the exception instance that caused the current exception.

HelpLink Gets or sets a link to the help file associated with this exception.

In addition, the ToString method of the exception classes provides summary information about the

current exception. It combines the name of the class that threw the current exception, the message, the
result of calling the ToString method of the inner exception, and the stack trace information of the
current exception.

You will find that the exception classes in the .NET Framework provide you with the capabilities to
handle most exceptions that may occur in your applications. In cases where you may need to implement
custom error handling, you can create your own exception classes. These classes need to inherit from
System.ApplicationException, which in turn inherits from System.Exception. The topic of creating
custom exception classes is an advanced one and thus beyond the scope of this text; for more
information, consult the .NET Framework documentation at http://msdn.microsoft.com/en-
us/library/.

A P P E N D I X C

■ ■ ■

337

Installing the Required Software

I have included many learning activities throughout this book. In order to get the most out of the topics I
discuss, you should complete these activities. This is where the theory becomes concrete. It is my hope
that you will take these activities seriously and work through them thoroughly and even repeatedly.

The UML modeling activities in Part 1 are meant for someone using UMLet. I chose this program
because it is a good diagraming tool to learn on. It enables you to create UML diagrams without adding a
lot of advanced features. UMLet is a free open source tool and can be downloaded from www.umlet.com.
But you don’t need a tool to complete these activities; a paper and pencil will work just fine.

The activities in Part 2 require Visual Studio 2010 with C# installed. You can use either the free
version, Visual Studio 2010 Express, or a trial version of Visual Studio 2010 Professional. These versions
are available at http://msdn.microsoft.com/en-us/vstudio/. I encourage you to install the help files and
make abundant use of them while you’re completing the activities.

The activities in Part 3 require Microsoft SQL Server 2008 R2. You can use either the free version SQL
Server 2008 R2 Express or a trial version of SQL Server 2008 R2 available at
http://msdn.microsoft.com/en-us/sqlserver/. When you install SQL Server, be sure you add yourself as
an administrator.

Installing the Sample Databases
The scripts to install the sample database used in this book are available at www.apress.com. In order to
install the scripts, follow these steps:

1. Open a command prompt window.

2. From the command prompt, use the cd command to navigate to the folder
containing the sample database scripts.

cd c:\SampleDatabases

3. Run SQLCmd.exe specifying instOSODB.sql as the input file.

4. To install the database on a default instance, use

SQLCmd.exe -E -i instOSODB.sql

5. To install the database on a named instance, use

SQLCmd.exe -E -S ComputerName\InstanceName -i instOSODB.sql

6. Repeat the procedure for the instpubs.sql and instnwnd.sql files.

APPENDIX C ■ INSTALLING THE REQUIRED SOFTWARE

338

Verifying the Database Installs
To verify the database installs:

1. Start Visual Studio. If you don’t see the Database Explorer window shown in
Figure C-1, open it by choosing Server Explore on the View menu.

Figure C-1. The Database Explorer window

2. In the Database Explorer window, right-click the Data Connections node and
select Add Connection. In the Add Connections dialog box shown in Figure
C-2, fill in the name of your server, select the Northwind database, and click
OK.

APPENDIX C ■ INSTALLING THE REQUIRED SOFTWARE

339

Figure C-2. The Add Connections dialog box

3. Expand the Northwind database node and the Tables node in the Database
Explorer window, as shown in Figure C-3.

APPENDIX C ■ INSTALLING THE REQUIRED SOFTWARE

340

Figure C-3. Expanding the Tables node

4. Right-click the Suppliers table node and select Show Table Data. The
Suppliers table data should display as shown in Figure C-4.

APPENDIX C ■ INSTALLING THE REQUIRED SOFTWARE

341

Figure C-4. Viewing the table data

5. Repeat these steps to test the pubs and the OfficeSupply databases. After
testing, exit Visual Studio.

343

Index

■A
abstract classes, 117, 123
abstract keyword, 117, 122, 123
abstraction, 3
access modifiers, 117, 118

defining method signatures, 138
activity diagrams, 8, 42–48

activity ownership, 44
creating, 44–48
decision point, 43
generic activity diagram, 42
guard condition, 43
GUI activity diagrams, 49–50
Login activity diagram, 70, 71
Login use case, 67
parallel processing, 43
task analysis, 49
View products activity diagram, 71, 72

activity ownership, 44
actors, UML, 10

developing use case, 57
identifying actor classes, 63

Add Connections dialog box, 338, 339
Add method, ArrayList, 169
Add New Item window

creating WCF Data Services, 281
creating WCF web services, 274

Add Service Reference dialog
WCF Data Services, 280, 283
WCF web services, 270, 276

addButton_Click event
OSO application UI, 309

AddEmployee method, 104
overloading methods, 108

ADO.NET, 80, 181
Command object, 184
Connection object, 183
data providers, 182–183

DataAdapter object, 187–188
DataReader object, 186, 191–192
DataSet object, 193, 195, 196, 197
DataTable object, 193, 194
Entity Framework, 80, 204–206, 314
interoperability, 182
namespaces, 314
scalability, 182
stored procedures, 185

ADO.NET Entity Data Model, 205
WCF Data Services, 279, 281

aggregation, 5
modeling object relationships, 21

All Windows Forms node
Toolbox window, VS IDE, 92

And operator (&&), C#, 327
application design

distributed applications, 288
office-supply ordering, 287–288

application prototyping
GUI design, 52

application services, .NET, 81
Application tab

Project Properties window, VS IDE, 87, 88
ApplicationException class, 149
applications

Windows applications, 81
args array, Main method, 170
arithmetic operators, C#, 325
Array class, 164, 166, 169, 170

Clear method, 167, 172
properties and methods, 166
Reverse method, 167

array data type, C#, 320
ArrayList class, 164, 169, 170, 173–175

Add method, 169
casting type, 170
Insert method, 169

 ■ INDEX

344

methods and properties, 169
arrays, 165–175

accessing elements of, 165
args array, Main method, 170
Array class, 164, 166, 169, 170
ArrayList class, 164, 169, 170
creating and populating, 170–172
declaring array type, 166
iterating through elements of, 167
multidimensional arrays, 165, 168, 173, 321
variable number of items in, 169

ASP.NET, 81
assemblies, 79, 82

building and executing, 94–95
component based development, 315
Global Assembly Cache (GAC), 79
manifests, 82
namespaces, 83
referencing, 82, 83

assignment operators, C#
shorthand assignment operators, 326

association classes
modeling object relationships, 21–22

associations
creating class diagrams, 24
identifying class associations, 65–66
modeling object relationships, 19–20

AsyncCallback delegate, 156, 157
asynchronous messaging, 155–157

AsyncCallback delegate, 156, 157
BackgroundWorker thread, 157
BeginInvoke method, 156, 157
calling methods, 160–161
delegates, 156
EndInvoke method, 156, 157
IAsyncCallback interface, 157
IAsynchResult interface, 156, 157, 160
sequence diagrams, 32

attributes
adding to classes, 63–65

attributes of classes see properties
auto hide feature, Toolbox window

turning on/off, 92, 93

■B
BackgroundWorker thread, 157
base class library, .NET, 80
base classes

access modifiers, 117

calling derived class method from, 123
calling method from derived class, 124, 128
creating, 118
hiding methods, 125
inheritance, 115, 116
overloading methods, 125
overriding base class method, 122–123, 126
polymorphism, 115
restricting use of class members, 122
restricting use of methods, 120

base qualifier
calling base class method from derived

class, 124, 128
Base Types folder, Class View, 88
BeginInvoke method

asynchronous messaging, 156, 157
behaviors

modeling class behaviors, 66–70
behaviors of classes see methods
binding see data binding
Binding attribute, Silverlight, 251
block-level scope, 323
Boolean data type, C#, 319
branching, messages

creating activity diagram, 47
sequence diagrams, 35–36

Breakpoint Condition dialog, VS IDE, 98
breakpoints

setting conditional breakpoints, 97–99
setting in code editor, 96

Breakpoints window, VS IDE, 97, 99
browsers, Silverlight, 243
build errors, VS IDE

locating and fixing, 99–100
Build Solution

Class View window, VS IDE, 90
building and executing assemblies,

95
locating and fixing build errors, 100

creating Employee class, 106
overloading class constructors, 111
overloading class methods, 113
testing class constructors, 111
testing Employee class, 107

business logic
modeling, 75

business logic layer, office-supply ordering
app., 295–300

classes for, 288
Employee class, 295

 ■ INDEX

345

logical architectural design, 288
Order class, 299
OrderItem class, 297
OSO class diagram, 289
ProductCatalog class, 297

button click event
building and executing assemblies, 94
event handler method, 221
overloading class methods, 113
testing class constructors, 111
testing Employee class, 107

byte data type, C#, 318

■C
C#

classes, 321
constants, 322
data type conversions, 324–325
data types, 317, 318–321
decision structures, 328
do-while statement, 330
enumerations, 322
exception handling, 333–336
for/for-each statements, 331
history of, 5–6
if statement, 328–330
literals, 321
loop structures, 330–331
methods, 331
operators, 325–328
switch statement, 329
using help system, 315
variables, 317
web site learning resources, 315
while statement, 330

callbacks
AsyncCallback delegate, 156, 157
IAsyncCallback interface, 157

Cancel button
IsCancel property, 229

Canvas control, 218
case statement, C#, 329
CASE tools, 14
CaseInsensitiveComparer class, 90
casting

explicit type conversion, 325
casting type

ArrayList class, 170
catch block see try-catch block

character data types, C#, 319
CheckBox control

adding to Silverlight page, 246
class associations, identifying, 65–66
class attributes

creating class diagrams, 26
class behaviors, modeling, 66–70
class constructor method see constructors
class definition file

adding and raising event messaging in, 142
class diagrams, 8, 18–19

adding methods, 41–42
aggregation, 21
association, 19–20
association classes, 21–22
creating, 22–26
creating sequence diagrams, 36
inheritance, 20
modeling object relationships, 19–22
preliminary diagram for OSO app., 63
Purchase Request class diagram, 70

class keyword, 102
class models

adding attributes to classes, 63–65
developing, 61–74
developing user interface model design,

