

Beginning Android Tablet
Games Programming

� � �

Jeremy Kerfs

Beginning Android Tablet Games Programming

Copyright © 2011 by Jeremy Kerfs

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting,
reproduction on microfilms or in any other physical way, and transmission or information storage and retrieval,
electronic adaptation, computer software, or by similar or dissimilar methodology now known or hereafter
developed. Exempted from this legal reservation are brief excerpts in connection with reviews or scholarly analysis or
material supplied specifically for the purpose of being entered and executed on a computer system, for exclusive use
by the purchaser of the work. Duplication of this publication or parts thereof is permitted only under the provisions of
the Copyright Law of the Publisher's location, in its current version, and permission for use must always be obtained
from Springer. Permissions for use may be obtained through RightsLink at the Copyright Clearance Center. Violations
are liable to prosecution under the respective Copyright Law.

ISBN-13 (pbk): 978-1-4302-3852-2

ISBN-13 (electronic): 978-1-4302-3853-9

Trademarked names, logos, and images may appear in this book. Rather than use a trademark symbol with every
occurrence of a trademarked name, logo, or image we use the names, logos, and images only in an editorial fashion
and to the benefit of the trademark owner, with no intention of infringement of the trademark.

The use in this publication of trade names, trademarks, service marks, and similar terms, even if they are not
identified as such, is not to be taken as an expression of opinion as to whether or not they are subject to proprietary
rights.

While the advice and information in this book are believed to be true and accurate at the date of publication, neither
the authors nor the editors nor the publisher can accept any legal responsibility for any errors or omissions that may
be made. The publisher makes no warranty, express or implied, with respect to the material contained herein.

President and Publisher: Paul Manning
Lead Editor: Steve Anglin and Michelle Lowman
Technical Reviewer: Jelani John
Editorial Board: Steve Anglin, Mark Beckner, Ewan Buckingham, Gary Cornell, Morgan Ertel, Jonathan Gennick,

Jonathan Hassell, Robert Hutchinson, Michelle Lowman, James Markham, Matthew Moodie, Jeff Olson,
Jeffrey Pepper, Douglas Pundick, Ben Renow-Clarke, Dominic Shakeshaft, Gwenan Spearing, Matt Wade,
Tom Welsh

Coordinating Editor: Anita Castro
Copy Editor: Tiffany Taylor
Compositor: Bytheway Publishing Services
Indexer: SPI Global
Artist: SPI Global
Cover Designer: Anna Ishchenko

Distributed to the book trade worldwide by Springer Science+Business Media New York, 233 Spring Street, 6th Floor,
New York, NY 10013. Phone 1-800-SPRINGER, fax (201) 348-4505, e-mail orders-ny@springer-sbm.com, or visit
www.springeronline.com.

For information on translations, please e-mail rights@apress.com, or visit www.apress.com.

Apress and friends of ED books may be purchased in bulk for academic, corporate, or promotional use. eBook
versions and licenses are also available for most titles. For more information, reference our Special Bulk Sales–eBook
Licensing web page at www.apress.com/bulk-sales.

Any source code or other supplementary materials referenced by the author in this text is available to readers at
www.apress.com. For detailed information about how to locate your book’s source code, go to www.apress.com/
source-code/.

iii

Contents at a Glance

� About the Author.. ix
� About the Technical Reviewer .. x
� Acknowledgments ... xi
� Chapter 1: Setting Up Android 3.0 Java Development..1

� Chapter 2: Creating Simple Games with Sprites and Movement27

� Chapter 3: Creating Gathering User Input...47

� Chapter 4: Adding Sound Effects, Music, and Video...69

� Chapter 5: One-Player Game with Obstacles ..87

� Chapter 6: A Ball and Paddle Game ..103

� Chapter 7: Building a Two-Player Game ...121

� Chapter 8: A One-Player Strategy Game Part I ...137

� Chapter 9: A One-Player Strategy Game Part II ..151

� Chapter 10: Publishing the Game ...167

� Appendix A: Testing Android Games on a Real Device179

� Index ...181

iv

Contents

� About the Author.. ix

� About the Technical Reviewer .. x

� Acknowledgments ... xi

� Chapter 1: Setting Up Android 3.0 Java Development..1

What Is Android?..1

The Beginnings of Android ... 1

Android 3.0 Features .. 2

What You Need to Create Android Games..3

What You Need to Know ... 3

What You Need for a Platform .. 4

Setting Up Your Android Tablet Programming Environment..5

Installing the Java JDK ... 5

Installing the Eclipse IDE .. 8

Installing the Android SDK.. 10

Adding Android Tools and a Virtual Device to Eclipse .. 15

Putting Your Tools to the Test..18

Creating an Android Project.. 19

Exploring the Android Project in Eclipse... 22

Creating a Virtual Android Device... 23

Running the App ... 24

Making Your First Changes to the App ... 25

� CONTENTS

v

Summary ...26

� Chapter 2: Creating Simple Games with Sprites and Movement27

Working with Images...27

Creating a Image Display Surface .. 28

Rendering an Image ... 32

Working with Sprites .. 34

Running a Game ... 40

Getting a Professional Look ...41

Implementing Timing and Complex Motion ...42

Detecting Collisions ...44

Summary ...45

� Chapter 3: Creating Gathering User Input...47

Understanding Tablet Input Options ..47

Understanding Tablet Input ...48

Responding to Touch ...50

Responding to Gestures...53

Using Input Queues..57

Responding to Sensor Data ...63

Using Sensor Data ...66

Summary ...68

� Chapter 4: Adding Sound Effects, Music, and Video...69

Getting Ready for Sounds ..69

Finding and Adding Sound Effects.. 70

Playing a Sound Effect.. 71

Managing Multiple Sound Effects... 71

Matching Sound Effects to Events.. 76

� CONTENTS

vi

Adding Music ...77

Adding Video..78

Managing Music ..78

Summary ...86

� Chapter 5: One-Player Game with Obstacles ..87

Planning a One-Player Game: AllTogether...87

Building the One-Player Game...88

Upgrading the Game Sprites... 89

Adding a Reward for Winning the Game... 92

Tracking the State of Game Sprites.. 93

Summary ...102

� Chapter 6: A Ball and Paddle Game ..103

Getting Started...103

Gathering Game Resources .. 103

Creating a New Project... 104

Preparing the Game Environment..106

Modifying SpriteObject.java.. 106

Modifying GameView.java .. 106

Adding Collision Detection and Event Handling ...109

Adding Touch, Sound, and Rewards..114

Adding Touch Control of the Paddle ... 114

Adding Sound ... 115

Instantiating the Blocks.. 116

Removing Dead Blocks... 118

Summary ...119

� CONTENTS

vii

� Chapter 7: Building a Two-Player Game ...121

Understanding Multiplayer Games...121

Multiplayer Games through a Server .. 122

Multiplayer Games with Peer-to-Peer .. 122

Choosing a Multiplayer Method.. 123

Building a Two-Player Peer-to-Peer Game..124

Adding Bluetooth Connections ... 124

Managing Bluetooth Connections... 128

Adapting the Game Code for Two Players .. 135

Testing the Game.. 136

Summary ...136

� Chapter 8: A One-Player Strategy Game Part I ...137

Introducing Harbor Defender ...138

Assembling Harbor Defender...138

Constructing the Pier.. 139

Adding the Ground and Castle .. 142

Creating the Boats .. 143

Adding Cannons.. 145

Adding Images.. 146

Debugging Harbor Defender ..147

Summary ...149

� Chapter 9: A One-Player Strategy Game Part II ..151

Enhancing the Game Sprites ...152

Creating the User Controls...153

Putting Everything on the Screen ..158

Deploying and Managing the Attack Boats..159

Firing the Cannons...160

� CONTENTS

viii

Managing Game Outcomes..163

Analyzing the Game...165

Summary ...166

� Chapter 10: Publishing the Game ...167

Polishing the Application ...167

Adding an Splash Screen ... 167

Responding to a Start Game Button Press ... 170

Packaging the Game..171

Deploying the Game...174

Opening a Google Developer Account .. 176

Uploading a Game to Google Market .. 177

Marketing Your Game ..177

Summary ...178

� Appendix A: Testing Android Games on a Real Device179

� Index ...181

ix

About the Author

� Jeremy Kerfs is a technical writer for various robotics and
consumer-technology magazines. He has taught basic computer
science classes for children, and he continues to work as a web
development consultant. His passion for entrepreneurship and
programming led him to recently create Laughing Studios with the
goal of developing mobile games and applications.

He keeps his sanity by playing the piano and running. When there is a
strong enough breeze, he will be windsurfing on the San Francisco
bay.

x

About the Technical Reviewer

� Jelani John is a freelance developer and animator from Brooklyn. He enjoys
making games and playing with new technologies. You can find him at
www.jelanijohn.com.

xi

Acknowledgments

Frank Pohlmann, Editorial Director at Apress, gave me the tremendous opportunity to write this book. I
am very grateful for your advice and coaching as we hashed out what the book would look like.

A very special thanks to Anita Castro, the coordinating editor, who pushed me through the
sometimes arduous task of completing the chapters, graphics, and code for this book. You gave me some
incredible advice and were very patient with me throughout the process.

Thank you to all of the editors and reviewers who worked on the project with me. Your
technical advice, wordsmithing, and organizational ideas made this book immeasurably better.

I have also had many great mentors and colleagues who prompted me to do what I thought was
impossible. Thank you to Dave Briccetti for introducing me to the art of teaching computer science. Paul
Spinrad was an amazing editor for Make Magazine who inspired me to take on this project after I read
his two stunning books. Paul gave me good pointers, was patient with me, and refused to get angry
despite my fickleness. I am very grateful to you.

C H A P T E R 1
�
������

1

Setting Up Android 3.0 Java
Development

This book teaches you to create your own games for Android 3.0 tablets. After reading and working
through its examples, you’ll have gained command over the sensors, touchscreen, network capabilities,
and processing power of the many new tablet computers. Does that sound daunting? It isn’t. Instead of
going through the drudgery of developing stodgy corporate apps that locate a store or present a coupon,
you’ll know how to make fun and intriguing games. If you’ve done some game development in the past,
you may be pleasantly surprised to learn how simple the Android system makes this process when
compared to traditional PC and console game development.

Although no book ever written can take you from newbie to game programming guru, the
foundation presented in this book will let you make any of your 2D game ideas into a reality. This book
makes the programming as simple as possible in order to concentrate on the more creative aspects of
game development.

What Is Android?
Android is very special, and you’ll gain much more appreciation for it as you get into the programming.
The movement of many handset makers to create tablets running the Android OS created a huge market
for the games you’ll make. This section gives you a rundown of Android’s features and history.

The Beginnings of Android
In 2003, Android began as a small Silicon Valley startup company with the aim to create a more
interactive and helpful interface for smartphones. Google quickly snatched up the company in 2005 as
part of its push to enter the mobile phone market. After Google acquired it, the first Android OS was
soon released during 2007. In subsequent years, Android went through many revisions (more than seven
major changes) that made it one of the leading operating systems for smartphones, with some saying
that Android has nearly 50% of mobile devices.

The revisions to Android are very important to understanding how development works. Google
worked hard to ensure backward compatibility in its version of Android; however, applications generally
are designed to work for a select couple of Android editions to guarantee the best performance and user
experience. The version called Froyo is still the most popular for developers, but the later versions are
gaining steam as more modern devices like tablets require more powerful operating systems.

The following list of Android versions, along with their current market share, illustrates which
versions remain popular and therefore are of interest to developers. The creative name given to each
version by Google is next to the edition number. Developers often go by these names rather than merely

CHAPTER 1 � SETTING UP ANDROID 3.0 JAVA DEVELOPMENT

2

the numbers. Keep in mind that with the exception of Android 3.0, all versions of the OS were designed
for phones exclusively:

Android 1.5 Cupcake (2.3%)

Android 1.6 Donut (3.0%)

Android 2.1 Éclair (24.5%)

Android 2.2 Froyo (65.9%)

Android 2.3 Gingerbread (1.0%)

Android 2.3.3 Gingerbread (3.0%)

Android 3.0 Honeycomb (0.3%)

If you’re interested in checking the current market share of the various versions, go to
http://developer.android.com/resources/dashboard/platform-versions.html.

After examining this list, many would say that you should be making games for Froyo because it has
a huge lead in market share over other versions. The reason for Froyo’s prevalence is that it’s installed on
many simpler older phones that can only get updated versions through a complicated process. These
devices will slowly become inconsequential as the newer versions take center stage. To some extent,
making games for the majority of users makes sense; however, every day new users are buying more
modern phones that use the later versions. Also, perhaps the most important point is that hundreds of
thousands of apps are playable on the Froyo version, and it’s increasingly difficult to stand out.

With that being said, this book teaches you to designs games for the latest edition (Honeycomb) for
two reasons. First, Honeycomb is the only version optimized for tablets, which are much more
immersive and fun than any smartphone. Second, Android tablet computing is growing at a huge rate as
more companies release tablets that can compete with Apple’s iPad. With the failure of webOS, Android
and iOS are the only contenders in the tablet market. Microsoft has also come out with its own operating
system, but it has not yet garnered significant market share. Google’s often-quoted statement about
500,000 Android devices being registered each day gives you a sense of how fast this market is
expanding.

Android 3.0 Features
Honeycomb is a huge advance from the previous Android versions. Designed to utilize a much larger
screen and more powerful processor, Android 3.0 lets developers expand their usually modest
smartphone games. Many of the new features are user-interface changes that make the desktop
accessible to users with a screen that is several times bigger than a smartphone screen. For example,
typical phones have two- to three-inch screens, whereas tablets boast impressive nine- to ten-inch
screens. These updates are convenient; however, game developers concentrate more on the updates to
speedier graphics rendering and the new sensors and network abilities of the operating system.

Not all games use all of these features, but it’s crucial to consider their importance in designing
unique games. The larger screen is in itself an update worth noting. The high-resolution screens demand
artwork that is scalable and visually appealing. Many Android tablets have landed on 1280 800 as their
screen size. This is comparable to the resolution that many computer screens still use. In this case, the
graphics must approximate the images used in computer games.

Table 1-1 list major changes to Android 3.0 of particular interest to game developers.

CHAPTER 1 � SETTING UP ANDROID 3.0 JAVA DEVELOPMENT

3

Table 1-1. Android 3.0 Features

Updates to Android 3.0 Relevance to Game Development

3D user interface design Games and apps can use new themes that provide a quick and
professional look with minimal work.

Better desktop widgets Multiplayer games allow users to make simple changes right on
the desktop.

Powerful graphics capabilities Games can use more realistic high-resolution images without
losing out on fast performance.

Multicore processor support All aspects of a game can be speeded up by allocating different
routines to separate cores.

Customizable action bar Some games may find the bar at the top of the app useful for
providing updates or posting scores and points.

Notification and system bar Although this isn’t truly a game-oriented update, it can be
useful for letting users monitor any changes or updates in a
game.

Bluetooth connectivity changes Devices like joysticks and keyboards can now be readily
connected to tablets for a new user-input method.

Throughout the book, I give advice about how to make the most of the new Android tablet features.

If you’re looking to make games as a hobby by yourself, then watch for my notes about where to get
quality sounds and images royalty-free. The tools I use for making music and graphics for my games are
also explained in depth later in chapter 2.

I hope that after getting acquainted with Android, you’re ready to get started. Read the next section
carefully, though, to ensure that you have the proper skills and hardware to develop games for Android.

What You Need to Create Android Games
So what does it take to become an Android games developer? Let’s look at the skills you need to get the
most from this book and the system you need to work through its examples.

What You Need to Know
How hard is programming Android games? This really depends on how experienced you are with Java
and the Android operating system. If you have a solid knowledge of Java, then you’ll be perfectly at home
with this book. If you’ve written code for Android before, then you may not be challenged by any of the
code here and are free to enjoy the experience as you go. Read this section carefully before proceeding,
so you know exactly what you need.

CHAPTER 1 � SETTING UP ANDROID 3.0 JAVA DEVELOPMENT

4

Generally, people interested in learning to create games for tablets in Android come from three
different backgrounds. Each background prepares you for the examples in this book, but they all require
a slightly different approach.

If you know both Java and Android, you’re ready to go. The code here resembles what you’ve seen
before, but it focuses on graphics, game loops, and rapid responses to user input that you may not have
dealt with. Regardless of what you’ve done, this book helps you master the creation of tablet games.

Maybe you’re comfortable with Java, but you’ve never worked with Android. This is fine. You won’t
have much difficulty working through the examples and code. Remember that with any new
environment and API, you should regularly look up the functions and classes that are presented.
Becoming familiar with Android takes time, but it’s well worth the effort.

You may never have coded so much as an if statement in Java, much less worked with Android. If
this is the case, you can still use this book, but you have to get a Java primer. I strongly recommend
Learn Java for Android Development by Jeff Friesen (Apress, 2010). When you have a reference for Java,
become familiar with how Java works, and then jump right into this text. You learn the language as you
go through it.

An understanding of XML is beneficial; however, XML is relatively simple to understand, and you
should have no problem dealing with this book’s relatively elementary use of it. With the qualifications
out of the way, it’s time to consider the environment used for game creation.

What You Need for a Platform
It's time to get your hands dirty and find out what you actually need for developing Android games.
Fortunately, you shouldn't have to buy any software! The only expense is a $25 registration fee when
you’re ready to put your games on the Android Market. First, check to make sure your computer will
support Android development:

Windows XP (32-bit), Vista (32- or 64-bit), or Windows 7 (32- or 64-bit)

Mac OS X 10.5.8 or later (x86 only)

Linux (tested on Ubuntu Linux, Lucid Lynx)

This list was compiled from Android’s own system requirements. Check
http://developer.android.com/sdk/requirements.html for the most recent changes to minimum system
standards.

Although a system that meets the minimum requirements will let you create Android applications,
testing your programs may be rather slow. Generally, if you can play modern video games on your
computer, then you should be fine. However, if you have a slower machine, don’t despair; you’ll be
perfectly capable of writing Android games, but you should test them on an Android tablet rather than a
simulator on your computer.

You don’t need an Android tablet to complete any exercise or program in this book, but there is no
substitute for testing your creations on a real device. With a glut of tablets on the market, cheaper
models will set you back about $500 to $700. These are well worth the investment if you find game
programming as addicting as I do. Motorola and Samsung make some of the most popular tablets; look
for their offerings to see the top of the line in terms of Android tablets.

If you’re confident in your skills and have decided on which machine you want to plunge into game
development, you’re ready to acquire your tools and configure your development environment.

CHAPTER 1 � SETTING UP ANDROID 3.0 JAVA DEVELOPMENT

5

Setting Up Your Android Tablet Programming Environment
You’re nearly at the fun part, but first you must make sure your computer is properly set up. You must
download and install three packages for your work:

Java Development Kit (JDK)

Eclipse, which is the integrated development environment (IDE)

Android Java SDK

If you’re a Java developer, then you likely have a recent version of the JDK and probably even have
Eclipse installed. In that case, skip to the Android SDK portion of the following instructions. Look over
the first two sections if you experience problems, though, because you may be using the wrong version
of the JDK or Eclipse.

In the following sections, you work through installing each of these packages. When you’re done,
you’ll be ready to create your first Android tablet program. This entire process shouldn’t take more than
20 minutes before you’re ready to go.

Installing the Java JDK
The first step is to download and install the latest version of the JDK for your machine. Here’s how:

1. To find the JDK you need for your system, go to
www.oracle.com/technetwork/java/javase/downloads/index.html. You need
the JDK to let you use the Java language on your computer. Look for the large
Java icon at upper left on the page, and select the JDK link, as labeled in Figure
1-1. This link takes you to the JDK SE downloads page.

CHAPTER 1 � SETTING UP ANDROID 3.0 JAVA DEVELOPMENT

6

Figure 1-1. Java download options page

2. On the Downloads tab of the Java SE Downloads page, shown in Figure 1-2,
accept the license agreement, choose the package that fits your operating
system, and click the link to download it.

CHAPTER 1 � SETTING UP ANDROID 3.0 JAVA DEVELOPMENT

7

Figure 1-2. License agreement and Java version selection

3. When the file downloads, run the installer. On some computers, the installer
starts automatically. If this doesn’t happen, locate the folder where the files
were downloaded, and sort the folder by the Date Modified. The last file is this
installer. Double-click it, and you’re ready to go.

4. When the welcome dialog page for Installation for Java wizard appears, as
shown in Figure 1-3, click the Next button and follow the instructions provided
by the wizard to finish the installation.

CHAPTER 1 � SETTING UP ANDROID 3.0 JAVA DEVELOPMENT

8

Figure 1-3. JDK installation wizard

Now you’re ready to set up Eclipse, the development environment you use throughout this book to
build your games. Without Eclipse, you would be forced to compile your code using a command line. A
development environment saves you a lot of time.

Installing the Eclipse IDE
With the JDK installed, you can now set up your developer environment. You’re going to use Eclipse, a
free software package with lots of great support for Java and Android developers. Follow these steps:

1. To locate the Eclipse package for your system, go to
www.eclipse.org/downloads/. On the Eclipse Downloads page, shown in Figure
1-4, use the small drop-down menu to match your operating system. Then
select Eclipse IDE for Java Developers, and click the link for the version you
need for your operating system. You’re brought to a download page.

CHAPTER 1 � SETTING UP ANDROID 3.0 JAVA DEVELOPMENT

9

Figure 1-4. Eclipse download options page

2. Download the zipped folder that contains the version you’ve selected, and
extract it. Click the install executable. During the installation, make sure you
check the box that creates a shortcut to Eclipse on your desktop to enable us to
easily access Eclipse later on.

3. When the installation is completed, you can start Eclipse via its shortcut. You
should see something like Figure 1-5. This means everything is working.

CHAPTER 1 � SETTING UP ANDROID 3.0 JAVA DEVELOPMENT

10

Figure 1-5. Eclipse as it’s starting up

With your developer platform installed, you’re ready to add the Android SDK, which provides you
with the libraries and tools you need to start building games. So far, you’ve only worked on the basics,
which include the Java language and the development environment.

Installing the Android SDK
The last package you need for your platform is Google’s Android SDK:

1. To locate the package you need for your system, go to
http://developer.android.com/sdk/index.html, shown in Figure 1-6, and
select the Android SDK package that is made for your operating system by
clicking its link. When you’ve done this, the appropriate file begins
downloading.

CHAPTER 1 � SETTING UP ANDROID 3.0 JAVA DEVELOPMENT

11

Figure 1-6. The Android SDK download page

2. When the folder or installer is downloaded, run it by finding the file and
double-clicking it. The Welcome page of the Android SDK Tools Setup Wizard
appears, as shown in Figure 1-7.

CHAPTER 1 � SETTING UP ANDROID 3.0 JAVA DEVELOPMENT

12

Figure 1-7. The Android SDK setup wizard

� Note Remember the location where you install the SDK. I prefer to use C:\Android\android_sdk\. Make a
note of the place where it’s installed regardless of which operating system you’re using. We will need its location
in the steps to come when we are connecting it to Eclipse.

3. Click the Next button, and follow the wizard’s instructions to install the SDK.
Eventually, you reach the last page. The Start SDK Manager check box should
be selected, as shown in Figure 1-8. This causes the SDK Manager to start
immediately after the installation is complete.

CHAPTER 1 � SETTING UP ANDROID 3.0 JAVA DEVELOPMENT

13

Figure 1-8. The end of the Android SDK Tools Setup Wizard.

4. When the Android SDK and AVD Manager dialog opens, as shown in Figure 1-
9, click the Available Packages link in the left navigation panel, and then click
the Install Selected button. This step accepts and installs the default Android
packages recommended by Google that you use for games. Without installing
these, you can’t use several tools and sample apps.

CHAPTER 1 � SETTING UP ANDROID 3.0 JAVA DEVELOPMENT

14

Figure 1-9. The Android SDK Manager. Note the default packages selected.

5. When you click Install Selected, a dialog box like the one shown in Figure 1-10
appears, to show the progress of the installation (this may take several
minutes).

Figure 1-10. The installation of the packages and archives

CHAPTER 1 � SETTING UP ANDROID 3.0 JAVA DEVELOPMENT

15

Now you have the Java language, the development environment, and the Android tools. The only
step left is to integrate all these parts together.

Adding Android Tools and a Virtual Device to Eclipse
The last work you have to do is getting Eclipse to mesh with the new Android tools and programs. Doing
so lets you type your code into Eclipse and then test from Eclipse itself. Otherwise, you’d have to save
your code and use a different program to test the app. Follow these steps:

1. To equip your copy of Eclipse with the Android tools you’ll be using, open
Eclipse and select Help � Install New Software. An Eclipse Install dialog
appears, as shown in Figure 1-11. You return to this Install dialog every time
you need to add more functionality to Eclipse.

Figure 1-11. The install dialog box for Eclipse.

2. You first need to let Eclipse know where to look for the tools you want to add.
On the Install screen, click the Add button at upper right. An Add Repository
dialog opens, as shown in Figure 1-12.

CHAPTER 1 � SETTING UP ANDROID 3.0 JAVA DEVELOPMENT

16

Figure 1-12. The Name and Location boxes used to add Android tools to Eclipse

3. Do the following:

a. In the Name box, type Android Tools, which is the name you’ll use to refer to
the tools this step installs.

b. For a Location, enter the URL https://dl-ssl.google.com/android/eclipse/,
which is the location of the tools you’re adding.

4. When you’ve finished, click the OK button, which returns you to the Install
dialog shown in Figure 1-13.

CHAPTER 1 � SETTING UP ANDROID 3.0 JAVA DEVELOPMENT

17

Figure 1-13. The Developer Tools software

5. Select the Developer Tools check box, and follow the prompts to install the
updates. Doing so adds the tools you need for Android tablet development.

6. Restart Eclipse when the dialog box prompts you to do so.

7. In Eclipse, select Window � Preferences. Open the Android tab on the side
pane. Your screen should look like Figure 1-14. You’re about to point Eclipse to
the installation of your Android SDK. This lets you compile the programs from
within Eclipse.

CHAPTER 1 � SETTING UP ANDROID 3.0 JAVA DEVELOPMENT

18

Figure 1-14. The configuration options for Android in Eclipse.

8. Type the exact name of the location where you downloaded the Android SDK
in the SDK Location field. My example uses C:\Android\Android-sdk.

When you’ve applied these changes, you’re done with the setup process!
From now on, you focus on the structure of actual Android apps and how to make your visions for a

game come true. This background makes it easy for you to try out a variety of different tools and
techniques in your games. Being able to quickly change your code and see the result of your efforts is
invaluable in your efforts.

Putting Your Tools to the Test

By now, you’re probably eagerly anticipating some tangible Android games. This section goes over how
to use the tools you’ve installed to play with Android’s built-in library of sample programs. It also
introduces the basics of designing an application’s appearance. Future chapters expand on these
projects to make a full-featured game.

CHAPTER 1 � SETTING UP ANDROID 3.0 JAVA DEVELOPMENT

19

Each of your Android games will be developed as an Eclipse project that holds all of its images,
sounds, and code in one location. You’ll gain a better understanding of Eclipse as you go. Understanding
the storage of resources and how you access files in this environment is a critical skill you work on.

The sample programs are a terrific resource for even the most advanced programmer. Much of the
basic functionality you need for any game you write has already been implemented in one or more of
these programs and is most likely available for free. A cursory look online can save you dozens of hours
of work in the future. Sadly, most of the apps are written for older versions of Android, so they appear
very small on a large tablet screen. To compensate, you can incorporate some of their code into your
projects but handle the graphics yourself.

In the rest of this section, you walk through the steps of creating an Android game for the tablet. It’s
important to start from scratch at least once so you can see the most basic framework of a game. You
begin by creating your first Android project with Eclipse.

Creating an Android Project
The first step in building any Android game is to create an Eclipse project:

1. In Eclipse, select File � New � Project, select Android Project under the
Android folder, and move on to the New Android Project screen, shown in
Figure 1-15.

CHAPTER 1 � SETTING UP ANDROID 3.0 JAVA DEVELOPMENT

20

Figure 1-15. The filled-out New Android Project form

CHAPTER 1 � SETTING UP ANDROID 3.0 JAVA DEVELOPMENT

21

2. Fill in the missing information:

a. Type the name FirstApp or any name you wish for the Project Name.

b. Leave the other sections unchanged from the defaults until you get to the Build
Target section. Here is where you decide what version of Android you would
like your app built for. Select Android 3.0, because you want your application
to run on the latest tablet computers. This designation becomes crucial when
you’re testing your game, and you want to make sure it runs well on a
simulated tablet rather than the small screen of a phone.

c. Application Name is generally the same as Project Name for your purposes.
Retype FirstApp or the name you used for the project.

d. The Package Name field will be familiar to Java developers, but it may be
confusing if you aren’t familiar with it. Here you declare the name as
com.gameproject.firstapp.

Packages are Java’s means of organizing code to make it easy to use previously
written files. You can read more about Java packages at
http://java.sun.com/docs/books/jls/third_edition/html/packages.html, but
it isn’t terrifically important for you right now. You revisit this when you’re
ready to share your apps with the world later.

e. Write Main as the activity you want the project to create.

Activities are essential to Android programs, and I go into more depth about
them later. For now, think of this activity as the primary function of the app.
It’s called on to set up the game and then later run the game by processing
input and directing the movement of sprites. Activities should be named based
on their role, so the original activity is usually called Main, MainActivity, or
something similar.

f. Fill in the Min SDK Version field with the number 11. This means Android
requires devices to be running Android version 11 in order to properly run
your game.

You’re probably curious why I suddenly jumped to the number 11, when I
previously talked about Android 3.0 as the latest update. Well, Android has a
crazy system of naming versions. The level 3.0 refers to the platform version,
which follows the normal software convention where small updates increase
the tenths place, and a major revision gets a new number. To be consistent,
Android associates a code with each platform version. Android 3.0 is assigned
11, where Android 2.3.3 got 10. Because your project is made for the latest
edition of Android, you type 11 as the minimum SDK version.

3. Figure 1-15 shows a completed New Android Project form. Check yours to
make sure it’s the same, because the remaining code and examples use the
names provided in this walkthrough. When you’re done, click Finish. You’re
brought to a blank Eclipse screen with a folder for your project on the far left.

Now let’s take a look at the files and code that Eclipse creates.

CHAPTER 1 � SETTING UP ANDROID 3.0 JAVA DEVELOPMENT

22

Exploring the Android Project in Eclipse
To see what files were created with the project, expand the FirstApp folder. Then further expand src to
com.gameproject.firstapp to Main.java. Double-click Main.java to show the file in Eclipse editor (the
large viewing pane in the center). This is the meat of your game; however, currently it’s a basic skeleton.
The code you see should look like the code in Listing 1-1.

Listing 1-1. Main.java

package com.gameproject.firstapp;

import android.app.Activity;
import android.os.Bundle;

public class Main extends Activity {
 /** Called when the activity is first created. */
 @Override
 public void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 setContentView(R.layout.main);
 }
}

The code in Listing 1-1 creates a new class and then has the class update the view that the user sees.
The first three lines define the package and then import the classes that the app needs to use. Note that
both imports refer to classes that are parts of the Android SDK. As you make more functional games,
you’ll import many other classes that let you perform a variety of actions.

Let’s take a closer look at the code in the listing line by line:

package com.gameproject.firstapp

This simple introduction specifies that this file is part of the firstapp package.
Packages are the way that Java groups files that are for the same program.

import android.app.Activity;
import android.os.Bundle;

Import statements add functionality to your project. In reality, these are other
packages that you want to use. Activity includes the methods that handle the
running of the app. Bundle is a specific way of storing information for your app.

public class Main extends Activity

Here, the class Main is given all the functions and variables that the Android
class Activity had. Whenever a class extends another, the new class inherits or
receives access to all of the other class’s functionality.

public void onCreate(Bundle savedInstanceState)

The function defined here is actually from the Activity class. It handles all the
procedures that must be completed upon the startup of the application. The
Bundle argument, savedInstanceState, holds the previous status of the
application. When you start the app for the first time, it’s null.

super.onCreate(savedInstanceState);

CHAPTER 1 � SETTING UP ANDROID 3.0 JAVA DEVELOPMENT

23

The onCreate method of the Activity class is called. This causes the program to
start the app. Notice the keyword super in front of the function. The super
keyword means that the program is calling the original onCreate method from
the Android SDK, not the new onCreate method that you created in the line
before.

SetContentView(R.layout.main);

Finally, the application does its first real task by setting the Android screen to an
XML file. R is an identifier that means resource, layout specifies what type of
resource, and main refers to the name of the file. Shortly you edit the main.xml
file to change the appearance of the program.

It’s time to run the program and find out what it does. Before you do this, though, you must create a
virtual Android device to test it on. If you have an Android tablet running Android 3.0, you can test the
program directly on it. To learn how to do this, go to Appendix A.

Creating a Virtual Android Device
Creating your own virtual device is a very simple process in Eclipse:

1. On the Eclipse main menu bar, select Window � Android SDK and AVD
Manager. An Android SDK and AVD Manager screen like the one shown earlier
in Figure 1-8 opens.

2. Because you don’t have any devices listed, click the New button at upper left. A
Create New Android Virtual Device (AVD) dialog box pops up to let you define
your new simulator, as shown in Figure 1-16. Complete the form as follows:

a. The name of the device doesn’t matter; I chose the uncreative name
Tablet_device.

b. The target Android version for you is Android 3.0.

c. For most applications, you don’t need to worry about the size of the SD card.
However, if you make a game that requires you to store high scores or other
data on the device, specify the size of the onboard data storage.

d. The Skin and Hardware sections don’t need to be changed. It’s interesting to
note the hardware specifications, though. When you make graphics for a
game, you should definitely use an LCD density of 160 (which is fairly
standard) to determine the resolution of your images. The device RAM size of
the simulator is actually fairly low compared to many tablets. However, the
simulator doesn’t accurately represent RAM or processor power. For a real
representation of how your game will run, you must try it on a real device.

CHAPTER 1 � SETTING UP ANDROID 3.0 JAVA DEVELOPMENT

24

Figure 1-16. Creating an Android Virtual Device (AVD)

3. Click the Create AVD button, and you’re ready to run your app.

If you’re expecting a simulator to pop up, you’ll be disappointed; the new virtual device only starts
when you run your application. The next section starts the device.

Running the App
Follow these quick steps to run the application:

1. In the center of the toolbar near the top of the Eclipse screen is a green Play
button. Click it, and your program should open a large black screen. This is
your new simulator. For a while, the screen displays the word Android as it
loads. Then the word Android in a larger font scrolls up as the loading is
completed.

CHAPTER 1 � SETTING UP ANDROID 3.0 JAVA DEVELOPMENT

25

2. When the loading screens are finished, move the small circular knob to the
right. If you wait long enough, the app may start automatically. In this case, the
words Hello World, Main! appear. If not, go to the next step.

3. The home screen comes up with a Google search bar at upper left and a couple
of buttons at the bottom. A real device uses touch gestures to select apps, but
the simulator lets you use your mouse cursor. To run your own program, click
the Apps icon at upper right on the screen.

4. A list of all the programs on the device appears. Your app has the generic
Android robot as its icon; the app name (FirstApp) appears under the icon.
Click it, and the screen soon reads Hello World, Main!

As simple as it may be, you’ve launched your first Android application. When you’re done reveling
in it, click the arrow at lower left pointing toward the left side of the screen. You’re back at the desktop
home. Try out some of the other apps in the simulator now. You may be surprised to see that the
browser, e-mail, and other programs do exactly what you would expect.

The AVD is very similar to the real thing, even allowing you to test sensors and GPS data. To put this
emulator through its paces, you can make your own incredible apps. Take a look at the next section to
see how you can work with your code.

Making Your First Changes to the App
Although you did technically create your own app, you haven’t had to manipulate the code beyond what
was automatically created. Now it’s time to change the text of the program:

1. In the project’s folder tree, expand the Res folder.

2. Open the values folder. You should find a single file there (strings.xml);
double-click it to show it in the viewing pane.

3. Two string resources are listed. One is the app name, and the other is named
hello. Click hello, and change the value to any string you want.

4. Save your changes and rerun the program. When you open FirstApp, you
should see that you’ve changed the text on the screen.

To understand how this worked, you need to know about the important Android topic of resources.
The strings.xml file that you just edited is a resource. The same is true of every file within the large Res
folder.

If you remember from the main.java file, I mentioned one resource file in the code: main.xml, in the
layout section. You have some changes to make to this file:

5. To view the file, expand the layout folder and double-click main.xml. A
WYSIWYG editor appears with a small screen and the string you created at
upper right.

6. Unfortunately, the screen was designed for a cell phone. You can change this
quickly by using the menu with 2.7in QVGA at the top. Scroll down through the
list until you reach 10.1 WXGA. This makes a screen layout of a little more than
ten inches, which is normal for a tablet.

CHAPTER 1 � SETTING UP ANDROID 3.0 JAVA DEVELOPMENT

26

7. Updating the layout is very easy with the editor. The pane on the left already
has several different items that can be dragged onto the app. Try putting a
button right beneath the text you wrote.

8. Although the WYSIWYG editor is convenient, it isn’t extremely useful for
making games. You need to get into the actual file behind the image. To see
this, click main.xml (near the bottom of the screen, next to Graphical Layout).

Listing 1-2 shows the code you should see after you add a button to the layout.

Listing 1-2. Main.xml

<?xml version="1.0" encoding="utf-8"?>
<LinearLayout xmlns:android="http://schemas.android.com/apk/res/android"
 android:orientation="vertical"
 android:layout_width="fill_parent"
 android:layout_height="fill_parent"
 android:id="@+id/Button">
<TextView
 android:layout_width="fill_parent"
 android:layout_height="wrap_content"
 android:text="@string/hello"
 />
<Button android:text="Button"

android:id="@+id/button1"
android:layout_width="wrap_content"
android:layout_height="wrap_content">
</Button>

</LinearLayout>

If you aren’t familiar with XML, then this may look like Greek, but it’s actually very easy to
understand. The first line is a declaration of what type of XML you’re using. The next section creates a
special layout type called a LinearLayout. Within this, simple instructions tell the device how to orient
the app and what size it should be relative to the entire device screen. Next a TextView object is created
to fill_parent (expand to fit the whole space) and then defined to wrap_content, which limits the view
to only the amount necessary.

Finally, text is inserted into the screen by calling on the string resource entitled hello. This is the
hello string that you already edited.

The next section is the Button information that you dragged onto your app. It’s important to recall
that XML layouts don’t create functionality, merely the appearance of the program. For example,
clicking your button doesn’t do anything unless you specifically program a response to it.

Summary
This chapter definitely covered a lot of ground in terms of getting your development environment up
and running. You covered the concepts behind Android and how you go about creating games. In the
next chapters, you thoroughly examine layouts and how to create an attractive background for a game.
Then you create sprites and start adding some flavor to your apps by moving players around the screen.
Later chapters add user input, sounds, and AI to finish off your creations.

C H A P T E R 2
�
������

27

Creating Simple Games with Sprites
and Movement

Congratulations—you’ve successfully set up your development environment and are ready to move on
to the more creative activities of game development. When you think of your favorite game, you can
immediately conjure up what the appearance of it was, whether it included monsters running toward
you or cars racing around a track. In this chapter, you breathe life into your tablet screen. With tons of
games on the market, the way your game looks and feels can determine how successful it is.

This chapter covers the basics of displaying images to the tablet screen and then moving them
around. You learn about the notion of sprites. For the purposes of this chapter, a sprite is any game
object that can be moved around during game play. The main character in a game or one of its enemies
is normally a sprite, but the game’s background isn’t.

The content in this chapter moves fairly quickly and introduces many new concepts.

