

Ulrike Golas

Analysis and Correctness of Algebraic Graph
and Model Transformations

VIEWEG+TEUBNER RESEARCH

Ulrike Golas

Analysis and Correctness
of Algebraic Graph
and Model Transformations

With a foreword by Prof. Dr. Hartmut Ehrig

VIEWEG+TEUBNER RESEARCH

Bibliographic information published by the Deutsche Nationalbibliothek
The Deutsche Nationalbibliothek lists this publication in the Deutsche Nationalbibliografie;
detailed bibliographic data are available in the Internet at http://dnb.d-nb.de.

Dissertation Technische Universität Berlin, 2010

D 83

1st Edition 2011

All rights reserved
© Vieweg+Teubner Verlag | Springer Fachmedien Wiesbaden GmbH 2011

Editorial Office: Ute Wrasmann | Anita Wilke

Vieweg+Teubner Verlag is a brand of Springer Fachmedien.
Springer Fachmedien is part of Springer Science+Business Media.
www.viewegteubner.de

No part of this publication may be reproduced, stored in a retrieval system
or transmitted, in any form or by any means, electronic, mechanical, pho-
to copying, recording, or otherwise, without the prior written permission of
the copyright holder.

Registered and/or industrial names, trade names, trade descriptions etc. cited in this publica-
tion are part of the law for trade-mark protection and may not be used free in any form or by
any means even if this is not specifically marked.

Cover design: KünkelLopka Medienentwicklung, Heidelberg
Printing company: STRAUSS GMBH, Mörlenbach
Printed on acid-free paper
Printed in Germany

ISBN 978-3-8348-1493-7

Foreword

The area of web grammars and graph transformations was created about
40 years ago. 10 years later, the algebraic approach of graph grammars was
well established as a concrete theory of graph languages. This was the time
when also Ulrike Prange was born. Both of them had a smooth childhood
for a period of about 20 years.
This smooth period was continued by a highly active one: Computing

by graph transformation was adopted as an EC-child leading to the grown-
up international conference on graph transformation ICGT, when Ulrike
started to study computer science and mathematics. In her master’s thesis,
she successfully transformed the LS-baby “adhesive category” into the TFS-
child “adhesive HLR category”, which was educated in functional behavior.
Meanwhile she transformed herself from Ulrike Prange to Ulrike Golas.
The final step is now done in her PhD thesis on two levels: On the abstract

level, from adhesive HLR systems to M-adhesive systems with general ap-
plication conditions, and on the concrete level as a model transformation
between different visual languages like statecharts and Petri nets.
Altogether, she has successfully established a bidirectional transforma-

tion between categorical and graph transformation techniques as well as
between mathematics and computer science concerning her professional de-
grees. This is an excellent basis for a promising scientific career.

Hartmut Ehrig
Technische Universität Berlin

Abstract

Graph and model transformations play a central role for visual modeling
and model-driven software development. It is important to note that the
concepts of graphs and their rule-based modification can be used for dif-
ferent purposes like the generation of visual languages, the construction of
operational semantics, and the transformation of models between different
visual languages.
Within the last decade, a most promising mathematical theory of alge-

braic graph and model transformations has been developed for modeling,
analysis, and to show correctness of transformations, where different basic
case studies have already been handled successfully.
For more sophisticated applications, however, like the specification of

syntax, semantics, and model transformations of complex models, a more
advanced theory is needed including the following issues:

1. Graph transformations based on an advanced concept of constraints
and general application conditions in order to extend their expressive
power without loosing the available analysis techniques.

2. Extension of concepts for parallelism, synchronization, and binary
amalgamation to multi-amalgamation as an advanced modeling tech-
nique for operational semantics.

3. Model transformations based on triple graph grammars with general
application conditions for adequate modeling and analysis of correct-
ness, completeness, and functional behavior.

4. General framework of graph and model transformations in order to
handle transformation systems based on interesting variants of graphs
and nets, including typed attributed graphs and high-level Petri nets,
in a uniform way.

The main contribution of this thesis is to formulate such an advanced
mathematical theory of algebraic graph and model transformations based
on M-adhesive categories satisfying all the above requirements. Within this
framework, model transformations can successfully be analyzed regarding

VIII Abstract

syntactical correctness, completeness, functional behavior, and semantical
simulation and correctness. The developed methods and results are applied
to the non-trivial problem of the specification of syntax and operational
semantics for UML statecharts and a model transformation from statecharts
to Petri nets preserving the semantics.

Zusammenfassung

Graph- und Modelltransformationen spielen in der visuellen Modellierung
und der modellgetriebenen Softwareentwicklung eine zentrale Rolle. Gra-
phen und deren regelbasierte Modifikation können insbesondere für unter-
schiedliche Zwecke wie die Erzeugung visueller Sprachen, die Konstruktion
operationaler Semantiken und die Transformation von Modellen zwischen
verschiedenen visuellen Sprachen eingesetzt werden.
In den letzten zehn Jahren wurde eine höchst vielversprechende mathe-

matische Theorie der algebraischen Graph- und Modelltransformationen zur
Modellierung, Analyse und dem Beweis der Korrektheit von Transforma-
tionen entwickelt, mit der verschiedene elementare Fallstudien erfolgreich
bearbeitet wurden.
Für anspruchsvollere Anwendungen allerdings, wie die Spezifikation von

Syntax, Semantik und Modelltransformationen von komplexen Modellen,
wird eine weiterentwickelte Theorie benötigt, die die folgenden Punkte um-
fasst:

1. Auf fortgeschrittenen Konzepten von Constraints und allgemeinen An-
wendungsbedingungen basierende Graphtransformationen, um deren
Ausdrucksmächtigkeit zu erhöhen, ohne die verfügbaren Analysetech-
niken zu verlieren.

2. Erweiterung von Konzepten für Parallelismus, Synchronisation und
binäre Amalgamierung auf Multi-Amalgamierung als fortschrittliche
Modellierungstechnik für operationale Semantik.

3. Auf Triple-Graphgrammatiken basierende Modelltransformationen
mit allgemeinen Anwendungsbedingungen für eine adäquate Modellie-
rung und die Analyse der Korrektheit, Vollständigkeit und des funk-
tionalen Verhaltens.

4. Ein allgemeines Rahmenwerk für Graph- und Modelltransformatio-
nen, um Transformationssysteme für verschiedene Varianten von
Graphen und Netzen, inklusive getypter attributierter Graphen und
High-Level-Petrinetze, einheitlich zu behandeln.

X Zusammenfassung

Der wichtigste Beitrag dieser Arbeit ist der Entwurf solch einer weiterent-
wickelten mathematischen Theorie der algebraischen Graph- und Modell-
transformationen aufbauend auf M-adhäsiven Kategorien, die die obigen
Anforderungen erfüllt. In diesem Rahmenwerk können Modelltransformatio-
nen erfolgreich bezüglich syntaktischer Korrektheit, Vollständigkeit, funk-
tionalem Verhalten und semantischer Simulation und Korrektheit analysiert
werden. Die entwickelten Methoden und Ergebnisse werden auf das nicht-
triviale Problem der Spezifikation von Syntax und operationaler Semantik
von UML Statecharts und einer semantik-bewahrenden Modelltransforma-
tion von Statecharts zu Petrinetzen angewendet.

Contents

1 Introduction 1

2 Introduction to Graph and Model Transformation, and Re-
lated Work 7
2.1 Model Transformation . 7
2.2 Graph Transformation . 9
2.3 Model Transformation Based on Graph Transformation . . . 14

3 M-Adhesive Transformation Systems 19
3.1 Graphs, Typed Graphs, and Typed Attributed Graphs 20
3.2 M-Adhesive Categories . 22

3.2.1 Introduction to M-Adhesive Categories 22
3.2.2 Construction of M-Adhesive Categories 26
3.2.3 Preservation of Additional Properties via Constructions 28

3.2.3.1 Binary Coproducts 28
3.2.3.2 Epi–M Factorization 30
3.2.3.3 E ′–M′ Pair Factorization 30
3.2.3.4 Initial Pushouts 34

3.3 Algebraic High-Level Petri Nets 40
3.4 Transformations in M-Adhesive Systems 46

3.4.1 Conditions and Constraints over Objects 47
3.4.2 Rules and Transformations 49
3.4.3 Main Analysis Results in M-Adhesive Transforma-

tion Systems . 51
3.4.3.1 Local Church-Rosser and Parallelism Theorem 51
3.4.3.2 Concurrency Theorem 53
3.4.3.3 Embedding and Extension Theorem 55
3.4.3.4 Critical Pairs and Local Confluence Theorem 57

4 Amalgamated Transformations 61
4.1 Foundations and Analysis of Amalgamated Transformations . 61

4.1.1 Kernel, Multi, and Complement Rules 62

XII Contents

4.1.2 Amalgamated Rules and Transformations 69
4.1.3 Parallel Independence of Amalgamated Transforma-

tions . 81
4.1.4 Other Results for Amalgamated Transformations . . . 87
4.1.5 Interaction Schemes and Maximal Matchings 88
4.1.6 Main Results for Amalgamated Transformations Based

on Maximal Matchings 91
4.2 Operational Semantics Using Amalgamation 93

4.2.1 Semantics for Elementary Nets 93
4.2.2 Syntax of Statecharts 98
4.2.3 Semantics for Statecharts 104

5 Model Transformation Based on Triple Graph Transforma-
tion 115
5.1 Introduction to Triple Graph Transformation 115

5.1.1 The Category of Triple Graphs 116
5.1.2 Triple Graph Transformation 117

5.2 Triple Graph Transformation with Application Conditions . . 119
5.2.1 S- and T -Consistent Application Conditions 120
5.2.2 Composition and Decomposition of Triple Transfor-

mations . 131
5.3 Model Transformation SC2PN from Statecharts to Petri Nets . 136

6 Analysis, Correctness, and Construction of Model Transfor-
mations 153
6.1 Syntactical Correctness . 154
6.2 Termination and Functional Behavior 156

6.2.1 Termination . 156
6.2.2 Termination of Statecharts Semantics 157
6.2.3 Functional Behavior 159

6.3 Semantical Simulation and Correctness 161
6.3.1 Simulation of Petri Nets 163
6.3.2 Semantical Correctness of the Model Transformation

SC2PN . 165
6.4 On-the-Fly Construction of Model Transformations 173

7 Conclusion and Future Work 181
7.1 Theoretical Contributions . 181
7.2 Relevance for Model-Driven Software Development 183

Contents XIII

7.3 Case Studies . 185
7.4 Tool Support . 186
7.5 Future Work . 188

Appendix 191

A Categorical Results 193
A.1 Proofs for Construction of M-Adhesive Categories 193
A.2 Proofs for Generalized AHL Schemas as an M-Adhesive Cat-

egory . 195
A.3 Proofs for AHL Systems as an M-adhesive Category 197

A.3.1 The Category of Markings 197
A.3.2 From Nets to Net Systems 201

A.4 Proofs for Amalgamated Transformations 203

Bibliography 211

Index 223

List of Figures

2.1 Rule-based modification of graphs 10
2.2 DPO graph transformation 12

4.1 The kernel rule p0 deleting a loop at a node 62
4.2 The multi rules p1 and p2 describing the reversion of an edge 63
4.3 Constructions for the application conditions 64
4.4 The complement rules for the kernel morphisms 67
4.5 The construction of the complement rule for the kernel mor-

phism s1 . 68
4.6 An amalgamated transformation 72
4.7 An s-amalgamable bundle of direct transformations 73
4.8 The decomposition of the s-amalgamable bundle 80
4.9 A counterexample for parallel independence of amalgamated

transformations . 84
4.10 Parallel independence of the transformations G =

p1,m1===⇒ G1

and G =
p′1,m

′
1===⇒ G′1 . 85

4.11 The kernel morphisms leading to the parallel rule 86
4.12 A parallel amalgamated graph transformation 87
4.13 Application of an amalgamated rule via maximal matchings . 91
4.14 The firing of the transition t 93
4.15 The type graph for elementary nets 94
4.16 The kernel rule selecting an activated transition 95
4.17 The multi rules describing the handling of each place 95
4.18 The construction of the amalgamated rule 96
4.19 An amalgamated transformation 96
4.20 An s-amalgamable transformation bundle 97
4.21 The example statechart ProdCons in concrete syntax 99
4.22 The type graph TGSC for statecharts 100
4.23 Constraints limiting the valid statechart diagrams 101
4.24 The example statechart ProdCons in abstract syntax 103
4.25 The rules setSub and transSub 105
4.26 The interaction schemes init and enterRegions 106

XVI List of Figures

4.27 The interaction scheme transitionStep 108
4.28 The interaction schemes leaveState1 and leaveState2 . . . 109
4.29 The interaction scheme leaveRegions 110
4.30 The state transitions and their corresponding event queue . . 112

5.1 The triple type graph TG for the communication example . . 120
5.2 The triple graph G for the communication example 121
5.3 The triple rules newClient and newConnection for the com-

munication example . 122
5.4 The triple rules extendConnection and newExclusive for

the communication example 123
5.5 A triple transformation for the communication example . . . 124
5.6 The derived source and forward rules for the triple rule new-

Connection . 129
5.7 The derived target and backward rules for the triple rule

newConnection . 130
5.8 Alternative application condition for the triple rule extend-

Connection . 131
5.9 A match consistent triple transformation sequence 135
5.10 Additional constraints for the restricted number of state hi-

erarchies . 137
5.11 The triple type graph for the model transformation 138
5.12 The triple rule start . 140
5.13 The triple rules newRegionSM and newRegionS 141
5.14 The triple rules newStateSM and newStateS 142
5.15 The triple rules newFinalStateSM and newFinalStateS . . . 143
5.16 newTransitionNewEvent and newTransitionNewExit 144
5.17 newTransitionOldEvent and NewTransitionOldExit 145
5.18 The triple rules newGuard and nextGuard 146
5.19 The triple rules newAction and newTriggerElement 147
5.20 The Petri net PNPC corresponding to the statechart example 149
5.21 The source and forward rules of newGuard 150

6.1 The action-event graph of our statechart example 158
6.2 The statechart model after a partial model transformation . . 160
6.3 The rules for firing the extended Petri nets 164
6.4 ProdCons and PNPC after the initialization step 171
6.5 The Petri net corresponding to the partial transformation . . 174
6.6 The partial models after two more steps 179

1 Introduction

The research area of graph grammars or graph transformations is a disci-
pline of computer science which dates back to the 1970s. Methods, tech-
niques, and results from this area have already been studied and applied
in many fields of computer science, such as formal language theory, pattern
recognition, the modeling of concurrent and distributed systems, database
design and theory, logical and functional programming, model and program
transformation, syntax and semantics of visual languages, refactoring of
programs and software systems, process algebras, and Petri nets. This wide
applicability is due to the fact that graphs are a very natural way of ex-
plaining complex situations on an intuitive level. Hence, they are used in
computer science almost everywhere.
In this thesis, the following areas of computing by graph transformation

play a special role, where we describe the impact of graphs and graph trans-
formation in more detail:

• Visual modeling and specification. Graphs are a well-known, well-
understood, and frequently used means to represent system states.
Class and object diagrams, network graphs, entity-relationship dia-
grams, and Petri nets are common graphical representations of system
states or classes of system states; there are also many other graphi-
cal representations. Rules have proven to be extremely useful for
describing computations by local transformations of states. In object-
oriented modeling, graphs occur at two levels: the type level (defined
on the basis of class diagrams) and the instance level (given by all
valid object diagrams). Modeling by graph transformation is visual,
on the one hand, since it is very natural to use a visual representa-
tion of graphs; on the other hand, it is precise, owing to its formal
foundation. Thus, graph transformations can also be used in formal
specification techniques for state-based systems.

• Model transformation. In recent years, model-based software devel-
opment processes have evolved. Models are no longer mere (passive)
documentation, but are used for code generation, analysis, and simu-

U. Golas, Analysis and Correctness of Algebraic Graph and Model Transformations,
DOI 10.1007/978-3-8348-9934-7_1,
© Vieweg+Teubner Verlag | Springer Fachmedien Wiesbaden GmbH 2011

2 1 Introduction

lation as well, where model transformations play a central role. An im-
portant question is how to specify such model transformations. Using
algebraic graph transformation concepts to specify and verify model
transformations offers a visual approach combined with formal, well-
defined foundations and proven results and analysis methods. Starting
from visual models as discussed above, graph transformations are cer-
tainly a natural choice. On the basis of the underlying structure of
such visual models, the abstract syntax graphs, the model transfor-
mation is defined. Owing to the formal foundation, the correctness
of model transformations can be formulated on a solid mathematical
basis and verified using the theory of graph transformations.

• Concurrency and semantics. When graph transformations are used
to describe a concurrent system, graphs are usually taken to describe
static system structures. System behavior expressed by state changes
is modeled by rule-based graph manipulations, i. e. graph transforma-
tions. The rules describe preconditions and postconditions of single
transformation steps. In a pure graph transformation system, the or-
der of the steps is determined by the causal dependency of actions
only, i. e. independent rule applications can be executed in an arbi-
trary order. The concept of rules in graph transformations provides a
clear concept for defining system behavior. In particular, for model-
ing the intrinsic concurrency of actions, graph rules provide a suitable
means, because they explicate all structural interdependencies.

Since graph transformations are used for the description of development
processes, we can argue that we program on graphs. But we do so in a
quite abstract form, since the class of structures is some class of graphs
and not specialized to a specific one. Furthermore, the elementary oper-
ations on graphs are rule applications. Graph transformations advocate
for the whole software development life cycle. Our concept of computing
by graph transformations is not focused only on programming but includes
also specification and implementation by graph transformation, as well as
graph algorithms and computational models, and software architectures for
graph transformations.
Graph transformation allows one to model the dynamics of systems de-

scribing the evolution of graphical structures. Therefore, graph transforma-
tions have become attractive as a modeling and programming paradigm for
complex-structured software and graphical interfaces. In particular, graph
transformation is promising as a comprehensive framework in which the

1 Introduction 3

transformation of different structures can be modeled and studied in a uni-
form way.
Based on formal foundations, graph transformation represents a mathe-

matical theory well-suited for modeling and analysis of dynamic processes
in computer science. The concepts of adhesive and weak adhesive high-level
replacement (HLR) categories have been a break-through for the double
pushout approach of algebraic graph transformations. Almost all main re-
sults could be formulated and proven in these categorical frameworks and
instantiated to a large variety of HLR systems, including different kinds of
graph and Petri net transformation systems [EEPT06]. These main results
include the Local Church-Rosser, Parallelism, and Concurrency Theorems,
the Embedding and Extension Theorem, completeness of critical pairs, and
the Local Confluence Theorem.
For more sophisticated applications, however, like the specification of

syntax, semantics, and model transformations of complex models, a more
advanced theory is needed including the following issues:

• General application conditions. The introduction of an advanced con-
cept of constraints and application conditions allows to enhance the
expressiveness and practicability of graph transformation. For a con-
sistent and uniform approach to model transformation based on graph
transformation, the concept of graph transformation has to be ex-
tended in this direction.

• Multi-Amalgamation. Amalgamation is a generalization of paralle-
lism, where the assumption of parallel independence is dropped and
pure parallelism is generalized to synchronized parallelism. The main
idea of amalgamation is that a certain number of actions has to be per-
formed which are similar for each step, but the concrete occurrences
and quantity differ. In [BFH87], the Amalgamation Theorem has been
developed only on a set-theoretical basis for a pair of standard graph
rules without application conditions. However, in our applications we
need amalgamation for n rules, called multi-amalgamation, based not
only on standard graph rules, but on different kinds of typed and at-
tributed graph rules including application conditions. The concept
of amalgamation plays a key role in the modeling of the operational
semantics for visual languages. Up to now, there are two main ap-
proaches for the specification of the operational semantics of com-
plex models by graph transformation: either a lot of additional helper
structure is needed to synchronize the rule applications depending on

4 1 Introduction

the system states, or the rules are constructed depending on the actual
model instance leading to infinite many rules for a general semanti-
cal description. With amalgamation, the specification of operational
semantics becomes easier and analyzable.

• Triple graph transformation with application conditions. For the spec-
ification of model transformations, triple graph grammars (TGGs) are
a well-established concept in praxis, but so far only few formal theory
and results are available. Triple rules, which allow the simultaneous
construction of source and target models, lead to derived source and
forward rules describing the construction of a source model and the ac-
tual model transformation from this source to a target model, respec-
tively. Formal properties concerning information preservation, termi-
nation, correctness, and completeness of model transformations have
been studied already based on triple rules without application con-
ditions, where the decomposition and composition theorem for triple
graph transformation sequences plays a fundamental role. In [EHS09],
this theorem has been extended to triple rules with negative applica-
tion conditions, but not yet to general application conditions. Our
goal is to define model transformations based on triple graph gram-
mars with general application conditions for adequate modeling and
analysis of correctness, completeness, and functional behavior.

• General framework. A common foundation is needed to apply the rich
theory not only to graphs, but also to different graph-like models as
typed attributed graphs and different kinds of Petri nets, such that
all kinds of transformation systems can be handled in a uniform way.

The main contribution of this thesis is to formulate such an advanced
mathematical theory of algebraic graph and model transformations based
on M-adhesive categories satisfying all the above requirements. This al-
lows to instantiate the theory to a large variety of graphs and correspond-
ing graph transformation systems and especially to typed attributed graph
transformation systems. We show that also algebraic high-level nets, a vari-
ant of Petri nets equipped with data, form an M-adhesive category and
that certain properties necessary for the main results of graph transforma-
tion are preserved under categorical constructions. In recent work, all the
main results of graph transformation have been shown to be valid also for
graph transformation based on rules with application conditions.

1 Introduction 5

We develop the theory of multi-amalgamation for graph transformation
systems based on rules with application conditions in the context of M-
adhesive categories. Basically, the synchronization of rules, so-called multi
rules, is expressed by a kernel rule whose application determines how to
apply the multi rules. With maximal matchings, all multi rule applications
are constructed in parallel. This technique is useful to guide an unknown
number of rule applications using the known application of the kernel rule.
Combined with the concept of maximal matchings we obtain a mechanism
to apply a certain number of rules simultaneously as a semantical step de-
pending on the actual state of a model. With this technique, we are able
to describe the operational semantics of models without the need for ad-
ditional helper structure or infinite many rules. This leads to a clear and
vivid rule set suitable for analysis.
Moreover, we lay the foundations for model transformations with appli-

cation conditions broadening the expressiveness of model transformations
based on triple graphs. We show a composition and decomposition theorem
for triple transformations with consistent application conditions. Based
on this result for triple graph transformations and the semantics defined
by amalgamation we can successfully analyze syntactical correctness, com-
pleteness, functional behavior, and semantical simulation and correctness
of model transformations. For the construction and the analysis of model
transformations, different results and methods of graph transformations can
be applied. Using TGGs we obtain sufficient and necessary criteria for the
existence of model transformations, but these do not help for the actual
construction. In this thesis, we define a more elaborated technique of an
on-the-fly construction to make the construction of model transformations
more efficient.
With this framework, we obtain general methods how model transforma-

tions can be successfully analyzed regarding syntactical correctness, com-
pleteness, functional behavior, and semantical simulation and correctness.
The developed methods and results are applied to the non-trivial problem of
the specification of syntax and operational semantics for UML statecharts
and a model transformation from statecharts to Petri nets preserving the
semantics. The thorough specification and analysis of this complex case
study completes this work.
This thesis is organized as follows:

• In Chapter 2, we give a general introduction to model transformation,
graph transformation, and show general concepts for model transfor-

6 1 Introduction

mations based on graph transformations. Moreover, other existing
work is related to our concepts.

• In Chapter 3, we introduce the main concepts of M-adhesive cate-
gories and systems. The formal foundations for transformations and
their main results are explained. As the main result in this chapter
we show how M-adhesive categories can be constructed categorically
from given ones and that in addition certain properties are preserved.
As an example, different categories of algebraic high-level Petri nets
are shown to form M-adhesive categories.

• In Chapter 4, we define multi-amalgamation for an arbitrary number
of rules including application conditions. As a first main result in this
chapter, we show how to construct a complement rule such that the
application of the kernel and complement rule is equivalent to that
of the multi rule. The second main result is the Amalgamation The-
orem which states that amalgamated transformations are equivalent
to the application of a multi rule and a combined complement rule
for all other multi rules. The third main result shows that the par-
allel independence of amalgamated transformations can be reduced
to that of the multi rule applications. As examples, we define the
operational semantics for elementary Petri nets and statecharts using
amalgamation.

• In Chapter 5, we enhance triple graph transformation with applica-
tion conditions. As the main result in this chapter we show that for
a special kind of application conditions the composition and decom-
position of transformation sequences can be handled analogously to
the case without application condition. As an example, we elaborate
a model transformation from statecharts to Petri nets.

• In Chapter 6, we analyze model transformations regarding syntactical
correctness, completeness, behavior preservation, termination, func-
tional behavior, and semantical correctness. Moreover, we define the
on-the-fly construction to enhance the efficiency of model transforma-
tions. Our example from Chapter 5 is analyzed with respect to all
these properties.

• In Chapter 7, we summarize our work and give an outlook to future
research interests and challenges.

2 Introduction to Graph and Model

Transformation, and Related Work

The concept of model transformations is of increasing importance in soft-
ware engineering, especially in the context of model-driven development.
Although many model transformation approaches are implemented in var-
ious tools and utilized by a wide range users, often these implementations
are quite ad-hoc and without any proven correctness. Thus, in the last years
the need for analysis and verification of model transformations has emerged.
As a basis, a formal framework is needed which allows to obtain respective
results. In this thesis, we use graph transformation to define model trans-
formations and verify certain correctness properties. In this chapter, the
basic concepts of graph and model transformations are introduced and a
survey of recent literature is given.
In Section 2.1, we introduce the main concepts of model transformations

and discuss different model transformation languages and results. Graph
transformation as a suitable framework is described in Section 2.2. We give
a short overview over different graph transformation approaches and results.
In Section 2.3, model transformation by graph transformation is explained,
with a focus on triple graph transformation and correctness analysis.

2.1 Model Transformation

In modern software engineering, model driven software development
(MDSD) plays an important role [BBG05, SV06]. The idea and ultimate
goal is to generate the complete code from high-level system models without
the need to program any line of code directly, since programming needs a lot
of testing and still is often accompanied by bugs and failures, budget prob-
lems, and unstable programs and environments. In MDSD, the system is
modeled in an abstract, platform-independent way and refined step by step
to platform-specific executable code. Thus, the focus of software engineer-
ing moves from direct coding tasks to the design, analysis, and validation
of high-level models. When system requirements and design are modeled
U. Golas, Analysis and Correctness of Algebraic Graph and Model Transformations,
DOI 10.1007/978-3-8348-9934-7_2,
© Vieweg+Teubner Verlag | Springer Fachmedien Wiesbaden GmbH 2011

8 2 Introduction to Graph and Model Transformation

with high-level visual engineering model languages such as UML [OMG09b],
SysML [OMG08], or BPMN [OMG09a], the analysis of these models prior to
implementation leads to a further improvement and refinement of the mod-
els and, in the end, hopefully to automatic code generation from correct
and proven models. This improves software quality and reduces costs.
A part of the modeling is done in domain-specific modeling languages

(DSMLs) which define structure, behavior, and requirements in specific do-
mains. A meta-model, often equipped with some constraints, describes
which model elements may occur in a correct DSML model. This approach
is declarative and it is relatively easy to check if a model conforms to its
meta-model. But there is no constructive description how to obtain valid
DSML models. For this purpose, graph grammars (see Section 2.2) can be
used as a high-level visual specification mechanism for DSMLs [BELT04],
where the grammar directly induces the language defined by all possible
derivable models.
Model transformations play an important role in MDSD, since models

are everywhere in the software development process. In general, a model
transformation MT is a relation MT ⊆ V LS×V LT connecting models of a
source language V LS and a target language V LT . Moreover, such a relation
can be seen as bidirectional [Ste08b], i. e. also interpreted as connecting
target models to source models. In [CH03, MG06], model transformations
are classified into endogenous and exogenous transformations. Endogenous
model transformations work within one modeling language, typically used
for refactoring [EEE09] or other kinds of optimizations, i. e. V LS = V LT .
Exogenous model transformations translate models of different languages,
i.e V LS �= V LT .

In [BKMW09], a general mathematical framework of multi-modeling lan-
guages and model transformations based on MOF (Meta Object Facility)
metamodels and institutions is defined, including the definition of semantics
and correctness issues. In [Ste08a], different properties important for model
transformations are discussed which will mark main issues in future work.
Among specification, composition, and maintenance of model transforma-
tions, also verification and correctness properties are advised.
For the correctness of model transformations, we distinguish between syn-

tactical correctness, functional behavior, and semantical correctness. Syn-
tactical correctness means that the resulting target model is a valid model
of the target language, i. e. the typing is correct and it satisfies potential
constraints. Functional behavior describes that the model transformation
MT behaves like a function, i. e. that for each source model a unique target

2.2 Graph Transformation 9

model is found [BDE+07]. Semantical correctness expects that the behav-
ior of the target model is somehow equivalent to that of the source model,
where the required semantical properties have to be defined explicitly.
Also a wide range of tools [TEG+05] supports the design and execu-

tion of model transformations using languages like XSLT [W3C07], QVT
[OMG05], BOTL [MB03], ATL [JAB+06, JABK08], or graph transforma-
tion [Roz97, EEKR99, EEPT06]. XSLT (Extensible Stylesheet Language
Transformation) is a declarative, text-based transformation language that
can be used to transform XML-documents. It handles tree-structures, but
is difficult to use for visual models and complex, graph-like models, because
the additional tree structure has to be added and makes the definition of
the transformation more difficult. Further problems concern modularity, ef-
ficiency, reusability, and maintainability for complex transformations. QVT
(Query/View/Transformation) is a specification describing the requirements
for model transformation languages. There are different implementations
of QVT, although many tools only realize some part of the specification.
BOTL (Bidirectional Object-oriented Transformation Language) is a rule-
based language for model transformations in an object-oriented setting, with
a special focus on bidirectional transformations. ATL (ATLAS Transforma-
tion Language) is a hybrid of a declarative and imperative model transfor-
mation language specified both as a meta-model and as a textual concrete
syntax. Although the main transformation is written in a declarative style,
imperative constructs are provided for more complex mappings. The main
advantage of graph transformation as described in the next chapter is its
intuitive rule-based approach and its precise mathematical definition with a
lot of applicable results available for the analysis of model transformations.

2.2 Graph Transformation

Graph transformation originally evolved in the late 1960s and early 1970s
[PR69, Pra71, EPS73] as a reaction to shortcomings in the expressiveness
of classical approaches to rewriting, such as Chomsky grammars and term
rewriting, to deal with nonlinear structures. It combines the important con-
cepts of graphs, grammars, and rewriting. A detailed presentation of various
graph grammar approaches and application areas of graph transformation
is given in the handbooks [Roz97, EEKR99, EKMR99].
The main idea of graph transformation is the rule-based modification of

graphs, as shown in Fig. 2.1. The core of a rule p is a pair of graphs (L,R),

10 2 Introduction to Graph and Model Transformation

called the left-hand side L and the right-hand side R. Applying the rule
p = (L,R) means finding a match of L in the source graph G and replacing
L by R, leading to the target graph H of the graph transformation. The
main technical problems are how to delete L from G and how to connect R
with the remaining context leading to the target graph H. In fact, there are
several different solutions how to handle these problems, leading to several
different graph transformation approaches.

p = (L, R)

Figure 2.1: Rule-based modification of graphs

The main graph grammar and graph transformation approaches devel-
oped in the literature so far are, as presented in [Roz97]:

1. The node label replacement approach, developed mainly by Rozenberg,
Engelfriet, and Janssens, allows a single node, as the left-hand side L,
to be replaced by an arbitrary graph R. The connection of R with the
context is determined by an embedding relation depending on node
labels. For each removed dangling edge incident with the image of
a node n in L and each node n′ in R, a new edge (with the same
label) incident with n′ is established provided that (n, n′) belongs to
the embedding relation.

2. The hyperedge replacement approach, developed mainly by Habel,
Kreowski, and Drewes, has as the left-hand side L a labeled hyper-
edge, which is replaced by an arbitrary hypergraph R with designated
attachment nodes corresponding to the nodes of L. The gluing of R to
the context at the corresponding attachment nodes leads to the target
graph without using an additional embedding relation.

3. The algebraic approach is based on pushout constructions, where push-
outs are used to model the gluing of graphs. In fact, there are two
main variants of the algebraic approach, the double- and the single-
pushout approach. In both cases, there is no additional embedding
relation.

2.2 Graph Transformation 11

4. The logical approach, developed mainly by Courcelle and Bouderon,
allows graph transformation and graph properties to be expressed in
monadic second-order logic.

5. The theory of 2-structures was initiated by Rozenberg and Ehren-
feucht, as a framework for the decomposition and transformation of
graphs.

6. The programmed graph replacement approach of Schürr combines the
gluing and embedding aspects of graph transformation. Furthermore,
it uses programs in order to control the nondeterministic choice of rule
applications.

In this thesis, we use the double-pushout (DPO) approach, where push-
outs are used to model the gluing of two graphs along a common subgraph.
Intuitively, we use this common subgraph and add all other nodes and edges
from both graphs. Two gluing constructions are used to model a graph
transformation step, which is the reason for the name.
Roughly speaking, a rule is given by p = (L,K,R), where L and R are

the left- and right-hand side graphs andK is the common interface of L and
R, i. e. their intersection. The left-hand side L represents the preconditions
of the rule, while the right-hand side R describes the postconditions. K
describes a graph part which has to exist to apply the rule, but is not
changed. L\K describes the part which is to be deleted, and R\K describes
the part to be created.
A direct graph transformation via a rule p is defined by first finding a

match m of the left-hand side L in the current host graph G and then
constructing the pushouts (1) and (2) in Fig. 2.2. For the construction
of the first pushout, however, a gluing condition has to be satisfied which
allows us to construct D such that G is the gluing of L and D via K.
The second pushout means that H is the gluing of R and D via K. This
means that a direct graph transformation G ⇒ H in Fig. 2.2 consists of
two gluing constructions, which are pushouts in the category of graphs and
graph morphisms.
The algebraic approach to graph transformation is not restricted to (stan-

dard) graphs, but has been generalized to a large variety of different types
of graphs and other kinds of high-level structures, such as labeled graphs,
typed graphs, hypergraphs, attributed graphs, Petri nets, and algebraic
specifications. This extension from graphs to high-level structures – in con-
trast to strings and trees, considered as low-level structures – was initiated

12 2 Introduction to Graph and Model Transformation

L K Rl r

G D H

(1) (2)

Figure 2.2: DPO graph transformation

in [EHKP91a, EHKP91b] leading to the theory of high-level replacement
(HLR) systems based on category theory. In [EHPP04, EEPT06], the con-
cept of high-level replacement systems was joined to that of adhesive cate-
gories introduced by Lack and Sobociński in [LS04], leading to the concept
of M-adhesive categories and systems (see Section 3.2). There are several
interesting instantiations of M-adhesive systems, including not only graph
and typed graph transformation systems, but also hypergraph, Petri net,
algebraic specification, and typed attributed graph transformation systems.
For graph transformations, many interesting results are available. The

Local Church-Rosser Theorem allows us to apply two graph transforma-
tions G ⇒ H1 via a rule p1 and G ⇒ H2 via a rule p2 in an arbitrary order,
provided that they are parallel independent. In this case they can also be
applied in parallel, leading to a parallel graph transformation G ⇒ H via
the parallel rule p1+p2. This result is called the Parallelism Theorem. If the
transformations are not independent, the Concurrency Theorem provides a
way to define a concurrent rule p1 ∗E p2 which leads to a direct transforma-
tion G ⇒ H even in the case of dependence. The Embedding and Extension
Theorem handles the embedding of a whole transformation sequence into
a larger context. In addition, the Local Confluence Theorem shows the lo-
cal confluence of pairs of direct transformations provided that all critical
pairs, which describe conflicts in a minimal context, fulfill a corresponding
confluence property.
There are certain extensions of standard graph transformations to allow

modeling on a reasonable level of abstraction and to ease the effort for the
modeler. Some of them are explained in the following.

2.2 Graph Transformation 13

To further enhance the expressiveness of graph transformations, appli-
cation conditions have been introduced. Negative application conditions
forbid to apply a rule if a certain structure is present. As a generalization,
nested application conditions [HP09], which are only called application con-
ditions in this thesis, provide a more powerful mechanism to control the rule
application. While application conditions are as powerful as first order logic
on graphs, we can still obtain most of the interesting results available for
graph transformations without application conditions for transformations
with application conditions [EHL10a, EHL+10b], if certain additional prop-
erties hold (see Subsection 3.4.3).

Amalgamation [Tae96] is used for the parallel execution of synchronized
rules. We can model an arbitrary number of parallel actions, which are
somehow linked, at different places in a model, where the number of actions
is not known beforehand. To model this situation with standard graph
transformation, we had to apply the rules sequentially with an explicitly
coded iteration, but this is neither natural nor efficient and often compli-
cated. For example, for the firing semantics of Petri nets, with amalgama-
tion we only need one rule where we can collect all pre- and post-places and
execute the complete firing step. Without amalgamation, one would have
to thoroughly remember which places have been already handled to remove
or add the tokens place by place.

There are some other approaches dealing with the problem of similar
parallel actions: in [GKM09], a collection operator, and in [HJE06], multi-
objects are used for cloning the complete matches. In [RK09], an approach
based on nested graph predicates is introduced which define a relationship
between rules and matches. While nesting extends the expressiveness of
these transformations, it is quite complicated to write and understand these
predicates and it seems to be difficult to relate or integrate them to the
theoretical results for graph transformation.

In [BFH87], the theory of amalgamation for the double-pushout approach
has been developed on a set-theoretical basis for pairs of standard graph
rules without application conditions. The Amalgamation Theorem is a gen-
eralization of the Parallelism Theorem [EK76] where rules do not have to
be completely parallel independent, but only outside the synchronization
parts. The concepts of amalgamation are applied to communication based
systems and visual languages in [BFH87, TB94, HMTW95, Tae96, Erm06]
and transferred to the single-pushout approach of graph transformation in
[Löw93].

14 2 Introduction to Graph and Model Transformation

Graph transformation is not only useful for the definition of languages
using a graph grammar, but also for the rule-based description of the se-
mantics of a visual language. A semantical step within the model can be
executed by one or more rule applications. For the definition of rule-based
semantics of visual languages, known approaches use rule schemes leading
to infinite many rules or complex control and helper structure. Using amal-
gamation for the specification of semantics leads to a more compact and
understandable rule set.

2.3 Model Transformation Based on Graph

Transformation

For model transformations based on graph transformation, typed graphs are
used, often equipped with additional attributes leading to typed attributed
graphs. A type graph defines the available types for nodes and edges of the
graph models. There is a clear correspondence between meta-models and
type graphs, where classes correspond to node types, associations to edge
types, the conformity of a model to the meta-model corresponds to the
existence of a typing morphism into the type graph, and OCL constraints
correspond to graph constraints. To simplify the modeling of graph trans-
formations, type graphs have been extended with node type inheritance
[LBE+07]. Such a type graph with inheritance can be flattened leading to
an equivalent flattened system, which can be analyzed using the standard
results for graph transformation.

For model transformations based on graphs, the type graphs ATGS of
the source and ATGT of the target language have to be integrated into a
common type graph ATG. Starting the model transformation for a source
model MS typed over ATGS , it is also typed over ATG. During the model
transformation process, the intermediate models are typed over ATG. This
type graph may contain not only ATGS and ATGT , but also additional
types and relations which are needed for the transformation process only.
The resulting model MT is automatically typed over ATG. If it is not
already typed over ATGT , a restriction is used as the last step of the trans-
formation to obtain a valid target model [EEPT06].

2.3 Model Transformation Based on Graph Transformation 15

ATGS ATG ATGT

MS M1
. . . Mn MT

typeMS
typeMT

Different tools exist for the specification, simulation, and analysis of graph
transformations. While some of them are general graph transformation tools
like AGG [AGG] and GrGen [GBG+06], others are specifically designed for
model transformations in software engineering based on graph transforma-
tion like VIATRA2 [VB07], GReAT [BNBK06], and Fujaba [GZ06].
Verifying model transformations is as difficult as verifying compilers for

high-level languages. But the knowledge of the domain-specific nature of
the models may help to perform verification with reasonable effort. In
[Erm09], a conceptual overview on model transformations based on graph
transformations is given, especially regarding research activities and future
work for the analysis and verification of model transformations.
For the verification of model transformations, some results for syntactical

correctness are available. Using the above mechanism, the correct typ-
ing of the target model is implied by the graph transformation approach.
Moreover, for the satisfaction of certain structural constraints, these can be
translated to application conditions to ensure that all derived target models
respect the constraints [TR05].
For specific model transformations, functional behavior can be guaran-

teed [EEEP07]. In general, functional behavior can be obtained for graph
transformations showing termination and local confluence of the transfor-
mations. For a given set of rules, sometimes arranged in layers or equipped
with a more complex control structure, termination checks if there is no in-
finite transformation sequence. Together with local confluence, termination
leads to global confluence of a graph transformation system. In [Plu95], it
is shown that termination is undecidable in general. Nevertheless, termi-
nation can be ensured if the rules can be structured into layers, which are
either deleting or non-deleting with special negative application conditions
[EEL+05]. Extending this result in [VVE+06], the rules are translated into
a Petri net, where the analysis of this net leads to a sufficient criterion for
the termination of the transformations. Also the restriction of the matches
to be injective helps to determine termination [LPE07]. Critical pair anal-
ysis is used to determine local confluence. Although critical pairs can be
computed, the main task of deciding their confluence has to be done by

16 2 Introduction to Graph and Model Transformation

hand, which can be a difficult and lengthy task. Using essential critical
pairs reduces this effort [LEO08] but still an automatic or semi-automatic
decision process would be preferable.
Some approaches use test case generation [BKS04, FSB04, EKTW06,

KA06] to show syntactical and semantical correctness of model transforma-
tions, but for models it is even harder to define suitable test cases then for
code, since it is not clear which criteria represent good test cases. Especially
to define test cases for constraints is a difficult task, and the evaluation of
the results, i. e. if a test is passed or failed, is difficult to be decided auto-
matically.
Also model checking can be used for the analysis and verification of model

transformations. In [RSV04], two different approaches are compared: trans-
lating graphs and rules into a traditional model checker suits more static
problems, while model checking directly on the level of graphs and rules
is better for dynamic systems. In [VP03], a simple model transformation
from statecharts to Petri nets is analyzed with model checking, but the state
explosion problem limits the practical applicability of this approach.
Moreover, certification as used for code generation [DF05] may be a

chance to verify at least certain model transformations. In this case, se-
mantical correctness is only analyzed and certified for the actual model on
which the certificate depends. Different certification methods are analyzed
in [KN07, NK08b, NK08a], mainly certification via bisimilarity and by se-
mantic anchoring. The application to different case studies shows that even
for simple models and model transformations certification is quite costly
and still difficult to prove.
In [EE08], a first step is made towards the semantical correctness of model

transformations, where both source and target models are equipped with
an operational semantics based on graph transformations. The rules of the
source semantics are transformed by translation rules to semantical rules
on the target model and compared to the defined semantics. This approach
is only successful under strict preconditions restricting the translation of
the source semantics. There, a railway system is simulated by runs in a
corresponding Petri net, where the semantical rules of the railway system
are translated and analyzed to be correct.
The semantical correctness of a model transformation from a class of

automata to PLC-code using triple graph grammars and specified in the tool
FUJABA is proven in [GGL+06] utilizing the theorem prover Isabelle/HOL.
This work is based on [Lei06], where it is shown that the resulting source
and target rules lead to semantical equivalence, i. e. if a source model S and

2.3 Model Transformation Based on Graph Transformation 17

a target model T are semantically correct then also the models S′ and T ′ are
semantically correct, where S′ and T ′ can be derived from S and T using
the source and target part of the same rule and some induced match. This
result has to be shown for each of the triple rules which is a very difficult
and lengthy task and can only be done semi-automatically, where a lot of
manual interaction is necessary.

Two different approaches are used in [EKR+08, HKR+10], where semanti-
cal correctness is shown by weak bisimilarity of the corresponding transition
systems of the semantics. As an example, a model transformation from a
very simplified version of activity diagrams to TAAL, a textual language,
is analyzed, where both languages are equipped with a formal semantics
defined by graph transformation. The first proof strategy uses triple graph
grammars and an explicit bisimulation relation, while the second one is
based on an in-situ model transformations and an extension of the opera-
tional semantics using borrowed contexts. Even for this simple example the
proofs are quite difficult.

For exogenous model transformations, triple graphs and triple transfor-
mations are a common and successful approach [Sch94, KS06]. Within a
triple graph, both the source and target models are stored, together with
some connections between them. A model transformation can be obtained
from the triple rules, which create both source and target models together.
These forward and backward transformations can be deduced automatically,
requiring only one description for both directions. This eases the specifica-
tion of bidirectional model transformations. In [KS06] it is shown how to
split a triple rule tr into a source rule trS , describing the changes in the
source graph, and a forward rule trF , describing the corresponding update
of the target graph. It follows that also transformations can be split up into
a source and forward transformation. As a result, the forward rules specify
the actual forward model transformation.

These results have been extended in [EEE+07] to show that under the
condition of a source consistent forward transformation the bidirectional
model transformations are information preserving. Source consistency of a
sequence G1 =

tr∗F==⇒ G2 means that G1 is constructed by the application of the
source rules corresponding to the forward rules in the forward transforma-
tion. In [EHS09], triple rules have been enriched with negative application
conditions to enhance the expressiveness of the triple transformations. If
the negative application conditions are source-target application conditions,

18 2 Introduction to Graph and Model Transformation

i. e. defined either on the source or the target component, all the results can
be transferred to this extension [EHS09].
In [LG08], triple patterns are defined which are used similarly to con-

straints and specify model transformations in a declarative way, where pos-
itive and negative patterns declare what is allowed and forbidden for the
transformation. Triple graphs are extended to triple algebras, triple pat-
terns, and transformation patterns, which are more constructive than triple
patterns, in [OW09]. For the verification of such a model transformation,
a verification specification of positive patterns is defined that characterizes
correctness properties. A transformation specification TSP is then cor-
rect w. r. t. such a verification specification V SP if A ∈ TSP implies that
A ∈ V SP . Minimal gluings of transformation patterns are analyzed to en-
sure the correctness. This approach works well for the analysis of syntactical
correctness, but is difficult to adopt for semantical correctness.

3 M-Adhesive Transformation

Systems

M-adhesive categories constitute a powerful framework for the definition
of transformations. The double–pushout approach, which is based on cat-
egorical constructions, is a suitable description of transformations leading
to a great number of results as the Local Church-Rosser, Parallelism, Con-
currency, Embedding, Extension, and Local Confluence Theorems. Yet the
rules and transformations themselves are easy and intuitively to understand.

In this chapter, we introduce the main theory of M-adhesive categories
and M-adhesive transformation systems. In Section 3.1, we give a short
introduction to graphs, typed graphs, and typed attributed graphs as used
throughout this thesis. Then we introduce M-adhesive categories in Sec-
tion 3.2. In addition to [EEPT06], we extend the Construction Theorem to
general comma categories, which cover many categorical constructions as,
for example, Petri nets. We show that some additional properties stated
for M-adhesive categories and needed for the transformation framework
are preserved via the constructions. In Section 3.3, we give explicit proofs
that certain categories of algebraic high-level schemas, nets, and net sys-
tems, which are extensions of Petri nets combining these with actual data
elements, are indeed M-adhesive categories. In Section 3.4, we introduce
transformations with application conditions in M-adhesive transformation
systems and give an overview of various analysis results valid in this frame-
work.

In this chapter, only a short overview over the used notions and categori-
cal terms is given. We expect the reader to be familiar with category theory,
see [EEPT06] for an overview, and, for example, [Mac71, AHS90] for more
thorough introductions. Moreover, only a short outline of the theory of M-
adhesive transformation systems is given here. For the entire theory with
all definitions, theorems, proofs, and examples see [EEPT06, EP06, PE07].

U. Golas, Analysis and Correctness of Algebraic Graph and Model Transformations,
DOI 10.1007/978-3-8348-9934-7_3,
© Vieweg+Teubner Verlag | Springer Fachmedien Wiesbaden GmbH 2011

20 3 M-Adhesive Transformation Systems

3.1 Graphs, Typed Graphs, and Typed

Attributed Graphs

Graphs and graph-like structures are the main basis for (visual) models.
Basically, a graph consists of nodes, also called vertices, and edges, which
link two nodes. Here, we consider graphs which may have parallel edges
as well as loops. A graph morphism then maps the nodes and edges of
the domain graph to these of the codomain graph such that the source and
target nodes of each edge are preserved by the mapping.

Definition 3.1 (Graph and graph morphism)

A graph G = (VG, EG, sG, tG) consists of a set VG of nodes, a set EG of edges, and

two functions sG, tG : EG → VG mapping to each edge its source and target node.

EG1 VG1

EG1 VG1

sG1

tG1

sG2

tG2

fE fV=

Given graphs G1 and G2, a graph morphism f : G1 →
G2, f = (fV , fE) consists of two functions fV : VG1 →
VG2 , fE : EG1 → EG2 such that sG2 ◦ fE = fV ◦ sG1 and

tG2 ◦ fE = fV ◦ tG1 .

Graphs and graph morphisms form the category

Graphs, together with the component-wise compositions

and identities.