70–74
identifying class associations, 65–66
identifying classes, 61–63
modeling class behaviors, 66–70

Class View window, VS IDE, 88–90
Base Types folder, 88
Build Solution, 90
Form node, 89

classes/objects, 3, 18, 101–102
abstract classes, 117, 123
aggregation, 21
association, 19–20
association classes, 21–22
asynchronous messaging, 155–157, 160–161
attributes, 101
base classes, 116

access modifiers, 117
C#, 321
collection classes, 163
constructors, 107
creating class methods, 103–107
creating class properties, 102–103
defining classes, 102–107
derived classes, 116

 ■ INDEX

346

event-driven programming, 139
exception classes, 147
final class, 117
identifying classes from SRS, 18
inheritance, 20
methods, 101
modeling object interaction, 29–52
modeling object relationships, 19–22
object communication through messaging,

137–139
overloading methods, 108–114 125
polymorphism, 130–132
properties, 101
sealed classes, 117
static methods, 151
static properties, 150–151
synchronous messaging, 155, 157–159

classes, list of
ApplicationException, 149
Array, 164
ArrayList, 164
CaseInsensitiveComparer , 90
CollectionBase, 164
CommandBuilder , 198
DataService , 279
DataServiceConfiguration , 279
DictionaryBase, 164
Exception , 334, 336
FileNotFoundException, 147
Hashtable, 164
MessageBox , 227
ObjectContext , 206
Queue, 164
SortedList, 164
SqlCommand , 182
SqlConnection , 182
SqlDataAdapter , 182
SqlDataReader , 182
SqlError , 183
SqlException , 183
SqlParameter , 182
SqlTransaction , 183
Stack, 164
SystemException , 335

Clear method, Array, 167, 172
CLI (Common Language Infrastructure), 78
click event

coding control events, 226
updating data using TwoWay binding,

Silverlight, 258
Click Event method

testing class constructors, 111, 112
client class

receiving events in, 144
client proxy

consuming WCF web services, 271
Close method

Connection class, 183
DataReader class, 186

CLR (Common Language Runtime), 80
exception classes, .NET, 335

CLS (Common Language Specification), 78
Code Editor window, 225
codebehind file

coding control events, 225
event handler, 221
OSO app. UI, 306, 310, 311

codebehind file, Silverlight
adding controls, 249
handling control events, 247, 250
updating data using TwoWay binding, 257

collaboration diagrams, 8
collection classes, .NET, 163
collection interfaces, .NET, 164
collection types, .NET, 163
CollectionBase class, 164
collections

arrays, 165–175
generic collections, 175–179
.NET Framework, 175
queues, 179
stacks, 179

Collections namespace
collection classes, 163
collection interfaces, 164

columns
DataColumn object, 194

Command object
CommandText property, 184
CommandType property, 185
ExecuteNonQuery method, 184
ExecuteReader method, 184, 186
ExecuteScalar method, 184, 190
executing SQL statements, 184
executing stored procedure using, 192–193
submitting CommandText to database, 184

CommandBuilder class, 198
commands

executing, 184
SqlCommand class, 182

CommandText property, 184
submitting to database, 184

 ■ INDEX

347

using stored procedures, 185
CommandType property

using stored procedures, 185
Common Language Infrastructure (CLI), 78
Common Language Runtime (CLR), 80, 335
Common Language Specification (CLS), 78
communication

object communication through messaging,
137–139

Compare method, 151
sorting generic collections, 176

comparison operators, C#, 326
decision structures, 328

components, 315
conceptual design, 287
conceptual schema definition language (CSDL),

205
Connection object, 183
connections

data providers, 182
establishing, 183, 189–190
SqlConnection class, 182

ConnectionString property
establishing connections, 183, 190
establishing relationships, 202
populating DataSet, 199

Console application
command line switches, 165
creating and populating arrays, 170
implementing generic collections, 177
ReadLine method, 172
WriteLine method, 167, 178

constants, C#, 322
Constraint object, 194
constraints

ForeignKeyConstraint object, 194
UniqueConstraint object, 194

constraints, messages
sequence diagrams, 35

constructors, 107
creating, 110
overloading, 110, 111
overloading methods, 109
testing, 111–112

container controls, Windows, 215
Context object

SaveChanges method, 207
control events

coding, 224–226
event handling methods, 141
handling, 220–222

Silverlight, 247, 250
control templates

creating/using, 237–239
controls

container controls, 215
display controls, 218
layout controls, 217–218

Silverlight, 245–246, 249
positioning, 216

fixed positioning, 217
relative positioning, 217

properties, 216
Windows, 215
XAML, 216

controls, Silverlight
layout controls, 245–246, 249

controls, WPF
adding event to, 220
binding using DataContext, 230, 231
Canvas control, 218
data binding in Windows-based GUIs, 230
display controls, 218
DockPanel control, 218
Grid control, 217
layout controls, 217–218
ListBox control, 218
StackPanel control, 218
TextBox control, 218
WrapPanel control, 218

conversions, data type, 324–325
Converter property, Silverlight, 260
.cs extension, 88
CSDL (conceptual schema definition language),

205
custom dialog, creating, 229

■D
DALEmployee class, 292
DALOrder class, 294
DALProductCatalog class, 293
DALUtility class, 291
data

WCF Data Services, 279–280
data access

ADO.NET, 181
data providers, 182–183
DataAdapter retrieving data, 187–188
DataReader retrieving data, 186, 191–192
DataSet object, 193

 ■ INDEX

348

editing data in, 197–198, 201–202
establishing relationships between

tables in, 196, 202–204
populating from SQL Server

database, 195, 199–201
DataTable object, 193, 194
Entity Framework, 204–206

querying entities with LINQ to,
206–207

updating entities with, 207
establishing connections, 183, 189–190
executing commands, 184
interoperability, 182
using stored procedures, 185

data access layer, office-supply ordering app.,
290–295

classes for, 288
DALEmployee class, 292
DALOrder class, 294
DALProductCatalog class, 293
DALUtility class, 291
logical architectural design, 288
OSO class diagram, 289

data adapters
SqlDataAdapter class, 182

data binding
binding controls using DataContext

property, 230–231
binding DataGrid to DataTable, 232–235
data templates, 237
OSO application UI, 302
Silverlight, 251–259

binding controls to collection, 254
updating data using TwoWay

binding, 257
Windows-based GUIs, 230

data classes
.NET Framework, 80

data contracts, 272–273
Data Control Language

DCL statements, 184
data conversion

Silverlight, 259, 262, 263
Data Definition Language

DDL statements, 184
data encapsulation, 103
Data Manipulation Language

DML statements, 184
data providers, 80, 182–183

SQL Server provider classes, 182
data readers

SqlDataReader class, 182
data storage, 181
data templates

creating/using, 237–241
data type conversions, 324–325

explicit conversion, 325
implicit conversion, 324
narrowing conversion, 325
widening conversion, 325

data types, 80
arrays, 165–175
collection types, .NET, 163
complex data types, .NET, 139

data types, C#, 317, 318–321
array data type, 320
Boolean data type, 319
byte data type, 318
character data types, 319
classes, 321
conversions, 324–325
date data type, 319
decimal data type, 319
double data type, 319
integer data type, 318
long data type, 318
nullable data types, 320
object data type, 319
short data type, 318
single data type, 319
strong typing, 317
structure data type, 320

data validation, Silverlight, 259, 260, 263
DataAdapter object, 187, 193

Fill method, 187, 195
populating DataSet, 195
retrieving data, 187–188
SelectCommand property, 187, 195
Update method, 197

Database Explorer window
verifying installation of sample database,

338, 339
database schema, OSO app., 290
databases

executing commands against, 184
installing sample database, 337–341
submitting CommandText to, 184

DataColumn object, 194, 196
DataContext property

binding controls using, 230–231

 ■ INDEX

349

data binding, Silverlight, 251
DataContract attribute, 272, 273

creating WCF web services, 275
DataGrid control

binding controls using DataContext
property, 230

binding to DataTable, 232–235
data binding, Silverlight, 253
displaying stored data with, 231
OSO application UI, 301, 304
updating, 236

DataGridView control, 200, 203
DataMember attribute, 272, 273

creating WCF web services, 275
DataMember property, 204
DataReader object

Close method, 186
Read method, 186
retrieving data, 186, 191–192

DataRelation object, 194, 196
DataRow object, 194
DataService class, 279
DataServiceConfiguration class, 279
DataSet object, 193, 194, 198–204

binding DataGrid to DataTable, 232
DataAdapter retrieving data to, 187
editing data in, 197–198, 201–202
establishing relationships between tables

in, 196, 202–204
GetChanges method, 201
GetData method, 197, 198, 199
populating from SQL Server database, 195,

199–201
UpdateData method, 197, 198

DataSource property, 204
DataTable object, 193, 194

binding DataGrid to, 232–235
DataTemplate class

creating, 240
ListBox using, 237, 238, 239

date data type, C#, 319
DatePicker control, 246, 282
debug mode

launching OSO application in, 312
Debug toolbar, VS IDE, 97
debugging, VS IDE, 95–100

locating and fixing build errors, 99–100
setting conditional breakpoints, 97–99
stepping through code, 95–97
testing classes, 120
testing Employee class, 107

decimal data type, C#, 319
decision point, activity diagrams, 43
decision structures, C#, 328
delegate class, 139
delegated method, 140
delegates

AsyncCallback delegate, 156
asynchronous messaging, 156
BeginInvoke method, 156
EndInvoke method, 156
event notification, 221

delegation, 139–140
creating delegated method, 140
events, 140–146

delegation object, 220
DeleteCommand property, DataAdapter

editing data in DataSet, 198
DepartmentManager class, 64, 65, 66
deployment, .NET Framework, 78
dequeue method, Queue class, 179
derived classes

calling base class method from, 124, 128
calling method from base class, 123
creating, 118
hiding base class methods, 125
inheritance, 116
overriding base class method, 122
polymorphism, 130–132
restricting use of class members, 122
restricting use of methods, 120

design
business logic tier, 288
conceptual design, 287
creating SRS, 56–57
data access tier, 288
developing class model, 61–74
developing OOP solution, 55–74
developing use cases, 57–58
diagramming use cases, 59–61
distributed application, 288
domain model design, 75
goals of software design, 7
involving users, 74
logical design, 287
office-supply ordering app., 287–288
OOP design pitfalls, 74–75
physical design, 287
presentation tier, 288
Visual Studio designer, 219

developing Windows applications, 215
dialog boxes

 ■ INDEX

350

creating and using, 226–227
creating custom dialog, 229
displaying critical information, 227
MessageBox class, 227
New Project dialog, 226, 227
windows compared, 226