Working with Images
Sprites are fundamental to games, and before you can create a game, you need to be able to draw its
cards, characters, and other objects on the screen. In this section you will work with the fundamental
components of graphic displays for Android 3.0. We will also work out the components of sprites and
move our images across the screen. This will become the basis for our future projects. Take a look at
Figure 2-1 to see what our game will look like. This start sprite is actually bouncing back and forth.

CHAPTER 2 � CREATING SIMPLE GAMES WITH SPRITES AND MOVEMENT

28

Figure 2-1. The completed Graphics Program.

� Note If you get lost, copy the code from the Google Code project connected to this book. Then go back to the
lessons, and you’ll be able to understand how the program works by manipulating aspects of it.

Creating a Image Display Surface
To get started, you need to open a new Eclipse project. In the last chapter, you created a new project in
Eclipse entitled FirstApp. That code is no longer of any use to you. Start over with an entirely new
project:

1. Select File � New � Project � Android Project on the Eclipse main menu.

2. When the New Android Project dialog box appears, complete it. You probably
remember this process from the previous examples, so feel free to fill out the
form by yourself.

CHAPTER 2 � CREATING SIMPLE GAMES WITH SPRITES AND MOVEMENT

29

Figure 2-2. The project creation window for GraphicsTest..

CHAPTER 2 � CREATING SIMPLE GAMES WITH SPRITES AND MOVEMENT

30

3. The name of your app is GraphicsTest. Make sure the completed form looks
like the one shown in Figure 2-2. Getting used to making new projects in
Eclipse is very important because it’s often the easiest way to start over with a
clean slate if something goes wrong.

4. When the form is complete, click Finish. If you need help filling out the other
fields, refer back to Chapter 1.

Before you can display images on a tablet, you need a canvas in which to render them. You build
that surface in the main routine of your program. Follow these steps:

1. The files from the first project are probably still open in your main editing
panel. Close them by right-clicking next to the file tabs and selecting Close All.
This doesn’t delete the code, but rather closes the editing screens that display
it.

2. Open the file tree for the GraphicsTest project in the Eclipse Package Explorer
(located at left onscreen). You want to examine the Java code, so open the src
folder, and then continue expanding until you see MainActivity.java. Figure
2-3 shows where you find the files.

Figure 2-3. Package Explorer for GraphicsTest

3. Open MainActivity.java in the editing pane, and you see the same generic
code that you saw generated in the first chapter.

4. In Chapter 1, you got by with a single file of Java code and an XML file to
handle the layout. Sadly, a game that involves lots of movement and changing
of graphics can’t be readily built using XML. Therefore, you need a Java file
that is dedicated to running the graphics for your game.

5. To do this, create a new class by right-clicking com.gameproject.graphicstest
in the GraphicsTest Package Explorer. Select New � Class. A dialog box opens
and asks what you want your new class to be called. Type GameView, and be

CHAPTER 2 � CREATING SIMPLE GAMES WITH SPRITES AND MOVEMENT

31

careful to leave all the other fields with their default values. When you’re done,
you find two files (MainActivity and GameView) in your src directory.

6. Open the GameView.java file in the viewing pane. There you should find the
code shown in Listing 2-1.

Listing 2-1. GameView.java

package com.gameproject.graphicstest;

public class GameView {

}

You add to this primitive source to draw an image file to the screen. Before you start this, however,
you must learn the fundamentals of views and displays in Android.

How the Android View Class Works

So far, you’ve only used two Android classes in your projects: Activity and Bundle. Activities hold the
functions that handle the creation, running, and closing of an app. They’re the lifeblood of any Android
game. The Bundle class is merely a method of saving the current status of the program.

Now, however, you look at the View class. Views handle the graphics and appearance of the screen
while an application’s running. All of your games will create a class that extends the View class and gives
you this functionality. Often, you have significantly more code in your View class than in your Activity
class because the majority of a game consists of manipulating objects on the screen.

All functional View classes must have two distinct parts. The first is a constructor method. Like any
class, when you create an instance of it, you need to call a function that defines various aspects of the
object. In the View class, you can load your images and determine the starting position for all your
sprites.

The next critical part of the View class is a method that renders the images to the screen. This is
called every time you move an image because the image must be redrawn in its new location.

Although this is an abstract way to see the class, it helps you get through the code. Before you dive
in, however, let’s look at the mechanics of actually taking a file and displaying it on the screen.

� Tip If you’re curious about the View class or any other Android class, visit
http://developer.android.com/reference/packages.html and find the package you’re looking for. Here
Android provides documentation on how to use the classes and the various methods that each class contains.

How Android Renders Images

The View class is only a part of the whole way that images are rendered to the screen. The other building
blocks include an image, a way to store the image, a method to draw it, and the final result on the screen.

CHAPTER 2 � CREATING SIMPLE GAMES WITH SPRITES AND MOVEMENT

32

Images are stored in the project. The next section goes over how you add an image. Once the image
is stored in the application, you access it by assigning it to a bitmap. A bitmap is your way of describing
an image and get it ready for blitting to the screen.

Before it can be put on the display, it must be rendered through a canvas. A canvas holds the
methods that draw the image. Inside a view, you call on the canvas to handle the drawing process. Views
are designated sections of the screen that they control. In your case, the view owns the entire screen real
estate. The canvas then draws the image to the screen.

Rendering an Image
To really understand how the View class works in Android, let’s use it to display an image:

1. You need an image file to load onto the screen. You may have an image file
ready to go, or you may need to create one. Any image on your computer that
has a .png or .bmp extension is fine.

a. If you have a ready-to-use image, make sure it’s no more than 500 500 pixels.

b. If you want draw your own image, I usually use either Inkscape
(http://inkscape.org/) or GIMP (www.gimp.org/) as my graphics editor
because both are free to use. If you prefer your own graphics editor, that’s fine
as well.

2. Drag the file into the res � drawable-mdpi folder of your GraphicsTest project.
Eclipse asks if you want to copy it; click Yes, and you’re ready to go.

3. If you look closely in the res folder of the project, you see it contains three
folders that start with word drawable. These all specify a certain resolution of
graphics on the device. For games that are built for the tablet, you use the
medium definition folder; but if you were developing for phones, you would
want to have a different version of each image at the three resolutions to
ensure that most phones could render them as quickly as possible.

4. With the GameView.java file open in the editing pane, replace the code from
Listing 2-1 with the code shown in Listing 2-2. This code renders your image to
the tablet’s screen. I explain what each piece does afterward.

Listing 2-2. GameView.java

package com.gameproject.graphicstest;

import android.content.Context;
import android.graphics.Bitmap;
import android.graphics.BitmapFactory;
import android.graphics.Canvas;
import android.graphics.Color;
import android.view.View;

class GameView extends View {
 public GameView(Context context) {
 super(context);
 }

CHAPTER 2 � CREATING SIMPLE GAMES WITH SPRITES AND MOVEMENT

33

 @Override
 public void onDraw(Canvas canvas) {
 Bitmap star = BitmapFactory.decodeResource(getResources(), R.drawable.star);
 canvas.drawColor(Color.BLACK);
 canvas.drawBitmap(star, 10, 10, null);
 }
}

5. Wow, things got complicated quickly. The code in Listing 2-2 is actually very
straightforward, and you can probably understand most of it without much
explanation.

6. The first major change is the addition of numerous new import statements.
The majority of these invoke the graphics package from Android, whereas the
last invokes the View class. The first import involves the Context class that you
use as an argument for functions.

7. The start of the actual code shows how the class you created extends the
functionality of the View class. This is a common practice in Java and simply
inherits the methods and variables of the View class for your own use. If you
didn’t do this, you would be unable to draw images to the screen.

8. The first function, GameView, is a dummy function that doesn’t initiate
anything. You use it later, but right now, keep it there to satisfy Java’s
requirements of a class.

9. Finally, the meat of the source is the onDraw method that handles the changes
to the screen. You use the @Override notation to run your version of the onDraw
function rather than the original onDraw() provided by the View class. The
argument to the method includes the very important Canvas that is responsible
for the drawing of the image. The next line simply creates a new Bitmap object
and uploads your image file into it. Because the image file I’ve used is named
star.png, I’ve named its bitmap star. Substitute the name of your image in the
three places that you see star written in this code. Alternatively, you can
rename your image star.png and not have to change the code at all.

10. Next, you have the Canvas object color the entire screen black. This is
redundant because black is the default, but it’s good practice to keep this line.
If you prefer a different background color, replace black with the name of your
color. Note that Android accepts most traditional color names; but if you’re
looking for a specific shade of pink, you have to write out the RGB value, as
shown in this statement:

canvas.drawColor(Color.argb(0, 100, 100, 100));

11. The argb function takes the amount of alpha, red, green, and blue color as
arguments in the form of an integer.

12. The last line of the Listing 2-2 calls the drawBitmap method to draw the image
to the screen. Notice that the arguments of this function are (Bitmap bitmap,
float left, float top, Paint paint. You don’t use the Paint object, so you
pass a null value to it. You can change the location of the image by editing the
values of the distance of the image from the top and left. After this, you want to
see the fruits of your labor. Although you have a way to render an image to the

CHAPTER 2 � CREATING SIMPLE GAMES WITH SPRITES AND MOVEMENT

34

screen, your application will never use it because the start of the program
doesn’t call the drawing method. You change this by creating an instance of
GameView in MainActivity. To do this, you must change a single line in the
MainActivity.java file to point to your GameView class.

13. At the top of Eclipse, open the MainActivity.java file. Find the line that looks
like this:

setContentView(R.layout.main);

14. You likely remember this as the line that tells the device to load the main.xml
file as the layout of the app. You want to replace that XML with GameView.java.
This is readily done by adding the statement in Listing 2-3 inside the
MainActivity constructor.

Listing 2-3. Using GameView.java as the View

setContentView(new GameView(this));

15. The adition of this statement creates a new instance of the GameView class and
loads it as the view of the application. You’re now ready to try out your
handiwork.

16. Click the green play button at the top of Eclipse, and the application starts.
Follow the procedure from Chapter 1 when the simulator has begins to play
the new app. If all goes well, your image, which began life as a .png file, is
vibrantly displayed on the screen.

This result certainly isn’t very exciting, so your next goal is to move the image on the screen.

Working with Sprites
Before you can move an image around the screen, you have to call it something. Games don’t move
images or shapes around but use sprites instead—objects whose presence on the screen is represented
by an image but whose methods and properties provide the functionality and state you need to control
and keep track of them. There are a number of advantages to creating a dedicated Sprite class. You can
easily add animation sequences and rotation, and even keep track of the lives or ammo of each sprite.
Before you create a Sprite class, let’s work on a better way to display sprites and a more advanced game
loop to handle their consistent movement and updating.

Rendering Sprites

You need to do some major revisions to the View class you created. First, let’s use the SurfaceView class
rather than the View class. This is a subtle distinction, but the SurfaceView class has advantages that
speed up your rendering. You cover the ins and outs of the SurfaceView class when you look at
animations in a later chapter. Listing 2-4 shows the new code for GameView.java. Change your current
code to this new revision. It forms a base for your more advanced applications of images and sprites.

CHAPTER 2 � CREATING SIMPLE GAMES WITH SPRITES AND MOVEMENT

35

Listing 2-4. GameView.java

package com.gameproject.graphicstest;

import android.content.Context;
import android.graphics.BitmapFactory;
import android.graphics.Canvas;
import android.graphics.Color;
import android.view.SurfaceHolder;
import android.view.SurfaceView;

public class GameView extends SurfaceView implements
 SurfaceHolder.Callback {

 public GameView(Context context) {
 super(context);

 setFocusable(true);

 }

 @Override
 public void surfaceChanged(SurfaceHolder holder, int format, int width, int height) {
 }

 @Override
 public void surfaceCreated(SurfaceHolder holder) {

 }

 @Override
 public void surfaceDestroyed(SurfaceHolder holder) {
 }

 public void onDraw(Canvas canvas) {
 canvas.drawColor(Color.BLACK);
 }

 public void update() {
 }

}

CHAPTER 2 � CREATING SIMPLE GAMES WITH SPRITES AND MOVEMENT

36

Right now, GameView.java doesn’t perform any meaningful operations besides making the canvas
black. You removed the drawing functions from the class so that you can implement them in your Sprite
and Thread classes later. The first important piece of the new GameView class is that it now implements
SurfaceHolder.Callback. This is responsible for controlling the surface and enabling you to draw on it
from when it’s created until it’s destroyed. With this, you’re given three methods you override:
surfaceChanged, surfaceCreated, and surfaceDestroyed. You soon populate some of these with your
instructions for dealing with sprites and the game loop.

You also use the constructor method of GameView when you need to initiate instances of your Sprite
class. At the end of the code, you have onDraw and update functions. You used onDraw() to put your image
on the screen earlier in the chapter, so it should look familiar. The update function is new; you use it to
call each sprite to update itself. With an ability to handle the images, you can now explore how the game
runs.

Building a Game Loop

To run the game well, you tap into the power of Java’s Thread class. If you’ve done programming in a
modern language, you’ve likely run into threads before. A thread is an independent routine that the
device executes. Threads are nearly always used with other threads in what is called multithreading. This
basically means that threads exist autonomously and are often run simultaneously by a program to
perform different functions. An example is running the graphics of a game in one thread and handling
the physics in another thread. Obviously these two things must happen at the same time, so you
multithread the program.

To build Android games, you use the Java Thread class. You can find the source for the Thread class
in Java.lang.Thread. You don’t have to import this because it’s assumed to be available; however, it’s
critical to remember that this is the class you’re using. For your purposes, threads are very simple. You
create a class that extends Thread, and then you override the run method and put your game loop there.
From that place, you can change the view or deal with collisions or gather input.

Now that you see the changes that we have made in GameView, let’s create the all important
extension of the Thread class:

1. Make a new class in Eclipse, and name it GameLogic. Because GameView.java
handles the appearance of your game, it’s only appropriate that
GameLogic.java handles the behind-the-scenes computations.

� Tip As you make more and more source code files, it’s a great help to name the classes very specifically. If you
have a game that involves different types of sprites or objects, don’t label the classes SpriteOne, SpriteTwo, and
so on. I always attempt to name a class after its exact function, such as EnemySprite or FlyingSprite.

2. Listing 2-5 shows the entire listing for GameLogic.java. Similar to your
implementation of the SurfaceView class, the current code is very spartan.
Copy the code from Listing 2-5 to replace the original code of GameLogic.

CHAPTER 2 � CREATING SIMPLE GAMES WITH SPRITES AND MOVEMENT

37

Listing 2-5. GameLogic.java

package com.gameproject.graphicstest;

import android.graphics.Canvas;
import android.view.SurfaceHolder;

public class GameLogic extends Thread {

 private SurfaceHolder surfaceHolder;
 private GameView mGameView;
 private int game_state;
 public static final int PAUSE = 0;
 public static final int READY = 1;
 public static final int RUNNING = 2;

 public GameLogic(SurfaceHolder surfaceHolder, GameView mGameView) {
 super();
 this.surfaceHolder = surfaceHolder;
 this.mGameView = mGameView;
 }

 public void setGameState(int gamestate) {
 this.game_state = gamestate;
 }
 public int getGameState(){
 return game_state;
 }

 @Override
 public void run() {

 Canvas canvas;
 while (game_state == RUNNING) {
 canvas = null;
 try {
 canvas = this.surfaceHolder.lockCanvas();
 synchronized (surfaceHolder) {
 this.mGameView.update();
 this.mGameView.onDraw(canvas);
 }
 }
 finally {
 if (canvas != null) {
 surfaceHolder.unlockCanvasAndPost(canvas);
 }
 }
 }
 }
}

CHAPTER 2 � CREATING SIMPLE GAMES WITH SPRITES AND MOVEMENT

38

Here is a list of the important methods of GameLogic.java and how each functions:

SurfaceHolder(): Creates a means of manipulating the canvas. In the code for the
run() function, it locks and unlocks the canvas that you draw on. Locking the
canvas means that only this thread can write to it. You unlock it to allow any
thread to work with it.

Gameview(): Creates an instance of your GameView class and uses it to call the
update and onDraw methods that you saw in the previous section.

setGameState(): Creates a system for storing the state of the game at any given
time. Later, you use this when you have a Pause screen or want to display a
message when the player wins or loses the game. The game state also determines
how long you perform the game loop.

run(): When the game is in the running state, attempts to lock the canvas and then
performs your necessary operations, releases the canvas, and prepares to start the
process over again.

Although GameLogic.java may appear simple enough, it doesn’t handle many of the issues that a
game deals with. First, there is no timing system in place. The loop will run as fast as the processor will
allow it to run, so a fast tablet will go quickly and a slower tablet will have a dramatically lower speed.
Later, the chapter addresses this with a very simple way to regulate the amount that a sprite moves when
you have a goal of around 30 frames per second (fps).

GameLogic.java also doesn’t handle any tasks like input or collision detection that will be
implemented later. For now, GameLogic is a tool to perform operations repeatedly without complicating
the GameView class.

Creating a Sprite

The next step in building your game is to create the Sprite class. Although your game needs only one
instance of GameLogic and GameView, you can have dozens of sprites in your game; so the code must be
generic, yet allow you to perform all of your necessary operations on the sprites.

Because there is no real basis for a Sprite class in any Android package, you create the code from
scratch. Basic variables are the root of your class. Examples are the x and y coordinates of the sprite as
well as the sprite’s image itself. You also want to store the sprite’s speed in each direction. Eventually,
the health and other aspects of your sprites will also be stored here. To keep the Sprite class pristine,
you label all of these variables as private and use a function to change their values and retrieve their
values. This is common practice and prevents you from inadvertently changing the values when you
meant to retrieve them, or vice versa.

Listing 2-6 shows the code for your SpriteObject class. Go through the normal process of creating a
new class in Eclipse, and then fill it with this code. The code does some very simple tasks, so you
shouldn’t have much trouble understanding it.

Listing 2-6. SpriteObject.java

package com.gameproject.graphicstest;

import android.graphics.Bitmap;
import android.graphics.Canvas;

CHAPTER 2 � CREATING SIMPLE GAMES WITH SPRITES AND MOVEMENT

39

public class SpriteObject {

 private Bitmap bitmap;
 private int x;
 private int y;
 private int x_move = 5;
 private int y_move = 5;

 public SpriteObject(Bitmap bitmap, int x, int y) {
 this.bitmap = bitmap;
 this.x = x;
 this.y = y;
 }

 public int getX() {
 return x;
 }

 public int getY() {
 return y;
 }

 public Bitmap getBitmap() {
 return bitmap;
 }

 public void setX(int x) {
 this.x = x;
 }

 public void setY(int y) {
 this.y = y;
 }
 public void setBitmap(Bitmap bitmap) {
 this.bitmap = bitmap;
 }

 public void draw(Canvas canvas) {
 canvas.drawBitmap(bitmap, x - (bitmap.getWidth() / 2), y - (bitmap.getHeight() /
2), null);
 }

 public void update() {

CHAPTER 2 � CREATING SIMPLE GAMES WITH SPRITES AND MOVEMENT

40

 x += (x_move);
 y += (y_move);

 }

}

The last two methods of this class—draw() and update()—are the most intriguing. The draw function
is called from the game loop in GameLogic.java. You use the update operation to increment the x and y
coordinates before you render the image to the screen. Notice that you can change the speed of
movement by altering the variables manually, or you can create functions that let you change the speed
of the sprite based on an event like collisions or user input.

Running a Game
With some quick fixes to your GameView class, you can have a completed app that sends your sprite
shooting down the screen. The first order of business is to create an instance of both the GameLogic and
the SpriteObject class within GameView so you can tap into your newly created classes:

1. Open the GameView class so you can add some code to it.

2. Put the two instances of your classes (shown in Listing 2-7) before the GameView
constructor.

Listing 2-7. Making Instances of Your Classes

private SpriteObject sprite;
private GameLogic mGameLogic;

3. Inside the GameView class, you call the constructor of both classes. Be extra
careful about how the arguments are structured, however. The final line gives
you the ability to work with the device. Add the code in Listing 2-8 inside the
GameView constructor.

Listing 2-8. Constructing the New Classes

sprite = new SpriteObject(BitmapFactory.decodeResource(getResources(), R.drawable.star), 50,
50);
mGameLogic = new GameLogic(getHolder(), this);
getHolder().addCallback(this);

4. SpriteObject takes a bitmap and the coordinates of the sprite. The way to get
the bitmap resource is identical to what you did in the first example in this
chapter. GameLogic takes a SurfaceHolder and a GameView. The function
getHolder() is part of the SurfaceView class that lets you send the current
holder to the method.

5. Now you get to take advantage of the new objects in the surfaceCreated
function. Listing 2-9 shows the code you use to start the game loop as soon as
the application creates the surface.

CHAPTER 2 � CREATING SIMPLE GAMES WITH SPRITES AND MOVEMENT

41

Listing 2-9. Starting the Game Loop

@Override
public void surfaceCreated(SurfaceHolder holder) {
 mGameLogic.setGameState(GameLogic.RUNNING);
 mGameLogic.start();
}

6. With the meat of your game started, you have to put your methods into the
onDraw and update routines, as shown in Listing 2-10. Notice that the GameView
class has no call to these functions; they’re instead called from the GameLogic
class.

Listing 2-10. Using the Objects in the Game

public void onDraw(Canvas canvas) {
 canvas.drawColor(Color.BLACK);
 sprite.draw(canvas);
}

public void update() {
 sprite.update();
}

7. The onDraw method gets the sprite to draw itself, and then the update function
has the sprite perform its own update function. Separating the update methods
from GameView reduces the clutter inside the class. Whenever a specific task
must be performed, do it in a separate function to keep your main code clean.

8. All of your code is in place, and the game can now be executed. Make sure all
of the Java sources are saved, and then start the simulator by clicking the green
Eclipse play button.

� Note If you receive errors about not being able to find a class, you may have created your Java files in a
different folder. In the file tree in the left pane, make sure all four files are in the src folder.

If all goes well, you should see the image quickly crossing the screen from upper left to lower right.
As you noticed before, depending on the computer or device that is running the program, the sprite may
move quickly or slowly. With the ability to control the movement of your sprite, you can change the
x_move and y_move values to speed it up or slow it down. The next section deals with cleaning up the user
interface and getting ready for some intense games.

Getting a Professional Look
Games are meant to be played as immersively as possible. To make this possible on a tablet or any
device, you have to remove all the bars and menus that remind the player of the world outside their
game. Android has some features that make this effective, but Android 3.0 includes features that actually

CHAPTER 2 � CREATING SIMPLE GAMES WITH SPRITES AND MOVEMENT

42

mandate having the system bar always visible. Regardless, you can hide the action bar with a simple line
in the MainActivity.java file. Listing 2-11 shows the statement that should go right after the super
command.

Listing 2-11. Removing the Action Bar

getActionBar().hide();

If you run the project now, the top bar that has the Android robot icon in it is gone. The image
should move across the screen as normal. To make your game look more professional, you can change
the default icon into something more suitable for your game. When a player wants to open your game,
they go to their homepage and select the app. Providing a vibrant icon that grabs their attention is
important.

Before creating your own icon, jot down the icon sizes. You need to have 72 72, 48 48, and 32 32
versions. In your graphics editor, create an icon with the largest dimensions, and then scale it down for
the others. When you have the three files, name them icon.png and replace the other icon files in each of
the resolution categories under the res folder.

For now, the only other work to be done is to put a header on your code, like the one shown in
Listing 2-12, so you can distribute your game without worrying about people taking your work without
giving you credit. Granted, anything posted online is liable to be used inappropriately, but putting your
signature on your work can help people ask you questions or at least give credit where credit is due.

Listing 2-12. A Sample Comment Header Above Your Code

/**
 * GraphicsTest – illustration of basic sprite principles *
 * *
 * Author: Kerfs, Jeremy *
 * *
 * Last Modified: Jan 1st, 2000 *
 * *
 * Version: 1.0 *
 * *
 **/

If you’re really interested in protecting your work, you can release the code under a license. For
example, the Android code itself is released under the Apache License Version 2.0, which is very liberal
in allowing users to use the code largely for whatever projects they can dream up. If you release your
code online, be ready to offer it under a license that keeps it open source and lets others develop on it.

� Tip For more information about the Creative Commons license and how open source projects work, go to
http://creativecommons.org/.

Implementing Timing and Complex Motion
Now you can move on to create a system that enables you to accurately set how quickly your game runs.
No longer will the game loop be subject to the whims of the device. To do this, you use a timer and then

CHAPTER 2 � CREATING SIMPLE GAMES WITH SPRITES AND MOVEMENT

43

adjust the movement based on how much time has elapsed. This means that if one cycle takes a very
long time and another takes a short amount of time, the sprite will move a certain distance depending
on that value. Looking at the code is the best way to understand this type of method. Follow these steps:

1. Replace the code in the synchronized block in GameLogic.java with the code in
Listing 2-13.

Listing 2-13. Testing a Constant FPS Game

try {
Thread.sleep(30);
}
catch (InterruptedException e1) {
}

long time_interim = System.currentTimeMillis();
int adj_mov = (int)(time_interim - time_orig);

mGameView.update(adj_mov);
time_orig = time_interim;
this.mGameView.onDraw(canvas);

2. At first, this entire snippet looks foreign. In reality, it performs a couple of
simple tasks:

The try-catch block tells the tablet to wait for 30 milliseconds before
continuing. This operation can produce an exception that you don’t deal
with.

Previously, in the run function right next to the declaration of the Canvas
object, you made two long variables named time_orig and time_interim.
Time_orig was set to the current system time with long time_orig =
System.currentTimeMillis();. Now you set time_interim to the time and
determine how much time has elapsed. You store this in the integer
adj_mov, which stands for adjusted movement. The Update function in the
GameView class is changed to accept this integer as an argument. When this
has been completed, the original time is set to the current time, and the
view is refreshed by calling the onDraw method.

3. Add the code from Listing 2-14 to the update method in GameView.

Listing 2-14. GameView.java with Revised update Function

public void update(int adj_mov) {
 sprite.update(adj_mov);
 }

4. Listing 2-15 shows that the adj_mov variable is passed along to the sprite in
order for it to be incorporated into the movement.

Listing 2-15. SpriteObject.java with Revised update Function

public void update(int adj_mov) {

CHAPTER 2 � CREATING SIMPLE GAMES WITH SPRITES AND MOVEMENT

44

 x += (adj_mov * x_move);
 y += (adj_mov * y_move);
}

5. In this case, the sprite update method multiplies x_move and y_move by the
change in time. I changed the speed constants to 1 in order to keep the
movement at a reasonable pace. This makes sense because if the
computations take a long time, then the movement is multiplied by a greater
number. If the processing is quick, the sprite doesn’t move nearly as far. The
idea of controlling a game’s frames per second has a variety of implications
that you take advantage of in later projects.

Although you would imagine most games wanting to have a time element, many apps can get away
without worrying about this. Think about a chess or tic-tac-toe game. In a turn-based game, timing isn’t
an important aspect.

� Note Sample programs are available from Android’s reference guide that you can look to for inspiration on
different types of games. Check out this page for the code sources:
http://developer.android.com/resources/browser.html?tag=sample. Be wary of the fact that the majority
of the programs were written for earlier versions of Android, such as 2.2 or 2.3. You may want to create an
emulator specific to that version if you’re truly interested in the examples. Porting them to Android 3.0 isn’t
difficult; you can probably do so by enlarging the graphics and screen size.

Detecting Collisions
Although you haven’t worked with gathering input from the user, you can instill a certain amount of
responsiveness in the game by dealing with simple collisions with the walls of the tablet. A quick and
simple implementation is shown in Listing 2-16.

Listing 2-16. Collision Code

if (sprite.getX() >= getWidth()){
 sprite.setMoveX(-2);
}
if (sprite.getX() <= 0){
 sprite.setMoveX(2);
}

Add this excerpt into the update method of the GameView.java file. It’s important to do this before
the call to sprite.update() because you must handle any direction changes before you increment the
position of the sprite.

You may notice that you reference a function that you haven’t yet created. To make this function
work, the SpriteObject class needs two functions called setMoveX and setMoveY. The basic code for these
is shown in Listing 2-17.

CHAPTER 2 � CREATING SIMPLE GAMES WITH SPRITES AND MOVEMENT

45

Listing 2-17. Collision Functions

public void setMoveX(int movex){
 x_move = movex;
}
public void setMoveY(int movey){
 y_move = movey;
}

Before you run this program, I manually changed the y_move to zero so that you can eliminate any
up and down movement. When you play the program, the sprite should bounce back and forth between
the right and left sides of the screen. There should be something strange about the movement, though:
when the sprite gets to the far right onscreen, it disappears most of the way because you’re referencing
your collisions on the location of the sprite, which is given by its center. You can eliminate any
disappearance by taking into account the actual size and dimensions of the sprite.

If you wish to experiment with the necessary changes, go ahead and manipulate the if statement to
reflect the sprite’s absolute left as well as its absolute right. Chapter 7 goes in depth in a discussion of
collisions; you use the RECT element to precisely find intersections between different sprites and the
walls or floor.

� Note Collision detection is a critical aspect of almost any game, and there are a variety of ways to go about it.
When you later want to use bullets or other irregular shapes, you can employ a variety of polygons to find the
intersection of sprites. A quick search on irregular collision detection yields a wealth of information to continue this
topic.

Summary
This chapter covered the methods of rendering images, and you made a framework to manage sprites
and move them around the screen at a consistent rate. With this work, most games should be doable
with your current system. In the next couple of chapters, adding user input and sounds will make a
quality game possible. You work on advanced graphics topics later, when you use OpenGL to speed up
graphics for complex games and add an animation framework to your Sprite class. All this code is
written with the goal of being reusable and applicable to any number of games.

To cap off this chapter, make sure all the code and examples run properly on your system. If you
made any mistakes, you can download the code for Chapter 2 from the website associated with this
book. Before moving on, you need to understand this information so you can easily tackle artificial
intelligence and advanced physics, which expand on the ideas of consistent motion according to a time
schedule.

The next chapter covers a totally different topic: user input. Your sprites can come to come to life
and respond to what the user does. This is a very exciting portion of game development because it’s the
core of interactivity. Otherwise you’d be designing a complicated movie.

C H A P T E R 3
�
������

47

Gathering User Input

So far, your work has lacked the interactivity of a game, chiefly because you have no means of letting
players interact with the sprites and characters. In this chapter, you unlock several forms of input that
you eventually use to control the look and actions that take place in the game. This is also where you get
to unlock some of the amazing features of tablet game programming in Android 3.0. Previously, most of
such work was applicable to older Android phones, but now programmers heavily rely on large
touchscreens to gather touch input.

Unique to the tablet, the user can make large selections; and as a developer, you need to prepare for
this. In addition to this obvious method of interaction, you look at some more unusual inputs, such as
accelerometer data and gestures. Along with input, you cover how event queues can help streamline
your games. But let’s begin with a quick overview of the input devices found on most Android tablets.

Understanding Tablet Input Options
To understand your options, you need to know what tablets offer in terms of gathering data about the
user’s actions. Following is a fairly comprehensive list of the sensors that exist in many tablets. Some
tablets don’t have all of these, whereas others have additional ones:

Touchscreen: Most tablets have a multitouch interface that lets you use input from
several fingers on the screen at one time. The accurate screens now let you create
very small sprites and still enable the user to drag them around due to the screens’
precision. For the majority of games, this is the method of user control. Nearly
every game needs this for its menus at the very least.

Microphone: Tablets running Android 3.0 often have a built-in microphone that
can be used as input. Examples include altering the height of a helicopter based
on either the pitch or the volume of the sound sampling. Although this has many
interesting applications, it isn’t used in most games.

Accelerometer: This sensor measures changes in orientation of a tablet. You may
be familiar with this when you rotate your tablet from landscape to portrait view:
the screen generally adjusts itself based on data from an accelerometer. In flight
games and racing games, this is a fun way to let the user control their vehicle.

Gyroscope: Similar to the accelerometer, a gyroscope measures the rate of turns
along the three axis of movement. This is used for precise motion and can tell you
the exact patterns of rotation. Games that use the accelerometer can also use a
gyroscope.

CHAPTER 3 � GATHERING USER INPUT

48

Proximity: A proximity sensor measures an object’s distance from the phone.
Often these are imprecise and are used primarily to turn off a screen if it’s close to
your cheek (when you’re making a call with a touchscreen phone). Very few games
use this, however.

Although this list includes most of the ways for a game to gather data from the player, you can
access other sensors that describe the player’s area and surroundings. This is no substitute for user
interaction, but it adds realism to a game. Following are the ways most tablets provide to get this
information:

GPS: The GPS location of a device can let the game map be an image of the
surrounding area or can change the scenery or characters of a game. It’s
impossible to take into account all the various locations that a device can be in,
but later you examine ways to incorporate this.

Ambient light: This sensor is primarily used to adjust the brightness of the screen
depending on the external light, but it does offer some advantages to game
developers. One way to incorporate it is to change the game to a night scene if the
user is in a dark place.

Barometer: This sensor is more of a joke than anything. But in reality, a game
could potentially use it to approximate the altitude and adjust the game
accordingly. I haven’t yet seen a game integrate this sensor successfully.

Knowing the various internal sensors you can expect to find on a tablet, you can also begin to
think about additional input devices you might want to connect to it. Android 3.0 comes with the best
support for Bluetooth input of any Android version. Each new release will likely continue to expand this.
Although Bluetooth input may be exciting, the point of writing games for a tablet is to provide users with
a unique experience. If they still must connect their game console, then they may as well use a television.
With that being said, Android now has native support for joysticks, keyboards, and game controllers.

� Note With the advent of televisions that run a hybrid of the Android and Chrome operating systems, it’s
becoming possible to use a tablet as a controller. Connecting a tablet to a TV that runs Android allows the
television screen to display the game while the tablet doubles as a map and controller. The more widely Android is
used to power devices, the more opportunities you have in terms of input.

You’re almost ready to get your hands dirty setting up some input for your games. First, however,
you go over some of the theory behind gathering input. Getting input quickly is critical to a game,
whereas a traditional application (a map or an address book, for example) doesn’t require this speed.

Understanding Tablet Input
For a traditional application, the program usually depends on an input event. What this means is that
nothing happens until the user interacts with the app. Most apps have many different menus and text,
and the code is responsible for sifting through it as soon as the user presses a button. In these cases, a
traditional game loop isn’t necessary because there is nothing to do until a touch event happens. The
same principle applies to older programs for phones that didn’t have touchscreens.

CHAPTER 3 � GATHERING USER INPUT

49

If you wish to make this sort of app, Android makes it very simple for you to add listeners to the
various buttons and images on the screen. By performing specific actions when a button is pressed, you
can manipulate the program’s screen and actions. Surprisingly, this way of working with a tablet has
some relevance for games. Take for example a turn-based strategy game (such as chess): nothing occurs
until the player moves a sprite.

All methods of gathering user input inevitably involve the very important game process. This is the
cycle of events the app goes through. There are nearly as many types of game processes as there are
genres of games. These cycles all process input, determine physics, and give the user feedback (usually
by changing the game’s display). Figure 3-1 shows the game process used for a turn-based strategy
game.

Figure 3-1. The game process for an input-dependent game

� Note If you’re interested in turn-based games, you can check out several examples online. A very simple but
elegant demonstration is the Android sample of a tic-tac-toe game. You can download the source here:
http://developer.android.com/resources/samples/TicTacToeMain/index.html.

Because the majority of modern games are fast-paced and input-intensive, you work on handling
input events while you’re also performing graphics and logic operations. To do this, you gather input
and process it, so as to not interrupt the flow of the game. You may think of this as simultaneously doing
separate things at the same time; but more realistically, you’re noting an input event and then waiting to
handle it when you reach the next game cycle. Figure 3-2 shows how input events are stored until you’re
ready to handle them.

The Thread class discussed in Chapter 2 plays a large role in handling input events. However, the
View class is the place for methods that register an input event. In fact, the View class has several methods
that you override to perform your own work on touch events.

You materially alter your Sprite class because you already have methods like setX(int) and
setY(int) that let you manipulate the sprite once an input event has occurred. You create new events
that change the speed and direction of sprites. Later, a touch event can potentially cause the sprite to
reload its ammo or cast a special spell. By the end of this chapter, you’ll be using certain events to spawn
the creation of a brand-new sprite.

To get a clear idea of how the example game works, Figure 3-2 illustrates how you handle input
events without stalling the game if the user starts quickly tapping the screen. Be careful to notice the
differences between Figure 3-1 and Figure 3-2.

The version of the game process that you use has two additions that aren’t present in the turn-based
game illustrated in Figure 3-1. First, the application path isn’t linear: input events are added to the game
as they’re needed. Second, the game loop manages the entire process, whereas the processing loop in a
turn-based game is controlled by the input. This is a critical difference because your games need to
proceed regardless of what the user is doing, whereas the game in Figure 3-1 must wait for a user
interaction.

CHAPTER 3 � GATHERING USER INPUT

50

Your game’s graphics rendering is also different in that it happens constantly. In a turn-based game,
the graphics are changed after a user-input event occurs. But you’ll update the graphics in each cycle of
the loop even if nothing has changed.

Figure 3-2. The game loop for a continuous game

Figure 3-2 shows a continuous game process that loops through graphics and user input. Any game
cycle that continues without necessitating user input can be referred to as a game loop. Notice that an
input event leads to an input queue where the event is stored until you’re ready to accept and respond to
it. Because your game runs at a high number of frames per second, you don’t have any noticeable lag in
input responsiveness.

Responding to Touch
Android works on a variety of devices, so it has methods to gather all types of input. For you, however,
the most important events are interactions with the touchscreen. Your number-one method is the
following:

Public boolean onTouchEvent(MotionEvent event){
}

This method is inherited from the View class, and you override it in order to perform your own
operations. The key aspect of this function is the parameter it contains. A MotionEvent is an object in
Android that describes a variety of interactions with the tablet. You can find out a lot about the event by
calling methods in the MotionEvent class. This class has many options, but the important functions are
pointed out as you use them. If you’re curious, you can look up the class in the Android documentation:
http://developer.android.com/reference/android/view/MotionEvent.html.

Again, this and several other methods are called from within your GameView class, so you can quickly
pass relevant changes to your Sprite and GameLogic processes. Other input functions that you may deal
with include onKeyDown(), onClick(), and onKeyUp(). If you’re interested in using these, they can be
implemented nearly identically to how you handle generic touch events. Each of these methods returns
a boolean value. This means that when you’re finished processing, you return true, to free the program
to gather the next input.

As you can imagine, with a tablet, a single swipe of the screen may seem relatively simple to a
player; but your app may misinterpret it as several small movements or miss the movement entirely. As

CHAPTER 3 � GATHERING USER INPUT

51

you go, you work on more complex gestures and make sure that even a new player can grasp your
game’s controls.

Let’s take a closer look at how you can handle user input from a touchscreen. Create anew project in
Eclipse to demonstrate user input:

1. Choose File � New � Project � Android Project. Type the name of the new
project as InputTest, and make sure the Activity is entitled MainActivity. It’s
common practice to put your projects in the same root package.

2. Because you’re largely going to reuse classes from earlier, open the folder tree
of GraphicsTest and copy all four .java files to the src folder of the InputTest
project. Also close the window of each class in your editing pane, to make sure
you’re editing the new project’s files. Open all the classes for the InputTest
project, and you’re almost ready to get started.

3. If you still want the same image, move the image file from res � drawable_mdpi
to the new project’s folder. If you desire, you can create a new image to go with
this project, as long as you refer to it properly in the code.

4. You already know that input gathering occurs in the GameView class, so add the
function in Listing 3-1 to GameView. Put this section right beneath the
surfacedestroyed() method.

� Note Many of the topics discussed require additional import statements at the top of your code. The heading
for each listing includes the necessary import statements. Make sure you place these at the top of your file, or
you won’t be able to run the app.

Listing 3-1. Adding Input Gathering to GameView.java (import android.view.MotionEvent)

@Override
public boolean onTouchEvent(MotionEvent event){
 return true;
}

5. This is the full implementation of onTouchEvent; however, it currently doesn’t
perform any meaningful operation. Add the snippet shown in Listing 3-2 to the
code of the function before the return statement.