An important extension of plain graphs is the introduction of types. A
type graph defines a node type alphabet as well as an edge type alphabet,
which can be used to assign a type to each element of a graph. This typing
is done by a graph morphism into the type graph. Type graph morphisms
then have to preserve the typing.

Definition 3.2 (Typed graph and typed graph morphism)

A type graph is a distinguished graph TG.

Given a type graph TG, a tuple GT = (G, typeG) of a graph G and a graph

morphism typeG : G→ TG is called a typed graph.

G1 G2

TG

f

typeG1 typeG2

=

Given typed graphs GT1 and GT2 , a typed graph mor-

phism f : GT1 → GT2 is a graph morphism f : G1 → G2

such that typeG2 ◦ f = typeG1 .

Given a type graph TG, typed graphs and typed graph

morphisms form the category GraphsTG, together with

the component-wise compositions and identities.

If the typing is clear in the context, we may not explicitly mention it and
consider only the typed graph G with implicit typing typeG.

The main idea of an attributed graph is that one has an underlying data
structure, given by an algebra, such that nodes and edges of a graph may

3.1 Graphs, Typed Graphs, and Typed Attributed Graphs 21

carry attribute values. For the formal definition, these attributes are rep-
resented by edges into the corresponding data domain, which is given by a
node set. An attributed graph is based on an E-graph that has, in addition
to the standard graph nodes and edges, a set of data nodes as well as node
and edge attribute edges.

Definition 3.3 (Attributed graph and attributed graph morphism)

An E-graph GE = (V GG , V GD , EGG , EGNA, EGEA, (sGi , tGi)i∈{G,NA,EA}) consists of
graph nodes V GG , data nodes V GD , graph edges EGG , node attribute edges EGNA,

and edge attribute edges EGEA, according to the following signature.

EGG V GG

EGEA EGNAV GD

sGEA

tGEA

sGNA

tGNA

sGG

tGG

For E-graphs GE1 and GE2 , an

E-graph morphism f : GE1 →
GE2 is a tuple f = ((fVi :

V G1
i → V G2

i)i∈{G,D}, (fEj : EG1
j →

EG2
j)j∈{G,NA,EA}) such that f com-

mutes with all source and target

functions.

An attributed graph G over a data signature DSIG = (SD, OPD) with attribute

value sorts S′
D ⊆ SD is given by G = (GE , DG), where GE is an E-graph and DG

is a DSIG-algebra such that ∪s∈S′
D

DG,s = V GD .

For attributed graphs G1 = (GE1 , DG1) and G2 = (GE2 , DG2), an attributed

graph morphism f : G1 → G2 is a pair f = (fG, fD) with an E-graph morphism

fG : GE1 → GE2 and an algebra homomorphism fD : DG1 → DG2 such that

fG,VD (x) = fD,s(x) for all x ∈ DG1,s, s ∈ S′
D.

Attributed graphs and attributed graph morphisms form the category

AGraphs, together with the component-wise compositions and identities.

As for standard typed graphs, an attributed type graph defines a set
of types which can be used to assign types to the nodes and edges of an
attributed graph. The typing itself is done by an attributed graph morphism
between the attributed graph and the attributed type graph.

Definition 3.4 (Typed attributed graph and morphism)

An attributed type graph is a distinguished attributed graph ATG = (TG, Z),

where Z is the final DSIG-algebra.

A tuple GT = (G, type) of an attributed graph G together with an attributed

graph morphism type : G→ ATG is then called a typed attributed graph.

Given typed attributed graphs GT1 = (G1, type1) and GT2 = (G2, type2), a typed

attributed graph morphism f : GT1 → GT2 is a graph morphism f : G1 → G2 such

that type2 ◦ f = type1.

For a given attributed type graph, typed attributed graphs and typed attributed

graph morphisms form the categoryAGraphsATG, together with the component-

wise compositions and identities.

22 3 M-Adhesive Transformation Systems

3.2 M-Adhesive Categories

For the transformation of not only graphs, but also high-level structures
as Petri nets and algebraic specifications, high-level replacement (HLR)
categories were established in [EHKP91a, EHKP91b], which require a list
of so-called HLR properties to hold. They were based on a morphism class
M used for the rule morphisms. This framework allowed a rich theory
of transformations for all HLR categories, but the HLR properties were
difficult and lengthy to verify for each category.

3.2.1 Introduction to M-Adhesive Categories

Adhesive categories were introduced in [LS04] as a categorical framework
for deriving process congruences from reaction rules. They require a certain
compatibility of pushouts and pullbacks, called the van Kampen property,
for pushouts along monomorphisms in the considered category. Later, they
were extended to quasiadhesive categories in [JLS07] where the van Kampen
property has to hold only for pushouts along regular monomorphisms.
Adhesive categories behave well also for transformations, but interesting

categories as typed attributed graphs are neither an adhesive nor a quasiad-
hesive category. Combining adhesive and HLR categories lead to adhesive
HLR categories in [EHPP04, EPT04], where a subclass M of monomor-
phisms is considered and only pushouts over M-morphisms have to fulfill
the van Kampen property. They were slightly extended to weak adhesive
HLR categories in [EEPT06], where a weaker version of the van Kampen
property is sufficient to show the main results of graph and HLR transfor-
mations also for transformations in weak adhesive HLR categories. Not only
many kinds of graphs, but also Petri nets and algebraic high-level nets are
weak adhesive HLR categories which allows to apply the theory to all these
kinds of structures. In [EEPT06], the main theory including all the proofs
for transformations in weak adhesive HLR categories can be found, while
a nice introduction including motivation and examples for all the results is
given in [PE07].
In this thesis, for simplicity and easier differentiation, we call weak adhe-

sive HLR categories M-adhesive categories. Their main property is the van
Kampen property, which is a special compatibility of pushouts and pull-
backs in a commutative cube. The idea of a van Kampen square is that of
a pushout which is stable under pullbacks, and, vice versa, that pullbacks
are stable under combined pushouts and pullbacks.

3.2 M-Adhesive Categories 23

Definition 3.5 (Van Kampen square)

A commutative cube (2) with pushout (1) in the bottom face and where the back

faces are pullbacks fulfills the van Kampen property if the following statement

holds: the top face is a pushout if and only if the front faces are pullbacks.

A′

B′

A

B

C′

D′

C

D

A B

C D

m′

a

f ′

g′

b
m

f

n′

c

d

n
g

m

f

n

g(1)

(2)

A pushout (1)

is a van Kampen

square if the van

Kampen prop-

erty holds for

all commutative

cubes (2) with

(1) in the bottom

face.

Given a morphism class M, a pushout (1) with m ∈ M is anM-van Kampen

square if the van Kampen property holds for all commutative cubes (2) with (1)

in the bottom face and f ∈M or b, c, d ∈M.

It might be expected that, at least in the category Sets, every pushout is
a van Kampen square. Unfortunately, this is not true, but at least pushouts
along monomorphisms are van Kampen squares in Sets and several other
categories.
For an M-adhesive category, we consider a category C together with

a morphism class M of monomorphisms. We require pushouts along M-
morphisms to be M-van Kampen squares, along with some rather technical
conditions for the morphism class M which are needed to ensure compati-
bility of M with pushouts and pullbacks.

Definition 3.6 (M-adhesive category)
A category C with a morphism classM is called anM-adhesive category if:

1. M is a class of monomorphisms closed under isomorphisms, composition

(f : A → B ∈ M, g : B → C ∈ M ⇒ g ◦ f ∈ M), and decomposition
(g ◦ f ∈M, g ∈M⇒ f ∈M).

2. C has pushouts and pullbacks alongM-morphisms, andM-morphisms are
closed under pushouts and pullbacks.

3. Pushouts in C alongM-morphisms areM-van Kampen squares.

Examples for M-adhesive categories are the categories Sets of sets,
Graphs of graphs, GraphsTG of typed graphs, Hypergraphs of hyper-
graphs, ElemNets of elementary Petri nets, and PTNets of place/transi-
tion nets, all together with the class M of injective morphisms, as well as
the category Specs of algebraic specifications with the classMstrict of strict

24 3 M-Adhesive Transformation Systems

injective specification morphisms, the category PTSys of place/transition
systems with the class Mstrict of strict morphisms, and the category
AGraphsATG of typed attributed graphs with the class MD−iso of in-
jective graph morphisms with isomorphic data part. The proof that Sets
is an M-adhesive category is done in [EEPT06], while the proofs for most
of the other categories can be done using the Construction Theorem in the
following subsection.
In [EHKP91b], the following HLR properties were required for HLR cat-

egories. All these properties are valid in M-adhesive categories and can be
proven using the van Kampen property.

Fact 3.7

The following properties hold inM-adhesive categories:
A′

B′

A

B

C′

D′

C

D

A B E

C D F

m′

a

f ′

g′

b

m
f

n′

c

d

n
g

k

l

u

s

r

v

w

(1) (2)

(3)

1. Pushouts along M-morphisms are pullbacks. Given the above pushout (1)

with k ∈M, then (1) is also a pullback.
2. M-pushout–pullback decomposition. Given the above commutative dia-

gram, where (1) + (2) is a pushout, (2) is a pullback, w ∈ M, and (l ∈ M
or k ∈M), then (1) and (2) are pushouts and also pullbacks.

3. Cube pushout–pullback property. Given the above commutative cube (3),

where all morphisms in the top and bottom faces are M-morphisms, the
top face is a pullback, and the front faces are pushouts, then the following

statement holds: the bottom face is a pullback if and only if the back faces

of the cube are pushouts:

4. Uniqueness of pushout complements. Given k : A→ B ∈M and s : B → D,

then there is, up to isomorphism, at most one C with l : A → C and

u : C → D such that (1) is a pushout.

Proof See [EEPT06].

For the main results of transformations in M-adhesive categories we need
some additional properties, which are collected in the following.

3.2 M-Adhesive Categories 25

Definition 3.8 (Additional properties)

Given an M-adhesive category (C,M), it fulfills the additional properties, if all
of the following items hold:

1. Binary coproducts: C has binary coproducts.

A B

K

f

e m

2. Epi–M factorization: For each f : A→ B there

is a factorization over an epimorphism e : A →
K and m : K → B ∈ M such that m ◦ e = f ,

and this factorization is unique up to isomor-

phism.

A1

BK

A2

f1

f2

e1

e2

m

3. E ′–M′ pair factorization: Given a morphism

class M′ and a class of morphism pairs with

common codomain E ′, for each pair of mor-
phisms f1 : A1 → B, f2 : A2 → B there is

a factorization over e1 : A1 → K, e2 : A2 → K,

m : K → B with (e1, e2) ∈ E ′ and m ∈ M′

such that m ◦ e1 = f1 and m ◦ e2 = f2

B A E

C D F

B E

C F

b

c

m

n

a f g

b∗

c∗

a g

b∗

c∗

(1) (2) (3)

4. Initial pushouts

over M′: Given

a morphism class

M′, for each

f : A → D ∈ M′

there exists an

initial pushout (1)

with b, c ∈M. (1) is an initial pushout if the following condition holds: for
all pushouts (2) with m, n ∈ M there exist unique morphisms b∗, c∗ ∈ M
such that m ◦ b∗ = b, n ◦ c∗ = c, and (3) is a pushout.

A B

C D

D′

A B

C D′

b

c

a d

c′
e

d′
a d′

b

c′

(4) (5)

5. Effective pushouts: Given

a pullback (4) and a

pushout (5) with all

morphisms being M-
morphisms, then also

the induced morphism

e : D → D′ is an

M-morphism.

Remark 3.9

In [LS05], it is shown that in the setting of effective pushouts, the morphism e

has to be a monomorphism. But up to now we were not able to show that it is

actually anM-morphism if the classM does not contain all monomorphisms.

26 3 M-Adhesive Transformation Systems

A B

A+ C B + C

C D

B + C B +D

f

f+idC

g

idC+g

(6) (7)

As shown in [EHL10a], if

(C,M) has binary coprod-
ucts then these are compat-

ible with M, which means
that f, g ∈ M implies f +

g ∈ M: For f : A → B,

g : C → D, pushout (6) with f ∈ M implies that f + idC ∈ M and pushout (7)

with g ∈M implies that idB + g ∈M. Thus, also f + g = (f + id) ◦ (id+ g) ∈M
by composition ofM-morphisms.

3.2.2 Construction of M-Adhesive Categories

M-adhesive categories are closed under different categorical constructions.
This means that we can construct new M-adhesive categories from given
ones.
We use an extension of comma categories [Pra07], where we loosen the

restrictions on the domain of the functors compared to standard comma
categories, which makes the category more flexible to describe different op-
erations on the objects.

Definition 3.10 (General comma category)

Given index sets I and J , categories Cj for j ∈ J and Xi for i ∈ I, and for
each i ∈ I two functors Fi : Cki → Xi, Gi : C�i → Xi with ki, �i ∈ J , then the
general comma category GComCat((Cj)j∈J , (Fi, Gi)i∈I ; I,J) is defined by

Fi(Aki) Gi(A�i)

Fi(A
′
ki
) Gi(A

′
�i
)

Fi(hki
) Gi(h�i

)

opi

op′i

• objects ((Aj ∈ Cj)j∈J , (opi)i∈I), where opi :

Fi(Aki)→ Gi(A�i) is a morphism in Xi,

• morphisms h : ((Aj), (opi)) → ((A′
j), (op′

i))

as tuples h = ((hj : Aj → A′
j)j∈J) such that

for all i ∈ I we have that op′
i ◦ Fi(hki) =

Gi(h�i) ◦ opi.

The Construction Theorem in [EEPT06] has been extended to general
comma categories and full subcategories in [Pra07], which directly implies
the results in [EEPT06]. Basically, it holds that, under some consistency
properties, if the underlying categories are M-adhesive categories so are the
constructed ones.
Theorem 3.11 (Construction Theorem)

If (C,M1), (D,M2), and (Cj ,Mj) for j ∈ J are M-adhesive categories, then
also the following categories areM-adhesive categories:
1. the general comma category (G, (×j∈JMj) ∩ MorG) with G =

GComCat((Cj)j∈J , (Fi, Gi)i∈I ; I,J), where for all i ∈ I Fi preserves

3.2 M-Adhesive Categories 27

pushouts along Mki -morphisms and Gi preserves pullbacks along M�i -

morphisms,

2. any full subcategory (C′,M1|C′) of C, where pushouts and pullbacks along
M1 are created and reflected by the inclusion functor,

3. the comma category (F, (M1 ×M2) ∩MorF), with F = ComCat(F, G; I),
where F : C→ X preserves pushouts alongM1-morphisms and G : D→ X
preserves pullbacks alongM2-morphisms,

4. the product category (C×D,M1 ×M2),

5. the slice category (C\X,M1 ∩MorC\X),

6. the coslice category (X\C,M1 ∩MorX\C),

7. the functor category ([X,C],M1-functor transformations).

Proof For the general comma category, it is easy to show that M is a class

of monomorphisms closed under isomorphisms, composition, and decomposition

since this holds for all componentsMj .

Pushouts alongM-morphisms are constructed component-wise in the underly-
ing categories as shown in Lemma A.1. The pushout object is the component-wise

pushout object, where the operations are uniquely defined using the property that

Fi preserves pushouts alongMki -morphisms.

Analogously, pullbacks along M-morphisms are constructed component-wise,
where the operations of the pullback object are uniquely defined using the property

that Gi preserves pullbacks alongM�i -morphisms.

TheM-van Kampen property follows, since in a proper cube, all pushouts and
pullbacks can be decomposed leading to proper cubes in the underlying categories,

where theM-van Kampen property holds. The subsequent recomposition yields
theM-van Kampen property for the general comma category.
For a full subcategory C′ of C defineM′ =M1|C′ . By reflection, pushouts and

pullbacks alongM′-morphisms in C′ exist. Obviously,M′ is a class of monomor-
phisms with the required properties. Since we only restrict the objects and mor-

phisms, theM-van Kampen property is inherited from C.
As shown in Lemmas A.2 and A.3, product, slice, coslice, and comma categories

are instantiations of general comma categories. Obviously, the final category 1 is

an M-adhesive category and the functors !C, !D, idC, and X preserve pushouts

and pullbacks. Thus, the proposition follows directly from the general comma

category for these constructions.

The proof for the functor category is explicitely given in [EEPT06].

28 3 M-Adhesive Transformation Systems

3.2.3 Preservation of Additional Properties via
Constructions

We now analyze how far also the additional properties for M-adhesive cate-
gories defined in Def. 3.8 can be obtained from the categorical constructions
if the underlyingM-adhesive categories fulfill these properties. This work is
based on [PEL08] and extended to general comma categories and subcate-
gories in this thesis. Here, we only state and prove the results, for examples
see [PEL08].

3.2.3.1 Binary Coproducts

In most cases, binary coproducts can be constructed in the underlying cate-
gories, with some compatibility requirements for the preservation of binary
coproducts. Note that we do not have to analyze the compatibility of bi-
nary coproducts with M, as done in [PEL08], since this is a general result
in M-adhesive categories as shown in Rem. 3.9.

Fact 3.12

If the M-adhesive categories (C,M1), (D,M2), and (Cj ,Mj) for j ∈ J have

binary coproducts then also the followingM-adhesive categories have binary co-
products:

1. the general comma category (G, (×j∈JMj) ∩MorG), if for all i ∈ I Fi
preserves binary coproducts,

2. any full subcategory (C′,M1|C′) of C, if
(i) the inclusion functor reflects binary coproducts or

(ii) C′ has an initial object I and, in addition, we have general pushouts

in C′ or iA : I → A ∈M for all A ∈ C′,

3. the comma category (F, (M1×M2)∩MorF), if F : C→ X preserves binary
coproducts,

4. the product category (C×D,M1 ×M2),

5. the slice category (C\X,M1 ∩MorC\X),

6. the coslice category (X\C,M1 ∩MorX\C), if C has general pushouts,

7. the functor category ([X,C],M1-functor transformations).

Proof 1. If Cj has binary coproducts for all j ∈ J and Fi preserves bi-

nary coproducts for all i ∈ I, then the coproduct of two objects A =

((Aj), (opAi)) and B = ((Bj), (opBi)) in G is the object A + B = ((Aj +

Bj), (opA+Bi)), where opA+Bi is the unique morphism induced by Gi(iA�i) ◦

3.2 M-Adhesive Categories 29

opAi and Gi(iB�i) ◦ opBi . If also Gi preserves coproducts then opA+Bi =

opAi + opBi .

Fi(Aki) Fi(Aki +Bki) Fi(Bki)

Gi(A�i) Gi(A�i +B�i) Gi(B�i)

Fi(iAki
) Fi(iBki

)

Gi(iA�i
) Gi(iB�i

)

opAi opA+Bi opBi

I A

B A+I B

iA

iB

2. If the inclusion functor reflects binary coproducts

this is obvious. Otherwise, if we have an initial

object I, given A, B ∈ C′ we can construct the
pushout over iA : I → A, iB : I → B, which exists

because iA, iB ∈M or due to general pushouts. In

this case, the pushout object is also the coproduct of A and B, because for

any object in comparison to the coproduct the morphisms agree via iA and

iB on I, and the constructed pushout induces also the coproduct morphism.

3. This follows directly from Item 1, since the comma category is an instantia-

tion of general comma categories. The coproduct of objects (A1, A2, (opAi))

and (B1, B2, (opBi)) of the comma category is the object A + B = (A1 +

B1, A2 +B2, opA+Bi).

4. Since C × D ∼= ComCat(!C : C → 1, !D : D → 1, ∅) (see Lemma A.3)

and !C preserves coproducts this follows from Item 3. The coproduct of

objects (A1, A2) and (B1, B2) of the product category is the component-

wise coproduct (A1 +B1, A2 +B2) in C and D, respectively.

A A+B B

X

a′
[a′,b′]

b′

5. Since C\X ∼= ComCat(idC : C → C,

X : 1 → C, {1}) (see Lemma A.3) and
idC preserves coproducts this follows

from Item 3. In the slice category, the

coproduct of (A, a′) and (B, b′) is the ob-
ject (A + B, [a′, b′]) which consists of the coproduct A + B in C together

with the morphism [a′, b′] : A+B → X induced by a′ and b′.

X A

B A+X B

b′

b

a′ a

6. If C has general pushouts, given two objects (A, a′)
and (B, b′) in X\C we construct the pushout over

a′ and b′ in C. The coproduct of (A, a′) and (B, b′)
is the pushout object A +X B together with the

coslice morphism b ◦ a′ = a ◦ b′. For any object
(C, c′) in comparison to the coproduct, the coslice morphism c′ ensures
that the morphisms agree via a′ and b′ in X such that the pushout also

induces the coproduct morphism.

7. If C has binary coproducts, the coproduct of two functors A, B : X → C
in [X,C] is the component-wise coproduct functor A+B with A+B(x) =

30 3 M-Adhesive Transformation Systems

A(x)+B(x) for an object x ∈ X and A+B(h) = A(h)+B(h) for a morphism

h ∈ X.

3.2.3.2 Epi–M Factorization

For Epi–M factorizations, we obtain the same results as for E ′–M′ pair
factorizations by replacing the class of morphism pairs E ′ by the class of
all epimorphisms and M′ by M. We do not explicitely state these results
here, but they can be easily deduced from the results in the following.

3.2.3.3 E ′–M′ Pair Factorization

For most of the categorical constructions, the E ′–M′ pair factorization from
the underlying categories is preserved. But for functor categories, we need
a stronger property, the E ′–M′ diagonal property, for this result.

Definition 3.13 (Strong E ′–M′ pair factorization)

B

A

K

CL

e

e′

n

m

d
b

a

An E ′–M′ pair factorization is called strong, if the fol-

lowing E ′–M′ diagonal property holds:
Given (e, e′) ∈ E ′, m ∈ M′, and morphisms a, b, n as

shown in the following diagram, with n ◦ e = m ◦ a and

n◦ e′ = m◦ b, then there exists a unique d : K → L such

that m ◦ d = n, d ◦ e = a, and d ◦ e′ = b.

Fact 3.14

In anM-adhesive category (C,M), the following properties hold:
1. If (C,M) has a strong E ′–M′ pair factorization, then the E ′–M′ pair fac-
torization is unique up to isomorphism.

B1

A1

K1 C1

B2

A2

K2 C2

e1

e′1
m1

e2

e′2
m2

b

a

d c

g1

g2

f1

f2

2. A strong E ′–M′ pair factoriza-

tion is functorial, i. e. given mor-

phisms a, b, c, f1, g1, f2, g2 as shown

in the right diagram with c ◦
f1 = f2 ◦ a and c ◦ g1 = g2 ◦
b, and E ′–M′ pair factorizations
((e1, e

′
1), m1) and ((e2, e

′
2), m2) of

f1, g1 and f2, g2, respectively, then

there exists a unique d : K1 → K2 such that d ◦ e1 = e2 ◦ a, d ◦ e′
1 = e′

2 ◦ b,

and c ◦m1 = m2 ◦ d.

Proof See [PEL08].

3.2 M-Adhesive Categories 31

Fact 3.15

GivenM-adhesive categories (Cj ,Mj), (C,M1), and (D,M2) with E ′
j–M′

j , E ′
1–

M′
1, and E ′

2–M′
2 pair factorizations, respectively, then the following M-adhesive

categories have an E ′–M′ pair factorization and preserve strongness:

1. the general comma category (G, (×j∈JMj)∩MorG) withM′ = (×j∈J M ′
j)

∩ MorG and E ′ = {((ej ,), (e′
j)) | (ej , e′

j) ∈ E ′
j} ∩ (MorG × MorG), if

Gi(M′
�i
) ⊆ Isos for all i ∈ I,

2. any full subcategory (C′,M1|C′) of C with M′ = M′
1|C′ and E ′ =

E ′
1|(C′×C′), if the inclusion functor reflects the E ′

1–M′
1 pair factorization,

3. the comma category (F, (M1×M2)∩MorF) withM′ = (M′
1×M′

2)∩MorF
and E ′ = {((e1, e2), (e′

1, e
′
2)) | (e1, e′

1) ∈ E ′
1, (e2, e

′
2) ∈ E ′

2}∩ (MorF×MorF),

if G(M′
2) ⊆ Isos,

4. the product category (C ×D,M1 ×M2) with M′ =M′
1 ×M′

2 and E ′ =
{((e1, e2), (e′

1, e
′
2))

| (e1, e′
1) ∈ E ′

1, (e2, e
′
2) ∈ E ′

2},
5. the slice category (C\X,M1 ∩MorC\X) with M′ = M′

1 ∩MorC\X and

E ′ = E ′
1 ∩ (MorC\X ×MorC\X),

6. the coslice category (X\C,M1 ∩MorX\C) withM′ =M′
1 ∩MorX\C and

E ′ = E ′
1 ∩ (MorX\C ×MorX\C), ifM′

1 is a class of monomorphisms,

7. the functor category ([X,C],M1-functor transformations) with the class

M′ of allM′
1-functor transformations and E ′ = {(e, e′) | e, e′ functor trans-

formations, (e(x), e′(x)) ∈ E ′
1 for all x ∈ X}, if E ′

1–M′
1 is a strong pair

factorization in C.

Proof 1. Given objects A = ((Aj), (opAi)), B = ((Bj), (opBi)), C = ((Cj),

(opCi)), and morphisms f = (fj) : A→ C, g = (gj) : B → C in G, we have

an E ′
j-M′

j pair factorization ((ej , e
′
j), mj) of fj , gj in Cj .

Fi(Bki)

Fi(Aki)

Fi(Kki) Fi(Cki)

Gi(B�i)

Gi(A�i)

Gi(K�i) Gi(C�i)

Fi(eki
)

Fi(e
′
ki

)
Fi(mki

)

Gi(e�i
)

Gi(e
′
�i
)

Gi(m�i
)

opBi

opAi

opKi =Gi(m�i
)−1◦opCi ◦Fi(mki) opCi

Fi(gki
)

Gi(g�i
)

Fi(fki
)

Gi(f�i
)

If Gi(m�i) is an isomorphism, we have an object K = ((Kj), (opKi =

Gi(m�i)
−1 ◦ opCi ◦ Fi(mki))) in G. By definition, m = (mj) : K → C

is a morphism in G. For e = (ej) we have opKi ◦Fi(eki) = Gi(m�i)
−1 ◦opCi ◦

32 3 M-Adhesive Transformation Systems

Fi(mki)◦Fi(eki) = Gi(m�i)
−1 ◦opCi ◦Fi(fki) = Gi(m�i)

−1 ◦Gi(f�i)◦opAi =

Gi(e�i) ◦ opAi and an analogous result for e′ = (e′
j), therefore e and e′ are

morphisms in G. This means that ((e, e′), m) is an E ′-M′ pair factorization
in G.

((Bj), (opBi))

((Aj), (opAi))

((Kj), (opKi))

((Cj), (opCi))((Lj), (opLi))

(ej)

(e′j)

(nj)

(mj)

(dj)
(bj)

(aj)

To show the E ′–M′ diago-
nal property, we consider

(e, e′) = ((ej), (e
′
j)) ∈ E ′,

m = (mj) ∈ M′, and
morphisms a = (aj), b =

(bj), n = (nj) in G. Since

(ej , e
′
j) ∈ E ′

j and mj ∈
M′
j , we get a unique mor-

phism dj : Kj → Lj in Cj with mj ◦ dj = nj , dj ◦ ej = aj , and dj ◦ e′
j = bj .

Fi(Kki)

Fi(Lki)

Fi(Cki)

Gi(K�i)

Gi(L�i)

Gi(C�i)

Fi(dki
)

Fi(mki
)

Fi(nki
)

Gi(d�i
)

Gi(m�i
)

Gi(n�i
)

opKi

opLi

opCi

It remains to show that

d = (dj) ∈ G, i. e. the
compatibility with the op-

erations. For all i ∈ I we
have that Gi(m�i) ◦ opLi ◦
Fi(dki) = opCi ◦ Fi(mki) ◦
Fi(dki) = opCi ◦ Fi(nki) =

Gi(n�i)◦opKi = Gi(m�i)◦
Gi(d�i) ◦ opKi , and since

Gi(m�i) is an isomorphism it follows that opLi ◦Fi(dki) = Gi(d�i)◦opKi , i. e.

d ∈ G.
2. This is obvious.

3. This follows directly from Item 1, since any comma category is an in-

stantiation of a general comma categories. For morphisms f = (f1, f2)

and g = (g1, g2) in F we construct the component-wise pair factorizations

((e1, e
′
1), m1) of f1, g1 with (e1, e

′
1) ∈ E ′

1 and m1 ∈M′
1, and ((e2, e

′
2), m2) of

f2, g2 with (e2, e
′
2) ∈ E ′

2 andm2 ∈M′
2. This leads to morphisms e = (e1, e2),

e′ = (e′
1, e

′
2), and m = (m1, m2) in F, and an E ′–M′ pair factorization with

(e, e′) ∈ E ′ and m ∈ M′. If the E ′
1–M′

1 and the E ′
2–M′

2 pair factorizations

are strong then also E ′–M′ is a strong pair factorization.

4. Since C × D ∼= ComCat(!C : C → 1, !D : D → 1, ∅) (see Lemma A.3)

and !D(M′
2) ⊆ {id1} = Isos this follows from Item 3. For morphisms

f = (f1, f2) and g = (g1, g2) in C × D we construct the component-wise

pair factorizations ((e1, e
′
1), m1) of f1, g1 with (e1, e

′
1) ∈ E ′

1 and m1 ∈ M′
1,

and ((e2, e
′
2), m2) of f2, g2 with (e2, e

′
2) ∈ E ′

2 and m2 ∈ M′
2. This leads to

morphisms e = (e1, e2), e′ = (e′
1, e

′
2), and m = (m1, m2) in C×D, and an

E ′–M′ pair factorization with (e, e′) ∈ E ′ and m ∈ M′. If the E ′
1–M′

1 and

3.2 M-Adhesive Categories 33

the E ′
2–M′

2 pair factorizations are strong then also E ′–M′ is a strong pair
factorization.

5. Since C\X ∼= ComCat(idC : C → C, X : 1 → C, {1}) (see Lemma A.3)
and X(M′

2) ⊆ X({id1}) = {idX} ⊆ Isos this follows from Item 3. Given

morphisms f and g in C\X, an E ′
1–M′

1 pair factorization of f and g in C

is also an E ′
1–M′

1 of f and g in C\X. If the E ′
1–M′

1 pair factorization is

strong in C this is also true for C\X.
6. Given morphisms f : (A, a′)→ (C, c′) and g : (B, b′)→ (C, c′) in X\C, we
have an E ′

1 −M′
1 pair factorization ((e, e′), m) of f and g in C. This is a

pair factorization in X\C if e ◦ a′ = e′ ◦ b′, because then (K, e ◦ a′) and
(K, e′ ◦b′) is the same object in X\C. If m is a monomorphism, this follows

from m ◦ e ◦ a′ = f ◦ a′ = c′ = g ◦ b′ = m ◦ e′ ◦ b′.

(B, b′)

(A, a′)

(K, k′)

(C, c′)(L, l′)

X

A

B

K C

e

e′

n

m

d
b

a

a′
e

b′
e′

m

f

g

To prove that strongness is preserved we have to show the E ′
1–M′

1 diagonal

property in X\C. Since it holds in C, given (e, e′) ∈ E ′, m ∈ M′, and
morphisms a, b, n in X\C with n ◦ e = m ◦ a and n ◦ e′ = m ◦ b we get an

induced unique d : K → L with d ◦ e = a, d ◦ e′ = b, and m ◦ d = n from

the diagonal property in C. It remains to show that d is a valid morphism

in X\C. Since m ◦ d ◦ k′ = n ◦ k′ = c′ = m ◦ l′ and m is a monomorphisms

it follows that d ◦ k′ = l′ and thus d ∈ X\C.
7. Given morphisms f = (f(x))x∈X and g = (g(x))x∈X in [X,C], we have an

E ′
1–M′

1 pair factorization ((ex, e
′
x), mx) with mx : Kx → C(x) of f(x), g(x)

in C for all x ∈ X.

(B(x)

A(x)

Kx

C(y)Ky

ex
e′x

C(h)◦mx

my

Kh

e′y◦B(h)ey◦A(h)

We have to show that K(x) = Kx

can be extended to a functor and that

e = (ex)x∈X, e′ = (e′
x)x∈X, and m =

(mx)x∈X are functor transformations.

For a morphism h : x → y in X we

use the E ′
1–M′

1 diagonal property in C

with (ex, e
′
x) ∈ E ′

1, my ∈M′
1 to define

Kh : Kx → Ky as the unique induced morphism with my ◦Kh = C(h)◦mx,

Kh ◦ ex = ey ◦A(h), and Kh ◦ e′
x = e′

y ◦B(h).

Using the uniqueness property of the strong pair factorization in C, we can

show that K with K(x) = Kx, K(h) = Kh is a functor and by construction

e, e′, and m are functor transformations. This means that (e, e′) ∈ E ′ and
m ∈M′, i. e. this is an E ′–M′ pair factorization of f and g.

34 3 M-Adhesive Transformation Systems

B(x)

A(x)

Kx C(x)

B(y)

A(y)

Ky C(y)

ex

e′x
mx

ey

e′y
my

B(h)

A(h)

Kh C(h)

g(x)

g(y)

f(x)

f(y)

The E ′–M′ diagonal property can be shown as follows. Given (e, e′) ∈ E ′,
m ∈M′, and morphisms a, b, n in [X,C] from the E ′

1–M′
1 diagonal property

in C we obtain a unique morphism dx : K(x)→ L(x) for x ∈ X. It remains
to show that d = (dx)x∈X is a functor transformation, i. e. we have to show
for all h : x→ y ∈ X that L(h) ◦ dx = dy ◦K(h).

B(x)

A(x)

K(x)

C(x)L(x)

B(y)

A(y)

K(y)

C(y)L(y)

e(x)

e′(x)

n(x)

m(x)

dx
b(x)

a(x)

e(y)

e′(y)

n(y)

m(y)

dy
b(y)

a(y)

A(h)

B(h)

K(h)

L(h) C(h)

Because (e(x), e′(x)) ∈ E ′
1 and m(y) ∈ M′

1, the E ′
1–M′

1 diagonal property

can be applied. This means that there is a unique k : K(x) → L(y) with

k ◦ e(x) = L(h) ◦ a(x), k ◦ e′(x) = L(h) ◦ b(x), and m(y) ◦ k = n(y) ◦K(h).

B(x)

A(x)

K(x)

C(y)L(y)

e(x)

e′(x)

n(y)◦K(h)

m(y)

k

L(h)◦b(x)L(h)◦a(x)

For L(h)◦dx we have that L(h)◦dx◦
e(x) = L(h)◦a(x), L(h)◦dx◦e′(x) =
L(h) ◦ b(x) and m(y) ◦ L(h) ◦ dx =

C(h) ◦ m(x) ◦ dx = C(h) ◦ n(x) =

n(y)◦K(h). Similarly, for dy ◦K(h)
we have that dy ◦K(h)◦e(x) = dy ◦
e(y) ◦ A(h) = a(y) ◦ A(h) = L(h) ◦
a(x), dy ◦K(h) ◦ e′(x) = dy ◦ e′(y) ◦B(h) = b(y) ◦B(h) = L(h) ◦ b(x), and

m(y) ◦ dy ◦K(h) = n(y) ◦K(h). Thus, from the uniqueness of k it follows

that k = L(h) ◦ dx = dy ◦K(h) and d is a functor transformation.

3.2.3.4 Initial Pushouts

In general, the construction of initial pushouts from the underlying cate-
gories is complicated since the existence of the boundary and context ob-

3.2 M-Adhesive Categories 35

jects have to be ensured. In many cases, this is only possible under very
strict limitations.

Fact 3.16

If the M-adhesive categories (C,M1), (D,M2), and (Cj ,Mj) for j ∈ J have

initial pushouts overM′
1,M′

2, andM′
j , respectively, then also the following M-

adhesive categories have initial pushouts over M′-morphisms:

1. the general comma category (G, (×j∈JMj)∩MorG) withM′ = ×j∈JM′
j ,

if for all i ∈ I Fi preserves pushouts alongMki -morphisms and Gi(M�i) ⊆
Isos,

2. any full subcategory (C′,M1|C′) of C with M′ = M′
1|C′ , if the inclusion

functor reflects initial pushouts overM′-morphisms,

3. the comma category (F, (M1 ×M2) ∩MorF) with M′ =M′
1 ×M′

2, if F

preserves pushouts alongM1-morphisms and G(M2) ⊆ Isos,

4. the product category (C×D,M1 ×M2) withM′ =M′
1 ×M′

2,

5. the slice category (C\X,M1 ∩MorC\X) withM′ =M′
1 ∩MorC\X ,

6. the coslice category (X\C,M1 ∩MorX\C) with M′ = M′
1 ∩MorX\C, if

for f : (A, a′)→ (D, d′) ∈M′

(i) the initial pushout over f in C can be extended to a valid square in

X\C or

(ii) a′ : X → A ∈ M1 and the pushout complement of a′ and f in C

exists,

7. the functor category ([X,C],M1-functor transformations) withM′ =M′
1-

functor transformations, if C has arbitrary limits and intersections ofM1-

subobjects.

Proof 1. Given f = (fj) : A→ D ∈M′ we have initial pushouts (1)j over

Bj Aj

Cj Dj

bj

cj

aj fj(1)j

fj ∈ M′
j in Cj with bj , cj ∈ Mj . Since Gi(M�i) ⊆

Isos, Gi(b�i)
−1 and Gi(c�i)

−1 exist. Define objects

B = ((Bj), (opBi = Gi(b�i)
−1 ◦ opAi ◦ Fi(bki))) and

C = ((Cj), (opCi = Gi(c�i)
−1 ◦ opDi ◦ Fi(cki)) in G.

Then we have that

• Gi(b�i)◦opBi = Gi(b�i)◦Gi(b�i)−1 ◦opAi ◦Fi(bki) =
opAi ◦ Fi(bki),

• Gi(c�i) ◦ opCi = Gi(c�i) ◦Gi(c�i)
−1 ◦ opDi ◦ Fi(cki) = opDi ◦ Fi(cki),

• Gi(c�i)◦Gi(a�i)◦opBi = Gi(f�i)◦Gi(b�i)◦opBi = Gi(f�i)◦opAi ◦Fi(bki) =
opDi ◦Fi(fki)◦Fi(bki) = opDi ◦Fi(cki)◦Fi(aki) = Gi(c�i)◦opCi ◦Fi(aki) and
Gi(c�i) being an isomorphism implies that Gi(a�i) ◦ opBi = opCi ◦ Fi(aki),

which means that a = (aj), b = (bj), and c = (cj) are morphisms in G with

b, c ∈M′, (1) is a valid square in G, and by Lemma A.1 also a pushout.

36 3 M-Adhesive Transformation Systems

((Bj), (opBi)) ((Aj), (opAi))

((Cj), opCi)) ((Dj), opDi))

((Aj), (opAi)) ((Ej), (opEi))

((Dj), (opDi)) ((Fj), (opFi))

b

c

a f

d

e

f g(1) (2)

It remains to show the initiality. For any pushout (2) inG with d = (dj), e =

(ej) ∈ M, Lemma A.1 implies that the components (2)j are pushouts in
Cj . The initiality of pushout (1)j implies that there are unique morphisms

b∗
j : Bj → Ej and c∗

j : Cj → Fj with dj ◦ b∗
j = bj , ej ◦ c∗

j = cj , and

b∗
j , c

∗
j ∈Mj such that (3)j is a pushout.

Aj Ej

Dj Fj

Bj Ej

Cj Fj

((Bj), (opBi)) ((Aj), (opAi))

((Ej), (opEi)) ((Fj), (opFi))

dj

ej

fj gj

b∗j

c∗j

aj gj

b∗

c∗

a g(2)j (3)j (3)

With Gi(d�i) ◦ Gi(b
∗
�i
) ◦ opBi = Gi(b�i) ◦ opBi = opAi ◦ Fi(bki) = opAi ◦

Fi(dki)◦Fi(b∗
ki
) = Gi(d�i)◦opEi ◦Fi(b∗

ki
) and Gi(d�i) being an isomorphism

it follows that Gi(b
∗
�i
)◦opBi = opEi ◦Fi(b∗

ki
) and therefore b∗ = (b∗

j) ∈ G, and
analogously c∗ = (c∗

j) ∈ G. This means that we have unique morphisms
b∗, c∗ ∈M′ with d ◦ b∗ = b and e ◦ c∗ = c, and by Lemma A.1 (3) composed

of (3)j is a pushout. Therefore (1) is the initial pushout over f in G.

2. This is obvious.

3. Since comma categories are an instantiation of general comma categories,

this follows directly from Item 1. The initial pushout of f = (f1, f2) :

(A1, A2, (opAi))→ (D1, D2, (opDi)) ∈M′
1×M′

2 is the component-wise initial

pushout in C and D, with B = (B1, B2, opBi = G(b2)
−1 ◦ opAi ◦ F (b1)) and

C = (C1, C2, opCi = G(c1)
−1 ◦ opDi ◦ F (c1)).

4. Since C ×D ∼= ComCat(!C : C → 1, !D : D → 1, ∅) (see Lemma A.3), !C
preserves pushouts, and !D(M2) ⊆ {id1} = Isos this follows from Item 3.

The initial pushout (3) over a morphism (f1, f2) : (A1, A2) → (D1, D2) ∈
M′

1 ×M′
2 is the component-wise product of the initial pushouts over f1 in

C and f2 in D.

B A

C D

X

b

c

a f

b′

c′ d′

a′

5. Since C\X ∼= ComCat(idC : C → C, X :

1 → C, {1}), idC preserves pushouts, and

X(M2) = X({id1}) = {idX} ⊆ Isos this

follows from Item 3. The initial pushout

over f : (A, a′) → (D, d′) ∈ M′
1 in C\X

is given by the initial pushout over f in C,

with objects (B, b′), (C, c′), b′ = a′ ◦ b, and

c′ = d′ ◦ c.

3.2 M-Adhesive Categories 37

B A

C D

b

c

a f(1)

6. Given objects (A, a′), (D, d′), and a morphism f :

A→ D in X\C with f ∈ M′
1, the initial pushout (1)

over f in C exists by assumption. For any pushout (2)

in X\C with d, e ∈ M1, the corresponding diagram

(3) is a pushout in C. Since (1) is an initial pushout

in C there exist unique morphisms b∗ : B → E and c∗ : C → F such that

d ◦ b∗ = b, e ◦ c∗ = c, b∗, c∗ ∈M1, and (4) is a pushout in C.

(A, a′) (E, e′)

(D, d′) (F, f ′)

A E

D F

B E

C F

d

e

f g

d

e

f g

b∗

c∗

a g(2) (3) (4)

(i) If diagram (1) has valid extension via morphisms b′ : X → B, c′ : X →
C in X\C, then this is also a pushout in X\C. With d◦b∗◦b′ = b◦b′ =
a′ = d ◦ e′ and d being a monomorphism it follows that b∗ ◦ b = e′ and
thus b∗ ∈ X\C, and analogously c∗ ∈ X\C. This means that (4) is
also a pushout in X\C.

(ii) If a′ : X → A ∈M1 and the pushout complement of f ◦a′ in C exists,
we can construct the unique pushout complement (5) in C, and the

corresponding diagram (6) is a pushout in X\C.
X A

H D

(X, idX) (A, a′)

(H, h′) (D, d′)

B X

C H

a′

h

h′ f

a′

h

h′ f

b∗X

c∗X

a h′(5) (6) (7)

It remains to show the initiality of (6). For any pushout (2), e′ : X →
E is unique with respect to d ◦ e′ = a′ because d is a monomorphism.

B X A E

C H D F

X E

H F

b∗X a′ d

c∗X h e

a h′ f g

b e′

c i

c∗

e′

i

h′ g(7) (5) (3) (8)

Since (1) is an initial pushout in C and (5) is a pushout, there are

morphisms b∗
X : B → X and c∗

X : C → H such that b∗
X , c∗

X ∈ M1,

a′◦b∗
X = b, h◦c∗

X = c, and (7) is a pushout inC. With e◦c∗◦a = c◦a =
h◦ c∗

X ◦a = h◦h′ ◦ b∗
X = f ◦a′ ◦ b∗

X = f ◦d◦ e′ ◦ b∗
X = e◦ g ◦ e′ ◦ b∗

X and

e being a monomorphism it follows that c∗ ◦ a = g ◦ e′ ◦ b∗
X . Pushout

(7) implies that there is a unique i : H → F with c∗ = i ◦ c∗
X and

38 3 M-Adhesive Transformation Systems

i ◦ h′ = g ◦ e′. It further follows that e ◦ i = h using the pushout

properties of H. By pushout decomposition, (8) is a pushout in C

and the corresponding square in X\C is also a pushout. Therefore,

(6) is an initial pushout over f in X\C.
7. If C has intersections of M1-subobjects this means that given ci : Ci →

D ∈ M1 with i ∈ I for some index set I the corresponding diagram has a

limit (C, (c′
i : C → Ci)i∈I , c : C → D) in C with ci ◦ c′

i = c and c, c′
i ∈ M1

for all i ∈ I.
Let M denote the class of all M1-functor transformations. Given f :

A → D ∈ M′, by assumption we can construct component-wise the ini-
tial pushout (1x) over f(x) in C for all x ∈ X, with b0(x), c0(x) ∈M1.

B0(x) A(x)

C0(x) D(x)

C0(x) D(x)

Ci(x)

B A

C D

b0(x)

c0(x)

a0(x) f(x)

c0(x)

d′i(x) ci(x)

b

c

a f(1)x
(2)

(3)

Define (C, (c′
i : C → Ci)i∈I , c : C → D) as the limit in [X,C] of all those

ci : Ci → D ∈ M such that for all x ∈ X there exists a d′
i(x) : C0(x) →

Ci(X) ∈ M1 with ci(x) ◦ d′
i(x) = c0(x) (2), which defines the index set

I. Limits in [X,C] are constructed component-wise in C, and if C has

intersections ofM1-subobjects it follows that also [X,C] has intersections

of M-subobjects. Hence c, c′
i ∈ M and C(x) is the limit of ci(x) in C.

Now we construct the pullback (3) over c ∈ M and f in [X,C], and since

M-morphisms are closed under pullbacks also b ∈M.

B0(x) B(x) A(x)

C0(x) C(x) D(x)

Ci(x)

b′(x) b(x)

c′(x) c(x)

a0(x) a(x) f(x)

d′i(x)
c′i(x) ci(x)

c0(x)

b0(x)

(4)x (3)x

For x ∈ X, C(x) being the limit of

ci(x), the family (d
′
i(x))i∈I with

(2) implies that there is a unique

morphism c′(x) : C0(x) → C(x)

with c′
i(x)◦c′(x) = d′

i(x) and c(x)

◦c′(x) = c0(x). Then (3)x being a

pullback and c(x)◦ c′(x)◦a0(x) =
c0(x)◦a0(x) = f(x)◦b0(x) implies
the existence of a unique b′(x) :
B0(x)→ B(x) with b(x) ◦ b′(x) =
b0(x) and a(x) ◦ b′(x) = c′(x) ◦
a0(x). M1 is closed under decomposition, b0(x) ∈ M1, and b(x) ∈ M1

implies that b′(x) ∈ M1. Since (1x) is a pushout, (3x) is a pullback, the

whole diagram commutes, and c(x), b′(x) ∈ M1, theM1 pushout-pullback

property implies that (3x) and (4x) are both pushouts and pullbacks in C

and hence (3) and (4) are both pushouts and pullbacks in [X,C].

3.2 M-Adhesive Categories 39

A B1

D C1

B0(x) A(x) B1(x)

C0(x) D(x) C1(x)

b1

c1

a1f

b0(x) b1(x)

c0(x) c1(x)

a0(x)
a1(x)

f(x)

c∗1(x)

b∗1(x)

(5) (1)x (5)x

It remains to

show the initial-

ity of (3) over f .

Given a pushout

(5) with b1, c1 ∈
M in [X,C],

(5x) is a pushout

in C for all x ∈
X. Since (1x) is an initial pushout in C, there exist morphisms b∗

1(x) :

B0(x)→ B1(x), c∗
1 : C0(x)→ C1(x) with b∗

1(x), c
∗
1(x) ∈M1, b1(x)◦b∗

1(x) =

b0(x), and c1(x) ◦ c∗
1(x) = c0(x). Hence c1(x) satisfies (2) for i = 1 and

d′
1(x) = c∗

1(x). This means that c1 is one of the morphisms the limit C

was built of and there is a morphism c′
1 : C → C1 with c1 ◦ c′

1 = c by

construction of the limit C.

Since (5) is a pushout alongM-morphisms it is also a pullback, and f ◦ b =
c ◦ a = c1 ◦ c′

1 ◦ a implies that there exists a unique b′
1 : B → B1 with

b1 ◦ b′
1 = b and a1 ◦ b′

1 = c′
1 ◦ a. By M-decomposition also b′

1 ∈ M. Now
using also c1 ∈M theM pushout-pullback decomposition property implies

that also (6) is a pushout, which shows the initiality of (3).

B B1 A

C C1 D

B A B1

C D C1

b′1 b1

c′1
c1

a a1 f

c

b

b b1

c c

a a1f

c′1

b′1

(3) (5) (6) (5)

Effective Pushouts

Using Rem. 3.9, we already know for the regarded situation that the induced
morphism is a monomorphism. We only have to show that it is indeed an
M-morphism. This is obviously the case if pullbacks, pushouts, and their
induced morphisms are constructed component-wise.