DictionaryBase class, 164
DirectoryNotFoundException, 335
disconnected model, ADO.NET, 182
display controls

adding, Silverlight, 246, 249
WPF, 218

distributed application
designing, 288

DivideByZeroException
recovering from, 334

DockPanel control, 218
binding DataGrid to DataTable, 234
creating data template, 240, 241
creating memo viewer interface, 223

domain model design, 75
double data type, C#, 319
do-while statement, C#, 330

■E
EF see Entity Framework
elements, arrays

accessing, 165
iterating through, 167

else-if blocks, C#, 329
Employee class, 63, 64, 65, 66

AddEmployee method, 104
business logic layer, OSO, 295
constructor, 107
creating, 104–106
DALEmployee class, 292
Login method, 104, 289
OSO application design, 289
OSO class diagram, 289
testing, 107
testing class constructors, 111–112

encapsulation, 4
data encapsulation, 103

end point, WCF web services, 266, 271
EndInvoke method

asynchronous messaging, 156, 157
EndOfStreamException, 335
enqueue method, Queue class, 179
entities

binding ListBox control to, 239–240
querying with LINQ to EF, 206–207
updating with EF, 207

Entity Data Model, ADO.NET, 205
creating, 208–211
querying, 211–213
querying entities with LINQ to EF, 206

Entity Framework (EF), 204–206
ADO.NET, 80, 314
creating entity data model, 208–211
querying entities with LINQ to EF, 206–207
querying entity data model, 211–213
retrieving data with, 208–213
updating entities with, 207

Entity Model Designer
creating entity data model, 210, 211

enumerations, C#, 322
Error List window, VS IDE

locating and fixing build errors, 100
errors

SqlError class, 183
event handlers, 220

method handling multiple events, 145
parameters, 221
RoutedEventArgs parameter, 221
sender parameter, 221
Silverlight controls, 247, 250
Windows Forms implementing, 141
wiring up in Properties window, 221

event handling methods, 141
button click event, 221
control events, 141
naming convention, 221, 247

event wiring, 141, 146
event-driven applications, 220
event-driven programming, 139

delegation, 139–140
Silverlight, 247

events, 140–146, 220
adding, Silverlight, 247
coding control events, 224–226
delegation object, 220
event messages, 142
handling control events, 220–222
method handling multiple events, 145
receiving in client class, 144
responding to, 141, 220

Exception class
InnerException property, 334, 336
properties, 336

exception classes, 147, 335–336

 ■ INDEX

351

ApplicationException, 149
creating custom exception classes, 336
DirectoryNotFoundException, 335
EndOfStreamException, 335
FileLoadException, 335
FileNotFoundException, 147, 335
IOException, 335
PathTooLongException, 335
SqlException class, 183
ToString method, 336

exception handling
delegates, 220
finally block, 148
in .NET Framework, 147–150
nesting, 149
structured exception handlers

benefits of, 147
creating, 154

try-catch block, 147
exception handling, C#, 333–336

Throw statement, 334
exceptions

filtering, 154–155
throwing, 149

ExecuteNonQuery method
Command object, 184

ExecuteReader method
Command object, 184

ExecuteReader method
Command object, 186

ExecuteScalar method
Command object, 184, 190
SQLCommand class, 292

explicit type conversion, C#, 325
extends relationship, UML, 12

diagramming use case diagram for OSO, 60
extensibility, .NET Framework, 78

■F
feedback, 316
fields see instance variables
FileLoadException, 335
FileNotFoundException, 147, 335
Fill method, DataAdapter, 187, 195
filtering exceptions, 154–155
final class, 117
finally block

adding to try-catch block, 148
exception handling, C#, 333

fixed positioning
layout controls, 217

Silverlight, 245
for statement, C#, 331
foreach loop, arrays, 167
for-each statement, C#, 331
foreign keys

referential integrity, 196
ForeignKeyConstraint object, 194
form designer

building and executing assemblies, 94
Form node, Class View, 89
Form1 class file, Solution Explorer, 88

■G
GAC (Global Assembly Cache), 79
garbage collection, 79
generalization shape

creating class diagrams, 25
generic collections, 175–179

implementing, 177
sorting, 176, 178

get block
creating class properties, 102

GetChanges method, DataSet, 201
GetData method, DataSet, 197, 198, 199
GetProductInfo method, 293
GetSQLConnection method, 291
Global Assembly Cache (GAC), 79
graphical user interfaces see GUIs
Grid control

positioning, 217
Silverlight, 245

guard condition, activity diagrams, 43
GUI activity diagrams, 49–50
GUI design, 48–52

application prototyping, 52
developing UI model design, 70–74
interface flow diagrams, 51
interface prototyping, 50
Login screen prototype, 71
Order request screen prototype, 73, 74
View products screen prototype, 72, 73

GUIs (graphical user interfaces)
control events, 220–222
creating and using dialogs, 226–227
creating OSO application UI, 300–312
data binding in Windows-based GUIs, 230
GUI design, 48–52

 ■ INDEX

352

■H
handling exceptions see exception handling
Hashtable class, 164
Hejlsberg, Anders, 6
HelpLink property, Exception class, 336
hosting environment, WCF services, 266

■I
IAsyncCallback interface, 157
IAsynchResult interface, 156, 157, 160
ICollection interface, 164
IComparer interface, 164, 176, 178
IDEs

Visual Studio IDE, 83–100
IDictionary interface, 164
IDictionaryEnumerator interface, 164
IEnumerable interface, 164
IEnumerator interface, 164
if statement, C#, 328–330

else-if blocks, 329
IList interface, 164
implicit type conversion, C#, 324
includes relationship, UML, 12, 59
indexes, arrays, 165
industry standards

.NET Framework, 77
inheritance, 5, 115–122

abstract classes, 117
access modifiers, 117
base classes, 116, 117
derived classes, 116
identifying class associations, 65
interfaces, 130
modeling object relationships, 20
multiple inheritance, 130
polymorphism, 130, 132–134
sealed classes, 117

inherits relationship
identifying class associations, 65

InitializeService method
WCF Data Services, 279, 281

InnerException property, 334, 336
INotifyPropertyChanged interface, 254, 297
input parameters see parameters
Insert method, ArrayList, 169
InsertCommand property, DataAdapter

editing data in DataSet, 198
Installed Templates pane

New Project dialog, VS IDE, 86

instance variables
C#, 317
creating class properties, 102
overloading class constructors, 111
scope, 323–324

integer data type, C#, 318
interface flow diagrams, GUI design, 51
interface prototyping, GUI design, 50
interfaces, 129

collection interfaces, 164
IAsyncCallback, 157
IAsynchResult, 156, 157, 160
ICollection, 164
IComparer, 164, 176, 178
IDictionary, 164
IDictionaryEnumerator, 164
IEnumerable, 164
IEnumerator, 164
IList, 164
INotifyPropertyChanged, 254, 297
method signatures, 129
polymorphism, 131, 134–135

intermediate language
Common Language Specification (CLS), 78

intermediate language see MSIL, 83
interoperability

data access, 182
IOException class, 335
IsCancel property, Cancel button, 229
IsDefault property, Login button, 229
IService1.cs file

WCF web services, 267
iterative messages, sequence diagrams, 34–35

■J
JIT (just-in-time) compiler, 83

■K
keywords

see also qualifiers
abstract, 117, 122, 123
class, 102
new, 125
override, 122
private, 102
protected, 118
public, 102
ref, 138

 ■ INDEX

353

sealed, 117
virtual, 122
void, 104, 331

■L
Language Integrated Query (LINQ), 81
layout controls

Canvas control, 218
DockPanel control, 218
fixed positioning, 217, 245
Grid control, 217
relative positioning, 217
Silverlight, 245–246, 249
StackPanel control, 218
WPF, 217–218
WrapPanel control, 218

LINQ (Language Integrated Query), 81
querying entities with LINQ to EF, 206–207

ListBox control
binding to an entity, 239–240
consuming WCF service in Silverlight client,

278
display controls, WPF, 218
using DataTemplate, 237, 238, 239

literals, C#, 321
Load method, DataTable, 194
Loaded event attribute

coding control events, 224
consuming WCF Data Services, 283
consuming WCF service, 278

Locals window, VS IDE
setting conditional breakpoints, 98

logical design, 287
logical operators, C#, 327
Login activity diagram, 70, 71
Login button

IsDefault property, 229
Login dialog

OSO application, 305, 309, 312
Login method, 104

creating class methods, 103
DALEmployee class, 292
Employee class, 106, 107, 289

Login screen prototype, 71
Login use case

activity diagram for, 67
modeling class behaviors, 66, 67
sequence diagram for, 68

loginButton_Click event

OSO application UI, 309
LoginDialog.xaml file, 305
LoginDialog.xaml.cs file, 311
long data type, C#, 318
loop structures, C#, 330–331

■M
Main method

args array, 170
MainPage.xaml file

consuming WCF Data Services, 282
consuming WCF service, 277

MainWindow.xaml file
creating memo viewer interface, 222
OSO application UI, 302

MainWindow.xaml.cs file
OSO application UI, 306

managed code, .NET
compiling and executing, 83

manifests, .NET, 82
assemblies, 79

mapping specification language (MSL), 206
Master Detail view, 241
memo viewer interface, creating, 222–224
MemoEditor window, 224
memory management, .NET, 79
MemoViewer_Loaded event handler, 225
Menu control

creating memo viewer interface, 223
Message property, Exception class, 336
MessageBox class, 227

displaying MessageBox to user, 227–229
Show method, 228

messages, sequence diagrams
asynchronous messages, 32
creating sequence diagrams, 37
iterative messages, 34–35
message branching, 35–36
message constraints, 35
message types, 32–33
recursive messages, 33
synchronous messages, 32

messaging
asynchronous messaging, 155–157, 160–161
defining method signatures, 137
delegation, 139–140
event messages, 142
event-driven programming, 139
events, 140–146