Listing 3-2. Manipulating the Sprite Based on a Touch Event

sprite.setX((int)event.getX());
sprite.setY((int)event.getY());

6. This code uses your setX and setY functions to move the sprite to wherever the
touch event stopped or to the last position of the finger. Event.getX is a way to
retrieve the location of the last movement event. It returns a float, so you cast it
into an integer to satisfy your method.

CHAPTER 3 � GATHERING USER INPUT

52

7. Because your sprite is constantly zipping across the screen, you remove the
sprite’s movement. Listing 3-3 stops the changed update() method in the
GameView class.

Listing 3-3. Stopping the Sprite Movement

public void update(int adj_mov) {
 if (sprite.getX() > = getWidth()){
 sprite.setMoveX(0);
 }
 if (sprite.getX() <= 0){
 sprite.setMoveX(0);
 }
 sprite.update(adj_mov);

}

8. You must also stop the movement in the SpriteObject class by putting a zero
as the value for the sprite-movement variables.

9. Your background work is complete. Save all the files, and run the app. If you
click the screen, the sprite appears at the location of your last movement.

Also try dragging your cursor over the tablet. You see the sprite frenetically trying to keep up, even
though it lags significantly if you’re using a simulator. A real device has fairly fluid motion. Figure 3-3
shows the result of your work.

Figure 3-3. The star.png sprite was moved to a different location by dragging across the screen.

CHAPTER 3 � GATHERING USER INPUT

53

When you move your cursor on the screen, you may notice that the sprite moves regardless of where
you start your movement. Most games that let you move a sprite have several sprites, so you must select
which sprite you wish to move by touching it first. This brings you to one of the major topics of
touchscreen input: gestures. Even though a drag event is inherently simple, it’s considered a gesture
because it involves a sustained interaction. Other gestures include scrolling, pinching, rotating, and so
on. You learn next how you can create gestures and respond to them within the context of your games.

Responding to Gestures
To do all this magic, you need to become very friendly with the Gesture class in the Android SDK. Before
you work with it in your code, let’s play around with gestures in a sample program created by the
Android development team. You can access this app within the simulator: it’s called GestureBuilder.
Before you do that, though, you have to make some changes to the simulator:

1. GestureBuilder writes files to a tablet’s SD card. If your simulator doesn’t have
this, you can add it easily. Choose Window � Android SDK and AVD Manager.

2. Click the tablet device, and click the Edit button at left on the screen. A dialog
box pops up (as shown in Figure 3-4) in which you type an amount of memory
for the device. I usually use 1,000 megabytes.

CHAPTER 3 � GATHERING USER INPUT

54

Figure 3-4. Setting up the emulator for the GestureBuilder app

3. Click Edit AVD.

4. You’re brought back to the Android SDK and AVD Manager. Click the Start
button; or, if the Start button isn’t available, first select the emulator name, as
shown in Figure 3-5. You’re initiating the emulator from here because you
want to be able to select the app rather than have an app start by default.

CHAPTER 3 � GATHERING USER INPUT

55

Figure 3-5. Launching the emulator from the Android SDK and AVD Manager

5. When the emulator is up and running, go to the icon labeled Apps. Then, click
the GestureBuilder program.

6. Play around with this app for a bit to see how it works. Make a new gesture,
and give it a name. Do a series of swipes to create your gesture. This
application gives you a feel for what a gesture looks like.

If you created a truly great gesture that you want to use in a game, you can get the gesture from the
SD card and reference it in your game code. This is an advanced topic, and you just want to experience
gestures for now; to do this process, following the instructions in the Android documentation:
http://developer.android.com/resources/articles/gestures.html.

Figure 3-6 shows a star gesture that I created. Even though you can draw a star in many ways,
gestures are specific in that the order of the strokes is critical. The tablet is looking for the correct
sequence.

CHAPTER 3 � GATHERING USER INPUT

56

Figure 3-6. Making a unique star gesture

The Android development group has its own program called GestureDemo that lets you perform
gestures for the app to recognize. This chapter doesn’t go over the ins and outs of how the app works
because it has limited relevance to most games. However, it’s worth looking at briefly because you can
see how gestures are recognized. By changing your way of performing a gesture, you find out how
accurate the tablet is at recognizing it:

7. Download the project from http://code.google.com/p/apps-for-
android/downloads/detail?name=GesturesDemos.zip&can=2&q=. Unzip the
folder, and be careful to remember where everything was extracted.

8. Open Eclipse, and choose File � Import � General � Existing Projects into
Workspace.

9. Locate the folder GestureDemo that you downloaded, and fill out the form.
When you click Finish, you have a new project in your workspace. To learn
more about this project, you can visit the web page
http://developer.android.com/resources/articles/gestures.html.

10. Run the new project, and begin performing gestures. If you do a lightning-bolt-
type gesture, it should display Thunder Spell at the bottom.

If you play around with the project long enough, you may notice that it isn’t very accurate at
recognizing some gestures. This is to be expected and is one reason it’s unusual to create custom
gestures. The notable gestures that people are already familiar with, such as pinch and drag, are easily

CHAPTER 3 � GATHERING USER INPUT

57

computed by Android and result in much less confusion. Nonetheless, some games are very exciting
when you can use your hands to perform actions just as you would in real life. You can look up the
Gestures library in the Android documentation to understand gestures better because it is too
complicated of a topic to completely cover in this chapter.

� Tip If you create your own gestures, make them simple and exaggerated. Also, limit your game to one or two
new gestures that are very, very different from each other, to avoid mistakes.

Using Input Queues
Earlier, the chapter discussed how massive amounts of user input can freeze a game and cause it to stall.
You can address this possibility with the very handy InputObject class. Basically, you’re trying to limit
the strain that is put on your main thread when input events happen. Recall that Figure 3-2 showed how
you hold input events before responding to them. This is exactly what you do here. Instead of waiting to
lock up the entire thread, you do the majority of the work in the background.

This system was originally introduced to me by Robert Green, and it’s so efficient and simple that I
have used it ever since. (You can read Robert’s blog about Android development and other musings at
www.rbgrn.net/.) An ArrayBlockingQueue does the heavy lifting for input handling. This is basically a
method for storing objects and then iterating through them later. To use an ArrayBlockingQueue, you
need to import it at the top of each Java file that uses it, as follows:

import java.util.concurrent.ArrayBlockingQueue;

To use this convenient method of storing input events and then handling them later, create a new
class in your InputTest project called InputObject. From now on, you reference InputObjects rather than
MotionEvents to get information about what type of event occurred. There are a variety of reasons for
creating a class like this in addition to speeding up the processing. When you start responding to input,
you’ll notice the increased ease of working with sometimes complex events.

Let’s try this technique:

1. Create the InputObject class, and populate it with the code in Listing 3-4.

Listing 3-4. InputObject.java

import java.util.concurrent.ArrayBlockingQueue;
import android.view.KeyEvent;
import android.view.MotionEvent;

public class InputObject {
 public static final byte EVENT_TYPE_KEY = 1;
 public static final byte EVENT_TYPE_TOUCH = 2;
 public static final int ACTION_KEY_DOWN = 1;
 public static final int ACTION_KEY_UP = 2;
 public static final int ACTION_TOUCH_DOWN = 3;
 public static final int ACTION_TOUCH_MOVE = 4;
 public static final int ACTION_TOUCH_UP = 5;
 public ArrayBlockingQueue<InputObject> pool;

CHAPTER 3 � GATHERING USER INPUT

58

 public byte eventType;
 public long time;
 public int action;
 public int keyCode;
 public int x;
 public int y;

 public InputObject(ArrayBlockingQueue<InputObject> pool) {
 this.pool = pool;
 }

 public void useEvent(KeyEvent event) {
 eventType = EVENT_TYPE_KEY;
 int a = event.getAction();
 switch (a) {
 case KeyEvent.ACTION_DOWN:
 action = ACTION_KEY_DOWN;
 break;
 case KeyEvent.ACTION_UP:
 action = ACTION_KEY_UP;
 break;
 default:
 action = 0;
 }
 time = event.getEventTime();
 keyCode = event.getKeyCode();
 }

 public void useEvent(MotionEvent event) {
 eventType = EVENT_TYPE_TOUCH;
 int a = event.getAction();
 switch (a) {
 case MotionEvent.ACTION_DOWN:
 action = ACTION_TOUCH_DOWN;
 break;
 case MotionEvent.ACTION_MOVE:
 action = ACTION_TOUCH_MOVE;
 break;
 case MotionEvent.ACTION_UP:
 action = ACTION_TOUCH_UP;
 break;
 default:
 action = 0;
 }
 time = event.getEventTime();
 x = (int) event.getX();
 y = (int) event.getY();
 }

 public void useEventHistory(MotionEvent event, int historyItem) {
 eventType = EVENT_TYPE_TOUCH;
 action = ACTION_TOUCH_MOVE;

CHAPTER 3 � GATHERING USER INPUT

59

 time = event.getHistoricalEventTime(historyItem);
 x = (int) event.getHistoricalX(historyItem);
 y = (int) event.getHistoricalY(historyItem);
 }

 public void returnToPool() {
 pool.add(this);
 }
}

2. Let’s dissect this class. Input events like a KeyEvent or MotionEvent are
processed by the function useEvent() in order to create the object that has the
type of the action as well as relevant data about it, like the x and y coordinates
of a touchscreen event. The key part to understand is how the
ArrayBlockingQueue works.

3. It makes more sense in the context of integration into your other classes; but
for now, let it suffice that InputObjects are stored in reverse order of their
addition to the pool of events. This means the first event to occur is processed
first. Obviously, user input must be handled in the order in which it happens.

4. Of special note in the listing is useEventHistory(). Methods like
getHistoricalEventTime() and getHistoricalX() are used to get the original
data of a motion event. Often, a swipe on the screen has several coordinates
and times associated with it, so this is your means of getting the original
location of the event versus the current cursor position.

5. Before moving on, also note that each event has a variable called action that
stores the type of event that occurred. When you want to respond to the input,
you can look up what type of event it was and respond accordingly. This saves
you from performing a lot of guesswork.

6. To implement your new InputObject class, you need to make some major
changes to GameView.java. Inside the GameView class, create the following
variable shown in Listing 3-5.

Listing 3-5. Adding an inputObjectPool Object

private ArrayBlockingQueue<InputObject> inputObjectPool;

7. Under the GameView(Context context), add the line in Listing 3-6.

Listing 3-6. Creating the InputObject Pool

createInputObjectPool();

8. You build this function in the GameView class with the code shown in Listing 3-
7, which you place at the end of GameView.

Listing 3-7. Declaring a Function for Making the Object Pool

private void createInputObjectPool() {
 inputObjectPool = new ArrayBlockingQueue<InputObject>(20);

CHAPTER 3 � GATHERING USER INPUT

60

 for (int i = 0; i < 20; i++) {
 inputObjectPool.add(new InputObject(inputObjectPool));
 }
}

9. Here you initialize the inputObjectPool that stores your input objects. You
make it 20 units long because you’ll likely never exceed this limit (input events
can only happen so fast). The for loop populates the pool with all the
elements.

10. To start sending information to the input object pool, you need to modify the
onTouchEvent that you worked with before. Type the code from Listing 3-8 into
the onTouchEvent() method.

Listing 3-8. onTouchEvent(MotionEvent event)

@Override
public boolean onTouchEvent(MotionEvent event) {
 try {
 int hist = event.getHistorySize();
 if (hist > 0) {
 for (int i = 0; i < hist; i++) {
 InputObject input = inputObjectPool.take();
 input.useEventHistory(event, i);
 mGameLogic.feedInput(input);
 }
 }
 InputObject input = inputObjectPool.take();
 input.useEvent(event);
 mGameLogic.feedInput(input);
 } catch (InterruptedException e) {
 }
 try {
 Thread.sleep(16);
 } catch (InterruptedException e) {
 }
 return true;
}

11. Notice that you lose the functionality of moving the sprite depending on the
positon of the touch event. You add this piece back in the next section. In the
onTouchEvent, you work with a try block to attempt to resolve each event into
an InputObject and then store it for later processing. The call to
mGameLogic.feedInput(input) is where you further access the event when the
thread has the opportunity. Finally, you cause the main thread to sleep for 16
milliseconds to make sure you don’t gather too much input at one time.

12. Reference the calls of useEvent and useEventHistory to their declarations in
the InputObject class. You should be able to see how you create this listing of
the input events that have occurred.

13. You need to add two new methods to the GameView class in GameView.java; see
Listing 3-9. They’re called by the GameLogic to work with the input objects. You

CHAPTER 3 � GATHERING USER INPUT

61

disregard KeyEvent for now because tablets don’t often worry about keyboard
input. MotionEvent, however, is handled just as you did earlier by instructing
the sprite to move to wherever the user last touched.

Listing 3-9. Processing Motion and Key Events

public void processMotionEvent(InputObject input){
 sprite.setX(input.x);
 sprite.setY(input.y);
}
public void processKeyEvent(InputObject input){

}

14. To set the sprite’s x and y position, you access the input object’s last
coordinates. This simple process lets you visualize your operations better
when you’ve abstracted the MotionEvent.

15. To finish your new input pipeline method, you add some code to the
GameLogic class. Listing 3-10 declares two objects that you need to create. Place
this code right beneath the variables that store the game state, such as PAUSE,
READY, and RUNNING.

Listing 3-10. Declaring New Objects for Input Methods

private ArrayBlockingQueue<InputObject> inputQueue = new ArrayBlockingQueue<InputObject>(20);
private Object inputQueueMutex = new Object();

16. You need to make only one change to the run() method, but it’s important that
you place it in the correct location. Listing 3-11 shows the entire run()
function with the addition highlighted.

Listing 3-11. Telling the Main Thread to Process the Input

@Override
public void run() {
 long time_orig = System.currentTimeMillis();
 long time_interim;
 Canvas canvas;

 while (game_state == RUNNING) {
 canvas = null;
 try {

 canvas = this.surfaceHolder.lockCanvas();

 synchronized (surfaceHolder) {
 try {
 Thread.sleep(30);
 } catch (InterruptedException e1) {
 }

CHAPTER 3 � GATHERING USER INPUT

62

 time_interim = System.currentTimeMillis();
 int adj_mov = (int)(time_interim - time_orig);
 mGameView.update(adj_mov);
 processInput(); //this is the new way to process input.
 time_orig = time_interim;
 this.mGameView.onDraw(canvas);
 }
 }
 finally {
 if (canvas != null) {
 surfaceHolder.unlockCanvasAndPost(canvas);
 }
 }
}
}

17. You must now define two functions because you’ve already created methods
that call them. ProcessInput() is where the thread issues instructions about
dealing with the input. Feedinput() handles the operation of the
ArrayBlockingQueue. Place these methods, whose code appears in Listing 3-12,
right below the run() function.

Listing 3-12. Feeding and Processing Input

public void feedInput(InputObject input) {
 synchronized(inputQueueMutex) {
 try {
 inputQueue.put(input);
 } catch (InterruptedException e) {
 }
 }
}

private void processInput() {
 synchronized(inputQueueMutex) {
 ArrayBlockingQueue<InputObject> inputQueue = this.inputQueue;
 while (!inputQueue.isEmpty()) {
 try {
 InputObject input = inputQueue.take();
 if (input.eventType == InputObject.EVENT_TYPE_KEY) {
 mGameView.processKeyEvent(input);
 } else if (input.eventType == InputObject.EVENT_TYPE_TOUCH) {
 mGameView.processMotionEvent(input);
 }
 input.returnToPool();
 } catch (InterruptedException e) {
 }
 }
 }
}

CHAPTER 3 � GATHERING USER INPUT

63

FeedInput() is very straightforward. It grabs the thread with synchronized() and has the input
incorporated into the inputQueue. This method is called by the GameView class once the input object has
satisfactorily categorized.

ProcessInput() is somewhat more complex in how it deals with the inputQueue. It also uses
synchronized() to hold the thread, while it goes through the objects in the inputQueue and either has
processKeyEvent() or processMotionEvent() take care of them. Both of those functions are defined in
GameView.java because you want to be able to issue instructions to your sprite objects there.

After that magnificent change in code, your program now does exactly what it did in the beginning
of the chapter. However, this process will save you huge headaches in the future if your game thread is
working too hard with the input, which a user might interpret that as a nonresponsive program.

Go ahead and fire up the InputTest project. If all of the code compiles properly, then you should be
able to drag the sprite around the tablet screen. Because barely any physics or computing is going on in
the background, there should be no appreciable difference in the application’s behavior. When you add
AI routines and dozens more sprites with backgrounds, you’ll take full advantage of this slick way to
handle input.

With these basic strategies for touchscreen events out of the way, you now examine the more
exciting sensors that make Android tablets interesting.

Responding to Sensor Data
Android provides a simple way to acquire touch events, but sensors are a more complicated matter. This
isn’t to say that getting the data is tricky or difficult, but working with the input in a meaningful way can
be a real challenge. You concentrate on accelerometer data here because it’s the most commonly used
sensor, and the other sensors (such as the gyroscope) are akin to it.

The data that tablet sensors deliver is very precise and usually of the Java long floating-point data
type. This is a mixed blessing because long floating-point data is convoluted and complicated to figure
out. Making things more difficult is the fact that tablets can be held in a variety of orientations. Holding
the tablet in portrait mode completely alters the axis of rotation. To solve this temporarily, you can
assume that the tablet is held in landscape mode. Later, you learn a way to detect the orientation of the
tablet and instruct the user about the correct position for your particular game.

Let’s add some code to the project and see what this sensor data is all about:

1. You need to import another Android library. To do so, add the code in Listing
3-13 to the MainActivity.java file.

Listing 3-13. Getting Access to Sensor Data

import android.hardware.Sensor;
import android.hardware.SensorEvent;
import android.hardware.SensorEventListener;
import android.hardware.SensorManager;

2. You may notice with these imports that you’re talking about hardware-specific
information. It’s possible that the device that runs your game lacks the correct
sensors.

3. Implement the SensorEventListener class in your MainActivity class. To do so,
add implements SensorEventListener directly after the extends Activity line.
When an error message appears, double-click it to create the two events shown
in Listing 3-14.

CHAPTER 3 � GATHERING USER INPUT

64

Listing 3-14. Autogenerated Sensor Methods

@Override
public void onAccuracyChanged(Sensor arg0, int arg1) {
 // TODO Auto-generated method stub

}
@Override
public void onSensorChanged(SensorEvent arg0) {
 // TODO Auto-generated method stub

}

4. This is fairly self-explanatory: the creation of a SensorEventListener and then
two methods that register when a sensor changes accuracy or its values
change. You concentrate most on onSensorChanged() because you’re looking
for the data. There are many other functions besides these that you can use
when you want very specific information from your sensors.

5. Place the lines in Listing 3-15 above the onCreate() method in MainActivity.

Listing 3-15. Creating Sensor Objects

private SensorManager mSensorManager;
private Sensor mAccelerometer;

6. Initialize these sensor objects in the onCreate() method, as shown in Listing 3-
16.

Listing 3-16. Initializing Sensor Objects

mSensorManager = (SensorManager)getSystemService(SENSOR_SERVICE);
mAccelerometer = mSensorManager.getDefaultSensor(Sensor.TYPE_ACCELEROMETER);

7. To handle sensors, you add two basic methods that are already available with
every activity: onPause() and onResume(). You need them here because you
don’t want to continue searching for sensor input when the device is already in
some sort of sleep mode. The code in Listing 3-17 handles this issue.

Listing 3-17. onPause() and onResume()

protected void onResume() {
super.onResume();
mSensorManager.registerListener(this, mAccelerometer, SensorManager.SENSOR_DELAY_NORMAL);
}

protected void onPause() {
super.onPause();
mSensorManager.unregisterListener(this);
}

8. You can look at a modified onSensorChanged() to determine the values of the
pitch, roll, and azimuth. For reference, azimuth is rotation around the z-axis,

CHAPTER 3 � GATHERING USER INPUT

65

pitch is around the x-axis, and roll is around the y-axis. To express the values of
the accelerometer, you introduce a debugging technique for Eclipse and
Android. At the top, import Android.util.Log. Then change onSensorChanged()
to the code shown in Listing 3-18.

Listing 3-18. onSensorChanged (add import android.util.Log)

@Override
public void onSensorChanged(SensorEvent event) {

 float R[] = new float[9];
 float orientation[] = new float[3];
 SensorManager.getOrientation(R, orientation);

 Log.d("azimuth",Float.toString(orientation[0]));
 Log.d("pitch",Float.toString(orientation[1]));
 Log.d("role",Float.toString(orientation[2]));

}

9. Basically, you create two arrays to store values. Then you call on sensor
manager to get the orientation of the device. Finally, you take the orientation
array and print out the values. The Log.d function may look novel to you, but
it’s simply a way to send data to your debugger. Before you run the program,
you can set up the view for reading these values by choosing Window � Show
View � Other � Android � LogCat.

Now, instead of seeing the output of the console, you see tons of data points flashing by as the
emulator starts up. When the application begins running, you see the accelerometer values. Figure 3-7
shows what happens when you use the emulator on a computer and it doesn’t get any changes in
motion.

Figure 3-7. Noting the azimuth, pitch, and roll of a device

When I want to work with sensor data, I always test it on my actual tablet device because it’s so
simple to hold the device in different positions. If you haven’t looked at it already, Appendix A has
information about setting up your tablet for testing. If you’re more adventurous or don’t have a device,
Android has a sensor simulator that can help you when you’re writing code.

You can see the Google code project here:
http://code.google.com/p/openintents/wiki/SensorSimulator. It’s actually a fairly easy proposition to
set up the entire system, but I won’t go into it here. At some point, only a real device can provide
immediacy of response and show you what its processing capabilities are.

The Sensor Simulator does have some advantages over a real device. By correlating the exact
movement values to the way the device responds, you can get a better feel for how well your program is

CHAPTER 3 � GATHERING USER INPUT

66

working. For most developers, it’s difficult to measure a perfect 37-degree rotation just by holding a
tablet.

Using Sensor Data
To incorporate sensor data into the logic of a game and its updates, you need to pass the data into the
game’s View class. First add this to the MainActivity class:

GameView mGameView;

You must also add the code shown in Listing 3-19 to the onCreate() method:

Listing 3-19. GameView Instance

mGameView = new GameView(this);
setContentView(mGameView);

You now have a GameView instance from which you can call various methods. Next, in GameView, you
need to add a new function to which you pass your orientation data to. Listing 3-20 shows the call to add
within onSensorChanged().

Listing 3-20. Sending Sensor Data

@Override
public void onSensorChanged(SensorEvent event) {

if(event.sensor.getType() == Sensor.TYPE_ACCELEROMETER){
 float orientation[] = new float[3];
 for(int i = 0; i < 3; i++){
 orientation[i] = event.values[i];
 }

 mGameView.processOrientationEvent(orientation);

 Log.d("azimuth",Float.toString(event.values[0]));
 Log.d("pitch",Float.toString(event.values[1]));
 Log.d("role",Float.toString(event.values[2]));
}

}

The new portion of the code is the processOrientationEvent() call to gameview. Notice that you’re
sending the orientation data array to it. Listing 3-21 contains the code for processOrientationEvent() in
GameView.java.

CHAPTER 3 � GATHERING USER INPUT

67

Listing 3-21. Processing Sensor Data

public void processOrientationEvent(float orientation[]){

 float roll = orientation[2];
 if (roll < -40) {
 sprite.setMoveX(2);
 } else if (roll > 40) {
 sprite.setMoveX(-2);
 }

}

Here you look at only the roll of the device. If it’s low enough, then you want the sprite to move to
the right. If the roll is high, then you have the sprite move to the left. To make this a bit more exciting,
comment out the lines of the update() function. Listing 3-22 shows what that part looks like now.

Listing 3-22. Letting the Sprite Move Freely

public void update(int adj_mov) {
 if (sprite.getX() >= getWidth()){
 //sprite.setMoveX(0);
 }
 if (sprite.getX() <= 0){
 //sprite.setMoveX(0);
 }
 sprite.update(adj_mov);

}

Test this on your Android tablet device, and you’ll struggle to maintain the sprite within the screen.
If you desire, you can set the movement to zero when the tablet is held relatively straight. Here you use a
very simple implementation of the sensor data, but in the final game project, you add a shake event that
lets the user shake the tablet to restart the level. For now, you can play with the roll, azimuth, and pitch
of the tablet data.

You must understand several aspects of sensor data to make them work. Accelerometer data is
traditionally dealt with based on gravity. Therefore, when the tablet is still, the acceleration is still
around 9.8 m/s^2. Many Android functions handle this for you, but if you come across functions that
don’t, you need to subtract out this gravitational influence. Looking up the Android documentation can
help with this. Humorously, Android has built-in gravity constants for all the planets, including Earth.
This way, you can adjust the accelerometer reading depending on the planet your device is currently on.

Finally, the coordinate axes are unique in that they take into account both magnetic north as well as
the traditional dimensions. This means the x-axis is roughly from east toward the west, whereas y goes
toward north and z points into the center of the Earth. The image in Figure 3-8 is from Android’s own
documentation on the subject.

CHAPTER 3 � GATHERING USER INPUT

68

Figure 3-8. The coordinate axes for Android tablets

Because accelerometer and gyroscope readings are inherently in three dimensions, understanding
matrices is very important for some of their data. To work around this, you should only ask for functions
like getOrientation() where you understand the values to be an array of pitch, azimuth, and roll. You
can experiment with even more sensor data by checking out the Android documentation here:
http://developer.android.com/reference/android/hardware/Sensor.html. At the top of this document,
you can view a list of all the sensor types that Android supports. Check out whether your target devices
contain these before you implement them, though.

Summary
With the information about sensor and touchscreen input combined with the graphics work you’ve
done, you can make your own game. Of course, there is still a lot of work to do in making the sprites
interact properly through collisions and creating new sprite instances. You also have to deal with getting
your game out to market.

Before you go on to any of those advanced sprite and development tasks, you need to understand
the fundamentals of music and sounds for your games. When you think of tablet and phone apps, the
music may rarely register, but that doesn’t mean it isn’t important. A game without sound is boring and
leads people to attempt to run their music player in the background, which slows down your game.
Android has created several fantastic libraries for creating interesting sound effects. You can take
advantage of them to add excitement to your games.

C H A P T E R 4
�
������

69

Adding Sound Effects, Music, and
Video

With a basic understanding of how to work with sprites and handle user interaction, you’re much closer
to a full, playable game. Now you add some elements essential to an immersive playing experience:
sound effects, music, and video.

It’s surprising, but many mobile games neglect sounds and music. Maybe the developers quickly
added a couple of sound effects or put together a simple melody, but that’s it. The audio portion of a
game can really make your work stand out. There is no excuse for poor performance in this area,
because it’s one of the easiest Android game features to implement. The real limits are on what music
you can create or purchase. Several sites already have taken care of this, though, by offering thousands
of free sound files for commercial and noncommercial projects.

Video in mobile games has also failed to fulfill its promise. Much of this may be due to the small
hard-drive space on handsets or the cost of data plans. Tablets, however, boast gigabytes worth of
storage, along with the capability of quickly loading media from web sites and servers. You can use a
quick movie to explain a game or entertain its player while the game assets load. Having a solid musical
score and multimedia show for gamers definitely sets your game above the competition.

In this chapter, you create a new Eclipse project that incorporates sounds and media into your
game. First, however, you address the framework that handles sounds.

� Note In the past, game developers were hesitant to spend time and money on sounds because they believed
mobile-game players wanted to be able to play quietly. With tablets, gaming has shifted to become a more
multiplayer and social occasion where multiple people can enjoy the game simultaneously on the screen; therefore
noise is no longer a concern. Games must still make it possible for players to turn off the sound, however.

Getting Ready for Sounds
Before you can explore sounds in your Android games, you need to find some to use. Android supports a
variety of sound formats, the most popular of which are .mp3, .wav, and .mid. Personally, I prefer to use
an MP3 file for small sound effects, like explosions, and MIDI files for musical scores. This is a common
practice to keep file sizes to a minimum while also using the popular file choices. If you have sounds in

CHAPTER 4 � ADDING SOUND EFFECTS, MUSIC, AND VIDEO

70

other file formats, you can visit Android’s list of accepted media formats here:
http://developer.android.com/guide/appendix/media-formats.html.

Of special interest to some who have a passion for audio and music is the Free Lossless Audio Codec
(FLAC) support that Android provides. FLAC is a format that is much like MP3, but it maintains the
original quality of the sound. This is a great format to use if you have your own recording equipment or a
collection of high-quality files. You can learn more about it at http://flac.sourceforge.net. Only
Android 3.1 and later versions support this format.

Sounds and media files don’t fit into the image resource files you currently have. To store them, you
add them to a new folder named raw in your resources folder. This folder isn’t created by default, so you
make it yourself. Raw is the name you give to any media or miscellaneous file that isn’t a layout or image
file.

Now, let’s locate some sound effects for your Android game.

Finding and Adding Sound Effects
Let’s test some sounds; you can get a great selection online. Arguably the best resource is
www.freesounds.org. You must first open an account at the site, but then you’re free to browse its
gigantic collection and download its sound files. The sounds are released under the Creative Commons
Sampling Plus License. Basically, you’re free to use them for your projects as long as you cite their
licenses and give credit to their creators.

You won’t find many full songs on this site, but there are sound effects for any possible game. For
this chapter’s example, I selected a spacey robot noise:
www.freesound.org/samplesViewSingle.php?id=14259. It was uploaded by the user Harri.

If you examine the file formats on the site, the majority are .wav. You can use these just as you would
as an .mp3.

To get started with a sound effect, follow these steps:

1. Download a sound file that you find interesting, and save it temporarily on
your desktop or a place where you can easily access it.

2. Open the Eclipse IDE, and go through the steps to make a new project. Name it
SoundsTest.

3. Open the InputTest project you built in Chapter 2, and copy all of its files into
their appropriate folders in SoundsTest, including the star.png image and all
of the InputTest.java code. Be sure GameView.java and SpriteObject.java are
among the files you copy.

4. Close the old source code in the editing pane, and open the files from your
new project.

5. To incorporate the new sound into the SoundsTest project build, you need to
create a new file in its res folder. Remember that layout data and images are
stored in this folder; but now you’re dealing with a different file format that
stores media files, so you use a new folder for it.

6. Make a new folder by right-clicking the res folder and selecting New � Folder.
Name the folder raw.

7. Find your audio file, copy it, and paste it into the raw folder. As mentioned, the
raw folder is used to store resources like sound and video files.

CHAPTER 4 � ADDING SOUND EFFECTS, MUSIC, AND VIDEO

71

Now you’re ready to add some sound to a game. This process is similar in many respects to
displaying graphics, but unlike images, sounds have a duration. Because of this, you use a simple way to
play the sound once and let it continue.

Playing a Sound Effect
To access Android’s ability to play sounds, you need to import the Android MediaPlayer library. Its name
explains exactly what it does—it’s used to play sounds as well as videos in your game. The class contains
very few methods that you need to worry about. You see them as you work through the code.

Add the line in Listing 4-1 to the top of the GameView.java file.

Listing 4-1. Getting the Media-Playing Capability

Import Android.media.MediaPlayer

Listing 4-2 shows the code to create a media player object and then make a sound. Only two lines
are needed to play the sound effect during the game. Instead of playing the sound when the game starts
up, you’ll have it play whenever a motion event is detected. Therefore, you add the bolded code into the
function processMotionEvent; because you still have all the code that controls the graphics, you add the
new code beneath the lines that reposition the sprite on the screen. There are some issues with doing
this that you cover as soon as you’ve tested it: namely, your sound will be played whenever there is a
motion, even if the sound was already playing.

Listing 4-2. Playing a Sound When a Motion Event Occurs

public void processMotionEvent(InputObject input){
 sprite.setX(input.x);
 sprite.setY(input.y);
 MediaPlayer robotnoise = MediaPlayer.create(getContext(), R.raw.robot_noise);
 robotnoise.start();
}

The MediaPlayer class is very similar to the SpriteObject class that you created. You initiate the
object, and then you assign it the sound—or, in the sprite’s case, the image. Then you’re free to call its
various functions, which in this example means starting the noise, while the sprite can be moved.

To see this in action, start the project and wait for the game to load. When you drag along the
screen, you hear the sound played. If you’re using the Android emulator, be careful not to drag many
times in a row, or the project will crash from using too many resources to play the sound again and
again.

Now let’s see how you can manage several sounds, each connected with a specific activity. Almost
no game uses only one sound; and whenever multiple sounds are involved, you have to deal with the
possibility of playing multiple sounds at the same time. The next section goes over a class that makes
this a simple proposition.

Managing Multiple Sound Effects
When you consider sound effects and the noise associated with a game activity like gaining health or
shooting an object, you’re looking at sounds that can occur simultaneously or at least very close
together. The MediaPlayer class isn’t well configured for handling tons of sounds that can be played
quickly. To deal with this dilemma, you use a slightly more complicated class called SoundPool. Think of

CHAPTER 4 � ADDING SOUND EFFECTS, MUSIC, AND VIDEO

72

this class as an object that oversees the loading and playing of sounds in the background while the game
moves on. It offers you several benefits over calling a MediaPlayer object.

Listing 4-3 contains all the code you need to update the GameView class to use the SoundPool class. It
adds a large number of functions and procedures, so you need to be very careful that you write the entire
file properly. When you run this application, it will function just like the InputTest application from
Chapter 3, but with the addition of three sound effects that play whenever a motion event occurs. You
use a simple counter to cycle through the available noises.

The new code in the listing is highlighted in bold. Be especially aware of the new packages that you
implement as well as how the SoundPool works. All of this is done in GameView.java without manipulating
any other class. Listing 4-3 shows the entirety of GameView.java so you can be sure everything is fine.

Listing 4-3. GameView.java

package com.gameproject.soundtest;

import java.util.concurrent.ArrayBlockingQueue;

import android.content.Context;
import android.graphics.BitmapFactory;
import android.graphics.Canvas;
import android.graphics.Color;
import android.media.AudioManager;
import android.media.SoundPool;
import android.view.MotionEvent;
import android.view.SurfaceHolder;
import android.view.SurfaceView;

public class GameView extends SurfaceView implements
 SurfaceHolder.Callback {

 private SpriteObject sprite;
 private GameLogic mGameLogic;
 private ArrayBlockingQueue<InputObject> inputObjectPool;

 private int sound_id;
 private Context context;
 private SoundPool soundPool;
 private int ID_robot_noise;
 private int ID_alien_noise;
 private int ID_human_noise;

 public GameView(Context con) {
 super(con);
 context = con;
 getHolder().addCallback(this);
 sprite = new SpriteObject(BitmapFactory.decodeResource(getResources(),
R.drawable.star), 50, 50);

CHAPTER 4 � ADDING SOUND EFFECTS, MUSIC, AND VIDEO

73

 mGameLogic = new GameLogic(getHolder(), this);
 createInputObjectPool();

 soundPool = new SoundPool(10, AudioManager.STREAM_MUSIC, 0);

 ID_robot_noise = soundPool.load(context, R.raw.robot_noise, 1);
 ID_alien_noise = soundPool.load(context, R.raw.alien_noise, 1);
 ID_human_noise = soundPool.load(context, R.raw.human_noise, 1);

 sound_id = ID_robot_noise;

 setFocusable(true);
 }

 private void createInputObjectPool() {
 inputObjectPool = new ArrayBlockingQueue<InputObject>(20);
 for (int i = 0; i < 20; i++) {
 inputObjectPool.add(new InputObject(inputObjectPool));
 }
 }

 @Override
 public boolean onTouchEvent(MotionEvent event) {
 try {
 int hist = event.getHistorySize();
 if (hist > 0) {
 for (int i = 0; i < hist; i++) {
 InputObject input = inputObjectPool.take();
 input.useEventHistory(event, i);
 mGameLogic.feedInput(input);
 }
 }
 InputObject input = inputObjectPool.take();
 input.useEvent(event);
 mGameLogic.feedInput(input);
 } catch (InterruptedException e) {
 }
 try {
 Thread.sleep(16);
 } catch (InterruptedException e) {
 }
 return true;
 }

 @Override
 public void surfaceChanged(SurfaceHolder holder, int format, int width,

CHAPTER 4 � ADDING SOUND EFFECTS, MUSIC, AND VIDEO

74

 int height) {
 }

 @Override
 public void surfaceCreated(SurfaceHolder holder) {
 mGameLogic.setGameState(mGameLogic.RUNNING);
 mGameLogic.start();
 }

 @Override
 public void surfaceDestroyed(SurfaceHolder holder) {
 ssoundPool.release();
 }

 @Override
 public void onDraw(Canvas canvas) {
 canvas.drawColor(Color.BLACK);
 sprite.draw(canvas);
 }

 public void update(int adj_mov) {
 if (sprite.getX() >= getWidth()){
 //sprite.setMoveX(0);
 }
 if (sprite.getX() <= 0){
 //sprite.setMoveX(0);
 }
 sprite.update(adj_mov);

 }

 public void processMotionEvent(InputObject input){

 soundPool.play(sound_id,1.0f,1.0f,10,0,1f);
 sound_id++;
 if (sound_id == 3){
 sound_id = 0;
 }

 sprite.setX(input.x);
 sprite.setY(input.y);
 }

 public void processKeyEvent(InputObject input){

 }

 public void processOrientationEvent(float orientation[]){

 float roll = orientation[2];

CHAPTER 4 � ADDING SOUND EFFECTS, MUSIC, AND VIDEO

75

 if (roll < -40) {
 sprite.setMoveX(2);
 } else if (roll > 40) {
 sprite.setMoveX(-2);
 }
 }
}

Here’s how it works. You begin this implementation by declaring a slew of variables:

Sound_id: Counter to determine which sound you need to play.

Context: Means of getting the instance of the main activity to pass to your sound-
loading function. You’ve dealt with this variable before.

Soundpool: Unique object that controls the various sounds you play.

ID_robot_noise: Integer value of the robot sound file.

ID_alien_noise: Integer value of the alien sound file.

ID_human_noise: Integer value of the human sound file.

You then initiate the soundPool object within the GameView constructor method. SoundPool takes
three arguments: integer number of simultaneous sound streams, integer type of the audio stream (you
use AudioManager to provide this value), and an integer for quality that currently isn’t used.

The stream type is of note because you choose the most common option. AudioManager has other
alternatives, such as STREAM_ALARM and STREAM_RING; they handle the audio files associated with their
activity. A game will likely never need to use anything besides STREAM_MUSIC.

The next three lines load three different audio samples. When you create this project, you need to
have three sound samples in your res � raw folder that correspond to the resource id you pass to the
load() function. The parameters of the load() method are quite simple: the first is the application
context, and the second is the resource id. The final one is unused in Android’s current version.

The load() function returns the id of the sound. This is then used to call the precise audio file you
would like to play. Finally, you assign the sound_ID to the id of the first sound so you start at the
beginning of your list.

Within processMotionEvent(), you have soundPool play one of its audio samples. The parameters are
outlined here:

Integer sounded: Specifies which sound to play.

Float Left Volume: Use the maximum volume of 1.0.

Float Right Volume: Use the maximum volume of 1.0.

Integer Priority: Arbitrarily use 10. The higher the number, the greater the
priority.

Integer Loop: Use 0 to disable looping. -1 is for infinite looping, and positive
integers refer to looping for that value plus one (for example, 5 loops 6 times).

Float Playback rate: Normal playback is 1.0. You can go half speed or double
speed with .5 and 2.0, respectively.

CHAPTER 4 � ADDING SOUND EFFECTS, MUSIC, AND VIDEO

76

The next section of code increments the sound_ID counter and resets it when it has gone through the
entire set of sounds. Also note that under onSurfaceDestroyed(), you call release() for your soundPool
object to disband the object and clean up the memory it used.

