Begin the journey towards building
your own Android 4 apps

Beginning

ndroid

Grant Allen

APIress®

Beginning Android 4

—

Grant Allen

Apress’

Beginning Android 4
Copyright © 2012 by Grant Allen

All rights reserved. No part of this work may be reproduced or transmitted in any form or by any
means, electronic or mechanical, including photocopying, recording, or by any information
storage or retrieval system, without the prior written permission of the copyright owner and the
publisher.

ISBN-13 (pbk): 978-1-4302-3984-0
ISBN-13 (electronic): 978-1-4302-3985-7

Trademarked names, logos, and images may appear in this book. Rather than use a trademark
symbol with every occurrence of a trademarked name, logo, or image we use the names, logos,
and images only in an editorial fashion and to the benefit of the trademark owner, with no
intention of infringement of the trademark.

The images of the Android Robot (01 / Android Robot) are reproduced from work created and
shared by Google and used according to terms described in the Creative Commons 3.0
Attribution License. Android and all Android and Google-based marks are trademarks or
registered trademarks of Google, Inc., in the U.S. and other countries. Apress Media, L.L.C. is not
affiliated with Google, Inc., and this book was written without endorsement from Google, Inc.

The use in this publication of trade names, trademarks, service marks, and similar terms, even if
they are not identified as such, is not to be taken as an expression of opinion as to whether or not
they are subject to proprietary rights.

President and Publisher: Paul Manning

Lead Editor: Steve Anglin

Development Editor: Jonathan Gennick

Technical Reviewers: Nikhil Gopal and Michael Thomas

Editorial Board: Steve Anglin, Mark Beckner, Ewan Buckingham, Gary Cornell, Morgan Ertel,
Jonathan Gennick, Jonathan Hassell, Robert Hutchinson, Michelle Lowman,
James Markham, Matthew Moodie, Jeff Olson, Jeffrey Pepper, Douglas Pundick,
Ben Renow-Clarke, Dominic Shakeshaft, Gwenan Spearing, Matt Wade, Tom Welsh

Coordinating Editor: Jessica Belanger

Copy Editor: William McManus

Compositor: MacPS, LLC

Indexer: John Collin

Artist: April Milne

Cover Designer: Anna Ishchenko

Distributed to the book trade worldwide by Springer Science+Business Media, LLC., 233 Spring
Street, 6th Floor, New York, NY 10013. Phone 1-800-SPRINGER, fax 201-348-4505, e-mail
orders-ny@springer-sbm.com, or visit waw.springeronline.com.

For information on translations, please e-mail rights@apress.com, or visit waw.apress.com.

Apress and friends of ED books may be purchased in bulk for academic, corporate, or
promotional use. eBook versions and licenses are also available for most titles. For more
information, reference our Special Bulk Sales—-eBook Licensing web page at
www.apress.com/bulk-sales.

The information in this book is distributed on an “as is” basis, without warranty. Although every
precaution has been taken in the preparation of this work, neither the author(s) nor Apress shall
have any liability to any person or entity with respect to any loss or damage caused or alleged to
be caused directly or indirectly by the information contained in this work.

Any source code or other supplementary materials referenced by the author in this text is
available to readers at www.apress.com. For detailed information about how to locate your book’s
source code, go to http://www.apress.com/source-code/.

Contents at a Glance

L1] (] 1) v
About the AUtROIS......ccccmiimmmmisnnmmsssnmmsssnsmssssnssssnsesssnsssssnsssssnnssssnnssssnnssssnnnsssnnss xvii
About the Technical REVI@WETc.ccrrsssmmmsssnnssssanssssanssssansssssnsssssnsssssnsssssnnssssns xviii
Acknowledgmentsccccrrmissnmnmmssssnnnmsssssssnesssssnsnssssssnsnssssssnnssssssnnnnsssssnnnnssssnnns Xix
Prefacecuieermsmmmmsssnmmsssnmmsssnnssssnsmsssnsssssnsesssnnesssnnesssnnessnnnesssnnesssnnssssnnssssnnssssnnss XX
Part I: Core ConCePt.......cccmrrisummnmmssssnnnssssssnnnssssssnsnssssssnssssssssnnnssssssnnnsssssnnnnssssnnns 1
Chapter 1: The Big Picture......ccccunemmmnnssmnmmmmsssssnmmmssssnmmsssssssmssssssssssssssssssssssnns 3
Chapter 2: How to Get Started.........ccccusemmmmmnsemnnmmnsssnnmmnsssssnmmsssssnsssssssnnssnnns 7
Chapter 3: Your First Android Projectccucccemmmnsssemnmmmsssssnssssssssssssssssnsssnans 23
Chapter 4: Examining Your First Project..........ccccnnsemmmmmsssssnnmnsssssnssssssssnssnans 31
Chapter 5: A Bit About EClipSe.......cccrrssssmmnmmssssnnnsssssssnnsssssssssssssssssssssssssnnnsssss 37
Chapter 6: Enhancing Your First Projectcccccunneemmnnnssennnmnsssssnnnnssssssnnnns 47
Part Il: ACtiVitIeS ..cuuuseerrssnmmssansmsssnnmsssnsmssssnssssnnssssanssssanssssannesssnnesssnnnsssnnssssnnnssnns 51
Chapter 7: Rewriting Your First Projectcccevvnnnnemmmmnssssnnnmnsssssnsnsssssssnsnns 53
Chapter 8: Using XML-Based Layoutsccusseenmrssssnnnsmssssssnsssssssnnsssssssnnssssss 57
Chapter 9: Employing Basic Widgets.......ccccumsmmmmmmsssnnnmmmsssssnsssssssnssssssssnnssnsss 63
Chapter 10: Working with Containerscccuseemmmmsssssnmmmsssssnssssssssssssssssnsssnns 79
Chapter 11: The Input Method Framework.........cccuscenrnsssnnnnnnssssnssssssssssnnnns 103
Chapter 12: Using Selection Widgetscccunmmmmmssmmmmmmssssnnmnssssssssssssssssnnns 113
Chapter 13: Getting Fancy with Listscccmmnnnsesnmnnssssnmmsssssmmsssssns 129
Chapter 14: Still More Widgets and Containers.........ccccuseemnmnssssnnsssssssnsssnns 145
Chapter 15: Embedding the WebKit Browsercccounsssmnnmnssssnssssssssssssnns 169
Chapter 16: Applying MenusSccccuussssmnnmmsssssnsssssssssssssssssssssssssssssssssssnsssss 177
Chapter 17: Showing Pop-Up MeSSages.....cuusuurrmssssnnsssssssnsnssssssnnsssssssnnssssss 189
Chapter 18: Handling Activity Lifecycle Events.........c.ccussemmnnsssnnnsssssssnnnsnans 193
Chapter 19: Handling Rotationcccccccmnnnsemnnnnssssnnnnsssssnmnmssssnmnsssssnns 197
Chapter 20: Dealing with Threadscccesuusssennnmssssnsnnmssssssnmssssssssessssssssnnns 213

iv

CONTENTS AT A GLANCE

Chapter 21: Creating Intent Filterscccccunsemmmnnsmmnmnnssssnnnsssssssmssssssssnns 231
Chapter 22: Launching Activities and Subactivities.........ccerursssnnnrrssssnnnssans 237
Chapter 23: Working with ReSOUICeScccuusssemmssssssnssssssssnsnssssssnnsssssssnnnsssss 245
Chapter 24: Defining and Using Stylescccusemmmmmmsmmnmmssssssnmssssssssssssssssnsnsss 263
Part lll: Honeycomb and Tablets.........ccccccmmmmmnssssssssnnnnmmmmmsssssssssssnnnnsessssssssnnnns 269
Chapter 25: Handling Multiple Screen Sizesccucccmmnnssnsnnmssssssssnssssssssnns 271
Chapter 26: Focusing on Tablets and Larger UlS.......c.ccusemmmnsssnnnsnssssssssnnsns 293
Chapter 27: Using the Action Barcccinnnsemnnnnsssssnnmnsssssnsssssssssssssssssssnns 299
Chapter 28: Fragments........cccoiunmemmmmnsssssnmmssssssnmmsssssssssssssssssssssssssssssssssssnss 307
Chapter 29: Handling Platform Changesccccumeemmmmssssssnsmsssssssssssssssssnsss 323
Part IV: Data Stores, Network Services, and APIS..........cccuunmmmmmsnnnnnnssssssnnnen 333
Chapter 30: AccesSing FIleScuuvemmmmsssnnnmmssssnnnssssssssnssssssssnssssssnssssssssnnsssss 335
Chapter 31: Using Preferencesccccuuseemmmsssssnsssssssnssssssssssssssssssssssssssnnssssss 349
Chapter 32: Managing and Accessing Local Databases.......cccuscerensssnnnnsnsns 367
Chapter 33: Leveraging Java Librariescccccesumsssesnmmssssssnssssssssssssssssssssns 381
Chapter 34: Communicating via the Internetcccccivmnnnineennnnnssnnnnn, 389
Part V: SEIrVICES ...cuuuseermsssnsmssansmsssnsssssnnssssnnssssnnsssssnsssssnssssansessansessansesssnnssssnnssss 407
Chapter 35: Services: The TheOory......c.curmmsssennssssssnsnssssssnssssssssnssssssssnsssssss 409
Chapter 36: Basic Service Patterns.........ccccunemnmnnsssnnnnnssssssnsssssssssssssssssssnns 417
Chapter 37: Alerting Users via Notificationsccciunnsmmmnnnssssnnsnnssssnsnnnns 437
Part VI: Other Android Capabilities......ccccuueemmmnssssnnnmsssssnnnmsssssssssssssssssssssssnnns 449
Chapter 38: Requesting and Requiring Permissions.........ccccusssensnssssssnsnsasns 451
Chapter 39: Accessing Location-Based ServiCesccuusemmmmssssnnsssssssnsnsasns 457
Chapter 40: Mapping with MapView and MapActivitycccccusseeerrnsssnnnnnnans 463
Chapter 41: Handling Telephone CallS........ccucccunrmnsnnnnnmssssssnmsssssssssssssssssssns 477
Chapter 42: FONtSccccivrninmmmmnnssssnnmmssssssnsmssssssssssssssssssssssssnssssssnnsssssssnnnsnsss 481
Chapter 43: More Development TOOISccuosemrmnsssnnnnmmsssnsnssssssssssessssssnsssans 487
Part VII: Alternative Application Environmentsccccccnnisssssssmnnnmnssssssssssans 505
Chapter 44: The Role of Alternative Environments...........cccinssseennnnsssnnnnnnns 507
Chapter 45: HTIMLScccciieeemmmmmssssnmmmmsssssmmssssssssssssssssssssssssnssssssnnssssssnnsnsssss 511
Chapter 46: PhONEGAPcvvreerrrssssnnnmmssssnssssssssnnnssssssnssssssssnsnssssssnnsssssssnnnssss 525
Chapter 47: Other Alternative Environments...........ccciunnssnnmnnmsssssnsssssssssnnnns 543
Part VIII: The Ever-Evolving Androidcccccesssssssssssnmmmmsmsssssssssssnssssssssssssnnnns 549
Chapter 48: Dealing With DeViCeS......cuusseerrrssssnnnssssssnsnssssssnssssssssnnsssssssnnnsssss 551
Chapter 49: Where Do We Go from Here?ccccusseemmnnsssssnssssssssssssssssssnsnsns 557
INA@X 1esunmnnnsssnnnnsssssnnnnnssssnnsnsssssnnnnnssssnnnnnnsssnnnssssssnnnnsssssnnnnssssnnnnssssnnnnssssnnnnnss 561

Contents

Contents at a GIANCE.........cuunmmemmermmmmmmmmssssss s sasssses 1
About the Author........ccememnnss s XVi
About the Technical REVIEWErSccccemerrmsmsmmssssssssssnsnssssssssssssssssssssssssssssssssnens XViii
Acknowledgmentscccuunnsmmnmmnsssssnmmssssssnnssssssssssssssssssessssssssssssssnnsesssssnnnensssss XiX

[0] [- SRR ¢ (

Part I: Core Concept........cccurnsssmmnmmmssssnnsssssssnnsssssssnssssssssssnssssssnnssssssnnnnsssssnnnnsssssns 1

Chapter 1: The Big Picture......ccccusemmmmnssssmmmmnmssssssmmssssssmmssssssssmssssssssssssssssssssssss 3
Benefits and Drawbacks of Smartphone Programming
What Androids Are Made Of..........ccccovvnnnnmnnnnnesenenens
Stuff at Your Disposal

The Big Picture...of This Book

Chapter 2: How to Get Started.........ccccussemmmniisennnmnnsssnnnmsssssssmssssssssssssssssnsssssns 7
Step 1: Set Up Java
Install the JDK
Learn Javaccccceerenennrnnes
Step 2: Install the Android SDK...
INSEAIl the BASE TOOIS......ccciirieerririnerisesessesessssesesssesesss e e ss s s e e e srs s e se s s se s s s rs s sanse e sanbe e senRe e sennensnnnn
Install the SDKs and Add-ons
Step 3: Install the ADT fOr EClIPSE.....cccevevrvererererrerereree e ses e sae e ses e ssessssesessesaeens rrrerrere e ——————— 12
Step 4: INSTAll APACNE ANL.......cccieririeierie e e e e e e e e e b s e ea e e s s e ae e e sesaenae e e aesaenaes 14
Step 5: St Up the EMUILOTN.........coe et e sae e s ae e e e se s saen s 15
Step 6: Set Up the Device
Windowscccoveeveernienennnne
Mac 0S X and Linux....

Step 2: Build, Install, and Run the Application in Your Emulator or Device
Eclipsecccvuenee.
Command Line

Vi

CONTENTS

Chapter 4: Examining Your First Project..........ccccnnsemmmnnsssennnnsssssnnsssssssnsnnnnss 31

PrOJECT STTUCTUIE......cceivieceerirci st se R e e e s Re e e e Re e s Re e e nnn e nn s
LT LT 0] 1] 11 PO
The SWeat Off YOUE BIOW.......cccviieriiiisiiiesisese s sess s sesss e ss s s s s sssssnssssssnssasssnsssssssssssssssssnsassssssnns
And Now, the Rest of the Story
What You Get Out of It

Inside Your Manifestcoveerniennnensnnsesssssesssssessssssesesssseneas
In the Beginning, There Was the Root, and It Was Good
An Application for Your APPlICALIONccvcererircre s sae s s e e s e se e sae e s saenas e s nnes

Chapter 5: A Bit About EClipSe.......cccsurnsnmmmnmssssnsssmssssssnssssssssnssssssssssssssssnsnsssss 37
WhaAt the ADT GIVES YOU...coeieerriiierrninessnsisessesesssessssssssssssssssssssesssssssssssesssssssssssssssssasssssssssasssssssssssensssasssssansasans
Coping With EClIPSEccccerrerernrerererenennans
How to Import a Non-Eclipse Project....
How to Get to DDMScccevevevrrerinnns
How 10 Create an EMUIATION.........ccccviiieiiineseiss e sn e sn e e n s sn e nn s
HOW 0 RUN @ PrOJECL ...ttt sa et e e sa e e s s na e e s a e e b sae e s s e nnna
HOW NOt t0 RUN YOUF PIOJECTccveiceerecciscscris e sn e ss et sss e sn s sns s sns s s sanssnnnas
AREINALIVE IDES........covireierireierieissssesssse s sess s sess e e s s e s e e e e e R e s e e s R e e e s R e Re e saeRe e eRaneessan s enssnnnnnans

o 1 | U T (- . §

Chapter 7: Rewriting Your First Projectccceinnnemmmmnsssesnnnnssssssssssssssssnnns 33
THE ACHVITY ...veeericierceeers e e e e bR e b e R e e A e Re e e R e Re e e R e R e R e Re e ensRe e e e Re e nn e

Dissecting the Activity
Building and Running the Activity

Chapter 8: Using XML-Based Layoutscccusseermrssssnsnsssssssnnssssssssssssssssnsnsssss 37
What IS @n XML-BaSed LAYOUL?ccceereriieriiisesissise s sessssssessssssssss s s sssss s sessssssssssssssssessssssessssssesssssssnsns 57
Why Use XML-BaSEA LAYOULS?ccevvererrierinrisesnsrissssssesssssess s sessnsssssenssssssnsns 57
0K, So What Does It Look Like?..
What’s with the @ Signs?..........cccoevrvvrrinene
And How Do We Attach These to the Java?...
The RSt OF the STOMY ... e n e nsa s sn s sn e nnn e

Chapter 9: Employing Basic Widgets........ccccumnmmmmmmsssnnsmsssssnsssssssssssssssssssnsnsss 63
ASSIGNING LADEISceiveeeeiiecerieieere st b s en s p e n s p e e n s e e n e e nnnna
Button, Button, Who’s Got the Button?
Fleeting Imagescoceeeerrerernrnnen
Fields of Green...or Other Colors....
JUST ANOThEr BOX 10 CRECK......cucceiririerineisisce e s e r s s e s s a s e nn e s e nan s
TRIOW the SWILCR, IOT.......c et e e s s a e se e e s se e s e sa e e e sae e e e s e ennrnn
BT TR oI L= 5 Vo o OO
IS QUITE @ VIBW ..ttt st st d s e e e e e e s Re e nnnn e nn s
Lo 1o [0 L1 o OSSPSR
Other USEIUI PrOPEITIES.......cceueiticerereririere s ree s s e saeses e saesaesas e s e ssesse e s e saesae st e e ssesaeseesessesaesaesassessesansansesassanne
L] (11 (0T PSSRSO

All THINGS Are REIAEIVEccvereirerere ettt a s e s s e sae e se e s aesa e e s sae e e e e e ennnns
RelativeLayout Concepts and Properties ..
RelativeLayout Example
OVerlap.....ccccoveververeereenenienns

Tabula RaSacocceerererrrerenirse e s s
TableLayout Concepts and ProPertiescuucuiinniniesinssssssss s sssssssesssssssssssssssssnssssssssssssennns
TableLayout EXAMPIE......ccoiiceiriiirinese e s s n s n s p e n e en e ensae e en s e e s nnnnnnnns

SCIOIWOIK...cvieeerrrreserrsre e sr s e s s

Fitting In
Jane, Stop ThiS Crazy TRING!cveceiiieiiiene e s sr e sa s sa s a s e srs e nnsan e sannis 11
Chapter 12: Using Selection Widgetscccousmmmmmssennnmssssssnsmssssssssssssssnnnnns 113

Adapting to the Circumstances

Lists of Naughty and Nice............
SEIBCTION MOUEScveueeeieeireiieirrr et e e e R e Re e ee s Re e e e Re e e e Re e ee e e nnRe e s nnn s
S 0T 0 31 ()
Grid Your Lions (or Something LiKe That...) ..c.covcceiiicnniieninesissssssee e e ss s ssssssssssssssssssenens 121
Fields: Now With 35% LESS TYPING!cceeireriiiserriesesrssessssesesssesessssessssssesssssss s snssesssnssssssssssssssssessssssssssssssnnes 125
Galleries, Give 0r TAKe the Art ... nenees 128
Chapter 13: Getting Fancy with Listscccnccmnnnsemnnnnnsssnnnnssssssssssssssenss 129
GELEING 10 FIFST BASEveeeierieirere et a e s s e s e e s s b e e e e s ae e a e e saesaenan e eanrns 129
A DYNAMIC PreSeNtation...... oo s s s b e ae e nnsra e nnnnennnnane 131
INlating ROWS OUISEIVESc.cceivieieiriieieese e se st ss e s sn s s s sn s sn s s sssnssa s snssenssnssensssssnnenn 133
A Sidebar ADOUL INFIALIONcceiviieccer e 133
And NOW, BaCK 10 QUF STOTYc.eoviciiccsiseeris e sn s s sn s en s nnns 135
Better. STrONGEr. FASIEL.cccciiiierici it s r e er e en e a e nn e n s 135
Using convertView
Using the Holder Pattern
INEEFACHIVE ROWS ...ttt e e a e s ne e ne e an e nnn e n s
Chapter 14: Still More Widgets and Containers..........ccccusseensrssssssnssssssnnnnnns 149
PICK QNG CROOSE ...vcueeiiieieirieseisssessssesessssessssssesssss e s sssse s s s s ss s sse s ssa st sba s s e s sassesssssesesnssasssnssensssssenssssnensn
Time Keeps Flowing Like a River
Seeking Resolution............cccvvvennene
Putting It on My Tab
The Pieces

LT T L 00 T3 T OO

CONTENTS

vii

CONTENTS

viii

Adding Them Up
Flipping Them Off........cccevenenee.
Getting in Somebody’s Drawer
Other GOOU STUTTcueeeiiiciiccr s e e se e ee R e e Re e s ae e e nne e e s

Loading It Up......cccucn...
Navigating the Waters
Entertaining the Client

Settings, Preferences, and 0ptions (0N, MY!) ... srs s e s sasss 175
Chapter 16: Applying Menusccccrunmsssnnnssssssssssssssssssssssssssnsssssssssssssssnnnnsss 177
L0 0 T

Menus of Options
Menus in Context
. L4 T0 T= GO
Yet MOT€ INFIAtION.......cceeecceee e n s p e nnnne
L U | I (T e (1T OSSPSR
Menu OptionS @NA XIML.......cociiirerereesere e serae e s e sae e se s e ssessesessessesaesaeses e s e ssesessesaesasssessssesaesessesnsssssesassnenns
INFIAtING the MENU......eeeece e e e r s n e e e a e e Re g s na e n s
When Giant Menus Walk the Earth

RAISING TOASTS....ueueeerireesrireesrisetssssess e s s e b e e b e b e R e R e eesRe e eE R e e e R e e ne e e e e ae e e nnnsnnn s 189
AIBIE! ALBIEL......eeeeeet ettt 190
CHECKING TREIM OUL.......cccceiriieeieiieiesessse s s s b s b e a e a e e R e ensRe e ne s e e nnnsnnnn 191
Chapter 18: Handling Activity Lifecycle Events..........ccccssemmrrnsssnnnssssssnnnnnn 193
SCHIOINGEI'S ACHVITY ...vcvivciciccccrere s e nn

Life, Death, and Your Activity......
onCreate() and onDestroy()
onStart(), onRestart(), and onStop()
ONPAUSE() AN ONRESUME() ..cvvrerrrrrierrnrinerissesessssessssesessssesessssessssssessssassssssssssessassssssesssessensssssssssnsensssnssnsssnnes

THE Grace Of STALEcccoeiererereri e

Picking and Viewing a Contact

SAVING YOUF STALEveveeiricceiisise s n s e e s s e e e R e s e e s s e an e s s e s
NOW With MOIE SAVINQS!ccui i se st ae e e s sa s s ae e e s a e saenae e saesa e e e e saesae e saesaerns 203
DIY ROTAEION ...ttt s e ee e ne R na s e s Rn e nnn e n s 205
FOICING thE ISSUEeerveeecerer ettt a et st s a e s e e e e e e e e e s s R s e e e e aesaeeae e e seeaeeaeneneeanrns 208
MaKing SENSE OF L All.....cvviieeicceiccerrre e n e e e er s en e p e e nne e nn s 210
Chapter 20: Dealing with Threadscccimnsssemnnmsssssnsmssssssnssssssssssssssssnnnens 213
The Main Application TRFEAMcccvierereerrierererer e s e se s s ae e s e a e s e e s a e sn e e saesaen e e saeaen 213
Making Progress With ProgreSSBarS.........cuccuiisesrresesssissssssssssssssssssssssssessssssessssssssssssssssssssssssssssssensssssssssssssnses 214
Getting Through the HANAIEES ..o s e s s e s s ae e s sae e s ne e 214

T TS TR 215

RUNNADIES ...ttt ee e se b e e b e e e e Re e e Re e e nnnsnnrn 218

Where Oh Where Has My Ul THread GONE?.........ccvceverriresmnrisesnsesesssessssssessssssesssans 218
Asyncing Feeling
The THEOTY ...
AsyncTask, Generics, and Varargs
The STages Of ASYNCTASK.......cccuerirerrrriierrirenesrsese s s n s r e r b e e s s e e e e sansn e ens
A SAMPIE TASK ..t sa e e e e s .
Threads and ROTALION...........ccviiniiiirie e s s a s en s ae e nn s nnnne
Manual ACtiVity ASSOCIALIONcccucerriiierriisi s sr s a e a e sr e snn e s
Flow of Eventscccceevrenneee
Why This Works
And Now, the Caveats

Chapter 21: Creating Intent Filterscccivnnnmmmmmnnsennnmnnssssnnmnsssssssssssssssnens 23 1
What's YOUE INTEBNEY.....ceeee e 231
PieCeS OF INTBNTS ...
INEENT ROULING ..covveececiccsiin et e b en e e et san e e nnn e e s

Stating Your INTENE(I0NS) ...ccvevieieiiiriiiisi e a e
Narrow Receiversccoverenene

Intents for Every Occasion
LI 2 - T

£ L 0 =111 X O
Make an Intent....
Make the Call.........cccceune.

Tabbed Browsing, Sort Of

Chapter 23: Working with ReSOUrcCesccccuussmmmsrmsssssnsssssssnsssssssssssssssssnnness 249
THE RESOUICE LINBUD ...evuereereeiererierieseressessesessessessesas e sessesassessessesasssssessesaessssessesaesessessesassassesaesssssssesaesannsssssesans
T T 1T o OSSR
Plain Strings........
String Formats....
Styled Text......ccccevvrernrnnnen
Styled Text and Formats....
Got the Picture?cocovveveneene
XML: THE RESOUICE WYvcueierriiierriesssseesessessssssessssssssssssssssssssssssssssssanssessesssnssssssssans
MiSCEIIANEOUS VAIUEBScceirerereriririics et

RTL Languages: Going Both Ways

Chapter 24: Defining and Using Stylescccunmmmmmmsesnmmmmssssnsmnssssssssssssssnnnns 263
SEYIES DIY DRY ...t e
EIBMENTS OF STIYIE ...ttt e e n e R nnne s
Where to Apply a Style.......
The Available Attributes

CONTENTS

ix

CONTENTS

INNEIEING @ STYIE ...t s e e e e nnnnn e n s
The Possible Values
Themes: A Style by Any Other Name

Part lll: Honeycomb and Tablets.........ccccccmmmrmmnssssssssmnnmnmmmmssssssssssnnsnssssssssssssens 269

Chapter 25: Handling Multiple Screen Sizesccunemmmnssseennmsssssssssssssssnnnns 271
Taking the Default
Whole in One........ccovreverernseresnssesssesesssnens
Think About Rules, NOt POSIHIONSccccviieiiiiiciriiesiec s sss s sss s ssae s sss e s sas s sas b sanssnesnssnesnssnnen
Consider PhySiCal DIMENSIONS........ccceierirriiesirrisessiess s ses e ses e sss s ss s s s s s e s s s s ssssssssassssssensssssensen
AVOId “REAIT PIXEIS ...eiveveerrisiserrnsisessnsisesessssssessssssesssensesssssssssassasssassasssensesans
Choose Scalable DraWaDIESccoeierininmnriisesnsesess e s sr s sr s sa s s se s srs e e snnsnneen
Tailor-Made, Just for You (and You, and You, and...)....
Adding the <supports-screens> Element.....
Resources and Resource Sets...........cccueeenne
FINGING YOUF SIZEcoviveieeiieeet ettt s a e p e ne e nnnnn e n s
Ain’t Nothing Like the Real TRING.......ccccuiiiiiiiiiinsesissesss s s ss s s s ssessssssssssssssssssans
DENSILY DIFfEIS ..c.viveceeirieririeese s s e s b e e b e b e R e R e Re e nn
AdJUSTING The DENSILYueceiriiceriiise s e n b e ensr e e s sra e nnsae e nnans
Ruthlessly EXploiting the SitUALION ... sn s
Replace Menus With BULLONScovcrieiereireni e ses e s se s s e e saesaesae e s e saesassesaesnennn
Replace Tabs with a Simple Activity
Consolidate Multiple Activities...

Example: EU4AYOUcccoevecercerncnnne
L TC N 5L 0
FiXiNg the FONTScceeicceiiecsrsecr e a e a e se s g nne e s
FiXiNg the ICONS......ccetiicetiecnt et a e e a e e e e e e e g nnn e nn
USING the SPACEeeeruereererere ettt s e re s se s e s ae e e e s b e e e s s a e s e e e e e s aesaesaeaesaenae e s aesaesaenasaeeanrnn
What If It 1S NOt @ BIrOWSEI?cvieiiicicicice s s 292
Chapter 26: Focusing on Tablets and Larger UlS........ccccusemmmmnssssnnssssssnnnnnns 293
Why the Drive 10 TADIEIS?......coieieiiisiriiesirenese s e s s s s s e s saa e s snannnnane 293
L LT U (TR VLT g T 294
Dealing with the Rest 0f the DEVICES ..o 297
Chapter 27: Using the Action Barcccinnneemnmmnnssssnmmnssssssssssssssssssssssssnnnss 299
Enabling the Action Barccocoeeeevevnennn
Promoting Menu Items to the Action Bar...
Responding to the L0gocccoevevcerereenne
Adding Custom Views to the Action Bar
Defining the LAYOUL.........ccviieeiiie e sa e a e s e n e n s
Putting the Layout in the MENU.........ccciiiinicire s ns s
Getting Control Of USEI INPUL.......ccccoviiiriere et sae e s s se s s s sae e sr e sa e e s snesn e e saesnenns
DoN’t FOrget the PRONES! ...t n e n s 305
Chapter 28: Fragments.........cccivnnmmmmnnnssssnmnmmssssnmmsssssssssssssssssssssssssssssssssess 307
INtrodUCING FragmeNtS......cccceeieierieisrses s r e n s e s ee R en s Re e e e ne e n s 307
The Problem Addressed DY Fragments........coovcviiiininennisnesesssessssssssssss s ssssssssssssssssssesssssssssssssssssns 307
The Fragments SOIULION........ccoiiiiiinisis e n s ensr e n e en s nn e 308
The Android Compatibility LIDFAry.........coouvecriismnisnieisssesesssesessssesssssssssssssssssssss s sssssssssssssssssssssssssssssns 309

Creating Fragment ClaSSeS......c.iuuriiersisesisisssess s sesssssess s sese s sesssssssssssssnsssss s ssssssnssessssssenssnssensssssensessseneen 310

CONTENTS

(T4 Lo LI o 10 T OO
ListFragment........cccccocevverrrerienns
Other Fragment Base Classes
Fragments, Layouts, Activities, and Multiple Screen Sizes
EUAYOU.....eeeeeec st e e e A AR AR R e nE R e e nean
DLy T YT 1117 SRS
Fragments and Configuration ChanQES...........cuuveriineriesmnnsesssssssss s sess s sss s sssssssssssessssssssssssssnnen
Designing fOr FIAgMENTScccviiieiiisiisise et r s n e en b en e e e nn s nn s

Chapter 29: Handling Platform Changescccinnmmmmmmmsssennnmmsssssssssssssnsnnns 323
Things That Make YOU GO BOOMcocvuiiiriererierircre e seses e e s saesesse s e s sae e s e ssesaesas e saesens e sassnssassesaesas
VIBW HIBIAICHYccevieeieeieccrsecess et s n e n e n b e e R e s sr e e en e e nnnnans
CANGING RESOUICESvcveeiririeiiisiesessesesseesssss e s sss e s s e s s s sba s s s s e n b nsr e sasbe e ea s e e e s Re s eessn e ennnnnan
HandliNg APl CRANGES......ccccvueierierereererireseesessesessesesesaessssassessessesssssssessessssessessesssssssessessessssessessesessessesasssssssenns
Minimum, Maximum, Target, and Build Versions
Detecting the VErSiON........c.ciciiiici e a e nn s
WEAPPING T8 AP ...ttt e e e b e n b e e R e nn s R e e s e e nrnnans
Patterns for Ice Cream Sandwich and Honeycomb
The Action Barc.cccovevenene
Writing Tablet-Only Apps
Part IV: Data Stores, Network Services, and APIS............cccnnnmmmssssnnnnnsssnnnnee: 333

Chapter 30: Accessing FIlesccunemmmmmsssssnmmssssssssmsssssssssssssssssssssssssssssssssssess 339
You and the Horse YOou ROUE iN ONcouieicrieieiisesnisi s sessssssssss s ssssssssessesssssssssssssssssssssssssssssssns
Readin’ ’'n Writin’ccoevereenrnnnen
External Storage: Giant Economy-Size Space ...
WRETE 10 WHITE ...ttt e e e e n s p e e b e e ensr e e ena e nnnnans
WREN 10 WHITE ...t n e n b e e e e nn e e na e nnnnans
StrictMode: Avoiding JANKY COEccccerririieriisninesesesssss s sess s sr s ses s sessssnssssesessssessssesesssnsses
Setting UP STHCIMOTE........cc it s a e s e an e nrn s
Seeing StrictMode in Action ..
Development Only, Please!
Conditionally Being Strict...........ccconnune
Linux File Systems: You Sync, You Win

Chapter 31: Using Preferences.......ccccuumemmmmmsssssnnmssssssssssssssssssssssssssssssssssnssss 349
Getting What YOU WaNT ..ottt sa e s sa e s s s a e s s ae e e s a e ne e sa e na e e s ae s e e
Stating YOUr PrefEreNCE ..ottt r e s a e s a e a e san s
Introducing PreferenceFragment and PreferenceActivity
Preferences via Fragments..........cccovvevnninnnnesnnssesnssnnennnns
Preferences the New and Improved Way...
Preference Headerscouveverneneninnnnsenesnsesesenenens
PreferenceFragment and StockPreferenceFragmentccocevevrverienenens s ses s sese e ssenes
Avoiding Nested PreferenceScreen EIBMENTScccvcverererverserserieneses e sseseesessesesse e ssssessessessessssessessssens
Intents for Headers OF PrefErENCES....... .o s ns s
Adding Backward CompatiDility.........ccccesineriinninisiisscssesessse s sn s seenns
The Older Model of Preference Handling ..
Letting Users Have Their Say.......
Adding a Wee Bit o’ Structure
The Kind of Pop-Ups You Like

xi

CONTENTS

Chapter 32: Managing and Accessing Local Databases.........ccuseennrssssnnnnnns 367
A QUICK SALITE PrIMET....cctiviieeirisiseieessssessssssessssssesssssssssssssessssssessassssssassssssesssssssssssssesssssssnssssssnsssssssssssssasssssssans
Start at the BEgINNING........coveriiiiirrcec s s s e psa s a e sa s a e e nnn s
SEHNG the TADIE.......ccceeieeeeecier e r e p s e e R e R e e s e nnene e e nan s
MAKIN DALA.....ccceriieeririierrereesrese st e b e e e R e e e Re e R e R e e e e R e e R e R e e e R e e e e en e nnnn e nn s
What Goes Around, Comes Around.....
Raw Queries........
Regular Queries ..
USING CUISOIS.....c.ueieeeruereereeresesaesaesassessessessssessesaessssessessessesessesaessesessesaesessessesaessensssesaesassessesaesassessesanssssssnsssesns
CUSTOM CUISOTAGAPIEIS .. cuevereecre e rer st ra e s s s e s s s b s e e e s ae b e e e e s b saesa e nae e saesae e e aesaesan e saesaenns
MaKing YOUF OWN CUISOISvcueiiiuieiiisiesessssssssessssssessssssesssssssssssssssssssssssassssssassssssansssssanssssssnssssssnssssssnsessseneen
SQLite and ANAroid VEISIONS.......cccuiceiriismsssrisesrsesesssessssssesssnssssssssssssessssssssssnses
Flash: Sounds Faster Than R IS.........vvciiiiiisncseesssessse e sns s snsns s

THE OULEE LIMIES....ccieeiceieeresicencsees s e e e e e e e e s e s s e e nnnnnnnans 382
FOUOWING the SCHPL.....cueoererereeere ettt s e a e e e s b e e e e e s ae e e e e e saesaenae e eanrns 383
ReVIEWING the SCIIPL......cccviiieeiiccrrcesrs e as e sn e en e s e e nnnnn e n s 386

Chapter 4: Communicating via the Internetcccciviinnnnnssennninsesnnnnn: 389
REST aNd ReIAXALION.......cceiriiieiriiieiriisesesessses e ss e s s b s n e sa s sn s e ensae e sn e e nnn e e s
HTTP Operations via Apache HEPCIIENt ..ot s nens
ParSing RESPONSEScoeeererrererieriersesersersessesssessessssessesaesessessessessssessessessssessessssessesaesassessesaessesessesasssssesasssens
STUTF 10 CONSIUETcveueeieieceriecsr e e s e s e e e R e e s Re e s Rn e nnnnn s
a0 0T g 10T 1T 1 OO S
Leveraging Internet-Aware Android Components.....
Downloading Files.........cccvverevnverierennns
Continuing Our Escape from JAnKy COUE.........ccuvurerrrrerrseserisisesssssssesessssessssssesssssssssssssssssssssssssssssssssssssesssssssnnes

o L T Y 1T LT | | ¥

xii

Chapter 35: Services: The Theory......c..cccnmnssemnmmsssssnsssssssssssssssssssssssssssnnnsss 409
WRY SEIVICES? ..viveieeiicisesestsssesessssesssse s sse e s st s s e s e sr e se e e R e R s Re e e Re e b e ReRe e eEnRe e eRe e nsane e nsannnnnans 409
Setting Up a Service
Service Class
LIfECYCIE METNOUSciveueeieece e e sa e a e e e se s nnne e n s
MANITEST ENEY...cvicieec e e e e e e R e R n R n s
COMMUNICALING 10 SEIVICES ...euvrrireerriiierisise s r e e e s ssse e s e s are e s s s e r s e Re e e e senRe e nnnsn e s
Sending Commands with startService()
Binding With DINASEIVICE()......ccvrerirerrriririnisisisese s sn s s a s sa s snn s
CommUNICAtiNgG frOM SEIVICES......ccvriiririireiiise et sa e e e nn e
Callback/Listener Objects
Broadcast Intents...................
Pending Results.......
T T T T OO
011072 (o]

CONTENTS

Chapter 36: Basic Service Patterns.........cccccunsemmmnssssnnnmnsssssssnssssssssssssssnnnnns 417
The Downloader
The Design
The Service Implementation
USING the SEIVICEciueieeirere et se st se et s s e s aese e s ae e s e e s ae e e e e e s b sae e e e e aesaenae e e e saeaenananennrns
THE MUSIC PIAYETcviveeeerieeertsesisss s e s s et sss s ss s ss s sn s sr b s s e s p s a s s e s nsanse s saese s san s nssnnnnnnns
The Design
The Service Implementation
Using the Service..........ccce.....
The Web Service Interface
The Design
The Rotation ChalleNgeccviiieiiineiriisssesesssese s sss s e s sn s s r s n s ensse s s ssasn s ssessnsns
The Service Implementation
USING the SEIVICEeiueieeererere sttt s s e s s e s s s e s e e s e e e e e e s b sa e e e e e aesaenae e e aesaeaenas e eanrns

Chapter 37: Alerting Users via Notificationsc...cccnnnsssennnnnsssnnnssssssannnnns 437
Notification Configuration
Hardware Notifications

Staying in the Foreground
L L b 1T T [GO PP SRS
Notifications in Ice Cream Sandwich and HONEYCOMDccceuieeereneninnncnnesesss s sns s snssenees 446

Part VI: Other Android Capabilities......c.ccoueemmmmnesnmmnsssssnnmnssssssssssssssssesssssnnees 449

Chapter 38: Requesting and Requiring Permissions..........ccovsssssenssssssnnnnens 491
MOTREE, IMAY 17t e e a e a e ee e e R e e e e g s Re e e e Re e n s 451
Halt! WHO GOBS TREIE?eiieieriiccitsee s sns e s s s e sn e en b en e e e nn s e n s 452

Enforcing Permissions via the Manifest

Enforcing Permissions Elsewhere
May | See Your Documents?...........ccceuvuene
New Permissions in Old Applications
Permissions: Up Front or NOt @t All...........ccocrereiririre s s s ss e s e saesessesaesassas e s e sassasssnesns

Chapter 39: Accessing Location-Based Servicesccccuusseensrssssnssssssssannnnns 497
Location Providers: They Know Where You’re Hiding
Finding Yourself
0N the MOVE........cccoeverereriririrere e
Are We There Yet? Are We There Yet?.......
Testing... Testing... cooeecvvvvevvrrcererrcereees .

Chapter 40: Mapping with MapView and M
Terms, NOt Of ENAEAIMENT.......cociiiiiiiii e s e s ae s s sa e s s e she s e sne e s nesnesaneanesnnnns
L1 T 04 SRS
The Key to It All
The Bare Bones

Xiii

CONTENTS

Layers Upon Layers
Overlay Classes........ccueurerernenenn
Drawing the HemizEAOVEIIAY.........ccoviiriiiiiese e sr s sr e a e sas e snn s
HaNAIiNG SCrEEN TAPSccvvverereerirerertr st sae et s e sae s saesas e s e saesae s e e e s s s ae s e e e s aesaesae e eaesaesae e saesaesnnnesaesannns
My, Myself, and MyLOCAtIONOVEIIAYcccererrreseriiserinissssssssesssssessssssessssssesssssssssssssssssssssssssssnssensssssssssssssnnes
LT o L=t I T o U PR SRS O SP SRS
Maps and Fragments...........ccocvvienrnvenesnsessssssesssnns
Limit Yourself to the Latest Android Versions......
Use onCreateView() and onActivityCreatedy)
Host the Fragment in a MapActivity...........c.ceceuu..
A Custom Alternative for Maps and Fragments

Chapter 41: Handling Telephone Calls.........ccuscemmrnsssnsnsmsssssnnssssssssssssssssnnnnns 377

RePOrt 10 the MANAGETcove e s s e e s b e e e s e sae e e e s aesae e s aeeaenae e e e eanens 477
YOU MAKE The Calll.......ceeeieeiereieiecse e s e sa s sas s sas e sn s s e s s sae e s sasnnsssnnnnnans 478
No, Really, YOU MaKE the Call!..........cccceriiririiieieesnsesesssessssessssssesssssesssssssssssssssssssssssssssnssssssssssnsssssessssssenees 480
Chapter 42: Fontscccinnnmmmmmmmnsssnmmmmsssssnmssssssssmssssssssssssssssssssssssssssssssnsnees 48 1
Love the 0ne YOU'TE With.......ccoeieiiiiiiriiess e s sn s sn s sn s 481
AAITIONAI FONTScoviveieeiccciresesss e s e s et e s esas e e s e e s san e ennnnnnnns 483
Here @ GIYPh, TREIE @ GIYPNccvceceiriciisce e e sa e sa e sn s 484
Chapter 43: More Development TOOIScccuseemrmnsssennnssssssnsnsssssssssssssssnsnnnss 487
Hierarchy Viewer: How Deep Is Your Code?cceuu.e.
DDMS: Under Android’s Hood
0T o 3o PRSP PRS
File PUSN QNG PUIL ...ttt e e n e n e se g nnn e n s
SCIEENSNOLS ...t s
LOCALION UPUALEServereeererierie st sesae st sae s e s s e sa e e s b s e e e s s e e n e s saesa e e saenae e saesaesaenasassnnnns
Placing Calls and Messages ..
Memory Management...............
adb: Like DDMS, with More Typing. .
LT LT €T T4 o | ORI

Part ViI: Alternative Application Environments............cccnmmnsseennnnsssssssssssssnssess 509

Xiv

Chapter 44: The Role of Alternative Environments............cccinnssnennnsssssnnnnnns 507
In the Beginning, There Was Java
LAnd RWas OK ...
BUCKING The TrENM.......ceceeeieeieeieteerestss s e n e r s r s s s e p s se e en b e e e e ae e e nan e n s
10 0] P 10 £ OO
CAVEAT DEVEIOPETeveveeerierterere st ste et s e ses s s e e s saesaesae e s s ae e e s ae e e s e e e e aeea e s e e e e ae s Rene e e e aesResae e e aeeaeeaeneseeanrns

Chapter 45: HTMLSccccnnemmmmmmsssssnsmsssssssssssssssssssssssssssssssssnsssssssnnssssssnnnnsss 91 1
Offline Applications..........c.cceueuen.
What Does It Mean?...............
How Do You Use It?................
Web Storageccceuennne
What DOES IE MEANT ...t e e s b e sn b e e a e e nnnne e nnans 517

Web SAL DAEADASE........cocrererereriririiieisieeee e 519
GOING t0 PrOAUCTIONvcueeiriieiiicce it se e se b e se e ensae e se e nne e nnn 519

TESHNG e ———————
Signing and Distribution
Updates.....ccooevvvevrerercenenns
Issues You May Encounter......
ANdroid DEVICE VEISIONScccerririieriisiseisssissssesesssessssssesssssssssssasesssssssssssesssssssssssssssssassessssssssssssesssassessssssassns
Screen SizeS and DENSIIESuccviiccrriiseiiis e sa s e e s nn s an e nnrn s
Limited Platform INtegrationcocveerieiernsrirc st s s s s e se s s sr e sne e saesa s e saesnennn
Performance and Battery ...t en e
Look and Feel
Distributionccocceeenerennnsereeser e
Browser Changes Post Ice Cream Sandwich.....
HTML5 and Alternative Android Browsers
HTML5: The BaSelingccccvvenerenenesenesssesessssssennnns

Chapter 46: PhoNeGaPcuvseeerrrssssnnnsmsssssnnssssssssssssssssssssssssssnssssssssssssssssnnnsss D29
L L Ll E 3l o104 T o OO 525
WhHat DO YOU WIILE IN? ...ttt s n s sn s s s ssasssnssssenans 525
What Features Do You Get? ...
What Do Apps Look Like?
How Does Distribution Work?

LT T0 I 1011 =T T OO S
INSTAIATION ...t e R R e E R e Re e n s
Creating and Installing Your Project
PhoneGap Build..........cccoeevververecerierenns

PhoneGap and the Checklist Sample
Sticking to the Standardsccceuu.
Adding PhoneGap APIs...........

Issues You May Encounter
LT o114 OSSO SR
Screen SizeS aNd DENSIIESuccvrviceiriiseiiirrses e a s e s nn s a e nnnan s
LOOK AN FEEL......eiveeeeieeceeiieest st se et se b e e e Re e s an e g nnn e nnan

FOr MOre INFOFMALIONcovieeieececctc et en e en e e e nnne e n s

Chapter 47: Other Alternative Environments............cccinnsssennnnnssssnnssssssannnnns 543
RROGES ...ttt sa R s 543
Ll (TR 1= =T o 1
JRUDY N0 BUDOTO........coviiciicccsic et s se s sa s nnsns g nnn s
0T To N (0T o o OSSOSO
o]0 1] 1 (0] RS
Titanium Mobileccccevvererreserrreeirienn

Other JVM Compiled Languages

Part VIII: The Ever-Evolving Androidccccunnnssssmsmmmnmssmssssssssssssssssssssssssssens 949

Chapter 48: Dealing with DeViCes......ccuusmmmmmssssnnnsmsssssnssssssssnssssssssnssssssssnnness 391
This App Contains Explicit Instructions
Explicit Feature Requests
Implied Feature Requests
A Guaranteed Market..................
Other Stuff That Varies

CONTENTS

Xv

CONTENTS

Bugs, Bugs, Bugs
Do T (o OSSN
Chapter 49: Where Do We Go from Here?ccccvssemmmnsssssnnsnssssssssssssssnnnnss 397
Questions, SOMEtiMES With ANSWELSccccrererririererirrerre s sse e e s sae e s saesae e sesaesassnssesanens 557
HEading t0 the SOUICEcoveieicererecr et s s s a e e s a e s a e e s e e sa e e e s e e 558
GELEING YOUI NEWS FiXu..vioiieireiirere st sereseseses e e s e sas e sessesas e s e saesaesa s e saesaesae e saesaesassassesaesessesaessssensesaesasnnensssenns 559

1 - ;1) |

xvi

About the Author

Grant Allen has worked in the IT field for over 20 years as a CTO, enterprise
architect, and database architect. Grant’s roles have covered private enterprise,
academia, and the government sector around the world, specializing in global-
scale systems design, development, and performance. He is a frequent speaker
at industry and academic conferences, on topics ranging from data mining to
compliance, and technologies such as databases (DB2, Oracle, SQL Server, and
MySQL), content management, collaboration, disruptive innovation, and
mobile ecosystems like Android.

His first Android application was a task list to remind him to finish all his
other unfinished Android projects.

Grant works for Google, and in his spare time is completing a PhD on building innovative
high-technology environments.
Grant is the author of Beginning DB2: From Novice to Professional (Apress, 2008), and lead author
of Oracle SQL Recipes: A Problem-Solution Approach (Apress, 2010) and The Definitive Guide to
SQLite, 2nd Edition (Apress, 2010).

About the Technical Reviewers

Michael Thomas has worked in software development for over 20 years as an individual
contributor, team lead, program manager, and Vice President of Engineering. Michael has over
10 years experience working with mobile devices. His current focus is in the medical sector using
mobile devices to accelerate information transfer between patients and health care providers.

Nikhil Gopal is a director of software development at Intelligene, LLC. He works on machine
learning and genomics/bioinformatics applications. In the past, he has worked in the
biotechnology and software industries, primarily in the role of a programmer scientist. He has
contributed to a number of open source projects pertaining to bioinformatics, genomics, and
unix-based operating systems. He graduated from UC Davis with a B.S. in
Biotechnology/Bioinformatics. He enjoys playing the guitar, riding motorcycles, and a number of
outdoor activities. He currently lives in the San Francisco bay area.

Acknowledgments

I'would like to thank the Android team, not only for putting out a good product, but for
invaluable assistance on the Android Google Groups.
Some of the icons used in the sample code were provided by the Nuvola icon set.

Xix

XX

Preface

Welcome to the Book!

Thanks for your interest in developing applications for Android! Increasingly, people will access
Internet-based services using so-called “nontraditional” means, such as mobile devices. The
more we do in that space now, the more that people will help invest in that space to make it
easier to build more powerful mobile applications in the future. Android is new—Android-
powered devices first appeared on the scene in late 2008—but it has already grown tremendously,
becoming the number one handset operating system in three short years.

And, most of all, thanks for your interest in this book! I sincerely hope you find it useful and
at least occasionally entertaining.

Prerequisites

If you are interested in programming for Android, you will need at least a basic understanding of
how to program in Java. Android programming is done using Java syntax, plus a class library that
resembles a subset of the Java SE library (plus Android-specific extensions). If you have not
programmed in Java before, you probably should learn how that works before attempting to dive
into programming for Android. The blog post http://commonsware.com/blog/2010/08/02/java-
good-parts-version.html enumerates the various Java programming topics an Android developer
needs to know. This subject is also dealt with by another Apress book, Learn Java for Android
Development, by Jeff Friesen (Apress, 2010).

Editions of This Book

This book is being produced via a partnership between Apress and CommonsWare. You are
reading the Apress edition, which is available in print and in digital form from various digital
book services, such as Safari.
CommonsWare continually updates the original material and makes it available to members
of its Warescription program, under the title The Busy Coder’s Guide to Android Development.
CommonsWare maintains a FAQ about this partnership at http://commonsware.com/apress.

Source Code and Its License

The source code for this book is available at www.apress.com. All of the Android projects are
licensed under the Apache 2.0 License, www.apache.org/licenses/LICENSE-2.0.html, in case you
have the desire to reuse any of it.

Part I

Core Concept

Chapter

The Big Picture

Android is everywhere. Phones. Tablets. TVs and set-top boxes powered by Google TV.
Soon, Android will be in cars, in in-flight entertainment systems on planes, and even in
robots!

However, the general theme of Android devices will be smaller screens and/or no
hardware keyboard. And, by the numbers, Android will probably be associated mostly
with smartphones for the foreseeable future. For developers, this has both benefits and
drawbacks, as described next. This chapter also describes the main components in an
Android application and the Android features that you can exploit when developing your
applications.

Benefits and Drawbacks of Smartphone
Programming

On the plus side, Android-style smartphones are sexy. Offering Internet services over
mobile devices dates back to the mid-1990s and the Handheld Device Markup
Language (HDML). However, only in recent years have phones capable of Internet
access taken off. Now, thanks to trends like text messaging and products like Apple’s
iPhone, phones that can serve as Internet-access devices are rapidly gaining popularity.
So, working on Android applications gives you experience with an interesting technology
(Android) in a fast-moving market segment (Internet-enabled phones), which is always a
good thing.

The problem comes when you actually have to program the darn things.

Anyone with experience in programming for PDAs or phones has felt the pain of phones
simply being small in all sorts of dimensions:

B Screens are small (you will not get comments like, “Is that a 24-inch
LCD in your pocket, or ... ?”).

B Keyboards, if they exist, are small.

CHAPTER 1: The Big Picture

B Pointing devices, if they exist, are annoying (as anyone who has lost
their stylus will tell you) or inexact (large fingers and “multitouch” LCDs
can sometimes be . . . problematic).

B CPU speed and memory are always behind what’s available on
desktops and servers.

Moreover, applications running on a phone have to deal with the fact that they’re on a
phone.

People with mobile phones tend to get very irritated when those phones do not work.
Similarly, those same people will get irritated if your program “breaks” their phones by

B Tying up the CPU such that calls can’t be received.

B Not quietly fading into the background when a call comes in or needs
to be placed, because the program doesn’t work properly with the rest
of the phone’s operating system.

B Crashing the phone’s operating system, such as by leaking memory
like a sieve.

Hence, developing programs for a phone is a different experience than developing
desktop applications, web sites, or back-end server processes. The tools look different,
the frameworks behave differently, and you have more limitations on what you can do
with your programs.

What Android tries to do is meet you halfway:

B You get a commonly used programming language (Java) with some
commonly used libraries (e.g., some Apache Commons APIs), with
support for tools you may be used to using (Eclipse).

B You get a fairly rigid and uncommon framework in which your
programs need to run so they can be “good citizens” on the phone
and not interfere with other programs or the operation of the phone
itself.

As you might expect, much of this book deals with that framework and how you write
programs that work within its confines and take advantage of its capabilities.

What Androids Are Made Of

When you write a desktop application, you are “master of your own domain.” You
launch your main window and any child windows —like dialog boxes—that are needed.
From your standpoint, you are your own world, leveraging features supported by the
operating system, but largely ignorant of any other program that may be running on the
computer at the same time. If you do interact with other programs, it is typically through
an application programming interface (API), such as Java Database Connectivity (JDBC),
or frameworks atop it, to communicate with MySQL or another database.

CHAPTER 1: The Big Picture

Android has similar concepts, but they are packaged differently and structured to make
phones more crash-resistant:

B Activities: The building block of the user interface is the activity. You
can think of an activity as being the Android analogue for the window
or dialog box in a desktop application or the page in a classic web
application. Android is designed to support lots of cheap activities, so
you can allow users to keep tapping to open new activities and
tapping the Back button to back up, just like they do in a web browser.

B Services: Activities are short-lived and can be shut down at any time.
Services, on the other hand, are designed to keep running, if needed,
independent of any activity, akin to the notion of services or daemons
on other operating systems. You might use a service to check for
updates to an RSS feed or to play back music even if the controlling
activity is no longer operating. You will also use services for scheduled
tasks (“cron jobs”) and for exposing custom APIs to other applications
on the device, though those are relatively advanced capabilities.

B Content providers: Content providers provide a level of abstraction for
any data stored on the device that is accessible by multiple
applications. The Android development model encourages you to
make your own data available to other applications, as well as your
own applications. Building a content provider lets you do that, while
maintaining complete control over how your data gets accessed.
Content providers can be anything from web feeds, to local SQLite
databases, and beyond.

B Intents: Intents are system messages that run around the inside of the
device and notify applications of various events, from hardware state
changes (e.g., an SD card was inserted), to incoming data (e.g., a
Short Message Service [SMS] message arrived), to application events
(e.g., your activity was launched from the device’s main menu). Intents
are much like messages or events on other operating systems. Not
only can you respond to an Intent, but you can create your own to
launch other activities or to let you know when specific situations arise
(e.g., raise such-and-so Intent when the user gets within 100 meters
of this-and-such location).

Stuff at Your Disposal

B Storage: You can package data files with your application for things
that do not change, such as icons or help files. You also can carve out
a small bit of space on the device itself, for databases or files
containing user-entered or retrieved data needed by your application.
And, if the user supplies bulk storage, like an SD card, you can read
and write files on there as needed.

CHAPTER 1: The Big Picture

B Network: Android devices generally are Internet-ready, through one
communications medium or another. You can take advantage of the
Internet access at any level you wish, from raw Java sockets all the
way up to a built-in WebKit-based web browser widget you can
embed in your application.

B Multimedia: Android devices have the ability to play back and record
audio and video. While the specifics may vary from device to device,
you can query the device to learn its capabilities and then take
advantage of the multimedia capabilities as you see fit, whether that is
to play back music, take pictures with the camera, or use the
microphone for audio note-taking.

B [ocation services: Android devices frequently have access to location
providers, such as GPS and cell triangulation, which can tell your
applications where the device is on the face of the Earth. In turn, you
can display maps or otherwise take advantage of the location data,
such as to track a device’s movements if the device has been stolen.

B Phone services: Because Android devices are typically phones, your
software can initiate calls, send and receive SMS messages, and do
everything else you expect from a modern bit of telephony technology.

The Big Picture...of This Book

Now that you have the Android big picture, here is what’s coming in the rest of this
book:

B The next two chapters are designed to get you going quickly with the
Android environment, through a series of step-by-step, tutorial-style
instructions for setting up the tools you need, creating your first
project, and getting that first project running on the Android emulator.

B The three chapters that follow explain a bit more about what just
happened in Chapters 2 and 3. We examine the Android project that
we created, talk a bit more about Eclipse, and discuss some things we
could add to the project to help it run on more devices and enhance its
capabilities.

B The bulk of the book explores the various capabilities of the Android
APIs—how to create components like activities, how to access the
Internet and local databases, how to get your location and show it on
a map, and so forth.

Chapter

How to Get Started

Without further ado, let’s get you set up with the pieces and parts necessary to build an
Android app.

NOTE: The instructions presented here are accurate as of the time of this writing. However, the
tools change rapidly, so these instructions may be out of date by the time you read this. Please
refer to the Android Developers web site for current instructions, using this as a base guideline of
what to expect.

Step 1: Set Up Java

When you write Android applications, you typically write them in Java source code. That
Java source code is then turned into the stuff that Android actually runs (Dalvik
bytecode in an Android package [APK] file).

Hence, the first thing you need to do is get set up with a Java development environment
so that you are prepared to start writing Java classes.

Install the JDK

You need to obtain and install the official Oracle Java SE Development Kit (JDK). You
can obtain this from the Oracle Java web site for Windows and Linux, and from Apple
for Mac OS X. The plain JDK (sans any “bundles”) should suffice. Follow the instructions
supplied by Oracle or Apple for installing it on your machine. At the time of this writing,
Android supports Java 5 and Java 6, with Java 7 likely to be supported by the time you
are reading this.