 ■ INDEX

354

object communication through, 137–139
passing parameters, 138–139
receiving events in client class, 144
subscription-based messaging, 139
synchronous messaging, 155, 157–159

metadata, 79
.NET Framework, 83

method signatures, 108
creating delegated method, 140
defining method signatures, 137
interfaces, 129

methods, 101
asynchronous messaging, 156
C#, 331
calling asynchronously, 160–161
calling synchronously, 157–159
creating class methods, 103–107
creating delegated method, 140
creating sequence diagrams, 41–42
event handling methods, 141
hiding base class methods, 125
overloading, 108–114, 125
overriding base class method, 122–123, 126
polymorphism, 115
restricting use of, 120
static methods, 151

Microsoft intermediate language (MSIL), 83
mnuExit control

coding control events, 226
modal windows, 226
Mode property

data binding, Silverlight, 251
modeling

business logic, 75
class behaviors, 66–70
confusing with documenting, 74
developing class model, 61–74
developing complex systems, 74
domain model design, 75
iterative nature of, 75
methodologies, 75
object interaction, 29–52

activity diagrams, 42–48
scenarios, 29–30
sequence diagrams, 30–42

object relationships, 19–22
patterns and reusability, 75
user interface model design, 70–74

modifiers
abstract modifier, 117

defining method signatures, 138
private access modifier, 117
protected access modifier, 118
public access modifier, 117
sealed modifier, 117

module scope, 324
MSDN web site, 85, 315
MSIL (Microsoft intermediate language), 83
MSL (mapping specification language), 206
multidimensional arrays, 165, 168, 173

■N
namespace node, VS IDE, 88
namespaces, ADO.NET, 314
namespaces, .NET Framework

assemblies, 83
learning more about, 314
referencing, 82
System namespace, 82

narrowing type conversion, C#, 325
nesting exception handling, 149
.NET Framework, 6, 77–83

ADO.NET, 181
application services, 81
assemblies, 82

building and executing, 94–95
assemblies, referencing, 82
asynchronous messaging, 155
base class library, 80
classes, 321
collection classes, 163
collection interfaces, 164
collection types, 163
collections, 175
CommandBuilder class, 198
Common Language Runtime (CLR), 80
complex data types, 139
data binding in Windows-based GUIs, 230
data classes, 80
data providers, 182–183
data storage, 181
delegates, 221
deployment, 78
exception classes, 335–336
exception handling, 147–150
extensibility, 78
garbage collection, 79
goals of, 77–79
industry standards, 77

 ■ INDEX

355

managed code, compiling and executing, 83
manifests, 82
memory management, 79
metadata, 83
namespaces, 314

referencing, 82
PE (portable executable) file, 83
security, 79
Silverlight, 244
System.Data namespace classes, 194
unified programming models, 78
user groups, 315
using help system, 315
web applications, 81
web services, 265
Windows applications, 81

.NET Windows Presentation Foundation see
WPF

new keyword
hiding base class methods, 125

new operator, array type, 321
New Project dialog box, 226, 227

creating VS project, 86
Northwind database

verifying installation of sample database,
338, 339

Not operator (!), C#, 327
NotifyOnExceptions property, Silverlight, 259,

261
noun phrases in use cases, 18, 23, 36, 45, 61, 62
nullable data types, C#, 320

■O
Object Browser window, VS IDE, 91
object data type, C#, 319
object interaction

activity diagrams, 42–48
modeling, 29–52
scenarios, 29–30
sequence diagrams, 30–42

ObjectContext class
querying entities with LINQ to EF, 206

Object/Relational Mapping (ORM) framework,
80

object-oriented programming see OOP
objects see classes/objects
OfficeSupply database

verifying installation of sample database,
341

office-supply ordering application see OSO
OLEDB namespace

data providers, 182
OneWay binding, 230

Silverlight, 251
OOP (object-oriented programming)

abstraction, 3
aggregation, 5
C#, 5–6
characteristics of, 3–5
constructors, 107
data encapsulation, 103
delegation, 139–140
design pitfalls, 74–75
developing OOP solution, 55–74
encapsulation, 4
events, 140–146
history of, 1–2
inheritance, 5, 115–122
modeling object interaction, 29–52
modeling object relationships, 19–22
object communication through messaging,

137–139
objects, 3
overloading methods, 108
polymorphism, 4, 130–132
reasons to use, 3
Unified Modeling Language, 8

OOP design solution, 55–74
creating SRS, 56–57
developing class model, 61–74
developing use cases, 57–58
diagramming use cases, 59–61

Open Data (OData) protocol, 279
Open method, Connection class, 183
OperationContract attribute

WCF web services, 268
operators, C#, 325–328

arithmetic operators, 325
comparison operators, 326
logical operators, 327
shorthand assignment operators, 326
ternary operator, 328

Options dialog box
customizing VS IDE, 85

Or operator (|||), C#, 327
Order class, 64, 65, 66, 69

business logic layer, OSO, 299
DALOrder class, 294
PlaceOrder method, 294

Order Item dialog, 304, 309, 312

 ■ INDEX

356

Order request screen prototype, 73, 74
OrderItem class, 64, 66, 69, 297
OrderItemDialog.xaml file, 304
OrderItemDialog.xaml.cs file, 310
ORM (Object/Relational Mapping) framework,

80
Entity Framework, 204–206

OSO (office-supply ordering) application
adding attributes to classes, 63–65
application design, 287–288
business logic layer, 295–300
class diagram, 289
creating SRS, 56–57
creating UI, 300–312
data access layer, 290–295
database schema for, 290
developing class model, 61–74
developing use cases, 57–58
diagramming use cases, 59–61
identifying class associations, 65–66
identifying classes, 61–63
launching app. in debug mode, 312
modeling class behaviors, 66–70

OSO application UI, 300–312
addButton_Click event, 309
codebehind files, 306, 310, 311
developing UI model design, 70–74
Login dialog, 305, 309
loginButton_Click event, 309
LoginDialog.xaml file, 305
LoginDialog.xaml.cs file, 311
MainWindow.xaml file, 302
MainWindow.xaml.cs file, 306
Order Item dialog, 304, 309
OrderItemDialog.xaml file, 304
OrderItemDialog.xaml.cs file, 310
placeOrderButton_Click event, 310
removeButton_Click event, 310
Window_Loaded event, 308

OSO class diagram, 289
Output window, VS IDE

building and executing assemblies, 95
overloading

class constructors, 110, 111
class methods, 112–114
method signatures, 108
methods, 108–114, 125
polymorphism, 5

override keyword
calling derived class method from base

class, 123

hiding base class methods, 125
overriding base class method, 122–123, 126

■P
Page element

Silverlight controls, 245
parallel processing, activity diagrams, 43
parameters

defining method signatures, 138
editing data in DataSet, 197
overloading methods, 125
passing parameters, 138–139
SqlParameter class, 182
using stored procedures, 185

PathTooLongException, 335
PE file, .NET Framework, 83
peek method, 179
physical design, 287
PlaceOrder method, 294
placeOrderButton_Click event, 310
polymorphism, 4, 115, 130–132

implementing using inheritance, 132–134
implementing using interfaces, 134–135
overloading, 5

pop method, Stack class, 179
presentation tier

logical architectural design, 288
primary keys

referential integrity, 196
private keyword

access modifiers, 117
creating class constructors, 110
creating class properties, 102
creating Employee class, 105
scope of code, 103

procedural languages, 2
procedure scope, 323
Product class, 64, 66
ProductCatalog class, 62, 62, 65, 66, 67, 293, 297
Program class file, Solution Explorer, 96, 100
programming

managed languages, 5
OOP, 3
procedural languages, 2
structured programming, 2

Project node, Solution Explorer, 87
Project Properties window, VS IDE, 87

Application tab, 87, 88
projects, VS IDE

 ■ INDEX

357

creating Employee class, 105
creating new project, 86–87

properties, 101
controls, 216
creating class properties, 102–103
private properties, 102
public properties, 102
read-only properties, 102
restrict access to properties, 102
static properties, 150–151

Properties node, Solution Explorer, 87
Properties window

VS IDE, 93–94
wiring up event handler, 220, 221

property block
creating class properties, 102

PropertyChanged event
binding control to collection, 254

protected access modifier, 118
restricting use of methods, 120
testing methods, 121

protected keyword, 118
prototyping

application, GUI design, 52
Login screen, 71
Order request screen, 73, 74
View products screen, 72, 73

public keyword
access modifiers, 117
creating class properties, 102
creating Employee class, 105
scope of code, 103

Pubs database
verifying installation of, 341

Purchase Request class diagram, 70
Purchase Request use case

sequence diagram for, 69
push method, Stack class, 179

■Q
qualifiers

see also keywords
base qualifier, 124, 128
default qualifier, 124
this qualifier, 124

Queue class, 164
methods, 179

queues, 179

■R
Read method, DataReader, 186
ReadLine method, Console, 172
read-only properties

creating class properties, 102
recursive messages, sequence diagrams, 33
ref keyword

passing parameters by reference, 138
reference types, 80
References node, Solution Explorer, 88
referential integrity, 196
relational data

DataSet object, 193
DataTable object, 193

relationships
aggregation, 21
association, 19–20
association classes, 21–22
DataRelation object, 194
establishing in DataSet, 196, 202–204
inheritance, 20
modeling object relationships, 19–22

relative positioning
layout controls, 217

removeButton_Click event
OSO application UI, 310

return type
defining method signatures, 138

Reverse method, arrays, 167
RichTextBox control

creating memo viewer interface, 224
RoutedEventArgs parameter

event handlers, 221
rows

DataRow object, 194

■S
sample database

installing, 337–341
verifying installation of, 338–341

SaveChanges method, Context
updating entities with EF, 207

scalability
ADO.NET, 182
using stored procedures, 185

scenarios, 29–30
creating sequence diagrams, 36

scope, variables, 323–324

 ■ INDEX

358

block-level scope, 323
module scope, 324
private keyword, 103
procedure scope, 323
public keyword, 103

sealed classes, 117
sealed keyword, 117

overriding base class method, 123
sealed modifier, 117
security

encapsulation, 4
.NET Framework, 79
using stored procedures, 185

SecurityLevel property
testing Employee class, 107

SelectCommand property, DataAdapter, 187
editing data in DataSet, 198
populating DataSet, 195