Fact 3.17

If the M-adhesive categories (C,M1), (D,M2), and (Cj ,Mj) for j ∈ J have

effective pushouts then also the following M-adhesive categories have effective
pushouts:

1. the general comma category (G, (×j∈JMj) ∩MorG),

2. any full subcategory (C′,M1|C′) of C,

40 3 M-Adhesive Transformation Systems

3. the comma category (F, (M1 ×M2) ∩MorF),

4. the product category (C×D,M1 ×M2),

5. the slice category (C\X,M1 ∩MorC\X),

6. the coslice category (X\C,M1 ∩MorX\C),

7. the functor category ([X,C],M1-functor transformations).

Proof 1. As shown in Lemma A.1, pushouts overM-morphisms in the gen-
eral comma category are constructed component-wise in the underlying cat-

egories. The induced morphism is constructed from the induced morphisms

in the underlying components. Since also pullbacks overM-morphisms are
constructed component-wise, the effective pushout property of the cate-

gories (Cj ,Mj) implies this property in (G,M).
2. This is obvious.

3.-6. This follows directly from Item 1, because all these categories are instanti-

ations of general comma categories.

7. Pushouts and pullbacks over M-morphisms as well as the induced mor-
phisms are constructed point-wise in the functor category, thus the effective

pushout property is directly induced.

3.3 Algebraic High-Level Petri Nets

Algebraic high-level (AHL) nets combine algebraic specifications with Petri
nets [PER95] to allow the modeling of data, data flow, and data changes
within the net. In general, an AHL net denotes a net based on a specification
SP in combination with an SP-algebra A, in contrast a net without a specific
algebra is called a schema. An AHL net system then combines an AHL net
with a suitable marking.
In this section, we show that different versions of AHL schemas, nets, and

systems are M-adhesive categories [Pra07, Pra08].

Definition 3.18 (AHL schema)

An AHL schema over an algebraic specification SP , where SP = (SIG, E, X)

has additional variables X and SIG = (S, OP), is given by AC = (P, T, pre, post,

cond, type) with sets P of places and T of transitions, pre, post : T → (TSIG(X)⊗
P)⊕ as pre- and post-domain functions, cond : T → Pfin(Eqns(SIG, X)) as-

signing to each t ∈ T a finite set cond(t) of equations over SIG and X, and

type : P → S a type function. Note that TSIG(X) is the SIG-term algebra with

variables X and (TSIG(X)⊗ P) = {(term, p) | term ∈ TSIG(X)type(p), p ∈ P}.

3.3 Algebraic High-Level Petri Nets 41

An AHL schema morphism fAC : AC → AC′ is given by a pair of functions
fAC = (fP : P → P ′, fT : T → T ′) which are compatible with pre, post, cond,

and type as shown below.

Pfin(Eqns(SIG, X))

T (TSIG(X)⊗ P)⊕

T ′ (TSIG(X)⊗ P ′)⊕

P

P ′

S

pre

post

pre′

post′

cond

cond′

fT (id⊗fP)⊕

type

type′

fP== =

Given an algebraic specification SP , AHL schemas over SP and AHL schema

morphisms form the category AHLSchemas(SP).

As shown in [EEPT06], AHL schemas over a fixed algebraic specifica-
tion SP are an M-adhesive category. Using the concept of general comma
categories, we can rewrite and simplify the proof.

Fact 3.19

The category (AHLSchemas(SP),M) is an M-adhesive category. M is the

class of all injective morphisms, i. e. f ∈M if fP and fT are injective.

Proof We construct an isomorphic general comma category with index sets I =
{pre, post, cond, type} and J = {P, T}, categories Cj = Xi = Sets, and functors
Fpre = Fpost = Fcond = idSets : CT → Sets, Ftype = idSets : CP → Sets,

Gpre = Gpost = (TSIG(X) ⊗)⊕ : CP → Sets, Gcond = constPfin(Eqns(SIG,X)),

and Gtype = constS .

In fact, the identical functors preserve pushouts, and (TSIG(X) ⊗) : Sets →
Sets, the constant functors, and �⊕ : Sets→ Sets preserve pullbacks along injec-
tive functions, hence also (TSIG(X)⊗)⊕ : Sets→ Sets preserves pullbacks along
injective functions. This means that Thm. 3.11 implies that (AHLSchemas(SP),

M) is anM-adhesive category.

To represent the actual data space, we combine AHL schemas with alge-
bras to AHL nets. To obtain an M-adhesive category, there are different
choices for the algebra part:

1. The category (Algs(SP),Miso) with the class Miso of isomorphisms,
which is useful for systems where only the net part but not the data
part is allowed to be changed by rule application.

2. The category (Algs(SP),Minj) with the class Minj of injective mor-
phisms, where SP is a graph structure algebra, which means that only
unary operations are allowed.

42 3 M-Adhesive Transformation Systems

Definition 3.20 (AHL net)

An AHL net AN = (AC, A) is given by an AHL schema AC over SP and an SP -

algebra A ∈ A(SP), where A(SP) is a subcategory of Algs(SP), the category of
all algebras over SP .

An AHL net morphism fAN : AN → AN ′ is given by a pair fAN = (fAC :

AC → AC′, fA : A → A′), where fAC is an AHL schema morphism and fA ∈
A(SP) an SP -homomorphism.

Given an algebraic specification SP , AHL nets over SP and AHL net mor-

phisms form the category AHLNets(SP).

Fact 3.21

If (A(SP),M) is an M-adhesive category then the category (AHLNets(SP),
M′) is an M-adhesive category. M′ is the class of all morphisms f = (fS , fA)

where fS is injective and fA ∈M.

Proof The category AHLNets(SP) is isomorphic to the product category

AHLSchemas(SP) × A(SP). According to Thm. 3.11 this implies that

(AHLNets(SP),M′) is anM-adhesive category.

We get a more powerful variant of AHL schemas, called generalized AHL
schemas, if we do not fix the specification. This is especially useful for net
transformations such that it is possible to define the rules based on a small
specification SP representing only the necessary data. Then these rules can
be applied to nets over a larger specification SP ′. We define generalized
AHL schemas and nets and show that they form M-adhesive categories
under certain conditions on the data part.

Definition 3.22 (Generalized AHL schema)

A generalized AHL schema GC = (SP, AC) is given by an algebraic specification

SP and an AHL schema AC over SP .

A generalized AHL schema morphism f : GC → GC′ is a tuple fGC = (fSP :

SP → SP ′, fP : P → P ′, fT : T → T ′), where fSP is a specification morphism

and fP , fT are compatible with pre, post, cond, and type as shown below. f#
SP is

the extension of fSP to terms and equations.

Pfin(Eqns(SIG, X))

Pfin(Eqns(SIG′, X ′))

T (TSIG(X)⊗ P)⊕

T ′ (TSIG′(X
′)⊗ P ′)⊕

P

P ′

S

S′

pre

post

pre′

post′

cond

cond′

fTPfin(f#SP) (f
#
SP

⊗fP)⊕

type

type′

fP

fSP,S== =

Generalized AHL schemas and generalized AHL schema morphisms form the

category AHLSchemas.

3.3 Algebraic High-Level Petri Nets 43

Fact 3.23

The category (AHLSchemas,M) is an M-adhesive category. M is the class

of all morphisms f = (fSP , fP , fT) where fSP is a strict injective specification

morphism and fP , fT are injective.

Proof The category AHLSchemas is isomorphic to a suitable full subcategory

of the general comma category G = GComCat(C1,C2, (Fi, Gi)i∈I ; I,J) with
• I = {pre, post, cond, type}, J = {1, 2},
• C1 = Specs× Sets, C2 = Sets, Xi = Sets for all i ∈ I,
• Fi : C2 → Xi for i ∈ {pre, post, cond}, Ftype : C1 → Xtype, Gi : C1 → Xi
for all i ∈ I,

where the functors are defined by

• Fi = IdSets, Gi(SP, P) = (TSIG(X)×P)⊕, Gi(fSP , fP) = (f
#
SP × fP)

⊕ for
i ∈ {pre, post},

• Fcond = IdSets, Gcond(SP, P) = Pfin(Eqns(SIG, X)), Gcond(fSP , fP) =

Pfin(f#
SP),

• Ftype(SP, P) = P , Ftype(fSP , fP) = fP , Gtype(SP, P) = S, Gtype(fSP , fP)

= fSP,S .

Since (Specs,M1) with the classM1 of strict injective morphisms and (Sets,

M2) with the class M2 of injective morphisms are M-adhesive categories,
Thm. 3.11 implies that also (Specs × Sets,M1 ×M2) is an M-adhesive cat-
egory.

The functors Fi preserve pushouts along Mki -morphisms, which is obvious

for Fpre, Fpost, Fcond, and shown in Lemma A.4 for Ftype, and the functors Gi
preserve pullbacks alongM�i -morphisms as shown in Lemmas A.5, A.6, and A.7,

therefore we can apply Thm. 3.11 such that G is anM-adhesive category.
Now we restrict the objects ((SP, P), T, pre, post, cond, type) in G to those

where

(1) pre(t), post(t) ∈ (TSIG(X)⊗ P)⊕ for all t ∈ T.

The full subcategory induced by these objects is isomorphic to AHLSchemas.

Since the condition (1) is preserved by pushout and pullback constructions in G it

follows that for morphisms f, g ∈ AHLSchemas with the same (co)domain, the
pushout (pullback) over f, g inG is also the pushout (pullback) inAHLSchemas.

Using again Thm. 3.11 we conclude that (AHLSchemas,M) is an M-adhesive
category.

As previously, we combine generalized AHL schemas with algebras to
generalized AHL nets. We have two possible choices for the algebraic part:

44 3 M-Adhesive Transformation Systems

1. The category (Algs,Miso) with the class Miso of isomorphisms,
which is useful for systems where only the net part but not the data
part is allowed to be changed by rule application.

2. The category (Algs|QTA,Msinj) of quotient term algebras and unique
induced homomorphisms, with the class Msinj of strict injective mor-
phisms.

Definition 3.24 (Generalized AHL net)

A generalized AHL net GN = (GC, A) is given by a generalized AHL schema

GC over an algebraic specification SP and an SP -algebra A ∈ A, where A is a

subcategory of Algs.

A generalized AHL net morphism fGN : GN → GN ′ is a tuple fGN = (fGC :

GC → GC′, fGA : A → VfSP (A
′)), where fGC = (fSP , fP , fT) is a general-

ized AHL schema morphism and fGA ∈ A a generalized algebra homomorphism.

VfSP : Algs(SP
′)→ Algs(SP) is the forgetful functor induced by fSP .

Generalized AHL nets and generalized AHL net morphisms form the category

AHLNets.

Fact 3.25

If (A,M1) is anM-adhesive category then also the category (AHLNets,M) is
an M-adhesive category. M is the class of all injective AHL net morphisms f

with fA ∈M1.

Proof The category AHLNets is isomorphic to the full subcategory

(AHLSchemas×A)|Ob′ , where Ob′ = {((SP, P, T, pre, post, cond, type), A) | A ∈
A(SP)}. In this subcategory, the pushout and pullback objects over M-mor-
phisms are the same as in AHLSchemas × A. According to Thm. 3.11 this
implies that (AHLNets,M) is anM-adhesive category.

To show that also the corresponding net systems, which are nets together
with a suitable marking, are M-adhesive categories, the more general cat-
egory of markings is used, together with a result that shows under which
conditions nets with markings are M-adhesive categories. We do not go
into detail here, but refer to Section A.3 in the appendix.
Combining AHL nets with markings we obtain AHL net systems, with

the following choices for the underlying AHL nets:

1. The category (AHLNets(SP),Miso) with the class Miso of isomor-
phisms.

2. The category (AHLNets(SP,Afin),Minj) of algebraic high-level
nets with a fixed finite algebra A and the class Minj of injective
morphisms with identities on the algebra part.

3.3 Algebraic High-Level Petri Nets 45

Unfortunately, choice 1. is not useful for transformations, because the
rule morphisms have to be M-morphisms. In the case of isomorphisms,
only isomorphic rules and transformations were allowed.

Definition 3.26 (AHL net system)

Given an algebraic specification SP , an AHL net system AS = (AN, m) is given

by an AHL net AN = (P, T, pre, post, cond, type, A) over SP with A ∈ A(SP),
where A(SP) is a subcategory of Algs(SP), and a marking m : (A⊗ P)→ N.

An AHL net system morphism fAS : AS → AS′ is given by an AHL net
morphism fAN = (fAC , fA) : AN → AN ′ with fAC = (fP , fT) and fA ∈ A(SP)
that is marking-preserving, i. e. ∀(a, p) ∈ A⊗ P : m(a, p) ≤ m′(fA(a), fP (p)).
AHL net systems and AHL net system morphisms form the category

AHLSystems(SP).

Fact 3.27

If (AHLNets(SP),M′) is an M-adhesive category and the functor M :

AHLNets(SP)→ Sets, defined by M(P, T, pre, post, cond, type, A) = A⊗P and

M(fAN) = fA ⊗ fP for fAN = (fAC , fA) and fAC = (fP , fT), preserves pushouts

and pullbacks along M′-morphisms then the category (AHLSystems(SP),M)
is an M-adhesive category, where M is the class of all strict morphisms, i. e.

fAS = (fAC , fA) : AS → AS′ ∈ M if fA ∈ M1, fAC = (fP , fT) is injective, and

fAS is marking-strict, i. e. ∀(a, p) ∈ A⊗ P : m(a, p) = m′(fA(a), fP (p)).

Proof If the category (AHLNets(SP),M′) with a suitable choice of algebras
is an M-adhesive category we can apply Thm. A.16 to obtain the result that
(AHLSystems(SP),M) is anM-adhesive category.

Analogously, we can show that generalized AHL net systems form an
M-adhesive category if the marking set functor M preserves pushouts and
pullbacks along M′-morphisms. Due to the conditions for M there are two
suitable choices for the category (AHLNets,M′):

1. The category (AHLNets,Miso) with the classMiso of isomorphisms,
which is, analogously to the case (AHLNets(SP),Miso), not useful
for transformations.

2. The category (AHLNetsiso,Msinj) of algebraic high-level nets with
morphisms that are isomorphisms on the algebra part, with the class
Msinj of strict injective morphisms.

Definition 3.28 (Generalized AHL net system)

A generalized AHL net system GS = (GN, m) is given by a generalized AHL net

GN = (SP, P, T, pre, post, cond, type, A) with A ∈ A, where A is a subcategory

of Algs, and a marking m : (A⊗ P)→ N.

46 3 M-Adhesive Transformation Systems

A generalized AHL net system morphism fGS : GS → GS′ is given by a gener-
alized AHL net morphism fGN = (fGC , fGA) : GN → GN ′ with fGC = (fP , fT)

and fGA ∈ A that is marking-preserving, i. e. ∀(a, p) ∈ A ⊗ P : m(a, p) ≤
m′(fA(a), fP (p)).
Generalized AHL net systems and generalized AHL net system morphisms form

the category AHLSystems.

Fact 3.29

If (AHLNets,M′) is anM-adhesive category and the functor M : AHLNets→
Sets, with M(SP, P, T, pre, post, cond, type, A) = A ⊗ P and M(fGN , fGA) =

fGA ⊗ fP for fGN = (fGC , fGA) and fGC = (fP , fT), preserves pushouts and

pullbacks alongM′-morphisms then the category (AHLSystems,M) is anM-
adhesive category, where M is the class of all strict morphisms, i. e. fGS =

(fGC , fGA) : GS → GS′ ∈ M if fGA ∈ M1, fGC = (fP , fT) is strict injective

and fGS is marking-strict, i. e. ∀(a, p) ∈ A⊗ P : m(a, p) = m′(fA(a), fP (p)).

Proof By Fact 3.25, (AHLNets,M′) with a suitable choice of algebras is an
M-adhesive category. Then we can apply Thm. A.16 to obtain the result that
(AHLSystems,M) is anM-adhesive category.

In the following theorem, we summarize the results in this subsection
stating that AHL schemas, nets, and net systems as well as generalized
AHL schemas, nets, and net systems form M-adhesive categories.

Theorem 3.30 (Petri net classes asM-adhesive categories)
With suitable choices for the underlying M-morphisms, specifications, and alge-
bras, the following Petri net classes form M-adhesive categories:

• (AHLSchemas(SP),M) of AHL schemas over SP ,

• (AHLNets(SP),M) of AHL nets over SP ,

• (AHLSystems(SP),M) of AHL net systems over SP ,

• (AHLSchemas,M) of generalized AHL schemas,
• (AHLNets,M) of generalized AHL nets, and
• (AHLSystems,M) of generalized AHL net systems.

Proof This follows directly from Facts 3.19, 3.21, 3.27, 3.23, 3.25, and 3.29.

3.4 Transformations in M-Adhesive Systems

In the double-pushout approach [EEPT06], transformations are defined by
the application of a rule to an object, which is provided by two pushouts.

3.4 Transformations inM-Adhesive Systems 47

The transformation exists if both pushouts can be constructed. To express a
more restricted application of rules, application conditions are a beneficial
technique. Throughout this section, we assume to have an M-adhesive
category (C,M).

3.4.1 Conditions and Constraints over Objects

Nested conditions were introduced in [HP05, HP09] to express properties of
objects in a category. They are expressively equivalent to first-order formu-
las on graphs. Later, we will use them to express application conditions for
rules to increase the expressiveness of transformations.
Basically, a condition describes the existence or non-existence of a certain

structure for an object.

Definition 3.31 (Condition)

A (nested) condition ac over an object P is of the form

• ac = true,

• ac = ∃(a, ac′), where a : P → C is a morphism and ac′ is a condition over
C,

• ac = ¬ac′, where ac′ is a condition over P ,

• ac = ∧i∈Iaci, where (aci)i∈I with an index set I are conditions over P , or

• ac = ∨i∈Iaci, where (aci)i∈I with an index set I are conditions over P .

Moreover, false abbreviates ¬true, ∃a abbreviates ∃(a, true), and ∀(a, ac) abbre-

viates ¬∃(a,¬ac).

A condition is satisfied by a morphism into an object if the required struc-
ture exists, which can be verified by the existence of suitable morphisms.

Definition 3.32 (Satisfaction of conditions)

Given a condition ac over P a morphism p : P → G satisfies ac, written p |= ac, if

• ac = true,

P C

G

ac′ac a

p q

• ac = ∃(a, ac′) and there exists a mor-
phism q ∈ M with q ◦ a = p and

q |= ac′,

• ac = ¬ac′ and p �|= ac′,

• ac = ∧i∈Iaci and ∀i ∈ I : p |= aci, or

• ac = ∨i∈Iaci and ∃i ∈ I : p |= aci.

Two conditions ac and ac′ over P are semantically equivalent, denoted by ac ∼= ac′,
if p |= ac⇔ p |= ac′ for all morphisms p.

48 3 M-Adhesive Transformation Systems

As shown in [HP09, EHL10a], conditions can be shifted over morphisms
into equivalent conditions over the codomain. For this shift construction,
all epimorphic overlappings of the codomain of the shift morphism and the
codomain of the condition morphism have to be collected.

Definition 3.33 (Shift over morphism)

Given a condition ac over P and a morphism b : P → P ′, then Shift(b, ac) is a

condition over P ′ defined by

• Shift(b, ac) = true if ac = true,

P C

P ′ C′

ac

Shift(b, ac)

ac′

Shift(b′, ac′)

a

b b′

a′

• Shift(b, ac) = ∨(a′,b′)∈F∃(a′, Shift(b′,
ac′)) if ac = ∃(a, ac′) and F = {(a′, b′) |
(a′, b′) jointly epimorphic, b′ ∈M, b′ ◦ a

= a′ ◦ b},
• Shift(b, ac) = ¬Shift(b, ac′) if ac = ¬ac′,

• Shift(b, ac) = ∧i∈IShift(b, aci) if ac = ∧i∈Iaci, or

• Shift(b, ac) = ∨i∈IShift(b, aci) if ac = ∨i∈Iaci.

Fact 3.34

Given a condition ac over P and morphisms b : P → P ′, b′ : P ′ → P ′′, and
p : P ′ → G then

• p |= Shift(b, ac) if and only if p ◦ b |= ac and

• Shift(b′, Shift(b, ac)) ∼= Shift(b′ ◦ b, ac).

P P ′ P ′′

G
Shift(b, ac) Shift(b′, Shift(b, ac))

Shift(b′ ◦ b, ac)ac b b′

p◦b p

b′◦b

Proof See [HP09, EHL10a].

In contrast to conditions, constraints describe global requirements for
objects. They can be interpreted as conditions over the initial object, which
means that a constraint ∃(iC , true) with the initial morphism iC is valid for
an object G if there exists a morphism c : C → G. This constraint expresses
that the existence of C as a part of G is required.

Definition 3.35 (Constraint)

Given an initial object I, a condition ac over I is called a constraint.

3.4 Transformations inM-Adhesive Systems 49

The satisfaction of a constraint is that of the corresponding conditions,
adapted to the special case of a condition over an initial object.

Definition 3.36 (Satisfaction of constraint)

Given a constraint ac (over the initial object I), then an object G satisfies ac,

written G |= ac, if

• ac = true,

I C

G

ac′ac iC

c

• ac = ∃(iC , ac′) and there exists a mor-
phism c ∈M with c |= ac′,

• ac = ¬ac′ and G �|= ac′,

• ac = ∧i∈Iaci and ∀i ∈ I : G |= aci, or

• ac = ∨i∈Iaci and ∃i ∈ I : G |= aci.

3.4.2 Rules and Transformations

In [EEPT06], transformation systems based on a categorical foundation
using M-adhesive categories were introduced which can be instantiated to
various graphs and graph-like structures. In addition, application conditions
extend the standard approach of transformations. Here, we present the
theory of transformations for rules with application conditions, while the
case without application conditions is always explicitly mentioned.
A rule is a general description of local changes that may occur in objects

of the transformation system. Mainly, it consists of some deletion part and
some construction part, defined by the rule morphisms l and r, respectively.

Definition 3.37 (Rule)

A rule p = (L
l← K

r→ R, ac) consists of objects L, K, and R, called left-hand side,

gluing, and right-hand side, respectively, two morphisms l and r with l, r ∈ M,
and a condition ac over L, called application condition.

A transformation describes the application of a rule to an object via a
match. It can only be applied if the match satisfies the application condition.

Definition 3.38 (Transformation)

L K R

G D H

ac l r

f g

m k n(1) (2)

Given a rule p = (L
l← K

r→ R, ac), an

object G, and a morphism m : L →
G, called match, such that m |= ac

then a direct transformation G =
p,m
==⇒

H from G to an object H is given by

the pushouts (1) and (2).

A sequence of direct transformations is called a transformation.

50 3 M-Adhesive Transformation Systems

Remark 3.39

Note that for the construction of pushout (1) we have to construct the pushout

complement of m ◦ l, which is only possible if the so-called gluing condition is

satisfied.

In analogy to the application condition over L, which is a pre-application
condition, it is also possible to define post-application conditions over the
right-hand side R of a rule. Since these application conditions over R can
be translated to equivalent application conditions over L (and vice versa)
[HP09], we can restrict our rules to application conditions over L.

Definition 3.40 (Shift over rule)

Given a rule p = (L
l← K

r→ R, ac) and a condition acR over R, then L(p, acR) is

a condition over L defined by

• L(p, acR) = true if acR = true,

• L(p, acR) = ∃(b,L(p∗, ac′
R))

L K R

Y Z X

acR

ac′L(p∗, ac′
R)

L(p, acR) l r

l∗ r∗

b c a(2) (1)

if acR = ∃(a,

ac′
R), a ◦ r has a

pushout comple-

ment (1), and p∗

= (Y
l∗← Z

r∗→ X)

is the derived rule by constructing pushout (2),

L(p, ∃(a, ac′
R)) = false otherwise,

• L(p, acR) = ¬L(p, ac′
R) if acR = ¬ac′

R,

• L(p, acR) = ∧i∈IL(p, acR,i) if acR = ∧i∈IacR,i, or

• L(p, acR) = ∨i∈IL(p, acR,i) if acR = ∨i∈IacR,i.

Dually, for a condition acL over L we define R(p, acL) = L(p
−1, acL), where the

inverse rule p−1 without application conditions is defined by p−1 = (R
r← K

l→ L).

Fact 3.41

L K R

G D H

L(p, acR) acR

l r

f g

m k n(1) (2)

Given a transformation G =
p,m
==⇒ H via a

rule p = (L
l← K

r→ R, ac) and a con-

dition acR over R, then m |= L(p, acR)

if and only if n |= acR and Shift(m,

L(p, acR)) ∼= L(p′, Shift(n, acR)) for

p′ = (G
f← D

g→ H).

Dually, for a condition acL over L we

have that m |= acL if and only if n |=
R(p, acL).

3.4 Transformations inM-Adhesive Systems 51

Proof See [HP09].

A set of rules constitutes an M-adhesive transformation system, and
combined with a start object an M-adhesive grammar. The language of
such a grammar contains all objects derivable from the start object.

Definition 3.42 (M-adhesive transformation system and grammar)

AnM-adhesive transformation system AS = (C,M, P) consists of anM-adhesive
category (C,M) and a set of rules P .

AnM-adhesive grammar AG = (AS, S) consists of anM-adhesive transforma-
tion system AS and a start object S.

The language L of anM-adhesive grammar AG is defined by

L = {G | ∃ transformation S
∗⇒ G via P}.

3.4.3 Main Analysis Results in M-Adhesive
Transformation Systems

In [EEPT06], main important results for M-adhesive transformation sys-
tems without application conditions were proven. These were extended in
[LEOP08, LEPO08] to M-adhesive transformation systems with negative
application conditions (NACs), a special variant of application conditions
which forbid the existence of a certain structure extending the match. With
[EHL10a, EHL+10b], all these results are now available also for transfor-
mations with application conditions. Here, we explain and state the results
and as far as necessary the underlying concepts, but do not show the proofs.
Most of these results are based on the results for transformations without
application conditions combined with some additional requirements for the
application conditions and based on shifting the application conditions over
morphisms and rules.

3.4.3.1 Local Church-Rosser and Parallelism Theorem

The first result is concerned with parallel and sequential independence of
direct transformations. We study under what conditions two direct trans-
formations applied to the same object can be applied in arbitrary order,
leading to the same result. This leads to the Local Church-Rosser Theo-
rem. Moreover, the corresponding rules can be applied in parallel in this
case, leading to the Parallelism Theorem.
First, we define the notion of parallel and sequential independence. Two

direct transformations G =
p1,m1===⇒ H1 and G =

p2,m2===⇒ H2 are parallel inde-

52 3 M-Adhesive Transformation Systems

pendent if p1 does not delete anything p2 uses and does not create or delete
anything to invalidate ac2, and vice versa.

Definition 3.43 (Parallel independence)

Two direct transformations G =
p1,m1===⇒ H1 and G =

p2,m2===⇒ H2 are parallel indepen-

dent if there are morphisms i : L1 → D2 and j : L2 → D1 such that f2 ◦ i = m1,

f1 ◦ j = m2, g2 ◦ i |= ac1, and g1 ◦ j |= ac2.

L1K1R1 L2 K2 R2

GD1H1 D2 H2

ac1 ac2

l1r1

f1g1

m1
k1n1

l2 r2

f2 g2

m2
k2 n2

ij

Analogously, two direct transformations G
p1,m1=⇒ H1

p2,m2=⇒ G′ are sequen-
tially independent if p1 does not create something p2 uses, p2 does not
delete something p1 uses or creates, p1 does not delete or create anything
thereby initially validating ac2, and p2 does not delete or create something
invalidating ac1.

Definition 3.44 (Sequential independence)

Two direct transformations G =
p1,m1===⇒ H1 =

p2,m2===⇒ G′ are sequentially independent

if there are morphisms i : R1 → D2 and j : L2 → D1 such that f2 ◦ i = n1,

g1 ◦ j = m2, g2 ◦ i |= R(p1, ac1), and f1 ◦ j |= ac2.

R1K1L1 L2 K2 R2

H1D1G D2 G′

ac1 ac2

r1l1

g1f1

n1
k1m1

l2 r2

f2 g2

m2
k2 n2

ij

The idea of a parallel rule is, in case of parallel independence, to apply
both rules in parallel. For rules p1 and p2, the parallel rule p1 + p2 is the
coproduct of the rules, and for the application conditions we have to make
sure that both single rules can be applied in any order. For the parallel
rule, we require an M-adhesive category with binary coproducts.

Definition 3.45 (Parallel rule)

Given rules p1 = (L1
l1← K1

r1→ R1, ac1) and p2 = (L2
l2← K2

r2→ R2, ac2), the

parallel rule p1 + p2 = (L1 + L2
l1+l2← K1 +K2

r1+r2→ R1 +R2, ac) is defined by the

3.4 Transformations inM-Adhesive Systems 53

L1 K1 R1

L2 K2 R2

L1 + L2 K1 +K2 R1 +R2

ac1

ac

ac2

l1+l2 r1+r2

l1 r1

l2 r2

iK1

iK2

iL1

iL2

iR1

iR2

component-wise binary

coproducts of the left-

hand sides, glueings, and

right-hand sides including

the morphisms, and ac =

Shift(iL1 , ac1)∧L(p1+ p2,

Shift(iR1 ,R(p1, ac1))) ∧
Shift(iL2 , ac2)∧L(p1+ p2,

Shift(iR2 ,R(p2, ac2))).

With these notions of independence and the parallel rule, we are able to
formulate the Local Church-Rosser and Parallelism Theorem.

Theorem 3.46 (Local Church-Rosser and Parallelism Theorem)

Given two parallel independent direct transformations G =
p1,m1===⇒ H1 and

G =
p2,m2===⇒ H2 there is an object G′ together with direct transformations

H1 =
p2,m

′
2===⇒ G′ and H2 =

p1,m
′
1===⇒ G′ such that G =

p1,m1===⇒ H1 =
p2,m

′
2===⇒ G′ and

G =
p2,m2===⇒ H2 =

p1,m
′
1===⇒ G′ are sequentially independent.

H1 H2

G

G′

p1,m1

p1+p2,m

p2,m2

p2,m
′
2 p1,m

′
1

Given two sequentially independent direct

transformations G =
p1,m1===⇒ H1 =

p2,m
′
2===⇒ G′

there is an object H2 together with direct

transformations G =
p2,m2===⇒ H2 =

p1,m
′
1===⇒ G′

such that G =
p1,m1===⇒ H1 and G =

p2,m2===⇒ H2

are parallel independent.

In any case of independence, there is a parallel transformation G =
p1+p2,m=====⇒ G′

and, vice versa, a direct transformation G =
p1+p2,m=====⇒ G′ via the parallel rule p1+p2

can be sequentialized both ways.

Proof See [EHL10a].

3.4.3.2 Concurrency Theorem

In contrast to the Local Church-Rosser Theorem, the Concurrency The-
orem is concerned with the execution of transformations which may be
sequentially dependent. This means that, in general, we cannot commute
subsequent direct transformations, as done for independent transformations
in the Local Church-Rosser Theorem, nor are we able to apply the corre-
sponding parallel rule, as done in the Parallelism Theorem. Nevertheless,
it is possible to apply both transformations concurrently using a so-called
E-concurrent rule and shifting the application conditions of the single rules
to an equivalent concurrent application condition.

54 3 M-Adhesive Transformation Systems

Given an arbitrary sequence G =
p1,m1===⇒ H =

p2,m2===⇒ G′ of direct transforma-
tions it is possible to construct an E-concurrent rule p1 ∗E p2. The object
E is an overlap of the right-hand side of the first rule and the left-hand
side of the second rule, where the two overlapping morphisms have to be
in a class E ′ of pairs of morphisms with the same codomain. The construc-
tion of the concurrent application condition is again based on the two shift
constructions.

Definition 3.47 (Concurrent rule)

Given rules p1 = (L1
l1← K1

r1→ R1, ac1) and p2 = (L2
l2← K2

r2→ R2, ac2) an

object E with morphisms e1 : R1 → E and e2 : L2 → E with (e1, e2) ∈ E ′ is
an E-dependency relation of p1 and p2 if the pushout complements (1) and (2) of

e1 ◦ r1 and e2 ◦ l2, respectively, exist.

Given an E-dependency relation (E, e1, e2) of p1 and p2 the E-concurrent rule

p1 ∗E p2 = (L
s1◦w1← K

t2◦w2→ R, ac) is constructed by pushouts (1), (2), (3), (4),

and pullback (5), with ac = Shift(u1, ac1) ∧ L(p∗, Shift(e2, ac2)) and p∗ = (L
s1←

C1
t1→ E).

R1K1L1 L2 K2 R2

EC1L C2 R

K

ac1 ac2

ac

r1l1

t1s1

e1
v1u1

l2 r2

s2 t2

e2
v2 u2

w1 w2

(1) (2)(3) (4)

(5)

A sequence G =
p1,m1===⇒ H =

p2,m2===⇒ G′ is called E-related if there exist h : E → H,

c1 : C1 → D1, and c2 : C2 → D2 such that h ◦ e1 = n1, h ◦ e2 = m2, c1 ◦ v1 = k1,

c2 ◦ v2 = k2, and (6) and (7) are pushouts.

R1K1L1 L2 K2 R2

EC1 C2

G D1 H D2 G′

ac1 ac2

r1l1

t1

e1v1

l2 r2

s2

e2 v2

m1 n2k1 k2

c2c1

f1 g1 f2 g2

h

n1 m2

(6) (7)

3.4 Transformations inM-Adhesive Systems 55

For a sequence G =
p1,m1===⇒ H =

p2,m2===⇒ G′ of direct transformations we can
construct an E-dependency relation such that the sequence is E-related.
Then the E-concurrent rule p1 ∗E p2 allows us to construct a direct trans-
formation G =

p1∗Ep2====⇒ G′ via p1∗E p2. Vice versa, each direct transformation
G =

p1∗Ep2====⇒ G′ via the E-concurrent rule p1 ∗E p2 can be sequentialized lead-
ing to an E-related transformation sequence G =

p1,m1===⇒ H =
p2,m2===⇒ G′ of

direct transformations via p1 and p2.

Theorem 3.48 (Concurrency Theorem)

For rules p1 and p2 and an E-concurrent rule p1 ∗E p2 we have:

H

G G′p1∗Ep2,m
p1,m1 p2,m2

• Given an E-related transformation se-

quence G =
p1,m1===⇒ H =

p2,m2===⇒ G′ then
there is a synthesis construction leading

to a direct transformation G =
p1∗Ep2,m======⇒

G′ via the E-concurrent rule p1 ∗E p2.

• Given a direct transformation G =
p1∗Ep2,m======⇒ G′ then there is an analysis

construction leading to an E-related transformation sequence G =
p1,m1===⇒

H =
p2,m2===⇒ G′.

• The synthesis and analysis constructions are inverse to each other up to

isomorphism.

Proof See [EHL10a].

3.4.3.3 Embedding and Extension Theorem

For the Embedding and Extension Theorem, we analyze under what con-
ditions a transformation t : G0

∗⇒ Gn can be extended to a transformation
t′ : G′0

∗⇒ G′n via an extension morphism k0 : G0 → G′0. The idea is to
obtain an extension diagram (1), which is defined by pushouts (2i) – (5i)
for all i = 1, . . . , n, where the same rules p1, . . . , pn are applied in the same
order in t and t′.

G0 Gn

G′0 G′n

Li Ki Ri

G′i−1 D′i G′i

Gi−1 Di Gi

aci
∗

∗ fi gi

li ri

f ′i g′i

ji

di

mi

ki

ni

ki+1

t

t′

k0 kn(1) (2i) (3i)

(4i) (5i)

It is important to note that this is not always possible, because there may
be some elements in G′0 invalidating an application condition or forbidding

56 3 M-Adhesive Transformation Systems

the deletion of something which can still be deleted in G0. But we are able
to give a necessary and sufficient consistency condition to allow such an
extension. This result is important for all kinds of applications where we
have a large object G′0, but only small subparts of G′0 have to be changed by
the rules p1, . . . , pn. In this case, we choose a suitable small subobject G0 of
G′0 and construct a transformation t : G0

∗⇒ Gn via p1, . . . , pn first. Then
we compute the derived span of this transformation, which we extend in a
second step via the inclusion k0 : G0 → G′0 to a transformation t′ : G′0

∗⇒ G′n
via the same rules p1, . . . , pn. Since we only have to compute the small
transformation from G0 to Gn and the extension of Gn to G′n, this makes
the computation of G′0 ⇒ G′n more efficient.
The derived span connects the first and the last object of a transformation

and describes in one step, similar to a rule, the changes between them. Over
the derived span we can also define a derived application condition which
becomes useful later for the Local Confluence Theorem.

Definition 3.49 (Derived span and application condition)

Given a transformation t : G0
∗⇒ Gn via rules p1, . . . , pn, the derived span der(t)

is inductively defined by

der(t) =

8
>>>><

>>>>:

G0
f1← D1

g1→ G1 for t : G0 =
p1,m1===⇒ G1

G0
d′0◦d← D

gn◦dn→ Gn for t : G0 =
∗⇒ Gn−1 =

pn,mn
====⇒ Gn with

der(G0 =
∗⇒ Gn−1) = (G0

d′0← D′ d
′
n−1→ Gn−1)

and pullback (PB)

Gn−1 Dn GnD′G0

D

d′0 d′n−1 fn gn

d dn

(PB)

Moreover, the derived application condition ac(t) is defined by

ac(t) =

8
<

:

Shift(m1, ac1) for t : G0 =
p1,m1===⇒ G1

ac(G0 =
∗⇒ Gn−1) for t : G0 =

∗⇒ Gn−1 =
pn,mn
====⇒ Gn

∧L(p∗
n, Shift(mn, acn)) with p∗

n = der(G0 =
∗⇒ Gn−1)

For the consistency condition, we need the concept of initial pushouts
over M′ (see Def. 3.8 Item 4) and require k0 ∈ M′. In order to be boundary
consistent, we have to find a morphism from the boundary of k0 to the
consistent span, which means that no element in the boundary is deleted
by the transformation. Moreover, k0 needs to be AC-consistent, therefore it
should fulfill a summarized set of application conditions formulated on G0.
This set is equivalent to all application conditions occurring in t and again

3.4 Transformations inM-Adhesive Systems 57

based on the shift constructions. We say that k0 is consistent with respect
to t if it is both boundary consistent and AC-consistent.

Definition 3.50 (Consistency)

Given a transformation t : G0
∗⇒ Gn via rules p1, . . . , pn with a derived span

G0
d∗0← D

d∗n→ Gn a morphism k0 : G0 → G′
0 ∈ M′ is called consistent w. r. t. t if it

is

L K R

G0

G′
0

D Gn

C

B

ac l r

m
k n

d∗0 d∗n
k0

b
b′

(6)

1. boundary consistent, i. e.

given the initial pushout

(6) over k0 there is a mor-

phism b′ ∈ M with d∗
0 ◦

b′ = b, and

2. AC-consistent, i. e. given

the concurrent rule p =

(L
l← K

r→ R, ac) of t

with match m : L→ G0 then k0 ◦m |= ac.

The Embedding and Extension Theorem now describes the fact that con-
sistency of a morphism k0 : G0 → G′0 is both necessary and sufficient to
embed a transformation t : G0

∗⇒ Gn via k0.

Theorem 3.51 (Embedding and Extension Theorem)

Given a transformation t : G0
∗⇒ Gn and a morphism k0 : G0 → G′

0 ∈ M′ which
is consistent with respect to t then there is an extension diagram over t and k0.

Given a transformation t : G0
∗⇒ Gn with an extension diagram (1) and initial

pushout (6) over k0 : G0 → G′
0 ∈M′ as above then we have that:

1. k0 is consistent with respect to t : G0
∗⇒ Gn.

2. There is a rule der(t) = (G0
d∗0← D

d∗n→ Gn) leading to a direct transformation

G′
0 ⇒ G′

n via der(t).

3. G′
n is the pushout of C and Gn along B, i. e. G′

n = Gn +B C.

Proof See [EHL+10b].

3.4.3.4 Critical Pairs and Local Confluence Theorem

A transformation system is called confluent if, for all transformations G =∗⇒
H1 and G =∗⇒ H2, there is an object X together with transformations
H1 =∗⇒ X and H2 =∗⇒ X. Local confluence means that this property holds
for all pairs of direct transformations G =

p1,m1===⇒ H1 and G =
p2,m2===⇒ H2.

58 3 M-Adhesive Transformation Systems

H1 H2

G

X

∗ ∗

∗ ∗
H1 H2

G

X

p1,m1 p2,m2

∗ ∗

Confluence is an important property of a transformation system, because,
in spite of local nondeterminism concerning the application of a rule, we have
global determinism for confluent transformation systems. Global determin-
ism means that, for each pair of terminating transformations G =∗⇒ H and
G =∗⇒ H ′ with the same source object, the target objects H and H ′ are
equal or isomorphic. A transformation G =∗⇒ H is called terminating if
no rule is applicable to H anymore. This means that each transformation
sequence terminates after a finite number of steps.
The Local Church-Rosser Theorem shows that, for two parallel inde-

pendent direct transformations G =
p1,m1===⇒ H1 and G =

p2,m2===⇒ H2, there

is an object G′ together with direct transformations H1 =
p2,m

′
2===⇒ G′ and

H2 =
p1,m

′
1===⇒ G′. This means that we can apply the rules p1 and p2 with

given matches in an arbitrary order. If each pair of productions is par-
allel independent for all possible matches, then it can be shown that the
corresponding transformation system is confluent.
In the following, we discuss local confluence for the general case in which

G =
p1,m1===⇒ H1 and G =

p2,m2===⇒ H2 are not necessarily parallel independent.
According to a general result for rewriting systems, it is sufficient to consider
local confluence, provided that the transformation system is terminating.
The main idea is to study critical pairs. The notion of critical pairs was

developed first in the area of term rewriting systems (see, e.g., [Hue80]),
later introduced in the area of graph transformation for hypergraph rewrit-
ing [Plu93], and then for all kinds of transformation systems fitting into the
framework of M-adhesive categories [EEPT06, LEPO08, EHL+10b].

Note that the notion of critical pairs for transformations with and with-
out application conditions differs. For transformations without application
conditions, a pair P1 ⇐p1,o1==== K =

p2,o2===⇒ P2 of direct transformations is called
a critical pair if it is parallel dependent and minimal in the sense that
(o1, o2) ∈ E ′, while for transformations with application conditions, the
matches o1 and o2 are allowed to violate the application conditions, but
induce new ones that have to be respected by a parallel dependent exten-
sion of the critical pair. These induced application conditions make sure
that the extension respects the application conditions of the given rules and

3.4 Transformations inM-Adhesive Systems 59

that there is indeed a conflict. Here, we only present the Local Confluence
Theorem for transformations with application conditions, see [EEPT06] for
transformations without application conditions and [LEPO08] for transfor-
mations with only negative application conditions.

Definition 3.52 (Critical pair)

Given rules p1 = (L1
l1← K1

r1→ R1, ac1) and p2 = (L2
l2← K2

r2→ R2, ac2) a pair

P1 ⇐p1,o1==== K =
p2,o2===⇒ P2 of direct transformations without application conditions

is a critical pair (for transformations with application conditions), if (o1, o2) ∈ E ′

and there exists an extension of the pair via a monomorphism m : K → G ∈ M′

such that m |= acK = acEK ∧ acCK , with

• extension application condition: acEK = Shift(o1, ac1) ∧ Shift(o2, ac2) and

• conflict-inducing application condition: acCK = ¬(acz1 ∧ acz2), with

if (∃z1 : v1 ◦ z1 = o2 then acz1 = L(p
∗
1, Shift(w1 ◦ z1, ac2)) else acz1 = false,

with p∗
1 = (K

v1← N1
w1→ P1)

if (∃z2 : v2 ◦ z2 = o1 then acz2 = L(p
∗
2, Shift(w2 ◦ z2, ac1)) else acz2 = false,

with p∗
2 = (K

v2← N2
w2→ P2)

L1K1R1 L2 K2 R2

KN1P1 N2 P2

ac1 ac2

acK

l1r1

v1w1

o1
u1t1

l2 r2

v2 w2

o2
u2 t2

z2z1

It can be shown that every pair of parallel dependent direct transforma-
tions is an extension of a critical pair, which is shown in the Completeness
Theorem.

Theorem 3.53 (Completeness Theorem)

P1 K P2

H1 G H2

p1,o1

p1,m1

p2,o2

p2,m2

m(1) (2)

For each pair of parallel dependent direct

transformations H1 ⇐p1,m1==== G =
p2,m2===⇒ H2

there is a critical pair P1 ⇐p1,o1==== K =
p2,o2===⇒ P2

with induced application condition acK and

a monomorphism m : K → G ∈ M′ with
m |= acK leading to extension diagrams (1)

and (2).

Proof See [EHL+10b].

60 3 M-Adhesive Transformation Systems

In order to show local confluence it is sufficient to show strict AC-con-
fluence of all its critical pairs. As discussed above, confluence of a critical
pair P1 ⇐ K ⇒ P2 means the existence of an object K ′ together with
transformations P1

∗⇒ K ′ and P2
∗⇒ K ′.

Strictness is a technical condition which means, intuitively, that the parts
which are preserved by both transformations of the critical pair are also
preserved in the common object K ′. In [Plu95], it has been shown that
confluence of critical pairs without strictness is not sufficient to show local
confluence. For strict AC-confluence of a critical pair, the transformations of
the strict solution of the critical pair must be extendable to G, which means
that each application condition of both transformations must be satisfied in
the bigger context.

Definition 3.54 (Strict AC-confluence)

A critical pair P1 ⇐p1,o1==== K =
p2,o2===⇒ P2 with induced application conditions acK is

strictly AC-confluent if it is

P1 P2

K

K′

p1,o1 p2,o2

∗ ∗

1. confluent without application conditi-

ons, i. e. there are transformations P1
∗⇒

K′ and P2
∗⇒ K′ eventually disregard-

ing the application conditions, and

2. strict, i. e. given derived spans der(Pi

=
pi,oi===⇒ Ki) = (K

vi← Ni
wi→ Pi) and

der(Pi
∗⇒ K′) = (Pi

vi+2← Ni+2
wi+2→ K′) for i = 1, 2 and pullback (1) then

K

N1 N2

P1 N P2

N3 N4

K′

(1)

(2) (3)

(4)

v1

w1

v2

w2

v3

w3

v4

w4

z1 z2

z3 z4

there exist mor-

phisms z3, z4 such

that diagrams (2),

(3), and (4) com-

mute, and

3. for ti : K =
pi,oi===⇒

Pi
∗⇒ K′ it holds

that acK ⇒ ac(ti)

for i = 1, 2.

Based on strict AC-confluent critical pairs we can obtain local confluence
of a transformation system.

Theorem 3.55 (Local Confluence Theorem)

A transformation system is locally confluent if all its critical pairs are strictly

AC-confluent.

Proof See [EHL+10b].

4 Amalgamated Transformations

In this chapter, we introduce amalgamated transformations, which are use-
ful for the definition of the semantics of models using transformations. An
amalgamated rule is based on a kernel rule, which defines a fixed part of
the match, and multi rules, which extend this fixed match. From a kernel
and a multi rule, a complement rule can be constructed which character-
izes the effect of the multi rule exceeding the kernel rule. An interaction
scheme is defined by a kernel rule and available multi rules, leading to a
bundle of multi rules that specifies in addition how often each multi rule is
applied. Amalgamated rules are in general standard rules in M-adhesive
transformation systems, thus all the results follow. In addition, we are able
to refine parallel independence of amalgamated rules based on the induced
multi rules. If we extend an interaction scheme as large as possible we can
describe the transformation for an unknown number of matches, which oth-
erwise would have to be defined by an infinite number of rules. This leads
to maximal matchings, which are useful to define the semantics of models.
In Section 4.1, we introduce amalgamated rules and transformations,

show some important results, and illustrate our work with a running ex-
ample. In Section 4.2, we define the firing semantics of elementary Petri
nets modeled by typed graphs using amalgamation. Moreover, we introduce
statecharts and use amalgamation to define a suitable operational seman-
tics.

4.1 Foundations and Analysis of

Amalgamated Transformations

In this section, we introduce amalgamated transformations and show the
main results. In the following, a bundle represents a family of morphisms
or transformation steps with the same domain, which means that a bundle
of things always starts at the same object. Moreover, we require an M-
adhesive category with binary coproducts, initial and effective pushouts
(see Section 3.2).

U. Golas, Analysis and Correctness of Algebraic Graph and Model Transformations,
DOI 10.1007/978-3-8348-9934-7_4,
© Vieweg+Teubner Verlag | Springer Fachmedien Wiesbaden GmbH 2011

62 4 Amalgamated Transformations

4.1.1 Kernel, Multi, and Complement Rules

A kernel morphism describes how a smaller rule, the kernel rule, is embedded
into a larger rule, the multi rule. The multi rule has its name because it
can be applied multiple times for a given kernel rule match as described
later. We need some more technical preconditions to make sure that the
embeddings of the L-, K-, and R-components as well as the application
conditions are consistent and allow to construct a complement rule.

Definition 4.1 (Kernel morphism)

L0 K0 R0

L1 K1 R1

ac0

ac1

p0 :

p1 :

l0 r0

l1 r1

s1,L s1,K s1,Rs1 (11) (21)

Given rules p0 = (L0
l0←− K0

r0−→ R0, ac0) and p1 = (L1
l1←−

K1
r1−→ R1, ac1), a kernel mor-

phism s1 : p0 → p1, s1 = (s1,L,

s1,K , s1,R) consists ofM-mor-
phisms s1,L : L0 → L1, s1,K :

K0 → K1, and s1,R : R0 → R1 such that in the above diagram (11) and (21)

are pullbacks, (11) has a pushout complement (1
′
1) for s1,L ◦ l0, and ac1 ⇒

Shift(s1,L, ac0). In this case, p0 is called kernel rule and p1 multi rule.