CHAPTER 2: How to Get Started

ALTERNATIVE JAVA COMPILERS

In principle, you are supposed to use the official Oracle JDK. In practice, it appears that OpenJDK also
works, at least on Ubuntu. However, the further removed you get from the official Oracle implementation,
the less likely it is that it will work. For example, the GNU Compiler for Java (GCJ) may not work with
Android.

Learn Java

This book, like most books and documentation on Android, assumes that you have
basic Java programming experience. If you lack this, you really should consider
spending a bit of time on Java fundamentals before you dive into Android. Otherwise,
you may find the experience to be frustrating.

If you are in need of a crash course in Java to get involved in Android development, here
are the concepts you need to learn, presented in no particular order:

B Language fundamentals (flow control, etc.)
Classes and objects

Methods and data members

Public, private, and protected

Static and instance scope

Exceptions

Threads and concurrency control
Collections

Generics

File 110

Reflection
B Interfaces

One of the easiest ways of acquiring this knowledge is to read Learn Java for Android
Development by Jeff Friesen (Apress, 2010).

CHAPTER 2: How to Get Started

Step 2: Install the Android SDK

The Android SDK gives you all the tools you need to create and test Android
applications. It comes in two parts: the base tools, and version-specific SDKs and
related add-ons.

Install the Base Tools

You can find the Android developer tools on the Android Developers web site at
http://developer.android.com. Download the ZIP file that is appropriate for your
platform and unzip it in a logical location on your machine—no specific path is required.
Windows users also have the option of running a self-installing EXE file.

Install the SDKs and Add-ons

Inside the tools/ directory of your Android SDK installation from the previous step, you
will see an android batch file or shell script. If you run that, you will be presented with
the Android SDK and AVD Manager, shown in Figure 2-1.

Android SDK and AVD Manager

Virtual devices List of existing Android Virtual Devices located at jhnme,’andrnidj.androidfavi

Installed packages || | ayp Name Target Name Platform | API Leve
Available packages

No AVD available

Settings Delete...
About Repair...
Details...

S Ll

Refresh

~ A valid Android Virtual Device. &3 A repairable Android Virtual Device.
X An Android Virtual Device that failed to load. Click 'Details' to see the erro

Figure 2-1. Android SDK and AVD Manager

At this point, you have some of the build tools, but you lack the Java files necessary to
compile an Android application. You also lack a few additional build tools, and the files
necessary to run an Android emulator. To address this, click the Available packages
option on the left to open the screen shown in Figure 2-2.

CHAPTER 2: How to Get Started

Android SDK and AVD Manager

Virtual devices SDK Location: /home/fandroid/android-sdk-linux_86
Installed packages

Packages available for download

Available packages

» [7= Android Repository

Settings » [#& Third party Add-cns
About

Description

Add Add-on Site...| Delete Add-on Site... | @ Dis |Reftesh| | Install Selected |

Figure 2-2. Android SDK and AVD Manager available packages

Open the Android Repository branch of the tree. After a short pause, you will see a
screen similar to Figure 2-3.

Virtual devices SDK Location: /home/android/android-sdk-linux_86
Installed packages

Packages available for download
Available packages -

Android Repository
Settings » [i SDK Platform Android 2.2, API 8, revision 2

About » O & SDK Platform Android 2.1, API 7, revision 2

» [i SDK Platform Android 1.6, APl 4, revision 3
» [% SDK Platform Android 1.5, API 3, revision 4
» O & samples for SDK API 8, revision 1

» [& samples for SDK API 7, revision 1

] & Third party Add-ons

Description

[ﬁ} \Delete Add-on 5ite...| & Di: [ﬁ] |Insta|l Selected

Figure 2-3. Android SDK and AVD Manager available Android packages

Check the boxes for the following items:
B “SDK Platform” for all Android SDK releases you want to test against
B “Documentation for Android SDK” for the latest Android SDK release

B “Samples for SDK” for the latest Android SDK release, and perhaps for
older releases if you wish

Then, open the Third party Add-ons branch of the tree. After a short pause, you will see
a screen similar to Figure 2-4.

CHAPTER 2: How to Get Started

Virtual devices SDK Location: fhome/android/android-sdk-linux_86
Installed packages

DI

Packages available for download
Available packages || ,) § spK Platform Android 2.1, API 7, revision 2
Settings » O & SDK Platform Android 1.6, API 4, revision 3
About » [i SDK Platform Android 1.5, API 3, revision 4
» O & samples for SDK API 8, revision 1
» [& samples for SDK API 7, revision 1
v O & Third party Add-ons
» [i@ Google Inc. add-ons (dl-ssl.google.com)

» [i@ Samsung Electronics add-ons (innovator.samsungmobile.com)
(T)
Description

g

[&} \Delete Add-on Site.,,| & Di: [E] |Install Selected

Figure 2-4. Android SDK and AVD Manager available third-party add-ons

Click the “Google Inc. add-ons” branch to open it, as shown in Figure 2-5.

Virtual devices SDK Location: /homefandroidfandroid-sdk-linux_86
Installed packages

Packages available for download
Available packages| .y () & Third party Add-ons

Settings v O i@ Google Inc. add-ons (dl-ssl.google.com)
About » [# Google APIs by Google Inc., Android API 8, revision 2

| & Google APIs by Google Inc., Android API 7, revision 1
| % Google APIs by Google Inc., Android API 4, revision 2
» [& Google APIs by Google Inc., Android API 3, revision 3
» [@ Google Market Licensing package, revision 1

v

v

» [i@ Samsung Electronics add-ons (innovator.samsungmobile.com)
[CLe VD)

Description

[M |De|ete Add-on Site... ‘ & Di: [ﬂ} |Insta|| Selected

Figure 2-5. Android SDK and AVD Manager available Google add-ons

Most likely, you will want to check the boxes for the “Google APIs by Google Inc.” items
that match up with the SDK versions you selected in the Android Repository branch. The
Google APIs include support for well-known Google products, such as Google Maps,
both from your code and in the Android emulator.

After you have checked all the items you want to download, click the Install Selected
button, which brings up a license confirmation dialog box, shown in Figure 2-6.

1

12

CHAPTER 2: How to Get Started

Choose Packages to Install

CkaQES Package Description & License

DENEEEWSEEEE WY Package Description -

? Google APIs by Google Inc., Andr| | Android SDK Platform 2.2 r1
Revision 2

Dependencies

This package is a dependency for:

- Google APIs by Google Inc., Android API 8, revision
2

@® Accept O Reject O Accept All

[*] Something depends on this package ﬁ T —

Figure 2-6. Android SDK and AVD Manger license agreement screen

Review and accept the licenses if you agree with the terms, and then click the Install
button. At this point, this is a fine time to go get lunch or dinner. Unless you have a
substantial Internet connection, downloading all of this data and unpacking it will take a
fair bit of time.

When the download is complete, you can close the SDK and AVD Manager if you wish,
though you will use it to set up the emulator in Step 5 of this chapter.

Step 3: Install the ADT for Eclipse

If you will not be using Eclipse for your Android development, you can skip to the next
section. If you will be using Eclipse but have not yet installed it, you will need to do that
first. Eclipse can be downloaded from the Eclipse web site, www.eclipse.org/. The
Eclipse IDE for Java Developers package will work fine.

Next, you need to install the Android Developer Tools (ADT) plug-in. To do this, open
Eclipse and choose Help »» Install New Software. Then, in the Install dialog box, click the
Add button to add a new source of plug-ins. Give it a name (e.g., Android) and supply the
following URL: https://dl-ssl.google.com/android/eclipse/. That should trigger Eclipse
to download the roster of plug-ins available from that site (see Figure 2-7).

CHAPTER 2: How to Get Started

Check the items that you wish to install.

Available Software

o

Work with: lAndmid - https://dl-ssl.google.com/android/eclipse/ | v } &‘

Find more software by working with the "Available Software Sites" preferences.

[i, pe filter text

|

Name

Version

¥ [0 Developer Tools
O § Android DDMS
O 4 Android Development Tools
() § Android Hierarchy Viewer

8.0.1.v201012062107-82219
8.0.1.v201012062107-82219
8.0.1.v201012062107-82219

_ selectall | Deselect Al |

Details

& Group items by category

@

B show only the latest versions of available software [Hide items that are already installed

@ contact all update sites during install to find required software

What is already installed?

| <Back || Next> | || SSGERCEIE | Finish |

Figure 2-7. Eclipse ADT plug-in installation

Check the Developer Tools check box and click the Next button. Follow the rest of the
wizard steps to review the tools to be downloaded and review and accept their respective
license agreements. When the Finish button is enabled, click it, and Eclipse will download
and install the plug-ins. When it’s done, Eclipse will ask to restart; let it do so.

Then, you need to show ADT where to locate your Android SDK installation from the
preceding section. To do this, choose Window »» Preferences from the Eclipse main
menu (or the equivalent Preferences option for Mac OS X). Click the Android entry in the
list pane of the Preferences dialog box, as shown in Figure 2-8.

13

CHAPTER 2: How to Get Started

Preferences

@ Vvalue must be an existing directory O v v

General
Android
Ant
Help
Install/Update Target Name Vendor Platform | API Ley
Java - No target available

Run/Debug
Tasks
Team

Android Preferences

SDK Location: } [Browse...]
Note: The list of SDK Targets below is only reloaded once you hit 'Apply* or 'OK".

>
[2
>
| 4
>
[3
>
4
>
[3

Usage Data Collecto
Validation
» XML

@ e Gance e oK

Figure 2-8. Eclipse ADT configuration

Then, click the Browse button to find the directory where you installed the SDK. After
choosing it, click Apply in the Preferences dialog box, and you should see the Android
SDK versions you installed previously. Then, click OK, and the ADT will be ready for use.

Step 4: Install Apache Ant

If you will be doing all of your development from Eclipse, you can skip to the next
section. If you wish to develop using command-line build tools, you need to install
Apache Ant. You may have this installed already from previous Java development work,
as it is fairly common in Java projects. However, you need Ant version 1.8.1 or later, so
check your current copy (e.g., ant -version).

If you do not have Ant or do not have the correct version, you can obtain it from the
Apache Ant web site, at http://ant.apache.org/. Full installation instructions are
available in the Ant manual, but the basic steps are as follows:

1. Unpack the ZIP archive in a logical place on your machine.

2. Add a JAVA_HOME environment variable, pointing to where your JDK is
installed, if you do not have one already.

3. Add an ANT_HOME environment variable, pointing to the directory where
you unpacked Ant in step 1.

Add $JAVA_HOME/bin and $ANT_HOME/bin to your PATH.
5. Runant -version to confirm that Ant is installed properly.

CHAPTER 2: How to Get Started 15

Step 5: Set Up the Emulator

The Android tools include an emulator, a piece of software that pretends to be an
Android device. This is very useful for development because it not only enables you to
get started on your Android development without a device, but also enables you to test
device configurations for devices that you do not own.

The Android emulator can emulate one or several Android devices. Each configuration
you want is stored in an Android Virtual Device (AVD). The Android SDK and AVD
Manager, which you used to download the SDK components earlier in this chapter, is
where you create these AVDs.

If you do not have the SDK and AVD Manager running, you can run it via the android
command from your SDK’s tools/ directory, or via Window » SDK and AVD Manager
from Eclipse. It opens with a screen listing the AVDs you have available; initially, the list
will be empty, as shown in Figure 2-9.

Android SDK and AVD Manager

Virtual devices List of existing Android Virtual Devices located at /home/android/.android/avg

Installed packages ||| nyp name Target Name Platform | API Leve E

Available packages || - -

Settings Delete...

About Repair...
Details...
Start...

Refresh

~ A wvalid Android Virtual Device.] A repairable Android Virtual Device.
% An Android Virtual Device that failed to load. Click 'Details’ to see the erro

Figure 2-9. Android SDK and AVD Manager Android Virtual Devices list

Click the New button to create a new AVD file. This opens the dialog box shown in
Figure 2-10, where you can configure how this AVD should look and work.

CHAPTER 2: How to Get Started

Name: || |
Target: [s]
oA @ Size: [] [MiB <]
O File: ‘:Browse,,, |
S @ Built-in: | 2l
O Resolution: X
ol Property Value
!_Delete|

[0 override the existing AVD with the same name

| create AvD H Cancel

Figure 2-10. Adding a new AVD

You need to provide the following:

B A name for the AVD: Since the name goes into files on your
development machine, you are limited by the file name conventions for
your operating system (e.g., no backslashes on Windows).

B The Android version (target) you want the emulator to run: Choose one
of the SDKs you installed via the Target drop-down list. Note that in
addition to “pure” Android environments, you will have options based
on the third-party add-ons you selected. For example, you probably
have some options for setting up AVDs containing the Google APIs,
and you will need such an AVD for testing an application that uses
Google Maps.

B Details about the SD card the emulator should emulate: Since Android
devices invariably have some form of external storage, you probably
want to set up an SD card, by supplying a size in the associated field.
However, since a file will be created on your development machine of
whatever size you specify for the card, you probably do not want to
create a 2GB emulated SD card. 32MB is a nice starting point, though
you can go larger if needed.

CHAPTER 2: How to Get Started 17

B The “skin” or resolution the emulator should run in: The skin options
you have available depend upon what target you chose. The skins let
you choose a typical Android screen resolution (e.g., WVGAB800 for
800x480). You can also manually specify a resolution when you want
to test a nonstandard configuration.

You can skip the Hardware section of the dialog box for now, as changing those
settings is usually only required for advanced configurations.

The resulting dialog box might look something like Figure 2-11.

Name: [2.3-WVGA800

Target: [Google APIs (Google Inc.)-API Level9 T]

sDCard: | 6 size: [32 | (mis <]
O File: ‘.Browse,,, |

skin: e : !
® Builtin: [WvGA800]
O Resolution: X

Hardware:
Property Value

Abstracted LCD densi 240 e,
o | Delete |
Max VM application k24 N

[0 override the existing AVD with the same name

I Create AVD H Cancel]

Figure 2-11. Adding a new AVD (continued)

Click the Create AVD button, and your AVD stub will be created.

To start the emulator, select it in the Android Virtual Devices list and click Start. You can
skip the launch options for now and just click Launch. The first time you launch a new
AVD, it will take a long time to start up. The second and subsequent times you start the
AVD, it will come up a bit faster, and usually you need to start it only once per day (e.g.,
when you start development). You do not need to stop and restart the emulator every
time you want to test your application, in most cases.

The emulator will go through a few startup phases, the first of which displays a plain-text
ANDRQOID label, as shown in Figure 2-12.

CHAPTER 2: How to Get Started

aav

PRI R PR PR P FE RPN

Figure 2-12. Android emulator, initial startup segment

The second phase displays a graphical Android logo, as shown in Figure 2—-13.

CHAPTER 2: How to Get Started 19

Figure 2-13. Android emulator, secondary startup segment

Finally, the emulator reaches the home screen (the first time you run the AVD; see
Figure 2-14) or the keyguard (see Figure 2-15).

20

CHAPTER 2: How to Get Started

Figure 2-14. Android home screen

If you get the keyguard, press the Menu button or slide the green lock on the screen to
the right, to get to the emulator’s home screen.

3:04

Friday, November 4
Charging, 50%

Figure 2-15. Android keyguard

CHAPTER 2: How to Get Started 21

Step 6: Set Up the Device

With an emulator set up, you do not need an Android device to get started in Android
application development. Having one is a good idea before you try to ship an application
(e.g., upload it to the Android Market). But perhaps you already have a device—maybe
that is what is spurring your interest in developing for Android.

The first step to make your device ready for use with development is to go into the
Settings application on the device. From there, choose Applications, then Development.
That should give you a set of check boxes for choosing development-related options,
similar to what’s shown in Figure 2-16.

[

. Developer options
USB debugging

Development device

Stay awake
Allow mock locations

HDCP checking

DX M content only

Desktop backup password

v l1ed

USER INTERFACE

Figure 2-16. Android device development settings

Generally, you will want to enable USB debugging so that you can use your device with
the Android build tools. You can leave the other settings alone for now if you wish,
though you may find the Stay awake option to be handy, as it saves you from having to
unlock your phone repeatedly while it is plugged into USB.

Next, you need to set up your development machine to talk to your device. That process
varies by the operating system of your development machine, as covered in the
following sections.

22

CHAPTER 2: How to Get Started

Windows

When you first plug in your Android device, Windows attempts to find a driver for it. It is
possible that, by virtue of other software you have installed, the driver is ready for use. If
Windows finds a driver, you are probably ready to go.

If Windows doesn’t find the driver, here are some options for getting one:

B Windows Update: Some versions of Windows (e.g., Vista) prompt you
to search Windows Update for drivers. This is certainly worth a shot,
though not every device manufacturer will have supplied its device’s
driver to Microsoft.

B Standard Android driver: In your Android SDK installation, you will find
a google-usb_driver directory, containing a generic Windows driver
for Android devices. You can try pointing the driver wizard at this
directory to see if it thinks this driver is suitable for your device.

B Manufacturer-supplied driver: If you still do not have a driver, search
the CD that came with the device (if any) or search the web site of the
device manufacturer. Motorola, for example, has drivers available for
all of its devices in one spot for download.

Mac 0S X and Linux

Odds are decent that simply plugging in your device will “just work.” You can see if
Android recognizes your device by running adb devices in a shell (e.g., OS X Terminal),
where adb is in your platform-tools/ directory of your SDK. If you get output similar to
the following, Android detected your device:

List of devices attached
HT9CPP809576 device

If you are running Ubuntu (or perhaps another Linux variant) and this command did not
work, you may need to add some udev rules. For example, here is a 51-android.rules
file that will handle the devices from a handful of manufacturers:

SUBSYSTEM=="usb", SYSFS{idVendor}=="0bb4", MODE="0666"

SUBSYSTEM=="usb", SYSFS{idVendor}=="22b8", MODE="0666"

SUBSYSTEM=="usb", SYSFS{idVendor}=="18d1", MODE="0666"

SUBSYSTEMS=="usb", ATTRS{idVendor}=="18d1", ATTRS{idProduct}=="0c01", MODE="0666",+
OWNER="[me]"

SUBSYSTEM=="usb", SYSFS{idVendor}=="19d2", SYSFS{idProduct}=="1354", MODE="0666"
SUBSYSTEM=="usb", SYSFS{idVendor}=="04e8", SYSFS{idProduct}=="681c", MODE="0666"

Drop that in your /etc/udev/rules.d directory on Ubuntu, and then either reboot the
computer or otherwise reload the udev rules (e.g., sudo service udev reload). Then,
unplug the device, plug it in again, and see if it is detected.

Chapter

Your First Android Project

Now that you have the Android SDK, it is time to make your first Android project. The
good news is that this requires zero lines of code—Android’s tools create a “Hello,
world!” application for you as part of creating a new project. All you need to do is build
it, install it, and watch it open on your emulator or device.

Step 1: Create the New Project

Android’s tools can create a complete skeleton project for you, with everything you need
for a complete (albeit very trivial) Android application. The process differs depending on
whether you are using an IDE like Eclipse or the command line.

Eclipse

From the Eclipse main menu, choose File » New »>» Project to open the New Project
dialog box, which gives you a list of project type wizards to choose from. Expand the
Android option and click Android Project, as shown in Figure 3-1.

23

CHAPTER 3: Your First Android Project

New Project

Select a wizard

Wizards:

type filter text

» = General

¥ & Android
® Android Project

J9 Android Test Project
» (= CVS

* = Java

» (= Examples

@ ~ee (D e[

Figure 3-1. Selecting a wizard in the Eclipse New Project dialog box

Click Next to advance to the first page of the New Android Project wizard, shown in
Figure 3-2.

CHAPTER 3: Your First Android Project

New Android Project

New Android Project F- -9
. . ==
@ Project name must be specified cﬂ;
Project name:]
Contents
@® Create new project in workspace
(O Create project from existing source
[Use default location
Location: |[/home/android/workspace | Browse... |
(O Create project from existing sample
Samples: | Please select a target. v |
Build Target
Target Name Vendor Platform API Levt
[Android 2.3 Android Open Source Project 2.3 9
) Google APIs Google Inc. 2.3 9
Properties
Application name: [l
Package name: [l
& Create Activity: [l
Min SDK Version: [l
@ psBackuy| Next> | guCancelily) | Finish

Figure 3-2. Eclipse New Android Project wizard, ready to fill in

Fill in the following and leave the default settings otherwise (the completed example for

this project is shown in Figure 3-3):

B Project name: The name of the project (e.g., Now)

B Build Target: The Android SDK you wish to compile against (e.g.,

Google APIs for Android 2.3.3)

B Application name: The display name of your application, which will be
used for the caption under your icon in the launcher (e.g., Now)

B Package name: The name of the Java package in which this project

belongs (e.g., com.commonsware.android.skeleton)

B Create Activity: The name of the initial activity to create (e.g., Now)

25

26

CHAPTER 3: Your First Android Project

New Android Project

New Android Project F- -
. . |!'Im..'|
Creates a new Android Project resource.

Project name: |Now

Contents
@® Create new project in workspace
(O Create project from existing source

& Use default location

Location: |/home/android/workspace/Now

Browse...
(O Create project from existing sample
Samples: | MapsDemo =
Build Target
Target Name Vendor Platform API Levt
[Android 2.3 Android Open Source Project 2.3 9
& Google APIs Google Inc. 2.3 9

Android + Google APIs

Properties

Application name: [

Package name: [ccm.commonsware.android.skeleton

& Create Activity: [Now

Min SDK Version: [

@ _ <Back blexte [%J ﬁ

Figure 3-3. Eclipse New Android Project wizard, completed

At this point, click Finish to create your Eclipse project.

Command Line

Here is a sample command that creates an Android project from the command line:

android create project --target "Google Inc.:Google APIs:7" --path Skeleton/Now«
--activity Now --package com.commonsware.android.skeleton

This creates an application skeleton for you, complete with everything you need to build
your first Android application: Java source code, build instructions, and so forth.

However, you’ll probably need to customize this somewhat. Here are what those
command-line switches mean:

CHAPTER 3: Your First Android Project

B --target: Indicates which version of Android you are targeting in terms
of your build process. You need to supply the ID of a target that is
installed on your development machine, one you downloaded via the
Android SDK and AVD Manager. You can find out which targets are
available via the android list targets command. Typically, your build
process will target the newest version of Android that you have
available.

B --path: Indicates where you want the project files to be generated.
Android will create a directory if the one you name does not exist. For
example, in the preceding command, a Skeleton/Now/ directory will be
created (or used if it exists) under the current working directory, and
the project files will be stored there.

B --activity: Indicates the Java class name of your first activity for this
project. Do not include a package name, and make sure the name
meets Java class-naming conventions.

B --package: Indicates the Java package in which your first activity will
be located. This package name also uniquely identifies your project on
any device on which you install it, and it must be unique on the
Android Market if you plan on distributing your application there.
Hence, typically, you should construct your package based on a
domain name you own (e.g., com.commonsware.android.skeleton), to
reduce the odds of an accidental package name collision with
somebody else.

For your development machine, you need to pick a suitable target, and you may wish to
change the path. You can ignore the activity and package for now.

Step 2: Build, Install, and Run the Application in
Your Emulator or Device

Having a project is nice and all, but it would be even better if you could build and run it,
whether on the Android emulator or on your Android device. Once again, the process
differs somewhat depending on whether you are using Eclipse or the command line.

Eclipse

With your project selected on the Package Explorer panel of Eclipse, click the green play
button in the Eclipse toolbar to run your project. The first time you do this, you have to go
through a few steps to set up a run configuration, so Eclipse knows what you want to do.

First, in the Run As dialog box, choose Android Application, as shown in Figure 3-4.

27

28

CHAPTER 3: Your First Android Project

Select a way to run 'Now':

Andrmd Apphr_atmn

J5 Android JUnit Test
Ml Java Applet

I Java Application
Ju JUnit Test

Description
Runs an Android Application

® [concel | [

Figure 3-4. Choosing to run as an Android application in the Eclipse Run As dialog box

Click OK. If you have more than one emulator AVD or device available, you will then get
an option to choose which you wish to run the application on. Otherwise, if you do not
have a device plugged in, the emulator will start up with the AVD you created earlier.
Then, Eclipse will install the application on your device or emulator and start it.

Command Line

For developers who are not using Eclipse, in your terminal, change into the
Skeleton/Now directory, then run the following command:

ant clean install

The Ant-based build should emit a list of steps involved in the installation process,
which looks like this:

Buildfile: /home/some-balding-guy/projects/Skeleton/Now/build.xml
[setup] Android SDK Tools Revision 10

[setup] Project Target: Android 1.6

[setup] API level: 4

[setup
[setup] ----------=mmuummn

[setup] Resolving library dependencies:
[setup] No library dependencies.

[setup
[setup] -----------m""um--
[setup
[setup] WARNING: No minSdkVersion value set. Application will install on all Android
versions.
[setup
[setup] Importing rules file: tools/ant/main_rules.xml

clean:

CHAPTER 3: Your First Android Project

[delete] Deleting directory /home/some-balding-guy/projects/Skeleton/Now/bin
[delete] Deleting directory /home/some-balding-guy/projects/Skeleton/Now/gen

-debug-obfuscation-check:
-set-debug-mode:

-compile-tested-if-test:

-pre-build:
-dirs:

[echo] Creating output directories if needed...

[mkdir] Created dir: /home/some-balding-guy/projects/Skeleton/Now/bin

[mkdir] Created dir: /home/some-balding-guy/projects/Skeleton/Now/gen

[mkdir] Created dir: /home/some-balding-guy/projects/Skeleton/Now/bin/classes
-aidl:

[echo] Compiling aidl files into Java classes...

-renderscript:
[echo] Compiling RenderScript files into Java classes and RenderScript bytecode...

-resource-src:
[echo] Generating R.java / Manifest.java from the resources...

-pre-compile:

compile:

[javac] /opt/android-sdk-linux/tools/ant/main_rules.xml:384: warning:
"includeantruntime' was not set, defaulting to build.sysclasspath=last; set to false for
repeatable builds

[javac] Compiling 2 source files to /home/some-balding-
guy/projects/Skeleton/Now/bin/classes

-post-compile:
-obfuscate:

-dex:
[echo] Converting compiled files and external libraries into /home/some-balding-
guy/projects/Skeleton/Now/bin/classes.dex...

-package-resources:
[echo] Packaging resources
[aapt] Creating full resource package...

-package-debug-sign:
[apkbuilder] Creating Now-debug-unaligned.apk and signing it with a debug key...

debug:

[echo] Running zip align on final apk...

[echo] Debug Package: /home/some-balding-guy/projects/Skeleton/Now/bin/Now-
debug.apk

install:

29

CHAPTER 3: Your First Android Project

[echo] Installing /home/some-balding-guy/projects/Skeleton/Now/bin/Now-debug.apk
onto default emulator or device...

[exec] 98 KB/s (4626 bytes in 0.045s)

[exec] pkg: /data/local/tmp/Now-debug.apk

[exec] Success

BUILD SUCCESSFUL
Total time: 10 seconds

Note the BUILD SUCCESSFUL message at the bottom—that is how you know the
application compiled successfully.

When you have a clean build, in your emulator or device, open the application launcher,
shown in Figure 3-5, which typically is found at the bottom of the home screen.

Ml @ 4:04Pm

o m @ &

Alarm Clock APIDemos Browser Calculator

% m R R

Camera Contacts Custom Dev Tools
Locale

8% &8 9P

Email Gallery Gestures Messaging
Builder

© O @

Music Now Phone Settings

Figure 3-5. Android emulator application launcher

Notice there is an icon for your Now application. Click it to open it and see your first
activity in action. To leave the application and return to the launcher, press the Back
button, which is located to the right of the Menu button and looks like an arrow pointing
to the left.

Chapter

Examining Your First
Project

The previous chapter stepped you through creating a stub project. This chapter
describes what is inside of this project, so you understand what Android gives you at the
outset and what the roles are for the various directories and files.

Project Structure

The Android build system is organized around a specific directory tree structure for your
Android project, much like any other Java project. The specifics, though, are fairly unique
to Android—the Android build tools do a few extra things to prepare the actual application
that will run on the device or emulator. Here’s a quick primer on the project structure, to
help you make sense of it all, particularly for the sample code referenced in this book.

Root Contents

When you create a new Android project (e.g., via android create project), you get
several items in the project’s root directory, including the following:

B AndroidManifest.xml: An XML file that describes the application being
built and what components (activities, services, etc.) are being
supplied by that application

B bin/: The directory that holds the application once it is compiled

B libs/: The directory that holds any third-party JARs your application
requires

B res/: The directory that holds resources, such as icons, GUI layouts,
and the like, that are packaged with the compiled Java in the
application

B src/: The directory that holds the Java source code for the application

3

CHAPTER 4: Examining Your First Project

In addition to the preceding file and directories, you may find any of the following in
Android projects:

B assets/: The directory that holds other static files that you want
packaged with the application for deployment onto the device

B gen/: The directory in which Android’s build tools place source code
that they generate

B build.xml and *.properties: Files that are used as part of the Ant-
based command-line build process, if you are not using Eclipse

B proguard.cfg: A file that is used for integration with ProGuard to
obfuscate your Android code

The Sweat Off Your Brow

When you create an Android project (e.g., via android create project), you supply the
fully qualified class name of the main activity for the application (e.g.,

com. commonsware.android.SomeDemo). You will then find that your project’s src/ tree
already has the namespace directory tree in place, plus a stub Activity subclass
representing your main activity (e.g., src/com/commonsware/android/SomeDemo. java). You
are welcome to modify this file and add others to the src/ tree as needed to implement
your application.

The first time you compile the project (e.g., via ant), out in the main activity’s namespace
directory, the Android build chain will create R. java. This contains a number of
constants tied to the various resources you placed in the res/ directory tree. You should
not modify R.java yourself, but instead let the Android tools handle it for you. You will
see throughout this book that many of the examples reference things in R. java (e.g.,
referring to a layout’s identifier via R.layout.main).

And Now, the Rest of the Story

The res/ directory tree in your project holds resources — static files that are packaged
along with your application, either in their original form or, occasionally, in a preprocessed
form. Following are some of the subdirectories you will find or create under res/:

B res/drawable/: For images (PNG, JPEG, etc.)

B res/layout/: For XML-based Ul layout specifications

B res/menu/: For XML-based menu specifications

B res/raw/: For general-purpose files (e.g., an audio clip or a CSV file of
account information)

res/values/: For strings, dimensions, and the like

B res/xml/: For other general-purpose XML files you wish to ship

CHAPTER 4: Examining Your First Project

Some of the directory names may have suffixes, like res/drawable-hdpi/. This indicates
that the directory of resources should be used only in certain circumstances—in this
case, the drawable resources should be used only on devices with high-density screens.

We will cover all of these resources, and more, in later chapters of this book.
In your initial project, you will find the following:

B res/drawable-hdpi/icon.png, res/drawable-1dpi/icon.png, and
res/drawable-mdpi/icon.png: Three renditions of a placeholder icon
for your application for high-, low-, and medium-density screens,
respectively

B res/layout/main.xml: An XML file that describes the very simple
layout of your user interface

B res/values/strings.xml: An XML file that contains externalized
strings, notably the placeholder name of your application

What You Get Out of It

When you compile your project (via ant or the IDE), the results go into the bin/ directory
under your project root, as follows:

B bin/classes/: Holds the compiled Java classes

B bin/classes.dex: Holds the executable created from those compiled
Java classes

B bin/yourapp.ap_: Holds your application’s resources, packaged as a
ZIP file (where yourapp is the name of your application)

B bin/yourapp-*.apk: The actual Android application (where * varies)

The .apk file is a ZIP archive containing the .dex file, the compiled edition of your
resources (resources.arsc), any uncompiled resources (such as what you put in
res/raw/), and the AndroidManifest.xml file. If you build a debug version of the
application (which is the default), you will have yourapp-debug.apk and yourapp-debug-
aligned.apk as two versions of your APK. The latter has been optimized with the
zipalign utility to make it run faster.

Inside Your Manifest

The foundation for any Android application is the manifest file, AndroidManifest.xml, in
the root of your project. This is where you declare what is inside your application—the
activities, the services, and so on. You also indicate how these pieces attach themselves
to the overall Android system; for example, you indicate which activity (or activities)
should appear on the device’s main menu (a.k.a., the launcher).

When you create your application, a starter manifest is generated for you automatically.
For a simple application, offering a single activity and nothing else, the autogenerated

33

34

CHAPTER 4: Examining Your First Project

manifest will probably work out fine, or perhaps require a few minor modifications. On
the other end of the spectrum, the manifest file for the Android API demo suite is over
1,000 lines long. Your production Android applications will probably fall somewhere in
the middle.

In the Beginning, There Was the Root, and It Was Good

The root of all manifest files is, not surprisingly, a manifest element:

<manifest xmlns:android="http://schemas.android.com/apk/res/android"
package="com.commonsware.android.search">

;}ﬁanifest>
Note the namespace declaration. Curiously, the generated manifests apply it only on the

attributes, not the elements (e.g., manifest, not android:manifest). This pattern works,
so, unless Android changes, you should stick with it.

The biggest piece of information you need to supply on the manifest element is the
package attribute (also curiously not namespaced). Here, you can provide the name of
the Java package that will be considered the “base” of your application. Then,
everywhere else in the manifest file that needs a class name, you can just substitute a
leading dot as shorthand for the package. For example, if you needed to refer to

com. commonsware.android.search.Snicklefritz in the preceding manifest, you could
just use .Snicklefritz, since com.commonsware.android.search is defined as the
application’s package.

As noted in the previous chapter, your package also is a unique identifier for your
application. A device can have only one application installed with a given package, and
the Android Market will list only one project with a given package.

Your manifest also specifies android:versionName and android:versionCode attributes.
These represent the versions of your application. The android:versionName value is what
the user will see in the Applications list in their Settings application. Also, the version
name is used by the Android Market listing, if you are distributing your application that
way. The version name can be any string value you want. The android:versionCode
value, on the other hand, must be an integer, and newer versions must have higher
version codes than do older versions. Android and the Android Market will compare the
version code of a new APK to the version code of an installed application to determine if
the new APK is indeed an update. The typical approach is to start the version code at 1
and increment it with each production release of your application, though you can
choose another convention if you wish.

CHAPTER 4: Examining Your First Project

TIP: The Android Market will present only one version (typically, the latest) of any APK. Should
you ever want to deploy a different version and not have to go through the effort of recompiling
from your code, you can take a backup of your APK for any given version and simply side-load it
onto your device or emulator.

An Application for Your Application

In your initial project’s manifest, the only child of the <manifest> element is an
<application> element. The children of the <application> element represent the core of
the manifest file.

One attribute of the <application> element that you may need in select circumstances
is the android:debuggable attribute. This needs to be set to true if you are installing the
application on an actual device, you are using Eclipse (or another debugger), and your
device precludes debugging without this flag. For example, the Google/HTC Nexus One
requires android:debuggable = "true", according to some reports.

By default, when you create a new Android project, you get a single <activity> element
inside the <application> element:

<?xml version="1.0"?>
<manifest xmlns:android="http://schemas.android.com/apk/res/android"
package="com.commonsware.android.skeleton">
<application>
<activity android:name=".Now" android:label="Now">
<intent-filter>
<action android:name="android.intent.action.MAIN"/>
<category android:name="android.intent.category.LAUNCHER"/>
</intent-filter>
</activity>
</application>
</manifest>

This element supplies android:name for the class implementing the activity,
android:label for the display name of the activity, and (frequently) an <intent-filter>
child element describing under what conditions this activity will be displayed. The stock
<activity> element sets up your activity to appear in the launcher, so users can choose
to run it. As you’ll see later in this book, you can have several activities in one project, if
you so choose.

35

Chapter

A Bit About Eclipse

Eclipse is an extremely popular integrated development environment (IDE),
particularly for Java development. It is also designed to be extensible via an add-in
system. To top it off, Eclipse is open source, thanks to the beneficence of IBM many
years back in its decision to release Eclipse to the wide world. That combination made it
an ideal choice of IDE for the core Android developer team.

Specifically, to go alongside the Android SDK, Google has published some add-ins for
the Eclipse environment. Primary among these is the Android Developer Tools (ADT)
add-in, which gives Eclipse it core awareness of Android.

What the ADT Gives You

The ADT add-in, in essence, takes regular Eclipse operations and extends them to work
with Android projects. For example, with Eclipse, you get the following features (among
others):

B New project wizards to create regular Android projects, Android test
projects, and so forth

B The ability to run an Android project just like you might run a regular
Java application—via the green Run button in the toolbar—despite the
fact that this really involves pushing the Android application over to an
emulator or device, possibly even starting up the emulator if it is not
running

B Tooltip support for Android classes and methods

In addition, the latest version of the ADT provides you with preliminary support for drag-
and-drop GUI editing. While this book will focus on the XML files that Eclipse generates,
Eclipse now lets you assemble those XML files by dragging GUI components around on
the screen, adjusting properties as you go. Drag-and-drop GUI editing is fairly new, so
there may be a few rough edges for a while as the community and Google identify the
problems and limitations with the current implementation.

37

38

CHAPTER 5: A Bit About Eclipse

Coping with Eclipse

Eclipse is a powerful tool. Like many powerful tools, Eclipse is sometimes confounding.
Determining how to solve some specific development problem can be a challenge,
exacerbated by the newness of Android itself.

This section offers some tips for handling some common issues in using Eclipse with
Android.

How to Import a Non-Eclipse Project

Not all Android projects ship with Eclipse project files, such as the sample projects
associated with this book. However, you can easily add them to your Eclipse
workspace, if you wish. Here’s how to do it!

First, choose File »» New »» Project from the Eclipse main menu, as shown in Figure 5-1.

File| Edit Run Source Refactor Navigate Search Project Window Help

New Alt+Shift+N » | (2% Java Project E
Open File... 9 Project...]
Close Ctrl+W | #f Package]
Close All Ctrl+Shift+W | & Class
Save Ctrl+S @ | Interface
Save As... G} Enien
Save Al Cutishift=s, | & | Annotation
Pt &Y Source Folder
15 Java Working Set
Move... Y Folder
Rename... F2 D; Bl
&] Refresh F5 | & Untitled Text File
Convert Line Delimiters To 4 E‘; JUnit Test Case
Print... Cti+P | [T Task
Switch Workspace » |9 Example...
Restart S Other... Ctrl+N
g2y Import..
iy Export..
Properties Alt+Enter
Exit
| L N —

Figure 5-1. File menu in Eclipse

CHAPTER 5: A Bit About Eclipse 39

Then, choose Android »» Android Project from the tree of available project types, as shown
in Figure 5-2, and click Next.

— |

| =11l
=5 FoN "%

Select a wizard

Wizards:
| type filter text

p & General
4 (= Android
J5 Android Test Project
> & CVS
b &= Java
b (= Examples

< Back M Next >] [Finish J [Cancel]

Figure 5-2. New Project wizard in Eclipse

NOTE: If you do not see this option, you have not installed Android Developer Tools.

Then, on the first page of the New Android Project wizard, choose the “Create project
from existing source” radio button, click the Browse button, and open the directory
containing your project’s AndroidManifest.xml file. This will populate most of the rest of
the wizard page, though you may need to also specify a build target from the table, as
shown in Figure 5-3.

CHAPTER 5: A Bit About Eclipse

New Android Project
@ An SDK Target must be specified.

Project name: CrudeBench

Contents

© Create new project in workspace
@ Create project from existing source
Use default location

Location: C:\Users\CommonsWare\Desktop\commonsguy-crudeb: Browse I
© Create project from existing sample

Samples: [Please select a target. v]

Build Target

Target Name Vendor Platform API.. *
Android 2.2 Android Open Source Project 22 8
Google APIs Google Inc. 22 8

Standard Android platform 2.2

Properties

Application name: [CrudeBench

Package name: [com.commonsware.android.crude

[] Create Activity: I .CrudeBench

Min SDK Version: |

® | < Back I[Next >

Figure 5-3. New Android Project wizard in Eclipse

Then, click Finish. This will return you to Eclipse, with the imported project in your
workspace, as shown in Figure 5-4.

CHAPTER 5: A Bit About Eclipse

AR '+ ey = O

[FB gen [Generated Java Files]
» =4 Android 2.2
% assets
b &> res
AndroidManifest.xml
build.properties
&) buildxml
default.properties
LICENSE
README.markdown

Figure 5-4. Android project tree in Eclipse

Gle~
a "E'Q CrudeBench
p G5B src

Next, right-click the project name and choose Build Path »» Configure Build Path from the
context menu, as shown in Figure 5-5.

m o (R ART= oA
New
Go Into
4 ‘i’z';' Crude
b §B sr Open in New Window
b 23 g¢ Open Type Hierarchy
PBAA owln
&> as
b & re Copy
AlEy Copy Qualified Name
Py
b & past
+) by & =
de ¥ Delete
- % Remove from Context
RE
Build Path
Source
Refactor
g2y Import..
e Export..
o® Refresh

Figure 5-5. Project context menu in Eclipse

F4
Alt+Shift+W »

Ctrl+C

Ctrl+V
Delete

Ctrl+Alt+Shift+ Down
13
Alt+Shift+S »
Alt+Shift+T »

F5

LR B

1%

Link Source...

New Source Folder...

Use as Source Folder
Add External Archives...
Add Libraries...

Configure Build Path...

This brings up the Java Build Path portion of the project Properties window, as shown in

Figure 5-6.

CHAPTER 5: A Bit About Eclipse

<

Java Build Path PfPry T
Resource &
Android | [Source | 1= Projects | 1= Liblalis| % Orderand Export |
Builders Build class path order and exported entries:
Java Build Path (Exported entries are contributed to dependent projects)
Java Code Style [(CrudeBench/src Up
Java Co.mpller [H] # CrudeBench/gen
Java Editor B Android 2.2
Javadoc Location
Run/Debug Settings
Task Repository
Task Tags
Validation Select All
WikiText

Deselect All
@ [ok][concal

Figure 5-6. Project Properties window in Eclipse

If the Android JAR is not checked (the Android 2.2 entry in Figure 5-6), check it, and
then click OK to close the Properties window. At this point, your project should be ready
for use.

How to Get to DDMS

Many times, you will be told to take a look at something in DDMS, such as the LogCat
tab to examine Java stack traces. In Eclipse, DDMS is a perspective. To open this
perspective in your workspace, choose Window »» Open Perspective »» Other from the
main menu, as shown in Figure 5-7.

CHAPTER 5: A Bit About Eclipse

Help

New Window Pt O v oD v
5 New Editor

=

A4

%5 Debug
§J Java Browsing

. Open Perspective
Show View

v

Customize Perspective... | Other..
Save Perspective As...
Reset Perspective...
Close Perspective
Close All Perspectives

Navigation 3

s

Android SDK and AVD Manager

Preferences

Figure 5-7. Perspective menu in Eclipse

Then, in the list of perspectives, shown in Figure 5-8, choose DDMS.

%1 CVS Repository Exploring
11 DDMS

Debug

&)ava (default)

&'Java Browsing

k’]ava Type Hierarchy

@® Planning

% Resource

£0Team Synchronizing

X XML

Figure 5-8. Perspective roster in Eclipse

This will add the DDMS perspective to your workspace and open it in your Eclipse IDE.

DDMS is covered in greater detail in a later chapter of this book.

44

CHAPTER 5: A Bit About Eclipse

How to Create an Emulator

By default, your Eclipse environment has no Android emulators set up. You will need
one before you can run your project successfully.

To do this, first choose Window »>» Android SDK and AVD Manager from the main menu, as
shown in Figure 5-9.

IWindow Help

4 New Window

3 New Editor -

Open Perspective 4
Show View >

Customize Perspective...
Save Perspective As...
Reset Perspective...
Close Perspective

Close All Perspectives
Navigation »

Android SDK and AVD Manager

Preferences

[}

Figure 5-9. Android SDK and AVD Manager menu option in Eclipse

That brings up the same window as you get by running android from the command line.

You can now define an Android Virtual Device (AVD) by following the instructions given
in Chapter 2, in the section “Step 5: Set Up the Emulator.”

How to Run a Project

Given that you have an AVD defined, or that you have a device set up for debugging and
connected to your development machine, you can run your project in the emulator.

First, click the Run toolbar button, or choose Project »» Run from the main menu. This brings
up the Run As dialog box the first time you run the project, as shown in Figure 5-10.

CHAPTER 5: A Bit About Eclipse

Select a way to run ‘CrudeBench’:

Android Application
JICJ'Android JUnit Test
Java Applet

{31 Java Application
JUJUnit Test

Description

@ oKk | [l Cancel

Figure 5-10. The Run As dialog box in Eclipse

Choose Android Application and click OK. If you have more than one AVD or device
available, you will be presented with a window in which you choose the desired target
environment. Then, the emulator will start up to run your application. Note that you will
need to unlock the lock screen on the emulator (or device) if it is locked.

How Not to Run Your Project

When you go to run your project, be sure that an XML file is not the active tab in the
editor. Attempting to “run” this will result in a .out file being created in whatever
directory the XML file lives in (e.g., res/layout/main.xml.out). To recover, simply delete
the offending .out file and try running again, this time with a Java file as the active tab.

Alternative IDEs

If you really like Eclipse and the ADT, you may want to consider MOTODEYV Studio for

Android. This is another set of add-ins for Eclipse, augmenting the ADT and offering a

number of other Android-related development features, including the following (among
many others):

B More wizards for helping you create Android classes

B Integrated SQLite browsing, so you can manipulate a SQLite database
in your emulator right from your IDE

B More validators to check for common bugs, and a library of code
shippets to have fewer bugs at the outset

45

46

CHAPTER 5: A Bit About Eclipse

B Assistance with translating your application to multiple languages

While MOTODEV Studio for Android is published by Motorola, you can use it to build
applications for all Android devices, not only those manufactured by Motorola
themselves. With Google’s pending acquisition of Motorola, the future of MOTODEV will
certainly be interesting.

Other IDEs are slowly getting their equivalents of the ADT, albeit with minimal assistance
from Google. For example, Intellid’s IDEA has a module for Android. It was originally
commercial, but now it is part of the open source community edition of IDEA as of
version 10.

And, of course, you do not need to use an IDE at all. While this may sound sacrilegious
to some, IDEs are not the only way to build applications. Much of what is accomplished
via the ADT can be accomplished through command-line equivalents, meaning a shell
and an editor are all you truly need. For example, the authors of this book do not
presently use an IDE and have no intentions of adopting Eclipse any time soon.

IDEs and This Book

You are welcome to use Eclipse as you work through this book. You are welcome to use
another IDE if you wish. You are even welcome to skip the IDE outright and just use an
editor.

This book is focused on demonstrating Android capabilities and the APIs for exploiting
those capabilities. It is not aimed at teaching the use of any one IDE. As such, the
sample code shown should work in any IDE, particularly if you follow the instructions in
this chapter for importing non-Eclipse projects into Eclipse.

Chapter

Enhancing Your First
Project

The AndroidManifest.xml file that Android generated for your first project gets the job
done. However, for a production application, you may wish to consider adding a few
attributes and elements, such as those described in this chapter.

Supporting Multiple Screen Sizes

Android devices come with a wide range of screen sizes, from 2.8-inch tiny
smartphones to 46-inch Google TVs. Android divides these into four categories, based
on physical screen size and the distance at which they are usually viewed:

B Small: Under 3 inches (7.5 cm), at least 426x320dp resolution

B Normal: 3 inches (7.5 cm) to around 4.5 inches (11.5 cm), at least
470x320dp resolution

B Large: 4.5 inches (11.5 cm) to around 10 inches (25 cm), at least
640x480dp resolution

B Extra-large: Over 10 inches (25 cm), at least 960x720dp resolution

By default, your application will not support small screens, will support normal screens,
and may support large and extra-large screens via some code built into Android that
automates conversion, scaling, and resizing of an application onto larger screens.

To truly support all the screen sizes you want to target, you should consider adding a
<supports-screens> element in your manifest file. This enumerates the screen sizes for
which you have explicit support. For example, if you want to support small screens, you
need to include the <supports-screens> element. Similarly, if you are providing custom
Ul support for large or extra-large screens, you will want to have the <supports-
screens> element with appropriate subelements. So, while the default settings in the

47

48

CHAPTER 6: Enhancing Your First Project

starting manifest file work, you should consider adding support for handling multiple
screen sizes.

Much more information about providing solid support for all screen sizes can be found in
Chapter 25.

Specifying Versions

As noted in the previous chapter, your manifest already contains some version
information about your application’s version. However, you probably want to add to your
AndroidManifest.xml file a <uses-sdk> element as a child of the <manifest> element, to
specify which versions of Android your application supports. By default, your application
is assumed to support every Android version from 1.0 to the current 3.0 and onward to
any version in the future. Most likely, that is not what you want.

The most important attribute for your <uses-sdk> element is android:minSdkVersion.
This indicates what is the oldest version of Android for which you offer support. If you
like, it communicates the oldest version with which you are testing your application. The
value of the attribute is an integer representing the Android SDK version:

B 1: Android 1.0
B 2: Android 1.1

H 3: Android 1.5
B 4: Android 1.6
B 5: Android 2.0

B 6: Android 2.0.1
B 7: Android 2.1

B 8: Android 2.2

B 9: Android 2.3

H 10: Android 2.3.3
B 11: Android 3.0
B 12: Android 3.1
B 13: Android 3.2
H 14: Android 4.0

So, if you are testing your application only on Android 2.1 and newer versions of
Android, you would set the android:minSdkVersion attribute to 7.

CHAPTER 6: Enhancing Your First Project

From Android 3.2 onward, an alternative method is provided to more accurately specify
the space requirements of your screen layouts. These attributes specify the smallest
width, sw<N>dp, available width, w<N>dp, and available height, h<N>dp (where N is the pixel
count). At first, using these prescriptive options may seem more complicated, but for
many designers it is more natural to design a layout and set of features, and then
determine the minimum and optimum sizes to the nearest pixel for presentation
requirements.

You may also wish to specify an android:targetSdkVersion attribute. This indicates which
version of Android you are targeting as you are writing your code. If your application is run
on a newer version of Android, Android may do some things to try to improve compatibility
of your code with respect to changes made in the newer Android. So, for example, you
might specify android:targetSdkVersion="10", indicating you are writing your application
with Android 2.3.3 in mind; if your app someday is run on an Android 3.0 device, Android
may take some extra steps to make sure your 2.3.3-centric code runs correctly on the 3.0
device. In particular, to get a tablet look and feel when running on an Android 3.0 (or
higher) tablet, you need to specify a target SDK version of 11 or higher. This topic will be
covered in more detail in Chapters 26 and 27.

49

Activities

Part I I

Chapter

Rewriting Your First
Project

The project you created in Chapter 3 is composed of just the default files generated by
the Android build tools—you did not write any Java code yourself. In this chapter, you
will modify that project to make it somewhat more interactive. Along the way, you will
examine the basic Java code that comprises an Android activity.

NOTE: The instructions in this chapter assume you followed the original instructions in Chapter 3
in terms of the names of packages and files. If you used different names, you will need to adjust
the names in the following steps to match yours.

The Activity

Your project’s src directory contains the standard Java-style tree of directories based
on the Java package you used when you created the project (e.g.,

com. commonsware.android results in src/com/commonsware/android/). Inside the
innermost directory you should find a pregenerated source file named Now. java, which is
where your first activity will go.

Open Now. java in your editor and paste in the following code (or, if you downloaded the
source files from the Apress web site, you can just use the Skeleton/Now project
directly):

package com.commonsware.android.skeleton;

import android.app.Activity;
import android.os.Bundle;
import android.view.View;
import android.widget.Button;
import java.util.Date;

53

54

CHAPTER 7: Rewriting Your First Project

public class Now extends Activity implements View.OnClickListener {
Button btn;

@0verride

public void onCreate(Bundle icicle) {
super.onCreate(icicle);
btn=new Button(this);
btn.setOnClickListener(this);
updateTime();
setContentView(btn);

}

public void onClick(View view) {
updateTime();

private void updateTime() {
btn.setText(new Date().toString());

}
}

Dissecting the Activity

Let’s examine this Java code piece by piece, starting with the package declaration and
imported classes:

package com.commonsware.android.skeleton;

import android.app.Activity;
import android.os.Bundle;
import android.view.View;
import android.widget.Button;
import java.util.Date;

The package declaration needs to be the same as the one you used when creating the
project. Then, as with any other Java project, you need to import any classes you
reference. Most of the Android-specific classes are in the android package.

NOTE: Not every Java SE class is available to Android programs. Visit the Android class reference
to see what is and is not available.

Activities are public classes, inheriting from the android.app.Activity base class. In this
case, the activity holds a button (btn):

public class Now extends Activity implements View.OnClickListener {
Button btn;

Since, for simplicity, we want to trap all button clicks just within the activity itself, we
also have the activity class implement OnClickListener.

CHAPTER 7: Rewriting Your First Project

The onCreate() method is invoked when the activity is started. The first thing you should
do is chain upward to the superclass, so the stock Android activity initialization can be
done:

@0verride
public void onCreate(Bundle icicle) {
super.onCreate(icicle);

btn=new Button(this);
btn.setOnClickListener(this);
updateTime();
setContentView(btn);

}

In our implementation, we then create the button instance btn (via new Button(this)),
tell it to send all button clicks to the activity instance itself (via setOnClickListener()),
call a private updateTime() method, and then set the activity’s content view to be the
button itself (via setContentView()). We will take a look at that magical Bundle icicle in
a later chapter. For the moment, consider it an opaque handle that all activities receive
upon creation.

public void onClick(View view) {
updateTime();

In Java's traditional Swing Ul world, a JButton click raises an ActionEvent, which is
passed to the ActionlListener configured for the button. In Android, a button click
causes onClick() to be invoked in the OnClickListener instance configured for the
button. The listener has passed to it the view that triggered the click (in this case, the
button). All we do here is call that private updateTime() method:

private void updateTime() {
btn.setText(new Date().toString());

When we open the activity (onCreate()) or when the button is clicked (onClick()), we
update the button’s label to be the current time via setText(), which functions much the
same as the JButton equivalent.

Building and Running the Activity

To build the activity, use your IDE’s built-in Android packaging tool, or run ant clean
install in the base directory of your project (as described in Chapter 3). Then, run the
activity. It should be launched for you automatically if you are using Eclipse; otherwise,
find the activity in the home screen launcher. You should see an activity akin to what’s
shown in Figure 7-1.

55

56

CHAPTER 7: Rewriting Your First Project

Bl & 10:33 Pm
NowRedux

Tue Aug 19 22:32:29 GMT+00:00 2008

Figure 7-1. The Now demonstration activity

Clicking the button—in other words, clicking pretty much anywhere on the device’s
screen—will update the time shown in the button’s label.

Note that the label is centered horizontally and vertically, as those are the default styles
applied to button captions. We can control that formatting, which will be covered in a
later chapter.

After you are finished gazing at the awesomeness of Advanced Push-Button
Technology, you can click the Back button on the emulator to return to the launcher.

Chapter

Using XML-Based Layouts

While it is technically possible to create and attach widgets to your activity purely
through Java code, as we did in the preceding chapter, the more common approach is
to use an XML-based layout file. Dynamic instantiation of widgets is reserved for more
complicated scenarios, where the widgets are not known at compile time (e.g.,
populating a column of radio buttons based on data retrieved from the Internet).

With that in mind, it’s time to break out the XML and learn how to lay out Android activity
views that way.

What Is an XML-Based Layout?

As the name suggests, an XML-based layout is a specification of widgets’ relationships
to each other—and to containers—encoded in XML format. Specifically, Android
considers XML-based layouts to be resources, and as such, layout files are stored in the
reslayout directory inside your Android project.

Each XML file contains a tree of elements specifying a layout of widgets and containers
that make up one View. The attributes of the XML elements are properties, describing
how a widget should look or how a container should behave. For example, if a Button
element has an attribute value of android:textStyle = "bold", that means that the text
appearing on the face of the button should be rendered in a boldface font style.

Android’s SDK ships with a tool (aapt) that uses the layouts. This tool should be
automatically invoked by your Android tool chain (e.g., Eclipse or Ant’s build.xml). Of
particular importance to you as a developer is that aapt generates the R. java source file
within your project’s gen directory, allowing you to access layouts and widgets within
those layouts directly from your Java code, as will be demonstrated later in this chapter.

Why Use XML-Based Layouts?

Most everything you do using XML layout files can be achieved through Java code. For
example, you could use setTypeface() to have a button render its text in bold, instead

57

58

CHAPTER 8: Using XML-Based Layouts

of using a property in an XML layout. Since XML layouts are yet another file for you to
keep track of, we need good reasons for using such files.

Perhaps the biggest reason is to assist in the creation of tools for view definition, such
as a GUI builder in an IDE like Eclipse or a dedicated Android GUI designer like
DroidDraw. Such GUI builders could, in principle, generate Java code instead of XML.
The challenge is rereading the definition in the design tool to support edits, which is far
simpler when the data is in a structured format like XML rather than in a programming
language. Moreover, keeping the generated bits separated from handwritten code
makes it less likely that somebody’s custom-crafted source will get clobbered by
accident when the generated bits get regenerated. XML forms a nice middle ground
between something that is easy for tool writers to use and something that is easy for
programmers to work with by hand as needed.

Also, XML as a GUI definition format is becoming more commonplace. Microsoft’s
Extensible Application Markup Language (XAML), Adobe’s Flex, Google’s Google Web
Toolkit (GWT), and Mozilla’s XML User Interface Language (XUL) all take a similar
approach to that of Android: put layout details in an XML file and put programming
smarts in source files (e.g., JavaScript for XUL). Many less-well-known GUI frameworks,
such as ZK, also use XML for view definition. While “following the herd” is not
necessarily the best policy, it does have the advantage of helping to ease the transition
to Android from any other XML-centered view description language.

0K, So What Does It Look Like?

Here is the Button from the previous chapter’s sample application, converted into an
XML layout file, found in the Layouts/NowRedux sample project:
<?xml version="1.0" encoding="utf-8"?>
<Button xmlns:android="http://schemas.android.com/apk/res/android"
android:id="@+id/button"
android:text=""
android:layout_width="fill parent"
android:layout_height="fill parent"/>

The class name of the widget, Button, forms the name of the XML element. Since Button
is an Android-supplied widget, we can just use the bare class name. If you create your
own widgets as subclasses of android.view.View, you will need to provide a full
package declaration as well (e.g., com.commonsware.android.MyWidget).

The root element needs to declare the Android XML namespace:
xmlns:android="http://schemas.android.com/apk/res/android"
All other elements will be children of the root and will inherit that namespace declaration.

Because we want to reference this button from our Java code, we need to give it an
identifier via the android:id attribute. We will cover this concept in greater detail in the
next section.

CHAPTER 8: Using XML-Based Layouts

The remaining attributes are properties of this Button instance:

B android:text: Indicates the initial text to be displayed on the button
face (in this case, an empty string)

B android:layout width and android:layout_height: Tell Android to
have the button’s width and height fill the parent, which in this case is
the entire screen

These attributes will be covered in greater detail in Chapter 10.

Since this single widget is the only content in our activity’s view, we need only this single
element. Complex views will require a whole tree of elements, representing the widgets
and containers that control their positioning. All the remaining chapters of this book will
use the XML layout form whenever practical, so there are dozens of other examples of
more complex layouts for you to peruse.