SelectionChanged event handler
adding controls, Silverlight, 249

sender parameter, event handlers, 221
sequence diagrams, 8, 30–42

adding methods to class diagrams, 41–42
creating, 36–42
iterative messages, 34–35
Login use case, 68
message branching, 35–36
message constraints, 35
message types, 32–33
Purchase Request use case, 69
recursive messages, 33
View Supply Catalog use case, 68

service contract
WCF web services, 268

service, WCF services, 266
Service1.svc.cs file, 267
ServiceContract attribute

WCF web services, 268
services, WCF, 265–285

Add Service Reference window, 270
consuming, 270–272

in Silverlight client, 276–279
creating, 266–270, 273–276
WCF Data Services, 279–280

set block
creating class properties, 102

short data type, C#, 318
shorthand assignment operators, C#, 326
Show method, MessageBox, 228
signatures

method signatures, 108
defining, 137

Silverlight, 81, 243–263
data binding, 251–259
data conversion, 259, 262, 263
data validation, 259, 260, 263
learning more about, 315

Silverlight application
binding controls to collection, 254
consuming WCF service, 276–279
creating, 244, 248
creating WCF Data Services, 280
creating WCF web services, 274

Silverlight controls
adding events, 247
binding to collections, 254
display controls, adding, 246, 249
Grid control, 245
handling control events, 247, 250
layout controls, 245–246, 249
Page element, 245

Silverlight page
adding DatePicker and CheckBox to, 246

single data type, C#, 319
software design, goals of, 7
software requirement specification see SRS
Solution Explorer, VS IDE, 87–88

building and executing assemblies, 94
creating base and derived classes, 118
Form1 class file, 88
Program class file, 96, 100
Project node, 87
Project Properties window, 87
Properties node, 87
References node, 88
Toolbox window, 91–93

SortedList class, 164
sorting

generic collections, 176, 178
Source property, Exception class, 336
SQL Server data provider classes, 182
SQL Server database

free versions, 337
populating DataSet from, 195, 199–201
populating DataTable from, 194
retrieving data from, 189–193

SQL statements
executing commands, 184

SQLClient namespace
data providers, 182

 ■ INDEX

359

SQLCmd.exe
installing sample database, 337

SqlCommand class, 182
ExecuteScalar method, 292

SqlConnection class, 182, 183, 190
SqlDataAdapter class, 182

editing data in DataSet, 198
SqlDataReader class, 182

creating WCF web services, 275
DataReader retrieving data, 186

SqlError class, 183
SqlException class, 183
SqlParameter class, 182, 185
SqlTransaction class, 183
SRS (software requirement specification), 8,

9–10
creating, 56–57
creating use case diagram, 13–14
identify classes from, 18
use cases, 10

SSDL (store schema definition language)
Entity Framework, 205

Stack class, 164
methods, 179

StackPanel control, 218
adding, Silverlight, 246, 249
binding DataGrid to DataTable, 234

stacks, 179
StackTrace property, Exception class, 336
Start Page, VS IDE, 85
static methods, 151

creating, 152–154
static properties, 150–151

static methods, 151
StatusBar control

creating memo viewer interface, 223
stepping through code, VS IDE, 95–97
store schema definition language (SSDL)

Entity Framework, 205
stored procedures

executing using Command object, 192–193
retrieving data set, 188
using, 185

StringFormat property, Silverlight, 260
strong typing, C#, 317
structure data type, C#, 320
structured exception handlers

benefits of, 147
creating, 154

structured programming, 2
Style property, buttons

creating/using control and data templates,
237

subscription-based messaging, 139
Suppliers table

verifying installation of sample database,
340

switch statement, C#, 329
synchronous messaging, 155, 157–159

sequence diagrams, 32
System namespace, 82
System.Collections namespace

collection classes, 163
collection interfaces, 164

System.Data namespace
ADO.NET, 182
classes, 194
data providers, 182

System.Data.SQLClient namespace
classes, 182

SystemException class
exception classes, .NET, 335

■T
tables

DataTable object, 193
establishing relationships in DataSet, 196,

202–204
verifying installation of sample database,

340
TargetNullValue property, Silverlight, 260
task analysis, activity diagrams, 49
templates

New Project dialog, VS IDE, 86
ternary operator, C#, 328
TextBox control

display controls, WPF, 218
using in Grid, 217

this qualifier
calling derived class method from base

class, 124
threads

BackgroundWorker thread, 157
Throw statement

exception handling, C#, 334
throwing exceptions, 149
Toolbox window, VS IDE, 91–93

All Windows Forms node, 92
turning auto hide feature on/off, 92, 93

ToString method

 ■ INDEX

360

exception classes, 336
transactions

SqlTransaction class, 183
try-catch block, 147

adding finally block, 148
exception handling, C#, 333

TwoWay binding, 230
data binding, Silverlight, 251

updating data using, 257
types see data types
typing

collections, .NET Framework, 175

■U
UI (user interface)

creating OSO app. UI, 300–312
UML (Unified Modeling Language), 8

activity diagrams, 8, 42–48
actors, 10
CASE tools, 14
class diagrams, 8, 18–19, 22–26
collaboration diagrams, 8
creating activity diagram, 44–48
extends relationship, 12
includes relationship, 12
modeling object interaction, 29–52
scenarios, 29–30
sequence diagrams, 8, 30–42
SRS, 8, 9–10
UMLet, 337
use cases, 8, 10–18

UMLet, 337
adding methods to class diagrams, 41–42
creating activity diagram, 45–48
creating class diagrams, 23–26
creating sequence diagrams, 37–41
creating use case diagram, 14–18

OSO application, 59–61
Unified Modeling Language see UML
unified programming models, .NET, 78
UniqueConstraint object, 194
Update method

editing data in DataSet, 197
overloading class methods, 112, 113

UpdateCommand property
editing data in DataSet, 198

UpdateData method
editing data in DataSet, 197, 198, 201

use cases, 8, 10–12

activity diagram for, 67
CASE tools, 14
creating use case diagram, 12–18
developing, 57–58
diagramming, 59–61
scenarios, 29–30
sequence diagram for, 68

user groups, 315
user interface layer, classes for, 288
user interfaces see GUIs
user interfaces see WPF user interfaces
UserControl_Loaded event handler, 278, 284
users

involving users in design, 74
using statement, 83

■V
ValidatesOnExceptions property, Silverlight,

259, 261
value types, 80
variables see instance variables
verb phrases in use cases, 19, 37, 45
View products activity diagram, 71, 72
View products screen prototype, 72, 73
View Supply Catalog use case

sequence diagram for, 68
views

Class View window, VS IDE, 88–90
virtual keyword

overriding base class method, 122
Visual Designer

creating memo viewer interface, 224
Visual Studio designer, 219

creating Silverlight application, 244, 248
Visual Studio IDE, 83–100

Add Service Reference window, 270
adding event to WPF control, 220
binding control to collection, Silverlight,

254
Breakpoint Condition dialog, 98
Breakpoints window, 97, 99
Class View window, 88–90
consuming WCF web services, 271
creating base and derived classes, 118
creating Employee class, 105–106
creating memo viewer interface, 222
creating new project, 86–87
creating OSO application UI, 300
creating WCF web services, 266

 ■ INDEX

361

customizing, 84–85
data access layer, OSO, 290
Debug toolbar, 97
debugging, 95–100
Error List window, 100
free versions, 337
launching, 84
locating and fixing build errors, 99–100
namespace node, 88
New Project dialog, 86, 226
Object Browser window, 91
Options dialog, 85
Project Properties window, 87
Properties window, 93–94
setting breakpoint in code editor, 96
setting conditional breakpoints, 97–99
Silverlight designer, 244
Solution Explorer, 87–88
stepping through code, 95–97
Toolbox window, 91–93
verifying installation of sample database,

338–341
Watch window, 99
WCF Data Services, 279

void keyword
creating class methods, 104
methods, C#, 331

VS IDE see Visual Studio IDE

■W
Watch window, VS IDE, 99
WCF (Windows Communication Foundation),

82
WCF Data Services, 279–280

consuming, 282–285
creating, 280–282

WCF web services, 265–285
consuming, 270–272

in Silverlight client, 276–279
creating, 266–270, 273–276
data contracts, 272–273
end point, 266
hosting environment, 266
service, 266
WCF Data Services, 279–280

web applications, 243
.NET Framework, 81
Silverlight, 243–263

web browsers

Silverlight, 243
web services see WCF web services
while statement, C#, 330
widening type conversion, C#, 325
Window control

binding controls using DataContext
property, 230

window layout
binding DataGrid to DataTable, 234

Window_Loaded event
creating DataTemplate, 240
OSO application UI, 308

Windows, 215
container controls, 215
controls, 215
dialogs compared, 226
display controls, 218
layout controls, 217–218
modal windows, 226
Visual Studio designer, 219

Windows applications
developing, 215
.NET Framework, 81

Windows Communication Foundation see WCF
Windows Forms

implementing event handling, 141
WPF (Windows Presentation Foundation), 81,

215
creating memo viewer interface, 222
creating/using control and data templates,

237–241
learning more about, 315
Silverlight, 244

WPF user interfaces
control events, 220–222
creating and using dialogs, 226–227
creating custom dialog, 229
creating memo viewer interface, 222–224
creating OSO application UI, 300–312
display controls, 218
layout controls, 217–218
Visual Studio designer, 219
XAML, 216

WrapPanel control, 218
WriteLine method, Console, 167, 178
WSDL file

creating WCF web services, 268, 270

 ■ INDEX

362

■X
XAML, 216

binding control to collection, 256
binding controls using DataContext

property, 230
control syntax, 216
creating memo viewer interface, 224
creating/using control and data templates,

237
Silverlight, 244

data binding in, 251
updating DataGrid, 236
window created with, 217

XAML code

OSO application UI, 302
XAML code editor

coding control events, 225
handling control events, 247, 250

XAML Editor window
binding DataGrid to DataTable, 234
coding control events, 224, 225
wiring up event handler, 220