To see how this works, play the application. Do the same dragging along the screen that you did
before. A different sound plays every time. Then the list of sound effects cycles back to the beginning.

You can use this technique for a variety of applications in your games. When different monsters are
destroyed, for example, they can play different sounds. The next section covers how you can play sounds
when specific events occur.

Matching Sound Effects to Events
The previous example is all well and good for a cycle of sounds, but in most cases, you have a specific
sound associated with each event. This is very simple to do and involves passing the correct sound id
whenever you want the audio to be played. For example, imagine a situation in which the main
character encounters a terrifying robot. You respond by playing the robot noise to alert the player to the
new event.

Before you worry about the sound effect, you need to figure out whether the robot is near the
character. To do this, you can create a robot sprite and test to see if the two are within a certain number
of pixels. For this example, though, it will suffice to say that you have a way to detect this proximity. In
your GameView.java update() function, you have an if statement that, if true, calls a new method to
respond. Here is the pseudocode:

Public void update(adj_mov){

 If(near_robot){

 playsound(robot_noise);
 }
}

As you progress to develop an entire game, your update function will be loaded with different tests
to determine what needs to be handled. Instead of playing the sound directly from the update()
function, you may create a unique function like robot_encounter() to house all of your operations
related to that event. For now, you need to quickly create a playsound() function.

Playsound() is actually a quicker way to use the soundPool.play() method. Listing 4-4 shows the
code: add it to GameView.java.

Listing 4-4. Playsound()

public void playsound(int sound_id){
 soundPool.play(sound_id, 1.0f, 1.0f, 1, 0, 1.0f);
}

Wherever you wish to play an audio segment, you can call this function when you’re in the GameView
class. When other games need more sounds, as you need them you can create new sound ids that you
can then pass to this handy function.

Without adding much code, you definitely increased the functionality of your game. Because
sounds aren’t rotated or moved like images during the course of the game, they can be initiated and then
left alone. The new dimension you’ve added to your game will help users become more immersed in the
game experience.

CHAPTER 4 � ADDING SOUND EFFECTS, MUSIC, AND VIDEO

77

Adding Music
Music for Android is exciting. Some interesting technology provides amazing functionality. Before you
look into these options, let’s play a MIDI song file during game play. Your old friend the MediaPlayer
class performs this perfectly because it’s designed to play all the media files in Android.

Although music is generally longer than a sound effect, and you use a different file format, it’s
handled nearly identically to the sound effects in the previous sections.

To get free sound effects, you went to www.freesounds.org. For MIDI audios, I use
www.midiworld.com. The site provides a large library of .midi files that you can use in your own creations.
Under the Pop category, I found “Take a Chance on Me” by ABBA. Let’s add it to your app:

1. Download “Take a Chance on Me” (or the song of your choice) to your
desktop. Note that if you have your own MIDI files, Android is picky about
using the .mid extension as opposed to .midi. In the future, Android may offer
support for both, but this has been a common source of issues in the past.

2. Just like a sound effect, drag or copy the .mid file into the res � raw folder of
your project. Before you do this, give it a sensible name that is easy to retype. I
renamed the file background_music.mid for now.

3. With the resource properly stored, you can look at the simple code that is used
to run it. First create a private MediaPlayer variable at the beginning of the
GameView class:

private MediaPlayer mp;

4. Add the following bolded code to the surfaceCreated() method. This is your
way of instructing the tablet to start the music as soon as the screen image is
created:

@Override
public void surfaceCreated(SurfaceHolder holder) {
 mGameLogic.setGameState(mGameLogic.RUNNING);
 mGameLogic.start();

 mp = MediaPlayer.create(getContext(), R.raw.background_music);
 mp.setLooping(true);
 mp.start();
}

5. Because you’ve already dealt with a media player, this code should be self-
explanatory. The MediaPlayer object is created by loading the proper file and
passing the context of the application. You do this to prepare the music for
playing. You then tell MediaPlayer to loop the sample before starting it.

6. To clean up when you’re finished, change the surfaceDestroyed() function
with the following code:

@Override
public void surfaceDestroyed(SurfaceHolder holder) {
 soundPool.release();
 mp.stop();
 mp.release();
}

CHAPTER 4 � ADDING SOUND EFFECTS, MUSIC, AND VIDEO

78

7. That’s all there is to it.

8. Run the SoundsTest application, and you should hear music when the game
starts. If you drag your cursor on the screen, the sounds from your soundPool
play along with the music. You can use the method you’ve created whenever
you want to play a music file in a game.

With the ability to play sound effects as well as music, you’ve finished your exploration of audio for
Android games. The next important media object is, of course, video. The following section covers how
to play a clip during a game. Because movies are media, they’re handled much the same as sounds.

Adding Video
Playing videos during games is unusual, but they have a very important purpose in introducing games or
prior to each level. Fortunately, videos are handled pretty much identically to music and other audio. In
fact, to test a video, you can replace the .mid file with a .3gp file. Then, when the surface is created, the
video will play.

Doing a quick Internet search for 3GP videos offers a plethora of options. If you have music videos
in the .mp4 format, you can also add those to your raw resource folder. Listing 4-5 contains the code used
for playing one of these files.

Listing 4-5. Playing a Video

@Override
public void surfaceCreated(SurfaceHolder holder) {
 mGameLogic.setGameState(mGameLogic.RUNNING);
 mGameLogic.start();

 mp = MediaPlayer.create(context, R.raw.intro_video, holder);
 mp.setLooping(true);
 mp.start();
}

Notice that the bolded argument to the create() method is different from the way you play sounds.
This uses the SurfaceHolder that was passed to the surfaceCreated() function. Because a video needs a
surface to play on, you give the video your SurfaceView to use. The video plays in the upper-left corner of
the tablet’s screen.

With that one quick change, the MediaPlayer is able to play a video. There is nothing else for you to
work on in terms of playing the basic media types! You’re now able to play sound effects, music, and
video. The next section goes back to music and provides a brief introduction to dynamic audio. This is a
neat ability that lets Android change the music that is playing based on changes in the game. You don’t
have to understand all of it, but it’s definitely a unique feature that you may want to consider for your
games.

Managing Music
Images in a game can be manipulated by rotating, transforming, and moving. In comparison, music is
static: it can only be played and paused. In Android, you have ways to make music something that can
be changed on the go. This is a fairly complicated technique, and it will probably be a while before
you’re comfortable enough with it to incorporate it into a game. Here you touch on the surface of the

CHAPTER 4 � ADDING SOUND EFFECTS, MUSIC, AND VIDEO

79

issue with a brief survey of the topic. Afterward, you can continue to explore for yourself and add it to
your applications.

The goal of managing music this way is to create an even more immersive experience. When you
watch a quality movie, the music changes based on what is happening. For example, as the main
character gets ready for a battle, stirring music prepares you for the epic encounter. Slow, romantic
music plays during a sensitive scene. You can achieve the same result in a game. The ideal result is that a
game’s music parallels the actions. When the player gets to a precarious bridge, for example, the music
should shift to a foreboding tone. When the player approaches the end, glorious music pipes in. The
game becomes much more immersive when the musical score isn’t fixed but rather is fluid.

In this example, you use the JetPlayer class for this purpose. Like the MediaPlayer class, it can play
MIDI files with a few extra features. It reads JET files that explain the procedure for playing various
segments of MIDI audio.

Before you experiment with how JetPlayer works, let’s see how to create your own JET content. The
developers for Android created a beautiful environment for you to do this. It’s called JET Creator; and to
use it, you need to install Python onto your computer. Follow these steps to get it set up:

1. Download the appropriate version of Python for your computer at
www.python.org/download/releases/2.7.2/.

2. Follow the instructions of the installer you downloaded. During the
installation setup, you select a location where you want Python to be installed.
See Figure 4-1.

Figure 4-1. Be sure to remember where you place your Python distribution.

CHAPTER 4 � ADDING SOUND EFFECTS, MUSIC, AND VIDEO

80

3. With Python properly installed, you need to install wxPython:
www.wxpython.org/download.php. Again, select the version that is appropriate
for your computer, and begin the installation process.

4. In the Setup Wizard, point wxPython at your Python installation, as shown in
Figure 4-2.

Figure 4-2. If wxPython can’t find your Python installation location, you may need to point it at the folder

Lib\site-packages in your installation.

� Note WxPython is the tool used for a graphical user interface in the Python programming language. If you
didn’t have it, you would be forced to do all your work at a command prompt.

5. Start JET Creator. To do so, go to android-sdk\tools\Jet\JetCreator\ in the
directory where you installed Android, and double-click JetCreator.py. A
dialog box like the one in Figure 4-3 appears.

CHAPTER 4 � ADDING SOUND EFFECTS, MUSIC, AND VIDEO

81

Figure 4-3. Don’t worry if you don’t see a folder path in your Open Jet File dialog box.

6. Click the Import button at far right in the Open Jet File dialog.

7. Find the path android-sdk\tools\Jet\demo_content. Select the ZIP folder
named democontent_1.

8. When prompted, allow the folder to be unzipped in the default location, which
is usually within the Jet folder.

9. You’re presented with the JET Creator program, which lists several different
MIDI files.

You can explore the JET Creator program yourself, but for now it’s critical to know that each of the
MIDI segments can be assigned a variety of events that trigger it. Events are the force that causes the
music to shift from one piece to another. If you’re really interested in creating your own event-driven
music, then you need to become adept at using JET Creator. The best resource for this is the Android
documentation available at
http://developer.android.com/guide/topics/media/jet/jetcreator_manual.html. From there, you can
edit the demo JET content and make it fit possible events in your own game.

Currently, your game doesn’t have readily defined events, so let’s look at an implementation of
JetPlayer in an Android example project called JetBoy. After analyzing the code, you’ll be ready to
implement JET Creator in a future project.

To test this complete game, go to Eclipse and create a new project by completing the New Android
Project dialog with the content shown in Figure 4-4.

CHAPTER 4 � ADDING SOUND EFFECTS, MUSIC, AND VIDEO

82

Figure 4-4. Testing the JetBoy project from the Android examples

With this project, you have several new files and objects worth paying attention too. Because this is
a complete game, it’s complicated; however, it isn’t necessary to understand the entire thing. You only
need to deal with how the JetPlayer class is implemented. Here’s a quick breakdown of the files you’re
working with:

JetBoy.zip: Found in the JetBoy_content folder. Contains the MIDI sequences
and other information for playing the streaming music.

CHAPTER 4 � ADDING SOUND EFFECTS, MUSIC, AND VIDEO

83

Level1.jtc: Found in the res � raw folder. Generated from JET Creator with the
instructions for playing the audio.

Asteroid.java: Asteroid class, which contains some variables.

Explosion.java: Class that handles explosion variables.

JetBoy.java: Main activity that pushes most of the handling of the logic to
JetBoyView.java.

JetBoyView.java: Largest piece of code, which works with the JetPlayer music
content and runs the game engineer.

To fully understand this implementation, I have copied the important methods from the
JetBoyView.java file to Listing 4-6. Following this listing is a brief explanation.

Listing 4-6. JetPlayer

private void initializeJetPlayer() {

 mJet = JetPlayer.getJetPlayer();

 mJetPlaying = false;

 mJet.clearQueue();

 mJet.setEventListener(this);

 Log.d(TAG, "opening jet file");

 mJet.loadJetFile(mContext.getResources().openRawResourceFd(R.raw.level1));

 Log.d(TAG, "opening jet file DONE");

 mCurrentBed = 0;
 byte sSegmentID = 0;

 Log.d(TAG, " start queuing jet file");

 mJet.queueJetSegment(0, 0, 0, 0, 0, sSegmentID);

 mJet.queueJetSegment(1, 0, 4, 0, 0, sSegmentID);

 mJet.queueJetSegment(1, 0, 4, 1, 0, sSegmentID);

 mJet.setMuteArray(muteMask[0], true);

 Log.d(TAG, " start queuing jet file DONE");

}

CHAPTER 4 � ADDING SOUND EFFECTS, MUSIC, AND VIDEO

84

Here’s how JetPlayer works. First, JetPlayer clears any previous files or sequences from its queue.
This provides a clean slate for the next operations. Then it loads the file that contains the information it
needs, which I pointed out earlier. Remember that this was created using the JET Creator application.

The starting sequence is set to 0. The exciting element is queueJetSegment(): this function loads the
sequences of MIDI. It has a long string of parameters that serve to alter the audio, as explained in Table
4-1 from the Android SDK.

Table 4-1: queueJetSegment() parameters from the Android Documentation

Parameter Description

segmentNum Identifier of the segment.

libNum Index of the sound bank associated with the segment. Use -1 to indicate that no sound
bank (DLS file) is associated with this segment, in which case JET uses the General
MIDI library.

repeatCount Number of times the segment is repeated. 0 means the segment plays only once. -1
means the segment repeats indefinitely.

transpose Amount of pitch transposition. Set to 0 for normal playback. Range is -12 to +12.

muteFlags Bitmask to specify which MIDI tracks are muted during playback. Bit 0 affects track 0,
bit 1 affects track 1, and so on.

userID Value specified by the application that uniquely identifies the segment. This value is
received in the onJetUserIdUpdate(JetPlayer, int, int) event-listener method.
Normally, the application keeps a byte value that is incremented each time a new
segment is queued up. This can be used to look up any special characteristics of that
track, including trigger clips and mute flags.

Adding these segments makes better sense when you look at the implementation. Listing 4-7

contains the code for the run() and updateGameState() functions found in JetBoyView.java.

Listing 4-7. JetBoy Game Loop

 public void run() {
 while (mRun) {
 Canvas c = null;

 if (mState == STATE_RUNNING) {

 updateGameState();

 if (!mJetPlaying) {

 mInitialized = false;

CHAPTER 4 � ADDING SOUND EFFECTS, MUSIC, AND VIDEO

85

 Log.d(TAG, "------> STARTING JET PLAY");
 mJet.play();

 mJetPlaying = true;

 }

 mPassedTime = System.currentTimeMillis();

 if (mTimerTask == null) {
 mTimerTask = new TimerTask() {
 public void run() {
 doCountDown();
 }
 };

 mTimer.schedule(mTimerTask, mTaskIntervalInMillis);

 }

 }
 else if (mState == STATE_PLAY && !mInitialized)
 {
 setInitialGameState();
 } else if (mState == STATE_LOSE) {
 mInitialized = false;
 }

 try {
 c = mSurfaceHolder.lockCanvas(null);
 doDraw(c);
 } finally {
 if (c != null) {
 mSurfaceHolder.unlockCanvasAndPost(c);
 }
 }
 }
 }

 /**
 * This method handles updating the model of the game state. No
 * rendering is done here only processing of inputs and update of state.
 * This includes positions of all game objects (asteroids, player,
 * explosions), their state (animation frame, hit), creation of new
 * objects, etc.
 */
 protected void updateGameState() {
 while (true) {
 GameEvent event = mEventQueue.poll();
 if (event == null)
 break;

CHAPTER 4 � ADDING SOUND EFFECTS, MUSIC, AND VIDEO

86

 if (event instanceof KeyGameEvent) {

 mKeyContext = processKeyEvent((KeyGameEvent)event, mKeyContext);

 updateLaser(mKeyContext);

 }
 else if (event instanceof JetGameEvent) {
 JetGameEvent jetEvent = (JetGameEvent)event;

 if (jetEvent.value == TIMER_EVENT) {
 mLastBeatTime = System.currentTimeMillis();

 updateLaser(mKeyContext);

 updateExplosions(mKeyContext);

 updateAsteroids(mKeyContext);
 }

 processJetEvent(jetEvent.player, jetEvent.segment, jetEvent.track,
 jetEvent.channel, jetEvent.controller, jetEvent.value);
 }
 }
 }

Although this code is tough, very little actually must be done to the JetPlayer; once the code has
been added, other games will not need to make significant changes Recall that in the run() function, you
have mjet.play(). This initializes any audio sequences that need playing.

updateGameState() triggers changes to the JetPlayer by changing the jetEvent. In this area, you also
work with explosions, the laser, and the asteroids. Updating the current event is very easy: you cast the
event into the JetGameEvent format. Finally, the last line calls the function that determines the music’s
response to the new event.

If you understand JetPlayer, then you’re more than ready to implement it by editing the JetBoy
game. If you’re unsure about this code and how it works, don’t worry; JET audio is a cool but
nonessential aspect of Android’s media capabilities.

Summary
In this chapter, you explored Android’s multimedia capabilities, including the ability to play sound
effects, music, and video. You also saw how these media can be incorporated into games.

It was a whirlwind tour. You continue to explore these features as you make your own game
increasingly advanced. You can make your games more immersive through a proper implementation of
sounds and audio as well as video.

With more exciting technologies to look at, let’s move on to set up a more immersive experience for
the game player in the next chapter.

C H A P T E R 5
�
������

87

One-Player Game with Obstacles

After learning about graphics, sound, and input for tablet games, you have all the building blocks
necessary for a simple game. In this chapter, you put them together, build a simple game, and ready
yourself for some truly awesome creations. But to build even the simplest game, you need to be able to
keep track of sprites, make them obey some basic laws of physics, and combine them in a way that
engages the user in play.

In this chapter, you build a one-character game with some obstacles. The result is a simple game
that is engaging for a player. All of this is accomplished through the use of sprites. Interactions between
user and sprites along with sprite-to-sprite interactions make up the core of this chapter. The next
section covers how to conceptualize your first true game.

Planning a One-Player Game: AllTogether
For your first playable game, you create a field of unexploded bombs and a character whose goal is to get
from one side to the other without touching one off. To make the game more challenging, you set the
bombs in motion. Let’s call this game AllTogether because it incorporates everything you’ve done so far.

Before you get to the code, you need to do some planning. For example, here are some common
elements found in most playable games. Not every game has all of these, but for the most part, you can
expect them in a typical game:

A user-controlled character (the protagonist) who faces the game’s obstacles and
challenges and must overcome them

Dire consequences, which are the repercussions the protagonist faces as a result
of failing to overcome the game’s obstacles

Rewards for success

These elements may look too obvious, but they’re critical to being able to shape your game properly.
Note that the first criterion isn’t relevant for strategy games where the player controls an entire world.
You work with a strategy game in Chapter 9, so you can see there how that is done.

The first item on the list is where 90% of programming comes in. If you envision your favorite game,
almost the entire thing consists of the journey or quest to achieve certain goals and beat certain levels.
The last two items are often very quick and merely serve to give the game meaning. Failure can mean
running out of air under water, in which case your character dies. Alternatively, it could be that you’re
unable to complete the level quickly enough, and you must start over. Success is obvious when you
reach the end of the stage or kill the final boss.

The game I created for this example has the first ttwo elements taken care of. You add the last one a
little later in this chapter. To keep it simple, I wanted to create a game where the user must navigate

CHAPTER 5 � ONE PLAYER GAME WITH OBSTACLES

88

three objects that are sliding up and down. The user must carefully time the bombs and then have the
reflexes to run through quickly.

If the user hits one of the bombs, they’re sent back to the starting point and allowed to try again. The
game continues until they get bored and turn off the game. After looking at the original code, you add
some features like the ability to display a victory message so the user can recognize their success. Take a
look at the finished product in Figure 5-1.

Figure 5-1. Beating the game

With this quick overview of the game, you’re ready to make it a reality.

Building the One-Player Game
Because you’ve already done so much work in previous chapters, you don’t need to change many things
to build your first real game. The only files from the previous chapter that you must change for your one-
character game are SpriteObject.java and GameView.java:

1. Open a new Eclipse project, and name it AllTogether.

2. Copy all the files from the SoundTest project in Chapter 4. Don’t forget to copy
both the Java source files in the src folder and the resource files in the rsc
folder.

Before you start making changes, let’s go over the procedure for handling motion and collisions.

CHAPTER 5 � ONE PLAYER GAME WITH OBSTACLES

89

Upgrading the Game Sprites
You begin by upgrading your sprites so you can more finely control their motion and detect collisions
between them or with the boundaries of the game. This is a feature that will be instrumental in all your
work from here on.

Adding Finer Motion Control
The speed you built into your last application is too great for your new game. To give you greater control,
let’s increase the precision of the variables that control a sprite’s location and the size of each move.

You accomplish the change by converting the movement and location variables to the Java type
double. Now, instead of being limited to integer values when you want to increase or decrease the speed
of a sprite, you can increment those values by a decimal amount.

This ability is critical when you want slower speeds. The new game has movement adjustments of .5,
which weren’t possible previously—in Chapter 4, the lowest movement value was 1. To achieve this, you
need to change the functions in the sprite class as well as the variable declarations.

To change the precision of your game sprites’ motion and location variables, open
SpriteObject.java and add the code in Listing 5-1 to the definition of the SpriteObject class.

Listing 5-1. Increasing the Precision of Game Positions and Speed

private double x;
private double y;
private double x_move = 0;
private double y_move = 0;

Next, you need some new code to detect collisions between objects. Collision detection is a key
aspect of nearly every video game.

Detecting Collisions Between Sprites
The next big change requires an entirely new function in the SpriteObject class to deal with collisions. If
you have done 2D collision detection before, the solution will look familiar. The function tests two
rectangles for a collision. Recall that because the screens in Android have their origin in the upper-left
corner, if the bottom of the first sprite is less than the top of the other sprite, then there is no collision
because the first sprite is above the second one on the screen.

If there is a collision between the two sprites, then the new method returns true. Intriguingly, when
you search for collisions, you use the bitmap to gather the width. Your sprite class doesn’t store the
width or height directly because it’s already contained in the bitmap. You use this approach to get the
dimensions of a sprite later for collisions with walls.

As with any function that requires a series of if statements, your collision detection is moderately
expensive in terms of processing. You want to eliminate needless collision routines if possible. This is,
however, much better than doing pixel-by-pixel detection that can cause games to reach a near
standstill.

Add the function in Listing 5-2 to the SpriteObject class.

CHAPTER 5 � ONE PLAYER GAME WITH OBSTACLES

90

Listing 5-2. The collision detection function in SpriteObject class

public boolean collide(SpriteObject entity){
 double left, entity_left;
 double right, entity_right;
 double top, entity_top;
 double bottom, entity_bottom;

 left = x;
 entity_left = entity.getX();

 right = x + bitmap.getWidth();
 entity_right = entity.getX() + entity.getBitmap().getWidth();

 top = y;
 entity_top = entity.getY();

 bottom = y + bitmap.getHeight();
 entity_bottom = entity.getY() + entity.getBitmap().getHeight();

 if (bottom < entity_top) {
 return false;
 }
 if (top > entity_bottom){
 return false;
 }
 if (right < entity_left) {
 return false;
 }
 if (left > entity_right){
 return false;
 }

 return true;
 }

In Listing 5-2, you gather the x and y coordinates for each corner of both of the sprites. Remember
that one sprite calls the function and uses a second sprite as the argument. It doesn’t matter which
sprites calls the function. The result will be the same: either true or false. Once you have the data, you go
into four if statements. These examine whether the bottom of the first sprite is lower than the top of the
other sprite. If this were true, then the first sprite would be above the other sprite and a collision would
be impossible. The next if statements are similar in their checks on the position of the two sprites. If
none of the if statements are valid, then there is in fact a collision.

Adding Multiple Sprites
The meat of your changes occurs in the GameView class where you make some major modifications to the
updating functions. Creating an array of SpriteObjects called bomb[] is possibly the most important

CHAPTER 5 � ONE PLAYER GAME WITH OBSTACLES

91

modification. Because the bombs all behave the same, it’s much more convenient to group them this
way than to deal with them individually. Doing so also eliminates needless code repetition.

The initialization of each of those new bomb sprites is also interesting because of their placement
on the screen. The first and last sprites start out low on the screen, whereas the second one is near the
top. This creates a staggered motion during game play to increase the difficulty. When you move to the
surfaceCreated function, the first and last bombs move toward the top of the screen, and the middle
bomb moves toward the bottom.

When you define the movement of the bombs, you’re putting to use the new variables from the
sprite class that can handle decimals. After doing some tests, I found that moving at a speed of 1 was too
fast, so I halved it and used .5. To put your bombs on the screen, the onDraw() function uses a quick loop
to cycle through the three bombs.

The update function contains the magic of the game. Here you define the relationship between the
bombs and player as well as define the behavior of the bombs. The first two for loops keep the bombs
from exceeding the bounds of the game; you want the bombs to bounce back and forth in a band
between the y coordinates 100 and 500. The next for loop checks to see if your main sprite has collided
with any of the bombs. If there is a collision, the sprite is reset at the beginning of the course.

Complete the update function by changing it to the code in Listing 5-3.

Listing 5-3. The new update() function to controll the bombs.

//check for bombs going too low
for(int i = 0; i < 3; i++){
 if(bomb[i].getY() > 500){
 bomb[i].setMoveY(-.5);
 }
}

//check for bombs going too high
for(int i = 0; i < 3; i++){
 if(bomb[i].getY() < 100){
 bomb[i].setMoveY(.5);
 }
}

//check for collisions with the sprite
for(int i = 0; i < 3; i++){
 if(spritecharacter.collide(bomb[i])){
 charactersprite.setX(100);
 }
}

//perform specific updates
for(int i = 0; i < 3; i++){
 bomb[i].update(adj_mov);
}
 spritecharacter.update(adj_mov);

Finally, the update functions for the bombs and the sprite are called. The processMotionEvent shown
in Listing 5-4 also has some key feature changes. The two if statements look for events that signal the
user has engaged and disengaged the screen. When the user touches the screen, the sprite moves

CHAPTER 5 � ONE PLAYER GAME WITH OBSTACLES

92

forward. Otherwise, the sprite stays wherever it currently is on the screen. This method of movement is
similar to the helicopter game where you attempt to navigate a cave: the helicopter moves toward the
ground unless you tap the screen to make it go up.

Listing 5-4. processMotionEvent() method handles touches and releases

if(input.action == InputObjectinput .ACTION_TOUCH_DOWN){
 spritecharacter.setMoveX(.5);
}
if(input.action == InputObjectinput .ACTION_TOUCH_UP){
 charactersprite.setMoveX(0);
}

The code portion of your work is complete. Now let’s work on the graphics involved in the game.

Adding Images for the Sprites
Your hard work is about to come to fruition. But you must add two resources to your project before you
can compile it: an image of a bomb and a figure to represent the character (or player). They’re both
saved as .png files, and the character uses a transparent background so it doesn’t look like a moving
blob. The bomb dimensions are 30 30, and the character size is 70 120.

� Tip Don’t worry if your graphics aren’t impressive; the point is to have something to work with. Drawing on
regular paper and then scanning the image is an easy strategy to improve your work. Touch up the drawing with a
drawing program. Alternatively, learning to use a vector-based program can give your art a huge boost.

Compile and run this project in the emulator as you would any other app. If all goes well, by holding
down on the screen, you should propel your character forward. If you hit a bomb, you start over. Enjoy!

The next section makes the excitement even greater by incorporating a reward.

Adding a Reward for Winning the Game
There are a couple of key points about the game play of this simple app:

You added an obstacle in the form of the bombs. This was compounded by the
quirky controls, which don’t give the user precise movement.

The repercussion for failure is returning to the beginning of the game. It’s extra
severe if you get caught by the last bomb.

Having characters that resemble people has been shown to increase the interest of
players. You did this by no longer moving a star around the screen as in previous
chapters.

You can make this game better by providing a real benefit for winning. To do this, try making a
sprite like the one shown in Figure 5-2 and calling its draw() function when the player reaches a certain

CHAPTER 5 � ONE PLAYER GAME WITH OBSTACLES

93

x-value. Set a variable to true so the sign continues to be rendered, allowing users to bask in their glory.
This aspect isn’t covered in the final code for the chapter because it isn’t one of the core concepts. You’re
free to add it, however.

Figure 5-2. Rewarding the player

Tracking the State of Game Sprites
Because a sprite or an entire game can be in different positions or states, you need to develop a way to
keep track of them. To conceptualize states, look at Figure 5-3. It shows a cycle of three different states.

Figure 5-3. The cycle of states

As Figure 5-3 illustrates, states are liable to change through the course of the game. Games go
through life cycles as well, including startup, loop, and end phases. In Android as well as many other
environments, states are defined as integers that can be accessed from various other classes.

CHAPTER 5 � ONE PLAYER GAME WITH OBSTACLES

94

� Note You already used states when you were trying to find out what type of motionevent occurred. The if
statement determined whether the eventtype was an up or a down action, both of which are integer values
defined in the InputObject class.

All of this code goes into your SpriteObject class, where you handle the states of each sprite. Sprites
such as bombs don’t necessarily have different states, so you don’t use these features for them. In your
own games, you may prefer to create separate sprite classes that inherit basic features from the a high-
level one and then differentiate the sprite subclasses with more specific methods and variables.

Follow these steps:

1. Create four basic states as integers at the top of SpriteObject.java (see Listing
5-5).

Listing 5-5. The constants to represent sprite states

public int DEAD = 0;
public int ALIVE = 1;
public int JUMPING = 2;
public int CROUCHING = 3;

2. My personal preference has always been to assign DEAD to 0 because you often
have the default state equal to 0, and it makes sense to perform some sort of
action in order to make the sprite alive (for example, initiating the level).

3. Another important aspect of states is that they should be exclusive. This means
the character can’t be in more than one state at a timeThe characters will
always start out DEAD until they are initialized. From then on, they are ALIVE
by default until an action is performed like jumping or getting killed..

4. You need to create two quick functions to work with sprite states. Put the
functions shown in Listing 5-6 into SpriteObject.java.

Listing 5-6. getstate() and setstate() functions

public int getstate(){
 return state;
}

public void setstate(int s){
 state = s;
}

5. These functions should look familiar because this is exactly how you access the
sprite’s x and y coordinates.

6. Because the states that you define are public integers, you can test to see if a
sprite is dead with the code in Listing 5-7 in GameView.java. Add this code to
the update function.

CHAPTER 5 � ONE PLAYER GAME WITH OBSTACLES

95

Listing 5-7. Resetting the character if it dies

if(character.getstate() == SpriteObject.DEAD){
 character.setX(100);
 character.setY(400);
}

7. Notice how simple it is to handle basic information like what is currently
happening to the sprite. This become ever-more critical when you look at
complicated states like jumping. Velocity is highest when a sprite first leaves
the ground. It then gradually decreases until the sprite reaches its peak
altitude, after which it gradually speeds up. The changing velocity of the sprite
must be controlled within the update function. You need to find out what state
the sprite is in, in order to change moveY at the correct rate.

8. A normal jump, for example, lasts a predictable amount of time. But what if
the jump is interrupted by hitting a platform? You use the state to quickly asses
the new situation.

9. To completely incorporate states in the game, put the line of code from Listing
5-8 in the if statement that tests for a collision between the character and a
bomb. This is an alternate method for resetting the character’s location when
it hits a bomb instead of immediately doing it within the conditional collision
test.

Listing 5-8. Starting the character as dead.

Character.setState(SpriteObject.DEAD);

All of this functionality is included in the code in Listing 5-9 and Listing 5-10. If you ever get lost, use
this code in your project, and you should end up with a working game.

Listing 5-9. SpriteObject.java

package com.gameproject.alltogether;

import android.graphics.Bitmap;
import android.graphics.Canvas;

public class SpriteObject {

 public int DEAD = 0;
 public int ALIVE = 1;
 public int JUMPING = 2;
 public int CROUCHING = 3;

private Bitmap bitmap;
 private double x;
 private double y;
 private double x_move = 0;
 private double y_move = 0;

CHAPTER 5 � ONE PLAYER GAME WITH OBSTACLES

96

 public SpriteObject(Bitmap bitmap, int x, int y) {
 this.bitmap = bitmap;
 this.x = x;
 this.y = y;
 }

 public double getX() {
 return x;
 }
 public double getY() {
 return y;
 }

 public Bitmap getBitmap() {
 return bitmap;
 }

 public void setMoveX(double speedx){
 x_move = speedx;
 }
 public void setMoveY(double speedy){
 y_move = speedy;
 }
 public void setX(int x) {
 this.x = x;
 }

 public void setY(int y) {
 this.y = y;
 }
 public void setBitmap(Bitmap bitmap) {
 this.bitmap = bitmap;
 }

 public int getstate(){
 return state;
 }

 public void setstate(int s){
 state = s;
 }

 public void draw(Canvas canvas) {
 canvas.drawBitmap(bitmap, (int)x - (bitmap.getWidth() / 2), (int)y -
(bitmap.getHeight() / 2), null);
 }

CHAPTER 5 � ONE PLAYER GAME WITH OBSTACLES

97

 public void update(int adj_mov) {
 x += (adj_mov * x_move);
 y += (adj_mov * y_move);
 }

 public boolean collide(SpriteObject entity){
 double left, entity_left;
 double right, entity_right;
 double top, entity_top;
 double bottom, entity_bottom;

 left = x;
 entity_left = entity.getX();

 right = x + bitmap.getWidth();
 entity_right = entity.getX() + entity.getBitmap().getWidth();

 top = y;
 entity_top = entity.getY();

 bottom = y + bitmap.getHeight();
 entity_bottom = entity.getY() + entity.getBitmap().getHeight();

 if (bottom < entity_top) {
 return false;
 }
 if (top > entity_bottom){
 return false;
 }
 if (right < entity_left) {
 return false;
 }
 if (left > entity_right){
 return false;
 }

 return true;
 }

}

We now look at the code in GameView.java that puts these newly empowered sprites into action.

Listing 5-10. The compelte GameView.java

package com.gameproject.alltogether;

CHAPTER 5 � ONE PLAYER GAME WITH OBSTACLES

98

import java.util.concurrent.ArrayBlockingQueue;

import android.content.Context;
import android.graphics.BitmapFactory;
import android.graphics.Canvas;
import android.graphics.Color;
import android.media.AudioManager;
import android.media.MediaPlayer;
import android.media.SoundPool;
import android.util.Log;
import android.view.MotionEvent;
import android.view.SurfaceHolder;
import android.view.SurfaceView;

public class GameView extends SurfaceView implements
 SurfaceHolder.Callback {

 private SpriteObject character;
 private SpriteObject[] bomb;

 private GameLogic mGameLogic;
 private ArrayBlockingQueue<InputObject> inputObjectPool;

 private int sound_id;
 private Context context;
 private SoundPool soundPool;
 private int ID_robot_noise;
 private int ID_alien_noise;
 private int ID_human_noise;
 private MediaPlayer mp;

 public GameView(Context con) {
 super(con);
 context = con;
 getHolder().addCallback(this);
 character = new SpriteObject(BitmapFactory.decodeResource(getResources(),
R.drawable.sprite), 100, 400);

 bomb = new SpriteObject[3];
 bomb[0] = new SpriteObject(BitmapFactory.decodeResource(getResources(),��
R.drawable.bomb), 400, 500);
 bomb[1] = new SpriteObject(BitmapFactory.decodeResource(getResources(),�
R.drawable.bomb), 650, 100);
 bomb[2] = new SpriteObject(BitmapFactory.decodeResource(getResources(),�
R.drawable.bomb), 900, 500);

 mGameLogic = new GameLogic(getHolder(), this);
 createInputObjectPool();

CHAPTER 5 � ONE PLAYER GAME WITH OBSTACLES

99

 soundPool = new SoundPool(10, AudioManager.STREAM_MUSIC, 0);

 ID_robot_noise = soundPool.load(context, R.raw.robot_noise, 1);
 ID_alien_noise = soundPool.load(context, R.raw.alien_noise, 2);
 ID_human_noise = soundPool.load(context, R.raw.human_noise, 3);

 sound_id = ID_robot_noise;

 setFocusable(true);
 }

 private void createInputObjectPool() {
 inputObjectPool = new ArrayBlockingQueue<InputObject>(20);
 for (int i = 0; i < 20; i++) {
 inputObjectPool.add(new InputObject(inputObjectPool));
 }
 }

 @Override
 public boolean onTouchEvent(MotionEvent event) {
 try {
 int hist = event.getHistorySize();
 if (hist > 0) {
 for (int i = 0; i < hist; i++) {
 InputObject input = inputObjectPool.take();
 input.useEventHistory(event, i);
 mGameLogic.feedInput(input);
 }
 }
 InputObject input = inputObjectPool.take();
 input.useEvent(event);
 mGameLogic.feedInput(input);
 } catch (InterruptedException e) {
 }
 try {
 Thread.sleep(16);
 } catch (InterruptedException e) {
 }
 return true;
 }

 @Override
 public void surfaceChanged(SurfaceHolder holder, int format, int width,
 int height) {
 }

CHAPTER 5 � ONE PLAYER GAME WITH OBSTACLES

100

 @Override
 public void surfaceCreated(SurfaceHolder holder) {
 mGameLogic.setGameState(mGameLogic.RUNNING);
 mGameLogic.start();
 bomb[0].setMoveY(-.5);
 bomb[1].setMoveY(.5);
 bomb[2].setMoveY(-.5);
 mp = MediaPlayer.create(context, R.raw.background_music);
 mp.setLooping(true);
 mp.start();
 }

 @Override
 public void surfaceDestroyed(SurfaceHolder holder) {
 soundPool.release();
 mp.stop();
 mp.release();
 }

 @Override
 public void onDraw(Canvas canvas) {
 canvas.drawColor(Color.GRAY);
 character.draw(canvas);
 for(int i = 0; i < 3; i++){
 bomb[i].draw(canvas);
 }
 }

 public void update(int adj_mov) {
 if(character.getstate() == SpriteObject.DEAD){
 character.setX(100);
 character.setY(400);
 }

 //check for bombs going too low
 for(int i = 0; i < 3; i++){
 if(bomb[i].getY() > 500){
 bomb[i].setMoveY(-.5);
 }
 }

 //check for bombs going too high
 for(int i = 0; i < 3; i++){
 if(bomb[i].getY() < 100){
 bomb[i].setMoveY(.5);
 }
 }

 //check for collisions with the sprite
 for(int i = 0; i < 3; i++){

CHAPTER 5 � ONE PLAYER GAME WITH OBSTACLES

101

 if(character.collide(bomb[i])){
 character.setState(SpriteObject.DEAD);
 }
 }

 //perform specific updates
 for(int i = 0; i < 3; i++){
 bomb[i].update(adj_mov);
 }
 character.update(adj_mov);

 }

 public void processMotionEvent(InputObject input){

 if(input.action == InputObject.ACTION_TOUCH_DOWN){
 sprite.setMoveX(.5);
 }
 if(input.action == InputObject.ACTION_TOUCH_UP){
 sprite.setMoveX(0);
 }

 }

 public void processKeyEvent(InputObject input){

 }

 public void processOrientationEvent(float orientation[]){

 float roll = orientation[2];
 if (roll < -40) {
 character.setMoveX(2);
 } else if (roll > 40) {
 character.setMoveX(-2);
 }

 }

 public void playsound(int sound_id){
 soundPool.play(sound_id, 1.0f, 1.0f, 1, 0, 1.0f);
 }

}

CHAPTER 5 � ONE PLAYER GAME WITH OBSTACLES

102

With all of those changes behind you, you’ve mastered the idea of states and also handled collisions
and precise movement.

Summary
You’ve finally completed your first game. Congratulations! You also created code that you can use in
future games. Adding sprite states is exactly the functionality you need to give your players much greater
control over their characters. Almost any 2D game is now within your grasp to create. Your future
projects will make heavy use of the efficient collision-detection method.

The next couple of chapters survey several different game genres that take advantage of the tablet’s
screen real estate, processing power, and input features. Chapter 6 covers a more complex game in
which the player can use a paddle to hit a ball into blocks: the famous Breakout game. The major issue
there is dealing with physics.

C H A P T E R 6

103

A Ball and Paddle Game

In Chapter 5, you built a simple game in which a player dodged moving bombs. This gave you an excuse
to use many of features and programming concepts central to creating games on an Android tablet. In
this chapter, you build a more sophisticated game.