What’s with the @ Signs?

Many widgets and containers need to appear only in the XML layout file and do not need
to be referenced in your Java code. For example, a static label (TextView) frequently
needs to be in the layout file only to indicate where it should appear. These sorts of
elements in the XML file do not need to have the android:id attribute to give them a
name.

Anything you do want to use in your Java source, though, needs an android:id.

The convention is to use @+id/... as the id value, where the ... represents your locally
unique name for the widget in question, for the first occurrence of a given id value in
your layout file. In the XML layout example in the preceding section, @+id/button is the
identifier for the Button widget. The second and subsequent occurrences in the same
layout file should drop the + sign—a feature we will use in Chapter 10.

Android provides a few special android:id values, of the form @android:id/.... You will
see some of these values in various examples throughout this book.

And How Do We Attach These to the Java?

Given that you have painstakingly set up the widgets and containers for your view in an
XML layout file named main.xml stored in res/layout, all you need is one statement in
your activity’s onCreate() callback to use that layout:

setContentView(R.layout.main);

This is the same setContentView() we used earlier, passing it an instance of a View
subclass (in that case, a Button). The Android-built View, constructed from our layout, is
accessed from that code-generated R class. All of the layouts are accessible under
R.layout, keyed by the base name of the layout file; for example, res/layout/main.xml
results in R. layout.main.

59

CHAPTER 8: Using XML-Based Layouts

To access your identified widgets, use findViewById(), passing it the numeric identifier
of the widget in question. That numeric identifier was generated by Android in the R
class as R.id.something (where something is the specific widget you are seeking). Those
widgets are simply subclasses of View, just like the Button instance we created in the
previous chapter.

The Rest of the Story

In the original Now demo, the button’s face would show the current time, which would
reflect when the button was last pushed (or when the activity was first shown, if the
button had not yet been pushed). Most of that logic still works, even in this revised
demo (NowRedux). However, rather than instantiating the Button in our activity’s
onCreate() callback, we can reference the one from the XML layout:

package com.commonsware.android.layouts;

import android.app.Activity;
import android.os.Bundle;
import android.view.View;
import android.widget.Button;
import java.util.Date;

public class NowRedux extends Activity
implements View.OnClickListener {
Button btn;

@0verride
public void onCreate(Bundle icicle) {
super.onCreate(icicle);

setContentView(R.layout.main);

btn=(Button)findViewById(R.id.button);
btn.setOnClickListener(this);
updateTime();

}

public void onClick(View view) {
updateTime();

private void updateTime() {
btn.setText(new Date().toString());

}

The first difference is that, rather than setting the content view to be a view we created
in Java code, we set it to reference the XML layout (setContentView(R.layout.main)).
The R. java source file will be updated when we rebuild this project to include a
reference to our layout file (stored as main.xml in our project’s res/layout directory).

The other difference is that we need to get our hands on our Button instance, for which
we use the findViewById() call. Since we identified our button as @+id/button, we can

CHAPTER 8: Using XML-Based Layouts

reference the button’s identifier as R.id.button. Now, with the Button instance in hand,
we can set the callback and set the label as needed.

The results look the same as with the original Now demo, as shown in Figure 8-1.

Bl & 9:50 P

Tue Aug 19 21:59:51 GMT+00:00 2008

1
Figure 8-1. The NowRedux sample activity

61

Chapter

Employing Basic Widgets

Every GUI toolkit has some basic widgets: fields, labels, buttons, and so forth. Android’s
toolkit is no different in scope, and the basic widgets provide a good introduction to how
widgets work in Android activities.

Assigning Labels

The simplest widgets the label, referred to in Android as a TextView. As in most GUI
toolkits, labels are bits of text that can’t be edited directly by users. Typically, labels are
used to identify adjacent widgets (e.g., a “Name:” label next to a field where the user fills
in a name

In Java, you can create a label by creating a TextView instance. More commonly,
though, you will create labels in XML layout files by adding a TextView element to the
layout, with an android:text property to set the value of the label itself. If you need to
swap labels based on certain criteria, such as internationalization, you may wish to use a
string resource reference in the XML instead, as will be described later in this book.

TextView has numerous other properties of relevance for labels, such as the following

B android:typeface: Sets the typeface to use for the label (e.g.,
monospace)

B android:textStyle: Indicates that the typeface should be made bold
(bold), italic (italic), or bold and italic (bold_italic)

B android:textSize: Specifies the size of the font, in one of several
measures: sp (scaled pixels), dip (density-independent pixels), px (raw
pixels), in (inches), mm (millimeters). The recommend approach is to
use sp, and this is appended to the size, such as 12sp.

B android:textColor: Sets the color of the label’s text, in RGB hex
format (e.g., #FF0000 for red)

63

64

CHAPTER 9: Employing Basic Widgets

For example, in the Basic/Label project, you will find the following layout file:

<?xml version="1.0" encoding="utf-8"?>

<TextView xmlns:android="http://schemas.android.com/apk/res/android"
android:layout width="fill parent"
android:layout_height="wrap_content"
android:text="You were expecting something profound?"
/>

Just that layout alone, with the stub Java source provided by Android’s project builder
(e.g., android create project), gives you the result shown in Figure 9-1.

Gl @ 12:56 Pm

LabelDemo
You were expecting something profound?

Figure 9-1. The LabelDemo sample application

In our XML responsible for the LabelDemo, you’ll note we used two width and height
directives. The first, fill parent, indicates we want our Ul element to completely fill its
parent space, minus any padding or border. The second, wrap_content, ensures that
only enough space within the parent to show our content is used, and no more. These
will become clearer as we step through more examples in the coming chapters.

Button, Button, Who’s Got the Button?

You’ve already seen the use of the Button widget the previous two chapters. As it turns
out, Button is a subclass of TextView, so everything discussed in the preceding section
also applies to formatting the face of the button.

Android offers you two approaches when you are dealing with the on-click listener for a
Button. The first option is the “classic” way of defining some object (such as the activity)
as implementing the View.0OnClickListener interface. Even better than the classic

CHAPTER 9: Employing Basic Widgets

method is the contemporary Android way of simplifying things. This simple option has
two steps:

1. Define some method on your Activity that holds the button that takes a single
View parameter, has a void return value, and is public.

2. Inyour layout XML, on the Button element, include the android:onClick attribute
with the name of the method you defined in the previous step.

For example, we might have a method on our Activity that looks like this:

public void someMethod(View theButton) {
// do something useful here

}
Then, we could use this XML declaration for the Button itself, including android:onClick:

<Button
android:onClick="someMethod"

s

This is enough for Android to wire together the Button with the click handler. At first you
may not feel this is any simpler than the traditional approach. But consider the ease with
which this method opens up options to change the Activity for a given Button through
simple dint of differing options in your XML specification—for instance, under different
language locales, screen sizes, and so forth. We will talk more about these options in
coming chapters.

Fleeting Images

Android has two widgets to help you embed images in your activities: ImageView and
ImageButton. As the names suggest, they are image-based analogues to TextView and
Button, respectively.

Each widget takes an android:src attribute (in an XML layout) to specify which picture
to use. These attributes usually reference a drawable resource, described in greater
detail in Chapter 23, which discusses resources.

ImageButton, a subclass of ImageView, mixes in the standard Button behaviors, for
responding to clicks and whatnot. For example, take a peek at the main.xml layout from
the Basic/ImageView sample project:

<?xml version="1.0" encoding="utf-8"?>

<ImageView xmlns:android="http://schemas.android.com/apk/res/android"
android:id="@+id/icon"
android:layout_width="fill parent"
android:layout_height="fill parent"
android:adjustViewBounds="true"
android:src="@drawable/molecule"”
/>

65

CHAPTER 9: Employing Basic Widgets

The result, just using the code-generated activity, is simply the image, as shown in
Figure 9-2.

Gl @ 12:59 Pm

ImageViewDemo

Figure 9-2. The ImageViewDemo sample application

Fields of Green...or Other Colors

Along with buttons and labels, fields are the third anchor of most GUI toolkits. In
Android, they are implemented via the EditText widget, which is a subclass of the
TextView used for labels.

Along with the standard TextView properties (e.g., android:textStyle), EditText has
many other properties that will be useful to you in constructing fields, including the
following:

B android:autoText: Controls if the field should provide automatic
spelling assistance

B android:capitalize: Controls if the field should automatically
capitalize the first letter of entered text (e.g., in name and city fields)

android:digits: Configures the field to accept only certain digits

B android:password: Configures the field to display password dots as
characters are typed into the field, hiding the typed characters

B android:singleline: Controls if the field is for single-line input or
multiple-line input (e.g., does pressing Enter move you to the next
widget or add a newline?)

CHAPTER 9: Employing Basic Widgets

Most of the preceding properties are also available from the new android:inputType
attribute, added in Android 1.5 as part of adding “soft keyboards” to Android (discussed
in Chapter 11).

For example, from the Basic/Field project, here is an XML layout file showing an
EditText widget:

<?xml version="1.0" encoding="utf-8"?>

<EditText xmlns:android="http://schemas.android.com/apk/res/android"
android:id="@+id/field"
android:layout width="fill parent"
android:layout_height="fill parent"
android:singlelLine="false"
/>

Note that android:singleLine is set to "false", so users will be able to enter several
lines of text.

For this project, the FieldDemo. java file populates the input field with some prose:

package com.commonsware.android.field;

import android.app.Activity;
import android.os.Bundle;
import android.widget.EditText;

public class FieldDemo extends Activity {
@0verride
public void onCreate(Bundle icicle) {
super.onCreate(icicle);
setContentView(R.layout.main);

EditText fld=(EditText)findViewById(R.id.field);

fld.setText("Licensed under the Apache License, Version 2.0 " +

"(the \"License\"); you may not use this file " +
"except in compliance with the License. You may " +
"obtain a copy of the License at " +
"http://www.apache.org/licenses/LICENSE-2.0");

}
}

The result, once built and installed into the emulator, is shown in Figure 9-3.

Another flavor of field is one that offers autocompletion, to help users supply a value
without typing in the whole text. That is provided in Android as the
AutoCompleteTextView widget, discussed in greater detail in Chapter 12.

67

CHAPTER 9: Employing Basic Widgets

Gl & 1:00PMm
FieldDemo

Licensed under the Apache License,
Version 2.0 (the "License"); you may
not use this file exceptin
compliance with the License. You
may obtain a copy of the License at
http://www.apache.org/licenses/LIC
ENSE-2.0

Figure 9-3. The FieldDemo sample application

Just Another Box to Check

The classic check box has two states: checked and unchecked. Clicking the check box
toggles between those states to indicate a choice (e.g., “Add rush delivery to my order”).

In Android, there is a CheckBox widget to meet this need. It has TextView as an ancestor,
SO you can use TextView properties like android:textColor to format the widget.

Within Java, you can invoke the following:
B isChecked(): Determines if the check box has been checked

B setChecked(): Forces the check box into a checked or unchecked
state

B toggle(): Toggles the check box as if the user checked it

Also, you can register a listener object (in this case, an instance of
OnCheckedChangelListener) to be notified when the state of the check box changes.

For example, from the Basic/CheckBox project, here is a simple check box layout:

<?xml version="1.0" encoding="utf-8"?>

<CheckBox xmlns:android="http://schemas.android.com/apk/res/android"
android:id="@+id/check"
android:layout_width="wrap_content"
android:layout_height="wrap_content"
android:text="This checkbox is: unchecked" />

CHAPTER 9: Employing Basic Widgets

The corresponding CheckBoxDemo. java retrieves and configures the behavior of the
check box:

public class CheckBoxDemo extends Activity
implements CompoundButton.OnCheckedChangelistener {
CheckBox cb;

@0verride

public void onCreate(Bundle icicle) {
super.onCreate(icicle);
setContentView(R.layout.main);

cb=(CheckBox)findViewById(R.1id.check);
cb.setOnCheckedChangelListener(this);

}

public void onCheckedChanged(CompoundButton buttonView,
boolean isChecked) {
if (isChecked) {
cb.setText("This checkbox is: checked");

else {
cb.setText("This checkbox is: unchecked");

}

}
}
Note that the activity serves as its own listener for check box state changes, since it
implements the OnCheckedChangeListener interface (via
cb.setOnCheckedChangelistener(this)). The callback for the listener is
onCheckedChanged(), which receives the check box whose state has changed and the
new state. In this case, we update the text of the check box to reflect what the actual
box contains.

The result? Clicking the check box immediately updates its text, as shown in Figures 9-4
and 9-5.

70

CHAPTER 9: Employing Basic Widgets

& 1:38PMm

CheckBoxDemo

. This checkbox is: unchecked

Figure 9-4. The CheckBoxDemo sample application, with the check box unchecked

e 1:38pPM

CheckBoxDemo

. This checkbox is: checked

Figure 9-5. The same application, now with the check box checked

CHAPTER 9: Employing Basic Widgets 71

Throw the Switch, Igor

New to Android 4.0 (Ice Cream Sandwich) is a variant of the CheckBox. This is a two-
state toggle Switch that enables the user to swipe or drag with their finger as if they
were toggling a light switch. They can also tap the Switch widget as if it were a CheckBox
to change its state.

The Switch provides an android:text property to display associated text with the Switch
state, which is controlled via the setTextOn() and setText0ff() methods of the Switch.

Other useful methods available for a Switch include:
B getTextOn(): Returns the text used when the Switch is on
B getTextOff(): Returns the text used when the Switch is off

B setChecked(): Changes the current Switch state to on (just like
CheckBox)

For example, from the Basic/Switch project, here is a simple Switch layout:

<?xml version="1.0" encoding="utf-8"?>

<Switch xmlns:android="http://schemas.android.com/apk/res/android"
android:id="@+id/switchdemo"
android:layout_width="wrap_content"
android:layout_height="wrap_content"
android:text="This switch is: off" />

Note that we couldn’t call the widget “switch” because of reserved-word conventions in
Java. The corresponding SwitchActivity.java retrieves and configures the behavior of
the switch We once again configure our class to implement the OnCheckChangedListener
interface, and it takes care of calling our onCheckedChanged method:

public class SwitchDemo extends Activity
implements CompoundButton.OnCheckedChangelistener {
Switch sw;

@0verride

public void onCreate(Bundle icicle) {
super.onCreate(icicle);
setContentView(R.layout.main);

sw=(Switch)findViewById(R.id.switchdemo);
sw.setOnCheckedChangeListener(this);

}

public void onCheckedChanged(CompoundButton buttonView,
boolean isChecked) {
if (isChecked) {
sw.setTextOn("This switch is: on");

else {
sw.setTextOff("This switch is: off");
}
}

72

CHAPTER 9: Employing Basic Widgets

}

You can see from the general structure, use of parent methods, and behavior that the
Switch operates in very similar ways to the CheckBox. Our results are shown in Figures 9-6
and 9-7 with the switch in each possible state.

. SwitchDemo

This switch is: off

Figure 9-6. The SwitchDemo sample application, with the switch off

CHAPTER 9: Employing Basic Widgets

Figure 9-7. The same application, now with the switch on

Turn Up the Radio

As with other implementations of radio buttons in other toolkits, Android’s radio buttons
are two-state, like check boxes and switches, but can be grouped such that only one
radio button in the group can be checked at any time.

Like CheckBox, RadioButton inherits from CompoundButton, which in turn inherits from
TextView. Hence, all the standard TextView properties for font face, style, color, and so
forth are available for controlling the look of radio buttons. Similarly, you can call
isChecked() on a RadioButton to see if it is selected, toggle() to select it, and so on, as
you can with a CheckBox.

Most times, you will want to put your RadioButton widgets inside a RadioGroup. The
RadioGroup indicates a set of radio buttons whose state is tied, meaning only one button in
the group can be selected at any time. If you assign an android:id to your RadioGroup in
your XML layout, you can access the group from your Java code and invoke the following:

B check(): Checks a specific radio button via its ID (e.g.,
group.check(R.id.radio1))

B clearCheck(): Clears all radio buttons, so none in the group is checked

B getCheckedRadioButtonId(): Gets the ID of the currently checked radio
button (or -1 if none is checked)

73

74

CHAPTER 9: Employing Basic Widgets

Note that the mutual-exclusion feature of RadioGroup applies only to RadioButton
widgets that are immediate children of the RadioGroup. You cannot have other
containers—discussed in the next chapter—between the RadioGroup and its
RadioButton widgets.

For example, from the Basic/RadioButton sample application, here is an XML layout
showing a RadioGroup wrapping a set of RadioButton widgets:

<?xml version="1.0" encoding="utf-8"?>
<RadioGroup
xmlns:android="http://schemas.android.com/apk/res/android"
android:orientation="vertical"
android:layout width="fill parent"
android:layout_height="fill parent"
>
<RadioButton android:id="@+id/radio1"
android:layout_width="wrap_content"
android:layout_height="wrap_content
android:text="Rock" />

<RadioButton android:id="@+id/radio2"
android:layout_width="wrap_content"
android:layout_height="wrap_content
android:text="Scissors" />

<RadioButton android:id="@+id/radio3"
android:layout_width="wrap_content"
android:layout_height="wrap_content
android:text="Paper" />
</RadioGroup>

Using the stock Android-generated Java for the project and this layout, you get the
result shown in Figure 9-8.

Note that the radio button group is initially set to be completely unchecked at the outset.
To preset one of the radio buttons to be checked, use either setChecked() on the
RadioButton or check() on the RadioGroup from within your onCreate() callback in your
activity.

CHAPTER 9: Employing Basic Widgets

@ 1:39PMm

Figure 9-8. The RadioButtonDemo sample application

I’s Quite a View

All widgets, including the ones shown in the previous sections, extend View, which gives
all widgets an array of useful properties and methods beyond those already described.

Padding

Widgets have a minimum size, which may be influenced by what is inside of them. So,
for example, a Button will expand to accommodate the size of its caption. You can
control this size by using padding. Adding padding will increase the space between the
contents (e.g., the caption of a Button) and the edges of the widget.

Padding can be set once in XML for all four sides (android:padding) or on a per-side
basis (android:paddingleft, etc.). Padding can also be set in Java via the setPadding()
method.

The value of any of these is a dimension, a combination of a unit of measure and a
count. So, 5px is 5 pixels, 10dip is 10 density-independent pixels, and 2mm is 2
millimeters. We will examine dimension in greater detail in Chapter 25.

75

76

CHAPTER 9: Employing Basic Widgets

Other Useful Properties

In addition to the properties presented in this chapter and in the next chapter, some of
the other properties of View that are most likely to be used include the following:

B android:visibility: Controls whether the widget is initially visible

B android:nextFocusDown, android:nextFocusLeft,
android:nextFocusRight, and android:nextFocusUp: Control the focus
order if the user uses the D-pad, trackball, or similar pointing device

B android:contentDescription: Roughly equivalent to the alt attribute
on an HTML tag, used by accessibility tools to help people who
cannot see the screen navigate the application

Useful Methods

You can toggle whether or not a widget is enabled via setEnabled() and see whether or
not it is enabled via isEnabled(). One common use pattern for this is to disable some
widgets based on a CheckBox or RadioButton selection.

You can give a widget focus via requestFocus() and see if it is focused via isFocused().
You might use this in concert with disabling widgets to ensure the proper widget has the
focus once your disabling operation is complete.

To help navigate the tree of widgets and containers that make up an activity’s overall
view, you can use:

B getParent(): Finds the parent widget or container
B findViewById(): Finds a child widget with a certain ID

B getRootView(): Gets the root of the tree (e.g., what you provided to the
activity via setContentView())

Colors

There are two types of color attributes in Android widgets. Some, like
android:background, take a single color (or a graphic image to serve as the
background). Others, like android:textColor on TextView (and subclasses), can take a
ColorStatelist, including via the Java setter (in this case, setTextColor()).

A ColorStatelist allows you to specify different colors for different conditions. For
example, a TextView can have one text color when it is the selected item in a list and
another color when it is not selected (Chapter 12 covers selection widgets). This is
handled via the default ColorStatelist associated with TextView.

If you wish to change the color of a TextView widget in Java code, you have two main
choices:

CHAPTER 9: Employing Basic Widgets

B Use ColorStatelList.valueOf(), which returns a ColorStatelist in
which all states are considered to have the same color, which you
supply as the parameter to the valueOf() method. This is the Java
equivalent of the android:textColor approach, to make the TextView
always a specific color regardless of circumstances.

B Create a ColorStatelist with different values for different states,
either via the constructor or via an XML drawable resource, a concept
discussed in Chapter 23.

77

Chapter1 o

Working with Containers

A container pours a collection of widgets (and possibly child containers) into a specific
structure of your choosing. If you want a form with labels on the left and fields on the

right, you need a container. If you want OK and Cancel buttons to be beneath the rest of

the form, next to one another, and flush to the right side of the screen, you need a
container. Just from a pure XML perspective, if you have multiple widgets (beyond
RadioButton widgets in a RadioGroup), you need a container just to have a root element
in which to place the widgets.

Most GUI toolkits have some notion of layout management, frequently organized into
containers. In Java/Swing, for example, you have layout managers like BoxLayout and
containers that use them (e.g., Box). Some toolkits, such as XUL and Flex, stick strictly
to the box model, figuring that any desired layout can be achieved through the right
combination of nested boxes. Android, through LinearlLayout, also offers a box model,
but in addition supports a range of containers that provide different layout rules.

In this chapter, we will look at four commonly used containers, LinearlLayout (the box
model), Relativelayout (a rule-based model), and Tablelayout (the grid model), along
with the all-new GridLayout (the infinite fine-line model) released with Ice Cream
Sandwich (ICS). We’ll also look at ScrollView, a container designed to assist with
implementing scrolling containers.

Thinking Linearly

As just noted, LinearlLayout is a box model—widgets or child containers are lined up in
a column or row, one after the next. This works similarly to FlowLayout in Java/Swing,
vbox and hbox in Flex and XUL, and so forth.

Flex and XUL use the box as their primary unit of layout. If you want, you can use
LinearLayout in much the same way, eschewing some of the other containers. Getting
the visual representation you want is mostly a matter of identifying where boxes should
nest and which properties those boxes should have, such as their alignment relative to
other boxes.

79

CHAPTER 10: Working with Containers

LinearLayout Concepts and Properties

To configure a LinearlLayout, you have five main areas of control besides the container’s
contents: the orientation, the fill model, the weight, the gravity, and the padding.

Orientation

Orientation indicates whether the LinearLayout represents a row or a column. Just add
the android:orientation property to your LinearLayout element in your XML layout, and
set the value to be horizontal for a row or vertical for a column.

The orientation can be modified at runtime by invoking setOrientation() on the
LinearLayout, supplying it either HORIZONTAL or VERTICAL.

Fill Model

Imagine a row of widgets, such as a pair of radio buttons. These widgets have a
“natural” size based on their text. Their combined size probably does not exactly match
the width of the Android device’s screen— particularly since screens come in various
sizes. We then have the issue of what to do with the remaining space.

All widgets inside a LinearLayout must supply android:layout width and
android:layout_height properties to help address this issue. These properties’ values
have three flavors:

B You can provide a specific dimension, such as 125dip, to indicate the
widget should take up exactly a certain size.

B You can provide wrap_content, which means the widget should fill up
its natural space, unless that is too big, in which case Android can use
word-wrap as needed to make it fit.

B You can provide fill parent, which means the widget should fill up
all available space in its enclosing container, after all other widgets are
taken care of.

The latter two flavors are the most common, as they are independent of screen size,
allowing Android to adjust your view to fit the available space.

NOTE: In API level 8 (Android 2.2), fill parent was renamed to match_parent, for unknown
reasons. You can still use fill parent, as it will be supported for the foreseeable future.
However, at such point in time as you are supporting only API level 8 or higher (e.qg.,
android:minSdkVersion="8" in your manifest), you should probably switch over to
match_parent.

CHAPTER 10: Working with Containers 81

Weight

But what happens if we have two widgets that should split the available free space? For
example, suppose we have two multiline fields in a column, and we want them to take
up the remaining space in the column after all other widgets have been allocated their
space.

To make this work, in addition to setting android:layout_width (for rows) or
android:layout_height (for columns) to fill parent, you must also set

android:layout weight. This property indicates the proportion of the free space that
should go to that widget. For example, if you set android:layout weight to be the same
nonzero value for a pair of widgets (e.g., 1), the free space will be split evenly between
them. If you set it to be 1 for one widget and 2 for the other widget, the second widget
will use up twice the free space that the first widget does. And so on. The weight for a
widget is 0 by default.

Another pattern for using weights is to allocate sizes on a percentage basis. To use this
technique for, say, a horizontal layout, do the following:

B Set all the android:layout_width values to be 0 for the widgets in the
layout.

B Set the android:layout weight values to be the desired percentage
size for each widget in the layout.

B Make sure all those weights add up to 100.

Gravity

By default, everything in a LinearLayout is left- and top-aligned. So, if you create a row
of widgets via a horizontal LinearLayout, the row will start flush on the left side of the
screen. If that is not what you want, you need to specify a gravity value. Using
android:layout gravity on a widget (or calling setGravity() at runtime on the widget’s
Java object), you can tell the widget and its container how to align vis-a-vis the screen.

For a column of widgets, common gravity values are left, center_horizontal, and
right for left-aligned, centered, and right-aligned widgets, respectively.

For a row of widgets, the default is for them to be aligned so their text is aligned on the
baseline (the invisible line that letters seem to “sit on”). You can specify a gravity of
center_vertical to center the widgets along the row’s vertical midpoint.

Margins

By default, widgets are tightly packed next to each other. You can change this via the
use of margins, a concept that is similar to that of padding, described in Chapter 9.

The difference between padding and margins is apparent only for widgets with a
nontransparent background. For widgets with a transparent background —like the

82

CHAPTER 10: Working with Containers

default look of a TextView—padding and margins have similar visual effect, increasing
the space between the widget and adjacent widgets. For widgets with a nontransparent
background—like a Button—padding is considered to be inside the background, while
margins are considered to be outside the background. In other words, adding padding
will increase the space between the contents (e.g., the caption of a Button) and the
edges, while adding margins increases the empty space between the edges and
adjacent widgets.

Margins can be set in XML, either on a per-side basis (e.g., android:layout marginTop)
or on all sides via android:layout_margin. As with padding, the value of any of these is a
dimension—a combination of a unit of measure and a count, such as 5px for 5 pixels.

LinearLayout Example

Let’s look at an example (Containers/Linear) that shows LinearLayout properties set
both in the XML layout file and at runtime. Here is the layout:

<?xml version="1.0" encoding="utf-8"?>
<Linearlayout
xmlns:android="http://schemas.android.com/apk/res/android"
android:orientation="vertical"
android:layout width="fill parent"
android:layout_height="fill parent"
>
<RadioGroup android:id="@+id/orientation"”
android:orientation="horizontal"
android:layout_width="wrap_content"
android:layout_height="wrap_content"
android:padding="5dip">
<RadioButton
android:id="@+id/horizontal"
android:text="horizontal" />
<RadioButton
android:id="@+id/vertical"
android:text="vertical" />
</RadioGroup>
<RadioGroup android:id="@+id/gravity"
android:orientation="vertical"
android:layout_width="fill parent"
android:layout_height="wrap_content"
android:padding="5dip">
<RadioButton
android:id="@+id/left"
android:text="left" />
<RadioButton
android:id="@+id/center"
android:text="center" />
<RadioButton
android:id="@+id/right"
android:text="right" />
</RadioGroup>
</LinearlLayout>

CHAPTER 10: Working with Containers

Note that we have a LinearLayout wrapping two RadioGroup sets. RadioGroup is a
subclass of LinearLayout, so our example demonstrates nested boxes as if they were all
LinearLayout containers.

The top RadioGroup sets up a row (android:orientation = "horizontal") of
RadioButton widgets. The RadioGroup has 5dip of padding on all sides, separating it
from the other RadioGroup, where dip stands for density-independent pixels (think of
them as ordinary pixels for now—we will get into the distinction later in the book). The
width and height are both set to wrap_content, so the radio buttons will take up only the
space that they need.

The bottom RadioGroup is a column (android:orientation = "vertical") of three
RadioButton widgets. Again, we have 5dip of padding on all sides and a natural height
(android:layout _height = "wrap_content"). However, we have set

android:layout width to be fill parent, meaning the column of radio buttons claims
the entire width of the screen.

To adjust these settings at runtime based on user input, we need some Java code:

package com.commonsware.android.linear;

import android.app.Activity;

import android.os.Bundle;

import android.view.Gravity;

import android.text.TextWatcher;
import android.widget.LinearlLayout;
import android.widget.RadioGroup;
import android.widget.EditText;

public class LinearlLayoutDemo extends Activity
implements RadioGroup.OnCheckedChangelistener {
RadioGroup orientation;
RadioGroup gravity;

@0verride

public void onCreate(Bundle icicle) {
super.onCreate(icicle);
setContentView(R.layout.main);

orientation=(RadioGroup)findViewById(R.id.orientation);
orientation.setOnCheckedChangelListener(this);
gravity=(RadioGroup)findViewById(R.id.gravity);
gravity.setOnCheckedChangeListener(this);

}

public void onCheckedChanged(RadioGroup group, int checkedId) {
switch (checkedId) {
case R.id.horizontal:
orientation.setOrientation(LinearLayout.HORIZONTAL);
break;

case R.id.vertical:
orientation.setOrientation(LinearlLayout.VERTICAL);
break;

83

84

CHAPTER 10: Working with Containers

case R.id.left:
gravity.setGravity(Gravity.LEFT);
break;

case R.id.center:
gravity.setGravity(Gravity.CENTER_HORIZONTAL);
break;

case R.id.right:
gravity.setGravity(Gravity.RIGHT);
break;

}
}
}

In onCreate(), we look up our two RadioGroup containers and register a listener on each,
so we are notified when the radio buttons change state
(setOnCheckedChangeListener(this)). Since the activity implements
OnCheckedChangelListener, the activity itself is the listener.

In onCheckedChanged() (the callback for the listener), we see which RadioButton had a
state change. Based on the clicked-upon item, we adjust either the orientation of the
first LinearLayout or the gravity of the second LinearlLayout.

Figure 10-1 shows the result when the demo is first launched inside the emulator.
AR & 12:22 am

. horizontal . vertical
‘l.leﬂ

. center

‘l'ﬁght

Figure 10-1. The LinearLayoutDemo sample application, as initially launched

If we toggle on the “vertical” radio button, the top RadioGroup adjusts to match, as
shown in Figure 10-2.

CHAPTER 10: Working with Containers

AF @ 12:22am

LinearLayoutDemo

. horizontal
. vertical

@
. center

. right

Figure 10-2. The same application, with the vertical radio button selected

If we toggle the “center” or “right” radio button, the bottom RadioGroup adjusts to
match, as shown in Figures 10-3 and 10-4.

AN @ 12:23 M

LinearLayoutDemo

. horizontal
. vertical

@
. center

. right

Figure 10-3. The same application, with the vertical and center radio buttons selected

85

CHAPTER 10: Working with Containers

AN & 12:23 am

LinearLayoutDemo

. horizontal
. vertical

@
. center

‘l'r@ht

Figure 10-4. The same application, with the vertical and right radio buttons selected

The Box Model

As noted earlier in this chapter, some GUI frameworks treat everything as boxes—what
Android calls LinearLayout containers. In Flex and XUL, for example, you create boxes
and indicate how big they should be, as a percentage of the available space, and then
you put widgets in the boxes. A similar pattern exists in Android for LinearLayout, as is
demonstrated in the Containers\LinearPercent project.

Here we have a layout XML file that contains a vertical LinearLayout wrapping three
Button widgets:

<?xml version="1.0" encoding="utf-8"?>
<Linearlayout
xmlns:android="http://schemas.android.com/apk/res/android"
android:orientation="vertical"
android:layout width="fill parent"
android:layout_height="fill parent"
>
<Button
android:text="Fifty Percent"
android:layout_width="fill parent"
android:layout_height="o0dip"
android:layout_weight="50"
/>
<Button
android:text="Thirty Percent"
android:layout_width="fill parent"
android:layout_height="o0dip"

CHAPTER 10: Working with Containers

android:layout_weight="30"

/>

<Button
android:text="Twenty Percent"
android:layout_width="fill parent"
android:layout_height="odip"
android:layout_weight="20"

/>

</LinearlLayout>

Each of the three widgets will take up a certain percentage of the vertical space for the
LinearlLayout. Since the LinearLayout is set to fill the screen, this means that the three
widgets will divide up the screen based on their requested percentages.

To request a percentage, each Button does the following:

B Setsits android:layout_height to be 0dip (note that we use height
here because it is a vertical LinearLayout we are subdividing)

B Sets its android:layout_weight to be the desired percentage (e.g.,
android:layout weight="50")
So long as the weights sum to 100, as they do in this case, you will get your desired
breakdown by percentage, as shown in Figure 10-5.
Ml @ 9:20am

Linear Percent Demo™ =

Fifty Percent

Thirty Percent

Twenty Percent

Figure 10-5. A LinearLayout split among three Buttons by percentage

87

CHAPTER 10: Working with Containers

All Things Are Relative

Relativelayout, as the name suggests, lays out widgets based on their relationship to
other widgets in the container and the parent container. You can place widget X below
and to the left of widget Y, have widget Z’s bottom edge align with the bottom edge of
the container, and so on. This is reminiscent of James Elliot’s Relativelayout for use
with Java/Swing.

RelativeLayout Concepts and Properties

To make all this work, we need ways to reference other widgets within an XML layout
file, plus ways to indicate the relative positions of those widgets.

Positions Relative to Container

The easiest relationships to set up are those that tie a widget’s position to that of its
container, using the following properties:

B android:layout_alignParentTop: Aligns the widget’s top with the top
of the container

B android:layout alignParentBottom: Aligns the widget’s bottom with
the bottom of the container

B android:layout_alignParentLeft: Aligns the widget’s left side with the
left side of the container

B android:layout_alignParentRight: Aligns the widget’s right side with
the right side of the container

B android:layout centerHorizontal: Positions the widget horizontally at
the center of the container

B android:layout centerVertical: Positions the widget vertically at the
center of the container

B android:layout centerInParent: Positions the widget both
horizontally and vertically at the center of the container

All of these properties take a simple Boolean value (true or false).

Note that the padding of the widget is taken into account when performing these various
alignments. The alignments are based on the widget’s overall cell (combination of its
natural space plus the padding).

CHAPTER 10: Working with Containers

Relative Notation in Properties

The remaining properties of relevance to Relativelayout take as a value the identity of a
widget in the container. To do this:

1. Assign identifiers (android: id attributes) to all elements that you will
need to address.

2. Reference other widgets using the same identifier value.

The first occurrence of an id value should include the plus sign (@+id/widget_a); the
second and subsequent times that id value is used in the layout file, the plus sign
should be omitted (@id/widget_a). This allows the build tools to better help you catch
typos in your widget id values—if you do not have a plus sign for a widget id value that
has not been seen before, that will be caught at compile time.

For example, if widget A is identified as @+id/widget_a, widget B can refer to widget A in
one of its own properties via the identifier @id/widget_a.

Positions Relative to Other Widgets

The following four properties control the position of a widget relative to other widgets:

B android:layout_above: Indicates that the widget should be placed
above the widget referenced in the property

B android:layout below: Indicates that the widget should be placed
below the widget referenced in the property

B android:layout toleftOf: Indicates that the widget should be placed
to the left of the widget referenced in the property

B android:layout toRightOf: Indicates that the widget should be placed
to the right of the widget referenced in the property

Beyond those four properties, five additional properties can be used to control one
widget’s alignment relative to another:

B android:layout _alignTop: Indicates that the widget’s top edge should
be aligned with the top edge of the widget referenced in the property

B android:layout alignBottom: Indicates that the widget’s bottom edge
should be aligned with the bottom edge of the widget referenced in
the property

B android:layout_alignleft: Indicates that the widget’s left edge
should be aligned with the left edge of the widget referenced in the

property

89

CHAPTER 10: Working with Containers

B android:layout_alignRight: Indicates that the widget’s right edge
should be aligned with the right edge of the widget referenced in the

property

B android:layout _alignBaseline: Indicates that the baseline of the two
widgets should be aligned (where the baseline is the invisible line that
text appears to sit on)

The android:layout_alignBaseline property is useful for aligning labels and fields so
that the text appears natural. Since fields have a box around them and labels do not,
android:layout_alignTop would align the top edge of the field’s box with the top edge
of the label, causing the text of the label to be higher on the screen than the text entered
into the field.

So, if we want widget B to be positioned to the right of widget A, in the XML element for
widget B, we need to include android:layout toRightOf = "@id/widget a" (assuming
@id/widget a is the identity of widget A).

Order of Evaluation

Android formerly used a single pass to process Relativelayout-defined rules. That
meant you could not reference a widget (e.g., via android:layout_above) until it had
been declared in the XML. This made defining some layouts a bit complicated. Starting
in Android 1.6, Android uses two passes to process the rules, so you can now safely
have forward references to as-yet-undefined widgets.

RelativeLayout Example

With all that in mind, let’s examine a typical form with a field, a label, and a pair of
buttons labeled OK and Cancel. Here is the XML layout, pulled from the
Containers/Relative sample project:

<?xml version="1.0" encoding="utf-8"?>
<Relativelayout
xmlns:android="http://schemas.android.com/apk/res/android"
android:layout width="fill parent"
android:layout_height="wrap_content">
<TextView android:id="@+id/label"
android:layout_width="wrap_content"
android:layout_height="wrap_content"
android:text="URL:"
android:layout_alignBaseline="@+id/entry"
android:layout_alignParentLeft="true"/>
<EditText
android:id="@id/entry"
android:layout_width="fill parent"
android:layout_height="wrap_content"
android:layout_toRightOf="@id/label"
android:layout_alignParentTop="true"/>
<Button
android:id="@+id/ok"

CHAPTER 10: Working with Containers

android:layout_width="wrap_content"
android:layout_height="wrap_content"
android:layout_below="@id/entry"
android:layout_alignRight="@id/entry"
android:text="0K" />
<Button
android:id="@+id/cancel”
android:layout_width="wrap_content"
android:layout_height="wrap_content"
android:layout_tolLeftOf="@id/ok"
android:layout_alignTop="@id/ok"
android:text="Cancel" />
</Relativelayout>

First, we open the Relativelayout. In this case, we want to use the full width of the
screen (android:layout width = "fill parent") and only as much height as we need
(android:layout_height = "wrap_content").

Next, we define the label as a TextView. We indicate that we want its left edge aligned
with the left edge of the Relativelayout (android:layout alignParentlLeft="true") and
its baseline aligned with the baseline of the yet-to-be-defined EditText. Since the
EditText has not been declared yet, we use the + sign in the ID

(android:layout alignBaseline="@+id/entry").

After that, we add in the field as an EditText. We want the field to be to the right of the
label, have the field be aligned with the top of the Relativelayout, and have the field
take up the rest of this “row” in the layout. These requirements are handled by the
following three properties, respectively:

B android:layout toRightOf = "@id/label"
B android:layout alignParentTop = "true"
B android:layout width = "fill parent"

Then, the OK button is set to be below the field (android:layout below = "@id/entry")
and have its right side align with the right side of the field (android:layout_alignRight =
"@id/entry"). The Cancel button is set to be to the left of the OK button
(android:layout_toleft = "@id/ok") and have its top aligned with the OK button
(android:layout_alignTop = "@id/ok").

With no changes to the autogenerated Java code, the emulator gives us the result
shown in Figure 10-6.

91

92

CHAPTER 10: Working with Containers

AR @ 12:33 am

RelativeLayoutDemo

Figure 10-6. The RelativeLayoutDemo sample application

Overlap

Relativelayout also has a feature that LinearLayout lacks—the ability to have widgets
overlap one another. Later children of a Relativelayout are “higher in the Z axis” than
are earlier children, meaning that later children will overlap earlier children if they are set
up to occupy the same space in the layout.

This will be clearer with an example. Here is a layout, from Containers/RelativeOverlap,
with a Relativelayout holding two Button widgets:

<?xml version="1.0" encoding="utf-8"?>
<Relativelayout
xmlns:android="http://schemas.android.com/apk/res/android"
android:layout width="fill parent"
android:layout_height="fill parent"
>
<Button
android:text="I AM BIG"
android:textSize="120dip"
android:textStyle="bold"
android:layout_width="fill parent"
android:layout_height="fill parent"
/>
<Button
android:text="I am small"
android:layout_width="wrap_content"
android:layout_height="wrap_content"
android:layout_centerInParent="true"
/>

CHAPTER 10: Working with Containers

</Relativelayout>

The first Button is set to fill the screen. The second Button is set to be centered inside
the parent and to take up only as much space as is needed for its caption. Hence, the
second Button will appear to float over the first Button, as shown in Figure 10-7.

W@ 10:11am

Overlap Demo

1am small

Figure 10-7. The RelativeOverlap sample application

Both Button widgets can still be clicked, though clicking the smaller Button does not
also click the bigger Button. Your clicks will be handled by the widget on top in the case
of an overlap like this.

Tabhula Rasa

If you like HTML tables, spreadsheet grids, and similar layout options, you will like

Android’s Tablelayout, which allows you to position your widgets in a grid to your

specifications. You control the number of rows and columns, which columns might
shrink or stretch to accommodate their contents, and so on.

TablelLayout works in conjunction with TableRow. TablelLayout controls the overall
behavior of the container, with the widgets themselves poured into one or more
TableRow containers, one per row in the grid.

93

94

CHAPTER 10: Working with Containers

TableLayout Concepts and Properties

For your table layout to work as you intend, you need to understand how widgets work
with rows and columns, and how to handle widgets that live outside of rows.

Putting Cells in Rows

Rows are declared by you, the developer, by putting widgets as children of a TableRow
inside the overall TableLayout. You, therefore, control directly how many rows appear in
the table.

The number of columns is determined by Android; you control the number of columns in
an indirect fashion. First, there will be at least one column per widget in your longest
row. So if you have three rows—one with two widgets, one with three widgets, and one
with four widgets —there will be at least four columns. However, you can have a widget
take up more than one column by including the android:layout_span property,
indicating the number of columns the widget spans. This is akin to the colspan attribute
one finds in table cells in HTML. In this XML layout fragment, the field spans three
columns:

<TableRow>
<TextView android:text="URL:" />
<EditText
android:id="@+id/entry"
android:layout _span="3"/>
</TableRow>

Ordinarily, widgets are put into the first available column. In the preceding fragment, the
label would go in the first column (column 0, as columns are counted starting from 0),
and the field would go into a spanned set of three columns (columns 1 through 3).
However, you can put a widget into a different column via the android:layout column
property, specifying the 0-based column the widget belongs to:

<TableRow>
<Button
android:id="@+id/cancel”

android:layout_column="2
android:text="Cancel" />
<Button android:id="@+id/ok" android:text="0K" />
</TableRow>

In the preceding XML layout fragment, the Cancel button goes in the third column
(column 2). The OK button then goes into the next available column, which is the fourth
column.

Non-Row Children of TableLayout

Normally, TableLayout contains only TableRow elements as immediate children.
However, it is possible to put other widgets in between rows. For those widgets,
Tablelayout behaves a bit like LinearLayout with vertical orientation. The widgets

CHAPTER 10: Working with Containers

automatically have their width set to fill parent, so they will fill the same space that
the longest row does.

One pattern for this is to use a plain View as a divider. For example, you could use <View
android:layout _height = "2dip" android:background = "#0000FF" /> as a two-pixel-
high blue bar across the width of the table.

Stretch, Shrink, and Collapse

By default, each column will be sized according to the natural size of the widest widget
in that column (taking spanned columns into account). Sometimes, though, that does
not work out very well, and you need more control over column behavior.

You can place an android:stretchColumns property on the TablelLayout. The value
should be a single column number (again, 0-based) or a comma-delimited list of column
numbers. Those columns will be stretched to take up any available space on the row.
This helps if your content is narrower than the available space.

Conversely, you can place an android:shrinkColumns property on the Tablelayout.
Again, this should be a single column number or a comma-delimited list of column
numbers. The columns listed in this property will try to word-wrap their contents to
reduce the effective width of the column— by default, widgets are not word-wrapped.
This helps if you have columns with potentially wordy content that might cause some
columns to be pushed off the right side of the screen.

You can also leverage an android:collapseColumns property on the TablelLayout, again
with a column number or comma-delimited list of column numbers. These columns will
start out collapsed, meaning they will be part of the table information but will be
invisible. Programmatically, you can collapse and uncollapse columns by calling
setColumnCollapsed() on the TableLayout. You might use this to allow users to control
which columns are of importance to them and should be shown versus which ones are
less important and can be hidden.

You can also control stretching and shrinking at runtime via setColumnStretchable()
and setColumnShrinkable().

TableLayout Example

The XML layout fragments previously shown, when combined, give us a TablelLayout
rendition of the form we created for Relativelayout, with the addition of a divider line
between the label/field and the two buttons (found in the Containers/Table demo):

<?xml version="1.0" encoding="utf-8"?>

<Tablelayout
xmlns:android="http://schemas.android.com/apk/res/android"
android:layout width="fill parent"
android:layout_height="fill parent"
android:stretchColumns="1">
<TableRow>

<TextView

95

CHAPTER 10: Working with Containers

android:text="URL:" />
<EditText android:id="@+id/entry"
android:layout_span="3"/>
</TableRow>
<View
android:layout_height="2dip"
android:background="#0000FF" />
<TableRow>
<Button android:id="@+id/cancel”
android:layout_column="2"
android:text="Cancel" />
<Button android:id="@+id/ok"
android:text="0K" />
</TableRow>
</Tablelayout>

When compiled against the generated Java code and run on the emulator, we get the
result shown in Figure 10-8.

ChEl @ 12:35 AM

TableLayoutDemo

Cancel

Figure 10-8. The TableLayoutDemo sample application

Scrollwork

Phone screens tend to be small, which requires developers to use some tricks to
present a lot of information in the limited available space. One trick for doing this is to
use scrolling, so that only part of the information is visible at one time, and the rest is
available via scrolling up or down.

ScrollView is a container that provides scrolling for its contents. You can take a layout
that might be too big for some screens, wrap it in a ScrollView, and still use your

CHAPTER 10: Working with Containers

existing layout logic. The user can see only part of your layout at one time, and see the
rest via scrolling.

For example, here is a ScrollView used in an XML layout file (from the
Containers/Scroll demo):

<?xml version="1.0" encoding="utf-8"?>

<ScrollView

xmlns:android="http://schemas.android.com/apk/res/android"

android:layout width="fill parent"

android:layout_height="wrap_content">

<Tablelayout
android:layout_width="fill parent"

android:layout_height="fill parent"
android:stretchColumns="0">

<TableRow>
<View
android:layout_height="80dip"
android:background="#000000"/>
<TextView android:text="#000000"
android:paddingleft="4dip"
android:layout_gravity="center_vertical" />
</TableRow>
<TableRow>
<View
android:layout_height="80dip"
android:background="#440000" />
<TextView android:text="#440000"
android:paddingleft="4dip"
android:layout_gravity="center_vertical" />
</TableRow>
<TableRow>
<View
android:layout_height="80odip"
android:background="4#884400" />
<TextView android:text="#884400"
android:paddingleft="4dip"
android:layout_gravity="center_vertical" />
</TableRow>
<TableRow>
<View
android:layout_height="8odip"
android:background="#aa8844" />
<TextView android:text="#aa8844"
android:paddingleft="4dip"
android:layout_gravity="center vertical" />
</TableRow>
<TableRow>
<View
android:layout_height="80odip"
android:background="#ffaa88" />
<TextView android:text="#ffaa88"
android:paddingleft="4dip"
android:layout_gravity="center vertical" />
</TableRow>
<TableRow>

<View

97

CHAPTER 10: Working with Containers

android:
android:

<TextView

android:
android:

</TableRow>
<TableRow>
<View

android:
android:

<TextView

android:
:layout_gravity="center_vertical" />

android
</TableRow>

</Tablelayout>

</ScrollView>

layout_height="8odip"
background="#ffffaa" />
android:text="#ffffaa"
paddinglLeft="4dip"
layout_gravity="center vertical" />

layout_height="80odip"
background="#ffffff" />
android:text="#ffffff"
paddinglLeft="4dip"

Without the ScrollView, the table would take up at least 560 pixels (seven rows at 80
pixels each, based on the View declarations). Some devices have screens capable of
showing that much information, such as tablets, but the screens of many devices will be
smaller. The ScrollView lets us keep the table as is, but present only part of it at a time.

On the stock Android emulator, when the activity is first viewed, it appears as shown in

Figure 10-9.

ScrollViewDemo

G @@ 12:36 am

Figure 10-9. The ScrollViewDemo sample application

Notice how only five rows and part of the sixth are visible. By pressing the up/down
buttons on the D-pad, you can scroll up and down to see the remaining rows. Also note
how the right side of the content is clipped by the scrollbar—be sure to put some padding
on that side or otherwise ensure your own content does not get clipped in that fashion.

CHAPTER 10: Working with Containers

Android 1.5 introduced HorizontalScrollView, which works like ScrollView, but
horizontally. This is useful for forms that might be too wide rather than too tall. Note that
neither ScrollView nor HorizontalScrollView will give you bidirectional scrolling, so you
have to choose vertical or horizontal.

Also, note that you cannot put scrollable items into a ScrollView. For example, a
ListView widget—which we will see in upcoming chapters —already knows how to
scroll. If you put a ListView in a ScrollView, it will not work very well.

Take Them to the Grid

A Tablelayout appeals to those who yearn for HTML- or CSS-style pixel precision (or
lack thereof). Often you’ll find that you know how you’d like the elements of your layout
to appear relative to one another, or need more finesse when it comes to specifying the
placement of widgets in your layout. Enter the all-new GridLayout, released with Android
4 |ce Cream Sandwich (ICS).

GridlLayout is a layout that places its children onto a grid of infinitely detailed lines that
separate the area into cells. The key to GridLayout’s fine control is that the number of
cells or, more accurately, grid lines used to describe the cells has no limit or threshold —
you specify how many or how few grid lines your GridLayout should have, using rowSpec
and columnSpec properties. This means you could create a layout that mimics a simple
table with a few cells (that is, rows and columns) or, for those demanding situations
where you need fantastically fine precision, you could go crazy specifying thousands or
even millions of cells.

NOTE: To complement GridLayout’s different view of the Ul world, it uses
android:layout_gravity in place of android:layout weight.

As an example, here is a GridLayout used in an XML layout file (from the
Containers/Grid demo):

<?xml version="1.0" encoding="utf-8"?>
<GridlLayout
xmlns:android="http://schemas.android.com/apk/res/android"
android:orientation="vertical"
android:layout_width="fill parent"
android:layout_height="fill parent"
>
<Button
android:text="Defying gravity!"
android:layout_gravity="top"
/>
<Button
android:text="Falling like an apple"
android:layout_gravity="bottom"
/>
</GridlLayout>

100

CHAPTER 10: Working with Containers

In an ICS Android emulator, we see the activity using our GridLayout, as shown in
Figure 10-10.

5554:adtest

iala da ba de Decls T losls]
[y TR e P g Py e e PR P
P ey e ey v e e o R T
[o e e e e e

- r—

Figure 10-10. The GridDemo sample application

Our buttons have followed their various gravity directions to place themselves on the
GridlLayout, using the defaults for rowSpec and columnSpec counts. We can observe the
utility of the GridLayout not needing the somewhat tedious static layout directives of the
Tablelayout by adding another button to our declarations in main.xml

--;Button

android:text="Defying gravity!"
android:layout_gravity="top"

/>

<Button
android:text="Floating middle right"
android:layout_gravity="right|center_vertical"

/>

<Button
android:text="Falling like an apple"
android:layout_gravity="bottom"

/>

Figure 10-11 shows how our GridlLayout adapts to display its children.

CHAPTER 10: Working with Containers

5554:adtest —X

salada.da: du. dacls leoleifai)
o i dasde des las ko lecla dad
[P P ey Y e e oy e
e e e e e

i g R R e 1o
Lo il

Figure 10-11. The GridDemo revised

101

Chapter

The Input Method
Framework

Android 1.5 introduced the input method framework (IMF), which is commonly referred
to as soft keyboards. However, this term is not necessarily accurate, as IMF could be
used for handwriting recognition or other means of accepting text input via the screen.

Keyboards, Hard and Soft

Some Android devices have a hardware keyboard that is visible some of the time (when
it is slid out). A few Android devices have a hardware keyboard that is always visible (so-
called “bar” or “slab” phones). Most Android devices, though, have no hardware
keyboard at all. The IMF handles all of these scenarios.

In short, if there is no hardware keyboard, an input method editor (IME) will be available
to the user when they tap an enabled EditText widget. If the default functionality of the
IME is what you want to offer, you don’t need to make any code changes to your
application. Fortunately, Android is fairly smart about guessing what you want, so you
may simply need to test with the IME and make no specific code changes.

But the IME may not quite behave how you would like it to for your application. For
example, in the Basic/Field sample project, the FieldDemo activity has the IME
overlaying the multiple-line EditText, as shown in Figure 11-1. It would be nice to have
more control over how this appears, and to be able to control other behavior of the IME.
Fortunately, the IMF as a whole gives you many options for this, as described in this
chapter.

103

104

CHAPTER 11: The Input Method Framework

TNl & 12:35 Pm

FieldDemo

Licensed under the Apache License,
Version 2.0 (the "License"); you may
not use this file exceptin

compliance with the License. You

Figure 11-1. The input method editor, as seen in the FieldDemo sample application

Tailored to Your Needs

Android 1.1 and earlier offered many attributes on EditText widgets to control their style
of input, such as android:password to indicate a field should be for password entry
(shrouding the password keystrokes from prying eyes). Starting in Android 1.5, with the
IMF, many of these attributes have been combined into a single android:inputType
attribute.

The android:inputType attribute takes a class plus modifiers, in a pipe-delimited list
(where | is the pipe character). The class generally describes what the user is allowed to
input, and this determines the basic set of keys available on the soft keyboard. The
available classes are as follows:

B text (the default)
number

phone

datetime

date

time

CHAPTER 11: The Input Method Framework

Many of these classes offer one or more modifiers to further refine what the user will be
allowed to enter. To get a better understanding of how these modifiers work, take a look
at the res/layout/main.xml file from the InputMethod/IMEDemo1 project:

<?xml version="1.0" encoding="utf-8"?>
<TableLayout xmlns:android="http://schemas.android.com/apk/res/android"
android:layout width="fill parent"
android:layout_height="fill parent"
android:stretchColumns="1"
>
<TableRow>
<TextView
android:text="No special rules:"
/>
<EditText
/>
</TableRow>
<TableRow>
<TextView
android:text="Email address:"
/>
<EditText
android:inputType="text|textEmailAddress"
/>
</TableRow>
<TableRow>
<TextView
android:text="Signed decimal number:"
/>
<EditText
android:inputType="number | numberSigned|numberDecimal”
/>
</TableRow>
<TableRow>
<TextView
android:text="Date:"
/>
<EditText
android:inputType="date"
/>
</TableRow>
<TableRow>
<TextView
android:text="Multi-line text:"
/>
<EditText
android:inputType="text|textMultiline|textAutoCorrect”
android:minLines="3"
android:gravity="top"
/>
</TableRow>
</Tablelayout>

105

106

CHAPTER 11: The Input Method Framework

This shows a Tablelayout containing five rows, each demonstrating a slightly different
flavor of EditText:

The first row has no attributes at all on the EditText, meaning you get
a plain text-entry field.

The second row has android:inputType = "text|textEmailAddress",
meaning it is a text-entry field that specifically seeks an e-mail
address.

The third row allows for signed decimal numeric input, via
android:inputType = "number |numberSigned|numberDecimal".

The fourth row is set up to allow for data entry of a date
(android:inputType = "date").

The last row allows for multiline input with autocorrection of probable
spelling errors (android:inputType =
"text|textMultiline|textAutoCorrect").

The class and modifiers tailor the keyboard. For example, a plain text-entry field results
in a plain soft keyboard, as shown in Figure 11-2.

RNl 8 9:19Am

No special rules:

Email address:

Signed decimal number:

BEI(H

Figure 11-2. A standard input method editor (a.k.a. soft keyboard)

An e-mail address field might put the @ symbol on the soft keyboard, at the cost of a
smaller spacebar, as shown in Figure 11-3.

CHAPTER 11: The Input Method Framework 107

No special rules:

Email address:

Signed decimal number:

BEI(H

Figure 11-3. The input method editor for e-mail addresses

Note that this behavior is specific to the IME. Some editors might put the @ symbol on
the primary keyboard for an e-mail field. Some might put a .com button on the primary
keyboard. Some might not react at all. It is up to the implementation of the IME—all you
can do is supply the hint.

Number and date fields restrict the keys to numeric keys, plus a set of symbols that may
or may not be valid on a given field, as shown in Figure 11-4.

108

CHAPTER 11: The Input Method Framework

RN 8 9:19Am

18 P21 [31 {4 51 f6 73 1181 F91 [0

@] £ 1S 1%6] 18 %Y P =E1 (S 1)

ALT |

Figure 11-4. The input method editor for signed decimal numbers

These are just a few examples of the possible IMEs. By choosing the appropriate
android:inputType, you can give users a soft keyboard that best suits the type of data
they should be entering.

Tell Android Where It Can Go

You may have noticed a subtle difference between the IME shown in Figure 11-2 and
the IME shown in Figure 11-3, beyond the addition of the @ key. The lower-right corner
of the soft keyboard in Figure 11-3 has a Next button, whereas the one in Figure 11-2
has a newline button. This points out two things:

B EditText widgets are multiline by default if you do not specify
android:inputType.

B You can control what goes on with that lower-right button, called the
accessory button.

By default, on an EditText widget where you have specified android:inputType, the
accessory button will be Next, moving you to the next EditText widget in sequence, or
Done, if you are on the last EditText widget on the screen. You can manually stipulate
what the accessory button will be labeled via the android:imeOptions attribute. For
example, in the res/layout/main.xml file from InputMethod/IMEDemo2, you will see an
augmented version of the previous example, where two input fields specify what their
accessory button should look like:

CHAPTER 11: The Input Method Framework 109

<?xml version="1.0" encoding="utf-8"?>
<ScrollView xmlns:android="http://schemas.android.com/apk/res/android"
android:layout width="fill parent"
android:layout_height="fill parent"
>
<Tablelayout
android:layout_width="fill parent"
android:layout_height="fill parent"
android:stretchColumns="1"
>
<TableRow>
<TextView
android:text="No special rules:"
/>
<EditText
/>
</TableRow>
<TableRow>
<TextView
android:text="Email address:"
/>
<EditText
android:inputType="text|textEmailAddress"
android:imeOptions="actionSend"
/>
</TableRow>
<TableRow>
<TextView
android:text="Signed decimal number:"
/>
<EditText
android:inputType="number | numberSigned|numberDecimal”
android:imeOptions="actionDone"
/>
</TableRow>
<TableRow>
<TextView
android:text="Date:"
/>
<EditText
android:inputType="date"
/>
</TableRow>
<TableRow>
<TextView
android:text="Multi-line text:"
/>
<EditText

android:
android:
android:
/>
</TableRow>
</Tablelayout>

</ScrollViews

inputType="text|textMultilLine|textAutoCorrect”
minLines="3"
gravity="top"

110

CHAPTER 11: The Input Method Framework

Here, we attach a Send action to the accessory button for the e-mail address
(android:imeOptions = "actionSend"), and the Done action on the middle field
(android:imeOptions = "actionDone").