XAML Editor Window
creating memo viewer interface, 222

XAP file
building Silverlight application, 244

XSD file
using data contracts, 273

	Title Page
	Copyright Page
	Contents at a Glance
	Table of Contents
	About the Author
	About the Technical Reviewer
	Acknowledgments
	Introduction
	Target Audience
	Organization of the Book
	Activities and Software Requirements

	CHAPTER 1 Overview of Object-Oriented Programming
	The History of OOP
	Why Use OOP?
	The Characteristics of OOP
	Objects
	Abstraction
	Encapsulation
	Polymorphism
	Inheritance
	Aggregation

	The History of C#
	Summary

	CHAPTER 2 Designing OOP Solutions: Identifying the Class Structure
	Goals of Software Design
	Understanding the Unified Modeling Language
	Developing a SRS
	Introducing Use Cases
	ACTIVITY 2-1. CREATING A USE CASE DIAGRAM
	Understanding Class Diagrams
	Modeling Object Relationships
	Association
	Inheritance
	Aggregation
	Association Classes

	ACTIVITY 2-2. CREATING A CLASS DIAGRAM
	Summary
	ACTIVITY ANSWERS

	CHAPTER 3 Designing OOP Solutions: Modeling the Object Interaction
	Understanding Scenarios
	Introducing Sequence Diagrams
	Message Types
	Recursive Messages
	Message Iteration
	Message Constraints
	Message Branching
	ACTIVITY 3-1. CREATING A SEQUENCE DIAGRAM
	Understanding Activity Diagrams
	Decision Points and Guard Conditions
	Parallel Processing
	Activity Ownership

	ACTIVITY 3-2. CREATING AN ACTIVITY DIAGRAM
	Exploring GUI Design
	GUI Activity Diagrams
	Interface Prototyping
	Interface Flow Diagrams
	Application Prototyping

	Summary
	ACTIVITY ANSWERS

	CHAPTER 4 Designing OOP Solutions: A Case Study
	Developing an OOP Solution
	Creating the System Requirement Specification
	Developing the Use Cases
	Diagramming the Use Cases
	Developing the Class Model
	Identifying the Classes
	Adding Attributes to the Classes
	Identifying Class Associations
	Modeling the Class Behaviors
	Developing the User Interface Model Design

	Avoiding Some Common OOP Design Pitfalls

	Summary

	CHAPTER 5 Introducing the .NET Framework and Visual Studio
	Introducing the .NET Framework
	Goals of the .NET Framework
	Support of Industry Standards
	Extensibility
	Unified Programming Models
	Easier Deployment
	Improved Memory Management
	Improved Security Model

	Components of the .NET Framework
	Common Language Runtime
	Framework Base Class Library
	Data Classes
	Windows Applications
	Web Applications
	Application Services

	Working with the .NET Framework
	Understanding Assemblies and Manifests
	Referencing Assemblies and Namespaces
	Compiling and Executing Managed Code

	Using the Visual Studio Integrated Development Environment
	ACTIVITY 5-1. TOURING VISUAL STUDIO
	Customizing the IDE
	Creating a New Project
	Investigating the Solution Explorer and Class View
	Exploring the Toolbox and Properties Window
	Building and Executing the Assembly

	ACTIVITY 5-2. USING THE DEBUGGING FEATURES OF VS
	Stepping Through Code
	Setting Conditional Breakpoints
	Locating and Fixing Build Errors

	Summary

	CHAPTER 6 Creating Classes
	Introducing Objects and Classes
	Defining Classes
	Creating Class Properties
	Creating Class Methods

	ACTIVITY 6-1. CREATING THE EMPLOYEE CLASS
	Defining the Employee Class
	Testing the Employee Class

	Using Constructors
	Overloading Methods
	ACTIVITY 6-2. CREATING CONSTRUCTORS AND OVERLOADING METHODS
	Creating and Overloading Class Constructors
	Testing the Employee Class Constructors
	Overloading a Class Method
	Testing the Overloaded Update Method

	Summary

	CHAPTER 7 Creating Class Hierarchies
	Understanding Inheritance
	Creating Base and Derived Classes
	Creating a Sealed Class
	Creating an Abstract Class
	Using Access Modifiers in Base Classes
	ACTIVITY 7-1. IMPLEMENTING INHERITANCE USING BASE AND DERIVED CLASSES

	Overriding the Methods of a Base Class
	Calling a Derived Class Method from a Base Class
	Calling a Base Class Method from a Derived Class

	Overloading Methods of a Base Class
	Hiding Base Class Methods
	ACTIVITY 7-2. OVERRIDING BASE CLASS METHODS

	Implementing Interfaces
	Understanding Polymorphism
	ACTIVITY 7-3. IMPLEMENTING POLYMORPHISM

	Summary

	CHAPTER 8 Implementing Object Collaboration
	Communicating Through Messaging
	Defining Method Signatures
	Passing Parameters
	Understanding Event-Driven Programming
	Understanding Delegation
	Implementing Events
	Responding To Events
	Windows Control Event Handling
	ACTIVITY 8-1. ISSUING AND RESPONDING TO EVENT MESSAGES

	Handling Exceptions in the .NET Framework
	Using the Try-Catch Block
	Adding a Finally Block
	Throwing Exceptions
	Nesting Exception Handling

	Static Properties and Methods
	ACTIVITY 8-2. IMPLEMENTING EXCEPTION HANDLING AND STATIC METHODS

	Using Asynchronous Messaging
	ACTIVITY 8-3. CALLING METHODS ASYNCHRONOUSLY

	Summary

	CHAPTER 9 Working with Collections
	Introducing the .NET Framework Collection Types
	Working with Arrays and Array Lists
	ACTIVITY 9-1. WORKING WITH ARRAYS AND ARRAYLISTS

	Using Generic Collections
	ACTIVITY 9-2. IMPLEMENTING AND EXTENDING GENERIC COLLECTIONS

	Programming with Stacks and Queues
	Summary

	CHAPTER 10 Implementing the Data Access Layer
	Introducing ADO.NET
	Working with Data Providers
	Establishing a Connection
	Executing a Command
	Using Stored Procedures
	Using the DataReader Object to Retrieve Data
	Using the DataAdapter to Retrieve Data
	ACTIVITY 10-1. RETRIEVING DATA FROM A SQL SERVER DATABASE

	Working with DataTables and DataSets
	Populating a DataTable from a SQL Server Database
	Populating a DataSet from a SQL Server Database
	Establishing Relationships between Tables in a DataSet
	Editing Data in the DataSet
	ACTIVITY 10-2. WORKING WITH DATASET OBJECTS

	Working with the Entity Framework
	Querying Entities with LINQ to EF
	Updating Entities with the Entity Framework
	ACTIVITY 10-3. RETRIEVING DATA WITH THE ENTITY FRAMEWORK

	Summary

	CHAPTER 11 Developing Windows Applications
	Windows Fundamentals
	Introducing XAML
	Using Layout Controls
	Adding Display Controls
	Using the Visual Studio Designer
	Handling Control Events
	ACTIVITY 11-1. WORKING WITH WINDOWS AND CONTROLS

	Creating and Using Dialog Boxes
	Presenting a MessageBox to the User
	Creating a Custom Dialog Box
	Data Binding in Windows-Based GUIs
	Binding Controls Using a DataContext
	ACTIVITY 10-2. WORKING WITH DATA BOUND CONTROLS

	Creating and Using Control and Data Templates
	ACTIVITY 10-3. WORKING WITH DATA TEMPLATES

	Summary

	CHAPTER 12 Developing Web Applications
	What Is Silverlight?
	Creating a Silverlight Application
	Using Layout Controls
	Adding Display Controls
	Handling Control Events
	ACTIVITY 12-1. WORKING WITH SILVERLIGHT CONTROLS

	Data Binding in Silverlight
	ACTIVITY 12-2. WORKING WITH DATA BOUND CONTROLS

	Validating and Converting Data
	ACTIVITY 12-3. VALIDATING AND CONVERTING DATA

	Summary

	CHAPTER 13 Developing and Consuming WCF Services
	What Are Services?
	Creating a WCF Web Service
	Consuming a WCF Web Service
	Using Data Contracts
	ACTIVITY 13-1. CREATING AND CONSUMING A WCF SERVICE

	WCF Data Services
	ACTIVITY 13-2. CREATING AND CONSUMING A WCF DATA SERVICE

	Summary

	CHAPTER 14 Developing the OSO Application
	Revisiting Application Design
	Building the OSO Application’s Data Access and Business Logic Layers
	Creating the OSO Application UI
	Summary

	CHAPTER 15 Wrapping Up
	Improve Your Object-Oriented Design Skills
	Investigate the .NET Framework Namespaces
	Become Familiar with ADO.NET and the Entity Framework
	Learn More About WPF and Silverlight
	Move Toward Component-Based Development
	Find Help
	Join a User Group
	Please Provide Feedback
	Thank You and Good Luck

	APPENDIX A Fundamental Programming Concepts
	Working with Variables and Data Types
	Understanding Elementary Data Types
	Non-Integral Data Types
	Character Data Types
	Boolean Data Type
	Date Data Type
	Object Data Type
	Nullable Types

	Introducing Composite Data Types
	Structures
	Arrays
	Classes

	Looking at Literals, Constants, and Enumerations
	Literals
	Constants
	Enumerations

	Exploring Variable Scope
	Block-Level Scope
	Procedure Scope
	Module Scope

	Understanding Data Type Conversion
	Implicit Conversion
	Explicit Conversion
	Widening and Narrowing Conversions

	Working with Operators
	Arithmetic Operators
	Comparison Operators
	Logical Operators
	Ternary Operator

	Introducing Decision Structures
	If Statements
	Switch Statements

	Using Loop Structures
	While Statement
	Do-While Statement
	For Statement
	For Each Statement

	Introducing Methods

	APPENDIX B Exception Handling in C#
	Managing Exceptions
	Using the .NET Framework Exception Classes

	APPENDIX C Installing the Required Software
	Installing the Sample Databases
	Verifying the Database Installs

	Index

<<

 /ASCII85EncodePages false

 /AllowTransparency false

 /AutoPositionEPSFiles true

 /AutoRotatePages /None

 /Binding /Left

 /CalGrayProfile (Gray Gamma 2.2)

