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Foreword

Methodological reductionism is a driving force of scientific thinking. Unlike the
more controversial, and philosophically dubious, connotations of the term, method-
ological reductionism embodies a general principle of intellectual parsimony. It does
not establish debatable hierarchies among pedagogically distinct scientific areas, it
does not seek to identify equally controversial ultimate constituents of reality. In-
stead, it attempts the consolidation of a collection of more or less intuitively con-
nected items into a more general item, of which they become refinements or spe-
cializations. This trend towards simplicity (the parsimony of explanation) is the un-
derlying fabric of scientific endeavor. Simplicity is the hallmark of that undefinable
quality of science called “elegance”: a simpler proof of a theorem is unmistakably
referred to as “more elegant” than a previous more cumbersome proof of the same
statement. The incorporation of the descriptive results of Kepler and Galileo into
the mechanics of Newton is a major example. Equally spectacular is the unification
of a number of relations concerning electromagnetism into the remarkable architec-
ture of Maxwell’s equations. In the same mindset falls the axiomatic minimalism
in mathematics (for example, the reduction of the rules of boolean algebras to the
five postulates of Huntington) or the current unsatisfied quest for the unification of
forces in physics.

Elegance defies an operational definition, but you recognize it when you see it.
The present work of Gianfranco Cariolaro falls within the described optics and rep-
resents a life-time accomplishment in bringing under a common umbrella a col-
lection of diverse, but obviously interconnected topics of central importance in the
current technological landscape. The focus is on the signal, the embodiment of di-
versification which is the essence of information. Diversification, or choice, may be
expressed in an unlimited repertory, some of a static nature, as alphabetic charac-
ters, pictographs, etc. But in the present era, characterized by a spectacular flow of
information through communication lines, our intuition immediately refers to some
physical quantity whose variations in time specify the information one wishes to
convey. This is certainly the most spontaneous instantiation of a signal, and this
representation is the starting point of the traditional pedagogy of communication
theory.

vii



viii Foreword

Traditionally, the domain of the signal (time) is paralleled by the less intuitive
domain of frequency, and, although (signal, spectrum) form a conceptually indis-
soluble dual pair, the frequency domain is frequently presented as a formally useful
ancilla of the time domain, where ultimately the signal is to be acquired by its users.
In addition, different characterizations of time (discrete/continuous) engender dif-
ferent analytical environments for the treatment of the signal.

The present work takes the bold step of going beyond the traditional pedagogy,
fitting into a single elegant and original framework the diverse specialties of signal
representation and transmission. The signal-spectrum asymmetry fades away in the
new treatment, which the author appropriately dubs the “unified theory”. A signal is
an entity of either of the two domains, which are linked through the powerful device
of the Fourier Transform and its inverse. A signal becomes a function from some
domain to the complex field. The only characterization of the function domain is its
being an Abelian group, i.e., an abstract semigroup with a commutative and invert-
ible operation: this removes any distinction between continuous and discrete time,
as well as the distinction between periodic and aperiodic signals (referring to their
spectra). A necessary companion of this novel viewpoint is the adoption of the Haar
integral as the operational device, because it subsumes the functions of the standard
Lebesgue integral for the continuous case and of the summation operator for the
discrete case. Upon this abstract background, the elegant construction developed by
the author is the framework from which the traditional topics of communication the-
ory can be rediscovered as specializations, in the best tradition of methodological
reductionism. A keen reader willing to explore this tightly framed architecture will
certainly emerge with a mature and intellectually rewarding view of this relevant
body of knowledge.

Providence, RI, USA Franco P. Preparata



Preface

The increasing application of information technology in a variety of fields has led
to a high degree of diversification, to the extent that it is difficult to clearly delimit
the scope of this discipline and to establish its distinctive characteristics. Neverthe-
less, it is well recognized that signals are salient features of this discipline and have
a paramount influence on all the related fields, such as physics, astronomy, biol-
ogy, medicine, oceanography and meteorology, among others, that take advantage
of the electronic and the digital revolutions. The fact that signals are the greatest
protagonists of this evolution was clear from the beginning of the electronic era. In
fact, recalling the definition of electronics as the production, transmission and use
of information (Everett, 1948) and considering that signals are the physical carriers
of information, we arrive at the conclusion that signals play a fundamental role in
every field related to information technology. As a natural consequence, it follows
that the enormous growth of information technology, and its diversification, are reg-
ularly transferred to the discipline that specifically deals with signals, that is, Signal
Theory.

The idea of a Unified Signal Theory (UST) stems from the requirement that the
large variety of signals (continuous-time, discrete-time, aperiodic, periodic, one-
dimensional, two-dimensional, etc.) proposed over the last few decades can be
treated efficiently and with conceptual economy. The target of the UST is a unified
introduction and development of signal operations, such as convolution, filtering,
Fourier transformation, as well as system formulation and analysis. This approach
is rather atypical, with respect to standard signal theories, where different definitions
and separate developments are provided for each specific class of signals.

Philosophy of the UST The key to this unification was my decision to treat the
signal domains as Abelian groups, which have an appropriate mathematical structure
that permits a unified introduction of the fundamental operations. I used the nota-
tion s(t), t € I, to emphasize that function s (the signal) is defined on the Abelian
group I and realized, by inspection of all the signal classes of interest in applica-
tions, that every signal can be modeled in this unique and unified form. This remark
may appear to be trivial, but it is essential for the unification and permits realizing
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the leitmotif e pluribus unum for signals. Note the fortunate circumstance that the
domains of the Fourier transforms are Abelian groups, too, so that we can write ev-
ery Fourier transform as S(f), f € T, where T is the frequency domain, again an
Abelian group.

A further requirement for this unification is a linear functional that permits the
development of a coherent Signal Theory architecture. This is given by an inte-
gral introduced in 1933 by the Hungarian mathematician Alfred Haar, a student of
Hilbert, which provides the second fortunate circumstance, because the Haar inte-
gral, applied to each specific case, produces all the integrals and the summations
usually encountered in the standard signal theories.

In conclusion, the UST is built on two mathematical notions, Abelian groups and
the Haar integral, which again is atypical for signal theory.

Using these notions, it is possible to treat the unified signal s(¢), t € I, as a
single abstract object and to introduce it in the basic definitions and developments.
Once the unified architecture is completed, specific results for any given class of
signals are simply obtained by particularizing the signal domain, as one-dimensional
continuous, one-dimensional discrete, two-dimensional continuous, and so forth.

Originality This atypical formulation leads unavoidably to originality in the de-
velopment of specific topics within the framework of the unified approach. The
idea of unification itself is original, but so are several topics within the UST. The
most important ones include: representation of Abelian groups by base—signature
pairs; cells (as a generalization of the unit cells used for lattices); general definition
of periodicity, formulation of signal symmetries; impulses (as a generalization of
the concept of the Dirac delta function); multirate systems defined over structured
groups without domain normalizations; ideal and elementary transformations; dual-
ity theorem for ideal transformations; band and bandwidth generalizations; unified
sampling theorem; multidimensional polyphase decomposition in the signal domain
(usually formulated in the z-domain). In my own opinion, the most profound result
of the UST is the Duality Theorem on ideal transformations, which collects and uni-
fies a dozen known results. I have published only very few of these original results,
the reason being that their formulation would have required several pages of UST
preliminaries, which would be far too long and not suitable for a paper.

Mathematical Level The mathematical level is perhaps a little high for engineers
(and certainly too low for mathematicians), but it is appropriate for a graduate level
in the area of information engineering. The main problem is concerned with the
treatment of topological groups, the Abelian groups on which the Haar integral is
introduced. Considering that the field of topology is very abstract and difficult for
a fully mathematical development, I adopted the compromise of using the results
of Topology, without introducing topological details. This is a typical “engineer-
ing compromise”, as is usually made in engineering oriented books on probability
and random processes, whose theoretical background is fully anchored on Measure
Theory, but leaving out the mathematical details of this discipline.
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Organization of the Book The book is (conceptually) subdivided into three parts.

Part I: Classical Theory. Since the UST may appear to be a difficult topic to any-
one who is not already familiar with signals, I have introduced a preliminary chapter
where the fundamentals of continuous-time and discrete-time signals are developed
according to the traditional (not unified) approach, including several illustrations
and examples. I hope that with these preliminaries, the book can profitably be read
even by readers who do not possess elementary notions on signals.

Part II: Unified Theory. The UST itself is developed in six chapters, in no more
than 130 pages, where sections are explicitly marked UT for clarity." The first two
chapters deal with UST fundamentals, that is, with Abelian groups and the Haar
integral. Then, the unified approach is developed in both the signal domain and
the frequency domain (Fourier transform). Finally, systems (conventionally called
transformations) are developed, concluding with the formulation of the unified sam-
pling theorem. Throughout its development the UST is illustrated in some detail
with examples of one-dimensional and two-dimensional applications.

Part I11: Specific Classes of Signals and Applications. The UST is general and not
specific to any particular application. However, in the final nine chapters, we have
some real-world applications, namely implementation of the fast Fourier transform
(FFT), both one- and multidimensional, sampling and reconstruction of signals,
multicarrier modulation system (OFDM), wavelets, image scanning, in particular,
television scanning, image compression and tomography (Radon and Hankel trans-
forms).

The last two chapters develop some advanced topics of the UST, with applica-
tions to spatio-temporal systems.

Suggested Paths The book could be used by both undergraduate and graduate
students, and also by researchers, following three distinct paths.

Undergraduate students should begin with the Classical Theory, presented in
Chap. 2. When studying the UST part, they should take in the statements and con-
clusions, without dwelling on finer mathematical proofs and justifications, and con-
centrate on one-dimensional signals in Part III.

Graduate students can avoid a detailed study of the Classical Theory, limiting
themselves to a fast reading. But they should pay great attention to the mathemat-
ical formulation (both one-dimensional and multidimensional) in order to develop
the attitude that problems related to signal theory can be approached from a gen-
eral viewpoint, not merely confined to a specific problem. For graduate students,
parts of the book will also be useful for future studies. I suggest that graduate stu-
dents omit, at first reading, some mathematical details, explicitly indicated with the
“jump” symbol {}.

Researchers could follow the path of graduate students, early concentrating their
attention on the mathematical fundamentals and on the advanced applications they
are considering in their professional activity.

'Some sparse contributions of UST are introduced also in Part IIL.
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In this regard, I wish to add some personal considerations derived from my ex-
perience (and also from that of my colleagues). I have taught the UST for more
than 20 years and realized that students never had conceptual difficulties in un-
derstanding the general fundamentals, they rather showed their enthusiasm for the
compactness and generality of the formulation (saving their memory). At a first
glance, the mathematical fundamentals might discourage a reader, but, depending
on the teacher’s sensibilities, mathematical details can be adjusted and adapted. In
fact, Abelian groups (not so topological groups) represent a very elementary con-
cept. Also, the Haar integral may simply be viewed as a formalism that has exactly
the same properties as the ordinary integral on the real line. In conclusion, this book
is intended for people who may never have studied signal theory before, as well as
for experienced people. It is proposed as a panacea that satisfies everybody, even if
it carries the risk of satisfying nobody.

Examples and Problems. Solutions to All Problems I have introduced several
examples to illustrate the UST during its development. The final chapters, dedi-
cated to specific classes of signals, may be viewed as extended illustration exam-
ples. I have also suggested several problems at the end of each chapter; problems
are marked by one to three asterisks indicating the degree of difficulty. The examples
and problems were tested on graduate students over the course of several years.

The solutions to all the problems proposed in the book are available on the
Springer website www.springer.com/978-0-85729-463-0.

Manuscript Preparation To prepare the manuscript, I have used IATEX, supple-
mented with a personal library of macros. The illustrations too are composed with
IATiEX, sometimes with the help of Mathematica®.

Acknowledgements I wish to thank the hundreds of people, colleagues and stu-
dents who helped me to formulate this “definitive edition” of the UST. I con-
fine myself to mentioning, with gratitude, the ones who helped me in the fi-
nal stage: Antonio Assalini, Paolo Baracca, Matteo Canale, Giancarlo Calvagno,
Valentina Cellini, Antonio M. Cipriano, Guido Cortelazzo, Francesco de Pellegrini,
Michele Elia, Tomaso Erseghe, Lorenzo Finesso, Nicola Laurenti, Umberto Men-
gali, Lorenzo Novella, Gianfranco Pierobon, Roberto Rinaldo, Edi Ruffa, Beatrice
Tomasi, Giuseppe Tronca, Alberto Vigato, and Davide Zennaro.

Particular thanks are due to my colleague and friend Peter Kraniauskas, who first
encouraged me to publish this book, and to my son David, who was able to persuade
me to do so, by directly contacting Springer.

I am also indebted to Nino Trainito (perhaps the only one to actually read the
whole manuscript!), who made several comments and considerably improved the
language.

Padova, Italy Gianfranco Cariolaro
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Chapter 1
Introduction

1.1 “‘Physical” Signals

We begin with a clear distinction between “physical” signals, regarded as physical
quantities in which an information is conveyed, and “mathematical” signals, the
models of “physical” signals. To fix the ideas in a real world environment, these
concepts are now introduced with reference to telecommunication systems.

A telecommunication system has the task of transmitting messages from one
place to another place at some distance, as depicted in Fig. 1.1. The source produces
a message m to be sent to the user through a transmitting medium that covers the
distance between the transmitter and the receiver. The medium is a physical channel
such as a line, a coaxial cable, an optical fiber or a radio link in the free space. The
transmitter function is to vary a physical quantity, e.g., an electromagnetic field, in
accordance to the message. Finally, the time-varying physical quantity is replicated
at the destination point where the receiver extracts the message. The physical carrier
that conveys the message is usually called signal.

As a specific example, let us consider a transmission of a text document (telex
service, an early precursor of today’s email)) in which a message consists of a se-
quence of letters, numbers or signs, usually called symbols. Each symbol is ex-
pressed as a binary number, and the message becomes a sequence of binary symbols
(bits). At this point, the message can be converted, e.g., into a sequence of optical
pulses that are obtained by rhythmically switching a laser on and off according to
the rule that symbol 1 corresponds to the pulse presence and symbol O to the pulse
absence (Fig. 1.2). This optical signal can be applied to an optical fiber that covers
the required distance, supplying the receiver with a signal in which pulses are at-
tenuated, delayed and also “distorted”, that is, with a different shape with respect to
the original one. The receiver task is to recognize the presence or the absence of the
pulses, to restore the binary sequence and, finally, to reproduce the original printed
document.

As a second example we consider the transmission (faxing) of a black-and-white
still image (photography), where the message has a two-dimensional structure (see
Fig. 1.6). The corresponding “physical” signal is given by a luminous intensity (lu-
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Fig. 1.1 A typical signal environment: a telecommunication system
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Fig. 1.2 Transmission of a binary digital signal: s(¢) transmitted signal and r(¢) received signal;
T represents the symbol period and ty a delay

minance) varying along two spatial coordinates. In this case, the transmitter’s task
is to perform a scanning of the image. In the simplest procedure, the image is sub-
divided into a sufficiently large number of pixels (picture elements), which pick up
a value proportional to the luminance. In such a way, a signal is set up that evolves
in time and that can be transmitted. The image can be reproduced from the received
signal by restoring the luminance of each pixel.

The example may be complicated by passing to a color image and further com-
plicated for a time varying image (television), in which the message has a three-
dimensional structure with variations along two spatial coordinates and one time
coordinate.

1.2 “Mathematical” Signals

Signal Theory deals with mathematical models rather than with physical models
which are considered, e.g., in the field of Electromagnetic Propagation. Roughly
speaking, a signal is called deterministic when the observer knows perfectly the
whole time evolution. Conversely, a signal is called random when the evolution is
only known in statistical terms. This distinction is not concerned with the signal
nature, but only with the observer point of view, and in fact, the same “physical”
signal may be regarded as random a priori, before its observation, and as determin-
istic a posteriori, after its observation.
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Fig. 1.3 Classification of one-dimensional signals based on domain and amplitude

It is clear that the models require different definitions and approaches. Deter-
ministic signals are studied with the tools of Mathematical Analysis, while random
signals are studied with the tools of Probability Theory.

The present book is completely devoted to deterministic signals.

1.2.1 Deterministic Signals

For what above, a deterministic signal (regarded as a model) is simply defined as a
function

s: 1 — C, (1.1)

where [ is the domain and C is the codomain. Of course, the choice of the function
is strictly related to the “physical” signal we are considering, but it is also made
on the basis of convenience considerations, as we shall see in the following. By an
appropriate choice of the domain / and of the codomain C, we can obtain all the
classes of signals of practical interest.

The statement that deterministic signals are simply functions would lead to the
conclusion that their study belongs to standard mathematics, particularly to Analy-
sis, so that there would be no need for a specific theory. However, the methodology
and even the mentality that are required to study signals widely justify a specific
discipline.

The fundamental classes of (one-dimensional) deterministic signals are illus-
trated in Fig. 1.3:

1. Real functions of a real variable,
2. Real functions of a discrete (countable) variable.
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Fig. 1.4 Example of a binary s(t)

(NN

The independent variable is commonly, but not necessarily, interpreted as the time.
Then, we shall denote the signal by s(¢), ¢ € I, whenever the codomain will be clear
from the context.

Signals of class 1 have a continuum as domain and are called continuous-time
signals or, briefly, continuous signals. The domain may be an interval, or a half-line,
or more commonly, the real line R. In the last case, the signal notation becomes

s(t), —oo<t<+oo or s(t), teR.

Signals of class 2 have a discrete set as domain and are called discrete-time sig-
nals or, briefly, discrete signals. In principle, the instants of the domain may be
arbitrary, but commonly they are chosen equally spaced with a unitary spacing.
Consequently, the signal notation becomes s,, —00 < n < +00 or Sy, n € Z, where
Z is the set of integers. With an arbitrary spacing 7', the notation is

s(nT), nT eZ(T) or s(t), teZ(T),

where Z(T) 4 {nT | n € Z} is the set of the multiples of T'.

Classes 1 and 2 consist of real functions that typically take on values from a con-
tinuum. Then, we get continuous-time continuous-amplitude signals and discrete-
time continuous-amplitude signals. However, classes 1 and 2 include functions that
take on countably many amplitudes, which are called quantized signals. Figure 1.3
shows two examples of quantized signals, for the continuous-time, and the discrete-
time case, respectively.

As a further particularization, we find digital signals, which are discrete-time and
finite-amplitude (binary, ternary, etc.). Figure 1.4 shows the binary digital signal that
corresponds to the message of Fig. 1.2.

However, Deterministic Signal Theory does not consider specific methodologies
for digital and quantized signals, since they are included in the class of continuous-
amplitude signals. Methodologies differ in dependence on the continuous or discrete
nature of the domain.

We now examine the basic ideas for the choice of the model of a given “phys-
ical” signal. To be concrete, we refer to signals that evolve in time as the signal
considered in the first example. In principle, a “physical” signal evolving in time as-
sumes a precise value at each instant and hence it determines a function of class 1,
i.e., a continuous-time signal. Moreover, such a signal is always: (a) defined on an
interval, (b) continuous, and (c) bounded. These properties are justified by physical
reasons, since the evolution of a physical quantity has always a finite duration, with
no jump variations, and with a finite energy content. From these considerations,
it would seem that a single mathematical model would be adequate to represent all
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Fig. 1.5 The random process regarded as a family of realizations: s (¢, m) m € M; to every m there
corresponds a deterministic signal s(t, m)

“physical” signals. However, for mathematical convenience, usually, it may be more
useful to consider other models, though less linked to the real world. Consider, for
instance, the periodic signals, which intrinsically have an infinite-duration, the step
signals, and the rectangular impulses which are discontinuous functions. In conclu-
sion, the above physical constraints are not necessarily transferred to mathematical
signals.

The introduction of discrete-time signals requires a deeper effort of abstraction
which is done whenever the “physical” signal consists of a train of pulses that are
equally spaced by T seconds, and we are not interested in modeling the pulse shape,
but a single pulse parameter as the amplitude. In this case, to each discrete instantn T
we associate the corresponding parameter value thus defining a discrete-time signal
s(nT), n € Z. For instance, the signal illustrated in Fig. 1.2 as a continuous-time
signal can be replaced by a binary discrete-time signal, as shown in Fig. 1.4.

1.2.2 Random Signals

According to the formulation of Wiener and Shannon [6] in the 1940s, messages
must be unpredictable to have effectively an information content. As a matter of fact,
the transmission of a message would not be useful if the receiver could completely
predict the message. As a consequence, a theoretical formulation in which messages
and signals are known is not sufficient, and the model becomes a random process.
To introduce this model in a suggestive way, we still make the reference to a
system of Fig. 1.1 where the source chooses a message m from the class of the
possible messages M. The transmitter converts the message m € M into a signal

s@t,m), tel, meM.

Thus, we get a family of time-functions (Fig. 1.5) which are called realizations or
trajectories of the random process.
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Fig. 1.6 Example of a still image (the galaxy M61) and the corresponding two-dimensional signal
representing the image luminance

The theory of Random Processes is not concerned with the single realizations,
rather it performs a statistical characterization of the whole family by means of
the probability tools (distributions and densities, characteristic functions, etc.). In
this context, Deterministic Signals are confined to single realizations of a random
process.

1.2.3 Multidimensional Signals

Signals considered above and illustrated in Fig. 1.3 are one-dimensional since they
are functions of one independent variable. They are used to represent “physical”
signals whose evolution is along a single coordinate (usually the time).

To represent “physical” signals that evolve along two or more coordinates, we
need to introduce functions of so many independent variables. Then, we get two-
dimensional, three-dimensional, and, in general, multidimensional signals. The gen-
eral deterministic signal definition (1.1) includes this variety of signals as soon as
we choose a suitable multidimensional domain and we interpret the symbol ¢ as a
pair or as a triplet of variables (and, in general, as an n-tuple). For instance, a still
image is modeled by a two-dimensional signal of the form

s(x,y), (x,y)eR?

which represents the luminance value of the point (x, y) (Fig. 1.6). Analogously, a
time varying image must be modeled by a three-dimensional signal

s(x,y,t), (x,y,t)€e R3

which represents the luminance of point (x, y) at time ¢. In these examples, we make
reference to a continuous domain, but multidimensional signals that are discrete
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with respect to one or more coordinates are often considered. The decomposition of
an image into pixels is a remarkable example.

1.2.4 Complex Signals

Modern Signal Theory deals with complex signals in place of real signals. There-
fore, in the general definition (1.1), the codomain C becomes the set C of complex
numbers, and real signals become a particularization.

The introduction of complex signals would not be required to represent “physi-
cal” signals, but it stems from reasons of mathematical convenience. The most el-
ementary example is provided by the complex representation of sinusoidal signals,
which, as well known, greatly simplifies the circuit analysis in sinusoidal regime.
This idea is generalized by Modulation Theory where complex signals are widely
used. In general, the extension to complex signals does not lead to any complication,
but provides more symmetrical results, particularly in connection with the Fourier
transform.

1.3 Historical Note

The study of signals may be dated back at the period of Galileo [8—18] who real-
ized that the pendulum motion can be studied by means of the trigonometric func-
tions, previously used only in geometry. The first example of frequency analysis of
a (mechanical) system may be ascribed to Euler who, with the discovery of the phe-
nomenon of the mechanical resonance (1739), came up with a very important idea.
Specifically, he established that the model, which today is called a linear system,
can be identified by iso-frequency oscillations of the form

Vo cos(27 fot + o). (1.2)

With reference to mechanical systems (pendulum, vibrating strings), Euler realized
that the motion solution can be often expressed as iso-frequency oscillations of the
form (1.2). However, he did not arrive at the conclusion that this result is the general
solution. Some years later, in 1822, Fourier proved that Euler’s solution is really the
general one by showing that every periodic function can be expressed as the sum
of sines and cosines. This is the basic idea in the frequency analysis of signals and
systems.

The analysis techniques of mechanical systems were later transferred to electri-
cal circuits. However, it was the study of the transmission media for the telegraph
and the telephone that refined the mathematical tools to the today form. In 1855,
William Thomson (later appointed Lord Kelvin) published a theory on the electri-
cal telegraph in which he evaluated the impulse response of a coaxial cable. In this
analysis, Thomson, continuing Euler’s idea on the sufficiency of the iso-frequency
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Fig. 1.7 Illustration of the four classes of one-dimensional signals

oscillations analysis, found it convenient to replace the sinusoidal form (1.2) with
the exponential form

Vo el(@or+¢o)

The same idea was reconsidered by Heaviside and led to the today’s form of the
Fourier and Laplace transforms.

In all this long historical evolution, signals were regarded as functions of a real
variable, i.e., continuous-time signals. The introduction of discrete-time signals is
more recent and may be dated back to the end of the 1940s, and precisely to Shan-
non [6, 7], who first used the idea that a band-limited continuous-time signal can
be replaced, without loss of information, by a sufficiently dense discrete-time signal
(Sampling Theorem). Shannon, moreover, proved that every signal can be converted
into a digital form [5].

We now briefly mention the development of signal teaching in the last decades.
The first class of signals considered systematically (in the area of information engi-
neering) was the class of periodic signals, and more specifically of continuous-time
periodic signals (Fig. 1.7). Their study was based on the Fourier series which per-
forms an adequate analysis in the frequency domain. Later on aperiodic continuous-
time signals were introduced by regarding them as a limiting case of periodic signals
with an infinite period, thus getting the passage from the Fourier series to the Fourier
integral.

Aperiodic discrete-time signals were introduced more recently in connection
with the Sampling Theorem and the Shannon’s works. Then, the appearance of
computer initiated the digital signal processing and imposed a computational tool
improvement with the discovery of the Fast Fourier Transform (FFT) [2].

So, we arrive at periodic discrete-time signals which are the only ones that can
be handled directly on a digital computer. The availability of powerful computers
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together with the possibility of a real time processing led to a systematic study of
two- and three-dimensional signals, even if we may encounter earlier outstanding
applications. We recall that commercial television was introduced several years ear-
lier than digital computers. However, it was the availability of computer power that
developed the study of multidimensional signals.

The last two decades were characterized by a tremendous interest in wavelets,
a new way to represent and decompose a signal. Wavelets may be seen as a general-
ization of the frequency domain representation, but are superior in multiresolution
analysis.

Coming back to one-dimensional signals, in the previous considerations we have
outlined the following four classes of signals (Fig. 1.7): aperiodic continuous-time,
periodic continuous-time, aperiodic discrete-time and periodic discrete-time.

These classes of signals are dealt with in a good deal of textbooks (see the biog-
raphy at the end of Chap. 2), some of which pay much more attention to continuous-
time signals, others to discrete-time signals. In particular, by the end of the 1960s
the author published a synoptic theory [1] where each of the four classes were sep-
arately developed, meaning that definitions and developments were carried out in-
dependently.! Stimulated by the apparent symmetries between definitions and final
results, the author envisioned the idea of a unified approach.

Gallery of Signals: E Pluribus Unum In Fig. 1.8, we sketch a gallery of signals:
one dimensional continuous-time, one-dimensional discrete-time, real and complex,
periodic and aperiodic, two-dimensional continuous-argument, two-dimensional
continuous-argument, two-dimensional discrete-argument, two-dimensional mixed-
argument. The goal of the UST is realizing the leitmotif e pluribus unum.

1.4 The Unified Signal Theory

We have seen that deterministic signal is a function s : I — C, where [ is the do-
main and C is the codomain. Then, the unification possibility stems from the choice
of a domain / with a mathematical structure, articulated enough to enable the in-
troduction of fundamental operations, and from the choice of codomain C, broad
enough to include the amplitudes of interest. So, we arrive to reformulate a deter-
ministic signal as

s: I —-C, (1.3)

where the domain I is an Abelian group® (see Chap. 3) and the codomain is the
set C of complex numbers. Signal (1.3) will be denoted in the form

s(t), tel,

1A similar synoptic theory may be found in [4].

2In the Unified Theory, I is a pair of Abelian groups which represent both the domain and the
periodicity of the signals. But, in these preliminaries it is sufficient to consider only the domain.
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A

Fig. 1.8 e pluribus unum

which recalls explicitly the domain 7, while the codomain is implicit (since it is
always C).

To explain why I must be an Abelian group, consider the convolution of two
continuous-time signal x(¢) and y(¢) which is defined by

+00
s(t)=/ x(u)y(t —u)du, teR, (1.4)

—00
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where s(¢) is the result of the convolution. In this operation, the arguments ¢ and
u are arbitrary points of R, the set of real numbers, but also # — # must be a point
of R. This is assured by the fact that R is an Abelian group, the additive group of
real numbers.

Now, we show that, with a slight effort of generalization, the convolution for
continuous-time signals can be extended to all the signal classes. To this end, we
rewrite (1.4) in the form

s(t):/dux(u)y(t—u), t eR,
R

which emphasizes that the integral must be extended over the whole signal domain
R. To arrive at the unified convolution of two signals x(¢), ¢t € I, and y(¢),t € I, we
simply write

s(t):/dux(u)y(t—u), tel. (1.5)
I

Then, we have to define the integral over the domain /, which is an Abelian group,
where ¢, u € I assure that also t — u € I. Now, the most familiar integral, i.e., the
Lebesgue integral, can be considered on Abelian groups. This integral works well
for continuous-time signals, as stated by (1.4), but it has the drawback of inducing
a zero measure for all discrete groups. In other words, if the integral (1.5) is in-
terpreted as a Lebesgue integral and / is a discrete group, the result is identically
zero, and consequently not useful. The appropriate choice is given by the Haar in-
tegral [3], which is developed in the field of Topology. This integral provides the
Lebesgue integral when / = R and in this case (1.5) yields (1.4), as we want. When
I is a discrete group, the Haar integral turns out to be proportional to the sum of the
integrand values, again as we want to have. Moreover, it is defined for multidimen-
sional groups as well and, in this case, (1.5) lets us define the convolution also for
multidimensional signals. As we shall see, the rules for the Haar integral are essen-
tially the same as for the Lebesgue integral on R. This permits us to obtain all the
rules for convolution in a unified manner, otherwise each rule should be obtained
separately for the different classes of signals.

What has been seen for the convolution holds also for the Fourier transform and
for the other operations of Signal Theory. Therefore, the fundamental operations of
Signal Theory can be carried out with a unified approach using the Haar integral.

It remains to clarify one point: the Haar integral is defined on fopological Abelian
groups and its learning would require very abstract notions of Topology. In this
book, however, these notions will not be developed and only the expression of the
Haar integral, in the cases of interest, will be provided. The author’s opinion is that
this compromise is well adequate for a theory whose final goal is represented by
applications.
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1.5 Content of the Book
As said in the Preface, the UST can be conceptually subdivided in three parts.

Part I: Classic Theory In Chap. 2, we introduce the fundamental definitions on
continuous-time signals, arriving at the frequency analysis given by the Fourier se-
ries (for periodic signals) and by the Fourier transform (for aperiodic signals). The
same topics are developed for discrete-time signals. Finally, we examine the pos-
sibility to represent a continuous-time signal by a discrete-time signal (Sampling
Theorem).

This part is formulated with the classical (not unified) approach and is introduced
for the reader who is not familiar with the elementary notions on signals.

Part I1: Unified Signal Theory It is organized in seven chapters. Chapter 3 deals
with the notions on Abelian groups. In Chap. 4, the Haar integral is introduced
and the convolution is developed. Chapter 5 develops the Fourier transform, where
the preliminary step is to establish the frequency domain / (the dual group) that
corresponds to the signal domain /. Then, the Fourier transform and its inverse can
be introduced in a complete general form using the Haar integral.

Chapter 6 deals with transformations of signals and particularly linear transfor-
mations (here transformation is synonymous to a system). By means of the Haar
integral, we define the linear transformations in a completely general way, in which
the output signal domain may be different, even for the dimensionality, from the
input signal domain. Then, transformations are developed in the frequency domain.
In Chap. 7, the important class of multirate transformations are developed in detail.

Chapter 8 deals with the sampling operation and with the possibility of signal
recovery from its sample values (Unified Samplings Theorem). Chapter 16 deals
with advance topic on groups and is carried out before the final applications of Part
1.

Part II1: Specific Classes of Signals and Applications This part is devoted to the
study and probing of specific signal classes, to which we can apply all the results
of the Unified Theory and also some specific results that do not hold in the unified
approach. For instance, for continuous-time signals (Chap. 9) derivative and integral
operations can be considered both in the time and in the frequency domain, and
specific results can be established. For continuous-time signals, in addition to the
Fourier transform, the Laplace transform is introduced and related to the Fourier
transform. Analogously, for discrete-time signals the z-transform is introduced and
then related to the corresponding Fourier transform.

Chapter 13 is devoted to digital signal processing, which is essentially based
on the Fast Fourier Transform (FFT) algorithm. In Chap. 14, filter banks and sub-
band coding are developed, after the formulation of signal expansion as generalized
transforms. In Chap. 15, wavelets and multiresolution analysis is carried out with
illustrations and examples of application.

The final two chapters are devoted to advanced topics of multidimensional sig-
nals and to image theory with application to television scanning and tomography.
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1.6 Conventions on Notation

The sections where the UST is developed are marked with . Sections of ad-
vanced topics that can be omitted at the first reading are marked by |}. Problems are
marked by asterisks whose number stands for the increasing difficulty. Sections and
problems marked with the symbol 7 require notions that are developed later on.

Throughout the book, notations are explicitly specified at the first use and are
frequently recalled. Signals are denoted in lower-case and Fourier transforms by
the corresponding upper-case letters. Hence, if x(¢), t € I, denotes a signal, then
X(f), f€ IA, denotes the corresponding Fourier transform. In these notations, the
domains are always explicitly indicated, while the codomain is understood as the
set of complex numbers. In block diagrams, signal labels are indicated above the
connections and domain labels are indicated below.

The Haar integral is denoted in the form

/dtx(t)
1

with the “differential” before the integrand, leaving the standard form with the “dif-
ferential” after the integrand to the ordinary integral.

The UST formulation has led to the introduction of several new terms, not usual
in the literature. This has been done with reluctance, but it was necessary to proceed
with a more synthetic language. These new terms are marked by an asterisk in the
index.
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Chapter 2
Classical Signal Theory

2.1 Continuous Signal Definitions
We begin with a formal definition:

Definition 2.1 A continuous-time signal is a complex function of a real variable
s : R — C, where the domain R is the set of real numbers and the codomain C is
the set of complex numbers.

The signal will be denoted by s(¢), # € R, or simply by s(z). The independent
variable ¢ is typically interpreted as time. From the historical viewpoint, continuous-
time signals (more briefly, continuous signals) represent the most important class,
and are the subject of several textbooks [1, 6, 8-25].

An important subclass of continuous signals is given by real signals, which can
be defined by the relationship

s(t) =s*(1), (2.1)

where the asterisk denotes “complex conjugation”.
Another important subclass is given by periodic signals, characterized by the
relationship

st +Tp) =s(1), 2.2)

where the constant time T, > O represents the period. Signals that do not satisfy
Condition (2.2) are called aperiodic.

2.1.1 Signal Symmetries

A signal s(7) is even (Fig. 2.1) if for any ¢
s(=1) =s(1), (2.3a)

G. Cariolaro, Unified Signal Theory, 17
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Fig. 2.1 Examples of even and odd signals

itis odd (Fig. 2.1) if
s(—t) = —s(1). (2.3b)

An arbitrary signal can be always decomposed into the sum of an even component
S¢(t) and an odd component s, (t)

$(1) =s5¢(t) + 50(1), (2.4)
where
1 1
se(t) = 5[s(r) +s(=1)], So(t) = E[s(z) —s(=0)]. (2.42)
A signal is causal (Fig. 2.2) if it is zero for negative ¢,
s(t)=0 fort<0. 2.5)

A causal signal is neither even nor odd, but can be decomposed into an even and
an odd component, according to (2.4) to give s.(¢) = s,(t) = %s(t) for t > 0 and
Se(t) = —s,(t) = %s(—t) for # < 0.! We can link the even and odd components of a
causal signal by the relationships

So(1) = sgn(t)s. (1), Se(t) = sgn(1)so (1), (2.6)
where sgn(x) is the “signum” function

—1, forx <0;
sgn(x) =10, forx =0; 2.7
+1, forx > 0.

I'The above relations hold for ¢ # 0. For t = 0 we may have a discontinuity, as shown in Fig. 2.2.
The problem of the signal value at discontinuities will be discussed below (see (2.19)).
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Fig. 2.2 Decomposition of a s(t)
causal signal s(¢) into the

even part s, (#) and odd

part s, (?)

Se(t)

so(t)

s(t) s(t—19)

Fig. 2.3 Illustration of a fy-shift of a signal

2.1.2 Time-Shift

Given a signal s(¢) and a time value 7y, the signal

St (1) =s(t — 19) (2.8)

represents a shifted version of s(¢), by the amount 7. If 7y > 0 the time-shift is called
a delay (Fig. 2.3), if 9 < O it is called an advance, that is, a negative delay.

It is worth noting that to introduce a delay, e.g., of 5 units, we have to write
s(t —5) and not s(¢ + 5).

2.1.3 Area and Mean Value

The integral of a signal s(¢), t € R, extended over the whole domain R is called the
area of the signal

400
area(s) = f s(t)de. 2.9)

—0o0



20 2 Classical Signal Theory

e(s)

Fig. 2.4 Signal with an extension limited to the interval [, 7]

The limit
1 T
mg = lim ﬁ/_Ts(t)dt (2.10)

is called the mean value. In the context of electrical circuits, m; is called direct
current component.

2.1.4 Energy and Power

The specific energy, or simply energy, is defined by

+oo »
Es=/ s dt, (2.11)

and the (specific) power by the limit

1
P, = 11 n o= |s(t)| dr. (2.12)
This terminology derives from the fact that, if s(¢) represents a voltage or a current
applied to a unitary resistance, Eg equals the physical energy (in joules), while P
equals the physical power (in watts) dissipated by the resistance.
If 0 < Eg < 00, then s(¢) is a finite-energy signal, and if 0 < Ps; < oo then s(¢) is
a finite-power signal. Note that a finite-energy signal has Py = 0 and a finite-power
signal has E; = co.
Typically, periodic signals have finite power and aperiodic signals have finite
energy. However, some aperiodic signals, such as the step function, turn out to be
finite-power signals.

2.1.5 Duration and Extension

A signal s(¢) that is zero-valued outside of a finite interval [¢,, 7] is called of limited
duration and the measure of the interval is the duration of the signal. The interval
[#5, T;] is the extension of the signal and gives more information than the duration,
because it indicates where the signal is significant (Fig. 2.4).
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Definition 2.2 A set e(s) such that
s@)=0, tde(s) (2.13)
is the extension of s(t) and its measure D(s) is the duration of s(t).

The above definition provides a basis for an obvious signal classification. If
e(s) = [ty, T,] is a finite interval, the signal has a strictly-limited extension or is
strictly time-limited; if e(s) = (—oo, Ty] with T finite, the signal is upper time-
limited, etc. In particular, the extension of periodic signals is always unlimited,
e(s) = (—o00, +00) = R, and the extension of causal signals is lower time-limited
with e(s) = [0, +00).

Note that the above definitions are not stringent in the sense that duration and
extension are not unique; in general, it is convenient to refer to as the smallest ex-
tension and duration (see Chap. 4).

2.1.6 Discontinuous Signals

The class of continuous-time signals includes discontinuous functions. The unit step
function is a first example. In function theory, a function may be undefined at points
of discontinuity, but in Signal Theory it is customary to assign a precise value at
such a point. Specifically, if s(¢) has a discontinuity point at = fp, we assign the
average value (semi-value)

1
s(fp) = E[s(to‘) + s(fo4)], (2.14)

where s(f9—) and s(tp+) are the limits of s(#) when 7y is approached from the left
and the right, respectively.

The reason of this convention is that, at discontinuities, the inverse Fourier trans-
form converges to the semi-value.

2.2 Continuous Periodic Signals

Some of the general definitions given above for continuous-time signals hold for the
subclass of periodic signals. This is the case for even and odd symmetries. Other
definitions must be suitably modified.

It is worth stressing that in the condition for periodicity

s(t+Ty)=s(1), teR, (2.15)

the period T), is not unique. In fact, if T}, satisfies the condition (2.15), then also
kT, with k integer, satisfies the same condition. The smallest positive value of T,
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0 7, ‘

| IA
0 T, 27, 37, 47, :

Fig. 2.5 Periodic repetition of an aperiodic signal with period T},

repr, u

will be called the minimum period, and a general positive value of T), is a period of
the signal. We also note that a periodic signal is fully identified by its behavior in a
single period [#o, to + T),), where #( is arbitrary, since outside the period its behavior
can be derived from the periodicity condition.

Note that “period” is used in two senses, as the positive real quantity 7, as well
as an interval [, fo + T)).

Periodic Repetition Sometimes a periodic signal is expressed as the periodic rep-
etition of an aperiodic signal u(¢), t € R, namely (Fig. 2.5)

+00
s()y= Y ut —nTy) £ repy, u(t), (2.16)

n=—oQ

where T, is the repetition period.

Periodic repetition does not require that the signal u(¢) be of limited-duration as
in Fig. 2.5. In general, for every ¢ € R, a periodic repetition is given as a sum of a
bilateral series (see Problem 2.8 for a periodic repetition in which the terms overlap,
and see also Sect. 6.10).

2.2.1 Area, Mean Value, Energy and Power Over a Period

For periodic signals, the area definition given in (2.9) is not useful and is replaced
by the area over a period

t()+Tp
area(s) = / s(t)de. (2.17a)
0]
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The mean value over a period is defined by

1 to+T)p
ms(Ty) = T—f s(t)dr. (2.17b)
p Jip

It can be shown that the mean value over a period equals the mean value defined
as a limit by (2.10). Moreover, the periodicity property assures that both defini-
tions (2.17a) and (2.17b) are independent of 7.

The definition of energy (2.11) is replaced by that of energy over a period

to+-Tp 2
E(T,) = / |s(o)|” dr. (2.18a)
I

0

The mean power over a period is defined by

1 1 to+Tp 2
Po(Tp) = o Es(Tp) = |s()|” dt. (2.18b)
p p Jio

Note that the square root of Ps(T),) is known as the root mean square (rms) value.

2.3 Examples of Continuous Signals

We introduce the first examples of continuous signals, mainly to illustrate the usage
of some functions, such as the step function and the Delta function.

2.3.1 Constant Signals

A constant signal has the form
s(t)=A,

where A is a complex constant. It is even, with finite power, Py = |A|2, and with
mean value A. Constant signals may be regarded as a limit case of periodic signals
with an arbitrary period.

2.3.2 Sinusoidal and Exponential Signals

A sinusoidal signal (Fig. 2.6)

s(t) = Agcos(wot + ¢o) = Agcos(2m fot + ¢pg) = Ag cos (ZnTL + ¢O> (2.19)
0
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ANAA L
TV

is characterized by its amplitude A, angular frequency wg and phase ¢g. Without
loss of generality, we can always assume Ag and wq positive. The angular frequency
wy is related to the frequency fo by the relation wg = 27 fjy. Sinusoidal signals are
periodic, with (minimum) period Ty = 1/ fp, finite power, P = %A%, and zero mean
value. The signal (2.19) can be expressed as

(=}

s(t) = Ap cos ¢ cos wot — A sin ¢ sin wot,

which represents the decomposition into even and odd parts. By means of the very
important Euler’s formulas,

eix 4 efix ) eix _ efix
COSX = — siny = ——, (2.20)

a sinusoidal signal can also be decomposed into a sum of two exponential signals
L i@t 4 Ly —ioorton)
s(t):Aocos(wot+¢o):§Aoe 0 TP0 +§Aoe 0t TP, 2.21)
Furthermore, it can be written as the real part of an exponential signal
s(t) = RAS®! | A= Age'.

The exponential signal has the general form Ae”’, where p is a complex constant.
A particular relevance has the exponential signal with p imaginary, that is,

S(t) — Aeiwol‘ — Aei27‘rf()t'

This signal is illustrated in Fig. 2.7. It has finite power Py = |A|2 and (minimum)
period 1/| fo|. While for sinusoidal signals the frequency is commonly assumed
to be positive, for exponential signals the frequencies may be negative, as well as
positive.

Notation As arule, a real amplitude will be denoted by Ag, and a complex ampli-
tude by A. In general, we suppose Ag > 0.
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Fig. 2.7 The exponential
signal and its sine and cosine
projections

Fig. 2.8 Step signal of
amplitude A applied at the
instant fq Aoy

Ao L(t—10)

0 to t

2.3.3 Step Signals

A step signal has the form (Fig. 2.8)
s(1) = Aol (r —10),

where 1(x) denotes the unit step function

0, forx <O
1x)=1" ’ 2.22
(x) {1, for x > 0. ( )

It is aperiodic, with finite power %A% and mean value %Ao. Note that, by the con-
ventions on discontinuities, 1(0) = % and s(79) = % Ao.
The following decomposition

1 1
AoL(t = 10) = 5. Ao + 5 Aosgn(t — 1o), (2.23)

is worth noticing, where sgn(x) is the signum function, %Ao is the mean value and
the last term has zero mean value.
The unit step function allows writing the causal version of a given signal s(¢) as

sc(1) = 1(0)s (1),
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—
Ao rect ( Tto )
rect(x)

| 1 \

0 1 X 0 | ) t

o=
wl

D

Fig. 2.9 The rect(x) function and the rectangular impulse of duration D, amplitude A and central
instant fq

which coincides with s(¢) for ¢ > 0 and is zero for ¢ < 0. For instance, the causal ver-
sion of the linear signal s(¢) = B¢, with slope B, is the ramp signal s.(¢t) = 1(¢)Sz.
A notable example of a causal signal is the causal exponential

se(t) = 1(1)eP! (2.24)

where po = o¢ +iwy is a complex constant. If i pg = op < 0, this signal approaches
zero as t — +o0o, and has energy 1/|209|; if o9 > O the signal diverges and has
infinite energy.

2.3.4 Rectangular and Triangular Pulses

Using the definition

1
1, forl|x| <5,

rect(x) = { (2.25)

0, for |x|> %,

the pulse? centered at ry with duration D and amplitude Aq (Fig. 2.9) can be written
in the form

r(t) = Ao rect(t ;’0 ) (2.26)

Alternatively, we can express the pulse (2.26) as the difference between two step
signals, namely

r— 1
Ao rect(T()) = Aol(t — 1) — Agl(t — 1), (2.27)

where 1] =1y — %D and rh, =19+ %D. The pulse (2.26) has finite extension, e(r) =
[#1, 2], finite energy, E, = A%D, and finite area, area(r) = AgD.

2Strictly speaking, a pulse denotes a signal of “short” duration, but more generally this term is
synonymous with aperiodic signal.
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Sometimes we shall use the causal rect function

1 1, forO0<x <1;
recty(x) =rect{x — = | = 2.28
+() ( 2) {0, otherwise. 229

The rect functions are useful for writing concisely the truncated versions of a given
signal s(z) as s(¢) rect[(t — #9) D] or s(¢) rect[(t — t9)/ D], which have extensions
(to — %D, to + %D) and (7o, to + D), respectively.