By default, Next moves the focus to the next EditText and Done closes the IME.
However, for those actions, or for any others like Send, you can use
setOnEditorActionListener() on EditText (technically, on the TextView superclass) to
get control when the accessory button is clicked or the user presses the Enter key. You
are provided with a flag indicating the desired action (e.g., IME_ACTION_SEND), and you
can then do something to handle that request (e.g., send an e-mail to the supplied e-
mail address).

Fitting In

Notice that the IMEDemo2 layout shown in the preceding section has another difference
from its IMEDemo1 predecessor: the use of a ScrollView container wrapping the
Tablelayout. This ties into another level of control you have over the IMEs: what
happens to your activity’s own layout when the IME appears. There are three
possibilities, depending on circumstances:

B Android can “pan” your activity, effectively sliding the whole layout up
to accommodate the IME, or overlaying your layout, depending on
whether the EditText being edited is at the top or bottom. This has the
effect of hiding some portion of your Ul.

B Android can resize your activity, effectively causing it to shrink to a
smaller screen dimension, allowing the IME to sit below the activity
itself. This is great when the layout can readily be shrunk (e.g., it is
dominated by a list or multiline input field that does not need the whole
screen to be functional).

B Android may display the IME full-screen, obscuring your entire activity.
This allows for a bigger keyboard and generally easier data entry.

Android controls the full-screen option using its historic defaults. And, by default,
Android will choose between pan and resize modes depending on what your layout
looks like. If you want to specifically choose between pan and resize, you can do so via
an android:windowSoftInputMode attribute on the <activity> element in your
AndroidManifest.xml file. For example, here is the manifest from IMEDemo2:

<?xml version="1.0" encoding="utf-8"?>
<manifest xmlns:android="http://schemas.android.com/apk/res/android"
package="com.commonsware.android.imf.two" android:versionCode="1"
android:versionName="1.0">
<application android:label="@string/app_name" android:icon="@drawable/cw">
<activity android:name=".IMEDemo2" android:label="@string/app_name"
android:windowSoftInputMode="adjustResize">
<intent-filter>
<action android:name="android.intent.action.MAIN"/>
<category android:name="android.intent.category.LAUNCHER"/>
</intent-filter>

CHAPTER 11: The Input Method Framework

</activity>
</application>
<supports-screens android:largeScreens="true" android:normalScreens="true"
android:smallScreens="true" android:anyDensity="true"/>
</manifest>

Because we specified resize, Android will shrink our layout to accommodate the IME.
With the ScrollView in place, this means the scroll bar will appear as needed, as shown
in Figure 11-5.

Ml @3 10:58 Am

Figure 11-5. The shrunken, scrollable layout

You can control Android’s behavior to maximize screen real-estate by using the
additional methods introduced in Honeycomb, and refined in Ice Cream Sandwich. Use
the Java method setSystemUiVisibility() with the STATUS BAR_HIDDEN option to hide
the System Bar and allow even larger full-screen modes, or use the method
setDimAmount () to tweak the brightness of the home buttons to remove distractions
from your regularly resized full-screen layout.

Jane, Stop This Crazy Thing!

Sometimes, you need the IME to just go away. For example, if you make the accessory
button a Search button, the IME won’t be hidden automatically when the user taps that
button, whereas you may want it to be hidden. To hide the IME, you need to make a call
to the InputMethodManager, a system service that controls these IMEs:

111

112 CHAPTER 11: The Input Method Framework

InputMethodManager mgr=(InputMethodManager)getSystemService(INPUT_METHOD SERVICE);

mgr . hideSoftInputFromWindow(fld.getWindowToken(), 0);
(In the preceding line, f1d is the EditText whose IME you want to hide.)

This will always close the designated IME. However, bear in mind that there are two
ways a user can open the IME in the first place:

B If the user’s device does not have a hardware keyboard exposed, and
the user taps the EditText, the IME should appear.

B If the user previously dismissed the IME or is using the IME for a
widget that does not normally pop one up (e.g., ListView), and the
user presses the Menu button, the IME should appear.

If you want to close the IME only for the first scenario, but not the second, use
InputMethodManager.HIDE IMPLICIT ONLY as a flag for the second parameter to your call
to hideSoftInputFromWindow(), instead of the 0 shown in the previous example.

Chapter

Using Selection Widgets

In Chapter 11, you saw how fields could have constraints placed on them to limit
possible input, such as numeric-only or phone-number-only. These sorts of constraints
help users “get it right” when entering information, particularly on mobile devices with
cramped keyboards.

Of course, the ultimate in constrained input is to allow selection only from a set of items,
such as a group of radio buttons. Classic Ul toolkits have list boxes, combo boxes,
drop-down lists, and the like for that very purpose. Android provides many of the same
sorts of widgets, plus others of particular interest for mobile devices (e.g., the Gallery
for examining saved photos).

Moreover, Android offers a flexible framework for determining which choices are
available in these widgets. Specifically, Android offers a framework of data adapters that
provides a common interface for selection lists, ranging from static arrays to database
contents. Selection views —widgets for presenting lists of choices—are handed an
adapter to supply the actual choices.

Adapting to the Circumstances

In the abstract, adapters provide a common interface to multiple disparate APIs. More
specifically, in Android’s case, adapters provide a common interface to the data model
behind a selection-style widget, such as a list box. This use of Java interfaces is fairly
common (e.g., Java/Swing’s model adapters for JTable), and Java is far from the only
environment offering this sort of abstraction (e.g., Flex’s XML data-binding framework
accepts XML inlined as static data or retrieved from the Internet).

Android’s adapters are responsible not only for providing the roster of data for a
selection widget, but also for converting individual elements of data into specific views
to be displayed inside the selection widget. The latter facet of the adapter system may
sound a little odd, but in reality, it is not that different from other GUI toolkits’ ways of
overriding default display behavior. For example, in Java/Swing, if you want a JList-
backed list box to actually be a checklist (where individual rows are a check box plus
label, and clicks adjust the state of the check box), you inevitably wind up calling

113

114

CHAPTER 12: Using Selection Widgets

setCellRenderer() to supply your own ListCellRenderer, which in turn converts strings
for the list into JCheckBox-plus-JLabel composite widgets.

The easiest adapter to use is ArrayAdapter. You simply wrap one of these around a Java
array or java.util.List instance, and you have a fully functioning adapter:
String[] items={"this", "is", "a",
"really", "silly", "list"};
new ArrayAdapter<String>(this,
android.R.layout.simple list item 1, items);

One flavor of the ArrayAdapter constructor takes three parameters:

B The Context to use (typically this will be your activity instance)

B The resource ID of a view to use (such as a built-in system resource
ID, as shown in the preceding example)

B The actual array or list of items to show

By default, the ArrayAdapter will invoke toString() on the objects in the list and wrap
each of those strings in the view designated by the supplied resource.
android.R.layout.simple list item_1 simply turns those strings into TextView objects.
Those TextView widgets, in turn, will be shown in the list, spinner, or whatever widget
uses this ArrayAdapter. If you want to see what android.R.layout.simple list item 1
looks like, you can find a copy of it in your SDK installation—just search for
simple list item 1.xml.

In Chapter 13, you’ll see how to subclass an adapter and override row creation, to give
you greater control over how rows appear.

Lists of Naughty and Nice

The classic list box widget in Android is known as ListView. Include one of these in your
layout, invoke setAdapter() to supply your data and child views, and attach a listener
via setOnItemSelectedListener() to find out when the selection has changed. With that,
you have a fully functioning list box.

However, if your activity is dominated by a single list, you might consider creating your
activity as a subclass of ListActivity, rather than the regular Activity base class. If
your main view is just the list, you do not even need to supply a layout—ListActivity
will construct a full-screen list for you. If you do want to customize the layout, you can,
as long as you identify your ListView as @android:id/1list, so ListActivity knows
which widget is the main list for the activity.

For example, here is a layout pulled from the Selection/List sample project, a simple
list with a label on top to show the current selection:

CHAPTER 12: Using Selection Widgets

<?xml version="1.0" encoding="utf-8"?>
<Linearlayout
xmlns:android="http://schemas.android.com/apk/res/android"
android:orientation="vertical"
android:layout width="fill parent"
android:layout_height="fill parent" >
<TextView
android:id="@+id/selection"”
android:layout_width="fill parent"
android:layout_height="wrap content"/>
<ListView
android:id="@android:id/list"
android:layout_width="fill parent"
android:layout_height="fill parent"
android:drawSelectorOnTop="false"
/>
</Linearlayout>

The Java code to configure the list and connect the list with the label is as follows:

public class ListViewDemo extends ListActivity {

private TextView selection;

private static final String[] items={"lorem", "ipsum", "dolor",
"sit", "amet",
"consectetuer", "adipiscing", "elit", "morbi", "vel",
"ligula", "vitae", "arcu", "aliquet", "mollis",
"etiam", "vel", "erat", "placerat", "ante",
"porttitor", "sodales", "pellentesque", "augue", "purus"};

@0verride
public void onCreate(Bundle icicle) {
super.onCreate(icicle);
setContentView(R.layout.main);
setListAdapter(new ArrayAdapter<String>(this,
android.R.layout.simple_list item_1,
items));
selection=(TextView)findViewById(R.id.selection);
}

public void onListItemClick(ListView parent, View v, int position,
long id) {
selection.setText(items[position]);

}
}

With ListActivity, you can set the list adapter via setListAdapter()—in this case,
providing an ArrayAdapter wrapping an array of nonsense strings. To find out when the
list selection changes, override onListItemClick() and take appropriate steps based on
the supplied child view and position—in this case, updating the label with the text for
that position. The results are shown in Figure 12-1.

115

116

CHAPTER 12: Using Selection Widgets

& @Ml @ 5:38pm

consectetuer

Figure 12-1. The ListViewDemo sample application

The second parameter to our ArrayAdapter, android.R.layout.simple list item 1,
controls the appearance of the rows. The value used in the preceding example provides
the standard Android list row: big font, a lot of padding, and white text.

Selection Modes

By default, ListView is set up to simply collect clicks on list entries. If you want a list that
tracks a user’s selection, or possibly multiple selections, ListView can handle that as
well, but it requires a few changes.

First, you need to call setChoiceMode() on the ListView in Java code to set the choice
mode, supplying either CHOICE_MODE_SINGLE or CHOICE_MODE_MULTIPLE as the value. You
can get your ListView from a ListActivity via getListView(). You can also declare this
via the android:choiceMode attribute in your layout XML.

Then, instead of using android.R.layout.simple list item 1 as the layout for the list
rows in your ArrayAdapter constructor, you need to use either

android.R.layout.simple list item single choice or

android.R.layout.simple list item multiple choice for single-choice or multiple-
choice lists, respectively.

CHAPTER 12: Using Selection Widgets 117

For example, here is an activity layout from the Selection/Checklist sample project:

<?xml version="1.0" encoding="utf-8"?>

<ListView

xmlns:android="http://schemas.android.com/apk/res/android"
android:id="@android:id/list"
android:layout width="fill parent"
android:layout_height="fill parent"
android:drawSelectorOnTop="false"
android:choiceMode="multipleChoice"

/>

It is a full-screen ListView, with the android:choiceMode="multipleChoice" attribute to
indicate that we want multiple-choice support.

Our activity simply uses a standard ArrayAdapter on our list of nonsense words, but
uses android.R.layout.simple list item multiple choice as the row layout:

package com.commonsware.android.checklist;

import android.os.Bundle;

import android.app.ListActivity;
import android.widget.ArrayAdapter;
import android.widget.ListView;

public class ChecklistDemo extends ListActivity {
private static final String[] items={"lorem", "ipsum", "dolor",
"sit", "amet",
"consectetuer", "adipiscing", "elit", "morbi",
"ligula", "vitae", "arcu", "aliquet", "mollis",
"etiam", "vel", "erat", "placerat", "ante",
"porttitor", "sodales", "pellentesque", "augue", "purus"};

vel",

@0verride
public void onCreate(Bundle icicle) {
super.onCreate(icicle);
setContentView(R.layout.main);
setListAdapter(new ArrayAdapter<String>(this,
android.R.layout.simple_list_item_multiple_choice,
items));

}
}

The user sees the list of words on the left with check boxes down the right edge, as
shown in Figure 12-2.

118 CHAPTER 12: Using Selection Widgets

Ml @ 11:08am

amet

consectetuer

adipiscing

Figure 12-2. Multiple-select mode

If we wanted to, we could call getCheckedItemPositions() on our ListView to find out
which items the user checked, or setItemChecked() to check (or uncheck) a specific
entry ourselves.

Spin Control

In Android, the Spinner is the equivalent of the drop-down selector you might find in
other toolkits (e.g., JComboBox in Java/Swing). Pressing the center button on the D-pad
pops up a selection dialog box from which the user can choose an item. The Spinner
basically provides list selection capabilities without taking up all the screen space of a
ListView, at the cost of an extra click or screen tap to make a change.

As with ListView, you provide the adapter for data and child views via setAdapter(),
and hook in a listener object for selections via setOnItemSelectedListener().

If you want to tailor the view used when displaying the drop-down perspective, you need
to configure the adapter, not the Spinner widget. Use the setDropDownViewResource()
method to supply the resource ID of the view to use.

For example, culled from the Selection/Spinner sample project, here is an XML layout
for a simple view with a Spinner:
<?xml version="1.0" encoding="utf-8"?>

<Linearlayout
xmlns:android="http://schemas.android.com/apk/res/android"

CHAPTER 12: Using Selection Widgets

android:orientation="vertical"

android:layout width="fill parent"

android:layout_height="fill parent"

>

<TextView
android:id="@+id/selection"”
android:layout_width="fill parent"
android:layout_height="wrap_content"
/>

<Spinner android:id="@+id/spinner"
android:layout_width="fill parent"
android:layout_height="wrap_content"
android:drawSelectorOnTop="true"

/>

</Linearlayout>

This is the same view as shown in the previous section, but with a Spinner instead of a
ListView. The Spinner property android:drawSelectorOnTop controls whether the arrow
is drawn on the selector button on the right side of the Spinner Ul.

To populate and use the Spinner, we need some Java code:

public class SpinnerDemo extends Activity

implements AdapterView.OnItemSelectedListener {

private TextView selection;

private static final String[] items={"lorem", "ipsum", "dolor",
"sit", "amet",
"consectetuer", "adipiscing", "elit", "morbi", "vel",
"ligula", "vitae", "arcu", "aliquet", "mollis",
"etiam", "vel", "erat", "placerat", "ante",
"porttitor", "sodales", "pellentesque", "augue", "purus"};

@0verride

public void onCreate(Bundle icicle) {
super.onCreate(icicle);
setContentView(R.layout.main);
selection=(TextView)findViewById(R.id.selection);

Spinner spin=(Spinner)findViewById(R.id.spinner);
spin.setOnItemSelectedListener(this);

ArrayAdapter<String> aa=new ArrayAdapter<String>(this,
android.R.layout.simple_spinner_item,
items);

aa.setDropDownViewResource(
android.R.layout.simple_spinner dropdown_item);
spin.setAdapter(aa);

}

public void onItemSelected(AdapterView<?> parent,
View v, int position, long id) {
selection.setText(items[position]);

}

public void onNothingSelected(AdapterView<?> parent) {
selection.setText("");

119

120

CHAPTER 12: Using Selection Widgets

}
}

Here, we attach the activity itself as the selection listener
(spin.setOnItemSelectedListener(this)). This works because the activity implements
the OnItemSelectedListener interface. We configure the adapter not only with the list of
fake words, but also with a specific resource to use for the drop-down view (via
aa.setDropDownViewResource()). Also note the use of
android.R.layout.simple spinner_ item as the built-in View for showing items in the
spinner itself.

Finally, we implement the callbacks required by OnItemSelectedListener to adjust the
selection label based on user input. Figures 12-3 and 12-4 show the results.

hFl & 11:36 PM

SpinnerDemo
lorem

lorem

Figure 12-3. The SpinnerDemo sample application, as initially launched

CHAPTER 12: Using Selection Widgets 121

Gl @ 11:36 PM

consectetuer

Figure 12-4. The same application, with the spinner drop-down list displayed

Grid Your Lions (or Something Like That...)

As the name suggests, GridView gives you a two-dimensional grid of items to choose
from. You have moderate control over the number and size of the columns; the number
of rows is dynamically determined based on the number of items the supplied adapter
says are available for viewing.

There are a few properties that, when combined, determine the number of columns and
their sizes:

B android:numColumns: Indicates how many columns there are, or, if you
supply a value of auto_fit, Android will compute the number of columns
based on the available space and the following properties in this list.

B android:verticalSpacing and android:horizontalSpacing: Indicate how
much whitespace should exist between items in the grid.

B android:columnWidth: Indicates how many pixels wide each column
should be.

B android:stretchMode: Indicates, for grids with auto_fit for
android:numColumns, what should happen for any available space not
taken up by columns or spacing. This can be columnWidth, to have the
columns take up available space, or spacingWidth, to have the
whitespace between columns absorb extra space.

122

CHAPTER 12: Using Selection Widgets

Otherwise, the GridView works much like any other selection widget—use setAdapter()
to provide the data and child views, invoke setOnItemSelectedListener() to register a
selection listener, and so on.

For example, here is an XML layout from the Selection/Grid sample project, showing a
GridView configuration:

<?xml version="1.0" encoding="utf-8"?>
<Linearlayout
xmlns:android="http://schemas.android.com/apk/res/android"
android:orientation="vertical"
android:layout width="fill parent"
android:layout_height="fill parent"
>
<TextView
android:id="@+id/selection"”
android:layout_width="fill parent"
android:layout_height="wrap_content"
/>
<GridView
android:id="@+id/grid"
android:layout_width="fill parent"
android:layout_height="fill parent"
android:verticalSpacing="40dip"
android:horizontalSpacing="5dip"
android:numColumns="auto_fit"
android:columnWidth="100dip"
android:stretchMode="columnWidth"
android:gravity="center"
/>
</Linearlayout>

For this grid, we take up the entire screen except for what our selection label requires.
The number of columns is computed by Android (android:numColumns = "“auto fit")
based on our horizontal spacing (android:horizontalSpacing = "5dip") and column
width (android:columnWidth = "100dip"), with the columns absorbing any “slop” width
left over (android:stretchMode = "columnWidth").

The Java code to configure the GridView is as follows:

package com.commonsware.android.grid;

import android.app.Activity;

import android.content.Context;
import android.os.Bundle;

import android.view.View;

import android.widget.AdapterView;
import android.widget.ArrayAdapter;
import android.widget.GridView;
import android.widget.TextView;

public class GridDemo extends Activity
implements AdapterView.OnItemSelectedlListener {
private TextView selection;
private static final String[] items={"lorem", "ipsum", "dolor",
"sit", "amet",

CHAPTER 12

: Using Selection Widgets

}

"consectetuer", "adipiscing", "elit", "morbi", "vel",
"ligula", "vitae", "arcu", "aliquet", "mollis",

etiam", "vel", "erat", "placerat", "ante",

"porttitor", "sodales", "pellentesque", "augue", "purus"};

@0verride

public void onCreate(Bundle icicle) {
super.onCreate(icicle);
setContentView(R.layout.main);
selection=(TextView)findViewById(R.id.selection);

GridView g=(GridView) findViewById(R.id.grid);
g.setAdapter(new ArrayAdapter<String>(this,
R.layout.cell,
items));
g.setOnItemSelectedListener(this);
}

public void onItemSelected(AdapterView<?> parent, View v,
int position, long id) {
selection.setText(items[position]);

}

public void onNothingSelected(AdapterView<?> parent) {
selection.setText("");

}

The grid cells are defined by a separate res/layout/cell.xml file, referenced in our
ArrayAdapter as R.layout.cell:

<?

xml version="1.0" encoding="utf-8"?>

<TextView

/>

xmlns:android="http://schemas.android.com/apk/res/android"
android:layout_width="wrap_content"
android:layout_height="wrap_content"
android:textSize="14dip"

With the vertical spacing from the XML layout (android:verticalSpacing = "40dip"), the
grid overflows the boundaries of the emulator’s screen, as shown in Figures 12-5 and
12-6.

123

124 CHAPTER 12: Using Selection Widgets

Tl @ 11:55am

amet consectetuer

adipiscing

aliquet

etiam

augue

Figure 12-5. The GridDemo sample application, as initially launched

% Ml & 11:56am

adipiscing

Figure 12-6. The same application, scrolled to the bottom of the grid

CHAPTER 12: Using Selection Widgets

Fields: Now with 35% Less Typing!

The AutoCompleteTextView is sort of a hybrid between the EditText (field) and the
Spinner. With autocompletion, as the user types, the text is treated as a prefix filter,
comparing the entered text as a prefix against a list of candidates. Matches are shown

in a selection list that drops down from the field (as with Spinner). The user can either
type the full entry (e.g., something not in the list) or choose an item from the list to be the
value of the field.

AutoCompleteTextView subclasses EditText, so you can configure all the standard look-
and-feel aspects, such as font face and color. In addition, AutoCompleteTextView has an
android:completionThreshold property, to indicate the minimum number of characters a
user must enter before the list filtering begins.

You can give AutoCompleteTextView an adapter containing the list of candidate values
via setAdapter (). However, since the user could type something that is not in the list,
AutoCompleteTextView does not support selection listeners. Instead, you can register a
TextWatcher, as you can with any EditText widget, to be notified when the text changes.
These events will occur either because of manual typing or from a selection from the
drop-down list.

The following is a familiar XML layout, this time containing an AutoCompleteTextView
(pulled from the Selection/AutoComplete sample application):

<?xml version="1.0" encoding="utf-8"?>
<Linearlayout
xmlns:android="http://schemas.android.com/apk/res/android"
android:orientation="vertical"
android:layout width="fill parent"
android:layout_height="fill parent"
>
<TextView
android:id="@+id/selection"”
android:layout_width="fill parent"
android:layout_height="wrap_content"
/>
<AutoCompleteTextView android:id="@+id/edit"
android:layout width="fill parent"
android:layout_height="wrap_content"
android:completionThreshold="3"/>
</LinearlLayout>

The corresponding Java code is as follows:

package com.commonsware.android.auto;

import android.app.Activity;

import android.os.Bundle;

import android.text.Editable;

import android.text.TextWatcher;

import android.view.View;

import android.widget.AdapterView;

import android.widget.ArrayAdapter;

import android.widget.AutoCompleteTextView;

125

126 CHAPTER 12: Using Selection Widgets

import android.widget.TextView;

public class AutoCompleteDemo extends Activity

implements TextWatcher {

private TextView selection;

private AutoCompleteTextView edit;

private static final String[] items={"lorem", "ipsum", "dolor",
"sit", "amet",
"consectetuer", "adipiscing", "elit", "morbi",
"ligula", "vitae", "arcu", "aliquet", "mollis",
"etiam", "vel", "erat", "placerat", "ante",
"porttitor", "sodales", "pellentesque", "augue", "purus"};

vel",

@0verride

public void onCreate(Bundle icicle) {
super.onCreate(icicle);
setContentView(R.layout.main);
selection=(TextView)findViewById(R.id.selection);
edit=(AutoCompleteTextView)findViewById(R.id.edit);
edit.addTextChangedListener(this);

edit.setAdapter(new ArrayAdapter<String>(this,
android.R.layout.simple_dropdown_item_1line,
items));

}

public void onTextChanged(CharSequence s, int start, int before,
int count) {
selection.setText(edit.getText());
}

public void beforeTextChanged(CharSequence s, int start,
int count, int after) {
// needed for interface, but not used

}

public void afterTextChanged(Editable s) {
// needed for interface, but not used

}

This time, our activity implements TextWatcher, which means our callbacks are
onTextChanged(), beforeTextChanged(), and afterTextChanged(). In this case, we are
interested only in onTextChanged(), and we update the selection label to match the
AutoCompleteTextView’s current contents. Figures 12-7, 12-8, and 12-9 show the
results.

CHAPTER 12: Using Selection Widgets 127

Rl ® 11:47rm

AutoCompleteDemo

Figure 12-7. The AutoCompleteDemo sample application, as initially launched

M@ 11:47 PM

AutoCompleteDemo
lor

Figure 12-8. The same application, after a few matching letters were entered, showing the autocomplete drop-
down

128

CHAPTER 12: Using Selection Widgets

Gl &8 11:47Pm

AutoCompleteDemo

lorem
lorem

Figure 12-9. The same application, after the autocomplete value was selected

Galleries, Give or Take the Art

The Gallery widget is not one ordinarily found in GUI toolkits. It is, in effect, a list box
that is laid out horizontally. One choice follows the next across the horizontal plane, with
the currently selected item highlighted. On an Android device, the user rotates through
the options via the left and right D-pad buttons.

Compared to the ListView, the Gallery takes up less screen space, while still showing
multiple choices at one time (assuming they are short enough). Compared to the
Spinner, the Gallery always shows more than one choice at a time.

The quintessential example use for the Gallery is image preview. Given a collection of photos
or icons, the Gallery lets people preview the pictures in the process of choosing one.

Code-wise, the Gallery works much like a Spinner or GridView. In your XML layout, you
have a few properties at your disposal:

B android:spacing: Controls the number of pixels between entries in the list.

B android:spinnerSelector: Controls what is used to indicate a
selection. This can either be a reference to a Drawable (see the
resources chapter) or an RGB value in #AARRGGBB or similar notation.

android:drawSelectorOnTop: Indicates if the selection bar (or Drawable) should be drawn
before (false) or after (true) drawing the selected child. If you choose true, be sure that
your selector has sufficient transparency to show the child through the selector;
otherwise, users will not be able to read the selection.

Chapter

Getting Fancy with Lists

The humble ListView is one of the most important widgets in all of Android, simply
because it is used so frequently. Whether choosing a contact to call, an e-mail message
to forward, or an e-book to read, ListView widgets are employed in a wide range of
activities. Of course, it would be nice if they were more than just plain text.

The good news is that Android lists can be as fancy as you want, within the limitations of
a mobile device’s screen, of course. However, making them fancy takes some work,
requiring the features of Android that are covered in this chapter.

Getting to First Base

The classic Android ListView is a plain list of text—solid but uninspiring. Basically, we
hand the ListView a bunch of words in an array and tell Android to use a simple built-in
layout for pouring those words into a list.

However, we can have a list whose rows are made up of icons, icons and text, check
boxes and text, or whatever we want. It is merely a matter of supplying enough data to
the adapter and helping the adapter to create a richer set of View objects for each row.

For example, suppose we want a ListView whose entries are made up of an icon,
followed by some text. We could construct a layout for the row that looks like this, found
in res/layout/row.xml in the FancylLists/Static sample project:

<?xml version="1.0" encoding="utf-8"?>

<Linearlayout
xmlns:android="http://schemas.android.com/apk/res/android"
android:orientation="vertical"
android:layout_width="fill parent"
android:layout_height="fill parent" >

<TextView
android:id="@+id/selection”
android:layout_width="fill parent"
android:layout_height="wrap_content"/>
<ListView

android:id="@android:id/1list"
android:layout_width="fill parent"

129

130

CHAPTER 13: Getting Fancy with Lists

android:layout_height="fill parent"
android:drawSelectorOnTop="false"
/>

</Linearlayout>

This layout uses a LinearLayout to set up a row, with the icon on the left and the text (in
a nice big font) on the right.

However, by default, Android has no idea that we want to use this layout with our
ListView. To make the connection, we need to supply our Adapter with the resource ID
of the custom layout shown previously:

public class StaticDemo extends ListActivity {

private TextView selection;

private static final String[] items={"lorem", "ipsum", "dolor",
"sit", "amet",
"consectetuer", "adipiscing", "elit", "morbi", "vel",
"ligula", "vitae", "arcu", "aliquet", "mollis",
etiam", "vel", "erat", "placerat", "ante",
"porttitor", "sodales", "pellentesque", "augue", "purus"};

@0verride
public void onCreate(Bundle icicle) {
super.onCreate(icicle);
setContentView(R.layout.main);
setListAdapter(new ArrayAdapter<String>(this,
R.layout.row, R.id.label,
items));
selection=(TextView)findViewById(R.id.selection);
}

public void onListItemClick(ListView parent, View v,
int position, long id) {
selection.setText(items[position]);

}
}

This follows the general structure for the previous ListView sample. The key difference
here is that we have told ArrayAdapter that we want to use our custom layout
(R.layout.row) and that the TextView where the word should go is known as R.1id.label
within that custom layout.

NOTE: Remember that to reference a layout (row.xml), use R.layout as a prefix on the base
name of the layout XML file (R. layout. row).

The result is a ListView with icons down the left side; in this example, all the icons are
the same, as shown in Figure 13-1.

CHAPTER 13: Getting Fancy with Lists

TN @ 1:15em

StaticDemo

v lorem
v ipsum
v’ dolor
v sit

v amet

v’ consectetuer
v’ adipiscing

v elit

LY / S S o—l—\ :
Figure 13-1. The StaticDemo application

A Dynamic Presentation

As shown in the previous section, the technique of supplying an alternative layout to use
for rows handles simple cases very nicely. However, what if we want the icon to change
based on the row data? For example, suppose we want to use one icon for small words
and a different icon for large words. In the case of ArrayAdapter, we will need to extend
it, creating our own custom subclass (e.g., IconicAdapter) that incorporates our
business logic. In particular, it will need to override getView().

The getView() method of an Adapter is what an AdapterView (like ListView or Spinner)
calls when it needs the View associated with a given piece of data the Adapter is
managing. In the case of an ArrayAdapter, getView() is called as needed for each
position in the array —“get me the View for the first row,” “get me the View for the second
row,” and so forth.

As an example, let’s rework the code in the preceding section to use getView(), so we
can show different icons for different rows —in this case, one icon for short words and
one for long words (from the FancylLists/Dynamic sample project):

public class DynamicDemo extends ListActivity {
TextView selection;
private static final String[] items={"lorem", "ipsum", "dolor",
Ilsitll, "amet")
"consectetuer", "adipiscing", "elit", "morbi", "vel",

131

132 CHAPTER 13: Getting Fancy with Lists

"ligula", "vitae", "arcu", "aliquet", "mollis",
"etiam", "vel", "erat", "placerat", "ante",
"porttitor", "sodales", "pellentesque", "augue", "purus"};

@0verride

public void onCreate(Bundle icicle) {
super.onCreate(icicle);
setContentView(R.layout.main);
setListAdapter(new IconicAdapter());
selection=(TextView)findViewById(R.id.selection);

}

public void onListItemClick(ListView parent, View v,
int position, long id) {
selection.setText(items[position]);

}

class IconicAdapter extends ArrayAdapter<String> {
IconicAdapter() {
super(DynamicDemo.this, R.layout.row, R.id.label, items);

public View getView(int position, View convertView,
ViewGroup parent) {
View row=super.getView(position, convertView, parent);
ImageView icon=(ImageView)row.findViewById(R.id.icon);

if (items[position].length()>4) {
icon.setImageResource(R.drawable.delete);

else {
icon.setImageResource(R.drawable.ok);

}

y return(row);
}
}

Our IconicAdapter—an inner class of the activity—has two methods. First, it has the
constructor, which simply passes to ArrayAdapter the same data we used in the
ArrayAdapter constructor in StaticDemo. Second, it has our getView() implementation,
which does two things:

B [t chains to the superclass’s implementation of getView(), which
returns to us an instance of our row View, as prepared by
ArrayAdapter. In particular, our word has already been put into the
TextView, since ArrayAdapter does that normally.

B |t finds our ImageView and applies a business rule to set which icon
should be used, referencing one of two drawable resources
(R.drawable.ok and R.drawable.delete).

The result of our revised example is shown in Figure 13-2.

CHAPTER 13: Getting Fancy with Lists

L Ml @ 1:24em

IDynamicDemo!

Blorem
Bipsum
B dolor
v sit

v amet

B consectetuer
B adipiscing

v elit

mmal’lﬂ:

Figure 13-2. The DynamicDemo application

Inflating Rows Ourselves

The preceding version of the DynamicDemo application works fine. However, sometimes
ArrayAdapter cannot be used even to set up the basics of our row. For example, it is
possible to have a ListView where the rows are materially different, such as category
headers interspersed among regular rows. In that case, we may need to do all the work
ourselves, starting with inflating our rows. We will do that after a brief introduction to
inflation.

A Sidebar About Inflation

“Inflation” means the act of converting an XML layout specification into the actual tree of
View objects the XML represents. This is undoubtedly a tedious bit of code: take an
element, create an instance of the specified View class, walk the attributes, convert
those into property setter calls, iterate over all child elements, lather, rinse, and repeat.

The good news is that the fine folks on the Android team wrapped up all that into a
class called LayoutInflater, which we can use ourselves. When it comes to fancy
lists, for example, we want to inflate a View for each row shown in the list, so we can
use the convenient shorthand of the XML layout to describe what the rows are
supposed to look like.

133

134 CHAPTER 13: Getting Fancy with Lists

For example, let’s look at a slightly different implementation of the DynamicDemo class,
from the FancylLists/DynamicEx project:

public class DynamicDemo extends ListActivity {

TextView selection;

private static final String[] items={"lorem", "ipsum", "dolor",
"sit", "amet",
"consectetuer", "adipiscing", "elit", "morbi", "vel",
"ligula", "vitae", "arcu", "aliquet", "mollis",
"etiam", "vel", "erat", "placerat", "ante",
"porttitor", "sodales", "pellentesque", "augue", "purus"};

@0verride

public void onCreate(Bundle icicle) {
super.onCreate(icicle);
setContentView(R.layout.main);
setListAdapter(new IconicAdapter());
selection=(TextView)findViewById(R.id.selection);

public void onListItemClick(ListView parent, View v,
int position, long id) {
selection.setText(items[position]);

}

class IconicAdapter extends ArrayAdapter<String> {
IconicAdapter() {
super(DynamicDemo.this, R.layout.row, items);

public View getView(int position, View convertView,
ViewGroup parent) {
LayoutInflater inflater=getLayoutInflater();
View row=inflater.inflate(R.layout.row, parent, false);
TextView label=(TextView)row.findViewById(R.id.label);

label.setText(items[position]);
ImageView icon=(ImageView)row.findViewById(R.id.icon);

if (items[position].length()>4) {
icon.setImageResource(R.drawable.delete);

else {
icon.setImageResource(R.drawable.ok);
}

return(row);

}
}
}

Here we inflate our R.1ayout.row layout by use of a LayoutInflater object, obtained
from our Activity via getLayoutInflater(). This gives us a View object back, which, in
reality, is our LinearLayout with an ImageView and a TextView, just as R.layout.row

CHAPTER 13: Getting Fancy with Lists

specifies. However, rather than having to create all those objects ourselves and wire
them together, the XML and LayoutInflater handle the “heavy lifting” for us.

And Now, Back to Our Story

So we have used LayoutInflater to give us a View representing the row. This row is
“empty,” since the static layout file has no idea what actual data goes into the row. It is
our job to customize and populate the row as we see fit before returning it, as follows:

B Fill in the text label for our label widget, using the word at the supplied position

B See if the word is longer than four characters and, if so, find our
ImageView icon widget and replace the stock resource with a different one

The user sees nothing different—we have simply changed how those rows are being
created. Obviously, this was a fairly contrived example, but you can see that this
technique could be used to customize rows based on any sort of criteria.

Better. Stronger. Faster.

The getView() implementation shown in the FancylLists/DynamicEx project works, but
it’s inefficient. Every time the user scrolls, we have to create a bunch of new View
objects to accommodate the newly shown rows. This is bad in terms of both overhead
and perceived performance.

It might be bad for the immediate user experience if the list appears to be sluggish.
More likely, though, it will be bad due to battery usage—every bit of CPU that is used
eats up the battery. This is compounded by the extra work the garbage collector needs
to do to get rid of all those extra objects we create. So the less efficient our code, the
more quickly the phone’s battery will be drained, and the less happy the user will be.
And we want happy users, right?

So, let’s take a look at a few tricks to make our fancy ListView widgets more efficient.

Using convertView

The getView() method receives, as one of its parameters, a View named, by convention,
convertView. Sometimes, convertView will be null. In those cases, we need to create a
new row View from scratch (e.g., via inflation), just as we did in the previous example.
However, if convertView is not null, then it is actually one of our previously created View
objects! This will happen primarily when the user scrolls the ListView. As new rows
appear, Android will attempt to recycle the views of the rows that scrolled off the other
end of the list, to save us from having to rebuild them from scratch.

Assuming that each of our rows has the same basic structure, we can use
findViewById() to get at the individual widgets that make up our row and change their
contents, and then return convertView from getView(), rather than create a whole new

135

136

CHAPTER 13: Getting Fancy with Lists

row. For example, here is the getView() implementation from the earlier example, now
optimized via convertView (from the FancylLists/Recycling project):

public class RecyclingDemo extends ListActivity {

private TextView selection;

private static final String[] items={"lorem", "ipsum", "dolor",
"sit", "amet",
"consectetuer", "adipiscing", "elit", "morbi", "vel",
"ligula", "vitae", "arcu", "aliquet", "mollis",
"etiam", "vel", "erat", "placerat", "ante",
"porttitor", "sodales", "pellentesque", "augue", "purus"};

@0verride

public void onCreate(Bundle icicle) {
super.onCreate(icicle);
setContentView(R.layout.main);
setListAdapter(new IconicAdapter());
selection=(TextView)findViewById(R.id.selection);

}

public void onListItemClick(ListView parent, View v,
int position, long id) {
selection.setText(items[position]);

}

class IconicAdapter extends ArrayAdapter<String> {
IconicAdapter() {
super (RecyclingDemo.this, R.layout.row, items);

public View getView(int position, View convertView,
ViewGroup parent) {
View row=convertView;

if (row==null) {
LayoutInflater inflater=getLayoutInflater();

row=inflater.inflate(R.layout.row, parent, false);

}

TextView label=(TextView)row.findViewById(R.id.label);
label.setText(items[position]);

ImageView icon=(ImageView)row.findViewById(R.id.icon);

if (items[position].length()>4) {
icon.setImageResource(R.drawable.delete);

else {
icon.setImageResource(R.drawable.ok);

}

return(row);

CHAPTER 13: Getting Fancy with Lists 137

Here, we check to see if the convertView is null. If so, we inflate our row; otherwise, we
just reuse it. The work to fill in the contents (icon image and text) is the same in either
case. The advantage is that we avoid the potentially expensive inflation step. In fact,
according to statistics cited by Google at the 2010 Google 1|0 conference, a ListView
that uses a recycling ListAdapter will perform 150 percent faster than one that does not.
For complex rows, that might even understate the benefit.

Not only is this faster, but it uses much less memory. Each widget or container—in other
words, each subclass of View—holds onto up to 2kB of data, not counting things like
images in ImageView widgets. Each of our rows, therefore, might be as big as 6kB. For
our list of 25 nonsense words, consuming as much as 150kB for a nonrecycling list (25
rows at 6kB each) would be inefficient but not a huge problem. A list of 1000 nonsense
words, though, consuming as much as 6MB of RAM, would be a much bigger issue.
Bear in mind that your application may have only 16MB of Java heap memory to work
with, especially if you are targeting older devices with constrained resources. Recycling
allows us to handle arbitrary list lengths with only as much View memory consumed as is
needed for the rows visible onscreen.

Note that row recycling is an issue only if we are creating the rows ourselves. If we let
ArrayAdapter create the rows, by leveraging its implementation of getView(), as shown
in the FancyLists/Dynamic project, then it deals with the recycling.

Using the Holder Pattern

Another somewhat expensive operation commonly done with fancy views is calling
findViewById(). This dives into our inflated row and pulls out widgets by their assigned
identifiers, so we can customize the widget contents (e.g., to change the text of a
TextView or change the icon in an ImageView). Since findViewById() can find widgets
anywhere in the tree of children of the row’s root View, this could take a fair number of
instructions to execute, particularly if we need to find the same widgets repeatedly.

In some GUI toolkits, this problem is avoided by having the composite View objects, like
rows, be declared totally in program code (in this case, Java). Then, accessing individual
widgets is merely a matter of calling a getter or accessing a field. And we can certainly
do that with Android, but the code gets rather verbose. What would be nice is a way that
enables us still to use the layout XML, yet cache our row’s key child widgets so that we
need to find them only once. That’s where the holder pattern comes into play, in a class
we’ll call ViewHolder.

All View objects have getTag() and setTag() methods. These allow us to associate an
arbitrary object with the widget. The holder pattern uses that “tag” to hold an object
that, in turn, holds each of the child widgets of interest. By attaching that holder to the
row View, every time we use the row, we already have access to the child widgets we
care about, without having to call findViewById() again.

So, let’s take a look at one of these holder classes (taken from the
FancylLists/ViewHolder sample project):

138

CHAPTER 13: Getting Fancy with Lists

package com.commonsware.android.fancylists.five;

import android.view.View;
import android.widget.ImageView;

class ViewHolder {
ImageView icon=null;

ViewHolder (View base) {
this.icon=(ImageView)base.findViewById(R.id.icon);

}
}

ViewHolder holds onto the child widgets, initialized via findvViewById() in its constructor.
The widgets are simply package-protected data members, accessible from other
classes in this project, such as a ViewHolderDemo activity. In this case, we are holding
onto only one widget—the icon—since we will let ArrayAdapter handle our label for us.

Using ViewHolder is a matter of creating an instance whenever we inflate a row and
attaching said instance to the row View via setTag(), as shown in this rewrite of
getView(), found in ViewHolderDemo:

public View getView(int position, View convertView,
ViewGroup parent) {
View row=super.getView(position, convertView, parent);
ViewHolder holder=(ViewHolder)row.getTag();

if (holder==null) {
holder=new ViewHolder(row);
row.setTag(holder);

if (getModel(position).length()>4) {
holder.icon.setImageResource(R.drawable.delete);

else {
holder.icon.setImageResource(R.drawable.ok);

}

return(row);

}

Here, we go back to allowing ArrayAdapter to handle our row inflation and recycling for
us. If the call to getTag() on the row returns null, we know we need to create a new
ViewHolder, which we then attach to the row via setTag() for later reuse. Then,
accessing the child widgets is merely a matter of accessing the data members on the
holder. The first time the ListView is displayed, all new rows need to be inflated, and we
wind up creating a ViewHolder for each. As the user scrolls, rows get recycled, and we
can reuse their corresponding ViewHolder widget caches.

Using a holder helps performance, but the effect is not as dramatic. Whereas recycling
can give you a 150 percent performance improvement, adding in a holder increases the
improvement to 175 percent. Hence, while you may wish to implement recycling up front

CHAPTER 13: Getting Fancy with Lists

when you create your adapter, adding in a holder might be something you deal with
later, when you are working specifically on performance tuning.

In this particular case, we certainly could simplify all of this by skipping ViewHolder and
using getTag() and setTag() with the ImageView directly. This example is written as it is
to demonstrate how to handle a more complex scenario, where you might have several
widgets that would need to be cached via the holder pattern.

Interactive Rows

Lists with pretty icons next to them are all fine and well. But, can we create ListView
widgets whose rows contain interactive child widgets instead of just passive widgets like
TextView and ImageView? For example, there is a RatingBar widget that allows users to
assign a rating by clicking on a set of star icons. Could we combine the RatingBar with
text to allow people to scroll a list of, say, songs and rate them right inside the list?
There is good news and bad news.

The good news is that interactive widgets in rows work just fine. The bad news is that it
is a little tricky, specifically when it comes to taking action when the interactive widget’s
state changes (e.g., a value is typed into a field). We need to store that state
somewhere, since our RatingBar widget will be recycled when the ListView is scrolled.
We need to be able to set the RatingBar state based on the actual word being viewed as
the RatingBar is recycled, and we need to save the state when it changes so it can be
restored when this particular row is scrolled back into view.

What makes this interesting is that, by default, the RatingBar has absolutely no idea
which item in the ArrayAdapter it represents. After all, the RatingBar is just a widget,
used in a row of a ListView. We need to teach the rows which item in the ArrayAdapter
they are currently displaying, so when their RatingBar is checked, they know which
item’s state to modify.

So, let’s see how this is done, using the activity in the FancylLists/Ratelist sample
project. We will use the same basic classes that we used in our previous example. We
are displaying a list of nonsense words, which can then be rated. In addition, words
given a top rating are put in all caps.

package com.commonsware.android.fancylists.six;

import android.app.Activity;

import android.os.Bundle;

import android.app.ListActivity;
import android.view.View;

import android.view.ViewGroup;
import android.view.LlayoutInflater;
import android.widget.AdapterView;
import android.widget.ArrayAdapter;
import android.widget.RatingBar;
import android.widget.LinearlLayout;
import android.widget.ListView;
import android.widget.TextView;
import java.util.Arraylist;

139

140 CHAPTER 13: Getting Fancy with Lists

public class RatelListDemo extends ListActivity {
private static final String[] items={"lorem", "ipsum", "dolor",
"sit", "amet",
"consectetuer", "adipiscing", "elit", "morbi", "vel",
"ligula", "vitae", "arcu", "aliquet", "mollis",
"etiam", "vel", "erat", "placerat", "ante",
"porttitor", "sodales", "pellentesque", "augue", "purus"};

@0verride
public void onCreate(Bundle icicle) {
super.onCreate(icicle);

ArraylList<RowModel> list=new Arraylist<RowModel>();

for (String s : items) {
list.add(new RowModel(s));
}

setListAdapter(new RatingAdapter(list));
}

private RowModel getModel(int position) {
return(((RatingAdapter)getListAdapter()).getItem(position));

class RatingAdapter extends ArrayAdapter<RowModel> {
RatingAdapter (ArraylList<RowModel> list) {
super(RatelListDemo.this, R.layout.row, R.id.label, list);

public View getView(int position, View convertView,
ViewGroup parent) {
View row=super.getView(position, convertView, parent);
ViewHolder holder=(ViewHolder)row.getTag();

if (holder==null) {
holder=new ViewHolder(row);
row.setTag(holder);

RatingBar.OnRatingBarChangelistener 1=
new RatingBar.OnRatingBarChangeListener() {
public void onRatingChanged(RatingBar ratingBar,
float rating,
boolean fromTouch) {
Integer myPosition=(Integer)ratingBar.getTag();
RowModel model=getModel(myPosition);

model.rating=rating;

LinearLayout parent=(LinearLayout)ratingBar.getParent();
TextView label=(TextView)parent.findViewById(R.id.label);

label.setText(model.toString());

};

CHAPTER 13: Getting Fancy with Lists 141

holder.rate.setOnRatingBarChangelListener(1l);
}

RowModel model=getModel(position);

holder.rate.setTag(new Integer(position));
holder.rate.setRating(model.rating);

y return(row);
}

class RowModel {
String label;
float rating=2.0f;

RowModel(String label) {
this.label=1abel;

}

public String toString() {
if (rating»>=3.0) {
return(label.toUpperCase());
}

return(label);

}
}

The following list explains what is different in this activity and getView() implementation
from before:

B We are still using String[] items as the list of nonsense words, but
instead of pouring that String array straight into an ArrayAdapter, we
turn it into a list of RowModel objects. RowModel is the mutable model: it
holds the nonsense word plus the current checked state. In a real
system, these might be objects populated from a database, and the
properties would have more business meaning.

B We updated utility methods such as onListItemClick() to reflect the
change from a pure-String model to use a RowModel.

B The ArrayAdapter subclass (RatingAdapter), in getView(), lets
ArrayAdapter inflate and recycle the row, and then checks to see if we
have a ViewHolder in the row’s tag. If not, we create a new ViewHolder
and associate it with the row. For the row’s RatingBar, we add an
anonymous onRatingChanged() listener that looks at the row’s tag
(getTag()) and converts that into an Integer, representing the position
within the ArrayAdapter that this row is displaying. Using that, the
rating bar can get the actual RowModel for the row and update the
model based on the new state of the rating bar. It also updates the

142

CHAPTER 13: Getting Fancy with Lists

text adjacent to the RatingBar when checked, to match the rating bar
state.

B We always make sure that the RatingBar has the proper contents and
has a tag (via setTag()) pointing to the position in the adapter the row
is displaying.

The row layout is very simple, just a RatingBar and a TextView inside a LinearLayout:

<?xml version="1.0" encoding="utf-8"?>

<LinearLayout xmlns:android="http://schemas.android.com/apk/res/android"
android:layout width="fill parent"
android:layout_height="wrap_content"
android:orientation="horizontal"

<RatingBar
android:id="@+id/rate"
android:layout_width="wrap_content"
android:layout_height="wrap_content"
android:numStars="3"
android:stepSize="1"
android:rating="2" />

<TextView
android:id="@+id/label"”
android:padding="2dip"
android:textSize="18sp"
android:layout gravity="left|center vertical"
android:layout_width="fill parent"
android:layout_height="wrap_content"/>

</Linearlayout>

The ViewHolder is similarly simple, just extracting the RatingBar out of the row View for
caching purposes:

package com.commonsware.android.fancylists.six;

import android.view.View;
import android.widget.RatingBar;

class ViewHolder {
RatingBar rate=null;

ViewHolder (View base) {
this.rate=(RatingBar)base.findViewById(R.id.rate);

}
}

And the result is what you would expect, visually, as shown in Figure 13-3.

CHAPTER 13: Getting Fancy with Lists 143

Bl & 614 P

consect

etuer

Figure 13-3. The RateListDemo application, as initially launched

Figure 13-4 shows a toggled rating bar turning its word into all caps.

od B0 -w /.90

Figure 13-4. The same application, showing a top-rated word

Chapter

Still More Widgets and
Containers

This book has covered a number of widgets and containers so far. This chapter is the
last that focuses exclusively on widgets and containers, covering a number of popular
options, from date and time widgets to tabs. Subsequent chapters introduce new
widgets occasionally, but in the context of some other topic, such as introducing the
ProgressBar in Chapter 20 (covering threads).

Pick and Choose

With limited-input devices like phones, having widgets and dialog boxes that are aware
of the type of stuff a user is supposed to be entering is very helpful. They minimize
keystrokes and screen taps and reduce the chance that a user will make some sort of
error (e.g., entering a letter somewhere only numbers are expected).

As shown in Chapter 9, EditText has content-aware flavors for entering numbers and
text. Android also supports widgets (DatePicker and TimePicker) and dialog boxes
(DatePickerDialog and TimePickerDialog) for helping users enter dates and times.

DatePicker and DatePickerDialog allow you to set the starting date for the selection, in
the form of a year, month, and day of month value. Note that the month runs from 0 for
January through 11 for December. Most importantly, both DatePicker and
DatePickerDialog let you provide a callback object (OnDateChangedListener or
OnDateSetListener) to notify you when a user has selected a new date. It is up to you to
store that date someplace, particularly if you are using the dialog box, since there is no
other way for you to access the chosen date later.

Similarly, TimePicker and TimePickerDialog let you do the following:

B Set the initial time the user can adjust, in the form of an hour (0
through 23) and a minute (0 through 59)

145

146

CHAPTER 14: Still More Widgets and Containers

B Indicate if the selection should be in 12-hour mode with an AM/PM
toggle or in 24-hour mode (what is thought of in the United States as
“military time” and in much of the rest of the world as “the way times
are supposed to be”)

B Provide a callback object (OnTimeChangedListener or
OnTimeSetListener) to be notified of when the user has chosen a new
time, which is supplied to you in the form of an hour and minute

As an example of using date and time pickers, from the Fancy/Chrono sample project,
here’s a trivial layout containing a label and two buttons, which will pop up the dialog
box flavors of the date and time pickers:

<?xml version="1.0" encoding="utf-8"?>
<Linearlayout
xmlns:android="http://schemas.android.com/apk/res/android"
android:orientation="vertical"
android:layout width="fill parent"
android:layout_height="fill parent"
>
<TextView android:id="@+id/dateAndTime"
android:layout_width="fill parent"
android:layout_height="wrap_content"
/>
<Button android:id="@+id/dateBtn"
android:layout_width="fill parent"
android:layout_height="wrap_content"
android:text="Set the Date"
android:onClick="chooseDate"
/>
<Button android:id="@+id/timeBtn"
android:layout_width="fill parent"
android:layout_height="wrap_content"
android:text="Set the Time"
android:onClick="chooseTime"
/>
</Linearlayout>

The more interesting stuff comes in the Java source:

package com.commonsware.android.chrono;

import android.app.Activity;

import android.os.Bundle;

import android.app.DatePickerDialog;
import android.app.TimePickerDialog;
import android.view.View;

import android.widget.DatePicker;
import android.widget.TimePicker;
import android.widget.TextView;
import java.text.DateFormat;

import java.util.Calendar;

public class ChronoDemo extends Activity {
DateFormat fmtDateAndTime=DateFormat.getDateTimeInstance();
TextView dateAndTimelabel;
Calendar dateAndTime=Calendar.getInstance();

CHAPTER 14: Still More Widgets and Containers 147

@0verride

public void onCreate(Bundle icicle) {
super.onCreate(icicle);
setContentView(R.layout.main);

dateAndTimelLabel=(TextView)findViewById(R.id.dateAndTime);

updateLabel();

public void chooseDate(View v) {
new DatePickerDialog(ChronoDemo.this, d,
dateAndTime.get(Calendar.YEAR),
dateAndTime.get(Calendar.MONTH),
dateAndTime.get(Calendar.DAY_OF MONTH))
.show();

public void chooseTime(View v) {
new TimePickerDialog(ChronoDemo.this, t,
dateAndTime.get(Calendar.HOUR_OF DAY),
dateAndTime.get(Calendar .MINUTE),
true)
.show();

private void updatelLabel() {
dateAndTimelLabel.setText(fmtDateAndTime
.format(dateAndTime.getTime()));
}

DatePickerDialog.OnDateSetListener d=new DatePickerDialog.OnDateSetListener() {
public void onDateSet(DatePicker view, int year, int monthOfYear,
int dayOfMonth) {
dateAndTime.set(Calendar.YEAR, year);
dateAndTime.set(Calendar.MONTH, monthOfYear);
dateAndTime.set(Calendar.DAY_OF _MONTH, dayOfMonth);
updatelabel();
}
s

TimePickerDialog.OnTimeSetListener t=new TimePickerDialog.OnTimeSetListener() {
public void onTimeSet(TimePicker view, int hourOfDay,
int minute) {
dateAndTime.set(Calendar.HOUR_OF DAY, hourOfDay);
dateAndTime.set(Calendar.MINUTE, minute);
updatelabel();

b
}
The model for this activity is just a Calendar instance, initially set to be the current date
and time. We pour it into the view via a DateFormat formatter. In the updateLabel()
method, we take the current Calendar, format it, and put it in the TextView.

148 CHAPTER 14: Still More Widgets and Containers

Each button has a corresponding method that will get control when the user clicks it
(chooseDate() and chooseTime()). When the button is clicked, either a DatePickerDialog
or a TimePickerDialog is shown. In the case of the DatePickerDialog, we give it an
OnDateSetListener callback that updates the Calendar with the new date (year, month,
and day of month). We also give the dialog box the last-selected date, getting the values
from the Calendar. In the case of the TimePickerDialog, it gets an OnTimeSetListener
callback to update the time portion of the Calendar, the last-selected time, and a value
of true indicating we want 24-hour mode on the time selector.

With all this wired together, the resulting activity looks like Figures 14-1, 14-2, and 14-3.
Ml & 6:50 PM

ChronoDemo

set the Date
set the Time

Figure 14-1. The ChronoDemo sample application, as initially launched

CHAPTER 14: Still More Widgets and Containers 149

EhEl & 6:51 Pm

@ Sat, August 23, 2008

+ f + +
Aug i 23 § 2008

Cancel

Figure 14-2. The same application, showing the date picker dialog box

Ml ® 6:51 PMm

Figure 14-3. The same application, showing the time picker dialog box

150

CHAPTER 14: Still More Widgets and Containers

Time Keeps Flowing Like a River

If you want to display the time, rather than have users enter the time, you may wish to
use the DigitalClock widget or the AnalogClock widget. These widgets are extremely
easy to use, as they automatically update with the passage of time. All you need to do is
put them in your layout and let them do their thing.

For example, from the Fancy/Clocks sample application, here is an XML layout
containing both DigitalClock and AnalogClock:

<?xml version="1.0" encoding="utf-8"?>
<Relativelayout xmlns:android="http://schemas.android.com/apk/res/android"
android:layout width="fill parent"
android:layout_height="fill parent"
>
<AnalogClock android:id="@+id/analog"
android:layout_width="fill parent"
android:layout_height="wrap_content"
android:layout_centerHorizontal="true"
android:layout_alignParentTop="true"
/>
<DigitalClock android:id="@+id/digital"
android:layout_width="wrap_content"
android:layout_height="wrap_content"
android:layout_centerHorizontal="true"
android:layout_below="@id/analog"
/>
</Relativelayout>

Without any Java code other than the generated stub, we can build this project and get
the activity shown in Figure 14-4.

Al € s:52pm

ClocksDemo

6:52:36 PM

Figure 14-4. The ClocksDemo sample application

CHAPTER 14: Still More Widgets and Containers 151

If you are looking for more of a timer, Chronometer may be of interest. With a
Chronometer, you can track elapsed time from a starting point, as shown in the example
in Figure 14-5. You simply tell it when to start() and stop(), and possibly override the
format string that displays the text.

Ml @ 6:54 PM

Figure 14-5. The Views/Chronometer APl Demo from the Android SDK

152

CHAPTER 14: Still More Widgets and Containers

Seeking Resolution

The SeekBar is an input widget that allows the user to select a value along a range of
possible values. Figure 14-6 shows an example.

Ml @ 6:54 PM

TabDemo

Button

A semi-random button

Figure 14-6. The Views/SeekBar APl Demo from the Android SDK

The user can either drag the thumb or click on either side of the thumb to reposition it.
The thumb then points to a particular value along a range. That range will be 0 to some
maximum value, 100 by default, which you control via a call to setMax(). You can find
out what the current position is via getProgress(), or find out when the user makes a
change to the thumb’s position by registering a listener via
setOnSeekBarChangelListener().

We saw a variation on this theme with the RatingBar example in Chapter 13.

Putting It on My Tab

The general Android philosophy is to keep activities short and sweet. If there is more
information than can reasonably fit on one screen, albeit perhaps with scrolling, then it
perhaps belongs in another activity kicked off via an Intent, as will be described in
Chapter 22. However, that can be complicated to set up. Moreover, sometimes there
legitimately is a lot of information that needs to be collected to be processed as an
atomic operation.

In a traditional Ul, you might use tabs to collect and display information, such as a
JTabbedPane in Java/Swing. In Android, you now have the option of using a TabHost

CHAPTER 14: Still More Widgets and Containers 153

container in much the same way. A portion of your activity’s screen is taken up with
tabs, which, when clicked, swap out part of the view and replace it with something else.
For example, you might have an activity with a tab for entering a location and a second
tab for showing a map of that location.