Your big task for this chapter is to build a pong-type game in which players use a paddle to keep a
ball bouncing as they attempt to hit and destroy blocks with the ball. My first experience with a mobile
game was on an old Blackberry where the only offering was this simple game. I had to control the paddle
with the clumsy Blackberry trackball, and the small screen size and low resolution made the effort less
than satisfying. Surprisingly, that game was written with the powerful Java language, the same one you
use here to create your much more engrossing and fun game.

As you build the paddle game, you’ll master new skills you can add to your toolbox. You add
additional images to your resource files. You replace the character and bombs from the Chapter 5
AllTogether game with a paddle and blocks. To keep the ball in motion, you manage the interaction of
the sprites and detect a greater number of collisions. You have to add some additional physics to the
game, requiring more calculations on the fly. You also reward players more effectively with sounds and
disappearing blocks. Finally, you learn a technique to initialize multiple blocks with a single XML layout
file.

Let’s get started.

Getting Started
Let’s begin by gathering the images and other resources you will use in the paddle game, and then open
a new project for your work.

Gathering Game Resources
Because a pong-style game uses fairly generic shapes and objects, you shouldn’t have a lot of trouble
making the graphics. The most important consideration, of course, is the relative scale and size of each
of the elements. The paddle must be large enough to hit the ball consistently, yet small enough to make
it a challenge for the player. You see as you go that other images can be added if you want to allow
power-ups and bonuses to fall onscreen.

Figure 6-1 shows the images and dimensions of the graphics you use for this game. Notice that each
of them is a different .png file. For my implementation, I drew them myself using GIMP, an open source
tool mentioned in Chapter 2.

In addition to the regular graphics and sounds, Chapter 7 will incorporate the use of a new resource
to store the layout of levels. Instead of coding in the position of each block, you specify it with an XML
layout. This is the tricky part of this project, so I’m saving it for the next chapter. This first demonstration
uses just three blocks without any additional resources for their placement.

CHAPTER 6 � A BALL AND PADDLE GAME

104

Figure 6-1. The block (top image) is 30 50 pixels, the ball (middle image) is 30 30 pixels, and the paddle

(bottom image) is 30 200 pixels.

If you’re concerned about using a black ball (because the background has traditionally been black),
have no fear. You can very easily change the color of the background. In fact, using a lighter color makes
the game more inviting to the player.

� Tip The paddle and ball images are partially transparent. You can do this by selecting the color white to be
transparent in the GIMP program. I strongly suggest you do the same, because the game appears much more
professional if you aren’t dealing entirely with blocks. You’re lucky to have the ability to use images with
transparent layers, when other languages require code to make elements transparent.

This game is much more immersive if you have some nice sounds to go along with the game play.
Because a pong game doesn’t conjure a distinct set of sounds, you’re can use whatever you wish. I chose
to use only one sound: a short MP3 “twang” that plays whenever the ball collides with a block. The code
doesn’t include any other noises or music, but you’re free to add them. When you start a new game, the
simpler it is, the easier it is to find the errors and bugs in your code.

Creating a New Project
Because your game is complete (that is, it has user interaction, an objective, and the ability to win), you
should treat it as a professional app rather than an exercise. Because of this, it’s better to use specific
names for the elements and code. Therefore, let’s name this app TabletPaddle. Although not creative,
this name describes your new take on a pong-style game.

To get started, follow these steps:

CHAPTER 6 � A BALL AND PADDLE GAME

105

1. Make an Eclipse project with your name, and copy the code from the
AllTogether project into your new project. Create a new folder in res, and
name it raw to house the new sounds you add.

2. Upload your assets to their specific folders. Figure 6-2 shows how the project
setup should look.

Figure 6-2. The proper setup for the Tablet Paddle project

3. If you get errors on the project initially, this is due to the absence of the
graphics and sound files that the code is looking for. You fix this in the code
when you work on the app.

4. Open the SpriteObject.java and GameView.java files in the editing pane. You
can leave the other source files alone.

CHAPTER 6 � A BALL AND PADDLE GAME

106

Now that you’ve gathered the resources and opened a new project for TabletPaddle, you’re ready to
code the game elements that you need, prepare the surface on which they’ll be used, and adjust the
game loop.

Preparing the Game Environment
Before you can work on the game loop for, you must initiate all of these new sprites—paddle, ball, and
blocks—each of which has different attributes and properties. You also have to prepare the
environment—the game surface—in which the sprites are used. Let’s start by changing the source files
you opened in the previous section to prepare the way for your new game.

Modifying SpriteObject.java
SpriteObject.java needs an extra function to return the MoveX and MoveY values, which are the variables
that store the horizontal and vertical velocity of the sprites. In this way, you can easily reverse them to
cause the ball to switch directions. In other game types, you may want to check the speed of a sprite to
make sure it isn’t going too fast.

Follow these steps:

1. Add the following two methods to SpriteObject.java:

public double getMoveY(){
 return y_move;
}
public double getMoveX(){
 return x_move;
}

2. You can make another change to SpriteObject.java to make the programming
more convenient for you. Instead of worrying about the adj_mov variable that
keeps the game at a constant rate, let’s opted to let the game run as fast as it
can. This avoids the hassle of dealing with very small movement values, and it
adds unpredictability to an otherwise normal game. To make this change, go
to the update() function, and change the code to read as follows:

public void update(int adj_mov) {
 x += x_move;
 y += y_move;
}

With those small corrections, you’ll have a much easier time working on the game loop. You see the
pieces come together in the coming pages.

Modifying GameView.java
Your game can finally take shape once you work out your processes and updating in GameView.java.
Remember that this is where you store the code that changes the performance and functionality of the
game. Here are the steps:

1. Because this game doesn’t use the noises from the last game, remove these
variable declarations from GameView.java:

CHAPTER 6 � A BALL AND PADDLE GAME

107

private SoundPool soundPool;
private int sound_id;
private int ID_robot_noise;
private int ID_alien_noise;
private int ID_human_noise;

2. Look through your code and remove any references to these elements, because
they will produce errors.

3. You also need to change the two sprite objects that your previous game used.
The larger your games become, the more likely it is that you’ll be using an
array of sprites. This game is no different, and later you work on ways to
populate your array of blocks with an XML document. You can remove the
sprites from the last chapter because you have no use for bombs in this game!
Declare your new sprites in GameView.java:

private SpriteObject paddle;
 private SpriteObject[] block;
 private SpriteObject ball;

4. Add the following variables, which you use to access the screen size when
testing whether the ball touches the edges:

private int game_width;
private int game_height;

� Note If all this deleting and retyping is bothersome, you can download a blank Android project through this
book’s website (http://code.google.com/p/android-tablet-games/). From there, you can create the game
from scratch.

5. The constructor method of GameView must be completely redone to make your
new app work. Listing 6-1 shows the new constructor method, followed by a
brief explanation. Make sure your code is identical to that shown in Listing 6-1.

Listing 6-1. GameView Constructor

public GameView(Context con) {
 super(con);
 context = con;
 getHolder().addCallback(this);
 paddle = new SpriteObject(BitmapFactory.decodeResource(getResources(),
R.drawable.paddle), 600, 600);

 block = new SpriteObject[3];

 block[0] = new SpriteObject(BitmapFactory.decodeResource(getResources(),
R.drawable.block), 300, 200);

CHAPTER 6 � A BALL AND PADDLE GAME

108

 block[1] = new SpriteObject(BitmapFactory.decodeResource(getResources(),
R.drawable.block), 600, 200);

 block[2] = new SpriteObject(BitmapFactory.decodeResource(getResources(),
R.drawable.block), 900, 200);

 ball = new SpriteObject(BitmapFactory.decodeResource(getResources(), R.drawable.ball),
600, 300);

 mGameLogic = new GameLogic(getHolder(), this);
 createInputObjectPool();
 setFocusable(true);
}

6. If you look back at the last project, this should look very familiar. The
soundPool object is removed from the code, and you plug in new coordinates
for the sprites when they’re originally rendered. Sometimes this can be tricky,
so I like to create a blank image in GIMP that is the size of the screen (1280
1040). You can then gather the coordinates that look appropriate for your
game.

7. The previous game involved three bombs, and here you basically replace them
with three blocks. Obviously you want more blocks in the future, but this way
you can reuse all of your for loops to cycle through the bricks. Because you’re
familiar with sprite objects now, notice that the only things you have to change
are the location of the sprites and the image resource to use.

8. You need to get the ball moving. The next function that must be changed is
surfaceCreated(), which you can simplify with only a few changes to the ball
function. You also add two lines to assign the height and width of the canvas or
screen to variables for use in your update function. Add the code shown in
Listing 6-2 to the project.

Listing 6-2. surfaceCreated() Function Override

@Override
public void surfaceCreated(SurfaceHolder holder) {
 mGameLogic.setGameState(mGameLogic.RUNNING);
 mGameLogic.start();
 ball.setMoveY(-10);
 ball.setMoveX(10);
 Canvas c = holder.lockCanvas();
 game_width = canvas.getWidth();
 game_height = canvas.getHeight();
 holder.unlockCanvasAndPost(c);

}

9. This starts the ball moving toward upper right, which should give the player
plenty of time to track its movement and be ready to respond. If the starting
speed you set here seems either too fast or too slow, surfaceCreated() is where
you come back to change it, as you grab the speed from the ball object later on.

CHAPTER 6 � A BALL AND PADDLE GAME

109

10. You also need to change the onDraw() function, but again it isn’t a very
complicated change. The loop to draw all the bricks is identical to the one you
used to update bombs previously. Override your onDraw() function as shown
in Listing 6-3.

Listing 6-3. onDraw() Function Override

@Override
public void onDraw(Canvas canvas) {
 canvas.drawColor(Color.WHITE);
 ball.draw(canvas);
 paddle.draw(canvas);
 for(int i = 0; i < 3; i++){
 block[i].draw(canvas);
 }
}

You’ve dealt with the basics. Now you move on to adding some bells and whistles to your previous
work on collisions and events.

Adding Collision Detection and Event Handling
There is possibly nothing worse than working incredibly hard on a coding task and then realizing it was
unnecessary. To avoid this issue, I spend a good amount of time diagramming and figuring out how the
program will work and what it will look like. Figure 6-3 is a chart that shows what needs to be done and
how the game loop must work.

If you’re working with a team on your app, it’s even more critical for everyone to share a vision for
the finished project. This is when you may want to create concept art so that everyone has something to
look at as they work on the code or assets.

CHAPTER 6 � A BALL AND PADDLE GAME

110

Figure 6-3. The events that you must handle during the game loop. Each box represents anywhere from a

couple of lines to an entire method dedicated to dealing with the changes.

In your previous work, you tested for a collision and then reset the game. TabletPaddle adds a layer
of complexity because you must respond to collisions in a variety of ways. On top of this, the reactions
must be immediate in order to avoid strange behavior like the ball passing through the paddle or going
off the screen.

The good news is that in this game, collisions with the walls, blocks, and paddle all cause the ball to
reverse its movement. For example, when you throw a ball against a wall, it bounces back toward you. If
you threw that same ball against a table, it would also bounce. Once you understand the concept, it’s
readily applied to all of the game elements.

Not all bounces, however, are created equal. Sometimes you need to flip the horizontal velocity,
whereas other times you need to flip the vertical velocity. Alternating the movement of the ball means
the direction of the ball. Your MoveX and MoveY values are in actuality vectors that, when taken together,
represent the ball’s speed and direction. Changing the sign of one of those values (making it negative if
it’s positive or positive if it’s negative) reverses the way is the ball is heading.

Figures 6-4 and 6-5 illustrate how this works. The trick is to detect when the ball needs to change its
horizontal direction and when it needs to change its vertical movement. This is the reason for the
amount of code and the number of if statements you must use in the update() function.

CHAPTER 6 � A BALL AND PADDLE GAME

111

Figure 6-4. If the ball collides with the block from the right side, then it’s deflected toward the right. Here

the horizontal movement changes, whereas the vertical movement remains constant.

Figure 6-5. In this case, the ball hits the block from the bottom, and it bounces back down. Because the ball

still moves toward the right, only the vertical movement changes.

You were able to figure out when two sprites collide, but you never specified which side of the object
was hit by the other sprite. The code in Listing 6-4 deals with this problem by testing the x, y, right side,
and bottom side of the ball against the paddle, walls, and blocks. Notice that you set the blocks to dead
after they’re hit, but you don’t do anything to remove them from the game. This will be taken care of
once you’ve tested your current work.

Listing 6-4 shows the code you use to modify update() for collisions.

Listing 6-4. Update() with Collision Physics

public void update(int adj_mov) {

 int ball_bottom = (int)(ball.getY() + ball.getBitmap().getHeight());
 int ball_right = (int)(ball.getX() + ball.getBitmap().getWidth());
 int ball_y = (int) ball.getY();
 int ball_x = (int) ball.getX();

 //Bottom Collision
 if(ball_bottom > game_height){
 ball.setMoveY(-ball.getMoveY());

CHAPTER 6 � A BALL AND PADDLE GAME

112

 //player loses
 }

 //Top collision
 if(ball_y < 0){
 ball.setMoveY(-ball.getMoveY());
 }

 //Right-side collision
 if(ball_right > game_width){
 ball.setMoveX(-ball.getMoveX());
 }

 //Left-side collision
 if(ball_x < 0){
 ball.setMoveX(-ball.getMoveX());
 }

 //paddle collision
 if(paddle.collide(ball)){
 if(ball_bottom > paddle.getY() && ball_bottom < paddle.getY() + 20){
 ball.setMoveY(-ball.getMoveY());
 }
 }

 //check for block collisions
 for(int i = 0; i < 3; i++){
 if(ball.collide(block[i])){
 block[i].setstate(block[i].DEAD);

 int block_bottom = (int)(block[i].getY() + ➥
block[i].getBitmap().getHeight());

 int block_right =(int)(block[i].getX() + ➥
block[i].getBitmap().getWidth());

 //hits bottom of block
 if(ball_y > block_bottom - 10){
 ball.setMoveY(ball.getMoveY());
 }
 //hits top of block
 else if(ball_bottom < block[i].getY() + 10){
 ball.setMoveY(-ball.getMoveY());
 }
 //hits from right
 else if(ball_x > block_right - 10){

CHAPTER 6 � A BALL AND PADDLE GAME

113

 ball.setMoveX(ball.getMoveX());
 }
 //hits from left
 else if(ball_right < block[i].getX() + 10){
 ball.setMoveX(-ball.getMoveX());
 }

 }
 }

 //perform specific updates
 for(int i = 0; i < 3; i++){
 block[i].update(adj_mov);
 }
 paddle.update(adj_mov);
 ball.update(adj_mov);

}

Before you start testing for collisions, you need to define the points of the ball. This saves you the
time of getting the width and location of the ball every time you need to use the width and location of the
ball. I suggest you do this whenever possible because it really clears up your code and makes it easier for
others to read.

The next four if statements do the rather easy task of checking to see if the ball has hit one of the
edges of the screen. The methods getMoveX() and getMoveY() that you created in SpriteObject are used
several times because you want to invert whatever movement the ball previously had. Collisions with the
side walls obviously change the horizontal movement, whereas the top and bottom cause shifts in the
vertical direction of the ball.

You may have astutely noticed that you’re merely bouncing the ball off the bottom of the screen
rather than penalizing the player for it. This makes editing the game easier, because you don’t have to
worry about restarting it all the time.

� Tip Often, when I create a game, I leave myself “outs” or cheats so I don’t have to play my way through the
entire game to test a single piece. For example, I don’t want to battle through 10 levels of a game in order to test
the final challenge; rather, I need to skip to that portion.

The code that checks for the ball colliding with the paddle may look deceptively simple because you
only want to find out if the ball hits the top of the paddle. Although it’s conceivable for the ball to hit the
side of the paddle, this would only change the horizontal movement of the ball and still cause the ball to
hit the bottom of the screen, which ends the game. To avoid needless processing, let’s not worry about
collisions with the sides. It’s easier to see the concept without additional aspects.

The code for the paddle makes sure the ball is within 20 pixels of the top of the paddle. Because the
ball can move only ten units in any direction at a time, it will never overshoot this window. Always
ensure that this area exceeds the maximum movement of the sprites, so you don’t have to deal with a
ball or other item stuck inside another sprite.

CHAPTER 6 � A BALL AND PADDLE GAME

114

Collisions with blocks are a different story. To handle the blocks, which must be capable of being hit
from all sides, you have to do a little more work. The main point is that you first assign some variables to
more easily access the block’s location and dimensions. You then test first for the top and bottom
collisions, which are the most likely. Then you test the left and right side hits. Notice that the order in
which you look at the collisions affects the overall behavior of the ball.

Once one of the conditions is true, the game stops searching for more possible collisions. Figure 6-6
illustrates this concept. The left and right collision boxes are fairly small because you don’t want to risk
messing up a top or bottom collision.

Figure 6-6. Where the ball can collide with the block

Adding Touch, Sound, and Rewards
Now you’re ready to finish the application. You need to give the user control over the game paddle, and
add sound and some payoffs to engage players.

Adding Touch Control of the Paddle
The AllTogether project used the touch and release of the tablet screen to propel the character forward.
In TabletPaddle, the paddle moves horizontally based on the user dragging across the screen. You let the
user drag the entire paddle around the screen for the purpose of testing collisions. When you’re finished
with the game, you can lock the paddle’s y position by not allowing the user to drag the paddle freely.

Follow these steps:

1. Following is the new processMotionEvent() that updates the position of the
paddle according to the position of the last finger touch. Change the code of
your project accordingly:

public void processMotionEvent(InputObject input){
 paddle.setX(input.x);
 paddle.setY(input.y);
}

CHAPTER 6 � A BALL AND PADDLE GAME

115

2. The code requires some minor cleanup as well. Do you remember the
playsound() function and the processOrientationEvent code? Well, you can
safely comment those out.

3. With the ability to control the paddle, you’re finally ready to try TabletPaddle.
Run the program as usual, and play the game. It may not be immensely
entertaining, but it’s a surprisingly functional game for very limited coding.
Figure 6-7 shows the result you can expect.

Figure 6-7. TabletPaddle

Adding Sound
The game can be played, but it’s far from complete. The next order of business is to add sound to the
game. You can do this by following the procedure from the previous chapters. Because you want only
one sound, you can use the MediaPlayer class rather than work with SoundPools:

1. Add this variable to the variables list at the start of the program:

Private MediaPlayer mp;

2. Insert this code in the constructor of GameView.java:

mp = MediaPlayer.create(context, R.raw.bounce);

3. Listing 6-5 shows the portion of the update() function where you place the
instruction to play the sound. Recall that you play the sound no matter what
side of the block the ball hits.

CHAPTER 6 � A BALL AND PADDLE GAME

116

Listing 6-5. Update() with Sound

//check for brick collisions
for(int i = 0; i < 3; i++){
 if(ball.collide(block[i])){
 block[i].setstate(block[i].DEAD);

 mp.start();
 int block_bottom = (int)(block[i].getY() + block[i].getBitmap().getHeight());
 int block_right =(int)(block[i].getX() + block[i].getBitmap().getWidth());

 //hits bottom of block
 if(ball_y > block_bottom - 10){
 ball.setMoveY(ball.getMoveY());
 }
 //hits top of block
 else if(ball_bottom < block[i].getY() + 10){
 ball.setMoveY(-ball.getMoveY());
 }
 //hits from right
 else if(ball_x > block_right - 10){
 ball.setMoveX(ball.getMoveX());
 }
 //hits from left
 else if(ball_right < block[i].getX() + 10){
 ball.setMoveX(-ball.getMoveX());
 }
}
}

Instantiating the Blocks
With some noise going on, you can figure out a way to add a lot more blocks and make the game
interesting. Instead of going through the arduous process of hard-coding the position of each block, you
can put the x and y positions into an XML document. Android is very clever when it comes to storing
data in another XML file. In fact, this practice is highly encouraged because it makes the code more
readable and editable with only a slight lag in performance that usually isn’t noticeable.

Here are the steps:

1. Create blockposition.xml by right-clicking on the values folder within the res
folder and selecting new, then “File”. Type the name as blockposition.xml.
Following is the starting code to type into this new file. The goal is to keep the
blocks in the same position but allow you to add more as you see fit:

<resources>
 <integer name="blocknumber">3</integer>

 <integer-array name="x">
 <item>300</item>
 <item>600</item>

CHAPTER 6 � A BALL AND PADDLE GAME

117

 <item>900</item>
 </integer-array>

 <integer-array name="y">
 <item>200</item>
 <item>200</item>
 <item>200</item>
 </integer-array>

</resources>

2. All this code does is establish an integer value of 3 that specifies how many
blocks there will be. Then, two arrays handle the x and y positions of the
blocks, respectively. When you add more blocks, update the blocknumber value,
and add more positions for the blocks.

3. To access data stored in the XML file, declare these variables at the top of
GameView.java:

private Resources res;
private int[] x_coords;
private int[] y_coords;
private int block_count;

4. You’re using the Resources class, so add the following line to your set of
imports:

import android.content.res.Resources;

5. Within the constructor for GameView.java, delete the lines dealing with the
blocks. You’re going to completely redo that portion. Following is the new and
improved code that pulls the data from the XML document that you created:

res = getResources();
block_count = res.getInteger(R.integer.blocknumber);
x_coords = res.getIntArray(R.array.x);
y_coords = res.getIntArray(R.array.y);
block = new SpriteObject[block_count];
for(int i = 0; i < block_count; i++){
block[i] = new SpriteObject(BitmapFactory.decodeResource(getResources(), R.drawable.block),
x_coords[i], y_coords[i]);
}

6. res is basically your handler to call the functions getInteger() and
getIntArray() from the XML file. The arrays and integer are stored, and then
you go through a for loop, creating each of the new blocks. You no longer
specify the number of blocks in the code, so it’s very easy to change the
number.

7. Unfortunately, you originally specified 3 as the number of blocks. Now you
need to replace that value in the onDraw() and update() functions. Find those
spots, and insert block_count where you see 3 in the for loops. The update()
method has two locations where this change must be made because it calls the

CHAPTER 6 � A BALL AND PADDLE GAME

118

update() functions of each sprite at the end and needs to check each block for
collisions with the ball.

� Note One of the reasons I like to store the layout and position of the blocks in an XML file is to be able to easily
compare where each block is. For example, the three blocks that you use first all have a y value of 200. This
makes it easy to slowly increment the x value because you can notice the trend in the vertical position. Because
the blocks are 30 pixels high, you could make the next set of blocks at the vertical position y = 230.

Removing Dead Blocks
One major issue must be addressed before the game can be taken seriously: the blocks must disappear
after they have been hit. You already set their state to dead, but you don’t respond to the state in any way.
To address this, you have some work to do in the SpriteObject.java file.

Basically, every function must have an initial if statement that checks its state. If the block is alive,
then the action continues. If not, the function returns null and doesn’t worry about the dead sprite.

Follow these steps:

1. Add this statement to the SpriteObject constructor to ensure that all sprites
that are created are made alive. There is no use in initializing a dead sprite:

state = ALIVE;

2. Look at the code in Listing 6-6 for draw(), update(), and collide(). A simple if
statement proceeds only if the sprite is alive.

Listing 6-6: draw(), update(), and collide()

public void draw(Canvas canvas) {
 if(state == ALIVE){
 canvas.drawBitmap(bitmap, (int)x - (bitmap.getWidth() / 2), (int)y -
(bitmap.getHeight() / 2), null);
 }
}

public void update(int adj_mov) {
 if(state == ALIVE){
 x += x_move;
 y += y_move;
 }
}

public boolean collide(SpriteObject entity){
 if(state == ALIVE){
 double left, entity_left;
 double right, entity_right;
 double top, entity_top;
 double bottom, entity_bottom;

CHAPTER 6 � A BALL AND PADDLE GAME

119

 left = x;
 entity_left = entity.getX();
 right = x + bitmap.getWidth();
 entity_right = entity.getX() + entity.getBitmap().getWidth();
 top = y;
 entity_top = entity.getY();
 bottom = y + bitmap.getHeight();
 entity_bottom = entity.getY() + entity.getBitmap().getHeight();

 if (bottom < entity_top) {
 return false;
 }
 else if (top > entity_bottom){
 return false;
 }
 else if (right < entity_left) {
 return false;
 }
 else if (left > entity_right){
 return false;
 }
 else{
 return true;
 }
 }

 else{
 return false;
 }

}

The only real trick to this is that the collide() function needs an else statement at the end because
a value must be returned from the method. Otherwise you have integrated a very simple procedure that
makes your blocks disappear as soon as they’re hit. You can still access the x, y, bitmap, and state of the
blocks, but there is no need to do so.

Summary
You accomplished a lot in this chapter. As it stands, TabletPaddle is a decent game that has a lot of room
for development and improvement. The difficult and core functionality is present, the physics handles
collisions fluidly, and the game responds quickly and correctly. I have compiled a list of some ideas to
add to the game that may spark your interest. None of them involve Android touch programming, but
they do involve logic and creativity:

Reset the game when the ball hits the ground: Right now, the ball just continues to
bounce. What if an image with the words “Game Over” appears?

Keep score: You can detect when a ball is hit, so why not track the number of hits?
Users can then see how well they’re doing.

CHAPTER 6 � A BALL AND PADDLE GAME

120

Add levels: This task might be fairly demanding, but remember that the only
difference between levels of this game would be the layout of the blocks.

In the brickposition.xml file, you could create sets of integers and integer arrays that store the
location for the blocks within each level. After this chapter, you’re on your way to making some killer
apps. You learned some new skills as you worked through the ins and outs of handling collisions
between a ball, a paddle, and blocks. You also covered some game logic and developed an intriguing way
to handle complex collisions. In the all-important world of reacting to users’ input, you provide sounds
and make blocks disappear to reward users’ work.

In the future, you increase the complexity of the tablet’s actions. Specifically, in the next chapter,
the processor will have a mind of its own. Instead of working only on the action of the player, the code
can create events itself and make the player respond to unpredictable behavior.

C H A P T E R 7

121

Building a Two-Player Game

You have done some fantastic work on games for Android tablets. Now you’re going to add another level
to the work by enabling one person to play against others who are nearby. This is a crucial step in
making games that gather a huge following. If you look at the numerous popular games right now, the
vast majority are played primarily for the ability to play friends and strangers from users’ own homes.

Adding the functionality that connects multiple devices gets fairly complicated. Luckily, the Android
documentation provides samples that you can adapt to achieve your goals, so all you have to do is
understand how the code works and then incorporate it into your games.

In this chapter, you work on various aspects of multiplayer games including the different types and
implementations. Then you move on to focus on Android specifically. At the end of the chapter, you’ll
understand how to create and adapt your own games for a multiplayer experience. Before you dive in,
let’s look first at the different types of multiplayer modes and how they are typically implemented.

� Note If you’re confused about any portion of the code in this chapter, keep reading, and it will all come
together. If you’re still confused, check online for solutions or run the programs and change only the portions of it
that you need to. The Android documentation is always a great starting place:
http://developer.android.com/guide/index.html. Often, it isn’t necessary to be able to write all of the code
as long as you understand how it works.

Understanding Multiplayer Games
Have you ever played a first-person-shooter game against others through a video game console or your
personal computer? These games make video game companies hundreds of millions of dollars each year
because of their ability to engage other players, not just computer-created characters.

Online games that involved entire worlds are also very popular (think of World of Warcraft). Tablets
and phones are also catching onto this craze for more and more connectivity. Possibly the newest genre
of multiplayer game is the social game. Farmville, Mafia Wars, and the various other products connect to
social networking sites (most notably Facebook) to transfer information about your progress to the
games that your friends are playing.

CHAPTER 7 � BUILDING A TWO-PLAYER GAME

122

Multiplayer Games through a Server
All the games just mentioned involve connecting players through a server. This means the devices or
players aren’t connecting directly to each other but rather through another entity. In fact, web sites on
the Internet use this same method: you (the client) get the web material from the web site (the server).

Figure 7-1 is a simple diagram that illustrates several people connecting to a server in order to play a
multiplayer game.

Figure 7-1. A group of players from different locations log onto a central server and are then able to play

against one another.

Before you examine the advantages and disadvantages of server-type multiplayer games, it’s helpful
to be able to compare this approach to something else. Let’s look at the peer-to-peer method.

Multiplayer Games with Peer-to-Peer
When players connect directly to one another, then they’re using a peer-to-peer (P2P) network. P2P-
enabled games played by opponents within a few feet of each other are typically implemented using
Bluetooth, a local area network protocol available on most Android tablets. This means no entity is
controlling all of the communications. If you’ve used a P2P file-sharing network (for example, using
torrents to download large files from other users rather than a single server), then you’ve connected to
other computers like your own to download files; you didn’t need a large server to which everyone was
connected. Many large video games for consoles don’t use peer-to-peer because you would be limited to
just a few players at a time.

To see the difference between a server-client game and a peer-to-peer game, take a look at Figure
7-2.

Figure 7-2. Two players connect directly to one another in order to compete in a game.

Obviously, these two strategies for multiplayer games are very different, but you may wonder which
is better. There is no right answer; rather, there are instances when one is superior to the other.

Game Server

Player #1

Player #2

Player #3

Player #1 Player #2

CHAPTER 7 � BUILDING A TWO-PLAYER GAME

123

Choosing a Multiplayer Method
Table 7-1 and Table 7-2 hash out some of the major pros and cons for the two multiplayer methods. This
isn’t an official list (and some people may disagree about whether something is a positive or a negative),
but it gives you a very important grasp of how to choose your solutions.

Table 7-1. Server-Client Multiplayer Pros and Cons

Pros Cons

Allows many players to access the game
simultaneously.

Requires additional equipment and possibly fees
associated with a server.

Reduces some of the computing for the individual
devices.

A server crash affects every player.

Is much easier to update/fix. The developer must write additional code to
handle the server operation.

Players can be located across the world from each
other.

Players can’t easily communicate unless through
an online chat.

Table 7-2. Peer-to-Peer Multiplayer Pros and Cons

Pros Cons

Less code is required from the developer. If a bug is detected, each player must download
the updated version.

One device malfunctioning doesn’t stop the game
from running on the other devices.

The number of players is usually limited.

No need for server equipment (all of the devices
contain the necessary technology).

The players’ devices must do all the processing
themselves.

Players are usually near each other and can talk
while playing.

It’s almost impossible to play against people
across the globe.

If you’ve looked over these tables thoroughly, you should have noticed that the Pros column for the

server-client method is the Cons column for the peer-to-peer, and the Pros for the peer-to-peer are the
Cons of the server-client. However, adding up the pros and cons of each type doesn’t lead to a correct
choice. Instead, you must have a plan for what you desire to create and then select the method that best
allows your goals to be achieved.

In the rest of this chapter, you adapt the Tablet Paddle game you built in Chapter 6 for two players,
each of whom has control over one of two paddles displayed on their tablet. Because multiplayer
programming can be complex, this chapter goes over the main concepts. The entire code is available
here for you to work with: http://code.google.com/p/android-tablet-games/.

CHAPTER 7 � BUILDING A TWO-PLAYER GAME

124

Because you only need to accommodate two players at a time, and you want to use the most
efficient means of creating such a game, you use the peer-to-peer multiplayer game model. And instead
of using an Internet connection over a 3G or Wi-Fi network to connect the players, you connect them
directly using the Bluetooth network available on most Android devices. By choosing this path, you save
huge amounts of time that would have been spent setting up server architecture and ensuring that
devices could properly connect.

� Tip For the beginning game programmer, it’s best to stay away from server-client multiplayer games because
they’re nearly always much more complex. Don’t be discouraged by this; you can create a plethora of great games
from a Bluetooth connection. The added excitement for players in this case is that they’re almost always near each
other and can either talk each other through tricky levels or engage in some fun trash-talking.

Building a Two-Player Peer-to-Peer Game
As a developer, you can be reasonably assured that most Android tablet devices support Bluetooth.
Nearly all modern phones support Bluetooth to connect wireless headsets for hands-free calling. This
technology is implemented in tablets to allow for use of the same headsets as well as keyboards and
various other peripherals.

Although some people use the term Bluetooth to refer to the headsets and the equipment they use to
link to phones, in reality Bluetooth is a radio broadcasting system that devices of all kinds use to connect
and share photos, music, video, and nearly every other type of data. The greatest advantage of Bluetooth
is that it’s incredibly fast. If you can make an uninterrupted phone call with a Bluetooth-enabled
headset, then you can be assured that it will be fast enough for most games.

In the following sections, you adapt the Tablet Paddle game from Chapter 6 for two players. You first
add code to connect two Android tablets using their built-in Bluetooth radios, and then you add a
second paddle and code that allows the players to compete for control of the ball.

Let’s get started. Begin by opening a new Eclipse project and naming it TwoPlayerPaddleGame.

Adding Bluetooth Connections
Because connecting multiple devices is a complex task, the code to support such interaction on Android
tablets is trickier to explain. The snippets in this example were taken from a larger project on Bluetooth
from the Android samples: BluetoothChat. You use them here to explore the main concepts. These
variables haven’t all been initialized, but they still convey the basics. Before you dive into the example,
let’s look through most of the elements that make up a successful Bluetooth application.

First, you must initialize your link to the Bluetooth connector within your tablet. Follow these steps:

1. Include the code shown in Listing 7-1 in the onCreate() function of
MainActivity.java.

Listing 7-1. onCreate()

BlueAdapter = BluetoothAdapter.getDefaultAdapter();

if (BlueAdapter == null) {

CHAPTER 7 � BUILDING A TWO-PLAYER GAME

125

 Toast.makeText(this, "Bluetooth is not available", Toast.LENGTH_LONG).show();
 return;
}

BlueAdapter becomes your handle to the abilities of Bluetooth in the device. The if statement is
used to determine whether Bluetooth is available. The function then posts the message to the user,
alerting they that they can’t use the program.

2. Another portion of your startup occurs in a method that you haven’t
previously had to deal with: the onState() function that comes right after
onCreate() in MainActivity.java; see Listing 7-2. You also need
android.intent.Intent to be imported, which lets the activity send messages.

Listing 7-2. onStart()

 @Override
 public void onStart() {
 super.onStart();

 if (!BlueAdapter.isEnabled()) {
 Intent enableIntent = new Intent(BluetoothAdapter.ACTION_REQUEST_ENABLE);
 startActivityForResult(enableIntent, REQUEST_ENABLE_BT);
 }
else {
 if (game_running == null) startgame();
 }
 }

The code in Listing 7-2 checks the Bluetooth device to see whether it’s on or off. It starts an activity
via a call to enable the Bluetooth device. (You very shortly look at what this new activity performs.) If
Bluetooth is on, you check to see if the game has been started. If not, you call a new function that
initializes the game. Note that much of your additional code revolves around the fact that many aspects
of the game must wait for proper Bluetooth connections to be made before you begin.

3. The code in Listing 7-3 is used when the activity is sent a message.

Listing 7-3. onActivityResult()

public void onActivityResult(int requestCode, int resultCode, Intent data) {
 switch (requestCode) {
 case REQUEST_CONNECT_DEVICE:

 if (resultCode == Activity.RESULT_OK) {

 String address = data.getExtras()
 .getString(DeviceListActivity.EXTRA_DEVICE_ADDRESS);

 BluetoothDevice device = BlueAdapter.getRemoteDevice(address);

 mGameView.connect(device);
 }
 break;

CHAPTER 7 � BUILDING A TWO-PLAYER GAME

126

 case REQUEST_ENABLE_BT:

 if (resultCode == Activity.RESULT_OK) {

 startgame();
 } else {

 Toast.makeText(this, “Bluetooth failed to initiate”, Toast.LENGTH_SHORT).show();
 finish();
 }
 }
}

This code above does two simple things. First, if you call it with a request to connect another device,
it goes through the steps to gather the address of the other device and create a link to its Bluetooth
device. Then it calls a new function in mGameView to tie the two devices together.

4. Now you have the very short and sweet startgame() function. Listing 7-4
shows how the game is started.

Listing 7-4. startgame()

 private void startgame() {

 mGameView = new GameView(this, mHandler);
 setContentView(mGameView);

}

This function is largely unexciting, but it’s critical to note that you’re sending a new argument to the
GameView constructor. The handler is your means of sending data from the Bluetooth channel to your
game. Understanding how this works is possibly the most important aspect of Bluetooth programming.

5. The code in Listing 7-5 revolves around the handler that deals with the
different tasks of sending and receiving data.

CHAPTER 7 � BUILDING A TWO-PLAYER GAME

127

Listing 7-5. Handling the Handler

private final Handler mHandler = new Handler() {
 @Override
 public void handleMessage(Message msg) {
 switch (msg.what) {
 case MESSAGE_STATE_CHANGE:
 switch (msg.arg1) {
 case BluetoothChatService.STATE_CONNECTED:
 break;
 case BluetoothChatService.STATE_CONNECTING:
 Toast.makeText(this, “Connecting to Bluetooth”, Toast.LENGTH_SHORT).show();

 break;
 case BluetoothChatService.STATE_LISTEN:
 case BluetoothChatService.STATE_NONE:
 Toast.makeText(this, “Not Connected to Bluetooth”, Toast.LENGTH_SHORT).show();
 break;
 }
 break;

 case SEND_DATA:
 byte[] writeBuf = (byte[]) msg.obj;

 String writeMessage = new String(writeBuf);

 break;
 case RECEIVE_DATA:
 byte[] readBuf = (byte[]) msg.obj;

 String readMessage = new String(readBuf, 0, msg.arg1);

 break;
 case MESSAGE_DEVICE_NAME:

 mConnectedDeviceName = msg.getData().getString(DEVICE_NAME);
 Toast.makeText(getApplicationContext(), "Connected to "
 + mConnectedDeviceName, Toast.LENGTH_SHORT).show();
 break;
 case MESSAGE_TOAST:
 Toast.makeText(getApplicationContext(), msg.getData().getString(TOAST),
 Toast.LENGTH_SHORT).show();
 break;
 }
 }
};

Because this initialization of the handler does so much, following is a list of the various activities for
you to see. You come back to this once you’re actually creating your own project. Basically, the handler
is passed a specific message or event that it must process or ignore. It has a huge variety of responses
that you must code. Keep in mind that you send these from the GameView class:

CHAPTER 7 � BUILDING A TWO-PLAYER GAME

128

MESSAGE_STATE_CHANGE: The first case is if the state of the Bluetooth connection
changes. For the most part, you alert the user if the state has changed into a
nonconnected state. For example, if the service is attempting to connect, you alert
the user of this. If, in an unfortunate event, the connection can’t be established,
then you also alert the user by explaining the issue. This is helpful in debugging
issues as well.

SEND_DATA: The next event is the need to send data to the other device. Here, you
gather the string of code and are ready to perform the operation of sending it to
the other device. You don’t actually send it here; you come back and add this
functionality later.

RECEIVE_DATA: Similar to your call to write a message to the other device, you also
accept the data coming from the other device. Again, this area will have more code
later when you’re sure what you want to accomplish.

MESSAGE_DEVICE_NAME: The penultimate message is a call that simply alerts users
about the fact that they’re connected to a specific device. You alert the user
through a small pop-up box.

MESSAGE_TOAST: Finally, you have a generic way to send a message to the user from
the GameView class.

Managing Bluetooth Connections
You’re coming back to more familiar territory with some additions to GameView.java. Remember that
you need to have the majority of the code here because this is where you can change the location of
sprites based on the data sent back and forth between the tablets.

Listings 7-6, 7-7, and 7-8 show the code for three mini-threads that you must add to GameView to
handle various Bluetooth operations that arise as the two players interact: AcceptThread, ConnectThread,
and ConnectedThread. AcceptThread deals with the initial connection, ConnectThread handles the
intricacies of pairing the devices, and ConnectedThread is the normal routine when the devices are
together.