L0 K0

L1 L10

R0

E1

ac′
1

l0

w1s1,L

u1

r0

e11

v1

(1′
1) (31)

ac0 and ac1 are complement-compatible

w. r. t. s1 if there is some application con-

dition ac′
1 on L10 such that ac1 ∼=

Shift(s1,L, ac0) ∧ L(p∗
1, Shift(v1, ac′

1)) for

the pushout (31) and p∗
1 = (L1

u1←− L10
v1−→ E1).

Remark 4.2

The complement-compatibility of the application conditions makes sure that there

is a decomposition of ac1 into parts on L0 and L10, where the latter ones are used

later for the application conditions of the complement rule.

Example 4.3

To explain the concept of amalgamation, in our example we model a small trans-

formation system for switching the direction of edges in labeled graphs, where we

p0 : ac0

ac0 = ¬∃a0

1

L0

1

K0

1

R0

1

L0

1
l0 r0 a0

Figure 4.1: The kernel rule p0 deleting a loop at a node

4.1 Foundations and Analysis of Amalgamated Transformations 63

only have different labels for edges – black and dotted edges. The kernel rule p0
is depicted in Fig. 4.1. It selects a node with a black loop, deletes this loop, and

adds a dotted loop, all of this if no dotted loop is already present. The matches

are defined by the numbers at the nodes and can be induced for the edges by their

position.

In Figure 4.2, two multi rules p1 and p2 are shown which extend the rule p0 and

in addition reverse an edge if no backward edge is present. They also inherit the

application condition of p0 forbidding a dotted loop at the selected node. There

is a kernel morphism s1 : p0 → p1 as shown in the top of Fig. 4.2 with pullbacks

(11), (21) and pushout complement (1
′
1). Similarly, there is a kernel morphism

s2 : p0 → p2 as shown in the bottom of Fig. 4.2 with pullbacks (12), (22) and

pushout complement (1′
2).

p0 :
ac0 1

L0

1

K0

1

R0

p1 :

ac1

ac1 = Shift(s1,L, ac0) ∧ ¬∃a1

1

2

L1

1

2

K1

1

2

R1

1

L0

1

K0

1

2

L1

1

2

L10

1

2

L1

1

2

p0 :
ac0 1

L0

1

K0

1

R0

1

L0

1

K0

p2 :

ac2

ac2 = Shift(s2,L, ac0) ∧ ¬∃a2

1

3

L2

1

3

K2

1

3

R2

1

3

L2

1

3

L20

1

3

L2

1

3

l0 r0

l1 r1

s1,L s1,K s1,R

l0

s1,L

u1

w1

a1

l0 r0

l2 r2

s2,L s2,K s2,R

l0

s2,L

u2

w2

a2

(11) (21) (1′1)

(12) (22) (1′2)

Figure 4.2: The multi rules p1 and p2 describing the reversion of an edge

64 4 Amalgamated Transformations

1

2

L10

1

2

E1

1

2

L1

1

2

L10

1

2

E1

1

2

L10

1

2

L1

1

2

1

2

1

2

1

2

1

2

1

2

1

2

v1 u1 v1 u11

b11

a′1 a1 a′1a11 a11 a1(∗) (PO1) (PO2)

Figure 4.3: Constructions for the application conditions

For the application conditions, ac1 = Shift(s1,L, ac0)∧¬∃a1 ∼= Shift(s1,L, ac0)∧
L(p∗

1, Shift(v1,¬∃a′
1)) with a′

1 as shown in the left of Fig. 4.3. We have that

Shift(v1,¬∃a′
1) = ¬∃a11, because square (∗) is the only possible commuting square

leading to a11, b11 jointly surjective and b11 injective. L(p
∗
1,¬∃a11) = ¬∃a1 as

shown by the two pushout squares (PO1) and (PO2) in the middle of Fig. 4.3.

Thus ac′
1 = ¬∃a′

1, and ac0 and ac1 are complement-compatible w. r. t. s1. Simi-

larly, it can be shown that ac0 and ac2 are complement-compatible w. r. t. s2.

For a given kernel morphism, the complement rule is the remainder of the
multi rule after the application of the kernel rule, i. e. it describes what the
multi rule does in addition to the kernel rule.
Theorem 4.4 (Existence of complement rule)

Given rules p0 = (L0
l0←− K0

r0−→ R0, ac0) and p1 = (L1
l1←− K1

r1−→ R1, ac1),

and a kernel morphism s1 : p0 → p1 then there exists a rule p1 = (L1
l1←− K1

r1−→

L0 K0 R0 L1 K1 R1

L1 L10 E1 R10 R1

K1

ac0

ac1

ac1

ac′1

l0 r0 l1 r1

u1 v1 u1 v1

s1,L w1 e11 e12 w1 t1

l1 r1

l10 r10

(1′1) (31)

(81) + (91)

(91) (131)

4.1 Foundations and Analysis of Amalgamated Transformations 65

R1, ac1) and a jointly epimorphic cospan R0
e11−→ E1

e12←− L1 such that the E1-

concurrent rule p0 ∗E1 p1 exists and p1 = p0 ∗E1 p1 for rules without application

conditions. Moreover, if ac0 and ac1 are complement-compatible w. r. t. s1 then

p1 ∼= p0 ∗E1 p1 also for rules with application conditions.

Proof First, we consider the construction without application conditions. Since

s1 is a kernel morphism the following diagrams (11) and (21) are pullbacks and

(11) has a pushout complement (1
′
1) for s1,L ◦ l0. Construct the pushout (31).

L0 K0 R0

L1 K1 R1

L0 K0 R0

L1 L10 E1

l0 r0

l1 r1

s1,L s1,K s1,R

l0 r0

u1 v1

s1,L w1 e11(11) (21) (1′
1) (31)

B1

C1

R0

R1

P1 S1

K0

b1

c1

s1,R

s12

s11
s13

r0

(41)

(51)

Now construct the initial pushout (41) over s1,R
with b1, c1 ∈M, P1 as the pullback object of r0 and b1,

and the pushout (51) where we obtain an induced mor-

phism s13 : S1 → R0 with s13 ◦s12 = b1, s13 ◦s11 = r0,

and s13 ∈M by effective pushouts.

Since (11) is a pullback Lemma A.17 implies that

there is a unique morphism l10 : K1 → L10 with l10 ◦
s1,K = w1, u1 ◦ l10 = l1, and l10 ∈ M, and we can
construct pushouts (61) – (91) as a decomposition of pushout (31) which leads to

L1 and K1 of the complement rule, and with (71) + (91) being a pushout e11 and

e12 are jointly epimorphic.

L0 K0

L1 L10

K1

K0 S1 R0

K1 K1 R10

L10 L1 E1

l0

u1

s1,L w1

l1
l10

s1,K

s11

s1,K

s13

s14 u12

v11 w1

l10

u11

l1

e12

u1

e11

(1′
1)

(81) (91)

(61) (71)

The pushout (41) can be decomposed into pushouts (101) and (111) obtaining

the right-hand side R1 of the complement rule, while pullback (21) can be decom-

posed into pushout (61) and square (121) which is a pullback by Lemma A.18.

B1

C1

S1

R1

R0

R1

K0

K1

S1

K1

R0

R1

s12 s13

u13 s1,R

t1

s11 s13

s1,K s14 s1,R

v11 v12

(101) (111) (61) (121)

Now Lemma A.17 implies that there is a unique morphism r1 : K1 → R1 with

r1 ◦ s14 = u13, t1 ◦ r1 = v12, and r1 ∈ M. With pushout (71) there is a unique

66 4 Amalgamated Transformations

morphism v1 : R10 → R1 and by pushout decomposition of (111) = (71) + (131)

square (131) is a pushout.

S1 R0

R1 R1

K1

S1

R0

K1

R10

R1

R1

S1 R0

K1 R10

R1

s14 r1

s13 v12 t1

u12 v1

s13

s14 u12

w1 s1,R

v1v12

s13

u13 s1,R

t1s14

v12
r1

(111) (71) (71) (131)

Moreover, (81)+ (91) as a pushout overM-morphisms is also a pullback which
completes the construction of the rule and p1 = p0 ∗E1 p1 for rules without appli-

cation conditions.

L0

L1 K1

K0

L10

S1

K1

L1

R10

R0

S1

E1

K1

L1 K1

R10 R1

C1

R1

B1

S1

R0

l0 s11 s13

s13 l1◦s14

l1 r1 u13

s12

l1 v11 w1

u1

u11 e12 u1 v1 s1,R

l1

l10 r10

r1

s1,L s1,K s14 u12

l10 l1 u1

e12 w1 t1 s13

b1(11) (61) (71)

(81) (91)

(81) + (91)

(71) + (91)
(91)

(101)

(131) (111)

For the application conditions, suppose ac1 ∼= Shift(s1,L, ac0) ∧ L(p∗
1, Shift(v1,

ac′
1)) for p∗

1 = (L1
u1←− L10

v1−→ E1) with v1 = e12 ◦ u11 and ac′
1 over L10. Now

define ac1 = Shift(u11, ac′
1), which is an application condition on L1.

We have to show that (p1, acp0∗E1p1)
∼= (p1, ac1). By construction of the E1-

concurrent rule we have that acp0∗E1p1
∼= Shift(s1,L, ac0)∧L(p∗

1, Shift(e12, ac1)) ∼=
Shift(s1,L, ac0) ∧ L(p∗

1, Shift(e12, Shift(u11, ac′
1))) ∼= Shift(s1,L, ac0) ∧ L(p∗

1,

Shift(e12 ◦ u11, ac′
1)) ∼= Shift(s1,L, ac0) ∧ L(p∗

1, Shift(v1, ac′
1)) ∼= ac1.

Remark 4.5

Note that by construction the interface K0 of the kernel rule has to be preserved

in the complement rule. The construction of p1 is not unique w. r. t. the property

p1 = p0 ∗E1 p1, since other choices for S1 withM-morphisms s11 and s13 also lead

to a well-defined construction. In particular, one could choose S1 = R0 leading to

p1 = E1
u1←− R10

v1−→ R1. Our choice represents the smallest possible complement,

which should be preferred in most application areas.

4.1 Foundations and Analysis of Amalgamated Transformations 67

Definition 4.6 (Complement rule)

Given rules p0 = (L0
l0←− K0

r0−→ R0, ac0) and p1 = (L1
l1←− K1

r1−→ R1, ac1), and

a kernel morphism s1 : p0 → p1 such that ac0 and ac1 are complement-compatible

w. r. t. s1 then the rule p1 = (L1
l1←− K1

r1−→ R1, ac1) constructed in Thm. 4.4 is

called complement rule (of s1).

If we choose ac1 = true this leads to the weak complement rule (of s1) p1 =

(L1
l1←− K1

r1−→ R1, true), which is defined even if ac0 and ac1 are not complement-

compatible.

Example 4.7

Consider the kernel morphism s1 depicted in Fig. 4.2. Using Thm. 4.4 we obtain

the complement rule depicted in the top row in Fig. 4.4 with the application

condition ac1 = ¬∃a1 constructed in the right of Fig. 4.3. The diagrams in

Fig. 4.5 show the complete construction as done in the proof. Similarly, we obtain

a complement rule for the kernel morphism s2 : p0 → p2 in Fig. 4.2, which is

shown in the bottom row of Fig. 4.4.

Each direct transformation via a multi rule can be decomposed into a
direct transformation via the kernel rule followed by a direct transformation
via the (weak) complement rule.

Fact 4.8

G

G0

G1

p0,m0 p1,m1

p1,m1Given rules p0 = (L0
l0←− K0

r0−→ R0, ac0)

and p1 = (L1
l1←− K1

r1−→ R1, ac1), a kernel

morphism s1 : p0 → p1, and a direct transfor-

mation t1 : G =
p1,m1===⇒ G1 then t1 can be de-

composed into the transformation G =
p0,m0===⇒

p1 : ac1

ac1 = ¬∃a1

1

2

L1

1

2

K1

1

2

R1

1

2

L1

1

2

p2 : ac2

ac2 = ¬∃a2

1

3

L2

1

3

K2

1

3

R2

1

3

L2

1

3

l1 r1 a1

l2 r2 a2

Figure 4.4: The complement rules for the kernel morphisms

68 4 Amalgamated Transformations

1

L0

1

K0

1

S1

1

R0

1

2

L1

1

2

K1

1

2

K1

1

2

R10

1

2

L10

1

2

L1

1

2

E1

1

2

R10

1

2

R1

1

R0

1

2

L1

1

2

K1

1

2

R1

1

S1

1

2

C1

1

B1

1

S1

1

2

K1

l0 s11 s13

l1 v11 w1

u11 e12

l1 r1 u13

u1 v1 s1,R

u1

s13 l1◦s14

s1,L s1,K s14 u12

l10 l1 u1

s13e12 w1 t1

s12

l1

l10 r10

r1

(11) (61) (71)
(71) + (91)

(91) (131) (111)

(101)

(81) (91)

(81) + (91)

Figure 4.5: The construction of the complement rule for the kernel morphism s1

G0 =
p1,m1===⇒ G1 with m0 = m1 ◦ s1,L using either the weak complement rule p1 or

the complement rule p1, if ac0 and ac1 are complement-compatible with respect

to s1.

Proof If ac0 and ac1 are complement-compatible then we have that p1 ∼= p0 ∗E1
p1. The analysis part of the Concurrency Theorem now implies the decomposition

into G =
p0,m0===⇒ G0 =

p1,m1===⇒ G1 with m0 = m1 ◦ s1,L.

If ac0 and ac1 are not complement-compatible we can apply the analysis part

of the Concurrency Theorem without application conditions leading to a decom-

4.1 Foundations and Analysis of Amalgamated Transformations 69

position into G =
p0,m0===⇒ G0 =

p1,m1===⇒ G1 with m0 = m1 ◦ s1,L for rules without

application conditions. Since ac1 ⇒ Shift(s1,L, ac0) and m1 |= ac1 we have that

m1 |= Shift(s1,L, ac0) ⇔ m0 = m1 ◦ s1,L |= ac0. Moreover, ac1 = true and

m1 |= ac1. This means that this is also a decomposition for rules with application

conditions.

4.1.2 Amalgamated Rules and Transformations

Now we consider not only single kernel morphisms, but bundles of them
over a fixed kernel rule. Then we can combine the multi rules of such a
bundle to an amalgamated rule by gluing them along the common kernel
rule.

Definition 4.9 (Multi-amalgamated rule)

ac0

aci

ãcs

L0 K0 R0

Li Ki Ri

L̃s K̃s R̃s

p0 :

pi :

p̃s :

l0 r0

li ri

si,L si,K si,R

l̃s r̃s

ti,L ti,K ti,R

si

ti

(1i) (2i)

(14i) (15i)

Given rules pi = (Li
li←− Ki

ri−→
Ri, aci) for i = 0, . . . , n and a

bundle of kernel morphisms s =

(si : p0 → pi)i=1,...,n, then the

(multi-)amalgamated rule p̃s =

(L̃s
l̃s←− K̃s

r̃s−→ R̃s, ãcs) is con-

structed as the component-wise

colimit of the kernel morphisms.

This means that L̃s = Col((si,L)i=1,...,n), K̃s = Col((si,K)i=1,...,n), and R̃s =

Col((si,R)i=1,...,n), with l̃s and r̃s induced by (ti,L◦li)i=0,...,n and (ti,R◦ri)0=1,...,n,

respectively, with ãcs =
V
i=1,...,n Shift(ti,L, aci).

This definition is well-defined. Moreover, if the application conditions of
the kernel morphisms are complement-compatible this also holds for the ap-
plication condition of the amalgamated rule with respect to the morphisms
from the original kernel and multi rules.

Fact 4.10

The amalgamated rule as defined in Def. 4.9 is well-defined and we have kernel

morphisms ti = (ti,L, ti,K , ti,R) : pi → p̃s for i = 0, 1, . . . , n. If ac0 and aci are

complement-compatible w. r. t. si for all i = 1, . . . , n then also aci and ãcs as well

as ac0 and ãcs are complement compatible w. r. t. ti and t0, respectively.

Proof Consider the colimits (L̃s, (ti,L)i=0,...,n) of (si,L)i=1,...,n, (K̃s,

(ti,K)i=0,...,n) of (si,K)i=1,...,n, and (R̃s, (ti,R)i=0,...,n) of (si,R)i=1,...,n, with t0,∗ =
ti,∗ ◦ si,∗ for ∗ ∈ {L, K, R}. Since ti,L ◦ li ◦ si,K = ti,L ◦ si,L ◦ l0 = t0,L ◦ l0, we

get an induced morphism l̃s : K̃s → L̃s with l̃s ◦ ti,K = ti,L ◦ li for i = 0, . . . , n.

Similarly, we obtain r̃s : K̃s → R̃s with r̃s ◦ ti,K = ti,R ◦ ri for i = 0, . . . , n.

70 4 Amalgamated Transformations

K0 Ki

K̃s

L̃s

K0 Ki

K̃s

R̃s

si,K

t0,K ti,K

t0,L◦l0

ti,L◦lil̃s

si,K

t0,K ti,K

t0,R◦r0

ti,R◦ri

r̃s

The colimit of a bundle

of n morphisms can be con-

structed by iterated pushout

constructions, which means

that we only have to require

pushouts over M-morphisms.
Since pushouts are closed un-

der M-morphisms, the iter-
ated pushout construction leads to t ∈M.
It remains to show that (14i) resp. (14i) + (1i) and (15i) resp. (15i) + (2i) are

pullbacks, and (14i) resp. (14i) + (1i) has a pushout complement for ti,L ◦ li. We

prove this by induction over j for (14i) resp. (14i) + (1i), the pullback property

of (15i) follows analogously.

Ki K̃j

Li L̃j

li (16ij)

K0

L0

K1 K̃1

L1 L̃1

l0

s1,K

s1,L

l1 (1611)(11)

We prove: Let L̃j and

K̃j be the colimits of

(si,L)i=1,...,j and

(si,K)i=1,...,j , respec-

tively. Then (16ij) is a

pullback with pushout

complement property for all i = 0, . . . , j.

Basis j = 1: The colimits of s1,L and s1,K are L1 and K1, respectively, which

means that (1601) = (1) + (1611) and (1611) are both pushouts and pullbacks.

K0

Kj+1

L0

Lj+1

K̃j

K̃j+1

L̃j

L̃j+1

sj+1,K

l0

lj+1

sj+1,L

Induction step j → j + 1: Con-

struct L̃j+1 = L̃j +L0 Lj+1 and K̃j+1

= K̃j +K0 Kj+1 as pushouts, and we

have the right cube with the top and

bottom faces as pushouts, the back

faces as pullbacks, and by the van

Kampen property also the front faces

are pullbacks. Moreover, by Lem-

ma A.19 the front faces have the

pushout complement property, and by Lemma A.20 this also holds for (160j)

and (16ij) as compositions. Thus, for a given n, (16in) is the required pullback

(14i) resp. (14i) + (1i) with pushout complement property, using K̃n = K̃s and

L̃n = L̃s. Obviously, ãcs =
V
i=1,...,n Shift(ti,L, aci) ⇒ Shift(ti,L, aci) for all

i = 1, . . . , n, which completes the first part of the proof.

If ac0 and aci are complement-compatible we have that aci ∼= Shift(si,L, ac0)∧
L(p∗

i , Shift(vi, ac′
i)). Consider the pullback (17i), which is a pushout byM-push-

out-pullback decomposition and the uniqueness of pushout complements, and the

pushout (18i). For ac′
i, it holds that Shift(ti,L,L(p∗

i , Shift(vi, ac′
i)))) ∼= L(p̃∗

s ,

Shift(k̃i ◦ vi, ac′
i)) ∼= L(p̃∗

s , Shift(ṽ, Shift(l̃i, ac′
i))). Define ac∗

i := Shift(l̃i, ac′
i) as

an application condition on L̃0. It follows that ãcs =
V
i=1,...,n Shift(ti,L, aci) ∼=

4.1 Foundations and Analysis of Amalgamated Transformations 71

V
i=1,...,n(Shift(ti,L◦si,L, ac0)∧Shift(ti,L,L(p∗

i , Shift(vi, ac′
i)))) ∼= Shift(t0,L, ac0)∧V

i=1,...,n L(p̃
∗
s , Shift(ṽ, ac∗

i)).

ac0

aci

ãcs

L0 K0 R0

Li Li0 Ei

L̃s L̃0 Ẽ

p0 :

p∗
i :

p̃∗
s :

l0 r0

ui vi

ũ ṽ

si,L wi ei1

ti,L l̃i k̃i

(1′
i) (3i)

(17i) (18i)

For i = 0 define ac′
s0 =

V
j=1,...,n ac∗

j , and hence ãcs ∼=
Shift(t0,L, ac0) ∧ L(p̃∗

s , Shift(ṽ,

ac′
s0)) implies the complement-

compatibility of ac0 and ãcs. For

i > 0, we have that Shift(t0,L,

ac0) ∧ L(p̃∗
s , Shift(ṽ, ac∗

i)) ∼=
Shift(ti,L, aci). Define ac′

si =
V
j=1,...,n\i ac∗

j , and hence ãcs ∼=
Shift(ti,L, aci) ∧ L(p̃∗

s , Shift(ṽ, ac′
si)) implies the complement-compatibility of aci

and ãcs.

The application of an amalgamated rule yields an amalgamated transfor-
mation.
Definition 4.11 (Amalgamated transformation)

The application of an amalgamated rule to a graph G is called an amalgamated

transformation.

Example 4.12

Consider the bundle s = (s1, s2, s3 = s1) of the kernel morphisms depicted in

Fig. 4.2. The corresponding amalgamated rule p̃s is shown in the top row of

Fig. 4.6. This amalgamated rule can be applied to the graph G leading to the

amalgamated transformation depicted in Fig. 4.6, where the application condition

ãcs is obviously fulfilled by the match m̃.

If we have a bundle of direct transformations of an object G, where for
each transformation one of the multi rules is applied, we want to analyze if
the amalgamated rule is applicable toG combining all the single transforma-
tion steps. These transformations are compatible, i. e. multi-amalgamable,
if the matches agree on the kernel rules, and are independent outside.
Definition 4.13 (Multi-amalgamable)

Given a bundle of kernel morphisms s = (si : p0 → pi)i=1,...,n, a bundle of direct

transformations steps (G =
pi,mi===⇒ Gi)i=1,...n is s-multi-amalgamable, or short s-

amalgamable, if

L0

Li

Lj

G
si,L mi

sj,L mj
m0

• it has consistent matches, i. e. mi ◦ si,L
= mj ◦ sj,L =: m0 for all i, j = 1, . . . , n

• it has weakly independent matches, i. e.

for all i �= j consider the pushout com-

plements (1′
i) and (1

′
j), and then there exist morphisms pij : Li0 → Dj and

pji : Lj0 → Di such that fj ◦ pij = mi ◦ ui and fi ◦ pji = mj ◦ uj .

72 4 Amalgamated Transformations

p̃s :

ãcs
ãcs = ¬∃b1 ∧ ¬∃b2 ∧ ¬∃b3 ∧ ¬∃b4

1

2 3 4

L̃s

1

2 3 4

K̃s

1

2 3 4

R̃s

1

2 3 4

5 6 7

G

1

2 3 4

5 6 7

D

1

2 3 4

5 6 7

H

1

2 3 4

1

2 3 4

1

2 3 4

1

2 3 4

1

2 3 4

L̃s

l̃s r̃s

f g

m̃ k̃ ñ

b1

b2

b3

b4

Figure 4.6: An amalgamated transformation

Moreover, if ac0 and aci are complement-compatible we require gj◦pij |= ac′
i

for all j �= i.

L0K0 K0

LiLi0 Lj0
Ki Kj

Lj

GDi Dj

Ri Rj

Gi Gj

ac′
i ac′

j

ac0

si,L sj,L

mi mj

l0

wi

ui

l0

wj

uj

si,K

li

ki

fi

sj,K

lj

kj

fj

pijpji

rj

gj

nj

ri

gi

ni

(1′
i) (1′

j)

Similar to the characterization of parallel independence in [EEPT06] we
can give a set-theoretical characterization of weak independence.

Fact 4.14

L0

LiKi Lj Kj

G

si,L sj,L

mi mj

m0
li lj

For graphs and other set-based

structures, weakly independent

matches means that mi(Li) ∩
mj(Lj) ⊆ m0(L0)∪ (mi(li(Ki))

∩ mj(lj(Kj))) for all i �= j =

4.1 Foundations and Analysis of Amalgamated Transformations 73

1, . . . , n, i. e. the elements in the intersection of the matches mi and mj are either

preserved by both transformations, or are also matched by m0.

Proof We have to proof the equivalence of mi(Li) ∩ mj(Lj) ⊆ m0(L0) ∪
(mi(li(Ki)) ∩ mj(lj(Kj))) for all i �= j = 1, . . . , n with the definition of weakly

independent matches.

”⇐” Let x = mi(yi) = mj(yj), and suppose x /∈ m0(L0). Since (1
′
i) is a pushout

we have that yi = ui(zi) ∈ ui(Li0\wi(K0)), and x = mi(ui(zi)) = fj(pi(zi)) =

mj(yj), and by pushout properties yj ∈ lj(Kj) and x ∈ mj(lj(Kj)). Similarly,

x ∈ mi(li(Ki)).

”⇒” For x ∈ Li0, x = wi(k) define pij(x) = kj(sj,K(k)), then fj(pij(x)) =

fj(kj(sj,K(k))) = mj(lj(sj,K(k))) = mj(sj,L(l0(k))) = mi(si,L(l0(k))) =

mi(ni(wi(k))) = mi(ui(x)). Otherwise, x /∈ wi(K0), i. e. ui(x) /∈ si,L(L0),

and define pij(x) = y with fj(y) = mi(ui(x)). This y exists, because either

mi(ui(x)) /∈ mj(Lj) or mi(ui(x)) ∈ mj(Lj) and then mi(ui(x)) ∈ mj(lj(Kj)),

and in both cases mi(ui(x)) ∈ fj(Dj). Similarly, we can define pji with the

required property.

Example 4.15

Consider the bundle s = (s1, s2, s3 = s1) of kernel morphisms from Ex. 4.12. For

the graph G given in Fig. 4.6 we find matches m0 : L0 → G, m1 : L1 → G,

m2 : L2 → G, and m3 : L1 → G mapping all nodes from the left-hand side to

their corresponding nodes in G, except for m3 mapping node 2 in L1 to node 4

in G. For all these matches, the corresponding application conditions are fulfilled

and we can apply the rules p1, p2, p1, respectively, leading to the bundle of direct

transformations depicted in Fig. 4.7. This bundle is s-amalgamable, because the

matches m1, m2, and m3 agree on the match m0, and are weakly independent,

because they only overlap in m0.

1

2 3 4

5 6 7

G

1

2 3 4

5 6 7

G1

1

2 3 4

5 6 7

G2

1

2 3 4

5 6 7

G3

p1,m1

p2,m2

p1,m3

Figure 4.7: An s-amalgamable bundle of direct transformations

74 4 Amalgamated Transformations

For an s-amalgamable bundle of direct transformations, each single trans-
formation step can be decomposed into an application of the kernel rule fol-
lowed by an application of the (weak) complement rule as shown in Fact 4.8.
Moreover, all kernel rule applications lead to the same object, and the fol-
lowing applications of the complement rules are parallel independent.

Fact 4.16

G G0

Gi

Gj

p0,m0

pi,mi

pj ,mj

pi,mi

pj ,mj

Given a bundle of kernel morphisms s = (si :

p0 → pi)i=1,...,n and an s-amalgamable

bundle of direct transformations (G =
pi,mi===⇒

Gi)i=1,...,n then each direct transformation G

=
pi,mi===⇒ Gi can be decomposed into a transfor-

mation G =
p0,m0===⇒ G0 =

pi,mi===⇒ Gi, where pi is

the (weak) complement rule of si. Moreover,

the transformations G0 =
pi,mi===⇒ Gi are pairwise

parallel independent.

Proof From Fact 4.8 it follows that each single direct transformation G =
pi,mi===⇒

Gi can be decomposed into a transformation G =
p0,m

i
0===⇒ Gi0 =

pi,mi===⇒ Gi with mi
0 =

mi ◦ si,L and, since the bundle is s-amalgamable, m0 = mi ◦ si,L = mi
0 and

G0 := Gi0 for all i = 1, . . . , n.

It remains to show the pairwise parallel independence. From the constructions

of the complement rule and the Concurrency Theorem we obtain the following

diagram for all i = 1, . . . , n.

L0 K0 Si R0 Li Ki Ri

Li Ki Ki Ri0

Li0 Li Ei Ri0 Ri

Ki

G D0 G0 Di Gi

Di

l0 si1 si3 li ri

li vi1 wi

ui

ui1 ei2 ui vi

li

li0 ri0

ri

si,L si,K si4 ui2

li0 li ui

ei2 wi ti

mi

xi0 ki0 xi ni

ki

fi

di0 di
gi

f0 g0 fi gi

(1i) (6i) (7i)

(8i) (9i)

(9i) (13i)

For i �= j, from weakly independent matches it follows that we have a morphism

pij : Li0 → Dj with fj ◦ pij = mi ◦ui. It follows that fj ◦ pij ◦wi = mi ◦ui ◦wi =
mi ◦ si,L ◦ l0 = m0 ◦ l0 = mj ◦ sj,L ◦ l0 = mj ◦ uj ◦ wj = mj ◦ uj ◦ lj0 ◦ sj,K =

mj ◦ lj ◦ sj,K = fj ◦ kj ◦ sj,K and with fj ∈M we have that pij ◦wi = kj ◦ sjk (∗).

4.1 Foundations and Analysis of Amalgamated Transformations 75

Now consider the pushout (19i) = (6i) + (8i) in comparison with object Dj
and morphisms dj ◦ pij and xj ◦ uj2 ◦ si3. We have that dj ◦ pij ◦ li0 ◦ si,K =

dj ◦pij ◦wi (∗)= dj ◦kj ◦sj,K = xj ◦rj0◦sj,K = xj ◦wj ◦vj1◦sj,K = xj ◦uj2◦sj3◦sj1 =
xj ◦ uj2 ◦ r0 = xj ◦ uj2 ◦ si3 ◦ si1. Now pushout (19i) induces a unique morphism

qij with qij ◦ ui1 = dj ◦ pij and qij ◦ li ◦ si4 = xj ◦ uj2 ◦ si3.

K0 Si

Li0 Li

Dj

si1

li0◦si,K li◦si4
ui1

xj◦uj2◦si3

qij
dj◦pij

(19i)

For the parallel independence of G0

=
pi,mi===⇒ Gi, G0 =

pj ,mj
===⇒ Gj , we have to

show that qij : Li → Dj satisfies fj ◦ qij =

ki0 ◦ ei2 =: mi.

With f0 ∈ M and f0 ◦ dj0 ◦ pij = fj ◦
pij = mi ◦ ui = f0 ◦ ci0 it follows that

dj0 ◦ pij = xi0 (∗∗). This means that fj ◦
qij ◦ ui1 = fj ◦ dj ◦ pij = g0 ◦ d0 ◦ pij

(∗∗)
=

g0◦xi0 = ki0◦ei2◦ui1. In addition, we have that fj◦qij◦li◦si4 = fj◦xj◦uj2◦si3 =
kj0 ◦ uj ◦ uj2 ◦ si3 = ki0 ◦ ui ◦ ui2 ◦ si3 = ki0 ◦ ei2 ◦ li ◦ si4. Since (19i) is a

pushout we have that ui1 and li ◦ si4 are jointly epimorphic and it follows that

fj ◦ qij ◦ ei2 = ki0 ◦ ei2.

If ac0 and aci are not complement-compatible then aci = true and trivially

gj ◦ qij |= aci for all j �= i. Otherwise, we have that gj ◦ pij |= ac′
i, and with

gj ◦ pij = gj ◦ dj ◦ pij = gj ◦ qij ◦ ui1 it follows that gj ◦ qij ◦ ui1 |= ac′
i, which is

equivalent to gj ◦ qij |= Shift(ui1, ac′
1) = aci.

If a bundle of direct transformations of an object G is s-amalgamable we
can apply the amalgamated rule directly to G leading to a parallel execution
of all the changes done by the single transformation steps.

Theorem 4.17 (Multi-Amalgamation Theorem)

Consider a bundle of kernel morphisms s = (si : p0 → pi)i=1,...,n.

H

Gi

G p̃s,m̃

pi,mi qi
1. Synthesis. Given an s-amalgamable bundle of

direct transformations (G =
pi,mi===⇒ Gi)i=1,...,n

then there is an amalgamated transformation

G =
p̃s,m̃
===⇒ H and transformations Gi =

qi=⇒ H over

the complement rules qi of the kernel morphisms ti : pi → p̃s such that

G =
pi,mi===⇒ Gi =

qi=⇒ H is a decomposition of G =
p̃s,m̃
===⇒ H.

2. Analysis. Given an amalgamated transformation G =
p̃s,m̃
===⇒ H then there

are si-related transformations G =
pi,mi===⇒ Gi =

qi=⇒ H for i = 1, . . . , n such

that the bundle (G =
pi,mi===⇒ Gi)i=1,...,n is s-amalgamable.

3. Bijective Correspondence. The synthesis and analysis constructions are in-

verse to each other up to isomorphism.

76 4 Amalgamated Transformations

Proof 1. We have to show that p̃s is applicable to G leading to an amalga-

mated transformation G =
p̃s,m̃
===⇒ H with mi = m̃◦ti,L, where ti : pi → p̃i are

the kernel morphisms constructed in Fact 4.10. Then we can apply Fact 4.8

which implies the decomposition of G =
p̃s,m̃
===⇒ H into G =

pi,mi===⇒ Gi =
qi=⇒ H,

where qi is the (weak) complement rule of the kernel morphism ti.

ac0

aci

ãcs

L0 K0 R0

Li Ki Ri

L̃s K̃s R̃s

l0 r0

li ri

si,L si,K si,R

l̃s r̃s

ti,L ti,K ti,R

(1i) (2i)

(14i) (15i)

Given the kernel morphisms,

the amalgamated rule, and

the bundle of direct transfor-

mations, we have pullbacks

(1i), (2i), (14i), (15i) and

pushouts (20i), (21i).

Using Fact 4.16, we know that

we can apply p0 via m0 lead-

ing to a direct transformation

G =
p0,m0===⇒ G0 given by pushouts (200) and (210). Moreover, we find decom-

positions of pushouts (200) and (20i) into pushouts (1
′
i) and (22i) resp.

(22i) and (23i) by M-pushout pullback decomposition and uniqueness of
pushout complements.

L0 K0

Li Li0 Ki

G D0 Di

L0 K0 R0

G D0 G0

Li Ki Ri

G Di Gi

li ri

fi gi

mi ki ni(20i) (21i)
l0

si,K

ui li0

si,L wi

f0 di0

mi qi ki

l0 r0

f0 g0

m0 k0 n0

(1′
i)

(22i) (23i)(200) (210)

L0 Li

L̃s

G

Kj

D

Di D0

si,L

t0,L ti,L

mim0
m̃

di0

d0di

i�=j:pji◦lj0
i=j:ki

qj◦lj0
rj

(a)

(b)
Since we have consistent matches,

mi ◦ si,L = m0 for all i = 1, . . . , n.

Then the colimit L̃s implies that

there is a unique morphism m̃ :

L̃s → G with m̃ ◦ ti,L = mi and

m̃◦t0,L = m0 (a). Moreover, mi |=
aci ⇒ m̃ ◦ ti,L |= aci ⇒ m̃ |=
Shift(ti,L, aci) for all i = 1, . . . , n,

and thus m̃ |= ãcs =
V
i=1,...,n

Shift(ti,L, aci).

Weakly independent matches means that there exist morphisms pij with

fj ◦ pij = mi ◦ ui for i �= j. Construct D as the limit of (di0)i=1,...,n

with morphisms di. Now f0 being a monomorphism with f0 ◦ di0 ◦ pji =

4.1 Foundations and Analysis of Amalgamated Transformations 77

fi ◦ pji = mj ◦ uj = f0 ◦ qj implies that di0 ◦ pji = qj . It follows that

di0 ◦ pji ◦ lj0 = qj ◦ lj0 and, together with di0 ◦ ki = qi ◦ li0, limit D implies

that there exists a unique morphism rj with di ◦ rj = pji ◦ lji, di ◦ ri = ki,

and d0 ◦ rj = qj ◦ lj0 (b).

K0 Ki

K̃s

Dj

K̃s

D

Di D0

si,K

t0,K ti,K

i�=j:pij◦li0
i=j:ki

kj◦sj,K
r̃j

di0

d0di

r̃i

r̃

k̃

(c)

(d)
Similarly, fj being a monomor-

phism with fj ◦ pij ◦ li0 ◦ si,K =

mi ◦ ui ◦ wi = mi ◦ si,L ◦ l0 =

m0 ◦ l0 = mj ◦sj,L ◦ l0 = mj ◦ lj ◦
sj,K = fj ◦ kj ◦ sj,K implies that
pij ◦ li0 ◦ si,K = kj ◦ sj,K . Now

colimit K̃s implies that there is

a unique morphisms r̃j with r̃j ◦
ti,K = pij◦li0, r̃j◦tj,K = kj , and

r̃j ◦t0,K = kj ◦sj,K (c). Since di0◦r̃i◦ti,K = di0◦ki = qi◦li0 = dj0◦pij◦li0 =
dj0 ◦ r̃j ◦ ti,K and di0 ◦ r̃i ◦ t0,K = di0 ◦ ki ◦ si,K = k0 = dj0 ◦ r̃j ◦ t0,K colimit
K̃s implies that for all i, j we have that di0 ◦ r̃i = dj0 ◦ r̃j =: r̃. From limit

D it now follows that there exists a unique morphism k̃ with di ◦ k̃ = r̃i and

d0 ◦ k̃ = r̃ (d).

We have to show that (20s) with f = f0◦d0 is a pushout. With f ◦ k̃◦ti,K =
f0 ◦ d0 ◦ k̃ ◦ ti,K = f0 ◦ r̃ ◦ ti,K = f0 ◦ di0 ◦ r̃i ◦ ti,K = f0 ◦ di0 ◦ ki = fi ◦ ki =

mi ◦ li = m̃ ◦ ti,L ◦ li = m̃ ◦ l̃s ◦ ti,K , f ◦ k̃ ◦ t0,K = f0 ◦ d0 ◦ k̃ ◦ t0,K =

f0r̃ ◦ t0,K = f0 ◦ di0 ◦ r̃i ◦ t0,K = f0 ◦ di0 ◦ ki ◦ si,K = f0 ◦ k0 = m0 ◦ l0 =

m̃◦t0,L ◦ l0 = m̃◦ l̃s ◦t0,K , and K̃s being colimit it follows that f ◦ k̃ = m̃◦ l̃s,
thus the square commutes.

Pushout (23i) can be decomposed into pushouts (24i) and (25i). Using

Lemma A.21 it follows that D0 is the colimit of (xi)i=1,...,n, because (23i)

is a pushout, D is the limit of (di0)i=1,...,n, and we have morphisms pij with

dj0 ◦ pij = qi. Then Lemma A.22 implies that also (25) is a pushout.

Ls Ks

G D

Ki D

Li0 Pi

Di

D0

+Ki +Li0

D D0

l̃s

f

m̃ k̃

ri

xi0

li0 xi

di

yi0

di0

+li0

d0

r d(20s) (24i) (25i) (25)

Now consider the coequalizers K̃s of (iKi ◦ si,K : K0 → +Ki)i=1,...,n

(which is actually K̃s by construction of colimits), L̃0 of (iLi0 ◦ wi : K0 →
+Li0)i=1,...,n (as already constructed in Fact 4.10), D of (k̃ ◦ t0,K : K0 →
D)i=1,...,n, and D0 of (k0 : K0 → D0)i=1,...,n.

78 4 Amalgamated Transformations

K0

K0

+Ki

+Li0

K̃s

L̃0

K0

K0

D

D0

D

D0

+li0
r

d

k̃

d0

idD

idD0

d0

. . .
iKi◦si,K

. . .
iLi0◦wi. . .

k̃◦t0,K

. . .
k0

K0

K0

K0

K̃s

L0

L̃0

K̃s

L̃s

K0

K0

K0

D

L0

D0

D

G

l̃s

k̃

f
m̃

In the right cube, the top

square with identical mor-

phisms is a pushout, the

top cube commutes, and

the middle square is push-

out (25). Using Lem-

ma A.23 it follows that also

the bottom face (26) con-

structed of the four co-

equalizers is a pushout.

In the cube below, the top

and middle squares are

pushouts and the two top

cubes commute. Using

again Lemma A.23 it fol-

lows that (20s) in the bot-

tom face is actually a push-

out, where (27) = (1′
i) +

(17i) is a pushout by com-

position. Now we can con-

struct pushout (21s) which

completes the direct trans-

formation G =
p̃s,m̃
===⇒ H.

K̃s L̃0

D D0

K0 L̃0

L0 L̃s

L̃s

G

K̃s R̃s

D Hd0

k̃

t0,K

l0

l̃s r̃s

f g

m̃ k̃ ñ(27) (20s) (21s)(26)

2. Using the kernel morphisms ti we obtain transformations G =
pi,mi===⇒ Gi =

qi=⇒
H from Fact 4.8 with mi = m̃ ◦ ti,L. We have to show that this bundle of

transformations is s-amalgamable.

K̃s L̃0 L̃s

K0 L0

D D0 G

l0

ũ

d0 f0

k

t0,L

m̃(26) (28)

(27)

Applying again Fact 4.8 we obtain

transformations G =
p0,m

i
0===⇒ Gi0 =

pi=⇒ Gi
with mi

0 = mi ◦ si,L. It follows that

mi
0 = mi ◦ si,L = m̃ ◦ ti,L ◦ si,L =

m̃ ◦ t0,L = m̃ ◦ tj,L ◦ sj,L = mj ◦ sj,L
and thus we have consistent matches

with m0 := mi
0 well-defined and G0 =

Gi0. It remains to show the weakly in-

dependent matches. Given the above

4.1 Foundations and Analysis of Amalgamated Transformations 79

transformations we have pushouts (200), (20i), (20s) as above. Then we

can find decompositions of (200) and (20s) into pushouts (27) + (28) and

(26) + (28), respectively. Using pushout (26) and Lemma A.24 it follows

that (25) is a pushout, since K̃s is the colimit of (si,L)i=1,...,n, L̃0 is the

colimit of (wi)i=1,...,n, and idK0 is obviously an epimorphism.

Now Lemma A.22 implies that there is a decomposition into pushouts (24i)

with colimit D0 of (xi)i=1,...,n and pushout (25i) by M-pushout pullback
decomposition. Since D0 is the colimit of (xi)i=1,...,n and (25j) is a pushout

it follows that Dj is the colimit of (xi)i=1,...,j−1,j+1,...,n with morphisms

qij : Pi → Dj and dj0 ◦ qij = yi0. Thus we obtain for all i �= j a morphism

pij = qij ◦ xi0 and fj ◦ pij = f0 ◦ dj0 ◦ qij ◦ xi0 = f0 ◦ yi0 ◦ xi0 = mi ◦ ui.

K0 Li0 Pi D0

Ki D Di

L0 Li G

Pj

D0

D

Dj

Pi

Li0

wi

ri di

xi0 yi0

si,L mi

l0

li0

ui

xi di0

f0

xj dj

yj0
dj0

xi

qij

xi0

yi0(1′
i)

(24i) (25i)

(25j)

3. Because of the uniqueness of the used constructions, the above constructions

are inverse to each other up to isomorphism.

Remark 4.18

Note that qi can be constructed as the amalgamated rule of the kernel morphisms

(pK0 → pj)j �=i, where pK0 = (K0

idK0←− K0

idK0−→ K0, true)) and pj is the comple-

ment rule of pj .

For n = 2 and rules without application conditions, the Multi-Amalgamation

Theorem specializes to the Amalgamation Theorem in [BFH87]. Moreover, if p0
is the empty rule this is the Parallelism Theorem in [EHL10a], since the transfor-

mations are parallel independent for an empty kernel match.

Example 4.19

As already observed in Ex. 4.15, the transformations G =
p1,m1===⇒ G1, G =

p2,m2===⇒
G2, and G =

p1,m3===⇒ G3 shown in Fig. 4.7 are s-amalgamable for the bundle s =

(s1, s2, s3 = s1) of kernel morphisms. Applying Fact. 4.16, we can decompose these

transformations into a transformation G =
p0,m0===⇒ G0 followed by transformations

G0 =
p1,m1===⇒ G1, G0 =

p2,m2===⇒ G2, and G0 =
p1,m3===⇒ G3 via the complement rules,

which are pairwise parallel independent. These transformations are depicted in

Fig. 4.8.

Moreover, Thm. 4.17 implies that we obtain for this bundle of direct transforma-

tions an amalgamated transformation G =
p̃s,m̃
===⇒ H, which is the transformation

80 4 Amalgamated Transformations

1

2 3 4

5 6 7

G

1

2 3 4

5 6 7

G0

1

2 3 4

5 6 7

G1

1

2 3 4

5 6 7

G2

1

2 3 4

5 6 7

G3

p0, m0 p1, m1

p2, m2

p1, m3

Figure 4.8: The decomposition of the s-amalgamable bundle

already shown in Fig. 4.6. Vice versa, the analysis of this amalgamated trans-

formation leads to the s-amalgamable bundle of transformations G =
p1,m1===⇒ G1,

G =
p2,m2===⇒ G2, and G =

p1,m3===⇒ G3 in Fig. 4.7.

For anM-adhesive transformation system with amalgamation we define a
set of kernel morphisms and allow all kinds of amalgamated transformations
using bundles from this set.

Definition 4.20 (M-adhesive grammar with amalgamation)
AnM-adhesive transformation system with amalgamation ASA = (C,M, P,S) is
anM-adhesive transformation system (C,M, P) with a set of kernel morphisms

S between rules in P .

An M-adhesive grammar with amalgamation AGA = (ASA, S) consists of an

M-adhesive transformation system with amalgamation ASA and a start object

S.

The language L of anM-adhesive grammar with amalgamation AGA is defined

by

L = {G | ∃ amalgamated transformation S =
∗⇒ G},

where all amalgamated rules over arbitrary bundles of kernel morphisms in S are
allowed to be used.

Remark 4.21

Note that by including the kernel morphism idp : p → p for a rule p into the set

S the transformation G =
p,m
==⇒ H is also an amalgamated transformation for this

kernel morphism as the only one considered in the bundle.

4.1 Foundations and Analysis of Amalgamated Transformations 81

4.1.3 Parallel Independence of Amalgamated
Transformations

Since amalgamated rules are normal rules in an M-adhesive transforma-
tion system with only a special way of constructing them, we obtain all the
results from Subsection 3.4.3 also for amalgamated transformations. Espe-
cially for parallel independence, we can analyze this property in more detail
to connect the result to the underlying kernel and multi rules.
Parallel independence of two amalgamated transformations of the same

object can be reduced to the parallel independence of the involved trans-
formations via the multi rules if the application conditions are handled
properly. This leads to two new notions of parallel independence for amal-
gamated transformations and bundles of transformations.

Definition 4.22 (Parallel amalgamation and bundle independence)

Given two bundles of kernel morphisms s = (si : p0 → pi)i=1,...,n and s′ = (s′
j :

p′
0 → p′

j)j=1,...,n′ , and two bundles of s- resp. s′-amalgamable transformations

(G =
pi,mi===⇒ Gi)i=1,...,n and (G =

p′j ,m
′
j

===⇒ G′
j)j=1,...,n′ leading to the amalgamated

transformations G =
p̃s,m̃
===⇒ H and G =

p̃s′ ,m̃
′

====⇒ H ′, then we have that

• G =
p̃s,m̃
===⇒ H and G =

p̃s′ ,m̃
′

====⇒ H ′ are parallel amalgamation independent if

they are parallel independent, i. e. there are morphisms r̃s and r̃s′ with

f ◦ r̃s′ = m̃′, f ′ ◦ r̃s = m̃, g ◦ r̃s′ |= ãcs′ , and g′ ◦ r̃s |= ãcs, and in addition

we have that gi ◦ di ◦ r̃s′ |= Shift(t′j,L, ac′
j) and g′

j ◦ d′
j ◦ r̃s |= Shift(ti,L, aci)

for all i, j.

Li L′
j

L̃sK̃sR̃s L̃s′ K̃s′ R̃s′

G

DiHi D′
j H ′

j

DH D′ H ′

ãcs ãcs′
aci ac′

j

ti,L t′j,L

di d′jfi f ′j
gi g′j

l̃sr̃s

fg

m̃k̃ñ

l̃s′ r̃s′

f ′ g′

m̃′ k̃′ ñ′
r̃sr̃s′

• (G =
pi,mi===⇒ Gi)i=1,...,n and (G =

p′j ,m
′
j

===⇒ G′
j)j=1,...,n′ are parallel bundle inde-

pendent if they are pairwise parallel independent for all i, j, i. e. there are

morphisms rij and r′
ji with f ′

j ◦ rij = mi, fi ◦ r′
ji = m′

j , g′
j ◦ rij |= aci,

and gi ◦ r′
ji |= ac′

j , and in addition we have for the induced morphisms

r̃s : L̃s → D′ and r̃s′ : L̃s′ → D that g ◦ r̃s′ |= ãcs′ and g′ ◦ r̃s |= ãcs.