Some GUI toolkits refer to “tabs” as only the things that a user clicks to toggle from one
view to another. Other GUI toolkits refer to “tabs” as the combination of the clickable
button-like element and the content that appears when that element is chosen. Android
treats the tab buttons and contents as discrete entities, so they are referred to as “tab
buttons” and “tab contents” in this section.

The Pieces

You use the following widgets and containers to set up a tabbed portion of a view:

B TabHost: The overarching container for the tab buttons and tab
contents.

B TabWidget: Implements the row of tab buttons, which contain text
labels and, optionally, icons.

B Framelayout: The container for the tab contents. Each tab content is a
child of the FrameLayout.

This is similar to the approach that Mozilla’s XUL takes. In XUL’s case, the tabbox
element corresponds to Android’s TabHost, the tabs element corresponds to TabWidget,
and tabpanels corresponds to FramelLayout.

For example, here is a layout definition for a tabbed activity, from Fancy/Tab:

<?xml version="1.0" encoding="utf-8"?>
<TabHost xmlns:android="http://schemas.android.com/apk/res/android"
android:id="@+id/tabhost"
android:layout width="fill parent"
android:layout_height="fill parent">
<Linearlayout
android:orientation="vertical"
android:layout_width="fill parent"
android:layout_height="fill parent">
<TabWidget android:id="@android:id/tabs"
android:layout width="fill parent"
android:layout_height="wrap_content"
/>
<Framelayout android:id="@android:id/tabcontent"
android:layout width="fill parent"
android:layout_height="fill parent">
<AnalogClock android:id="@+id/tab1"
android:layout_width="fill_parent"
android:layout_height="fill parent"
/>
<Button android:id="@+id/tab2"
android:layout_width="fill_parent"
android:layout_height="fill parent"
android:text="A semi-random button"

154

CHAPTER 14: Still More Widgets and Containers

/>
</Framelayout>
</Linearlayout>
</TabHost>

Note that the TabWidget and FramelLayout are indirect children of the TabHost, and the
FrameLayout itself has children representing the various tabs. In this case, there are two
tabs: a clock and a button. In a more complicated scenario, the tabs could be some
form of container (e.g., LinearLayout) with their own contents.

Wiring It Together

You can put these widgets in a regular Activity or a TabActivity. TabActivity, like
ListActivity, wraps a common Ul pattern (an activity made up entirely of tabs) into a
pattern-aware activity subclass. If you wish to use the TabActivity, you must give the
TabHost an android:id of @android:id/tabhost. Conversely, if you do not wish to use
TabActivity, you need to get your TabHost via findViewById(), and then call setup() on
the TabHost, before you do anything else.

The rest of the Java code needs to tell the TabHost which views represent the tab
contents and what the tab buttons should look like. This is all wrapped up in TabSpec
objects. You get a TabSpec instance from the host via newTabSpec(), fill it out, and then
add it to the host in the proper sequence.

TabSpec has two key methods:

B setContent(): Indicates what goes in the tab content for this tab, typically
the android:id of the view you want shown when this tab is selected

B setIndicator(): Sets the caption for the tab button and, in some flavors
of this method, supplies a Drawable to represent the icon for the tab

Note that tab “indicators” can actually be views in their own right, if you need more
control than a simple label and optional icon.

Also note that you must call setup() on the TabHost before configuring any of these
TabSpec objects. The call to setup() is not needed if you are using the TabActivity base
class for your activity.

For example, here is the Java code to wire together the tabs from the preceding layout
example:

package com.commonsware.android.fancy;

import android.app.Activity;
import android.os.Bundle;
import android.widget.TabHost;

public class TabDemo extends Activity {
@0verride
public void onCreate(Bundle icicle) {
super.onCreate(icicle);
setContentView(R.layout.main);

CHAPTER 14: Still More Widgets and Containers

TabHost tabs=(TabHost)findViewById(R.id.tabhost);
tabs.setup();
TabHost.TabSpec spec=tabs.newTabSpec("tagl");

spec.setContent(R.id.tab1);
spec.setIndicator("Clock");
tabs.addTab(spec);

spec=tabs.newTabSpec("tag2");
spec.setContent(R.id.tab2);
spec.setIndicator("Button");
tabs.addTab(spec);
}
}

We find our TabHost via the familiar findviewById() method, and then have it set up via
setup(). After that, we get a TabSpec via newTabSpec(), supplying a tag whose purpose
is unknown at this time. Given the spec, we call setContent() and setIndicator(), and
then call addTab() back on the TabHost to register the tab as available for use. Finally,
we can choose which tab is the one to show via setCurrentTab(), providing the 0-based
index of the tab.

The results are shown in Figures 14-7 and 14-8.

5554:a4dtest —

*a TabDemo

CLOGK

[l Jacdut Ja Jails lacda dag)
il L e T
i Tl [[Ll A L
P [[e e e e e
Form g

Figure 14-7. The TabDemo sample application, showing the first tab

155

156 CHAPTER 14: Still More Widgets and Containers

5554:a4dtest e

IR R W R T e e)

A semi-random button o lw e lr |7ty u dnal

Figure 14-8. The same application, showing the second tab

Note that if your application is running under an older SDK level, prior to the Honeycomb
and Ice Cream Sandwich releases, then your menus will appear in the old-fashioned
“button” style, as shown in Figure 14-9. You have some control over whether to use the
old behavior or the new behavior by specifying android:targetSdkVersion and
android:minSdkVersion in your AndroidManifest.xml. Chapter 29 has a useful list of
SDK versions.

E Ml €@ 3:49PM

Dynamic Tabs

Button

A semi-random button

Figure 14-9. The TabDemo sample application, showing the first tab with older-style Ul

CHAPTER 14: Still More Widgets and Containers 157

Adding Them Up

TabWidget is set up to allow you to easily define tabs at compile time. However,
sometimes you may want to add tabs to your activity during runtime. For example,
imagine an e-mail client that opens each individual e-mail message in its own tab, for
easy toggling between messages. In this case, you do not know how many tabs you will
need or what their contents will be until runtime, when the user chooses to open a
message. Fortunately, Android also supports adding tabs dynamically at runtime.

Adding tabs dynamically at runtime works much like the compile-time tabs previously
described, except you use a different flavor of setContent(), one that takes a
TabHost.TabContentFactory instance. This is just a callback that will be invoked. You
provide an implementation of createTabContent() and use it to build and return the View
that becomes the content of the tab.

Let’s take a look at an example (Fancy/DynamicTab). First, here is some layout XML for
an activity that sets up the tabs and defines one tab, containing a single button:

<?xml version="1.0" encoding="utf-8"?>
<TabHost xmlns:android="http://schemas.android.com/apk/res/android"
android:id="@+id/tabhost"
android:layout width="fill parent"
android:layout_height="fill parent">
<Linearlayout
android:orientation="vertical"
android:layout_width="fill parent"
android:layout_height="fill parent">
<TabWidget android:id="@android:id/tabs"
android:layout width="fill parent"
android:layout_height="wrap_content"
/>
<FramelLayout android:id="@android:id/tabcontent"
android:layout width="fill parent"
android:layout_height="fill parent">
<Button android:id="@+id/buttontab"
android:layout_width="fill_parent"
android:layout_height="fill parent"
android:text="A semi-random button"
android:onClick="addTab"
/>
</Framelayout>
</Linearlayout>
</TabHost>

We want to add new tabs whenever the button is clicked, which we can accomplish with
the following code:

package com.commonsware.android.dynamictab;

import android.app.Activity;
import android.os.Bundle;

import android.view.View;

import android.widget.AnalogClock;
import android.widget.TabHost;

158 CHAPTER 14: Still More Widgets and Containers

public class DynamicTabDemo extends Activity {
private TabHost tabs=null;

@0verride

public void onCreate(Bundle icicle) {
super.onCreate(icicle);
setContentView(R.layout.main);

tabs=(TabHost)findViewById(R.id.tabhost);
tabs.setup();

TabHost.TabSpec spec=tabs.newTabSpec("buttontab");

spec.setContent(R.id.buttontab);
spec.setIndicator("Button");
tabs.addTab(spec);

}

public void addTab(View v) {
TabHost.TabSpec spec=tabs.newTabSpec("tagl");

spec.setContent(new TabHost.TabContentFactory() {
public View createTabContent(String tag) {
return(new AnalogClock(DynamicTabDemo.this));

}
B;

spec.setIndicator("Clock");
tabs.addTab(spec);

}
}

In our button’s addTab() callback, we create a TabHost.TabSpec object and give it an
anonymous TabHost.TabContentFactory. The factory, in turn, returns the View to be
used for the tab—in this case, just an AnalogClock. The logic for constructing the tab’s
View could be much more elaborate, such as using LayoutInflater to construct a view
from layout XML.

Initially, when the activity is launched, we just have the one tab, as shown in Figure 14-10.
Figure 14-11 shows the three dynamically created tabs.

CHAPTER 14: Still More Widgets and Containers 159

5554:a4dtest 4

1 W [[T [TR T T Y P
r Tl 1.1,

[l L L L L 4

A semi-random button

Figure 14-10. The DynamicTab application, with the single initial tab

5554:adtest R <

1 R 7 [T T TR T T P P

A semi-random button

Figure 14-11. The DynamicTab application, with three dynamically created tabs

The table handling is truly dynamic, adapting to the size of your screen. Android formats
the table to fit larger-format screens such as tablets and even TVs. Figure 14-12 shows
four dynamically created tabs on a larger, tablet-sized screen.

160

CHAPTER 14: Still More Widgets and Containers

g Dynamic Tabs

BUTTON CLOCK CLOCK CLOCK CLOCK

A semi-random button

Figure 14-12. The DynamicTab application, demonstrating adaptability on a tablet-sized screen

Flipping Them Off

Sometimes, you want the overall effect of tabs (only some Views visible at a time) but not
the actual Ul implementation of tabs. Maybe the tabs take up too much screen space.
Maybe you want to switch between perspectives based on a gesture or a device shake.
Or maybe you just like being different. Android 4.0 Ice Cream Sandwich offers the ability
to “push” your tabs up into vacant space in the action bar when space allows, such as
when you rotate to landscape orientation, but that doesn’t cater for those crazy “shake,
rattle, and roll” ideas you might have.

The good news is that the guts of the view-flipping logic from tabs can be found in the
ViewFlipper container, which can be used in other ways than the traditional tab.

ViewFlipper inherits from FrameLayout, in the same way we use it to describe the
innards of a TabWidget. However, initially, ViewFlipper just shows the first child view. It
is up to you to arrange for the views to flip, either manually by user interaction or
automatically via a timer.

For example, here is a layout for a simple activity (Fancy/Flipper1) using a Button and a
ViewFlipper:

<?xml version="1.0" encoding="utf-8"?>

<LinearLayout xmlns:android="http://schemas.android.com/apk/res/android"
android:orientation="vertical"
android:layout_width="fill parent"
android:layout_height="fill parent"

>
<Button android:id="@+id/flip_me"
android:layout width="fill parent"
android:layout_height="wrap_content"
android:text="Flip Me!"
android:onClick="flip"
/>
<ViewFlipper android:id="@+id/details"
android:layout_width="fill parent"

CHAPTER 14: Still More Widgets and Containers

android:layout_height="fill parent"

>

<TextView
android:layout width="fill parent"
android:layout_height="wrap_content"
android:textStyle="bold"
android:textColor="#FFOOFF00"
android:text="This is the first panel”

/>

<TextView
android:layout width="fill parent"
android:layout_height="wrap_content"
android:textStyle="bold"
android:textColor="#FFFF0000"
android:text="This is the second panel”

/>

<TextView
android:layout width="fill parent"
android:layout_height="wrap_content"
android:textStyle="bold"
android:textColor="#FFFFFF00"
android:text="This is the third panel”

/>

</ViewFlipper>
</Linearlayout>

Notice that the layout defines three child views for the ViewFlipper, each a TextView
with a simple message. Of course, you could have very complicated child views, if you
so choose.

To manually flip the views, we need to hook into the Button and flip them ourselves
when the button is clicked:

package com.commonsware.android.flipper1;

import android.app.Activity;
import android.os.Bundle;

import android.view.View;

import android.widget.ViewFlipper;

public class FlipperDemo extends Activity {
ViewFlipper flipper;

@0verride

public void onCreate(Bundle icicle) {
super.onCreate(icicle);
setContentView(R.layout.main);

flipper=(ViewFlipper)findViewById(R.id.details);

public void flip(View v) {
flipper.showNext();

161

162 CHAPTER 14: Still More Widgets and Containers

This is just a matter of calling showNext () on the ViewFlipper, as you can on any
ViewAnimator class. The result is a trivial activity: click the button, and the next TextView

in sequence is displayed, wrapping around to the first after viewing the last, as shown in
Figures 14-13 and 14-14.

SR Ml @& 7:00em

consectetuer

Figure 14-13. The FlipperDemo application, showing the first panel

R @ 9:23 Am

Views/Chronometer

Initial format: 00:12

Set format string
Clear format string

Figure 14-14. The same application, after switching to the second panel

CHAPTER 14: Still More Widgets and Containers

Of course, this could be handled more simply by having a single TextView and changing
the text and color on each click. However, you can imagine that the ViewFlipper
contents could be much more complicated, like the contents you might put into a
TabView.

As with the TabWidget, sometimes your ViewFlipper contents may not be known at
compile time. And as with TabWidget, you can add new contents on-the-fly with ease.

For example, let’s look at another sample activity (Fancy/Flipper2), using this layout:

<?xml version="1.0" encoding="utf-8"?>

<LinearLayout xmlns:android="http://schemas.android.com/apk/res/android"
android:orientation="vertical"
android:layout_width="fill parent"
android:layout_height="fill parent"
>

<ViewFlipper android:id="@+id/details"

android:layout_width="fill parent"
android:layout_height="fill parent"

>
</ViewFlipper>
</Linearlayout>

Notice that the ViewFlipper has no contents at compile time. Also notice that there is no
Button for flipping between the contents —more on this in a moment.

For the ViewFlipper contents, we will create large Button widgets, each containing one
of the random words used in many chapters in this book. And, we will set up the
ViewFlipper to automatically rotate between the Button widgets.

package com.commonsware.android.flipper2;

import android.app.Activity;
import android.os.Bundle;

import android.view.View;

import android.view.ViewGroup;
import android.widget.Button;
import android.widget.ViewFlipper;

public class FlipperDemo2 extends Activity {

static String[] items={"lorem", "ipsum", "dolor", "sit", "amet",
"consectetuer", "adipiscing", "elit",
"morbi", "vel", "ligula", "vitae",
"arcu", "aliquet", "mollis", "etiam",
"vel", "erat", "placerat", "ante",
"porttitor", "sodales", "pellentesque",
"augue", "purus"};

ViewFlipper flipper;

@0verride

public void onCreate(Bundle icicle) {
super.onCreate(icicle);
setContentView(R.layout.main);

flipper=(ViewFlipper)findViewById(R.id.details);

for (String item : items) {

163

164 CHAPTER 14: Still More Widgets and Containers

Button btn=new Button(this);
btn.setText(item);

flipper.addView(btn,
new ViewGroup.LayoutParams(
ViewGroup.LayoutParams.FILL_PARENT,
ViewGroup.LayoutParams.FILL PARENT));

}

flipper.setFlipInterval(2000);
flipper.startFlipping();

}

After iterating over the funky words, turning each into a Button, and adding the Button
as a child of the ViewFlipper, we set up the flipper to automatically flip between children
(flipper.setFlipInterval(2000);) and to start flipping (flipper.startFlipping(

The result is an endless series of buttons, each of which appears, as shown in Figure
14-15, and then is replaced by the next button in sequence after 2 seconds, wrapping

around to the first after the last has been shown.
& Nl 8 s:28pm

DrawerDemo

I'm in here!

Figure 14-15. The FlipperDemo2 application

The autoflipping ViewFlipper is useful for status panels or other situations where you
have a lot of information to display but not much room to display it. However, since it
automatically flips between views, expecting users to interact with individual views is
dicey, because the view might switch away partway through their interaction.

CHAPTER 14: Still More Widgets and Containers

Getting in Somebody’s Drawer

For a long time, Android developers yearned for a sliding-drawer container that worked
like the one on the home screen, containing the icons for launching applications. The
official implementation was in the open source code but was not part of the SDK, until
Android 1.5, when the developers released SlidingDrawer for others to use.

Unlike most other Android containers, SlidingDrawer moves, switching from a closed to
an open position. This puts some restrictions on which container can hold the
SlidingDrawer. It needs to be in a container that allows multiple widgets to sit atop each
other. Relativelayout and Framelayout satisfy this requirement. FrameLayout is a
container purely for stacking widgets atop one another. On the flip side, LinearLayout
does not allow widgets to stack (they fall one after another in a row or column), and so
you should not have a SlidingDrawer as an immediate child of a LinearLayout.

Here is a layout showing a SlidingDrawer in a FrameLayout, from the Fancy/DrawerDemo
project:

<?xml version="1.0" encoding="utf-8"?>
<FrameLayout xmlns:android="http://schemas.android.com/apk/res/android"
android:layout_width="fill parent"
android:layout_height="fill parent"
android:background="#FF4444CC"
>
<SlidingDrawer
android:id="@+id/drawer"
android:layout_width="fill parent"
android:layout_height="fill parent"
android:handle="@+id/handle"
android:content="@+id/content">
<ImageView
android:id="@id/handle"
android:layout_width="wrap_content"
android:layout_height="wrap_content"
android:src="@drawable/tray_handle_normal
/>
<Button
android:id="@id/content"
android:layout_width="fill parent"
android:layout_height="fill parent"
android:text="I'm in here!"
/>
</SlidingDrawer>
</FramelLayout>

The SlidingDrawer should contain two things:

B A handle, frequently an ImageView or something along those lines,
such as the one used here, pulled from the Android open source
project

B The contents of the drawer itself, usually some sort of container, but a
Button in this example

165

166

CHAPTER 14: Still More Widgets and Containers

Moreover, SlidingDrawer needs to know the android:id values of the handle and
contents, via the android:handle and android:content attributes, respectively. These
tell the drawer how to animate itself as it slides open and closed.

Figure 14-16 shows what the SlidingDrawer looks like closed, using the supplied
handle, and Figure 14-17 shows what it looks like open.

Gl & 6:51pPm

Cancel

Figure 14-16. A SlidingDrawer, closed

& M @ s:28pm

DrawerDemo

I'm in here!

Figure 14-17. A SlidingDrawer, open

CHAPTER 14: Still More Widgets and Containers

As you might expect, you can open and close the drawer from Java code, as well as via
user touch events. However, you have two sets of these methods: ones that take place
instantaneously (open(),close(), and toggle()) and ones that use the animation
(@animateOpen(), animateClose(), and animateToggle()). You can also lock() and
unlock() the drawer; while locked, the drawer will not respond to touch events.

You can also register three types of callbacks if you wish:
B Alistener to be invoked when the drawer is opened
B Alistener to be invoked when the drawer is closed

B Alistener to be invoked when the drawer is “scrolled” (i.e., the user
drags or flings the handle)

For example, the Android launcher’s SlidingDrawer toggles the icon on the handle from
open to closed to “delete” (if you long-tap something on the desktop). It accomplishes
this, in part, through callbacks like these.

SlidingDrawer can be vertical or horizontal. Note, though, that it keeps its orientation
despite the screen orientation. In other words, if you rotate the Android device or
emulator running DrawerDemo, the drawer always opens from the bottom —it does not
always “stick” to the original side it opened from. This means that if you want the drawer
to always open from the same side, like the launcher does, you will need separate
layouts for portrait versus landscape, a topic discussed in Chapter 23.

Other Good Stuff

Android offers Absolutelayout, where the contents are laid out based on specific
coordinate positions. You tell AbsolutelLayout where to place a child in precise x and y
coordinates, and Android puts it there, no questions asked. On the plus side, this gives
you precise positioning. On the minus side, it means your views will look right only on
screens of a certain dimension, or you will need to write a bunch of code to adjust the
coordinates based on screen size. Since Android screens might run the gamut of sizes,
with new sizes cropping up periodically, using Absolutelayout could get quite annoying.
Also, note that Absolutelayout is officially deprecated, meaning that although it is
available to you, its use is discouraged.

Android also has the ExpandablelListView. This provides a simplified tree representation,
supporting two levels of depth: groups and children. Groups contain children; children
are “leaves” of the tree. This requires a new set of adapters, since the ListAdapter
family does not provide any sort of group information for the items in the list.

Here are some other widgets available in Android beyond those covered so far in this
book:

B CheckedTextView: A TextView that can have either a check box or a
radio button next to it, used with single- and multiple-choice lists

B Chronometer: A stopwatch-style countdown timer

167

168

CHAPTER 14: Still More Widgets and Containers

Gallery: A horizontal scrolling selection widget, designed for
thumbnail previews of images (e.g., camera photos and album covers)

MultiAutoCompleteTextView: Like an AutoCompleteTextView, except
that the user can make multiple choices from the drop-down list,
rather than just one

QuickContactBadge: Given the identity of a contact from the user’s
contacts database, displays a roster of icons representing actions to
be performed on that contact (place a call, send a text message, send
an e-mail, etc.)

ToggleButton: A two-state button where the states are indicated by a
“light” and prose ("ON", "OFF") instead of a check mark

ViewSwitcher (and the ImageSwitcher and TextSwitcher subclasses):
Like a simplified ViewFlipper for toggling between two views

Chapter

Embedding the WebKit
Browser

Other GUI toolkits let you use HTML for presenting information, from limited HTML
renderers (e.g., Java/Swing and wxWidgets) to embedding Internet Explorer into .NET
applications. Android is much the same, in that you can embed the built-in web browser
as a widget in your own activities, for displaying HTML or full-fledged browsing. The
Android browser is based on WebKit, the same engine that powers web browsers such
as Apple’s Safari and Google’s Chrome.

The Android browser is sufficiently complex that it gets its own Java package
(android.webkit). Using the WebView widget itself can be simple or powerful, based on
your requirements.

A Browser, Writ Small

For simple stuff, WebView is not significantly different from any other widget in Android—
pop it into a layout, tell it which URL to navigate to via Java code, and you are finished.

For example, here is a simple layout with a WebView (from WebKit/Browser1):

<?xml version="1.0" encoding="utf-8"?>

<WebView xmlns:android="http://schemas.android.com/apk/res/android"
android:id="@+id/webkit"
android:layout width="fill parent"
android:layout_height="fill parent"

/>

As with any other widget, you need to tell it how it should fill up the space in the layout
(in this case, it fills all remaining space).

The Java code is equally simple:

package com.commonsware.android.browseri;

import android.app.Activity;

170 CHAPTER 15: Embedding the WebKit Browser

import android.os.Bundle;
import android.webkit.WebView;

public class BrowserDemol extends Activity {
WebView browser;

@0verride

public void onCreate(Bundle icicle) {
super.onCreate(icicle);
setContentView(R.layout.main);
browser=(WebView)findViewById(R.id.webkit);

browser.loadUrl("http://commonsware.com");

}
}

The only thing unusual with this edition of onCreate() is that we invoke loadUrl() on the
WebView widget, to tell it to load a web page (in this case, the home page of some
random firm).

However, we also need to make one change to AndroidManifest.xml, requesting
permission to access the Internet:

<?xml version="1.0"?>
<manifest xmlns:android="http://schemas.android.com/apk/res/android"
package="com.commonsware.android.browser1">
<uses-permission android:name="android.permission.INTERNET"/>
<application android:icon="@drawable/cw">
<activity android:name=".BrowserDemol" android:label="BrowserDemo1">
<intent-filter>
<action android:name="android.intent.action.MAIN"/>
<category android:name="android.intent.category.LAUNCHER"/>
</intent-filter>
</activity>
</application>
<supports-screens android:largeScreens="true" android:normalScreens="true"
android:smallScreens="true" android:anyDensity="true"/>
</manifest>

If we fail to add this permission, the browser will refuse to load pages. Permissions will
be covered in greater detail in Chapter 38.

The resulting activity looks like a web browser, but with hidden scrollbars, as shown in
Figure 15-1.

CHAPTER 15: Embedding the WebKit Browser

EhHl & s:13 P

BrowserDemo1

Home

Comm¢
All
About
CommonsWare the
r— Comm

What We Offer
The
> Books firm's
> Professional Training
> Consulting Services misslon
Is to
i BT
General Info people
> Privacy Policy and
> Founder’s Bio organizatiory
n s

Figure 15-1. The BrowserDemo1 sample application

As with the regular Android browser, you can pan around the page by dragging it, while
the D-pad moves you around all the focusable elements on the page. What is missing is
all the extra stuff that make up a web browser, such as a navigational toolbar.

Now, you may be tempted to replace the URL in that source code with something that
relies on JavaScript, such as Google’s home page. By default, JavaScript is turned off in
WebView widgets. If you want to enable JavaScript, call
getSettings().setJavaScriptEnabled(true); on the WebView instance. This option is
covered in a bit more detail later in this chapter.

Loading It Up

There are two main ways to get content into the WebView. One, described in the previous
section, is to provide the browser with a URL and have the browser display that page via
loadurl(). The browser will access the Internet through whatever means are available to
that specific device at the present time (Wi-Fi, 2G, 3G, 4G, WiMAX, EDGE, HSDPA,
HSPA, well-trained tiny carrier pigeons, etc.).

The alternative is to use loadData(). Here, you supply the HTML for the browser to view.
You might use this to do the following:

B Display a manual that was installed as a file with your application
package

B Display snippets of HTML you retrieved as part of other processing,
such as the description of an entry in an Atom feed

171

172

CHAPTER 15: Embedding the WebKit Browser

B Generate a whole user interface using HTML, instead of using the
Android widget set

There are two flavors of loadData(). The simpler one allows you to provide the content,
the MIME type, and the encoding, all as strings. Typically, your MIME type will be
text/html and your encoding will be UTF-8 for ordinary HTML.

For example, you could replace the loadUrl() invocation in the previous example with
the following:

browser.loadData("<html><body>Hello, world!</body></html>",
"text/html", "UTF-8");

You would get the result shown in Figure 15-2.

Nl @ 8:18 PM
BrowserDemo2

Hello, world!

Figure 15-2. The BrowserDemo2 sample application

This is also available as a fully buildable sample, as WebKit/Browser2.

Navigating the Waters

As previously mentioned, the WebView widget doesn’t have a navigation toolbar. This
allows you to use it in places where such a toolbar would be pointless and a waste of
screen real estate. That being said, if you want to offer navigational capabilities, you can,
but you have to supply the Ul.

WebView offers ways to perform garden-variety browser navigation, including the
following methods:

CHAPTER 15: Embedding the WebKit Browser

reload(): Refreshes the currently viewed web page
goBack(): Goes back one step in the browser history
canGoBack(): Determines if there is any history to go back to
goForward(): Goes forward one step in the browser history

canGoForward(): Determines if there is any history to go forward to

goBackOrForward(): Goes backward or forward in the browser history,
where a negative number as an argument represents how many steps
to go backward, and a positive number represents how many steps to
go forward

B canGoBackOrForward(): Determines if the browser can go backward or
forward the stated number of steps (following the same
positive/negative convention as goBackOrForward())

B clearCache(): Clears the browser resource cache

B clearHistory(): Clears the browsing history

Entertaining the Client

If you are going to use the WebView as a local Ul (versus browsing the Web), you will
want to be able to get control at key times, particularly when users click links. You will
want to make sure those links are handled properly, either by loading your own content
back into the WebView, by submitting an Intent to Android to open the URL in a full
browser, or by some other means (see Chapter 22).

Your hook into the WebView activity is via setWebViewClient(), which takes an instance
of a WebViewClient implementation as a parameter. The supplied callback object will be
notified of a wide range of events, from when parts of a page have been retrieved
(onPageStarted(), etc.) to when you, as the host application, need to handle certain
user- or circumstance-initiated events, such as onTooManyRedirects() or
onReceivedHttpAuthRequest().

A common hook will be shouldOverrideUrlLoading(), where your callback is passed a
URL (plus the WebView itself), and you return true if you will handle the request or false if
you want default handling (e.g., actually fetch the web page referenced by the URL). In
the case of a feed reader application, for example, you will probably not have a full
browser with navigation built into your reader. In this case, if the user clicks a URL, you
probably want to use an Intent to ask Android to load that page in a full browser. But if
you have inserted a “fake” URL into the HTML, representing a link to some activity-
provided content, you can update the WebView yourself.

173

174

CHAPTER 15: Embedding the WebKit Browser

As an example, let’s amend the first browser demo to make it an application that, upon
a click, shows the current time. From WebKit/Browser3, here is the revised Java:

public class BrowserDemo3 extends Activity {
WebView browser;

@0verride

public void onCreate(Bundle icicle) {
super.onCreate(icicle);
setContentView(R.layout.main);
browser=(WebView)findViewById(R.id.webkit);
browser.setWebViewClient(new Callback());

loadTime();

}

void loadTime() {
String page="<html><body>"
+new Date().toString()
+"</body></html>";

browser.loadData(page, "text/html", "UTF-8");
}

private class Callback extends WebViewClient {
public boolean shouldOverrideUrlLoading(WebView view, String url) {
loadTime();

return(true);

}
}

Here, we load into the browser (LoadTime()) a simple web page that consists of the
current time, made into a hyperlink to the /clock URL. We also attach an instance of a
WebViewClient subclass, providing our implementation of shouldOverrideUrlLoading().
In this case, no matter what the URL, we want to just reload the WebView via loadTime().

Running this activity gives the result shown in Figure 15-3.

CHAPTER 15: Embedding the WebKit Browser 175

Bl @ 9:46 Pm
BrowserDemo3

Thu Aug 21 21:46:26 GMT+00:00 2008

Figure 15-3. The BrowserDemo3 sample application

Selecting the link and clicking the D-pad center button will “click” the link, causing the
page to be rebuilt with the new time.

Settings, Preferences, and Options (Oh, My!)

With your favorite desktop web browser, you have some sort of settings, preferences, or
options window. Between that and the toolbar controls, you can tweak and twiddle the
behavior of your browser, from preferred fonts to the behavior of JavaScript. Similarly,
you can adjust the settings of your WebView widget as you see fit, via the WebSettings
instance returned from calling the widget’s getSettings() method.

There are lots of options on WebSettings to play with. Most appear fairly esoteric (e.g.,
setFantasyFontFamily()). However, here are some that you may find more useful:

B Control the font sizing via setDefaultFontSize() (to use a point size)
or setTextZoom() (to use constants indicating relative sizes like LARGER
and SMALLEST)

B Control JavaScript via setJavaScriptEnabled() (to disable it outright)
and setJavaScriptCanOpenWindowsAutomatically() (to merely stop it
from opening pop-up windows)

B Control web site rendering via setUserAgent(), so you can supply your
own user agent string to make the web server think you are a desktop
browser, another mobile device (e.g., an iPhone), or whatever

176 CHAPTER 15: Embedding the WebKit Browser

B The settings you change are not persistent, so you should store them
somewhere (such as via the Android preferences engine) if you are
allowing your users to determine the settings, versus hard-wiring the
settings in your application.

Chapter

Applying Menus

Like applications for the desktop and some mobile operating systems, Android supports
activities with application menus. Most Android phones have a dedicated menu key for
popping up the menu; other devices offer alternate means for triggering the menu to
appeatr, such as the onscreen button used by the Archos 5 Android tablet.

Also, as with many GUI toolkits, you can create context menus for your Android
applications. On a traditional GUI, a context menu might be triggered by the user
clicking with the right-mouse button. On mobile devices, context menus typically appear
when the user taps and holds over a particular widget. For example, if a TextView has a
context menu, and the device is designed for finger-based touch input, you could push
the TextView with your finger, hold it for a second or two, and a pop-up menu would
appear.

Flavors of Menu

Android refers to the two types of menu described in the preceding section as options
menus and context menus. The options menu is triggered by pressing the hardware
Menu button on the device, while the context menu is raised by a tap-and-hold on the
widget sporting the menu.

In addition, the options menu operates in one of two modes: icon or expanded. When
the user first presses the Menu button, the icon mode will appear, showing up to the first
six menu choices as large, finger-friendly buttons in a grid at the bottom of the screen. If
the menu has more than six choices, the sixth button will be labeled More. Tapping the
More option will bring up the expanded mode, showing the remaining choices not visible
in the regular menu. The menu is scrollable, so the user can scroll to any of the menu
choices.

177

178

CHAPTER 16: Applying Menus

Menus of Options

Instead of building your activity’s options menu during onCreate(), the way you wire up
the rest of your Ul, you need to implement onCreateOptionsMenu(). This callback
receives an instance of Menu.

The first thing you should do is chain upward to the superclass
(super.onCreateOptionsMenu(menu)), so the Android framework can add in any menu
choices it feels are necessary. Then you can go about adding your own options, as
described in this section.

If you will need to adjust the menu during your activity’s use (e.g., disable a now-invalid
menu choice), just hold onto the Menu instance you receive in onCreateOptionsMenu().
Alternatively, you can implement onPrepareOptionsMenu(), which is called just before
displaying the menu each time it is requested.

Given that you have received a Menu object via onCreateOptionsMenu(), you add menu
choices by calling add(). There are many flavors of this method, which require some
combination of the following parameters:

B A group identifier (int), which should be NONE unless you are creating a
specific grouped set of menu choices for use with
setGroupCheckable() (described shortly)

B A choice identifier (also an int), for use in identifying this choice in the
onOptionsItemSelected() callback when a menu choice is chosen

B An order identifier (yet another int), for indicating where this menu
choice should be slotted if the menu has Android-supplied choices
alongside your own; for now, just use NONE

B The text of the menu choice, as a String or a resource ID

The add() family of methods all return an instance of MenuItem, where you can adjust
any of the menu item settings you have already set (e.g., the text of the menu choice).

You can also set the shortcuts for the menu choice, which are single-character
mnemonics that choose that menu item when the menu is visible. Android supports both
an alphabetic (or QWERTY) set of shortcuts and a numeric set of shortcuts. These are
set individually by calling setAlphabeticShortcut() and setNumericShortcut(),
respectively. The menu is placed into alphabetic shortcut mode by calling
setQwertyMode() on the menu with a true parameter.

The choice and group identifiers are keys used to unlock additional menu features, such
as the following:

B Calling MenuItem#tsetCheckable() with a choice identifier, to control if
the menu choice has a two-state check box alongside the title, where
the check box value is toggled when the user chooses that menu item

CHAPTER 16: Applying Menus

B Calling Menu#tsetGroupCheckable() with a group identifier, to turn a set
of menu choices into ones with a mutual-exclusion radio button
between them, so that only one item in the group can be in the
checked state at any time

You can create fly-out submenus by calling addSubMenu(), supplying the same
parameters as addMenu(). Android will eventually call onCreatePanelMenu(), passing it
the choice identifier of your submenu, along with another Menu instance representing the
submenu itself. As with onCreateOptionsMenu(), you should chain upward to the
superclass, and then add menu choices to the submenu. One limitation is that you
cannot indefinitely nest submenus—a menu can have a submenu, but a submenu
cannot have a sub-submenu.

Finally, you can even push your menu items up into the action bar, which makes your
options more discoverable by your users and, more importantly, better utilizes all the
available screen space on tablets and larger devices. We'll explore this capability in
more depth in Chapter 27 when we focus on the action bar itself.

If the user makes a menu choice, your activity will be notified via the
onOptionsItemSelected() callback that a menu choice was selected. You are given the
MenuItem object corresponding to the selected menu choice. A typical pattern is to
switch() onthe menu ID (item.getItemId()) and take appropriate behavior. Note that
onOptionsItemSelected() is used regardless of whether the chosen menu item was in
the base menu or a submenu.

Menus in Context

By and large, context menus use the same guts as options menus. The two main
differences are how you populate the menu and how you are informed of menu choices.

First, you need to indicate which widget or widgets on your activity have context menus.
To do this, call registerForContextMenu() from your activity, supplying the View that is
the widget needing a context menu.

Next, you need to implement onCreateContextMenu(), which, among other things, is
passed the View you supplied in registerForContextMenu(). You can use that to
determine which menu to build, assuming your activity has more than one.

The onCreateContextMenu() method gets the ContextMenu itself, the View the context
menu is associated with, and a ContextMenu.ContextMenuInfo, which tells you which
item in the list the user did the tap-and-hold over, in case you want to customize the
context menu based on that information. For example, you could toggle a checkable
menu choice based on the current state of the item.

It is also important to note that onCreateContextMenu() gets called each time the context
menu is requested. Unlike the options menu (which is built only once per activity),
context menus are discarded after they are used or dismissed. Hence, you do not want
to hold onto the supplied ContextMenu object; just rely on getting the chance to rebuild
the menu to suit your activity’s needs on an on-demand basis based on user actions.

179

180

CHAPTER 16: Applying Menus

To find out when a context menu choice was chosen, implement
onContextItemSelected() on the activity. Note that you get only the MenuItem instance
that was chosen in this callback. As a result, if your activity has two or more context
menus, you may want to ensure they have unique menu item identifiers for all their
choices, so you can distinguish between them in this callback. Also, you can call
getMenuInfo() on the MenuItem to get the ContextMenu.ContextMenuInfo you received in
onCreateContextMenu(). Otherwise, this callback behaves the same as
onOptionsItemSelected(), as described in the previous section.

Taking a Peek

In the sample project Menus/Menus, you will find an amended version of the ListView
sample (List) with associated menus. Since the menus do not affect the layout, the XML
layout file does not need to be changed and thus is not reprinted here. However, the
Java code has a few new behaviors:

package com.commonsware.android.menus;

import android.app.AlertDialog;
import android.app.ListActivity;
import android.content.DialogInterface;
import android.os.Bundle;

import android.view.ContextMenu;
import android.view.Menu;

import android.view.MenuItem;
import android.view.View;

import android.widget.AdapterView;
import android.widget.ArrayAdapter;
import android.widget.EditText;
import android.widget.ListView;
import android.widget.TextView;
import java.util.Arraylist;

public class MenuDemo extends ListActivity {

private static final String[] items={"lorem", "ipsum", "dolor",
"sit", "amet", "consectetuer", "adipiscing", "elit",
"morbi", "vel", "ligula", "vitae", "arcu", "aliquet",
"mollis", "etiam", "vel", "erat", "placerat", "ante",
"porttitor", "sodales", "pellentesque", "augue", "purus"};

public static final int MENU_ADD = Menu.FIRST+1;

public static final int MENU_RESET = Menu.FIRST+2;

public static final int MENU_CAP = Menu.FIRST+3;

public static final int MENU_REMOVE = Menu.FIRST+4 ;

private ArraylList<String> words=null;

@0verride
public void onCreate(Bundle icicle) {
super.onCreate(icicle);

initAdapter();
registerForContextMenu(getListView());

CHAPTER 16: Applying Menus 181

@0verride
public boolean onCreateOptionsMenu(Menu menu) {
menu
.add(Menu.NONE, MENU_ADD, Menu.NONE, "Add")
.setIcon(R.drawable.ic_menu_add);
menu
.add(Menu.NONE, MENU_RESET, Menu.NONE, "Reset")
.setIcon(R.drawable.ic_menu_refresh);

return(super.onCreateOptionsMenu(menu));

@0verride
public void onCreateContextMenu(ContextMenu menu, View v,
ContextMenu.ContextMenuInfo menulnfo) {
menu.add(Menu.NONE, MENU_CAP, Menu.NONE, "Capitalize");
menu.add(Menu.NONE, MENU_REMOVE, Menu.NONE, "Remove");
}

@0verride
public boolean onOptionsItemSelected(MenuItem item) {
switch (item.getItemId()) {
case MENU_ADD:
add();
return(true);

case MENU_RESET:
initAdapter();
return(true);

return(super.onOptionsItemSelected(item));

@0verride
public boolean onContextItemSelected(MenuItem item) {
AdapterView.AdapterContextMenuInfo info=
(AdapterView.AdapterContextMenuInfo)item.getMenuInfo();
ArrayAdapter<String> adapter=(ArrayAdapter<String>)getListAdapter();

switch (item.getItemId()) {
case MENU_CAP:
String word=words.get(info.position);

word=word.toUpperCase();

adapter.remove(words.get(info.position));
adapter.insert(word, info.position);

return(true);

case MENU_REMOVE:
adapter.remove(words.get(info.position));

return(true);

182 CHAPTER 16: Applying Menus

return(super.onContextItemSelected(item));

private void initAdapter() {
words=new ArraylList<String>();

for (String s : items) {
words.add(s);

setListAdapter(new ArrayAdapter<String>(this,
android.R.layout.simple list item 1, words));
}

private void add() {
final View addView=getLayoutInflater().inflate(R.layout.add, null);

new AlertDialog.Builder(this)
.setTitle("Add a Word")
.setView(addView)
.setPositiveButton("0K",
new DialogInterface.OnClickListener() {
public void onClick(DialogInterface dialog,
int whichButton) {
ArrayAdapter<String> adapter=(ArrayAdapter<String>)getListAdapter();
EditText title=(EditText)addView.findViewById(R.id.title);

adapter.add(title.getText().toString());

1)
.setNegativeButton("Cancel"”, null)
.show();
}
}

In onCreate(), we register our ListView widget as having a context menu. We also
delegate loading the adapter to an initAdapter() private method, one that copies the
data out of our static String array and pours it into an ArraylList, using the ArraylList
for the ArrayAdapter. The reason we do this is that we want to be able to change the
contents of the list on-the-fly, and that is much easier if we use an ArraylList rather than

an ordinary String array.

For the options menu, we override onCreateOptionsMenu() and add two menu items,
one to add a new word to the list and one to reset the words to their initial state. These
menu items have IDs defined locally as static data members (MENU_ADD and MENU_RESET),
and they also sport icons copied from the Android open source project. If the user

displays the menu, it looks as shown in Figure 16-1.

CHAPTER 16: Applying Menus 183

TN € 2:37em

amet

consectetuer

m™
0 [¥
Add Reset

Figure 16-1. The MenuDemo sample application and its options menu

We also override onOptionsItemSelected(), which will be called if the user makes a
choice from the menu. The supplied MenuItem has a getItemId() method that should
map to either MENU_ADD or MENU_RESET. In the case of MENU_ADD, we call a private add()
method that displays an AlertDialog with a custom View as its contents, inflated from
res/layout/add.xml:

<?xml version="1.0" encoding="utf-8"?>
<LinearLayout xmlns:android="http://schemas.android.com/apk/res/android"
android:orientation="horizontal"
android:layout_width="fill parent"
android:layout_height="wrap_content"
>
<TextView
android:text="Word:"
android:layout_width="wrap_content"
android:layout_height="wrap_content"
/>
<EditText
android:id="@+id/title"
android:layout width="fill parent"
android:layout_height="wrap_content"
android:layout_marginLeft="4dip"
/>
</LinearlLayout>

That produces a dialog box like the one shown in Figure 16-2.

184

CHAPTER 16: Applying Menus

% 2:38pm

@ Add a Word

Figure 16-2. The same application, showing the Add a Word dialog box

If the user taps the OK button, we get our ArrayAdapter and call add() on it, adding the
entered word to the end of the list.

If the user chooses MENU_RESET, we call initAdapter() again, setting up a new
ArrayAdapter and attaching it to our ListActivity.

For the context menu, we override onCreateContextMenu(). Once again, we define a pair
of menu items with local IDs, MENU_CAP (to capitalize the long-tapped-upon word) and
MENU_REMOVE (to remove the word). Since context menus have no icons, we can skip that
part. That gives the user the context menu shown in Figure 16-3 if they long-tap on a
word.

CHAPTER 16: Applying Menus

TNl € 2:39em

Capitalize

Remove

Figure 16-3. The same application, showing the context menu

We also override onContextMenuSelected(). Since this is a context menu for a ListView,
our MenuItem has some extra information for us —specifically, which item was long-
tapped upon in the list. To do that, we call getMenuInfo() on the MenuItem and cast the
result to be an AdapterView.AdapterContextMenuInfo. That object, in turn, has a position
data member, which is the index into our array of the word the user chose. From there,
we work with our ArrayAdapter to capitalize or remove the word, as requested.

Yet More Inflation

Chapter 13 explained how you can describe Views via XML files and “inflate” them into
actual View objects at runtime. Android also allows you to describe menus via XML files
and inflate them when a menu is needed. This helps you keep your menu structure
separate from the implementation of menu-handling logic, and it provides easier ways to
develop menu-authoring tools.

Menu XML Structure

Menu XML goes in res/menu/ in your project tree, alongside the other types of resources
that your project might employ. As with layouts, you can have several menu XML files in
your project, each with its own filename and the .xml extension.

185

186

CHAPTER 16: Applying Menus

For example, from the Menus/Inflation sample project, here is a menu called
option.xml:

<?xml version="1.0" encoding="utf-8"?>
<menu xmlns:android="http://schemas.android.com/apk/res/android">
<item android:id="@+id/add"
android:title="Add"
android:icon="@drawable/ic_menu_add" />
<item android:id="@+id/reset"”
android:title="Reset"
android:icon="@drawable/ic_menu_refresh" />
</menu>

Note the following:
B You must start with a menu root element.

B [nside a menu element are item elements and group elements, the latter
representing a collection of menu items that can be operated upon as
a group.

B Submenus are specified by adding a menu element as a child of an
item element, using this new menu element to describe the contents of
the submenu.

B If you want to detect when an item is chosen, or to reference an item
or group from your Java code, be sure to apply an android:id, just as
you do with View layout XML.

Menu Options and XML

Inside the item and group elements, you can specify various options, matching up with
corresponding methods on Menu or MenuItem, as follows:

B Title: The title of a menu item is provided via the android:title attribute on
an item element. This can be either a literal string or a reference to a string
resource (e.g., @string/foo).

B /con: Menu items optionally have icons. To provide an icon, in the form of a
reference to a drawable resource (e.g., @drawable/eject), use the
android:icon attribute on the item element.

B Order: By default, the order of the items in the menu is determined by the
order in which they appear in the menu XML. You can change that order by
specifying the android:orderInCategory attribute on the item element. This
is a 0-based index of the order for the items associated with the current
category. There is an implicit default category; groups can provide an
android:menuCategory attribute to specify a different category to use for
items in that group. Generally, though, it is simplest just to put the items in
the XML in the order in which you want them to appear.

CHAPTER 16: Applying Menus 187

B Enabled: Items and groups can be enabled or disabled, controlled in the XML
via the android:enabled attribute on the item or group element. By default,
items and groups are enabled. Disabled items and groups appear in the
menu but cannot be selected. You can change an item’s status at runtime via
the setEnabled() method on MenuItem, or change a group’s status via
setGroupEnabled() on Menu.

B Visible: Iltems and groups can be visible or invisible, controlled in the XML via
the android:visible attribute on the item or group element. By default, items
and groups are visible. Invisible items and groups do not appear in the menu.
You can change an item’s status at runtime via the setVisible() method on
MenuItem, or change a group’s status via setGroupVisible() on Menu.

B Shortcut: Items can have shortcuts—single letters
(android:alphabeticShortcut) or numbers (android:numericShortcut) that
can be pressed to choose the item without having to use the touchscreen, D-
pad, or trackball to navigate the full menu.

Inflating the Menu

Actually using the menu, once it’s defined in XML, is easy. Just create a MenuInflater
and tell it to inflate your menu.

The Menus/Inflation project is a clone of the Menus/Menus project, with the menu
creation converted to use menu XML resources and MenuInflater. The options menu
was converted to the XML shown previously in this section; here is the context menu:

<?xml version="1.0" encoding="utf-8"?>
<menu xmlns:android="http://schemas.android.com/apk/res/android">
<item android:id="@+id/cap"
android:title="Capitalize" />
<item android:id="@+id/remove"
android:title="Remove" />
</menu>

The Java code is nearly identical, changing mostly in the implementation of
onCreateOptionsMenu() and onCreateContextMenu():

@0verride
public boolean onCreateOptionsMenu(Menu menu) {
new MenuInflater(this).inflate(R.menu.option, menu);

return(super.onCreateOptionsMenu(menu));

@0verride
public void onCreateContextMenu(ContextMenu menu, View v,
ContextMenu.ContextMenuInfo menuInfo) {
new MenuInflater(this).inflate(R.menu.context, menu);

}

Here, we see how MenuInflater “pours” the menu items specified in the menu resource
(e.g., R.menu.option) into the supplied Menu or ContextMenu object.

188 CHAPTER 16: Applying Menus

We also need to change onOptionsItemSelected() and onContextItemSelected() to use
the android:id values specified in the XML.:

@0verride
public boolean onOptionsItemSelected(MenuItem item) {
switch (item.getItemId()) {
case R.id.add:
add();
return(true);

case R.id.reset:
initAdapter();
return(true);

return(super.onOptionsItemSelected(item));

@0verride
public boolean onContextItemSelected(MenuItem item) {
AdapterView.AdapterContextMenuInfo info=
(AdapterView.AdapterContextMenuInfo)item.getMenuInfo();
ArrayAdapter<String> adapter=(ArrayAdapter<String>)getListAdapter();

switch (item.getItemId()) {
case R.id.cap:
String word=words.get(info.position);

word=word.toUpperCase();

adapter.remove(words.get(info.position));
adapter.insert(word, info.position);

return(true);

case R.id.remove:
adapter.remove(words.get(info.position));

return(true);

return(super.onContextItemSelected(item));

When Giant Menus Walk the Earth

With Android 3.x and 4.0, new ways of dealing with tablets and large displays have been
introduced and folded into the core of the platform. Options menus in particular change
from being something triggered by a Menu button to a drop-down menu from the action
bar. Fortunately, this is backward-compatible, so your existing menus will not need to
change to adopt this new look. We'll cover the overall implications of using larger
devices in Chapter 26, and the action bar itself is covered in Chapter 27.

Chapter

Showing Pop-Up
Messages

Sometimes, your activity (or other piece of Android code) will need to speak up.

Not every interaction with Android users will be tidy and containable in fragments or
activities composed of views. Errors will crop up. Background tasks may take much
longer than expected. Something asynchronous may occur, such as an incoming
message. In these and other cases, you may need to communicate with the user outside
the bounds of the traditional user interface.

Of course, this is nothing new. Error messages in the form of dialog boxes have been
around for a long time. More subtle indicators also exist, from task tray icons to
bouncing dock icons to vibrating cell phones.

Android has quite a few systems for letting you alert your users outside the bounds of an
Activity-based Ul. One, notifications, is tied heavily into intents and services and, as
such, is covered Chapter 37. In this chapter, you will learn about two means of raising
pop-up messages: toasts and alerts.

Raising Toasts

A Toast is a transient message, meaning that it displays and disappears on its own
without user interaction. Moreover, it does not take focus away from the currently active
Activity, so if the user is busy writing the next Great Programming Guide, keystrokes
will not be “eaten” by the message.

Since a Toast is transient, you have no way of knowing if the user even notices it. You
get no acknowledgment from the user, nor does the message stick around for a long
time to pester the user. Hence, the Toast is mostly for advisory messages, such as
indicating a long-running background task is completed, the battery has dropped to a
low level, and so on.

190

CHAPTER 17: Showing Pop-Up Messages

Making a Toast is fairly easy. The Toast class offers a static makeText() method that
accepts a String (or string resource ID) and returns a Toast instance. The makeText ()
method also needs the Activity (or other Context) plus a duration. The duration is
expressed in the form of the LENGTH_SHORT constant or LENGTH_LONG constant to indicate,
on a relative basis, how long the message should remain visible.

If you would prefer your Toast be made out of some other View, rather than be a boring
old piece of text, simply create a new Toast instance via the constructor (which takes a
Context), and then call setView() to supply it with the view to use and setDuration() to
set the duration.

Once your Toast is configured, call its show() method, and the message will be
displayed. You will see an example of this in action later in this chapter.

Alert! Alert!

If you would prefer something in the more classic dialog box style, what you want is an
AlertDialog. As with any other modal dialog box, an AlertDialog pops up, grabs the
focus, and stays there until closed by the user. You might use this for a critical error, a
validation message that cannot be effectively displayed in the base activity Ul, or some
other situation where you are sure that the user needs to see the message immediately.

The simplest way to construct an AlertDialog is to use the Builder class. Following in
true builder style, Builder offers a series of methods to configure an AlertDialog, each
method returning the Builder for easy chaining. At the end, you call show() on the
builder to display the dialog box.

Commonly used configuration methods on Builder include the following:

B setMessage(): Sets the “body” of the dialog box to be a simple textual
message, from either a supplied String or a supplied string resource 1D

B setTitle() and setIcon(): Configure the text and/or icon to appear in
the title bar of the dialog box

B setPositiveButton() and setNegativeButton(): Indicate which button(s)
should appear across the bottom of the dialog box, where they should
be positioned (left, center, or right, respectively), what their captions
should be, and what logic should be invoked when the button is clicked
(besides dismissing the dialog box).

If you need to configure the AlertDialog beyond what the builder allows, instead of
calling show(), call create() to get the partially built AlertDialog instance, configure it
the rest of the way, and then call one of the flavors of show() on the AlertDialog itself.
Once show() is called, the dialog box will appear and await user input.

Note that pressing any of the buttons will close the dialog box, even if you have registered
a listener for the button in question. Hence, if all you need a button to do is close the
dialog box, give it a caption and a null listener. There is no option, with AlertDialog, to
have a button at the bottom invoke a listener yet not close the dialog box.

CHAPTER 17: Showing Pop-Up Messages

Checking Them Qut

To see how these work in practice, take a peek at Messages/Message, containing the
following layout:

<?xml version="1.0" encoding="utf-8"?>

<Button xmlns:android="http://schemas.android.com/apk/res/android"
android:id="@+id/alert"
android:text="Raise an alert"
android:layout width="fill parent"
android:layout_height="fill parent"
android:onClick="showAlert"

/>

The following is the Java code:

public void onCreate(Bundle icicle) {
super.onCreate(icicle);

setContentView(R.layout.main);

}

public void showAlert(View view) {
new AlertDialog.Builder(this)
.setTitle("MessageDemo")
.setMessage("Let's raise a toast!")
.setNeutralButton("Here, here!", new DialogInterface.OnClickListener() {
public void onClick(DialogInterface dlg, int sumthin) {
Toast
.makeText(MessageDemo.this, "<clink, clink>",
Toast.LENGTH_SHORT)
.show();

}
b))
.show();

}

The layout is unremarkable—just a really large Button to show the AlertDialog.
However, Ice Cream Sandwich adds two new options to the AlertDialog(context, int)
form of invocation. These options support device-wide “light” and “dark” backgrounds
for alerts via the THEME_DEVICE _DEFAULT LIGHT and THEME DEVICE DEFAULT DARK values.
These options aid in promoting the notion of seamless experience across the whole
Android device.

When you click the Button, we use a builder (new Builder(this)) to set the title
(setTitle("MessageDemo")), message (setMessage("Let's raise a toast!")), and
neutral button (setNeutralButton("Here, here!", new OnClickListener() ...) before
showing the dialog box. When the button is clicked, the OnClickListener callback
triggers the Toast class to make us a text-based toast (makeText(this, "<clink,
clink>", LENGTH_SHORT)), which we then show(). The result is a typical dialog box, as
shown in Figure 17-1.

191

192 CHAPTER 17: Showing Pop-Up Messages

€ o:57am

(® MessageDemo

Let's raise a toast!

Here, here!

Figure 17-1. The MessageDemo sample application, after clicking the Raise an alert button

When you close the dialog box via the button, it raises the toast, as shown in Figure 17-2.

& o:57am

MessageDemo

Raise an alert

<clink, clink>

Figure 17-2. The same application, after clicking the Make a toast button

Chapter

Handling Activity
Lifecycle Events

As you know, Android devices, by and large, are phones. As such, some activities are
more important than others—taking a call is probably more important to users than
playing Sudoku. And, since it is a phone, it probably has less RAM than your current
desktop or notebook.

As a result of the phone’s limited RAM, your activity may find itself being killed off
because other activities are going on and the system needs your activity’s memory.
Think of it as the Android equivalent of the circle of life—your activity dies so others may
live, and so on. You cannot assume that your activity will run until you think it is
complete, or even until the user thinks it is complete. This is one example, perhaps the
most important, of how an activity’s life cycle will affect your own application logic.

This chapter covers the various states and callbacks that make up an activity’s life cycle,
and how you can hook into them appropriately.

Schrodinger’s Activity
An activity, generally speaking, is in one of four states at any point in time:

B Active: The activity was started by the user, is running, and is in the
foreground. This is what you are used to thinking of in terms of your
activity’s operation.

B Paused: The activity was started by the user, is running, and is visible,
but a notification or something is overlaying part of the screen. During
this time, the user can see your activity but may not be able to interact
with it. Examples include the user being prompted to accept an
incoming call, or being warned of a battery low or critically low state.

193

194

CHAPTER 18: Handling Activity Lifecycle Events

B Stopped: The activity was started by the user, is running, but is hidden
by other activities that have been launched or switched to. Your
application will not be able to present anything meaningful to the user
directly, but may communicate by way of a Notification.

B Dead: Either the activity was never started (e.g., just after a phone
reset) or the activity was terminated, perhaps due to lack of available
memory.

Life, Death, and Your Activity

Android uses the methods described in this section to call into your activity as the
activity transitions between the four states listed in the previous section. Some
transitions may result in multiple calls to your activity, and sometimes Android will kill
your application without calling it. This whole area is rather murky and probably subject
to change, so pay close attention to the official Android documentation as well as this
section when deciding which events deserve attention and which you can safely ignore.

Note that for all of these methods, you should chain upward and invoke the superclass’s
edition of the method, or Android may raise an exception.

onCreate() and onDestroy()

We have been implementing onCreate() in all of our Activity subclasses in all the
examples. This method will be called in three situations:

B When the activity is first started (e.g., since a system restart),
onCreate() will be invoked with a null parameter.

B If the activity had been running, then sometime later was killed off,
onCreate() will be invoked with the Bundle from
onSavelnstanceState() as a parameter (as described in the next
section).

B If the activity had been running and you have set up your activity to
have different resources based on different device states (e.g.,
landscape versus portrait), your activity will be re-created and
onCreate() will be called. Working with resources is covered in
Chapter 23.

Here is where you initialize your Ul and set up anything that needs to be done once,
regardless of how the activity is used.

On the other end of the life cycle, onDestroy() may be called when the activity is
shutting down, either because the activity called finish() (which “finishes” the activity)
or because Android needs RAM and is closing the activity prematurely. Note that
onDestroy() may not be called if the need for RAM is urgent (e.g., an incoming phone
call), but the activity will still be shut down. Hence, onDestroy() is mostly for cleanly
releasing resources you obtained in onCreate() (if any).

CHAPTER 18: Handling Activity Lifecycle Events

Take care when dealing with an activity that includes a view populated with an adapter
from a database such as SQLite. It’s prudent to call close() on your database and/or
adapter objects, but also remember that you can’t rely on these being called in
onDestroy() if your shutdown is of the abrupt kind. We’ll discuss this further in Chapter
32.

onStart(), onRestart(), and onStop()

An activity can come to the foreground either because it is first being launched or
because it is being brought back to the foreground after having been hidden (e.g., by
another activity or by an incoming phone call). The onStart() method is called in either
of those cases.