Listing 7-6. AcceptThread

private class AcceptThread extends Thread {
 // The local server socket
 private final BluetoothServerSocket mmServerSocket;

 public AcceptThread() {
 BluetoothServerSocket tmp = null;

 // Create a new listening server socket
 try {
 tmp = mAdapter.listenUsingRfcommWithServiceRecord(NAME, MY_UUID);
 } catch (IOException e) {
 Log.e(TAG, "listen() failed", e);
 }
 mmServerSocket = tmp;
 }

CHAPTER 7 � BUILDING A TWO-PLAYER GAME

129

 public void run() {
 if (D) Log.d(TAG, "BEGIN mAcceptThread" + this);
 setName("AcceptThread");
 BluetoothSocket socket = null;

 // Listen to the server socket if you're not connected
 while (mState != STATE_CONNECTED) {
 try {
 // This is a blocking call and will only return on a
 // successful connection or an exception
 socket = mmServerSocket.accept();
 } catch (IOException e) {
 Log.e(TAG, "accept() failed", e);
 break;
 }

 // If a connection was accepted
 if (socket != null) {
 synchronized (BluetoothChatService.this) {
 switch (mState) {
 case STATE_LISTEN:
 case STATE_CONNECTING:
 // Situation normal. Start the connected thread.
 connected(socket, socket.getRemoteDevice());
 break;
 case STATE_NONE:
 case STATE_CONNECTED:
 // Either not ready or already connected. Terminate new socket.
 try {
 socket.close();
 } catch (IOException e) {
 Log.e(TAG, "Could not close unwanted socket", e);
 }
 break;
 }
 }
 }
 }
 if (D) Log.i(TAG, "END mAcceptThread");
 }

 public void cancel() {
 if (D) Log.d(TAG, "cancel " + this);
 try {
 mmServerSocket.close();
 } catch (IOException e) {
 Log.e(TAG, "close() of server failed", e);
 }
 }
}

CHAPTER 7 � BUILDING A TWO-PLAYER GAME

130

AcceptThread is a complex piece of code, but in actuality it merely waits for a connection to be
accepted. Notice that the keyword socket occurs frequently. This is standard in any sort of connections
between devices or entities and refers to the ability to exchange information. This code isn’t mine; it’s
reused from one of the examples from the Android documentation. Several of it methods and blocks of
code were incredibly efficient and required no redoing.

Listing 7-7. ConnectThread

private class ConnectThread extends Thread {
 private final BluetoothSocket mmSocket;
 private final BluetoothDevice mmDevice;

 public ConnectThread(BluetoothDevice device) {
 mmDevice = device;
 BluetoothSocket tmp = null;

 // Get a BluetoothSocket for a connection with the
 // given BluetoothDevice
 try {
 tmp = device.createRfcommSocketToServiceRecord(MY_UUID);
 } catch (IOException e) {
 Log.e(TAG, "create() failed", e);
 }
 mmSocket = tmp;
 }

 public void run() {
 Log.i(TAG, "BEGIN mConnectThread");
 setName("ConnectThread");

 // Always cancel discovery because it will slow down a connection
 mAdapter.cancelDiscovery();

 // Make a connection to the BluetoothSocket
 try {
 // This is a blocking call and will only return on a
 // successful connection or an exception
 mmSocket.connect();
 } catch (IOException e) {
 connectionFailed();
 // Close the socket
 try {
 mmSocket.close();
 } catch (IOException e2) {
 Log.e(TAG, "unable to close() socket during connection failure", e2);
 }
 // Start the service over to restart listening mode
 GameView.this.start();
 return;
 }

 // Reset the ConnectThread because you're done

CHAPTER 7 � BUILDING A TWO-PLAYER GAME

131

 synchronized (BluetoothChatService.this) {
 mConnectThread = null;
 }

 // Start the connected thread
 connected(mmSocket, mmDevice);
 }

 public void cancel() {
 try {
 mmSocket.close();
 } catch (IOException e) {
 Log.e(TAG, "close() of connect socket failed", e);
 }
 }
}

This thread is similar to the previous thread in that it handles the attempt to connect to another
device. The Android example also included this one, so I made no changes to it. If you’re curious, it
makes one attempt at pinging or making that connection with another device. If it fails, it can call for
continued attempts via the try block, where a failure results in a restart.

Fortunately, you’re really only interested in sending data back and forth and don’t need to change
how the connections are established.

Listing 7-8. ConnectedThread

private class ConnectedThread extends Thread {
 private final BluetoothSocket mmSocket;
 private final InputStream mmInStream;
 private final OutputStream mmOutStream;

 public ConnectedThread(BluetoothSocket socket) {
 Log.d(TAG, "create ConnectedThread");
 mmSocket = socket;
 InputStream tmpIn = null;
 OutputStream tmpOut = null;

 // Get the BluetoothSocket input and output streams
 try {
 tmpIn = socket.getInputStream();
 tmpOut = socket.getOutputStream();
 } catch (IOException e) {
 Log.e(TAG, "temp sockets not created", e);
 }

 mmInStream = tmpIn;
 mmOutStream = tmpOut;
 }

 public void run() {
 Log.i(TAG, "BEGIN mConnectedThread");
 byte[] buffer = new byte[1024];

CHAPTER 7 � BUILDING A TWO-PLAYER GAME

132

 int bytes;

 // Keep listening to the InputStream while connected
 while (true) {
 try {
 // Read from the InputStream
 bytes = mmInStream.read(buffer);

 // Send the obtained bytes to the UI Activity
 mHandler.obtainMessage(MainActivity.MESSAGE_READ, bytes, -1, buffer)
 .sendToTarget();
 } catch (IOException e) {
 Log.e(TAG, "disconnected", e);
 connectionLost();
 break;
 }
 }
 }

 /**
 * Write to the connected OutStream.
 * @param buffer The bytes to write
 */
 public void write(byte[] buffer) {
 try {
 mmOutStream.write(buffer);

 // Share the sent message back to the UI Activity
 mHandler.obtainMessage(MainActivity.MESSAGE_WRITE, -1, -1, buffer)
 .sendToTarget();
 } catch (IOException e) {
 Log.e(TAG, "Exception during write", e);
 }
 }

 public void cancel() {
 try {
 mmSocket.close();
 } catch (IOException e) {
 Log.e(TAG, "close() of connect socket failed", e);
 }
 }
}

The ConnectedThread class does an extraordinary amount of work. This code runs whenever the
devices are in a connected state. Notice that it first gathers the input and output streams so that it can
access the data from the other device and then in turn send its own information.

Next, the run() method goes into a loop where it constantly checks for new data that it can process.
Most of your data is sent in the form of integers, but there are some benefits to sending strings as the
interchange between the devices. First, in a complex game, there may be many numbers like health,
ammo, location, and inventory that need to be sent. Just sending numbers isn’t very meaningful.

CHAPTER 7 � BUILDING A TWO-PLAYER GAME

133

Instead, a string like “a:10” can be quickly parsed to look for the number after the colon and the
character before the colon to determine the change necessary.

Outside of the loop, the thread has a method that sends a message on the buffer to the other device.
It’s self-explanatory and sends the message as is.

Before these threads, you add some methods that are used to send data and call the threads to
perform certain actions. Remember that you haven’t yet initialized or utilized the threads in any way.
The code in Listing 7-9 starts them.

Listing 7-9. Connecting to a Bluetooth Device

public synchronized void start() {
 if (D) Log.d(TAG, "start");

 // Cancel any thread attempting to make a connection
 if (mConnectThread != null) {mConnectThread.cancel(); mConnectThread = null;}

 // Cancel any thread currently running a connection
 if (mConnectedThread != null) {mConnectedThread.cancel(); mConnectedThread = null;}

 // Start the thread to listen on a BluetoothServerSocket
 if (mAcceptThread == null) {
 mAcceptThread = new AcceptThread();
 mAcceptThread.start();
 }
 setState(STATE_LISTEN);
}
public synchronized void connect(BluetoothDevice device) {
 if (D) Log.d(TAG, "connect to: " + device);

 // Cancel any thread attempting to make a connection
 if (mState == STATE_CONNECTING) {
 if (mConnectThread != null) {mConnectThread.cancel(); mConnectThread = null;}
 }

 // Cancel any thread currently running a connection
 if (mConnectedThread != null) {mConnectedThread.cancel(); mConnectedThread = null;}

 // Start the thread to connect with the given device
 mConnectThread = new ConnectThread(device);
 mConnectThread.start();
 setState(STATE_CONNECTING);
}

public synchronized void connected(BluetoothSocket socket, BluetoothDevice device) {
 if (D) Log.d(TAG, "connected");

 // Cancel the thread that completed the connection
 if (mConnectThread != null) {mConnectThread.cancel(); mConnectThread = null;}

 // Cancel any thread currently running a connection
 if (mConnectedThread != null) {mConnectedThread.cancel(); mConnectedThread = null;}

CHAPTER 7 � BUILDING A TWO-PLAYER GAME

134

 // Cancel the accept thread because you only want to connect to one device
 if (mAcceptThread != null) {mAcceptThread.cancel(); mAcceptThread = null;}

 // Start the thread to manage the connection and perform transmissions
 mConnectedThread = new ConnectedThread(socket);
 mConnectedThread.start();

 Message msg = mHandler.obtainMessage(MainActivity.MESSAGE_DEVICE_NAME);
 Bundle bundle = new Bundle();
 bundle.putString(BluetoothChat.DEVICE_NAME, device.getName());
 msg.setData(bundle);
 mHandler.sendMessage(msg);

 setState(STATE_CONNECTED);
}

public synchronized void stop() {
 if (D) Log.d(TAG, "stop");
 if (mConnectThread != null) {mConnectThread.cancel(); mConnectThread = null;}
 if (mConnectedThread != null) {mConnectedThread.cancel(); mConnectedThread = null;}
 if (mAcceptThread != null) {mAcceptThread.cancel(); mAcceptThread = null;}
 setState(STATE_NONE);
}

public void write(byte[] out) {
 // Create temporary object
 ConnectedThread r;
 // Synchronize a copy of the ConnectedThread
 synchronized (this) {
 if (mState != STATE_CONNECTED) return;
 r = mConnectedThread;
 }
 // Perform the write unsynchronized
 r.write(out);
}

private void connectionFailed() {
 setState(STATE_LISTEN);

 // Send a failure message back to the Activity
 Message msg = mHandler.obtainMessage(MainActivity.MESSAGE_TOAST);
 Bundle bundle = new Bundle();
 bundle.putString(BluetoothChat.TOAST, "Unable to connect device");
 msg.setData(bundle);
 mHandler.sendMessage(msg);
}

private void connectionLost() {
 setState(STATE_LISTEN);

 // Send a failure message back to the Activity
 Message msg = mHandler.obtainMessage(MainActivity.MESSAGE_TOAST);

CHAPTER 7 � BUILDING A TWO-PLAYER GAME

135

 Bundle bundle = new Bundle();
 bundle.putString(MainActivity.TOAST, "Device connection was lost");
 msg.setData(bundle);
 mHandler.sendMessage(msg);
}

Once you’ve seen the threads, you understand that these functions mainly work to start the threads.
The first three functions start the three threads (AcceptThread, ConnectThread, and ConnectedThread).
When your game encounters the end (that is, the character dies), the stop() function is called to make
sure none of the threads continue. You also use the write() method when you wish to send something
to the other device.

Finally, the other two methods use the Handler to display messages when the connection is lost or
fails.

Adapting the Game Code for Two Players
You got through the majority of the code that deals with setting up connections and then maintaining
them. Now you need to figure out how your game will work with the Bluetooth. The entire code for this
sample game was much too large to fit into the pages of this book, but you can download it from
http://code.google.com/p/android-tablet-games/. An entire other source file handles how you pick
which device you want to connect to (that isn’t important to your work right now).

Without further ado, you want to have two paddles on the screen during the game: one at the top
and one at the bottom. Listing 7-10 contains the important code from the update() method of GameView.
Note that you have to initialize the paddle_other sprite in the previous functions and add it to the draw()
function as well. It’s placed at the top of the screen with the same image as the other paddle.

Listing 7-10. Adding a Paddle and Collision Detection, and Updating Game State

//paddle input
int val=0;
for (int i=latest_input.length-1, j = 0; i >= 0; i--,j++)
 {
 val += (latest_input[i] & 0xff) << (8*j);
 }
paddle_other.setX(val);

//paddle_other collision
int paddle_other_bottom = paddle_other.getBitmap().getHeight();
if(paddle_other.collide(ball)){
 if(ball_y < paddle_other_bottom && ball_y < paddle_other_bottom + 20){
 ball.setMoveY(-ball.getMoveY());
 }
}

//paddle output
byte[] paddle_output;
ByteBuffer bb = ByteBuffer.allocate(4);
bb.putInt((int)paddle.getX());
paddle_output = bb.array();
write(paddle_output);

CHAPTER 7 � BUILDING A TWO-PLAYER GAME

136

The code in Listing 7-10 does three things. First, it moves paddle_other to the location based on the
input from the other device that is controlling it. Second, it detects collisions. Third, it sends the location
of the paddle that you control to the other device so your opponent can see your latest move.

Breaking it down a little, the for loop converts the byte array you get as input into an integer for
moving the paddle. Luckily, you don’t yet have to parse byte[] into more complex values.

The collision detection is similar to that for the other paddle, but you invert the detection because
you’re only interested in the ball hitting the bottom, not the top. If you desire, you can cause the game to
reset or end when the ball touches the top, to put the same level of intensity on player 2.

Finally, you convert the location of the paddle to a byte array and send it into your write() function,
which in turn sends it to the connectedThread where it’s dealt with.

Testing the Game
Testing a multiplayer game application that uses Bluetooth can be a bit tricky. If you have two Android
tablets, then you can use their built-in ability to tether to each other. Then load the program onto both
of devices. If you don’t own or want several tablets, you must make different arrangements.

Obviously, another possible way to test these programs is to borrow someone else’s tablet and pair
it with your own. Note that to install software on another tablet, you need to follow the instructions in
Appendix A for all tablets. Make sure your friends or relatives understand what you’re doing to their
tablet before you embark on your experiments!

It may be tempting to plug a Bluetooth USB dongle into your computer and expect your emulator to
be able to handle Bluetooth. Sadly, this isn’t the case; the emulator currently doesn’t have the ability to
deal with Bluetooth. Until this functionality is added, you must use real devices for testing.

Summary
Congratulations once again: you fought your way through some interesting Bluetooth and multiplayer
aspects of Android game development. This topic is one of the more difficult that you’ll encounter in
your game programming. Now you’re ready to work on the massive game at the end of this book. Get
ready for more sprites and sounds, and a lot more code.

C H A P T E R 8

137

A One-Player Strategy Game

Part I: Building the Game

It’s time to work on your final game, a one-player strategy game—Harbor Defender—for which you use
the concepts and code you’ve developed in the earlier chapters. Most of the content is stuff that we have
already learned. You make use of what you already know. Some game-development books like to end
with a flashy 3D game. I chose not to take this route because there isn’t enough time to teach you all the
nuances of adding a third dimension. Writing a 3D game isn’t easy: when you play one on your
smartphone or tablet, you can be fairly certain that it was created by a large team. My goal in this book is
to teach you how to create games that you can program by yourself. This way, you won’t have to share
your profits with anyone, nor will you have to argue with fellow developers about your design and
implementation decisions!

In the strategy game you build, the user must defend a fortress from enemies that attack from the
sea. The design of the game allows you to increase its difficulty by adding new types of defenses and
increasing the number of enemies. It’s also possible to add layouts to create more challenging levels of
play.

In this chapter, the first of two, you focus on setting up the game and its elements and on creating a
system that makes everything run smoothly. In the next chapter, you polish the game by implementing a
point counter as well as some intriguing user controls that give the game more excitement.

� Note Because you’re building a game for a tablet, you need to keep in mind the aspects that make its
development different from a phone or desktop game. Such differences include using a touchscreen, coping with
screen sizes, and designing user controls that are intuitive. Some developers new to tablets are tempted to port
their previous projects to the device. This can work well, but a look through the app store will convince you that
most of the games there are customized for the tablet and wouldn’t work well on any other hardware. Very often,
users just play the original on their game system, and they’re expecting a special game for their tablet experience.

Let’s begin by taking a look at the layout of the strategy game and then assembling the elements
required to build it.

CHAPTER 8 � A ONE-PLAYER STRATEGY GAME

138

Introducing Harbor Defender
Harbor Defender is the name I’ve chosen for the game you begin in this chapter. The game surface
consists of a fortress, a harbor defined by a pier, attacking boats, and cannons that can sink the attackers
with bullets. Figure 8-1 is an image of the game surface you assemble by the end of this chapter. In
Chapter 9 you add the user controls, but for now you need a surface that the player will eventually
interact with. It gives you an idea how the mechanics will work.

Figure 8-1. The beta version of Harbor Defender

The object of Harbor Defender is to destroy ships approaching the fortress through the harbor
before they can invade it. The player repels the boats by firing cannons located on the pier that encloses
the harbor. Each of the pier pieces can hold one cannon, but the user must aim it in the proper direction.
To make the game more challenging, users can’t create an unlimited number of cannons. Rather, users
are given a limited number of cannons, and they must therefore be judicious in the cannons’ placement.
As mentioned, in this chapter you set up the game environment; in the next chapter you add user
interaction.

You can make the boats approach at increasing rates later, and the user will have to quickly delete
and move cannons in order to maximize their efficiency. Now, let’s look at the items and activities that
you must create in order to make this game a success.

Assembling Harbor Defender
Here is a breakdown of what Harbor Defender entails. In this section you explore these elements and
how to handle them:

CHAPTER 8 � A ONE-PLAYER STRATEGY GAME

139

The pier: The blocks of the pier support your cannons and define the harbor
through which the invading boats must navigate. The pier itself doesn’t do
anything, but it’s used when referencing cannon placement. You use XML data to
quickly code the location of each and every piece. Each piece is implemented as a
sprite; sprite objects give you much more functionality than merely putting
images on the screen.

Ground: The ground is part of the background, and you don’t test it or use it. It’s
important, however, that you use it because it saves you from having to use a
much larger and resource-intensive image when the blue background suffices.

Castle: The castle only reacts if a boat strikes it. Otherwise, it’s an immovable
object that is relatively simple to implement. Again, you could have chosen to
make the ground and castle into one sprite, but you use this method because it
makes more sense within the game by limiting the size of images.

Boats: The boats are one of the only two moving sprites in the entire game. You
create them based on a random number generator to add some unpredictability
to the game. You also preprogram their route and speed. The bullets are another
moving sprite that you handle in Chapter 9.

Cannons: The cannons have a simple function, and that is to fire on the boats.
Their placement is unique because the user can create and destroy cannons
during the game. Again, the functionality of the cannons is implemented in the
next chapter.

The most intriguing portion of the coding of this game is the idea that the boats and cannons don’t
have a set location or number. This means not all of the sprites are initialized at the beginning as you’re
used to.

Before you begin to build your game environment, you need to open a new Eclipse project:

Open a new Eclipse project, and name it HarborDefender.

Copy all the files of PaddleGame (see Chapter 7) to your new project. This
includes the art, XML files, and of course the code.

Constructing the Pier
In your last game, you used an XML page to store the location of the blocks. You reuse this page to store
the vast number of pier coordinates. Because you have so many piers, some would argue that a loop
could handle the quick arrangement of the pieces. This is true, but the irregular shape of the pier lends
itself to this sort of manual coding. Also, remember that if you create another level, it’s very easy to
change this data.

Follow these steps:

1. Listing 8-1 shows the contents of the file blocklocation.xml (the exact same
one you used for TabletPaddle), but it contains the location of all of the pier
pieces rather than the blocks from the paddle game. Add the contents of this
file to blocklocation.xml, which is located under res values. Instead of typing
this code in, I highly recommend downloading the file from the web site
(http://code.google.com/p/android-tablet-games/).

CHAPTER 8 � A ONE-PLAYER STRATEGY GAME

140

Listing 8-1. Pier Platform Locations

 <resources>
 <integer name="blocknumber">32</integer>

 <integer-array name="x">

 <item>180</item>
 <item>280</item>
 <item>380</item>
 <item>480</item>
 <item>580</item>
 <item>680</item>
 <item>780</item>
 <item>880</item>
 <item>980</item>
 <item>1080</item>
 <item>1180</item>
 <item>1080</item>
 <item>1180</item>
 <item>380</item>
 <item>480</item>
 <item>580</item>
 <item>680</item>
 <item>780</item>
 <item>1080</item>
 <item>1180</item>
 <item>680</item>
 <item>780</item>
 <item>1080</item>
 <item>1180</item>
 <item>680</item>
 <item>780</item>
 <item>1080</item>
 <item>1180</item>
 <item>680</item>
 <item>780</item>
 <item>1080</item>
 <item>1180</item>

 </integer-array>

 <integer-array name="y">

 <item>0</item>
 <item>0</item>
 <item>0</item>
 <item>0</item>
 <item>0</item>
 <item>0</item>
 <item>0</item>

CHAPTER 8 � A ONE-PLAYER STRATEGY GAME

141

 <item>0</item>
 <item>0</item>
 <item>0</item>
 <item>0</item>
 <item>100</item>
 <item>100</item>
 <item>200</item>
 <item>200</item>
 <item>200</item>
 <item>200</item>
 <item>200</item>
 <item>200</item>
 <item>200</item>
 <item>300</item>
 <item>300</item>
 <item>300</item>
 <item>300</item>
 <item>400</item>
 <item>400</item>
 <item>400</item>
 <item>400</item>
 <item>500</item>
 <item>500</item>
 <item>500</item>
 <item>500</item>

 </integer-array>

 </resources>

You parse through this file with the same technique you used before. The first
list of items is the x coordinate; the y coordinate is found in the second list. You
create each sprite by pairing the first entry from the x list with the first entry
from the y list and then move down until you’ve created every block. Notice
that you must type the total number of blocks at the top of the XML file—in
this case, you have 32 pieces of the pier.

This game requires a number of new sprite objects, integers, and arrays. You
need to add those to the top of the GameView class before you implement them.
Listing 8-2 contains the new declarations; place them at the top of the file.

Listing 8-2. Initializing the Objects/Variables for Your Project

//SpriteObjects
private SpriteObject[] pier;
private SpriteObject[] cannon;
private SpriteObject ground;
private SpriteObject castle;
private SpriteObject[] boat;

//Variables
private Resources res;

CHAPTER 8 � A ONE-PLAYER STRATEGY GAME

142

private int[] x_coords;
private int[] y_coords;
private int boat_count = 0;
private int cannon_count = 3;
private int pier_count;

Although these sprites and integers look similar to those you’ve created before,
it’s important to notice that boat_count is set to 0. This lets you start the game
without any boats and add them as you go. Also, you set cannon_count to 3
because originally you only deal with three cannons.

Add the code in Listing 8-3 to the GameView constructor. This code should look
very much like the TabletPaddle code; they’re identical except for the name of
the object you’re creating. Then, in the onDraw() function, you cycle through
each pier and draw it onto the screen.

Listing 8-3. Creating the Pier

//pier sprites
pier_count = res.getInteger(R.integer.blocknumber);
x_coords = res.getIntArray(R.array.x);
y_coords = res.getIntArray(R.array.y);
pier = new SpriteObject[pier_count];
for(int i = 0; i < pier_count; i++){
 pier[i] = new SpriteObject(BitmapFactory.decodeResource(getResources(),
R.drawable.pier), x_coords[i], y_coords[i]);
}

Put the code in Listing 8-4 into the onDraw() method of GameView.

Listing 8-4. Drawing the Pier

for(int i = 0; i < pier_count; i++){
 pier[i].draw(canvas);
}

Because pier blocks don’t need to do anything, you don’t need to create code for them in the
update() function. Let’s move on to the ground and castle.

Adding the Ground and Castle
The ground and castle are more inanimate objects. You take care of them just as you took care of the
piers. Luckily, there is only one of each, which means you don’t need to use more XML data:

1. Listing 8-5 shows the code you use in the GameView constructor for the two
sprites. Add it now.

Listing 8-5. Creating the Ground and Castle

ground = new SpriteObject(BitmapFactory.decodeResource(getResources(), R.drawable.ground),
480, 500);

CHAPTER 8 � A ONE-PLAYER STRATEGY GAME

143

castle = new SpriteObject(BitmapFactory.decodeResource(getResources(), R.drawable.castle),
890, 500);

2. The trick with these two sprites is to make sure they’re both in the right place.
The order in which they’re drawn is also important. Figure 8-2 shows what
happens when the onDraw() function is called. You can see the layers of the
images being drawn.

Figure 8-2. Image layers

3. The ground must be below the pier and above the blue background. Likewise,
the castle must be on top of the ground. To get the sequence right, Listing 8-6
contains a new onDraw() routine. Be sure the order is right: if the ground
appears above the castle, then you would have a subterranean fortress that
doesn’t work so well in the game!

Listing 8-6. Drawing the Castle and Ground

canvas.drawColor(Color.BLUE);
ground.draw(canvas);
castle.draw(canvas);

for(int i = 0; i < pier_count; i++){
 pier[i].draw(canvas);
}

The next sprite objects you create will be added after the pier pieces are drawn. This makes sense
because the cannons must be on top of the piers; the boats glide along the water and possibly hit the
castle.

Creating the Boats
The boats are the most complicated sprites you must deal with. The user has no control over them, so
their movement must be preprogrammed to follow a specific route. Adding some complexity, you must
change the image of the sprite based on its direction. This all comes together in the update() function.
For now, though, you can create an array to hold the boats without actually making them:

1. Put the snippet from Listing 8-7 into your GameView constructor method.

Listing 8-7. Creating 12 Boat Sprites

//boat sprites
boat = new SpriteObject[12];

2. Listing 8-8 shows the routine that cycles through the drawing of the available
boats. Put this code in the onDraw() function after the other sprites are drawn.

CHAPTER 8 � A ONE-PLAYER STRATEGY GAME

144

Listing 8-8. Drawing the Boats

for(int i = 0; i < boat_count; i++){
 boat[i].draw(canvas);
}

3. The exciting part is coming up. Before you move forward, you need to
understand the boat_count variable. Back in the GameView variable
declarations, you initialized this integer by setting it equal to 0. So, in the
original state, no boat sprites are drawn, because i isn’t less than boat_count.
You can picture boat_count as a collection of the available boats.

4. Because you start with no boats, the method for their creation is a bit more
involved. Listing 8-9 contains the code you need to add to the update()
function. I break it into its critical parts afterward. To make it work, import
java.util,Random at the top of GameView.java.

Listing 8-9. Creating Boats and Random Intervals

Random random_boat = new Random();
int check_boat = random_boat.nextInt(100);

if(check_boat > 97 && boat_count < 12){
 int previous_boat = boat_count - 1;
 if(boat_count == 0 || boat[previous_boat].getX() > 150){
 boat[boat_count] = new
SpriteObject(BitmapFactory.decodeResource(getResources(), R.drawable.boat), 100, 150);
 boat[boat_count].setMoveX(3);
 boat_count++;
 }
}

5. First, you make a random number generator. You call a nextInt() method that
selects an integer between 0 and the argument. The check_boat variable is
tested so that you create boats at random intervals.

� Note Creating a random number generator and getting an integer between zero and your own value is a
perfect way to add some randomness to your games. You no longer have to worry about a decimal number
because integers are much easier to work with. Remember to run your games many times in tests if you use
random elements because you may find unexpected behavior if the random numbers are different than the ones
you expected.

CHAPTER 8 � A ONE-PLAYER STRATEGY GAME

145

6. The first if statement proceeds only if the random number is greater than 97,
which is very unlikely but keeps the onslaught of boats to a minimum. Then
you require that boat_count be less than 12. This prevents many boats from
being on the field at the same time. If this proves to be too easy for the player,
you can increase this number and make the game much more challenging.

7. The second if statement checks to see if the new boat would be the first boat
or if it’s a certain distance from the previous boat. You do this by incrementing
boat_count back by 1 and testing to see if the x coordinates of the prior boat are
more than 150. Otherwise, the boats could appear on top of each other, which
detracts from the appearance of the game (although it could make the game
more challenging!).

8. If the boat passes all the if statements, then it’s initialized with a starting x
position of 100. You move it at the rather slow pace of three pixels per update()
function. Here is another great opportunity to add difficulty by slowly
increasing the speed of the boats when the player reaches a certain score or
other achievement.

9. Finally, boat_count is incremented to let the draw() functions handle the newly
added boat. Your fleet has expanded.

10. You need to change the direction of the boats so they can make the
appropriate turn to head toward their destination: the castle. The code in
Listing 8-10 does this; add it to the update() method.

Listing 8-10. Changing the Boat Direction

for(int i = 0; i < boat_count; i++){
 if((int)boat[i].getX() > 950){
 boat[i].setMoveX(0);
 boat[i].setMoveY(3);
 boat[i].setBitmap(BitmapFactory.decodeResource(getResources(),
R.drawable.boatdown));
 }
}

11. When the boat gets to the x location of 950 pixels, it stops moving to the right
and begins its descent. Notice the final line: you change the sprite image
because ships rarely move without changing orientation. To do this, rotate the
original boat image 90 degrees and save it as a new resource called boatdown.

That’s it. When you add the cannon, you see ships randomly appear and head toward your castle.

Adding Cannons
As is true for the boats, the number of cannons changes during the game. For now, you’re only worried
about proving the concept. Follow these steps:

CHAPTER 8 � A ONE-PLAYER STRATEGY GAME

146

1. Put the code in Listing 8-11 into the GameView creator. You can change the
value of cannon_count in its declaration to create even more cannons. Instead
of responding to user input, you make the cannons appear on three
consecutive pier blocks with a quick loop that move the cannons 100 units
each time.

Listing 8-11. Changing the Value of Cannon Count

//cannon sprites
cannon = new SpriteObject[cannon_count];
for(int i = 0; i < cannon_count; i++){
 cannon[i] = new SpriteObject(BitmapFactory.decodeResource(getResources(),
R.drawable.cannonup), (580 + i * 100), 200);
}

2. To ready yourself to create additional cannon sprites, name the original
drawing cannonup. This will make it easier when the user wishes to change the
cannon’s orientation.

3. Add the code from Listing 8-12 to the onDraw() function, and your cannonry
will appear when the game runs.

Listing 8-12. Drawing the Cannons

for(int i = 0; i < cannon_count; i++){
 cannon[i].draw(canvas);
}

You have some simple remaining issues to handle. The framework of the game is finished.

Adding Images
The images I used are available at http://code.google.com/p/android-tablet-games/, or you can make
your own creations. Figures 8-3 through 8-7 show the images I used to build Harbor Defender; their
dimensions are specified in the figure captions. Later, I make some suggestions about how to create your
images. Remember that sometimes you need to rotate or flip them to display them in an alternate state.

Figure 8-3. Castle: 200 100

Figure 8-4. Boat and boatdown: 50 30 and 30 50, respectively

CHAPTER 8 � A ONE-PLAYER STRATEGY GAME

147

Figure 8-5. Ground: 800 250

Figure 8-6. Pier: 100 100

Figure 8-7. Cannon: 100 100

Debugging Harbor Defender
With a simple approach to how the game looks, you’re ready to try it. Load it as you would any game,
and you see boats slowly appear and cruise down toward the castle. If you wait long enough, they pass
through the castle and off the screen.

If things don’t work this way, or you get an error like the one displayed in Figure 8-8, or the game
closes at startup, then you have some work to do. This section is dedicated to fixing common problems
in game development for Android. It doesn’t go into specific problems because there is no way to
anticipate every error. It should be fairly obvious how to fix errors in your code if Eclipse catches them,
but the runtime issues can be more difficult.

Here is the process to use:

1. Make sure you’re using LogCat to get information on the emulator. This is critical
when you use Log.d in your program to alert you when certain events are triggered.
LogCat also displays fairly detailed reports about errors.

CHAPTER 8 � A ONE-PLAYER STRATEGY GAME

148

2. Don’t close the emulator when you get an error. Look at the issue in Figure 8-2. You
may be tempted to close out immediately, but doing so erases the LogCat results.
Instead, wait so you can diagnose the problem.

Figure 8-8. Runtime error in Harbor Defender

3. Scroll up the LogCat readout, shown in Figure 8-9, and you should find phrases in a
red font that signal where the error occurred. Luckily, the error notes the exact line
numbers that were the problem.

Figure 8-9. LogCat NullPointerException

4. You only need to pay attention to the earlier error lines in most cases. In this case, the
onDraw() function failed when the cannons were being drawn. The reason is that I
commented out the initialization of the cannon sprites. This is a common problem
when you’re dealing with a game that has sprites being created and destroyed. Make
sure all the sprites you reference for drawing or updating actually exist.

CHAPTER 8 � A ONE-PLAYER STRATEGY GAME

149

5. A final suggestion for working with errors is to make your emulator smaller. If you
have a relatively small screen size, then your emulator may take up most of the
screen. This prevents you from looking at the LogCat while you’re working. To fix this,
choose Run Run_configuration. Then go to the Target tab and scroll down. In the
command-line options, type in scale .8. This shrinks the emulator to 80% of its
original size.

� Note If your best efforts to fix a problem don’t succeed, try searching for a solution on StackOverFlow
(http://stackoverflow.com/). In the future, though, make small changes between tests. This way, you can go back
to the previous state that worked. Be ready to always come back to something that you know worked.

The next chapter involves many different fixes and updates to the game. Most notably, you enable
the user to move and rotate cannons. In your previous games, the player has never had this many
options, and it will be a unique exercise.

Another addition is a point system that rewards the player for each boat that is destroyed. The
physics must also be updated because you need to end the game once a boat strikes the castle rather
than having the boat pass right through.

You also have to worry about a new factor: inappropriate user interaction. It makes sense for the
user to click a piece of the pier to put a cannon onto it, but what if they miss the pier and click the ocean?
This requires you to evaluate each input quickly and efficiently to respond immediately to the user, yet
also prevent cannons from appearing where they don’t belong.

To finalize your work, you add input and logic to polish the overall appearance of the game.

Summary
You’ve gone through the process of setting up a real game. With the elements in place, you’re ready to
add the features that make the game a fun user experience. You should be comfortable planning a game
and organizing the way to handle the sprites and objects that make it up.

As you look to the future, you’ll focus more on the player experience rather than on the limits of
your technical abilities. Creating the artwork for a game is often a limiting factor as well, but a fun and
creative game can make up for many shortcomings. For now, let’s get your game ready for deployment.

C H A P T E R 9

151

A One-Player Strategy Game

Part 2: Coding the Game

With the framework in place, you can now write the code to create a playable game. The trick here is
always to make your code as efficient as possible. When games become more complex and involve more
sprites, they can begin to slow as the processor struggles to keep up. You avoid this with some clever
techniques that can ease the load.

Keeping the end goal in mind as you progress is also critical because you must have a functioning
game before you can add the bells and whistles that differentiate your work from others. In fact, in my
experience, knowing when to stop working on a game and release it is always the trickiest part. There is a
fine line between a game that is too simple and a game that is unplayable because it’s overloaded with
features and additions that a normal user doesn’t have time to learn.

� Note As you progress through the code in this chapter, recall that putting Log.d statements into the code can
help clarify what is happening and which functions are being called. Some of the code can be quite complex, and I
still use this technique to help me step through the methods, especially if I’m not getting the desired behavior.

Here is a list of the features you must complete in this chapter in order to have a working game:

Enhancing the sprite objects

Shooting bullets out of the cannons

Eliminating boats after they have been hit

Restarting the game when boats hit the castle

Some of these—like lowering the health of a boat when a bullet hits it—are easily completed, but
others require some thought and clever coding. To simplify your editing, I’ve posted the entire methods
for this chapter. This way, you can ensure that your previous work is exactly what is needed for the final
game. This also helps you see how each function calls the others and what information is shared among
them.

The next section begins with our improvements to SpriteObject.java. You make very few
modifications, but the changes that you do make will simplify your work in GameView.java.

CHAPTER 9 � A ONE-PLAYER STRATEGY GAME

152

Enhancing the Game Sprites
In this game, you demand a lot from your sprites. To handle the new functionality, you need a couple of
new methods and variables that all the sprites use. Although only one sprite may actually take advantage
of a particular feature, rather than create additional classes, you have every game sprite inherit from
SpriteObject because the sprites are largely the same—there is no need to clutter the project.

However, if you expand the game, and you want the boats to be able to fire back, change direction,
or spawn smaller boats, then you might want to create a special boat class that embodies these
capabilities. Any time a sprite or object uses two or more unique functions, I usually make a new class
for it.

Follow these steps to modify SpriteObject.java:

1. Listing 9-1 shows the new variables to add and the values you assign them.
Add this code at the top of SpriteObject.java.

Listing 9-1. SpriteObject Variables

private int health = 3;
private int Orientation = -1;
public int LEFT = 0;
public int RIGHT = 1;
public int UP = 2;
public int DOWN = 3;
private boolean stack = false;

2. The use of the variables in Listing 9-1 is apparent in the functions shown in
Listing 9-2. Type all of this code at the end of SpriteObject. The new methods
are used liberally by your sprites.

Listing 9-2. New Functions for SpriteObject

public boolean cursor_selection(int cursor_x, int cursor_y){

 int sprite_right = (int)(getBitmap().getWidth() + getX());
 int sprite_bottom = (int)(getBitmap().getHeight() + getY());
 if(cursor_x > getX() && cursor_x < sprite_right && cursor_y > getY() && cursor_y <
sprite_bottom){
 return true;
 }
 else{
 return false;
 }

}

public void setStacked(boolean s){
 stack = s;
}
public boolean getStacked(){
 return stack;
}

CHAPTER 9 � A ONE-PLAYER STRATEGY GAME

153

public void diminishHealth(int m){
 health -= m;
}
public int getHealth(){
 return health;
}
public void setOrientation(int o){
 Orientation = o;
}
public int getOrientation(){
 return Orientation;
}

The cursor_selection() function is a very powerful method that returns true if the user touches a
sprite and remains false if they don’t. It’s basically a simple version of the collide() method, but it only
worries about the input the user gives. You implement it in the way the user selects the type of cannon to
add.

The functions related to whether the sprite is stacked are used to determine whether a piece of the
pier already has a cannon on it. If a cannon exists there, you prevent the user from placing another one
on top of it. Some spots are better locations than others, so it’s unfair for the user to be able to layer
cannons.

You add two functions to handle a sprite’s health. The only sprite that has health in your game is the
boats. When they have been hit three times, they’re removed from the game.

3. You need to modify the SpriteObject update() function to check whether a
sprite has lost all of its health. Replace the existing code with that in Listing 9-3.

Listing 9-3. Changing the update() Method

public void update(int adj_mov) {
 if(state == ALIVE){
 x += x_move;
 y += y_move;
 if(health <= 0){
 state = DEAD;
 }
 }
}

The final addition checks which way a sprite is facing. You use this for the cannons. If a cannon
faces down, for example, you must launch the bullet toward the bottom of the screen, whereas a cannon
pointing right should send the bullet toward the right side of the screen.

Let’s put these functions into action!

Creating the User Controls
The constructor method of GameView.java has several newcomers. This section dissects the new sprites
that are used primarily for user interaction and also shows you a new concept. Rather than create four
different cannon icons that point in all of the cardinal directions, you rotate one image for the four
different sprites. This saves space on your machine, but it also causes some extra processor work at
startup.

CHAPTER 9 � A ONE-PLAYER STRATEGY GAME

154

To demonstrate the alternative, the main cannons are all individual sprites that don’t need to be
rotated. The method you use on such occasions depends on your resources and how much space you
have on disk.

Follow these steps:

1. Before you can start working with the new sprites, you must first declare the
objects before your constructor. Put the code in Listing 9-4 inside
GameView.java.