A triangular pulse is introduced by the function

. 1—|x| for|x]<1;
triang(x) = {O for x| > 1 (2.29)

Note that triang(x) = rect(x/2)(1 — |x|). The pulse Ao triang(z/D) has extension
(=D, D) and amplitude Ay.

2.3.5 Impulses

Among the continuous signals, a fundamental role is played by the delta function
or Dirac function §(t). From a rigorously mathematical point of view, §(¢) is not an
ordinary function and should be introduced as a generalized function in the frame-
work of distribution theory [4] or of the measure theory [3].

On the other hand, for all practical purposes, a simple heuristic definition is ade-
quate. Namely, 8(¢) is assumed to vanish for 7 # 0 and satisfy the sifting property

/OO 8()s(t)dt = 5(0).

—00

/OO s(t)dr =1,

8(t) may be interpreted as a signal with zero duration and unit area.
Intuitively, the Dirac function may be interpreted as a limit of a sequence of
suitably chosen ordinary functions. For instance,

In particular, since

1
rp(t) = Brect(%) (2.30)

with D > 0, is a signal having unit area and duration D. As D tends to 0, the
duration of rp vanishes while the area maintains the unit value. Even though the
limit diverges for t = 0, we find it useful to set

8(t) = gigorl)(t).
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Note that
00 1 D2

lim / rp(t)s(t)dt = lim — / s(t)dt =5(0),

D0 J_ D—~0D J_p;
so that the value of s(¢) at the origin is siffed. In conclusion, the sifting property
applied to a signal s(¢) may be interpreted as a convenient shorthand for the follow-
ing operations: (i) integrating the signal multiplied by rp(¢), and (ii) evaluating the
limit of the integral as D — 0. Note that these limit considerations imply that

8(t)=0 fort 0. 2.31)

The choice of a rectangular pulse in the heuristic derivation is a mere mathemat-
ical convenience. Alternatively [1], we could choose a unitary area pulse r(¢), e.g.,
a triangular pulse or a Gaussian pulse, define rp(¢) = (1/D)r(t/D) and apply the
above operations.

In practice, we handle the delta function as an ordinary function, and indeed, it
is called the delta function or Dirac function. For instance, we get

/ s(t)S(t—to)dt=/ s(t +19)5(t)dt = s(19). (2.32)

—0o0 —0o0

Moreover,
/OO S(—Hs)dt = /oo §(t)s(—t)dt =5(0) = /OO S(t)s(t)de,

and §(¢) is considered an even function. Then, (2.32) can be written in the alternative
form

+00
s(t) = / s(w)d(t —u)du. (2.33)

—00

Of course, the delta function has singular properties. For instance, it allows writ-
ing a signal of zero duration and with finite area o as

ad(t — 1),
where fg is the application instant. In fact, from (2.31) it follows that
ad(t —19) =0 fort#r,

so that the duration is zero and the area is
+o00 +o00
/ aé(t—to)dtza/ 8(t —tp)dt =«
—0oQ —0Q

We shall use the graphical convention to represent « § (¢t — 7o) by a vertical arrow
of length « applied at t = ¢y (Fig. 2.10), where the length of the arrow does not
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Fig. 2.10 Graphical

. . o d(t—t
representation of the impulse (t=to)
of area « applied at the o
instant 7 T
0 fo t

represent the amplitude of the impulse but its area. In the Unified Theory, the delta
function will be called an impulse.

We note that the square of the delta function is undefined (even in distribution
theory), so that it makes no sense to talk of energy and power of the delta function.
Finally, we note that the formalism of the delta function allows writing the derivative
of a discontinuous signal, for example,

di(r)
— =50, (2.34)

More generally, for a discontinuity at ¢y the derivative of a signal has an impulse of
area s(tp4) — s(fp—) at tg.

In the framework of distribution theory, also derivatives of any order of the delta
function are defined, with useful applications in Signal and Control Theory. We
confine us to the first derivative, in symbols

dé
(S/(t) == %

Formally, applying the integration by parts, we obtain the derivative sifting property

/Oo §'()s(t)dr =68(1)s ()% — /oo 8(t)s'(¢t)dt = —s'(0).

—00 —

We may give a heuristic interpretation also to 8’(¢) as

§'(t) = lim up(z)
D—0

up(t) = %[rect(r +DD/2> - rect(t _DD/Z)i|'

Indeed, it can be shown that, under mild conditions, limp_.¢ ffooo up(t)s(t)dr =
s'(0).

with
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sinc(x)
1
0 N_"2 X
sincs (x)
1
0 1 2 5 10 '
1 sincg(x)
1
0 1 2 6 Dx

Fig. 2.11 The sinc(x) function and its periodic version sincy (x) shown for N =5and N =6

2.3.6 Sinc Pulses

Sinc pulses have the form

Agsinc( L2100 (2.35)
sinc , .
0 T
where (Fig. 2.11)
sinc(x) = 27X (2.36)
TX

and the value at x = 0 is sinc(0) = 1. The pulse (2.35) has a maximum value Ag at
t =tg,itiszeroatto+nT,withn ==£1,£2,.... Itis even-symmetric about fy with
finite energy A37T and finite area AgT .

The sinc function has the periodic version (Fig. 2.11)

. ) 1 sinmx
sincy (x) = — ,
N N sin Lx

(2.37)
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where N is a natural number. This function has period N for N odd and period 2N
for N even. Hence, the signal

s(t) = Agsincy (t _Tt0> (2.37a)

has period NT for N odd and 2N T for N even, and similarly to the aperiodic sinc
pulse (2.35) has equally spaced zeros, at intervals of length 7.

Historical Note The functions sinc and rect were introduced by Woodward [7], who

also introduced the symbol rep for periodic repetition. The definition (2.37) of the
periodic sinc is new.

2.4 Convolution for Continuous Signals

Convolution is one of the most important operations of Signal and System Theory.
It is now introduced for continuous aperiodic signals, and later for periodic signals.

2.4.1 Definition and Interpretation

Given two continuous signals x(¢) and y(¢), their convolution defines a new signal
s(t) according to

+o00
s(t) = / x(u)y(t —u)du. (2.38)

—0o0

This is concisely denoted by s = x * y or, more explicitly, by s(t) = x * y(¢) to
indicate the convolution evaluated at time ¢. The signals x(¢) and y(¢) are called the
factors of the convolution.

The interpretation of convolution is depicted in Fig. 2.12. We start with the two
signals x(u) and y(u), expressed as functions of the time u. The second signal is
then reversed to become z(u) = y(—u), and finally shifted by a chosen time ¢ to
yield

wu)=zw—1)=y(—(u—1)=y{—u)),
so that (2.38) becomes
“+o00
s() = / x(u)zs(u)du. (2.38a)

In conclusion, to evaluate the convolution at the chosen time t, we multiply x (1) by
z:(u) and integrate the product.
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x(u) ¥(u)

a)
Iy 0 T, u n oo T, "
¥(-u) ()= (r-)
b) /
! u
x(u)z (u)

<)

0 u

x(u) z (u)=s(t)
ty=tx+ty Is=T+T,

d)

s 0 : Ty '

Fig. 2.12 Convolution interpretation: (a) signals to be convolved, (b) signals x(u) and
z4(u) = y(t —u), (¢) product x (u) z; (u) for ¢ fixed, (d) result of convolution

In this interpretation, based on (2.38), we hold the first signal while inverting and
shifting the second. However, with a change of variable v =t — u, we obtain the
alternative form

+o0
st) = / x(t —u)y(u)du, (2.38b)
—00
in which we hold the second signal and manipulate the first to reach the same result.

Notation In the notation x * y(¢), the argument ¢ represents the instant at which the
convolution is evaluated; it does not represent the argument of the original signals.
The notation [x * y](¢), used by some authors [5], is clearer, though a little clumsy,
while the notation x (¢) * y(¢) used by other authors [2] may be misleading, since it
suggests interpreting the result of convolution at ¢ as depending only on the values
of the two signals at 7.

Extension and Duration of the Convolution From the preceding interpretations,
it follows that if both convolution factors are time-limited, also the convolution it-
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self is time-limited. In fact, assuming that the factors have as extensions the finite
intervals

e(x) =[x, Tx], e(y) =I[ty, Ty],
then, the extension of z(u) = y(—u) is e(z) = [Ty, —t,] and after the z-shifting
e(zr)=1[t — Ty» r— ty]-
The extension of the integrand is given by the intersection of e(x) and e(z;), so
that (2.38a) can be rewritten in the more specific form

s(t) = / x(u)z; (u)du (2.38¢)
e(x)Ne(z;)

where the #-dependence also appears in the integration interval. If the intersection is
empty, the integral is zero and s(¢) = 0. This occurs whenever the intervals e(x) =
[tx, Tx] and e(z;) = [t — Ty, t — ty] are disjoint, and it happens for t —t, < #, or
t—Ty>Ty,ie.,fort <t +1ty,ort > Ty + T,. Then, the convolution extension is
given by the interval

e(x*xy) =ty +1,, Ty + Ty]. (2.39)

In words, the infimum (supremum) of the convolution extension is the sum of the
infima (suprema) of the factor extensions. The above rule yields for the durations

D(xxy)=D(x)+ D(y) (2.39a)

so that the convolution duration is given by the sum of the durations of the two
factors.

Rule (2.39) is very useful in the convolution evaluation since it allows the knowl-
edge of the extension in advance. It holds even in the limit cases; for instance, if
t, = —00, it establishes that the convolution is lower time-unlimited.

2.4.2 Convolution Properties

Commutativity We have seen that convolution operation is commutative
x*xy)=y*x(t). (2.40a)

Area If we integrate with respect to ¢ in definition (2.38), we find

+o00 +o00 +00
/ s(t)dt = / x(t)dr / y(t)dr. (2.40b)

—00 —00 —00

Recalling that the integral from —oo to +00 is the area, we get

area(x * y) = area(x) area(y). (2.40c)
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Time-Shifting By an appropriate variable changes, we can find that the convolu-
tion of the shifted signals x (¢t — o) and y(¢ — foy) is given by

s(t —tog) with fog = to, + oy, (2.40d)
that is, the convolution is shifted by the sum of shifts on the factors.

Impulse The impulse has a central role in convolution. In fact, reconsider-
ing (2.33)

+00
s(t) = / s(u)d(t —u)du (2.41a)

and comparing it with definition (2.38), we find that the convolution of an arbitrary
signal with the impulse §(¢) yields the signal itself

s(t) =5 % 8(t) = 8 % 5(¢). (2.41b)

As we shall see better in Chap. 4, this result states that the impulse is the unitary
element of the algebra of convolution.

2.4.3 Evaluation of Convolution and Examples

The explicit evaluation of a convolution may not be easy and must be appropriately
organized. The first step is a choice between the two alternatives

+o0 +oo
S(¢)=/ x(u)y(t—u)du:/ y@)x(t —u)du

—0o0 —0o0

and, whenever convenient, we can use the rules stated above. In particular, the rule
on the extension can be written more specifically in the forms (see (2.38c¢))

s(t):/x(u)y(t—u)du, e =te, TxIN[t =Ty, t —ty], (2.42a)
s(t):/x(t—u)y(u)du, ep=[t—Tx,t =t 1N [ty, Ty]l. (2.42b)

Example 2.1 We want to evaluate the convolution of the rectangular pulses

(Fig. 2.13)
x(t) = A rect(i), y(t) = A; rect(%).

Since e(x) = (—2D, 2D) and e(y) = (— D, D) we know in advance that

e(s)=(-3D,3D)
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x(t) »(t) Ay s(t)
A4 A

—2D 2D t -D D t -3D -D D 3D ¢

Fig. 2.13 Convolution s(f) = x * y(t) of two rectangular pulses of duration 4D and 2D; the
trapezium amplitude is Ajp =2DAA>

so we limit the evaluation to this interval.

Since the duration of the second pulse is less than the duration of the first one,
it is convenient to hold the first while operating on the second. Using (2.42a) and
considering that both the pulses are constant within their extensions, we find

s(t) =/ A1Aydu = AjArmease;
€r

where ¢, = (—2D,2D) N (t — D, t + D). Then, we have to find the intersection e;
for any ¢ and the corresponding measure. The result is

@, ift<—-3Dort>3D;
(—=3D,1), if —3D <t <—D;

ey =

"“"l¢-D,t+D), if —D<t<D:;
(t,3D), if D<t<3D;
and then

0, ift <—3Dort>3D;
A1Ay(t+3D), if —3D <t <—D;

sy = | A 3D, == (2.43)
A1A22D, if —D<t<D;

A1A,(3D —1), if D <t <3D.

In conclusion, the convolution of the rectangular pulses has an isosceles trapezoidal
form, as illustrated in Fig. 2.13.

In (2.43), we have not specified the convolution values at the connection instants
t ==£D and t = £3D. Reconsidering the evaluation details, we find that in the four
lines of (2.43) the open intervals can be replaced by closed intervals. Hence, the
convolution s(¢) turns out to be a continuous function.

Example 2.2 'We evaluate the convolution of the signals (Fig. 2.14)
(1) = Agrect( = 0y =1()
x(t)=Aprect| — |, = .
0 2D y

Since e(x) = (—D, D) and e(y) = (0,400), it follows that e(x x y) =
(=D, 400). We note that in general the convolution of an arbitrary signal x(¢)
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x(t) »(t) s(t)
Ay 1

Aog2D

-D D 1 t -0 | » t

Fig. 2.14 Convolution s() = x * y(¢) of a rectangular pulse with the step signal

with the unit step signal 1(¢) is given by the integral of x () from —oo to ¢,
+o0 t
s(t):f x(u)l(t—u)du:/ x(u)du,
—0oQ —0o0

as soon as we take into account that 1(r —u) =0 foru < t.
In our specific case, we find

0, ift <—D;
s(t) =1 Ao(t+ D), if —D <t <D,
Ao2D, ift > D,

which is similar to the step signal, but with a linear roll-off from —D to D.

Example 2.3 We evaluate the convolution of the signals

t
x(t) =A1rect<5>, y(t) = Az coswpt.

Since e(y) = (—o00, +00), from the rule on extension it follows that also the convo-
lution has the infinite extension (—oo, +00). Holding the second signal, we find

+00 t+D
s(t):/ y(u)x(t—u)du:/ A1Aj coswou du

—00 t—D

AlA
— 41 [sin wo(t + D) — sinwy(t — D)]
20)

ALA
wo

2 .
=2 sin wo D cos wot .

Hence, the convolution is a sinusoidal signal with the same frequency as y ().

2.4.4 Convolution for Periodic Signals

The convolution defined by (2.38) is typically used for aperiodic signals, but one of
the signals to be convolved may be periodic. If this is the case, the convolution turns



2.5 The Fourier Series 37

out to be periodic with the same period as the periodic factor. When both signals are
periodic, the integral in (2.38) may not exist and a specific definition must be issued.

The convolution of two periodic signals x (¢) and y(¢) with the same period T, is
then defined as

A t()+Tp
xxy(t) = / x(w)y( —u)du. (2.44)
I

0

where the integral is over an arbitrary period (%o, fo + T)). This form is sometimes
called the cyclic convolution and then the previous form the acyclic convolution.

We can easily check that the periodic signal s(#) = x * y(¢) is independent of #
and has the same period T), as the two factors. Moreover, the cyclic convolution has
the same properties as the acyclic convolution, provided that the results are inter-
preted within the class of periodic signals. For instance, the area rule (2.40c) still
holds provided that areas are interpreted as the integrals over a period (see (2.17a),
(2.17b)).

2.5 The Fourier Series

In this section, continuous-time signals are examined in the frequency domain. The
tool is given by the Fourier series for periodic signals and the Fourier integral for
aperiodic signals.

We recall that in 1822 Joseph Fourier proved that an arbitrary (real) function of
areal variable s(7), t € R, having period T),, can be expressed as the sum of a series
of sine and cosine functions with frequencies multiple of the fundamental frequency
F =1/T,, namely

o0
s(t)=Ao+ » [Axcos2mkFt + By sin2wkF1]. (2.45)
k=1

This is the Fourier series expansion, which represents a periodic function by means
of the coefficients Ay and By. In modern Signal Theory, the popular form of the
Fourier series is the expansion into exponentials, equivalent to the sine—cosine ex-
pansion, but more compact and tractable.

2.5.1 The Exponential Form of Fourier Series

A continuous signal s(t), t € R, with period T}, can be represented by the Fourier
series

o
- 1
sO= Y S F=—, (2.46a)
p

n=—oo
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where the Fourier coefficients S, are given by

1 [lotTp .
S, = = / s(He 2mEt g p e, (2.46b)
P Ji

These relationships follow from the orthogonality of exponential functions,
namely

1 to+Tp .
L / ei2mnFi—2xmFt 4, _ Smn (2.47)
TP 1o

where 8,y is the Kronecker symbol (6,,, = 1 for m = n and §,,,, = 0 for m # n).
Hence, (2.46a) is an orthogonal function expansion of the given signal in an arbitrary
period (%o, fo + T)). It represents the signal s(¢) as a sum of exponential components
with frequencies being multiples of the fundamental frequency

fo=nF, n=0+£1,%2,....

In the general case of a complex signal s(z), the coefficients S,, have no sym-
metries. When the signal s(¢) is real, the coefficients have the Hermitian symmetry,
namely

S_,=S¢ (2.48)

and the signal identification can be limited to the Fourier coefficients S,, with n > 0.
If welet S, = R, +1X,,, the Hermitian symmetry (2.48) yields the two conditions

R—n:an X—n:_Xn»

which state that the real part is an even function (of the integer variable ) and the
imaginary part is an odd function. These symmetries are illustrated in Fig. 2.15.
The same symmetries hold respectively for the modulus and for the argument of the
Fourier coefficients of a real signal.

Continuing with real signals, from the exponential form (2.48) the Hermitian
symmetry allows obtaining the sine—cosine form (2.45) (where a real signal is tacitly
assumed)

o0
s(t)=Ro+2) [Rycos2tnFt — X,sin2wnF1]. (2.49a)

n=1

We can also obtain a form with only cosine terms but with appropriate phases in
their arguments, namely

o
s(t)=So+2)_ [SylcosQunFt +arg S,). (2.49b)

n=1
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s(t)

S

Fig. 2.15 Representation of Fourier coefficients of a real periodic signal illustrated by real and
imaginary parts

Presence of Negative Frequencies In the exponential form, we find terms with
negative frequencies. It is worth explaining this assertion clearly. To be concrete, let
us assume that the periodic signal under consideration be the model of an electrical
voltage v(¢). Since this signal is real, we can apply series expansion (2.49b), i.e.,

oo
v(t) = Vo + Z VicosQrnFt + ¢,)

n=1

where all terms have positive frequencies (the constant V can be regarded as a
term with zero frequency). These terms, with positive frequencies n F', have a direct
connection with the physical world and, indeed, they can be separated and measured
by a filter-bank.

The presence of negative frequencies, related to exponentials, is merely a math-
ematical artifact provided by Euler’s formulas (2.19), which yields

1 L 1 . )
VicosQRanFt 4 ¢,) = E Vnelwn elZnnFt + 5 Vne—upn e—lZﬂnFt.

2.5.2 Properties of the Fourier Series

Fourier series has several properties (or rules) which represent so many theorems
and will be considered systematically in Chap. 5 with the unified Fourier transform
(which gives the Fourier series as a particularization). Here, we consider only a few
of them.

e Let s(¢) be a periodic signal and x(t) = s(t — fp) a shifted version. Then, the
relationship between the Fourier coefficients is

X, = S,e"2rnkh, (2.50)
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As a check, when #( is a multiple of the period T), = 1/F, we find x(t) = s(¢),
and indeed (2.50) yields X,, = S;,.
e The mean value in a period is the zeroth coefficient

to+Tp
ms(Tp)zT_/ s(t)dr = Sp.
p Jio

e The power given by (2.12) can be obtained from the Fourier coefficients as fol-
lows (Parseval’s theorem)

1

to+T) ) +00 )
PS=—/ ls)7de= )" IS, (2.51)
T[’ 1o

n=—oo

In particular, for a real signal, considering the Hermitian symmetry (2.48), Parse-
val’s theorem becomes

o
Py=S5+2) IS.I% (2.51a)

n=1

2.5.3 Examples of Fourier Series Expansion

We consider a few examples. The related problems are:

1. Given a periodic signal s(¢), evaluate its Fourier coefficients S, i.e., evaluate the
integral (2.46b) for any n;
2. Given the Fourier coefficients S, evaluate the sum of series (2.46a), to find s(t).

Problem 1 is often trivial, whereas the inverse problem 2 may be difficult.

Example 2.4 Let
s(t) = Ag cos(27 for + o)
with Ag and fy positive. Letting F = f; and using Euler’s formulas, we get
s(t) = leei‘poeiZ”Ft + lee*i(ﬂoe*iZJTFt.
2

Then, comparison with (2.46a) (by the uniqueness of Fourier coefficients) yields:

1. 1
Si=ZA0®,  Soy=sAeT®. 5, =0 for|al#1.

Example 2.5 A periodic signal consisting of equally-spaced rectangular pulses can
be written in the form

400
t—nTy t
s(t)= Z Aorect( ar, ) = Aorepr rect<ﬁ>, 0<d<l1

n=—oo
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where d is the pulse duration normalized to the period (d is called the duty cycle).
Considering that in the interval (—%Tp, %Tp) the signal s(¢) is given by the zeroth
term of the periodic repetition,

t 1 1
H)=A tf({—), —= t<=T,,
s(t) orec (dTp) 5 P < <2 »
we get
id
S _i 2 Tp Aoe—iZTH’lFldt
n — .
Tp 7%dT,,

This integral can be expressed by the sinc function (2.36), namely
S, = Sosinc(nd), So= Aod. (2.52)

As a check, for d = 1 all the Fourier coefficients are zero for n # 0, and indeed s(¢)
becomes a constant signal.

As an opposite limit case, suppose that the duty cycle d tends to zero, but holding
the mean value at the fixed value Sy = Aod. Then, at the limit each rectangular pulse
becomes a delta function of area SyT), that is,

+00
s)= Y T,S08(t —nTy) =T,Sorepr, 8(1).

n=—oo

Then, all the Fourier coefficients S,, are equal to Sy. The interpretation is that a
“train” of delta functions has all the “harmonics” with the same amplitude Sp. From
this result, follows the remarkable identity

+oo too 1
Z el2mnFt = Z 8(t —nTy), F= T (2.53)
n=—oo n=—0o P

Example 2.6 We want to find the signal s(¢#) whose Fourier coefficients are given
by

Ao for [n| < no;
S, =
0  for |n| > ng,

i.e., the signal that has only the first ng harmonics with the same amplitude.
From (2.46a)a we get

no no
s(t) = Ao+ Ao Z(eizmn +e2mFy = Ag + 240 Zcos 2nFt.

n=1 n=1
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i2n Ft

An alternative expression is obtained by letting z =€ and noticing that

no

no n
Zeiznnn _ Zzn _ z(1—2z"0)
’ 11—z

n—=

n=1

Hence
1 — "0 -1 1—z7"0
sty = Ag 14 L= A=)
1—z 1—z"1
A Z0Fs = 0+3) B sin2m(ng + 1) Ft
= A0 = A0
Z% —Z_% SiHZﬂ%Fl

The last term compared with definition (2.37) of the periodic sinc can be written in
the form:

s(t) =AgNsincy(NFt), N =2no+ 1.
Thus, we have stated the following identity

no
1+2) cos2mnFt=Nsincy(NFr), N=2no+1. (2.54)

n=1

2.6 The Fourier Transform

An aperiodic signal s(¢), t € R, can be represented by the Fourier integral

+00
s(t) = / S(fHe?Ttdf,  reR, (2.55a)

—0o0

where the function S(f) is evaluated from the signal as

+oo
S(f) = / s(e 2T qr, feR. (2.55b)

—00

These relationships allow the passage from the time domain to the frequency
domain, and vice versa. The function S(f) is the Fourier transform (FT) of the
signal s(¢), and the signal s(¢), when written in the form (2.55a), is the inverse
Fourier transform of S(f). Concisely, we write S(f) = F[s | fland s(t) = F~'[S |
t] where F and F~! are the operators defined by (2.55a, 2.55b). We also use the
notation

F g1
s@) ——> S(f), S(f) ———s@®).

The above relationships can be established heuristically with a limit considera-
tion from the Fourier series. With reference to (2.46a), (2.46b), we limit the given
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aperiodic signal to the interval (—%TP, %Tl,) and we repeat it periodically outside,
then we take the limit with 7), — oo. From a mathematical viewpoint, the conditions
on the existence of the Fourier transform and its inverse are formulated in several
ways, often having no easy interpretation [2, 6]. A sufficient condition is that the
signal be absolutely integrable, i.e.,

+o00
/ ‘s(t)‘dt < 00,

o0

but this condition is too much stringent for Signal Theory where a very broad class
of signals is involved, including “singular” signals as impulses, constant signals and
periodic signals.

2.6.1 Interpretation

In the Fourier series, a continuous-time periodic signal is represented by a discrete-
frequency function S,, = S(nF). In the FT, this is no more true and we find a sym-
metry between the time domain and the frequency domain, which are both contin-
uous. In (2.55a), a signal is represented as the sum of infinitely many exponential
functions of the form

[S(fHrdf]e®™!, feR (2.56)

with frequency f and infinitesimal amplitude S(f)df.

In general, for a complex signal s(¢) the FT S(f) has no peculiar symmetries.
For a real signal, similarly to (2.48), we find that the Fourier transform has the
Hermitian symmetry

SCH =51, (2.57)
so that the portion of S(f) for f > 0 completely specifies the signal. Letting
S(f) = R(f) +iX(f) = As(f)ePs),

from (2.57) we find

R(f)=R(=1). X(f)=-X(=1h. (2.57a)

which states that the real part of the FT is even and the imaginary part is odd. Anal-
ogously, we find for the modulus and the argument

As(f)=As(=f), Bs(f)=—Bs(=f). (2.57b)

These symmetries are illustrated in Fig. 2.16.
Continuing with the assumption of a real signal, the decomposition (2.55a) with
both positive and negative frequencies can be set into a form with cosinusoidal terms
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As(N=IS()]

0 e f 0. !

>

Fig. 2.16 Representation of the Fourier transform of a real signal s(¢), t € R, by real and imagi-
nary parts, and by modulus and argument

with positive frequencies. In fact, by pairing the exponential terms (2.56) at fre-
quency f with the terms at frequency — f, we get

[S(f) df]eiznf’ + [S(—f) df]efihft
=[S(H) FleP + [S*(Hrdfle > = 20{[S(f)d f]e>™ /)
=2[As(f)df]cos2nft + Bs(f), [ >0.

Hence, (2.55a) becomes

s(t)zfo 2As(f)cos(2mft+ Bs(f))df. (2.58)

2.6.2 Properties of the Fourier Transform

The properties (or rules) of the FT will be seen in a unified form in Chap. 5 and in
a specific form for continuous-time signals in Chap. 9. Here, we see the main rules.
The formulation is simpler than with the Fourier series for the perfect symmetry
between time and frequency domains.

o The time-shifted version s(t — tp) of a signal s(¢) gives the following FT pair

st — tg) ——— S(f)e~27/10, (2.592)

Symmetrically, the inverse FT of the frequency-shifted version S(f — fo) of S(f)
gives

S(f = fo) —2—s s(r)el2nt. (2.59b)

e The convolution x * y(t) becomes the product for the FT's

X y(t) —— X(HY(S). (2.60a)
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s(r) real and even b s(7) real and even
0 g 0 7

s(r) real and odd s() im. and odd
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Fig. 2.17 Symmetric signals and the corresponding Fourier transforms

Symmetrically, the products s(t) = x(t)y(t) becomes the convolution

+00
S(f):X*Y(f):/ XY (f —xrdxr, (2.60b)
—00
where the operation is interpreted according to definition (2.38) for aperiodic
continuous-argument functions, since X (f) and Y (f) belong to this class.
e Letting r =0 and f = 0 in definitions (2.55a) and (2.55b), respectively, we get

+00 00

s(O):/ S(f)df =area(s), S(0) :/ s(t)dt = area(s). (2.61)

—00 —00
Hence, the signal area equals the FT evaluated at f = 0.

e The energy E; of a signal s(¢), defined by (2.11), can be evaluated from the FT
S(f) as follows (Parseval Theorem):

+o0 2 +o0 5
Eszf ls@)] dt:/ [S(H| df. (2.62)

For a real signal, |S(f)] is an even function of f, and the energy evaluation can
be limited to positive frequencies, namely

“+o00 ) o0 2
Es=/ s(1) dt=2/ |S(H)|"df.
0

—0o0

However, we note the perfect symmetry of (2.62), which emphasizes the oppor-
tunity to deal with complex signals.

e As seen above, the symmetry s(t) = s*(¢) (real signal) yields the Hermitian sym-
metry, S(f) = S*(— f). Moreover, see Fig. 2.17,

1. If the signal is real and even, the FT is real and even;
2. If the signal is real and odd, the FT is imaginary and odd.
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Y s Y s

Fig. 2.18 Symmetry rule. If signal s(¢) has Fourier transform S(f), then the signal S(#) has
transform s(— f'). In this specific case, s(¢) and S(f) are even and s(f) =s(—f)

2.6.3 Symmetry Rule

Formulas (2.55a) and (2.55b), which express the signal and the FT, have a symmetri-
cal structure, apart from a sign change in the exponential. This leads to the symmetry
rule: If the FT of a signal s(¢) is S(f), then, interpreting the FT as a signal S(¢), one
obtains that the FT is s(— f) (Fig. 2.18).

The symmetry rule is very useful in the evaluation, since, starting from the
Fourier pair (s(¢), S(f)), we get that also (S(¢), s(— f)) is a consistent Fourier pair.
The symmetry rule explains also the symmetries between the rules of the FT.

2.6.4 Band and Bandwidth of a Signal

In the time-domain, we have introduced the extension e(s) and the duration D(s) =
mease(s) of a signal. Symmetrically, in the frequency domain, we introduce the
spectral extension E(s) = e(S), defined as the extension of the FT, and the band-
width, defined as the measure of E(s):

B(s) = meas £(s) = mease(S). (2.63)

Then, the property of the spectral extension is

| S(f)=0, f¢&(). \ (2.63a)

For real signals, the Hermitian symmetry, S(f) = S*(— f), implies that the min-
imal extension £ is symmetric with respect to the frequency origin and it will be
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B(s) =2B

-B 0 B f

Fig. 2.19 Examples of limited spectral extension of a real signal; B represents the band

convenient to make such a choice also for an arbitrary extension € (s). Then, for a
real band-limited signal we indicate the spectral extension in the form (Fig. 2.19):

e(S) =[—-B, B]

for a finite frequency B, which is called the band> of s(t).

The first consequence of band limitation relies on the decomposition of a real sig-
nal into sinusoidal components (see (2.58)), i.e., |S(f)df|cosQnft + arg S(f)),
f >0, where S(f) =0 for f > B, that is, the signal does not contain components
with frequencies f greater than B. The second consequence will be seen with the
Sampling Theorem at the end of the chapter.

2.7 Examples of Fourier Transforms

We develop a few examples of FTs. Note that the FT of some “singular” signals,
as step signals and sinusoidal signals, can be written using the delta function, and
should be interpreted in the framework of distribution theory.

2.7.1 Rectangular and Sinc Pulses
The FT of the rectangular pulse can be calculated directly from definition (2.55b),

which yields

1

=D .
S(f)= A0/2 o271 4y — 'AO (efinfD _ einfD) _ AOSIHﬂfD'
—%D —IZJTf T[f
Then, using the sinc function,
Aqrect(t/D) 7 AoD sinc(f D). (2.64a)

3For real signals, it is customary to call as the band the half of the spectral extension measure.
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0 1 0 f

Fig. 2.20 Fourier transforms of the impulse and of the unit signal

In the direct evaluation of the FT of the sinc pulse, we encounter a difficult inte-
gral, instead we can apply the symmetry rule to the pair (s(t), S(f)) just evaluated.
We get

S(1) = AgDsinc(t D) —— s(— f) = Agrect(— f/D),

which is more conveniently written using the evenness of the rect function and mak-
ing the substitutions D — 1/T and AgD — Agp. Hence

Agsine(t/T) —— AoT rect(fT). (2.64b)

This FT pair has been illustrated in Fig. 2.18 in connection with the symmetry rule.

2.7.2 Impulses and Constant Signals

The technique for the FT evaluation of the impulse s(¢) = §(¢ — 1p) is the usage of
the sifting property (2.32) in definition (2.55b), namely

+00 . .
S(f)= [ 8(t — to)e 27It dp = e 127 f 0,
—00
Hence
8(t — tg) —— 5 g~i27f10 (2.65)
and particularly for 1o =0
5 — L 1, (2.65)

that is, the FT of the impulse centered at the origin is unitary (Fig. 2.20).



2.7 Examples of Fourier Transforms 49

Note that the sifting property (2.32) holds also in the frequency domain, namely
400
| s - par =,
—0o0

where X (f) is an arbitrary frequency function. Then, with X (f) =exp(i2n ft) we
find

+oo . .
/ 8(f _ f0)61277ft df — elZ?Tfot.

—0o0

Hence, considering the uniqueness of the Fourier transform,

F

2Tt 2 s(f — fo). (2.66)
In particular, for fop =0
—2 s (2.662)

which states that the FT of the unit signal is an impulse centered at the frequency
origin (Fig. 2.20). Note that (2.66) could be obtained from (2.65) by the symmetry
rule.

2.7.3 Periodic Signals

The natural tool for periodic signals is the Fourier series which represents the signal
by a discrete-frequency function S, = S(nF). We can also consider the Fourier
transform, but we obtain a “singular” result, however, expressed in terms of delta
functions.

A first example of FT of a periodic signal is given by (2.66), which states that
the FT of an exponential with frequency fy is the impulse applied at the frequency
fo- A second example is given by sinusoidal signals, which can be decomposed into
exponentials (see (2.21)). We find

1, . - 1
cos2x Ft = E(elz”F’+e_12”Fl)—L—> E[S(f—F)+5(f+F)]v

(€27F e LN ! S(f—F)—=8(f+F)].

1 .
sin27 Ft = — 7'2””) 7 —[
2i 2i

More generally, for a periodic signal s(¢) that admits the Fourier series expan-
sion, we find

~+00 +00
st=Y S, T N S5(f —nF). (2.67)

n=—oo n=—0oo

Hence, the FT of a periodic signal consists of a train of delta functions at the fre-
quencies f =nF and with area given by the corresponding Fourier coefficients.
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Fig. 2.21 Graphical

) x(u) »(t)
representation of a RN g() L
continuous-time filter R R

2.7.4 Step Signals

First, it is convenient to consider the signum signal sgn (¢). In the appendix, we find
that its FT is given by

F 1
sgn(t) —— —.
inf
This transform does not contain a delta function; anyway, it should be interpreted as
a distribution [2].
For the FT of the unit step function, we use decomposition (2.22), which gives

1) = 3 + % sen(t) —— 25(/) + =
=—+ —sgn(t) — = —_—

220 2 2nf

Then, in the passage from the “signum” signal to the step signal, in the FT we
have to add a delta function of area equal to half the step amplitude, that is, equal to
the continuous component of the step signal.

2.8 Signal Filtering

Filtering is the most important operation used to modify some characteristics of
signals. Historically, its original target was the “filtering” of sinusoidal components
in the sense of passing some of them and eliminating the others. With the technology
evolution, filtering has a broader and more articulated purpose.

2.8.1 Time-Domain Analysis

A filter (linear, invariant and continuous-time) may be introduced as the system
characterized by the input—output relationship (Fig. 2.21)

+00
y(t):/ gt —u)x(u)du =x * g(1), (2.68)
where

e x(1),t €, is the input signal,
e y(1),t €RR, is the output signal or the filter response,
e g(1),t €, is the impulse response, which characterizes the filter.
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The interpretation of the impulse response is obtained by applying an impulse to the
input. Indeed, letting x () = §(¢) in (2.68) and considering property (2.41a, 2.41b),
we get

y(@)=38xg@t)=g@).

Then, the impulse response is the filter response to the impulse applied at the origin.

The filter model stated by (2.68) does not entail considerations of physical con-
straints. A constraint is the causality condition which states that the filter cannot
“respond” before the application of the input signal (otherwise the filter would pre-
dict the future!). This condition implies that the impulse response must be a causal
signal, i.e.,

g®)=0, <0,

since it is the response to the impulse applied at # = 0 and cannot start at negative
times. A filter with this property will be called causal, otherwise anticipatory (or
non-causal). Physically implemented filters are surely causal, as correct models of
“real” filters, but in Signal Theory we often encounter anticipatory filters, used in a
simplified analysis (see below).

For causal filters the input—output relationship can be written in the more specific
forms

t +00
y(@) =/ x(u)g(t —u)du =/ gu)x(t —u)du,
—00 0

whereas for anticipatory filters the general form (2.68) must be used.

2.8.2 Frequency-Domain Analysis

In the frequency-domain, input—output relationship (2.68) becomes

Y(f)=GHX() (2.69)

where

e X (f)isthe FT of the input signal, Y (f) is the FT of the output signal,

e G(f) is the FT of the impulse response, which is called the frequency response.*

The frequency response G( f) completely specifies a filter as well as the impulse
response g(x). When g(7) is real, the frequency response has the Hermitian sym-
metry G(f) = G*(—f). Relationship (2.69) clearly states the advantage of dealing
with the frequency-domain analysis, where the convolution becomes a product. This
relationship, written as an inverse FT,

o0 +o00
y(t):/ Y(f)eiZTFftde/ G(f)X(f)eiZ”f’df,

—00

4We prefer to reserve the term transfer function to the Laplace transform of the impulse response.
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Fig. 2.22 The RC filter and the corresponding frequency and impulse responses

shows that each exponential component of the output signal is obtained from the
corresponding component of the input signal as

[Y(Hdf]e?™ ' =G(H[X(fHdf]e*™ !, feR. (2.70)

Hence, a filter modifies the complex amplitudes of the input signal components.

When both the input signal x (#) and the impulse response g(¢) are real, the output
signal y(#) turns out to be real. If this is the case, considering the decomposition into
sinusoidal components, we find

2|Y(f)|df cos[2mft + oy (f)]
=|G(H2|X(H|df cos[2nft +ox(f) +9c(f)]. f>0.

Hence, the filter modifies both the amplitude and the phase of the components.

Examples As a first example, we consider the RC filter of Fig. 2.22. To iden-
tify the frequency response from its definition (we recall that G(f) is the Fourier
transform of the impulse response), the following two steps are needed:

1. Applying a voltage impulse at the input, e(t) = §(¢), and evaluating the corre-
sponding output voltage v(t) (we need to solve the circuit in a transient regime).
Then, the output voltage v(¢) gives the impulse response g(¢).

2. Evaluating the Fourier transform G(f) of g(¢).

As known and as we shall see better in Chap. 9, it is more convenient to carry out
the evaluation in a symbolic form which yields directly

G(f)=1/(1+i27fRC).
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&) G(f)
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o] 1\ ' B 0 _B 7
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Fig. 2.23 Impulse response and frequency response of an ideal low-pass filter

Then, the inverse FT provides the impulse response which is given by
gy =al®e ™, a=1/(RO).

This filter is causal, as expected, since it can be physically implemented.
As a second example, we consider the ideal low-pass filter which has the follow-
ing frequency and impulse responses (Fig. 2.23):

G(f):rect(%) g—_1> g(t) =2Bsinc(2Bt).

This filter is anticipatory and cannot be physically implemented. Nevertheless, it is
a fundamental tool in Signal Theory (see Sampling Theorem).

2.9 Discrete Time Signals
In this second part of the chapter, we develop the topic of discrete signals.

Definition 2.3 A discrete-time signal is a complex function of a discrete variable
s:Z(T) — C, (2.71)
where the domain Z(T) is the set of the multiples of T
w(T)y={...,-7,0,T7,2T,...}, T=>0.
The signal (2.71) will usually be denoted in the forms
s(nT), nT eZ(T) or s(t), teZ(T). (2.72)

For discrete-time signals (more briefly, discrete signals), we will apply the same de-
velopment seen for continuous signals. Most of the definitions are substantially the
same; the main difference lies on the definitions expressed by integrals for continu-
ous signals, which become sums for discrete signals.

In the final part of the chapter, discrete signals will be related to continuous sig-
nals by the Sampling Theorem. Discrete signals will be reconsidered in great detail,
after the development of the Unified Theory in Chaps. 11, 12 and 13.
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Notations In notations (2.72), the first one has the advantage of evidencing the
discrete nature of the signal, whereas the second requires the specification of the
domain Z(T), but is more in agreement with the notation for continuous signals,
s(t),t € R. The quantity T > 0 is the spacing (or time-spacing) between the instants
where the signal is defined, and the reciprocal

Fp=1/T (2.73)

gives the signal rate, that is, the number of signal values per unitary time (values per
second or v/s).

In textbooks and in other literature, it is customary to assume a unit spacing
(T = 1) to simplify the notation in the form s(n) or s, with n € Z. We will not follow
this consolidate convention for several reasons. First of all, by setting 7 = 1 we
loose the application contest and the physical dimensions. Another motivation is that
in the applications we often need to compare signals with different time-spacings
(see multirate systems of Chap. 7), which is no more possible after the normalization
T = 1. Finally, normalization represents a serious obstacle to a unified development.

2.9.1 Definitions

Most of the definitions introduced for continuous signals can directly be transferred
to discrete signals, but sometimes with unexpected novelties.

Symmetries A discrete signal s(nT) is even, if forany n, s(nT) = s(—nT),n € Z
and it is odd if s(nT) = —s(—nT), n € Z. An arbitrary discrete signal can always
be decomposed into an even and an odd component

s(mT)=s,(nT) +sq(nT) (2.73¢c)

exactly as for continuous signals.
A discrete signal s(nT) is causal (Fig. 2.24) if it is zero for negative n,

snT)=0, n<O. 2.74)

Relationships (2.6) between the even and odd components of a causal signal must
be adjusted for discrete signal since sgn(0) = 0. The correct relationships are

sq(nT) =sgn(nT)s,(nT),

sp(nT) =sgn(nT)sq(nT) + 5(0)dn0 (2.742)

whereas in the continuous domain R a single point has zero measure, and therefore
the term related to s(0) is irrelevant.

This is a general difference between the two classes, in so far two continuous
signals, which coincide almost everywhere, must be considered as the same signal,
whereas two discrete signals that differ even in a single point are really different.
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Fig. 2.24 Decomposition of s(nT)
a causal discrete signal s(n7T) 1
into even and odd parts }
1. .
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1 se(nT)
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Time Shift Given a discrete signal s(n7) and an integer ng, the signal
s(nT —noT) represents a shifted version of s(nT) by the amount ngT. The dif-
ference with respect to the continuous case, where the shift 7o may be an arbitrary
real number, is that now the shift f) = noT must be a multiple of the spacing T'.

Area and Mean Value The application of definition (2.9) would give zero for
every discrete signal. To get a useful parameter, the right definition is

+00

area(s) = Y Ts(T). (2.75)

n=—0oo

In this way, each value s(nT) gives a contribution, T's(nT), to the area.

In the interpretation of this definition (and similar others), it is convenient to refer
to a continuous signal 5(¢), t € R, which is obtained from the given discrete signal
s(nT) by a hold operation, namely (Fig. 2.25)

S@)=snT), nT<t<m+1T. (2.76)

This continuous signal has the same area as s(nT'), but the area of 5(¢) is evaluated
according to (2.9) and the area of s(nT) according to (2.75).
The mean value of a discrete signal s(nT) is defined by the limit

+N
= lim —— S Ts@D). 2.77
s = v e (2N+1)Tn§N st @.77)

Remark The hold signal 5(t) is not completely useful to study discrete signals
using continuous signal definitions. For instance, the FT applied to 5(¢), t € R does
not give the FT of s(¢), t € Z(T).
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Fig. 2.25 Discrete signal and s(nT)
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Energy and Power A discrete signal has zero energy and zero power, if these
parameters are interpreted in the sense of continuous signals. The appropriate defi-
nitions for discrete signals are

N ) +00 5
E, = ngnoonZE_N T|s(nT)|" = n;)o T|s(nT)|", (2.78a)
) 1 al 2

which are in agreement with definitions (2.75) and (2.77). Moreover, E; and P;
defined by (2.78a, 2.78b) equal respectively the energy and the power of the hold
signal of Fig. 2.25.

Extension and Duration The extension e(s) of a discrete signal may be defined
as a set of consecutive points n7T such that (Fig. 2.26)

s(nT)=0, nT ¢e(s).

The difference with respect to the extension of a continuous signal is that e(s) is a
subset of the domains Z(T') and therefore consists of isolated points.
The duration of a discrete signal is defined by

D(s) =mease(s) =T x number of points of e(s).

Here the measure is not the Lebesgue measure, which assigns zero to every set of
isolated points, but the Haar measure, which assigns the finite value T to each point
of the extension. Figure 2.26 shows an example of discrete signal with extension,
e(s) ={-=5T,..., 11T}, whose duration is D(s) = 17T.
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s(t)

et ‘ MIT,. .

Is 0 T t

e(s)eooooooooooooooooo
>

D(s)=17T

Fig. 2.26 Discrete signal with a limited extension: e(s) = {t,..., Ty} with t;, = —5T and
T; = 11T. The duration is D(s) = 17T

4 s(nT)

Fig. 2.27 Periodic discrete signal with period T), = 10T

2.9.2 Periodic Discrete Signals

A discrete signal s(nT) is periodic if
s(mT + NT)=s(nT), VneZ

where N is a natural number. Clearly, the period T, = NT must be a multiple of the
spacing T'. Figure 2.27 shows an example of a periodic discrete signal with period
T, =10T.

As seen for continuous signals, some definitions must be modified for periodic
signals. The rule is that the summations extended to the whole domain Z(T) must
be limited to a period. For instance, the definition of energy given by (2.78a) for a
periodic discrete signal is modified as energy in a period, namely

n0+N—1

Eg= Y Tl|s(T)

n=ng

2
’

where ng is an arbitrary integer (usually set to ng = 0).
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/\ J I

Fig. 2.28 Example of sampling of a continuous signal

lo(nT) 1(nT)

L] L]

ol 1 nT ol 7 nT

Fig. 2.29 Discrete step signal compared with sampled continuous step signal

As noted in the introduction (see Sect. 1.3), the class of periodic discrete sig-
nals is very important in applications, since they are the only signals that can be
handled directly on a digital computer. The reason is that a periodic discrete signal
s(nT) with the period T, = NT is completely specified by its finitely many values
in a period, say s(0),s(T),...,s((N — 1)T). For all the other classes, the signal
specification involves infinitely many values.