82 4 Amalgamated Transformations

LiKiRi L′
j K′

j R′
j

GDiHi D′
j H ′

j

aci ac′
j

liri

figi

mi
kini

l′j r′j

f ′j g′j

m′j
k′j n′j

rijr′ji

Remark 4.23

Note that all objects and morphisms in the above diagrams originate from the

construction in the proof of Thm. 4.17 and the parallel independence.

Two amalgamated transformations are parallel amalgamation indepen-
dent if and only if the corresponding bundles of transformations are parallel
bundle independent.

Theorem 4.24 (Characterization of parallel independence)

Given two bundles of kernel morphisms s = (si : p0 → pi)i=1,...,n and s′ =
(s′
j : p′

0 → p′
j)j=1,...,n′ , and two bundles of s- resp. s′-amalgamable transforma-

tions (G =
pi,mi===⇒ Gi)i=1,...,n and (G =

p′j ,m
′
j

===⇒ G′
j)j=1,...,n′ leading to the amalga-

mated transformations G =
p̃s,m̃
===⇒ H and G =

p̃s′ ,m̃
′

====⇒ H ′ then the following holds:

(G =
pi,mi===⇒ Gi)i=1,...,n and (G =

p′j ,m
′
j

===⇒ G′
j)j=1,...,n′ are parallel bundle indepen-

dent if and only if G =
p̃s,m̃
===⇒ H and G =

p̃s′ ,m̃
′

====⇒ H ′ are parallel amalgamation
independent.

Proof ”if”: If G =
p̃s,m̃
===⇒ H and G =

p̃s′ ,m̃
′

====⇒ H ′ are parallel amalgamation in-
dependent define rij = d′

j ◦ r̃s ◦ ti,L and r′
ji = di ◦ r̃s′ ◦ t′j,L. It follows that

fi◦r′
ji = fi◦di◦ r̃s′ ◦t′j,L = f ◦ r̃s′ ◦t′j,L = m̃′◦t′j,L = m′

j , f
′
j ◦rij = f ′

j ◦d′
j ◦ r̃s◦ti,L =

f ′◦r̃s◦ti,L = m̃◦ti,L = mi, and by precondition gi◦di◦r̃s′ |= Shift(tj,L, ac′
j), which

means that gi ◦di ◦ r̃s′ ◦ t′j,L = gi ◦r′
ji |= ac′

j . Similarly, g′
j ◦d′

j ◦ r̃s |= Shift(ti,L, aci)

implies that g′
j ◦ d′

j ◦ r̃s ◦ ti,L = g′
j ◦ rij |= aci. This means that G =

pi,mi===⇒ Gi and

G =
p′j ,m

′
j

===⇒ G′
j are pairwise parallel independent for all i, j.

The induced morphisms r̃s : L̃s → D′ and r̃s′ : L̃s′ → D are exactly the

morphisms r̃s and r̃s′ given by parallel independence with g′ ◦ r̃s |= ãcs and

g ◦ r̃s′ |= ãcs′ . This means that (G =
pi,mi===⇒ Gi)i=1,...,n and (G =

p′j ,m
′
j

===⇒ G′
j)j=1,...,n′

are parallel bundle independent.

”only if”: Suppose (G =
pi,mi===⇒ Gi)i=1,...,n and (G =

p′j ,m
′
j

===⇒ G′
j)j=1,...,n′ are par-

allel bundle independent. We have to show that the morphisms r̃s and r̃s′ actu-

ally exist. D is the limit of (di0)i=1,...,n as already constructed in the proof of

Thm. 4.17. f0 is anM-morphism, and f0 ◦ di0 ◦ r′
ji = fi ◦ r′

ji = mi = m̃ ◦ ti,L =

4.1 Foundations and Analysis of Amalgamated Transformations 83

mk = fk ◦ r′
jk = f0 ◦ dk0 ◦ r′

jk implies that di0 ◦ r′
ji = dk0 ◦ r′

jk =: r′
j0 for all

i, k. Now the limit D implies that there exists a unique morphism r′
js such that

di ◦ r′
js = r′

ji and d0 ◦ r′
js = r′

j0 (a).

Lj

D

Di D0

L′
0 L′

j

L̃s′

D

s′j,L
t′0,L t′j,L

r′jsr′0s r̃s′

di0

d0di

r′ji r′j0
r′js

(a)

(b)

Similarly,M-morphism fi and fi ◦ r′
ji ◦

sj,L = m′
j ◦ sj,L = m′

0 = m′
k ◦ s′

k,L = fi ◦
r′
ki ◦ s′

k,L implies that r′
ji ◦ s′

j,L = r′
ki ◦ s′

k,L

for all i, k. It follows that di ◦ r′
js ◦ sj,L =

r′
ji ◦ s′

j,L = r′
ki ◦ s′

k,L = di ◦ r′
ks ◦ s′

k,L, and

with M-morphism di we have that r′
js ◦

sj,L = r′
ks ◦ sk,L =: r′

0s. From colimit L̃s′

we obtain a morphism r̃s′ with r̃s′ ◦ t′j,L =
r′
j,s and r̃s′ ◦ t′0,L = r′

0,s (b).

It follows that f ◦ r̃s′ ◦ t′0,L = fi ◦ di ◦ r′
0s = fi ◦ di ◦ r′

js ◦ s′
j,L = fi ◦ r′

ji ◦ s′
j,L =

m′
j ◦sj,L = m′

0 = m̃′ ◦t0,L and f ◦ r̃s′ ◦tj,L = fi ◦di ◦r′
js = fi ◦r′

ji = m′
j = m̃′ ◦t′j,L.

The colimit property of L̃s′ implies now that f ◦ r̃s′ = m̃′. Similarly, we obtain
the required morphism r̃s with f ′ ◦ r̃s = m̃.

Since we have already required that g ◦ r̃s′ |= ãcs′ and g′ ◦ r̃s |= ãcs, this means

that G =
p̃s,m̃
===⇒ H and G =

p̃s′ ,m̃
′

====⇒ H ′ are parallel independent. Moreover, from the

pairwise independence we know that gi ◦r′
ji = gi ◦di ◦r′

js = gi ◦di ◦ r̃s′ ◦ t′j,L |= ac′
j

which implies that gi◦di◦r̃s′ |= Shift(t′j,Lac′
j). Similarly, g

′
j◦rij |= aci implies that

g′
j ◦ d′

j ◦ r̃s |= Shift(ti,L, aci), which leads to parallel amalgamation independence

of the amalgamated transformations.

Remark 4.25

Note that the additional verification of the application conditions is necessary

because the common effect of all rule applications may invalidate the amalgamated

application condition, although the single applications of the multi rules behave

well. For an example, consider the kernel morphism s′
1 in Fig. 4.9, where the

bundles s = (s′
1, s

′
1) and s′ = (s′

1, s
′
1) are applied to the graph X. Although

all pairs of applications of the rule p′
1 to X are pairwise parallel independent, the

amalgamated transformations are not parallel independent because they invalidate

the application condition.

Similarly, a positive condition may be fulfilled for the amalgamated rule, but

not for all single multi rules.

Given two amalgamated rules, the parallel rule can be constructed as an
amalgamated rule using some component-wise coproduct constructions of
the kernel and multi rules.

Fact 4.26

Given two bundles of kernel morphisms s = (si : p0 → pi)i=1,...,n and s′ =
(s′
j : p′

0 → p′
j)j=1,...,n′ leading to amalgamated rules p̃s and p̃s′ , respectively, the

84 4 Amalgamated Transformations

L′0 K ′
0 R′0

L′1 K ′
1 R′1 L′1

p′0 :

p′1 :

ac′1 = ¬∃a′

1 1

11

2

1

2

1

2

1

2

1

2

1

Y

1

X

1

Z

p̃sp̃s′

a′

l′0 r′0

l′1 r′1

s′1,L s′1,K s′1,R

Figure 4.9: A counterexample for parallel independence of amalgamated

transformations

parallel rule p̃s + p̃s′ is constructed by p̃s + p̃s′ = p̃t as the amalgamated rule of

the bundle of kernel morphisms t = (ti : p0+ p′
0 → pi+ p′

0, t
′
j : p0+ p′

0 → p0+ p′
j).

Proof This follows directly from the general construction of colimits.

As in any M-adhesive transformation system, also for amalgamated
transformations the Local Church-Rosser and Parallelism Theorem holds.
This is a direct instantiation of Thm. 3.46 to amalgamated transformations.
For the analysis of parallel independence and the construction of the parallel
rule we may use the results from Thm. 4.24 and Fact. 4.26, respectively.

Theorem 4.27 (Local Church-Rosser and Parallelism Theorem)

Given two parallel independent amalgamated transformations G =
p̃s
=⇒ H1 and

G =
p̃s′=⇒ H2 there is an object G′ together with direct transformations H1 =

p̃s′=⇒ G′

and H2 =
p̃s
=⇒ G′ such that G =

p̃s
=⇒ H1 =

p̃s′=⇒ G′ and G =
p̃s′=⇒ H2 =

p̃s
=⇒ G′ are

sequentially independent.

H1 H2

G

G′

p̃s

p̃t

p̃s′

p̃s′ p̃s

Given two sequentially independent direct

transformations G =
p̃s
=⇒ H1 =

p̃s′=⇒ G′ there is
an object H2 with direct transformations

G =
p̃s′=⇒ H2 =

p̃s
=⇒ G′ such that G =

p̃s
=⇒ H1 and

G =
p̃s′=⇒ H2 are parallel independent.

In any case of independence, there is a par-

allel transformation G =
p̃t
=⇒ G′ via the parallel rule p̃s + p̃s′ = p̃t and, vice versa,

a direct transformation G =
p̃t
=⇒ G′ can be sequentialized both ways.

4.1 Foundations and Analysis of Amalgamated Transformations 85

1

2

R1

1

2

K1

1

2

L1

1

2

L′1

1

2

K ′
1

1

2

R′1

1

2 3 4

5 6 7

G1

1

2 3 4

5 6 7

D1

1

2 3 4

5 6 7

G

1

2 3 4

5 6 7

D′1

1

2 3 4

5 6 7

G′1

l1r1 l′1 r′1

f1g1 f ′1 g′1

m1
k1n1

m′1
k′1 n′1r11r′11

Figure 4.10: Parallel independence of the transformations G =
p1,m1===⇒ G1 and

G =
p′1,m

′
1===⇒ G′

1

Proof This follows directly from Thm. 3.46.

Example 4.28

Consider the amalgamated transformation G =
p̃s,m̃
===⇒ H in Fig. 4.6 and the bundle

of kernel morphisms s′ = (s′
1) using the kernel morphism depicted in Fig. 4.9.

The amalgamated rule p̃s′ can also be applied to G via match m̃′ matching the
nodes 1 and 2 in L′

1 to the nodes 2 and 5 in G, respectively. This results in an

amalgamated transformation G =
p̃s′ ,m̃

′
====⇒ H ′.

For the analysis of parallel amalgamation independence, we first analyze the

pairwise parallel independence of the transformations G =
pi,mi===⇒ Gi and G =

p′1,m
′
1===⇒

G′
1 for i = 1, 2, 3, with m′

1 = m̃′ and G′
1 = H ′. This is done exemplarily for i = 1

in Fig. 4.10, where we do not show the application conditions. The morphisms

r11 and r′
11 are marked in their corresponding domains D′

1 and D1 leading to

f ′
1 ◦ r11 = m1 and f1 ◦ r′

11 = m′
1. Moreover, g ◦ r′

11 |= ac′
1, because there are

no ingoing edges into node 2, and g′ ◦ r11 |= ac1, because there is no dotted

loop at node 1 and no reverse edge. Thus, both transformations are parallel

independent, and this follows analogously for i = 2, 3. Moreover, the induced

morphism r̃s′ : L̃s′ = L′
1 → D leads to g ◦ r̃s′ |= ãcs′ = ac′

1. In the other direction,

r̃s : L̃s → D′ = D′
1 ensures that g′

1 ◦ r̃s |= ãcs. Thus, the two bundles are

parallel bundle independent and, using Thm. 4.24, it follows that G =
p̃s,m̃
===⇒ H and

G =
p̃s′ ,m̃

′
====⇒ H ′ are parallel amalgamation independent.

86 4 Amalgamated Transformations

p00 :

p00 = p0 + p′0 ac00 = ¬∃a00 ∧ ¬∃b00

1 5

L00

1 5

K00

1 5

R00

1 5

L00

1 51 5

L00 K00 R00

p10 :

p10 = p1 + p′0

ac10 = ¬∃a10 ∧¬∃b10 ∧¬∃c10 ∧¬∃d10 ∧
¬∃e10 ∧ ¬∃f10

1

2

5

L10

1

2

5

K10

1

2

5

R10

1

2

5

L10

1

2

5
1

2

5

1

2

51

2 5

1

2

51

2 5

L00 K00 R00

p20 :

p20 = p2 + p′0

ac20 = ¬∃a20 ∧¬∃b20 ∧¬∃c20 ∧¬∃d20 ∧
¬∃e20 ∧ ¬∃f20

1

3

5

L20

1

3

5

K20

1

3

5

R20

1

3

5

L20

1

3

5
1

3

5

1

3

51

3 5

1

3

51

3 5

L00 K00 R00

p01 :

p01 = p0 + p′1

ac01 = ¬∃a01 ∧¬∃b01 ∧¬∃c01 ∧¬∃d01 ∧
¬∃e01 ∧ ¬∃f01 ∧ ¬∃g01 ∧ ¬∃h01

1

6

5

L01

1

6

5

K20

1

6

5

R01

1

6

5

L01

1

6

5

1

6

5

1

6

5

5

1
6

5

1 6

5

1
6

5

1 6

51

6

l00 r00 b00a00

l10 r10

s10,L s10,K s10,R

a10 b10

f10
e10

d10
c10

l20 r20

s20,L s20,K s20,R

a20 b20

f20
e20

d20
c20

l01 r01

s01,L s01,K s01,R

a01 b01

h01
g01

f01e01d01

c01

Figure 4.11: The kernel morphisms leading to the parallel rule

4.1 Foundations and Analysis of Amalgamated Transformations 87

p̃t :

ãct
1

2 3 4

5

6

L̃t

1

2 3 4

5

6

K̃t

1

2 3 4

5

6

R̃t

1

2 3 4

5 6 7

G

1

2 3 4

5 6 7

Dt

1

2 3 4

5 6 7

G′

l̃t r̃t

ft gt

m̃t k̃t ñt

Figure 4.12: A parallel amalgamated graph transformation

The construction of this parallel rules according to Fact 4.26 is shown in Fig.

4.11. The parallel rule p̃s + p̃s′ = p̃t is the amalgamated rule of the bundle of

kernel morphisms t = (s10 = s1 + idp′0 , s20 = s2 + idp′0 , s10 = s1 + idp′0 , s01 =

idp0 + s′
1). The corresponding parallel rule is depicted in the top of Fig. 4.12,

where we omit to show the application condition act due to its length. It leads to

the amalgamated transformation G =
p̃t,m̃t
===⇒ G′ depicted in Fig. 4.12. Moreover,

from Thm. 4.27 we obtain also amalgamated transformations H =
p̃s′=⇒ G′ and

H ′
=
p̃s
=⇒ G′, with G =

p̃s
=⇒ G =

p̃s′=⇒ G′ and G =
p̃s′=⇒ H ′

=
p̃s
=⇒ G′ being sequentially

independent transformations sequences.

4.1.4 Other Results for Amalgamated Transformations

For M-adhesive transformation systems with amalgamation, also the other
results stated in Subsection 3.4.3 are valid for amalgamated transformations.
But additional results for the analysis of the results for amalgamated rules
based on the underlying kernel and multi rules are future work:

• For the Concurrency Theorem, two amalgamated rules leading to par-
allel dependent amalgamated transformations can be combined to an
E-concurrent rule and the corresponding transformation. It would be
interesting to analyze if this E-concurrent rule could be constructed as
an amalgamated rule based on the underlying kernel and multi rules.

88 4 Amalgamated Transformations

• For the Embedding and Extension Theorem, an amalgamated rule
can be embedded if the embedding morphism is consistent. Most like-
ly, consistency w. r. t. an amalgamated transformation can be formu-
lated as a consistency property w. r. t. the bundle of transformations.

• For the Local Confluence Theorem, if all critical pairs depending on
all available amalgamated rules are strictly AC-confluent then the
M-adhesive transformation system with amalgamation is locally con-
fluent. It would be interesting to find a new notion of critical pairs de-
pending not on the amalgamated rules, but on the kernel morphisms.
For arbitrary amalgamated rules, any bundle of kernel morphisms
had to be analyzed. It would be more efficient if some kinds of mini-
mal bundles were sufficient to construct all critical pairs or dependent
transformations of the M-adhesive transformation system with amal-
gamation.

4.1.5 Interaction Schemes and Maximal Matchings

For many interesting application areas, including the operational semantics
for Petri nets and statecharts, we do not want to define the matches for
the multi rules explicitly, but to obtain them dependent on the object to
be transformed. In this case, only an interaction scheme is given, which
defines a set of kernel morphisms but does not include a count how often
each multi rule is used in the bundle leading to the amalgamated rule.

Definition 4.29 (Interaction scheme)

A kernel rule p0 and a set of multi rules {p1, . . . , pk} with kernel morphisms
si : p0 → pi form an interaction scheme is = {s1, . . . , sk}.

When given an interaction scheme, we want to apply as many rules oc-
curring in the interaction scheme as often as possible over a certain kernel
rule match. There are two different possible maximal matchings: maximal
weakly independent and maximal weakly disjoint matchings. For maxi-
mal weakly independent matchings, we require the matchings of the multi
rules to be weakly independent to ensure that the resulting bundle of trans-
formations is amalgamable. This is the minimal requirement to meet the
definition. In addition, for maximal weakly disjoint matchings the matches
of the multi rules should be disjoint up to the kernel rule match. This
variant is preferred for implementation, because it eases the computation
of additional matches when we can rule out model parts that were already
matched.

4.1 Foundations and Analysis of Amalgamated Transformations 89

Definition 4.30 (Maximal weakly independent matching)

Given an object G and an interaction scheme is = {s1, . . . , sk}, a maximal weakly
disjoint matching m = (m0, m1, . . . , mn) is defined as follows:

1. Set i = 0. Choose a kernel matching m0 : L0 → G such that G =
p0,m0===⇒ G0

is a valid transformation.

2. As long as possible: Increase i, choose a multi rule p̂i = pj with j ∈
{1, . . . , k}, and find a match mi : Lj → G such that mi ◦ sj,L = m0,

G =
pj ,mi
===⇒ Gi is a valid transformation, the matches m1, . . . , mi are weakly

independent, and mi �= m� for all � = 1, . . . , i − 1.
3. If no more valid matches for any rule in the interaction scheme can be found,

return m = (m0, m1, . . . , mn).

The maximal weakly independent matching leads to a bundle of kernel mor-

phisms s = (si : p0 → p̂i) and an s-amalgamable bundle of direct transformations

G =
p̂i,mi===⇒ Gi.

Definition 4.31 (Maximal weakly disjoint matching)

Given an object G and an interaction scheme is = {s1, . . . , sk}, a maximal weakly
disjoint matching m = (m0, m1, . . . , mn) is defined as follows:

1. Set i = 0. Choose a kernel matching m0 : L0 → G such that G =
p0,m0===⇒ G0

is a valid transformation.

L0 Lj

L̂� G

sj,L

ŝ�,L mi

m�

(Pi�)

2. As long as possible: Increase i, choose a multi rule

p̂i = pj with j ∈ {1, . . . , k}, and find a match mi :

Lj → G such that mi ◦ sj,L = m0, G =
pj ,mi
===⇒ Gi

is a valid transformation, the matches m1, . . . , mi

are weakly independent, and mi �= m� and the

square (Pi�) is a pullback for all � = 1, . . . , i − 1.
3. If no more valid matches for any rule in the interaction scheme can be found,

return m = (m0, m1, . . . , mn).

The maximal weakly disjoint matching leads to a bundle of kernel morphisms s =

(si : p0 → p̂i) and an s-amalgamable bundle of direct transformations G =
p̂i,mi===⇒

Gi.

Note that for maximal weakly disjoint matchings, the pullback require-
ment already implies the existence of the morphisms for the weakly inde-
pendent matches. Only the property for the application conditions has to
be checked in addition.
Fact 4.32

Given an object G, a bundle of kernel morphisms s = (s1, . . . , sn), and matches

m1, . . . , mn leading to a bundle of direct transformations G =
pi,mi===⇒ Gi such that

mi ◦ si,L = m0 and square (Pij) is a pullback for all i �= j then the bundle

G =
pi,mi===⇒ Gi is s-amalgamable for transformations without application conditions.

90 4 Amalgamated Transformations

Proof By construction, the matches mi agree on the match m0 of the kernel

rule. It remains to show that they are weakly independent.

Given the transformations G =
pi,mi===⇒ Gi with pushouts (20i) and (21i), consider

the following cube, where the bottom face is pushout (20i), the back right face is

pullback (1i), and the top right face is pullback (Pij). Now construct the pullback

of fi and mj as the front left face, and from mj ◦ sj,L ◦ l0 = mi ◦ si,L ◦ l0 =

mi ◦ li ◦ si,K = fi ◦ ki ◦ si,K we obtain a morphism p with f̂ ◦ p = sj,L ◦ l0 and

m̂ ◦ p = ki ◦ si,K .

K0

L0

Ki

Li

P

Lj

Di

G

Ki Ri

Di Gi

Li

G

l0
si,K

p

sj,L

si,L
li

ki

f̂

m̂

mj

fi mi

fi

li

mi

ri

ki

gi

ni(20i) (21i)

From pullback composition and decomposition of the right and left faces it

follows that also the back left face is a pullback. Now theM-van Kampen property
can be applied leading to a pushout in the top face. Since pushout complements

are unique up to isomorphism, we can substitute the top face by pushout (1′
i)

with P ∼= Lj0. Thus we have found the morphism pji := m̂ with fi ◦pji = mj ◦ui.
This construction can be applied for all pairs i, j leading to weakly independent

matches without application conditions.

This fact leads to a set-theoretical characterization of maximal weakly
disjoint matchings.
Fact 4.33

For graphs and graph-based structures, valid matches m0, m1, . . . , mn with mi ◦
si,L = m0 for all i = 1, . . . , n form a maximal weakly disjoint matching without

application conditions if and only if mi(Li) ∩mj(Lj) = m0(L0).

Proof Valid matches means that the transformations G =
pi,mi===⇒ are well-defined.

In graphs and graph-like structures, (Pij) is a pullback if and only if mi(Li) ∩
mj(Lj) = m0(L0). Then Fact 4.32 implies that the matches form a maximal

weakly disjoint matching without application conditions.

Example 4.34

Consider the interaction scheme is = (s1, s2) defined by the kernel morphisms s1
and s2 in Fig. 4.2, the graph X depicted in the middle of Fig. 4.13, and the kernel

rule match m0 mapping the node 1 in L0 to the node 1 in X.

If we choose maximal weakly independent matchings, the construction works

as follows defining the following matches, where f is the edge from 1 to 2 in L1

and g the reverse edge in L2:

4.1 Foundations and Analysis of Amalgamated Transformations 91

1

2 3 4

X ′

1

2 3 4

X

1

2 3 4

X ′′

c
a b

d

e
c

a b
d

e
c

a b
d

e
p̃s, m̃ p̃s′ , m̃

′

Figure 4.13: Application of an amalgamated rule via maximal matchings

i = 1 : p̂1 = p1, m1 : 2 �→ 3, f �→ c,

i = 2 : p̂2 = p1, m2 : 2 �→ 4, f �→ d,

i = 3 : p̂3 = p2, m3 : 3 �→ 2, g �→ a,

i = 4 : p̂4 = p1, m4 : 2 �→ 4, f �→ e,

i = 5 : p̂5 = p2, m5 : 3 �→ 2, g �→ b.

Thus, we find five different matches, three for the multi rule p1 and two for the

multi rule p2. Note that in addition to the overlapping m0, the matches m3 and

m5 overlap in the node 2, while m2 and m4 overlap in the node 4. But since these

matches are still weakly independent, because the nodes 2 and 4 are not deleted

by the rule applications, this is a valid maximal weakly independent matching.

It leads to the bundle s = (s1, s1, s1, s2, s2) and the amalgamated rule p̃s, which

can be applied to X leading to the amalgamated transformation X =
p̃s,m̃
===⇒ X ′ as

shown in the left of Fig. 4.13.

If we choose maximal weakly disjoint matchings instead, the matches m4 and

m5 are no longer valid because they overlap with m2 and m3, respectively, in

more than the match m0. Thus we obtain the maximal weakly disjoint matching

(m0, m1, m2, m3), the corresponding bundle s′ = (s1, s1, s2) leading to the amal-

gamated rule p̃s′ and the amalgamated transformation X =
p̃s′ ,m̃

′
====⇒ X ′′ depicted in

the right of Fig. 4.13. Note that this matching is not unique, also (m0, m1, m2, m4)

could have been chosen as a maximal weakly disjoint matching.

4.1.6 Main Results for Amalgamated Transformations
Based on Maximal Matchings

If we only allow to apply amalgamated rules via maximal matchings, the
main results from Subsection 3.4.3 do not hold instantly as is the case for
arbitrary matchings. The main problem is that the amalgamated transfor-
mations obtained from the results are in general not applied via maximal
matchings. The analysis and definition of properties ensuring these results
is future work:

92 4 Amalgamated Transformations

• For the Local Church-Rosser Theorem, it guarantees that for parallel
independent amalgamated transformations G =

p̃s=⇒ H1 and G =
p̃s′=⇒ H2

via maximal matchings there exist transformations H1 =
p̃s′=⇒ G′ and

H2 =
p̃s=⇒ G′. But in general, these resulting transformations will not

be via maximal matching, since p̃s′ may create new matchings for s,
and vice versa. Thus, one has to find properties that make sure that
no new matches, or at least no new disjoint matches, are created.

• For the Parallelism Theorem, the property of maximal weakly inde-
pendent matchings is transferred to the application of the parallel rule
as shown below.

• For the Concurrency Theorem, one first has to formulate results con-
cerning the construction of an E-concurrent rule as an amalgamated
rule based on the underlying kernel and multi rules before it can be
related to maximal matchings.

• For the Embedding and Extension Theorem, embedding an object G
with a maximal matching into a larger context G′ in general enables
more matches, i. e. the application of the amalgamated rule to G′

may not be maximal. One needs to define properties to restrict the
embedding to some parts outside the matches of the multi rules to
ensure that the same matchings are maximal in G and G′.

• For the Local Confluence Theorem, maximal matchings may actually
lead to fewer critical pairs if we have additional information about the
objects to be transformed, since some conflicting transformations may
not occur at all due to maximal matchings.

In case of parallel independent transformations, the property of a maxi-
mal weakly independent matchings is transferred to the application of the
parallel rule. Note that for maximal weakly disjoint matchings, we have to
require in addition that the matches of the two amalgamated transforma-
tions do not overlap.
Theorem 4.35 (Parallelism of maximal weakly independent matchings)

Given parallel independent amalgamated transformations G =
p̃s,m̃
===⇒ H1 and

G =
p̃s′ ,m̃

′
====⇒ H2 leading to the induced transformations G =

p̃t,m̃t
===⇒ G′ via the parallel

rule p̃t = p̃s + p̃s′ then the following holds: if G =
p̃s,m̃
===⇒ H1 and G =

p̃s′ ,m̃
′

====⇒ H2 are

transformations via maximal weakly independent matchings then also G =
p̃t,m̃t
===⇒

G′ is a transformation via a maximal weakly independent matching.

Proof Given parallel independent amalgamated transformations G =
p̃s,m̃
===⇒ H1

and G =
p̃s′ ,m̃

′
====⇒ H2 via maximal weakly independent matchings (m0, m1, . . . , mn)

4.2 Operational Semantics Using Amalgamation 93

with m̃ ◦ ti,L = mi and (m
′
0, m

′
1, . . . , m

′
n′) with m̃′ ◦ t′j,L = m′

j , respectively. Then

we have the matchingm = ([m0, m
′
0], ([mi, m

′
0])i=1,...,n, ([m0, m

′
j])j=1,...,n′) for the

parallel transformation G =
p̃t,m̃t
===⇒ G′, with [mi, m

′
0] ◦ (si,L+ idL0) = [m0, m

′
0] and

[m0, m
′
j] ◦ (idL0 + s′

j,L) = [m0, m
′
0]. We have to show the maximality of m.

Suppose m is not maximal. This means that there is, w.l.o.g., some match

m̂ : Lk +L′
0 → G such that m̂ ◦ (sk,L + idL′0) = [m0, m

′
0] and m̂ �= [mi, m

′
0] for all

i = 1, . . . , n such that (m, m̂) is also weakly independent. Then we find a match

m̂k := m̂◦iLk for the rule pk with m̂k ◦sk,L = m0 and m̂k �= mi for all i. It follows

that (m0, m1, . . . , mn, m̂k) are also weakly independent, which is a contradiction

to the maximality of (m0, m1, . . . , mn).

4.2 Operational Semantics Using

Amalgamation

In this section, we use amalgamation as introduced before to model the
operational semantics of elementary Petri nets and UML statecharts. Using
amalgamation allows the description of a semantical step in an unknown
surrounding with only one interaction scheme. We do not need specific rules
for each occurring situation as is the case for standard graph transformation.

4.2.1 Semantics for Elementary Nets

In the following, we present a semantics for the firing behavior of elementary
Petri nets using graph transformation and amalgamation. Elementary Petri
nets are nets where at most one token is allowed on each place. A transition

t

t′ t′′

G

t

t′ t′′

H

Figure 4.14: The firing of the transition t

94 4 Amalgamated Transformations

t is activated if there is a token on each pre-place of t and all post-places of
t are token-free. In this case, the transition may fire leading to the follower
marking where the tokens on all the pre-places of t are deleted and at all
post-places of t a token appears. An example is depicted in Fig. 4.14, where
the transition t in the elementary Petri net G is activated in the left and
the follower marking is depicted in the right of Fig. 4.14 leading to the
elementary Petri net H.
We model these nets by typed graphs. The type graph is depicted in

Fig. 4.15 and consists simply of places, transitions, the corresponding pre-
and post-arcs, and tokens attached to their places. For the following exam-
ples, we use the well-known concrete syntax of Petri nets, modeling a place
by a circle, a transition by a rectangle, and a token by a small filled circle
placed on its place.

place token

transition

at

pre post

Figure 4.15: The type graph for elementary nets

In Figs. 4.16 and 4.17, three rules p0, p1, and p2 are shown, which will
result as an amalgamated rule with maximal weakly disjoint matchings in
a firing step of the net. The rule p0 in Fig. 4.16 selects a transition t which
is not changed at all. But note that the application condition restricts this
rule to be only applicable if there is no empty pre-place of t and we have
only empty post-places. This means, that the transition t is activated in
the elementary net. The rule p1 describes the firing of a preplace, where
the token on this place is deleted. It only inherits the application condition
of p0 to guarantee a kernel morphism s1 : p0 → p1 as shown in the top of
Fig. 4.17. s1 is indeed a kernel morphism because (1) and (2) are pullbacks
and (3) is the required pushout complement. ac0 and ac1 are complement-
compatible w. r. t. s1 with ac′1 = true. Similarly, rule p2 describes the firing
of a post-place, where a token is added on this place. Again, there is a kernel
morphism s2 : p0 → p2 as shown in the bottom of Fig. 4.17 with pullbacks
(1′) and (2)′, (1′) is already a pushout, and ac0 and ac2 are complement-
compatible w. r. t. s2 with ac′2 = true.

4.2 Operational Semantics Using Amalgamation 95

p0 :

ac0 = ∀(a0, ∃a′0) ∧ ¬∃b0

t

L0

t

K0

t

R0
t

L0

t

p

t

p t

L0

t

p

l0 r0 a0 a′0 b0

Figure 4.16: The kernel rule selecting an activated transition

p0 : ac0 t

L0

t

K0

t

R0

p1 : ac1

ac1 = Shift(s1,L, ac0)

t

p1

L1

t

p1

K1

t

p1

R1

t

L0

t

K0

t

p1

L1

t

p1

L10

p0 : ac0 t

L0

t

K0

t

R0

p2 : ac2

ac2 = Shift(s2,L, ac0)

t

p2

L2

t

p2

K2

t

p2

R2

l0 r0

l1 r1

s1,L s1,K s1,R

l0

s1,L

u1

w1

l0 r0

l2 r2

s2,L s2,K s2,R

(1) (2) (3)

(1′) (2′)

Figure 4.17: The multi rules describing the handling of each place

For the multi rules in Fig. 4.17, the complement rules are the rules p1
and p2 themselves but with empty application condition true, because they
contain everything which is done in addition to p0 including the connection
with K0, while the application condition is already ensured by p0.

96 4 Amalgamated Transformations

L0 K0 R0

L1 K1 R1

L2 K2 R2

p̃s:

L̃s K̃s R̃s

3× 2×

l0 r0

l2 r2

l1 r1

l̃s r̃s

Figure 4.18: The construction of the amalgamated rule

p̃s : ãcs

L̃s K̃s R̃s

t

t′ t′′

G

t

q1 q2 q3

q4 q5

t′

q6

t′′

q7
D

t

t′ t′′

H

l̃s r̃s

f̃ g̃

m̃ k̃ ñ

Figure 4.19: An amalgamated transformation

4.2 Operational Semantics Using Amalgamation 97

Now consider the interaction scheme is = {s1, s2} leading to the bundle
of kernel morphisms s = (s1, s1, s1, s2, s2). The construction of the corre-
sponding amalgamated rule p̃s is shown in Fig. 4.18 without application
conditions. This amalgamated rule can be applied to the elementary Petri
net G as depicted in Fig. 4.19 leading to the amalgamated transformation
G =

p̃s,m̃===⇒ H.

Moreover, we can find a bundle of transformations G =
m1,p1===⇒ G1, G

=
m2,p1===⇒ G2, G =

m3,p1===⇒ G3, G =
m4,p2===⇒ G4, and G =

m5,p2===⇒ G5 with the re-
sulting nets depicted in Fig. 4.20 and matches m0 : t �→ t, m1 : p1 �→ q1,
m2 : p1 �→ q2, m3 : p1 �→ q3, m4 : p2 �→ q4, and m3 : p2 �→ q5. This bundle
is s-amalgamable, because it has consistent matches with m0 matching the
transition t from p0 to the transition t in G, and all matches are weakly inde-
pendent, they only overlap in L0. (m0, . . . ,m5) is both a maximal weakly
independent and a maximal weakly disjoint matching, because not other
match can be found extending the kernel rule match, and all these matches
are disjoint up to the selected transition t.

p1,m1

p1,m2

p1,m3

p2,m4

p2,m5

Figure 4.20: An s-amalgamable transformation bundle

98 4 Amalgamated Transformations

If we always use maximal matchings, any application of an amalgamated
rule created from the interaction scheme is = {s1, s2} is a valid firing step
of a transition in the elementary net. For example, to fire the transition
t′ in G the bundle s′ = (s1, s2) leads to the required amalgamated rule.
In general, for a transition with m pre- and n post-arcs, the corresponding
bundle s = ((s1)i=1,...,m, (s2)j=1,...,n) leads to the amalgamated rule firing
this transition via a maximal matching. Note that each maximal weakly
independent matching is already a maximal weakly disjoint matching due
to the net structure.
For elementary Petri nets we only need one kernel rule and two multi rules

to describe the complete firing semantics for all well-defined nets. We neither
need infinite many rules, which are difficult to analyze, nor any control or
helper structure when using amalgamation. This eases the modeling of the
semantics and prevents errors.

4.2.2 Syntax of Statecharts

Before we specify the operational semantics for statecharts we introduce
the represented features and define the syntax based on typed attributed
graphs and constraints (see Chapter 3). We consider a simplified variant of
UML statecharts [OMG09b]. In [Har87], Harel introduced statecharts by
enhancing finite automata by hierarchies, concurrency, and some commu-
nication issues. Over time, many versions with slightly differing features
and semantics have evolved. We restrict ourselves to the most interesting
parts of the UML statechart diagrams, where amalgamation is useful for
a suitable modeling of the semantical rules. We allow orthogonal regions
as well as state nesting. But we do not handle entry and exit actions on
states, do not allow extended state variables, and allow guards only to be
conditions over active states.
In Fig. 4.21, an example statechart ProdCons is depicted modeling a

producer-consumer system. When initialized, the system is in the state
prod, which has three regions. There, in parallel the producer, a buffer,
and the consumer may act. The producer alternates between the states
produced and prepare, where the transition produce between the states
prepare and produced models the actual production activity. It is guarded
by a condition that the parallel state empty is also current, meaning that
the buffer is empty and may receive a produce, which is then modeled by
the action incbuff denoted after the /-dash. Similarly to the producer,
the buffer alternates between the states empty and full, and the consumer

4.2 Operational Semantics Using Amalgamation 99

error

call

repair

prod

produced

prepare

empty

full

wait

consumed

arrive

finish

repair

finish
exit

next
produce
[empty]
/incbuff

fail

incbuff decbuff next
consume
[full]

/decbuff

Figure 4.21: The example statechart ProdCons in concrete syntax

between the states wait and consumed. The transition consume is again
guarded by the state full and followed by a decbuff-action emptying the
buffer.
There are two possible events that may happen causing a state transition

leaving the state prod. First, the consumer may decide to leave and finish
the complete run. Second, there may be a failure detected after the pro-
duction leading to the error-state. Then, a mechanic is called who has to
repair the machine. When this is done, the error-state can be exited via
the corresponding exit-transition and the standard behavior in the prod-
state is executed again, where all three regions are set back to there initial
behavior.
Note that for the states used as conditions in guards we assume to have

unique names, but this is merely a problem of the concrete syntax. In the
abstract syntax graph, this problem is solved by introducing a direct edge
from the guard to this state, and not only a reference by name as done in
the concrete statechart diagram.

100 4 Amalgamated Transformations

For the modeling of our statecharts language, we use typed attributed
graphs. Concerning the representation, the attributes of a node are given
in a class diagram-like style. For the values of attributes in the rules we can
also use variables. Note that for the typing of the edges, we omit the edge
types if they are clear from the node types they are connecting.

SM

name:String

R P

E

name:String

T S

name:String

isInitial:Bool

isFinal:Bool

TE

name:String

A

name:String

G

0..1

0..1 0..11

1 1

1

0..1

1

0..1

1

1

1..n

1..n

region behaviour

current new

regions

states

trigger

action guard

begin

end

condition

next

sub

Figure 4.22: The type graph TGSC for statecharts

The type graph TGSC is given in Fig. 4.22. Note that we use multiplic-
ities to denote some constraints directly in the type graph. This is only
an abbreviation of the corresponding constraints and does not extend the
expressiveness of typed graphs with constraints. Additional constraints are
defined in Fig. 4.23 and explained in the following that have to be valid for
well-defined statechart diagrams.
Each diagram consists of exactly one statemachine SM (constraint c1) con-

taining one or more regions R. A region contains states S, where state names
are unique within one region. A state may again contain one or more regions.
Constraint c2 expresses in addition that each region is contained in either
exactly one state or the statemachine. Moreover, states may be initial (at-
tribute value isInitial = true) or final (attribute value isFinal=true),
each region has to contain exactly one initial and at most one final state,
and final states cannot contain regions (constraint c3). Note that the edge
type sub is only necessary to compute all substates of a state, which we
need for the definition of the semantics. This relation is computed in the
beginning using the states- and regions-edges.

4.2 Operational Semantics Using Amalgamation 101

c1 := ∃iA1 ∧ ¬∃iB1

SM

name="sm"A1
SM SMB1

c2 := ∀(iA2 , (∃a2 ∨ ∃b2)) ∧ ¬∃iD2 ∧ ¬∃iE2 ∧ ¬∃iF2
SM

R

B2

R

A2

S

R

C2

SM S

RE2

S S

RF2

S
name=x

S
name=x

R

D2

c3 := ∀(iA3 ,∃a3) ∧ ¬∃iC3 ∧ ¬∃iD3 ∧ ¬∃iE3 ∧ ¬∃iF3
R

A3

S

isInitial=true

R

B3

S

isInitial=true

S

isInitial=true

R

C3

S

isFinal=true

S

isFinal=true

R

D3

S

isFinal=true

R

E3

S

isInitial=true

isFinal=true

F3

c4 := ¬∃iA4

G T E

name="exit"A4

c5 := ¬∃iA5 ∧ ∀(iB5 , ∃a5)
T S

isFinal=trueA5

S

isFinal=true

B5

S

name="final"

isFinal=true

C5

c6 := ¬∃iA6

S

R

R

S

S

T

A6

c7 := ∃iA7 ∧ ¬∃iB7 ∧ ¬∃iC7

TE

name=null
P

A7

P

P

C7

TE

name=null
TE

B7

begin

end

begin

a2 b2

a3

a5

Figure 4.23: Constraints limiting the valid statechart diagrams

102 4 Amalgamated Transformations

A transition T begins and ends at a state, is triggered by an event E, and
may be restricted by a guard G and followed by an action A. A guard has one
ore more states as conditions. There is a special event with attribute value
name="exit" which is reserved for exiting a state after the completion of
all its orthogonal regions, which cannot have a guard condition (constraint
c4). Moreover, final states cannot be the beginning of a transition and their
name attribute has to be set to name="final" (constraint c5). In addition,
transitions cannot link states in different orthogonal regions (constraint c6),
which means that both regions are directly contained in the same state.
A pointer P describes the active states of the statemachine. Note that

newly inserted current states are marked by the new-edge, while for estab-
lished current states the current-edge is used (which is assumed to be the
standard type and thus not marked in our diagrams). This differentiation
is necessary for the semantics, where we need to distinguish between states
that were current before and states that just became current in the last state
transition. Trigger elements TE describe the events which have to be han-
dled by the statemachine. Note that this is not necessarily a queue because
of orthogonal states, but for simplicity we still call it event queue. There are
at least the empty trigger element with attribute value name = null and
no outgoing next-edge, and exactly one pointer in each diagram (constraint
c7). The pointer and trigger elements are used later for the description of
the operational semantics, but they do not belong to the general syntactical
description.
In Fig. 4.24, the example statechart ProdCons from Fig. 4.21 is depicted

in abstract syntax. Note that for final states, which do not have a name
in the concrete syntax, the attribute is set to name="final". Moreover,
the nodes P and TE are added, which have to exist for a valid statechart
model, but are not visible in the concrete syntax. For simulating statechart
runs, the event queue of the statechart, which consists only of the default
element named null in Fig. 4.24, can be filled with events to be processed
as explained later.
Since edges of types sub, behavior, current, and next only belong to

the semantics but not to the syntax of statecharts, we leave them out for the
definition of the language of statecharts. All attributed graphs typed over
this reduced type graph TGSC,Syn satisfying all the constraints are valid
statecharts.

Definition 4.36 (Language V LSC)

Define the syntax type graph TGSC,Syn = TGSC\{sub, behavior, current, next}
based on the type graph TGSC in Fig. 4.22. The language V LSC consists of all

4.2 Operational Semantics Using Amalgamation 103

P TE

name=null

SM

name="sm"

R

S

name="error"

isInitial=false

isFinal=false

S

name="prod"

isInitial=true

isFinal=false

T

E

name="exit"

S

name="final"

isInitial=false

isFinal=true

R

S

name="call"

isInitial=true

isFinal=false

S

name="repair"

isInitial=false

isFinal=false

S

name="final"

isInitial=false

isFinal=true

T

E

name="arrive"

T

E

name="finish"

T

E

name="repair"

T

E

name="fail"

R

S

name="produced"

isInitial=true

isFinal=false

T

E

name="next"

T

E

name="produce"

G

A

name="incbuff"

S

name="prepare"

isInitial=false

isFinal=false

R

S

name="empty"

isInitial=true

isFinal=false

S

name="full"

isInitial=false

isFinal=false

R

S

name="wait"

isInitial=true

isFinal=false

S

name="consumed"

isInitial=false

isFinal=false

T

E

name="next"

T

E

name="consume"

G

A

name="decbuff"

T

E

name="decbuff"

T

E

name="incbuff"

T

E

name="finish"

end

begin

begin end

begin
end begin end

begin end

begin
end

beginend

beginendbegin end
beginend

begin end

begin

end

Figure 4.24: The example statechart ProdCons in abstract syntax

typed attributed graphs respecting the type graph TGSC,Syn and the constraints

in Fig. 4.23, i. e. V LSC = {(G, type) | type : G→ TGSC,Syn, G |= c1 ∧ . . . ∧ c7}.

104 4 Amalgamated Transformations

4.2.3 Semantics for Statecharts

In this section, we define the operational semantics for statecharts as defined
in Subsection 4.2.2.
In the literature, there are different approaches to define a semantics for

statecharts. In the UML specification [OMG09b], the semantics of UML
state machines is given as a textual description accompanying the syntax,
but it is ambiguous and often explained essentially on examples. In [Bee02],
a structured operational semantics (SOS) for UML statecharts is given based
on the preceding definition of a textual syntax for statecharts. The seman-
tics uses Kripke structures and an auxiliary semantics using deduction, a
semantical step is a transition step in the Kripke structure. This semantics
is difficult to understand due to its non-visual nature. The same problem
arises in [RACH00], where labeled transitions systems and algebraic speci-
fication techniques are used.
There are also different approaches to define a visual rule-based semantics

of statecharts. One of the first was [MP96], where for each transition t a
transition production pt has to be derived which describes the effects of the
corresponding transition step. A similar approach is followed in [Kus01],
where first a state hierarchy is constructed explicitly, and then a semantical
step is given by a complex transformation unit, which is constructed from
the transition rules of a maximum set of independently enabled transitions.
In [KGKK02], in addition class and object diagrams are integrated. This
approach is similar to the definition of one rule for each transition type
of a Petri net, i. e. for each number of pre- and post-places. It highly de-
pends on concrete statechart models and is not satisfactory for a general
interpreter semantics for statecharts. Moreover, problems arise for nesting
hierarchies, because the resulting situation is not fixed but also depends on
other current or inactive states. In [GP98], the hierarchies of statecharts
are flattened to a low-level graph representing an automaton defining the
intended semantics of the statechart model. This is an indirect definition of
the semantics, and again dependent on the concrete model, since the trans-
formation rules have to be specified according to this model. In [EHHS00],
the operational semantics of a fragment of UML statecharts is specified by
UML collaboration diagrams formalized as graph transformation rules. But
it is not clear if and how this approach can be extended for more complex
statechart models.
In [Var02], a general interpreter semantics for statecharts is defined. Syn-

tactical and static semantic concepts of statecharts like conflicts and priori-

4.2 Operational Semantics Using Amalgamation 105

ties are separated from their dynamic operational semantics, which is spec-
ified by graph transformation rules. A control structure, so called model
transition systems, controls the application of the rules. In this approach,
a lot of additional control and helper structure is needed to encode when
which transition is enabled or in conflict, and which states become current
or inactive as the result of a state transition.
The main advantage of our solution explained in the following using amal-

gamation is that we do not need additional helper and control structure to
cover the complex statechart semantics: we define a state transition mainly
by one interaction scheme followed by some clean-up rules. Therefore, our
model-independent definition based on rule amalgamation is not only visual
and intuitive but allows us to show termination in Chapter 6 and forms a
solid basis for applying further graph transformation-based analysis tech-
niques.
The semantics of our statecharts is modeled by amalgamated transforma-

tions, but we apply the rules in a more restricted way, meaning that one step
in the semantics is modeled by several applications of interaction schemes.
For the application of an interaction scheme we use maximal weakly disjoint
matchings. We assume to have a finite statechart with a finite event queue
where all trigger elements are already given in the diagram as an initial
event queue.
The rules are depicted in a more compact notation where we do not

show the gluing object K. It can be infered by the intersection L ∩ R of
the corresponding left- and right-hand sides. The mappings are given as
numberings for the nodes and can be infered for the edges. As above, if the
edge types are clear we do not explicitely state them.

setSub

1:S 2:R 3:S

L11

1:S 2:R 3:S

R11

ac11 = ¬∃a11 L11 R11

transSub

1:S 2:S 3:S

L21

1:S 2:S 3:S

R21

ac21 = ¬∃a21 L21 R21

a11

sub

a21

sub sub sub sub

sub

Figure 4.25: The rules setSub and transSub

106 4 Amalgamated Transformations

init = (s3)

1:SM 2:P

L30

1:SM 2:P

R30

1:SM 2:P

3:R
4:S

isInitial=true
L31

1:SM 2:P

3:R
4:S

isInitial=true
R31

ac30 = ¬∃a30 L30 R30

ac31 = Shift(s3,L, ac30)

enterRegions = (idp40 , s4, s
′
4, s

′′
4)

1:S 2:P

L40

1:S 2:P

R40

1:S 2:P

3:R
4:S

isInitial=true
L41

1:S 2:P

3:R
4:S

isInitial=true
R41

ac40 = true

ac41 = ¬∃a41 ∧ ¬∃b41
L41

1:S 2:P

3:R S
L41

1:S 2:P

3:R S

L40 R40

1:S 2:P

5:R 6:S

L42

1:S 2:P

5:R 6:S

R42

ac42 = ¬∃a42 ∧ ¬∃b42
L42

1:S 2:P

5:R 6:S

L42
1:S 2:P

5:R 6:S

L40 R40

1:S 2:P

L43

1:S 2:P

R43

ac43 = true

a42 b42
new new

new

new

a41 b41

new new

new

new

new

a30

s3,L s3,R

s4,L s4,R

s′4,L s′4,R

s′′4,L s′′4,R

new

new

new

new

Figure 4.26: The interaction schemes init and enterRegions

4.2 Operational Semantics Using Amalgamation 107

For the initialization step, we first compute all substates of all states
by applying the rules setSub and transSub given in Fig. 4.25 as long as
possible. Then, the interaction scheme init is applied followed by the
interaction scheme enterRegions applied as long as possible, which are de-
picted in Fig. 4.26. With init, the pointer is associated to the statemachine
and all initial states of the statemachine’s regions. The interaction scheme
enterRegions handles the nesting and sets the current pointer also to the
initial states contained in an active state. When applied as long as possible,
this means that all substates are handled. Note that not all initial substates
become active, but only these which are contained in a hierarchy of nested
initial states. The interaction scheme enterRegions also contains the iden-
tical kernel morphism idp40 : p40 → p40 to ensure that this kernel rule is also
applied in the lowest hierarchy level changing the new- to a current-edge.
For later use, also double edges are deleted and if the direct superstate is
not marked by the pointer a new-edge is added to it.
A state transition representing a semantical step, i. e. switching from

one state to another, is done by the application of the interaction scheme
transitionStep shown in Fig. 4.27 followed by the interaction schemes
enterRegions!, leaveState1!, leaveState2!, and leaveRegions! given
in Figs. 4.26, 4.28, and 4.29 in this order, where ! means that the corre-
sponding interaction scheme is applied as long as possible.
For such a semantical step, the first trigger element (or one of the first if

more than one action of different orthogonal substates may occur next) is
chosen and deleted, while the corresponding state transitions are executed.
exit-trigger elements are handled with priority which is ensured by the
application condition ac50. Note that a transition triggered by its trigger
element is active if the state it begins at is active, its guard condition state
is active, and it has no active substate where a transition triggered by the
same event is active. These restrictions are handled by the application
conditions ac51 and ac52. Moreover, if an action is provoked, this has to
be added as one of the first next trigger elements. The two multi rules
of transitionStep handle the state transition with and without action,
respectively. The application condition ac52 is not shown explicitly, but the
morphisms a52, . . . , f52 are similar to a51, . . . , f51 except that all objects
contain in addition the node 8:A.