Listing 9-4. SpriteObjects for Harbor Defender

private SpriteObject trash;
private SpriteObject dock;
private SpriteObject marker;
private SpriteObject cannonrightsmall;
private SpriteObject cannonleftsmall;
private SpriteObject cannonupsmall;
private SpriteObject cannondownsmall;

2. In the GameView constructor, initialize the trash, dock, and marker icons as
shown in Listing 9-5. These three sprites create the foundation of your user
controls. At lower right onscreen, a dock that holds the options. At the front of
the dock is the trashcan that lets users destroy cannons they’ve built. The
marker sprite jumps around behind the icons to show the player which one is
currently selected.

Listing 9-5. Setting Up the Icons

trash = new SpriteObject(BitmapFactory.decodeResource(getResources(), R.drawable.trash), 50,
650);
dock = new SpriteObject(BitmapFactory.decodeResource(getResources(), R.drawable.dock), 0,
650);
marker = new SpriteObject(BitmapFactory.decodeResource(getResources(), R.drawable.marker), 50,
650);

3. The next stage is creating the small cannon icons. Add the code shown in
Listing 9-6 to the GameView constructor. This serves as the basis for your dock.

Listing 9-6. Making Miniature Cannon Icons

Bitmap bcannonupsmall = BitmapFactory.decodeResource(getResources(),
R.drawable.cannonupsmall);
int w = bcannonupsmall.getWidth();
int h = bcannonupsmall.getHeight();
Matrix mtx = new Matrix();
mtx.postRotate(90);

Bitmap bcannonrightsmall = Bitmap.createBitmap(bcannonupsmall, 0, 0, h, w, mtx, true);
Bitmap bcannondownsmall = Bitmap.createBitmap(bcannonrightsmall, 0, 0, w, h, mtx, true);
Bitmap bcannonleftsmall = Bitmap.createBitmap(bcannondownsmall, 0, 0 , h, w, mtx, true);

cannonrightsmall = new SpriteObject(bcannonrightsmall, 110, 650);

CHAPTER 9 � A ONE-PLAYER STRATEGY GAME

155

cannonleftsmall = new SpriteObject(bcannonleftsmall, 180, 650);
cannondownsmall = new SpriteObject(bcannondownsmall, 240, 650);
cannonupsmall = new SpriteObject(bcannonupsmall, 300, 650);

If you think this code looks a little like Greek, don’t worry. You create the miniature cannon-up
sprite and gather its height and width. Then you initiate a new matrix that you rotate 90 degrees. Three
new bitmaps are created by rotating cannondownsmall three times. The sprites are then created with the
new images. The locations are very specific, to put all the icons on the small dock at lower left onscreen.

4. To make the dock useful, you need to store the user’s selection with variables
(in other words, if the user selects the cannon facing down, you need to know
to create that type of cannon). You achieve this by putting the variables from
Listing 9-7 at the top of GameView. User_choice stores the user’s selection.

Listing 9-7. Variables to Store the User’s Selections

Private int TRASH = 1;
Private int CANNON_LEFT = 2;
Private int CANNON_RIGHT = 3;
Private int CANNON_UP = 4;
Private int CANNON_DOWN = 5;
Private int user_choice;

5. You’ve created a nice dock with several options for the user to choose from,
but you need to track where the user is pointing. You use four variables in
referencing the user’s selection. Add the variables from Listing 9-8 to the top of
GameView.java.

Listing 9-8. Gathering Data About the Location of the Last Touch Event

private int cursor_x;
private int cursor_y;
private boolean selection_changed;
private boolean addboat;

6. Edit ProcessMotionEvent() to look like the code shown in Listing 9-9. This
incorporates the first three of the variables you declared in step 5.

Listing 9-9. Storing the User’s Input

public void processMotionEvent(InputObject input){
 selection_changed = true;
 cursor_x = input.x;
 cursor_y = input.y;

}

With this code in place, when a touch occurs on the tablet, you set selection_changed to true and
store the location of the touch with the variables cursor_x and cursor_y.

7. In the update() function, you use the data from step 6 to determine whether
you need to handle a user-input event and where the user is interacting. Add

CHAPTER 9 � A ONE-PLAYER STRATEGY GAME

156

the code in Listing 9-10 to the update() method of GameView.java. This is how
you handle the user input.

Listing 9-10. Handling User Input in the update() Function

if(selection_changed){
 selection_changed = false;
 if(trash.cursor_selection(cursor_x, cursor_y)){
 user_choice = TRASH;
 marker.setX(50);
 addboat = false;
 }
 if(cannonrightsmall.cursor_selection(cursor_x, cursor_y)){
 user_choice = CANNON_RIGHT;
 marker.setX(110);
 addboat = true;
 }
 if(cannonleftsmall.cursor_selection(cursor_x, cursor_y)){
 user_choice = CANNON_LEFT;
 marker.setX(180);
 addboat = true;
 }
 if(cannondownsmall.cursor_selection(cursor_x, cursor_y)){
 user_choice = CANNON_DOWN;
 marker.setX(240);
 addboat = true;
 }
 if(cannonupsmall.cursor_selection(cursor_x, cursor_y)){
 user_choice = CANNON_UP;
 marker.setX(300);
 addboat = true;
 }
 else if(addboat){
 if(cannon_count < 10){
 for(int i = 0; i < pier_count; i++){
 if(pier[i].cursor_selection(cursor_x, cursor_y)){
 if(pier[i].getStacked() == false){
 switch(user_choice){
 case 2:
 cannon[cannon_count] = new
SpriteObject(BitmapFactory.decodeResource(getResources(), R.drawable.cannonleft),
(int)pier[i].getX(), (int)pier[i].getY());

cannon[cannon_count].setOrientation(cannon[cannon_count].LEFT);
 break;

 case 3:
 cannon[cannon_count] = new
SpriteObject(BitmapFactory.decodeResource(getResources(), R.drawable.cannonright),
(int)pier[i].getX(), (int)pier[i].getY());

cannon[cannon_count].setOrientation(cannon[cannon_count].RIGHT);

CHAPTER 9 � A ONE-PLAYER STRATEGY GAME

157

 break;

 case 4:
 cannon[cannon_count] = new
SpriteObject(BitmapFactory.decodeResource(getResources(), R.drawable.cannonup),
(int)pier[i].getX(), (int)pier[i].getY());

cannon[cannon_count].setOrientation(cannon[cannon_count].UP);
 break;

 case 5:
 cannon[cannon_count] = new
SpriteObject(BitmapFactory.decodeResource(getResources(), R.drawable.cannondown),
(int)pier[i].getX(), (int)pier[i].getY());

cannon[cannon_count].setOrientation(cannon[cannon_count].DOWN);
 break;
 }

 cannon_count++;
 pier[i].setStacked(true);
 }
 else if(pier[i].getStacked() == true){
 if(user_choice == 1){
 for(int u = 0; u < cannon_count; u++){
 if(cannon[u].getX() ==
pier[i].getX() && cannon[u].getY() == pier[i].getY()){

cannon[u].setstate(cannon[u].DEAD);
 }
 }
 }
 }
 }
 }
 }
 }
}

This code deals with the dock icons. The other side of the user interaction is the actual placing of the
boats onscreen. When the player selects any of the boats or the trashcan, they set addboat to true. This
means you need to look for what the user is doing with the game. The variable user_choice stores the last
dock icon that the user selected.

The processor cycles through the pier pieces; it stops when it finds that the user has touched a pier
block. It then asks whether the pier is stacked. You saw earlier that being stacked in this case means the
pier is already holding a cannon. If it isn’t, then the user is free to add a cannon to that pier. The code
then goes into a switch statement.

The numbers for the cases of the switch correspond to the variables you assigned in the constructor
method (for example, whether the cannon is pointing to the left). When you find the orientation of the
cannon that the player desires, you create the new sprite, using the location of the pier. It’s very
important that your pier and cannons occupy the same area (100 100). This makes positioning a simple
matter.

CHAPTER 9 � A ONE-PLAYER STRATEGY GAME

158

Placing cannons isn’t the only thing players can do, however. They can also select the trashcan,
which has a value of 1. The trash performs in the opposite fashion from what you saw previously: it looks
for a pier block that is stacked, finds the cannon that is placed there, and removes it.

That’s it. The user can now control your game. The next sections add features to your bullets and
boats.

Putting Everything on the Screen
Now that you have lots of great features like your user interface controls and boats, you need to add
them to the screen. To do so, the onDraw() function needs an adjustment. Listing 9-11 contains the entire
code for the function.

Ensure that your onDraw function looks exactly like Listing 9-11 or the images will not be drawn to
the screen.

Listing 9-11. onDraw()

@Override
public void onDraw(Canvas canvas) {
 canvas.drawColor(Color.BLUE);
 ground.draw(canvas);

 //the user controls
 dock.draw(canvas);
 marker.draw(canvas);
 trash.draw(canvas);
 cannonleftsmall.draw(canvas);
 cannonrightsmall.draw(canvas);
 cannondownsmall.draw(canvas);
 cannonupsmall.draw(canvas);

 for(int i = 0; i < pier_count; i++){
 pier[i].draw(canvas);
 }
 for(int i = 0; i < boat_count; i++){
 boat[i].draw(canvas);
 }
 for(int i = 0; i < cannon_count; i++){
 cannon[i].draw(canvas);
 }
 for(int i = 0; i < 50; i++){
 bullets[i].draw(canvas);
 }
 castle.draw(canvas);
}

Check out the group of sprites under the heading “user controls.” These include the dock, the
marker, and the trash and cannon icons that users can select. The important note here is that the dock is
obviously drawn first, then the marker, and then the icons. This way, you can always see the dock in the

CHAPTER 9 � A ONE-PLAYER STRATEGY GAME

159

background. The marker is then free to highlight all of the icons from behind. Figure 9-1 shows how the
dock looks.

Figure 9-1. The dock containing the user controls that the user can interact with

At the end of the function, four for loops go through the lists of sprites. Finally, the castle is drawn.
You always draw every bullet, even though they may or may not be moving at the current time. This

is taken care of by the SpriteObject class when it checks to ensure that sprites are alive before drawing
them. With bullets ready to destroy the boats, we must create and keep track of the oncoming enemies.
The next section covers the ins and outs of handling the boats.

Deploying and Managing the Attack Boats
Listing 9-12 contains code for the entire GameView.java update() method that deals with the boats. . If
you don’t understand a portion of it, type it in its entirety and run the game. You can see how it works
based on the game’s behavior.

1. Make sure that your update() method includes all of the code here. After the
listing, you will find a explanation of it.

Listing 9-12. Setting Up the Boats in the update() Function

public void update(int adj_mov) {

 for(int i = 0; i < boat_count; i++){
 if((int)boat[i].getX() > 950){
 boat[i].setMoveX(0);
 boat[i].setMoveY(3);
 boat[i].setBitmap(BitmapFactory.decodeResource(getResources(),
R.drawable.boatdown));
 }
 }

 Random random_boat = new Random();
 int check_boat = random_boat.nextInt(100);

 if(check_boat > 97 && boat_count < 12){
 int previous_boat = boat_count - 1;
 if(boat_count == 0 || boat[previous_boat].getX() > 150){
 boat[boat_count] = new
SpriteObject(BitmapFactory.decodeResource(getResources(), R.drawable.boat), 100, 150);
 boat[boat_count].setMoveX(3);
 boat_count++;
 }
 }

CHAPTER 9 � A ONE-PLAYER STRATEGY GAME

160

The code from Listing 9-12 was completed in Chapter 8.. The first for loop determines whether the
boat has moved to the right too much. If it has, then a new sprite image is used, and it begins to travel
down the screen toward the castle.

The next block handles the creation of random boats. The most important portion is where you use
an if statement to ensure that the previous boat is adequately separated from the new boat. Again, you
increment the number of boats and set the new craft on its way, as shown in Listing 9-12.

Now we will check for a collision with the castle which would result in a loss for the player.

2. Add the for-loop in Listing 9-13 in your update() method.

Listing 9-13. Testing for a Collision with the Castle, and Resetting the Game

for(int i = 0; i < boat_count; i++){
 if(boat[i].collide(castle)){
 reset();
 }
}

If the user fails and the boat strikes the castle, then you call a new function called reset(). You look
at what this simple function does in a bit. (I could have included all of the code here, but I find it easier
visually to add extra functions to handle distinct tasks.)

With boats sailing and bullets ready to fire, we need to work on our cannons. You cannot defeat the
boats without them. Check out the next section that handles the way we manipulate and use cannons.

Firing the Cannons
After the user input, the bullets are the most complex portion of the game. Keeping track of 50 sprites
that can move in four different directions and may or may not be alive at the current moment is tricky.
The cannons are about to get a lot more exciting. In this section, you add the bullets and write the code
that handles how and when the cannons fire their volleys of shots.

Follow these steps:

1. Add the code in Listing 9-14 to the GameView constructor. This code handles the
new bullets the cannons shoot. The number of bullets onscreen is limited to 50
to keep things simple. There are two arrays: one contains the bullet sprites
(bullets[]) and the other holding the list of bullets that aren’t currently in use
(available_bullet[]).

CHAPTER 9 � A ONE-PLAYER STRATEGY GAME

161

Listing 9-14. Additions to the onCreate() method that handle the bullets.

available_bullet = new int[50];
for(int i = 0; i < 50; i++){
 available_bullet[i] = i;
}

bullets = new SpriteObject[50];
for(int i = 0; i < 50; i++){
 bullets[i] = new SpriteObject(BitmapFactory.decodeResource(getResources(),
R.drawable.bullet), 10, 10);
 bullets[i].setState(bullets[i].DEAD);
}

You declare an array of integers in which every bullet is available, because you know that none have
been fired yet. The bullets sprites are initialized as well. You set their state to DEAD because you don’t
want bullets to appear without having been fired.

2. Add the code in Listing 9-15 to the update() method. First, you set the
available_bullet array equal to zero; this will make calculations easier as you
go along. Then you create a very important variable: g = 0. g is used to specify
which bullets are available and which aren’t.

Listing 9-15. Resetting the List of Available Bullets

for(int f = 0; f < 50; f++){
 available_bullet[f] = 0;
}

int g = 0;

3. Immediately after clearing the array, place the code from Listing 9-16 into the
update() method.

Listing 9-16. Handling Changes in Bullets

for(int i = 0; i < 50; i++){

if(bullets[i].getY() > 800 || bullets[i].getX() > 1280 || bullets[i].getY() < 0 ||
bullets[i].getX() < 0){
 bullets[i].setstate(bullets[i].DEAD);
 }

 for(int b = 0; b < boat_count; b++){
 if(bullets[i].collide(boat[b])){
 boat[b].diminishHealth(1);
 bullets[i].setstate(bullets[i].DEAD);
 }
 }

bullets[i].update(adj_mov);

CHAPTER 9 � A ONE-PLAYER STRATEGY GAME

162

 if(bullets[i].getstate() == bullets[i].DEAD){
 available_bullet[g] = i;
 g++;
 }

}

A loop goes through every bullet sprite. The first if statement checks to see if the bullet has left the
screen; if it has, you set its state to DEAD. This means it can be reused as an available bullet in your next
iteration. A for loop handles boat collisions. If the boat is hit, then its health goes down by one, and you
destroy the bullet. Again, the bullet can now be reused. A simple update() call changes the location of
the bullet based on its moveX and moveY.

If the bullet is dead, then you list it as an available bullet. If you look closely at the if statement, you
notice that the first dead bullet is given the first spot in the available_bullet array, g is incremented,
and the next dead bullet is given the next slot.

4. With the bullets ready to go, it’s time to worry about the firing mechanism.
Fifty iterations of the update() function release a bullet from every cannon on
the playing field. The code in Listing 9-17 performs these with a call to the new
function createBullet(), which takes four arguments. Put this code into the
update() method immediately after the code you’ve already added to the
method.

Listing 9-17. Calculating When to Fire a Volley of Bullets

shooting_counter++;
if(shooting_counter >= 50){
 shooting_counter = 0;
 int round = 0;
 for(int i = 0; i < cannon_count; i++){
 if(cannon[i].getOrientation() == cannon[i].LEFT){
 int x = (int)(cannon[i].getX());
 int y = (int)(cannon[i].getY() + cannon[i].getBitmap().getHeight()/2);
 createBullet(x,y,cannon[i].LEFT, round);
 round++;
 }
 if(cannon[i].getOrientation() == cannon[i].RIGHT){
 int x = (int)(cannon[i].getX() + cannon[i].getBitmap().getWidth());
 int y = (int)(cannon[i].getY() + cannon[i].getBitmap().getHeight()/2);
 createBullet(x,y,cannon[i].RIGHT, round);
 round++;
 }
 if(cannon[i].getOrientation() == cannon[i].UP){
 int x = (int)(cannon[i].getX() + cannon[i].getBitmap().getWidth()/2);
 int y = (int)(cannon[i].getY());
 createBullet(x,y,cannon[i].UP, round);
 round++;
 }
 if(cannon[i].getOrientation() == cannon[i].DOWN){
 int x = (int)(cannon[i].getX() + cannon[i].getBitmap().getWidth()/2);
 int y = (int)(cannon[i].getY() + cannon[i].getBitmap().getHeight());
 createBullet(x,y,cannon[i].DOWN, round);

CHAPTER 9 � A ONE-PLAYER STRATEGY GAME

163

 round++;
 }
 }
}

This block of code creates the variable round, which tracks which bullet has been fired. The first
cannon fires round one, the second cannon fires round two, and so on. The series of if statements uses
the new getOrientation() function you created in SpriteObject.java. The x and y coordinates of the
end of the barrel of each cannon are then passed to the createBullet() method. Getting the coordinates
requires some calculations because you know the barrel is in the center of the cannon.

The mechanics of the bullets make even more sense in createBullet(), which you’ll write in the
next section; the code in Listing 9-17 simply sends the necessary information to that method. Because
you’ve initialized all the bullet sprites already, this doesn’t waste processing because you’re only
updating the sprites.

5. To finish the update() method, make sure you have the calls to the various
sprites’ update() functions as shown in Listing 9-18.

Listing 9-18. Including the Basic update() Functions

castle.update(adj_mov);
ground.update(adj_mov);
for(int i = 0; i < boat_count; i++){
 boat[i].update(adj_mov);
}

}

The next section ties up the loose ends by handling game resets and firing bullets.

Managing Game Outcomes
When the player loses the game and a boat hits the castle, you call reset(). This is a simple and quick
function.

Follow these steps:

1. Add the code from Listing 9-19 below the other functions in GameView.

Listing 9-19. reset() Method

private void reset(){
 for(int i = 0; i < boat_count; i++){
 boat[i].setstate(boat[i].DEAD);
 }
 boat_count = 0;

}

All you do is destroy the boats. This, in effect, restarts the game, because the boats are randomly
created once again. You don’t remove the cannons because there is no need to worry about them. The
user can delete them if they wish. If you want to display a message to the user, you can create a sprite

CHAPTER 9 � A ONE-PLAYER STRATEGY GAME

164

and draw it onscreen at this point. In the update() function, have it wait for 30 or so cycles, and then
remove the message.

2. The createBullet() method is a bit more involved, as you can see in Listing 9-
20, but it’s definitely manageable. Put this method directly below the reset()
function.

Listing 9-20. createBullet() Method

private void createBullet(int x, int y, int direction, int r){
 if(r >= 0){
 int index = available_bullet[r];
 if(direction == bullets[index].RIGHT){
 bullets[index].setMoveX(10);
 bullets[index].setMoveY(0);
 bullets[index].setX(x);
 bullets[index].setY(y);
 bullets[index].setstate(bullets[index].ALIVE);
 }
 if(direction == bullets[index].LEFT){
 bullets[index].setMoveX(-10);
 bullets[index].setMoveY(0);
 bullets[index].setX(x);
 bullets[index].setY(y);
 bullets[index].setstate(bullets[index].ALIVE);
 }
 if(direction == bullets[index].UP){
 bullets[index].setMoveY(-10);
 bullets[index].setMoveX(0);
 bullets[index].setX(x);
 bullets[index].setY(y);
 bullets[index].setstate(bullets[index].ALIVE);
 }
 if(direction == bullets[index].DOWN){
 bullets[index].setMoveY(10);
 bullets[index].setMoveX(0);
 bullets[index].setX(x);
 bullets[index].setY(y);
 bullets[index].setstate(bullets[index].ALIVE);
 }
 }

}

The bullet sprites are symmetrical, so you don’t have to worry about their orientation, only the
direction of their movement. Don’t forget the last line of each if block, which makes the bullets alive.
Otherwise, they will never be drawn, and you’ll have trouble figuring out what went wrong.

You’ve finally finished the game project. The next section gives you some ideas for future plans.

CHAPTER 9 � A ONE-PLAYER STRATEGY GAME

165

Analyzing the Game
If you haven’t already, run the game. When the boats start coming, place your cannons to defend the
castle. I wish you luck in your battle.

Here is a list of features and techniques you’ve used to build Harbor Defender. Be proud of your
incredible effort to persevere through the code, errors, and work:

Game loop

Multiple sprites

Drawing images to the screen

Bitmap manipulation

User interaction

Some AI

Collision detection

XML data parsing

And much more

With an entire game written, you can relax and change the game into whatever you desire. If you
make enough changes, maybe you can make some money off it in the Android Market. The final chapter
of the book discusses this possibility.

Having an expandable game is critical. If game developers had to make each game from scratch,
they would never release enough games to pay the rent. Instead, they transform frameworks into a
number of unique and seemingly different creations. What you’ve done has the potential to be
transformed into a maze game, a platform game, a turn-based strategy game, or many other
possibilities.

The SpriteObject class is completely reusable, and GameView can fairly easily be adjusted into other
types. If you need ideas, I find it fun to look through other game-development books and create their
samples for Android. Any game for any language can probably be created on Android. This can be a
challenge if the game was made for a computer and uses keyboard controls. Be creative, and I’m sure
you can write some very different programs.

Figure 9-2 shows the completed game. See if you can envision its being transformed into a dozen
different projects.

CHAPTER 9 � A ONE-PLAYER STRATEGY GAME

166

Figure 9-2. Your completed project

Summary
Your hard work is finished, and you’ve learned a lot. Most recently in this chapter, you saw how to use a
matrix to rotate a bitmap. You also checked out how to keep track of 50 sprites and maintain another list
of which sprites are dead and ready to be created again. This chapter also marked your first foray into
creating a user interface that includes several icons and a marker to show the user what is currently
selected.

If you’re tired of code, there is great news: the next chapter deals with publishing your game,
providing updates, and handling the business end. You look at what games sell well and how tablets are
changing the computing landscape. When you understand the business aspects, it’s your turn to create
your own masterpiece!

C H A P T E R 10

167

Publishing the Game

Your game is ready for the masses, but you have a couple more steps before the app can be consumed by
the public. There are a couple of modifications to the code that you can use to polish your work. Then
this chapter goes over the steps involved in selling your game or giving it away. Finally, you look at ways
to ensure success in the competitive market for mobile apps.

Making a quality game is only the first step toward achieving best-seller status in the Android App
Market. Everything you’ve done so far can be incorporated in how you present your final product. The
graphics, sounds, and appearance of the app are integrated into how you sell it to consumers.

Polishing the Application
Although your game is playable as is, it could use some polishing. A welcome screen would be a nice
addition so players can learn about the game before jumping into it. You have a lot of options when it
comes to adding this feature, but making a rudimentary entrance screen is easy, and you can fine-tune it
for each game. In this section, you add a screen and then a button to start up the game.

Adding an Splash Screen
Because GameView.java takes care of the actual game and its appearance, your startup page is handled by
MainActivity.java. Instead of setting the screen to show GameView, you present a quick layout and then
give the user the ability to enter the game. This makes your work more professional and easier for the
user. To expand on this concept, you could play a short video clip to introduce the game, but I leave that
to your imagination.

Take a look at Figure 10-1 to see what your splash screen looks like. This section discusses ways of
adding features and items to it if you desire a more complete intro screen.

CHAPTER 10 � PUBLISHING THE GAME

168

Figure 10-1. Introduction to your game

To achieve the look in Figure 10-1, let’s go back to a concept explored in Chapter 1. The appearance
of the app is generated in main.xml, where you can create the interface by dragging buttons and text onto
the screen. You then edit the text and elements. The following steps show how to do this:

1. Find your main.xml file in the Harbor Defender project by navigating the
folders: res layout main.xml.

2. Open main.xml, and select “10.1in WXGA (tablet)” from the drop-down menu
near the top. The first order of business is to look at the code for the main.xml
file.

3. Select main.xml on the small tab near the bottom of the screen.

4. Replace the existing code with the code in Listing 10-1.

Listing 10-1. Main.xml

<?xml version="1.0" encoding="utf-8"?>

<AbsoluteLayout
 xmlns:android="http://schemas.android.com/apk/res/android"

CHAPTER 10 � PUBLISHING THE GAME

169

 android:orientation="vertical"
 android:layout_width="fill_parent"
 android:layout_height="fill_parent"
 >

</AbsoluteLayout>

You replace the existing LinearLayout with an AbsoluteLayout. Both of these are frameworks to
which you can add layout elements. The AbsoluteLayout, however, lets you quickly specify the exact
location for the elements, whereas the LinearLayout aligns all of the items toward the left. This is critical
when you add the parts of your welcome screen.

5. Return to the graphical layout by selecting the small Graphical Layout tab at
the bottom of the screen.

6. You use the palette of items on the left to create your layout. Figure 10-2 shows
what this will look like. Drag a Button and a TextView onto your screen. They
contain filler text for now, but you edit it shortly.

Figure 10-2. Using the palette on the left to drag the TextView and Button objects onto the screen

7. It’s time to go back to the view of the code. Select the main.xml tab at the
bottom of the screen. You should observe that two new elements (Button and
TextView) have appeared in your AbsoluteLayout element.

CHAPTER 10 � PUBLISHING THE GAME

170

8. You need to plug in your text and change the id of the button. Check out the
bold code in Listing 10-2. You can use different words, but the important part
is to remember the name or other identifier that you assign to the button’s id.

Listing 10-2. Main.xml

<?xml version="1.0" encoding="utf-8"?>

<AbsoluteLayout
 xmlns:android="http://schemas.android.com/apk/res/android"
 android:orientation="vertical"
 android:layout_width="fill_parent"
 android:layout_height="fill_parent"
 >

 <Button
android:text="Start Game"
android:layout_width="wrap_content"
android:id="@+id/startgame"
android:layout_height="wrap_content"
android:layout_x="557dip"
android:layout_y="249dip"></Button>

 <TextView
android:layout_width="wrap_content"
android:layout_height="wrap_content"
android:text="When you are ready to begin this game, please click on the button above."
android:id="@+id/textView1"
android:layout_x="310dip"
android:layout_y="361dip"></TextView>

</AbsoluteLayout>

The layout_x and layout_y lines specify where the items are located. If you want to precisely
determine where the button and text are, you can edit these values. You use the id tags to reference the
objects in the code, as you do in the next section.

Responding to a Start Game Button Press
Now that you have a nice display to put up for the user, you need to make it interactive. It’s critical to
allow the player to quickly start the game. This is especially important for a returning player. Remember
that if the person is coming back to your game, they expect to begin playing very quickly and don’t want
to see instructions or be hassled by intro videos.

To display your new layout and then let the user navigate to the real game, let’s go back to
MainActivity.java. Here you do a simple input test and then show the actual game. Originally, however,
you need to put Main.xml as the view of the game rather than GameView.java. Follow these steps:

1. Open MainActivity.java in the editing pane of Eclipse.

2. Add the following import statement to the top of the file:

CHAPTER 10 � PUBLISHING THE GAME

171

import android.widget.Button;

3. Change the onCreate() method for MainActivity.java so it looks like Listing
10-3. The bold portions are changed from your previous work. You have to
import Android.view.View in order to make it work.

Listing 10-3. MainActivity.java

@Override
public void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);

 mGameView = new GameView(this);

 setContentView(R.layout.main);

 mSensorManager = (SensorManager)getSystemService(SENSOR_SERVICE);
 mAccelerometer = mSensorManager.getDefaultSensor(Sensor.TYPE_ACCELEROMETER);

 final Button button = (Button) findViewById(R.id.startgame);
 button.setOnClickListener(new View.OnClickListener() {
 public void onClick(View v) {

 setContentView(mGameView);
 }
 });

}

The first setContentView() tells the app to load main.xml as the layout. The button section listens for
a click of the button. Once that happens, you call another setContentView() to show GameView on the
screen. This is the simple method you use to initialize the game.

When you’re assigning the value of the button, you use the function findViewById; and as the
argument, you use the id of the button. This is the reason you make the button id something that can
easily be identified as the item that starts the game.

4. Run the game, and you’re presented with your welcome screen. Continue by
pushing the Start Game button, and the application functions as normal.

Congratulations: you’ve finally finished the code portion of the book! The next section deals with
doing the final compilation of the game and preparing to distribute it. You’re getting closer to sharing
your creation with other users.

Packaging the Game
You must take care of several things before the game is completed and ready to publish. This section
goes over how you clean the code and finally compile the product into an APK file that is ready for
distribution. An APK is the packaging that contains all of the game code, images, and resources.

Follow these steps:

CHAPTER 10 � PUBLISHING THE GAME

172

1. The first order of business is to remove any Log.d statements in the code. I
usually perform a global find and replace to delete them. You don’t want a
retail version to waste processing power sending our debug warnings.

2. You must fix the version of the code in the Android manifest file. Locate this
file by going to the root of the HarborDefender folder and opening
AndroidManifest.xml. The code should be similar the markup shown in Listing
10-4.

Listing 10-4. AndroidManifest.xml

<?xml version="1.0" encoding="utf-8"?>
<manifest xmlns:android="http://schemas.android.com/apk/res/android"
 package="com.gameproject.harbordefender"
 android:versionCode="11"
 android:versionName="11.0">
 <uses-sdk android:minSdkVersion="111" />

 <application android:icon="@drawable/icon" android:label="@string/app_name">
 <activity android:name=".MainActivity"
 android:label="@string/app_name">
 <intent-filter>
 <action android:name="android.intent.action.MAIN" />
 <category android:name="android.intent.category.LAUNCHER" />
 </intent-filter>
 </activity>

 </application>
</manifest>

Notice the bold portions. You can set your own version code and version name, but it’s customary,
because this is your first game, to use 1.0 as the version. Also ensure that the minimum SDK version is
11.

3. Choose File > Export in Eclipse.

4. Select Export Android Application as the type of export you would like to
perform.

5. On the next page, enter the name of your final project: Harbor Defender.

6. You must create a keystore, which is required to protect the security of your
application and is used as an identifier by the Android app market. Select
Create New Keystore as shown in Figure 10-3, and use the Browse button to
open a window that lets you place the file in a folder.. Type the file name as
something like harbordefenderkey, and accept the default location.

CHAPTER 10 � PUBLISHING THE GAME

173

Figure 10-3. The prompt to generate a key

7. Create a unique and difficult password for your own protection, as shown in
Figure 10-3.

8. Fill out the Key Creation page shown in Figure 10-4 with the applicable
information. (The figure shows how I completed it.) The password can be the
same as the one that you used on the previous page.

CHAPTER 10 � PUBLISHING THE GAME

174

Figure 10-4. Filling out the developer information

9. The next page is the last. Click Browse, and type HarborDefender as the APK
destination. Close the dialog box, and finish the process.

That’s it—you’ve finished the project. The next section handles how you get this project into the
Application Market and into the hands of consumers. You also cover how to best market and work on
your presence in the crowded app market.

Deploying the Game
I hope you’re satisfied with your game and confident that others will love it as well. This section covers
how to work with Android App Market. You discover how applications are uploaded as well as the
fundamentals of marketing and pricing. With this information, you can go back to making even more
applications for sale.

To get started, look at Figure 10-5, which shows the homepage of the Android App Market at
https://market.android.com/.

CHAPTER 10 � PUBLISHING THE GAME

175

Figure 10-5. The Android App Market

On this page, owners of Android mobile devices as well as tablets can download and purchase apps.
Of special note is the tab that says Featured Tablet Apps. Android is making a large push to attract
buyers of tablets, so it separates the apps that are designed specifically for tablets from those for phones.
This is fantastic news for you because you face much less competition.

There is a lot of freedom when it comes to how the programs are offered. You can set a price for your
app for any amount between $1 and $200 or give it away for free. When a customer buys it, you pocket
70% of the sale; the rest goes to the cost of sending the app to the device. Google doesn’t take any
portion of the proceeds, but the device makers and the online distributors are paid to handle the
transaction much like a credit-card company charges a business for each transaction. iPhone and iPad
apps give the developer only 60% of the revenue, so in this sense, Android has yet another advantage
over the Apple App Store.

Fifty-seven percent of the apps on the Android market are free. Competing application stores have a
much lower percentage of free apps. The implication for you is that you must be aware that programs
that require users to pay must demonstrate superior quality and provide many hours of playing time.

You now know the basics of the market for apps. You must create an account with the Android App
Market in order to see your own creations available. The next section covers how to make an account
and upload your first app.

CHAPTER 10 � PUBLISHING THE GAME

176

Opening a Google Developer Account

Nothing makes an application developer more pleased than to see their work in the hands of others.
Here you create your Android App Market account and release your program to the world:

1. Go to https://market.android.com/. At the very bottom of the screen, click
Developers.

2. Select the option to Publish Apps.

3. Sign in to your Google Account, or create a new one. You should create a new
account just for your app business, to separate it from your regular e-mail or
Google+ activities.

4. The next screen is shown in Figure 10-6. Fill it out with accurate and
professional information. If you don’t have a web site, that’s okay, but you
probably want one.

Figure 10-6. Creating your Android App Market Account

5. You’re prompted to pay the registration fee. This is $25 and must be paid
through Google Checkout.

When the registration is complete, you have a profile of sorts for your account. You can do a variety
of things, from adding a Google Checkout account so you can get payments, to uploading an app.

Now you’re ready to upload your game to Google Market.

CHAPTER 10 � PUBLISHING THE GAME

177

Uploading a Game to Google Market
Although most developers want to sell their apps, this section covers the way to upload your app to the
public free of charge. If you want to receive payments and charge for your work, go to this amazing guide
about the market: www.google.com/support/androidmarket/developer/bin/topic.py?topic=15866.

Before you can complete the simple process to upload your game, you must have several items
ready, including the following:

The APK file that contains the app

Two nice screenshots of the app that highlight its features

A high-resolution icon that users select to play your game

Uploading the game is a simple proposition. At your online Developer Console, click Upload App.
Here you go through a wizard that asks for the items just listed. Locate the files in the directory where
you stored them.

It’s critical to have an attractive screenshot and description as well as any additional diagrams that
you would like to display; your success will be related to how much users are attracted to your game. The
next section looks at how to prepare for the greatest possible success in the marketplace.

Marketing Your Game
Marketing your app involves exposing your product to the greatest number of people. If you’ve created a
decent game, then people will buy it if they get the chance to see it. The first issue is how to make your
app stand out. Unlike in the App Store for iPads and iPhones, Android programs can be downloaded
from any web site, not just the official Google Market. This means developers with web sites of their own
have a much easier time selling their products, because they aren’t confused with the plethora of similar
apps in the Market. Users can come directly to their site and see videos, graphics, and explanations of
programs that aren’t possible in the short description displayed at the Android Market.

Take advantage of this fact by creating your own web site and funneling potential buyers to it.
Making a Facebook page or Twitter account can also generate increased attention. Instead of pointing
readers to your page on the Android App Market, send them to a page on your own web site where there
is less confusion.

If you’ve done online marketing, you know how useful a mailing list can be. On your site, offer
visitors the opportunity to sign up for updates about yours apps and free extras. This way, you can
continue to engage them and convince them to buy your offerings even if they don’t purchase
immediately. Check out the site AWeber (www.aweber.com/), which offers a fantastic mailing system you
can use to distribute newsletters to your users. It charges per month, but many marketers find that the
customers gained from the newsletter more than cover the cost.

Finally, approach the issue of marketing by putting your company or game into more traditional or
trusted media. Ask magazines that focus on technology to review it, or send information about it to
online news sources. When you do this, make sure your game offers something very unique. Maybe the
input controls are totally innovative, or the game takes place inside a zero-gravity chamber. Make the
app newsworthy. This can also be done by your company as a whole. If, for example, the art in all your
games comes from a famous painter, that’s definitely be a unique story for a site to talk about.

All these techniques go back to a basic funnel approach used in advertising. It’s illustrated in a
variety of beginning marketing and public relations books, but it also needs to be included here. The
more users you can engage and the longer you engage them, the more sales you make. Figure 10-7
shows how this works.

CHAPTER 10 � PUBLISHING THE GAME

178

Figure 10-7. Funneling your visitors into purchasers

That is it for marketing tips. With some trial and error, you’ll find the ways that work best for you. I
have found that success in the App Market is rarely achieved on your first or even second game. You
must stick with it and build anticipation and excitement about your offerings before striking gold.

Summary
Congratulations! You’ve completed the book. You went from discovering what Android is and how to
program in it, to writing a complete game, to putting your work into the App Market.

This has been a fun and interesting book to write, and I hope you enjoyed it as well. Working on a
technology that is so rapidly advancing can be both daunting and invigorating; ideally, this book has
given you some idea about how to create your own games for Android tablets.

With Android’s past success and its bright future, I am sure that the demand for better games for
tablets will continue for a long time. Make sure you’re there to catch this exciting wave.

Visitors who see you on media
sites, Twitter, Facebook, or the

App Market

Subscribers to mailing
list and readers of your

web site

Purchasers

A P P E N D I X A

179

Testing Android Games on a Real
Device

If you’re going to make games for an Android tablet, you definitely need to test them on the real thing.
Android has a built-in way to do this that eliminates many of the hurdles that developers went through
in the past to test their creations on videogame consoles and other mobile platforms. The marketplace
for apps has very little tolerance for programs that have bugs or issues that could easily have been fixed
during product testing.

This appendix guides you through a quick process to set up your tablet for testing. To follow along,
you need an Android 3.0 tablet. There are many tablets on the market as I write this, with more arriving
weekly, so it’s impossible to list all of them. When I choose a device, I rarely look for the state-of-the-art
tablet, but rather for the one that is most popular. If most people use the device that you use, then your
results will be similar to those of the majority of your users.

Choose a tablet with a widely recognized brand name and a large following. If you have friends with
tablets, you should test your applications on all of them. The process described here doesn’t take long,
so you should have no trouble doing this.

Because you’re going to be debugging, the hardware interface requires that you specify your
application as debuggable. You do this by setting a parameter in AndroidManifest.xml, the Android
manifest file. When you look at your project folder in the Eclipse project explorer, you don’t see the
manifest file in it. Figure AppA-1 shows where to find this file.

Figure AppA-1. Android manifest file

You add a very simple parameter to the XML that defines the project as a debuggable program.
Listing AppA-1 contains the code for the entire manifest, with the part that you must insert bolded.

APPENDIX A � TESTING ANDROID GAMES ON A REAL DEVICE

180

Listing AppA-1. Android Manifest File

<?xml version="1.0" encoding="utf-8"?>
<manifest xmlns:android="http://schemas.android.com/apk/res/android"
 package="com.gameproject.firstapp"
 android:versionCode="1"
 android:versionName="1.0">
 <uses-sdk android:minSdkVersion="11" />

 <application android:icon="@drawable/icon" android:label="@string/app_name"
android:debuggable="true">

 <activity android:name=".Main"
 android:label="@string/app_name">
 <intent-filter>
 <action android:name="android.intent.action.MAIN" />
 <category android:name="android.intent.category.LAUNCHER" />
 </intent-filter>
 </activity>

 </application>
</manifest>

The next step varies a little from device to device. Google recommends going to the Application
folder on the tablet, then going to the Development folder, and selecting USB Debugging. If this doesn’t
work for your tablet, do a quick search to find out how to turn on this type of debugging.

Now you need a driver for your specific USB device. This isn’t the same as the one you may have
installed when you connected the tablet to your computer for regular use. You need to choose one from
the list of USB drivers on Google’s Android developer page: http://developer.android.com/sdk/oem-
usb.html. The process to install these is easy enough.