2.10 Examples of Discrete Signals

Examples of discrete signals can autonomously be introduced, but frequently they
are obtained from continuous signals with a domain restriction from R into Z(T).
This operation, called sampling, is stated by the simple relationship (Fig. 2.28)

s¢(nT) =s(nT), nT eZ(T) (2.79)

where s(t), t € R, is the reference continuous signal and s.(nT),nT € Z(T), is the
discrete signal obtained by the sampling operation.

2.10.1 Discrete Step Signal

The discrete unit step signal (Fig. 2.29) is defined by

0 forn <O
lo(nT) = 1 forn=0. (2.80)
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Fig. 2.30 Example of discrete rectangular pulses, compared with its continuous-time version.
Above centered at the origin and below centered out of the origin

Note in particular that at the time origin 1¢(nT) takes a unit value. Instead, the signal
obtained by sampling a unit step continuous signal is given by

0 forn<0;
1(nT)={1 forn=0;
1 forn=>0,

as follows from the convention on discontinuities of continuous signals (see
Sect. 2.1).

2.10.2 Discrete Rectangular Pulses

The discrete rectangular pulse with extension
e(ry={mT,(mi+DT,....,noT}, ni<ny,

can be written in the form

nT — 1y
r(nT) =rect| ——— (2.81)
D
where
nip+np

are respectively the central instant and the duration. Note that expression (2.81) is
not ambiguous since discontinuities of the function rect(x) are not involved therein.
Figure 2.30 shows a few examples of discrete rectangular pulses.
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5(nT) a3(nT—4T)
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Fig. 2.31 The discrete impulse with unit area at the origin and with area « applied at noT =4T

2.10.3 Discrete Impulses

We want a discrete signal with the same properties of the impulse, introduced for
continuous signal by means of the delta function. However, in the discrete case the
formalism of delta function (which is a distribution) is not necessary. In fact, the
discrete signal defined by (Fig. 2.31)

1
L forn=0:

sy =7 Torn=0: (2.82)
0 forn#0

has exactly the same properties as the continuous impulse §(¢), namely the extension
of §(nT) is limited to the origin, i.e., e(6) = {0}, 8(nT') has unit area, §(nT) has the
sifting property

+00

Z Ts(nT)s(nT —noT) = s(noT), (2.83a)

n=—oo

the convolution (see the next section) of an arbitrary signal s(n7) with the impulse
8(nT) yields the signal itself

+00
s(T)= Y Ts(kT)s(uT —kT). (2.83b)

k=—00

In general, the impulse with area o and applied at ngT must be written in the
form aé(nT —noT). Note that a discrete impulse is strictly related to the Kronecker
delta, namely

1 fi =nyp;
T80T = noT) =dwy =1, " 7&20’ (2.84)
0-

2.10.4 Discrete Exponentials and Discrete Sinusoidal Signals

A discrete exponential signal has the general form

s(nT)=Ka" (2.85a)
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s(nT) s(nT)

Fig. 2.32 Examples of discrete causal exponential

1 s(nT)
Ag cos 2T fot
W

Ty=10T

Fig. 2.33 Discrete sinusoidal signal with fo7 =1/10

where K and a are complex constants. In particular, when |a| = 1, it can be written
as

AelZtfonT (2.85b)

where A is a complex amplitude and fj is a real frequency (positive or negative).
A discrete causal exponential signal has the general form

K1lo(nT)a", (2.86)
where K and a are complex constants. Figure 2.32 illustrates this signal for K = 1

and two values of a.
A discrete sinusoidal signal has the form (Fig. 2.33)

Aocos2r fonT + ¢o) (2.87)

where both Ag and fy are real and positive, and can be expressed as the sum of two
exponentials of the form (2.85b) (see (2.21)).
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x(kT) y(kT)
D(x)=9T D(y)=8T
I W ‘ ‘ [ ! , il [ [ [ [y .
t o‘ T T kT ty o‘ T T, kT
s(nT)=xxy(nT)
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Fig. 2.34 Convolution of two time-limited discrete signals. Note that the convolution duration is
D(s)=Dx)+D(y)—T

2.11 Convolution of Discrete Signals

As seen for continuous signals, we have different definitions for discrete aperiodic
signals and for discrete periodic signals.

2.11.1 Aperiodic Discrete Signals

Given two discrete aperiodic signals x(nT) and y(nT), the convolution defines a
new discrete signal s(nT) according to

+00
s(T)y= Y Tx(kT)y(nT —kT). (2.88)

k=—o00

This is concisely denoted by s = x * y or, more explicitly, by s(nT) = x * y(nT).

Discrete convolution has the same properties as continuous convolution seen in
Sect. 2.4 (rules on commutativity, area, etc.). Here, we outline only the extension
rule. If x(nT) and y(nT) have the limited extensions

e(x)={n,T,...,N, T}, e(y)={nyT,...,N,T}
then also their convolution s(nT) = x * y(rT) has a limited extension given by
e(s) ={nsT,...,N;T} withng=ny+ny, Ny= N, + N,. (2.89)

Figure 2.34 shows an example, where e(x) = {—37,...,5T} and e(y) =
{=2T,...,5T}. Then e(s) = {-5T,...,10T}.
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2.11.2 Periodic Discrete Signals

At this point, the right definition of the convolution for this class of signals should
be evident. Given two periodic discrete signals x(n7T) and y(nT) with the same
period T, = NT, their convolution is

ko+N—1
snT)= Y Tx(kT)y(T —kT), (2.90)
k=ko

where the summation is limited to a period. The result is a signal s(n7T") with the
same period T, = NT.

The “periodic discrete” convolution, often called the cyclic convolution, has the
same properties as the other kind of convolutions.

2.12 The Fourier Transform of Discrete Signals

Discrete signals can be represented in the frequency domain by means of the FT, as
seen for continuous signals. In the discrete case, the physical interpretation of the
FT may be less evident, but nevertheless it is a very useful tool.

2.12.1 Definition

A discrete signal s(nT), nT € Z(T) can be represented in the form

fo+Fp )
s(nT) =/ S(f)er T qrf, (2.91a)
1

0

where S(f) is the FT of s(nT), which is given by

+00
S(f)y= Y TsTye /T (2.91b)

n=—oo

In (2.91a), the integral is extended over an arbitrary period ( fo, fo + F)) of the
FT. The FT S(f) is a periodic function of the real variable f (Fig. 2.35) with period

Fp=1/T.

This is a consequence of the periodicity of the exponential function e 2%/ with
respect to f. Remarkable is the fact that the period of S(f), expressed in cycles per
second (or hertz), equals the signal rate, expressed in values per second.
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Fig. 2.35 Fourier transform of a real discrete time signal represented by real and imaginary parts,
and by modulus and argument

As for continuous signals, we use the notations S(f) = F[s | f] and s(nT) =
F-1[S | nT] and also

s(nT) —2 5 S(f). S(f) —Zs suT).

g . . .
The operator ———— represents a complex function of a discrete variable,
s(nT), by a periodic function of continuous variable, S(f).

2.12.2 Interpretation

According to (2.91a), a discrete signal s(nT) is represented as the sum of infinitely
many exponentials of the form

[S(HAf]e?™ T felfo, fo+ Fp).

with infinitesimal amplitude S(f)df and frequency f belonging to a period of
the FT. The reason of this frequency limitation is due to the periodicity of discrete
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exponentials. In fact, the components with frequency f and f + kF), are equal
[S(f) df]ei2nfnT — [S(f + ka) df]ei2n(f+kF,,)nT’ Vk e Z

We can therefore restrict the frequency range to a period, which may be [0, F,), that

is,

1

Fp .
s(nT):/ S(HeF T af  F = (2.92)
0

The conclusion is that the maximum frequency contained in a discrete signal s(nT)
cannot exceed the signal rate F, =1/T.
For a real signal, s*(nT) = s(nT), the FT S(f) has the Hermitian symmetry

S(f) = S*(=1).

This symmetry, combined with the periodicity S(f + Fp) = S(f), allows restricting
the range from [0, F,) into [0, %F »). Moreover, from (2.92) we can obtain the form

1F
s(nT)=/2 p2AS(f)cos(2nfnT—I—ﬁs(f))df (2.93)
0

where
As(H)=1[S(H]  Bs(f) =argS(f).

In the sinusoidal form (2.93), the maximum frequency is %F »» which is called the
Nyquist frequency.

2.12.3 Properties of the Fourier Transform

Here we consider only a few of the several properties (or rules).

e The shifted version of a discrete signal, y(nT) = s((n —ng)T), has FT
Y(f) = S(f)e 2m/mT (2.94)
e The FT of convolution, s(nT) = x x y(nT), is given by the product of the FTs
S =XHY). (2.95)

Note the consistency of this rule: since X (f) and Y (f) are both periodic of period
Fp, also their product is periodic with the same period, F),.

e The FT of the product of two signals, s(nT) = x(nT)y(nT), is given by the
(cyclic) convolution of their FT (see (2.44))

f0+Fp
S(f):X*Y(f):[ XY (f —A)da. (2.96)

fo
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Fig. 2.36 Fourier transforms of the discrete impulse and of the discrete unit signal

e Parseval theorem allows evaluating the signal energy from the Fourier transform
according to

+00

Jo+Fp
E;= Y T|s(nT)]2=/f0 IS(H[Pdf 2.97)

n=—oo

where the integral is over an arbitrary period of S(f).

2.12.4 Examples of Fourier Transforms

The explicit evaluation of the Fourier transform, according to (2.91b), requires the
summation of a bilateral series; in the general case, this is not easy. The explicit
evaluation of the inverse Fourier transform, according to (2.91a), requires the inte-
gration over a period.

Impulses and Constant Signals The FT evaluation of the impulse applied at no7T
is immediate
S(nT — noT) ———» g—i27fnoT

Note that with the notation §(¢t — #g) instead of §(nT — noT) the above expression
takes the same form as seen for the continuous case (see (2.65))

8t — tg) —— 5 g~27f10,
where now 7, ty € Z(T). In particular, for to =noT = 0 we find (Fig. 2.36)

S(nT) —— 5 1.
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cos27 fonT S(f)

Fig. 2.37 Fourier transform of a cosinusoidal and of sinusoidal discrete signal

Less trivial is the FT evaluation of the unit signal, s(nT) = 1, since the defini-
tion (2.91b) gives

+00 )
S(f) — T Z e*lZﬂfﬂT’

n=—oo

where the series is not summable. To overcome the difficulty, we can use the iden-
tity (2.53) established in the contest of Fourier series and now rewritten in the form

400
Z e 2T — F, repp 8(f), Fp=1/T. (2.98)

n=—00
Then, we find (Fig. 2.36)
F A
I ———repg, 8(f) = 8F, (). (2.99)

Hence, the FT of the unit discrete signal, s(n7') = 1, consists of the periodic repe-
tition of the frequency impulse §( ). Remarkable is the fact that the delta function
formalism allows the evaluation of the sum of a divergent series!

Exponential and Sinusoidal Signals If we replace f with f — fy in identity
(2.98), we find the Fourier pair

ei27'[f()1’lT ———3:——) repr 8(f - fO) = 8Fp (f - fO)’

which gives the FT of the discrete exponential. Next, using Euler’s formulas, we
obtain the FT of sinusoidal discrete signals (Fig. 2.37), namely

1
c0s 27 fon T ——— 385, (f = fo) + 81, (f + fo)).
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s(nT) S(/f)
ol 7 nT nT W/ o WV NE f

Fig. 2.38 Fourier transform of a discrete rectangular pulse

L5, (f = fo) = 85, (f + fo)].

sin2m fonT v > [
i

Rectangular Pulses The discrete rectangular pulse of duration (2ng + 1)T

Ag T < no;
sty = 140 or |n| < no;
0  for|n| > ng

has as FT

no
S(f)=ApT Y e 2T,

n=-—ng

This finite sum can be expressed by means of the periodic sinc function, as seen in
Example 2.6 of Sect. 2.5. The result is

S(f) = AgNTsincy(fNT), N =2ng+ L.

Figure 2.38 illustrates S(f) forng=3 (N =7).

Causal Exponentials The FT of the signal s(nT) = 1o(n)a”" is
+00 ) +00 )
S(H=T Za"e_‘Z”f”T =T Z(ae_lz”fT)n. (2.100)
n=0 n=0

If |a| < 1 the geometrical series is convergent, since

ae_i2”fT| =lal <1

and the FT is given by

SHh=1= exp(—i2nfT)

If |a| > 1 the geometrical series is divergent and the FT does not exist.
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2.13 The Discrete Fourier Transform (DFT)

The DFT is commonly introduced to represent a finite sequence of values

80,81, -y SN—1 (2.101a)
by another finite sequence of values

S0, S15 -+, SN—1- (2.101b)

The two sequences are related by the relationships

| V-l N-1
si=— Y SWREL Si=) s Wi, (2.102)
N
k=0 n=0
where Wy is the Nth root of the unity
Wy =exp(i2z/N). (2.103)

The first of (2.102) represents the inverse DFT (IDFT) and the second represents
the DFT. They are a consequence of the orthogonality condition

N—-1
D WREWLM = b

m=0

1
N

Comments The DFT works with a finite number of values, and therefore it can
be implemented on a digital computer. Its implementation is usually done by a very
efficient algorithm, called the FFT (fast Fourier transform) (see Chap. 13).

In Signal Theory, the DFT represents the FT for periodic discrete signals and the
finite sequence (2.101a) gives the signal values in a period and, analogously, the
finite sequence (2.101b) gives the Fourier transform values in a period. However,
the classical form (2.102) does not show clearly this assertion and the connection
(or similarity) with the other FTs.

This will be seen after the development of the Unified Theory, in Chap. 11 and
Chap. 13, where the DFT will be obtained as a special case of the unified Fourier
transform.

2.14 Filtering of Discrete Signals

A discrete filter (linear, invariant) can be formulated as a system with the following
input—output relationship (Fig. 2.39):

+00
y(nT) = Z TgnT —kT)x(kT), nT € Z(T) (2.104)

k=—00
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x(kT)=8(kT) y(nT)=g(nT)
1
T x(kT) ) »(nT)
Z(T) & Z(T) [ HHHT
of 7 kT ol T nT

Fig. 2.39 Interpretation of impulse response of a discrete-time filter

where x (kT') is the input signal, y(nT) is the output signal and g(nT) is the impulse
response which specifies the filter.

We may recognize that (2.104) is a convolution, namely y(nT) = g x x(nT),
according to the definition given for (aperiodic) discrete signals in Sect. 2.11. As
seen for continuous filters, the meaning of g(nT) is the response of the filter to the
discrete impulse §(nT") defined by (2.82).

The input—output relationship (2.104) in the frequency domain becomes

Y(f)=G(fHX(f) (2.105)

where G(f) is the Fourier transform of the impulse response g(nT), called the
frequency response of the filter.

Thus, we recognize that the frequency-domain analysis of a discrete filter is ex-
actly the same seen for a continuous filter in Sect. 2.8.

2.15 Sampling Theorem

The Sampling Theorem provides a connection between the classes of continuous
and discrete signals.

2.15.1 The Operation of Sampling

In Sect. 2.3, we have seen that sampling gives a discrete signal s.(nT') starting from
a continuous signal s(¢), ¢ € R according to the relationship

sc(nT)=snT), nT eZ(T).

The values s(nT) are called the samples of s(t), the spacing T is called the sampling
period and F. = 1/T is the sampling frequency (it gives the number of samples per
second).

Since sampling drops a portion of the original signal s(¢), it is evident that the
recovery of s(¢) from its samples s(nT) is not possible, in general. However, for a
band-limited signal a perfect recovery becomes possible. This is stated by the Sam-
pling Theorem which will now be formulated in the classical form. A very different
formulation will be seen with the Unified Theory, in Chap. 8.
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2.15.2 Formulation and Proof of Sampling Theorem

Theorem 2.1 Let s(t), t € R be a band-limited signal according to
S(f)=0 for|f|> B. (2.106)

If the sampling frequency F. is at least twice the band, F, > 2B, then s(t) can be
recovered by its samples s(nT), n € Z according to the reconstruction formula

+00

s(t) = Z s(nT)sinc[ Fe(t —nT)]. (2.107)

n=—0oo

Proof Band-limitation stated by (2.106) allows writing the inverse FT in the form

lFC )
s(t) = / 21 S(f)e2 1 d . (2.108a)

2 Fe
This, evaluated at t =nT, gives

1

> F, )
s(nT) = f 21 S(fe T qr. (2.108b)

3 Fe
Next, consider the periodic repetition of the FT S( f), with period Fv¢,

+00

Sp(f)= > S(f—kF.). (2.109)

k=—00

Since S, (f) is periodic, it can be expanded into a Fourier series (this expansion
has been considered for time functions, but it also holds for frequency functions).
Considering that the period of S, (f) is F., we have

“+00
Sp(f)= Y. S/ T=1/F, (2.110a)
n=—0o0
where
1R,
s, = L [ s (pre-izniT g 2.110b
=), »(fe f 2. )
IF,

Now, by the band-limitation, we find that the terms of the periodic repetition do
not overlap (Fig. 2.40) and S, (f) equals S(f) in the interval (—%Fc, %Fc), that is,
Sp(f)=S(f), —3Fc < f < 3F..

Then, replacing S,(f) with S(f) in (2.110b) and comparing with (2.108b), we
obtain

F.Sy =s(—nT). (2.110c)
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=T1epf, S|

VAVAVAY

—-B 0 3F f

Fig. 2.40 Example of band-limited Fourier transform S(f) and its periodic repetition with
F.>2B

Finally, using series expansion (2.110a) in (2.108a), we find

s(t) = Z / Suel T D) q f = Z S, F, s1nc[F (t+nT)]

n=—oo n=—oo

To complete the proof, it is sufficient to take into account (2.110c). O

2.16 Final Comments on Classical Theory

In this chapter, we have introduced and developed the two signal classes:

1. Continuous-time signals with domain R, and
2. Discrete-time signals with domain Z(T').

A systematic comparison of definitions introduced in the time domain for the two
classes brings to evidence the strong similarity, with the main difference that in the
passage from class 1 to class 2 integrals are replaced by summations, specifically

400 +00
/ s(r)dt— Z Ts(nT).

—o0 n=—oo

In the frequency domain, the two classes give respectively: class 1 of continuous-
frequency Fourier transforms, with domain R, and class 2 of continuous-frequency
Fourier transforms with domain R and period £}, = 1/T. In this comparison, the
rule of passing from time to frequency domain is not clear. To get this rule, we have
to consider not only the domain, but also the periodicity.
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On the other hand, we have realized that periodicity plays a fundamental role
in definitions. In fact, from class 1 we have extracted the subclass 1(a) of periodic
signals and used for them the integral limited to a period instead of the integral over
the whole real axis, that is,

—+00 t()-i-Tp
/ s(t)dt—)/ s(t)de.
—00 o

Analogously, from class 2 we have extracted the subclass 2(a) of periodic signals
with the substitution

+00 no+N—1
Z Ts(nT)—> Z Ts(nT).
n=—00 n=ng

In the frequency domain, the two subclasses of periodic signals give respectively:
class 1(a) of discrete-frequency Fourier transforms, with domain Z(F), F =1/T),
and class 2(a) of discrete-frequency Fourier transforms, with domain Z(F') and pe-
riod F, =1/T.

In conclusion, in order to find a link between time and frequency domains it
is necessary to consider periodicity or aperiodicity. Only in this way, we find that
the global class of signals, consisting of subclasses 1, 2, 1(a) and 2(a), has a full
counterpart in the frequency domain consisting of subclasses of exactly the same
type. This link will automatically be provided by the Unified Theory.

2.17 Problems

2.1 « [Sect. 2.1] Assuming that a continuous-time signal s(¢) is the mathematical
model of an electrical voltage, find the physical dimensions of the following quan-
tities: area, mean value, (specific) energy, and (specific) power.

2.2 x [Sect. 2.2] Show that the area over a period of a periodic signal defined
by (2.17a) is independent of 7.

2.3 *x [Sect. 2.2] Show that the mean value over a period for a periodic signal,
defined by (2.17b), is equal to the mean value defined in general by (2.10).

2.4  [Sect. 2.3] Using the functions 1(x) and rect(x) write a concise expression for
the signal

s(t)y=3 forte(-5,1), s(t)y=t forte(2,4), s(t) =0 otherwise.

2.5 x [Sect. 2.3] Find the extension, duration, area and energy of the signal of Prob-
lem 2.4.
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2.6 x [Sect. 2.3] Find the energy of the causal exponential with pg =2 4 i275.

2.7 x [Sect. 2.3] Write a mathematical expression of a triangular pulse u(¢) deter-
mined by the following conditions: u(¢) is even, has duration 2 and energy 10.

2.8 x [Sect. 2.3] An even-symmetric triangular pulse u(¢) of duration 4 and ampli-
tude 2 is periodically repeated according to (2.16). Draw the periodic repetition in
the following cases: T, =8, T, =4 and T), = 2.

2.9 »xx [Sect. 2.3] Write the derivative r’/(¢) of the rectangular pulse r(¢) defined
by (2.26). Verify that the integral of r'(¢) from —oo to ¢ recovers r(z).

2.10 *xx [Sect. 2.3] Write the first and second derivatives of the rectified sinusoidal
signal

s(t) = Ap|cos wot|.

2.11 *x [Sect. 2.3] Find the (minimum) period of the signal
2 .4
s(t) =2cos gwol + 3sin ga)ot.

2.12 »« [Sect. 2.4] Show that the (acyclic) convolution of an arbitrary signal x (¢)
with a sinusoidal signal y(¢) = Ag cos(wot + ¢p) is a sinusoidal signal with the same
period as y(¢).

2.13  [Sect. 2.4] Show that the derivative of the convolution s(#) of two derivable
signals x(¢) and y(z) is given by s’ =x"x y =x x y'.

2.14 xxx [Sect. 2.4] Evaluate the convolution of the following pulses:
x(t) = Arrect(t/2D),  y(t) = Arexp(—t*/D?).

Hint. Express the result in terms of the normalized Gaussian distribution

CD(x):/x Jl_e_%y2dy.

—o0o V27
2.15 x [Sect. 2.4] Evaluate the convolution of the signals
x(t) = Ay sinc(t/D), y(t) = A28(t) + A38(t —2D).
2.16 »xx [Sect. 2.4] Evaluate the (cyclic) convolution of the signal
x(t) = repr, rect(t/T),

with x (¢) itself (auto-convolution). Assume T, = 4T .
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2.17 x [Sect. 2.5] Show that the Fourier coefficients have the same physical di-
mensions as the signal. In particular, if s(¢) is a voltage in volts, also S, must be
expressed in volts.

2.18 * [Sect. 2.5] Starting from the exponential form of the Fourier series and as-
suming a real signal, prove (2.49a) and (2.49b). Note that in this case Sy is real.

2.19 * [Sect. 2.5] Show that if s(¢) is real and even, then its sine—cosine expan-
sion (2.49a) becomes an only cosine expansion.

2.20 »x* [Sect. 2.5] Assume that a periodic signal has the following symmetry:
s@)=—s(t—T,/2).

Then, show that the Fourier coefficients S, are zero for n even, i.e., the even har-
monics disappear. Hint: use (2.50).

2.21 *x [Sect. 2.5] Evaluate the mean value, the root mean square value and the
Fourier coefficients of the periodic signal

s(t) =repy, [rect(%)A()(l — %)}

in the cases T, = 2Ty and T), = Tj.

2.22 « [Sect. 2.5] Check Parseval’s Theorem (2.51a) for a sinusoidal signal (see
Example 2.4).

2.23 « [Sect. 2.5] Evaluate the Fourier coefficients of the signal

1 3
o [ie-i9) ()

and find symmetries (if any).

2.24 x [Sect. 2.6] Find the physical dimension of the Fourier transform S(f) when
the signal is an electric voltage.

2.25 x« [Sect. 2.6] Show that if s(¢) is real, S(f) has the Hermitian symmetry. Hint:
use (2.55a, 2.55b).

2.26 *»x [Sect. 2.6] Prove rule (2.60b) on the product of two signals.

2.27 »x [Sect. 2.6] Prove that the product s(z) = x(¢t)y(¢t) of two strictly band-
limited signal is strictly band-limited with

B(s) = B(x) + B(y).

Hence, in particular, the band of x2(1) is 2B(x).
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2.28 * [Sect. 2.7] Evaluate the Fourier transform of the causal signal
sy=10e T, T>0

and then check that it verifies the Hermitian symmetry.

2.29 x [Sect. 2.7] Prove the relationship

F 1 1
s(t)cos2nfot—>ES(f—fo)+§S(f+fo) 2.111)
called modulation rule.

2.30 * [Sect. 2.7] Using (2.111) evaluate the Fourier transform of the signal
s(t) =rect(t/T) cos2m fyt.
Then, draw graphically S(f) for foT =4, checking that it is an even real function.

2.31 *x [Sect. 2.7] Using the rule on the product, prove the relationship

F 1 1 1
1(?) cos 27 for ——— Z[S(f—fo)+5(f+fo)+ 7 = fo) +in(f+fo)i|'

2.32 »xV [Sect. 2.7] The scale change (see Sect. 6.5) has the following rule

s(at) —— (1/1a)S(f/a) a 0. 2.112)

.. . 2 F 2 .
Then, giving as known the pair e~ ———— e¢~7/", evaluate the Fourier trans-

form of the Gaussian pulse

e e A
= Voo PT2\G) |

2.33 »x [Sect. 2.7] Evaluate the Fourier transform of the periodic signal

t
s(t) = repr, rect<5>.

2.34 »x [Sect. 2.7] Prove the relationship

t t t
triang| — ) =rect| — )| 1 — U 7 . Dsincz(fD)
D 2D D

where the signal is the 2D-duration triangular pulse.
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s(nT )=sinc(FynT) S(f)

Fig. 2.41 Fourier transform of discrete sinc pulse

2.35 *xx [Sect. 2.7] Consider the decomposition of a real signal in an even and an
odd components

(1) = s¢(1) + 50(1).
Then, prove the relationship
F F P~
Se(t) ————> NS(f), $o(t) ———> jIS(f).
2.36 * [Sect. 2.12] Evaluate the Fourier transforms of the signals

Ag, f ==+I; Ag, forn=-1,0,1,;
s1(nT)={ 0, forn 5y(nT) = 0, forn

0, otherwise, 0, otherwise,

and check that S1(f) and S>(f) are (a) periodic with period ), =1/T, (b) real and
(c) even.

2.37 x [Sect. 2.12] With the signals of the previous problem check the Parseval
theorem (2.97).

2.38 * [Sect. 2.12] Show the relationship
sinc(nFoT) —— (1/Fy) rep , ect(f/ Fo).
illustrated in Fig. 2.41 for FoT = % Hint: show that the inverse Fourier transform

of S(f)iss(nT).

2.39 xx [Sect. 2.15] Apply the Sampling Theorem to the signal
s(t) =sinc®(Fr), reR

with F =4 kHz.
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Appendix: Fourier Transform of the Signum Signal sgn(?)

The Fourier transform definition (2.55b) yields

+o0 . 2 o0
/ sgn(t)e 7 dr = = / sin 27w ft dt.
1 Jo

—0o0

These integrals do not exist. However, sgn () can be expressed as the inverse Fourier
transform of the function 1/(ir f), namely

+00
sen(r) = f #eizﬂf Tdf 2 x(r) (2.113a)

provided that the integral is interpreted as a Cauchy principal value, i.e.,

(1) /ﬂo ! e df = lim /F ! e2Id . (2.113b)
= = 1l1im .
* oo IS F—oo J_pinf
Using Euler’s formula, we get
+0o0 1 +00 1
x(7) :/ —— cos(2n ft) df+/ —sin@r fr)df
—oo 17f —00 Tf

where the integrand (1/i27f) cos(27 f) in an odd function of f, and therefore the

integral is zero. Then
+00 ¢in(2 t
(1) = / Sin@rf 4
o0 nf

Now, for t =0 we find x(0) = 0. For ¢ # 0, letting

du
2ft—u, df — 27
we obtain
f+oo sm(n'u) du fort > 0;
e {f+°° S g = — [ D - for 1 <0

It remains to evaluate the integral

+00 3 400
1 :/ sin(rru) du :/ sinc(u) du.

oo TU oo

To this end, we use the rule (2.61) giving for a Fourier pair s(¢), S(f)

+00
area(S):/ S(fHdf =s)

—00
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with s(t) =rect(t), S(f) = sinc(f) (see (2.64a, 2.64b)). Hence, we obtain

~+00
/ sinc(f)df =s(0) =rect(0) = 1.

—00

Combination of the above results gives x(f) = sgn(¢).
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Unified Signal Theory
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Chapter 3
Unified Theory: Fundamentals

Guide to Reading This Chapter Notions concerning one-dimensional (1D)
groups and related quantities may be regarded as elementary, but also multidimen-
sional groups that are separable (in the Cartesian product of 1D groups) are elemen-
tary and require a slightly deeper effort than 1D groups. The difficulty is concen-
trated on nonseparable groups, which must be formulated in a special form, called
basis signature representation. This consideration holds also for other topics, as
cells and sum and intersection of groups.

The reader should be advised to tackle the chapter gradually, skimming over
the more intricate topics by following the “jump” |} symbol, and considering only
separable groups.

Alternatively, the reader willing to fully master the subject in all its details should
study the whole chapter thoroughly, along Chap. 16, where groups and operations
are further developed.'

3.1 The Philosophy of Unified Signal Theory

The Unified Signal Theory (UST) is an abstract formulation of signals and systems.
Its few basic concepts allow for a completely general development, applicable to
any kind of signal and system classes.

The key of the unification is based on the following definition.

Definition 3.1 A signal is a function

s:1—C, 3.1

I'The author suggests the reader to apply patience and perseverance in approaching the various
foundational issues in this chapter (and in the next one, too), some of which are not exactly enter-
taining. However, we believe that effort and patience will be eventually rewarded when the reader
will come to grips with the body of the UST. Once done with the (boring) fundamentals, the reader
will hopefully realize that they allow for a very general and simple formulation of the various
topics, and the whole theory will unfold in a smooth and straightforward way.

G. Cariolaro, Unified Signal Theory, 83
DOI 10.1007/978-0-85729-464-7_3, © Springer-Verlag London Limited 2011
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where [ is a pair of Abelian groups, denoted in the form I = Iy/ P, with Iy the
domain and P, a subgroup of Iy, the periodicity. The codomain is always the set C
of complex numbers.

Signals (3.1) will be denoted in one of the forms
s), tel or s(t), tely/P,

where the codomain is not explicitly indicated since it is always C. As we shall see,
Definition 3.1 includes aperiodic signals, by letting the periodicity P degenerate to
aperiodicity. The relevance of periodicity is already clear from the Classical Theory,
where aperiodic and periodic signals required distinct definitions and developments.
The possibility of unifying these different definitions lies just in treating aperiodicity
as a degenerate form of periodicity.

The development of the UST, starting from the universal signal definition (3.1),
needs a linear functional for the introduction of the fundamental operations of sig-
nal theory, like convolution and Fourier transform. Such a functional is the Haar

integral, denoted as
/ dr s (1),
I

which is equipped with the proper topological requirements. Then, the convolution
of two signals, x(#) and y(¢), t € I can be defined as

x*y(t):/dux(l—u)y(u), tel. (3.2)
1

The Haar integral, moreover, can handle linear systems, here called linear trans-
formations, according to the input—output relationship

y(t) =/du ht,u)x(w), tel, (3.3)
I

where x(u), u € I, is the input signal, y(¢), t € U, is the output signal and h(t, u)
is the kernel which characterizes the linear transformation. Note that in general the
output domain/periodicity U may be different from the input domain/periodicity 1
and this represents a relevant and not trivial generalization.

Finally, the Haar integral permits the introduction of the Fourier transform (FT),
according to the general form

S(f) = /1 ay(fns@), fel (3.4)

and of the inverse FT, according to the symmetric form

s(t):/Tdfw*(f,t)S(f), tel. (3.5)
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Fig. 3.1 Logical .
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The kernel v (f, t), which in (3.5) appears in the conjugate form, assumes a specific
expression in dependence of the domain/periodicity /. In all the cases of interest, it
has the familiar form

Y (f, 1) =e?I", (3.6)

It is worth pointing out that the FT domain is defined as I= Ioy/ Py, where both
Ios and Py are Abelian groups. Therefore, FTs are not structurally different from
signals: both are complex functions with domains and periodicities specified by
Abelian groups.

The above are the very few basic notions upon which the UST is developed.
The logical interconnection of the topics is illustrated in Fig. 3.1. For each topic,
we can establish several results for signals and systems, with complete generality.
For instance, in dealing with convolution, we shall formulate a dozen general rules,
which in the Classical Theory are separately formulated for each signal class.

A unified approach will also be possible for the operations of sampling and in-
terpolation, where two different signal classes are involved (continuous-time and
discrete-time signals in the one-dimensional case). We shall establish a unified Sam-
pling Theorem which gives the familiar theorem on the reconstruction of a one-
dimensional continuous-time signal from its sample values as a special case, but
it also includes the other cases of interest, e.g., the sampling and reconstruction of
images.

A final comment is needed for a theory which is formulated in a very abstract
form, but ultimately devoted to applications. Basic notions and related results are
mathematically consistent since they are anchored on Topology. However, knowl-
edge of Topology, which is a very difficult discipline, is not required for the com-
prehension of the UST. Topology is rather a reference guide and a precious source
of useful results. In the author’s opinion, a Signal Theory developed with a full
mathematical framework would risk to appear a bad duplicate of Topology, losing,
perhaps, the essence of signals and systems. This “trade off”” between mathematics
and engineering is not unusual, e.g., topics such as probability, random variables and
stochastic processes, in engineering books are typically developed without explicit
reference to Measure Theory.
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3.1.1 UST Implementation on a Specific Signal Class

Once the UST has been developed, to get explicit results for a specific signal class
identified by a domain/periodicity I = Ip/ P, a set of “implementation rules” is re-
quired. Specifically, we have to find the explicit form of:

1. The Haar integral on I = Iy/ P, R
2. The frequency domain/periodicity I = Ilys/ Py,
3. The Fourier transform kernel ¢ (f, ).

In practice, it will be convenient to fix a reference group Go and to form all the
possible pairs Ip/ P with the subgroups of G¢. Then, we can carry out a systematic
acquisition of the previous points and, in such a way, we implement the Signal
Theory on the groups of Go. The most important reference is the additive group R
of real numbers and its m-dimensional extension R™. However, we shall also see the
UST implementation on multiplicative groups, which is quite unusual, but useful to
remark the generality of the theory.

3.2 Abelian Groups

3.2.1 Definition and Properties

An Abelian group is a nonempty set G in which a binary operation + is defined,
with the following properties:

ut+v=v-+u,forallu,vegG,

u+@wW+z)=w+v)+z forallu,v,z€G,

G contains an identity element, denoted by O, such thatu +0=u,u € G,

To each u € G there corresponds an element —u € G, such that u — u = 0, where
u — u stands for u 4+ (—u).

If a subset P of G is itself a group with respect to the same group operation, it is
called a subgroup of G and G is a supergroup of P. The subset {0}, consisting of
the identity element of G, is the frivial subgroup of G.

Examples of Abelian groups are:

e The additive group R of the real numbers, where + is the ordinary addition;

e The additive group Z of the integers, and, more generally, the group of the multi-
plesof T: Z(T) = {nT |n € Z} for all T € (0, 00);

e The additive group Q of rational numbers;

o The multiplicative group R, of positive real numbers, in which the group opera-
tion + becomes the multiplication and the identity element is the unit;

e The multiplicative group C* of nonzero complex numbers, in which + is the
multiplication and the identity element is the complex number 1 + i0;

o The g-adic group Z; = {0, 1, ..., g — 1}, in which + is the addition modulo g,
and in particular the dyadic group Z; = {0, 1}, where + is the binary addition.
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It is evident that Z(T') and Q are subgroups of R, but R, and Z;, are not, since their
group operation is different from the ordinary addition on R.

A group whose set is discrete is called a lattice, and a group whose set is finite is
called a finite group. Thus, Z and Z(T) are lattices, and Z, is a finite group.

3.2.2 Multidimensional Groups

Given two Abelian groups G| and G their Cartesian product G1 x G is an Abelian
group, whose set is the Cartesian product of the two sets and the group operation +
is defined by

(uy,u2) + (v, v2) = (U + v, us +v2), ui,v1 €Gy, uz,v2 € Gy,

where on the right hand side the first + is the operation on G and the second + is
the operation on G». The identity element is (0,0), with the first O the identity ele-
ment of G1, etc. The above definition is easily generalized to the Cartesian product
of an arbitrary number of factors.

For instance, from the additive group R and its subgroups, we can obtain mul-
tidimensional groups of the form R> =R x R, R* =R x R x R, R x Z(T), etc.
However, not all multidimensional groups are obtained as the Cartesian product of
one-dimensional groups. An example of such a group is the so called quincunx lat-
tice Z;(d 1, d2), which will be defined later on. Figure 3.2 shows three subgroups of
R?, a subgroup of R? and a subgroup of C*.

3.2.3 Operations on the Subsets of a Group

Given two nonempty subsets, A and B, of a group G, the group operation + allows
the introduction of the following operations:

e sum: A+ B={a+blacA,be B},
o reverse of A: —A={—a|a€ A},

e shiftof A: A+ p 2 A+ {p}={a+ p|ae A}, where p € G is the shift amount.

For instance, if G =R, and A = (a, ap) and B = (b1, by) are intervals, we have
A+ B = (a; +by,a; +b),
—A=(—ay, —a1),
A+p=(a1+p,ar+p).

We see that in general the sets —A and A + p are different from A. However, if
A is the group G we find

-G =G, G+p=G, foral pegG. (3.7
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R x Z(d) 7(dy) x Z(d) Z(dy,dy)
t %) 15)
d dy o o o o o dyte e o e o
0 1 0 g 1 04, 1
Z(1) x Zi(1,1) lattice of C*
3 4 /'t3
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1
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1,

0 1 2 3 4 4l
Fig. 3.2 Example of multidimensional groups: at the fop, three subgroups of R?; and at the botrom,
a subgroup of R3 and one of C*

Hence, the fundamental properties:

1. Every group is invariant with respect to the reverse operation,
2. Every group is shift-invariant with respect to the shift amounts belonging to the
group.

For instance, if G = Z(T), we find Z(T) +2T = Z(T), Z(T) + (—=5T) = Z(T), but
Z(T)+ §T # Z(T) since 1T ¢ Z(T).

3.2.4 Properties of Signals Defined on a Group

Group properties (3.7) have a direct consequence on the class 8(G) of signals de-
fined on a group G. In fact, if s € S(G), the reversed signal (Fig. 3.3)

s_ () A s(=1), 1e€G (3.82)
is defined on —G, which coincides with G. Moreover, the shifted signal

sp() 2st—p). teG (3.8b)
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Fig. 3.3 Reversed signal and shifted signal illustrated on R and R?

is defined on G + p, which coincides with G whenever p € G.

The conclusion is that the class 8(G) is closed with respect to both the reverse
and shifts of p € G. Since these operations are fundamental for signals (both appear
in a convolution), the above properties explain the reason for the choice of a group
as signal domain. Note that the same properties are not verified when the domain
is not a group. For example, if G is the 1D interval (¢, t2), the domain becomes
(=12, —11) for s_ and (#; + p, 12 + p) for s, and in both cases the signal domain
changes, and, in fact, an interval is not a group.

3.3 Overview of LCA Groups

Not all Abelian groups are useful for signals, the interest being confined to those
groups where the Haar integral can be introduced. Topology gives a precise indi-
cation on these groups: they represent the class of locally compact Abelian (LCA)
groups. The definition of LCA goes beyond the scope of this book and can be found
in textbooks of Topology (see the bibliography [10—19] at the end of this chapter).
In this context, we find, e.g., that the class of the subgroups of R, as R and Z, are
LCA, but others, as the group Q of rational numbers, are not LCA, and for them the
introduction of the Haar integral is not possible.

Since we intend to avoid the introduction of very abstract concepts (topological
groups, compact groups, locally compact groups, etc.), we just identify the class
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Fig. 3.4 Illustration of a R™ R”
linear mapping between R”

o e A a

of LCA groups and of the corresponding Haar integrals. In this regard, Topology
gives a very simple and exhaustive guide for their identification (see in particular
Theorem 3.3).

Given a reference LCA group G, we denote by G(Gy) the class of all LCA
subgroups of Gg. The group Go will be called the generator of the class G(Gy).
Note that G(Gy) is not empty since it contains at least G and the trivial group {0},
which we know from Topology to be LCA. For brevity, we call a group G € §(Gy)
a “group of Go”, although the correct term would be a “subgroup of G”.

In this section, most of the definitions on LCA groups are concentrated and, as a
recommendation to the reader, the concepts herein may be acquired gradually.

3.3.1 Identification of LCA Groups

In the identification procedure, we can use the concept of isomorphism between
groups which will be defined in the next section. Roughly speaking, isomorphism
means a one-to-one correspondence. Now, if the groups H and G are isomorphic,
symbolized H ~ G, Topology assures that if H is LCA, so is G (see Proposi-
tion 3.3). In this way, we can start from some primitive groups and generate the
other LCA groups by isomorphism.

Now, to proceed we need to define linear transformations, which, in the context
of sets, are set mappings.

Definition 3.2 Let A be an n x m real matrix, then the relation t = Ah maps a point
h of R™ into a point t of R”. If H is a nonempty subset of R, then

AH 2 (Ah|he H) (3.9)

is a subset of R” obtained by mapping all the points of H. The set AH is called a
linear transformation of the set H obtained with the matrix A (Fig. 3.4).

Note that h is an m-tuple h = (hy, ..., h;,), which in the matrix multiplication
t = A h must be interpreted as a column vector. The result t is a column vector of
size n.

Another result of Topology is that in the identification of LCA groups, without
any restriction, we can refer to the group R and its subgroups and in general to R™
and its subgroups (see Theorem 3.3). Then, groups are obtained by linear transfor-
mation of the form G = AH, where H is a primitive group of R” and A is an m x m
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Fig. 3.5 The 1D primitive groups and the non-primitive group Z(T')

real matrix. The linear transformation modifies the geometry of the groups but not
the topology. So, if H is a continuum, so is G; and if H is discrete, so is G.
In conclusion, the steps to find the LCA groups are:

1. Identification of the primitive groups,
2. Generation of the other LCA groups by linear transformations.

The generation is based on the following result, which will be proved in the next

section:

Theorem 3.1 All the LCA groups of R™ can be generated from the primitive
groups H, as follows

G=GH <= G={GhlheH]}, (3.10)
where G is a nonsingular real matrix of dimension m x m.

The matrix G is called the basis of the group, the primitive group H is the sig-
nature and the pair (G, H) is a representation of the group G, symbolized

(G, H)—> G.

We now examine the 1D LCA groups of the class §(R) and then we will introduce
the main definitions.

3.3.2 One-Dimensional LCA Groups: The Class G(R)

The generator of 1D LCA groups is R, the additive group of real numbers, and the
primitive groups are

R, 7 O @3.11)

where 7Z is the subgroup of integers and @ = {0} is the degenerate subgroup
(Fig. 3.5).

In the 1D case, the linear mapping G h has the simple scalar form 7 4, where
without restriction 7 > 0. This mapping, when applied to R and O, again gives
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R and O. On the other hand, the application to the primitive group Z gives G =
{Th|h € Z}, that is, the set of the multiples of 7', which we denote by Z(T), i.e.,

Z(T) = {hT | h € 7). (3.12)

Hence, the only non-primitive groups of G(R) are Z(T) for every T € (0, 00). This
result is in agreement with a celebrated Bourbaki’s theorem [1]:

Theorem 3.2 The only LCA subgroups of R are R, Z(T) with T € (0, 00), and the
degenerate subgroup O = {0}.

Note that the class G(R) does not contain some subgroups of R, as the group Q
of rationals.

3.3.3 Definitions and Classifications

The primitive groups of G(R™) have the form
H=R’ xZ1x0Q" withp+qg+r=m, p,q,reNy (3.13)

or a permutation of the m factors contained in H. These groups represent the sig-
nature in the generation of the other LCA groups of R™ (Nj is the set of natural
numbers, including 0).

Continuums, Lattices and Gratings. Dimensionality

In general, the signature determines the nature of the group:

e If H=TR", the group G is R itself (the continuous mD group);

e If H=127", the group G is a lattice (a discrete mD group);

o If H=R? x Z"7P with 1 < p < m or a permutation of such factors, the group
is a grating (a mixed mD group).

The signature also states the dimensionality” of the group, namely
dimG =dim H. (3.14a)

Considering that dimR = dimZ = 1 and dim O = 0, we have more specifically if
H=RP xZ1x0O"

dimG =dim(R” x Z7 x O") = p + 4. (3.14b)

2We use “dimensionality” in place of “dimension”, reserving the latter for physical dimensions.
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Fig. 3.6 Groups of R? generated with the same basis and different signatures

Then, if H does not contain O, the group is full-dimensional, otherwise reduced-
dimensional,® and more specifically, if H contains Q m — n times, the group is said
to be an n-dimensional group in R™.

Examples of 2D groups are illustrated in Fig. 3.6 which shows two full-
dimensional groups: a 2D grating* and a 2D lattice, and two reduced-dimensional
groups: a 1D grating and a 1D lattice in R?. Examples of 3D groups are illustrated
in Fig. 3.7 which shows four 3D full-dimensional groups used in television scan-
ning.

Full dimensional groups will be used as domains and periodicity of signals (nor-
mally periodicity will be expressed by lattices). Reduced-dimensional groups will
not be used to define signals, but rather to express partial periodicity; for instance,
signals of the form s(¢1, ) which are periodic with respect to #; and aperiodic with
respect to > have a periodicity of the form Z(T},) x ©. Zero-dimensional groups are
used to express aperiodicity.

3Reduced-dimensional groups could be introduced by letting the basis matrix be singular, but we
find it more convenient to work on the signature.

4The term “grating”, not used elsewhere, was suggested to the author by Peter Kraniauskas during
a seminar in 1998 at Durford Mill, Petersfield, UK.
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3D gratings

Fig. 3.7 Examples of 3D gratings (with signature H =R x Z?) and 3D lattices

Separable and Nonseparable Groups

A separable group is given by the Cartesian product of 1D groups, namely
G=G; xGy x---xGp with G; € G[R). (3.15)

For separable groups, the basis signature would not be necessary. However, they
can be obtained from the general representation with a diagonal basis matrix. Non-
separable groups cannot be expressed in the form (3.15) and the basis signature
representation becomes necessary. The basis, in this case, is not diagonal.

Non-Uniqueness of Bases

It is important to remark that the basis of a group is not unique, and, for this reason,
we use the symbol (G, H) —> G to emphasize that representation (G, H) identifies
the group G. For instance, the basis of R” is any nonsingular matrix G, and in
particular the identity matrix. The problem of basis multiplicity will be considered
in detail in Chap. 16. Here, we anticipate two important results for lattices [3]:

Proposition 3.1 If G is a lattice with basis G, all the other bases have the form
GE, where E is any matrix of integers E such that detE = 1.