108 4 Amalgamated Transformations

transitionStep = (s5, s′5)

L50

1:P 2:TE

name=x

TE

name="exit"3:TE

1:P

3:TE
TE

TE

name="exit"

2:TE

name=x

ac50 = ∀(a50, ∃b50) ∧ ¬∃c50 L50 1:P TE
2:TE

name=x
3:TE

1:P 2:TE
name=x

3:TE

L50

1:P 3:TE

R50

1:P 2:TE
name=x

3:TE

4:S

5:T

6:S

7:E
name=x

L51

1:P 3:TE

4:S

5:T

6:S

7:E
name=x

R51

ac51 = Shift(s5,L, ac50) ∧ ¬∃g51 ∧ ¬∃a51 ∧ ∀(b51, ∃c51) ∧ ∀(d51, ∃(e51,¬∃f51))
L51 L52 L51 A5 L51 B5 C5 L51 D5 E5 F5

1:P 2:TE

name="exit"

3:TE

4:S

5:T

S

6:S

7:E

name="exit"A5

1:P 2:TE

name=x

3:TE

4:S

5:T

6:S

7:E

name=x

G SB5

1:P 2:TE

name=x

3:TE

4:S

5:T

6:S

7:E

name=x

G SC5

1:P 2:TE

name=x

3:TE

4:S

5:T

6:S

T

E

name=x

7:E

name=x

S

D5

1:P 2:TE

name=x

3:TE

4:S

5:T

6:S

T

E

name=x

7:E

name=x

S

G
S

E5

1:P 2:TE

name=x

3:TE

4:S

5:T

6:S

T

E

name=x

7:E

name=x

S

G
S

F5

L50 R50

1:P 2:TE
name=x

8:A
name=y

3:TE

4:S

5:T

6:S

7:E
name=x

L52

TE
name=y

1:P 3:TE

4:S

5:T

6:S

7:E
name=x

8:A
name=y

R52

ac52 = Shift(s′5,L, ac50) ∧ ¬∃a52 ∧ ∀(b52, ∃c52) ∧ ∀(d52, ∃(e52,¬∃f52))

s5,L s5,R

a50 b50

c50

g51 b51 c51 d51 e51 f51a51

begin

end

new

begin

end

begin

end

begin

end

begin

end

begin

end

begin

begin

end

begin

begin

end

begin

s′5,L s′5,R

begin

end

new

begin

end

Figure 4.27: The interaction scheme transitionStep

4.2 Operational Semantics Using Amalgamation 109

leaveState1 = (idp60)
ac60 = ∃(a60,¬∃b60) L60

1:S 2:P

R

1:S 2:P

R S

1:S 2:P

L60

1:S 2:P

R60

leaveState2 = (s7)
ac70 = ¬∃a70 L70 1:S 2:P

1:S 2:P

L70

1:S 2:P

R70

1:S 2:P3:S

L71

1:S 2:P3:S

R71

ac71 = Shift(s7,L, ac70)

a70

s7,L s7,R

a60 b60

Figure 4.28: The interaction schemes leaveState1 and leaveState2

The interaction schemes leaveState1, leaveState2, and leaveRegions
handle the correct selection of the active states. When for a yet active
state with regions, by state transitions all states in one of its regions are no
longer active, also this superstate is no longer active, which is described by
leaveState1. The interaction scheme leaveState2 handles the case that,
when a state become inactive by a state transition, also all its substates
become inactive. If for a state with orthogonal regions the final state in
each region is reached then these final states become inactive, and if the
superstate has an exit-transition it is added as the next trigger element.
This is handled by leaveRegions.

Combining these rules as explained above leads to the semantics of state-
charts.

Definition 4.37 (Statechart semantics)

The operational semantics of statecharts consists of one initialization step followed

by as many as possible semantical steps defined as follows:

• Initialization step. For a statechart model M ∈ V LSC (see Def. 4.36) we

obtain a modelMinitial by applying the sequence setSub!, transSub!, init,

enterRegions! to M .

• Semantical step. Consider a model M1 with M1 obtained by a finite num-

ber of semantical steps from a model Minitial for some M ∈ V LSC , then

a semantical step from M1 to M2 is computed by applying the sequence

110 4 Amalgamated Transformations

leaveRegions = (s8, s′8)
ac80 = ∀(a80, ∃b80) ∧ ¬∃c80 ∧ ¬∃d80 L80 1:S 2:P TE 3:TE

L80

1:S 2:P 3:TE

R
4:S

isFinal=true

1:S 2:P 3:TE

R
4:S

isFinal=true

L80

1:S 2:P 3:TE

4:S

isFinal=false

1:S 2:P 3:TE

L80

1:S 2:P 3:TE

R80

1:S 2:P 3:TE

4:S

L81

1:S 2:P 3:TE

4:S

R81

ac81 = Shift(s8,L, ac80)

L80 R80

1:S 2:P 3:TE

4:T
5:E

name="exit"

L82

1:S 2:P 3:TE

4:T
5:E

name="exit"

TE

name="exit"

R82

ac82 = Shift(s′8,L, ac80) ∧ ¬∃a82
L82

1:S 2:P
3:TE

name="exit"

4:T
5:E

name="exit"

begina82

s8,L s8,R

d80

c80b80a80

begin begin

s′8,L s′8,R

Figure 4.29: The interaction scheme leaveRegions

transitionStep, enterRegions!, leaveState1!, leaveState2!, leave-

Regions! to M1.

Example 4.38

Consider now some semantical steps in our statechart example from Fig. 4.21.

After initialization, the initial state prod and its initial substates produced, empty,

and wait are current. If the event next occurs, we switch from the state produced

to the state prepare. The second next-transition does not allow a step because

the state consumed is not active at the moment. Now the event produce, whose

guard condition empty is valid, leads to the state transition from prepare back to

produced triggering the action incbuff. This leads to the state transition from

empty to full.

Now the event consume may occur, with valid guard condition full, and trigger

the action decbuff. Afterwards, the states prod, produced, empty, and consumed

4.2 Operational Semantics Using Amalgamation 111

are the current states. If now the event next occurs, two state transitions are

executed in parallel, since both transitions of the producer and of the consumer

are active. After an additional event chain produce – consume with a following

decbuff-action we are back in the situation that the states prod, produced, empty,

and consumed are current.

If a fail-event occurs, the prod-state is completely left, and only the states

error and call become the current states. After the event chain arrive – repair

– finish, the exit-action of the error-state leads back again to the initial situa-

tion.

In Fig. 4.30, the current states and their state transitions as described above

are depicted, where the guard conditions enabling a transition are marked. In

addition, we show the incoming event queue as needed for our system run to be

processed. Note that the actions that are triggered by state transitions do not

occur here because they are started internally, while the other events have to be

supplied from the outside.

We want to simulate these semantical steps now using the rules for the semantics

applied to the statechart in abstract syntax in Fig. 4.24, extended by the trigger

element chain from Fig. 4.30.

First, the initialization has to be done. We compute all sub-edges by applying

the rules setSub and transSub in Fig. 4.25 as long as possible. For the actual

initialization, we apply the interaction scheme init from Fig. 4.26 followed by

the application of enterRegions as long as possible. With init, we connect the

state machine and the pointer node, and in addition set the pointer to the prod-

state using a new-edge. Now the only available kernel match for enterRegions

is the match mapping node 1 to the prod-state, and with maximal matchings

we obtain the bundle of kernel morphisms (idp40 , s4, s4, s4), where the node 4 in

L41 is mapped to the states produced, empty, and wait, respectively. After the

application of the corresponding amalgamated rule, the current pointer is now

connected to the state machine and the state prod, and via new-edges to the

states produced, empty, and wait. Further applications of enterRegions using

these three states for the kernel matches, respectively, lead to the bundle (idp40)

thus changing the new-edges to current-edges by its application. As a result, the

states prod, produced, empty, and wait are current, which is the initial situation

for the statemachine as shown in Fig. 4.30. We do not find additional matches for

enterRegions, as we only have one level of nesting in our diagram, which means

that the initialization is completed.

For a state transition, the interaction scheme transitionStep in Fig. 4.27

is applied, followed by the interaction schemes enterRegions!, leaveState1!,

leaveState2!, and leaveRegions! given in Figs. 4.26, 4.28, and 4.29.

For the initial situation, the kernel rule p50 in Fig. 4.27 has to be matched such

that the node 2 is mapped to the first trigger element next and the node 3 to

produce, otherwise the application condition of the rule p50 would be violated.

112 4 Amalgamated Transformations

current:

prod

produced

empty

wait

current:

prod

prepare

empty

wait

current:

prod

produced

empty

wait

current:

prod

produced

full

wait

current:

prod

produced

full

consumed

current:

prod

produced

empty

consumed

current:

prod

prepare

empty

wait

current:

prod

produced

empty

wait

current:

prod

produced

full

wait

current:

prod

produced

full

consumed

current:

prod

produced

empty

consumed

current:

error

call

current:

error

repair

current:

error

repair

current:

error

current:

prod

produced

empty

wait

event queue:

TE

name="next"

TE

name="produce"

TE

name="consume"

TE

name="next"

TE

name="produce"

TE

name="consume"

TE

name="null"

TE

name="finish"

TE

name="repair"

TE

name="arrive"

TE

name="fail"

next produce

→incbuff
incbuff

consume →decbuff

decbuffnextproduce

→incbuff

incbuff

consume
→decbuff

decbuff fail

arrive

repairfinish
→exit

exit

Figure 4.30: The state transitions and their corresponding event queue

For the multi rules, there are two events with the name next, but since the state

consumed is not current, only one match for L51 is found mapping the nodes

4 to the current state produced and 6 to the state prepare. All application

conditions are fulfilled, since this transition does not have a guard or action, and

the state produced does not have any substates. Thus, the application of the

bundle (s5) deletes the first trigger element next, which is done by the kernel

rule, and redirects the current pointer from produced to prepare via a new-edge.

An application of the interaction scheme enterRegions using the bundle (idp40)

changes this new-edge to a current-edge. Since we do not find further matches

for L40, L60, L71, L81, and L82, the other interaction schemes cannot be applied.

4.2 Operational Semantics Using Amalgamation 113

This means that the states prod, prepare, empty, and wait are now the current

states, which is the situation after the state transition triggered by next as shown

in Fig. 4.30.

For the next match of the kernel rule p50, the node 2 is mapped to the new next

trigger element produce and 3 is mapped to consume. Since the transition produce

has an action, we cannot apply the multi rule p51 but p52 has a valid match.

In particular, the application condition is fulfilled because the guard condition

state empty is current and the state prepare does not have any substates. Thus,

the bundle (s′
5) leads to the deletion of the trigger element produce, the current

pointer is redirected from prepare to produced, and a new trigger element incbuff

is inserted with a next-edge to the trigger element consume. Again, enterRegions

changes the new- to a current-edge and we do not find further matches for L40,

L60, L71, L81, and L82. This means that now the states prod, produced, empty,

and wait are current.

We can process our trigger element queue step by step retracing the state

transitions by the application of the rules. We do not explain all steps explicitly,

but skip until after the last decbuff-trigger element, which leads to the current

states prod, produced, empty, and consumed.

The next match of the kernel rule p50 maps the nodes 2 to the trigger element

fail and 3 to arrive. The only match for the multi rules maps the nodes 4 and

6 in L51 to the states produced and error, respectively. Since the application

condition is fulfilled, the application of the bundle (s5) leads to the deletion of

the trigger element fail, and the current pointer is redirected from produced to

error. Now we find a match for the interaction scheme enterRegions mapping

the node 1 to the state error and 4 to the state call. Thus the application of

the bundle (idp40 , s4) adds a new pointer to the state call, which is then changed

from new to current. Afterwards, we find a match for leaveState1, where the

kernel rule match maps the node 1 to the state prod. The application condition

is fulfilled because there is a region - the one for the producer - where no state

is current. Thus, the current-edge to prod is deleted. No more matches for

L60 can be found, but there are two different matches for the multi rule p71 of

leaveState2 matching the node 3 to the states empty and wait, respectively. The

application of the bundle (s7, s7) then leads to the deletion of the current pointer

for the states empty and wait. No more matches for L71, L81, and L82 can be

found. Altogether, the states error and call are current now. This is exactly

the situation as described in Fig. 4.30 after the state transition triggered by the

fail-event.

Now we skip again two more trigger elements leading to the remaining trigger

element queue finish → null and the current states error and repair. The

kernel rule p50 is now matched to these two trigger elements, and the application of

the bundle (s5) deletes the trigger element finish and redirects the current pointer

from repair to final, the final state within the error-state. With enterRegions,

114 4 Amalgamated Transformations

the corresponding new-edge is set to current. No matches for L60 and L71 can

be found, but we find a match for the interaction scheme leaveRegions, where

the kernel rule is matched such that the node 1 is mapped to the state error and

3 is mapped to the null-trigger element. The application condition is fulfilled

because all current substates of error are final states - actually, there is only the

one - and null is the first trigger element in the queue. Now there is a match

for L81 mapping the node 4 to the state final and a match for L82 mapping the

nodes 4 and 5 to the transition and the event between the stated error and prod.

After the application of the bundle (s8, s
′
8), the current pointer is deleted from the

final-state, and a new exit-trigger element is inserted before the null-trigger

element. No more matches for L81 and L82 can be found, thus only the state

error is current.

A last application of the interaction scheme transitionStep followed by enter-

Regions leads back to the initial situation and completes our example, since the

event queue is empty except for the default element null.

5 Model Transformation Based on

Triple Graph Transformation

Triple graphs and triple graph grammars are a successful approach to de-
scribe model transformations. They relate the source and target models
by some connection parts thereby integrating both models into one graph.
This uniform description of both models allows to obtain a unified theory
for forward and backward transformations.
As shown already for the specification of visual models by typed at-

tributed graph transformation, the expressiveness of the approach can be
enhanced significantly by using application conditions, which are known to
be equivalent to first order logic on graphs. In this chapter, we introduce
triple graphs and triple transformations with application conditions and
show that the composition and decomposition property valid for the case
without application conditions can be extended to transformations with ap-
plication conditions. Mainly, we can reuse the proofs but have to show the
properties for the application conditions in addition.
In Section 5.1, we define the category of triple graphs and show how

triple rules without application conditions lead to forward and backward
model transformations. This theory is extended in Section 5.2 to triple
rules and triple transformations with application conditions, where we define
S- and T -consistent application conditions and show the composition and
decomposition result. All our results are illustrated by a small example
model transformation. In Section 5.3, a more elaborated case study, a
model transformation from statecharts to Petri nets, is shown to apply the
theory in a larger setting.

5.1 Introduction to Triple Graph

Transformation

In this section, we first introduce triple graphs as done in [EEE+07], show
how to define triple transformations, and obtain the derived rules that lead
to the actual model transformations. Note that the theory introduced in
U. Golas, Analysis and Correctness of Algebraic Graph and Model Transformations,
DOI 10.1007/978-3-8348-9934-7_5,
© Vieweg+Teubner Verlag | Springer Fachmedien Wiesbaden GmbH 2011

116 5 Model Transformation with Triple Graphs

this section is without application conditions, which are introduced later in
Section 5.2.

5.1.1 The Category of Triple Graphs

A triple graph consists of three components - source, connection, and target
- together with two morphisms connecting the connection to the source
and and target components. A triple graph morphism matches the single
components and preserves the connection part.

Definition 5.1 (Triple graph)

A triple graph G = (GS
sG← GC

tG→ GT) consists of three graphs GS , GC , and

GT , called source, connection, and target component, respectively, and two graph

morphisms sG and tG mapping the connection to the source and target compo-

nents.

G1,S G1,C G1,T

G2,S G2,C G2,T

sG1 tG1

sG2 tG2

fS fC fT

Given triple graphs Gi = (Gi,S
sGi← Gi,C

tGi→ Gi,T) for i = 1, 2, a triple graph mor-

phism f = (fS , fC , fT) : G1 → G2 consists

of graph morphisms fS : G1,S → G2,S , fC :

G1,C → G2,C , and fT : G1,T → G2,T be-

tween the three components such that sG2 ◦
fC = fS ◦ sG1 and tG2 ◦ fC = fT ◦ tG1 .

The typing of triple graphs is done in the same way as for standard graphs
via a type graph - in this case a triple type graph - and typing morphisms
into this type graph.

Definition 5.2 (Typed triple graph)

Given a triple type graph TG = (TGS
sTG← TGC

tTG→ TGT), a typed triple graph

(G, typeG) is given by a triple graph G and a typing morphism typeG : G→ TG.

For typed triple graphs (G1, typeG1) and (G2, typeG2), a typed triple graph mor-

phism f : (G1, typeG1) → (G2, typeG2) is a triple graph morphism f such that

typeG2 ◦ f = typeG1 .

As for standard graphs, if the typing is clear we do not explicitly mention
it.
Triple graphs and triple type graphs, together with the component-wise

compositions and identities, form categories.

Definition 5.3 (Categories of triple and typed triple graphs)

Triple graphs and triple graph morphisms form the category TripleGraphs.

Typed triple graphs and typed triple graph morphisms over a triple type graph

TG form the category TripleGraphsTG.

5.1 Introduction to Triple Graph Transformation 117

Moreover, the categories of triple graphs and typed triple graphs can be
extended toM-adhesive categories which allows us to instantiate the theory
of transformations introduced in Section 3.1 also to transformations of triple
graphs in the next section.

Theorem 5.4 (TripleGraphs asM-adhesive categories)
The categories TripleGraphs and TripleGraphsTG with the class M of

monomorphisms, i. e. injective (typed) triple graph morphisms, are M-adhesive
categories.

Proof See [EEE+07].

Moreover, all the additional properties stated in Def. 3.8 hold in the
categories Triple-Graphs and TripleGraphsTG.

5.1.2 Triple Graph Transformation

In this subsection, we introduce triple rules without application conditions
[EEE+07]. They have been extended in [EHS09] to triple rules with neg-
ative application conditions. In the next section, we combine triple rules
with general application conditions, but here we first restrict them to rules
without application conditions for an overview. We consider both triple
graphs and typed triple graphs, even if we do not explicitly mention the
typing.
In general, triple rules and triple transformations are an instantiation of

M-adhesive systems. But for the special case of model transformations we
only use triple rules that are non-deleting, therefore we can omit the first
part of a rule, the rule morphism l which is in the non-deleting case always
the identity (or an isomorphism).

Definition 5.5 (Triple rule without application conditions)

A triple rule tr = (tr : L → R) without application conditions consists of triple

graphs L and R, and anM-morphism tr : L→ R.

L R

G H

LS LC LT

GS GC GT
RS RC RT

HS HC HT

tr

f

m n

sL tL

sG tG

mS
mC mT

sR tR

sH tH

nS nC
nT

trS trC trT

fS fC fT

(1)

A direct

triple trans-

formation G

=
tr,m
==⇒ H

of a triple

graph G via

a triple rule

tr without

118 5 Model Transformation with Triple Graphs

application conditions and a match m : L→ G is given by the pushout (1), which

is constructed as the component-wise pushouts in the S-, C-, and T -components,

where the morphisms sH and tH are induced by the pushout of the connection

component.

A triple graph transformation system is based on triple graphs and rules
over them. A triple graph grammar contains in addition a start graph.

Definition 5.6 (Triple graph transformation system and grammar)

A triple graph transformation system TGS = (TR) consists of a set of triple rules

TR.

A triple graph grammar TGG = (TR, S) consists of a set of triple rules TR and

a start triple graph S.

For triple graph grammars, not only the generated language, but also the
source and target languages are of interest. The source language contains
all standard graphs that originate from the source component of a derived
triple graph. Similarly, the target language contains all derivable target
components.

Definition 5.7 (Triple, source, and target language)

The triple language V L of a triple graph grammar TGG = (TR, S) is defined by

V L = {G | ∃ triple transformation S
∗⇒ G via rules in TR}.

The source language V LS is defined by V LS = {GS | (GS sG← GC
tG→ GT) ∈ V L}.

The target language V LT is defined by V LT = {GT | (GS sG← GC
tG→ GT) ∈ V L}.

From a triple rule without application conditions, we can derive source
and target rules which specify the changes done by this rule in the source
and target components, respectively. Moreover, the forward resp. back-
ward rules describe the changes done by the rule to the connection and
target resp. source parts, assuming that the source resp. target rules have
been applied already. Intuitively, the source rule creates a source model,
which can then be transformed by the forward rules into the corresponding
target model. This means that the forward rules define the actual model
transformation from source to target models. Vice versa, the target rules
create the target model, which can then be transformed into a source model
applying the backward rules. Thus, the backward rules define the backward
model transformation from target to source models.

Definition 5.8 (Derived rules without application conditions)

Given a triple rule tr = (tr : L → R) without application conditions we obtain

the following derived rules without application conditions:

5.2 Triple Graph Transformation with Application Conditions 119

• the source rule trS =

LS ∅ ∅

RS ∅ ∅

∅ ∅

∅ ∅

trS ∅ ∅

• the target rule trT =

∅ ∅ LT

∅ ∅ RT

∅ ∅

∅ ∅

∅ ∅ trT

• the forward rule trF =

RS LC LT

RS RC RT

trS◦sL tL

sR tR

idRS trC trT

• the backward rule trB =

LS LC RT

RS RC RT

sL trT ◦tL

sR tR

trS trC idRT

The triple rule tr without application conditions can be shown to be the
E-concurrent rule of both the source and forward as well as the target and
backward rules, where the E-dependency relation is given by the domain of
the forward and backward rules, respectively.

Fact 5.9

Given a triple rule tr = (tr : L → R), then we have that tr = trS ∗E1 trF =

trT ∗E2 trB with E1 and E2 being the domain of trF and trB , respectively.

Proof See [EEE+07].

5.2 Triple Graph Transformation with

Application Conditions

As introduced in Section 3.4, rules with application conditions are more
expressive and allow to restrict the application of the rules. Thus, we
enhance triple rules without to triple rules with application conditions.
Since the categories of triple and typed triple graphs are M-adhesive cat-
egories holding the additional properties from Def. 3.8, we can instantiate
the main theory introduced in Section 3.4 to triple transformations with
application conditions.

120 5 Model Transformation with Triple Graphs

5.2.1 S- and T -Consistent Application Conditions

To introduce application conditions we combine a triple rule tr without
application conditions with an application condition ac over L leading to
a triple rule. Then a triple transformation is applicable if the match m
satisfies the application condition ac.

Definition 5.10 (Triple rule and transformation)

A triple rule tr = (tr : L → R, ac) consists of triple graphs L and R, an M-
morphism tr : L→ R, and an application condition ac over L.

A direct triple transformation G =
tr,m
==⇒ H of a triple graph G via a triple rule tr

and a match m : L→ G with m |= ac is given by the direct triple transformation

G =
tr,m
==⇒ H via the corresponding triple rule tr without application conditions.

Example 5.11

We illustrate our definitions and results with a small example showing the simul-

taneous development of a graph and a Petri net representing clients and commu-

nication channels. The main motivation of this example is to illustrate the theory

– for a more complex and realistic example see the case study from statecharts to

Petri nets in Section 5.3.

place

transition

TGS

P

T

TGC

client

line

TGT

pre post to from forward backward

exclusive

sTG tTG

Figure 5.1: The triple type graph TG for the communication example

Our example uses typed triple graphs. The triple type graph TG is given in

Fig. 5.1. The source component describes Petri nets (see Subsection 4.2.1), while

the target component describes models containing clients which can be connected

by lines. A line may be marked as exclusive by the corresponding loop. The

connection component has two nodes P and T connecting places and clients resp.

transitions and lines. The connection morphisms sTG and tTG are not explicitly

shown, but can be easily deduced for the edges from the node mappings. For a

useful model description, especially the target model should be restricted to valid

models by suitable constraints, for example that exclusive edges always have to be

loops, or that lines connect exactly two clients. Here we do not explicitly model

these constraints but always assume to have reasonable models.

5.2 Triple Graph Transformation with Application Conditions 121

p1

p2 p3

GS

T

T

T

T

T

T

P

P P

GC

l

l l

1 : c

2 : c 3 : c

GT

sG tG

e

Figure 5.2: The triple graph G for the communication example

In Fig. 5.2, a corresponding triple graph G is shown. Note that we show the

Petri net source model in concrete syntax for easier understanding. In the Petri net

component, each client is represented by a place, and each line by two transitions

connecting the corresponding places in both direction. Note that the Petri net

does not differ between normal and exclusive lines. In the target model, the clients

and lines are represented by boxes abbreviating the types by c and l, respectively.

For each line between two nodes, forward and backward edges demonstrate that a

line is bidirectional, and we also need them for the mapping from the connection

component. The loop e marks the exclusive line between clients 2 and 3. The

connection morphisms sG and tG are not explicitly shown, but can be deduced

from the positions of the nodes and edges. Note that two T -nodes of the connection

part are mapped to the same line in the target component.

In Figs. 5.3 and 5.4, the triple rules for creating these triple graphs are given.

With the triple rule newClient, a new client and its corresponding place in the

Petri net as well as their connection are created. The triple rule newConnection

creates a new line between two clients as well as their corresponding connection

nodes and transitions if there is no connection neither in the Petri net nor in the

corresponding target model. While in the Petri net always just one communication

connection is allowed, there may be multiple lines between the clients in the target

model. These are created by the triple rule extendConnection if no already

existing line is marked exclusive. With the triple rule newExclusive, such an

exclusive line with the corresponding connections and transitions is created if

there is no connection present in the Petri net part, no line between the clients,

and if there is no intermediate client between these two clients that is already

connected to both via exclusive lines.

122 5 Model Transformation with Triple Graphs

newClient:

∅
L1,S

∅
L1,C

∅
L1,T

R1,S
P

R1,C R1,T

ac1 = true

newConnection:

p1 p2

L2,S

P P

L2,C

1 : c 2 : c

L2,T

p1 p2

R2,S
T

T

P P

R2,C

l1 : c 2 : c

R2,T

L2

ac2 = ¬∃a2 ∧ ¬∃b2 p1 p2 P P l1:c 2:c

p1 p2 P P 1:c 2:c

a2

b2

sL2 tL2

sR2 tR2

tr2,S tr2,C tr2,T

sL1 tL1

sR1 tR1

tr1,S tr1,C tr1,T

Figure 5.3: The triple rules newClient and newConnection for the communication

example

We can apply the rule sequence newClient, newClient, newClient, newCon-

nection, newConnection, newExclusive with suitable matches to obtain the triple

graph G from the empty start graph. In G, neither newConnection nor newExclu-

sive can be applied any more due to the application conditions. But we can extend

G to a triple graph G′ by applying the triple rule extendConnection. The direct

triple transformation G =
extendConnection,m′
============⇒ G′ is depicted in Fig. 5.5. Note that

the match m′ maps the places p1 and p2 of the source part of the left-hand side

L3,S to p1 and p2 of G, and respectively for the connection and target components.

m′ satisfies the application condition because the line between clients 1 and 2 is
not marked as exclusive.

5.2 Triple Graph Transformation with Application Conditions 123

extendConnection:

p1 p2

L3,S

P P

L3,C

1 : c 2 : c

L3,T

p1 p2

R3,S
T

T

P P

R3,C

l1 : c 2 : c

R3,T

L3

ac3 = ∀(a3,¬∃b3)

p1 p2
T

T
P P l1:c 2:c

p1 p2
T

T
P P l1:c 2:c

newExclusive:

L4

ac4 = ¬∃a4 ∧ ¬∃b4 ∧ ¬∃c4 p1 p2 P P 1:c 2:c

p1 p2 P P 1:c 2:cl

p1 p2 P P

ll

c

1:c 2:c

p1 p2

L4,S

P P

L4,C

1 : c 2 : c

L4,T

p1 p2

R4,S
T

T

P P

R4,C

l1 : c 2 : c

R4,T

a3

b3

e

sL3 tL3

sR3 tR3

tr3,S tr3,C tr3,T

a4

b4

c4

ee

sL4 tL4

e

sR4 tR4

tr4,S tr4,C tr4,T

Figure 5.4: The triple rules extendConnection and newExclusive for the commu-

nication example

124 5 Model Transformation with Triple Graphs

p1

p2 p3

GS

T

T

T

T

T

T

P

P P

GC

l

l l

1 : c

2 : c 3 : c

GT

p1

p2 p3

G′S

T

T

T

T

T

T

T

T

P

P P

G′C

l

l

l

l

1 : c

2 : c 3 : c

G′T

extendConnection,m′

sG tG

e

sG′ tG′

e

Figure 5.5: A triple transformation for the communication example

In the case without application conditions, the actual model transforma-
tions are defined by the forward and backward rules. Extending the triple
rules with application conditions, we need more specialized application con-
ditions that can be assigned to the source and forward resp. the target and
backward rules.

Definition 5.12 (Special application conditions)

Given a triple rule tr = (tr : L→ R, ac), the application condition ac = ∃(a, ac′)
over L with a : L→ P is an

5.2 Triple Graph Transformation with Application Conditions 125

LS LC LT

PS PC = LC PT = LT

ac

ac′

S-application condition

sL tL

sP tP=tL

aS idLC
idLT

• S-application condition if

aC , aT are identities, i. e.

PC = LC , PT = LT , and

ac′ is an S-application

condition over P ,

LS LC LT

PS = LS PC PT

ac

ac′

S-extending application condition

sL tL

sP tP

idLS aC aT

• S-extending application con-

dition if aS is an identity, i. e.

PS = LS , and ac′ is an S-

extending application condi-

tion over P ,

LS LC LT

PS = LT PC = LC PT

ac

ac′

T -application condition

sL tL

sP=sL tP

idLS
idLC aT

• T -application condition

if aS , aC are identities,

i. e. PS = LS , PC = LC ,

and ac′ is a T -applica-

tion condition over P ,

T -extending application condition

LS LC LT

PS PC PT = LT

ac

ac′

sL tL

sP tP

aS aC idLT

• T -extending application con-

dition if aT is an identity, i. e.

PT = LT , and ac′ is a T -

extending application condi-

tion over P .

Moreover, true is an S-, S-extending, T -, and T -extending application condition,

and if ac, aci are S-, S-extending, T -, T -extending application conditions so are

¬ac, ∧i∈Iaci, and ∨i∈Iaci.

Remark 5.13

Note that any T -application condition is also an S-extending application condi-

tion, and vice versa an S-application condition is also a T -extending application

condition.

For the assignment of the application condition ac to the derived rules,
the application condition has to be consistent to the source/forward resp.
target/backward rules, which means that we must be able to decompose ac
into S- and S-extending resp. T - and T -extending application conditions.

Definition 5.14 (S- and T -consistent application condition)

Given a triple rule tr = (tr : L→ R, ac), then ac is

• S-consistent if it can be decomposed into ac ∼= ac′
S∧ac′

F such that ac′
S is an

S-application condition and ac′
F is an S-extending application condition,

126 5 Model Transformation with Triple Graphs

• T -consistent if it can be decomposed into ac ∼= ac′
T ∧ ac′

B such that ac′
T is

a T -application condition and ac′
B is a T -extending application condition.

For an S-consistent application condition, we obtain the application con-
ditions of the source and forward rules from the S- and S-extending parts of
the application condition, respectively. Given ac ∼= ac′S ∧ ac′F S-consistent
we translate ac′S to an application condition toS(ac′S) on (LS ← ∅ → ∅)
using only the source morphisms of ac′S . Similarly, ac′F is translated to
an application condition toF (ac′F) on (RS ← LC → LT) using only the
connection and target morphisms of ac′F . Vice versa, this is done for a T -
consistent application condition using the T - and T -extending parts for the
target and backward rules, respectively.

Definition 5.15 (Translated application condition)

Consider a triple rule tr = (tr : L→ R, ac).

Given an S-application condition ac′
S over L, we define an application condition

toS(ac′
S) over (LS ← ∅→ ∅) by

• toS(true) = true,

• toS(∃(a, ac′′
S)) = ∃((aS , id∅ , id∅), toS(ac′′

S)), and

• recursively defined for composed application conditions.

LS ∅ ∅

PS ∅ ∅

LS LC LT

PS PC = LC PT = LT

toS(ac′
S)

toS(ac′′
S)

ac′
S

ac′′
S

sL tL

sP tP=tL

idLS

aS idLC
idLT

aS

idPS

Given an S-extending application condition ac′
F over L, we define an application

condition toF (ac′
F) over (RS

trS◦sL←− LC
tL−→ LT) by

• toF (true) = true,

• toF (∃(a, ac′′
F)) = ∃((idRS , aC , aT), toF (ac′′

F)), and

• recursively defined for composed application conditions.

RS LC LT

RS PC PT

LS LC LT

PS = LS PC PT

toF (ac′
F)

toF (ac′′
F)

ac′
F

ac′′
F

trS◦sL tL

sL tL

trS◦sP tP

sP tP

trS idLC
idLT

idLS
aC

aT

idRS aC aT

trS idPC
idPT

5.2 Triple Graph Transformation with Application Conditions 127

Given a T -application condition ac′
T over L, we define an application condition

toT (ac′
T) over (∅← ∅→ LT) by

• toT (true) = true,

• toT (∃(a, ac′′
T)) = ∃((id∅ , id∅ , aT), toT (ac′′

T)), and

• recursively defined for composed application conditions.

∅ ∅ LT

∅ ∅ PT

LS LC LT

PS = LS PC = LC PT

toT (ac′
T)

toT (ac′′
T)

ac′
T

ac′′
T

sL tL

sP=sL tP

idRS

idLS
idLC

aT

aT

idPT

Given a T -extending application condition ac′
B over L, we define an application

condition toB(ac′
B) over (LS

sL←− LC
trT ◦tL−→ LT) by

• toB(true) = true,

• toB(∃(a, ac′′
B)) = ∃((aS , aC , idRT), toB(ac′′

B)), and

• recursively defined for composed application conditions.

LS LC RT

PS PC RT

LS LC LT

PS PC PT = LT

toB(ac′
B)

toB(ac′′
B)

ac′
B

ac′′
B

sL trT ◦tL

sL tL

sP trT ◦tP

sP tP

trS idLC
idLT

aS aC idLT

aS aC idRT

idPS
idPC trT

We combine these translated application conditions with the derived rules
without application conditions leading to the derived rules of a triple rule
with application conditions.

Definition 5.16 (Derived rules with application conditions)

Given a triple rule tr = (tr : L → R, ac) with S-consistent ac ∼= ac′
S ∧ ac′

F then

we obtain the source rule trS = (trS , acS) with acS = toS(ac′
S) and the forward

rule trF = (trF , acF) with acF = toF (ac′
F).

Given a triple rule tr = (tr : L→ R, ac) with T -consistent ac ∼= ac′
T ∧ac′

B then

we obtain the target rule trT = (trT , acT) with acT = toT (ac′
T) and the backward

rule trB = (trB , acB) with acB = toB(ac′
B).

With this notion of S- and T -consistency we can extend the result from
Fact 5.9 to triple rules with application conditions. This means that in

128 5 Model Transformation with Triple Graphs

case of S-consistency each triple rule is the E-concurrent rule of its source
and forward rules, and in case of T -consistency the E-concurrent rule of its
target and backward rules.

Fact 5.17

Given a triple rule tr = (tr : L→ R, ac) with S-consistent ac, then tr = trS∗E1 trF
with E1 being the domain of the forward rule. Dually, if ac is T -consistent we

have that tr = trT ∗E2 trB with E2 being the domain of the backward rule.

Proof From Fact 5.9 we know that this holds for triple rules without application

conditions. It remains to show the property for the application conditions, i. e.

we have to show that ac ∼= Shift((idLS , ∅LC , ∅LT), acS) ∧ L((L
(trS ,idLC

,idLT
)→

E1), Shift(idE1 , acF)). We show this in two steps:

1. Shift((idLS , ∅LC , ∅LT), acS) ∼= ac′
S . With acS = toS(ac′

S) this is obviously

true for ac′
S = true. Consider ac′

S = ∃(a, ac′′
S) and suppose Shift((idPS ,

∅LS , ∅LC), toS(ac′′
S)) ∼= ac′′

S . Then we have that (PS
sP← PC = LC

tP=tL→
PT = LT) is the only square that we have to consider in the Shift-construc-

tion: for the connection and target components, (C) and (T) are the only

jointly epimorphic extensions we have to consider because all morphisms

in the application conditions are identities in the connection and target

components. For any square (1) with a monomorphism bS and (bS , cS)

being jointly epimorphic it follows that bS is an epimorphism, i. e. PS ∼=
QS . This means that (S) is the only epimorphic extension that we obtain

in the source component. It follows that Shift((idLS , ∅LC , ∅LT), toS(∃(a,

ac′′
S))) ∼= ∃(a, Shift((idPS , ∅LS , ∅LT), toS(ac′′

S)) ∼= ∃(a, ac′′
S) = ac′

S . This

can be recursively done leading to the result that indeed Shift((idLS , ∅LC ,

∅LT), acS) ∼= ac′
S .

LS LS

PS QS

LS LS

PS PS

∅ ∅

LC LC

∅ ∅

LT LT

(T)(C)(S)(1)

idLS

idLS

aS aS

idLS

bS

aS cS

idLC
idLT

2. L((L
(trS ,idLC

,idLT
)→ E1), Shift(idE1 , acF)) ∼= ac′

F . With acF = toF (ac′
F)

this is obvious for ac′
F = true. Consider ac′

F = ∃(a, ac′′
F) with L((LS ←

PC → PT) → (RS ← PC → PT), Shift(id, toF (ac′′
F))) ∼= ac′′

F . Then (PS =

LS
sP← PC

tP→ PT) is the pushout complement constructed for the left-shift-

construction and we have that L((L
(trS ,idLC

,idLT
)→ E1),Shift(idE1 , toF (∃(a,

ac′′
F)))) ∼= L((L

(trS ,idLC
,idLT

)→ E1), ∃((idRS , aC , aT), toF (ac′′
F))) ∼= ∃((idLS ,

aC , aT),L(((LS ← PC → PT)→ (RS ← PC → PT)), toF (ac′′
F)) ∼= ∃(a, ac′′

F)

5.2 Triple Graph Transformation with Application Conditions 129

= ac′
F . This can be recursively done leading to the result that indeed

L((L
(trS ,idLC

,idLT
)→ E1), Shift(idE1 , acF)) ∼= ac′

F .

It follows that ac ∼= ac′
S∧ac′

F
∼= Shift((idLS , ∅LC , ∅lT), acS)∧L((L

(trS ,idLC
,idLT

)→
E1),Shift(idE1 , acF)).

Dually, we can obtain the same result for a T -consistent application condi-

tion ac ∼= ac′
T ∧ ac′

B
∼= Shift((∅LS , ∅LC , idLT), acT) ∧ L((L

(idLS
,idLC

,trT)→ E2),

Shift(idE2 , acB)).

newConnectionS:

p1 p2

L2S,S

∅

L2S,C

∅

L2S,T

p1 p2

R2S,S

∅

R2S,C

∅

R2S,T

L2S

ac2S = ¬∃b2S
p1 p2 ∅ ∅

newConnectionF:

L2F

ac2F = ¬∃a2F
p1 p2 P P l1:c 2:c

p1 p2

L2F,S

P P

L2F,C

1 : c 2 : c

L2F,T

p1 p2

R2F,S
T

T

P P

R2F,C

l1 : c 2 : c

R2F,T

b2S

sL2S tL2S

sR2S tR2S

tr2S,S tr2S,C tr2S,T

a2F

sL2F tL2F

sR2F tR2F

tr2F,S tr2F,C tr2F,T

Figure 5.6: The derived source and forward rules for the triple rule newConnection

130 5 Model Transformation with Triple Graphs

newConnectionT:

∅

L2T,S

∅

L2T,C

1 : c 2 : c

L2T,T

∅

R2T,S

∅

R2T,C

l1 : c 2 : c

R2T,T

L2T

ac2T = ¬∃a2T
∅ ∅ l1:c 2:c

newConnectionB:

L2B

ac2B = ¬∃b2B
p1 p2 P P l1:c 2:c

p1 p2

L2B,S

P P

L2B,C

l1 : c 2 : c

L2B,T

p1 p2

R2B,S
T

T

P P

R2B,C

l1 : c 2 : c

R2B,T

a2T

sL2T tL2T

sR2T tR2T

tr2T,S tr2T,C tr2T,T

b2B

sL2B tL2B

sR2B tR2B

tr2B,S tr2B,C tr2B,T

Figure 5.7: The derived target and backward rules for the triple rule

newConnection

Example 5.18

For the triple rules in Figs. 5.3 and 5.4, we analyze the application conditions.

ac2 = ¬∃a2 ∧ ¬∃b2 can be decomposed into the S-application condition ¬∃b2,
which is also a T -extending application condition, and the T -application condi-

tion ¬∃a2, which is also an S-extending application condition. This leads to the

derived rules of the triple rule newConnection as depicted in Figs. 5.6 and 5.7. Ap-

plying Fact 5.17 we obtain the result that newConnection = newConnectionS ∗E1
newConnectionF and newConnection = newConnectionT ∗E2 newConnectionB .

5.2 Triple Graph Transformation with Application Conditions 131

L3

ac3 = ∀(a∗3,¬∃b∗3)

p1 p2 P P l1:c 2:c

p1 p2 P P l1:c 2:c

a∗3

b∗3

e

Figure 5.8: Alternative application condition for the triple rule extendConnection

Similarly, ac4 = ¬∃a4 ∧¬∃b4 ∧¬∃c4 can be decomposed into the S-application

condition ¬∃a4 and the T -application condition ¬∃b4∧¬∃c4. This means that both
rules are S- and T -consistent. ac3 = ∀(a3,¬∃b3) is an S-extending application

condition, but not a T -application condition. This means that the application con-

dition ac3 of the triple rule extendConnection is S-consistent but not T -consistent.

Note that we could choose an alternative application condition ac∗
3 = ∀(a∗

3,¬∃b∗
3)

as shown in Fig. 5.8 which is equally expressive for our example but leads to both

S- and T -consistency of the rule extendConnection∗ = (tr3, ac∗
3).

5.2.2 Composition and Decomposition of Triple
Transformations

Now we want to analyze how a triple transformation can be decomposed
into a transformation applying first the source rules followed by the forward
rules. Match consistency of the decomposed transformation means that the
co-matches of the source rules define the source parts of the matches of the
corresponding forward rules. This helps us to define suitable forward model
transformations which have to be source consistent to ensure a valid model.
Note that we define the notions and obtain the results in this subsection
only for decompositions into source and forward rules. Dually, all these
notions and results can be shown for target and backward rules.

Definition 5.19 (Source and match consistency)

Consider a sequence (tri)i=1,...,n of triple rules with S-consistent application condi-

tions leading to corresponding sequences (triS)i=1,...,n and (triF)i=1,...,n of source

and forward rules. A triple transformation sequence G00 =
tr∗S==⇒ Gn0 =

tr∗F==⇒ Gnn
via first tr1S , . . . , trnS and then tr1F , . . . , trnF with matches miS and miF and

co-matches niS and niF , respectively, is match consistent if the source component

of the match miF is uniquely defined by the co-match niS .

A triple transformation Gn0 =
tr∗F==⇒ Gnn is called source consistent if there is a

match consistent sequence G00 =
tr∗S==⇒ Gn0 =

tr∗F==⇒ Gnn.

132 5 Model Transformation with Triple Graphs

Using Fact 5.17, we can split a transformationG0 =tr1=⇒ G1 ⇒ . . . =trn==⇒ Gn

into transformations G0 =tr1S==⇒ G′0 =tr1F==⇒ G1 ⇒ . . . =trnS==⇒ G′n−1 =trnF==⇒ Gn.
But to apply first the source rules and afterwards the forward rules, these
have to be independent in a certain sense. In the following theorem, we
show that if the application conditions are S-consistent such a decomposi-
tion into a match consistent transformation can be found and, vice versa,
each match consistent transformation can be composed to a transforma-
tion via the corresponding triple rules. This result is an extension of the
corresponding result in [EEE+07] for triple transformations without appli-
cation conditions and in [EHS09] for triple transformations with negative
application conditions.

Theorem 5.20 (De- and composition)

For triple transformation sequences with S-consistent application conditions the

following holds:

1. Decomposition: For each triple transformation sequence G0 =
tr1=⇒ G1 ⇒

. . . =
trn==⇒ Gn there is a corresponding match consistent triple transformation

sequence G0 = G00 =
tr1S==⇒ G10 ⇒ . . . =

trnS==⇒ Gn0 =
tr1F==⇒ Gn1 ⇒ . . . =

trnF===⇒
Gnn = Gn.

2. Composition: For each match consistent triple transformation sequence

G00 =
tr1S==⇒ G10 ⇒ . . . =

trnS==⇒ Gn0 =
tr1F==⇒ Gn1 ⇒ . . . =

trnF===⇒ Gnn there is a

triple transformation sequence G00 = G0 =
tr1=⇒ G1 ⇒ . . . =

trn==⇒ Gn = Gnn.

3. Bijective Correspondence: Composition and Decomposition are inverse

to each other.

Proof This result has been shown in [EEE+07] for triple rules without applica-

tion conditions. We use the facts that tri = triS ∗Ei triF , as shown in Fact 5.17,

and that the transformations via triS and trjF are sequentially independent for

i > j, which is shown in [EEE+07] for rules without application conditions and

can be extended to triple rules with application conditions as shown in the fol-

lowing. Thus, the proof from [EEE+07] can be done analogously for rules with

application conditions.

It suffices to show that the transformations G10 =
tr1F ,m1
=====⇒ G11 =

tr2S ,m2
=====⇒ G21 are

sequentially independent. From the sequential independence without application

conditions we obtain morphisms i : R1F → G11 with i = n1 and j : L2S → G10

with g1 ◦ j = m2.

It remains to show the compatibility with the application conditions:

5.2 Triple Graph Transformation with Application Conditions 133

L1F R1F

G10 G11

L2S R2S

G21

tr1F

g1

m1
i=n1

j

tr2S

g2

m2 n2

• j |= ac2S : ac2S = toS(ac′
2S),

where ac′
2S is an S-application

condition. For ac′
2S = true,

also ac2S = true and therefore

j |= ac2S . Suppose ac′
2S =

∃(a, ac′′
2S) leading to ac2S = ∃((aS , id∅ , id∅), toS(ac′′

2S)). Moreover, tr1F
is a forward rule, i. e. it does not change the source component and G11,S =

G10,S .

We know that m2 = g1 ◦ j |= ac2S , which means that there exists p : P →
G11 with p ◦ a = g1 ◦ j, p |= toS(ac′′

2S), and pC = ∅, pT = ∅. Then

there exists q : P → G10 with q = (pS , ∅, ∅), q ◦ a = (pS ◦ aS , ∅, ∅) = j,

and q |= toS(ac′′
2S) because all objects occuring in toS(ac′′

2S) have empty

connection and target components. This means that j |= ac2S for this case,

and can be shown recursively for composed ac2S .