Take for example the Motorola tablet, which I own. I clicked the link to go to Motorola’s homepage
for developer drivers. Because I run my programs on a 64-bit version of Windows, I chose the latest
handset USB driver. (Whether tablets are handsets is arguable, but the drivers are the same.) I followed
the setup process and was ready to go.

� Note If you’re developing on a Macintosh computer, you don’t need to worry about USB drivers: you’re all set.
Linux users, however, have a bit of work on their hands. For more information, check out the official Android
documentation about setting up a device for development:
http://developer.android.com/guide/developing/device.html#setting-up.

If you follow these directions correctly, you can now test your programs on the device. Go to Eclipse,
and run the program as usual. Instead of defaulting to the emulator, you should be presented with a
choice between the device you added and the emulator. Select the device that you plugged in, and you
can interact with your app the way your users will.
Pay careful attention to the fact that some applications only work on a physical device. These include
apps that rely on accelerometer data or Bluetooth connections.

181

Index

� A
AbsoluteLayout, 168–170
Accelerometer, 47, 67
AcceptThread, 128–130, 133, 135
Activity class, 22, 23, 31
Add Repository dialog, 15
adj_mov variable, 43, 106
AllTogether game, 87, 88
AllTogether project, 105, 114
Ambient light, 48
Analyzing games, 165, 166
Android, 1, 3

App market, 167, 174–177
class, 22, 31
3.0 features, 2, 3
games

testing on device, 179, 180
history, 1, 2
manifest file, 180
requirements for, 3, 4

hardware, 4
knowledge, 3, 4

SDK
download page, 11
installing, 10, 15
Tools Setup Wizard, 11, 13

tab, 17
tools

adding to Eclipse IDE, 15, 18
android.intent.Intent, 125
AndroidManifest.xml, 172
Android virtual device (AVD), 23, 24

Manager dialog, 13
APK file, 171, 177
Applications

folder, 180
making changes to, 25
polishing, 167, 171

responding to Start Game button press,
170, 171

splash screen, 167, 170
running, 24, 25, 40, 41

ArrayBlockingQueue, 57–62
Asteroid class, 83
Asteroid.java, 83
Attack boats

deploying and managing, 159, 160
AudioManager, 72, 73, 75
Auto-generated method, 64
available_bullet array, 161, 162
AWeber, 177

� B
background_music.mid file, 77
Ball and paddle game, 103, 120

collision detection and event handling, 109,
114

gathering resources for, 103, 104
preparing environment for, 106, 109

GameView.java file, 106, 109
SpriteObject.java file, 106

rewards
blocks, 116, 120

sounds, 115
touch control

of paddle, 114, 115
Barometer, 48
Bitmap object, 33
blocklocation.xml, 139
blocknumber value, 117
blockposition.xml, 116
Blocks

instantiating, 116, 118
removing dead, 118, 120

BlueAdapter, 124, 125
Bluetooth, 122, 124–128, 133, 135, 136

� INDEX

182

Bluetooth connections, 124, 135
managing, 135

boat_count, 142, 144, 145
boat_count variable, 144
Boats

attack
deploying and managing, 159, 160

for Harbor Defender game, 143, 145
bomb[] array, 90
brickposition.xml file, 120
Bundle argument, 22
Bundle class, 31

� C
cannon_count, 142, 145, 146
cannondownsmall, 154–156, 158
Cannons

firing, 160, 163
for Harbor Defender game, 145, 146

cannonup, 146
Canvas object, 33, 43
Castles

for Harbor Defender game, 142, 143
collide() method, 111, 112, 114, 116, 118, 119,

153
collisions

between sprites
detecting, 89, 90

detection
and event handling, 109, 114

of sprites
detecting, 44

ConnectedThread, 128, 130–135
class, 132

Cons column, 123
Context class, 33
Context variable, 75
Controls

user, 153, 158
create() method, 78
createBullet() method, 163, 164
Creative Commons license, 42
cursor_selection() method, 152, 153, 156
cursor_x variable, 152, 155, 156
cursor_y variable, 152, 155, 156

� D
Debuggable, 179, 180

Debugging
Harbor Defender game, 147, 149

Deploying, 174, 177
opening Google Developer account, 176
uploading game to Google Market, 177

Developer Tools check box, 17
Development folder, 180
Devices

testing Android games on, 179, 180
DLS file, 84
draw() function, 92, 135
drawable-mdpi folder, 32
drawBitmap method, 33
Dynamic audio, 78

� E
Eclipse Downloads page, 8
Eclipse IDE

adding Android tools and Virtual Device to,
15, 18

installing, 8, 10
Edit button, 53
Environment, 5, 18

Android SDK
installing, 10, 15

Eclipse IDE
adding Android tools and Virtual Device

to, 15, 18
installing, 8, 10

Java JDK
installing, 5, 8

requirements for, 3, 4
hardware, 4
knowledge, 3, 4

testing, 18, 26
creating Android project, 19, 21
creating Virtual Android device, 23, 24
exploring Android project in Eclipse, 22,

23
making changes to app, 25
running app, 24, 25

Else statement, 119
Events

handling
collision detection and, 109, 114
responding to Start Game button press,

170, 171
matching sound effects to, 76

eventtype, 94

 � INDEX

183

Explosion.java, 83

� F
Facebook page, 177
Feedinput() method, 62, 63
fill_parent, 26
findViewById function, 171
FirstApp folder, 22
Firstapp package, 22
For loops, 60, 91, 108, 117
Free Lossless Audio Codec(FLAC), 70
Friesen, J., 4
Froyo, 1, 2

� G
Game code

adapting for two-player games, 135, 136
GameLogic class, 41, 61
GameLogic.java, 36–38, 40, 43
Game loop, 48–50

for using sprites, 36, 38
Game process, 49, 50

for user input, 48, 50
GameView, 31–38, 40, 41, 43, 44, 50–52, 59, 61, 63,

66, 141–145
GameView class, 34, 36, 38, 40, 41, 43, 50–52, 59, 61,

63, 72, 76, 77, 90, 127, 141
GameView.java, 70–72, 76, 88, 94, 97, 151, 153–156,

159
GameView.java file, 31, 32, 44, 71, 105, 106, 109
Gameview() method, 38
GestureBuilder, 53–55
GestureDemo, 56
Gestures

class, 53
responding to, 53, 57

getHistoricalEventTime() method, 59
getHistoricalX() method, 59
getIntArray() method, 117
getInteger() method, 117
getMoveX() method, 106, 112, 113, 116
getMoveY() method, 106, 111–113, 116
Google Developer

opening account with, 176
Google Market

uploading to, 177
GPS location, 48
Graphical Layout tab, 169

GraphicsTest project, 30, 32
Ground

for Harbor Defender game, 142, 143
Gyroscope, 47

� H
Harbor Defender game, 138

assembling, 138, 147
boats, 143, 145
cannons, 145, 146
ground and castle, 142, 143
images, 146, 147
pier, 139, 142

debugging, 147, 149
HarborDefender folder, 172
Hardware

requirements, 4

� I
icon.png, 42
ID_alien_noise variable, 72, 73, 75
ID_human_noise variable, 72, 73, 75
ID_robot_noise variable, 75
if statements, 4, 45, 89–91, 94, 110, 113, 145
Images, 27, 41

for Harbor Defender game, 146, 147
rendering of, 31, 32, 34
and sprites, 34, 40, 92

creating, 38, 40
game loop for, 36, 38
rendering of, 34, 36

and View class, 31
InputObject class, 57, 59, 60, 94
inputObjectPool, 59, 60
InputObjects, 57–62
InputTest application, 72
InputTest.java, 70
InputTest project, 51, 57, 63
Input queues, 57, 63
Irregular collision detection, 45

� J
Java download options page, 6
Java file, 30, 41, 57
Java JDK

installing, 5, 8
Java.lang.Thread, 36

� INDEX

184

Java SE Downloads page, 6
Java type, 89
JDK installation wizard, 8
JET Creator, 79–81, 83, 84
JetBoy.java, 83
JetBoy project, 82
JetBoy.zip, 82
JetBoyView.java, 83, 84
JetBoyView.java file, 83
JetPlayer, 79, 81–84, 86
JetPlayer class, 79, 82

� K
Key Creation page, 173
KeyEvent, 57–59, 61
keystore, 172

� L
Level1.jtc, 83
libNum parameter, 84
LinearLayout, 26, 169
load() function, 75
load() method, 75
LogCat, 147–149
Log.d function, 65
Log.d statements, 151, 172

� M
MainActivity, 30, 31, 34, 42
MainActivity class, 63, 66
MainActivity.java, 30, 34, 42, 124, 125, 167, 170,

171
MainActivity.java file, 34, 42, 63
Main.java, 22
main.java file, 25
main.xml file, 168
Marketing, 177, 178
MediaPlayer

class, 71, 77, 79, 115
library, 71
object, 72, 77
variable, 71, 72, 77–79

MESSAGE_DEVICE_NAME, 127, 128, 134
MESSAGE_STATE_CHANGE, 127, 128
MESSAGE_TOAST, 127, 128, 134
mGameView, 125, 126
Microphone, 47

Motion
complex, 42, 44
control upgrading, 89

MotionEvents, 50, 51, 57–61, 94
class, 50

Motorola tablet, 180
MoveX value, 106, 110
MoveY value, 106, 110
Multiplayer methods

choosing, 123, 124
Multithreading, 36
Multitouch interface, 47
Music, 69, 77, 78

managing, 78
muteFlags parameter, 84

� N
New Android Project dialog box, 28
New Android Project screen, 19
nextInt() method, 144

� O
onActivityResult() method, 125
onClick() method, 50
onCreate() method, 22, 23, 64, 66, 124, 125, 161,

171
onDraw() function, 142, 143, 146, 148, 158
onDraw() method, 33, 41, 43, 91, 100, 109, 117, 142
One-player games, 87, 102, 137, 149

AllTogether, 87, 88
coding, 151, 166

analyzing game, 165, 166
deploying and managing attack boats,

159, 160
enhancing sprites, 152, 153
firing cannons, 160, 163
managing outcomes, 163, 164
putting features on screen, 158, 159
user controls, 153, 158

Harbor Defender, 138
assembling, 138, 147
debugging, 147, 149

reward for winning, 92, 93
sprites

tracking state of, 93, 102
upgrading, 89, 92

onKeyDown() method, 50
onKeyUp() method, 50

 � INDEX

185

onPause() method, 64
onResume() method, 64
onSensorChanged() method, 64–66
onState() method, 125
onSurfaceDestroyed() method, 75
onTouchEvent() method, 50, 51, 60
Options

for user input, 47, 48
Outcomes

managing, 163, 164
@Override notation, 33

� P
paddle_other sprite, 135
Paint object, 33
Peer-to-peer (P2P) networks

two-player games with, 122, 136
adapting code for, 135, 136
Bluetooth connections, 124, 135
testing, 136

Packaging, 171, 174
Paddles

touch control of, 114, 115
Piers

for Harbor Defender game, 139, 142
Pinging, 131
playsound() method, 76, 115
.png files, 92
ProcessInput() method, 62, 63
processMotionEvent function, 71, 74, 75
processMotionEvent() method, 91, 92, 101, 114,

155
processOrientationEvent, 115
processOrientationEvent() method, 66, 67
Professional look, 41, 42
Projects

creating, 19, 21
exploring in Eclipse, 22, 23

Pros column, 123
Proximity, 48
Publishing, 167, 178

deploying, 174, 177
opening Google Developer account,

176
uploading to Google Market, 177

marketing, 177, 178
packaging, 171, 174

polishing application, 167, 171
responding to Start Game button press,

170, 171
splash screen, 167, 170

� Q
queueJetSegment() method, 83, 84

� R
RECEIVE_DATA, 127, 128
RECT element, 45
release() method, 74, 75, 77
Rendering

of images, 31, 32, 34
of sprites, 34, 36

repeatCount parameter, 84
Requirements

for Android development, 3, 4
hardware, 4
knowledge, 3, 4

reset() method, 160, 163, 164
Resources

class, 117
folder, 70

Responding
to gestures, 53, 57
to sensor data, 63, 66
to touch, 50, 53

Return statement, 51
Rewards

blocks
instantiating, 116, 118
removing dead, 118, 120

for winning, 92, 93
robot_encounter() method, 76
rsc folder, 88
run() method, 37, 38, 61, 132

� S
savedInstanceState, 22
Screens

putting features on, 158, 159
splash, 167, 170

segmentNum parameter, 84
selection_changed, 155, 156

� INDEX

186

SEND_DATA, 127, 128
Sensor data

responding to, 63, 66
SensorEventListener class, 63
server-client multiplayer, 123
Servers

two-player games through, 122
setContentView() method, 171
setGameState() method, 37, 38, 41
setMoveX function, 44, 45
setMoveY function, 44, 45
setX function, 49, 51, 61
setX(int) method, 49
setY function, 49, 51, 61
setY(int) method, 49
Smartphones, 1, 2
Sound_id variable, 75
SoundPool

class, 71–73, 75
object, 108
variable, 75

soundPool.play() method, 76
Sounds, 115

effects, 69, 76
finding and adding, 70, 71
managing multiple, 71, 76
matching to events, 76
playing, 71

SoundTest project, 88
Splash screens, 167, 170
SpriteObjects, 90, 105–108, 113, 117, 118, 151–157,

159, 161, 163, 165
SpriteObject class, 38, 40, 44, 52, 71, 89, 90, 94, 159,

165
SpriteObject.java, 70, 88, 89, 94, 95, 105, 106, 118,

151, 152, 163
SpriteObject.java file, 106, 118
Sprites, 34, 40

class, 34, 36, 38, 45, 49
creating, 38, 40
detecting collisions of, 44
enhancing, 152, 153
game loop for using, 36, 38
rendering of, 34, 36
tracking state of, 93, 102
upgrading, 89, 92

detecting collisions between sprites, 89,
90

finer motion control, 89
images for sprites, 92
multiple sprites, 90, 92

src folder, 51, 88
StackOverFlow, 149
star.png, 33
star.png image, 70
Start button, 54
Start Game button

responding to press, 170, 171
startgame() method, 125, 126
Start SDK Manager check box, 12
States

of sprites
tracking, 93, 102

STREAM_ALARM, 75
STREAM_MUSIC, 73, 75
STREAM_RING, 75
strings.xml file, 25
surfaceCreated function, 91, 100
surfaceCreated() method, 74, 77, 78, 108
surfaceDestroyed() method, 51, 74, 77
SurfaceHolder, 72–74, 77, 78
SurfaceHolder() method, 35–38, 40, 41
SurfaceView class, 34, 36, 40
synchronized() method, 61–63
System.currentTimeMillis() method, 43

� T
TabletPaddle, 104, 106, 110, 114, 115, 119
Tablet Paddle game, 123, 124
TabletPaddle project. See Ball and paddle game
Testing

Android games
on device, 179, 180

two-player games with P2P networks, 136
TextView object, 26
Thread class, 36, 49
Timing, 42, 44
Touch

control, of paddle, 114, 115
responding to, 50, 53

Touchscreen, 47
Tracking

state of sprites, 93, 102
Transpose parameter, 84
Try-catch block, 43
Twitter account, 177
Two-player games, 121, 136

choosing multiplayer method, 123, 124
with P2P network, 122, 136

adapting code for two players, 135, 136

 � INDEX

187

Bluetooth connections, 124, 135
testing, 136

through server, 122
TwoPlayerPaddleGame, 124

� U
update function, 91, 94, 95
update() function, 106, 110, 115, 142–145, 153, 155,

162, 164
updateGameState() method, 84–86
update() method, 52, 76, 117, 135, 145, 153, 155,

156, 159–164
USB driver, 180
useEvent() method, 59
useEventHistory() method, 58–60
User controls, 153, 154, 158, 159
user_choice variable, 155–157
userID parameter, 84
User input, 47, 68

game process for, 48, 50
gestures

responding to, 53, 57
input queues, 57, 63
options for, 47, 48
sensor data

responding to, 63, 66

touch
responding to, 50, 53

� V
Values folder, 25
Video, 69, 78
View class, 31–34, 49, 50, 66

and images, 31
Virtual Device

adding to Eclipse IDE, 15, 18
creating, 23, 24

� W
Winning

rewards for, 92, 93
wrap_content, 26
write() method, 135
wxPython, 80
WYSIWYG editor, 25, 26

� X, Y, Z
XML file, 23, 30, 116–118, 139, 141

	Title Page
	Copyright Page
	Contents at a Glance
	Table of Contents
	About the Author
	About the Technical Reviewer
	Acknowledgments
	CHAPER 1 Setting Up Android 3.0 Java Development
	What Is Android?
	The Beginnings of Android
	Android 3.0 Features

	What You Need to Create Android Games
	What You Need to Know
	What You Need for a Platform

	Setting Up Your Android Tablet Programming Environment
	Installing the Java JDK
	Installing the Eclipse IDE
	Installing the Android SDK
	Adding Android Tools and a Virtual Device to Eclipse

	Putting Your Tools to the Test
	Creating an Android Project
	Exploring the Android Project in Eclipse
	Creating a Virtual Android Device
	Running the App
	Making Your First Changes to the App

	Summary

	CHAPTER 2 Creating Simple Games with Sprites and Movement
	Working with Images
	Creating a Image Display Surface
	How the Android View Class Works
	How Android Renders Images

	Rendering an Image
	Working with Sprites
	Rendering Sprites
	Building a Game Loop
	Creating a Sprite

	Running a Game

	Getting a Professional Look
	Implementing Timing and Complex Motion
	Detecting Collisions
	Summary

	CHAPTER 3 Gathering User Input
	Understanding Tablet Input Options
	Understanding Tablet Input
	Responding to Touch
	Responding to Gestures
	Using Input Queues
	Responding to Sensor Data
	Using Sensor Data
	Summary

	CHAPTER 4 Adding Sound Effects, Music, andVideo
	Getting Ready for Sounds
	Finding and Adding Sound Effects
	Playing a Sound Effect
	Managing Multiple Sound Effects
	Matching Sound Effects to Events

	Adding Music
	Adding Video
	Managing Music
	Summary

	CHAPTER 5 One-Player Game with Obstacles
	Planning a One-Player Game: AllTogether
	Building the One-Player Game
	Upgrading the Game Sprites
	Adding Finer Motion Control
	Detecting Collisions Between Sprites
	Adding Multiple Sprites
	Adding Images for the Sprites

	Adding a Reward for Winning the Game
	Tracking the State of Game Sprites

	Summary

	CHAPTER 6 A Ball and Paddle Game
	Getting Started
	Gathering Game Resources
	Creating a New Project

	Preparing the Game Environment
	Modifying SpriteObject.java
	Modifying GameView.java

	Adding Collision Detection and Event Handling
	Adding Touch, Sound, and Rewards
	Adding Touch Control of the Paddle
	Adding Sound
	Instantiating the Blocks
	Removing Dead Blocks

	Summary

	CHAPTER 7 Building a Two-Player Game
	Understanding Multiplayer Games
	Multiplayer Games through a Server
	Multiplayer Games with Peer-to-Peer
	Choosing a Multiplayer Method

	Building a Two-Player Peer-to-Peer Game
	Adding Bluetooth Connections
	Managing Bluetooth Connections
	Adapting the Game Code for Two Players
	Testing the Game

	Summary

	CHAPTER 8 A One-Player Strategy Game
	Part I: Building the Game
	Introducing Harbor Defender
	Assembling Harbor Defender
	Constructing the Pier
	Adding the Ground and Castle
	Creating the Boats
	Adding Cannons
	Adding Images

	Debugging Harbor Defender
	Summary

	CHAPTER 9 A One-Player Strategy Game
	Part 2: Coding the Game
	Enhancing the Game Sprites
	Creating the User Controls
	Putting Everything on the Screen
	Deploying and Managing the Attack Boats
	Firing the Cannons
	Managing Game Outcomes
	Analyzing the Game
	Summary

	CHAPTER 10 Publishing the Game
	Polishing the Application
	Adding an Splash Screen
	Responding to a Start Game Button Press

	Packaging the Game
	Deploying the Game
	Opening a Google Developer Account
	Uploading a Game to Google Market

	Marketing Your Game
	Summary

	APPENDIX A Testing Android Games on a Real Device
	Index

<<

 /ASCII85EncodePages false

 /AllowTransparency false

 /AutoPositionEPSFiles true

 /AutoRotatePages /None

 /Binding /Left

 /CalGrayProfile (Gray Gamma 2.2)

 /CalRGBProfile (sRGB IEC61966-2.1)

 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)

 /sRGBProfile (sRGB IEC61966-2.1)

 /CannotEmbedFontPolicy /Error

 /CompatibilityLevel 1.4

 /CompressObjects /Off

 /CompressPages true

 /ConvertImagesToIndexed true

 /PassThroughJPEGImages true

 /CreateJobTicket false

 /DefaultRenderingIntent /Perceptual

 /DetectBlends true

 /DetectCurves 0.1000

 /ColorConversionStrategy /sRGB

 /DoThumbnails true

 /EmbedAllFonts true

 /EmbedOpenType false

 /ParseICCProfilesInComments true

 /EmbedJobOptions false

 /DSCReportingLevel 0

 /EmitDSCWarnings false

 /EndPage -1

 /ImageMemory 1048576

 /LockDistillerParams true

 /MaxSubsetPct 100

 /Optimize true

 /OPM 1

 /ParseDSCComments true

 /ParseDSCCommentsForDocInfo true

 /PreserveCopyPage true

 /PreserveDICMYKValues true

 /PreserveEPSInfo true

 /PreserveFlatness true

 /PreserveHalftoneInfo false

 /PreserveOPIComments false

 /PreserveOverprintSettings true

 /StartPage 1

 /SubsetFonts false

 /TransferFunctionInfo /Apply

 /UCRandBGInfo /Preserve

 /UsePrologue false

 /ColorSettingsFile ()

 /AlwaysEmbed [true

]

 /NeverEmbed [true

]

 /AntiAliasColorImages false

 /CropColorImages true

 /ColorImageMinResolution 150

 /ColorImageMinResolutionPolicy /Warning

 /DownsampleColorImages true

 /ColorImageDownsampleType /Bicubic

 /ColorImageResolution 150

 /ColorImageDepth -1

 /ColorImageMinDownsampleDepth 1

 /ColorImageDownsampleThreshold 1.50000

 /EncodeColorImages true

 /ColorImageFilter /DCTEncode

 /AutoFilterColorImages true

 /ColorImageAutoFilterStrategy /JPEG

 /ColorACSImageDict <<

 /QFactor 0.40

 /HSamples [1 1 1 1] /VSamples [1 1 1 1]

 >>

 /ColorImageDict <<

 /QFactor 0.76

 /HSamples [2 1 1 2] /VSamples [2 1 1 2]

 >>

 /JPEG2000ColorACSImageDict <<

 /TileWidth 256

 /TileHeight 256

 /Quality 15

 >>

 /JPEG2000ColorImageDict <<

 /TileWidth 256

 /TileHeight 256

 /Quality 15

 >>

 /AntiAliasGrayImages false

 /CropGrayImages true

 /GrayImageMinResolution 150

 /GrayImageMinResolutionPolicy /Warning

 /DownsampleGrayImages true

 /GrayImageDownsampleType /Bicubic

 /GrayImageResolution 150

 /GrayImageDepth -1

 /GrayImageMinDownsampleDepth 2

 /GrayImageDownsampleThreshold 1.50000

 /EncodeGrayImages true

 /GrayImageFilter /DCTEncode

 /AutoFilterGrayImages true

 /GrayImageAutoFilterStrategy /JPEG

 /GrayACSImageDict <<

 /QFactor 0.40

 /HSamples [1 1 1 1] /VSamples [1 1 1 1]

 >>

 /GrayImageDict <<

 /QFactor 0.76

 /HSamples [2 1 1 2] /VSamples [2 1 1 2]

 >>

 /JPEG2000GrayACSImageDict <<

 /TileWidth 256

 /TileHeight 256

 /Quality 15

 >>

 /JPEG2000GrayImageDict <<

 /TileWidth 256

 /TileHeight 256

 /Quality 15

 >>

 /AntiAliasMonoImages false

 /CropMonoImages true

 /MonoImageMinResolution 1200

 /MonoImageMinResolutionPolicy /Warning

 /DownsampleMonoImages true

 /MonoImageDownsampleType /Bicubic

 /MonoImageResolution 600

 /MonoImageDepth -1

 /MonoImageDownsampleThreshold 1.50000

 /EncodeMonoImages true

 /MonoImageFilter /CCITTFaxEncode

 /MonoImageDict <<

 /K -1

 >>

 /AllowPSXObjects false

 /CheckCompliance [

 /PDFA1B:2005

]

 /PDFX1aCheck false

 /PDFX3Check false

 /PDFXCompliantPDFOnly false

 /PDFXNoTrimBoxError true

 /PDFXTrimBoxToMediaBoxOffset [

 0.00000

 0.00000

 0.00000

 0.00000

]

 /PDFXSetBleedBoxToMediaBox true

 /PDFXBleedBoxToTrimBoxOffset [

 0.00000

 0.00000

 0.00000

 0.00000

]

 /PDFXOutputIntentProfile (sRGB IEC61966-2.1)

 /PDFXOutputConditionIdentifier ()

 /PDFXOutputCondition ()

 /PDFXRegistryName ()

 /PDFXTrapped /False

 /CreateJDFFile false

 /Description <<

 /ARA <FEFF0633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F006200650020005000440046002006450646062706330628062900200644063906310636002006480637062806270639062900200648062B06270626064200200627064406230639064506270644002E00200020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644062A064A0020062A0645002006250646063406270626064706270020062806270633062A062E062F062706450020004100630072006F00620061007400200648002000410064006F00620065002000520065006100640065007200200036002E00300020064806450627002006280639062F0647002E>

 /BGR <FEFF04180437043F043E043B043704320430043904420435002004420435043704380020043D0430044104420440043E0439043A0438002C00200437043000200434043000200441044A0437043404300432043004420435002000410064006F00620065002000500044004600200434043E043A0443043C0435043D04420438002C0020043F043E04340445043E0434044F044904380020043704300020043D04300434043504360434043D043E00200440043004370433043B0435043604340430043D0435002004380020043F04350447043004420430043D04350020043D04300020043104380437043D0435044100200434043E043A0443043C0435043D04420438002E00200421044A04370434043004340435043D043804420435002000500044004600200434043E043A0443043C0435043D044204380020043C043E0433043004420020043404300020044104350020043E0442043204300440044F0442002004410020004100630072006F00620061007400200438002000410064006F00620065002000520065006100640065007200200036002E0030002004380020043F043E002D043D043E043204380020043204350440044104380438002E>

 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200036002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>

 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200036002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>

 /CZE <FEFF0054006f0074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002000760068006f0064006e00fd006300680020006b0065002000730070006f006c00650068006c0069007600e9006d0075002000700072006f0068006c00ed017e0065006e00ed002000610020007400690073006b00750020006f006200630068006f0064006e00ed0063006800200064006f006b0075006d0065006e0074016f002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e0074007900200050004400460020006c007a00650020006f007400650076015900ed007400200076002000610070006c0069006b0061006300ed006300680020004100630072006f006200610074002000610020004100630072006f006200610074002000520065006100640065007200200036002e0030002000610020006e006f0076011b006a016100ed00630068002e>

 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200036002e00300020006f00670020006e0079006500720065002e>

 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200036002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>

 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200036002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>

 /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e400740074006500690064002c0020006500740020006c0075007500610020005000440046002d0064006f006b0075006d0065006e00740065002c0020006d0069007300200073006f00620069007600610064002000e4007200690064006f006b0075006d0065006e00740069006400650020007500730061006c006400750073007600e400e4007200730065006b0073002000760061006100740061006d006900730065006b00730020006a00610020007000720069006e00740069006d006900730065006b0073002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e0074006500200073006100610062002000610076006100640061002000760061006900640020004100630072006f0062006100740020006a0061002000410064006f00620065002000520065006100640065007200200036002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e>

 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200036002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>

 /GRE <FEFF03A703C103B703C303B903BC03BF03C003BF03B903AE03C303C403B5002003B103C503C403AD03C2002003C403B903C2002003C103C503B803BC03AF03C303B503B903C2002003B303B903B1002003BD03B1002003B403B703BC03B903BF03C503C103B303AE03C303B503C403B5002003AD03B303B303C103B103C603B1002000410064006F006200650020005000440046002003BA03B103C403AC03BB03BB03B703BB03B1002003B303B903B1002003B103BE03B903CC03C003B903C303C403B7002003C003C103BF03B203BF03BB03AE002003BA03B103B9002003B503BA03C403CD03C003C903C303B7002003B503C003B103B303B303B503BB03BC03B103C403B903BA03CE03BD002003B503B303B303C103AC03C603C903BD002E0020002003A403B1002003AD03B303B303C103B103C603B10020005000440046002003C003BF03C5002003B803B1002003B403B703BC03B903BF03C503C103B303B703B803BF03CD03BD002003B103BD03BF03AF03B303BF03C503BD002003BC03B50020004100630072006F006200610074002003BA03B103B9002000410064006F00620065002000520065006100640065007200200036002E0030002003BA03B103B9002003BD03B503CC03C403B503C103B503C2002003B503BA03B403CC03C303B503B903C2002E>

 /HEB <FEFF05D405E905EA05DE05E905D5002005D105E705D105D905E205D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005D405DE05EA05D005D905DE05D905DD002005DC05EA05E605D505D205D4002005D505DC05D405D305E405E105D4002005D005DE05D905E005D505EA002005E905DC002005DE05E105DE05DB05D905DD002005E205E105E705D905D905DD002E0020002005E005D905EA05DF002005DC05E405EA05D505D7002005E705D505D105E605D90020005000440046002005D1002D0020004100630072006F006200610074002005D505D1002D002000410064006F006200650020005200650061006400650072002005DE05D205E805E105D400200036002E0030002005D505DE05E205DC05D4002E>

 /HRV <FEFF004F0076006500200070006F0073007400610076006B00650020006B006F00720069007300740069007400650020006B0061006B006F0020006200690073007400650020007300740076006F00720069006C0069002000410064006F00620065002000500044004600200064006F006B0075006D0065006E007400650020006B006F006A00690020007300750020007000720069006B006C00610064006E00690020007A006100200070006F0075007A00640061006E00200070007200650067006C006500640020006900200069007300700069007300200070006F0073006C006F0076006E0069006800200064006F006B0075006D0065006E006100740061002E0020005300740076006F00720065006E0069002000500044004600200064006F006B0075006D0065006E007400690020006D006F006700750020007300650020006F00740076006F007200690074006900200075002000700072006F006700720061006D0069006D00610020004100630072006F00620061007400200069002000410064006F00620065002000520065006100640065007200200036002E0030002000690020006E006F00760069006A0069006D0020007600650072007A0069006A0061006D0061002E>

 /HUN <FEFF0045007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c002000fc007a006c00650074006900200064006f006b0075006d0065006e00740075006d006f006b0020006d00650067006200ed007a00680061007400f30020006d00650067006a0065006c0065006e00ed007400e9007300e900720065002000e900730020006e0079006f006d00740061007400e1007300e10072006100200061006c006b0061006c006d00610073002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740075006d006f006b006100740020006b00e90073007a00ed0074006800650074002e002000200041007a002000ed006700790020006c00e90074007200650068006f007a006f007400740020005000440046002d0064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200036002c0030002d0073002000e900730020006b00e9007301510062006200690020007600650072007a006900f3006900760061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>

 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 6.0 e versioni successive.)

 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200036002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>

 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200036002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>

 /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d0069002000730075006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c002000740069006e006b0061006d0075007300200076006500720073006c006f00200064006f006b0075006d0065006e00740061006d00730020006b006f006b0079006200690161006b006100690020007000650072017e0069016b007201170074006900200069007200200073007000610075007300640069006e00740069002e002000530075006b00750072007400750073002000500044004600200064006f006b0075006d0065006e007400750073002000670061006c0069006d006100200061007400690064006100720079007400690020007300750020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200036002e00300020006200650069002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>

 /LVI <FEFF004c006900650074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200069007a0076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006100730020007000690065006d01130072006f00740069002000640072006f01610061006900200075007a01460113006d0075006d006100200064006f006b0075006d0065006e0074007500200073006b00610074012b01610061006e0061006900200075006e0020006400720075006b010101610061006e00610069002e00200049007a0076006500690064006f0074006f0073002000500044004600200064006f006b0075006d0065006e00740075007300200076006100720020006100740076011300720074002c00200069007a006d0061006e0074006f006a006f0074002000700072006f006700720061006d006d00750020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200036002e003000200076006100690020006a00610075006e0101006b0075002000760065007200730069006a0075002e>

 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 6.0 en hoger.)

 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200036002e003000200065006c006c00650072002e>

 /POL <FEFF004b006f0072007a0079007300740061006a010500630020007a00200074007900630068002000750073007400610077006900650144002c0020006d006f017c006e0061002000740077006f0072007a0079010700200064006f006b0075006d0065006e00740079002000410064006f00620065002000500044004600200070006f007a00770061006c0061006a01050063006500200077002000730070006f007300f300620020006e00690065007a00610077006f0064006e0079002000770079015b0077006900650074006c00610107002000690020006400720075006b006f00770061010700200064006f006b0075006d0065006e007400790020006600690072006d006f00770065002e00200020005500740077006f0072007a006f006e006500200064006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d0061006300680020004100630072006f00620061007400200069002000410064006f0062006500200052006500610064006500720020007700200077006500720073006a006900200036002e00300020006f00720061007a002000770020006e006f00770073007a00790063006800200077006500720073006a00610063006800200074007900630068002000700072006f006700720061006d00f30077002e004b006f0072007a0079007300740061006a010500630020007a00200074007900630068002000750073007400610077006900650144002c0020006d006f017c006e0061002000740077006f0072007a0079010700200064006f006b0075006d0065006e00740079002000410064006f00620065002000500044004600200070006f007a00770061006c0061006a01050063006500200077002000730070006f007300f300620020006e00690065007a00610077006f0064006e0079002000770079015b0077006900650074006c00610107002000690020006400720075006b006f00770061010700200064006f006b0075006d0065006e007400790020006600690072006d006f00770065002e00200020005500740077006f0072007a006f006e006500200064006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d0061006300680020004100630072006f00620061007400200069002000410064006f0062006500200052006500610064006500720020007700200077006500720073006a006900200036002e00300020006f00720061007a002000770020006e006f00770073007a00790063006800200077006500720073006a00610063006800200074007900630068002000700072006f006700720061006d00f30077002e>

 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200036002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>

 /RUM <FEFF005500740069006C0069007A00610163006900200061006300650073007400650020007300650074010300720069002000700065006E007400720075002000610020006300720065006100200064006F00630075006D0065006E00740065002000410064006F006200650020005000440046002000610064006500630076006100740065002000700065006E007400720075002000760069007A00750061006C0069007A006100720065002000640065002000EE006E00630072006500640065007200650020015F0069002000700065006E00740072007500200069006D007000720069006D006100720065006100200064006F00630075006D0065006E00740065006C006F007200200064006500200061006600610063006500720069002E00200044006F00630075006D0065006E00740065006C00650020005000440046002000630072006500610074006500200070006F00740020006600690020006400650073006300680069007300650020006300750020004100630072006F0062006100740020015F0069002000410064006F00620065002000520065006100640065007200200036002E003000200073006100750020007600650072007300690075006E006900200075006C0074006500720069006F006100720065002E>

 /RUS <FEFF04180441043F043E043B044C043704430439044204350020044D044204380020043F043004400430043C043504420440044B0020043F0440043800200441043E043704340430043D0438043800200434043E043A0443043C0435043D0442043E0432002000410064006F006200650020005000440046002C0020043F043E04340445043E0434044F04490438044500200434043B044F0020043D0430043404350436043D043E0433043E0020043F0440043E0441043C043E044204400430002004380020043F043504470430044204380020043104380437043D04350441002D0434043E043A0443043C0435043D0442043E0432002E00200421043E043704340430043D043D044B043500200434043E043A0443043C0435043D0442044B00200050004400460020043C043E0436043D043E0020043E0442043A0440044B0442044C002C002004380441043F043E043B044C04370443044F0020004100630072006F00620061007400200438002000410064006F00620065002000520065006100640065007200200036002E00300020043B04380431043E00200438044500200431043E043B043504350020043F043E04370434043D043804350020043204350440044104380438002E>

 /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200073006c00fa017e006900610020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f007600200076006f00200066006f0072006d00e100740065002000410064006f006200650020005000440046002c0020006b0074006f007200e90020007300fa002000760068006f0064006e00e90020006e0061002000730070006f013e00610068006c0069007600e90020007a006f006200720061007a006f00760061006e006900650020006100200074006c0061010d0020006f006200630068006f0064006e00fd0063006800200064006f006b0075006d0065006e0074006f0076002e002000200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e0074007900200076006f00200066006f0072006d00e10074006500200050004400460020006a00650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d00650020004100630072006f0062006100740020006100200076002000700072006f006700720061006d0065002000410064006f006200650020005200650061006400650072002c0020007600650072007a0069006900200036002e003000200061006c00650062006f0020006e006f007601610065006a002e>

 /SLV <FEFF005400650020006E006100730074006100760069007400760065002000750070006F0072006100620069007400650020007A00610020007500730074007600610072006A0061006E006A006500200064006F006B0075006D0065006E0074006F0076002000410064006F006200650020005000440046002C0020007000720069006D00650072006E006900680020007A00610020007A0061006E00650073006C006A006900760020006F0067006C0065006400200069006E0020007400690073006B0061006E006A006500200070006F0073006C006F0076006E0069006800200064006F006B0075006D0065006E0074006F0076002E0020005500730074007600610072006A0065006E006500200064006F006B0075006D0065006E0074006500200050004400460020006A00650020006D006F0067006F010D00650020006F00640070007200650074006900200073002000700072006F006700720061006D006F006D00610020004100630072006F00620061007400200069006E002000410064006F00620065002000520065006100640065007200200036002E003000200074006500720020006E006F00760065006A01610069006D0069002E>

 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200036002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>

 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200036002e00300020006f00630068002000730065006e006100720065002e>

 /TUR <FEFF0130015f006c006500200069006c00670069006c0069002000620065006c00670065006c006500720069006e0020006700fc00760065006e0069006c0069007200200062006900e70069006d006400650020006700f6007200fc006e007400fc006c0065006e006d006500730069006e0065002000760065002000790061007a0064013100720131006c006d006100730131006e006100200075007900670075006e002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e0020004f006c0075015f0074007500720075006c0061006e002000500044004600200064006f007300790061006c0061007201310020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200036002e003000200076006500200073006f006e00720061006b00690020007300fc007200fc006d006c0065007200690079006c00650020006100e70131006c006100620069006c00690072002e>

 /UKR <FEFF04120438043A043E0440043804410442043E043204430439044204350020044604560020043F043004400430043C043504420440043800200434043B044F0020044104420432043E04400435043D043D044F00200434043E043A0443043C0435043D044204560432002000410064006F006200650020005000440046002C0020043F044004380437043D043004470435043D0438044500200434043B044F0020043D0430043404560439043D043E0433043E0020043F0435044004350433043B044F04340443002004560020043404400443043A0443002004340456043B043E04320438044500200434043E043A0443043C0435043D044204560432002E0020042104420432043E04400435043D04560020005000440046002D0434043E043A0443043C0435043D044204380020043C043E0436043D04300020043204560434043A04400438043204300442043800200437043000200434043E043F043E043C043E0433043E044E0020043F0440043E043304400430043C04380020004100630072006F00620061007400200456002000410064006F00620065002000520065006100640065007200200036002E00300020044204300020043F04560437043D04560448043804450020043204350440044104560439002E>

 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200039002000280039002e0034002e00350032003600330029002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300031003100200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020>

 >>

>> setdistillerparams

<<

 /HWResolution [2400 2400]

 /PageSize [595.276 841.890]

>> setpagedevice