Proposition 3.2 The bases of the sublattices G of a given lattice Gy can be gener-
ated in the form

G = GoA, (3.16)
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where G is a basis of Go, and A is a nonsingular matrix of integers. If |detA| = 1,
then G = Gy, if |detA| > 1, G is a proper sublattice of G (note that detA is an
integer).

It is often convenient to refer to “canonical” representations to economize on
specifications and to simplify comparisons (see the examples below and Chap. 16).

Determinant and Density of a Group. Signal Rate

Given a representation (G, H) of a group G, the absolute value of the basis deter-
minant

d(G) 2 |detG| (3.17)

is called the determinant and its reciprocal u(G) 2 /|det G| the density of the
group G. In general, d(G) and 1 (G) depend on the specific basis of the group, but,
from Proposition 3.1, for a lattice G the determinant is independent of the basis G,
but becomes a quantity characteristic of the lattice, and consequently denoted by

d(G) = |detG]. (3.18a)

The corresponding density ©(G) actually represents the lattice density, measured
in number of points per unit volume of R™. For a signal defined on a lattice G the
density

1
n(G) = )] (3.18b)

is called the signal rate, measured in number of signal values per unit volume of
R™. In particular, in the 1D case, the lattice Z(T') has determinant 7 and the signal
rate u(Z(T)) =1/ T gives the number of signal values per second.

Now, a sublattice J of G has a smaller density than G. In fact, from Proposi-
tion 3.2 we have that the bases are related by J = G A, where A is an integer matrix.
Then, we have

d(J) =d(G)d(A), (3.19)

where d(A) is a positive integer N with N > 2 if J is a proper subgroup of G. The
integer N is called the index of J in G, symbolized (G : J) and given by

(G :J)=d(J)/d(G). (3.192)

3.3.4 Two-Dimensional LCA Groups: The Class G(R?)

The multidimensional primitive groups are obtained as the Cartesian product of 1D
primitive groups. Then, the primitive groups of G(IR?) are (up to a permutation)

RZ, 72, R xZ, R x O, 7 x O, 02, (3.20)
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Fig. 3.8 The 2D primitive groups

which are illustrated in Fig. 3.8.
From the primitive groups (3.20), we can easily obtain 2D separable LCA groups

by replacing Z with its isomorphic version Z(d) 4 {nd | n € Z}. Thus, we have the
group
A
Z(dy,dr) = Z(d1) x Z(d2), (3.21)

where in general di and d; may be different. Other 2D separable LCA groups are
R x Z(d) and Z(d) x Q.

Nonseparable Groups

To get 2D nonseparable groups we have to use the basis signature representation,
according to Theorem 3.1, where the basis matrix has the general form

811 821
G = =
|:812 g22:| (g1 2]

with detG = g118220 — g12821 # 0. Considering that the primitive groups are sep-
arable, H = H| x Hj, the linear transformation G = GH can be expressed in the
form

G ={hi1g1 +hago | h1 € Hy, hy € Hp},

where the columns g; and g represent two vectors of R%. The generic point t =
(t1, ) of G is given by t = h g1 + hrg>, and more explicitly

151 811
t= =h +h
= 5]+

[821], hi € Hy, hy € Hy. (3.22)
80
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Fig. 3.9 The quincunx lattice with two of its possible bases

For concreteness, we now examine the nature of this linear transformation with
all the 2D primitive groups. If H = R?, t is given by all the combinations of the
vectors g1 and g» with real coefficients, and therefore spans R2, that is G = R2.
If H=R x Z, the second coefficient %, is an integer, and, for each hy € Z, t =
h1g1 + hag; represents the equation of a line whose slope is given by the vector
g1, as shown in Fig. 3.6. Globally, the group G consists of a discrete set of equally-
spaced parallel lines. This group is a grating which is a mixture between continuous
and discrete. If H = 72, both coefficients are integers, and G becomes a lattice.
If H=R x O, the second coefficient is zero and then t = hg;, h| € R, which
represents the zeroth line of the previous grating; thus G is a 1D grating in R?. If
H =7 x Q, the points t = hg; are restricted to i) € Z, and we have a 1D lattice
in RZ. Finally, if H = 02, G is 0? itself. Of course, when H = R x Q the vector 2
has no role in the generation since 4, = 0.

Figure 3.6 illustrates four groups obtained with the same basis G but with dif-
feregt signatures: a 2D grating, a 2D lattice, a 1D grating in R?, and a 1D lattice
in R-.

A Fundamental Example: The Quincunx Lattice

The quincunx lattice, shown in Fig. 3.9, is perhaps the most important example of
a nonseparable 2D lattice. It is a subgroup of Z(d1, d2), defined by the following
basis signature representation

_|2d1 > )
G_[O d2], H=7 (3.23)

and will be denoted by the symbol Z%(dl, d»). The basis vectors are

|24 |
g1 = o | g = dy

and its generic point is (f1, 1) with t; = 2d1h| + d2hy and 1, = dph5. In particular,
fordi =dr =1, Zé(l, 1) is a sublattice of Z2 and is given by the points of R? whose
coordinates (¢1, tp) are both even or both odd.
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Fig. 3.10 “Obliquis ordinibus ad quincuncem dispositis”, Caius Julius Caesar, De Bello Gallico,
VII, 73

Note the alternative bases for Z; (dy, d>)

a0 [ d
G2_|:d2 2d2}’ G3_[d2 3d2]’ (3.24)

which show that the basis of a group is not unique (see Problem 3.8).
The quincunx® lattice is pictorially illustrated in Fig. 3.10.

3.3.5 Gallery of 2D LCA Groups

We conclude this overview with a gallery of 2D LCA groups, which will be useful
for illustration throughout the book. The gallery is collected in Fig. 3.11.
First, we have the separable groups

R?, R x Z(d), Z(d) x R, 7Z(d,, d»), 7Z(d) x O,
0 x Z(d), 02 (3.25)

The bases of these groups are diagonal. For nonseparable groups, the basis can be
chosen with the lower triangular form (see Chap. 16)

G:[Z g].

SFrom Latin quincunx, denoting the disposition of number five on a die. The term was used to
denote troop disposition, and nowadays is used in horticulture to indicate a vegetable arrangement.
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The first example of nonseparable group of the gallery is the 2D grating, with rep-
resentation

G=|:i ;)Ci| H=RxZ (3.26a)

denoted by RZ(e, f). Note that the point (#1, f2) in this grating is given by

(t1,)=(r,er+ fn), reR, neZ. (3.26b)

Next, we consider the nonseparable sublattices of Z(dy) x Z(d3) 4 Z(dy, d>).
A general sublattice of this class will be denoted by Zf? (d,dp), where i and b are
integers, with 0 < b < i. The corresponding bases are

_[iar 0] _[ar 0][i ©
G_[bdl dz]_[o d2:| [b 1] (327

These lattices are illustrated for some values of i and b. In particular, for i = 1 and
b =0, we have the separable lattice Z(d, d>), and for i =2 and b = 1 the quincunx
lattice Z1(d1, da).

Finally, the figure shows the 1D lattices in R? defined by

Z0(dy, dr) = {(mdy, mdy) | m € Z}. (3.28)

3.4 The LCA Groups According to Topology

In the previous section, we have identified the class of LCA groups, and in this
section we collect the result of Topology that justified our identification. First, we
give the formal definition of an isomorphism.

Definition 3.3 Let (H, +5) and (G, +5) be two groups with their operations. An
isomorphism of an H onto G is an invertible map @ : H — G such that

a(ti +u ) =a(t)) +¢ a(tr), t,t € H. (3.29)

For instance, the isomorphism Z ~ Z(T) is the map is a(h) = h T. A less triv-
ial example is the isomorphism between the additive group (R, +) of real num-
bers and the multiplicative group (Rp, -) of positive real numbers, where the map
is @ =exp: R~ R, (see Sect. 3.8). For Topology, two isomorphic groups are es-
sentially the same objects. This is not the case for Signal Theory where, e.g., the
isomorphic groups Z(T1) and Z(T») define different signal classes (with different
spacings, different rates, etc.).

The importance of an isomorphism for the identification of LCA groups stems
from the following statement [8].

Proposition 3.3 Ifa group H is LCA and G ~ H, then also G is LCA.
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Finally, we note the fundamental role that groups we call primitive play in Topol-
ogy. In fact, a theorem of Weil [9] states:

Theorem 3.3 Every LCA group G is isomorphic to a group of R™ of the form

G~RP xZIxOQ"| (p+qg+r=m). (3.30)

According to this theorem, all the LCA groups, up to an isomorphism, are given
by the primitive groups of R™, and for Topology the search for LCA groups could
stop here. But, in Signal Theory we want to have the explicit form of these groups.
In Appendix A, we prove that the isomorphism map giving all the LCA groups of
R™ from the primitive groups of R™ is linear, that is, of the form

t=ath)=Gh, heHd,

as anticipated in Theorem 3.1.

3.5 Cells and Group Partitions

Cells play a fundamental role in an advanced signal theory. Broadly speaking, a cell
is a subset of a group such that its shifted replicas cover the whole group without
superposition. For instance, the interval [0, 1) is a cell of the group R since its shifted
replicas [0, 1) + k = [k, k + 1), with k € Z, cover R without superposition.

In the literature, cells (usually called unit cells) are introduced in the context of
lattices [3, 4]. Here we formulate a very general (and original) definition.

3.5.1 General Definition and Properties

Definition 3.4 Let G be an Abelian group and let C and P be nonempty subsets
of G. The set C is a cell of G modulo P, denoted by® [G/P), if the shifted replicas
of C, the sets

C+p2ictplcec), peP, (3.31)
represent a partition of G, that is,

C+pn(C+q)=9¥, p#q, p.qeP,

Uc+m=a. (3.32)
peP

This symbol, proposed by the author, recalls that a cell of R modulus Z(T) is given by the half-
open interval [0, T).



102 3 Unified Theory: Fundamentals

The partition of group G can be written synthetically in the form

\ [G/P)+ P =0G. (3.33)

The modulus P is called the set of repetition centers (thinking that P is a lattice).
A cell can be interpreted as follows: by shifting C over all the repetition centers, the
group G is covered without superposition.

We note that:

1. If C is a cell, so is every shifted-replica C 4+ pg with pg € G, in particular
with pg € P C G. For this reason, the class (3.31) represents a partition of the
group G into cells.

2. For a given pair G, P the cell partition is not unique.

3. If P ={0}, the unique cellis C = G.

The second equation of (3.32) can be rewritten in the alternative forms

G=Jc+p=JJec+m=c+r (3.34)

peP ceCceP

which clearly shows the symmetry between the cell C and the modulus P. Then
Proposition 3.4 If C is a cell of G modulo P, then also P is a cell of G modulo C.

The cells [G/ P) of main interest for signals are of two kinds:

e Aperiodic cells where P is a subgroup of G,
e Periodic cells where P is itself an aperiodic cell (typically with a finite cardinal-

ity).

Remark Given G and P, the symbol [G/ P) does not identify a specific cell, rather,
a class of cells. For instance [R/Z(T),)) may be the cell [0, T,) or [—%Tp, %Tp), or
any other interval of length T,.

3.5.2 Aperiodic Cells

These cells have the form [G/P), where G is an LCA group and P is an LCA
subgroup of G.

A first example of an aperiodic cell has been seen at the beginning: the interval
[0, 1) is a cell of R modulo Z, that is, [R/Z) = [0, 1). More generally, any interval
[t0, 1o + Tp) is a cell of R modulo Z(T),). As a second example, consider G = Z(T)
and P = Z(4T); we find that C = {0, T,2T,3T} is a cell [Z(T)/Z(4T)) and, in
fact, by repeating C over the centers 4kT', with k € Z, we cover Z(T).
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cell repetition centers covering
[} ] 5]
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Fig. 3.12 Examples of 2D cells: cell of R? modulo Z(d, d») and cell of R? modulo Zé (dy, dr)

2D cells offer more expressive examples. For instance, if G = R? and P =
Z(dy, d3), a cell is given by the rectangle

1 1 1 1
G/P)=|—=dy, ~d — —dy, =~ ).
[/)|:2121>X|: 2222>

In fact, shifting this rectangle over the repetition centers (mdj, nd,) gives the cov-
ering of R?, as shown in Fig. 3.12. The figure also shows a cell [R?/P), where P is
the quincunx lattice Zé (d1, d); in this case the cell is hexagonal (Voronoi cell).

Terminology In the theory of lattices, the sets of the partition
P+c, celG/P)=C

are called the cosets of P in G, and C is called a set of representatives. For instance,
with G =Z and P = Z(3), the sets Z(3) + 0, Z(3) + 1, Z(3) + 2 are the cosets of
Z(3) in Z and the cell {0, 1, 2} is the set of representatives. The cardinality of the
set of representatives, that is, the size of the cell, is given by the index of P in G,
that is, (G : P) =d(P)/d(G) (see (3.19a)).
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3.5.3 Periodic Cells

We begin with the following:

Definition 3.5 A subset A of a group G is periodic with periodicity P, if A is
invariant with respect to the shifts of P, thatis,if A+ p=A,Vp e P.
The periodicity condition can also be written in the form

A+P=A.

It can be shown that P is always a subgroup of G. For instance, the union of the
intervals [4k, 4k + 1] with k € Z, which can be written in the form A = [0, 1) +Z(4),
is a periodic subset of R with periodicity P = Z(4).

Periodic cells can be conveniently introduced starting from three groups

P CPyCG, (3.35)
which give the three partitions into aperiodic cells
G =[G/Py) + Po, G=[G/P)+ P, Py=[Py/P)+ P.
Combination of the first and the third gives

G=[G/Py) +[Py/P)+ P.

Hence, the set

|[C=1G/Py) +P] (3.36)

has, by construction, periodicity P and moreover verifies the condition G = C 4+ R
with R = [Py/P). Therefore, C is a periodic cell with repetition centers R =
[Po/P).

Example 3.1 Assuming G =R, Py =7Z(1), P = Z(4), the periodic cell (3.36) is
C =[R/Z(1)) + Z(#) =0, 1) + Z(4)
with repetition centers
R= [Z(l)/Z(4)) ={0,1,2,3}.
In fact, the sets C, C + 1, C + 2, C + 3 form a partition of R, as shown in Fig. 3.13.
Example 3.2 Figure 3.14 shows a 2D periodic cell identified by the groups

G =R?, Py=7(1) x Z(1), P =7Z3) x Z(2).
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C=[0,1)+Z(4)
0o 1 i s 9
C+1
] 56 9 10
C+2
3 6 7 10 11
C+3
e 3 4 7 o1
Fig. 3.13 Example of partition of R with periodic cells
t [5)
-___I ____I ____I
| | |
) I : |
T, ---- =, 1e . )
| | I
I | |
0 1 3 6 f 0 1 2 n
[T [T [T
| | |
| : I
Fig. 3.14 Example of periodic cell and corresponding repetition centers
In this case, the periodic cell is given by the repetition of the square
C=I[G/P)+ P=[0,1) x[0,1) +7Z(3) x Z(2), (3.37)

with repetition centers

R=[Py/P)={(0,0),(1,0),(2,0), (0, 1), (1, 1), (2, D}.

In fact, we can easily check that, shifting the set (3.37) around the six repetition

centers, we obtain a covering of R2.

3.5.4 Cell Identification

We showed a few examples of cells, aperiodic and periodic, but not a general pro-
cedure to find them. Since periodic cells can be obtained using aperiodic ones
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cell of R modulo Z(5)

(; . 0 5 10
cell of R modulo Z(5)

(; 3 8{=1/0 0 5 10
cell of Z(2) modulo Z(10)

0 2 4 6 s 0 10
periodic cell of R modulo [Z(1)/Z(5))
01 56 10 11 01234

Fig. 3.15 Examples of cells on the groups of R

(see (3.36)), the identification problem is confined to aperiodic cells. A general
identification procedure will be seen in Chap. 16, where the idea is to start from
some primitive cells and generate general cells by linear transformations. Here, we
anticipate two rules which allow finding new cells from known ones.

Proposition 3.5 (Cartesian product) If C; =[G/ Py) and Cy =[G,/ P>) are two
cells of the groups G and G, then the Cartesian product C1 x Cy is a cell of
G x Gy modulo Py x P

[G1/P1) X [G2/P2) =[G1 x G2/ P1 X Pr).

Proposition 3.6 (Intersection) Let G be a subgroup of Go, and let Co = [Go/P),
where P is a subset of G. Then, the intersection

C=GNCy=[G/P)

is a cell of G modulo P.

3.5.5 Cells on the Groups of R

The cells of R modulo Z(T),) are in general the intervals (Fig. 3.15)
[t()a t() + Tp) or (th tO + Tp]a

where f( is an arbitrary instant, and in particular the intervals

1 1
[0, Tp) and [ — ETP, ETP)
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These sets are connected, but we may find cells of the type [R/Z(T})), which are
not connected. For instance, the set [0, %Tp) U [%T,,, 2T}), consisting of the union
of two disjoint intervals, is a correct cell [R/Z(T))).

The cells of Z(T) modulo Z(T), with T, = N T, consist typically of N consec-
utive points of Z(T'), namely {noT, (no + )T, ..., (no+ N — 1)T}, where ng is an
arbitrary integer. In particular, we have the cell

Zn(T) £ {0, T, ..., (N — )T}, (3.38)

which is often a reference cell. But we may have cells not formed by consecutive
points of Z(T'). For instance, the set {27,4T,5T, 6T, 8T} is a cell [Z(T)/Z(5T)),
as well as the set {0, T', 2T, 3T, 4T'}. Figure 3.15 shows also a periodic cell of R.

3.5.6 Cells on the Groups of R™

First, we consider primitive cells of the forms [R”/Z™) and [R"/ZP x O7) and
then we obtain cells of the form [R™/P), being P a sublattice of R” and other
different types of cells.

Primitive Cells

We have seen that the interval [0, 1) is a cell [R/Z), as any other interval of mea-
sure 1, e.g., [—%, %). Then, from Proposition 3.5 we have

[R™/Z™) = [R/Z)" =0, 1)", (3.39)

that is, a cell [R™ /Z™) is given by the m-dimensional cube [0, 1)™.
To get primitive cells of the more general form [R” /Z” x Q7) with p + g =m,
it is sufficient to note that [R/Q) = R. Then

[R"’/(Zp x 07)) = [R”/Z”) X [Rq/@q) =[0,1)? x RY, (3.40)
which may be interpreted as a multidimensional strip. For instance,
[R?/(Z x 0))=[0,1) xR,  [R*/OxZ)=Rx[0,1)

are strips of the R? plane, as shown in Fig. 3.16.

Cells [R™ /L) with L a Lattice. Fundamental Parallelepiped

A full-dimensional lattice L of R is isomorphic to Z™, according to the isomor-
phism

t=Lk, keZ",
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C=[0,1)? C=[0,1)xR C=Rx[0,1)
15) %) [5)
1
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1
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1 1
1 1
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! 1
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1
1
1
1
1
1
1
1
1

Fig. 3.16 Primitive cells of R?

where L is a basis matrix for L. This map transforms the lattice Z™ into the lattice L,
but it can also be used to transform a primitive cell [R™/Z™) into a cell [R™ /L),
according to

[R’"/L) = {Lh |he]0, 1)’”}. (341

With the partition of L into its column vectors, L = [sy, 82, ..., S;;], we find more
explicitly

[]R’”/L) ={msi+---+hpsp|0<h; <1,...,0<h,, <1}. (3.41a)

This cell is called the fundamental parallelepiped of the lattice L. Clearly, it de-
pends on the basis L of L and a different basis would give a different fundamental
parallelepiped.

Figure 3.17 shows a 2D example of cell generation according to (3.41): the map

. . _ldi 0|3 1
t=Lh WlthL—|:O d21||:0 1i|

transforms the signature H = Z? into the lattice L = Z% (d1,d>) and the square

[0, 1)? into parallelepiped (a parallelogram in 2D). Thus, we obtain a cell of R?
modulo Z1(d, d»).

To get cells [R™ /L), with L a reduced-dimensional lattice with signature Z? x
01, it is sufficient to replace the constraint /; € [0, 1) with &; € R in the last ¢
coordinates 4;, that is,

[R™/L)={Lh|he[0,1)” x R?}. (3.42)

Note that the measure of cells (3.41) is given by the determinant of the lattice L,
that is,
meas[R" /L) = |detL| = d(L), (3.43)

whereas cells (3.42) have an infinite measure.
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hy 4 t 4
- c H=7? < € L=2}(d\ ,dy)
. . . . .
3d, . .
1‘{' ————— 5 J ] ] ° °
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I L ]
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>é- > >0
0 1 hy 0 3d, 3l

Fig. 3.17 Fundamental parallelepiped of Zé (d1, d») from primitive cell [0, 1)2

Cells of the General Form [G/L)

From the cells [R" /L), we can obtain the cells of the general form [G/L), where G
is an arbitrary supergroup of L, thatis, L C G C R™. In fact, from Proposition 3.6
we have

Co=[R"/L) = C=GNCy=[G/L), (3.44)

that is, from a cell of R™ we find a cell of G by intersection.

The main case of interest is when both G and L are lattices. In this case, we
first obtain a fundamental parallelepiped [R™ /L) and then the cell [G/L). Note that
[G/L) has a finite cardinality given by

det(L)] _ d(L) _

N =meas[G/L) = et G)] — dG)

(G:L), (3.45)

where (G : L) is the index of L in G (see (3.19a)). Figure 3.18 shows two 2D
examples of cells obtained with the above procedure. In the first example, a cell of
G =7(dy, dy) modulo P = Z(D1, D;), with D; = 7d; and D, = 7d>, is generated.
First, we find a cell Cg of R modulo Z(D1, D,), which is given by the rectangle
[0, D1) x [0, D3). Then, the intersection of Co with G gives the desired cell C. Note
that the cardinality of C is 7 x 7 =49, in agreement with (3.45).

In the second example, L = Zé(Dl, D») and Cj is a parallelogram with basis
2D, and height D;. The intersection of Cy with G = Z(d1, d») gives the discrete
cell Cy. Note that in the figure D1 = 5d; and Dy = 5d;, so P = Zé(Sdl, 5dp) is a
sublattice of G. Since d(L) = 2 (5d) (5d) and d(G) = d;d3, the cardinality of C
is N =50.

Cell Applications

A first application of cells will be seen in connection with periodicity and then with
the Haar integral. Other applications will be seen in the context of multirate systems



110 3 Unified Theory: Fundamentals
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Fig. 3.18 Generation of discrete cells by intersection

(Chap. 7), where cells allow a very general definition of the so-called polyphase de-
composition. Perhaps, the most relevant application of cells will be seen in the con-
text of the Sampling Theorem (Chap. 8), where cells are used to formulate the band-
limitation. Also, in subband decomposition (Chap. 14) and in wavelets (Chap. 15)
cells are extensively used.

UT 3.6 Signal Periodicity and Quotient Groups

In the definition of signal given at the beginning (Definition 3.1), both the domain
Iy and the periodicity P are specified. We have already seen that the domain Iy
must be an LCA group and now we show that also the periodicity P must be an
LCA subgroup of Iy. We introduce the periodicity in a generalized sense to include
the aperiodicity as a degenerate case, allowing to handle simultaneously periodic as
well as aperiodic signals.

3.6.1 Periodicity as Shift Invariance

Let s(¢) be a signal defined on the domain Iy, an LCA group. Then, s(¢), t € lp, is
shift invariant with respect to the shift p € I, if

sp®) =s(), tel, (3.46)

where s, (t) e s(t — p) is the shifted version of s (see (3.8b) and Fig. 3.3). We have:
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Theorem 3.4 Let Py be the shift-invariance set for a signal s(t), t € Iy, that is,

Py={pecly|sp,=s} (3.46a)
Then Py is always a subgroup of the domain I.

Proof A shift amount p in (3.46) must belong to the signal domain /j and therefore
Py is a subset of Ip. We have to prove that Py is an Abelian group. In fact, the
condition s, (t) = s(t) is always verified with p = 0; hence 0 € Py. If p € Py, then
s(t — p) = s(t),Vt € Iy, and setting ' =1 — p, we find s(t' + p) =s(t'), Vt' € I;
hence also —p € Py. Similarly, if p, g € Py, then g — p € Py, and, from the previous
statement, also g + p € Py. O

The shift-invariance group Py satisfies the condition {0} C Py C Iy, the limit
cases being not excluded. Then, we have the following classification of signals into:

o Constant signals if Py = Iy;
e Periodic signals if {0} C Py C Ip;
e Aperiodic signals if Py = {0}.

To unify the terminology, we call Py the maximal periodicity of the signal. The term
periodicity will refer to every subgroup P of Py. The reason is that, if the signal
s(t),t € Iy, is shift-invariant on Py, it is also shift-invariant on P C Py, that is,

s(t—p)=s), peP.
Example 3.3 Consider the 1D discrete-time sinusoidal signal
s(t) = Apgcos2m fot, teZ(3)

with frequency fo = % This signal is periodic with period T, = 12 and, in fact,
VkeZ

s(t —12k) = Ao cos(2rr(f0t — k)) = Apcos2m fot = s(t).

The shift-invariance set is therefore Py = {12k | k € Z} = Z(12) C Z(3), which rep-
resents the maximal periodicity. However, s(t) has also period T, = 24, since

s(t — 24k) = Ag cos(2m (for — 2k)) = s(1)

and also periods T, = 36, 48, etc. Hence, the signal periodicities P are all the sub-
groups of Z(12), that is, Z(24), Z(36), Z(48), etc. The limit case P = {0} is also a
correct signal periodicity, since every signal is invariant with respect to the shift 0.

Note that the maximal periodicity, Z(12), which is a supergroup of the other
admitted periodicities, corresponds to the minimal period Tp, = 12.
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3.6.2 Specification of a Signal by a Quotient Group

After the acquisition of group notions, the abstract signal definition finds now a
full motivation: a signal s(¢) is a complex function with domain an LCA group Iy
and with periodicity S, a subgroup of Iy. This ensures that s(¢) verifies the shift-
invariance condition on P

s(t—p)=s(t), peP,Vtel. (3.47)

For a signal with domain Iy and periodicity P we say, for brevity, that the signal
is “defined” on the quotient group Iy/ P and use the notations

s(t),telp/P or seSy/P). (3.48)

Thus, we introduce the quotient group simply as a pair group/subgroup,’ where the
group represents the domain and the subgroup the periodicity.

In a quotient group I/ P, the group I is called the basis group and the subgroup
P the modulus of the quotient group. The condition

349

states that the periodicity P must be a subgroup of the domain Iy, and it is called
the compatibility condition of the quotient group Ip/P.

When P = {0}, I/ P is a degenerate quotient group (isomorphic to Iy itself),
otherwise Ip/ P is a proper quotient group. For instance, R/Z(10) is a proper quo-
tient group, R/{0} is a degenerate quotient group, while Z(2)/Z(9) is not a quotient
group since it violates the compatibility condition. Hereafter, a group will be called
an ordinary group to distinguish it from a quotient group; the term group is used for
both and the distinction will come from the context.

3.6.3 Choice of the Periodicity

We have seen that a signal has a maximal periodicity Py and several possible pe-
riodicities P, which are given by the class G(Pp) of the LCA subgroups of Py.
Correspondingly, we may have several choices for the quotient groups I/ P to rep-
resent the same signal, even if the natural choice is the maximal periodicity Py,
which gives the full information on the signal shift-invariance. But if the signal is

TThis is not the standard definition appearing in the mathematical literature, where a quotient
group is defined as Iy/P = {P + p|p € Ip}, which is not a pair of groups, but a single group.
In Appendix B, we explain why it is not convenient to use the standard mathematical definition in
Signal Theory.
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Fig. 3.19 Signal s(¢),t € Z, has period equal to T}, = 10, while signal s'(¢), t € Z, has period
equal to TI; = 25; the common period is 50

considered in the context of other signals, the common periodicity becomes the con-
venient choice. Thus, if s1(¢) and s2(¢) have respectively maximal periodicities P
and P», the choice becomes

P=P NP,

which is a subgroup of both P; and P, (see Sect. 3.9) and therefore is admitted as a
correct periodicity for both signals.

For instance, if the two signals have minimum periods 10 and 25, we let P =
Z(10) N Z(25) = Z(50), since a signal with period 10 is also periodic with period
50 and a signal with period 25 is also periodic with period 50 (Fig. 3.19).

In the limit case, when one of the two signals is aperiodic, say P, = {0}, then
P = P; N {0} = {0}, and the joint analysis must be carried out considering both
signals as aperiodic.

Role of Cells in Periodicity

There exists a connection between a signal representation by a quotient group 1o/ P
and the corresponding aperiodic cell [1y/ P).

A signal s(t),t € Iy/ P, as a complex function defined on /y must be specified
on the whole domain I, but using its periodicity we can limit its specification (or
knowledge) on a cell C = [Iy/P). In fact, the knowledge of s(¢) on C allows ob-
taining s(¢) on every cell C + p by the relation

s(t+p)=s@), teC,peP. (3.50)

But, since the cells C + p cover Iy, the signal s(¢) becomes specified on the whole
domain /.
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In conclusion, the specification of a signal represented on the quotient group
Io/ P can be limited to a cell [Iy/ P). For instance, the specification of a signal s(¢),
t € R/Z(10) can be limited to the interval [0, 10) or [—5, 5), which are both cells
[R/Z(10)). Similarly, the specification of s(¢), t € Z(2)/Z(10) can be limited to the
set {0,2,4,6,8} or to any other cell of Z(2) modulo Z(10). In the limit case of
aperiodicity, P = {0}, the cell becomes

C =[Io/10}) = Iy, (3.51)

and therefore the signal specification must be given on the whole domain /.
According to identity (3.51), a degenerate quotient group can be identified with
the domain, that is,

1o/10} = Io. (3.52)

3.7 LCA Quotient Groups and Signal Classes

The LCA property must be considered also for quotient groups to make the theory
development consistent (existence of the Haar integral, of the Fourier transform,
etc.). In this section, with the help of Topology, we will search for LCA quotient
groups and illustrate the corresponding signal classes.

From the class G(Gg) of the LCA subgroups of Gy, a class of LCA quotient
groups can be generated according to [8]:

Theorem 3.5 Let G be an LCA group and P be an LCA subgroup of G. Then, the
quotient group G /P is LCA.

Thus, from G(Gg) we obtain the class of LCA quotient groups as
Q(Go)z{G/P|PCG;P,GES(GO)}. (3.53)

Considering that an improper quotient group G/{0} can be identified with G, the
class Q(Gg) contains G(Gy).

3.7.1 Quotient Groups of R and Related Signal Classes

Theorem 3.2 states that the class G(R) consists of R, Z(T'), with T € (0, 00), and O.
Then, from Theorem 3.5 we obtain the class Q(R).

Corollary 3.1 The LCA quotient groups on R are
R=R/0, R/Z(T), Z(T)=ZT)/O, ZL(T)/ZNT), (3.54)

where T > 0.
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Note that also the quotient groups R/R and O/Q = O are LCA, but they are not
useful for signals.

The previous corollary gives a clear and ultimate explanation on the existence of
only four possible classes of 1D signals. In fact, excluding the trivial group O as
a signal domain, the corollary states that the definition of convolution and Fourier
transform is possible only on these groups. Consequently, signals on the groups of
R are confined to the classes seen in the Classical Theory of Chap. 2:

. Aperiodic continuous-time signals represented on R = R/QO,

. Aperiodic discrete-time signals represented on Z(T) = Z(T) /O,
. Periodic continuous-time signals represented on R/Z(T)),

. Periodic discrete-time signals represented on Z(T)/Z(T)).

AW N =

In classes 2 and 4, the parameter T gives the signal spacing and in classes 3
and 4 the parameter 7}, gives the signal period. Note that the compatibility condi-
tion (3.49) is always verified on R/Z(T)), that is, every period T), > 0 is permitted
for continuous-time signals, whereas on Z(T') /Z(T)) it requires that T), to be a mul-
tiple of 7. As a matter of fact, a periodic discrete-time signal must have an integer
number of spacings in each period.

3.7.2 LCA Quotient Groups on R™

In Sect. 3.3, Theorem 3.1 identifies the class G(R™) of the LCA groups of R™. Then,
by Theorem 3.5 we easily identify the class of the LCA quotient groups, explicitly

Q(R™) ={G/P| P CG,P,Gc 4R}, (3.55)

where both the basis G and the modulus P may be generated by a representation,
say (G, H) +— G and (P, K) — P, according to

G={Gh|he H}, P={Pk|keK}. (3.56)

We shall always assume that: (i) the domain G is a full-dimensional group, whereas
the periodicity P may have reduced dimensionality; (ii) the periodicity P is a dis-
crete group. Then, in particular, when K = O the periodicity degenerates to aperi-
odicity. When P is a full-dimensional lattice, we have a full periodicity (periodicity
with respect to all coordinates). In the intermediate cases, we have a partial period-
icity. These ideas are better seen in the specific 2D cases.

3.7.3 Variety of Two-Dimensional Signals

Above we have seen that only four classes of 1D signals are possible. In the mul-
tidimensional case the signal variety becomes much richer and, to see this, it is
sufficient to consider the simplest case of multidimensionality: m = 2.
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Fig. 3.20 Examples of 2D signals: above on R? and on R? with periodicity; below on the grating
R x Z(d) and on the lattice Z; (d1,dr)

For the domain, we have three possible signatures

1. H=R?% 2. H=17% 3. H=Rx?Z.

1. The domain is a 2D continuum, R? itself, and correspondingly we have the class
of continuous signals.

2. The domain is a 2D lattice L, and correspondingly we have the class of discrete
signals. In the simplest case, L is a separable lattice such as L = Z(d, d>), but
in general L may be not separable, as shown in Fig. 3.11 with L = Z%(dl, d>).

3. The domain is a 2D grating G, and correspondingly we have the class of mixed-
argument signals with a mixture of continuous and discrete arguments. In the
simplest case, the grating is separable, that is, G =R x Z(d>), but in general G
may be not separable, as shown in Fig. 3.11 with G = RZ(e, f) (see (3.26a),
(3.26b)).

The signal classes resulting from the three different types of domain are illustrated
in Fig. 3.20.
For the periodicity, we have three possible signatures

(@) 0% by 7% () OxZ.

(a) The periodicity is the degenerate group @2, and the 2D signal is aperiodic.
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Fig. 3.21 Examples of full and partial periodicities for continuous 2D signals

(b)

(©

The periodicity is a 2D lattice P, and the signal is fully periodic. In the simplest
case, P is separable, say P = Z(D1, D), as shown in Fig. 3.21 in connection
with the continuous domain G = R? and in Fig. 3.22 in connection with the dis-
crete domain G = Z(d1, d>). The corresponding signals s(#1, #2) have period D
in 71 and period D; in ;. In general, P is not separable, as shown in Figs. 3.21
and 3.22 with P = Zé(Dl, D») and the interpretation of periodicity cannot be
separated for each coordinate #1, fp, but it holds globally in the form

s(ty — to, 12 — o) = s(t1,2), (10, 120) € P. (3.57)

The periodicity is a 1D lattice Pp, and the 2D signal is partially periodic. In the
simplest case, P; is separable of the form (Fig. 3.21) P; = O x Z(D;), which
states that s(#1, #2) is aperiodic in #; and periodic in #, with period D;. In the
general case, Pj is not separable, with points on a tilted line of the (71, #)-plane,
and the periodicity must be interpreted in the global sense of (3.57).

As a final comment, we note that on R? every lattice P is a candidate for periodicity
(since P C R?), but on a discrete domain we have to pay attention to the compat-
ibility condition P C G. For instance, with G = Z%(dl, dy) and P = Zé (D1, Dy),
the compatibility condition is D1 = 6/N1d; and D, = 6N»d; (in Fig. 3.22 Ny =1,
Ny =1).
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o) G=Z)(did)) P=Z}(Dy,D;)

) G=Z)(d1,dy) Pi=0xZ(Dy) t G=Z\(dy.d)) P\=20(Dy,D7)

D, . @ .
A D (R R

Fig. 3.22 Examples of full and partial periodicities for discrete 2D signals

Number of Signal Classes Versus Dimensionality

In the case of two-dimensional signals (m = 2), we have 3 types of domains and
3 forms of periodicities. The number of different signal classes is 3 x 3 =9. The
complete list is collected in Table 3.1. Not all these signal classes have the same
practical relevance, but all of them find at least some applications.

In general, in R” we find m + 1 types of domains and m + 1 forms of periodici-
ties, and the number of different signal classes is N;, = (m + 1). If in the counting
we consider all the permutations, e.g., R x Z and Z x R, the number of signal classes
in R™ becomes N, = (2™)(2™) =4™.

m=1 m=2 m=3 m=4 m=5

Nn 4 9 16 25 36
4 16 64 256 1024

3.7.4 Concluding Remarks on LCA Quotient Groups

We have identified the LCA quotient groups of R and of R” having an arbitrary
dimensionality m. The final question is: Do other LCA quotient groups exist? The
full answer is given by the following theorem of Weil [9]:
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Table 3.1 Regular groups on R? and the corresponding signal classes

Signature Separable group General group  Signal class

1(a). R? /@2 R? R? Continuous-argument
aperiodic

1(b). ]RZ/Z2 Rz/Z(Dl, D») RZ/P Continuous-argument
periodic

1(c). R2/O x Z R x [R/Z(D»)] R2/ P, Continuous-argument
partially periodic

2(a). Z? / 0? Z(dy) x Z(dp) L Discrete-argument aperiodic

2(b). Z? / 7?2 Z(dy,dr)]Z(Dy, D>) L/P Discrete-argument periodic

2(c). Zz/(D) X Z Z(dy) x [Z(d2)/Z(D>2)] L/P Discrete-argument partially
periodic

3(a). R x Z/Q? R x Z(d>) G Mixed-argument aperiodic

3(b). R x Z/7Z? R x Z/Z(Dy, Dy) G/P Mixed-argument periodic

3(c) RxZ/OxZ R x|[Z(d)]Z(D)] G/ P Mixed-argument partially
periodic

Note: L: 2D lattice; P: 2D lattice; G: 2D grating; Py: 1D lattice (in Rz)

Theorem 3.6 Every LCA group G is isomorphic to a group of R™ of the form

G~RP xZ9x (R/Z) xFy, x---xFy

s

(3.58)

for convenient p,q,r,s and Ny, ..., Ns.

This fundamental result states substantially that every LCA group is related to
the primitive groups of R, thatis, R, Z, R/Z, and Fy = Z/Z(N). It also states that
every LCA group (not necessarily built from R) is isomorphic to a group of the
classes Q(R™) for a convenient m.

The conclusion is that the development of a signal theory can be confined to
the classes Q(R), Q(R?), ... In the other possible classes, signals may change their
format, but not their topological nature. This will be seen in the next section for
multiplicative groups.

3.8 Multiplicative Groups

The purpose of this section is to show that the UST can be also developed on multi-
plicative groups, which sometimes have been considered in the field of images [5].
The reference multiplicative groups are Ry, the group of positive real numbers (see
Sect. 3.3), and C*, the group of nonzero complex numbers.
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0 1 A A2 A A

Fig. 3.23 The multiplicative group Z,(A)

3.8.1 The Multiplicative Group R, and Its Subgroups

We begin by showing that (R, -) is really an Abelian group with respect to the
multiplication “-”. If a and b are positive real numbers, also a - b is a positive real
number. The identity element of R, is 1, since a - 1 = a. Finally, for every a € R, we
can always find an element in R, usually denoted by 1/a, such thata - (1/a) = 1.

Considering that the identity element is 1, the degenerate group in R, is O, =
{1}. The discrete multiplicative groups have the form

Zp(A)={A"n e Z}, (3.59)

where A > 1, and therefore their points are not equally spaced, but are in a geomet-
ric progression, as shown in Fig. 3.23.
The ordinary LCA groups of R, are

Ry, Z,(A) withAe(,00), O, (3.60)

which form the class G(R,). This statement is a consequence of the isomorphism
linking R, to R (see Sect. 3.3), that is,

exp:R— R, (3.61)

which maps the elements of R into the elements of R, and converts the addition “+-”
on R into the multiplication *“-” on R, according to exp(a + b) = exp(a) - exp(b),
where a and b are elements of R and exp(a) and exp(b) are elements of R,. The
same isomorphism links Z(d) to Z,(A), with A =exp(d), and O to O,. On the
other hand, from Theorem 3.2 we know that the only LCA groups on R are R, Z(d)
and Q. Hence the conclusion that the only LCA groups in R, are given by (3.60).

Analogously, we can proceed to the identification of the LCA quotient groups
Q(R), generated by R ,.

Note that Z p(AN ) with N > 1 is really a subgroup Z,(A), as requested by the
compatibility of the quotient group Z,(A)/Z p(AN ). In fact, (Fig. 3.24)

Zp(A)={....,A73, 472,471 1,4, 4%, 4%, ..},
and, for instance,

Zp(A%)=1{...,075,473,1,4%, 4% 4%, .. }.
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A3 1 A

Fig. 3.24 The multiplicative group Z,(A) compared with its subgroup Z p(A3)

() A H=R s(t) G=R,

0 1 h 1 e t

Fig. 3.25 Signal s(h), h € R, and corresponding “isomorphic” signal s(z), t € R,

3.8.2 Signals on R,

From the list of the quotient groups of Q(R), we find that on R, we may have only
four signal classes, namely

1. Aperiodic continuous signals with domain I =R ,;

2. Periodic continuous signals with domain I =R, /Z,(A);

3. Aperiodic discrete signals with domain [/ =Z,(A);

4. Periodic discrete signals with domain / = Z,(A)/Z,(A,) with A, = AV,

Thus, we find exactly the same classes seen with the groups of R.

In fact, the isomorphism (3.61), that is, «(h) = exp(h) links signals defined
on H € Q(R) to signals defined on G € Q(R}). Then, starting from a signal
s(h), h € H, we find a corresponding signal s(¢), t € G, and vice versa, by the rela-
tions

s()=5(ogt),  §(h)=s(exph). (3.62)

Figure 3.25 shows an example of a pair related in this way.

The novelty lies in the signal behavior, as a consequence of multiplication
acting on the domain. In particular, the periodicity condition, s(t — p) =s(¢),in R,
assumes the form

[73RL)

s@t/p)=s@®), peP,
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_JHLTWT e 1] {

Fig. 3.26 Periodic signal on R, and its sampled version on Z,(A)

where ¢ — p is replaced by 7/p. Hence, with P = Z,(A) the explicit periodicity
condition is

s(t/Ak)=s@t). Vkel. (3.63)

For instance, the signal on R, given by (Fig. 3.26)
s(t) = Agcos(2mlogt), teR,

verifies condition (3.63) with A, = e and therefore can be formulated as a signal on
the quotient group R, /Z, (e).

Note that this signal has a compressed form for 0 < ¢ < 1 and an expanded form
for t > 1 with zeros displayed in a geometric progression and is quite different with
respect to a periodic signal on R. Similar considerations hold for the discrete signals
in Zp,(A), whose behavior is compressed for t < A and expanded for > A.

3.8.3 The Multiplicative Group C* and Its Subgroups

We now consider the multiplicative group C* of nonzero complex numbers and the
multiplicative group U of complex numbers with unit modulus. The operation in
these groups is the multiplication by complex numbers and the identity element is
the complex unit 1 +i0. Of course, U is a subgroup of C*, as is R,.

Considering the Euler decomposition of a complex number

z=pe? with p=|z|,0 =argz, (3.64)
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Fig. 3.27 Mapping of the R? cell R x [0, 27) into C*

we find that if z € C*, then p € R, and el € U. Therefore, C* can be seen as the

Cartesian product®
569

We have seen that R, ~ R with the isomorphism map a = exp(-). On the other
hand, we have

U= {6 €[0,2m)}, (3.66)

so that U is isomorphic to the quotient group R/Z(27) with the isomorphism map
exp(i-). By composition, we have

C*=R, xU~R xR/Z2n), (3.67a)

where the isomorphism map is given by (3.64) that we rewrite using the standard
notations as

(t1, 1) = a(hy, hy) = 12 (3.67b)

with (h, hy) €e R x R/Z(2x) and (1, 1) € C*.

This isomorphism links a cell of R? modulo O x Z(27) with C*, as shown in
Fig. 3.27 where the cell is the strip R x [0, 277) of R?. Note that R is mapped into
R, the vertical segment [0, 27) is mapped into the unit circle U and (0, 0) into
1 +10.

The isomorphism (3.67a), (3.67b) maps subgroups of R x R/Z(2x) into sub-
groups of C*, as shown in Fig. 3.28. Specifically:

(a) The separable grating R x Z(2rx/N)/Z(2m), given by N horizontal equally-
spaced lines, is mapped onto N angularly equally-spaced half-lines leaving from
the origin;

$When R, is regarded as a subgroup of C* it must be intended as R, x O, that is, as a 1D group
in C*, which is a 2D group; similarly for U.
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R x Z(d;) and sublattices
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Fig. 3.28 Grating and lattice correspondence between R/Z(2x) and C*

(b) The separable grating Z(d;) x R/Z(2m), given by a vertical equally-spaced
segments, is mapped onto infinitely many concentric circles, with radii in geo-
metrical progression.

(c) The tilted grating RZ(u)/Z2m) (see Fig. 3.11) is mapped onto a sequence of
spirals.

The figure also shows sublattices of the gratings and the corresponding sublattices
in C*.

UT 3.9 Sum and Intersection of Groups

This topic will be fundamental for the theory of transformations (Chap. 6), partic-
ularly for multirate transformations (Chap. 7). The problem is that the sum J + K
of two LCA groups may not be an LCA group. For instance, Z(3) + Z(~/2) is an
Abelian group of R, but it is not LCA. In general, the condition that assures that
J + K is LCA states that J and K are related in a rational way (in terms of their
bases). The other problem is the evaluation of the sum and intersection when J and
K are multidimensional lattices (which is the case of interest). This is an advanced
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topic in the theory of integer matrices, which will be developed in Chap. 16. In this
section, we develop the 1D case and give a guide for the general mD case.

3.9.1 Comparable and Rationally Comparable Groups

Given a reference LCA group Gy, the groups of §(Go) will be called comparable
since they have the same group operation in common, and for every pair J, K of
S(Gyo) one can consider the expressions

J+K, JNK, JCK and JDOK.

For instance, the sum R + Z(7T') makes sense, but not the sums R, + Z(T') and
R? + Z(T) because the groups do not have the same operation in common.
We recall the definition of the sum of two (comparable) groups

J+K={j+k|jelJ keK}, (3.68)

whereas J N K is defined as the usual set operation.
We are looking for conditions on two comparable LCA groups J and K which
guarantee that their sum and intersection are LCA groups; in symbols,

J,K €5(Gy) = J+H+K, JNK € §(Go). (3.69)
We note that if J is a subgroup of K, we have
JCK = J+K=K, JNK=1J. (3.70)

This remark allows finding a general solution for an ordered pair (J, K), which is
defined as a pair such that J C K or J D K.