The onRestart() method is called in the case where the activity had been stopped and
is now restarting.

Conversely, onStop() is called when the activity is about to be stopped.

onPause() and onResume()

The onResume() method is called just before your activity comes to the foreground,
either after being initially launched, after being restarted from a stopped state, or after a
pop-up dialog box (e.g., an incoming call) is cleared. This is a great place to refresh the
Ul based on things that may have occurred since the user was last looking at your
activity. For example, if you are polling a service for changes to some information (e.g.,
new entries for a feed), onResume() is a fine time to both refresh the current view and, if
applicable, kick off a background thread to update the view (e.g., via a Handlexr).

Conversely, anything that steals your user away from your activity —typically, the
activation of another activity—will result in your onPause() method being called. Here,
you should undo anything you did in onResume(), such as stopping background threads,
releasing any exclusive-access resources you may have acquired (e.g., camera), and the
like.

Once onPause() is called, Android reserves the right to kill off your activity’s process at
any point. Hence, you should not be relying on receiving any further events.

The Grace of State

Mostly, the aforementioned methods are for dealing with things at the application-
general level (e.g., wiring together the last pieces of your Ul in onCreate() or closing
down background threads in onPause()).

However, a large part of the goal of Android is to have a patina of seamlessness.
Activities may come and go as dictated by memory requirements, but ideally, users are
unaware that this is going on. If, for example, a user was using a calculator, took a lunch
break, and returned to that calculator, he should see whatever number he was working

195

196

CHAPTER 18: Handling Activity Lifecycle Events

on before the break, unless he took some action to close down the calculator (e.g.,
pressed the Back button to exit it).

To make all this work, activities need to be able to save their application-instance state,
and to do so quickly and cheaply. Since activities could be killed off at any time,
activities may need to save their state more frequently than you might expect. Then,
when the activity restarts, the activity should get its former state back, so it can restore
the activity to the way it appeared previously. Think of it as establishing a bookmark,
such that when the user returns to that bookmark, you can restore the application to the
same state that it was in when the user left it.

Saving instance state is handled by onSaveInstanceState(). This supplies a Bundle, into
which activities can pour whatever data they need (e.g., the number showing on the
calculator’s display). This method implementation needs to be speedy, so do not try to
be fancy—just put your data in the Bundle and exit the method.

That instance state is provided to you again in two places: in onCreate() and in
onRestoreInstanceState(). It is your choice when you wish to reapply the state data to
your activity —either callback is a reasonable option.

The built-in implementation of onSaveInstanceState() will save likely mutable state from
a subset of widgets. For example, it will save the text in an EditText, but it will not save
the status of whether a Button is enabled or disabled. This works as long as the widgets
are uniquely identified via their android:id attributes.

Hence, if you implement onSaveInstanceState(), you can either chain upward and
leverage the inherited implementation or not chain upward and override the inherited
implementation. Similarly, some activities may not need onSaveInstanceState() to be
implemented at all, as the built-in one handles everything that is needed.

Chapter

Handling Rotation

Some Android devices offer a slide-out keyboard that triggers rotating the screen from
portrait to landscape orientation. Other devices use accelerometers to determine when
the screen rotates. As a result, it is reasonable to assume that switching from portrait to
landscape orientation and back again may be something that users of your application
will want to do.

As this chapter describes, Android has a number of ways for you to handle screen
rotation so that your application can properly handle either orientation. Keep in mind,
though, that these facilities only help you to detect and manage the rotation process—
you still must make sure your layouts and fragments look decent in each orientation.

A Philosophy of Destruction

By default, when there is a change in the device configuration that might affect resource
selection, Android will destroy and re-create any running or paused activities the next
time they are to be viewed. This could happen for a variety of different configuration
changes, including these:

B Rotating the screen (i.e., orientation change)

B Extending or hiding a physical keyboard on devices that have a sliding
keyboard

B Putting the device in a car or desk dock, or removing it from a dock
B Changing the locale, and thereby changing the preferred language

Screen rotation is the change most likely to trip you up, since a change in orientation
can cause your application to load a different set of resources (e.g., layouts).

The key here is that Android’s default behavior of destroying and re-creating any running
or paused activities is probably the behavior that is best for most of your activities. You
do have some control over the matter, though, and can tailor how your activities
respond to orientation changes or similar configuration switches.

197

198

CHAPTER 19: Handling Rotation

It’s All the Same, Just Different

Since, by default, Android destroys and re-creates your activity on a rotation, you may
only need to hook into the same onSaveInstanceState() that you would if your activity
were destroyed for any other reason (e.g., low memory or other reasons we discussed in
chapter 18). Implement that method in your activity and fill in the supplied Bundle with
enough information to get you back to your current state. Then, in onCreate() (or
onRestoreInstanceState(), if you prefer), pick the data out of the Bundle and use it to
restore your activity to the way it was.

To demonstrate this, let’s take a look at the Rotation/RotationOne project. This and the
other sample projects in this chapter use a pair of main.xml layouts, one in res/layout/
for use in portrait mode and one in res/layout-1land/ for use in landscape mode. Here is
the portrait layout:

<?xml version="1.0" encoding="utf-8"?>
<LinearLayout xmlns:android="http://schemas.android.com/apk/res/android"
android:orientation="vertical"
android:layout width="fill parent"
android:layout_height="fill parent"
>
<Button android:id="@+id/pick"
android:layout_width="fill parent"
android:layout_height="fill parent"
android:layout_weight="1"
android:text="Pick"
android:enabled="true"
android:onClick="pickContact"
/>
<Button android:id="@+id/view"
android:layout_width="fill_parent"
android:layout_height="fill parent"
android:layout_weight="1"
android:text="View"
android:enabled="false"
android:onClick="viewContact"
/>
</Linearlayout>

Here is the similar landscape layout:

<?xml version="1.0" encoding="utf-8"?>
<LinearLayout xmlns:android="http://schemas.android.com/apk/res/android"
android:orientation="horizontal"
android:layout width="fill parent"
android:layout_height="fill parent"
>
<Button android:id="@+id/pick"
android:layout_width="fill parent"
android:layout_height="fill parent"
android:layout_weight="1"
android:text="Pick"
android:enabled="true"
android:onClick="pickContact"

CHAPTER 19: Handling Rotation

/>

<Button android:id="@+id/view"
android:layout_width="fill parent"
android:layout_height="fill parent"
android:layout_weight="1"
android:text="View"
android:enabled="false"
android:onClick="viewContact"

/>

</LinearlLayout>

Basically, both layouts contain a pair of buttons, each taking up half the screen. In
portrait mode, the buttons are stacked; in landscape mode, they are side by side.

If you were to simply create a project, put in those two layouts, and compile it, the
application would appear to work just fine—a rotation (Ctrl+F12 in the emulator) will
cause the layout to change. And while buttons lack state, if you were using other
widgets (e.g., EditText), you would even find that Android hangs onto some of the
widget state for you (e.g., the text entered in the EditText).

What Android cannot help you with automatically is anything held outside the widgets.

Picking and Viewing a Contact

This application lets users pick a contact and then view the contact, via separate
buttons. The View button is enabled only after the user picks a contact via the Pick
button. Let’s take a closer look at how this feat is accomplished.

When the user clicks the Pick button, we call startActivityForResult(). Thisis a
variation on startActivity(), designed for activities that are set up to return some sort
of result—a user’s choice of file, contact, or whatever. Relatively few activities are set up
this way, so you cannot expect to call startActivityForResult() and get answers from
any activity you choose.

In this case, we want to pick a contact. There is an ACTION_PICK Intent action available
in Android that is designed for this sort of scenario. An ACTION_PICK Intent indicates to
Android that we want to pick...something. That “something” is determined by the Uri we
put in the Intent.

In our case, it turns out that we can use an ACTION_PICK Intent for certain system-
defined Uri values to let the user pick a contact from the device’s list of contacts. In
particular, on Android 2.0 and higher, we can use
android.provider.ContactsContract.Contacts.CONTENT URI for this purpose:

public void pickContact(View v) {
Intent i=new Intent(Intent.ACTION PICK,
Contacts.CONTENT_URI);

startActivityForResult(i, PICK_REQUEST);
}

For Android 1.6 and earlier, there is a separate android.provider.Contacts.CONTENT URI
that we could use.

199

200

CHAPTER 19: Handling Rotation

The second parameter to startActivityForResult() is an identifying number, to help us
distinguish this call to startActivityForResult() from any others we might make.
Calling startActivityForResult() with an ACTION_PICK Intent for the
Contacts.CONTENT_URI will bring up a contact-picker activity, supplied by Android.

When the user taps a contact, the picker activity ends (e.g., via finish()), and control
returns to our activity. At that point, our activity is called with onActivityResult().
Android supplies us with three pieces of information:

B The identifying number we supplied to startActivityForResult(), so
we can match this result to its original request

B Aresult status, either RESULT_OK or RESULT_CANCELED, to indicate
whether the user made a positive selection or abandoned the picker
(e.g., by pressing the Back button)

B An Intent that represents the result data itself, for a RESULT_OK
response

The details of what is in the Intent will need to be documented by the activity that you
called. In the case of an ACTION_PICK Intent for the Contacts.CONTENT URI, the returned
Intent has its own Uri (via getData()) that represents the chosen contact. In the
RotationOne example, we stick that in a data member of the activity and enable the View
button:

@0verride
protected void onActivityResult(int requestCode, int resultCode,
Intent data) {
if (requestCode==PICK_REQUEST) {
if (resultCode==RESULT OK) {
contact=data.getData();
viewButton.setEnabled(true);

}
}
}

If the user clicks the now-enabled View button, we create an ACTION_VIEW Intent on the
contact’s Uri, and call startActivity() on that Intent:

public void viewContact(View v) {
startActivity(new Intent(Intent.ACTION VIEW, contact));
}

This will bring up an Android-supplied activity to view details of that contact.

Saving Your State

Given that we have used startActivityForResult() to pick a contact, now we need to
hang onto that contact when the screen orientation changes. In the RotationOne
example, we do this via onSaveInstanceState():

package com.commonsware.android.rotation.one;

import android.app.Activity;

CHAPTER 19: Handling Rotation

import
import
import
import
import
import
import

android.
android.
android.
android.
android.
android.
android.

content.Intent;

net.Uri;

0s.Bundle;
provider.ContactsContract.Contacts;
view.View;

widget.Button;

util.Llog;

public class RotationOneDemo extends Activity {
static final int PICK_REQUEST=1337;
Button viewButton=null;
Uri contact=null;

@0verride

public void onCreate(Bundle savedInstanceState) {
super.onCreate(savedInstanceState);
setContentView(R.layout.main);

viewButton=(Button)findViewById(R.id.view);
restoreMe(savedInstanceState);

viewButton.setEnabled(contact!=null);

}

@0verride
protected void onActivityResult(int requestCode, int resultCode,

Intent data) {

if (requestCode==PICK_REQUEST) {

}
}

if (resultCode==RESULT_OK) {

contact=data.getData();
viewButton.setEnabled(true);

public void pickContact(View v) {
Intent i=new Intent(Intent.ACTION PICK,

Contacts.CONTENT URI);

startActivityForResult(i, PICK REQUEST);

}

public void viewContact(View v) {
startActivity(new Intent(Intent.ACTION_VIEW, contact));

@0verride
protected void onSaveInstanceState(Bundle outState) {
super.onSaveInstanceState(outState);

if (contact!=null) {

}
}

outState.putString("contact"”, contact.toString());

private void restoreMe(Bundle state) {

201

202

CHAPTER 19: Handling Rotation

contact=null;

if (state!=null) {
String contactUri=state.getString("contact");

if (contactUri!=null) {
contact=Uri.parse(contactUri);

}
}
}
}

By and large, it looks like a normal activity...because it is. Initially, the “model”—a Uri
named contact—is null. It is set as the result of spawning the ACTION_PICK subactivity.
Its string representation is saved in onSaveInstanceState() and restored in restoreMe()
(called from onCreate()). If the contact is not null, the View button is enabled and can
be used to view the chosen contact.

Visually, it looks pretty much as you would expect, as shown in Figures 19-1 and 19-2.

B RNl e 7:48 AM

RotationOne Demo

Pick

Figure 19-1. The RotationOne application, in portrait mode

CHAPTER 19: Handling Rotation

Ml @ 7:48 Am

RotationOne Demo

Pick View

Figure 19-2. The RotationOne application, in landscape mode

The benefit to this implementation is that it handles a number of system events beyond
mere rotation, such as being closed by Android due to low memory.

For fun, comment out the restoreMe() call in onCreate() and try running the application.
You will see that the application “forgets” a contact selected in one orientation when you
rotate the emulator or device.

Now with More Savings!

The problem with onSaveInstanceState() is that you are limited to a Bundle. That’s
because this callback is also used in cases where your whole process might be
terminated (e.g., low memory), so the data to be saved must be something that can be
serialized and has no dependencies on your running process.

For some activities, that limitation is not a problem. For others, it is more annoying. Take
an online chat, for example. You have no means of storing a socket in a Bundle, so by
default, you have to drop your connection to the chat server and reestablish it. That not
only may be a performance hit, but it might also affect the chat itself, such as showing in
the chat logs that you are disconnecting and reconnecting.

One way to get past this is to use onRetainNonConfigurationInstance() instead of
onSaveInstanceState() for “light” changes like a rotation. Your activity’s
onRetainNonConfigurationInstance() callback can return an Object, which you can
retrieve later via getLastNonConfigurationInstance(). The Object can be just about
anything you want. Typically, it will be some kind of “context” object holding activity
state, such as running threads, open sockets, and the like. Your activity’s onCreate()
can call getLastNonConfigurationInstance(), and if you get a non-null response, you
now have your sockets and threads and whatnot. The biggest limitation is that you do
not want to put in the saved context anything that might reference a resource that will
get swapped out, such as a Drawable loaded from a resource.

203

204 CHAPTER 19: Handling Rotation

Let’s take a look at the Rotation/RotationTwo sample project, which uses this approach
to handling rotations. The layouts, and hence the visual appearance, are the same as
with Rotation/RotationOne. Where things differ slightly is in the Java code:

package com.commonsware.android.rotation.two;

import android.app.Activity;

import android.content.Intent;

import android.net.Uri;

import android.os.Bundle;

import android.provider.ContactsContract.Contacts;
import android.view.View;

import android.widget.Button;

import android.util.log;

public class RotationTwoDemo extends Activity {
static final int PICK_REQUEST=1337;
Button viewButton=null;
Uri contact=null;

@0verride

public void onCreate(Bundle savedInstanceState) {
super.onCreate(savedInstanceState);
setContentView(R.layout.main);

viewButton=(Button)findViewById(R.id.view);
restoreMe();

viewButton.setEnabled(contact!=null);

}

@0verride
protected void onActivityResult(int requestCode, int resultCode,
Intent data) {
if (requestCode==PICK_REQUEST) {
if (resultCode==RESULT OK) {
contact=data.getData();
viewButton.setEnabled(true);
}
}
}

public void pickContact(View v) {
Intent i=new Intent(Intent.ACTION PICK,
Contacts.CONTENT _URI);

startActivityForResult(i, PICK REQUEST);
}

public void viewContact(View v) {
startActivity(new Intent(Intent.ACTION_VIEW, contact));
}

@0verride
public Object onRetainNonConfigurationInstance() {
return(contact);

CHAPTER 19: Handling Rotation 205

}

private void restoreMe() {
contact=null;

if (getLastNonConfigurationInstance()!=null) {
contact=(Uri)getLastNonConfigurationInstance();

}
}

In this case, we override onRetainNonConfigurationInstance(), returning the actual Uri
for our contact, rather than a string representation of it. In turn, restoreMe() calls
getlastNonConfigurationInstance(), and if it is not null, we hold onto it as our contact
and enable the View button.

The advantage here is that we are passing around the Uri rather than a string
representation. In this case, that is not a big saving. But our state could be much more
complicated, including threads, sockets, and other things we cannot pack into a Bundle.

However, even the onRetainNonConfigurationInstance() approach to handling
rotations may be too intrusive to your application. Suppose, for example, you are
creating a real-time game, such as a first-person shooter. The “hiccup” your users
experience as your activity is destroyed and re-created might be enough to get them
shot, which they may not appreciate. While this would be less of an issue on the T-
Mobile G1, since a rotation requires sliding open the keyboard and therefore is unlikely
to be done mid-game, other devices might rotate based solely on the device’s position
as determined by accelerometers. For applications such as this, there is a third
possibility for handling rotations, which is to tell Android that you will handle them
yourself, without any assistance from the framework.

DIY Rotation

To handle rotations without Android’s assistance, do the following:

1. Put an android:configChanges entry in your AndroidManifest.xml file,
listing the configuration changes you want to handle yourself versus
allowing Android to handle them for you.

2. Implement onConfigurationChanged() in your Activity, which will be
called when one of the configuration changes you listed in
android:configChanges occurs.

Now, for any configuration change you want, you can bypass the whole activity-
destruction process and simply get a callback letting you know of the change.

To see this in action, turn to the Rotation/RotationThree sample application. Once
again, our layouts are the same, so the application looks the same as the preceding two
samples. However, the Java code is significantly different, because we are no longer
concerned with saving our state, but rather with updating our Ul to deal with the layout.

206

CHAPTER 19: Handling Rotation

But first, we need to make a small change to our manifest:

<?xml version="1.0" encoding="utf-8"?>
<manifest xmlns:android="http://schemas.android.com/apk/res/android"«
package="com.commonsware.android.rotation.three" android:versionCode="1"+«
android:versionName="1.0.0">
<uses-sdk android:minSdkVersion="5" android:targetSdkVersion="6"/>
<application android:label="@string/app_name" android:icon="@drawable/cw">
<activity android:name=".RotationThreeDemo" android:label="@string/app_name"«
android:configChanges="keyboardHidden|orientation">
<intent-filter>
<action android:name="android.intent.action.MAIN"/>
<category android:name="android.intent.category.LAUNCHER"/>
</intent-filter>
</activity>
</application>
<supports-screens android:largeScreens="true" android:normalScreens="true"«
android:smallScreens="true" android:anyDensity="true"/>
</manifest>

Here, we state that we will handle keyboardHidden and orientation configuration
changes ourselves. This covers us for any cause of the rotation, whether it is a sliding
keyboard or a physical rotation. Note that this is set on the activity, not the application. If
you have several activities, you will need to decide for each which of the tactics outlined
in this chapter you wish to use.

In addition, we need to add an android:id to our LinearLayout containers, such as
follows:

<?xml version="1.0" encoding="utf-8"?>
<LinearLayout xmlns:android="http://schemas.android.com/apk/res/android"
android:id="@+id/container"
android:orientation="vertical"
android:layout width="fill parent"
android:layout_height="fill parent"
>
<Button android:id="@+id/pick"
android:layout_width="fill parent"
android:layout_height="fill parent"
android:layout_weight="1"
android:text="Pick"
android:enabled="true"
android:onClick="pickContact"
/>
<Button android:id="@+id/view"
android:layout_width="fill parent"
android:layout_height="fill parent"
android:layout_weight="1"
android:text="View"
android:enabled="false"
android:onClick="viewContact"
/>
</Linearlayout>

The Java code for this project is shown here:

package com.commonsware.android.rotation.three;

CHAPTER 19: Handling Rotation

import
import
import
import
import
import
import
import
import

public

android.app.Activity;
android.content.Intent;
android.content.res.Configuration;
android.net.Uri;

android.os.Bundle;
android.provider.ContactsContract.Contacts;
android.view.View;

android.widget.Button;
android.widget.Linearlayout;

class RotationThreeDemo extends Activity {

static final int PICK_REQUEST=1337;
Button viewButton=null;
Uri contact=null;

@0verride
public void onCreate(Bundle savedInstanceState) {
super.onCreate(savedInstanceState);

setContentView(R.layout.main);
viewButton=(Button)findViewById(R.id.view);
viewButton.setEnabled(contact!=null);

}

@0verride
protected void onActivityResult(int requestCode, int resultCode,

if

}
}

Intent data) {
(requestCode==PICK_REQUEST) {

if (resultCode==RESULT OK) {

contact=data.getData();
viewButton.setEnabled(true);

public void pickContact(View v) {
Intent i=new Intent(Intent.ACTION PICK,

Contacts.CONTENT URI);

startActivityForResult(i, PICK REQUEST);

}

public void viewContact(View v) {
startActivity(new Intent(Intent.ACTION VIEW, contact));

}

public void onConfigurationChanged(Configuration newConfig) {
super.onConfigurationChanged(newConfig);

LinearLayout container=(LinearLayout)findViewById(R.id.container);

if (newConfig.orientation==Configuration.ORIENTATION LANDSCAPE) {
container.setOrientation(LinearLayout.HORIZONTAL);

}
else {

207

208

CHAPTER 19: Handling Rotation

container.setOrientation(LinearlLayout.VERTICAL);

}
}
}

Our onConfigurationChanged() needs to update the Ul to reflect the orientation change.
Here, we find our LinearLayout and tell it to change its orientation to match that of the
device. The orientation field on the Configuration object will tell us how the device is
oriented.

...BUT GOOGLE DOES NOT RECOMMEND THIS

You might think that onConfigurationChanged() and android:configChanges would be the
ultimate solution for handling rotation. After all, we no longer have to worry about all that messy passing of
data to the new activity as the old one is being destroyed. The onConfigurationChanged() approach
is very sexy.

However, Google does not recommend it.

The primary concern is forgetting about resources. With the onConfigurationChanged() approach,
you must ensure that every resource that might possibly have changed as a result of this configuration
change gets updated. That includes strings, layouts, drawables, menus, animations, preferences,
dimensions, colors, and all the others. If you fail to ensure that everything is updated completely, your app
will have a whole series of little (or not so little) bugs as a result.

Allowing Android to destroy and re-create your activity guarantees you will get the proper resources. All
you need to do is arrange to pass the proper data from the old activity to the new activity.

The onConfigurationChanged() approach is appropriate only where the user would be directly
affected by a destroy-and-create cycle. For example, imagine a video-player application that is playing a
streaming video. Destroying and re-creating the activity would necessarily cause the application to have to
reconnect to the stream, losing buffered data in the process. Users will get frustrated if an accidental
movement causes the device to change orientation and interrupt their video playback. In this case, since
the user will perceive problems with a destroy-and-create cycle, onConfigurationChanged() is an
appropriate choice.

Forcing the Issue

Some activities simply are not meant to change orientation. Games, camera previews,
video players, and the like may make sense only in landscape orientation, for example.
While most activities should allow the user to work in any desired orientation, for
activities where only one orientation makes sense, you can control it.

To block Android from rotating your activity, all you need to do is add
android:screenOrientation = "portrait" (or "landscape", as you prefer) to your
AndroidManifest.xml file, as follows (from the Rotation/RotationFour sample project):
<?xml version="1.0" encoding="utf-8"?>

<manifest xmlns:android="http://schemas.android.com/apk/res/android"«
package="com.commonsware.android.rotation.four" android:versionCode="1"+«

CHAPTER 19: Handling Rotation 209

android:versionName="1.0.0">
<uses-sdk android:minSdkVersion="5" android:targetSdkVersion="6"/>
<application android:label="@string/app_name" android:icon="@drawable/cw">
<activity android:name=".RotationFourDemo" android:screenOrientation=+«
"portrait" android:label="@string/app_name">
<intent-filter>
<action android:name="android.intent.action.MAIN"/>
<category android:name="android.intent.category.LAUNCHER"/>
</intent-filter>
</activity>
</application>
<supports-screens android:largeScreens="true" android:normalScreens="true"«
android:smallScreens="true" android:anyDensity="true"/>
</manifest>

Since this is applied on a per-activity basis, you will need to decide which of your
activities may need this turned on.

At this point, your activity is locked into whatever orientation you specified, regardless of
what you do. Figures 19-3 and 19-4 show the same activity as in the previous three
sections, but using the preceding manifest and with the emulator set for both portrait
and landscape orientation. Note that the Ul does not move a bit, but remains in portrait
mode.

6:11 PM

[RotationFourDemo"™

Figure 19-3. The RotationFour application, in portrait mode

210

CHAPTER 19: Handling Rotation

4 ﬁﬂﬁg:ﬂ PM

I

-]
E
[
a
r
3
(=]
L
e
5
=
g
i

EENAAAENAN © © O O
P87 P P o P

Figure 19-4. The RotationFour application, in landscape mode

Note that Android will still destroy and re-create your activity, even if you have the
orientation set to a specific value as shown here. If you wish to avoid that, you also need
to set android:configChanges in the manifest, as described earlier in this chapter. Or,
you can still use onSaveInstanceState() or onRetainNonConfigurationInstance() to
save your activity’s mutable state.

Making Sense of It All

As noted at the beginning of this chapter, devices with a slide-out keyboard (such as T-
Mobile G1, Motorola DROID/Milestone, etc.) change screen orientation when the
keyboard is exposed or hidden, whereas other devices change screen orientation based
on the accelerometer. If you have an activity that should change orientation based on
the accelerometer, even if the device has a slide-out keyboard, just add
android:screenOrientation = "sensor" to your AndroidManifest.xml file as follows
(from the Rotation/RotationFive sample project):

<?xml version="1.0" encoding="utf-8"?>

<manifest xmlns:android="http://schemas.android.com/apk/res/android"«
package="com.commonsware.android.rotation.five" android:versionCode="1"+«
android:versionName="1.0.0">

CHAPTER 19: Handling Rotation 211

<uses-sdk android:minSdkVersion="5" android:targetSdkVersion="6"/>
<application android:label="@string/app_name" android:icon="@drawable/cw">
<activity android:name=".RotationFiveDemo" android:screenOrientation="sensor"«
android:label="@string/app_name">
<intent-filter>
<action android:name="android.intent.action.MAIN"/>
<category android:name="android.intent.category.LAUNCHER"/>
</intent-filter>
</activity>
</application>
<supports-screens android:largeScreens="true" android:normalScreens="true"+«
android:smallScreens="true" android:anyDensity="true"/>
</manifest>

The sensor, in this case, tells Android you want the accelerometers to control the screen
orientation, so the physical shift in the device orientation controls the screen orientation.

Android 2.3 added a number of other possible values for android:screenOrientation:

B reverselandscape and reversePortrait: Indicate that you want the
screen to be in landscape or portrait orientation, respectively, but
upside down compared to the normal landscape and portrait
orientations

B sensorlandscape and sensorPortrait: Indicate that you want the
screen to be locked in landscape or portrait orientation, respectively,
but the sensors can be used to determine which side is “up”

m fullSensor: Allows the sensors to put the screen in any of the four
possible orientations (portrait, reverse portrait, landscape, reverse
landscape), whereas sensor toggles only between portrait and
landscape

Later versions of Android added even more possibilities:
B behind: Matches the orientation of whatever is behind this activity

B user: Adopts the user’s handset-wide preference for orientation
behavior (this is obviously dependent on using a device that offers a
global setting as an option)

Your preferences and options are expanded further by using fragments, which are
discussed in their own dedicated section in Chapter 28.

Chapter

Dealing with Threads

Users like snappy applications. Users do not like applications that feel sluggish. The way
to help make your application feel snappy to users is to use the standard threading
capabilities built into Android. This chapter will walk you through the issues involved
with thread management in Android and some of the options for keeping the Ul crisp
and responsive.

The Main Application Thread

You might think that when you call setText() on a TextView, the screen is updated with
the text you supply, right then and there. That is not how it works. Rather, everything
that modifies the widget-based Ul goes through a message queue. Calls to setText()
do not update the screen; they just pop a message on a queue telling the operating
system to update the screen. The operating system pops these messages off of this
queue and does what the messages require.

The queue is processed by one thread, variously called the main application thread and
the Ul thread. As long as that thread can keep processing messages, the screen will
update, user input will be handled, and so on.

However, the main application thread is also used for nearly all callbacks into your
activity. Your onCreate(),onClick(),onListItemClick(), and similar methods are all
called on the main application thread. While your code is executing in these methods,
Android is not processing messages on the queue, meaning the screen does not
update, user input is not handled, and so on.

This, of course, is bad. So bad, in fact, that if you take more than a few seconds to do
work on the main application thread, Android may display the dreaded “application not
responding” (ANR) error, and your activity may be killed off. Hence, you want to make
sure that all of your work on the main application thread happens quickly. This means
that anything slow should be done in a background thread, so as not to tie up the main
application thread. This includes activities such as the following:

B Internet access, such as sending data to a web service or
downloading an image

213

214

CHAPTER 20: Dealing with Threads

B Significant file operations, since flash storage can be remarkably slow
at times

B Any sort of complex calculations

Fortunately, Android supports threads using the standard Thread class from Java, plus
all the wrappers and control structures you would expect, such as the
java.util.concurrent class package.

However, there is one big limitation: you cannot modify the Ul from a background
thread. You can modify the Ul only from the main application thread. Hence, you need
to move long-running work into background threads, but those threads need to do
something to arrange to update the Ul using the main application thread. Android
provides a wide range of tools to do just that, and these tools are the primary focus of
this chapter.

Making Progress with ProgressBars

If you are going to fork background threads to do work on behalf of the user, you should
consider keeping the user informed that work is going on. This is particularly true if the
user is effectively waiting for that background work to complete.

The typical approach to keeping users informed of progress is some form of progress
bar, like you see when you copy a bunch of files from place to place in many desktop
operating systems. Android supports this through the ProgressBar widget.

A ProgressBar keeps track of progress, defined as an integer, with 0 indicating no
progress has been made. You can define the maximum end of the range —which value
indicates progress is complete—via setMax(). By default, a ProgressBar starts with a
progress of 0, though you can start from some other position via setProgress(). If you
prefer your progress bar to be indeterminate, use setIndeterminate() and set it to true.

In your Java code, you can either positively set the amount of progress that has been
made (via setProgress()) or increment the progress from its current amount (via
incrementProgressBy()). You can find out how much progress has been made via
getProgress().

There are other alternatives for displaying progress—ProgressDialog, a progress
indicator in the activity’s title bar, and so on—but a ProgressBar is a good place to start.

Getting Through the Handlers

The most flexible means of making an Android-friendly background thread is to create
an instance of a Handler subclass. You need only one Handler object per activity, and
you do not need to manually register it. Merely creating the instance is sufficient to
register it with the Android threading subsystem.

CHAPTER 20: Dealing with Threads

Your background thread can communicate with the Handler, which will do all of its work
on the activity’s Ul thread. This is important, as Ul changes, such as updating widgets,
should occur only on the activity’s Ul thread.

You have two options for communicating with the Handler: messages and Runnable
objects.

Messages

To send a Message to a Handler, first invoke obtainMessage() to get the Message object
out of the pool. There are a few flavors of obtainMessage(), allowing you to create empty
Message objects or ones populated with message identifiers and arguments. The more
complicated your Handler processing needs to be, the more likely it is you will need to
put data into the Message to help the Handler distinguish different events.

Then, you send the Message to the Handler via its message queue, using one of the
sendMessage. .. () family of methods, such as the following:

B sendMessage(): Puts the message on the queue immediately

B sendMessageAtFrontOfQueue(): Puts the message on the queue
immediately and places it at the front of the message queue (versus
the back, which is the default), so your message takes priority over all
others

B sendMessageAtTime(): Puts the message on the queue at the stated
time, expressed in the form of milliseconds based on system uptime
(SystemClock.uptimeMillis())

B sendMessageDelayed(): Puts the message on the queue after a delay,
expressed in milliseconds

B sendEmptyMessage(): Sends an empty Message object to the queue,
allowing you to skip the obtainMessage() step if you were planning on
leaving it empty anyway

To process these messages, your Handler needs to implement handleMessage(), which
will be called with each message that appears on the message queue. There, the
Handler can update the Ul as needed. However, it should still do that work quickly, as
other Ul work is suspended until the Handler is finished.

For example, let’s create a ProgressBar and update it via a Handler. Here is the layout
from the Threads/Handler sample project:

<?xml version="1.0" encoding="utf-8"?>
<LinearLayout xmlns:android="http://schemas.android.com/apk/res/android"
android:orientation="vertical"
android:layout width="fill parent"
android:layout_height="fill parent"
>
<ProgressBar android:id="@+id/progress"
style="?android:attr/progressBarStyleHorizontal"

215

216 CHAPTER 20: Dealing with Threads

android:layout_width="fill parent"
android:layout_height="wrap_content" />
</Linearlayout>

The ProgressBar, in addition to setting the width and height as normal, also employs the
style property. This particular style indicates the ProgressBar should be drawn as the
traditional horizontal bar showing the amount of work that has been completed.

And here is the Java:

package com.commonsware.android.threads;

import android.app.Activity;

import android.os.Bundle;

import android.os.Handler;

import android.os.Message;

import android.widget.ProgressBar;

import java.util.concurrent.atomic.AtomicBoolean;

public class HandlerDemo extends Activity {
ProgressBar bar;
Handler handler=new Handler() {
@0verride
public void handleMessage(Message msg) {
bar.incrementProgressBy(5);

}
};

AtomicBoolean isRunning=new AtomicBoolean(false);

@0verride

public void onCreate(Bundle icicle) {
super.onCreate(icicle);
setContentView(R.layout.main);
bar=(ProgressBar)findViewById(R.id.progress);

public void onStart() {
super.onStart();
bar.setProgress(0);

Thread background=new Thread(new Runnable() {
public void run() {
try {
for (int i=0;i<20 &8 isRunning.get();i++) {
Thread.sleep(1000);
handler.sendMessage(handler.obtainMessage());

}
catch (Throwable t) {
// just end the background thread
}
1

isRunning.set(true);
background.start();

CHAPTER 20: Dealing with Threads

}

public void onStop() {
super.onStop();
isRunning.set(false);

}

As part of constructing the Activity, we create an instance of Handler, with our
implementation of handleMessage(). Basically, for any message received, we update the
ProgressBar by 5 points, and then exit the message handler.

We then take advantage of onStart() and onStop(). In onStart(), we set up a
background thread. In a real system, this thread would do something meaningful. Here,
we just sleep 1 second, post a Message to the Handler, and repeat for a total of 20
passes. This, combined with the 5-point increase in the ProgressBar position, will march
the bar clear across the screen, as the default maximum value for ProgressBar is 100.
You can adjust that maximum via setMax(). For example, you might set the maximum to
be the number of database rows you are processing, and update once per row.

Note that we then leave onStart(). This is crucial. The onStart() method is invoked on
the activity Ul thread, so it can update widgets and such. However, that means we need
to get out of onStart(), both to let the Handler get its work done and to inform Android
that our activity is not stuck.

The resulting activity is simply a horizontal progress bar, as shown in Figure 20-1.

©@ @l O 8:58 AM

HandlerDemo

w.

Figure 20-1. The HandlerDemo sample application

217

218

CHAPTER 20: Dealing with Threads

Note, though, that while ProgressBar samples like this one show your code arranging to
update the progress on the Ul thread, for this specific widget, that is not necessary. At
least as of Android 1.5, ProgressBar is now Ul thread safe, in that you can update it from
any thread, and it will handle the details of performing the actual Ul update on the Ul
thread.

Runnables

If you would rather not fuss with Message objects, you can also pass Runnable objects to
the Handler, which will run those Runnable objects on the activity Ul thread. Handler
offers a set of post... () methods for passing Runnable objects in for eventual
processing.

Just as Handler supports post() and postDelayed() to add Runnable objects to the
event queue, you can use those same methods on any View (i.e., any widget or
container). This slightly simplifies your code, in that you can then skip the Handler
object.

Where Oh Where Has My Ul Thread Gone?

Sometimes, you may not know if you are currently executing on the Ul thread of your
application. For example, if you package some of your code in a JAR for others to reuse,
you might not know whether your code is being executed on the Ul thread or from a
background thread.

To help combat this problem, Activity offers runOnUiThread(). This works similarly to
the post() methods on Handler and View, in that it queues up a Runnable to run on the
Ul thread, if you are not on the Ul thread right now. If you already are on the Ul thread, it
invokes the Runnable immediately. This gives you the best of both worlds: no delay if
you are on the Ul thread, yet safety in case you are not.

Asyncing Feeling

Android 1.5 introduced a new way of thinking about background operations: AsyncTask.
In one (reasonably) convenient class, Android handles all of the chores of doing work on
the Ul thread versus on a background thread. Moreover, Android itself allocates and
removes that background thread. And, it maintains a small work queue, further
accentuating the fire-and-forget feel to AsyncTask.

The Theory

There is a saying, popular in marketing circles, “When a man buys a 1/4-inch drill bit at a
hardware store, he does not want a 1/4-inch drill bit—he wants 1/4-inch holes.”
Hardware stores cannot sell holes, so they sell the next-best thing: devices (drills and
drill bits) that make creating holes easy.

CHAPTER 20: Dealing with Threads

Similarly, Android developers who have struggled with background thread management
do not strictly want background threads. Rather, they want work to be done off the Ul
thread, so users are not stuck waiting and activities do not get the dreaded ANR error.
And while Android cannot magically cause work to not consume Ul thread time, it can
offer things that make such background operations easier and more transparent.
AsyncTask is one such example.

To use AsyncTask, you must do the following:

B Create a subclass of AsyncTask, commonly as a private inner class of
something that uses the task (e.g., an activity)

B Override one or more AsyncTask methods to accomplish the
background work, plus whatever work associated with the task that
needs to be done on the Ul thread (e.g., update progress)

B When needed, create an instance of the AsyncTask subclass and call
execute() to have it begin doing its work

What you do not have to do is
m Create your own background thread
B Terminate that background thread at an appropriate time

B Call all sorts of methods to arrange for bits of processing to be done
on the Ul thread

AsyncTask, Generics, and Varargs

Creating a subclass of AsyncTask is not quite as easy as, say, implementing the
Runnable interface. AsyncTask uses generics, and so you need to specify three data
types:

B The type of information that is needed to process the task (e.g., URLs
to download)

B The type of information that is passed within the task to indicate
progress

B The type of information that is passed to the post-task code when the
task is completed

What makes this all the more confusing is that the first two data types are actually used
as varargs, meaning that an array of these types is used within your AsyncTask subclass.

This should become clearer as we work our way toward an example.

219

220

CHAPTER 20: Dealing with Threads

The Stages of AsyncTask

There are four methods you can override in AsyncTask to accomplish your ends.

The one you must override, for the task class to be useful, is doInBackground(). This will
be called by AsyncTask on a background thread. It can run as long as is necessary to
accomplish whatever work needs to be done for this specific task. Note, though, that
tasks are meant to be finite; using AsyncTask for an infinite loop is not recommended.

The doInBackground() method will receive, as parameters, a varargs array of the first of
the three data types listed in the preceding section—the data needed to process the
task. So, if your task’s mission is to download a collection of URLs, doInBackground()
will receive those URLs to process. The doInBackground() method must return a value
of the third data type listed in the preceding section—the result of the background work.

You may wish to override onPreExecute(). This method is called, from the Ul thread,
before the background thread executes doInBackground(). Here, you might initialize a
ProgressBar or otherwise indicate that background work is commencing.

Also, you may wish to override onPostExecute(). This method is called, from the Ul
thread, after doInBackground() completes. It receives, as a parameter, the value
returned by doInBackground() (e.g., success or failure flag). Here, you might dismiss the
ProgressBar and make use of the work done in the background, such as updating the
contents of a list.

In addition, you may wish to override onProgressUpdate(). If doInBackground() calls the
task’s publishProgress() method, the object(s) passed to that method are provided to
onProgressUpdate(), but in the Ul thread. That way, onProgressUpdate() can alert the
user as to the progress that has been made on the background work, such as updating
a ProgressBar or continuing an animation. The onProgressUpdate() method will receive
a varargs of the second data type from the preceding list—the data published by
doInBackground() via publishProgress().

A Sample Task

As mentioned earlier, implementing an AsyncTask is not quite as easy as implementing a
Runnable. However, once you get past the generics and varargs, it is not too bad.

For example, the following is an implementation of a ListActivity that uses an
AsyncTask, from the Threads/Asyncer sample project:

package com.commonsware.android.async;

import android.app.ListActivity;
import android.os.AsyncTask;

import android.os.Bundle;

import android.os.SystemClock;
import android.widget.ArrayAdapter;
import android.widget.Toast;

import java.util.Arraylist;

CHAPTER 20: Dealing with Threads 221

public class AsyncDemo extends ListActivity {
private static final String[] items={"lorem", "ipsum", "dolor",
"sit", "amet", "consectetuer",
"adipiscing", "elit", "morbi",
"vel", "ligula", "vitae",
"arcu", "aliquet", "mollis",
"etiam", "vel", "erat",
"placerat", "ante",
"porttitor", "sodales",
"pellentesque”, "augue",
"purus"};
@0verride
public void onCreate(Bundle savedInstanceState) {
super.onCreate(savedInstanceState);
setContentView(R.layout.main);

setListAdapter(new ArrayAdapter<String>(this,
android.R.layout.simple_list item_1,
new ArraylList()));

new AddStringTask().execute();
}

class AddStringTask extends AsyncTask<Void, String, Void> {
@0verride
protected Void doInBackground(Void... unused) {
for (String item : items) {
publishProgress(item);
SystemClock.sleep(200);

}

return(null);

@0verride
protected void onProgressUpdate(String... item) {
((ArrayAdapter)getListAdapter()).add(item[0]);

@0verride
protected void onPostExecute(Void unused) {
Toast
.makeText(AsyncDemo.this, "Done!", Toast.LENGTH_SHORT)
.show();

}
}

This is another variation on the lorem ipsum list of words, used frequently throughout
this book. This time, rather than simply hand the list of words to an ArrayAdapter, we
simulate having to work to create these words in the background using AddStringTask,
our AsyncTask implementation.

Let’s examine this project’s code piece by piece.

222

CHAPTER 20: Dealing with Threads

The AddStringTask Declaration

The AddStringTask declaration is as follows:

class AddStringTask extends AsyncTask<Void, String, Void> {

Here, we use the generics to set up the specific types of data we are going to leverage
in AddStringTask:

B We do not need any configuration information in this case, so our first
type is Void.

B We want to pass each string generated by our background task to
onProgressUpdate(), to allow us to add it to our list, so our second
type is String.

B We do not have any results, strictly speaking (beyond the updates), so
our third type is Void.

The doinBackground() Method

The doInBackground() method is next in the code:

@0verride
protected Void doInBackground(Void... unused) {
for (String item : items) {
publishProgress(item);
SystemClock.sleep(200);
}

return(null);

The doInBackground() method is invoked in a background thread. Hence, we can take
as long as we like. In a production application, we might be doing something like
iterating over a list of URLs and downloading each. Here, we iterate over our static list of
lorem ipsum words, call publishProgress() for each, and then sleep 200 milliseconds to
simulate real work being done.

Since we elected to have no configuration information, we should not need parameters
to doInBackground(). However, the contract with AsyncTask says we must accept a
varargs of the first data type, which is why our method parameter is Void... unused.

Since we elected to have no results, we should not need to return anything. Again,
though, the contract with AsyncTask says we must return an object of the third data type.
Since that data type is Void, our returned object is null.

CHAPTER 20: Dealing with Threads

The onProgressUpdate() Method
Next up is the onProgressUpdate() method:

@0verride
protected void onProgressUpdate(String... item) {
((ArrayAdapter)getListAdapter()).add(item[0]);

The onProgressUpdate() method is called on the Ul thread, and we want to do
something to let the user know we are making progress on loading these strings. In this
case, we simply add the string to the ArrayAdapter, so it is appended to the end of the
list.

The onProgressUpdate() method receives a String... varargs because that is the
second data type in our class declaration. Since we are passing only one string per call
to publishProgress(), we need to examine only the first entry in the varargs array.

The onPostExecute() Method

The next method is onPostExecute():

@0verride
protected void onPostExecute(Void unused) {
Toast
.makeText(AsyncDemo.this, "Done!", Toast.LENGTH_SHORT)
.show();

The onPostExecute() method is called on the Ul thread, and we want to do something to
indicate that the background work is complete. In a real system, there may be some
ProgressBar to dismiss or some animation to stop. Here, we simply raise a Toast.

Since we elected to have no results, we should not need any parameters. The contract
with AsyncTask says we must accept a single value of the third data type. Since that
data type is Void, our method parameter is Void unused.

The Activity

The activity is as follows:
new AddStringTask().execute();

To use AddStringTask, we simply create an instance and call execute() on it. That starts
the chain of events eventually leading to the background thread doing its work.

If AddStringTask required configuration parameters, we would have not used Void as our
first data type, and the constructor would accept zero or more parameters of the defined
type. Those values would eventually be passed to doInBackground().

223

224

CHAPTER 20: Dealing with Threads

The Results

If you build, install, and run this project, you will see the list being populated in real time
over a few seconds, followed by a Toast indicating completion, as shown in Figure 20-2.

@l @ 3:24pm

Async Demo

lorem
ipsum

dolor

sit

amet

consectetuer

adinierineo

Figure 20-2. The AsyncDemo, partway through loading the list of words

Threads and Rotation

One problem with the default destroy-and-create cycle that activities go through on an
orientation change comes from background threads. If the activity has started some
background work—through an AsyncTask, for example—and then the activity is
destroyed and re-created, the AsyncTask needs to know about this somehow.
Otherwise, the AsyncTask might well send updates and final results to the old activity,
with the new activity none the wiser. In fact, the new activity might start the background
work again, wasting resources.

One way to deal with this is to disable the destroy-and-create cycle, by taking over
configuration changes, as described in a previous section. Another alternative is to have
a smarter activity and AsyncTask. You can see an example of that in the
Rotation/RotationAsync sample project. As shown next, this project uses a
ProgressBar, much like the Handler demo from earlier in this chapter. It also has a
TextView to indicate when the background work is completed, initially invisible.

<?xml version="1.0" encoding="utf-8"?>

<LinearLayout xmlns:android="http://schemas.android.com/apk/res/android"
android:orientation="vertical"

CHAPTER 20: Dealing with Threads

android:layout_width="fill parent"
android:layout_height="fill parent"
>
<ProgressBar android:id="@+id/progress"
style="?android:attr/progressBarStyleHorizontal"
android:layout_width="fill parent"
android:layout_height="wrap_content"
/>
<TextView android:id="@+id/completed"”
android:layout width="fill parent"
android:layout_height="wrap_content"
android:text="Work completed!"
android:visibility="invisible"
/>
</Linearlayout>

The “business logic” is for an AsyncTask to do some (fake) work in the background,
updating the ProgressBar along the way, and making the TextView visible when it is
finished. More importantly, it needs to do this in such a way as to behave properly if the
screen is rotated. This means the following:

B We cannot “lose” our AsyncTask, having it continue doing work and
updating the wrong activity.

B We cannot start a second AsyncTask, thereby doubling our workload.

B We need to have the Ul correctly reflect our work’s progress or
completion.

Manual Activity Association

Earlier, this chapter showed the use of an AsyncTask that was implemented as a regular
inner class of the Activity class. That works well when you are not concerned about
rotation. For example, if the AsyncTask is not affecting the Ul—such as uploading a
photo—rotation will not be an issue for you. Having the AsyncTask as an inner class of
the Activity means you get ready access to the Activity for any place where you need a
Context.

However, for the rotation scenario, a regular inner class will work poorly. The AsyncTask
will think it knows which Activity it is supposed to work with, but in reality it will be
holding onto an implicit reference to the old activity, not one after an orientation change.

So, in RotationAsync, the RotationAwareTask class is a static inner class. This means
RotationAwareTask does not have any implicit reference to any RotationAsync Activity
(old or new):

import android.app.Activity;
import android.os.AsyncTask;
import android.os.Bundle;

import android.os.SystemClock;
import android.util.log;

import android.view.View;

import android.widget.ProgressBar;

225

226 CHAPTER 20: Dealing with Threads

public class RotationAsync extends Activity {
private ProgressBar bar=null;
private RotationAwareTask task=null;

@0verride

public void onCreate(Bundle savedInstanceState) {
super.onCreate(savedInstanceState);
setContentView(R.layout.main);

bar=(ProgressBar)findViewById(R.id.progress);
task=(RotationAwareTask)getLastNonConfigurationInstance();

if (task==null) {
task=new RotationAwareTask(this);
task.execute();

else {
task.attach(this);
updateProgress(task.getProgress());

if (task.getProgress()>=100) {
markAsDone();

}
}

@0verride
public Object onRetainNonConfigurationInstance() {
task.detach();

return(task);

void updateProgress(int progress) {
bar.setProgress(progress);

}

void markAsDone() {
findViewById(R.id.completed).setVisibility(View.VISIBLE);

static class RotationAwareTask extends AsyncTask<Void, Void, Void> {
RotationAsync activity=null;
int progress=0;

RotationAwareTask(RotationAsync activity) {
attach(activity);

@0verride
protected Void doInBackground(Void... unused) {
for (int i=0;i<20;i++) {
SystemClock.sleep(500);
publishProgress();

CHAPTER 20: Dealing with Threads 227

return(null);

@0verride
protected void onProgressUpdate(Void... unused) {
if (activity==null) {
Log.w("RotationAsync", "onProgressUpdate() skipped - no activity");

else {
progress+=5;
activity.updateProgress(progress);

}

@0verride
protected void onPostExecute(Void unused) {
if (activity==null) {
Log.w("RotationAsync", "onPostExecute() skipped - no activity");

else {
activity.markAsDone();

}
}

void detach() {
activity=null;

void attach(RotationAsync activity) {
this.activity=activity;

}

int getProgress() {
return(progress);

}
}

Since we want RotationAwareTask to update the current RotationAsync Activity, we
supply that Activity when we create the task, via the constructor. RotationAwareTask
also has attach() and detach() methods to change which Activity the task knows
about, as we will see shortly.

Flow of Events

When RotationAsync starts up for the first time, it creates a new instance of the
RotationAwareTask class and executes it. At this point, the task has a reference to the
RotationAsync Activity and can do its (fake) work, telling RotationAsync to update the
progress along the way.

Now, suppose that during the middle of the doInBackground() processing, the user
rotates the screen. Our Activity will be called with
onRetainNonConfigurationInstance(). Here, we want to do two things:

228

CHAPTER 20: Dealing with Threads

B Since this Activity instance is being destroyed, we need to make sure
the task no longer holds onto a reference to it. Hence, we call
detach(), causing the task to set its RotationAsync data member
(activity) to null.

B We return the RotationAwareTask object, so that our new
RotationAsync instance can get access to it.

Eventually, the new RotationAsync instance will be created. In onCreate(), we try to get
access to any current RotationAwareTask instance via
getLastNonConfigurationInstance(). If that was null, then we know that this is a newly
created activity, and so we create a new task. If, however,
getLastNonConfigurationInstance() returned the task object from the old
RotationAsync instance, we hold onto it and update our Ul to reflect the current
progress that has been made. We also attach() the new RotationAsync to the
RotationAwareTask, so as further progress is made, the task can notify the proper
activity.

The net result is that our ProgressBar smoothly progresses from 0 to 100, even while
rotations are going on.

Why This Works

Most callback methods in Android are driven by messages on the message queue being
processed by the main application thread. Normally, this queue is being processed
whenever the main application thread is not otherwise busy, such as running our code.
However, when a configuration change occurs, like a screen rotation, that no longer
holds true. In between the call to the onRetainNonConfigurationInstance() instance of
the old activity and the completion of onCreate() of the new activity, the message queue
is left alone.

So, let’s suppose that, in between onRetainNonConfigurationInstance() activity and the
subsequent onCreate(), our AsyncTask’s background work completes. This will trigger
onPostExecute() to be called...eventually. However, since onPostExecute() is actually
launched from a message on the message queue, onPostExecute() will not be called
until after our onCreate() has completed. Hence, our AsyncTask can keep running during
the configuration change, as long as we do two things:

B InonCreate() of the new activity instance, we update the AsyncTask to
have it work with our new activity, rather than the old one.

B We do not attempt to use the activity from doInBackground().

And Now, the Caveats

Background threads, while eminently possible using the Android Handler system, are
not all happiness and warm puppies. Background threads not only add complexity, but
also have real-world costs in terms of available memory, CPU, and battery life. Hence,

CHAPTER 20: Dealing with Threads 229

you need to account for a wide range of scenarios with your background thread,
including the following:

B The possibility that users will interact with your activity’s Ul while the
background thread is chugging along. If the work that the background
thread is doing is altered or invalidated by the user input, you will need
to communicate this to the background thread. Android includes many
classes in the java.util.concurrent package that will help you
communicate safely with your background thread.

B The possibility that the activity will be killed off while background work
is going on. For example, after starting your activity, the user might
have a call come in, followed by a text message, followed by a need to
look up a contact—all of which might be sufficient to kick your activity
out of memory. Chapter 18 covers the various events Android will take
your activity through; hook to the proper ones, and be sure to shut
down your background thread cleanly when you have the chance.

B The possibility that users will get irritated if you chew up a lot of CPU
time and battery life without giving any payback. Tactically, this means
using ProgressBar or other means of letting users know that
something is happening. Strategically, this means you still need to be
efficient at what you do—background threads are no panacea for
sluggish or pointless code.

B The possibility that you will encounter an error during background
processing. For example, if you are gathering information from the
Internet, the device might lose connectivity. Alerting the user of the
problem via a notification (covered in Chapter 37) and shutting down
the background thread may be your best option.

Chapter

Creating Intent Filters

Up to now, the focus of this book has been on activities opened directly by the user
from the device’s launcher. This is the most obvious case for getting your activity up and
running and making it visible to the user. And, in many cases, it is the primary way the
user will start using your application.

However, remember that the Android system is based on many loosely coupled
components. The things that you might accomplish in a desktop GUI via dialog boxes,
child windows, and the like are mostly supposed to be independent activities. While one
activity will be “special,” in that it shows up in the launcher, the other activities all need
to be reached...somehow.

The “somehow” is via intents.

An intent is basically a message that you pass to Android saying, “Yo! | want to
do...er...something! Yeah!” How specific the “something” is depends on the situation—
sometimes you know exactly what you want to do (e.g., open one of your other
activities), and sometimes you do not.

In the abstract, Android is all about intents and receivers of those intents. So, now that
you are well versed in creating activities, let’s dive into intents, so we can create more
complex applications while simultaneously being “good Android citizens.”

What’s Your Intent?

When Sir Tim Berners-Lee cooked up the Hypertext Transfer Protocol (HTTP), he set up
a system of verbs plus addresses in the form of URLs. The address indicates a resource,
such as a web page, graphic, or server-side program. The verb indicates what should be
done: GET to retrieve it, POST to send form data to it for processing, and so on.

Intents are similar, in that they represent an action plus context. There are more actions
and more components to the context with Android intents than there are with HTTP
verbs and resources, but the concept is still the same. Just as a web browser knows
how to process a verb+URL pair, Android knows how to find activities or other
application logic that will handle a given intent.

231

232

CHAPTER 21: Creating Intent Filters

Pieces of Intents

The two most important pieces of an intent are the action and what Android refers to as
the data. These are almost exactly analogous to HTTP verbs and URLs: the action is the
verb, and the data is a Uri, such as content://contacts/people/1, representing a
contact in the contacts database. Actions are constants, such as ACTION_VIEW (to bring
up a viewer for the resource), ACTION _EDIT (to edit the resource), or ACTION_PICK (to
choose an available item given a Uri representing a collection, such as
content://contacts/people).

If you were to create an intent combining ACTION_VIEW with a content Uri of
content://contacts/people/1, and pass that intent to Android, Android would know to
find and open an activity capable of viewing that resource.

There are other criteria you can place inside an intent (represented as an Intent object),
besides the action and data Uri, such as the following:

B Category: Your “main” activity will be in the LAUNCHER category,
indicating it should appear on the launcher menu. Other activities will
probably be in the DEFAULT category or the ALTERNATIVE category.

B MIME type: This indicates the type of resource you want to operate on,
if you do not know a collection Uri.

B Component: This is the class of the activity that is supposed to receive
this intent. Using components this way obviates the need for the other
properties of the intent. However, it does make the intent more fragile,
as it assumes specific implementations.

B Extras: This refers to a Bundle of other information you want to pass
along to the receiver with the intent, typically information that the
receiver might want to take advantage of. Which pieces of information
a given receiver can use is up to the receiver and (hopefully) is well
documented.

You will find rosters of the standard actions and categories in the Android SDK
documentation for the Intent class.

Intent Routing

As noted in the previous section, if you specify the target component in your intent,
Android has no doubt where the intent is supposed to be routed to, and it will launch the
named activity. This might be fine if the target intent is in your application. It definitely is
not recommended for sending intents to other applications. Component names, by and
large, are considered private to the application and are subject to change. Content Uri
templates and MIME types are the preferred ways of identifying services you wish third-
party code to supply.

CHAPTER 21: Creating Intent Filters 233

If you do not specify the target component, then Android has to figure out which
activities (or other receivers) are eligible to receive the intent. Note the use of the plural
activities, as a broadly written intent might well resolve to several activities. That is
the...ummm...intent (pardon the pun), as you will see later in this chapter. This routing
approach is referred to as implicit routing.

Basically, there are three rules, all of which must be true for a given activity to be eligible
for a given intent:

B The activity must support the specified action.
B The activity must support the stated MIME type (if supplied).
B The activity must support all of the categories named in the intent.

The upshot is that you want to make your intents specific enough to find the right
receiver(s), and no more specific than that. This will become clearer as we work through
some examples later in this chapter.

Stating Your Intent(ions)

All Android components that wish to be notified via intents must declare intent filters, so
Android knows which intents should go to that component. To do this, you need to add
intent-filter elements to your AndroidManifest.xml file.

All of the example projects have intent filters defined, courtesy of the Android
application-building script (android create project or the IDE equivalent). They look
something like this:

<?xml version="1.0"?>
<manifest xmlns:android="http://schemas.android.com/apk/res/android"
package="com.commonsware.android.skeleton">
<application>
<activity android:name=".Now" android:label="Now">
<intent-filter>
<action android:name="android.intent.action.MAIN"/>
<category android:name="android.intent.category.LAUNCHER"/>
</intent-filter>
</activity>
</application>
</manifest>

Note the intent-filter element under the activity element. Here, we declare that this
activity:

B |s the main activity for this application

B |sin the LAUNCHER category, meaning it gets an icon in the Android
main menu

Because this activity is the main one for the application, Android knows this is the
component it should launch when somebody chooses the application from the main
menu.

234

CHAPTER 21: Creating Intent Filters

You are welcome to have more than one action or more than one category in your intent
filters. That indicates that the associated component (e.g., activity) handles multiple
different sorts of intents.

More than likely, you will also want to have your secondary (non-MAIN) activities specify
the MIME type of data they work on. Then, if an intent is targeted for that MIME type—
either directly, or indirectly by the Uri referencing something of that type —Android will
know that the component handles such data.