 /CalRGBProfile (sRGB IEC61966-2.1)

 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)

 /sRGBProfile (sRGB IEC61966-2.1)

 /CannotEmbedFontPolicy /Error

 /CompatibilityLevel 1.4

 /CompressObjects /Off

 /CompressPages true

 /ConvertImagesToIndexed true

 /PassThroughJPEGImages true

 /CreateJobTicket false

 /DefaultRenderingIntent /Perceptual

 /DetectBlends true

 /DetectCurves 0.1000

 /ColorConversionStrategy /sRGB

 /DoThumbnails true

 /EmbedAllFonts true

 /EmbedOpenType false

 /ParseICCProfilesInComments true

 /EmbedJobOptions false

 /DSCReportingLevel 0

 /EmitDSCWarnings false

 /EndPage -1

 /ImageMemory 1048576

 /LockDistillerParams true

 /MaxSubsetPct 100

 /Optimize true

 /OPM 1

 /ParseDSCComments true

 /ParseDSCCommentsForDocInfo true

 /PreserveCopyPage true

 /PreserveDICMYKValues true

 /PreserveEPSInfo true

 /PreserveFlatness true

 /PreserveHalftoneInfo false

 /PreserveOPIComments false

 /PreserveOverprintSettings true

 /StartPage 1

 /SubsetFonts false

 /TransferFunctionInfo /Apply

 /UCRandBGInfo /Preserve

 /UsePrologue false

 /ColorSettingsFile ()

 /AlwaysEmbed [true

]

 /NeverEmbed [true

]

 /AntiAliasColorImages false

 /CropColorImages true

 /ColorImageMinResolution 150

 /ColorImageMinResolutionPolicy /Warning

 /DownsampleColorImages true

 /ColorImageDownsampleType /Bicubic

 /ColorImageResolution 150

 /ColorImageDepth -1

 /ColorImageMinDownsampleDepth 1

 /ColorImageDownsampleThreshold 1.50000

 /EncodeColorImages true

 /ColorImageFilter /DCTEncode

 /AutoFilterColorImages true

 /ColorImageAutoFilterStrategy /JPEG

 /ColorACSImageDict <<

 /QFactor 0.40

 /HSamples [1 1 1 1] /VSamples [1 1 1 1]

 >>

 /ColorImageDict <<

 /QFactor 0.76

 /HSamples [2 1 1 2] /VSamples [2 1 1 2]

 >>

 /JPEG2000ColorACSImageDict <<

 /TileWidth 256

 /TileHeight 256

 /Quality 15

 >>

 /JPEG2000ColorImageDict <<

 /TileWidth 256

 /TileHeight 256

 /Quality 15

 >>

 /AntiAliasGrayImages false

 /CropGrayImages true

 /GrayImageMinResolution 150

 /GrayImageMinResolutionPolicy /Warning

 /DownsampleGrayImages true

 /GrayImageDownsampleType /Bicubic

 /GrayImageResolution 150

 /GrayImageDepth -1

 /GrayImageMinDownsampleDepth 2

 /GrayImageDownsampleThreshold 1.50000

 /EncodeGrayImages true

 /GrayImageFilter /DCTEncode

 /AutoFilterGrayImages true

 /GrayImageAutoFilterStrategy /JPEG

 /GrayACSImageDict <<

 /QFactor 0.40

 /HSamples [1 1 1 1] /VSamples [1 1 1 1]

 >>

 /GrayImageDict <<

 /QFactor 0.76

 /HSamples [2 1 1 2] /VSamples [2 1 1 2]

 >>

 /JPEG2000GrayACSImageDict <<

 /TileWidth 256

 /TileHeight 256

 /Quality 15

 >>

 /JPEG2000GrayImageDict <<

 /TileWidth 256

 /TileHeight 256

 /Quality 15

 >>

 /AntiAliasMonoImages false

 /CropMonoImages true

 /MonoImageMinResolution 1200

 /MonoImageMinResolutionPolicy /Warning

 /DownsampleMonoImages true

 /MonoImageDownsampleType /Bicubic

 /MonoImageResolution 600

 /MonoImageDepth -1

 /MonoImageDownsampleThreshold 1.50000

 /EncodeMonoImages true

 /MonoImageFilter /CCITTFaxEncode

 /MonoImageDict <<

 /K -1

 >>

 /AllowPSXObjects false

 /CheckCompliance [

 /PDFA1B:2005

]

 /PDFX1aCheck false

 /PDFX3Check false

 /PDFXCompliantPDFOnly false

 /PDFXNoTrimBoxError true

 /PDFXTrimBoxToMediaBoxOffset [

 0.00000

 0.00000

 0.00000

 0.00000

]

 /PDFXSetBleedBoxToMediaBox true

 /PDFXBleedBoxToTrimBoxOffset [

 0.00000

 0.00000

 0.00000

 0.00000

]

 /PDFXOutputIntentProfile (sRGB IEC61966-2.1)

 /PDFXOutputConditionIdentifier ()

 /PDFXOutputCondition ()

 /PDFXRegistryName ()

 /PDFXTrapped /False

 /CreateJDFFile false

 /Description <<

 /ARA <FEFF0633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F006200650020005000440046002006450646062706330628062900200644063906310636002006480637062806270639062900200648062B06270626064200200627064406230639064506270644002E00200020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644062A064A0020062A0645002006250646063406270626064706270020062806270633062A062E062F062706450020004100630072006F00620061007400200648002000410064006F00620065002000520065006100640065007200200036002E00300020064806450627002006280639062F0647002E>

 /BGR <FEFF04180437043F043E043B043704320430043904420435002004420435043704380020043D0430044104420440043E0439043A0438002C00200437043000200434043000200441044A0437043404300432043004420435002000410064006F00620065002000500044004600200434043E043A0443043C0435043D04420438002C0020043F043E04340445043E0434044F044904380020043704300020043D04300434043504360434043D043E00200440043004370433043B0435043604340430043D0435002004380020043F04350447043004420430043D04350020043D04300020043104380437043D0435044100200434043E043A0443043C0435043D04420438002E00200421044A04370434043004340435043D043804420435002000500044004600200434043E043A0443043C0435043D044204380020043C043E0433043004420020043404300020044104350020043E0442043204300440044F0442002004410020004100630072006F00620061007400200438002000410064006F00620065002000520065006100640065007200200036002E0030002004380020043F043E002D043D043E043204380020043204350440044104380438002E>

 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200036002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>

 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200036002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>

 /CZE <FEFF0054006f0074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002000760068006f0064006e00fd006300680020006b0065002000730070006f006c00650068006c0069007600e9006d0075002000700072006f0068006c00ed017e0065006e00ed002000610020007400690073006b00750020006f006200630068006f0064006e00ed0063006800200064006f006b0075006d0065006e0074016f002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e0074007900200050004400460020006c007a00650020006f007400650076015900ed007400200076002000610070006c0069006b0061006300ed006300680020004100630072006f006200610074002000610020004100630072006f006200610074002000520065006100640065007200200036002e0030002000610020006e006f0076011b006a016100ed00630068002e>

 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200036002e00300020006f00670020006e0079006500720065002e>

 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200036002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>

 /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e400740074006500690064002c0020006500740020006c0075007500610020005000440046002d0064006f006b0075006d0065006e00740065002c0020006d0069007300200073006f00620069007600610064002000e4007200690064006f006b0075006d0065006e00740069006400650020007500730061006c006400750073007600e400e4007200730065006b0073002000760061006100740061006d006900730065006b00730020006a00610020007000720069006e00740069006d006900730065006b0073002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e0074006500200073006100610062002000610076006100640061002000760061006900640020004100630072006f0062006100740020006a0061002000410064006f00620065002000520065006100640065007200200036002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e>

 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200036002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>

 /GRE <FEFF03A703C103B703C303B903BC03BF03C003BF03B903AE03C303C403B5002003B103C503C403AD03C2002003C403B903C2002003C103C503B803BC03AF03C303B503B903C2002003B303B903B1002003BD03B1002003B403B703BC03B903BF03C503C103B303AE03C303B503C403B5002003AD03B303B303C103B103C603B1002000410064006F006200650020005000440046002003BA03B103C403AC03BB03BB03B703BB03B1002003B303B903B1002003B103BE03B903CC03C003B903C303C403B7002003C003C103BF03B203BF03BB03AE002003BA03B103B9002003B503BA03C403CD03C003C903C303B7002003B503C003B103B303B303B503BB03BC03B103C403B903BA03CE03BD002003B503B303B303C103AC03C603C903BD002E0020002003A403B1002003AD03B303B303C103B103C603B10020005000440046002003C003BF03C5002003B803B1002003B403B703BC03B903BF03C503C103B303B703B803BF03CD03BD002003B103BD03BF03AF03B303BF03C503BD002003BC03B50020004100630072006F006200610074002003BA03B103B9002000410064006F00620065002000520065006100640065007200200036002E0030002003BA03B103B9002003BD03B503CC03C403B503C103B503C2002003B503BA03B403CC03C303B503B903C2002E>

 /HEB <FEFF05D405E905EA05DE05E905D5002005D105E705D105D905E205D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005D405DE05EA05D005D905DE05D905DD002005DC05EA05E605D505D205D4002005D505DC05D405D305E405E105D4002005D005DE05D905E005D505EA002005E905DC002005DE05E105DE05DB05D905DD002005E205E105E705D905D905DD002E0020002005E005D905EA05DF002005DC05E405EA05D505D7002005E705D505D105E605D90020005000440046002005D1002D0020004100630072006F006200610074002005D505D1002D002000410064006F006200650020005200650061006400650072002005DE05D205E805E105D400200036002E0030002005D505DE05E205DC05D4002E>

 /HRV <FEFF004F0076006500200070006F0073007400610076006B00650020006B006F00720069007300740069007400650020006B0061006B006F0020006200690073007400650020007300740076006F00720069006C0069002000410064006F00620065002000500044004600200064006F006B0075006D0065006E007400650020006B006F006A00690020007300750020007000720069006B006C00610064006E00690020007A006100200070006F0075007A00640061006E00200070007200650067006C006500640020006900200069007300700069007300200070006F0073006C006F0076006E0069006800200064006F006B0075006D0065006E006100740061002E0020005300740076006F00720065006E0069002000500044004600200064006F006B0075006D0065006E007400690020006D006F006700750020007300650020006F00740076006F007200690074006900200075002000700072006F006700720061006D0069006D00610020004100630072006F00620061007400200069002000410064006F00620065002000520065006100640065007200200036002E0030002000690020006E006F00760069006A0069006D0020007600650072007A0069006A0061006D0061002E>

 /HUN <FEFF0045007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c002000fc007a006c00650074006900200064006f006b0075006d0065006e00740075006d006f006b0020006d00650067006200ed007a00680061007400f30020006d00650067006a0065006c0065006e00ed007400e9007300e900720065002000e900730020006e0079006f006d00740061007400e1007300e10072006100200061006c006b0061006c006d00610073002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740075006d006f006b006100740020006b00e90073007a00ed0074006800650074002e002000200041007a002000ed006700790020006c00e90074007200650068006f007a006f007400740020005000440046002d0064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200036002c0030002d0073002000e900730020006b00e9007301510062006200690020007600650072007a006900f3006900760061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>

 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 6.0 e versioni successive.)