Proposition 3.7 The sum and intersection of two ordered groups J, K of G(Gg) are
LCA groups, given by

J + K =max(J, K)m, J N K =min(J, K). (3.71)
For instance, in G(R), we find that
R+7Z@3) =R, RNZAB)=7Z®3),
Z.(2) + Z(6) = Z(2), Z.(2) N Z(6) = Z.(6).

A crucial point happens when the pair (J, K) is not ordered, that is, when J ¢ K
and J 2 K. Examples of non-ordered 1D pairs are Z(6), Z(10) and Z(3), Z(ﬁ).
At this point, we find it convenient to introduce the following definition:

Definition 3.6 Two comparable groups, J and K € G(Gy), will be called rationally
comparable if their sum J 4+ K is an LCA group.



126 3 Unified Theory: Fundamentals

The definition has interest mainly for lattices. The term “rationally comparable”
will be immediately clear in the 1D case and later in the mD case.”

U 3.9.2 Sum and Intersection on R

We now evaluate the sum and the intersection of two groups of G(IR). Considering
that R+ Z(T) =R and RN Z(T) = Z(T), the problem can be confined to lattices,
and the solution is (see Appendix C):

Theorem 3.7 If T/ T, is rational, say T1/ T» = N1/N, with N\ and N, coprime,
then
Z(Ty) N Z(Ty) = Z(N2T1) = Z(N1 T»), (3.72a)
Z(T1) + Z(T) = Z(T1/ N1) = Z(T»/ N>). (3.72b)

If T1/ Ts is irrational, Z(T\) + Z(T>) cannot be written in the form Z(T) and
therefore is not an LCA group, whereas the intersection is given by

Z(Ty) N Z(T>) = {0} = O.

The conclusion is that the sum of Z(77) and Z(7») is an LCA group if and only
if the spacing ratio T}/ T is rational. In this case, we can find an alternative formu-
lation. Let

T =Ti/Ny=T2/N», (3.73)

with N1 and N> coprime, then
Z(N1T) NZ(N,T) =Z(N|N,T), Z(N|T) +Z(N,T) =Z(T). (3.74)

For instance, if 71 = 0.08 and 7> = 0.3, we have T1/T>» = 0.08/0.3 = 4/15. Then,
with T =0.02 we find Z(4T) NZ(15T) = Z(60T) and Z(4T) + Z(15T) = Z(T).

The intersection and sum are related to the least common multiple (Icm) and
greatest common divisor (GCD). In fact, when the two lattices are written in the
form Z(MT) and Z(M>T), where in general M| and M, are not coprime, but have
a common factor £, that is, M1 = h N1 and M> = h N, with N1 and N, coprime, we
have

Z(M\T) NZ(MaT) = Z(MT) with M = lem (M, M),
Z(M\T) + Z(MyT) = Z(hT) with h = GCD (M;, M»).

9We shall see in Chap. 16 that if the bases J and K of the lattice J and K are such that JK~! is a
rational matrix, then J + K is LCA.
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3.9.3 Sum and Intersection on R™

To establish that the sum and intersection is LCA is not trivial already in the 1D
case and becomes more complicated in the mD case, since in G(R™) we have three
kinds of groups, instead of two, due to the presence of gratings. Also, the groups
may have different dimensionalities. For the dimensionality, we have a very simple
statement [6]

\ dim(J + K) + dim(J N K) = dim(J) + dim(K). \ (3.75)

Then, in particular, if J and K are full-dimensional, also J + K and J N K are
full-dimensional.

For separable groups, the sum and intersection are easily found, considering that
J1 x h+ Ky x Ky =(J1 + K1) x (J» + K>3), etc. But for nonseparable groups, the
problem becomes in general cumbersome. In the class of lattices (which is the case
of main interest), we have a simple statement [7].

Theorem 3.8 Let J and K be lattices of R™. Then the sum J + K and the inter-
section J N K are lattices of R™, if and only if there exists a lattice Ly of R™ that
contains both J and K. Moreover, J + K € G(Lg) and J N K € G(Ly).

The proof will be seen in Chap. 16, in the context of the theory of integer matri-
ces. Also the technique for evaluating the sum and the intersection will be seen in
that chapter. For the time being, we anticipate two other statements:

Proposition 3.8 J + K is the smallest lattice containing both J and K and J N K
is the largest lattice contained in both J and K .

Proposition 3.9 In the class G,,(Lo) of full-dimensional sublattices (G, (Lo) is a
subclass of G(R™)), we have

J,KeSn(Ly) = J+K, JNKeSu(Ly) (3.76)

and the following identity holds for the determinants

\ d(J + K)d(J N K) =d(J)d(K). \ (3.77)

Example 3.4 In the class G2(Z(dy, d2)) where lattices have the form Zfl (dy, d>)
(see the end of Sect. 3.3), both the sum and the intersection belong to this class. For
instance, if J = Z}(d1, d») and K = Z3(dy, d»), we find'”

J+K=7d.dy), JNK=7d,dy)="7(ddy),

10The evaluation technique of lattice sums and intersections will be seen in Chap. 16. The author
has written a Mathematica program to compute them (see the introductory note of Chap. 16).
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K=73(d.dy)

d 104, 1

J+K=7(dy d3)

d 104, h

Fig. 3.29 Examples of sum and intersection of 2D full-dimensional lattices

as shown in Fig. 3.29.
Note that the above lattices verify the determinant identity (3.77). In fact,

d(J) =2d, ds,

d(J + K) =10d, d2,

d(K) = 5d) dy,
d(J NK)=d d>.

Example 3.5 We now consider two lattices of the class G(Z(d1, d2)), but we suppose
that one of them has a reduced dimensionality, specifically J = Z(2,2) and K =
ZO(1, 1). Then, we easily find that

JNK =70(2,2),

J+K=7)\1,1),

as shown in Fig. 3.30. Again, we can check the rule (3.75) on dimensionality; in

fact,

dimJ =2,

dimK =1,

dim(J NK) =1,

dim(J + K) = 2.
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Fig. 3.30 Sum and intersection when one of the lattices is reduced-dimensional

3.9.4 Sum and Intersection of Quotient Groups

It is convenient to extend ordering and operations to quotient groups. Let I = Iy/ P
and U = Uy/ P> be quotient groups, where Iy, Uy, P; and P, are comparable
(€ G(Go)). Then, we introduce the ordering for quotient groups in the following
(conventional) way

IcU < [hycUy and P;C P,

IDU << [hDUp and P;D P>. (3.78)
For the sum and intersection, we let
A
I+U =+ Up)/(P1+ Pp), (3.79)

INU 2 (IpNUp) /(P N Py).

Finally, a pair of LCA quotient groups / and U is rationally comparable, when both
the pairs Iy, Up and the pairs P;, P, are rationally comparable. Note that, from the
standard relationships (3.70) we find

IcU = I1+U=U, INU=1.
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These generalizations to quotient groups will be useful for linear transformations in
Chap. 6.

3.10 Problems

3.1 x [Sect. 3.2] Check that the additive set of complex numbers, C, is an Abelian
group.

3.2 « [Sect. 3.2] Prove the relations
7.(2) +7(4) =Z(2), Z3)+R=R.
3.3 x*x [Sect. 3.2] Prove the relations
Z(3) + Z(5) = Z(1), 2(6) + Z(9) = Z(3).
3.4 « [Sect. 3.2] Prove the relations
[0,2) +Z(2) =R, [0,3)+7Z(2)=R.

3.5 * [Sect. 3.2] Verify that C* is an Abelian group, where the group operation is
the ordinary multiplication between complex numbers.

3.6 »x [Sect. 3.2] Verify that the 2D set Zé consisting of the integer pairs (m, n),
with m, n both even or both odd, is a subgroup of R?.

3.7 xxx [Sect. 3.3] With reference to representation (3.27), find the corresponding
upper-triangular representation. Hint: Use Proposition 3.1.

3.8 x [Sect. 3.5] Check that the set A =1[0,1) U [6,7) U[12,15) is a cell of R
modulo Z(5).

3.9 xx [Sect. 3.5] Verify the relationship [Io/ Py) + [Po/P) + P = Ip for Iy =R,
Py =7(2) and P = Z(10).

3.10 * [Sect. 3.6] Find the periodicity of the continuous signal
s(t) = Apcos2mfit + Byosin2m fot, teR
for fi/f>=3/5and fi/f» =~2/5.
3.11 »xxx [Sect. 3.6] Find the periodicity of the discrete signal
s(t) = Agcos2m fit + Bosin2mw fot, t e Z(2)

for fi =1/7 and f, =1/4.
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3.12 xx* [Sect. 3.6] Find the minimum period of the discrete signal

s() =s51(0)s3(1), t€ZEA3)
where s1(¢) has period T),1 =9 and s2(¢) has period T), = 12.

3.13 *x [Sect. 3.8] Verify that any logarithmic function, log,,, is an isomorphism
from (R, -) onto (R, +).

3.14 xx* [Sect. 3.9] Prove that if G| and G, are both subgroups of a group G, the
sum G| + G, and the intersection G| N G, are subgroups of G.

The union G| U G» is not a group, in general, as we can check for the pair
G =7(5) and G, = Z(3).
3.15 xx [Sect. 3.9] Evaluate

Z(M) NZ(T) NZ(T3) and  Z(T) + Z(12) + Z(T3)

for 71 = 0.018, T, =0.039, T3 = 0.045.
3.16 »x [Sect. 3.9] Reconsider Problems 3.10 and 3.11 using Theorem 3.7.

3.17 xx* [Sect. 3.9] Find the periodicity of the discrete sinusoid
s(t) = Apgcos2r fot + o), t € Z(T)

considering fj as a parameter.

Appendix A: Proof of Theorem 3.1

Since the matrix G in (3.10) is nonsingular, it defines a linear map t = Gh with
the inverse map h = G~!t which represents an isomorphism. Hence, the group G
defined by (3.10) is isomorphic to H, and therefore it is LCA.

We have to prove that all isomorphisms 8 : H — G have this linear form. For
brevity, let us consider the specific case L =2 and H = R x Z. Then, from the
isomorphism property (3.29), we have

phy +hy) = p(hy) + p(hy) e H (3.80)

where on both sides + is the group operation in R? (the standard operation between
vectors). Then, (3.80) states the additivity of 5. Now, let

g1 =p(1,0), g =p0.1), G=[g1. 8]
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We claim that
ﬂ(h)=g1r+g2n=G|:;i|, reR,ne’.

In fact, forn =0if h=(1,0) € H and r € R, also h = (r,0) € H and B(r,0) =
rB(1,0) =rg;.

Appendix B: The “True” Quotient Group

We have introduced the quotient group simply as a pair group/subgroup to repre-
sent simultaneously domain/periodicity of a signal. But the standard definition of
quotient group is

lo/P 2 (P +p|pel). (3.81)

So it is not a pair of groups, but a single group, whose elements are the subsets of
Iy of the form (3.81), called the cosets of P. The group operation @ between two
elements of Io/P, P, = P+ p and P; = P +q, is defined by P, ® P; = P,4 and
the identity element of Iy/ P is given by the subgroup P.

We now show that there is an equivalence between the class of signals defined
on the “true” quotient group Ip/P and our class of signals with domain Iy and
periodicity P. Let 5 be a complex function on the “true” quotient group

s:1ly/P— C. (3.82)
Then the domain of 5 is the class of the cosets of P. Now, letting
s(t)=35(P), tel (3.83)

we obtain a function with domain Iy and periodicity P. In fact, if #y € P, we have
Piysy=P +1t+19= P+t =P. Conversely, if s : [y — C is a complex function
with periodicity P, the relation

s(P)=s), Prely/P (3.84)

defines a function of the form (3.82).

In conclusion, (3.83) and (3.84) link with a one-to-one correspondence the class
of signals defined on the “true” quotient group Ip/P and the class of signals with
domain Iy and periodicity P. Signal Theory could be completely developed on the
basis of “true” quotient groups [2], but there is one catch. The management of func-
tions having as domain a class of subsets turns out to be cumbersome. On the other
hand, the one-to-one correspondence established above allows us to proceed, rigor-
ously, with our nonstandard interpretation of quotient groups.
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Appendix C: On the Sum Z(Ty) + Z(T3)

This topic is related to the Bezout equation on polynomials. Here, we give a proof
of (3.72b) by Alberto Vigato.

We claim that, if 77/ T, is rational, say 71/T> = M /N with M and N coprime,
then Z(T1) + Z(T») = Z(T1/M). Dividing both sides of the equality by 71/M we
reduce the statement to proving that

Z(M)+Z(N)=7Q) (3.85)

if and only if M and N are coprime.

We first assume that (3.85) holds. Then there exists a pair a,b € Z such that
aM +bN = 1. By taking k = GCD(M, N) we can write M = kM’ and N = kN’ for
convenient integers M’ and N’. Rewriting the Bézout equation k(aM’' + bN’) =1,
we note that k divides 1; thus k = 1.

Vice versa, we have GCD(M, N) =1.Let P ={x, y € Z|xM + yN > 0}, we take
k = minp(xM + yN) and (a,b) € P:aM + bN = k. From Euclidean division,
dg,r € Z with 0 <r < k such that M = gk + r. By rearranging r = M — gk =
M —qg@aM + bN) = (1 —qga)M + (—gb) N, we observe that r is a non-negative
combination of M and N. Since k is the minimum positive combination, » must
be 0; thus £ divides M. Similarly, we also see that k divides N; thus k divides
GCD(M,N) =1, so k mustbe 1.
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Chapter 4
Unified Theory: Signal Domain Analysis

Signal Definition Revisited The definition of a signal, introduced at the begin-
ning of the previous chapter, can now be refined in terms of LCA property and
dimensionality.

Definition 4.1 A signal s(#) on an LCA quotient group / = Ip/ P, symbolized s(t),
t € 1, is a complex function with domain /o, having the periodicity property

s(t+p)=s(), VpelP.

4.1 The Haar Integral

In Topology, the Haar measure is defined on the subsets of LCA groups, and from
the measure, the Haar integral of complex functions over the group is introduced.
This integral is then used to define convolution, Fourier transformation, etc. in a
unified form.

In this section, we introduce the Haar integral of a signal s(¢), ¢ € I, and sym-
bolize it in the form

/ drs (o). @.1)
I

We follow the line of avoiding abstract notions of Topology, so we do not define
the Haar measure and integral, but we give the expressions and the fundamental
properties. !

IFor a simple definition of the Haar integral, which avoids measure theory, we suggest the book
by Higgins [9]. At the end of the previous chapter, you may find a bibliography on Topological
Groups and the Haar integral.
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4.1.1 Fundamental Properties. Existence and Uniqueness

The integral (4.1) has exactly the same properties as the ordinary (Lebesgue) integral
on the real line. Specifically:

1. The Haar integral is a linear functional,

2. The Haar integral is not identically zero;

3. The Haar integral of a real nonnegative signal is real and nonnegative;

4. The Haar integral is invariant with respect to the reflection operation, that is, s(t)
and s_(#) = s(—t) have the same integral

/dts(—t) =/dts(t); (4.2a)
1 1

5. The Haar integral is shift-invariant, that is, s(¢) and s, (¢) = s(t — p) have the
same integral

/dts(t—p):/dts(t), pel. (4.2b)
I I

The fundamental result is concerned with the existence and uniqueness of the Haar
integral (see [13]).

Theorem 4.1 On every LCA group it is possible to define an integral with proper-
ties 1-5. This integral is unique, up to a multiplicative positive constant.

This theorem allows identifying the Haar integral (without constructing it from
the Haar measure) in the specific cases, as soon as we find a functional with prop-
erties 1-5. For instance, the Lebesgue integral over R verifies these properties and
therefore it is the Haar integral on R. On the other hand, the Lebesgue integral
over Z(T) verifies 1, 3, 4, and 5, but not 2 because it is extended to a set of null
(Lebesgue) measure and it is identically zero; therefore, it cannot represent the Haar
integral on Z(T). The summation of the signal values over Z(T) verifies properties
1-5, and therefore it is the Haar integral over Z(T'). In general, to introduce the Haar
integral in a given signal class 8(/), we use the following procedure:

e Formulate an expression of the integral for the class S(7).
e Check that it verifies properties 1-5 of Theorem 4.1.

Then, the expression is the Haar integral. As regards the multiplicative constant, we
shall make a precise choice to remove ambiguities and to simplify formulas.

Sometimes the Haar integral is interpreted as the signal area. Then (4.2a, 4.2b)
becomes

area(s) = area(s_) = area(sp). 4.3)

As evident from the symbolism adopted in (4.1), the integral is extended over the
whole group I. The integral over a subset A is obtained using the indicator function

(1) = 1, forteA;
148 =10, fort ¢ A,
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and it is given by

/dts(z)é/dts(t)m(t). (4.4)
A 1

4.1.2 Further Properties

The following properties have a general validity.

Integral Over a Quotient Group If we know the Haar integral over an ordinary
group o, the Haar integral over the quotient group I/ P is obtained by limiting the
integration over a cell [/ P), that is,

/ dts(t):/ dts(t):f dt s, Py (1), 4.5)
I/ P [lo/P) Io

where 5,/ p)(t) is the indicator function of the cell.

Integral Over a Cartesian Product If / = I] x I is the Cartesian product of two
LCA groups, it is an LCA group and the corresponding Haar integral is given by

/ dts(t):/ dt1/ dry s(ty, 1), (4.6)
IixIp I I

which requires to evaluate first the integral with respect to 7, and then with respect
to 71. In particular, when the signal is the tensor product of two signals (separable
signal), s(t1, tp) = s1(t1)s2(t2), the integral is given by the product of two integrals,
specifically

/ dn dt2S1(t1)S2(t2)=/ deys1(t) | drasa(n2). 4.7
11 xI I

163

This rule is easily generalized to several factors.

Integral Over a Lattice If / is a lattice, the Haar integral is simply given as the
summation of the signal values over the lattice, namely

/ drs(t)=d() ) s(t), (4.8)
1

tel

where d([) is an arbitrary positive constant. It is customary to set d(/) = 1, but we
prefer the choice

d(/) = determinant of I. (4.8a)
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(see Sect. 3.3 for the definition of d(/)). For instance, in the 1D lattice Z(T) the
determinant is given by the spacing 7', then

dz =T . 4.9
fzm =T 3 s 49)

teZ(T)

Integral Over a Finite Group If / = Iy/ P with Iy a lattice and P a sublattice of
Iy, the combination of rules (4.5) and (4.8) gives

d =d(/ s 4.10
fW ts(t)y=dlo) Y s() (4.10)

te[lo/P)

meaning that the Haar integral is the summation of the signal values over a cell
[1p/P) multiplied by the constant d(/p). Sometimes we simplify the notation ¢ €
[lo/P) as t € Iy/ P and then

YosmzE Y s (4.11)

tely/P telly/P)

Integral from Isomorphism If the integral over a group H is known, we can
obtain the integral over an isomorphic group G. This is stated in Appendix A.

4.1.3 Integration Rules

Properties (4.2a, 4.2b) may be viewed as integration rules, which ensure that every
variable change of the form —t — ¢ and t — p — ¢, and hence any combination
+t £ p — t is permitted.

If Iy is an ordinary group and P is a sublattice of Iy, the integral over Iy can be
evaluated in two steps according to the following rule [13, 15] (see Problem 4.1)

d = d —p). 4.12
faso=[ @Y sw-p (4120

peP
More generally, if P C Py C Ip we have
/ dts(t):/ du Y s—p), (4.12b)
lo/P Io/Po pePy/P

where s(¢) has periodicity P.
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Multirate Identity If /o and P are lattices, with P a sublattice of Iy, it is possible
to express the integral over Iy in terms of the integral over P, namely

flodzs(z)=% > du s(u + p), (4.13)

petlo/P)” P

where N = (Ip : P) =d(P)/d(lp) is the cardinality of the cell [Ip/P) given by the
index of P in Iy (see (3.45)). This identity plays a fundamental role in multirate
systems, as we shall see in Chap. 7. It can be proved starting from (4.12a), (4.12b)
and using (4.8) and (4.10) (see Problem 4.2).

4.1.4 Haar Measure

The Haar measure is preliminary to the construction of the Haar integral; however,
if we know the expression of the Haar integral over a group /, we can obtain the
measure of a subset A using the indicator function of A, namely

meas(A):/ dt:/dtnA(t). “4.14)
A I

The integral properties (4.2a, 4.2b) ensure that the Haar measure is reverse and shift
invariant, namely

meas(—A) = meas(A + p) =meas A. (4.14a)

We also find that the measure of an ordinary group is infinity and the measure of
a proper quotient group Iy/ P is finite, since it is given by the measure of the cell
Lo/ P).

Concluding Remarks on Haar Integral

The rules introduced in this section allow the identification of the Haar integral
in several cases. For instance, rule (4.8) allows the evaluation of the Haar integral
on every kind of lattice and rule (4.10) on every kind of finite group. Also, in the
illustration of the integration rules, we have seen the expressions of the Haar integral
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on the groups of R. In particular, for the primitive groups they are given by?>

+00
G =R, / drs(t) = / s(t)dt (Lebesgue integral),
R —00

(4.15)

G =17, / drs(t) = Zs(t) (series summation).
Z
teZ

From these “primitive” integrals, using the rule (4.6) on the Cartesian product, we
can build the Haar integral on primitive multidimensional groups, as R?, R x Z, etc.
Conceptually, from the integral over the primitive groups, we can obtain the Haar
integral on every other LCA groups by isomorphism. The explicit forms will be seen
in the next sections for the groups of Q(R) and Q(R™), and also for multiplicative
groups.

A final comment. For the reader that has no knowledge of the Lebesgue integral,
we recall that this integral is introduced in a different way than the Riemann integral,
but for the purpose of the present book they may be regarded as the same objects,
specifically as linear functionals mapping a complex function to a complex number.

4.2 Haar Integral on the Groups of R

In the previous chapter (Sect. 3.3), we have identified the four types of LCA groups
on R that make up the class of LCA quotient groups Q(R), namely

R, Z(T), R/Z(Ty), Z(T) | Z(Tp), (4.16)

and the corresponding signal classes:

1. Aperiodic continuous-time signals represented on R,
2. Aperiodic discrete-time signals represented on Z(T),
1(a). Periodic continuous-time signals represented on R/Z(T)),
2(a). Periodic discrete-time signal represented on Z(T)/Z(T)).

Now, we give the Haar integral for each of these classes. The four expressions
are collected in Table 4.1, and here we add a few comments.

e /=R

We have the ordinary (Lebesgue) integral extended over R. This statement has been
obtained by the theorem on existence and uniqueness (Theorem 4.1).

o I =R/Z(T,)

2The Haar integral on the trivial group G = O may be defined as f@ dr s(t) = s(0). However, it
will not be used, since Q is the domain of constant signals, which have no interest as a class (they
find room in any other signal class).
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Table 4.1 Expressions of Haar integral on R

Group Haar integral Condition

I=R Jedrs@®) = [T s de

I =R/Z(T)) Jryar,) des@) = IO fneR

I1=27(T) Joerydis@) = o JTs(nT)

I =7Z(T)/Z(Ty) Jacryjaar,y A s @ = 0 Ts(nT) T,=NT,ngeZ

We have again the ordinary integral, but limited to a cell [R/Z(T))) = [to, to + T));
the instant # is arbitrary since the result is independent of 7y, due to the periodicity
of the signal. This expression is obtained by the general rule (4.5), which gives the
integral on a quotient group /y/ P from the integral on Ij.

o 1 =7(T)

We have the sum of the signal values multiplied by the spacing 7. This is a conse-
quence of the rule (4.8) of the integral over a lattice (see (4.9)).

o [ =7(T)/Z(T,)

The sum of the signal values is limited to a period, that is, to a cell (see rule (4.10))
[Z(T)/Z(NT)) = {no,no+ 1,...,no+ N — 1}

where N =T, /T and ny is an arbitrary integer.

We suggest the reader to check that all the above expressions are in agreement
with the general properties of the Haar integral (and therefore they are actually Haar
integrals).

4.3 Haar Integral on the Groups of R™

In Sects. 3.3 and 3.7, we have identified the LCA groups of R” and, in particular,
the class Q(R™) of quotient groups. Correspondingly, we have seen that the number
of signal classes increases exponentially with the dimensionality m. In this section,
we give an explicit formula of the Haar integral that is valid for all these classes.

4.3.1 General Expression

From the “primitive” integrals (4.15), we construct the Haar integral over a general
mD quotient group in three steps:

1. Over the primitive mD group of R™;



142 4 Unified Theory: Signal Domain Analysis

2. Over the ordinary groups G of G,,,(R™);
3. Over the quotient groups G/ P of Q(R).

1. A primitive group of R™ has the general form H = H| x H> X --- x H,,, where
each H; may be R or Z. Hence, considering that H is a Cartesian product, from
the composition rule (4.6), the integral over H is explicitly given by

/ dhs(h):/ dh]-~~/ dh,y, shy, ..., hy) (4.17)
H Hl m
where the ith integral is
+o00 .
_ o (dh;, if Hi =R,
/ dh; () = / <. v (4.17a)
H; hi——oo()s if Hi =Z.

For instance, with H = R? x Z we have
400 ptoo T
/ dhs(h):/ / Z s(hi,ha, h3)dhydh;.
R2x7Z —oo J—oo ;T

2. An ordinary group G of R specified by the basis—signature representation
(G, H) is generated according to (3.10), that is,

G ={Gh|he H}

where the basis G is a nonsingular m x m matrix and the signature H is an m-
dimensional primitive group. Then, the group G is isomorphic to its signature H,
and we obtain the integral on G from the integral over H, as

/dts(t):d(G)/ dhs(Gh) (4.18)
G H

where the multiplicative constant is d(G) = |det(G)|.
3. Having obtained the integral over an ordinary group G, we apply rule (4.5) to get
the integral over a quotient group G/ P, that is,

/ dtS(t)Z/ dtS(t)Z/ dts(t)nig,p) (0 4.19)
G/P [G/P) G

where the integral is limited to a cell [G/P).

This completes the evaluation of the Haar integral over a general group of Q(R"™),
where the final result is given by a mixture of ordinary integrals over R and series
summations. Moreover, for the consistency of the result some conceptual refine-
ments are needed. In (4.18), the integral over an ordinary group appears to be de-
pendent on the group basis G, which is not unique. But in Appendix B we prove
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that the integral over G is independent of the basis G. In (4.19), the integral over
a quotient group G/ P is obtained by limiting the integral over a cell C =[G/ P),
which is not unique. But again, in Appendix B we prove that the integral over G/ P
is independent of the particular cell used in its evaluation.

The choice of d(G) as the positive constant in (4.18) finds the following motiva-
tions:

(a) To make sure that the Haar integral is independent of the group representation
(see Appendix B);

(b) To simplify and harmonize formulas, particularly in connection with the fre-
quency domain (see Chap. 5);

(c) To give the same physical dimensions to all signals of a given dimensionality m,
when signals are interpreted in a physical context, as we can check in Table 4.1
for a 1D signal and in Table 4.2 for 2D signals.

4.3.2 Expressions Over Ordinary Groups

The general formula (4.18) of the integral over an ordinary group G gives the fol-
lowing expressions.

e Integral over R”.

It is the ordinary Lebesgue integral on R™

+00 +o0
/ dts(t):/ / s(ty, ..., ty)dty ---dty,. (4.20)
R —00 —00

This follows from (4.17), or from rules (4.6) on the Cartesian product.
e Integral over a lattice L (see rule (4.8)).

It is given by an m-dimensional summation

400 400
/dts(t):d(L) DT D sltetw) (4.21)
L Lin=—00

1H=—00
where d(L) is the lattice determinant.

e Integral over a grating G.

This topic will be considered in detail in Chap. 16. Here, for completeness, we
outline the result. Considering a grating G with signature R” x Z7 and using the
canonical basis

Go = [113 g} , “22)
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Table 4.2 Haar integrals for 2D signals

Signal class Signatures Group Haar integral

1(a). continuous-argument R?/Q? R2 / :r;o il f:oo s(ty, 1) dty diy
aperiodic

1(b). continuous-argument R?/7? R%/P [[p s, 1) dey i
periodic

1(c). continuous-argument R%2/0 x Z R%/P ffpl s(t1, 1) dt dip
partially periodic

2(a). discrete-argument 72 )0? L Y er dL) st 1)
aperiodic

2(b). discrete-argument ZZ/Z2 L/P 2(11 )elL/P) d(L)s(t1, 1)
periodic

2(c). discrete-argument 7}/0O x Z L/P el py L) st 1)
partially periodic )

3(a). mixed-argument R x Z/(O)2 G f:r;o ,T:Oiw Es(r, Fr +nE)dr
aperiodic

3(b). mixed-argument R x Z/7? G/P fOD‘ Z,},\:ol Es(r, Fr + nE)dr
periodic

3(c). mixed-argument R xZ/Z x OQ G/ Py fOD' 0 JEs(r, Fr4+nE)dr
partially periodic

3(d). mixed-argument RxZ/OxZ G/P [NV Es(r, Fr+nE)dr
partially periodic

Note: L: 2D lattice; P: 2D lattice; G: 2D grating; Pj: 1D lattice (in R?)

the Haar integral is given by

/ dts(t) = d(F) / dr ) s(r,Er+Fn). (4.23)
G RP

nezZ4

This represents the general formula over an ordinary group and gives (4.20)
and (4.21) as particularization.

4.3.3 Expressions for 2D Signals

In Sect. 3.7 (Table 3.1), we have seen explicitly the N, = (2+ 1)2 = 9 classes of 2D
signals, and now, from the general formulas, we can write their Haar integrals. The
complete results are collected in Table 4.2 and comments follow.

Integral of a Continuous 2D Signal

For aperiodic 2D signals, the integral is over R? and it is given by the 2D ordinary
(Lebesgue) integral. In the presence of a full periodicity P, the ordinary integral
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is limited to a cell [R?/P), which may be the fundamental parallelepiped of the
lattice P (see Sect. 3.5). In the case of a partial periodicity, Pj is a 1D lattice in R?,
and the cell [R?/P;) becomes a strip of the R? plane (see Sect. 3.5).

Integral of a Discrete 2D Signal

For aperiodic 2D signals, the integral over a lattice L is simply given by the sum-
mation of the signal values multiplied by the lattice determinant d(L). In general,
a double series is involved in the summation. For instance, if L = Z% (d1, d>), the
generic point is (t1, ©2) = (m3d;, (m 4+ n)ds), with m, n € Z, and then

400 400
S dwsty= Y. Y 3didas(m3dy. (m+n)dy).
(t1,1p)EL Mm=—00n=—00

In the presence of a full periodicity P, the summation is limitedtoacell C =[L/P),
which has a finite cardinality d(P)/d(L) (see Sect. 3.5 for examples of such cells).
When the periodicity is partial, the cell [L/ Py) is given by the points of L belonging
to a strip and has infinitely many points. For instance, with L = Z; (d1,dy) and
Py =7(9d1) x O, we have explicitly

+o00 2
Z d(L)s(t1, ) =3did; Z Zs(3md], (m + n)dz).
(t1,12)€[L/ Pr) m=—00 n=0

Integral of a Mixed-Argument 2D Signal

The canonical representation of the grating given by (4.22) becomes

G0=|:115 2], (t1,)=(r,Er+nF), reRneZ 4.24)

where E and F are scalars. Then, the integral is given by

+oo 10

/ dts(t)=F > s(r.Er+nF)dr. (4.25)
G

X p=—c0
In the presence of a full periodicity P, both the integral and the summation in (4.25)
must be limited, whereas with a partial periodicity P; the limitation is confined to
only one of the two coordinates.



146 4 Unified Theory: Signal Domain Analysis

4.3.4 Haar Integral with a Coordinate Change

In R™ and its subgroups, it is possible to perform a coordinate change of the signal
argument of the form

y(t) = s(at) (4.26)

where a = [a,] is an m x m nonsingular real matrix and t must be interpreted as a
column vector. This coordinate change has the form

u=at (t=a'u (4.27)
where u is the argument of the original signal s(u) and t is the argument after the
coordinate change. In general, this operation changes the signal domain. If G is the
domain of s(u), the domain G, of y(t) is given by

Ga={tlate G}={a 'ujueG) (4.28)

and briefly G, = aG. For the Haar integral we have:

Theorem 4.2 The Haar integral after the coordinate change u = at is given by

/ dty(t)=/ dts(at)ziv/ dus(u), 4.29)
Ga Ga d(a) Jg

where d(a) = |detal.

The proof is given in Appendix C. Here, we simply note that when G = R" the
coordinate change transforms R into R" itself, so that the domain does not change.
Moreover, from (4.27) we have the relation for the differentials du = d(a) dt, where
d(a) is the Jacobian of the coordinate change.

When I = G/P is a quotient group, the coordinate change modifies both the
basis group and the modulus according to G, = aG and P, = aP and (4.29) still
holds with G and G, replaced respectively by G/ P and G,/ P,.

The coordinate change will be revisited on Chap. 6 in terms of transformations.

4.4 Haar Integral Over Multiplicative Groups

In Sect. 3.8, we have introduced three multiplicative groups:

o The multiplicative group R, of positive real numbers, which is isomorphic to the
additive group R, according to

exp:R— R,; (4.30)
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e The multiplicative group I" of the complex numbers z with |z| = 1, which is
isomorphic to R/Z(2m), according to

exp(i) :R/ZQ2r) — I

e The multiplicative group C* of nonzero complex numbers, which is the Cartesian
product of the two groups above

C*=R, x I 431

4.4.1 Haar Integral Over R,

The Haar integral over R, can be obtained by means of the isomorphism (4.30).
The application of Theorem 4.10 of Appendix A, with G =R,, H =R, t =a(h) =
exp(h), and ug =1, gives

+o0
/ dts(t):/dhs(eh)=/ s(e") dh.
Ry R —00

we obtain

/ drs(t) = /Oos(t)g, (4.32)
R 0 t

P

Then, letting 1 = e"

where on the right the Lebesgue integral is over (0, +00) and the signal is divided
by the argument ¢.

The Haar integral over R, /Z,,(A) is obtained by limiting the previous integral to
acell [R,/Z,(A)) (see (4.5)). Note that such a cell may be the interval [1, A) and,
more generally, the interval [h, hA) with & > 0 arbitrary. In fact, recalling that the
group operation is the multiplication, we find that the interval sequence [ph, phA),
with p € Z,(A), is a partition of R,.

In conclusion, the Haar integral over R, /Z,(A) is given by

hA dt
/ dr s(t) =/ s(t)—. (4.33)
Ry/Zp(A) h t

The evaluation of the integral over discrete groups is immediately found
from (4.8). For convenience, we choose d(/) =log A, so that, Theorem 4.10 holds
with g =1, then

+00
d =log A =log A A™). 434
]%}(A) ts@)=logA Y s(t)=logA Y  s(a") (4.34)

telp(A) n=-—00

Finally, the integral over Z, (A)/ZP(AN) is obtained from (4.34) by limiting the
summation to a period.
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4.4.2 Haar Integral Over I' and C*

Considering the isomorphism « (k) = exp(ih) : H = R/Z(2n) — G = I', from
Theorem 4.10 we have that the Haar integral over I” is given by (setting g = 1)

2w
/dts(t):/ dhs(a(h)):/ s(e'™) dh. (4.35)
r R/Z(27) 0

Finally, we have the Haar integral on C* as a composition of the previous inte-
grals (see the composition rule (4.6) and (4.31))

oo r2m o dfy
/ dm(t):/ dt / dtzs(tl,t2)=/ / s(t1,e")— dn. (4.36)
C* R, r o Jo h

4.5 Class of Signals and Vector Spaces

For any domain/periodicity I = Ip/ P, we introduced the class S(/) of “all the sig-
nals defined on the group Iy that have periodicity P”’. According to our convention,
“signal” is synonymous with “complex function”. Hence, S(I) is a class of complex
functions (including also generalized functions).

This class has an algebraic structure, since it is closed with respect to operations
such as the sum and, more generally, a linear combination of signals with complex
coefficients belongs to this class. We formalize this stating that 8(/) is a vector
space (or linear space) over the field of complex numbers C.

An additional requirement may be a geometrical structure where signals can be
compared and this is provided by the inner product. To this end, we have to re-
strict the class 8(7) to the subclass Ly () of square integrable signals, where the
inner product can be defined by the Haar integral. Thus, the subclass L, (/) will
be formalized as an inner product vector space. A final requirement is related to
convergence and completeness, leading to the concept of a Hilbert space.

A preliminary remark on notation. In our convention, a signal is denoted either in
the form s(¢), ¢ € I, or with the equivalent notation s € 8§(/), but the latter is more
convenient in approaching vector spaces, where s becomes a vector in the space.

Proposition 4.1 For every quotient group I, the class S(I) is a vector space over
the complex field C.

The above assertion can be easily proved by verifying that the following axioms
of a vector space over C hold for 8(7):

1. Commutativity: x +y =y + x, for all x, y € 8(I).

2. Associativity: (x +y)+z=x+ (y+2z) and (ab)x = a(bx), forall x, y,z € S(I)
and a,b € C.

3. Distributivity: a(x + y) = ax + ay and (a + b)x = ax + bx.
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4. Additive identity: there exists 0 in 8(I), such that x + 0 = x, for all x in S(/).

5. Additive inverses: for all x in 8(I), there exists a (—x) in 8(I), such that x +
(—x)=0.

6. Multiplicative identity: 1 - x = x for all x in 8([).

Note that in S(/) the element O is the signal which is identically zero. Conditions 1,
2,4, and 5 assure that a vector space is an Abelian group.

We now introduce a few specific definitions related to the properties of vector
spaces.

Subspaces A nonempty subset A of S(I) is a subspace of S(I) if A itself is a
vector space with the same operations of addition and scalar multiplication. Note
that the subset {0} consisting of only the zero signal is a subspace.

Example 4.1 The class E(I) of signals on / with even symmetry is a subspace. In
fact, it is closed with respect to the sum and multiplication by a scalar. The same
holds for the class O(I) of the odd signals on /.

Span Given a nonempty subset A C $(I), the span of A is the subspace of S(7)
consisting of all linear combinations of vectors in A. If A is countable, that is, A =
{xn | n € N}, where N is an index set, the span is explicitly given by

span(A) = {Z anxy | a, € (C}.

neN

The index set N may be finite or countably infinite, for example,
N={0,1,....N—1}, N=Ng2{0,1,2,...},
N=Z={...,—-1,0,1,...},

or a multidimensional extension of these forms.

Linear Independence The signals x1, ..., x; are linearly independent, if

k
Zanxn =0, a,ecC,
n=1

holds only if a, = 0 for all n. Otherwise, these signals are linearly dependent.
If there are infinitely many signals xp, x7, ..., they are linearly independent if
X1, X2, ..., X are linearly independent, for each k.

Bases and Dimensionality A collection of signals in the vector space V, @ =
{@n | n € N} is a basis for V if

1. @ consists of linear independent signals, and
2. span(®) =V.
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It can be shown [12] that every vector space V has a basis (with the exception
of the trivial space {0}) and all the bases have the same cardinality. The common
cardinality of the bases of V defines the dimension of the vector space V. Hence, V
is finite-dimensional if |®| is finite, otherwise V is infinite-dimensional.

The Class of Real Signals Sg(/) This is not a subspace of S(I) because the linear
combination of real signals with complex coefficients is not a real signal, in general.
The class Sr(/) can be formalized as a vector space over the real field R.

4.5.1 The Class of Integrable Signals

In the context of UST “integral” means “Haar integral”. As regards the existence of
the Haar integral of a specific signal, we recall that a signal may be integrable or
not. This is also the case of a signal defined on a lattice, where the Haar integral is
given by the sum of a series, which may converge or not. The only case in which
the integrability is assured is on finite groups, where the Haar integral is the sum of
finitely many terms.

The Haar integral allows the introduction of the following subclasses of 8(/). For
every positive real number p, L (1) is the subclass of signals for which the integral
f ; dt]s(2)|P exists and is finite. Within L, (/) the p-norm can be naturally defined
as

I/p
Isll, £ {/Idt |s(t)|p} . (4.37)

Analogously, we can define the classes L, (A), where A is a measurable subset of
I (see (4.4)), and any statement on L, (/) can be equally stated for L,(A), unless
otherwise noted. In particular, L (/) is the subclass of absolutely integrable signals
and L, (7) that of square integrable signals.

Proposition 4.2 The class L, (1) with the ordinary operations of signal sum and
multiplication by a complex scalar is a vector space on C. Hence L (1) is a sub-
space of the vector space S(I).

The proof is given in Appendix D.
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4.5.2 The Class L,(I) as an Inner Product Vector Space

Particularly important in Signal Theory is the L, (/) class, where the norm’ ||| =
Is|l> is given by

Isll = /Idt 5] (4.38)

In L,(1), it is possible to introduce the inner product of two signals in the form

(x,y) 2 /1 dr x(6)y* (7). (4.39)

The inner product (x, y) is also called the cross-energy E,, between the signals x
and y. For x(¢) = y(¢), that is,

2

E, 2 (x,x) = |x|? =/dr x ()
I

(4.40)

it becomes the energy (or self-energy) of x(¢),t € I.
The reader can check that the inner product (4.39) verifies the axioms of inner
product, that is, for x, y, z signals of L, (/) and a € C the following properties hold:

Lo (x+y.2)=(x2)+(y.2);

2. {ax,y)=alx,z),aeC;

3. (e ) =y, x)

4. (x,x)>0,and (x,x) =0if and only if x =0.

It is clear that the inner product (x, y) is linear with respect to the first signal, while
(x,ay) =a*(x,y). Then

Proposition 4.3 The class Lo (1) of square integrable functions is an inner product
vector space over C, with the inner product defined by (4.39).

The inner product and the norm allow the introduction of orthogonality and or-
thonormality, and also of important inequalities. The following properties of inner
product spaces can therefore be introduced for the class Lo (7).

Inequalities on L, (1)

A first inequality is the Cauchy—Schwartz inequality (briefly Schwartz inequality)

[Ge, )| < lx vl (4.41a)

3From now on, we will mainly deal with the 2-norm and simply call it the norm for convenience.
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where equality holds if and only if the two signals are proportional to each other,
that is, y(¢#) = « x(¢) with « € C. Explicitly, by using (4.39), we have

2

’/ de x(t)y* (1)
1

S/dt |x(r)]2/dz|y(z)|2. (4.41b)
1 1

An alternative form of (4.41a), (4.41b) is the Schwartz—Gabor inequality [7]

54/dt |x(t)|2/dt|y(t)
1 1

where the equality holds if, and only if y(¢) = Bx(¢), with B real valued (see Prob-
lem 4.14), whereas in the Schwartz inequality the proportionality constant &« may
be complex.

2 2
: (4.42)

/Idt [x()y* @) +x* )y ()]

Orthogonality

Two signals x, y € Lo (I) are said to be orthogonal (in symbols x_Ly) if
(x,y)=0.

Two subspaces A and B of L, (/) are called orthogonal, and symbolized A_L B, if all
the signals in A are orthogonal to all the signals in B. A countable set of signals B =
{Bn | n € N}, such as a basis of Ly([), is called orthogonal if p; LB; when i # j.
If all the signals 8; have unit norm, the set B = {8, | n € N} is called orthonormal.
Given a subspace A, the orthogonal complement of A in L,(1), denoted AL, is the
subset of signals that are orthogonal to all signals in A. Then, given a signal s in
Ly(I), there exist a unique signal s4 € A and a unique signal sj € A such that
s=54+ sj; s 4 is called the orthogonal projection of s onto A. Thus, we can write
Lo (1) as the direct sum of the subspace and its orthogonal complement, symbolized

Ly(h=A® A"
The above concepts are illustrated in Fig. 4.1.
Theorem 4.3 (Projection Theorem) Given a signal s € L>(1) and a subspace A C

Lo (1), the closest signal to s in A is the orthogonal projection s of s onto A. In
symbols,

argmin||s — y|| =s4 4.43)
yeA
where
s =54+ sj“

with sy € A, sy € AL,
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Ly(I)

Fig. 4.1 In the space Ly(I), the subspaces A and A~ are orthogonal to each other. A signal s in
L, (1) is uniquely decomposed as s = s4 + sj, where s4 is the orthogonal projection of s onto A
and sj is orthogonal to s4

The proof is straightforward by considering the squared norm of s — y and writing
s as in (4.43) obtaining

2 142 2 142
s =ylI"=llsa =y +sx1” = llsa = yI” + llsx |l

where the last equality is due to sj being orthogonal to s4 — y € A. Then the right
hand side is minimized by taking y = s4.

Example 4.2 We illustrate the above definitions and statements considering the
classes of even and odd signals defined on an LCA quotient group /. Then, the
environment is the class Ly (/). The classes of even and odd signals are respectively

E)={s|s(=n=s)} and OU)={s|s(=1)=—s()}.

It is easy to see that E' = E(I) N Ly(I) and O’ = O(I) N L(I) are subspaces of
Ly(I) and E’ is orthogonal to O’. It is perhaps a little subtler to show that O’ is the
orthogonal complement to E’, that is, any signal orthogonal to all even signals must
have odd symmetry. In fact, let s be such a signal. Then it can be decomposed (see
Chap. 2) as

s(t) =sg(t) +50(1)

with sg(¢) even and s (¢) odd. By the inner product additivity, we have (s, sg) =
(Sg,Sg) + (sg, so). Since it must be (s, sg) =0 and (sg, so) = 0, we must also
have (sg, sg) = 0, which only holds if sg () =0, for all # € 1. Thus, s = s¢ is odd.
Also E' N O’ = {0}, which states that the class E’ and O’ have only the zero signal
in common. These interrelations are illustrated in Fig. 4.2.

As a consequence of orthogonality, we have that every signal in L,(/) can be
uniquely decomposed in an even component and an odd component, as summarized
by

E® 0 =Ly1).
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Fig. 4.2 The classes E’ and
O’ of even and odd square
integrable signals are
orthogonal complements in
Lo (I)

This was seen in the Classic Theory (Sects. 2.1 and 2.9), and will be reconsidered
in Sect. 4.13 in the context of symmetries.

4.5.3 The Class L,(I) as a Hilbert Space

We have seen that the classes L, (1), where [ is an arbitrary LCA quotient group, are
inner product vector spaces. One more notion is needed in order to obtain a Hilbert
space, that is, completeness. To this end, we consider sequences of signals {x,} in
L>(I), which are said to converge to a signal x in L, (1) if ||x, — x| — O asn — oo.
A sequence of signals {x,} is called a Cauchy sequence, if ||x, — x,,|| = O, when
n, m — oo. If every Cauchy sequence in L, (/) converges to a signal in Ly(/), then
Lo (1) is said to be complete, and, by definition, it is called a Hilbert space. The
fundamental statement is

Proposition 4.4 For every LCA quotient group I, the class of square summable
signals L, (1) is a Hilbert space.