PS ∅ ∅

L2,S ∅ ∅

G10,S G10,C G10,T

G11,S = G10,S G11,C G11,T

toS(ac′′
2S)

ac2S

sG10 tG10

sG11 tG11

aS

jS

id g1,C g1,T

pS

R1,S L1,C L1,T

PS = R1,S PC PT

R1,S R1,C R1,T

P ′
C = R1,S P ′

C P ′
T

tr1,S◦sL tL

sP tP

id aC aT

sR tR

sP ′ tP ′

id bC bT

id tr1,C tr1,T

id uC uT

• g2 ◦ n1 |= acR := R(tr1F ,

ac1F): ac1F = toF (ac′
1F),

where ac′
1F is an S-exten-

ding application condi-

tion. For ac′
1F = true also

ac1F = true and acR =

true, therefore g2 ◦ n1 |=
acR. Now suppose ac′

1F =

∃(a, ac′′
1F) leading to

ac1F = ∃((idR1,S , aC ,

aT), toF (ac′′
1F)) and acR = ∃((idR1S , bC , bT), ac′

R) by component-wise push-

out construction for the right-shift with ac′
R = R(u, toF (ac′′

1F)). Moreover,

tr2S is a source rule which means that g2,C and g2,T are identities.

From Fact 3.41 we know that n1 |= acR using that m1 |= ac1F . This means

that there is a morphism p : P → G11 with p ◦ a = n1, p |= ac′
R, and pS =

n1,S . It follows that g2 ◦p◦a = g2 ◦n1 and g2 ◦p = (g2,S ◦pS , pC , pT) |= ac′
R,

because it only differs from p in the S-component, which is identical in all

134 5 Model Transformation with Triple Graphs

objects occuring in ac′
R. This means that g2 ◦ n1 |= acR = ∃(a, ac′

R), and

can be shown recursively for composed acR.

P ′
S = R1,S P ′

C P ′
T

R1,S R1,C R1,T

G11,S G11,C G11,T

G21,S G21,C = G11,C G21,T = G11,T

ac′
R

acR

sP tP

sR tR

sG10 tG10

sG11 tG11

id bC bT

n1,S n1,C n1,T

g2,S id id

pS=n1,S pC pT

Example 5.21

Consider the transformation G00
∗⇒ G33 = G in Fig. 5.9, where we first apply the

source rules newConnectionS , newConnectionS , newExclusiveS and afterwards

the forward rules newConnectionF , newConnectionF , newExclusiveF . The source

parts of the matches m1F , m2F , and m3F are completely defined by the source

component of the co-matches n1S , n2S , and n3S . For example, choosing m1F,S like

n1S,S defines the mapping of the places p1 and p2 in the rule to p1 and p2 in G30,S

and of the transitions. Moreover, the only possible matches for the connection

and target parts are the corresponding nodes P and clients in G30,C and G30,T ,

respectively. This holds for all source and forward rule applications in this triple

transformation, thus this triple transformation sequence is match consistent.

The triple transformation G30
∗⇒ G33 is source consistent since we find a corre-

sponding match consistent sequence. We can compose these transformations lead-

ing to a triple transformation G00 =
newConnection
=======⇒ G1 =

newConnection
=======⇒ G2 =

newExclusive
=======⇒

G, and vice versa this triple transformation can be decomposed. This also holds

for the triple transformation ∅
∗⇒ G which we originally considered in Ex. 5.11.

Based on source consistent forward transformations we define model
transformations, where we assume that the start graph is the empty graph.

Definition 5.22 (Model transformation)

A (forward) model transformation sequence (GS , G0 =
tr∗F==⇒ Gn, GT) is given by a

source graph GS , a target graph GT , and a source consistent forward transforma-

tion G0 =
tr∗F==⇒ Gn with G0 = (GS

∅←− ∅
∅−→ ∅) and Gn,T = GT .

A (forward) model transformation MTF : V LS � V LT is defined by all (for-

ward) model transformation sequences.

Example 5.23

Our triple transformation (GS ← ∅ → ∅)
∗⇒ G33 with G33 shown in Fig. 5.9 is

source consistent. Thus, it leads to a forward transformation sequence (GS , G0

5.2 Triple Graph Transformation with Application Conditions 135

G30

p1

p2 p3

G00,S

P

P P

G00,C

1 : c

2 : c 3 : c

G00,T

p1

p2 p3

G10,S

P

P P

G10,C

1 : c

2 : c 3 : c

G10,T

p1

p2 p3

G20,S

P

P P

G20,C

1 : c

2 : c 3 : c

G20,T

p1

p2 p3

G30,S

P

P P

G30,C

1 : c

2 : c 3 : c

G30,T

p1

p2 p3

G31,S

T

T

P

P P

G31,C

l

1 : c

2 : c 3 : c

G31,T

p1

p2 p3

G32,S

T

T

T

T

P

P P

G32,C

l l

1 : c

2 : c 3 : c

G32,T

p1

p2 p3

G33,S
T

T

T

T

T

T

P

P P

G33,C

l

l l

1 : c

2 : c 3 : c

G33,T

newConnectionS,m1S

newConnectionS,m2S

newExclusiveS,m3S

newConnectionF ,m1F

newConnectionF ,m2F

newExclusiveF ,m3F

sG00
tG00

sG10
tG10

sG20
tG20

sG30
tG30

sG31
tG31

sG32
tG32

sG33
tG33

e

Figure 5.9: A match consistent triple transformation sequence

=
tr∗F==⇒ G33, GT). Collecting all possible source consistent transformations defines

the forward model transformation from Petri nets to our communication models.

For all notions and results concerning source and forward rules, we ob-
tain the dual notions and results for target and backward rules. Thus,
we have target and match consistency of the corresponding triple trans-

136 5 Model Transformation with Triple Graphs

formations sequences leading to the dual composition and decomposition
properties for triple transformation sequences with T -consistent applica-
tion conditions. Moreover, a backward model transformation sequence
(GT , G

′
0 =

tr∗B==⇒ G′n, GS) is based on a target consistent backward transfor-

mation G′0 =
tr∗B==⇒ G′n with G′0 = (∅ ∅←− ∅

∅−→ GT) and G′n,S = GS .

5.3 Model Transformation SC2PN from

Statecharts to Petri Nets

In this section, we define the model transformation SC2PN from a variant of
UML statecharts (see Subsection 4.2.2) to Petri nets. We further restrict the
statecharts and allow only two hierarchies of states, i.e the longest possible
chain of states and regions is SM → R → S → R → S. The reason is that
for more nesting of hierarchies, Petri nets are not a suitable target language
to find a mapping to such that the semantical behavior of the statecharts
can be preserved. Due to the complicated behavior of the current-pointer,
in case of more hierarchies one should choose object Petri nets as target
language, which may have Petri nets as tokens and some synchronization
to allow for communication and interaction [Far01, KR04].

Existing model transformations from statecharts to Petri nets restrict the
statecharts even more or transform into much more complex net classes. In
[LV02], a model transformation from statecharts without any hierarchy to
Petri nets is implemented in AToM3, a meta-modelling tool using three
different graph grammars applied one after the other. In [San00], the state-
charts are also restricted and as target language stochastic reward nets are
used, while the transformation is directly implemented.

Thus, we add an additional constraint c8 depicted in Fig. 5.10. Moreover,
we redefine the constraint c6 which should ensure that transitions do not
connect states in parallel regions. While this demand cannot be presented
by a constraint for arbitrary hierarchy depth, it is shown as constraint c′6 in
Fig. 5.10 for the reduced hierarchy. Moreover, we allow only multi chains
of trigger elements, meaning that trigger elements form a tree with root
null and incoming edges. This constraint c9 cannot be expressed by a
finite constraint therefore we phrase it in its textual form. This leads to the
restricted language V LSC2 for statecharts with only two hierarchy levels.

5.3 Model Transformation SC2PN from Statecharts to Petri Nets 137

c8 := ¬∃iA8

SM R S R S RA8

c′6 := ∀(iB6 , ∃c6 ∨ ∃d6 ∨ ∃e6 ∨ ∃f6)

1:T
B6

R

S S

1:T
C6

R

R R

S S

S S

1:TD6

R

S S

R

S

1:T

E6

R

S S

R

S

1:T

F6

c6
d6

e6
f6

begin end
begin end

begin

end begin

end

Figure 5.10: Additional constraints for the restricted number of state hierarchies

Definition 5.24 (Language V LSC2)

The language V LSC2 consists of all typed attributed graphs respecting the type

graph TGSC,Syn (see Def. 4.36) and the constraints c1, . . . , c5, c′
6, c7, c8, c9 in

Figs. 4.23, 5.10, and desribed above, i. e. V LSC2 = {G | G ∈ V LSC , G |= c′
6 ∧ c8 ∧

c9}.

For the target language of Petri nets, we extend our elementary Petri nets
from Subsection 4.2.1 with inhibitor arcs, contextual arcs, open places, and
allow arbitrary many token on each place. A transition with an inhibitor
arc from a place (denoted by a filled dot instead of an arrow head) is only
enabled if there is no token on this place. A contextual arc between a place
and a transition (denoted by an edge without arrow heads), also known as
read arc in the literature, means that this token is required for firing, but
remains on the place. Moreover, open places allow the interaction with the
environment, i. e. tokens may appear or disappear without firing a transition
within the net. We assume all places to be open.
In the following, we present the triple rules that create simultaneously the

statechart model, the connection part, and the corresponding Petri net. In
Fig. 5.11, the triple type graph is depicted, which has in the left the source
component containing the type graph V LSC,Syn of statecharts as defined
in Subsection 4.2.2, in the right the target component containing the type
graph of elementary Petri nets extended by inhibitor and contextual arcs
and a loop at the place denoting open places, and some connecting nodes

138 5 Model Transformation with Triple Graphs

SM

name:String

R P

E

name:String

T

S

name:String

isInitial:Bool

isFinal:Bool

TE

name:String

A

name:String

G

R-T3

E-P

T-T

S-P

S-Pe

S-T1

S-T2

place

transition

pre inhibitor
contextualpost

region

regions

states
trigger

action guard

begin

end

condition

next
sTG tTG

Figure 5.11: The triple type graph for the model transformation

in the connection component in between. As for the language, the edge
types sub, behavior, current, and next in the statecharts and similarly
the tokens in the Petri nets are only needed for the semantics but not for
the model transformation, thus we leave them out here. For the mappings
of the connection to the source and target parts, sTG maps the nodes S-P,
S-Pe, S-T1, and S-T2 to the state S, the node T-T to the transition T, the
node R-T3 to the region R, and the node E-P to the event E, while tTG maps
S-P, S-Pe and E-P to place and S-T1, S-T2, T-T, and R-T3 to transition.

In general, each state of the statechart model is connected to a place
in the Petri net, where a token on it represents that this state is current.
Transitions between states are mapped to Petri net transitions and fire when
the corresponding state transition occurs. Events are connected to open
places, where all events with the same name share the same Petri net place.
They are connected via a contextual arc to their corresponding transition
thus enabling the simultaneous firing of all enabled Petri net transitions
when a token is placed there. By using contextual arcs it is possible that all
transitions connected to an event with this name are enabled simultaneously
if also their other pre-places are marked. Otherwise, we would not be able
to fire all these transitions concurrently. They would not be independent
but compete for the token. For independence, we had to know in advance
how many of these transitions will fire to allocate that number of tokens on
the event’s place. For a guard, the Petri net transition of its transition in
the statechart diagram is the target of a pre- and post-arc from the place
connected to the condition. Thus, we check also in the Petri net that this

5.3 Model Transformation SC2PN from Statecharts to Petri Nets 139

condition is fulfilled before firing the transition. Note that we use open
places for modeling places connected to states and events.
Additional places and transitions make sure that the effects of a state

transition concerning involved sub- or superstates can be simulated also
in the Petri net part. Each state that may contain regions is connected
via S-T1 to a transition that is the target of pre-arcs from all places of
final states and inhibitor arcs from all other places in its regions, while the
superstate’s place is a contextual place. This makes sure that, when all
substates are final, these substates are no longer current and, if it exists,
the exit-action of the superstate can be initiated. Similarly, each substate
is connected via S-T2 to a transition which is the target of a pre-arc from
its superstate. This makes sure that, when a state transition leaves this
superstate, also all substates are no longer current. Each region is connected
via R-T3 to a transition which makes sure that, when no state inside this
region is current, also the superstate is deactivated. For the handling of the
special "exit"-events, each state which may be a superstate is connected via
S-Pe to a place which handles the proper execution of this event regarding
T1- and T3-transitions.
For the initialization and the semantical steps, all places corresponding to

currently active states will be marked. For the handling of the hierarchical
activation of initial states the corresponding open places may fire triggered
by the corresponding semantical rules for the statecharts. When handling
a trigger element of the event queue, the corresponding open place has
to first add and later delete a token. These restrictions imply that the
Petri net for itself shows different semantical behavior than the statechart,
but every semantical statechart step can be simulated as shown later in
Subsection 6.3.2.
The start graph is the empty graph, and the first rule to be applied

is the triple rule start shown in Fig. 5.12 which creates the start graph
of statecharts in the source component, and empty connection and target
components. Due to its application condition it can only be applied once.
In Fig. 5.13, the triple rules newRegionSM and newRegionS are depicted

which allow to create a new region of a statemachine or a state, respectively.
Since each region has to have an initial state, this initial state is also created
and connected to its corresponding place via S-P. With newRegionSM, the
initial state is also connected to a T1-transition in the target component
and another place via S-Pe. Moreover, if the new region is created inside
a state by newRegionS the substate is the inhibitor of the superstate’s T1-
transition, the superstate inhibits a new T2-transition and the region and

140 5 Model Transformation with Triple Graphs

start

L0,S

∅
L0,C

∅
L0,T

∅

∅

R0,S R0,C R0,T

∅
SM

name="sm"

PTE

name=null

ac0 = ¬∃tr0

tr0,S tr0,C tr0,T

tL0sL0

tR0sR0

Figure 5.12: The triple rule start

the substate inhibit a new T3-transition. For the triple rule newRegionS,
the application condition forbids that the superstate is final or already a
substate of another state. newRegionSM has the application condition true
which is not depicted. Note that we allow parameters for the rules to define
the attributes. Thus, the user has to declare the name of the newly created
state when applying these triple rules.
In Figs. 5.14 and 5.15, the triple rules for creating new states are shown.

With newStateSM and newStateS, new states inside a region of the statema-
chine or a state are created, which are not final states. Similarly, final states
are created by the triple rules newFinalStateSM and newFinalStateS. In
all cases, a corresponding place is created in the target component. As in the
case of a new region, if creating a state as a substate of another state, there
is a new T2-transition with this superstate as inhibitor and the substate in-
hibits the T1-transition of the superstate. Moreover, the new place inhibits
the region’s T3-transition. For a final state created with newFinalStateSM,
we do not have to create a T1-transition in the Petri net because final states
are not allowed to contain regions. But a final state inside a state has to be
connected to this superstate’s T1-transition. The application conditions of
these rules make sure that the new state name is unique within its region
and that, for final states, only one final state per region is allowed.
For the creation of a new transition, the triple rules newTransitionNew-

Event, newTransitionNewExit, newTransitionOldEvent, and newTran-
sitionOldExit in Figs. 5.16 and 5.17 are used. A new transition in the
source part connected with a new Petri net transition in the target part is
created, and in case of a new event, this event is connected with a new place
which is a contextual place for the transition. Otherwise, the transition is
connected with the place of the already existing event. In case of an exit-

5.3 Model Transformation SC2PN from Statecharts to Petri Nets 141

newRegionSM(sname:String)

L1,S L1,C L1,T

1:SM
∅

∅

R1,S R1,C R1,T

1:SM

R

S

name=sname

isInitial=true

isFinal=false

e

T1

S-P

S-Pe

S-T1

newRegionS(sname:String)

L2,S L2,C L2,T

1:S

S-P

S-Pe

S-T1
e

T1

R2,S R2,C R2,T

1:S

R

S

name=sname

isInitial=true

isFinal=false

e

T2

T3
T1

S-P

S-Pe

S-P

R-T3

S-T2

S-T1

ac2 = ¬∃p2 ∧ ¬∃q2

L2
1:S

isFinal=true

S-P
S-Pe
S-T1

L2 S R 1:S
S-P
S-Pe
S-T1

p2

q2

sL1 tL1

sR1 tR1

tr1,S tr1,C tr1,T

sL2 tL2

sR2 tR2

tr2,S tr2,C tr2,T

Figure 5.13: The triple rules newRegionSM and newRegionS

event, the place connected via S-Pe to the begin-state has to be connected
to the new transition and the begin-state’s T1-transition. The application

142 5 Model Transformation with Triple Graphs

newStateSM(sname:String)

L3,S L3,C L3,T

1:SM

2:R

∅ ∅

R3,S R3,C R3,T

1:SM

2:R

S

name=sname

isInitial=false

isFinal=false

T1

S-P

S-T1

eS-Pe

ac3 = ¬∃p3 L3 1:SM 2:R
S

name=sname
∅ ∅

newStateS(sname:String)

L4,S L4,C L4,T

1:S

2:R

S-P

R-T3

S-T1 T1

T3

R4,S R4,C R4,T

1:S

2:R

S

name=sname

isInitial=false

isFinal=false

T2

T3 T1

S-T1

S-P

S-P

S-T2

R-T3

ac4 = ¬∃p4 L4 1:S 2:R
S

name=sname

S-P

R-T3
S-T1

p3

p4

sL3 tL3

sR3 tR3

tr3,S tr3,C tr3,T

sL4 tL4

sR4 tR4

tr4,S tr4,C tr4,T

Figure 5.14: The triple rules newStateSM and newStateS

conditions forbid that the begin-state is a final state and that states over
different regions are connected by a transition, and ensure that exit-events
only begin at superstates. Note that the objects and morphisms used for

5.3 Model Transformation SC2PN from Statecharts to Petri Nets 143

newFinalStateSM

L5,S L5,C L5,T

1:SM

2:R

∅ ∅

R5,S R5,C R5,T

1:SM

2:R

S

name="final"

isInitial=false

isFinal=true

S-P

ac5 = ¬∃p5 L5 1:SM 2:R
S

isFinal=true
∅ ∅

newFinalStateS

L6,S L6,C L6,T

1:S

2:R

S-T1

S-P

R-T3

T1

T3

R6,S R6,C R6,T

1:S

2:R

S

name="final"

isInitial=false

isFinal=true

T1

T2 T3

S-T1

S-P

S-P

R-T3

S-T2

ac6 = ¬∃p6 L6 1:S 2:R
S

isFinal=true

S-T1
S-P
R-T3

p5

p6

sL5 tL5

sR5 tR5

tr5,S tr5,C tr5,T

sL6 tL6

sR6 tR6

tr6,S tr6,C tr6,T

Figure 5.15: The triple rules newFinalStateSM and newFinalStateS

the application conditions ac8, ac9, and ac10 are not shown explicitly, but
they correspond to the objects and morphisms used in ac7.

144 5 Model Transformation with Triple Graphs

newTransitionNewEvent(ename:String)

L7,S L7,C L7,T

1:S

2:S

S-P
S-P

R7,S R7,C R7,T

1:S

2:S

T

E

name=ename

T

S-P

S-P

E-P

T-T

ac7 = ename �= ”exit” ∧ ¬∃p7 ∧ ¬∃q7 ∧ (∃r7 ∨ ∃s7 ∨ ∃t7 ∨ ∃u7)

L7

1:S

2:S

E

name=ename

S-P

S-P
L7

2:S

1:S

isFinal=true
S-P

S-P

L7

R

1:S 2:S

S-P

S-P
L7

RR R

S S1:S 2:S

S-P

S-P

L7

R

S 2:S

R 1:S

S-P

S-P

L7

R

1:S S

R2:S

S-P

S-P

newTransitionNewExit

L8,S L8,C L8,T

1:S

2:S

S-Pe
S-T1
S-P
S-P

e T1

R8,S R8,C R8,T

1:S

2:S

T

E

name="exit"

T

e
T1

S-Pe

S-T1

S-P

S-P

E-P

T-T

ac8 = ¬∃p8 ∧ ¬∃q8 ∧ ∃v8∧
(∃r8 ∨ ∃s8 ∨ ∃t8 ∨ ∃u8) L8

1:S 2:S

R

S-Pe

S-T1

S-P

S-P
e T1

begin

end

begin

end

sL7 tL7

sR7 tR7

tr7,S tr7,C tr7,T

p7 q7

r7 s7

v8

t7 u7

sL8 tL8

sR8 tR8

tr8,S tr8,C tr8,T

Figure 5.16: newTransitionNewEvent and newTransitionNewExit

5.3 Model Transformation SC2PN from Statecharts to Petri Nets 145

newTransitionOldEvent

L9,S L9,C L9,T

1:S

2:S

3:E

name=ename

S-P

S-P

E-P

R9,S R9,C R9,T

1:S

2:S

T

E

name=ename

3:E

name=ename

T

S-P

S-P

E-P

E-P

T-T

ac9 = ename �= ”exit” ∧ ¬∃q9 ∧ (∃r9 ∨ ∃s9 ∨ ∃t9 ∨ ∃u9)
newTransitionOldExit

L10,S L10,C L10,T

1:S

2:S

3:E

name="exit"

S-Pe
S-T1
S-P
S-P
E-P

e T1

R10,S R10,C R10,T

1:S

2:S

T

E

name="exit"

3:E

name="exit"
T

e
T1

S-Pe

S-T1

S-P

S-P

E-P
E-P

T-T

ac10 = ¬∃q10 ∧ (∃r10 ∨ ∃s10 ∨ ∃t10 ∨ ∃u10) ∧ ∃v10

sL9 tL9

sR9 tR9

tr9,S tr9,C tr9,T

begin

end

sL10 tL10

sR10 tR10

tr10,S tr10,C tr10,T

begin

end

Figure 5.17: newTransitionOldEvent and NewTransitionOldExit

In Fig. 5.18, the triple rules newGuard and nextGuard are shown which
create the guard conditions of a transition. The guard condition is a state
whose corresponding place is connected via a contextual arc to the corre-
sponding net transition. The application conditions ensure that only one
guard per transition is allowed and that a transition with exit-event is not
guarded at all. With the rule newAction in Fig. 5.19, an action is added to
a transition in the statechart model if none is specified yet. Moreover, the

146 5 Model Transformation with Triple Graphs

newGuard

L11,S L11,C L11,T

1:S

2:T

S-P

T-T
T

R11,S R11,C R11,T

1:S

2:T

G

T

S-P

T-T

ac11 = ¬∃p11 ∧ ¬∃q11 ∧ ¬∃r11 L11 1:S 2:T S-P T-T

L11 1:S 2:T G S-P T-T

L11 1:S 2:T
E

name="exit"
S-P T-T

nextGuard

L12,S L12,C L12,T

1:S

2:T

3:G

S-P

T-T
T

R12,S R12,C R12,T

1:S

2:T

3:G

T

S-P

T-T

ac12 = ¬∃p12 ∧ ¬∃q12

L12 1:S 2:T3:G S-P T-T

L12 1:S 2:T3:G S-P T-T

sL12 tL12

sR12 tR12

tr12,S tr12,C tr12,T

q12

p12

sL11 tL11

sR11 tR11

tr11,S tr11,C tr11,T

p11

q11

r11

Figure 5.18: The triple rules newGuard and nextGuard

triple rule newTriggerElement in Fig. 5.19 adds a new TriggerElement
with a given name. Since the actions and trigger elements are handled by
the semantics they do not have a counterpart in the Petri net model.

5.3 Model Transformation SC2PN from Statecharts to Petri Nets 147

newAction(aname:String)

L13,S L13,C L13,T

1:T
T-T

T

R13,S R13,C R13,T

1:T
A

name=aname
T

T-T

ac13 = ¬∃p13 L13 1:TA T-T

newTriggerElement(tname:String)

L14,S L14,C L14,T

1:TE
∅

∅

R14,S R14,C R14,T

1:TE
TE

name=tname
∅

∅

sL13 tL13

sR13 tR13

tr13,S tr13,C tr13,T

p13

sL14 tL14

sR14 tR14

tr14,S tr14,C tr14,T

Figure 5.19: The triple rules newAction and newTriggerElement

The statechart example ProdCons can be constructed in the source com-
ponent of a triple graph by the application of the following triple rule se-
quence tr =

start;
newRegionSM(sname="prod");
newRegionS(sname="produced");
newRegionS(sname="empty");
newRegionS(sname="wait");
newStateSM(sname="error");
newRegionS(sname="call");
newStateS(sname="prepare");
newStateS(sname="full");
newStateS(sname="consumed");
newStateS(sname="repair");
newFinalStateSM;
newFinalStateS;
newTransitionNewExit;
newTransitionNewEvent(ename="fail");
newTransitionNewEvent(ename="finish");

148 5 Model Transformation with Triple Graphs

newTransitionNewEvent(ename="arrive");
newTransitionNewEvent(ename="repair");
newTransitionOldEvent;
newTransitionNewEvent(ename="next");
newTransitionNewEvent(ename="produce");
newGuard;
newAction;
newTransitionNewEvent(ename="incbuff");
newTransitionNewEvent(ename="decbuff");
newTransitionOldEvent;
newTransitionNewEvent(ename="consume");
newGuard;
newAction;

Choosing the right matches, the result in the source component is our
statechart example ProdCons, while in the target component we find the
Petri net PNPC depicted in Fig. 5.20, where we have labeled the places and
transitions with the names of the corresponding statechart elements and
connection node names to denote the correspondence.
From the triple rules, we can derive the corresponding source and forward

rules. All application conditions are S- or T -application conditions and
thus S-consistent. For example, the application condition ac10 of the rule
newGuard in Fig. 5.18 can be decomposed into the S-application condition
¬∃q10 ∧ ¬∃r10 and the S-extending application condition ¬∃p10. In Fig.
5.21, the corresponding source and forward rules newGuardS and newGuardF
are depicted. The S-application condition ¬∃q10∧¬∃r10 is translated to the
source rule, where the source parts of the original application conditions are
kept, but the connection and target parts are empty now. The S-extending
application condition ¬∃p10 is translated to the forward rule, where the
source part is adapted to the new left-hand side.
The forward rules define the actual model transformation SC2PN from

statecharts to Petri nets.

Definition 5.25 (Model transformation SC2PN)

For our triple transformations, the triple rules are given by the set TR = {start,
newRegionSM, newRegionS, newStateSM, newStateS, newFinalStateSM, newFinal-

StateS, newTransitionNewEvent, newTransitionNewExit, newTransitionOld-

Event, newTransitionOldExit, newGuard, nextGuard, newAction, newTrigger-

Element}.
The model transformation SC2PN from statecharts to Petri nets is defined by

all forward model transformations using the forward rules TRF .

5.3 Model Transformation SC2PN from Statecharts to Petri Nets 149

produced

prepare

empty

full

wait

consumed

next

produce

incbuff

decbuff

consume

prod

fail

exit

error

call

repair

final

arrive

repair

e

error

e

prod

finish

final

T

T

T

T

T

T

T2 T2 T2

T2 T2 T2

T1

prod

T T

T1

error

T2

T2

T2

T

T

T

T

T3 T3 T3

T3

Figure 5.20: The Petri net PNPC corresponding to the statechart example

The source rules represent a generating grammar for our statechart mod-
els. Moreover, the restriction of all derived triple graphs to their source part,
the language constructed by the source rules, and the statechart language
V LSC2 are equal.

Theorem 5.26 (Comparison of statechart languages)

Consider the languages V LS = {GS | ∃ triple transformation ∅ =
start
===⇒=tr∗=⇒ (GS

← GC → GT) via rules in TR}, V LS0 = {GS | ∃ triple transformation ∅ =
startS===⇒

150 5 Model Transformation with Triple Graphs

newGuardS

L10,S

1:S

2:T

∅ ∅

R10,S

1:S

2:T

G ∅ ∅

ac10,S = ¬∃q10,S ∧ ¬∃r10,S

L10,S
1:S

2:T G
∅ ∅

L10,S

1:S 2:T

E

name="exit"

∅ ∅

∅ ∅

∅ ∅

tr10,S ∅ ∅

q10,S

r10,S

newGuardF

R10,S L10,C L10,T

1:S

2:T

3:G

S-P

T-T
T

R10,S R10,C R10,T

1:S

2:T

3:G

T

S-P

T-T

ac10,F = ¬∃p10,F

L10,F
1:S 2:T

3:G

S-P T-T

tr10,S ◦ sL10 tL10

sR10 tR10

idR10,S tr10,C tr10,T

p10,F

Figure 5.21: The source and forward rules of newGuard

=
tr∗S==⇒ (GS ← ∅ → ∅) via source rules in TRS}, and V LSC2 as defined in

Def. 5.24. Then we have that V LS = V LS0 = V LSC2.

Proof V LS ⊆ V LS0: For a statechart GS ∈ V LS there is a transformation

∅ =
start
===⇒=tr∗=⇒ (GS ← GC → GT) = Gn, which can be decomposed with Thm. 5.20

into a corresponding sequence ∅ =
startS====⇒=tr

∗
S==⇒ (GS ← ∅ → ∅) =

startF====⇒=tr
∗
F==⇒ Gn.

This means that GS ∈ V LS0.

V LS0 ⊆ V LSC2: For a statechart GS ∈ V LS0 there is a transformation ∅

=
startS====⇒=tr

∗
S==⇒ (GS ← ∅ → ∅). GS is typed over the type graph TGSC,Syn

and respects the multiplicities specified in the type graph and the constraints

in Figs. 4.23 and 5.10, as shown in the following:

• c1: The only source rules that may create SM-nodes is the rules startS ,

which is applied once and only once due to its application condition. This

means that there is exactly one SM-node with attribute name = "sm".

• c2: The only source rules which may create regions are the rules newRegion-

SMS and newRegionSS . They ensure that each region is contained in ex-

actly one state or the statemachine. Moreover, the rules newStateSMS and

newStateSS guarantee that state names within one region are unique.

• c3: The rules newRegionSMS and newRegionSS are the only rules creating

initial states. When creating a region, also a corresponding initial state

is generated, and initial states can only be created inside a new region.

In addition, the attribute isFinal=false is set for this initial state. This

5.3 Model Transformation SC2PN from Statecharts to Petri Nets 151

means that GS |= ∀(iA3 , ∃a3) ∧ ¬∃iC3 ∧ ¬∃iF3 . Moreover, the application
condition ¬∃p2 of newRegionSS ensures that ¬∃iE3 is satisfied. Final states
can only be created by the rules newFinalStateSMS and newFinalStateSS ,

where the application conditions make sure that only one final state exists

in each region, i. e. GS |= ¬∃iD3 .

• c4: newGuardS is the only rule creating guards and the application condition

¬∃r11 ensures that an exit-transition is not connected to a guard.

• c5: Final states can only be created by the rules newFinalStateSMS and

newFinalStateSS , where the attribute name = "final" is set. For the cre-

ation of begin-edges, only the rules newTransitionNewEvent, newTransi-

tionNewExit, newTransitionOldEvent, and newTransitionOldExit can be

used. The application conditions ¬∃qi for i = 7, . . . , 10 ensure that a final

state cannot be the source of a begin-edge.

• c′
6: Similarly, for states 1 and 2 to be connected via a transition, the appli-

cation conditions (∃ri ∨ ∃si ∨ ∃ti ∨ ui) for i = 7, . . . , 10 have to hold, which

directly correspond to this constraint.

• c7: The only source rule that may create P-nodes is the rule startS , which

is applied once and only once due to its application condition. This means

that there is exactly one P-node. Moreover, the rule creates the trigger

element with name=null. Moreover, the only rule creating trigger elements

is newTriggerElementS , which has the name of the new trigger element as

a parameter such that no additional null-trigger element may occur.

• c8: The application condition ¬∃q2 of the rule newRegionSS , which is the

only rule that may create the forbidden situation, ensures that GS satisfies

this constraint.

• c9: With newTriggerElementS , only chains of trigger elements can be con-

structed and this constraint is satisfied.

• Multiplicities: The source rules also ensure the multiplicities defined in

the type graph. For example, the rule newActionS , which is the only rule

introducing actions, makes sure that each action is connected to exactly

one transition. Its application condition forbids more than one application

for a certain transition. Similarly, this hold for guards analyzing the rules

newGuardS and nextGuardS , which may add 1, . . . , n conditional states to

the guard of a transition. Transitions and events are always constructed as

pairs by the source rules ensuring their one-to-one correspondence. Also,

each transition is connected to exactly one begin- and end-state.

V LSC2 ⊆ V LS : Given a statechart model M ∈ V LSC2 we have to show that

we find a transformation sequence ∅ =
start
===⇒=tr∗=⇒ G with GS = M . We can show

this by arguing about the composition of M .

152 5 Model Transformation with Triple Graphs

Due to the constraints c1 and c7, M has to contain nodes of type SM, TE,

and P. Moreover, also the attribute values are restricted to name = "sm" for the

statemachine and name = null for the trigger element. This smallest model M0

is exactly the result in the source component of the transformation ∅ =
start
===⇒ G.

If the statemachine contains a region, this region also has to contain exactly one

initial state (constraint c3). Both can be constructed using the rule newRegionSM.

Additional states in this region can be constructed using the rule newStateSM,

which is applicable because M satisfies the constraint c2. The final state in this

region, which has to be unique due to constraint c3, is constructed by the rule

newFinalStateSM. Similarly, if a state contains a region with states the rules

for constructing regions, states, and final states inside a state can be applied.

The application conditions and constraints correspond to each other such that all

regions and states in M can be constructed.

A transition in M , which has to have a one-to-one correspondence to an event,

one of the rules newTransitionNewEvent, newTransitionOldEvent, newTransi-

tionNewExit, newTransitionOldExit can be applied. We analyze the case for a

transition with an arbitrary, i. e. not an exit-event, which can be handled simi-

larly. If the event name is unique, the rule newTransitionNewEvent is applied. It

is applicable because M satisfies the constraints c′
5 and c′

6 and creates the transi-

tion and its event. Otherwise, we can apply one the rule newTransitionNewEvent

and afterwards as often as necessary the rule newTransitionOldEvent.

Guards, actions, and trigger elements in M can be created using the rules

newGuard, nextGuard, newAction, and newTriggerElement, where we can con-

struct all multi chains of trigger elements with newTriggerElement.

For the target rules, only a subset of Petri nets can be generated, but
all models obtained from transformations using the target rules are well-
formed, because they are typed over the Petri net type graph and we cannot
generate double arcs. This is due to the fact that the rules either create
only arcs from or to a new element or the multiple application is forbidden
as in the rule newGuard as part of the application condition.
Applying the corresponding source rule sequence, we obtain our stat-

echart example ProdCons in Fig. 4.21. This statechart model can be
transformed into the Petri net PNPC in Fig. 5.20 via the forward rules.
This triple transformation is source consistent, since the source parts of the
matches of the forward rules are uniquely defined by the co-matches of the
source rules. Thus, we actually obtain a model transformation sequence
from the statechart model ProdCons to the Petri net PNPC .

6 Analysis, Correctness, and

Construction of Model

Transformations

Model transformations from a source to a target language can be described
by triple graph transformations as shown in Chapter 5. Important prop-
erties for the analysis and correctness of such model transformations are
syntactical correctness, completeness, and functional behavior. Moreover,
the semantics of the source and target models may be given by interaction
schemes using amalgamation as done in Chapter 4. In this case, we are
interested in analyzing the semantical correctness, i. e. the correctness of
the model transformation with respect to the semantical behavior of the
corresponding source and target models.
While we can analyze syntactical correctness, completeness, and func-

tional behavior in general, this is more complicated for the semantical be-
havior and depends on the actual models, semantics, and model transfor-
mation. We show this exemplarily on our model transformation SC2PN from
statecharts to Petri nets. In particular, we show that for this model trans-
formation, each initialization and semantical step in the statechart model
can be simulated in the corresponding Petri net.
For the construction of a model transformation sequence, source consis-

tency does not directly guide the application of the forward rules but has
to be checked for the complete forward sequence. This means that possible
forward sequences have to be constructed until one is found to be source
consistent. Additionally, termination of this search is not guaranteed in
general. Therefore we introduce a more efficient construction technique for
model transformation sequences on-the-fly, where correctness and complete-
ness properties are ensured by construction.
In Section 6.1, we show results concerning syntactical correctness, com-

pleteness, and backward information preservation of model transformations
based on triple graph transformation. Termination and functional behavior
is analyzed in Section 6.2. In particular, we analyze termination on two lev-
els: for the model transformation and also for the semantics. In Section 6.3,
U. Golas, Analysis and Correctness of Algebraic Graph and Model Transformations,
DOI 10.1007/978-3-8348-9934-7_6,
© Vieweg+Teubner Verlag | Springer Fachmedien Wiesbaden GmbH 2011

154 6 Analysis of Model Transformations

we analyze semantical correctness of our model transformation SC2PN. For
a more efficient computation of model transformations, in Section 6.4 the
on-the-fly construction is introduced.

6.1 Syntactical Correctness

In this section, we analyze the syntactical correctness, completeness, and
backward information preservation of model transformations. We illustrate
our results by analyzing the model transformation SC2PN from statecharts
to Petri nets defined in Section 5.3.
Using triple graph transformations with application conditions, as for

the case without application conditions [EEE+07] the model transformation
sequences (see Def. 5.22) are correct and complete with respect to the source
and target languages. Correctness means that the source and target models
actually belong to the source and target languages (see Def. 5.6), while
completeness ensures that for each correct source or target model a model
transformation sequence can be found.

Theorem 6.1 (Syntactical correctness w. r. t. V LS , V LT)

Each model transformation sequence (GS , G0 =
tr∗F==⇒ Gn, GT) and (GT , G′

0 =
tr∗B==⇒

G′
n, GS) is syntactically correct with respect to the source and target languages,

i. e. GS ∈ V LS and GT ∈ V LT .

Proof Consider a forward model transformation sequence (GS , G0 =
tr∗F==⇒ Gn,

GT). If G0 =
tr∗F==⇒ Gn is source consistent we have a match consistent sequence

∅ =
tr∗S==⇒ G0 =

tr∗F==⇒ Gn by Def. 5.19. By composition in Thm. 5.20 there is a triple

transformation ∅ =
tr∗
=⇒ Gn with GS = Gn,S ∈ V LS and GT = Gn,T ∈ V LT

by Def. 5.7. Dually, this holds for a backward model transformation sequence

(GT , G′
0 =
tr∗B==⇒ G′

n, GS).

Theorem 6.2 (Completeness w. r. t. V LS , V LT)

For each GS ∈ V LS there is a corresponding GT ∈ V LT such that there is a

forward model transformation sequence (GS , G0 =
tr∗F==⇒ Gn, GT).

Similarly, for each GT ∈ V LT there is a corresponding GS ∈ V LS such that

there is a backward model transformation sequence (GT , G′
0 =
tr∗B==⇒ G′

n, GS).

Proof For GS ∈ V LS there exists a triple transformation ∅ =
tr∗
=⇒ G which

can be decomposed by Thm. 5.20 into a match consistent sequence ∅ =
tr∗S==⇒ G0 =

(GS
∅←− ∅

∅−→ ∅) =
tr∗F==⇒ G, and by definition (GS , G0 =

tr∗F==⇒ G, GT) is the required

6.1 Syntactical Correctness 155

forward model transformation sequence with GT ∈ V LT . Dually, this holds for

GT ∈ V LT .

Example 6.3

Since our example in Section 5.3 represents a well-defined model transformation

sequence, our statechart ProdCons in Fig. 4.21 and the corresponding Petri net

PNPC in Fig. 5.20 are correct. Moreover, each valid statechart model is in V LSC2
(see Thm. 5.26) and thus can be transformed to a correct Petri net model. Note

that for the backward transformation this only holds for Petri nets which are

correct w. r. t. our target language, and not the language of all well-formed Petri

nets. For example, Petri nets with only places but no transitions cannot be

generated and are therefore not in V LT .

A forward model transformation from GS to GT is backward information
preserving concerning the source component if there is a backward transfor-
mation sequence from GT leading to the same source graph GS . This means
that all information necessary to construct the source model is preserved in
the target model.

Definition 6.4 (Backward information preserving)

A forward transformation sequence G =
tr∗F==⇒ H is backward information preserving

if for the triple graph H ′ = (∅ ∅←− ∅
∅−→ HT) there is a backward transformation

sequence H ′
=
tr∗B==⇒ G′ with G′

S
∼
= GS .

Source consistency leads to backward information preservation and espe-
cially all forward model transformation sequences are backward information
preserving. This fact is an extension of the corresponding result in [EEE+07]
to triple transformations with application conditions.

Fact 6.5

If all triple rules are S- and T -consistent a forward transformation sequence

G =
tr∗F==⇒ H is backward information preserving if it is source consistent. Moreover,

in this case each forward model transformation sequence (GS , G0 =
tr∗F==⇒ Gn, GT)

is backward information preserving.

Proof If G =
tr∗F==⇒ H is a source consistent transformation sequence then by

Def. 5.19 there exists a match consistent transformation sequence ∅ =
tr∗S==⇒ G =

tr∗F==⇒
H leading to the triple transformation sequence ∅ =

tr∗
=⇒ H using Thm. 5.20.

From the decomposition, we also obtain a match consistent transformation se-

quence ∅ =
tr∗T==⇒ H ′

=
tr∗B==⇒ H using the target and backward rules, with H ′

T = HT

and H ′
C = H ′

S = ∅. Thus, G =
tr∗F==⇒ H is backward information preserving. By

156 6 Analysis of Model Transformations

Def. 5.22, the forward transformation sequence G0 =
tr∗F==⇒ Gn leading to a for-

ward model transformation sequence is source consistent, and thus also backward

information preserving.

Example 6.6

The Petri net PNPC in Fig. 5.20 can be transformed into the statechart ProdCons

in Fig. 4.21 using the backward rules of our model transformation in the same

order as the forward rules were used for the forward transformation. Indeed, this

holds for each Petri net obtained of a model transformation sequence from a valid

statechart model.

6.2 Termination and Functional Behavior

Functional behavior describes that a model transformationMT behaves like
a function, i. e. that for each source model a unique target model is found.
For model transformations based on graph transformation, functional be-
havior can be obtained by showing termination and local confluence for the
system. As described in Subsection 3.4.3, local confluence can be analyzed
using critical pairs and strict AC-confluence of all critical pairs leads to local
confluence of the transformation system.

6.2.1 Termination

Termination of a transformation means that no other rule can be applied
any more. Then a system is terminating if all transformations terminate
somewhen and no infinite transformations occur. In contrast to this defini-
tion, for triple graph transformations we can define SC-termination, which
requires termination only for source consistent transformations.

Definition 6.7 (Termination)

Given an M-adhesive transformation system AS = (C,M, P) a transformation

G =
∗⇒ H is terminating if no rule p ∈ P is applicable to H. AS is terminating if

there are no infinite transformations.

Given a triple graph transformation system TGS = (TR), a source consis-

tent transformation G0 =
tr∗F==⇒ Gn is SC-terminating if any extended sequence

G0 =
tr∗F==⇒ Gn =

tr′+
F==⇒ Gm is not source consistent. Similarly, a target consis-

tent transformation G0 =
tr∗B==⇒ Gn is TC-terminating if any extended sequence

G′
0 =

tr∗B==⇒ G′
n =

tr′+
B==⇒ G′

m is not target consistent. TGS is SC-terminating (TC-

terminating) if there are no infinite source (target) consistent transformations.

6.2 Termination and Functional Behavior 157

For model transformations based on triple graph grammars, we can show
SC-termination if the source or target rules are creating.
Theorem 6.8 (Termination of model transformation)

Consider a set of triple rules such that all rule components are finite on the graph

part. If the triple rules are creating on the source component, for a source model

GS ∈ V LS which is finite on the graph part each model transformation sequence

(GS , G0 =
tr∗F==⇒ Gn, GT) is SC-terminating.

Dually, if the triple rules are creating on the target component, for a target

model GT ∈ V LT which is finite on the graph part each model transformation

sequence (GT , G′
0 =
tr∗B==⇒ G′

n, GS) is TC-terminating.

Proof Let G0 =
tr∗F==⇒ Gn be a source consistent forward transformation sequence

such that ∅ =
tr∗S==⇒ G0 =

tr∗F==⇒ Gn is match consistent, i. e. each co-match ni,S deter-

mines the source component of the match mi,F . Thus, also each forward match

mi,F determines the corresponding co-match ni,S . By uniqueness of pushout com-

plements alongM-morphisms the co-match ni,S determines the match mi,S of the

source step, thus mi,F determines mi,S (∗).
If G0 =

tr∗F==⇒ Gn =
tr(n+1,F),m(n+1,F)
=============⇒ Gn+1 =

tr′′∗F===⇒ Gm is a source consistent

forward transformation sequence then there is a corresponding source sequence

∅ =
tr∗S==⇒ G′

=
trn+1,S
=====⇒ G′′

=
tr′′∗S===⇒ G0 leading to match consistency of the com-

plete sequence ∅ =⇒∗ Gm. Using (∗) it follows that G′ ∼= G0, which implies that

we have a transformation step G0 =
trn+1,S
=====⇒ G′′ ⊆ G0, because triple rules are

non-deleting. This is a contradiction to the precondition that each rule is cre-

ating on the source component implying that G′ �∼= G0. Therefore, the forward

transformation sequence G0 =
tr∗F==⇒ Gn cannot be extended and is SC-terminating.

Dually, this can be shown for backward model transformation sequences.

Example 6.9

All triple rules in our example model transformation SC2PN in Section 5.3 are finite

on the graph part and source creating. Thus, all model transformation sequences

based on finite statechart models are SC-terminating. Note that this does not

hold for the backward direction, since the rule newAction is not target creating.

Thus, the corresponding backward rule can be applied infinitely often leading to

non-terminating target consistent backward transformation sequences.

6.2.2 Termination of Statecharts Semantics

Termination is not only interesting for model transformations, but also for
the analysis of the semantics. In the following, we show that also our inter-
preter semantics for statecharts given in Subsection 4.2.3 is terminating for
finite well-behaved statecharts with a finite event queue.

158 6 Analysis of Model Transformations

arrive repair fail produce incbuff

next finish exit consume decbuff

Figure 6.1: The action-event graph of our statechart example

The termination of the interpreter semantics of a statechart in general
depends on the structural properties of the simulated statechart. A sim-
ulation will terminate for the trivial cases that the event queue is empty,
that no transition triggers an action, or that there is no transition from
any active state triggered by the current head elements of the event queue.
Since transitions may trigger actions which are added as new events to the
queue it is possible that the simulation of a statechart may not terminate
even if all semantical steps do. Hence, it is useful to define structural con-
straints that provide a sufficient condition guaranteeing termination of the
simulation in general for well-behaved statecharts, where we forbid cycles
in the dependencies of actions and events.

Definition 6.10 (Well-behaved statecharts)

For a given statechart model, the action-event graph has as nodes all event names

and an edge (n1, n2) if an event with name n1 triggers an action named n2.

A statechart is called well-behaved if it is finite, has an acyclic state hierarchy,

and its action-event graph is acyclic.

Example 6.11

An example of a well-behaved statechart is our statechart model in Fig. 4.21.

It is finite, has an acyclic state hierarchy, and its action-event graph is shown

in Fig. 6.1. This graph is acyclic, since the only action-event dependencies in

our statechart occur between produce triggering incbuff and consume triggering

decbuff.

For the initialization step, we first compute the substates relation by
applying the rules setSub and transSub as long as possible. These rule
applications terminate because there could be at most one sub-edge between
each pair of states due to the application conditions. Since no new states are
created, these rules can only be applied finitely often. Then the interaction
scheme init is applied once followed by the application of the interaction
scheme enterRegions as long as possible. This also terminates because each
application of enterRegions replaces one new-edge with a current-edge.

6.2 Termination and Functional Behavior 159

The multi rules p41 and p42 create new new-edges on the next lower and
upper levels of a hierarchical state, but if the state hierarchy is acyclic this
interaction scheme is only applicable a finite number of times. The same
holds for the multi rule p43 which deletes double edges, since the number of
current- and new-edges is decreased. Thus, the transformation terminates.
For the termination of a semantical step it is sufficient to show that the

four interaction schemes enterRegions, leaveState1, leaveState2, and
leaveRegions are only applicable a finite number of times. For the in-
teraction scheme enterRegions we have already argued that above. The
interaction schemes leaveState1, leaveState2 as well as the multi rule
p81 of the interaction scheme leaveRegions reduce the number of active
states in the statechart by deleting at least one current-edge. The appli-
cation of the second multi rule p82 of the interaction scheme leaveRegions
prevents another match for itself because it creates the situation forbidden
by its application condition ac82. It follows that the application of each of
these four interaction schemes as long as possible terminates.
Combining these result we can conclude the termination of the statecharts

semantics for well-behaved statecharts.

Theorem 6.12 (Termination of operational semantics)

For well-behaved statecharts with finite event queue, the operational semantics

defined in Subsection 4.2.3 terminates.

Proof According to the above considerations, each initialization step and each

semantical step terminates. Moreover, each semantical step consumes an event

from the event queue. If it triggers an action, the acyclic action-event graph

ensures that there are only chains of events triggering actions, but no cycles, such

that after the execution of this chain the number of elements in the event queue

actually decreases. Thus, after finitely many semantical steps the event queue is

empty and the operational semantics terminates.