For example, you could have an activity declared like this:

<activity android:name=".TourViewActivity">
<intent-filter>
<action android:name="android.intent.action.VIEW" />
<category android:name="android.intent.category.DEFAULT" />
<data android:mimeType="vnd.android.cursor.item/vnd.commonsware.tour" />
</intent-filter>
</activity>

This activity will be launched by an intent requesting to view a Uri representing a
vnd.android.cursor.item/vnd.commonsware.tour piece of content. That Intent could
come from another activity in the same application (e.g., the MAIN activity for this
application) or from another activity in another Android application that happens to know
a Uri that this activity handles.

Narrow Receivers

In the preceding examples, the intent filters were set up on activities. Sometimes, tying
intents to activities is not exactly what you want, as in the following cases:

B Some system events might cause you to want to trigger something in
a service rather than an activity.

B Some events might need to launch different activities in different
circumstances, where the criteria are not solely based on the intent
itself, but some other state (e.g., if we get intent X and the database
has a Y, then launch activity M; if the database does not have a 'Y,
then launch activity N).

For these cases, Android offers the receiver, defined as a class implementing the
BroadcastReceiver interface. Broadcast receivers are disposable objects designed to
receive intents—specifically, broadcast intents —and take action.

The BroadcastReceiver interface has only one method: onReceive(). Receivers
implement that method, where they do whatever it is they wish to do upon an incoming
intent. To declare a receiver, add a receiver element to your AndroidManifest.xml file:

<receiver android:name=".MyIntentReceiverClassName" />
A receiver is alive for only as long as it takes to process onReceive()—as soon as that

method returns, the receiver instance is subject to garbage collection and will not be
reused. This means receivers are somewhat limited in what they can do, mostly to avoid

GCHAPTER 21: Creating Intent Filters

anything that involves any sort of callback. For example, they cannot bind to a service,
and they cannot open a dialog box.

The exception is if the BroadcastReceiver is implemented on some longer-lived
component, such as an activity or service. In that case, the receiver lives as long as its
“host” does (e.g., until the activity is frozen). However, in this case, you cannot declare
the receiver via AndroidManifest.xml. Instead, you need to call registerReceiver() on
your Activity’s onResume() callback to declare interest in an intent, and then call
unregisterReceiver() from your Activity’s onPause() when you no longer need those
intents.

Intents for Every Occasion

The number of actions encompassed by the Intent class steadily grows with each new
version of Android. With the release of Ice Cream Sandwich (ICS), version 4.0, Google
has added a further six actions and deprecated three that are no longer required. The
Android SDK documentation covers all 97 intent actions available in ICS, which you can
read at your leisure. Here are some highlights to get you thinking about the possibilities:

B ACTION_AIRPLANE_MODE_CHANGED: The device has entered or exited
airplane mode.

B ACTION_CAMERA BUTTON: The camera button was pressed.

B ACTION DATE_CHANGED: The date has changed. This could be important
for applications like reminder lists, calendars, and so forth.

B ACTION_HEADSET PLUG: Headphones were attached or removed. This is
quite important for music-playing apps and similar apps.

You can start to see the possibilities as well as the complexities.

The Pause Caveat

There is one hiccup with using Intent objects to pass arbitrary messages around: it
works only when the receiver is active. To quote from the documentation for
BroadcastReceiver:

If registering a receiver in your Activity.onResume() implementation, you
should unregister it in Activity.onPause(). (You won'’t receive intents when
paused, and this will cut down on unnecessary system overhead). Do not
unregister in Activity.onSaveInstanceState(), because this won’t be called if
the user moves back in the history stack.

Hence, you can use the Intent framework as an arbitrary message bus only in the
following situations:

235

236 CHAPTER 21: Creating Intent Filters

B Your receiver does not care if it misses messages because it was not
active.

B You provide some means of getting the receiver “caught up” on
messages it missed while it was inactive.

B Your receiver is registered in the manifest.

Chapter

Launching Activities
and Subactivities

The theory behind the Android Ul architecture is that developers should decompose
their application into distinct activities. For example, a calendar application could have
activities for viewing the calendar, viewing a single event, editing an event (including
adding a new one), viewing and editing events on the same screen for larger displays,
and so forth. This implies that one of your activities has the means to start up another
activity. For example, if a user selects an event from the view-calendar activity, you
might want to show the view-event activity for that event. This means that you need to
be able to cause the view-event activity to launch and show a specific event (the one the
user chose).

This can be further broken down into two scenarios:

B You know which activity you want to launch, probably because it is
another activity in your own application.

B You have a content Uri to do something, and you want your users to
be able to do something with it, but you do not know up front what the
options are.

This chapter covers the first scenario; the second is beyond the scope of this book.

Peers and Subs

One key question you need to answer when you decide to launch an activity is this:
does your activity need to know when the launched activity ends?

For example, suppose you want to spawn an activity to collect authentication
information for some web service you are connecting to—maybe you need to
authenticate with OpenlD in order to use an OAuth service. In this case, your main
activity will need to know when the authentication is complete so it can start to use the
web service.

237

238

CHAPTER 22: Launching Activities and Subactivities

On the other hand, imagine an e-mail application in Android. When the user elects to
view an attachment, neither you nor the user necessarily expects the main activity to
know when the user is done viewing that attachment.

In the first scenario, the launched activity is clearly subordinate to the launching activity.
In that case, you probably want to launch the child as a subactivity, which means your
activity will be notified when the child activity is complete.

In the second scenario, the launched activity is more a peer of your activity, so you
probably want to launch the child just as a regular activity. Your activity will not be
informed when the child is done, but, then again, your activity really does not need to
know.

Start ’Em Up

The two pieces for starting an activity are an intent and your choice of how to start it up.

Make an Intent

As discussed in the previous chapter, intents encapsulate a request, made to Android,
for some activity or other receiver to do something. If the activity you intend to launch is
one of your own, you may find it simplest to create an explicit intent, naming the
component you wish to launch. For example, from within your activity, you could create
an intent like this:

new Intent(this, HelpActivity.class);

This stipulates that you want to launch the HelpActivity. This activity would need to be
named in your AndroidManifest.xml file, though not necessarily with any intent filter,
since you are trying to request it directly.

Or, you could put together an intent for some Uri, requesting a particular action:

Uri uri=Uri.parse("geo:"+lat.toString()+","+lon.toString());
Intent i=new Intent(Intent.ACTION VIEW, uri);

Here, given that you have the latitude and longitude of some position (lat and lon,
respectively) of type Double, you construct a geo scheme Uri and create an intent
requesting to view this Uri (ACTION_VIEW).

Make the Call

Once you have your intent, you need to pass it to Android and get the child activity to
launch. You have two main options (with a few more advanced/specialized variants):

B The simplest option is to call startActivity() with the Intent. This will cause
Android to find the best-match activity and pass the intent to it for handling.
Your activity will not be informed when the child activity is complete.

CHAPTER 22: Launching Activities and Subactivities

B You can call startActivityForResult(), passing it the Intent and a number
(unique to the calling activity). Android will find the best-match activity and pass
the intent to it for handling. Your activity will be notified when the child activity is
complete, via the onActivityResult() callback.

B In some cases, you may want or need conditional launching, batch launching,
etc. of activities. Additional methods like startActivities(),
startActivityFromFragment(), and startActivityIfNeeded() can help with
these cases.

With startActivityForResult(), as noted, you can implement the onActivityResult()
callback to be notified when the child activity has completed its work. The callback
receives the unique number supplied to startActivityForResult(), so you can
determine which child activity is the one that has completed. You also get the following:

B A result code, from the child activity calling setResult(). Typically, this
is RESULT_OK or RESULT_CANCELED, though you can create your own
return codes (pick a number starting with RESULT_FIRST USER).

B An optional String containing some result data, possibly a URL to
some internal or external resource. For example, an ACTION_PICK intent
typically returns the selected bit of content via this data string.

B An optional Bundle containing additional information beyond the result
code and data string.

To demonstrate launching a peer activity, take a peek at the Activities/Launch sample
application. The XML layout is fairly straightforward: two fields for the latitude and
longitude, plus a button.

<?xml version="1.0" encoding="utf-8"?>
<LinearLayout xmlns:android="http://schemas.android.com/apk/res/android"
android:orientation="vertical"
android:layout width="fill parent"
android:layout_height="fill parent"
>
<Tablelayout
android:layout_width="fill parent"
android:layout_height="wrap_content"
android:stretchColumns="1,2"

<TableRow>

<TextView
android:layout_width="wrap_content"
android:layout_height="wrap_content"
android:paddingleft="2dip"
android:paddingRight="4dip"
android:text="Location:"

/>

<EditText android:id="@+id/lat"
android:layout_width="fill_parent"
android:layout_height="wrap_content"
android:cursorVisible="true"
android:editable="true"
android:singlelLine="true"

239

240 CHAPTER 22: Launching Activities and Subactivities

android:layout_weight="1"
/>
<EditText android:id="@+id/lon"
android:layout_width="fill parent"
android:layout_height="wrap_content
android:cursorVisible="true"
android:editable="true"
android:singlelLine="true"
android:layout_weight="1"
/>
</TableRow>
</Tablelayout>
<Button android:id="@+id/map"
android:layout_width="fill parent"
android:layout_height="wrap_content"
android:text="Show Me!"
android:onClick="showMe"
/>
</Linearlayout>

The button’s showMe () callback method simply takes the latitude and longitude, pours
them into a geo scheme Uri, and then starts the activity:

package com.commonsware.android.activities;

import android.app.Activity;
import android.content.Intent;
import android.net.Uri;

import android.os.Bundle;
import android.view.View;
import android.widget.EditText;

public class LaunchDemo extends Activity {
private EditText lat;
private EditText lon;

@0verride

public void onCreate(Bundle icicle) {
super.onCreate(icicle);
setContentView(R.layout.main);

lat=(EditText)findViewById(R.id.lat);
lon=(EditText)findViewById(R.id.lon);

public void showMe(View v) {
String lat=lat.getText().toString();
String lon=lon.getText().toString();

Uri uri=Uri.parse("geo:"+_lat+","+ lon);

startActivity(new Intent(Intent.ACTION VIEW, uri));

}
}

We’ve kept the activity very basic so as to focus on our topic of handling the geo intent.
We start as shown in Figure 22-1.

CHAPTER 22: Launching Activities and Subactivities 241

Bl @ 2:11pm

LaunchDemo

ocation: [RRLEAl -77.0492

Figure 22-1. The LaunchDemo sample application, with a location filled in

If you fill in a location (e.g., 38.8891 latitude and -77.0492 longitude) and click the
button, the resulting map is more interesting, as shown in Figure 22-2. Note that this is
the built-in Android map activity —we did not create our own activity to display this map.

GH& 211 pm
2 &
g fd
(&
£
\j«ﬂ“m”w%

Lincoln Mational

Memorial
b

Litc g Momet®

%
|
=

‘ * %,
West
Potoma(:I Park ’3@%’

kCooale
%’"”‘ShmJ s d

Figure 22-2. The map launched by LaunchDemo, showing the Lincoln Memorial in Washington DC

242

CHAPTER 22: Launching Activities and Subactivities

In Chapter 40, you will see how you can create maps in your own activities, in case you
need greater control over how the map is displayed.

NOTE: This geo: Intent will work only on devices or emulators that have Google Maps
installed, or on devices that have some other mapping application that supports the geo: URL.

Tabbed Browsing, Sort Of

One of the main features of the modern desktop web browser is tabbed browsing,
where a single browser window can show several pages split across a series of tabs. On
a mobile device, this may not make a lot of sense, given that you lose screen real estate
for the tabs themselves. In this book, however, we do not let little things like sensibility
stop us, so this section demonstrates a tabbed browser, using TabActivity and Intent
objects.

As you may recall from the Chapter 14 section “Putting It on My Tab,” a tab can have
either a View or an Activity as its content. If you want to use an Activity as the content
of a tab, you provide an Intent that will launch the desired Activity; Android’s tab-
management framework will then pour the Activity’s Ul into the tab.

Your natural instinct might be to use an http: Uri the way we used a geo: Uri in the
previous example:

Intent i=new Intent(Intent.ACTION VIEW);
i.setData(Uri.parse("http://commonsware.com"));

That way, you could use the built-in browser application and get all the features that it
offers. Alas, this does not work. You cannot host other applications’ activities in your
tabs; only your own activities are allowed, for security reasons. So, we dust off our
WebView demos from Chapter 15 and use those instead, repackaged as
Activities/IntentTab.

Here is the source to the main activity, the one hosting the TabView:

package com.commonsware.android.intenttab;

import android.app.Activity;
import android.app.TabActivity;
import android.content.Intent;
import android.net.Uri;

import android.os.Bundle;
import android.webkit.WebView;
import android.widget.TabHost;

public class IntentTabDemo extends TabActivity {
@0verride
public void onCreate(Bundle savedInstanceState) {
super.onCreate(savedInstanceState);

TabHost host=getTabHost();

CHAPTER 22: Launching Activities and Subactivities

Intent i=new Intent(this, CWBrowser.class);

i.putExtra(CWBrowser.URL, "http://commonsware.com");
host.addTab(host.newTabSpec("one"
.setIndicator("CW")
.setContent(i));

i=new Intent(i);
i.putExtra(CWBrowser.URL, "http://www.android.com");
host.addTab(host.newTabSpec("two")
.setIndicator("Android")
.setContent(i));

}
}

As you can see, we are using TabActivity as the base class, and so we do not need our
own layout XML—TabActivity supplies it for us. All we do is get access to the TabHost
and add two tabs, each specifying an Intent that directly refers to another class. In this
case, our two tabs will each host a CWBrowser, with a URL to load supplied via an Intent
extra.

The CWBrowser activity is a simple modification to the earlier browser demos:

package com.commonsware.android.intenttab;

import android.app.Activity;
import android.content.Intent;
import android.net.Uri;

import android.os.Bundle;
import android.webkit.WebView;

public class CWBrowser extends Activity {
public static final String URL="com.commonsware.android.intenttab.URL";
private WebView browser;

@0verride
public void onCreate(Bundle icicle) {
super.onCreate(icicle);

browser=new WebView(this);
setContentView(browser);
browser.loadUrl(getIntent().getStringExtra(URL));

}
}

They simply load a different URL into the browser: the CommonsWare home page in
one, the Android home page in the other.

The resulting Ul shows what tabbed browsing could look like on Android, as shown in
Figures 22-3 and 22—-4.

243

244

CHAPTER 22: Launching Activities and Subactivities

S Ml @ 6:00 PM

IntentTabDemo

Android

€@ COMMONSWARE

Three Android
Books, One Low

Price.

~ - Fresh
»--.mm_:T. Ihhu,lﬁ-\l“:;-h And -d-n! titles
Advanced naroi

Android™ Android rrogamming from
Development Development Tutorials the
- et

Figure 22-3. The IntentTabDemo sample application, showing the first tab

@il @ s:37pem

IntentTabDemo

Android

UEVEI Dpers search develt

SDK Dev Guide

Developer Announcements

m DEVELOPER
CONFERENCE mi

|
vic

Figure 22-4. The IntentTabDemo sample application, showing the second tab

However, this approach is rather wasteful. There is a fair bit of overhead in creating an
activity that you do not need just to populate tabs in a TabHost. In particular, it increases
the amount of stack space needed by your application, and running out of stack space
is a significant problem in Android, as will be described in a later chapter.

Chapter 23

Working with Resources

Resources are static bits of information held outside the Java source code. You have
seen one type of resource—the layout—frequently in the examples in this book. There
are many other types of resources, such as images and strings, that you can take
advantage of in your Android applications.

The Resource Lineup

Resources are stored as files under the res/ directory in your Android project layout.
With the exception of raw resources (res/raw/), all the other types of resources are
parsed for you, either by the Android packaging system or by the Android system on the
device or emulator. So, for example, when you lay out an activity’s Ul via a layout
resource (res/layout/), you do not have to parse the layout XML yourself because
Android handles that for you.

In addition to layout resources (introduced in Chapter 8), there are several other types of
resource available to you, including the following:

B |mages (res/drawable-mdpi/, res/drawable-1dpi, etc.), for putting
static icons, images, photos, or other pictures in a user interface

B Raw (res/raw/), for arbitrary files that have meaning to your
application but not necessarily to Android frameworks

B Strings, colors, arrays, and dimensions (res/values/), for both giving
these sorts of constants symbolic names and keeping them separate
from the rest of the code (e.qg., for internationalization and localization)

B XML (res/xml/), for static XML files containing your own data and
structure

245

246

CHAPTER 23: Working with Resources

String Theory

Keeping your labels and other bits of text outside the main source code of your
application is generally considered to be a very good idea. In particular, it helps with
internationalization and localization, covered in the “Different Strokes for Different Folks”
section later in this chapter. Even if you are not going to translate your strings to other
languages, it is easier to make corrections if all the strings are in one spot instead of
scattered throughout your source code.

Android supports regular externalized strings, along with string formats, where the string
has placeholders for dynamically inserted information. On top of that, Android supports
simple text formatting, called styled text, so you can make your words be bold or italic
intermingled with normal text.

Plain Strings

Generally speaking, all you need for plain strings is an XML file in the res/values
directory (typically named res/values/strings.xml), with a resources root element, and
one child string element for each string you wish to encode as a resource. The string
element takes a name attribute, which is the unique name for this string, and a single text
element containing the text of the string, as shown in this example:

<resources>
<string name="quick">The quick brown fox...</string>
<string name="laughs">He who laughs last...</string>
</resources>

The only tricky part is if the string value contains a quote mark (") or an apostrophe ().
In those cases, you will want to escape those values, by preceding them with a
backslash (e.g., These are the times that try men\'s souls.). Or, if it is just an
apostrophe, you could enclose the value in quote marks (e.g., "These are the times
that try men's souls.").

You can then reference this string from a layout file (as @string/..., where the ellipsis is
the unique name, such as @string/laughs). Or you can get the string from your Java
code by calling getString() with the resource ID of the string resource, which is the
unique name prefixed with R.string. (e.g., getString(R.string.quick)).

String Formats

As with other implementations of the Java language, Android’s Dalvik virtual machine
supports string formats. Here, the string contains placeholders representing data to be
replaced at runtime by variable information (e.g., My name is %1%s). Plain strings stored
as resources can be used as string formats:

String strFormat=getString(R.string.my name);
String strResult=String.format(strFormat, "Tim");
((TextView)findviewById(R.id.some_label)).setText(strResult);

CHAPTER 23: Working with Resources

There is also a flavor of getString() that does the String.format() call for you:

String strResult=getString(R.string.my name, "Tim");
((TextView)findvViewById(R.id.some_label)).setText(strResult);

It is very important that you use the version of the placeholders that takes an index—
%1$s instead of just %s. Strategically, translations of your string resources may cause you
to apply the variable data in a different order than did your original translation, and using
nonindexed placeholders locks you into a particular order. Tactically, your project will fail
to compile, as the Android build tools reject nonindexed placeholders nowadays.

Styled Text

If you want really rich text, you should have raw resources containing HTML, and then
pour those into a WebKit widget. However, for light HTML formatting, using inline
elements such as , <i>, and <u>, you can just use them in a string resource:
<{resources>

<string name="b">This has bold in it.</string>

<string name="i">Whereas this has <i>italics</i>!</string>
</resources>

You can access these via getText (), which gives you back an object supporting the
android.text.Spanned interface and therefore has all of the formatting applied:

((TextView)findViewById(R.id.another_ label))
.setText(getText(R.string.b));

Styled Text and Formats

Where styled text gets tricky is with styled string formats, as String.format() works on
String objects, not Spanned objects with formatting instructions. If you really want to
have styled string formats, here is the workaround:

1. Entity-escape the angle brackets in the string resource (e.g., this is
&1t;b8gt;%1$s81t; /blgt;).

2. Retrieve the string resource as normal, though it will not be styled at this
point (e.g., getString(R.string.funky format)).

3. Generate the format results, being sure to escape any string values you
substitute, in case they contain angle brackets or ampersands:

String.format(getString(R.string.funky format),
TextUtils.htmlEncode(strName));

4. Convert the entity-escaped HTML into a Spanned object via
Html.fromHtml():

someTextView.setText(Html
.fromHtml(resultFromStringFormat));

247

248 CHAPTER 23: Working with Resources

To see this in action, let’s look at the Resources/Strings demo. Here is the layout file:

<?xml version="1.0" encoding="utf-8"?>
<LinearLayout xmlns:android="http://schemas.android.com/apk/res/android"
android:orientation="vertical"
android:layout width="fill parent"
android:layout_height="fill parent"
>
<Linearlayout
android:orientation="horizontal"
android:layout_width="fill parent"
android:layout_height="wrap_content"
>
<Button android:id="@+id/format"
android:layout_width="wrap_content"
android:layout_height="wrap_content"
android:text="@string/btn_name"
android:onClick="applyFormat"
/>
<EditText android:id="@+id/name"
android:layout_width="fill parent"
android:layout_height="wrap_content"
/>
</Linearlayout>
<TextView android:id="@+id/result"”
android:layout_width="fill_parent"
android:layout_height="wrap_content"
/>
</LinearlLayout>

As you can see, it is just a button, a field, and a label. The idea is for users to enter their
name in the field, and then click the button to cause the label to be updated with a
formatted message containing their name.

The Button in the layout file references a string resource (@string/btn_name), so we need
a string resource file (res/values/strings.xml):

<?xml version="1.0" encoding="utf-8"?>
<resources>

<string name="app_name">StringsDemo</string>

<string name="btn_name">Name:</string>

<string name="funky format">My name is &1t;b>%1$s8&1t;/b></string>
</resources>

The app_name resource is automatically created by the android create project
command. The btn_name string is the caption of the Button, while our styled string
format is in funky_format.

Finally, to hook all this together, we need a pinch of Java:

package com.commonsware.android.strings;

import android.app.Activity;
import android.os.Bundle;
import android.text.TextUtils;
import android.text.Html;
import android.view.View;
import android.widget.EditText;

CHAPTER 23: Working with Resources 249

import android.widget.TextView;

public class StringsDemo extends Activity {
EditText name;
TextView result;

@0verride

public void onCreate(Bundle icicle) {
super.onCreate(icicle);
setContentView(R.layout.main);

name=(EditText)findViewById(R.id.name);
result=(TextView)findViewById(R.id.result);

}

public void applyFormat(View v) {
String format=getString(R.string.funky format);
String simpleResult=String.format(format,
TextUtils.htmlEncode(name.getText().toString()));
result.setText(Html.fromHtml(simpleResult));

}
}

The string resource manipulation can be found in applyFormat(), which is called when
the button is clicked. First, we get our format via getString() —something we could
have done at onCreate() time for efficiency. Next, we format the value in the field using
this format, getting a String back, since the string resource is in entity-encoded HTML.
Note the use of TextUtils.htmlEncode() to entity-encode the entered name, in case
somebody decides to use an ampersand or something. Finally, we convert the simple
HTML into a styled text object via Html.fromHtml() and update our label.

When the activity is first launched, we have an empty label, as shown in Figure 23-1.

250 CHAPTER 23: Working with Resources

Gl & 1:.03Pm

StringsDemo

Figure 23-1. The StringsDemo sample application, as initially launched

If we fill in a name and click the button, we get the result shown in Figure 23-2.
& 1:03Pm

StringsDemo

Inigo Montoya

My name Is Inigo Montoya

Figure 23-2. The same application, after filling in some heroic figure’s name

CHAPTER 23: Working with Resources 251

Got the Picture?

Android supports images in the PNG, JPEG, BMP, WEBP, and GIF formats. GIF is
officially discouraged, however. PNG is the most common format given its preference in
earlier versions of Android, and growing popularity on the Web in general. WEBP is
newly supported in Ice Cream Sandwich. It’s a codec built on the VP8 technology
acquired by Google in its purchase of On2 Technologies in 2010. WEBP (usually
pronounced “weppy”) provides approximately 40 percent better compression than
JPEG for the same image quality. Images can be used anywhere that you require a
Drawable, such as the image and background of an ImageView.

Using images is simply a matter of putting your image files in res/drawable/ and then
referencing them as a resource. Within layout files, images are referenced as
@drawable/..., where the ellipsis is the base name of the file (e.g., for
res/drawable/foo.png, the resource name is @drawable/foo). In Java, where you need
an image resource ID, use R.drawable. plus the base name (e.g., R.drawable.f00).

So, let’s update the previous example to use an icon for the button instead of the string
resource. This can be found as Resources/Images. We slightly adjust the layout file, using
an ImageButton and referencing a drawable named @drawable/icon, which refers to an
image file in res/drawable with a base name of icon. In this case, we use a 32x32-pixel
PNG file from the Nuvola icon set.

<?xml version="1.0" encoding="utf-8"?>
<LinearLayout xmlns:android="http://schemas.android.com/apk/res/android"
android:orientation="vertical"
android:layout width="fill parent"
android:layout_height="fill parent"
>
<Linearlayout
android:orientation="horizontal"
android:layout_width="fill parent"
android:layout_height="wrap_content"
>
<ImageButton android:id="@+id/format"
android:layout_width="wrap_content"
android:layout_height="wrap_content"
android:src="@drawable/icon"
android:onClick="applyFormat"
/>
<EditText android:id="@+id/name"
android:layout_width="fill parent"
android:layout_height="wrap_content"
/>
</Linearlayout>
<TextView android:id="@+id/result"
android:layout_width="fill parent"
android:layout_height="wrap_content"
/>
</LinearlLayout>

Now, our button has the desired icon, as shown in Figure 23-3.

252

CHAPTER 23: Working with Resources

Gl @ 1:04 Pm

ImagesDemo

7 —

Figure 23-3. The ImagesDemo sample application

XML: The Resource Way

If you wish to package static XML with your application, you can use an XML resource.
Simply put the XML file in res/xml/, and you can access it by getXml() on a Resources
object, supplying it a resource ID of R.xml. plus the base name of your XML file. For
example, in an activity, with an XML file of words.xml, you could call
getResources().getXml(R.xml.words). This returns an instance of an XmlPullParser,
found in the org.xmlpull.v1 Java namespace.

An XML pull parser is event-driven: you keep calling next() on the parser to get the next
event, which could be START_TAG, END_TAG, END_DOCUMENT, and so on. On a START_TAG
event, you can access the tag’s name and attributes; a single TEXT event represents the
concatenation of all text nodes that are direct children of this element. By looping,
testing, and invoking per-element logic, you parse the file.

To see this in action, let’s rewrite the Java code for the Files/Static sample project to
use an XML resource. This new project, Resources/XML, requires that you place the
words.xml file from Static notin res/raw/, but in res/xml/. The layout stays the same,
so all that needs to be replaced is the Java source:

package com.commonsware.android.resources;

import android.app.Activity;
import android.os.Bundle;

import android.app.ListActivity;
import android.view.View;

import android.widget.AdapterView;

CHAPTER 23: Working with Resources

import
import
import
import
import
import
import
import

public

android.widget.ArrayAdapter;
android.widget.ListView;
android.widget.TextView;
android.widget.Toast;
java.io.InputStream;
java.util.Arraylist;
org.xmlpull.vi.XmlPullParser;
org.xmlpull.vi.XmlPullParserException;

class XMLResourceDemo extends ListActivity {

TextView selection;
Arraylist<String> items=new ArraylList<String>();

@0verride

public void onCreate(Bundle icicle) {
super.onCreate(icicle);
setContentView(R.layout.main);
selection=(TextView)findViewById(R.id.selection);

try {

XmlPullParser xpp=getResources().getXml(R.xml.words);

while (xpp.getEventType()!=XmlPullParser.END_DOCUMENT) {

if (xpp.getEventType()==XmlPullParser.START TAG) {
if (xpp.getName().equals("word")) {
items.add(xpp.getAttributeValue(0));

}
}

xpp.next();

}
catch (Throwable t) {

Toast

.makeText(this, "Request failed: "+t.toString(), Toast.LENGTH_LONG)
.show();

setListAdapter(new ArrayAdapter<String>(this,

}

android.R.layout.simple list item 1,
items));

public void onListItemClick(ListView parent, View v, int position,

long id) {

selection.setText(items.get(position).toString());

}
}

Now, inside our try...catch block, we get our Xm1PullParser and loop until the end of
the document. If the current event is START_TAG and the name of the element is word
(xpp.getName().equals("word")), then we get the one and only attribute and pop that
into our list of items for the selection widget. Since we have complete control over the
XML file, it is safe enough to assume there is exactly one attribute. In other cases, if you
are not sure that the XML is properly defined, you might consider checking the attribute

253

254

CHAPTER 23: Working with Resources

count (getAttributeCount()) and the name of the attribute (getAttributeName()),
instead of assuming the 0-index attribute is what you think it is.

The result looks the same as before, albeit with a different name in the title bar, as
shown in Figure 23-4.

Nl & 1:06 PM

XMLResourceDemo

lorem

ipsum

dolor
sit
amet

consectetuer

Figure 23-4. The XMLResourceDemo sample application

Miscellaneous Values

In the res/values/ directory, in addition to string resources, you can place one or more
XML files describing other simple resources, such as dimensions, colors, and arrays.
You have already seen uses of dimensions and colors in previous examples, where they
were passed as simple strings (e.g., "10dip") as parameters to calls. You could set these
up as Java static final objects and use their symbolic names, but that works only inside
Java source, not in layout XML files. By putting these values in resource XML files, you
can reference them from both Java and layouts, plus have them centrally located for
easy editing.

Resource XML files have a root element of resources; everything else is a child of that root.

CHAPTER 23: Working with Resources

Dimensions

Dimensions are used in several places in Android to describe distances, such as a
widget’s padding. There are several different units of measurement available to you:

B in and mm for inches and millimeters, respectively. These are based on
the actual size of the screen.

B pt for points. In publishing terms, a point is 1/72 inch (again, based on
the actual physical size of the screen)

B dip and sp for device-independent pixels and scale-independent
pixels, respectively. One pixel equals one dip for a 160-dpi resolution
screen, with the ratio scaling based on the actual screen pixel density.
Scale-independent pixels also take into account the user’s preferred
font size.

To encode a dimension as a resource, add a dimen element, with a name attribute for
your unique name for this resource, and a single child text element representing the
value:

<resources>
<dimen name="thin">10px</dimen>
<dimen name="fat">1in</dimen>
</resources>

In a layout, you can reference dimensions as @dimen/.. ., where the ellipsis is a
placeholder for your unique name for the resource (e.g., thin and fat from the
preceding sample). In Java, you reference dimension resources by the unique name
prefixed with R.dimen. (e.g., Resources.getDimen(R.dimen.thin)).

Colors

Colors in Android are hexadecimal RGB values, with the option to also specify an alpha
channel. You have your choice of single-character hex values or double-character hex
values, providing four styles:

B #RGB
B #ARGB

B #RRGGBB

B #AARRGGBB

These work similarly to their counterparts in Cascading Style Sheets (CSS).

You can, of course, put these RGB values as string literals in Java source or layout
resources. If you wish to turn them into resources, though, all you need to do is add
color elements to the resource file, with a name attribute for your unique name for this
color, and a single text element containing the RGB value itself:

255

256

CHAPTER 23: Working with Resources

<resources>
<color name="yellow_orange">#FFD555</color>
<color name="forest_green">#005500</color>
<color name="burnt_umber">#8A3324</color>
</resources>

In a layout, you can reference colors as @color/..., replacing the ellipsis with your
unique name for the color (e.g., burnt_umber). In Java, you reference color resources by
the unique name prefixed with R.color. (e.g.,
Resources.getColor(R.color.forest green)).

Arrays

Array resources are designed to hold lists of simple strings, such as a list of honorifics
(Mr., Mrs., Ms., Dr., etc.).

In the resource file, you need one string-array element per array, with a name attribute
for the unique name you are giving the array. Then, add one or more child item
elements, each with a single text element containing the value for that entry in the array:

<?xml version="1.0" encoding="utf-8"?>
<resources>
<string-array name="cities">
<item>Philadelphia</item>
<item>Pittsburgh</item>
<item>Allentown/Bethlehem</item>
<item>Erie</item>
<item>Reading</item>
<item>Scranton</item>
<item>Lancaster</item>
<item>Altoona</item>
<item>Harrisburg</item>
</string-array>
<string-array name="airport_codes">
<item>PHL</item>
<item>PIT</item>
<item>ABE</item>
<item>ERI</item>
<item>RDG</item>
<item>AVP</item>
<item>LNS</item>
<item>A0O</item>
<item>MDT</item>
</string-array>
</resources>

From your Java code, you can then use Resources.getStringArray() to get a String|[]
of the items in the list. The parameter to getStringArray() is your unique name for the
array, prefixed with R.array. (e.g., Resources.getStringArray(R.array.honorifics)).

CHAPTER 23: Working with Resources 257

Different Strokes for Different Folks

One set of resources may not fit all situations where your application may be used. One
obvious area comes with string resources and dealing with internationalization (I18N)
and localization (L10N). Putting strings all in one language works fine—at least for the
developer—but covers only one language.

That is not the only scenario where resources might need to differ, though. Here are
others:

B Screen orientation: Is the screen in a portrait or landscape orientation?
Or is the screen square and, therefore, without an orientation?

B Screen size: How many pixels does the screen have, so you can size
your resources accordingly (e.g., large versus small icons)?

B Touchscreen: Does the device have a touchscreen? If so, is the
touchscreen set up to be used with a stylus or a finger?

B Keyboard: Which keyboard does the user have (QWERTY, numeric,
neither), either now or as an option?

B Other input: Does the device have some other form of input, like a D-
pad or click-wheel?

The way Android currently handles this is by having multiple resource directories, with
the criteria for each embedded in its name.

Suppose, for example, you want to support strings in both English and Spanish.
Normally, for a single-language setup, you would put your strings in a file named
res/values/strings.xml. To support both English and Spanish, you would create two
folders, res/values-en/ and res/values-es/, where the value after the hyphen is the
ISO 639-1 two-letter code for the language. Your English strings would go in
res/values-en/strings.xml and the Spanish ones would go in res/values-
es/strings.xml. Android will choose the proper file based on the user’s device settings.

An even better approach is for you to consider some language to be your default, and
put those strings in res/values/strings.xml. Then, create other resource directories for
your translations (e.g., res/values-es/strings.xml for Spanish). Android will try to
match a specific language set of resources; failing that, it will fall back to the default of
res/values/strings.xml.

Seems easy, right?

Where things start to get complicated is when you need to use multiple disparate criteria
for your resources. For example, suppose you want to develop for the following devices:

B HTC Nexus 1, which has a normal-size, high-density screen and no
hardware keyboard

B Samsung Galaxy Tab, which has a large-size, high-density screen and
no hardware keyboard

258

CHAPTER 23: Working with Resources

B Motorola Charm, which has a small-size, medium-density screen and
a hardware keyboard

You may want to have somewhat different layouts for these devices, to take advantage
of different screen real estate and different input options. Specifically, you may want the
following:

m Different layouts for each combination of size, orientation, and keyboard
B Different drawables for each density

Once you get into these sorts of situations, though, all sorts of rules come into play,
such as the following:

B The configuration options (e.g., -en) have a particular order of
precedence, and they must appear in the directory name in that order.
The Android documentation outlines the specific order in which these
options can appear. For the purposes of this example, screen size is
more important than screen orientation, which is more important than
screen density, which is more important than whether or not the
device has a keyboard.

B There can be only one value of each configuration option category per directory.
B Options are case sensitive.

So, for the sample scenario, in theory, we would need the following directories,
representing the possible combinations:

res/layout-large-port-mdpi-querty
res/layout-large-port-mdpi-nokeys
res/layout-large-port-hdpi-qwerty
res/layout-large-port-hdpi-nokeys
res/layout-large-land-mdpi-qwerty
res/layout-large-land-mdpi-nokeys
res/layout-large-land-hdpi-qwerty

]

]

]

]

]

]

B res/layout-large-land-hdpi-nokeys
B res/layout-normal-port-mdpi-qwerty
B res/layout-normal-port-mdpi-nokeys
B res/layout-normal-port-finger-qwerty
B res/layout-normal-port-hdpi-nokeys
B res/layout-normal-land-mdpi-qwerty
B res/layout-normal-land-mdpi-nokeys
]

res/layout-normal-land-hdpi-querty

CHAPTER 23: Working with Resources 259

res/layout-normal-land-hdpi-nokeys
res/drawable-large-port-mdpi-qwerty
res/drawable-large-port-mdpi-nokeys
res/drawable-large-port-hdpi-querty
res/drawable-large-port-hdpi-nokeys
res/drawable-large-land-mdpi-querty
res/drawable-large-land-mdpi-nokeys
res/drawable-large-land-hdpi-querty
res/drawable-large-land-hdpi-nokeys
res/drawable-normal-port-mdpi-qwerty
res/drawable-normal-port-mdpi-nokeys
res/drawable-normal-port-finger-qwerty
res/drawable-normal-port-hdpi-nokeys
res/drawable-normal-land-mdpi-querty

res/drawable-normal-land-mdpi-nokeys

res/drawable-normal-land-hdpi-querty
B res/drawable-normal-land-hdpi-nokeys
Don’t panic! We will shorten this list in just a moment!

Note that there is nothing preventing you from also having a directory with the
unadorned base name (res/layout). In fact, this is really a good idea, in case future
editions of the Android runtime introduce other configuration options you did not
consider—having a default layout might make the difference between your application
working or failing on that new device.

As promised, we can cut the number of required directories substantially. We do so by
decoding the rules Android uses for determining which, among a set of candidates, is
the correct resource directory to use:

1. Android tosses out directories that are specifically invalid. So, for
example, if the screen size of the device is normal, Android drops the -
large directories as candidates, since they call for some other size.

2. Android counts the number of matches for each folder, and pays
attention to only those with the most matches.

3. Android goes in the order of precedence of the options; in other words,
it goes from left to right in the directory name.

Also, our drawables vary only by density, and our layouts do not vary by density, so we
can clear out a lot of combinations by focusing on only the relevant platform differences.

260 CHAPTER 23: Working with Resources

So, we could skate by with only the following configurations:

B res/layout-large-land-qwerty
B res/layout-large-querty

B res/layout-large-land

B res/layout-large

B res/layout-normal-land-qwerty
B res/layout-normal-qwerty

B res/layout-normal-land

B res/layout

B res/drawable-hdpi

B res/drawable

Here, we take advantage of the fact that specific matches take precedence over
unspecified values. So, a device with a QWERTY keyboard will choose a resource with
gwerty in the directory over a resource that does not specify its keyboard type.

We could refine this even further, to cover only the specific devices we are targeting
(e.g., there is no large device with qwerty):

B res/layout-large-land
res/layout-large
res/layout-land-qwerty
res/layout-qwerty
res/layout-land

res/layout

res/drawable-hdpi
res/drawable

If we did not care about having different layouts depending on whether the device had a
hardware keyboard, we could drop the two -qwerty resource sets.

We will see these resource sets again in Chapter 25, which describes how to support
multiple screen sizes.

RTL Languages: Going Both Ways

Android 2.3 added support for many more languages than it supported in previous
versions of the platform. As such, you now have greater opportunity to localize your
application where it is needed.

CHAPTER 23: Working with Resources

In particular, Android 2.3 added support for right-to-left (RTL) languages, notably
Hebrew and Arabic. Previously, Android supported only languages written horizontally
from left to right, such as English. This means you may create localized versions for RTL
languages, but first you need to consider whether your Ul in general will work properly
for RTL languages. For example:

B Are your TextView widgets aligned on the left side with other widgets
or containers? If so, is that the right configuration for your RTL users?

B Will there be any issues with your EditText widgets when users start
entering RTL text, such as inappropriate scrolling because you have
not properly constrained the EditText widget’s width?

B If you created your own forms of text input, outside of EditText and
the input method framework (e.g., custom onscreen virtual keyboards),
will they support RTL languages?

261

Chapter

Defining and Using Styles

Every now and then, you will find some code with a cryptic style attribute in a layout
element. For example, in the chapter on threading, the following ProgressBar was
presented:
<?xml version="1.0" encoding="utf-8"?>
<LinearLayout xmlns:android="http://schemas.android.com/apk/res/android"
android:orientation="vertical"
android:layout width="fill parent"
android:layout_height="fill parent"
>
<ProgressBar android:id="@+id/progress"
style="?android:attr/progressBarStyleHorizontal"
android:layout_width="fill parent"
android:layout_height="wrap_content" />
</Linearlayout>

Something about that magic style attribute changed our ProgressBar from a normal
circle to a horizontal bar.

This chapter briefly explores the concept of styles, including how you create them and
how you apply them to your own widgets.

Styles: DIY DRY

The purpose of styles is to encapsulate a set of attributes that you intend to use
repeatedly, conditionally, or otherwise keep separate from your layouts proper. The
primary use case is “don’t repeat yourself” (DRY)—if you have a bunch of widgets that
look the same, use a style to use a single definition for “look the same,” rather than
copying the look from widget to widget.

That paragraph will make a bit more sense if we look at an example, specifically the
Styles/NowStyled sample project. This is the same project we examined in an earlier
chapter, with a full-screen button that shows the date and time at which the activity was
launched or the button was pushed. In this example, we want to change the appearance
of the text on the face of the button, which we will accomplish by using a style.

263

264

CHAPTER 24: Defining and Using Styles

The res/layout/main.xml file in this project is the same as it was in Chapter 20, but with
the addition of a style attribute:

<?xml version="1.0" encoding="utf-8"?>

<Button xmlns:android="http://schemas.android.com/apk/res/android"
android:id="@+id/button"
android:text=""
android:layout width="fill parent"
android:layout_height="fill parent"
style="@style/bigred"

/>

NOTE: Because the style attribute is part of stock XML, and therefore is not in the android
namespace, it does not get the android: prefix.

The value, @style/bigred, points to a style resource. Style resources are values
resources and can be found in the res/values/ directory in your project, or in other
resource sets (e.g., res/values-vi1/ for values resources to be used only on API level
11 or higher). The convention is to keep style resources in a styles.xml file, such as the
following from the NowStyled project:

<?xml version="1.0" encoding="utf-8"?>
<resources>
<style name="bigred">
<item name="android:textSize">30sp</item>
<item name="android:textColoxr">#FFFF0000</item>
</style>
</resources>

The <style> element supplies the name of the style, which is what we use when
referring to the style from a layout. The <item> children of the <style> element represent
values of attributes to be applied to whatever the style is applied to—in our example, our
Button widget. So, our Button will have a comparatively large font (android:textSize set
to 30sp) and its text will appear in red (android:textColor set to #FFFF0000).

No changes are needed elsewhere in the project—nothing needs to be adjusted in the
manifest, in the Java code of the activity, and so on. Just defining the style and applying
it to the widget gives us the result shown in Figure 24-1.

CHAPTER 24: Defining and Using Styles

Ml & 3:16am

Now, Styled

Wed Mar 30 08:04:49

EDT 2011

Figure 24-1. The Styles/NowStyled sample application

Elements of Style

There are four questions to consider when applying a style:

Where do you put the style attributes to say you want to apply a style?
Which attributes can you define via a style?

How do you inherit from a previously defined style (your own or one
from Android)?

What values can the attributes have in a style definition?

Where to Apply a Style

The style attribute can be applied to a widget, which affects only that widget.

The style attribute can also be applied to a container, which affects only that container.
However, doing this does not automatically style its children. For example, suppose
res/layout/main.xml looked instead like this:

<?xml version="1.0" encoding="utf-8"?>

<LinearLayout xmlns:android="http://schemas.android.com/apk/res/android"
android:layout_width="fill parent"
android:layout_height="fill parent"

265

266

CHAPTER 24: Defining and Using Styles

style="@style/bigred"
>
<Button
android:id="@+id/button"
android:text=""
android:layout_width="fill parent"
android:layout_height="fill parent"
/>
</LinearlLayout>

The resulting Ul would not have the Button text in a big red font, despite the style
attribute. The style affects only the container, not the contents of the container.

You can also apply a style to an activity or an application as a whole, in which case it is
referred to as a theme, as covered a bit later in this chapter.

The Available Attributes

When styling a widget or container, you can apply any of that widget’s or container’s
attributes in the style itself. So, if it appears in the “XML Attributes” or “Inherited XML
Attributes” section of the Android JavaDocs, you can put it in a style.

Note that Android will ignore invalid styles. So, had we applied the bigred style to the
LinearLayout as shown above, everything would run fine, just with no visible results.
Despite the fact that LinearLayout has no android:textSize or android:textColor
attribute, no compile-time failure or runtime exception occurs.

Also, layout directives, such as android:layout width, can be put in a style.

Inheriting a Style

You can also indicate that you want to inherit style attributes from another style, by
specifying a parent attribute on the <style> element. For example, take a look at this
style resource (which you will see again in Chapter 28, which covers Ul design using the
fragment framework):

<?xml version="1.0" encoding="utf-8"?>
<resources>
<style name="activated" parent="android:Theme.Holo">
<item name="android:background">?android:attr/activatedBackgroundIndicator</item>
</style>
</resources>

Here, we are indicating that we want to inherit the Theme.Holo style from within Android.
Hence, in addition to specifying all of our own attribute definitions, we are specifying
that we want all the attribute definitions from Theme.Holo as well.

In many cases, this will not be necessary. If you do not specify a parent, your attribute
definitions will be blended into whatever default style is being applied to the widget or
container.

CHAPTER 24: Defining and Using Styles

The Possible Values

Typically, the value that you will give the attributes in the style will be some constant, like
30sp or #FFFF0000. Sometimes, though, you may want to perform a bit of indirection, by
applying some other attribute value from the theme from which you are inheriting. In that
case, you need to use the somewhat cryptic ?android:attr/ syntax, along with a few
related magic incantations.

For example, let’s look again at this style resource:

<?xml version="1.0" encoding="utf-8"?>
<resources>
<style name="activated" parent="android:Theme.Holo">
<item name="android:background">?android:attr/activatedBackgroundIndicator</item>
</style>
</resources>

Here, we are indicating that the value of android:background is not some constant value,
or even a reference to a drawable resource (e.g., @drawable/my_background). Instead, we
are referring to the value of some other attribute—activatedBackgroundIndicator —from
our inherited theme. Whatever the theme defines as being the
activatedBackgroundIndicator is what our background should be.

Sometimes this is applied to a style as a whole. For example, let’s look again at the
ProgressBar:

<?xml version="1.0" encoding="utf-8"?>
<LinearLayout xmlns:android="http://schemas.android.com/apk/res/android"
android:orientation="vertical"
android:layout width="fill parent"
android:layout_height="fill parent"
>
<ProgressBar android:id="@+id/progress"
style="?android:attr/progressBarStyleHorizontal"
android:layout_width="fill parent"
android:layout_height="wrap_content" />
</Linearlayout>

Here, our style attribute—not a style resource —is pointing to a theme-supplied attribute
(progressBarStyleHorizontal). If you poke through the Android source code, you will
see that this is defined as being a style resource, specifically
@android:style/Widget.ProgressBar.Horizontal. Hence, we are saying to Android that
we want our ProgressBar styled as @android:style/Widget.ProgressBar.Horizontal,
via the indirection of ?android:attr/progressBarStyleHorizontal.

This portion of the Android style system is still very underdocumented, even with the
latest release of Android 4.0 Ice Cream Sandwich—the entire inheritance topic is three
short paragraphs. Google itself recommends that you look at the Android source code
listing the various styles to see what is possible.

This is one place where inheriting a style becomes important. In the first example shown
in this section, we inherited from Theme.Holo, because we specifically wanted the

267

268

CHAPTER 24: Defining and Using Styles

activatedBackgroundIndicator value from Theme.Holo. That value might not exist in
other styles, or it might not have the value we want.

Themes: A Style by Any Other Name...

Themes are styles applied to an activity or application via an android:theme attribute on
the <activity> or <application> element. If the theme you are applying is your own,
simply reference it as @style/..., just as you would in a style attribute of a widget. If
the theme you are applying comes from Android, though, typically you will use a value
with @android:style/ as the prefix, such as @android:style/Theme.Dialog or
@android:style/Theme.Light.

In a theme, your focus is not so much on styling widgets, but styling the activity itself.
For example, here is the definition of @android:style/Theme.NoTitleBar.Fullscreen:

<!-- Variant of the default (dark) theme that has no title bar and
fills the entire screen -->
<style name="Theme.NoTitleBar.Fullscreen">
<item name="android:windowFullscreen">true</item>
<item name="android:windowContentOverlay">@null</item>
</style>

It specifies that the activity should take over the entire screen, removing the status bar
on Android 1.x and 2.x devices (android:windowFullscreen set to true), and the action
bar on Android 3.x and 4.x devices. It also specifies that the content overlay—a layout
that wraps around your activity’s content view —should be set to nothing
(android:windowContentOverlay set to @null), having the effect of removing the title bar.

A theme might also specify other styles that are applied to specific widgets. For
example, we see the following in the root theme (Theme):

<item name="progressBarStyleHorizontal">@android:style/Widget.ProgressBar«
.Horizontal</item>

Here, progressBarStyleHorizontal is pointing to @android:style/
Widget.ProgressBar.Horizontal. This is how we are able to reference
?android:attr/progressBarStyleHorizontal in our ProgressBar widget, and we could
create our own theme that redefines progressBarStyleHorizontal to point to some
other style (e.g., if we want to change the rounded rectangle used for the actual
progress bar image itself).

o |11

Honeycomb and Tablets

Chapter

Handling Multiple Screen
Sizes

For the first year or so after Android 1.0 was released, all production Android devices
had the same screen resolution (HVGA, 320x480 pixels) and size (around 3.5 inches, or
9 centimeters). Starting in late 2009, though, devices started arriving with widely
disparate screen sizes and resolutions, from tiny QVGA (240x320) screens to much
larger WVGA (480x800) screens. In late 2010, tablets and Google TV devices appeared,
offering yet more screen sizes, and with the release of Honeycomb and Ice Cream
Sandwich, tablet and larger screen sizes exploded.

Of course, users will expect your application to be functional on all of these screens, and
perhaps take advantage of larger screen sizes to add greater value. To that end, Android
1.6 added new capabilities to help better support these differing screen sizes and
resolutions, and these capabilities have been extended in subsequent Android releases.
With the release of Android 3.0, the optional fragment system was introduced as a more
capable—though more complex—way of handling differing screen sizes. The Android
documentation has extensive coverage of the mechanics of handling multiple screen
sizes using both the traditional and fragment approaches. You are encouraged to read
that documentation along with this chapter (and Chapter 28) to understand fully how
best to cope with, and perhaps take advantage of, multiple screen sizes.

This chapter will deal with the more theoretical and abstract design ideas, with a number
of sections discussing the screen size options and theory. We’ll then move on to provide
an in-depth look at how to make a fairly simple application handle multiple screen sizes
well. This chapter will eschew the added complexity of fragments, but don’t fear: we’ll
return to the topic and fragments in Chapter 28.

Taking the Default

Let’s suppose that you start off by totally ignoring the issue of screen sizes and
resolutions. What happens?

2n

272

CHAPTER 25: Handling Multiple Screen Sizes

If your application is compiled for Android 1.5 or lower, Android will assume your
application was designed to look good on the classic screen size and resolution.
Android will then automatically do the following:

B If your application is installed on a device with a larger screen, Android
will run your application in compatibility mode, scaling everything
based on the actual screen size. So, suppose you have a 24-pixel
square PNG file, and Android installs and runs your application on a
device with the standard physical size but a WVGA resolution (a so-
called high-density screen). Android might scale your PNG file to be 36
pixels when it displays it, so it will take up the same visible space on
the screen. On the plus side, Android handles this automatically; on
the minus side, bitmap-scaling algorithms tend to make the images a
bit fuzzy.

B If your application is installed on a device with a smaller screen,
Android will block your application from running. Hence, QVGA
devices, like the HTC Tattoo, will be unable to get your application,
even if it is available on the Android Market.

To give you an example of how this affects your app, Figure 25-1 shows the
Containers/Table sample application as viewed on an HTC Tattoo, with its QVGA
screen.

Figure 25-1. Table sample in QVGA via compatibility mode

If your application is compiled for Android 1.6 or higher, Android assumes that you are
properly handling all screen sizes, and therefore will not run your application in
compatibility mode. Given the huge improvements in successive releases, especially
Android 2.2, 3.0, and 4.0, few if any developers will be targeting pre-1.6 releases. That

CHAPTER 25: Handling Multiple Screen Sizes 273

means you’ll almost invariably take this approach of handling screen size management
yourself. You will see how to tailor this in a later section.

Whole in One

The simplest approach to handling multiple screen sizes in Android is to design your
user interface (Ul) so that it automatically scales for the screen size, without any size-
specific code or resources. In other words, “it just works.”

This implies, though, that everything you use in your Ul can be gracefully scaled by
Android and that everything will fit, even on a QVGA screen.

The following sections provide some tips for achieving this all-in-one solution.

Think About Rules, Not Positions

Some developers, perhaps those coming from the drag-and-drop school of Ul
development, think first and foremost about the positions of widgets. They think that
they want certain widgets to be certain fixed sizes at certain fixed locations. They get
frustrated with Android layout managers (containers) and gravitate to the deprecated
Absolutelayout as a way to design Uls in the way they are used to doing it.

That approach rarely works well, even on desktops, as can be seen in applications that
do not handle window resizing very well. Similarly, that approach will not work on mobile
devices, particularly Android, with their wide range of screen sizes and resolutions.

Instead of thinking about positions, think about rules. You need to teach Android the
“business rules” about where widgets should be sized and placed, and then Android will
interpret those rules based on what the device’s screen actually supports in terms of
resolution.

The simplest rules are the fill parent and wrap content values for
android:layout width and android:layout_height. They do not specify specific sizes,
but rather adapt to the space available.

The richest environment for easily specifying rules is Relativelayout. While complicated
on the surface, Relativelayout does an excellent job of letting you control your layout
while still adapting it to other screen sizes. For example, you can do the following:

B Explicitly anchor widgets to the bottom or right side of the screen,
rather than hoping they will wind up there courtesy of some other
layout

B Control the distances between widgets that are connected (e.g., a
label for a field should be to the left of the field) without having to rely
on padding or margins

The greatest control for specifying rules is to create your own layout class. For example,
suppose you are creating a series of applications that implement card games. You may
want to have a layout class that knows the following about playing cards: how they

274

CHAPTER 25: Handling Multiple Screen Sizes

overlap, which are face up versus face down, how big it should be to handle varying
numbers of cards, and so forth. While you could achieve the desired look with, say, a
Relativelayout, you may be better served implementing a PlayingCardLayout or a
HandOfCardsLayout or something that is more explicitly tailored for your application.
Unfortunately, creating custom layout classes is underdocumented at this point in time.

Consider Physical Dimensions

Android offers a wide range of available units of measure for dimensions. The most
popular has been the pixel (px), because it is easy to wrap your head around the
concept. After all, every Android device has a screen with a certain number of pixels in
each direction.

However, pixels start to become troublesome as screen density changes. As the number
of pixels in a given screen size increases, the pixels effectively shrink. A 32-pixel icon on
a traditional Android device might be finger-friendly, but on a high-density device (say,
WVGA in a mobile phone form factor), 32 pixels may be a bit small for use with a finger.

If you have something intrinsically scalable (e.g., a Button) for which you had been
specifying a size in pixels, you might consider switching to using millimeters (mm) or
inches (in) as the unit of measure. 10 millimeters is 10 millimeters regardless of the
screen resolution or the screen size. This way, you can ensure that your widget is sized
to be finger-friendly, regardless of the number of pixels that might take.

Avoid “Real” Pixels

In some circumstances, using millimeters for dimensions does not make sense. In such
cases, you may want to consider using other units of measure while still avoiding “real”
pixels.

Android offers dimensions measured in density-independent pixels (dip). These map 1:1
to pixels for a 160-dpi screen (e.g., a classic HVGA Android device) and scale from
there. For example, on a 240-dpi device (e.g., a phone-sized WVGA device), the ratio is
2:3, so 50dip = 50px at 160 dpi and = 75px at 240 dpi. The advantage to the user of
going with dip is that the actual size of the dimension stays the same, so visibly there is
no difference between 50dip at 160 dpi and 50dip at 240 dpi.

Android also offers dimensions measured in scaled pixels (sp). Scaled pixels, in theory,
are scaled based on the user’s choice of font size (FONT_SCALE value in
System.Settings).

Choose Scalable Drawables

Classic bitmaps—PNG, JPG, BMP, and GIF—are not intrinsically scalable, nor is the
latest image format supported in Android 4.0—WEBP. If you are not running in
compatibility mode, Android will not even try to scale these for you based on screen

CHAPTER 25: Handling Multiple Screen Sizes

resolution and size. Whatever size of bitmap you supply is the size it will be, even if that
makes the image too large or too small on some screens.

One way to address this is to try to avoid static bitmaps, using nine-patch bitmaps and
XML-defined drawables (e.g., GradientDrawable) as alternatives. A nine-patch bitmap is
a PNG file specially encoded to have rules indicating how that image can be stretched
to take up more space. XML-defined drawables use a quasi-SVG XML language to
define shapes, their strokes and fills, and so on.

Tailor-Made, Just for You (and You, and You, and...)

There will be times when you want to have different looks or behaviors based on screen
size or density. Android has techniques that you can use to switch out resources or
code blocks based on the environment in which your application runs. When these
techniques are properly used in combination with the techniques described in the
preceding section, achieving screen size- and density-independence is eminently
possible, at least for devices running Android 1.6 and newer.

Adding the <supports-screens> Element

The first step to proactively supporting different screen sizes is to add the <supports-
screens> element to your AndroidManifest.xml file. This specifies which screen sizes
your application explicitly supports and which it does not support. Those that it does not
explicitly support will be handled by the automatic compatibility mode, described
previously.

Here is a manifest containing a <supports-screens> element:

<?xml version="1.0" encoding="utf-8"?>
<manifest xmlns:android="http://schemas.android.com/apk/res/android"
package="com.commonsware.android.eusyou"
android:versionCode="1"
android:versionName="1.0">
<supports-screens
android:largeScreens="true"
android:normalScreens="true"
android:smallScreens="true"
android:anyDensity="true"
/>
<application android:label="@string/app_name"
android:icon="@drawable/cw">
<activity android:name=".EU4You"
android:label="@string/app_name">
<intent-filter>
<action android:name="android.intent.action.MAIN" />
<category android:name="android.intent.category.LAUNCHER" />
</intent-filter>
</activity>
</application>
</manifest>

275

276

CHAPTER 25: Handling Multiple Screen Sizes

The android:smallScreens, android:normalScreens, and android:largeScreens
attributes are fairly self-explanatory: each takes a Boolean value that indicates whether
your application explicitly supports screens of that size (true) or requires compatibility
mode assistance (false). Android 2.3 has also added android:xlargeScreens for larger
tablets, televisions, and more (theatres, anyone?).

The android:anyDensity attribute indicates whether you are taking density into account
in your calculations (true) or not (false). If false, Android will treat all of your
dimensions (e.g., 4px) as if they were for a normal-density (160-dpi) screen. If your
application is running on a screen with lower or higher density, Android will scale your
dimensions accordingly. If you indicate that android:anyDensity = "true", you are
telling Android not to do that, putting the onus on you to use density-independent units,
such as dip, mm, or in.