 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200036002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>

 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200036002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>

 /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d0069002000730075006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c002000740069006e006b0061006d0075007300200076006500720073006c006f00200064006f006b0075006d0065006e00740061006d00730020006b006f006b0079006200690161006b006100690020007000650072017e0069016b007201170074006900200069007200200073007000610075007300640069006e00740069002e002000530075006b00750072007400750073002000500044004600200064006f006b0075006d0065006e007400750073002000670061006c0069006d006100200061007400690064006100720079007400690020007300750020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200036002e00300020006200650069002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>

 /LVI <FEFF004c006900650074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200069007a0076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006100730020007000690065006d01130072006f00740069002000640072006f01610061006900200075007a01460113006d0075006d006100200064006f006b0075006d0065006e0074007500200073006b00610074012b01610061006e0061006900200075006e0020006400720075006b010101610061006e00610069002e00200049007a0076006500690064006f0074006f0073002000500044004600200064006f006b0075006d0065006e00740075007300200076006100720020006100740076011300720074002c00200069007a006d0061006e0074006f006a006f0074002000700072006f006700720061006d006d00750020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200036002e003000200076006100690020006a00610075006e0101006b0075002000760065007200730069006a0075002e>

 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 6.0 en hoger.)

 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200036002e003000200065006c006c00650072002e>

 /POL <FEFF004b006f0072007a0079007300740061006a010500630020007a00200074007900630068002000750073007400610077006900650144002c0020006d006f017c006e0061002000740077006f0072007a0079010700200064006f006b0075006d0065006e00740079002000410064006f00620065002000500044004600200070006f007a00770061006c0061006a01050063006500200077002000730070006f007300f300620020006e00690065007a00610077006f0064006e0079002000770079015b0077006900650074006c00610107002000690020006400720075006b006f00770061010700200064006f006b0075006d0065006e007400790020006600690072006d006f00770065002e00200020005500740077006f0072007a006f006e006500200064006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d0061006300680020004100630072006f00620061007400200069002000410064006f0062006500200052006500610064006500720020007700200077006500720073006a006900200036002e00300020006f00720061007a002000770020006e006f00770073007a00790063006800200077006500720073006a00610063006800200074007900630068002000700072006f006700720061006d00f30077002e004b006f0072007a0079007300740061006a010500630020007a00200074007900630068002000750073007400610077006900650144002c0020006d006f017c006e0061002000740077006f0072007a0079010700200064006f006b0075006d0065006e00740079002000410064006f00620065002000500044004600200070006f007a00770061006c0061006a01050063006500200077002000730070006f007300f300620020006e00690065007a00610077006f0064006e0079002000770079015b0077006900650074006c00610107002000690020006400720075006b006f00770061010700200064006f006b0075006d0065006e007400790020006600690072006d006f00770065002e00200020005500740077006f0072007a006f006e006500200064006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d0061006300680020004100630072006f00620061007400200069002000410064006f0062006500200052006500610064006500720020007700200077006500720073006a006900200036002e00300020006f00720061007a002000770020006e006f00770073007a00790063006800200077006500720073006a00610063006800200074007900630068002000700072006f006700720061006d00f30077002e>

 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200036002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>

 /RUM <FEFF005500740069006C0069007A00610163006900200061006300650073007400650020007300650074010300720069002000700065006E007400720075002000610020006300720065006100200064006F00630075006D0065006E00740065002000410064006F006200650020005000440046002000610064006500630076006100740065002000700065006E007400720075002000760069007A00750061006C0069007A006100720065002000640065002000EE006E00630072006500640065007200650020015F0069002000700065006E00740072007500200069006D007000720069006D006100720065006100200064006F00630075006D0065006E00740065006C006F007200200064006500200061006600610063006500720069002E00200044006F00630075006D0065006E00740065006C00650020005000440046002000630072006500610074006500200070006F00740020006600690020006400650073006300680069007300650020006300750020004100630072006F0062006100740020015F0069002000410064006F00620065002000520065006100640065007200200036002E003000200073006100750020007600650072007300690075006E006900200075006C0074006500720069006F006100720065002E>

 /RUS <FEFF04180441043F043E043B044C043704430439044204350020044D044204380020043F043004400430043C043504420440044B0020043F0440043800200441043E043704340430043D0438043800200434043E043A0443043C0435043D0442043E0432002000410064006F006200650020005000440046002C0020043F043E04340445043E0434044F04490438044500200434043B044F0020043D0430043404350436043D043E0433043E0020043F0440043E0441043C043E044204400430002004380020043F043504470430044204380020043104380437043D04350441002D0434043E043A0443043C0435043D0442043E0432002E00200421043E043704340430043D043D044B043500200434043E043A0443043C0435043D0442044B00200050004400460020043C043E0436043D043E0020043E0442043A0440044B0442044C002C002004380441043F043E043B044C04370443044F0020004100630072006F00620061007400200438002000410064006F00620065002000520065006100640065007200200036002E00300020043B04380431043E00200438044500200431043E043B043504350020043F043E04370434043D043804350020043204350440044104380438002E>

 /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200073006c00fa017e006900610020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f007600200076006f00200066006f0072006d00e100740065002000410064006f006200650020005000440046002c0020006b0074006f007200e90020007300fa002000760068006f0064006e00e90020006e0061002000730070006f013e00610068006c0069007600e90020007a006f006200720061007a006f00760061006e006900650020006100200074006c0061010d0020006f006200630068006f0064006e00fd0063006800200064006f006b0075006d0065006e0074006f0076002e002000200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e0074007900200076006f00200066006f0072006d00e10074006500200050004400460020006a00650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d00650020004100630072006f0062006100740020006100200076002000700072006f006700720061006d0065002000410064006f006200650020005200650061006400650072002c0020007600650072007a0069006900200036002e003000200061006c00650062006f0020006e006f007601610065006a002e>

 /SLV <FEFF005400650020006E006100730074006100760069007400760065002000750070006F0072006100620069007400650020007A00610020007500730074007600610072006A0061006E006A006500200064006F006B0075006D0065006E0074006F0076002000410064006F006200650020005000440046002C0020007000720069006D00650072006E006900680020007A00610020007A0061006E00650073006C006A006900760020006F0067006C0065006400200069006E0020007400690073006B0061006E006A006500200070006F0073006C006F0076006E0069006800200064006F006B0075006D0065006E0074006F0076002E0020005500730074007600610072006A0065006E006500200064006F006B0075006D0065006E0074006500200050004400460020006A00650020006D006F0067006F010D00650020006F00640070007200650074006900200073002000700072006F006700720061006D006F006D00610020004100630072006F00620061007400200069006E002000410064006F00620065002000520065006100640065007200200036002E003000200074006500720020006E006F00760065006A01610069006D0069002E>

 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200036002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>

 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200036002e00300020006f00630068002000730065006e006100720065002e>

 /TUR <FEFF0130015f006c006500200069006c00670069006c0069002000620065006c00670065006c006500720069006e0020006700fc00760065006e0069006c0069007200200062006900e70069006d006400650020006700f6007200fc006e007400fc006c0065006e006d006500730069006e0065002000760065002000790061007a0064013100720131006c006d006100730131006e006100200075007900670075006e002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e0020004f006c0075015f0074007500720075006c0061006e002000500044004600200064006f007300790061006c0061007201310020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200036002e003000200076006500200073006f006e00720061006b00690020007300fc007200fc006d006c0065007200690079006c00650020006100e70131006c006100620069006c00690072002e>

 /UKR <FEFF04120438043A043E0440043804410442043E043204430439044204350020044604560020043F043004400430043C043504420440043800200434043B044F0020044104420432043E04400435043D043D044F00200434043E043A0443043C0435043D044204560432002000410064006F006200650020005000440046002C0020043F044004380437043D043004470435043D0438044500200434043B044F0020043D0430043404560439043D043E0433043E0020043F0435044004350433043B044F04340443002004560020043404400443043A0443002004340456043B043E04320438044500200434043E043A0443043C0435043D044204560432002E0020042104420432043E04400435043D04560020005000440046002D0434043E043A0443043C0435043D044204380020043C043E0436043D04300020043204560434043A04400438043204300442043800200437043000200434043E043F043E043C043E0433043E044E0020043F0440043E043304400430043C04380020004100630072006F00620061007400200456002000410064006F00620065002000520065006100640065007200200036002E00300020044204300020043F04560437043D04560448043804450020043204350440044104560439002E>

 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200036002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>

 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200058000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300031003100200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f0061006400650064002000610074002000680074007400700073003a002f002f0070006f007200740061006c002d0064006f0072006400720065006300680074002e0073007000720069006e006700650072002d00730062006d002e0063006f006d002f00500072006f00640075006300740069006f006e002f0046006c006f0077002f00740065006300680064006f0063002f00640065006600610075006c0074002e0061007300700078000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c00200061006e0064002000500069007400530074006f00700020005300650072007600650072002000200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e000d>

 >>

>> setdistillerparams

<<

 /HWResolution [2400 2400]

 /PageSize [595.276 841.890]

>> setpagedevice