For a general proof, see [13]. Here we show that the statement holds for two
cases of particular interest.

The Class Ly(I) on a Finite Group I = Iy/P This class contains all the signals
defined on I, that is, Ly(1) = 8(I). In fact, signals of S(I) are specified by their
values in a cell [Ip/ P) of finite cardinality N, that is, by N-tuples of complex num-
bers. For instance, a signal s(¢) of the class Lo(Z(T)/Z(NT)) is specified by the
values in Zy(T)={0,T,..., N — 1}, that is, by the N-tuple of complex numbers
s = (s0,51,...,5n—1) With s; = s(iT). According to (4.39), the inner product in
Lo(Z(T)/Z(N) is

N-1

(x,y) =Y Tx(nT)y*(nT) = (x,y).
n=0

Then L, (1) is isomorphic to CV, which is known to be complete.
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Ly(I)

Fig. 4.3 Interpretation of a linear operator L as a mapping (left) and graphical symbol (right)

The Class Ly(Z(T)) This is a proper subclass of S(Z(T)), the class of discrete
time signals, and in the literature it is usually called the space of square summable
sequences and denoted by £,. Also, it represents the classical example of an infi-
nite dimensional Hilbert space introduced by Hilbert himself. The class L, (Z(T))
consists of the signals s such that s> = Iﬁ‘ioo T|s(nT)|* < oo, which means
that the series involved must converge to a finite limit. But, to form a Hilbert space
a further condition is required, that is, for any sequence of signals s; = s;(nT) of
L>(Z(T)), such that ||s; — 5|l — 0, there should exist a limit s in L>(Z(T)) such
that ||s; — s|| — 0. This is proved in several textbooks, see, e.g., [8].

4.5.4 Linear Operators in Hilbert Spaces

This topic will be seen in great detail in Chap. 6 in the framework of linear transfor-
mations, and here we anticipate a few concepts on linear operators which form an
important class of linear transformations.

A linear operator is a mapping £ : H — H in a Hilbert space H, in the present
context Ly (1), that verifies the linearity condition L[ax + by] = al[x] + b L[y],
where x, y € Ly(I) and a, b € C. In the mapping y = L[x], it is convenient to think
of x and y as the input signal and the output signal, respectively, as sketched in
Fig. 4.3.

A linear operator is governed by the following relationship

L y(t):/duh(t,u)x(u), tel, (4.44)
1

which gives the output signal y(¢), t € I, starting from the input signal x (u), u € I;
h(t, u) is called the kernel of the linear operator L. Note that in this relation we must
keep the distinction between the input time u € I and the output time ¢ € I. The
cascade of two operators L and L5 is defined as the operator £ = L£,L, which,
starting from x, gives y = L1[x] and z = L>[y], so globally, z = Lo [L[x]]. It will
be shown in Sect. 6.3 that the kernel of L can be calculated from the component
kernels h; (¢, u) as

h(t,u)= /dvhz(t, v)h (v, u). (4.45)
I
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A trivial linear operator is the identity on I, symbolized J, which maps every
signal x € Lo (I) into itself, that is, J[x] = x. Its kernel is given by

hy(t,u) =5;(t —u)

where §;(¢) is the impulse on I (see Sect. 4.9). Another simple operator is the re-
flector J_, which provides the axis inversion of a signal. Its kernel is 8;(t + u).

The class of signals mapped by an operator L is called the image of L, symbol-
ized

im(L) = {L[s]|s € Lo(D)}. (4.46)

Given an operator £ with a kernel h(t, u), the adjoint operator (or Hermitian
adjoint) L* is defined by the kernel (see Problem 4.8)

ha(t,u) =h*(u, 1), (4.47)
that is, the kernel of L* is obtained by swapping the variables ¢, u in the kernel of £
and taking the conjugate. This operator is used in the following classification:

1. An operator L in unitary if LL* =17,
2. An operator L is Hermitian if L* = L.

Hence, the kernel of a Hermitian operator verifies the condition A (u, t) = h*(¢, u).
Two operators L and L, are orthogonal if £1L, = 0, where 0 is the zero operator.
An important class of linear operators is given by projectors [11, 12].

Definition 4.2 A projector is an idempotent operator, that is, with the property
P2_Pp (4.48)
where P? means PP.

Examples of projectors are Pr = %(U +IJ_)and Pp = %(J — J_) which extract
from a signal the even and the odd components (see Problem 4.9), respectively.
The meaning of a projector will be seen in the applications of the next sections and
especially at the end of the chapter.*

“In the literature, the usual term is projection instead of projector, but we prefer to reserve “projec-
tion” to the application of a projector. A Hermitian projector is often called an orthogonal projector,
for its specific properties. But we prefer to reserve “orthogonal” referring to a pair of projectors
with the property PP, =0.
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Comments on the Topics Developed in This Section

Starting from the class 8(I) of all signals defined on a quotient group 7, we have
introduced the class L, (/) and in particular L>([), the class of square integrable
signals. We have seen that 8(7) is a vector space over C and that L, (1) is a subspace
of 8(I). Moreover, Ly (1) is an inner product vector space and also a Hilbert space.
Using the inner product, in L,(/) we have introduced the concept of orthogonal
signals.

In the Hilbert space L, (/), we have introduced the concept of a linear operator.
We suggest the reader to revisit this concept and related definitions after the study
of linear transformations, developed in Chap. 6.

4.6 Signal Expansions into Orthogonal Functions

As an important application of the concepts related to Hilbert spaces, in this section
we consider the expansion of a signal s(¢) € Lo(/) in the form

SO =Y Sugn(t), (4.49)

neN

where N is an appropriate countable index set, @ = {¢,(¢), n € N} is a basis of
L>(I) and S, are the expansion coefficients (or Fourier coefficients). The problem
is the evaluation of S, starting from the signal. The solution is particularly simple
when the basis is orthonormal, but other forms of expansion are possible.’

Let I be an LCA group and N a countable index set. For an orthogonal signal set
@ = {p,(t) | t,n € N}, we can write

K ifn=m;
dt (@) =8y Kn =1 " ’ 4.50
/; (pm( )@n() mnn 07 1fn7£m, ( )

where K, = ||¢,||?> and 0 < K,, < 00.

When K,, = 1 for all n, the set is said to be orthonormal. The class of orthogonal
function is complete if all L,(I) signals are expandable according to (4.49). In this
case, @ is an orthogonal basis of L(I).

A signal of Ly (I) can be expanded into orthogonal functions in the form (4.49),
where the coefficients S, can be calculated from the signal s(¢) according to

Su = (1/Ky) /1 A (D@ () = (1/K) (5. on)- @51)

3Signal expansions will be further developed in Chap. 14 as a preliminary to filter banks and
wavelets.
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In fact, by multiplication of both sides of (4.49) by ¢;i(¢) and using orthogonality
conditions, (4.50) follows at once.

The orthogonality conditions allow obtaining the signal energy from the coeffi-
cients S,, according to Parseval’s theorem

E, =/dt s> =3 1842 Ka. (4.52)
I

neN

4.6.1 Overview of Orthogonal Functions

As for any vector space, an orthogonal basis for L, (/) can always be found starting
from a basis, that is, a family @ = {¢,(¢) | b € N} of linear independent signals,
such that span(®) = L, (I), though the standard Gram—Schmidt orthogonalization
procedure [10]. The so-obtained orthogonal basis @ = {¢},(¢) | n € N} has neces-
sarily the same cardinality as @ (recall that the common cardinality of the bases
defines the dimensionality of a vector space). From the orthogonal basis, it is easy
to get an orthonormal basis by normalization, as ¢ ()/+/K,, where K, = [|¢},||*.

We now see specific examples of orthogonal functions (in specific 1D do-
main/periodicities), and then we add some general ideas to construct orthogonal
functions in the general multidimensional case.

Examples of Orthogonal Functions

The classical examples are sinusoidal and exponential functions on I = R/Z(T))
(Fig. 4.4), namely

on(t) =cos2nnFt, K,=1/Q2F), N =Np not complete;
on(t) = sinZnnFt, K,=1/QF), N =N not complete;
@n(t) = el ZnFt K, =1/F, N=7Z complete,

which are orthogonal on I =R/Z(T,) with F = 1/T),. These classes provide the
Fourier series expansion, seen in Sect. 2.5.
A class of orthogonal functions on / = R consists of the cardinal functions

on(t) =sinc(Ft —n),  K,=1/F, N=2Z. (4.53)

As seen in Chap. 2, the cardinal functions are related to the Sampling Theorem,
where the signal recovery from sample values has the form

+00
s(t) = Z s(nT)sinc(Ft —n), FT =1, 4.54)

n=—oo

and the coefficients are directly given by the sample values, S, = s(nT). Of course,
the class of cardinal functions is not complete since expansion (4.54) holds only for
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Fig. 4.4 Examples of orthogonal functions: sinusoidal functions and Block functions

band-limited signals and therefore not all signals of L;(R) admit such a represen-
tation. Another simple class of orthogonal functions on I = R is given by the Block
Sfunctions (Fig. 4.4), which are nonoverlapping rectangular pulses. This class is not
complete, either.

A more articulated class of rectangular orthogonal functions is given by Walsh
Sfunctions. The definition of the Walsh function of order n € Ny, wal(n,t), requires
to express 7 in the binary form ngny - - - n,_1, where

m—1

n= Z 2 n, (2m > n),
r=0

then [2]

m—1
wal(n, 1) = 1_[ sgn[sin"’ 2r+1nt], teR/Z(1)
r=0

where sgn(x) is the signum function. These functions, which are periodic with pe-
riod 1, are square-wave like for the presence of the signum function, as shown in
Fig. 4.5. In the form wal(n, F't) they become orthogonal on I = R/Z(T,) with
F=1/T,and K, =1/F.
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wal(n, x) @a(¥)
1 n=0
1/2 1 X RY
i — — n=l
] [ x
i I [ n=2
— 41 \—1 X x'
i E— I n=3
[ x x
I O s Y s Y n=4
T ¥
i I o I — n=5 .

=y
=

N N B

=
=y

g - 1 1 n=7
] 1 B R x

Fig. 4.5 The Walsh functions and Hermite—Gauss functions of the first orders

A complete class of orthonormal functions on R are the Hermite—Gauss func-
tions (Fig. 4.5)

on(t) =

4
%Hn (mt)e_”’z, neNy
where H, () = (—1)"% dre—t /dt" are the Hermite polynomials [1]. These func-
tions form a complete orthonormal class with K,, = 1 and will be used in the context
of the fractional Fourier transform at the end of Chap. 5.

Finally, an example of orthogonal functions on the finite group Z(1)/Z(N) is
given by the class

on(t) = Wi, K,=N, N={0,1,...,N—1} (4.55)
where Wy is an Nth root of unity
Wy =exp(i27/N). (4.55a)

These functions are the discrete version of the exponential functions and appear in
the DFT, that is, the Fourier transform on Z(T)/Z(T)).

Several other examples can be found in [14], where most classes are orthogonal
on a finite interval of R and only a few are orthogonal on the whole R.
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Ideas How to Find Orthogonal Functions

In many cases, orthogonal functions, structured as bases, are used in signal expan-
sions, but sometimes they are intentionally built for particular purposes. We now see
a few cases of the latter type, where also multidimensional bases are derived.

Bases from Impulses The impulse §;(¢), which will be introduced in Sect. 4.9,
allows identifying an orthonormal basis when [ is a lattice K or a finite group
K /P (in the other cases, §7(¢) is a generalized function not belonging to Ly(1)).
In particular, if K is a lattice, the impulse is given by

5o o [1AK), =00
Y o, ifr 0, ‘

Then, the functions
Sxk(t—u), uek, (4.56)

form an orthogonal basis for L, (K). For the case I = K /P, see Problem 4.15.

Bases from the Fourier Kernel The Fourier kernel ¥ (f, t), which will be intro-
duced in Chap. 5, allows the construction of orthonormal bases when I is a proper
quotient group R™ /P or a finite group L/P. In the first case, the orthogonal basis
is given by

Yy =e? fep

where P* is the reciprocal of the periodicity P. When I = L/ P the basis is given
by

,(//(f’ t)=ei2ﬂft, fe[P*/L*)
Bases from Sampling Theorem In the Sampling Theorem, which will be seen in

Chap. 5, the interpolating function go(¢) allows defining an orthonormal basis (see
Proposition 8.2).

Bases from Filter Banks and Wavelets In Chaps. 14 and 15, we shall see that
filter banks and wavelets provide a large variety of orthonormal bases.

4.6.2 Orthogonal Projection and Least-Squares Approximation

Often, a signal s from the Hilbert space L, (/) has to be approximated by a vector
lying in a finite dimensional subspace Vj;. Given an orthonormal basis @ = {@, (t) |
n € N} of Ly(I) we suppose that V; is the subspace spanned by M functions of @.
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Fig. 4.6 Approximation sy, sy
and error djy in an orthogonal 7 Pu 7
expansion obtained from the s
signal s with projectors Ji
dy
) j)(c) >
1 M 1

To be more specific suppose that® N =Ny = {0, 1,2, ...} and take the subfamily of
the first M functions, @y = {¢o, ¢1, ..., ¥m—1}. Then, @ is a basis of Vj; and
we compare the two expansions

M—1 00
Sy = Z Sn®n, s = Z Sn¢n 4.57)
n=0 n=0

where S,, = (s, ¢,). Since the difference dy; = s — s is easily seen to be orthogonal
to @, sp represents the orthogonal projection of s onto Vj;. As we saw in the
Projection Theorem (Theorem 4.3), s is the optimal solution, in the least-square
sense. Observe that

2 2 2
s = lsall” + lldamll”

4.6.3 Projections by Projectors

We will now see that the orthogonal projections can be obtained by appropriate
operators, the orthogonal projectors. Specifically, we show that (Fig. 4.6)

su=Pus,  du=P)s (4.58)

where Py, and Tﬁfl) are Hermitian projectors, that is, Hermitian operators having
the idempotency property.

Proposition 4.5 Given the reduced orthonormal basis ® yy, the Hermitian projector
P in (4.58) is defined by the kernel

M—1

Pu: hutw)=Y @uOgrw), tuel, (4.59)
n=0

and f]’g‘fl) =7 — Py is the complementary projector.

OThis can be done without restriction since we suppose that the index set N is countable. When N
is finite with cardinality N, we let N ={0, 1, ..., N — 1} and in the present context we suppose
M <N.
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Proof From the expression of sy, given by (4.57), we get

M—1

M—1
u® = Y- 0u0) [ dusoion = [ aw Y vurs
n=0 n=0

= / du hp(t, u)s(n) (4.60)
I
where h (¢, u) is given by (4.59). O

It is easy to check that P, is Hermitian and idempotent (using (4.45)) and the
orthonormality of the ¢, ()). As an example, with ¢, (t) = (1/ Tp)elzm” /Tv (Fourier
series) we have

M—1
h(t,u)ZFZeiznnF(t_u), FZI/T ,
n=0
and the orthogonal projector Py is a filter on R/Z(T},) with impulse response given

by g(v) =F 2111\/1:—01 elZmnfv e R/Z(T,). The corresponding frequency response
is

M-1 .
1, if0<k=<M-1;
GkF)=F ) kF —nF)=1" -~ ’
F) ’12:(:) 2()( ) {O, otherwise,

which means that the filter takes the first M harmonics and drops completely the
other ones.

Concluding Remark on Orthogonal Expansion

We have seen the orthogonal expansion of a signal in a standard and preliminary
form. The topic will be reconsidered and further developed in Chap. 14, where or-
thogonal expansions will be formulated in the framework of generalized transforms.
In that context, also the generalization to biorthogonal expansions and to frames will
be developed.

4.7 Fundamental Symmetries

We consider the fundamental examples of symmetries, already seen in the Classic
Theory for both continuous and discrete time signals.
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se(t)

So(t)

Fig. 4.7 Decomposition of a signal into even and odd components, illustrated on the domain / =R

For signals defined on a generic group I/, we can introduce the following sym-
metry pairs:

1(@) s@)=s(-1) (even symmetry)
I(b) s(t) =—s(—t) (odd symmetry)

2(a) s(t) =s*(1) (real signal)
2(b) s(t) = —s*(1) (imaginary signal)

3(@) s(t) =s*(—1) (Hermitian symmetry)
3(b) s(t) =—s*(—t) (anti-Hermitian symmetry)

In general, a signal does not possess any of the previous symmetries, but it can
always be decomposed into symmetric components.

Theorem 4.4 Every signal s(t),t € I, can be decomposed into two components,
one with Symmetry (a) and one with Symmetry (b).

In fact, for Symmetries 1, it is well known that every signal can be decomposed
into an even and an odd component (see Fig. 4.7), namely

s(t)=sg@)+s0(), (4.61a)
where
1 1
se(t) = E[s(t) + s(—t)], so(t) = E[s(t) — s(—t)]. (4.61b)

A similar decomposition applies to Symmetries 3. Symmetries 2 give the familiar
decomposition into real and imaginary part, namely

s(t) =Ns () +13s(1), (4.62a)



UT

4.8 Signal Extension and Duration 165

s(t) s(t)
IRHIRTR
ol \UJ ‘ ol ‘
€((S)  (m— (— (— —) e o000 oo o eo(s)
e(s) 0000000000000 s

Fig. 4.8 Illustration of the minimum extension e (s) and of the extension e(s) of a signal on the
continuous domain R and on the discrete domain Z(T')

where
Rs(t) = %[s(t) +5*(1)]. iJs(t) = %[s(t) —s*0)]. (4.62b)

Each of these symmetries can be viewed as an invariance of the signal with re-
spect to a specific operation. As an example, the even symmetry states the signal
invariance with respect to the reflection operation. The null element of this sym-
metry is the zero signal, which is both even and odd. These considerations will be
formalized in the Symmetry Theory at the end of the chapter.

4.8 Signal Extension and Duration

A signal is formally defined over a group but sometimes its information is confined
to a subset of the group. We call this subset the signal extension and its Haar measure
the signal duration.

We now give a precise definition of these concepts, whose importance is not lim-
ited to the signal domain analysis, but includes their role in the frequency domain,
where they become the band and the bandwidth, respectively.

4.8.1 General Definitions

Definition 4.3 The support of a signal s(¢), t € I = Ip/ P, that is, the subset of I
where s(t) is nonzero (Fig. 4.8),

eo(s) = {r|s(r) # 0}, (4.63)

will be called the minimal extension of the signal. The Haar measure of eq(s),
Do(s) =measeq(s), is the minimal duration of s(t).
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Definition 4.4 Every subset of the domain /y containing the minimal extension
(Fig. 4.8)

e(s) Deo(s) (4.64)
is an extension of s(t) and D(s) = mease(s) is a duration of s(t).

The convenience in considering an extension e(s) instead of the minimal exten-
sion eq(s) is due to several reasons, which will be clear in the following. The main
reason is that for e(s) we can choose “simple” and structured subsets, as an interval
on R, a sequence of consecutive points on Z(7'), and, in general, a cell.

The propriety of an extension e(s) is that it ensures that the signal is identically
zero outside e(s)

s)=0, t¢e(s), (4.65)
but within e(s) the signal is not necessarily nonzero. Thus, knowing e(s) we can

limit the specification of a signal within e(s).

Why Extension and Not Support? In the literature, it is customary to speak of
the signal support, as defined by (4.63) or as the closure of eg(s). However, we
prefer the more relaxed requirement (4.65), since it is more convenient to deal with.
For clarity, we have introduced the specific term “extension”.

4.8.2 Extension and Duration of 1D Signals

We apply the general definitions to the four classes of 1D signals.
e =R

Commonly, the extension e(s) is assumed as the smallest interval containing the
minimal extension eg(s), say

e(s) =1, Ty, D(s) =T — 1,

where #; and 7, are the infimum and supremum of eg(s), respectively. Of course,
we may have t; = —oo and/or Ty = +oo. For instance, rect(¢/T) has extension
[—%T, %T], while the step function 1(¢) has extension [0, +00).

o [ =7(T)

In this case, e(s) is a subset of Z(T), and the typical extension becomes a “discrete
interval” (Fig. 4.8)

e(s)=t;, INZ(T) = {ts,ts+T,..., T, = T, T},
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s(t) V\ I=R/Z(30)
0 60 90

30

—

Fig. 4.9 Example of a signal that is duration-limited in a period

where the inclusion of ¢, and T, becomes essential on Z(T), while it is irrelevant
on R. The duration is given by the number of points in e(s) multiplied by the spac-
ing T, that is,

D(s)=T, —t;+T.

This is more evident if we denote the extrema in the form ¢, =n,T, Ty = NgT, so
we have

D(s)=(Ny —ng+ 1)T.

In particular, if the signal consists of a single nonzero value, the duration becomes
D(s) = T, with two nonzero values e(s) = 2T, etc. For instance, in the signal of
Fig. 4.8(b), ny = —3 and Ny = 10, then D(s) = 14T.

o I =R/Z(T,) and I = Z(T)/Z(T})

The extensions are always periodic sets and the maximum duration is given by the
period, that is,

0<D(s) <Tp.

In such a way, every periodic signal has a finite duration, provided that the signal is
specified in a proper quotient group, otherwise its duration becomes infinite. When
D(s) < T, (see Fig. 4.9), we say that the signal has a limited duration in a period.

4.8.3 Further Considerations on Signal Domain/Periodicity

The idea of an extension allows improving the choice of a signal domain and pe-
riodicity. We remark that in practice a signal may have a natural domain, intended
as the set over which we know the signal values. For instance, the signal of a tele-
phone call has a finite interval as its natural domain. Another example is the signal
(luminance and chrominance) of a still image, where the natural domain is a 2D
rectangle. In both cases, the natural domain is not a group.

On the other hand, in Signal Theory it is mandatory to choose a group as a signal
domain. Hence, we have the problem of “completing” the signal definition outside
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\/\ natural domain: [f; , #)

4 5]

s(t)
ordinary domain: 7 = R
0 0
0 t t r
5(0) quotient domain: 7 = R/Z(T},)
0 51 %) t=
) Ty=t—t g

Fig. 4.10 Signal defined on an interval with its aperiodic and periodic versions

its natural domain. An obvious way is to extend the signal definition with zero values
(Fig. 4.10), that is,

s(t)=0, tely t¢C, (4.66)

where C is the natural domain and [y is an LCA group, such that C C Ip. In such a
way, we obtain by construction a signal with a finite extension e(s) = C.

An alternative form, less usual but with some advantages, is extending the signal
definition by periodicity. In this case, C must be a cell of Ij of the form C =[Iy/P)
for a suitable modulus P. Then, we define the signal outside its natural domain C
by

s(t+p)=s@t), tely, peP. (4.67)

Thus, we get a signal defined on a quotient group I/ P.
Finally, we note:

Proposition 4.6 The class of signals on an ordinary domain Iy with a finite ex-
tension C can be linked by a one-to-one correspondence with the class of signals
specified on Iy/ P, provided that C is also a cell of Io modulo P.

In fact, if s (¢) is defined on I and has extension C, the periodic repetition

(=) 50t = p)

peP

provides a signal with periodicity P. But, from s(#) we can obtain so(#) according
to so(t) = s(t)nc(t), where nc(¢) is the indicator function of the cell C.
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4.9 Convolution
We have recalled several times that convolution is one of the fundamental operations

in Signal Theory. The Haar integral allows defining this operation in a unified way,
that is, by giving a single definition, valid for all signal classes.

4.9.1 Definition and Interpretation

Definition 4.5 Given two signals x and y on the same group /, their convolution
x xy is a signal on I defined by

x*y(t):/ldux(t—u)y(u), tel. (4.68)

The interpretation of convolution on an arbitrary group [ is exactly the same as
on the real line (see Sect. 2.4), but is revisited here for its importance. In (4.68), for
a fixed ¢ € I, the integrand is the signal, written as function of the argument u,

zzw)=x(t —uw)yw)=x_(u—1t)yw), uel (4.69)

where x_ (#) = x(—u) is the reverse of x(u#). Hence, we have a twofold operation:
a signal reverse to get x_(«) and a shift of ¢, to get x(—(u — t)). By the reflection
and shift properties (see Sect. 3.2), both x_(u) and x_(u — t), for every ¢ € I, are
themselves defined on 7 and so is the product in (4.69). Once the product is obtained,
its integral with respect to u gives the convolution evaluated at ¢ € /, that is,

x*y(t):/lduzt(u), tel.

This integral can be put into a more specific form introducing the extensions.
The extension of x_(u —t) is eg(x_) +t = —eg(x) + t and the extension of z;(u)
is given by ep(z;) = [—eo(x) 4+ t] N eo(y), so that the integration can be limited to
eo(zy), that is,

xxy(t)= / dux(t —u)yu). 4.70)
[—eo(x)+11Neg(y)
In particular, we have x * y(#) = 0 whenever eo(z;) is empty.
The above interpretation gives a guideline for the convolution evaluation. To this

regard, it may be convenient to use several properties that are considered below.

Filter Interpretation The most important application of convolution is in filters.
A filter on the group I is a system governed by the input—output relationship

y(t):g*x(t):fdug(t—u)x(u), tel “4.71)
I
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Fig. 4.11 Graphical
representation of a filter on 1 _ g() IR

Table 4.3 Convolution

Properties Property Relationship
1. commutativity X*ky=y*X
2. associativity (x*xy)xz=x%*(y*2)
3. distributivity xx(y+2)=x%xy+x%z
4. area area(x x y) = area(x) - area(y)
5.1 norm [l s il < llxlly - Iyl
6. shift Xp* Vg =X *Y)piq
7. minimal extension eo(x xy) Ceo(x)+ep(y)
8. unit element S xx=x

where x (1), u € I,is theinput, y(¢), t € I, is the output (or response) and g(¢),t € I,
is the impulse response of the filter (Fig. 4.11).

Hence, a filter is a system governed by a convolution. More specifically, the filter
processes every input signal x on / by performing the convolution of x with the
signal g, specific of the filter, giving the output y = g * x.

4.9.2 Properties

Convolution properties are collected in Table 4.3 and are now commented. Strictly
speaking, all the properties hold in the class L1(/) of absolutely integrable signals,
but some of them have a more general validity.

Property 1 states that * is a commutative operation, and it can be proved with the
change of variable v = ¢ — u in the definition (4.68) and invoking properties (4.2a,
4.2b) of the Haar integral rules. Property 2 is the associative property, and it allows
writing a repeated convolution in the form x % y % z without ambiguity. Property 3
states the distributive property of convolution with respect to addition. Property 4
is obtained by integrating with respect to ¢ and considering that x(—(u — t)) and
x (1) have the same area (see (4.3)). Property 5 states that the class L{([/) is closed
under convolution; it can be proved using Holder inequality [13]. Property 6 states
that the convolution of the shifted versions, x,(t) =x(t — p) and y,(t) = y(t — q),
produces the signal

Xp*yg() =xxy(t—(p+q).

Properties 7 and 8 deserve further discussions and will be the subject of the rest of
this section and the next.
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4.9.3 Extension of the Convolution

The extension of a convolution x * y(¢) can be evaluated without evaluating the
convolution itself.

Theorem 4.5 The minimal extension of a convolution is a subset of the sum of the
minimal extensions of the convolution factors:

ep(x * y) Ceo(x) +eg(y). 4.72)
Proof In (4.72), the integrand extension can be written in the form

eo(v) ={u|x(t —u) #0,yw) #0} ={u |t —ueep(x),u €ep(y)}.

Now, we prove that, if t ¢ ep(x) +eo(y), the set eg(vo) is empty and then the integral
is zero and ¢ ¢ eg(x * y). In fact, if 7 ¢ eg(x) + eg(y), we cannot find pairs (¢1, #2)
such that #; € eg(x), 2 € eg(y) with #; + t» = ¢, and therefore no u value such that
t —u €ep(x) and u € eg(y). Consequently, eg(v;) is the empty set.

The theorem is concerned with minimal extensions. For generic extensions, the
result can be put into the form

e(xxy)=-e(x)+e(y), 4.73)

which will usually be considered in the following. g

4.9.4 A Rule on Periodic Convolution

Consider two periodic signals x(¢), y(t), t € G/ P, that are obtained as periodic rep-
etitions of two aperiodic signals a(?), b(t),t € G, that is,

x(t) =reppalt), y(t) =repp b(t),
where

repp a(t) 4 Z a(t — p).

peP

Then, their convolution x * y(z) can be obtained from the convolution a * b(t) of
the two aperiodic signals.

Theorem 4.6 The convolution of the periodic repetition of two aperiodic signals
a(t),b(t),t € G, is given by the periodic repetition of the convolution of a(t) and
b(t). In symbols,

(repp a) * (repp b) =repp(a *b). “4.74)

The theorem is proved in Appendix E using the transformation theory of Chap. 6.
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4.10 Impulses

The well known and important properties of the delta function §(¢) (which is intro-
duced on the domain R) can be extended to every signal class S(7). The signal of
8(I) having the same properties as the delta function will be called the impulse on 1
and denoted by §; (7).

4.10.1 Convolution Algebra

Commutative, associative and distributive properties 1, 2 and 3 of Table 4.3, together
with inequality 5, state that the class L (/) of absolutely integrable signals forms
a commutative Banach algebra, if multiplication is defined by convolution. In this
context, the following result holds [13]:

Theorem 4.7 The algebra of convolution on I has a unit if and only if the group 1
is discrete.

Hence, if [ is discrete there exists a signal §; of L{(/) such that s x §; = s for
all s € L1(I). If I is not discrete, such a signal of L (/) does not exist, but can be
introduced as a distribution (or generalized function). Anyway, the unitary element
of convolution (as ordinary or generalized function) will be called the impulse on I.
In conclusion, the impulse on / is defined as the signal that verifies the integral

equation
s*87(t) =s(2). (4.75)

This impulse is said to be applied at the origin and to have unit area (and the reason
will immediately be clear). In general, an impulse with area o and applied at ¢y has
the form ad;(t — ty).

4.10.2 Properties

The main properties of impulses are:

Sifting Property By explicitly writing (4.75) and considering the commutative
property, we obtain

/dus(t —u)dy(u) =/du81(t —u)s(u) =s(t).
I I

Hence, with the variable changes t — #y and u — ¢ and using the fact that the
impulse is even (see below), we obtain

/ dt s(1)8;(t — 1) = s(to), (4.76)
1
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which represents the sifting property. This means that by multiplying a signal by the
impulse applied at ¢y and integrating, we obtain the signal value at 7.

Unit Area Using the convolution rule on area, from (4.75) we get: area(dy) -
area(s) = area(s). Hence, the impulse has unit area

area(8;) = / dr8;(t) = 1. 4.77)
1

Extension and Value at 1 =0 Using the rule on extension, we find that the ex-
tension of the impulse §; on an ordinary group is limited to the origin, e(§7) = {0}.
More generally, on a quotient group I = Iy/ P, the extension is given by the modu-
lus

e(8;)=P. 4.78)
Hence
86;(t)#0 forte P, 671(t)=0 fort ¢ P. 4.79)

Consequently, we see that §; () is an even signal
81(—1)=08;(1). (4.80)

The impulse on a discrete group is an ordinary function (see Theorem 4.7). In
particular on a lattice, from (4.79) we have

1/d(I), iftr=0;
51y = /4D (4.81)
0, ift #0,
where d(7) is the lattice determinant. On a finite group I = Iy/ P, we find
1/d(lp), ifteP;
) 1= 4.82
1o/P®) {o, ifr¢P. (482

Multiplication by a Signal If we multiply a signal s(¢) by the impulse §;(t —
tp) = 0, we obtain

[s(081(t — to) = s(10)81 (t — t0), (4.83)

and the result is an impulse with area s (o). This rule should not be confused with the
sifting property (4.76). The proof of (4.83) follows from the fact the §;(t — o) =0
for t # 1y if I is an ordinary group and 87 (t — #9) =0 for ¢ ¢ 1o + P (see (4.79)).

Impulse on a Quotient Group The impulse on /p/ P is the periodic repetition of
the impulse on I, specifically

810/ (1) =) 81,(t = p). (4.84)

peP
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More generally, the impulse on Ip/P is related to the impulse on Iy/ Py, with
P C Py,

S/ =Y 81/t —p), (4.85)
PELPy/P)

where [Py/ P) is a cell of Py modulo P. These relationships follow from integration
rule (4.12a, 4.12b).

Impulse on Separable Groups The impulse on I = I x I3 is the tensor product
of the impulses on /; and I

Snxn, (1, 12) =61, (11)81, (22). (4.86)

This rule is a consequence of the integration rule (4.6).

4.10.3 A Noble Identity for Impulses

The following identity is fundamental for transformations, and particularly for mul-
tirate transformations (see Chap. 7). It relates the impulses on two groups /1 and />
with the impulse on 17 + I [6].

Theorem 4.8 If (11, I2) is a rationally comparable pair of groups, then

/ dsé;, (t —$)op,(s —u) =054, —u), tel,uelb. 4.87)
11N

We call this identity noble, as it is used in the context of the so-called noble
identities of multirate transformations. The assumption of rationally comparable
pair assures that both the sum 77 + I and intersection I; N I> are LCA groups (see
Sect. 3.9). It also holds for quotient groups (class Q(Gy)) provided that the sum (+)
and the intersection () are interpreted according to the conventions of Sect. 3.9.

The noble identity (4.87) is proved in Appendix F. Here, we confine ourselves
to some structural checks on ordinary groups. On the left-hand side, the integration
variable s occurs both in the first impulse, defined on /1, and in the second, defined
on I»; then, it must belong to both groups, that is, s € I1 N I. On the right hand side,
we find the difference r — u, where ¢ € I} and u € I,; then t — u belongs to the set

{t—ultelhuehbl={t+ulteh,ue-Dhi=1L+(—h)=1+1I,

where we have used the group property: —1I, = I.
Finally, we note that if /1 C I, we have (see (3.70)) I1+ I, = and 1 NI, = I;.
Then, (4.87) becomes

/ ds 87, (t — $)81,(s — u) =81, (t — u), (4.88)

|
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Fig. 4.12 Interpretation of

. x(u) =61 (u) y(0)=g()
the impulse response of a —_— g
filter I I

which is a trivial consequence of the sifting property. A similar result holds if
L1 DD

4.10.4 The Role of Impulses in Filters

We have introduced a filter on I as a system governed by input—output relation
(4.71). Now, the impulse on / permits obtaining the interpretation of the impulse
response g(t),t € 1.

In general, x(u),u € I, is an arbitrary signal on I and y(¢),t € I, is the cor-
responding response of the filter. When the input is given by the impulse, x(#) =
81 (u), the corresponding output is given by

y@)=g*8;(t) =g(), tel

Hence, the meaning of g(¢) as the filter response to the impulse on I (Fig. 4.12).
It is interesting to investigate what happens when the impulse response is itself
an impulse, g(¢) = §(¢). If this is the case, we find

(@) =06 xx(t)=x(), tel,

which states the coincidence y(t) = x(¢). Hence, a filter with impulse response
g(t) = &7(¢t) does not modify the input signal, and therefore represents the iden-
tity on I (it is also called the ideal all-pass filter).

4.11 One-Dimensional Convolution and Impulses

4.11.1 Convolution Expressions

The general expression of the convolution, given by (4.68), is now applied to the
groups of R, the class Q(R), to get as many explicit forms. To this end, we use the
expressions of the Haar integral from Table 4.1. The four convolutions are collected
in Table 4.4, where continuous times are denoted by ¢ and u, as in the general
definition, whereas discrete times are denoted by nT and kT to emphasize their
discrete nature.

e /=R
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Table 4.4 Convolution on the groups of R

Domain Expression Condition

I=R x*y(l):f:r;ox(t—u)y(u)du

I =R/Z(Tp) x*y(t):ft;‘)"'T”x(t—u)y(u)du fheR

I1=2Z(T) xxy(T) =302  Tx(nT —kT)y(kT)

1=2(T)/Z(Ty) x*y(nT)zz’;géV‘l Tx(nT — kT)y(kT) T,=NT,ko€Z

We find the familiar expression of the convolution on the real line. We illustrate in
particular the extension rule (Theorem 4.5), when the factor extensions are given by
two intervals of R, say

e(x) = [1x, Ir ], e(y) =1y, Ty ]. (4.89)
The convolution extension is again an interval, namely
e(xxy)=[ty +1,, Ty + Ty]. (4.89a)
Consequently, the duration is given by
D(x*xy)=D(x)+ D(y). (4.89b)

Anyway, the rule of Theorem 4.5 is more general since it holds for every kind of
extensions.

o I =R/Z(Tp)
We get the definition of Sect. 2.4.
o [ =7(T)and I =7Z(T)/Z(T,)

We get the definitions given for discrete signals in Chap. 2. In the literature, the
convolution for periodic signals is usually called the cyclic convolution.

4.11.2 Impulses

In the groups of R, the impulses are easily found and allow checking the general
properties.

e /=R

The impulse on R is given by the delta function, also called the Dirac delta
(Fig. 4.13)

Sr(t) =6(1), (4.90)
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SR (t) O 2(1y) (1)
| Al T T T
0 t 0 Tp t‘
b Szr)(0) 821 /21) (1) T,=5T
1 1
T T { { {
olT I olr Ty I

Fig. 4.13 Impulses on the groups of R. In the representation of the delta function, the arrow length
indicates the area (not the signal value!)

which verifies definition (4.75) and the other properties; in particular, it is zero out-
side the origin, so that e(ér) = {0}. As is well known, the delta function is a gener-
alized function (or distribution), in agreement with Theorem 4.7.

o I =R/Z(Tp)
Using the rule (4.84) with Ip =R and P = Z(T,), we find

+o00
Srjzr,) ()= Y 8(t—nTp). 4.91)

n=—0oo

Then, the impulse on R/Z(T)) is a periodic repetition of delta functions, with rep-
etition period T),. Also in this case, the impulse is a generalized function.

o I =7(T)

In this case, the group is discrete, and therefore, from Theorem 4.7, the impulse is
an ordinary function. Its expression is easily obtained by the properties of having
extension {0} and unit area. So, we find

T, ifr=0;
) t) = t e Z(T). 4.92
(1) (1) !O, i1 20, (T) (4.92)

o [ =7Z(T)/Z(Ty) with T, = MT, M €N

The impulse is an ordinary function, which can be found by the rule (4.84) with
Iy =7(T) and P =7Z(T,). We have

+00 . )
{I/T, if 1 € ZUT,): 493)

ducrymy O = Y Szt —nT) = 0, ifr¢Z(T,)
) p’

n=—oo
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4.12 Multidimensional Convolution and Impulses

We shall give the expression of the convolution and of the impulses in the multidi-
mensional case. We begin with the case where both the domains and the signals are
separable; this gives very simple results, e.g., a 2D convolution is simply obtained
by two 1D convolutions. But, in general, to get an explicit result is a difficult task.
In fact, the evaluation of convolution may not be trivial, even in the 1D case, but in
the multidimensional case it becomes a serious problem.

4.12.1 Convolution and Impulses with Separability

If the domain is separable, say I = I1 x I, and also the convolution factors are sepa-
rable, x(t1, t2) = x1(t1) x2(t2) and y(t1, tp) = y1(t1) y2(t2), the result of convolution
is a separable signal s(t1, t2) = s1(#1) s2(t2), where

s1(t1) = x1 % yi(t1), 52(t2) = x2 % y2(t2). (4.94)

This result is a consequence of integration rule (4.7). In fact,

S(Il,t2)=/ duyduz x(ty —uy, ta —u2)y(uy, uz)
1) xip

=/ duy x1(11 _Mlvul)YI(Ml)/ duy x2(t2 — uz, u2)y2(u2).
I 143

For the impulse, using the rule (4.7) on separable signals, we have
S xn(t1, 1) =381, (1), (12). (4.95)

These results can be easily extended to m factors.

Example 4.3 (Lazy pyramid) Consider the convolution of the 2D rectangular pulse
x(11, ) =rect(r) rect(rn), (11, 1) € R?

with itself, that is, the self-convolution s(t1, t2) = x x x(t1, t2).

The signal is separable, x(t1, ) = xo(t1)xo(t2), with xo(f) = rect(¢),t € R.
Then, according to (4.94), it is sufficient to evaluate the self-convolution so(¢) =
xo * xo(¢) of the 1D signal xo(¢). Considering that so(¢) has a triangular form

1=, ifle] <1;

A
s0(t) = triang(r) =
(1) () 0, il 1,

we find

s(t1, 1) = triang(#1) triang(y). (4.96)
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x(ll,lz)

Fig. 4.14 2D rectangular pulse and its self-convolution

Fig. 4.15 The pyramidal
signal pyr(t1.12)

1

We realize that s(t1, t2) has a quasi-pyramidal form (Fig. 4.14), called lazy pyramid
by Bracewell [3]. In fact, it is like a pyramid, but one that has slumped along its four
sloping edges.

We compare the lazy pyramid with the “true” pyramid, whose expression can be
written in the form (Fig. 4.15)

1—|nl, iflnl<|tul<1;
pyr(ti, ) =1 - ||, if|n] <ln|<1; 4.97)
0, if |t1], |2] > 1,

or in the compact form,

t t
pyr(t1, t2) = triang(#;) rect 2 + triang(#,) rect 1) (4.97a)
2t 2t

A cleared comparison is obtained by sectioning both signals along some vertical
planes, as shown in Fig. 4.16, where we see that the lazy pyramid is close to the
pyramid towards the basis (for both signals, the extension is the square (—1, 1) x
(—1, 1)) and the vertex, but it differs progressively towards the middle. Another dif-
ference is the area (volume): the lazy pyramid has area(s) = area(sg) area(sg) = 1,
whereas the true pyramid has area(pyr) = 4/3. A final remarkable difference is that
the pyramid signal is not separable!
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%)

1
Fig. 4.16 Comparison of the true pyramid and lazy pyramid (dashed lines) along the planes
h=t,H=24

4.12.2 Convolution Expressions

The expression of the Haar integral has been found on every group of R™, the class
Q(R™), and therefore from the general definition (4.68) we can obtain the explicit
forms of convolution. Here we give this form in a few cases.

I =R™ The Haar integral is the ordinary Lebesgue integral. Hence

+00 +00
x*y(t):/ / x(t1 —upy ooyt — )Y@y, ... i) duy - - duy,.
—0o0 —0o0

I =mD lattice The Haar integral is the summation over the lattice points, multi-
plied by the lattice determinant. Hence

x*xy({t1, ..., tyn)=d) Z X(t —uty ooty —um) YW1, ..., up). (4.98)

(t15estm) €l

Note that, in general, the mD summation cannot be split into m summations. In-
stead, when the lattice is separable, I = Z(d\, . .., d;; ), the summation can be split
into m summations; for instance, for m = 2 we have

x xy(nidy, nady)

+00 +00
=didy Y Y x(md —kidi,nydy — kad)y(kidy. ko).
kj=—00ky=—00

I =2D grating Using the representation (4.24) in which the grating point is ex-
pressed in the form (u1, u2) = (r, Er + Fn),r € R,n € Z, we have

+oo T
x*y(tl,tz)zF/ Z x(ty —r,tp — Er — Fn)y(r, Er + Fn)dr.

X p=—o0
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A+H A+E
5] 15}

e(xxy)

b 4 1 4

Fig. 4.17 Convolution extension of Example 4.4

Example 4.4 We want to find the extension of the convolution of the 2D rectangular

pulses
t+n —n
11, ) = rect rect ,

t t
y(t1, ) = rect(i) rect(f), (t1,h) € RZ.

The extensions are (Fig. 4.17)

e(x) = {([1,[2) |—-l<h+h<l,-l<yq—hH< 1},
e(y) =(=2,2) x(=2,2),

that is, a tilted square and a square. The convolution extension is the set sum e(x) +
e(y) and can be found by evaluating the sum of all the four vertexes of e(x) with all
the four vertexes of e(y); the resulting polygon is an octagon.

4.12.3 Impulses

We show that the impulses can be obtained from the general rules.

I =R™ The impulse is given by the mD delta function

Orm(t1, ..., tm) =06(t1) - 6(ty). (4.99)

This expression is a consequence of rule (4.86) on separable groups.
I =R™/P The impulse is the periodic repetition of mD delta functions (see (4.84))

SRm/P(t) = Z (SRm (t — p) (4100)
peP
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I1=R? [=R?/P  with P=Z}(D;.D,)

3 Yz
Z AN T AT
e e T i A

R2 R2

I=L L=7}(d),d) I=L/P  L=Z}(d)dp), P=Z}(2d) Ady)

LA~
P s
LA A
W, vV Vg
e v e d et
AT 7

L=Z% (dl ,dz) L:Z; (dl ~,d2)

Fig. 4.18 Examples of 2D impulses 3; (¢1, t2)

I =L =mD lattice The impulse is the ordinary function

_fdw, ife=o;
L=, 120, (4.101)

where d(L) is the lattice determinant (see (4.81)).
I = L/ P = finite group The impulse is the periodic repetition of the impulse on L

Su/p(t) =) 8L(s = p). (4.102)
seP

Figure 4.18 shows four examples of 2D impulses. The impulse §p2(#1, f2) is in-
dicated by a pyramidal arrow. The impulse dp2 / p(t1, 1), with P = Zé (Dy, D),
is given by the periodic repetition of the impulse on R? with repetition centers
Zé (D1, D7). The discrete impulse 8y (¢1, 2) and its periodic repetition 8., p (t1, 2),
with L = Z}(dy, d>) and P = Z1(2d,, 4d>), are also shown.
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4.13 Symmetry Theory

In Sect. 4.7, the standard symmetry pairs, namely even/odd, real/imaginary and
Hermitian/anti-Hermitian, were introduced. In this section, we try to understand
what these symmetries have in common with the target to get an answer to the ques-
tion: what is a symmetry? We shall give a formal answer in the framework of linear
spaces and operators. In this investigation, we are motivated by the famous sentence
of the mathematician Emil Artin (1898-1962): “The investigation of symmetries of

a given mathematical structure has always yielded the most powerful results”.”

4.13.1 Preliminary Considerations

Let H be the Hilbert space of square integrable signals L, (/) or a subspace of the
same space. Then, a symmetry on H may be introduced as a property I1 that some
signals of H have and some others have not. Hence, the property IT identifies a
subset of H

S ={s € H | s with property IT}.

For instance, the even symmetry is given by the property s(—¢) = s(¢), which iden-
tifies the class of even signals

E = {s e H|s(—t) =s(t)}.
Analogously, the odd symmetry s(—¢) = —s(¢) identifies the class of odd signals
O={seH|s(-t)=-s0)}.

This viewpoint of thinking of a symmetry as a property is useful for the interpre-
tation and, in fact, it corresponds to the common sense of what a symmetry means.
However, it is difficult to proceed mathematically with properties, since at this level
we do not have a consolidated algebra. The best solution we have found is to con-
sider a symmetry as a class of symmetric signals. For instance, the class E of even
signals will be considered as the even symmetry and so will be the class O.