Resources and Resource Sets

The primary way to toggle different things based on screen size or density is to create
resource sets. By creating resource sets that are specific to different device
characteristics, you teach Android how to render each, and Android then switches
among those sets automatically.

Default Scaling

By default, Android scales all drawable resources. Those that are intrinsically scalable,
as previously described, will scale nicely. Ordinary bitmaps are scaled using a normal
scaling algorithm, which may or may not give you great results. It also may slow down
your application a bit. To avoid this, you need to set up separate resource sets
containing your nonscalable bitmaps.

Density-Based Sets

If you wish to have different layouts, dimensions, or the like based on different screen
densities, you can use the -1dpi, -mdpi, -hdpi, and -xhdpi resource set labels. For
example, res/values-hdpi/dimens.xml would contain dimensions used in high-density
devices.

Note that there is a bug in Android 1.5 (API level 3) when it comes to working with these
screen-density resource sets. Even though all Android 1.5 devices are medium density,
Android 1.5 might pick one of the other densities by accident. If you intend to support
Android 1.5 and use screen-density resource sets, you need to clone the contents of
your -mdpi set, with the clone named -mdpi-v3. This version-based set is described in
greater detail a bit later in this section.

CHAPTER 25: Handling Multiple Screen Sizes 277

Size-Based Sets

Similarly, if you wish to have different resource sets based on screen size, Android offers
-small, -normal, -large, and -xlarge resource set labels. Creating res/layout-large-
land/ would indicate layouts to use on large screens (e.g., WVGA) in landscape
orientation.

Version-Based Sets

There may be times when earlier versions of Android get confused by newer resource
set labels. To help with that, you can add a version label to your resource set, of the
form -vN, where N is an API level. Hence, res/drawable-large-v4/ indicates these
drawables should be used on large screens at API level 4 (Android 1.6) and newer.

So, if you find that Android 1.5 emulators or devices are grabbing the wrong resource
sets, consider adding -v4 to their resource set names to filter them out.

Finding Your Size

If you need to take different actions in your Java code based on screen size or density,
you have a few options.

If there is something distinctive in your resource sets, you can “sniff” based on that and
branch accordingly in your code. For example, as you will see in the code sample later
in this chapter, you can have extra widgets in some layouts (e.g., res/layout-
large/main.xml); simply seeing if an extra widget exists will tell you if you are running a
large screen or not.

You can also find out your screen size class via a Configuration object, typically obtained
by an Activity via getResources().getConfiguration(). A Configuration object has a
public field named screenlLayout that is a bitmask indicating the type of screen the
application is running on. You can test to see if your screen is small, normal, or large, or if
it is long (where “long” indicates a 16:9 or similar aspect ratio, compared to 4:3). For
example, here we test to see if we are running on a large screen:

if (getResources().getConfiguration().screenLayout
& Configuration.SCREENLAYOUT SIZE LARGE)
==Configuration.SCREENLAYOUT SIZE LARGE) {
// yes, we are large

else {
// no, we are not

}

Similarly, you can find out your screen density, or the exact number of pixels in your
screen size, using the DisplayMetrics class.

278

CHAPTER 25: Handling Multiple Screen Sizes

Ain’t Nothing Like the Real Thing

The Android emulators will help you test your application on different screen sizes.
However, that will only get you so far, because mobile device LCDs have different
characteristics from those of your desktop or notebook, such as the following:

B Mobile device LCDs may have a much higher density than that of your
development machine.

B A mouse allows for much more precise touchscreen input than does
an actual fingertip.

Where possible, you are going to need to either use the emulator in new and exciting
ways or try to get your hands on actual devices with alternative screen resolutions.

Density Differs

The Motorola DROID has a 240-dpi, 3.7-inch, 480x854-pixel screen (an FWVGA
display). To emulate a DROID screen, based on pixel count, takes up one-third of a 19-
inch, 1280x1024-pixel LCD monitor, because the LCD monitor’s density is much lower
than that of the DROID —around 96 dpi. So, when you fire up your Android emulator for
an FWVGA display like that of the DROID, you will get a massive emulator window.

This is still perfectly fine for determining the overall look of your application in an FWVGA
environment. Regardless of density, widgets will still align the same, sizes will have the
same relationships (e.g., widget A might be twice as tall as widget B, and that will be
true regardless of density), and so on.

However, keep the following in mind:

B Things that might appear to be a suitable size when viewed on a 19-
inch LCD may be entirely too small on a mobile device screen of the
same resolution.

B Things that you can easily click with a mouse in the emulator may be
much too small to pick out on a physically smaller and denser screen
when used with a finger.

Adjusting the Density

By default, the emulator keeps the pixel count accurate at the expense of density, which
is why you get the really big emulator window. You do have an option, though, of having
the emulator keep the density accurate at the expense of pixel count.

The easiest way to do this is to use the Android AVD Manager, introduced in Android 1.6.
The Android 2.0 edition of this tool has a Launch Options dialog box that pops up when
you start an emulator instance via the Start button, as shown in Figure 25-2.

CHAPTER 25: Handling Multiple Screen Sizes

Launch Options x

skin: WwWGAB00 (480x800)
Density: High (240)

[#]:Scale display to real size

Screen Size (in): |3.5
Moniter dpi: |94 j

Scale: 035

Wipe user data
[] Launch frem snapshot

[] Save to snapshot

Cancel | Launch |

Figure 25-2. The Launch Options dialog box

By default, the “Scale display to real size” check box is unchecked, and Android will
open the emulator window normally. You can check that check box and then provide
two bits of scaling information:

B The screen size of the device you wish to emulate, in inches (e.g., 3.7
inches for the Motorola DROID)

B The dpi of your monitor (click the ? button to open a calculator that
helps you determine what your dpi value is)

This gives you an emulator window that more accurately depicts what your user
interface will look like on a physical device, at least in terms of sizes. However, since the
emulator is using far fewer pixels than will a device, fonts may be difficult to read,
images may be blocky, and so forth.

Ruthlessly Exploiting the Situation

So far, we have focused on how you can ensure that your layouts look decent on other
screen sizes. For screens that are smaller than the norm (e.g., QVGA), that is perhaps all
you can hope to achieve.

Once you get into larger screens, though, another possibility emerges: using different
layouts designed to take advantage of the extra screen space. This is particularly useful
when the physical screen size is larger (e.g., a 5-inch LCD like that on the Dell Streak
Android tablet, or a 7-inch LCD like that on the Samsung Galaxy Tab), rather than simply
having more pixels in the same physical space.

The following sections describe some ways you might take advantage of additional
space.

279

280

CHAPTER 25: Handling Multiple Screen Sizes

Replace Menus with Buttons

An options menu selection requires two physical actions: press the Menu button, and
then tap on the appropriate menu choice. A context menu selection requires two
physical actions as well: long-tap on the widget, and then tap on the menu choice.
Context menus have the additional problem of being effectively invisible; for example,
users may not realize that your ListView has a context menu.

You might consider augmenting your Ul to provide direct onscreen ways of
accomplishing things that might otherwise be hidden away on a menu. This not only
reduces the number of steps a user needs to take to do things, but also makes those
options more obvious.

For example, suppose you are creating a media player application, and you want to offer
manual playlist management. You have an activity that displays the songs in a playlist in
a ListView. On an options menu, you have an Add choice, to add a new song from the
ones on the device to the playlist. On a context menu on the ListView, you have a
Remove choice, plus Move Up and Move Down choices to reorder the songs in the list.
For large screens, though, you might consider adding four ImageButton widgets to your
Ul for these four options, with the three from the context menu enabled only when a row
is selected by the D-pad or trackball. On regular or small screens, you would stick with
just using the menus.

Replace Tabs with a Simple Activity

You may have introduced a TabHost into your Ul to allow you to display more widgets in
the available screen space. As long as the widget space you save by moving them to a
separate tab is larger than the space taken up by the tabs themselves, you win.
However, having multiple tabs means more user steps to navigate your Ul, particularly if
the user needs to flip back and forth between tabs frequently.

If you have only two tabs, consider changing your Ul to offer a large-screen layout that
removes the tabs and puts all the widgets on one screen (or again, wait for the
discussion on fragments in Chapter 28). This enables the user to see everything without
having to switch tabs all the time.

If you have three or more tabs, you probably lack screen space to put all those tabs’
contents on one activity. However, you might consider going half and half: have popular
widgets be on the activity all of the time, leaving your TabHost to handle the rest on
(roughly) half of the screen.

Consolidate Multiple Activities

The most powerful technique is to use a larger screen to get rid of activity transitions
outright. For example, if you have a ListActivity where clicking on an item brings up
that item’s details in a separate activity, consider supporting a large-screen layout where
the details are on the same activity as the ListView (e.g., ListView on the left, details on

CHAPTER 25: Handling Multiple Screen Sizes 281

the right, in a landscape layout). This eliminates the user having to constantly press the
Back button to leave one set of details before viewing another.

You will see this technique applied in the sample code presented in the following
section.

Example: EU4You

To examine how to use some of the techniques introduced in the previous sections, let’s
look at the ScreenSizes/EU4You sample application. This application has one activity
(EU4You) that contains a ListView with the roster of European Union members and their
respective flags. Clicking on one of the countries brings up the mobile Wikipedia page
for that country.

In the source code to this book, you will find four versions of this application. We start
with an application that is ignorant of screen size and slowly add in more screen-related
features.

The First Cut

First, here is our AndroidManifest.xml file, which looks distinctly like the one shown
earlier in this chapter:

<?xml version="1.0" encoding="utf-8"?>
<manifest xmlns:android="http://schemas.android.com/apk/res/android"
package="com.commonsware.android.eudyou"
android:versionCode="1"
android:versionName="1.0">
<supports-screens
android:xlargeScreens="true"
android:largeScreens="true"
android:normalScreens="true"
android:smallScreens="true"
android:anyDensity="true"
/>
<application android:label="@string/app_name"
android:icon="@drawable/cw">
<activity android:name=".EU4You"
android:label="@string/app_name">
<intent-filter>
<action android:name="android.intent.action.MAIN" />
<category android:name="android.intent.category.LAUNCHER" />
</intent-filter>
</activity>
</application>
</manifest>

Note that we have included the <supports-screens> element, which indicates that we do
indeed support all screen sizes. This blocks most of the automatic scaling that Android
would do if we did not specify that we support certain screen sizes.

Our main layout is size-independent, as it is just a full-screen ListView:

282

CHAPTER 25: Handling Multiple Screen Sizes

<?xml version="1.0" encoding="utf-8"?>

<ListView xmlns:android="http://schemas.android.com/apk/res/android"
android:id="@android:id/list"
android:layout width="fill parent"
android:layout_height="fill parent"

/>

Our row, though, will eventually need some tweaking:

<?xml version="1.0" encoding="utf-8"?>

<LinearLayout xmlns:android="http://schemas.android.com/apk/res/android"
android:layout width="fill parent"
android:layout_height="wrap_content"
android:padding="2dip"
android:minHeight="?android:attr/listPreferredItemHeight"

<ImageView android:id="@+id/flag"
android:layout_width="wrap_content"
android:layout_height="wrap_content"
android:layout gravity="center vertical|left"
android:paddingRight="4dip"

/>

<TextView android:id="@+id/name"
android:layout_width="wrap_content"
android:layout_height="wrap_content"
android:layout gravity="center vertical|right"
android:textSize="20dip"

/>

</Linearlayout>

For example, right now, our font size is set to 20dip, which will not vary by screen size or
density.

Our EU4You activity is a bit verbose, mostly because there are a lot of EU members, so
we need to have the smarts to display the flag and the text in the row:

package com.commonsware.android.eudyou;

import android.app.ListActivity;
import android.content.Intent;
import android.net.Uri;

import android.os.Bundle;

import android.view.View;

import android.view.ViewGroup;
import android.widget.ArrayAdapter;
import android.widget.ImageView;
import android.widget.ListView;
import android.widget.TextView;
import java.util.Arraylist;

public class EU4You extends ListActivity {
static private ArraylList<Country> EU=new ArraylList<Country>();

static {
EU.add(new Country(R.string.austria, R.drawable.austria,
R.string.austria_url));
EU.add(new Country(R.string.belgium, R.drawable.belgium,
R.string.belgium url));

CHAPTER 25

: Handling Multiple Screen Sizes

EU.add(new
EU.add(new

EU.add(new

EU.add(new
EU.add(new
EU.add(new
EU.add(new
EU.add(new
EU.add(new
EU.add(new
EU.add(new
EU.add(new
EU.add(new
EU.add(new
EU.add(new
EU.add(new
EU.add(new
EU.add(new
EU.add(new
EU.add(new
EU.add(new
EU.add(new
EU.add(new
EU.add(new

EU.add(new

}

@0verride

Country(R.string.bulgaria, R.drawable.bulgaria,
R.string.bulgaria url));
Country(R.string.cyprus, R.drawable.cyprus,
R.string.cyprus_url));
Country(R.string.czech_republic,
R.drawable.czech_republic,
R.string.czech_republic_url));
Country(R.string.denmark, R.drawable.denmark,
R.string.denmark url));
Country(R.string.estonia, R.drawable.estonia,
R.string.estonia_url));
Country(R.string.finland, R.drawable.finland,
R.string.finland url));
Country(R.string.france, R.drawable.france,
R.string.france url));
Country(R.string.germany, R.drawable.germany,
R.string.germany url));
Country(R.string.greece, R.drawable.greece,
R.string.greece url));
Country(R.string.hungary, R.drawable.hungary,
R.string.hungary url));
Country(R.string.ireland, R.drawable.ireland,
R.string.ireland url));
Country(R.string.italy, R.drawable.italy,
R.string.italy url));
Country(R.string.latvia, R.drawable.latvia,
R.string.latvia_url));
Country(R.string.lithuania, R.drawable.lithuania,
R.string.lithuania_url));

Country(R.string.luxembourg, R.drawable.luxembourg,

R.string.luxembourg url));
Country(R.string.malta, R.drawable.malta,
R.string.malta_url));

Country(R.string.netherlands, R.drawable.netherlands,

R.string.netherlands url));
Country(R.string.poland, R.drawable.poland,
R.string.poland url));
Country(R.string.portugal, R.drawable.portugal,
R.string.portugal url));
Country(R.string.romania, R.drawable.romania,
R.string.romania_url));
Country(R.string.slovakia, R.drawable.slovakia,
R.string.slovakia_url));
Country(R.string.slovenia, R.drawable.slovenia,
R.string.slovenia_url));
Country(R.string.spain, R.drawable.spain,
R.string.spain_url));
Country(R.string.sweden, R.drawable.sweden,
R.string.sweden_url));
Country(R.string.united_kingdom,
R.drawable.united_kingdom,
R.string.united_kingdom url));

public void onCreate(Bundle savedInstanceState) {

283

284 CHAPTER 25: Handling Multiple Screen Sizes

super.onCreate(savedInstanceState);

setContentView(R.layout.main);

setListAdapter(new CountryAdapter());
}

@0verride
protected void onListItemClick(ListView 1, View v,
int position, long id) {
startActivity(new Intent(Intent.ACTION VIEW,
Uri.parse(getString(EU.get(position).url))));
}

static class Country {
int name;
int flag;
int url;

Country(int name, int flag, int url) {
this.name=name;
this.flag=flag;
this.url=url;
}
}

class CountryAdapter extends ArrayAdapter<Country> {
CountryAdapter() {
super (EU4You.this, R.layout.row, R.id.name, EU);

@0verride
public View getView(int position, View convertView,
ViewGroup parent) {
CountryWrapper wrapper=null;

if (convertView==null) {
convertView=getLayoutInflater().inflate(R.layout.row, null);
wrapper=new CountryWrapper(convertView);
convertView.setTag(wrapper);

else {
wrapper=(CountryWrapper)convertView.getTag();

wrapper.populateFrom(getItem(position));

return(convertView);

}
}

class CountryWrapper {
private TextView name=null;
private ImageView flag=null;
private View row=null;

CountryWrapper(View row) {
this.row=row;

CHAPTER 25: Handling Multiple Screen Sizes

}

TextView getName() {
if (name==null) {
name=(TextView)row.findViewById(R.id.name);

}

return(name);

ImageView getFlag() {
if (flag==null) {
flag=(ImageView)row.findViewById(R.id.flag);

return(flag);

void populateFrom(Country nation) {
getName().setText(nation.name);
getFlag().setImageResource(nation.flag);

}
}

Figures 25-3, 25-4, and 25-5 show what the activity looks like in an ordinary HVGA
emulator, a WVGA emulator, and a QVGA screen, respectively.

th Za Ml @ 5:05 PM

Figure 25-3. EU4You, original version, HVGA

285

286 CHAPTER 25: Handling Multiple Screen Sizes

Ml @ 5:08 PM

E Greece
L

- Hungary
-Ir'e\and
I Italy

L\’thuama

- Luxembourg
Figure 25-4. EU4You, original version, WVGA (800 x 480 pixels)

@& 5:13pm

EU4You

Figure 25-5. EU4You, original version, QVGA

CHAPTER 25: Handling Multiple Screen Sizes 287

Fixing the Fonts

The first problem that should be fixed is the font size. As you can see, with a fixed 20-
pixel size, the font ranges from big to tiny, depending on screen size and density. For a
WVGA screen, the font may be rather difficult to read.

We could put the dimension as a resource (res/values/dimens.xml) and have different
versions of that resource based on screen size or density. However, it is simpler to just
specify a density-independent size, such as 5mm, as seen in the ScreenSizes/EU4You_2
project:

<?xml version="1.0" encoding="utf-8"?>

<LinearLayout xmlns:android="http://schemas.android.com/apk/res/android"
android:layout width="fill parent"
android:layout_height="wrap_content"
android:padding="2dip"
android:minHeight="?android:attr/listPreferredItemHeight"

<ImageView android:id="@+id/flag"
android:layout_width="wrap_content"
android:layout_height="wrap_content"
android:layout gravity="center vertical|left"
android:paddingRight="4dip"

/>

<TextView android:id="@+id/name"
android:layout_width="wrap_content"
android:layout_height="wrap_content"
android:layout gravity="center vertical|right"
android:textSize="5mm"

/>

</Linearlayout>

Figures 25-6, 25-7, and 25-8 show what the new activity looks like on HVGA, WVGA,
and QVGA screens, respectively.

288

CHAPTER 25: Handling Multiple Screen Sizes

th Z Ml @3 6:03PM

I Beléum

B Bulgaria

Il Cyprus
M (Czech Republic

== Denmark

Cctnnina

Figure 25-6. EU4You, 5mm font version, HVGA

Al 8 e:10Pm

UdYou

m= Austria
I Belgium
™ Bulgaria

Bl Cyprus

M (Czech Republic

== Denmark

Figure 25-7. EU4You, 5mm font version, WVGA (800 x 480 pixels)

CHAPTER 25: Handling Multiple Screen Sizes 289

@Ml @ s01Pm

EUdYou

m— Astria
I Belgium
™ Bulgaria

Bl Cyprus

™ Czech Republic

== Denmark

Figure 25-8. EU4You, 5mm font version, QVGA

Now our font is a consistent size and large enough to match the flags.

Fixing the Icons

So, what about those icons? They should vary in size as well, since they are the same
for all three emulators.

However, Android automatically scales bitmap resources, even with <supports-screens>
and its attributes set to true. On the plus side, this means you may not have to do
anything with these bitmaps. However, you are relying on a device to do the scaling,
which definitely costs CPU time (and, hence, battery life). Also, the scaling algorithms
that the device uses may not be optimal, compared to what you can do with graphics
tools on your development machine.

The ScreenSizes/EU4You_3 project creates res/drawable-1dpi and res/drawable-hdpi,
putting in smaller and larger renditions of the flags, respectively. This project also
renames res/drawable to res/drawable-mdpi. Android will use the flags for the
appropriate screen density, depending on what the device or emulator needs.

Because this effect is subtle and will not show up well in this book, screenshots aren’t
provided.

Using the Space

While the activity looks fine on WVGA in portrait mode, it really wastes a lot of space in
landscape mode, as shown in Figure 25-9.

290

CHAPTER 25: Handling Multiple Screen Sizes

Al € 6:36 PM

EUdYou

Figure 25-9. EU4You, landscape WVGA (800 x 480 pixels)

We can put that space to better use by having the Wikipedia content appear directly on
the main activity when in large-screen landscape mode; that saves having to spawn a
separate browser activity.

To do this, we first must clone the main.xml layout into a res/layout-large-land
rendition that incorporates a WebView widget, as seen in ScreenSizes/EU4You_4:

<?xml version="1.0" encoding="utf-8"?>
<LinearLayout xmlns:android="http://schemas.android.com/apk/res/android"
android:layout width="fill parent"
android:layout_height="fill parent"
>
<ListView
android:id="@android:id/1ist"
android:layout_width="fill parent"
android:layout_height="fill parent"
android:layout_weight="1"
/>
<WebView
android:id="@+id/browser"
android:layout_width="fill parent"
android:layout_height="fill parent"
android:layout_weight="1"
/>
</Linearlayout>

Then, we need to adjust our activity to look for that WebView and use it if found, and
otherwise to default to launching a browser activity:

@0verride

public void onCreate(Bundle savedInstanceState) {
super.onCreate(savedInstanceState);
setContentView(R.layout.main);

browser=(WebView)findViewById(R.id.browser);

setListAdapter(new CountryAdapter());

CHAPTER 25: Handling Multiple Screen Sizes

}

@0verride
protected void onListItemClick(ListView 1, View v,
int position, long id) {
String url=getString(EU.get(position).url);

if (browser==null) {
startActivity(new Intent(Intent.ACTION VIEW,
Uri.parse(url)));

else {
browser.loadUrl(url);
}
}
This gives us a more space-efficient edition of the activity, as shown in Figure 25-10.
u1} M 3 6:49 P
W|Aus[ria ‘ Q‘
| Text WIKI to 25383 to donate $10 to Wikipedial
I Belgium Austria

This article is about the country. For other uses of terms redirecting
here, see Austria (disambiguation] and Osterreich (disambiguation).

™= Bulgaria

Republic of Austria
Republik Osterreich

Il cyprus

™ Czech Republic

5= Denmark

Cetnnina

Figure 25-10. EU4You, landscape WVGA (800 < 480 pixels), set for normal density, and showing the embedded
WebView

If the user clicks a link in the Wikipedia page, the full browser opens, for easier surfing.
We could repeat the exercise to add even more data to the activity for an xlarge screen.

Note that testing this version of the activity, to see this behavior, requires a bit of extra
emulator work. By default, Android sets up WVGA devices as being high-density,
meaning WVGA is not large in terms of resource sets, but rather normal. You will need to
create a different emulator AVD that is set for normal (medium) density, which will result
in a large screen size.

291

292

CHAPTER 25: Handling Multiple Screen Sizes

What If It Is Not a Browser?

Of course, EU4You does cheat a bit. The second activity is a browser (or WebView in the
embedded form), not some activity of your own creation. Things get slightly more
complicated if the second activity is some activity of yours, with many widgets in a
layout, and you want to both use it as an activity (for smaller screens) and have it
embedded in your main activity Ul (for larger screens).

The best way to approach this problem, for Android 1.6 and newer, is to employ the new
fragments system. Although this was introduced with Android 3.0, the Android
Compatibility Library makes fragments available in earlier versions of Android. The basic
use of fragments —complete with another edition of the EU4You sample —will be covered
in Chapter 28.

Chapter

Focusing on Tablets and
Larger Uls

February 2011 saw the introduction of Android 3.0 and a Ul paradigm that embraced
screens of radically larger size than the traditional phones for which earlier versions of
Android had been designed. Fast-forward to October 2011, and Android 4.0 Ice Cream
Sandwich (ICS) has been released, unifying the tablet-specific Honeycomb Ul system
from Android 3.0 with the mainstream Android code base. The move to embrace tablets,
and indeed larger devices such as televisions, cinema displays, and so forth, presents
the biggest single change in Android since Android 0.9, before the first phones were
available.

Whether to consider tablet devices when designing and building Android applications is
a matter of your own preference, but knowing the ways in which the platform has
adapted to large formats will allow you to design your code to easily accommodate
tablets in the future and, most importantly, deal with the core tenets of the APIs that
must be addressed regardless of your feelings toward tablets. This chapter is focused
more on the big picture of the current state of the APIs for tablet-sized devices and their
place within Android.

Why the Drive to Tablets?

In principle, Android’s original phone-centric Ul can run on tablets. After all, a few tablets
have shipped with Android 2.2 support, such as the Samsung Galaxy Tab and ZTE V9.
Clearly, those manufacturers thought the Android of the time was strong enough for
their tablet devices.

That being said, as you get into larger tablets (e.g., the Motorola XOOM with its 10-inch
diagonal screen), the older Android phone Ul starts to become clunkier. Although
applications can scale up to use the larger screen, the default way to scale up is just to
make everything bigger, frequently resulting in a lot of wasted space. Whereas an e-mail
client on a phone might dedicate an activity to showing the list of e-mails in the inbox,

293

294

CHAPTER 26: Focusing on Tablets and Larger Uls

an e-mail client on a tablet really ought to show the list of e-mails plus something else,
such as the content of a selected e-mail. We have the room, so we may as well use it.

Similarly, the dependence on menus, while reasonable on a phone, makes less sense on
a tablet. We have the space to show more of those functions right on the screen. Hiding
them in menus makes them less discoverable to users and requires extra taps to
access.

So, “modern” Android is designed to retain the essence of the Android user experience,
while allowing applications to (relatively) gracefully take advantage of the space that is
available.

What the User Sees

A tablet screen looks a bit different from an Android 2.x screen on a traditional phone, as
shown in Figure 26-1.

Figure 26-1. The Android app launcher, as seen on the emulator configured as a tablet

With all that additional real estate, various stock components can be placed in more
varied locations. In this example, we see the system bar located on the bottom of the
screen. On the left end of the system bar are onscreen buttons for Back, Home, and
recent tasks (obviating the need to remember the long-press of the Home button to
achieve the same effect). Notification icons appear on the right of the system bar, along
with the clock and the signal and battery strength indicators (the concept of notifications
will be covered in Chapter 37).

The Ul of an application that has not been optimized for Android 3.x/4.0 appears much
the same, as shown in Figure 26-2.

CHAPTER 26: Focusing on Tablets and Larger Uls

BElorem
Bipsum
B dolor

v sit

v amet

consectetuer

Figure 26-2. The FancyLists/Dynamic sample project, on Android 3.0

The only substantive difference is the new icon forth from the left in the system bar,
which will open an Android 2.x options menu, if the application has one.

Tablet-optimized applications will look a bit different, as shown in Figure 26-3.

Phone-only, unsynced contact E.

Name

Add organization

PHONE

Phone HOME

EMAIL

Email HOME

ADDRESS

Address HOME
4

Figure 26-3. Adding a contact on Android 4.0

At the top of the screen is the action bar, taking over the space where pre-Android 3.0
apps would use menus. In Figure 26-3, the Done option appears as a menu choice.
Other menu behaviors to note are things such as the < icon on the left end of the action
bar, as shown in Figure 26-4.

295

296 CHAPTER 26: Focusing on Tablets and Larger Uls

Jane Smith
Some Company Over There

Figure 26-4. The < icon for moving up in the hierarchy of actions, displayed in Android 4.0

In this case, tapping the < icon takes the user up in the hierarchy of actions in this
application, going “up” from viewing a new contact to viewing the list of existing
contacts, as shown in Figure 26-5.

5554:adtab

Setup my profile

J

Jane Smith

John Doe

Figure 26-5. The roster of available contacts as displayed in Android 4.0

Our Ul has come almost full-circle over the life of several Android versions. In Android 2.x,
the contacts Ul would have one activity with the list of contacts, and a separate activity
to view the details of that contact. In Android 3.0, these are combined into a single
activity. With Android 4.0, we’ve reverted to the one-activity-per-operation mode.

CHAPTER 26: Focusing on Tablets and Larger Uls

The right side of the action bar includes a “Find contacts” search icon (magnifying glass)
and an icon for adding a new contact. Adjacent to these would be icons representing
any other available options menu items and context menu items.

Dealing with the Rest of the Devices

Of course, all the Android phones in the world haven’t up and vanished just because
Android 4.0 has been released. The goal is for you to create an application that supports
both phones and tablets from a single code base.

Your phone-centric app will run just fine on a tablet, though you may wish to do some
things to take advantage of larger screen sizes, as was discussed in the previous
chapter. If you want to adopt the general look and feel of the Ice Cream Sandwich UI,
you will need to include android:targetSdkVersion="14" in your <uses-sdk> element in
the manifest. If you previously developed for Honeycomb and became accustomed to
explicitly turning on hardware accelerations using the
android:hardwareAccelerated="true" attribute, the good news is that you no longer
need to explicitly set such acceleration in Android 4.0. Hardware acceleration is now the
default. This excerpt from the ScreenSizes/EU4You 5 sample project’s
AndroidManifest.xml file shows the SDK change:

<?xml version="1.0" encoding="utf-8"?>
<manifest xmlns:android="http://schemas.android.com/apk/res/android"
package="com.commonsware.android.eudyou"
android:versionCode="1"
android:versionName="1.0">
<uses-permission android:name="android.permission.INTERNET" />
<supports-screens
android:largeScreens="true"
android:normalScreens="true"
android:smallScreens="true"
android:anyDensity="true"
/>
<uses-sdk android:minSdkVersion="4" android:targetSdkVersion="14" />
<application android:label="@string/app_name"
android:icon="@drawable/cw"
<activity android:name=".EU4You"
android:label="@string/app_name">
<intent-filter>
<action android:name="android.intent.action.MAIN" />
<category android:name="android.intent.category.LAUNCHER" />
</intent-filter>
</activity>
</application>
</manifest>

The resulting application works fine on older devices, but with no other changes, we get
the result shown in Figure 26—6 on a Motorola XOOM.

297

298

CHAPTER 26: Focusing on Tablets and Larger Uls

n M All contacts d Q, Find contacts h+ New 4

Rl

+ John Doe
Somebody Mot So Impartant, That Firm Over There

1-703-555-1212

)

Email johndoe@bar.com LU]

Figure 26-6. The EU4You sample application, on a Motorola XOOM

If you want to take advantage of some of the newer features of Ice Cream Sandwich,
you will also need to think about backward compatibility, to make sure that what you
implement in your application will work successfully on both newer and older versions of
Android. This topic is covered later in this book.

If you have resources, such as styles, that need to be version-specific, you can use the -
VAN resource set suffix syntax, where NN denotes the version you are targeting. For
example, you could have a res/values/styles.xml and a res/values-vi4/styles.xml—
the latter would be used on Ice Cream Sandwich, and the former would be used on
older versions of Android. But first, you need to explore all the tablet Ul features that you
can take advantage of, which is the point of the next few chapters.

Chapter

Using the Action Bar

One of the easiest ways to make your application blend in better with the latest and
greatest Android Ul is to enable the action bar, introduced in Chapter 26. What makes it
“easy” is that most of the basic functionality of the action bar is backward compatible —
the Android 4.0 settings will not cause the application to crash on earlier versions of
Android.

The sample project shown in this chapter is Menus/ActionBar, which extends the
Menus/Inflation project shown in a previous chapter.

Enabling the Action Bar

By default, your Android application will not use the action bar. In fact, it will not even be
displayed on the screen. If you want the action bar to appear on the screen, you need to
include android:targetSdkVersion="11" or later in your <uses-sdk> element in the
manifest, such as the manifest for the Menus/ActionBar project:

<?xml version="1.0" encoding="utf-8"?>
<manifest xmlns:android="http://schemas.android.com/apk/res/android"
package="com.commonsware.android.inflation">
<application android:label="@string/app_name"
android:icon="@drawable/cw"
android:hardwareAccelerated="true">
<activity android:name=".InflationDemo" android:label="@string/app_name">
<intent-filter>
<action android:name="android.intent.action.MAIN"/>
<category android:name="android.intent.category.LAUNCHER"/>
</intent-filter>
</activity>
</application>
<uses-sdk android:minSdkVersion="4" android:targetSdkVersion="11" />
<supports-screens android:xlargeScreens="true"
android:largeScreens="true"
android:normalScreens="true"
android:smallScreens="true"
android:anyDensity="true"/>
</manifest>

299

300

CHAPTER 27: Using the Action Bar

This will cause your options menu to appear in the upper-right corner of the screen,
under a menu icon in the action bar, as shown in Chapter 26. Also, your activity’s icon
will appear in the upper-left corner, with your activity’s name (from the android:label
attribute in the manifest) alongside of it.

While this gives you the basic contemporary look and feel—including the Ice Cream
Sandwich-themed widgets—it does not really change the user experience all that much.

Promoting Menu Items to the Action Bar

The next step for integrating with the action bar is to promote certain options menu
items from being part of the options menu to being always visible on the action bar
itself. This makes them easier to find and saves the user a tap when the time comes to
use them.

To do this, in your menu XML resource, you can add the android:showAsAction attribute
to an <item> element. A value of ifRoom means that the menu item will appear in the
action bar if there is space for it, while a value of always means that the menu item will
always be put in the action bar. All else being equal, ifRoom is the better choice, as it will
adapt better to smaller screens, once the Honeycomb Ul moves onto phones. You can
also combine this with the withText value (e.g., ifRoom|withText) to make the title of the
menu item appear adjacent to the item’s icon (otherwise, only the icon appears in the
action bar).

For example, the Menus/ActionBar project’s options.xml menu resource has
android:showAsAction on the first two menu items:

<?xml version="1.0" encoding="utf-8"?>
<menu xmlns:android="http://schemas.android.com/apk/res/android">
<item android:id="@+id/add"
android:title="Add"
android:icon="@drawable/ic_menu_add"
android:actionLayout="@layout/add"
android:showAsAction="ifRoom"/>
<item android:id="@+id/reset"”
android:title="Reset"
android:icon="@drawable/ic_menu_refresh"
android: showAsAction="1ifRoom|withText"/>
<item android:id="@+id/about"
android:title="About"
android:icon="@drawable/ic_menu_info_details" />
</menu>

The second menu item, Reset—for resetting the contents of the list—is a normal “with
text” action bar button. The first menu item, Add, does something a bit different, which
we will examine later in this chapter. The fact that the third menu item, About, does not
have android:showAsAction means that it will remain in the menu, even if there is room
in the action bar.

CHAPTER 27: Using the Action Bar

Note that the Java code does not change—onCreateOptionsMenu() and
onOptionsItemSelected() for our InflationDemo activity do not need to be adjusted
because menu items are promoted into the action bar via the menu XML resource alone.

Responding to the Logo

The activity icon in the upper-left corner of the screen is tappable. If the user taps it, it
triggers onOptionsItemSelected()...but not for one of the options menu items you may
have defined yourself. Rather, the magic value of android.R.id.home is used. In the
Menus/ActionBar project, we wire it to the same code that is invoked if the user chooses
the About options menu item—displaying a Toast:

@0verride
public boolean onOptionsItemSelected(MenuItem item) {
switch (item.getItemId()) {
case R.id.add:
add();
return(true);

case R.id.reset:
initAdapter();
return(true);

case R.id.about:
case android.R.id.home:
Toast
.makeText(this,
"Action Bar Sample App",
Toast.LENGTH_LONG)
.show();
return(true);

return(super.onOptionsItemSelected(item));

In a project with multiple activities, though, the expectation is that tapping the logo will
take you to the “home” activity for the application, whatever that might mean.

Adding Custom Views to the Action Bar

You can do more with the action bar than simply convert options menu items into what
amount to toolbar buttons. You can add your own custom Ul to the action bar. In the
case of Menus/ActionBar, we’ll replace the Add menu choice and resulting dialog box
with an Add field right in the action bar itself.

This, however, is a bit tricky to implement, as described next.

301

302

CHAPTER 27: Using the Action Bar

Defining the Layout

To put something custom in the action bar, we need to define what the “something
custom” is, in the form of a layout XML file. Fortunately, we already have a layout XML
file for adding a word to the list—it is the one that the Menus/Inflation sample wrapped
in a custom AlertDialog for when the Add options menu item was tapped. That original
layout looked like this:

<?xml version="1.0" encoding="utf-8"?>
<LinearLayout xmlns:android="http://schemas.android.com/apk/res/android"
android:orientation="horizontal"
android:layout_width="fill parent"
android:layout_height="wrap_content"
>
<TextView
android:text="Word:"
android:layout_width="wrap_content"
android:layout_height="wrap_content"
/>
<EditText
android:id="@+id/title"
android:layout width="fill parent"
android:layout_height="wrap_content"
android:layout _marginLeft="4dip"
/>
</Linearlayout>

We need to make some minor adjustments to this layout to use it for the action bar:

<?xml version="1.0" encoding="utf-8"?>
<LinearLayout xmlns:android="http://schemas.android.com/apk/res/android"
android:orientation="horizontal"
android:layout_width="fill parent"
android:layout_height="wrap_content"
>
<TextView
android:text="Word:"
android:layout_width="wrap_content"
android:layout_height="wrap_content"
android:textAppearance="@android:style/TextAppearance.Medium"
/>
<EditText
android:id="@+id/title"
android:layout width="fill parent"
android:layout_height="wrap_content"
android:layout marginLeft="4dip"
android:width="160sp"
android:inputType="text"
android:imeActionId="1337"
android:imeOptions="actionDone"
/>
</Linearlayout>

CHAPTER 27: Using the Action Bar

Specifically, we made these minor adjustments:

B We added an android:textAppearance attribute to the TextView
representing our Add caption. The android:textAppearance attribute allows
us to define the font type, size, color, and weight (e.g., bold) in one shot. We
specifically used a magic value of @android:style/TextAppearance.Medium
so that the caption matches the styling of the Reset label on the other menu
item we promoted to the action bar.

B We specified android:width="160sp" for the EditText widget, because
android:layout width="fill parent" is ignored in the action bar—otherwise,
we would take up the rest of the bar.

B We specified android:inputType="text" on the EditText widget,
which, among other things, restricts us to a single line of text.

B We android:imeActionId and android:imeOptions on the EditText
widget to control the action button of the soft keyboard, so we get
control when the user presses the Enter key on the soft keyboard.

Putting the Layout in the Menu

Next, we need to teach Android to use this layout for our Add options menu item if we
are running on up-to-date releases of Android, such as Ice Cream Sandwich or
Honeycomb. To do this, we use the android:actionlLayout attribute on our <item>
element, referencing our layout resource (@layout/add), as was shown earlier in this
chapter. This attribute will be ignored on earlier versions of Android, so it is safe to use.

If we did nothing else, we would get the desired Ul, shown in Figure 27-1.

"-." Action Bar Demo g Reset

lorem

ipsum

dolor

sit

amet

consectetuer

Figure 27-1. The Menus/ActionBar sample application

303

304

CHAPTER 27: Using the Action Bar

However, while the user could type something in, we have no way to find out what they
type in, when they are done, and so forth.

Getting Control of User Input

Given our soft keyboard settings we put on the EditText widget, we can arrange to find
out when the user presses the Enter key either on the soft keyboard or on a hardware
keyboard. To do that, though, we need to get our hands on the EditText widget itself.
You might think it is added when the Ul is inflated in onCreate()...but you would be
mistaken.

With an action bar, onCreateOptionsMenu() is called after onCreate() as part of setting
up the Ul. On classic versions of Android, onCreateOptionsMenu() would not be called
until the user pressed the Menu button. But, since some of the options menu items
might be promoted into the action bar, Android calls onCreateOptionsMenu()
automatically now. The EditText will exist after we inflate our options.xml menu
resource.

However, the best way to get the EditText is not to use findViewById() on the activity.
Rather, we should call getActionView() on the MenuItem associated with our Add option.
This will return the root of the view hierarchy inflated from the layout resource we
defined in the android:actionLayout attribute in the menu resource. In this case, that is
the LinearLayout from res/layout/add.xml, so we need to call findViewById() on it to
get the EditText:

@0verride
public boolean onCreateOptionsMenu(Menu menu) {
new MenuInflater(this).inflate(R.menu.option, menu);

EditText add=(EditText)menu
.findItem(R.id.add)
.getActionView()
.findViewById(R.id.title);

add.setOnEditorActionListener(onSearch);

return(super.onCreateOptionsMenu(menu));

Then, we can call setOnEditorActionListener() on the EditText, to register an
OnEditorActionListener object that will get control when the user presses Enter on the
hard or soft keyboard:

private TextView.OnEditorActionlListener onSearch=
new TextView.OnEditorActionListener() {
public boolean onEditorAction(TextView v, int actionId,
KeyEvent event) {
if (event==null || event.getAction()==KeyEvent.ACTION UP) {
addWord(v);

InputMethodManager imm=(InputMethodManager)getSystemService(INPUT METHOD SERVICE);

CHAPTER 27: Using the Action Bar

imm.hideSoftInputFromWindow(v.getWindowToken(), 0);
}

return(true);

};

That in turn calls an addWord() method, supplying the EditText, which adds the word to
the list via the ArrayAdapter:

private void addWord(TextView title) {
ArrayAdapter<String> adapter=(ArrayAdapter<String>)getListAdapter();

adapter.add(title.getText().toString());

That same addWord() method can also be used from the add() method that displays the
AlertDialog, even though that will not be used on a tablet, since the Add menu choice
no longer exists as a menu choice:

private void add() {
final View addView=getLayoutInflater().inflate(R.layout.add, null);

new AlertDialog.Builder(this)

.setTitle("Add a Word")
.setView(addView)

.setPositiveButton("0K",

new DialogInterface.OnClickListener() {
public void onClick(DialogInterface dialog,
int whichButton) {
addWord((TextView)addView.findViewById(R.id.title));

b
.setNegativeButton("Cancel"”, null)

.show();

The net result is that when the user types something in the Add field and presses the
Enter key, the word is added to the bottom of the list. This saves some taps over the
traditional phone Ul, as the user does not have to open the options menu, does not have
to tap the options menu item, and does not have to tap a button on the dialog box.

Note that our OnEditorActionListener does something more than simply add the word
to the list: it hides the soft keyboard. It does this using the InputMethodManager, as was
seen in a previous chapter.

Don’t Forget the Phones!

With the exception of the custom view feature described in the preceding section,
everything shown in this chapter regarding the action bar is automatically backward
compatible. The code and resources that work on Ice Cream Sandwich—flavored
versions of Android will work on classic versions of Android unmodified.

305

306

CHAPTER 27: Using the Action Bar

If, however, you want to use the custom view feature, you have a problem—the
getActionView() method was new to API Level 11 and will be unavailable on older
versions of Android. This means you will need to compile for at least API Level 11 (e.g.,
set your Eclipse target or Ant default.properties to reference android-11) or higher,
and you will need to take steps to avoid calling getActionView() on older devices. We
will explore how to pull off this feat in a later chapter.

Chapter

Fragments

Perhaps the largest change facing Android developers in 2011 was the introduction of
the fragment system with Android 3.0, and the recent merging of the fragment system
into the main code base with Android 4.0 Ice Cream Sandwich. Fragments are an
optional layer you can put between your activities and your widgets, designed to help
you reconfigure your activities to support screens both large (e.g., tablets) and small
(e.g., phones). However, the fragment system also adds an extra layer of complexity,
one that will take the Android developer community some time to adjust to. Hence, the
public comments, blog posts, and sample apps using fragments are a little rarer,
because fragments were introduced so long after Android itself was.

This chapter covers basic uses of fragments, including supporting fragments on pre-
Android 3.0 devices.

Introducing Fragments

Fragments are not widgets, like Button or EditText. Fragments are not containers, like
LinearLayout or Relativelayout. Fragments are not activities.

Rather, fragments aggregate widgets and containers. Fragments then can be placed
into activities—sometimes several fragments for one activity, sometimes one fragment
per activity. And the reason for this is the variation in Android screen sizes.

The Problem Addressed by Fragments

A tablet has a larger screen than does a phone. A TV has a larger screen than does a tablet.
Taking advantage of that extra screen space makes sense, as outlined in Chapter 25, which
explained how to handle multiple screen sizes. In that chapter, we profiled an EU4You
sample application, eventually winding up with an activity that would load in a different
layout for larger-sized screens, one that had an embedded WebView widget. The activity
would detect that widget’s existence and use it to load web content related to a
selected country, rather than launching a separate browser activity or some activity
containing only a WebView.

307

308

CHAPTER 28: Fragments

However, the scenario outlined in Chapter 25 was fairly trivial. Imagine that, instead of a
WebView, we have a TableLayout containing 28 widgets. On larger-sized screens, we
want the TablelLayout in the same activity as an adjacent ListView; on smaller screens,
we want the Tablelayout to be in a separate activity, since there would not be enough
room otherwise. To do this using early Android technology, we would need to either
duplicate all of the TableLayout-handling logic in both activities, create an activity base
class and hope that both activities can inherit from it, or turn the TablelLayout and its
contents into a custom ViewGroup...or do something else. And that would just be for one
such scenario—multiply that by many activities in a larger application, and the
complexity mounts.

The Fragments Solution

Fragments reduce, but do not eliminate, that complexity.

With fragments, each discrete chunk of user interface that could be used in multiple
activities (based on screen size) goes in a fragment. The activities in question determine,
based on screen size, who gets the fragment.

In the case of EU4You, we have two fragments. One fragment represents the list of
countries. The other fragment represents the details for that country (in our case, a
WebView). On a larger-screen device, we want both fragments to be in one activity, while
on a smaller-screen device, we will house those fragments in two separate activities.
This provides to users with larger screens the same benefits they got with the last
version of EU4You: getting more information in fewer clicks. Yet the techniques we
demonstrate with fragments will be more scalable, able to handle more complex Ul
patterns than the simple WebView-or-not scenario of EU4You.

In this case, our entire Ul will be inside of fragments. That is not necessary. Fragments
are an opt-in technology —you need them only for the parts of your Ul that could appear
in different activities in different scenarios. In fact, your activities that do not change at
all (say, a help screen) might not use fragments whatsoever.

Fragments also give us a few other bells and whistles, including the following:

B Capability to add fragments dynamically based on user interaction: For
example, the Gmail application initially shows a ListFragment of the
user’s mail folders. Tapping a folder adds a second ListFragment to
the screen, showing the conversations in that folder. Tapping a
conversation adds a third Fragment to the screen, showing the
messages in that conversation.

B Capability to animate dynamic fragments as they move on and off the
screen: For example, when the user taps a conversation in Gmail, the
folders ListFragment slides off the screen to the left, the conversations
ListFragment slides left and shrinks to take up less room, and the
messages Fragment slides in from the right.

CHAPTER 28: Fragments

B Automatic Back button management for dynamic fragments: For
example, when the user presses Back while viewing the messages
Fragment, that Fragment slides off to the right, the conversations
ListFragment slides right and expands to fill more of the screen, and
the folders ListFragment slides back in from the left. None of that has
to be managed by developers—simply adding the dynamic fragment
via a FragmentTransaction allows Android to automatically handle the
Back button, including reversing all animations.

B Capability to add options to the options menu, and therefore to the
action bar: Call setHasOptionsMenu() in onCreate() of your fragment to
register an interest in this, and then override onCreateOptionsMenu()
and onOptionsItemSelected() in the fragment the same way you might
in an activity. A fragment can also register widgets to have context
menus, and handle those context menus the same way as an activity
would.

B Capability to add tabs to the action bar: The action bar can have tabs,
replacing a TabHost, where each tab’s content is a fragment. Similarly,
the action bar can have a navigation mode, with a Spinner to switch
between modes, where each mode is represented by a fragment.

If you have access to any recent device running Honeycomb or Ice Cream Sandwich,
fire up the Gmail application to see all the fragment bells and whistles in action.

The Android Compatibility Library

If fragments were available only for Android 3.0 and higher, we would be right back
where we started, as not all Android devices today run Android 3.0 and higher.

Fortunately, this is not the case, because Google has released the Android Compatibility
Library (ACL), which is available via the Android SDK and AVD Manager (where you
install the other SDK support files, create and start your emulator AVDs, and so forth).
The ACL gives you access to the fragment system on versions of Android going back to
Android 1.6. Because the vast majority of Android devices are running 1.6 or higher, this
allows you to start using fragments while maintaining backward compatibility. Over time,
this library may add other features to help with backward compatibility, for applications
that wish to use it.

The material in this chapter focuses on using the ACL when employing fragments.
Generally speaking, using the ACL for fragments is almost identical to using the native
Android 3.0 fragment classes directly.

Since the ACL only supports versions back to Android 1.6, Android 1.5 devices will not
be able to use fragment-based applications. This is a very small percentage of the
Android device spectrum at this time—around 1 percent as of the time of this writing.

309

310

CHAPTER 28: Fragments

Creating Fragment Classes

The first step toward setting up a fragment-based application is to create fragment
classes for each of your fragments. Just as you inherit from Activity (or a subclass) for
your activities, you inherit from Fragment (or a subclass) for your fragments.

Here, we will examine the Fragments/EU4You 6 sample project and the fragments that it
defines.

NOTE: The convention of this book will be to use “fragment” as a generic noun and Fragment to
refer to the actual Fragment class.

General Fragments

Besides inheriting from Fragment, the only thing required of a fragment is to override
onCreateView(). This will be called as part of putting the fragment on the screen. You
need to return a View that represents the body of the fragment. Most likely, you will
create your fragment’s Ul via an XML layout file, and onCreateView() will inflate that
fragment layout file.

For example, here is DetailsFragment from EU4You_6, which will wrap around our
WebView to show the web content for a given country:

import android.support.v4.app.Fragment;
import android.os.Bundle;

import android.view.layoutInflater;
import android.view.View;

import android.view.ViewGroup;

import android.webkit.WebView;

public class DetailsFragment extends Fragment {
@0verride
public View onCreateView(LayoutInflater inflater, ViewGroup container,
Bundle savedInstanceState) {
return(inflater.inflate(R.layout.details fragment, container, false));

}

public void loadUrl(String url) {
((WebView)(getView().findViewById(R.id.browser))).loadUrl(url);

}

Note that we are inheriting not from android.app.Fragment but from
android.support.v4.app.Fragment. The latter is the Fragment implementation from the
ACL, so it can be used across Android versions.

The onCreateView() implementation inflates a layout that happens to have a WebView in it:

<?xml version="1.0" encoding="utf-8"?>
<WebView

CHAPTER 28: Fragments 311

xmlns:android="http://schemas.android.com/apk/res/android"
android:id="@+id/browser"
android:layout width="fill parent"
android:layout_height="fill parent"

/>

It also exposes a loadUrl() method, to be used by a hosting activity both to tell the
fragment that it is time to display some web content and to supply the URL for doing the
same. The implementation of loadUrl() in DetailsFragment uses getView() to retrieve
the View created in onCreateView(), finds the WebView in it, and delegates the loadUrl()
call to the WebView.

There are a myriad of other lifecycle methods available on Fragment. The more important
ones include mirrors of the standard onCreate(), onStart(), onResume(), onPause(),
onStop(), and onDestroy() methods of an activity. Since the fragment is the one with
the widgets, it will implement more of the business logic that formerly might have
resided in the activity for these methods. For example, in onPause() or onStop(), since
the user may not be returning to your application, you may wish to save any unsaved
edits to some temporary storage. In the case of DetailsFragment, there was nothing that
really qualified here, so those lifecycle methods were left alone.

ListFragment

One Fragment subclass that is sure to be popular is ListFragment. This wraps a ListView
in a Fragment, designed to simplify setting up lists of things such as countries, mail
folders, mail conversations, and so forth. Similar to a ListActivity, all you need to do is
call setListAdapter() with your chosen and configured ListAdapter, plus override
onListItemClick() to respond to when the user clicks on a row in the list.

In EU4You_6, we have a CountriesFragment that represents the list of available countries.
It initializes the ListAdapter in onActivityCreated(), which is called after onCreate()
has wrapped up in the activity that holds the fragment:

@0verride
public void onActivityCreated(Bundle state) {
super.onActivityCreated(state);

setListAdapter(new CountryAdapter());

if (state!=null) {
int position=state.getInt(STATE_CHECKED, -1);

if (position>-1) {
getListView().setItemChecked(position, true);

}
}

The code dealing with the Bundle supplied to onCreate() will be explained a bit later in
this chapter.

312 CHAPTER 28: Fragments

The CountryAdapter is nearly identical to the one from previous EU4You samples, except
that there is no getLayoutInflater() method on a Fragment, so we have to use the
static from() method on LayoutInflater and supply our activity via getActivity():

class CountryAdapter extends ArrayAdapter<Country> {
CountryAdapter() {
super(getActivity(), R.layout.row, R.id.name, EU);

@0verride
public View getView(int position, View convertView,
ViewGroup parent) {
CountryWrapper wrapper=null;

if (convertView==null) {
convertView=LayoutInflater
.from(getActivity())
.inflate(R.layout.row, null);
wrapper=new CountryWrapper(convertView);
convertView.setTag(wrapper);

}
else {
wrapper=(CountryWrapper)convertView.getTag();

wrapper.populateFrom(getItem(position));

return(convertView);
}
}

Similarly, the CountryWrapper is no different from previous EU4You samples:

static class CountryWrapper {
private TextView name=null;
private ImageView flag=null;
private View row=null;

CountryWrapper (View row) {
this.row=row;
name=(TextView)row.findViewById(R.id.name);
flag=(ImageView)row.findViewById(R.id.flag);

TextView getName() {
return(name);

ImageView getFlag() {
return(flag);

void populateFrom(Country nation) {
getName().setText(nation.name);
getFlag().setImageResource(nation.flag);

CHAPTER 28

}

The list of countries is the same as well:
static {

EU

EU

EU.

EU.

EU.

EU.

EU.

EU.

EU.

EU.

EU.

EU.

EU.

EU.

EU.

EU.

EU.

EU.

EU.

EU.

EU.

EU.

EU

EU.

EU

.add(new
.add(new
add(new
add(new

add(new

add(new
add(new
add(new
add(new
add(new
add(new
add(new
add(new
add(new
add(new
add(new
add(new
add(new
add(new
add(new
add(new
add(new
.add(new
add(new

.add(new

Country(R.string.austria, R.drawable.austria,
R.string.austria_url));
Country(R.string.belgium, R.drawable.belgium,
R.string.belgium url));
Country(R.string.bulgaria, R.drawable.bulgaria,
R.string.bulgaria url));
Country(R.string.cyprus, R.drawable.cyprus,
R.string.cyprus_url));
Country(R.string.czech_republic,
R.drawable.czech_republic,
R.string.czech_republic_url));
Country(R.string.denmark, R.drawable.denmark,
R.string.denmark url));
Country(R.string.estonia, R.drawable.estonia,
R.string.estonia_url));
Country(R.string.finland, R.drawable.finland,
R.string.finland url));
Country(R.string.france, R.drawable.france,
R.string.france url));
Country(R.string.germany, R.drawable.germany,
R.string.germany url));
Country(R.string.greece, R.drawable.greece,
R.string.greece url));
Country(R.string.hungary, R.drawable.hungary,
R.string.hungary url));
Country(R.string.ireland, R.drawable.ireland,
R.string.ireland url));
Country(R.string.italy, R.drawable.italy,
R.string.italy url));
Country(R.string.latvia, R.drawable.latvia,
R.string.latvia_url));
Country(R.string.lithuania, R.drawable.lithuania,
R.string.lithuania_url));
Country(R.string.luxembourg, R.drawable.luxembourg,
R.string.luxembourg url));
Country(R.string.malta, R.drawable.malta,
R.string.malta url));
Country(R.string.netherlands, R.drawable.netherlands,
R.string.netherlands_url));
Country(R.string.poland, R.drawable.poland,
R.string.poland url));
Country(R.string.portugal, R.drawable.portugal,
R.string.portugal url));
Country(R.string.romania, R.drawable.romania,
R.string.romania_url));
Country(R.string.slovakia, R.drawable.slovakia,
R.string.slovakia_url));
Country(R.string.slovenia, R.drawable.slovenia,
R.string.slovenia url));
Country(R.string.spain, R.drawable.spain,
R.string.spain_url));

: Fragments

313

314

CHAPTER 28: Fragments

EU.add(new Country(R.string.sweden, R.drawable.sweden,
R.string.sweden_url));

EU.add(new Country(R.string.united kingdom,
R.drawable.united_kingdom,
R.string.united kingdom url));

}

...as is the definition of a Country, from a separate public class:

public class Country {
int name;
int flag;
int url;

Country(int name, int flag, int url) {
this.name=name;
this.flag=flag;
this.url=url;

Persistent Highlight

One thing leaps out at you when you use fragment-based applications like Gmail. When
you tap on a row in a list, and another fragment is shown (or updated) within the same
activity, the row you tapped remains highlighted. This runs counter to the traditional use
of a ListView, where the list selector is present only when using a D-pad, trackball, or
similar pointing device. The purpose is to show the user the context of the adjacent

fragment.

The actual implementation differs from what you might expect. These ListView widgets
are actually implementing CHOICE_MODE_SINGLE, what normally would be rendered using
a RadioButton along the right side of the rows. In a ListFragment, though, the typical
styling for a single-choice ListFragment is via an “activated” background.

In EU4You_6, this is handled via the row layout (res/layout/row.xml) used by our

CountryAdapter:

<?xml version="1.0" encoding="utf-8"?>

<LinearLayout xmlns:android="http://schemas.android.com/apk/res/android"

android:layout width="fill parent"
android:layout_height="wrap_content"
android:padding="2dip"
android:minHeight="?android:attr/listPreferredItemHeight"
style="@style/activated"

<ImageView android:id="@+id/flag"
android:layout_width="wrap_content"
android:layout_height="wrap_content"
android:layout gravity="center vertical|left"
android:paddingRight="4dip"

/>

<TextView android:id="@+id/name"
android:layout_width="wrap_content"”
android:layout_height="wrap_content"

CHAPTER 28: Fragments 315

android:layout gravity="center vertical|right"
android:textSize="5mm"
/>
</Linearlayout>

Notice the style attribute, pointing to an activated style. That is defined by EU4You 6 as
a local style, versus one provided by the operating system. In fact, it has to have two
implementations of the style, because the “activated” concept is new to Android 3.0 and
cannot be used in previous versions of Android.

So, EU4You_6 has res/values/styles.xml with a backward-compatible empty style:

<?xml version="1.0" encoding="utf-8"?>
<resources>

<style name="activated">

</style>
</resources>

It also has res/values-vi1/styles.xml. The -v11 resource set suffix means that this will
be used only on API Level 11 (Android 3.0) and higher. Here, the style inherits from the
standard Android Holographic theme and uses the standard activated background
color:

<?xml version="1.0" encoding="utf-8"?>
<resources>
<style name="activated" parent="android:Theme.Holo">
<item name="android:background">?android:attr/activatedBackgroundIndicator</item>
</style>
</resources>

In CountriesFragment, the activity will let us know if CountriesFragment appears
alongside DetailsFragment—thus requiring single-choice mode—via an
enablePersistentSelection() method:

public void enablePersistentSelection() {
getListView().setChoiceMode(ListView.CHOICE_MODE_SINGLE);

Also, in onListItemClick(), CountriesFragment “checks” the row the user clicked on,
thereby enabling the persistent highlight:

@0verride
public void onListItemClick(ListView 1, View v, int position,
long id) {
1.setItemChecked(position, true)