Working with subclasses of the given class H, we can apply the algebra of sets,
and the meaning, e.g., of the intersection of two symmetries becomes immediately
clear. Furthermore, we can also make use of the algebra of linear spaces. In fact, we
have seen in Sect. 4.5 that even and odd symmetries, intended as classes, have the
structure of subspaces and this properties can be seen for other classes of “symmet-
ric” signals.

Another advantage of this procedure is that symmetries can be generated by spe-
cial linear operators, projectors and reflectors.

"The Symmetry Theory will not be used until Chap. 14. The main application will be seen in
Chap. 15 with wavelets.
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Fig. 4.19 H is the reference
signal space and o (P) is the
class of symmetric signals

generated by the projector P; X P
s = P[x] gives the projection

of x onto o (P) and s = P[s]

for any s € o (P)

4.13.2 General Definition of Symmetry

We recall from Definition 4.2 that a projector is an operator P : H — H with the
idempotency property P2 = P, where H is typically Lo (I), but in general may be a
subspace, H C Lo (I).

Definition 4.6 Given a projector P : H — H, the symmetry generated by P is the
subspace

o(P)={seH|Ps]=s}. (4.103)

Hence, the subclass o (P) of symmetric signals in H is characterized by the prop-
erty P[s] = s, as shown in Fig. 4.19.

The interpretation of (4.103) is as follows: while in general the projector P
changes signals, that is, P[x] # x, the application of P leaves the signals having
the symmetry o (P) unchanged. From the idempotency property, P? = P, it follows
that, for every signal x, the output y = P[x] is a signal with the symmetry o (P) and
indeed P[y] = P?[x] = P[x] = y. Hence, P extracts the part of a signal with the
symmetry o (P).

Note that, by definition (4.103), signals with the symmetry o (P) are eigenfunc-
tions of the projector P with eigenvalue A = 1. Moreover, from the idempotency
property, the projector P generates its eigenfunctions starting from arbitrary signals.

Example 4.5 We illustrate the above definitions for the even (E) symmetry, which
is generated by the projector

Pe = l(f] +J) = Pelx]l= lx + l)c_ (4.104)
2 2 2
where J is the identity operator, J_ is the reflector operator (see Sect. 4.5) and
x_(t) = x(—t) is the reflected version of x(z). So, we see that Py “extracts the
E part” of a signal as s = Pg(x) and, for an E signal, we find that Px[s] = s, that
is, %s + %s_ =s, which is equivalent to s(—t) = s(¢), the standard definition of an
even signal.
Analogous considerations hold for the odd (O) symmetry, where the projector

1 11
Po=30—02) = Dolx]=Zx—zx. (4.105)
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x(t) 4 x(=1) 1

/\ AN

v

FX(t)+5x(—t) 4 LE %x(t)—%x(—t) A Lo

N | VO WV

Fig. 4.20 Construction of E and O signals starting from an arbitrary signal x ()

i 4
~y

“extracts the O part” of a signal. So, from Py[s] = s we obtain the standard def-
inition of O symmetry s(—t) = —s(¢) . Note also that Té = P and T% =P, as
required by the projector property.

Figure 4.20 illustrates the action of the projectors Pg and P,. Starting from a
general signal x(¢), the reflected version x(—¢) is first obtained, then Py gives the
even part as %x(t) + %x(—t) and P, the odd part as %x(t — %x(—t).

Example 4.6 The operator P, defined be the input—output relation
Pe y@O) =1(0)x(@@), teR,

where 1(z) is the unitary step signal, provides the causal version of the signal
P[x] = x.. Considering that P2[x] = x,, the operator P, is a projector and generates
the symmetry o (P.) of causal signals. The complementary symmetry is provided
by the projector P, defined by y(z) = 1(—1)x(¢), which generates the symmetry of
anticausal signals.

The purpose of this example is showing that symmetries must be intended in a
generalized sense (usually causality is not called symmetry), but with the algebraic
structure of classical symmetries.

Example 4.7 In the previous section, we have seen that an orthonormal basis allows
defining an orthogonal projector Py, (see Proposition 4.5). The symmetry generated
by this projector is the subspace o (Ps) spanned by the sub-basis @ ;. The property
of signals in o (Pyy) is that they have an M-term expansion provided by the basis
® s, while arbitrary signals have an infinite term expansion, in general.
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4.13.3 Properties of a Symmetry

We complete the interpretation of a symmetry with some fundamental properties.

A first property is concerned with the range space, or image, of the projector
generating the symmetry o (P). We recall that the image of a linear operator L :
H +— H is the subspace im(L) = {L[s] | s € H}.

Proposition 4.7 The image of a projector P : H — H is given by the symmetry it
generates: im(P) = o (P).

This is a consequence of idempotency property. In fact, if y = P[s] € im(P),
then P[y] = P*[s] = P[s] = y. Next, the fundamental result:

Theorem 4.9 Every subspace S C H is a symmetry.

Proof We have to find a projector P such that o(P) = S. Now, every subspace
S, as a vector space, has a basis Gg = {8, | n € N} and, without restriction by
Schmidt orthogonalization procedure, Gg is assumed to be orthonormal, that is,
(Bm>» Bn) = Smn [12]. Next, consider the kernel

hp(t,u) ="y Bu(1)B; () (4.106)

neN

and the corresponding linear operator P. The kernel of P2 can be evaluated by the
composition law (4.45)

hi2(t3, 1) =/dt2h3(t3,tz)h3(t2,t1)
I

= > ﬂm(m{ /I drzﬁ;az)ﬂn(tz)}ﬁ:(n): D Bu3)8mB (1)

m,neN m,neN

where {-} = §,,, because of orthonormality. Hence hi2(#3, 1) = Zn en B (13) X
Bi(t1) = hp(t3, 1), which states that P2 =P and P is a projector. The fact that
o (P) = S is evident by noting that

Pls|t] = /; duhpg(t,u)s(u) = Z ﬂn(t)/ldu ﬁ:(u)s(u) =s(1).

neN

A symmetry S defines a projector P such that S = o (P), but P is not unique.
However, uniqueness is assured for Hermitian projectors [12].

Proposition 4.8 Given a subspace S, there is a unique Hermitian projector that
generates it.

In the previous proof, the projector defined by (4.106) is Hermitian.
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4.13.4 Complementary Projector and Binary Symmetries

A projector P : H — H identifies an operator Jy — P that is itself a projector,
Oy =P =Ty -2, (4.107)

which is called the complementary projector of P (vice versa, P is the complemen-
tary of Jg — P). Here, Jy is the identity on H.

In this context, it is clear that two projectors Py and P are complementary when-
ever

Po+Pr=7g. (4.108)

They also satisfy the orthogonality condition for operators
PoP1=P1Po=0. (4.109)

So, from (4.109), signals with the symmetry o (Pg) have null components belonging
to the complementary symmetry o (P1), and signals with the symmetry o (1) have
null components belonging to the symmetry o (Pg). Note that o (Py) and o (P;) are
disjoint, except for the zero signal s(t) = O which belongs to both. This allows the
decomposition of an arbitrary signal x of H in the form

x=JIg[x]=Polx]+ Pilx] =50 + 51 (4.110)

where so belongs to the symmetry o (Pg) and s; belongs to the complementary
symmetry o (P1). Indeed, such a decomposition is unique, as immediately follows
from (4.108) and from the property “so/s; has the symmetry o (Pg)/o (P1)”. This
is illustrated in Fig. 4.21. Using the terminology of vector spaces we can write that
H is the direct sum of the symmetries o (Pg) and o (P), symbolized

o(Po) ®o(P1)=H. @.111)

In the previous examples, we have seen projectors and the corresponding com-
plementary projectors. The pairs of standard symmetries seen at the beginning of
the section may be handled by each other complementary projectors.

A very relevant case is when the projectors P and Iy — P are Hermitian. Then,
the symmetric components so and s; become orthogonal (see Proposition 4.9).

About the Identity Operator

Usually the identity operator J refers to the class of signals S(I), as the operator
that is “transparent”, giving J[x] = x for every x € 8(I). In this case, its kernel
is h(t,u) = §;(t — u), where §; is the impulse on 7. In the present context, the
identity is confined to a given subclass of S(I), specifically to a subspace H of
Ly(I). Then, considering a symmetry S = o (P), where by definition the signals
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o(Po)@o(Pr)=H

H C Lx(I) so(t)

2T e

P, s1(t)

Fig. 4.21 Binary symmetry generated by a projector Po : H — H and by its complement
P1 =Jg — P. A signal s(¢) is uniquely decomposed into the symmetric components so(¢) and

s1(0)

have the “transparency” property P[s] = s, we realized that P is the identity operator
onsS.

Having assumed that H is a subspace, the identity Jy in (4.107) represents itself
a projector and could be denoted by Py as well. Note that in Fig. 4.21, where the
signal s is decomposed into the symmetric components so = Po[s] and s = P;[s],
the reconstruction s = so + s1 holds if s € H, otherwise the reconstruction gives
Prls]=Tyls], that is, the projection of s onto H.

Note also that when H is a proper subspace of L, (1), the kernel of Py =Jp is
no longer given by the impulse on /.

4.13.5 Symmetries in Terms of Reflectors

We now introduce another useful way to generate symmetries. A binary symmetry,
interpreted as the pair o (Pp), o (P1), can be generated starting from a single operator

B : H — H with the property
i

which will be called a binary reflector [11].
A binary reflector B allows defining a pair of projectors as

1 1
TOZE(jH—i-'B), T]ZE(:]H_B) (4.113)

In fact, from (4.112) we have that both Py and P; are projectors. Moreover, Py and
P are complementary and orthogonal, that is,

Po+P1 =Ty, PP =0. (4.114)

Given two complementary projectors Py and Py, the corresponding reflector B can
be obtained by solving (4.113),

B=Py—7P;. 4.115)
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Note that to get the property B2 = Iy, the projectors must be orthogonal. In fact,
from (4.115) B2 = 33(2) + fP% —P1Po—PoP1 =Py +P1 =T if PoP1 =P1Py=0.
A binary reflector B generates a binary symmetry,® namely

0 (Po) = {s|Pols]=s} = {s|Bls] =s},

(4.116)
o(P) = {s|Pilsl=s}={s|Bls]=—s}.

Thus, the symmetry o (Pp) consists of the eigenfunctions of Py with eigenvalue
A =1, or equivalently, of the eigenfunctions of B with eigenvalue A = 1. Similarly,
the symmetry o (P1) consists of the eigenfunctions of P; with eigenvalue A = 1, or
of the eigenfunctions of B with eigenvalue A = —1.

Finally, we note that, from (4.112), it follows that B~! = B and we can recover
a signal after applying a reflector, whereas the application of a projector is not re-
versible.

As an example, the symmetry pair E/O is generated by the reflector

Blx] = x_ 4.117)

which represents the “time reflection” operation. Note that the “time reflection”
operator is reversible. In fact, applying (4.117) twice, we recover the original signal,
and therefore B2 =Jy.

4.13.6 M-Ary Symmetries

We have seen that a pair of complementary and orthogonal projectors Py and P
generates a binary symmetry and that same symmetries can be generated by a sin-
gle binary reflector with the property B> = J. This can be generalized to M-ary
symmetries.

Definition 4.7 A set of M projectors P; : H+— H,i=0,1,...,M — 1, form a
system of M-ary projectors if
M—1
PP, =0 fori#j > Pi=Iu. (4.118)
i=0
that is, the P; are pairwise orthogonal and provide a resolution of the identity on H
(see [12]).
A system of M-ary projectors defines an M-ary symmetry o (P;, i =0,1,...,

M — 1, which allows the decomposition of a signal s € H into M symmetric com-
ponents s; = P;[s]. The decomposition is unique and thus the subspace H is given

8The term “binary symmetry” refers both to the individual symmetries, e.g., o (Po) is a binary
symmetry, and to the pair o (Pp), o (Py).
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> UDO % ([)'
| ?2 S1 ([)=
s(1) 5 s(1)
| ‘:_P3 52 (t)=
o Py 1B (),

Fig. 4.22 Illustration of a quaternary symmetry generated by a system of quaternary projectors
and corresponding decomposition of a signal s(¢) of a subspace H C Ly(I) into four symmetric
components s; ()

as the direct sum
o(Po)® - ®o(Pyu-1)=H
as shown in Fig. 4.22 for M = 4.

Proposition 4.9 If in the system of Definition 4.7 the M -ary projectors are Hermi-
tian, the symmetric components s; = P;[s] are pairwise orthogonal, s; Ls;, i # j.

The proof is based on the identity of the inner product (see Problem 4.20)
(Pilx], Pjlx]) = (x, PFP;[x]), (4.119)

where P; in =0 for i # j by condition (4.118).
Also in the M-ary case, the symmetry can be obtained by a single reflector. An
M -ary reflector B is an operator with the property

(4.120)

Now, an M -ary reflector provides a system of M-ary projectors P; according to the
relation
=
?i=M23“W,‘{4, i=0,1,....,M—1, (4.121)
s=0

where Wy = ¢/M and B* is B applied s times (B® must be intended as the
identity operator Jg). We can prove that the operators P; defined by (4.121) are
projectors that verify conditions (4.118). For the proof, we use the orthogonality of
the exponentials wk k=0,1,....M (the details are left to the reader).



4.13 Symmetry Theory 191

Fig. 4.23 Quaternary Po+Po
symmetries o (P,,) with

marginal symmetries

o (Po+ P>) and o (P + P3)

(for brevity, a symmetry o (P)
is indicated by the
corresponding projector P

P+ P;

Given a system of M-ary projectors P;, the M-ary reflector is obtained as (see
Problem 4.20)

M—1
B=> PWy,. (4.122)
i=0

In conclusion, as seen for binary symmetries, M -ary symmetries can be generated
by M projectors as well as by a single M-ary reflector.

It is remarkable that if M is not prime, the M-ary symmetries o (P;) can be
grouped into super-symmetries. For instance, if M = 4 we find that

1 1
P =P+ Py = 500+ ). PP =P Py = 50 —B?)
are projectors that generate two binary symmetries 0(9’(()2)) and U(TPEZ)). We can
check that o (Pg), o (P2) C U(TP(()Z)) and o (P1),0(P3) C cr(fP%z)), as illustrated in
Fig. 4.23. In this sense, e.g., o(iP(()z)) is a super-symmetry of o (P1) and o (Py)is a
@)
sub-symmetry of o (P;”).

M-ary symmetries can be obtained in several ways, autonomously or by combi-
nation of symmetries of smaller order, as we see in the following examples.

Example 4.8 The Fourier operator &, which will be introduced in Chap. 5, verifies
the condition ¥* = J. Hence, it is a quaternary reflector, and from (4.122) we obtain
the corresponding projectors

3
Pu=> Fi"™, m=0,1,23.
s=0

Example 4.9 In Example 4.7, we have considered the projector Py; obtained from
an orthonormal basis @ = {¢, | n € Ng}. The kernel of P, is obtained by summing
the product ¢, ()@, (1) over the natural 0, 1, ..., M — 1. By summing these products
from M to 400 we obtain the kernel of the complementary projector J— Py. In such
a way, we have obtained a binary symmetry.
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Fig. 4.24 Octal symmetries and corresponding quaternary and binary super-symmetries

To get an M-ary symmetry from the basis @ it is sufficient to partition the index
set Ng into M parts: No, N1, ..., Nays—1. Then, the ith projector P; is defined by the
kernel

P, hi(t,u)=2(pn(t)<p:(u), i=0,1,...,M—1.
}'LEN[

Using orthonormality, we can check that the P; form a system of M-ary projectors
and thus define an M-ary symmetry.

4.13.7 Hierarchies of Symmetries

A hierarchy of symmetries consists of several classes of symmetries displayed in a
pyramidal order, where the symmetries of the first class contain those of the second,
the symmetries of the second contain those of the third, and so on. Hierarchies can
be expressed starting from the powers of an M -ary reflector B, as we now show for
the cases of an octal class.

Octal Symmetries

An octal symmetry (Fig. 4.24) is generated by a reflector B of order 8, that is,
B =Ty.
This reflector generates the 8 projectors

7
1
gagjl%):gzwénrgr, m=0,1,...,7.
r=0
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First, note that also B2 and B* are reflectors, of order 4 and of order 2, respectively.
Then we can relate the octal symmetry to two quaternary symmetries (generated by
B2) and to the binary symmetries (generated by B*).

In order to establish the relation of the 8 octal symmetries with their quaternary
super-symmetries, we note that

7 7
1 1
LES) + LS)+4 — g § :(Wénr + W§n1+4)r).Br — g § :(Wgnr + Wgnr(_l)r)Br
r=0 r=0

where the sum in brackets is zero for odd r and is 2W§’” for even r. So, we have

3
1
s=0

which states that octal symmetry can be suitably grouped to obtain the quaternary
symmetry generated by B2.

Analogously, we can combine the four Lf,f ) as L(()z) = L((>4) + Lg‘) and ng) =
554) + Lg” to obtain the two binary super-symmetries. Hence, we have the overall
relation between symmetries shown in Fig. 4.24.

Comments on Symmetry Theory

The Symmetry Theory developed in this section is completely original and not
considered in other textbooks and perhaps it deserves a further development. It is
“transversal” with respect to Signal Theory in the sense that it can be used for the
reformulation of several results. The question is: Is it really useful? In the author’s
opinion, the main interest lies in an elegant and compact interpretation of results
obtained with other techniques, as we shall see in Chap. 14 with filter banks and in
Chap. 15 with wavelets, and in general in the decomposition of signals.

But in some cases, Symmetry Theory can also be used as a fool to discover new
results. As an example, it was used to find the exact (non-numerical) eigenvectors
of the discrete Fourier transform (DFT) [5], a problem that was long recognized to
be very challenging.

4.14 Problems

4.1 * [Sect. 4.1] Explicitly write (4.12a) with Ip =R and P = Z(T),) and (4.12b)
with o =R, P =Z(T)) and Py = Z(%Tp). Then, combine these formulas.

4.2 xx [Sect. 4.1] Explicitly write the multirate identity (4.13) with [y =Z and P =
Z(5). Then, prove the identity in the general case, starting from (4.12a), (4.12b).
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4.3 x [Sect. 4.2] Show that the ordinary integral over R verifies the general proper-
ties of the Haar integral.

4.4 x [Sect. 4.2] Show that the Haar integral over Z(T) verifies the general proper-
ties of the Haar integral.

4.5 sxx [Sect. 4.3] Prove the identity

+00 T, o
/ s(t)dt:/ > s(t—nTy)dr,
0

o0 n=—o0

which is a particular case of (4.12a) for Iy =R and P = Z(T)).

4.6 *x [Sect. 4.3] Using (4.6), explicitly write the integral of a signal (71, 1), €
R x Z(d). Then, evaluate the integral of the signal s(t1, 1) =e~ 112 for 1,1, > 0
and s(t1, 1) = 0 elsewhere.

4.7 »*x [Sect. 4.5] Prove that the inner product of an even real signal and an odd
real signal on Z(T)/Z(NT) is zero. Hint: consider the cases: N even and N odd
separately.

4.8 *x [Sect. 4.5] The abstract definition of the adjoint of an operator L is formu-
lated through the inner product as an operator £* such that

(LIx] y)={x, L*[y1), Vx,y € La(D). (4.124)

It can be shown that this condition uniquely define £* from £ [12].
Prove condition (4.124) through the kernels, where the kernel of L* is given
by (4.47).

4.9 xxx [Sect. 4.5] Prove that the operators Lg = %(J +J)and Lp = %(3 —-7J2)
are idempotent and orthogonal to each other.

4.10 »x [Sect. 4.5] Prove that the identity of the inner product in L (/)
(Llx], Klx]) = (x, L*K[x])

where L and X are arbitrary operators on Ly (/) and L* is the adjoint of L. Hint:
use the abstract definition of the adjoint reported in Problem 4.8.

4.11 * [Sect. 4.6] Show that class (4.55) consists of orthogonal functions.
4.12 »xV [Sect. 4.6] Show the orthogonality of the cardinal functions (4.53).

4.13 »x [Sect. 4.6] Show that cross-energies verify the inequality

0< EyyEyy < ExE,.
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4.14 »xx [Sect. 4.6] Using the inequality for complex numbers
Iz + 2% < 2lzl, (4.125)

prove Schwartz—Gabor inequality (4.42). Note that in (4.125) the equality holds if z
is real.

4.15 x [Sect. 4.6] Formulate a basis on a finite group K/ P starting from the impulse
51{/}) .

4.16 ** [Sect. 4.8] Find the extension and duration of the signal

= t —nT),
x=Y rect( ar, ) t € RJZ(T))

n=—oo

where d is a positive real number. Discuss the result as a function of d.

4.17 x [Sect. 4.9] Prove the following relations for the minimal extension of the
product and the sum of two signals

ep(xy) = eg(x) Nep(y),
eo(x +y) Cep(x) Uep(y).

4.18 ** [Sect. 4.9] The signals x(¢) and y(z), defined on R/Z(10), have the follow-
ing extensions

e(x) =10, 1) + Z(10), e(y) =10,2) + Z(10).
Find the extension of their convolution.

4.19 »x [Sect. 4.9] Consider the self-convolution s(t) = x * x(t), t € R/Z(T)), of
the signal

= t —nT,
x(t) = E rect( T >, t e R/Z(Tp).
p

n=—0oo

Find the extension as a function of the parameter d.

4.20 *x [Sect. 4.13] Prove that (4.122), where P; form a system of M-ary orthog-
onal projectors, defines an M-ary reflector, that is, an operator with the property

BM = Jy. Hint: first evaluate B> using the orthogonality of the P;, then evaluate
B3 = B2B, etc.
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Appendix A: Haar Integral Induced by an Isomorphism

If we know the Haar integral over an LCA group H, then we can derive the Haar
integral over every G ~ H, by using the isomorphism.

Let o : H — G be the isomorphism map. Let s(¢),f € G, and let 5(h),h € H, be
the corresponding signal defined on H, which is given by (see (3.62))

§(h)=5(h), heH.

Theorem 4.10 The integral defined by

/dts(t):ucf dhsh), (4.126)
G H

where g is an arbitrary positive constant, is a correct Haar integral over G.

Proof We have to show that the integral over G defined by (4.126) has the five
identification properties listed as Properties 1-5 in Sect. 4.1. We now see that those
properties follow from the Haar integral properties on H and isomorphism rules.
Properties 1, 2 and 3 are evident. To prove Property 4, that is, that s_(#) = s(—1)
and s(¢) have the same integral, it is sufficient to note that «(—h) = —a(h). To
prove Property 5, that is, that s4, () = s(t — tp) and s(¢) have the same integral, let
u = B(t) the inverse mapping and uy = B(f) and note that s(t — ty) = s(a(u) —
to) = s(a(u) — a(ug)) = 5(u — ug), where the last equality is obtained from the
separability of the isomorphism map. But, from the shift-invariance of the Haar
integral on H, we know that §(u — ug) and s(«) have the same integral. Il

Appendix B: Integral Independence of a Group Representation

1. We want to prove that the integral defined by (4.18) is independent of the group
representation (G, H) —> G, and this should be done for the three kinds of ordinary
groups of G(R™), that is, G = R™, G = lattice and G = grating.

When G =R™, (4.18) gives

/ dts(t) =d(G) dhs(Gh), (4.127)
m Rm

where G is an arbitrary regular matrix. The first is the ordinary integral of s(t),
evaluated with respect to an orthogonal coordinate system (with basis given by the
identity matrix). In the second integral, we have the coordinate change t = Gh,
which can be done without changing the result, provided that a multiplication by
the absolute value of the Jacobian determinant is introduced. But, this factor is just

d(G).
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When G is a lattice, we have the sum of all signal values on the lattice, which
are independent of the lattice representation. On the other hand, also the lattice
determinant d(G) is independent of the basis G.

The proof of independence when G is a grating is less trivial [4] and is omitted.
It is based on the idea that, starting from an arbitrary representation (G, R?” x Z7),
we finally obtain (working with a matrix partitioning) that the result is the same as
with a canonical representation (see (16.14)).

2. The integral on a quotient group G/ P is obtained by restricting the integration
over acell [G/ P). Now, suppose that we have evaluated the integral over a particular

cell C, namely
/ dts(t):/ dts(t),
G/P c

and we compare the result obtained with another cell C. As we shall see in Chap. 16,
C is related to C by the partition

C=J[cw+p]

pehy

where {C(p), p € Py} is a suitable partition of C and Py C P. So, we have

dts(t) = dts(t) = drs(t—p),
fés() Z/C (0 Z/C(p) s(t—p)

pehPo ®)+p pePo

where s(t — p) = s(t) for the periodicity of s(¢). Hence
dts(t) = dts(t):/ dts(t),
/é Z C(p) c

pehy
where we have considered that C(p) is a partition of C.

Appendix C: Proof of Theorem 4.2 on Coordinate Change in R™

Suppose that G is an ordinary group of R with representation (G, H). After the
coordinate change, the group becomes

Ga={a'u|ueG}={a"'Gh|heH],

which states that a representation of G, is (G, H) with G, =a~!G.
Now, we can apply the general formula (4.18) to derive the Haar integral on G,
namely

/ dtsa(t) = d(Ga) / dh s,(Gh) (4.128)
a H



198 4 Unified Theory: Signal Domain Analysis

where
sa(Gah) = s(aGzh) = s(Gh).

On the other hand, the integral on G is
f dus(u) =d(G) / dhs(Gh). (4.129)
G H

Then, comparing (4.128) with (4.129) and considering that d(G,) = d@ahHd(G),
the conclusion follows.

Appendix D: Proof that L ,(I) Is a Vector Space

It is sufficient to show that

1. L,(1) is closed with respect to the sum;
2. L,(1) is closed with respect to the multiplication by a scalar.

We begin by showing property 2, soletx € L,(/), @ € C and y = ax. Then

/df|y(f)|”=fdt |(¥|p|x(t)|p=|a|”/dt|x(t)
1 1 I

which exists and is finite. Hence property 2 is proved. To show property 1, let x, y €
L,(I),z=x+y. Then, by defining A ={r € I : [x(¢)| = |y(¢)|}, we can write

p
s

lz0]” =|x@) +y®|" < (x| + [y®)])"
and

2|x(t)], ifre A;

]+ ]y < {2|y(l)|, ifr¢A.

Therefore, we get

p
)

/dz|z(r)|”gfdt(|x(t)|+|y(t)y)”5/dz21’|x(t)|f’+/ dr 27|y (1)
1 1 A A

which exist and are finite by property 2, and hence property 1 is proved.

Appendix E: Proof of Theorem 4.6 on Periodic Convolution

With the language of transformations, the theorem claims that (i) the periodic rep-
etitions (or up-periodization) x(¢), y(¢) of a(t), b(t), t € G, followed by (ii) the
convolution c(¢) = x * y(t) is equivalent to (iii) the convolution s(#) = a * b(t) fol-
lowed by (iv) the periodic repetition of c(¢), as shown in the top part of Fig 4.25.
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a(t) . x(t) a(t)
\ c(t) O‘ s(t) ()
( : f—— = *
b(e) s A6 bie) G GrP
G G/P G
AN l X() A()
\ c(f) B O‘X S(f) l c(f)
B() l 1 A G/P B() G G/p
G G/P G

Fig. 4.25 Diagrams for the proof of Theorem 4.6

The proof is carried out in the frequency domain, where the up-periodization
G — U = G/ P becomes the G — U down- sampling and the convolution be-
comes a product, as shown in bottom part of Fig 4.13. Then we have to prove that
(i") the down-sampling G — U of A(f), B(f), with equations

X(f)=A(f), Y(f)=B(f), feU

followed by (ii") the product S(f) = X (f )Y (), is equivalent to (iii") the product
C(f) =A(f)B(f), followed by (iv") the G —> U down-sampling, with equation

S(fHH=C(f), feU.
Now, the global relation of (i’) and (ii’) is

S(f)=A(f)B(f), feU,

and the global relation of (iii’) and (iv’) is just the same. This states the equivalence.

Appendix F: Proof of the Noble Identity on Impulse
(Theorem 4.8)

We have already observed that if the pair (1, I) is ordered, that is, I} C I or
11 D I, the identity is trivial (see (4.88)). If one of the group is a continuum, then
the pair is always ordered. Therefore, it remains to prove the identity in the case of
nonordered lattices and nonordered finite groups. The proof is not easy and will be
articulated in several steps with the main points illustrated by examples.

The main preliminaries are the determinant identity (3.77), that is,

d(JNK)d(J + K)=d(J)d(K), (4.130)

and the following:
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Lemma 4.1 Let (J, K) be a pair of rationally comparable lattices, then for the sum
J 4+ K the following partition holds

J+p, pelK/(JNK)ZAP. (4.131)
Proof We start from the partitions of K modulo J N K, that is,
K=JNK+[K/(JNK))=JNK + P,
which allows writing the sum in the form
J+K=J+JNK+P=J+P. (4.132)
O

Here, we have considered that J N K is a sublattice of J andthen J+JNK = J.
Now, (4.132) assures that partition (4.131) gives the covering of J + K, but not that
the cosets J + p are pairwise disjoint. To prove that this property holds, we evaluate
the cardinality of P. In the partition of J + K modulo J, given by

J+q, qe[U+K)/))20, (4.133)

the cardinality of Q is d(J)/d(J + K), whereas the cardinality of P is d(J N
K)/d(K). But, by identity (4.130), these cardinalities coincide. This proves that
(4.131) is itself a partition of J + K.

Example 4.10 Let
J =7(25), K =7(40), J+ K =7Z(5), JNK =7Z(200). (4.134)

The determinant identity gives 200-5 =25-40. By Lemma 4.1 for the sum J 4+ K =
Z(5), we find the partition

Z(25)+p, pe [Z(40)/Z(200)) = {0, 40, 80, 120, 160}
which is equivalent to (4.133)
2Z(25)+q, qc¢€ [Z(S)/Z(ZS)) ={0, 5, 10, 15, 20}.
Now, we realize that the two partitions coincide. In fact,
7.(25) + 40 = Z(25) + 15, Z(25) + 80 =7Z(25) + 5, etc.
Identity Lemma 4.1 provides the following identity for every function f(-) de-

finedon J + K
Yoorwm=>" > fG+p. (4.135)

vel+K jeJ pelK/(JNK))
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Proof of the Noble Identity for Lattices If we let /1 = A and I = A;, we have
to prove that

ha(t,u)é/ ds 84, (t — 5)8.4,(s — 1)
A1NA;

=Saan,(t —uw) 2 hyp(tu), tE€Auch (4.136)

where, considering that A and A, are lattices, the Haar integral is explicitly given
by (see (4.8))

hattwy =3 d(A1 N A2) 84, (t = )8, (s — ) (4.137)
SEAINAL

with r € A1 and u € A; being fixed arguments. We note that (see (4.79))
04, (t—5)=0, t#s and 8a,(s—u)=0, s#u,

and therefore 84, (f — 5) 84, (s —u) =0 for every s and 7 # u. Hence, also the sum
is zero for ¢ # u. On the other hand, §4,44,(t — u) =0 for ¢ # u. So, we have
proved (4.136) for ¢ # u.

Next, consider the case = u noting that this coincidence can be considered only
fort =u € A; N A,. Since for s # t = u the two impulses give a zero contribution,
the summation can be limited to the single value s = = u. Hence, we have to find

d(A1 M A2)84,(0)84,(0) =84,+4,(0)
which, considering that §;(0) = 1/d([) (see (4.79)), is equivalent to
d(A1 NA2)d(A + Ax) =d(A1)d(Ar). (4.138)
But, this is just the determinant identity.

Example 4.11 Consider the case in which

ha(t,u) =Y 3087 (t — $)8z00)(s — u),
seZ(30)

hp(t, u) = 8z0)(t — u).

Now, we suggest the reader to check the different steps of the above proof by writing
the arguments in the form ¢ = 6m, u = 10n, s = 30k.

Proof of Noble Identity for Finite Groups Now, we let

Iy =A,/Py, L =A/P,, (4.139)
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and we first deal with the case P; = P, = P. Considering that (4.136) has been
proved, we perform the summation

D halt —ruy =" hy(t —r,u), (4.140)

repP repP

which is permitted since r € A| and P is a sublattice of Ay, and therefore t —r € Ay.
On the right-hand side, we obtain

D hp(t—ru) ) aray(t —r —u) =08(a, 1Ay p(t — ),

repP reP

where we have used (4.84). On the left-hand side, we find

Z/ dséAl(t—r—s)SAz(s—u)zf ds8a,/p(t —5)8a,(s — ).
reP A1NAy A1NA;

Next, using integration rule (4.12a, 4.12b), we obtain

/ dsda,/p(t —5)8a,(s —u)
A1NAy

Z/ ds > 8a,/p(t =5 — p)Say(s —u+ p)
(AiNA)/P L cp

=/ dsSAl/p(t—s)ZSAz(s—u+p)
(A1NAy)/P peP

=/ dsda,/p(t —s)8a,/pP(s —u),
(A1NAR)/ P

where we have considered that §4,/p(t —s — p) =84,/p(t —s), and we have used
identity (4.84) again. At this point we have obtained the identity

/ A8,/ (t = )45 (5 — 1) = (a4 4y (1 — 0), (4.141)
A1NAy)/P

which proves (4.87) in the case I} = A1 /P, [ = A,/ P.
Finally, we develop the general case (4.139). Considering that (4.141) has been
proved, we assume P = Py N P, and on the left-hand side we perform the summation

Z Z / ds8a,/p(t —p—5)8a,(s —u+q).
pelPi/P) qelPy/P)* (A1NAD/P

Next, using identity (4.85) for the first impulse, we obtain

Z Sa,/p(t—p—5)=38ap (—5).
PE[P1/P)
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Analogously, we deal with the second impulse. Therefore, once the summation has
been carried out, the left-hand side gives

/ dsda,/p(t —5)0a,p,(s —u), P=P+P. (4.142)
(A1NAy)/P

Next, the same summation is carried out on the right-hand side. Thus, we get

Z Z S(A1+4y)/P(t—p—u+q)

PELPL/P) q€E[P2/P)

= Z S(A1+Ay)/ Pt —u+q)
q€ElP2/P)

= Z Z Sai+4,(t —u+q+r),

q€lP2/P) pePy

where we have used identities (4.85) and (4.84). Finally, we recall that P = P N P,
and then identity (4.135) allows writing

Y At —u A v) =84+ an /(P (T — 1), (4.143)
veEP|+ P

In conclusion, starting from (4.141), we have carried out the same summation on
both sides. So, we have obtained (4.142) for the left-hand side and (4.143) for the
right-hand side. The equality of these two expressions proves identity (4.87) over
finite groups.

Example 4.12 We suggest that the reader checks the steps leading to (4.142)
and (4.143) with the basis groups given by (4.134) and with the moduli P; = Z(18)
and P, = 7(60).
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Chapter 5
Unified Theory: Frequency Domain Analysis

UT 5.1 Introduction

In this chapter, the signal analysis moves from the signal domain to the frequency
domain by means of the Fourier transform (FT), which is introduced in unified form
using the Haar integral as

S<f>=f[drs<r>w*(f, . fel 5.1)

where [ is the signal domain, T is the frequency domain and ¥ (f, ) is the kernel.
From the FT S(f), f € I, the signal s(¢), t € I, is recovered through the inverse FT,
as

s(t):/l;de(f)iﬁ(f,t), tel. (5.2)

Thus, the two expressions have the same structure, with the kernels conjugate to
each other. Denoting with F the operator defined by (5.1) and with ¥~! the operator
defined by (5.2), we respectively symbolize the evaluation of the FT from the signal
and the recovery of the signal from its FT as

s) -5 5. s S s, (5.3)

A preliminary problem is the evaluation of the frequency domain T and of the
kernel y (f, t). In the field of Topology, called Abstract Harmonic Analysis [10, 23],
the kernel is obtained axiomatically by imposing the separability condition

v(fint+n)=y(fit)Y(fin), t.nel (5.4)
and the condition of unitary amplitude
lw(f.in]=1. (5.5)
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Fig. 5.1 Fourier transform kernel v (f, 1) = e2™/* on the groups of R, shown as a function of ¢
for a fixed frequency f
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For a fixed f, each function v/ ¢(¢) = ¥ (f,t) that verifies the above conditions is
called a character of the group I and the set of all characters identifies the kernel
of the FT on the group /. Moreover, the range of the frequency f identifies the
frequency domain 7, which is called the dual group.

This identification procedure is carried out in Appendix A considering both the
general case and the specific cases of interest. In particular, for the groups of R, we
find that the kernel has the familiar exponential form (Fig. 5.1)

Y (f, 1) =e?I", (5.6)

Then, the FT and the inverse FT assume respectively the form

S(f)= / drs(e 21 fel, (5.72)
1

s(t) = /Adf S(fHer . tel. (5.7b)
1

In the multidimensional case, that is, in the class Q(R"™), the kernel is simply
given by the product of m one-dimensional kernels

Uty eees fs 1 oo ti) = W (1o 11) - U (fos b)) = @27 1T FIml) (5. 8)
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where (71, ..., ty,) is the signal argument and (f1, ..., f) is the FT argument. Us-
ing (5.8), we can explicitly write the FT and its inverse in the mD case. But, to save
space and formula proliferation, we can refer to (5.6) and (5.7a), (5.7b) also for the
mD case, provided that  and f are interpreted as m-tuples and the product ft that
appears in the exponential as'

ft= A+ + futnm. (5.9)

The kernel depends on the group 7, and so far we provided the expression for the
groups of Q(R) and Q(R™). For other LCA groups the expression changes, as we
shall see in Sect. 5.11 for multiplicative groups. For concreteness, in the following
we will mainly refer to the groups of Q(R), where the FT is given by (5.7a), (5.7b),
and to the groups of Q(R™), where, with the conventions made above, the FT is still
given by (5.7a), (5.7b).

In the following sections, we will make explicit the frequency domains (dual
groups) and realize that they have the same structure as the signal domain, specif-
ically I= Ior/Sy, where Iy is the “true” FT domain and Sy is the periodicity.
Then, all definitions and operations introduced in the signal domain are transferred
to the frequency domain. In particular, the Haar integral used for the FT can be also
used for the inverse FT.

Having established the frequency domain, we will carry out several rules, in uni-
fied way, that allow the full understanding and easy calculation of this powerful
operation of Signal Theory.

5.2 First Considerations on the Unified Fourier Transform

5.2.1 Invertibility of the FT and Orthogonality Conditions

The proof that the inverse transform allows effectively the signal recovery is not a
simple problem and requires appropriate condition on the signal class (see [9, 24]
[14, 23]). In a heuristic way, the correct recovery can be established starting from
the following relations. For each pair (/, T) the Fourier kernel ¥ (f, t) is related to
the impulses by the following relations

[avrn=s. el (5.100)

/Adfl/f(f,r)za,(t), tel, (5.10b)
1

IThis can be done without ambiguity in most of the cases. However, in some algebraic steps in-
volving matrices, the m-tuples t = (1, .. ., tw)and f=(f1,...,. fm) must be interpreted as column
vectors, and ft must be replaced by f't = fit; + - - + fintm, where f is the transpose of f.
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that is, by integrating the kernel ¥ (f, t) with respect to time, we get the impulse in
frequency, whereas integrating W ( f, t) with respect to frequency, we get the impulse
in time. In Appendix B, we prove that, if conditions (5.10a), (5.10b) hold for the
pair (I, /I\), then (5.2) follows from (5.1).

Relations (5.10a), (5.10b) can be interpreted as orthogonality conditions in a gen-
eralized sense, as will be clear from the study of the specific cases. Together with
impulse properties, the orthogonality conditions represent a fundamental tool for
signal theory and, in fact, they will be exploited quite often.

Note that in the groups of R the orthogonality conditions become

/Idt e =s:(f), fel, (5.11a)
/Adf et =5,(r), rel. (5.11b)
1

As an example, when I =R/Z(T)), 7= Z.(F), we find

T, .
/ elZﬂkFl dt = (SZ(F)(kF) —

{I/F, if k=0;
0

0, ifk#0,

which represents the orthogonality condition of exponential functions seen in
Sect. 4.5. When I =R, I =R, we get

+00
/ 2T 4t = 55 F) = (1),

[e.e]

which represents a fundamental identity in distribution theory [3, 11].

Fourier Transform of Some Singular Signals

To stress the importance of the orthogonality conditions, we now evaluate the FT of
some signals, which we call “singular signals” since they are related to impulses or
characters.

Letting s(¢) = 8;(t — t9) in (5.11a) and using the sifting property (4.76), we find

81t — 1g) —> e~127f10, (5.12)
In particular, when 79 = 0, we get ¥ (f, 0) = 1. Then
T
31(t) — 1, (5.12a)

that is, the FT of the impulse at the origin has unit value for all frequencies.
Analogously, letting S(f) = 67(f — fo) in (5.11b), by the uniqueness of the
inverse FT, we find

27t Ty 5o (F — fo). (5.13)
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In particular, when fy =0,

15 5:00). (5.13b)

that is, the unit signal has FT given by an impulse in the frequency origin.
The above Fourier pairs will be illustrated later by considering some specific
cases.

5.2.2 Interpretation of the Fourier Transform

Now, we give an answer to a few fundamental questions. Why is the Fourier trans-
form so important? Why is the Fourier kernel based on characters (which, in the case
of main interest, are exponential functions)? These questions are strongly related to
each other and both find an adequate answer in the context of the most important
operation in signal processing, that is, filtering. In fact, in a filter a signal identified
by a character exhibits a special kind of “transparency”, which is mathematically
stated by the concept of eigenfunction.

Universal Signal Decomposition by Fourier Transform

The FT allows writing every signal s(¢), t € I, as an inverse FT, that is, in the form
s(t) =/Adf S(Her ', tel, (5.14)
T

where ¢ (t) = ¢!27/1 are the characters of the signal domain /. In this expression,
the signal is decomposed into terms of the form

sp(t) =[df S(H1EPF, fel, (5.14b)

that is, characters multiplied by the complex amplitude [d f S(f)]. The “differen-
tial” d f is infinitesimal if T is a continuum and is finite if 7 is discrete or finite.
Signal decomposition (5.14) is “universal” in the sense that all signals defined
on I have the same decomposition in terms of characters. Indeed, this basic decom-
position, has a paramount importance for signal processing, although recently more
sophisticated decompositions were introduced (see wavelets in Chap. 15).

Characters as Filter Eigenfunctions

We recall from Sect. 4.9 that a filter on the domain / is a system governed by a
convolution , y(¢t) = g * x(¢), and explicitly

y(t) =/du gt —uwx(u) = /du gwx(t —u), tel, (5.15a)
I I
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so(t) <() Aso(t) s0(t) = e/ . eigenfunction

I I A . eigenvalue

Fig. 5.2 Interpretation of an eigenfunction sy(t) of a filter: the output signal is proportional to the
input signal

where x(¢) is the input, y(¢) is the output and g(¢) is the filter impulse response.
In the frequency domain, by the rule of convolution, which will be proved later on,
(5.15a) becomes

Y(f)=G(HX(f), fel, (5.15b)

where G = F[g] is called the filter frequency response.

A comparison of the relations (5.15a), (5.15b) suggests the convenience of work-
ing in the frequency domain. This is strictly related to the fact that characters (which
form the Fourier kernel) are the filter eigenfunctions, that is, signals having the prop-
erty of passing unchanged through the filter. More precisely, an eigenfunction is
every (nonzero) signal so(t), ¢ € I, that verifies the condition (Fig. 5.2)

/du gu)so(t —u) =Arso(t), tel, (5.16)
I

where the constant A is called the eigenvalue corresponding to so(¢). Now, for a
fixed frequency f, the signal so(t) = el2nft = Y7 () verifies condition (5.16). In
fact, using the character separability (5.4) in the form ¥ r(u — t) = ¥y (u) ¢ r(—1),
we find that (5.16) holds with

A= f du g(u)e 271 = G(f). (5.16a)
1

Therefore, the character e"/! with frequency f is a filter eigenfunction with eigen-

value given by the frequency response evaluated at the same frequency f, that is,

ei2nft W o pyeinft, (5.17)
This property represents the “transparency” claimed above: in the passage
through the filter, the signal ¢!"/! does not change, but only modifies its ampli-
tude.

We may see that the above properties, upon which the success of Fourier trans-
form is based, are ultimately due to the Fourier kernel separability. Note that for
characters a second condition not exploited above is imposed, [ ¢(¢)| = 1. This
means that we may find other separable functions, that are not constrained to take
values on the unit circle of the complex plane and, nevertheless, they turn out to be
filter eigenfunctions. Hence it is possible to introduce other transforms, having the
same signal processing ability as the Fourier transform (see the Laplace transform
and the z transform).
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5.3 The Frequency Domain

In general, a signal domain 7 is intended as a quotient group, I = Iy/ P, with I
the true domain and P the periodicity. The dual group has the same structure, I=
Ios/ Py, with Iy the true frequency domain and Py the frequency periodicity.

The explicit relation between I = Iy/ P and its dual = Ioy/ Py is established
by means of the reciprocal group.

5.3.1 The Reciprocal Group

Definition 5.1 The reciprocal J* of an ordinary group J is the ordinary group
defined from the kernel ¥ ¢ () =¥ (f, 1) as

FEflvr=1,1eJ). (5.18)

This is the abstract definition. For the groups of R where the kernel is given by
(5.6), considering that "/ = 1 if and only if f7 is an integer, the reciprocal group
is given by

J*={f|fteZ, tel}, (5.19)

where ft in the 1D case is the ordinary product and in the mD case it has to be
interpreted as in (5.9).

We now list several properties of the reciprocal group that can be established
by the definition (5.18) or more directly by (5.19). Then we will find explicitly the
reciprocals of the groups of G(R) and of G(R™).

It can be shown that J* is an LCA group. Moreover:

1. The reciprocal of the reciprocal is the original group
JH*=J. (5.20)
2. If K is a subgroup of J, then J* is a subgroup of K*
KcJ = K*>J. (5.21)
3. If J and K are rationally comparable (see Sect. 3.9), then
J+K)y*=J"NK*, JNK=J"+K". (5.22)

4. If J is a lattice, so is J*.
5. The reciprocal of the Cartesian product is the Cartesian product of the reciprocals

J=Nhxh = J*=JfxJ;. (5.23)
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5.3.2 The Dual Group

From the reciprocal group, the dual group can be easily obtained by using the fol-
lowing rule:

Theorem 5.1 The dual Tof a quotient group I = Iy/ P has the domain given by
the reciprocal of the periodicity and the periodicity given by the reciprocal of the
domain

I=Iyp 8 T=pyr. (5.24)

Hence, in the passage to the dual, the role of the domain and of the periodicity
is interchanged. The proof of the theorem, based on kernel properties, is given in
Appendix C.

From Property 1 on reciprocals, we find that the dual of the dual is the original
group

-~ dual

I — 1 (5.25)

This rule is a celebrated result of Topology, known as Duality Theorem of Pon-
tryagin [21]. Considering (5.25) and the conventions on the sum and intersection
reported in Sect. 3.9, the rules for reciprocals provide rules for duals:

1. The dual of the dual is the original group

~»

=1. (5.26)
2. If I is a quotient group and U is a subgroup of I, then

dual -~

vci & U-T. (5.27)

3. If I and U are rationally comparable (see Sect. 3.9), then Tand U are rationally
comparable and

—

I+U=1nU, InU=14+0. (5.28)

4. If I is a finite group then so is /.
5. The dual of a Cartesian product is the Cartesian product of the duals

dual -~ =~ -~

I:lelz — I = 1 X 12. (529)

The latter property is a consequence of the separability of the kernel on I} x Iy,
given by ¥ (f1, f2: 11, 12) = Y1, (1, 1)1, (f2. 12).
5.3.3 One-Dimensional Reciprocals and Duals

Now, we evaluate the reciprocals of the ordinary LCA groups of the class G(R),
which are R, Z(T') with T € (0, c0) and Q. Letting J = R in (5.19), we find that
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Table 5.1 Ordinary groups of R and their duals

Group Dual group

R = Z(0)/Z(c0) R = Z(0)/Z(c0)

Z(T) = Z(T) | Z(o0) R/Z(Fp) = Z(0)/Z(Fp), Fp =1/T
R/Z(Tp) = Z(0)/Z(T ) L(F) =ZL(F)/Z(c0), F =1/T,
Z(T)/Z(Ty), T, =NT,N €N L(F)]Z(Fp), Fp=1/T, F =1/T,

the product f¢ must be an integer for any ¢ € R. Then, the unique solution is f = 0.
This states that the reciprocal of R is Q. Next, from the rule (J*)* = J we obtain that
the reciprocal of O is R. When J = Z(T'), the reciprocal is given by the solutions
of the equation fnT = integer for all n, which are given by f = k/T with k an
arbitrary integer. Therefore, the reciprocal of Z(T) is Z(1/T). To summarize, we
have

\R*:@, Z(T) =Z(1/T), @*:R.\ (5.30)

To express this reciprocal in a unified form, we introduce the notation R 4 Z.(0)
and O 4 Z(00). Then, all the groups of R and their reciprocal (5.30) can be written
as

(), Z(TY*=7Z(1/T), T €l0,00].

From reciprocals we obtain duals by rule (5.24). In compact notations, we have

LTJIT,) 28 Z(F)JZ(F,) with F=1/T,, F,=1/T.

As an example, to obtain the dual of R we write R = Z(0)/Z(c0) and we get R=
Z(1/00)/7Z(1/0) = Z(0)/Z(c0) = R. Analogously, we proceed for the other cases.
The results are reported in Table 5.1.

In conclusion, we have seen that on the groups of R time and frequency domains
have the same structure, namely I = Z(T)/Z(T}) and 1= Z(F)/Z(Fy), where the

frequency spacing is given by the reciprocal of the time period and the frequency
period is given by the reciprocal of the time spacing.

5.3.4 Multidimensional Reciprocals and Duals

In the mD case, the arguments ¢ and f become m-tuples and the reciprocal (5.19)
is explicitly given by
I={(fi..... f) | fitt 4+ futm €Z, (11, ..., 1n) € T} (5.31)

For a separable group, we use (5.23) (extended to m factors), and, considering the
1D reciprocals given by (5.30), we find the reciprocal of any separable mD group.
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For instance,
R? 5 02, R x Z(2) = O x Z(1/2),
Zdy, dy) = L) x ZAdy) —> Z(1/dy) x Z.(1/dy) = Z(1/dy, 1/dy).
In particular, for the primitive mD groups (see Sect. 3.3), we find
H=R\ xZIx0Q - H*=0xZIxR. (5.32)
To get a general result we use the base—signature representation, which holds for
both the original group J and its reciprocal J*, since both are groups of G(R™).

Then, given a representation (J, H) of J we have to find a representation of J*.
Starting from (5.31) in Appendix D, we prove:

Theorem 5.2 If J is a group of S(R™) with representation (J, H), the reciprocal
group J* is a group of G(R™) identified by the representation

JLHY, TEJ) (5.33)

where J* denotes the inverse of the transpose of J and H* is the reciprocal of the
signature H.

Note that, in general, the signature H has the primitive form (5.32) and, there-
fore, the evaluation of H* is straightforward. Note also, as a corollary, the relation

between the determinants
dJdd) =1. (5.34)

Example 5.1 Consider the quincunx lattice J = Zé (d1, d2), which is not separable
and therefore its reciprocal J* must be evaluated using Theorem 5.2. The represen-
tation of J is given by (see Sect. 3.3)

_|2d1 d )
T R

Then, we find

* Fl 0 x 2 _ _
J _[—Fz ZFJ’ H*=77, Fi=1/Q2d), F, =1/Q2d).

The reciprocal J* is drawn in Fig. 5.3 starting from the basis J*, that is, from the
vectors (F1, —F3) and (0, 2F>). From the drawing we realize that also J* is a quin-
cunx lattice, although the basis J* has a form different from J. However, we recall
that the basis of a lattice is not unique (see Sect. 3.3).
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2d,

J=7)(dy,dr)

fa

2F

215

J =7, B)
F=1/2d, Fr=1/2d,

2F) N

Fig. 5.3 The quincunx lattice and its reciprocal, itself a quincunx lattice

Other specific evaluations of reciprocals will be seen in Sect. 5.9 and in Chap. 16.
Having evaluated the reciprocals, the duals are obtained by Theorem 5.1. If both
the domain and the periodicity are separable, then the evaluation is simple, being

I x Iy=1Iy1/ Py x lo2/ P> w7 x I = P}/I x P§/1,.

For instance, the dual of / =R? =R/0 x R/O is I= R/O x R/O = RR? and the
dual of I =R/Z(D;) x R/Ois I = Z(F1)/O x R/Q. But, in general we have to
use a base—signature representation for both the domain and the periodicity, say

(Io, H) —> Iy,

(P,K)+—> P.

(5.35)

Then, we find the reciprocal according to Theorem 5.2, that is,

@y, H) — 17,

P*, K*) — P*.

(5.35a)

UT 5.4 Symmetry Between Signals and Fourier Transforms

Each LCA group I can be considered as a possible signal domain, but the rule (5.25)
states that the dual of the dual is the original group. Therefore, the same group / can
also be considered as a frequency domain, namely that of signals defined on /. As an
example, the group R/Z(5) is a signal domain (for periodic continuous-time signals
with period 5) as well as a frequency domain (for signals defined on Z(1/5)).

Therefore, for a given group I, the class S(/) of the complex functions defined
on [ and interpreted as class of signals defined on I, can also be interpreted as class
of Fourier transforms of the signals defined on I. Broadly speaking, we can say that
the “Fourier transform world” does not introduce any novelty with respect to the
“signal world”. This symmetry is now presented in a more precise way.

The graph (5.3) states that: (i) starting from the signal s(¢) defined on I, the FT
S(f) defined on T is obtained by means of the operator F (with kernel e 1271y and
(ii) from the FT S(f) we can recover s(t) by means of the inverse operator F~!
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(with kernel e27/7). If in the second step we apply the direct operator J, instead

of the inverse operator J —1, we obtain s(—r) instead of s(r). Therefore, the FT of
the FT of s(z) gives the reversed signal s(—t¢), that is, S’z[slt] = s(—t). By further
applications of the direct operator F, we obtain F>[s|f] = S(—f) and F*[s|t] =
s(t), as illustrated by the following graph

s() -5 S(F) L s(—1) 5 S(—f) -5 5(0). (5.36)
I 7 I 7 I

Therefore, the operator ¥+ gives the original signal and represents the identity op-
erator on /.

Symmetry Rule Let (s, S) be a Fourier pair on (/, 7:)\, then, by considering S as
a signal on 7, also (S, s_) is a valid Fourier pair on (/, I), as summarized by the
graph
F
s(t) — S(f)

s _?”(_,f)‘ (5.37)
1

1

Examples of the application of this rule will be seen in Sect. 5.8 with 1D signals
and in Sect. 5.10 with 2D signals.

5.4.1 Consequences of the Symmetry

The perfect symmetry between the “signal world” and the “Fourier transform world”
allows transferring all basic concepts from the first to the second. In particular, the
definitions of (a) cell, (b) Haar integral and measure, and (c) impulse need not be re-
formulated in the frequency domain. But, some terms are modified for convenience.

Spectral Extension and Bandwidth The extension and duration become spectral
extension and bandwidth, respectively. Then, the spectral extension of a Asignal s(t),
t € I, symbolized E(s), is defined as the extension of its FT S(f), f € I, namely

&(s) 2 e(S). (5.38)
The (Haar) measure of £(s) defines the bandwidth of s(t) by
B(s) = meas E(s).
We will distinguish between the minimal spectral extension, given

€o(s) = {f1S(f) #0} (5.39a)
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ISCI

B (5 ) =F *fs
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B(s)=2B

-B 0 B f

Fig. 5.4 Examples of limited spectral extension: for a complex signal (above) and for a real signal
(below). For a real signal B(s) is the bandwidth, while B is the band

and a generic spectral extension £(s), as any subset of Tcontaining Eo(s). Clearly,
E(s) is characterized by the property

1S(/)=0, f¢Ew) ] (5.39b)

As we shall see, the FT of a real signal has always the Hermitian symmetry
S*(f) = S(—f), thus, if at a certain frequency f we have S(f) =0, also S(—f) =
0 and, therefore, the minimal spectral support is always symmetric with respect to
the frequency origin: €o(s) = —Ep(s). Then, we will pay attention of preserving
this symmetry when choosing a generic spectral extension. For real signals it is
customary to consider the band B, defined as half of the bandwidth B(s) (Fig. 5.4)

2 _B(s) = %meas &(s). (5.40)

5.5 Rules of the Fourier Transform

In this section, we establish several properties, or rules, for the FT. These rules cor-
respond to so many theorems, and can be proved by using the FT definition, the
kernel properties and the orthogonality conditions. We distinguish between primi-
tive rules and non-primitive rules, which are obtained as combinations of the former.
The collection of rules is summarized in Table 5.2.

5.5.1 Primitive Rules

There are six primitive rules.
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Table 5.2 General rules of the Fourier transform

Rule

Signal

Transform

1. Linearity
2. Symmetry
3. Reverse

4(a). Conjugate in time

4(b). Conjugate in frequency

5(a). Time shift
5(b). Frequency shift

6(a). Convolution in time

6(b). Convolution in frequency

7(a). Real part in time

7(b). Real part in frequency
8(a). Imaginary part in time

8(b). Imaginary part in frequency

ays1(t) + azsa(t)

S(t)

s(=1)

¥ (1)

s*(—t)

s(t — tg)

s(t)eianot

x % y(1)

x(0)y (@)

Rs(t) = SIs(®) +5* ()]
Ls() + 5 (=1)]
i35(0) = 3ls(t) = s*(1)]
$s(t) — s*(—1)]

arS1(f) +ax$(f)
s(=f)

S(—1)

S*(—f)

S*(f)
S(f)e—ianzg

S(f = fo)
X(HY(f)
XxY(f)
SIS+ S* (=]
RS(f)

LS = S* (= )]
i3S(f)

9. Even part s +5(=0)] SIS+ S(=1)]
10. Odd part Ls(0) = s(=0)] N ERCEP)
11(a). Correlation in time X y* (1) X(HY*(f)
11(b). Correlation in frequency x()y*(@) X *Y*(f)

Note: i represents “real part”; J represents “imaginary part”

1. Linearity The operators F and ! are linear, as a consequence of the linearity
of the Haar integral (see Sect. 4.1).

2. Symmetry This rule was already seen in Sect. 5.4.

3. Reverse Time reverse implies frequency reverse. This is a consequence of the
kernel property ¢!27/ (=) = gi27(= /)1

4. Conjugate Conjugate in one domain implies conjugate and reverse in the other
domain. This is a consequence of the kernel property
e—i2nft _ (eiZth)*‘
5. Shift A shift of a signal by 7y implies a multiplication by the character on the
FT
st — 1) —> S(f)e 27 ot

This rule is proved using a variable substitution in the FT definition and recalling
that Haar integral has the same properties as ordinary integral (see Sect. 4.1).



5.5 Rules of the Fourier Transform 219
6. Convolution The convolution on the time domain gives the product in the fre-
quency domain and vice-versa. This rule is a consequence of the kernel separability

as seen in the introduction of this chapter. In fact, if we apply the Fourier transform
to the convolution s(¢) = x * y(¢), we obtain

S(f) =/d¢ e—i2”f’/dux(t —u)y(u)
1 1

where ft = f(t —u)+ fu, so that introducing the new integration variable v =t —u
gives

S(f) =/Idt e*izﬂf“*“)/ldu x(t —u)e 2y ),

=/dvx(v)e_12”f”/du e 2y )y = X ()Y (f).
I I

5.5.2 Non-Primitive Rules

We now briefly discuss the other rules of Table 5.2, which are obtained from the
primitive rules.

Rules 7 and 8. Real and Imaginary Parts For the proof, we recall that the real
and imaginary parts are given by

1 1
Ns(t) = E[s(t) +s*(t)], i3s(1) = E[s(t) —s*(t)], (5.41)
and then we apply the conjugation rule.

Rules 9 and 10. Even and odd parts Recall that the even and odd parts of a signal
s(t), t € I, are given by

1 1
se(t) = E[S(’) +s(=0].  so() = E[s(t) —s(=1)]
and then we apply the reverse rule.

Rule 11. Correlation This rule is a consequence of primitive Rules 4 and 10, as
we shall see in Sect. 5.7, where the correlation is defined and developed.

5.5.3 Further Rules of the Fourier Transform

We outline other general rules of the Fourier transform.
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Area and Value on the Origin

The signal area equals the value of the FT at the origin and, conversely, the FT area
equals the value of the signal at the origin

area(s) = S(0), area(S) = 5(0). (5.42)

The first is obtained by setting f = 0 in (5.7a) and the second by setting = 0 in
(5.7b). The usefulness of this rules should not be underestimated.

Parseval’s Theorem

This theorem states that the energy of the signal equals the energy of its Fourier
transform

ES=/1dt |s(t)|2=/7df 1S()|* = Es. (5.43)

The theorem will be proved and discussed in Sect. 5.7 in the context of correlation.

Poisson’s Summation Formula

This rule relates the “samples” of a signal with the “samples” of the FT. Let Iy, Uy
and P be ordinary groups with the ordering

PCUyCly (5.44a)
where U) is a lattice. Then, for reciprocals the ordering is reversed (see Sect. 5.3)
P*D Ui DIy, (5.44b)

where Uy is a lattice.

Now, consider a signal s(¢), t € Ip/ P, and its FT S(f), f € P*/I(’)*. Then, the
signal s(u), u € Up/ P, gives the “samples” of s(¢) since the domain is restricted
from Iy to Up. Analogously, S(A), A € Uj/Ij, gives the “samples” of S(f), since
Uy C P~.

Poisson’s summation formula states that

d(Up) Z s(u) = Z S(x) (5.45)

uely/P reUg /1y

where d(Up) is the determinant of the lattice Up. This rule is proved in Appendix E
using the theory of linear transformations.

As an example, the samples s(nT) of a continuous time signal s(¢), t € R, are
related to the samples S(kF) of the transform S(f), f € R, by

+00 +00

> TsaT)= > SkF,). Fp=1/T. (5.46)

n=—00 k=—00
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down—sampling up—periodization
so(f) | s(1) So(f) S(f)
® 2(7) R R/Z(Fy)
so(t) s(1)
0] r IR o] T e et
/K /K
B ol B/  -B ol B Fp 25, I

Fig. 5.5 Relation between the FT of a signal so(¢), t € I, and of its down-sampled version s(t),
t € U, illustrated for I =R, U = Z(T)

v Fourier Transform After a Down-Sampling

This and the next rule require the knowledge of elementary transformations, which
will be developed in the following chapter.

Suppose that we know the FT So(f), f € T of a signal so(¢), t € I, and that
we want to calculate the FT after a restriction of so(t) from the group I into a
subgroup U. In the theory of transformations, such a restriction is called a down-
sampling and, more precisely, an / — U down-sampling, where I = Iy/P, U =
Up/P and Uy C Iy, with relationship s(¢) = so(t), t € U. The Duality Theorem
(Sect. 6.13) states that the corresponding operation in the frequency domain is a
1-U up-periodization with relation

S(H= D Solf—p) (5.47)

PelU/13)

where the summation is extended over a cell of U modulo /1 (see the illustration of
Fig. 5.5). In conclusion, from (5.47) we can calculate the FT after a down-sampling.

We now consider a 1D example of application. A 2D example will be seen in
Sect. 5.10.

v Example 5.2 We apply the rule to the case I =R, U = Z(T), where so(¢), t € R,
is a continuous-time signal and the result of the R — Z(T) down-sampling is a
discrete-time signal s(t), t € Z(T). Since Uy = Z(T)* = Z(Fp) with F, = 1/T
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and Ij = R* =0, we have [U/1}) = [Z(F,)/Q) = Z(F}). Then, (5.47) becomes

+00 1
S(f)= Y So(f —kFp), F,= = (5.48)
k=—o00

For instance, from the Fourier pair

Apsinc(For), te€R —>  (Ao/Fo)rect(f/Fy), f€R,

we obtain the Fourier pair

Agsinc(Fot), teZ(T) i) (Ao/ Fo) epr, rect(f/Fo), feR/Z(F)).

Fourier Transform After a Periodic Repetition

Similarly to the previous case, we can find the FT after a periodic repetition (up-
periodization) I = Iy/ Py — U = Ip/ P, with S D Py, namely

sy= > solt—p). (5.49)

PELP2/P1)

starting from the FT of s (), e I;\In fact, from the Duality Theorem, in the fre-
quency domain we obtain the / — U down-sampling, with the relation

S(f)y=So(f), fel. (5.50)

Example 5.3 If =R and U = R/Z(T)), relation (5.49) becomes

+0oo

s)= Y so(f —kFp).

k=—o00
Then, from (5.50)
SkF)=S0(kF), kFeZ(F), F=1/T.

These relations are illustrated in Fig. 5.6.

5.6 Symmetries in the Frequency Domain

We first consider the fundamental symmetries introduced in Sect. 4.13 in the signal
domain and then we develop the Symmetry Theory in the frequency domain.
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up—periodization down—sampling
so(t) s(t) So(f) l S(f)
> > — —»
R R/Z(Tp) R Z(F)
s
0 t g
P s S()
9?TTTI {TTTT?? .
0 ! ol F !

Fig. 5.6 Relation between the Fourier transform of a signal so(¢), ¢ € I, and the Fourier transform

of its periodic version s(¢), t € U, illustrated for I =R, U = R/Z(T))

Table 5.3 Correspondence in the symmetries of signals and Fourier transforms

Signal Fourier transform

1(a). s(t) =s(—1) Even 1@). S(f)=S(—f)
1(b). s(t) = —s(—1) Odd 1b). S(f)=—-S(—f)
2(a). s(t) =s*(@) Real 3(a). S(f) =S*(—f)
2(b). s(t) = —s*(t) Imaginary 3(b). S(f) =—S*(—f)
3(a). s(t) =s*(—1) Hermitian 2(a). S(f) = S*(f)

3(b). s(t) = —s*(—1) Anti-Hermitian

2(b). S(f)=—-5*(f)

Even
Odd

Hermitian

Anti-Hermitian

Real

Imaginary

5.6.1 Symmetries of Fourier Transforms

The fundamental symmetries introduced in the signal domain generate as many
symmetries in the frequency domain, as summarized in Table 5.3. Symmetries 1
(even and odd symmetries) are preserved in the frequency domain, as a consequence
of Rule 3 of Table 5.2. Analogously, from Rule 4, Symmetries 2 in the signal domain

become Symmetries 3 in the frequency domain and vice versa.

Figure 5.7 illustrates all the symmetries for continuous signals and the corre-

sponding symmetries for the FT.
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transform

Hermitian

anti—-Hermitian

224
signal
real

0
imaginary

0
Hermitian

real

anti—-Hermitian

imaginary

real and even

real and even

IR

imag. and odd

real and odd A
0

Fig. 5.7 Symmetries for signals and corresponding Fourier transforms for / = T=R
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Particularly interesting is the symmetry “real signal”, which becomes “Hermitian
symmetry” in the frequency domain

SO =550 -5 S(f)=S*(—f).

Hence, in general, the FT of a real signal is not real, but a function with the Hermi-
tian symmetry. By writing

S(f) = Sr(f) +iS1(f) = As(f)ePs),

the Hermitian symmetry basis becomes

Sr(f) = Sr(=1), S1(f)=—=81(=1), (5.51a)
As(f) =As(=1), Bs(f)=—Bs(=1). (5.51b)
Therefore, the Fourier transform of a real signal has even real part and even magni-

tude, odd imaginary part and odd argument.
The above statements can be summarized as follows:

signal Fourier transform

complex complex with no symmetry (in general)
real complex with Hermitian symmetry

real and even real and even

real and odd imaginary and odd.

Decompositions into symmetric components are transferred into the frequency
domain with the exchange of Symmetries 2 and 3. As an example, signal decompo-
sition into real and imaginary parts gives

, g o1 sy, 1 *
s=Ns+iJ¥s — §(S+S_)+ E(S_S_)’ (5.52)
that is, the FT decomposition into Hermitian and anti-Hermitian parts.

Real Signals We have seen that the FT of real signals has the Hermitian symmetry.
Therefore, the even part and the odd part of a real signal respectively become

1 F
se(t) = E[s(t) +5(=0)] = S (/) =RS(f).
(5.53)

1
So(t) = E[sm - s(—w] L S, () =S ().

Thus, the decomposition of a real signal into even and odd parts implies the FT
decomposition into real and imaginary parts.
This rule is useful when calculating new Fourier pairs (see Problem 5.24).
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Fig. 5.8 P is the projector dual of P and o (P) is the symmetry dual of o (P)

5.6.2 Symmetry Theory in the Frequency Domain

In the previous chapter, we have introduced a general theory of symmetries in the
time domain using the projector and reflector operators. This theory can be trans-
ferred to the frequency domain to establish and handle the symmetries of the Fourier
transforms.

We recall that a projector P applied to a signal x € Ly (I) extracts the symmetric
component s = P[x]. In the e frequency domain, the dual projector P extracts the
symmetric component S = fP[X] of the FT X € L2(I) of x, with S being the FT
of s (Fig. 5.8).

To find the dual projector, we start from the original relation s = P[x] and express
x as the inverse FT of X, thatis, x = F~![X] and S = F[s]. Thus, we get the graph

Xﬁr—_>xi>si>5 Xi>S

which globally gives § starting from X. The corresponding operator relation is
P=gp5 . (5.54)

We can check that P is idempotent. In fact, P2 = FPF-1FPF !, where F~1F =7
and then PT~1FP = P> =P,
In a similar way, we prove that the dual reflector operator is given by

B=Fp7F!

and, if B is M-ary, that is, BM — 9 also B is an M -ary reflector. Thus, we can
establish an M-ary symmetry for FTs on the frequency domain 1, starting from an
M -ary symmetry for signals defined on /.

In general, the dual symmetry is different from the original symmetry, as we have
seen with the fundamental symmetries, e.g., the real symmetry becomes the Hermi-
tian symmetry. But, in some cases the dual symmetry coincides with the original
one, as is for the even and odd symmetries. In that case, the corresponding symme-
try is called self-dual.
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We can check the self-duality for even/odd symmetries by evaluating the dual
reflector B. In this case, B = J_ is the operator that gives the reflected signal
s—(t) = s(—1) starting from s5(¢). From (5.54) we have B =97_F! and we have
to find B=7_. In fact, with the usual notations, if X is an FT, F~!1[X] gives the

signal x, and J_3F~ 11X gives x_. But, for the axis 1nv§\rs10n rule, F[x_] gives X_
and, globally, starting from X we obtain X_, and then B =17_.

5.7 Energy and Correlation

5.7.1 Energy and Cross-Energy. Parseval’s Theorem

The energy of a signal x(¢),t € I, which is given by

E. =/Idt )2 = 1.

is generalized as the cross-energy

Ey = /1 drx(0y* (1) = (x. y)

for two signals x(¢) and y(¢) on the same domain /. Both of these quantities can be
directly evaluated from the FTs.

Theorem 5.3 (Parseval’s theorem) The cross-energy of two signals equals the
cross-energy of the corresponding Fourier transforms, E,y = Exy, namely

fl dr x(D)y* (1) = /Tdf X(HY*(). (5.55)

In particular, for the energy Ex = Ex and
2 2
/dr |x(®)] =/Adf|X(f)] : (5.55a)
I 1

This theorem, which will be proved below, states that the energy can be evaluated
in the signal domain and in the frequency domain by the same formula. Using the
notations introduced for the norm and inner product (see Sect. 4.5), the previous
results can be expressed as

(L) =(X, ), IxlP=1X)% (5.55b)

These relations state that, in the passage from the class La(I) of square-integrable
signals to the class Ly (1) of square-integrable FTs, the inner product and the norm
are preserved (isometry).
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5.7.2 Correlation and Energy Spectral Density

For each pair of signals x(#) and y(#) on the same domain I, the correlation is
defined as

Cay (T) é/dr x40y, tel (5.56)
I
The corresponding FT
Ay —i2nft T
Coy(f)= / dr cxy(v)e™ ", fel (5.57)
I

is called the energy spectral density. These two functions give a detailed description
of the energy content of signals, the former in the signal domain and the latter in the
frequency domain.

By applying a change of variable in (5.56), it is easily seen that the correlation
can be expressed as the convolution of the signal x with the signal y* , the conjugate
and reversed version of y, namely

Coy(T) =X % y* (2). ‘ (5.58)

Then, the computation of a correlation is substantially the same as that of a convo-
lution. From the FT rules in the frequency domain, (5.58) becomes

[Coy(D=X(HY* ()] (5.59)

Now, the proof of Parseval’s theorem is straightforward. If we set T = 0 in (5.56),
we obtain the energy by evaluating the correlation at the origin

Cxy(0) = Eyy.

Moreover, the signal value at the origin equals the area of its FT and then

Eyy = /fdf Cor(f) = ffdf X(HY*(). (5.60)

This result justifies the term “energy spectral density” for the function Cy, (f), since
its integral gives the energy.

Finally, note that the correlation between signals x and y is not commutative, i.e.,
Cyx 7 Cxy in general. The same holds for the spectral densities, Cy (f) # Cxy(f).
Nevertheless, we have the following relations

(@) =~ Cyul(f) = Cly (). (5.61)

The previous results are now applied with y = x, so that the correlation be-
comes the self-correlation, ¢, (7) = ¢, (7), and the spectral density becomes the
self-spectral density, Cx,(f) = Cx(f). From (5.59) and (5.61), we find
2

Ce(f) = |X(f)

(5.62a)
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ex (1) = ¢ (=), Ce(f)=C3(). (5.62b)

Hence, the self-correlation has the Hermitian symmetry, while the self-spectral den-
sity is always a real function.

In the case of a real signal, the correlation is a real function and then the Hermi-
tian symmetry becomes the even symmetry

x real —> ¢, realandeven — C, real and even. (5.63)

Interpretation of Energy and Correlation The “energy” between signals may or
may not have a physical interpretation, and often this terminology is not appropriate,
although its use is consolidated in Signal Theory. If a signal v(¢), t € R, represents
a voltage applied to a resistor R, the energy dissipated therein is E, /R and, in this
case, E, is proportional to the physical energy. If v(#) and i (t) represent the voltage
and the current in a two-port device, then E,; gives the physical energy entering the
two-port device.

Similarly, the term “correlation” may be misleading, since it has not a statistical
interpretation, rather from (5.56) it results that the correlation evaluated at T equals
the cross-energy of the signals x(¢) and y; () = y(t — 7).

5.8 Explicit Forms of One-Dimensional Fourier Transforms

In this section, the FT, introduced and discussed in the previous sections in a unified
form, is explicitly developed for the classes of 1D signals. To this end, we start from
the expressions

S(f) = f drs@e 20 feT,
! (5.64)

s(t):/;df S(HeF . tel,
1

and we choose the groups I and T in the class Q(R). As shown explicitly in Ta-
ble 5.1, these groups have substantially four different formats and, correspondingly,
we find as many formats of signals and FTs.

5.8.1 The Four One-Dimensional Cases

In the explicit formulas, the following notation for time and frequency will be used

e t and f in the continuous case,
e nT and kF in the discrete case.
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/=R s(t) S(f) I=R

Fig. 5.9 Example of Fourier pair on R with real s(¢)

Of course, when we make these substitutions, the FT and its inverse lose the
“beauty” of the symmetric form (5.64), sometimes even in a nontrivial way (see
DFT).

Continuous Time Signals (Fig. 5.9)

I =R continuous time signal
I =R continuous frequency FT

+o0 +o00
S(f)= / s(He gy, s(t) = / S(f)eF It drf. (5.65)

—0o0 —0oQ
These are the classical expressions we have seen in Chap. 2. In both expressions, an
ordinary integral is involved. This form of FT will be studied in detail in Chap. 9,
where a rich gallery of Fourier pairs is also collected (see Table 9.2).

Periodic Continuous Time Signals (Fig. 5.10)

I =R/Z(Tp) periodic continuous time signal
I =7(F), F=1/T, discrete frequency FT
Ty . ™= .
S(kF) = / s(t)e 2TRET gp s(t) = Z FS(kF)e' > kFt (5.66)
0 k=—o00

where the cell [0, T)) has been chosen (but the integral can be extended to any
other cell of R modulo Z(7))). Expression (5.66b) is a form of the Fourier series
expansion seen in the Classic Theory of Chap. 2. In fact, if we let

Sk =FS(kF), (5.66a)
we get

1 Tp . > .
Sk=— / s(t)e 2TRET gf s(t) = Z Spel2TkET, (5.66b)
p J0

k=—o00
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I=R/Z(Tp) T=1(F)
0 R0
rTIHHO'NHIT? /
PSS
0 7, \ t
V V I [ I I Teo

Fig. 5.10 Example of Fourier pair on R/Z(T),) with real s(¢). The FT values are proportional to
the Fourier coefficients

1=7(T) T=R/Z(Fp)
A
s()

“MTM«....= j

ol r ‘ of .

Fig. 5.11 Example of Fourier pair on Z(7T) with real s(¢)

which is exactly the exponential form of the Fourier series (see (2.46a), (2.46b)).
This FT will be revisited in Chap. 10, where a gallery of Fourier pairs is collected
(see Table 10.1).

Discrete Time Signals (Fig. 5.11)

I= Z(T) discrete time signal
I =R/Z(F)) periodic continuous frequency FT
+00 ) Fp )
S(h= 3 Ts@De T, sur)= / S(HET T df, (5.67)
n=—o0 0

where the cell [0, F),) with F, = 1/T has been chosen (but it can be replaced by
any other cell of R modulo Z(F)). Expressions (5.67) are the same seen in Chap. 2
for discrete-time signals (see (2.91a), (2.91b)). This form of FT will be revisited
in Chap. 11 together with the zeta transform (see the gallery of Fourier pairs of
Table 11.1).
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I=Z(T)/Z(T)) T=2(F)/Z(Fp)

il ly] ]

Ss(r) 1 3880
) ( Te T e ! ot . I ! I !
o ¢ I t JO F V f

Fig. 5.12 Example of Fourier pair on Z(T')/Z(T),) with a complex signal s(¢) for N = 8 points
per period

Periodic Discrete Time Signals (Fig. 5.12)

I= Z(T)/Z(Tp) periodic discrete time signal
I =7Z(F)/Z(F)) periodic discrete frequency FT
N-1 ' N-1 .
S(kF) = Z Ts(nT)e 2mkFnT s(nT) = Z FS(kF)eZ*rnT — (568)
n=0 k=0
where
T, =NT, Fp,=1/T=NF, NeN (5.68a)

The cells used in (5.68) are
ZN(T) 20, T,...,(N= DT},  Zy(F)2{0,F,...,(N - )F}.

It is not trivial to recognize that these relations are equivalent to the expressions
seen in Sect. 2.13 for the Discrete Fourier Transform (DFT). To show the equiva-
lence, we express the exponential in terms of the Nth root of unity (Fig. 5.13)

Wy =exp(i2r/N).
Then, considering that FT = 1/N, (5.68) becomes

N—1 N-—1
SkF)=Y_ Ts(T)Wy*", s(nT)="Y_ FSkF)W\". (5.69)
n=0 k=0



5.8 Explicit Forms of One-Dimensional Fourier Transforms 233

Fig. 5.13 The principal Nth
root of unity and the whole
root constellation, shown for Wie

N=16
/1 Wloﬁ

Finally, if we set as usual
T=1, sp=snT), Sk =S(kF),

we obtain the DFT form (2.102), i.e.,
N-1 | Nl
Se=Y_ saWy*", = > Swy (5.70)
n=0 k=0

We recall that these expressions play a fundamental role in computer processing, as
we will see in more detail in Chaps. 12 and 13. A gallery of Fourier pairs is collected
in Table 12.1.

5.8.2 Fourier Transform of Singular Signals

In Sect. 5.2, we obtained the general expression for the FT of some signals related
to impulses and characters (singular signals), in particular we found that

51(t —19) —> e i2mfn  g2rfor Ty sp gy (5.71)

Now, using Euler formulas (2.20) in (5.71), we obtain the FTs of sinusoidal signals,
namely

1
c08 27 for —> E[Sﬂf — fo) +87(f + fo)].

1
$in 27 for — 5 [87(f = fo) = 67(f + fo)).

and more generally,

F 1 ; |
Ap cos(2 fot + o) —> EAoe"”OSf(f - fo+ EAoe I8 (f + fo).  (5.72)

These results have a general validity on the groups of R. By specifying the pair
(1, I), we obtain more explicit formulas, as shown in Table 5.4.
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Table 5.4 Singular 1D Fourier pairs
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0 0 f
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ol T, 0'F S
I=7(T) \ T=R/Z(F,)
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o1 0 f
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ol r T o' F Fp f
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0 0 f
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Table 5.4 (Continued)

@ cos(2mfot), tel

$18:(/~/o)+8:(f+/0)), f€T

I=R 4 =R
1
AT LpL

0 fo S

[=R/Z(T) 4 y =2(F)
1

EAVARVARY L

0 fo S

1=2(T) I=R/Z(F),)

0!/ f

12(7)/7@) 4 I T=Z(F)/Z(Fp)
S A &

T e
@) sin(2fot), tel L8 —~fo)-8;(f+A0)), fET

I=R /\ 1 %T 3 I=R

\/ 0 \//\ r —fo 0 I Vi

1=R/Z(Tp) 4 & 3 I=Z(F)
N\ A L

v 0 \/ t —fo 0 J S

1.t I=Z(F)/Z(Fy)
Ll ]
J 0 J F,,l f
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I=R s S(f) =R
0 t 0l /o

=R b s s(=1) =R
t 0 f

Fig. 5.14 TIllustration of the Symmetry Rule for a continuous-time signal

Note that the above Fourier pairs are valid provided that 7y and fj are compatible
with the corresponding domains. For instance, the shift 7o on I = Z(T") must be an
integer multiple of T'.

5.8.3 Application of the Symmetry Rule

The Symmetry Rule established in general form in Sect. 5.4 is now illustrated by
two 1D examples.

Example 5.4 We consider a continuous-time signal, for which the graph (5.37) be-
comes

s(t) -5 s(p)

S(t) 5> s(—f)
R R R

We apply this graph to the Fourier pair (Fig. 5.14)

1
e, teR - aT <R (5.73a)

Then, the Symmetry Rule gives the new pair

1

F
— . teR 1(— e R. 5.73b
ot ionl’ € — 1(=f)eY, fe ( )

In this case, the application is particularly simple because R is self-dual, R=R.
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I=R/Z(5) b s(t) b S(f) i:Z(1/5>
Bl
5 0 5 10 ¢ $lé 01/5 1614 71
1=Z(1/5) b s s—n 4 I=R/Z(5)
Ml
il of | 18 ld ¢ -5 0 5 0 f

Fig. 5.15 Tllustration of symmetry rule starting with a periodic continuous-time signal. Note that
in this specific example it turns out that s(— f) = s(f)

Example 5.5 We now consider a periodic continuous-time signal with period
T, =5.Since I =R/Z(5) and I = 7Z(1/5), the graph (5.37) becomes

sty -5 S(f)

S - s(—f)
R/Z(5) Z(1/5) R/Z(5)

As a specific signal s(t) we consider a “square wave” with duty cycle d = 20%,
which can be written in the form

s(t) =reps[rect(t)], 1€ R/Z(5)

where repjs is the periodic repetition with period 5. The FT results in

1/2
S(kF):/ dts(t)e‘iZ”kF’:// e—i2mkF1 g4
R/Z(5) —-1/2

1

= TkF(e—ianF/Z _ eiZJTkF/Z) —sinc(k/5), keZ,
—127T

which states the Fourier pair (Fig. 5.15)
reps[rect(t)], t € R/Z(5) N sinc(f), feZ(1/5).
Now, the application of a Symmetry Rule gives the new pair

sinc(r), 1€Z(1/5) —> reps[rect(f)], feR/Z(5),

where we have taken into account that rect( f) = rect(— f).
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This second example shows that when time and frequency domains are differ-
ent (I # 1), the application of the symmetry rule involves signals of two different
classes, S(I) and S(T). In fact, in the first pair the signal is periodic continuous,
while in the second pair it is discrete aperiodic.

5.8.4 Decomposition of a Real Signal into Sinusoidal Components

For a real signal, the Hermitian symmetry of the FT allows obtaining a decomposi-
tion into sinusoids instead of exponentials. But, exponentials have both positive and
negative frequencies, whereas sinusoids have only positive frequencies and in the
manipulation we have to find a pairing between terms with frequencies + f.

The technique to obtain the sinusoidal representation from the exponential one is
based on the Euler formula

21 4 T2 = 2 cos 2m f1.

Considering in general the presence of a component at zero frequency, we have to
decompose the frequency domain into the form

I=LUIl UL withl_ =—1I,, (5.74)

where E = {0}, ﬁ is the set of “positive” frequencies and 1_ that of “negative”
frequencies. We find in particular

I=R, I=R, I.,=(0+00), I.=(-00,0),

I=%(T), T=R/ZLF,, I, = (o, —F,,), I = (—EF,,,O)

2
(5.75)
Now, from (5.14) we get

S([):V/;df S(f)eiZNfl+f\ df S(f)eiZJTft_i_/; df S(f)eizrtft
I

Ty I

z

= S0+ /A df [S(He 4 S(— fre 7]
Iy
where the constant term is given by
$o= [ ar e = [ ar s,
I, {0}

Since the FT of a real signal has the Hermitian symmetry, we can write

S(f) = As(f)elfs), (5.76)
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where

As(f)=As(—=f), Bs(f) =—Bs(=1). (5.76a)

and we obtain

s(t)=So+ [7. df 2As(f)cos[2nfr+Bs(f)], 1€l (5.77)

In conclusion, a real signal can be decomposed into sinusoidal components of
amplitude [df 2As(f)], phase Bs(f) and frequencies f limited to f € ﬁr Note
that this decomposition holds also for discrete signals (see the problems at the end
of this chapter).

5.8.5 Relation Between Duration and Bandwidth

We have previously defined the duration D(s) = mease(s) and the bandwidth
B(s) = meas E(s) of a signal. We can ask ourselves if there is a relation between
these two measures (see Sect. 5.4). The qualitative answer is that the smaller the
duration of a signal, the larger its bandwidth, and vice versa.

To get quantitative results, we need to refer to a specific signal class for which
we can establish a relation of the form

D(s)B(s) =K (5.78)
where K is a constant depending on the signal class and on the definitions of dura-

tion and bandwidth.? As an example, it is easy to show that relation (5.78) holds for
the signal class generated in the form

t— I
s(t):AS()( °>, teR,
a

where so(¢) is a reference signal and A, ty, a are parameters. In fact, we have
D(s) = aD(sg), since the amplitude A and the translation 7y do not affect the du-
ration. Moreover, S(f) = AaSo(af)exp(—i2w fty) and then B(s) = B(sp)/a, since
the amplitude Aa and the rotation exp(—i2m 1)), of unitary magnitude, do not af-
fect the bandwidth. Therefore, the product D(s)B(s) = D(so) B(sg) depends only
on the signal so generating the class.

Other results will be given in Chap. 9.

2Simultaneous finite duration and finite bandwidth may be incompatible (see Sect. 9.5), so that one
of the definitions must be relaxed using conventional duration and bandwidth (see Sect. 13.11).



240 5 Unified Theory: Frequency Domain Analysis

5.8.6 Other Forms of 1D Fourier Transform

From Appendix A, it turns out that the Fourier kernel on R is not unique, and its
general form is given by

Va,t)=e" aecR, teR, (5.79)
where « # 0 is an arbitrary real constant. Considering that the Haar integral is

unique, up to a multiplicative positive constant, expressions given by (5.64) should
have the general form

S(a) = H/dts(t)ei“‘”, ael,
1

(5.80)
s(1) = K/Ada S(a)e @ tel,
1
where H and K are positive constants related by [23]
2rKH = |af. (5.80a)

Now, (5.64) represent the “form in f” (frequency) and are obtained from (5.80) with
a = —2m and H = K = 1. Another common choice is the “form in »” (angular fre-
quency), which is obtained with = —1, H = 1 and K = 1/(2x); it is not perfectly
symmetric as (5.64) for the presence of the factor 1/(27) in the inverse transform.
A symmetric form in w is possible with H = K = 1/+/27, which is frequently used
in mathematics books (often with ¢ = 1 in place of o = —1).

5.9 Explicit Forms of Multidimensional Fourier Transforms

As done for the 1D case, now from the “unified” FT we obtain the FT of multidi-
mensional signals, defined on the groups of the class Q(R”). For the FT and inverse
FT, we can refer to relations (5.7a), (5.7b) with the appropriate conventions on the
m-tuples of arguments. Alternatively, we let

f=(f15"'7.fm)€,l\’ tz(tlaatm)ela

and we have more explicitly

S(f) = f dts(tye 27t feT,
! (5.81)

s(t) = /A df St te.
1
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In these relations, 't is a matrix product, where f and t are interpreted as column
vectors and

f/tz[fl-nfm] = fiti + -+ flm.

Im

To get specific results, the general procedure is the following. Given the signal
domain/periodicity I = Ip/S, we have to find

1. The frequency domain/periodicity using the rule I = Iy/ P Wl P pr /13
2. The Haar integral on / and on I.

If both the domain and the periodicity of the signal are separable, so are the FT
domain and periodicity, and the domain evaluation is straightforward according to
the rule

I ~ =~
Lxh=1Ig/Px /Py <8 T x =PIt x P31,

which is easily extended to the mD case. But, in general, we have to use a base—
signature representation

o, H) — Iy, P,K)— P, (5.82)
and we find the reciprocal according to Theorem 5.2, that is,

@y, H) — I, P*, K*) — P*. (5.82b)

If [ and T are separable, say I = Ij X --- X I, and = Tl X oor X Zn, the Haar
integrals can be expressed as combinations of 1D integrals, namely

S(fisos fin) 2/ dy f dtms(tl’...’tm)e—iZﬂ(flfl-F-n‘Ffmfm)’
I L

S, ..oy tm) :/Adfl ﬁ dfn S(f1, ...,fm)ei2”(‘f”'+"'+-f’”"")
1

1 In

with 7 € I and f; € Ec More specifically, if the signal itself is separable

st oo tm) =851 - Sm(tm),  tk € I, (5.83a)

then also the FT becomes separable, namely

Sty oo f) =S1(D) - Su(fm)s S €Ik, (5.83b)

where the kth factor Si(fi) is the FT of si (). In the case of nonseparability, for
the Haar integral we have to use the general expression given in Chap. 4.

We have seen in Sect. 3.7 that the variety of mD signals is very rich, with (m +1)2
classes. We now give the explicit form of the FT and its inverse for the main classes.
Other classes, in particular the FT on gratings, will be seen in Chap. 16.
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Dimensionality In Chap. 4, we have assumed for signals that (i) the domain /j is a
full-dimensional group, and (ii) the periodicity is a lattice (possibly with a reduced
dimensionality). Now, we can check that (i) and (ii) hold also for the FT. To this
end, it is sufficient to examine the signature. From (i), we have H = R” x Z7 with
p+g=mand K =0 xZ°* withr +s =m. Then, K* = R” x Z*, which states that
the frequency domain S* is a full-dimensional group. Analogously, H* = Q? x Z4
and then the frequency periodicity is a lattice.

5.9.1 Fourier Transform on R™

The dual of R™ is still R™, so (5.81) become
S(f) = A‘w dtst)e 27t feRm (5.84a)
s(t) = /R ) df S(He T, teR™, (5.84b)

where m-dimensional ordinary integrals appear. In these relations, the signal s(t) is
defined on a continuous domain, t € R™, and also the transform S(f) is on a con-
tinuous domain, f € R™. The difficulty is in the evaluation of mD integrals, which
sometimes is simplified by the structure of the function s(t), as in the following
case.

Signals on R? with Circular Symmetry

Assignal s(t1, 1), (1, 12) € R2, has the circular symmetry (with respect to the origin)
if it assumes the same values on the points of a circle centered at the origin, and
therefore, it can be expressed in the form

s(,n) =g/t +13) (5.85)

for a suitable 1D function g(a), a € [0, c0). Just for reasons of symmetry, it can be
guessed that circular symmetry is transferred to the FT, namely

S(fi, L) =G/ fE+ f}) (5.86)

for a suitable function G(b), b € [0, 00). The problem is to determine the func-
tion G (b), which is not the FT of g(b). The relation is [19]

G(b) = 271/ da ag(a)JoQRmab) (5.87a)
0
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Table 5.5 Reciprocals L* of 2D lattices L = Zf’(dl,dz) (F1=1/idy, F,=1/id>)

L ZX(dy, dp) ZX(dy, d>) 73(dy, dp) Zy(dy, d>) Z3(dy, d>)
L* Z)(Fy, F2) Z3(F1, Fa) ZA(Fy, F2) Z3(Fi, F) Zy(Fy, F2)
L Zi(dy, dy) 73(dy, d>) Z3(dy, da) Z3(dy, do) Zi(dy, do)
L* Z3(Fy, F2) Z3(Fi1, Fa) Z3(F\, Fy) ZL(Fy, Fy) Z3(Fy, F2)

where Jy(-) is the Bessel function of the first kind and order zero. The relation giving
g(a) from G (b) is perfectly symmetrical

gla) =27 f b bG(b)Jo(2mab). (5.87b)
0

Expressions (5.87a), (5.87b) define the Hankel transform (see Chap. 17).

5.9.2 Fourier Transform on a Lattice

If I is a lattice L in R™ its dual is ] 