6.2.3 Functional Behavior

Note that one source model GS ∈ V LS constructed with a source trans-
formation sequence ∅ =

tr∗S==⇒ G0 = (GS ← ∅ → ∅) can be related to tar-
get models GT and G′T which are both constructed via the same sequence
of forward rules with source consistent forward transformation sequences
G0 =

tr∗F==⇒ Gn, G0 =
tr∗F==⇒ G′n and Gn,T = GT , G′n,T = G′T . This may happen

if the co-match of the source rule does not induce a unique match for the
forward rule, but only for the source part of it, as shown in the following

160 6 Analysis of Model Transformations

P TE

name=null

SM

name="sm"

R

S

name="error"

isInitial=false

isFinal=false

S

name="prod"

isInitial=true

isFinal=false

R

S

name="call"

isInitial=true

isFinal=false

R

S

name="produced"

isInitial=true

isFinal=false

R

S

name="empty"

isInitial=true

isFinal=false

R

S

name="wait"

isInitial=true

isFinal=false

Figure 6.2: The statechart model after a partial model transformation

example. Moreover, there may be also different possibilities to construct
the source models leading to different related target models.

Example 6.13

If we consider the backward model transformation from Petri nets to statecharts,

this model transformation is not locally confluent. The Petri net PNPC in

Fig. 5.20 can be constructed by the corresponding target transformation sequence.

When applying the backward rules to this Petri net, the following situation in

Fig. 6.2 occurs, where we only show the source component which is the statechart

model after the application of the first seven backward rules

startB;

newRegionSM(sname="prod")B;

newRegionS(sname="produced")B;

newRegionS(sname="empty")B;

newRegionS(sname="wait")B;

newStateSM(sname="error")B;

newRegionS(sname="call")B;

Now we have to apply the backward rule newStateS(sname="prepare")B , where

the co-match of the target rule determines how the Petri net part is matched,

which leads to the matching of the state 1 in the source component of the left-

hand side of the backward rule to the prod-state. But it is not clear how to map

the contained region - there are three regions available and we do not know which

6.3 Semantical Simulation and Correctness 161

one to choose. Any choice leads to target consistency, but choosing the wrong

match would lead to a different statechart model.

Functional behavior of a model transformation means that each model
of the source language is transformed into a unique model of the target
language.

Definition 6.14 (Functional behavior of model transformations)

A model transformation MTF has functional behavior if each model GS of the

source language V LS is transformed into a unique model GT such that GT belongs

to the target language V LT .

A well-known fact about graph transformation is that termination and
local confluence imply confluence (see [EEPT06]), which means functional
behavior on the level of model transformations. But for model transforma-
tions based on triple graphs, in general we do not have termination of the
triple rules, but only SC-termination. It is future work to relate both con-
cepts and obtain criteria for functional behavior. Nevertheless, the analysis
of critical pairs may determine local confluence which is a necessary precon-
dition for functional behavior.
Example 6.15

For our example model transformation SC2PN from statecharts to Petri nets we can

analyze the critical pairs for the forward rules. All forward rules are non-deleting

and the only application conditions are negative application conditions for the

rules newGuardF and nextGuardF , which are equal. Note that for non-deleting

rules with negative application conditions only delete-use conflicts may appear.

The conflict between newGuardF and nextGuardF can be trivially dissolved as

confluent since both rule applications lead to the same result. No other conflicts

occur, since the only other rules that create the forbidden contextual arc are the

rules creating new transitions, where the types of the connection elements do not

coincide. Thus, our model transformation is locally confluent. Moreover, the

model transformation also has functional behavior, because due to our rules all

source consistent transformation sequences of a source model lead to the same

result.

6.3 Semantical Simulation and Correctness

In this section, we analyze the semantical correctness of our example model
transformation from statecharts to Petri nets. For a formal definition of
semantical correctness we use the well-known notion of labeled transition
systems. For the case of transformations, a labeled transition system is given

162 6 Analysis of Model Transformations

by recursively applying all rules to a graph, which is the initial state of its
labeled transition system, where the states are graphs and the transitions
are rule applications.

Definition 6.16 (Labeled transition system)

A labeled transition system is given by a tuple LTS = 〈Q, L, ⇁, ι〉, where Q is a

set of states, ⇁ ⊆ Q× L ×Q is a transition relation with labels L, and ι ∈ Q is

the initial state.

For a graph G and a set P of rules, where we have the set of rule names P̃ as

labels, we obtain a labeled transition system LTS(G)P̃ = 〈{H | G =
∗⇒ H}, P̃ , ⇁,

G〉.

Note that for a semantics described by graph transformation, in general
the rules are to subtle to describe the transition labels. This means that
the labels do not coincide with the rules names, but with more complex
combinations of these leading to actual changes of the model’s system states.

Example 6.17

For our model transformation SC2PN from Section 5.3, we have to main steps in

the semantics in Def. 4.37 describing state changes: the initialization step and

semantical steps defining state transitions. Thus, for a model M ∈ V LSC2 we

obtain a labeled transition system LTS(M)LS = 〈Q, LS = {init, sem}, ⇁, M〉,
where Q contains all semantical states of M and the labels init and sem denote

initialization and semantical steps, respectively.

There are different notions of semantical correctness of model transforma-
tions, which correspond to the relations of the labeled transition systems.
For a model transformation MT : V LS � V LT we analyze the relation-
ship between the labeled transition systems LTS(GS) and LTS(GT) for

all model transformation sequences (GS , G0 =
tr∗F==⇒ Gn, GT). In this thesis,

we consider weak simulation where internal, unobservable steps may occur.
Such internal steps are labeled by the special transition label τ . For states
q, q′ ∈ Q we write q

a
⇁ q′ for q τ

⇁
∗ a
⇁

τ
⇁
∗
q′ and q

τ
⇁ q′ for q τ

⇁
∗
q′.

Definition 6.18 (Weak simulation and bisimulation)

Given labeled transition systems LTS1 = 〈Q1, L, ⇁1, ι1〉 and LTS2 = 〈Q2, L, ⇁2

, ι2〉 over the same labels L, a relation ∼ ⊆ Q1 ×Q2 is a

• weak simulation relation from LTS1 to LTS2 if for all q1 ∼ q2 we have that

q1
a
⇁ q′

1 implies that there exists q2
a
⇁ q′

2 with q′
1 ∼ q′

2.

• weak bisimulation relation if ∼ and ∼−1 are weak simulation relations.

LTS1 and LTS2 are weakly (bi)similar if there exists a weak (bi)simulation rela-

tion ∼ between LTS1 and LTS2 with ι1 ∼ ι2.

6.3 Semantical Simulation and Correctness 163

The semantical simulation and correctness of model transformations is
based on the labeled transition systems of the source and target semantics,
where we have to find common labels to compare them.
Definition 6.19 (Semantical correctness of model transformations)

Given source and target languages V LS and V LT with labeled transition systems

LTS(GS)LS and LTS(GT)LT for models GS ∈ V LS and GT ∈ V LT , respectively,

a model transformation MT : V LS � V LT is semantics-simulating if there are

labeling functions lS : LS → L and lT : LT → L into some set of labels L with

τ ∈ L such that for all model transformation sequences (GS , G0 =
tr∗F==⇒ Gn, GT) we

have that LTS(GS)lS(LS) and LTS(GT)lT (LT) are weakly similar.

MT : V LS � V LT is semantically correct if LTS(GS)lS(LS) and

LTS(GT)lT (LT) are weakly bisimilar for all model transformation sequences (GS ,

G0 =
tr∗F==⇒ Gn, GT).

In general, the labeled transition systems for a semantical description are
not finite, thus it is difficult to compute both labeled transition systems
completely to directly analyze semantical simulation or correctness.

6.3.1 Simulation of Petri Nets

To analyze the semantical correctness of our model transformation SC2PN
from statecharts to Petri nets defined in Section 5.3 we need to define suit-
able semantical rules. The semantics for statecharts is given in Subsec-
tion 4.2.3. But for our Petri nets, we have to extend the semantics in
Subsection 4.2.1 for open places and inhibitor and contextual arcs. More-
over, we change the semantics to control which tokens are old and which
ones are newly placed by marking these, and allow typed transitions using
the types T, T1, T2, and T3 from the model transformation.
These extensions are necessary to obtain a semantics-simulating model

transformation. The main idea of the model transformation was that states
correspond to places and transitions in the statechart to transitions in the
Petri net. But while our statechart semantics can handle concurrent tran-
sitions, in the Petri net only one transition may fire at a time. Thus, we
have to remember which tokens have been newly created to forbid their use
in the same semantical step.
The firing rules +p and -p are given in the top of Fig. 6.3, where +p

creates and -p deletes a token on an open place. Similarly, there is a rule
+pm which puts a marked, i. e. unfilled token on the places, which is not
explicitly shown. The interaction scheme for firing a transition of type T is
shown in the middle of Fig. 6.3.

164 6 Analysis of Model Transformations

ac+ = ¬∃a+ L+ R+

+p :
p

L+

p

K+

p

R+

ac− = true

-p :
p

L−

p

K−

p

R−

fireT = (s1, s2, s3)

L0

t t

L0

t t

L0

t

ac0 = ∀(a0, ∃b0) ∧ ∀(c0, ∃d0) ∧ ¬∃e0

p0 : t

L0

t

K0

t

R0

p1 :

ac1 = Shift(s1,L, ac0) ∧ ¬∃a1

t

p1

L1

t

p1

K1

t

p1

R1

L1
t

p1

p0 : L0 K0 R0

p2 :

ac2 = Shift(s2,L, ac0)

t

p2

L2

t

p2

K2

t

p2

R2

p0 : L0 K0 R0

p3 :

ac3 = Shift(s3,L, ac0) ∧ ¬∃a3

t

p3

L3

t

p3

K3

t

p3

R3

L3

t

p1

unmark = (s′1)

ac′0 = truep′0 : ∅

L′0
∅

K ′
0

∅

R′0

p′1 : ac′1 = true
p1

L′1

p1

K ′
1

p1

R′1

l+ r+

a+

l− r−

a0 b0 c0 d0 e0

l0 r0

l1 r1

s1,L s1,K s1,R

a1

l0 r0

l3 r3

s3,L s3,K s3,R

a3

l0 r0

l2 r2

s2,L s2,K s2,R

l′0 r′0

l′1 r′1

s′1,L s′1,K s′1,R

Figure 6.3: The rules for firing the extended Petri nets

6.3 Semantical Simulation and Correctness 165

As in the standard case described in Subsection 4.2.1, the kernel rule
selects an activated transition, where the application condition ensures that
all pre-places hold an old (full) token, all contextual places hold a token,
and all inhibitor places are token-free. The multi rules handle the pre,
post, and combined pre- and post-places, where newly created tokens are
marked (unfilled). We have similar interaction schemes fireT1, fireT2, and
fireT3 for the firing of the other transition types. Moreover, we need an
interaction scheme unmark to unmark all marked tokens, which is depicted
in the bottom of Fig. 6.3.

6.3.2 Semantical Correctness of the Model
Transformation SC2PN

Both the semantical rules for the statecharts and the Petri nets keep the
syntactic static structure of their models and only change the semantics: in
case of statecharts the trigger elements and the current- and new-edges,
and in case of Petri nets the tokens. Therefore we can analyze these rules
independent of the actual models. For the analysis, we make use of the
correspondence nodes which connect statechart and Petri net elements.
We want to show that our model transformation SC2PN is semantics-

simulating. This means that each semantical step in a statechart can be
simulated in its corresponding Petri net. First, we define the weak simula-
tion relation ∼.

Definition 6.20 (Weak simulation relation)

Given a statechart M with states Q1 in LTS(M)LS and it corresponding Petri

net P with states Q2 in LTS(P)LT . The relation ∼⊆ Q1 × Q2 is defined as

follows: A statechart with semantics q1 ∈ Q1 and a marked Petri net q2 ∈ Q2 are

in correspondence, i. e. q1 ∼ q2, if for each current- or new-edge to a state in q1
there is a token or marked token, respectively, on this state’s place in q2 which

is connected via an S-P-node. No other tokens are allowed to appear in the net

except for tokens on e-nodes.

Note that the correspondence of states and places via S-P-nodes is unique:
whenever an S-P-node is created with our triple rules, also the corresponding
state and place are newly created. Obviously, for the initial states ι1 and
ι2, i. e. the statechart without any current- and next-edges and the Petri
net without tokens, these are in ∼.
In the following, we analyze the different semantical rules of the state-

charts semantics and show their counterparts in the Petri net semantics.

166 6 Analysis of Model Transformations

For the different rules or their application as long as possible of the state-
charts semantics we find a corresponding rule or rule sequence in the firing
semantics of the Petri nets. In the following, we first analyze these corre-
spondences and later put them together to show the semantical simulation
in Thm. 6.21.
The rules setSub and transSub do not change the pointer edges, which

means that for a state q1 with q1 ∼ q2 and any application of this rules
leading to a state q′1 we have that q′1 ∼ q2. In the following, we assume that
our considered statechart models are equipped with all sub-edges.
For the rule init, only new-edges are created by this rule while the

behavior-pointer to the state machine has no counter part in the Petri
net. All these states with new-edges have corresponding places that are
open by construction. Thus, if we apply for each match m of the multi rule
the rule +pm to the corresponding open place, all places corresponding to
new-states hold a marked token. Thus, if we have a state q1 with q1 ∼ q2

and a transformation q1 =init==⇒ q′1, the proper application of q2 =
+pm
==⇒

∗
q′2

leads to q′1 ∼ q′2.
With enterRegions!, all initial substates of a new-state as well as its

superstates and their initial substates are set to current states, while dou-
ble edges are deleted. With the kernel rule, a new-state is made current
and using the multi rule p41 its directly contained initial states become new.
Moreover, if the superstate of the new-state is not current or new, also this
superstate is set to new. Applying enterRegions as long as possible sets
all these new-states to current-states. As above, for all these states the
corresponding places are open. Thus, we apply the rule +pm to the corre-
sponding open places such that in the end all places corresponding to new- or
current-states hold a marked or unmarked token. Applying the interaction
scheme unmark unmarks all marked tokens. Now, double tokens are delete
by -p. In the end, if we have a state q1 with q1 ∼ q2 and a transformation
q1 =

enterRegions!
========⇒ q′1, the proper application of q2 =

+pm
==⇒

∗
=unmark===⇒=

−p
=⇒

∗
q′2 leads

to q′1 ∼ q′2.
Altogether, this means that we have for the initialization step:

(∗) if q1 ∼ q2 with a transformation q1 =setSub!====⇒=transSub!=====⇒=init==⇒=
enterRegions!
========⇒

q′1 we find a transformation q2 =
+pm
==⇒

∗
=
+pm
==⇒

∗
=unmark===⇒=

−p
=⇒

∗
q′2 with q′1 ∼ q′2.

The rule leaveState1 deletes the current-edge to a state 1 which has
a region R without current states. In the corresponding Petri net, the re-
gion R has a T3-transition with the state 1’s place as a pre-place, which
currently holds a token, and all its substates as inhibitors, which are cur-

6.3 Semantical Simulation and Correctness 167

rently token-free. A special case is the e-place: as described later, it can
only hold a token if the exit-transition of the state 1 is activated. A
token on the e-place can only be put there firing a T1-transition, which
corresponds to the rule leaveRegions. But since the rule leaveState1 is
applied before leaveRegions and exit-transitions are handled with prior-
ity, if leaveState1 is applicable this e-place cannot hold a token. Thus,
leaveState1 is applicable if and only if fireT3 is applicable. For q1 ∼ q2
this leads to the transformations q1 =leaveState1=======⇒ q′1 and q2 =fireT3===⇒ q′2 with
q′1 ∼ q′2. Moreover, leaveState1! and fireT3! correspond to each other,
i. e. q1 =leaveState1!=======⇒ q′1 and q2 =fireT3!====⇒ q′2 imply q′1 ∼ q′2.

With leaveState2, the current-edges of all current substates of a non-
current state 1 are deleted. In the corresponding Petri net, each one of
these substates is the pre-place of a T2-transition with the superstate 1 as
inhibitor. Thus, if 1 is not current there is no token on this place and fireT2
is activated. A single application of fireT2 corresponds to one application
of the multi rule. Thus, for q1 ∼ q2 we have that q1 =leaveState2=======⇒ q′1 implies a
transformation q2 =fireT2===⇒∗

q′2 with q′1 ∼ q′2. Moreover, leaveState2! and
fireT2! correspond to each other.
Using leaveRegions, for a current state 1 where no other but all final

substates are current the current-edges to these final states are deleted.
Note that the state itself stays current. If it has an exit-transition, a new
trigger element is added to the event queue. Since the state 1 is a superstate,
there is a corresponding T1-transition which has all non-final substates as
inhibitors and all final substates as pre-places. If all final states are current,
the corresponding places hold tokens. All non-final places are not current
and their places are token-free. This means that this transition is activated.
When firing, it deletes the tokens on the places of the final states and, in
addition, adds a token to an eventual e-place of the state 1. Thus, for
q1 ∼ q2 leaveRegions can be applied to q1 if and only if fireT1 can be
applied to q2. This leads to the transformations q1 =

leaveRegions
=======⇒ q′1 and

q2 =fireT1===⇒ q′2 with q′1 ∼ q′2, and moreover leaveRegions! and fireT1!
correspond to each other.
For an application of the interaction scheme transitionStep, we find

the first trigger element in the event queue and compute the corresponding
state transitions. In the Petri net, we first have to fire +p to mark the place
corresponding to this event, which is connected by an E-P-node. This place
is uniquely constructed by the triple rule newTransitionNewEvent, which
can only be applied once due to the application condition. Additional events

168 6 Analysis of Model Transformations

with the same name can only be constructed using newTransitionOld-
Event, which connects these new events to the same place. Now we have to
show that each match mi which is constructed for the interaction scheme
leading to a maximal disjoint matching corresponds to an application of the
rule fireT. Then, we delete the token on the event’s place with -p. It follows
that for a state q1 with q1 ∼ q2 and a transformation q1 =

transitionStep
=========⇒ q′1

the application of q2 =
+p
=⇒=fireT!===⇒=

−p
=⇒ q′2 leads to q′1 ∼ q′2.

Now consider the construction of a weakly disjoint matching (m0,m1, . . . ,
mn). From Fact 4.16 and Thm. 4.17 we know that the application of the
amalgamated rule p̃s to a graph G via a match m̃ is equivalent to the
transformation G =

p0,m0===⇒ G0 =
p1,m1===⇒ G1 ⇒ . . . =

pn,mn====⇒ Gn, where pi is the
(weak) complement rule of pi. We show that we find a corresponding firing
sequence P =

+p
=⇒ P0 =fireT===⇒ P1 ⇒ . . . =fireT===⇒ Pn =

−p
=⇒ P ′ such that G ∼ P

implies that Gn ∼ P ′ and Gi ∼te Pi for i = 0, . . . , n, where G ∼te P means
that G ∼ Pte and Pte emerges from p by deleting the token on the trigger
element te’s place.
If G ∼ P this means that all current- or new-states in G have a token

or marked token on their corresponding places. As already described, the
application of the kernel rule p50 leads to the transformation G =

p50=⇒ G0

and the deletion of the first trigger element in G0. With +p, we add a token
on this trigger element te’s place. Thus, G0 ∼te P0.

For Gi ∼te Pi, consider the next match mi+1 which satisfies the appli-
cation conditions ac51 or ac52, respectively. The complement rules p51 and
p52 are similar to p51 and p52 except for the trigger element 2 in the left-
hand sides. With Gi =

pi+1,mi+1======⇒ Gi+1 we consider a state transition, delete
the current-edge to the state mi+1(4) and add a new-edge to the state
mi+1(6). We have to show that fireT is applicable to the T-transition t
corresponding via a T-T-node to the considered transition in the statechart
model. A T-transition together with its corresponding transition in the stat-
echart model can only be created by one of the four newTransition* rules.
Moreover, contextual places can be added with newGuard and nextGuard.
The following places may appear in the environment of the transition t:

• t has exactly one pre-place corresponding to the begin-state and on
post-place corresponding to the end-state. Since Gi ∼te Pi and mi+1

is a valid match, the begin-state is current and its place holds a
token. When applying the rule, this current-edge is deleted and the
end-state is connected to the pointer by a new-edge. With fireT, the

6.3 Semantical Simulation and Correctness 169

token on the pre-place is deleted and a marked token is added to the
post-place.

• The event te’s place is a contextual place for t and holds a token as
described above.

• A guard state 2 corresponds directly to its place being a contextual
place of t. This place holds a token if the corresponding state is
current, which is true due to the application condition ∀(b51, ∃c51) of
transitionStep.

• If t is an exit-transition mi+1 is only applicable if no substates are
current due to the application condition ¬∃a51. In this case, t has
an e-place as a pre-place connected to its begin-state. An exit-
trigger event can only be obtained by a previous application of the rule
leaveRegions. This means that in the Petri net the corresponding
T1-transition has fired and the e-place holds a token, which is deleted
when firing t.

Altogether, t is activated and its firing corresponds to one application of
the complement rules p51 or p52. This means that we have a transformation
Pi =

fireT===⇒ Pi+1 with Gi+1 ∼te Pi+1. After n applications of fireT, we have
that Gn ∼te Pn. Moreover, no other T-transition is activated, otherwise we
would find an additional match for the multi rules. With -p, we delete the
token on the event’s place, i. e. Pn =

−p
=⇒ P ′, and it follows that Gn ∼ P ′ as

required.
Combining all these steps, we have for a semantical step that:

(∗∗) for q1 ∼ q2 and the transition step q1 =
transitionStep
=========⇒=

enterRegions!
========⇒

=leaveState1!=======⇒=leaveState2!=======⇒=
leaveRegions!
========⇒ q′1 we have a transformation q2 =

+p
=⇒

=fireT!===⇒=
−p
=⇒=

+pm
==⇒

∗
=unmark===⇒=

−p
=⇒

∗
=fireT3!====⇒=fireT2!====⇒=fireT1!====⇒ q′2 with q′1 ∼ q′2.

With these considerations we can show that our model transformation
SC2PN is semantics-simulating.

Theorem 6.21 (Semantics-simulating model transformation)

The model transformation from statecharts to Petri nets defined in Section 5.3

is semantics-simulating w. r. t. the operational semantics of statecharts defined in

Subsection 4.2.3 and the operational semantics for Petri nets in Subsection 6.3.1.

Proof As shown in Ex. 6.17, for the labeled transition systems of statecharts

semantics there are only two labels: the initialization and a semantical step. Both

are mapped with the labeling function to the label step. For the Petri net rules,

except for unmark, which is mapped to step, all rules are mapped to τ .

170 6 Analysis of Model Transformations

According to (∗), we have for the initialization step that, if q1 ∼ q2 with a

transformation q1 =
setSub!
====⇒=transSub!=====⇒=init==⇒=enterRegions!=======⇒ q′

1 we find a transformation

q2 =
+pm
==⇒

∗
=
+pm
==⇒

∗
=
unmark
===⇒=−p

=⇒
∗

q′
2 with q′

1 ∼ q′
2 and q2

step
⇁ q′

2. Similarly, according to

(∗∗), for q1 ∼ q2 and the semantical step q1 =
transitionStep
========⇒=enterRegions!=======⇒=leaveState1!=======⇒

=
leaveState2!
=======⇒=leaveRegions!=======⇒ q′

1 we have a transformation q2 =
+p
=⇒=fireT!===⇒=−p

=⇒=+pm
==⇒

∗

=
unmark
===⇒=−p

=⇒
∗
=
fireT3!
====⇒=fireT2!====⇒=fireT1!====⇒ q′

2 with q′
1 ∼ q′

2 and q2
step

⇁ q′
2.

This means that the relation ∼ as constructed above is a weak simulation

relation and our model transformation SC2PN from statecharts to Petri nets is

semantics-simulating.

Obviously, this choice of labeling functions does not lead to weak bisim-
ularity of our model transformation. While the firing of the transitions
basically corresponds to rules in the statechart semantics, the main prob-
lem which prevents weak bisimilarity are the open places in the Petri net,
which may get or loose tokens any time. But these are difficult to circum-
vent: while firing an open place corresponding to an event could be handled,
we have to close the places corresponding to states. This means that we had
to introduce new transitions which fire corresponding to the application of
the interaction scheme enterRegions!.
Such transitions are difficult to construct, since the actual matches for

enterRegions depend on the current states. Thus, we could either con-
struct one transition for each possible current state situation – which is
difficult to design and has to be constructed after all other items, because it
depends on the whole superstate hierarchy – or we could construct smaller
transitions whose firing is somehow controlled. Both ways are difficult to
handle and do not necessarily lead to weak bisimilarity. In this case, it
seems more reasonable to conclude that Petri nets are not an adequate tar-
get language for weak bisimilarity to statecharts. Nevertheless, the analysis
of the Petri net model, for example regarding deadlocks, may be helpful for
the analysis of the corresponding statechart model.

Example 6.22

We want to analyze the simulation of the statecharts semantics in the Petri net

in more detail. Consider our example statechart ProdCons in Fig. 4.21 and the

corresponding Petri net PNPC in Fig. 5.20. We have that ProdCons ∼ PNPC
because we have no current- or new-edges in the statechart and no tokens in

the Petri net. In Subsection 4.2.3, we have described some semantical steps in

ProdCons as summarized in Fig. 4.30. These steps can be simulated in the Petri

net as explained in the following.

6.3 Semantical Simulation and Correctness 171

error

call

repair

prod

produced

prepare

empty

full

wait

consumed

arrive

finish

repair

finish

exit

next
produce
[empty]
/incbuff

fail

incbuff decbuff next
consume
[full]

/decbuff

produced

prepare

empty

full

wait

consumed

next

produce

incbuff

decbuff

consume

prod

fail

exit

error

call

repair

final

arrive

repair

e

error

e

prod

finish

final

T

T

T

T

T

T

T2 T2 T2

T2 T2 T2

T1

prod

T T

T1

error

T2

T2

T2

T

T

T

T

T3 T3 T3

T3

Figure 6.4: ProdCons and PNPC after the initialization step

172 6 Analysis of Model Transformations

First, the initialization takes place. As mentioned above, the applications of

setSub and transSub do not lead to a changed semantics of the statechart and

thus no rules have to be applied in the Petri net. After the application of the

interaction scheme init there is a new-pointer to the prod-state. Firing the rule

+pm puts a marked token on the corresponding place. Now the interaction scheme

enterRegions leads to new-edges to the states produced, empty, and wait, and

the edge to prod becomes current. In the Petri net, we fire +pm three times leading

to marked tokens in the places prod, produced, empty, and wait.

Applying the interaction scheme enterRegions three more times leads to cur-

rent edges to all four states. With unmark, the corresponding places in the Petri

net now hold unmarked tokens. This means that the statechart and the Petri net

are actually in the simulation relation after this initialization step as shown in

Fig. 6.4, where the current states in the statecharts are marked by thicker lines

and darker background.

For the first semantical step using the trigger element next, the application

of the interaction scheme transitionStep deletes this trigger element and the

current-edge to the state produced, and creates a new-edge to the state prepare.

In the end, this new-edge is changed to a current-edge by enterRegions leading

to the current states prod, prepare, empty, and wait. In the Petri net, with +p

we put a token on the next-place. Now the T-transition with next and produced

as pre-places is activated and may fire using the interaction scheme fireT. This

leads to a marked token on prepare and unchanged, unmarked tokens on the

places next, prod, empty, and wait. No other T-transition is activated. Deleting

the next-token and unmarking the token on prepare leads to the resulting Petri

net simulation step with unmarked tokens on the places prod, prepare, empty,

and wait corresponding to the statechart’s current semantical state.

We could carry this on for the other semantical steps described in Subsec-

tion 4.2.3. Mainly, whenever one of the interaction schemes leaveState1, leave-

State2, or leaveRegions is applied in the statechart semantics, the corresponding

T3-, T2- or T1-transition is fired in the Petri net. To illustrate this, we skip until

before the execution of the trigger element fail.

This trigger element and the current-edge to produced are deleted, and a new-

edge is added to error. With enterRegions!, this new-edge becomes current

and also the state call. Then there is a match for leaveState1 deleting the

current-edge from prod, and leaveState2 deletes the current-edges to empty

and consumed. The result is that only the states error and call are current now.

In the Petri net, we first used +p to put a token on the fail-place. Now there is a

T-transition whose firing puts a marked token on error and deleted the one from

produced. No other T-transition is activated, thus we delete the token on fail.

With +pm and unmark, we add a new token on the place call and unmark both

new tokens. Now the T3-transition corresponding to the first region of pros as

activated, since all inhibiting places are token-free and with fireT3 we delete the

6.4 On-the-Fly Construction of Model Transformations 173

token on prod. Afterwards, the T2-transitions for empty and consumed fire using

fireT2 twice, which leads to tokens on error and call. No more transitions are

activated, and the marking of the Petri net corresponds to the semantical state

of the statechart.

6.4 On-the-Fly Construction of Model

Transformations

Up to now, the construction of correct model transformation sequences
is very complex. In order to construct a model transformation sequence
(GS , G0 =

tr∗F==⇒ Gn, GT) from a given source model GS there are two alterna-

tives [EEE+07, EHS09]: Either we construct a parsing sequence ∅ =
tr∗S==⇒ G0

with G0,S = GS first and then try to extend it to a match consistent trans-

formation sequence ∅ =
tr∗S==⇒ G0 =

tr∗F==⇒ Gn, or we construct a forward trans-

formation sequence G0 =
tr∗F==⇒ Gn directly and check afterwards whether it

is source consistent. Even though source consistency is a sufficient and
necessary condition for the correctness and completeness of model transfor-
mations based on triple graph grammars, this means that many candidates
of forward transformation sequences may have to be constructed before a
source consistent one is found.
Therefore, we introduce the notion of partial source consistency which

enables us to construct consistent model transformations on-the-fly instead
of analyzing consistency of completed transformations. Partial source con-
sistency of a forward transformation sequence, which is necessary for a com-
plete model transformation, requires that there has to be a corresponding
source transformation sequence such that both transformation sequences
are partially match consistent. This means that the source components
of the matches of the forward transformation sequence are defined by the
co-matches of the source transformation sequence.

Definition 6.23 (Partial match and source consistency)

Li,S Ri,S Li,F Ri,F

Gi−1 0 Gi 0 G0 Gi−1 Gi

tri,S tri,F

ti,S gi ti,F

mi,S
ni,S mi,F ni,F

(1i) (2i) (3i)

Consider a set of tri-

ple rules TR with S-

consistent application

conditions. A trans-

formation sequence ∅

= G00 =
tr∗S==⇒ Gn0

gn
↪→

174 6 Analysis of Model Transformations

G0 =
tr∗F==⇒ Gn defined by the pushout diagrams (1i) and (3i) for i = 1 . . . n with

G0,C = G0,T = ∅ and inclusion gn : Gn0 ↪→ G0 is called partially match consistent

if the diagram (2i) commutes for all i, which means that the source component of

the forward match mi,F is determined by the co-match ni,S of the corresponding

step of the source transformation sequence with gi = gn ◦ tn,S . . . ti−1,S .

A forward transformation sequence G0 =
tr∗F==⇒ Gn is partially source consistent

if there is a source transformation sequence ∅ = G00 =
tr∗S==⇒ Gn0 with inclusion

Gn0
gn
↪→ G0 such that G00 =

tr∗S==⇒ Gn0
gn
↪→ G0 =

tr∗F==⇒ Gn is partially match consistent.

Example 6.24

Consider as G0 the triple graph with our statechart model depicted in Fig. 4.21

in concrete and in Fig. 4.24 in abstract syntax in the source component and with

empty connection and target components. Consider the first seven rules of our

example transformation in Section 5.3:

start;

newRegionSM(sname="prod");

newRegionS(sname="produced");

newRegionS(sname="empty");

newRegionS(sname="wait");

newStateSM(sname="error");

newRegionS(sname="call");

If we apply the corresponding source rule sequence to the start graph G00 = ∅,

we obtain a graph G7 0 with the statechart in Fig. 6.2 in the source component.

produced empty waitprod

error

call

e

error

e

prod

T2 T2 T2

T1

prod

T1

error

T2

T3 T3 T3

T3

Figure 6.5: The Petri net corresponding to the partial transformation

6.4 On-the-Fly Construction of Model Transformations 175

In addition, we can apply the corresponding forward rule sequence to the triple

graph G0 leading to the triple graph G7 with G7,S = G0,S and the Petri net in

the target component depicted in Fig. 6.5.

All diagrams (2i) commute for i = 1, . . . , 7 because the matches of the source

components of the forward rules are determined by the co-matches of the source

rules. Thus, ∅ = G00 =
tr∗S==⇒ G7 0

g7
↪→ G0 =

tr∗F==⇒ G7 for the above rule sequence is

partially match consistent, and therefore G0 =
tr∗F==⇒ G7 is partially source consis-

tent.

In order to provide an improved construction of source consistent forward
transformation sequences we characterize valid matches by introducing the
following notion of forward consistent matches. The formal condition of a
forward consistent match is given by a pullback diagram which, intuitively,
specifies that the effective elements of the forward rule are matched for the
first time in the forward transformation sequence.
Definition 6.25 (Forward consistent match)

Ln,S Rn,S Ln,F

Gn−1 0 G0 Gn−1

trn,S

gn−1

mn,S mn,F(1)

Given a partially match consistent trans-

formation sequence ∅ = G00 =
tr∗S==⇒ Gn−1 0

gn−1
↪→ G0 =

tr∗F==⇒ Gn−1 then a match mn,F :

Ln,F → Gn−1 for trn,F : Ln,F → Rn,F is

called forward consistent if there is a source

matchmn,S such that diagram (1) is a pull-

back and the matches mn,F and mn,S satisfy the corresponding application con-

ditions.

Remark 6.26

The pullback property of (1) means that the intersection of the match mn,F (Ln,F)

and the source graph Gn−1 0 constructed so far is equal to mn,F (Ln,S), the match

restricted to Ln,S , i. e. we have

(2) : mn,F (Ln,F) ∩Gn−1 0 = mn,F (Ln,F).

This condition can be checked easily and mn,S : Ln,S → Gn−1 0 is uniquely defined

by the restriction of mn,F : Ln,F → Gn−1. Furthermore, as a direct consequence

of (2) we have

(3) : mn,F (Ln,F \ Ln,S) ∩Gn−1 0 = ∅.

On the one hand, the source elements of Ln,F \Ln,S – called effective elements – are
the elements to be transformed by the next step of the forward transformation

sequence. On the other hand, Gn−1 0 contains all elements that were matched

by the preceding forward steps, because matches of the forward transformation

sequence coincide on the source part with co-matches of the source transformation

sequence. Hence, condition (3) means that the effective elements were not matched

before, i. e. they do not belong to Gn−1 0.

176 6 Analysis of Model Transformations

Example 6.27

Consider the partially match consistent transformation sequence ∅ = G00

=
tr∗S==⇒ G7 0

g7
↪→ G0 =

tr∗F==⇒ G7 from Ex. 6.24. For the application of the next rule

newStateS(name= "prepare") we find a match m8,F for the corresponding for-

ward rule mapping the state 1 to the prod-state and the other state in R4,S to

the prepare-state in the source component of G7, the place and transition in

L4,T to the place connected to prod and the T3-transition of produced in the

target component, and corresponding mappings of the S-P- and R-T3-nodes in

L4,C . For this match, we can find a corresponding match m8,S of the source

rule of newStateS mapping 1 to the prod-state and 2 to the region which al-

ready contains the state produced. The corresponding diagram is a pullback and

the matches satisfy the application conditions. Thus, m8,F is a forward consis-

tent match and leads to the partially match consistent transformation sequence

∅ = G00 =
tr∗S==⇒ G7 0 =

newStateSS======⇒ G8 0
g8
↪→ G0 =

tr∗F==⇒ G7 =
newStateSF======⇒ G8.

In the following improved construction of model transformations, we
check the matches to be forward consistent. The construction proceeds
stepwise and constructs partial source consistent forward transformation
sequences. For each step, the possible matches of rules are filtered such
that transformation sequences that will not lead to source consistency are
rejected as soon as possible. Simultaneously, the corresponding source
transformation sequences of the forward transformation sequences are con-
structed on-the-fly. Intuitively, this can be seen as an on-the-fly parsing of
the source model. This means that the matches of the forward transforma-
tion sequence are controlled by an automatic parsing of the source model,
which can be deduced by inverting the source sequence. This allows us to in-
crementally extend partially source consistent transformation sequences and
we can derive complete source consistent transformation sequences, which
ensure that all elements of the source model are translated exactly once.
Thus, re-computations of model transformations may be avoided. We ex-
tend the results from [EEHP09], where triple rules with NACs are handled,
to the case of triple rules with arbitrary S-consistent application conditions.

Theorem 6.28 (On-the-fly construction of model transformations)

Given a triple graph G0 with G0,C = G0,T = ∅, execute the following steps:

1. Start with G00 = ∅ and g0 : G00 ↪→ G0.

2. For n > 0 and an already computed partially source consistent transforma-

tion sequence s = (G0 =
tr∗F==⇒ Gn−1) with ∅ = G00 =

tr∗S==⇒ Gn−1 0 and em-

bedding gn−1 : Gn−1 0 ↪→ G0 find a (not yet considered) forward consistent

match for some trn,F leading to a partially source consistent transformation

6.4 On-the-Fly Construction of Model Transformations 177

sequence G0 =
tr∗F==⇒ Gn−1 =

trn,F
===⇒ Gn with G00 =

tr∗S==⇒ Gn−1 0 =
trn,S
===⇒ Gn 0 and

embedding gn : Gn 0 ↪→ G0. If there is no such match, s cannot be extended

to a source consistent transformation sequence. Repeat until gn = idG0 or

no new forward consistent matches can be found.

3. If the procedure terminates with gn = idG0 then G0 =
tr∗F==⇒ Gn is source con-

sistent leading to a model transformation sequence (GS , G0 =
tr∗F==⇒ Gn, GT)

with GS and GT being the source and target models of G0 and Gn.

Proof This follows directly from the proof in [EEHP09].

If the on-the-fly construction terminates in Step 3, we obtain a source
consistent transformation sequence G0 =

tr∗F==⇒ Gn and therefore the resulting

model transformation sequence (GS , G0 =
tr∗F==⇒ Gn, GT) is correct, complete,

and in the case that all source rules are creating also terminating. The
construction does not restrict the choice of a suitable n, trn,F , and match
in Step 2. Hence, different search algorithms are possible, e.g.

• Depth First: If we increase n after every iteration, and only decrease
n by 1 if no more new forward consistent matches can be found, a
depth-first search is performed.

• Breadth First: If we increase n only after all forward consistent mat-
ches for n are considered, the construction performs a breadth-first
search.

Depending on the type of the model transformation, other search strategies
may be reasonable.
In the following, we describe how to improve efficiency by analyzing par-

allel independence of extensions. Two partially match consistent transfor-
mation sequences which differ only in the last rule application are parallel
independent if the last rule applications are parallel independent both for
the source and forward transformation sequence, and, in addition, if the
embeddings into the given graph G0 are compatible.

Definition 6.29 (Parallel independence of extensions)

Two partially match consistent transformation sequences ∅ = G00 =
tr∗S==⇒ Gn 0

=
tr1,S
===⇒ Gn+1 0

gn+1
↪→ G0 =

tr∗F==⇒ Gn =
tr1,F
===⇒ Gn+1 and ∅ = G00 =

tr∗S==⇒ Gn 0 =
tr2,S
===⇒

G′
n+1 0

g′n+1
↪→ G0 =

tr∗F==⇒ Gn =
tr2,F
===⇒ G′

n+1 are parallel independent if Gn0 =
tr1,S
===⇒

Gn+1 0 and Gn0 =
tr2,S
===⇒ G′

n+1 0 as well as Gn =
tr1,F
===⇒ Gn+1 and Gn =

tr2,F
===⇒ G′

n+1

178 6 Analysis of Model Transformations

are parallel independent leading to the diagrams (1S) and (1F), and the diagram

(2) is a pullback.

Gn,0 Gn+1 0

G′
n+1 0 Gn+2 0

Gn Gn+1

G′
n+1 Gn+2

Gn,0 Gn+1 0

G′
n+1 0 G0

tr1,S

tr1,S

tr2,S tr2,S

tr1,F

tr1,F

tr2,F tr2,F

t1,S

g′n+1

t2,S gn+1(1S) (1F) (2)

In this case of parallel independence, both extensions can be extended
both in the source and forward transformation sequences leading to two
longer partially match consistent transformation sequences which are
switch-equivalent.

Theorem 6.30 (Partial match consistency with parallel independence)

If two partially match consistent transformation sequences ∅ = G00 =
tr∗S==⇒ Gn 0

=
tr1,S
===⇒ Gn+1 0

gn+1
↪→ G0 =

tr∗F==⇒ Gn =
tr1,F
===⇒ Gn+1 and ∅ = G00 =

tr∗S==⇒ Gn 0 =
tr2,S
===⇒

G′
n+1 0

g′n+1
↪→ G0 =

tr∗F==⇒ Gn =
tr2,F
===⇒ G′

n+1 are parallel independent then the follow-

ing upper and lower transformation sequences are partially match consistent and

called switch equivalent.

∅ = G00 Gn,0

Gn+1 0

G′
n+1 0

Gn+2 0 G0 Gn

Gn+1

G′
n+1

Gn+2

tr1,S

tr1,Str2,S

tr2,S tr1,F

tr1,Ftr2,F

tr2,F

tr∗S tr∗F

Proof This follows directly from the proof in [EEHP09].

Example 6.31

In analogy to the partially match consistent transformation sequence ∅ = G00

=
tr∗S==⇒ G7 0 =

newStateSS======⇒ G8 0
g8
↪→ G0 =

tr∗F==⇒ G7 =
newStateSF======⇒ G8 in Ex. 6.27, for the rule

newStateS(sname="full") we also find a forward consistent match m′
8,F lead-

ing to the partially match consistent transformation sequence ∅ = G00 =
tr∗S==⇒

G7 0 =
newStateSS======⇒ G′

8 0

g′8
↪→ G0 =

tr∗F==⇒ G7 =
newStateSF======⇒ G′

8, where in contrast to the first

transformation sequence not the prepare- but the full-state is added and trans-

lated. Both applications of newStateS are parallel independent for the source

and forward rules, since they do not interfere and only overlap at the super-

state prod. Also the corresponding diagram (2) is a pullback, thus both par-

tially match consistent transformation sequences are parallel independent. Ap-

plying Thm. 6.30 we obtain partially match consistent transformation sequences

6.4 On-the-Fly Construction of Model Transformations 179

P TE

name=null

SM

name="sm"

R

S

name="error"

isInitial=false

isFinal=false

S

name="prod"

isInitial=true

isFinal=false

R

S

name="call"

isInitial=true

isFinal=false

R

S

name="produced"

isInitial=true

isFinal=false

S

name="prepare"

isInitial=false

isFinal=false

R

S

name="empty"

isInitial=true

isFinal=false

S

name="full"

isInitial=false

isFinal=false

R

S

name="wait"

isInitial=true

isFinal=false

produced

prepare

empty

full

wait

prod

error

call

e

error

e

prod

T2 T2 T2

T2 T2

T1

prod

T1

error

T2

T3 T3 T3

T3

Figure 6.6: The partial models after two more steps

180 6 Analysis of Model Transformations

∅ = G00 =
tr∗S==⇒ G7 0 =

newStateSS======⇒ G8 0 =
newStateSS======⇒ G9 0

g9
↪→ G0 =

tr∗F==⇒ G7 =
newStateSF======⇒

G8 =
newStateSF======⇒ G9 and ∅ = G00 =

tr∗S==⇒ G7 0 =
newStateSS======⇒ G′

8 0 =
newStateSS======⇒ G9 0

g9
↪→

G0 =
tr∗F==⇒ G7 =

newStateSF======⇒ G′
8 =

newStateSF======⇒ G9, where the source part of G9 0 and the

target part of G9 are depicted in Fig. 6.6.

We can analyze parallel independence on-the-fly for the forward steps
which are applicable to the current intermediate triple graph. Based on
the induced partial order of dependencies between the forward steps we
can apply several techniques of partial order reduction in order to improve
efficiency. This means that we can neglect remaining switch-equivalent se-
quences if one of them has been constructed. This improves efficiency of
corresponding depth-first and breadth-first algorithms. For an overview of
various approaches concerning partial order reduction see [God96], where
benchmarks show that these techniques can dramatically reduce complexity.

7 Conclusion and Future Work

Graphs are a very natural way to explain complex situations on an intu-
itive level. Hence, they are useful for the visual specification of systems.
Nevertheless, it is still complicated to combine an easy, intuitive approach
with a formal description leading to a wide range of analysis techniques for
complex structures. Graph transformation with its formal background in
category theory and its broad theoretical results concerning the behavior
of models constitutes a suitable foundation for the description of system
behavior and model transformations.
In Section 7.1, we summarize our theoretical results concerning the the-

ory as a formal foundation for model transformations and their analysis. In
Chapter 7.2, we analyze how this theory can be used in software engineering
and model-driven software development. In Section 7.3, we present differ-
ent case studies for model transformations. Tools supporting our theory
and facilitating the specification and analysis of model transformations are
presented in Section 7.4. In Section 7.5, we conclude with future work.

7.1 Theoretical Contributions

In this thesis, we have improved and adapted the theory of graph transfor-
mations based on M-adhesive categories in different directions:
In Chapter 3, we have first introduced different kinds of graphs and M-

adhesive categories including additional properties that are significant for
the theory. Then we extended the Construction Theorem in [EEPT06]
to general comma categories which are a suitable foundation to represent
different kinds of low- and high-level Petri nets as categorical construc-
tions. Using this theorem we have shown that algebraic high-level schemas,
nets, and net systems are M-adhesive categories, as already published in
[Pra07, Pra08]. Moreover, we have analyzed how far these additional prop-
erties are preserved under different categorical constructions as shown in
[PEL08]. In contrast to [EEPT06], where only negative and simple positive
applications conditions are considered, we utilize the theory of M-adhesive
systems for rules with general application conditions [HP09]. These appli-
U. Golas, Analysis and Correctness of Algebraic Graph and Model Transformations,
DOI 10.1007/978-3-8348-9934-7_7,
© Vieweg+Teubner Verlag | Springer Fachmedien Wiesbaden GmbH 2011

182 7 Conclusion and Future Work

cation conditions are equivalent to first-order logic on graphs and signif-
icantly enhance the expressiveness of graph transformations and broaden
the application areas of transformations. All the main results for graph
transformation are also valid in this framework.
In Chapter 4, we have generalized the theory of amalgamation in [BFH87]

to multi-amalgamation in M-adhesive categories. More precisely, the Com-
plement Rule and Amalgamation Theorems in [BFH87] were presented on
a set-theoretical basis for pairs of plain graph rules without any applica-
tion conditions. The Complement Rule and Multi-Amalgamation Theo-
rems in this thesis and published in [GEH10] are valid in M-adhesive cat-
egories for n rules with application conditions. Moreover, we have shown a
characterization of parallel independence of amalgamable transformations,
published in [BEE+10], and introduced interaction schemes and maximal
matchings. These generalizations are non-trivial and important for appli-
cations of parallel graph transformations to communication-based systems
[Tae96], to model transformations from BPMN to BPEL [BEE+10], and for
the modeling of the operational semantics of visual languages like Petri nets
and statecharts as shown in Section 4.2, where interaction schemes are used
to generate multi-amalgamated rules and transformations based on suitable
maximal matchings.
In Chapter 5, we have introduced the theory of model transformations

based on TGGs for rules with application conditions. This enhances the
expressiveness of model transformations including that of the generation
of source and/or target languages. As the main result we have shown the
composition and decomposition property for triple graph transformations
based on rules with S-consistent application conditions. We have discussed
in detail a model transformation from statecharts to Petri nets, where the
use of application conditions allows to specify and translate more general
statecharts then those considered in [EEPT06] using an inplace model trans-
formation.
In Chapter 6, we have presented main results for syntactical correct-

ness, completeness, information preservation, termination, and functional
behavior for model transformations based on triple graph transformations
extending those for the case without NACs in [EEE+07] and with NACs
in [EHS09]. Although the confluence results for M-adhesive systems can-
not be assigned directly to triple graph transformations, we have the main
advantage that correctness, completeness, and termination results can be
shown in general for triple graph transformations. Moreover, triple graphs
are a somewhat natural choice for exogenous model transformations, since

7.2 Relevance for Model-Driven Software Development 183

they explicitly integrate both models which have to be distinguished oth-
erwise by inplace transformations. We have analyzed our example model
transformation regarding these properties, and have shown that the oper-
ational semantics for statecharts terminates for well-behaved statecharts.
Moreover, we have shown how to analyze the semantical correctness of the
model transformation based on the semantics defined using amalgamation.
The on-the-fly construction of model transformations, already published in
[EEHP09], allows a more efficient construction of model transformations
based on our results for partial match consistency and forward consistent
matches, which can be further improved by using shift-equivalent sequences.

7.2 Relevance for Model-Driven Software

Development

As already introduced in Section 2.1, model transformations play a central
role in model-driven software development. Different model transformation
tasks like refactoring, translation of models to intermediate models, or gen-
erating code appear in this context. Since it is natural to consider graphs as
the underlying structure of visual models, graph transformation is a natural
means to describe the manipulation of graph structures. This is not only
true for model-to-model transformation, but also for model-to-text trans-
formations where the code or text parts are described by meta-models. For
example, the Java Model Parser and Printer (JaMoPP) [HJSW09] specifies
a meta-model for Java which can be used for code generation from UML
diagrams to Java code using graph transformation.
While other transformation approaches are often weakly structured, un-

typed, and do not even guarantee syntactical correctness, graph transforma-
tion offers features like typing and node type inheritance [LBE+07] leading
automatically to well-typed, consistent models. In [Tae10], the usefulness of
graph transformations for model transformation is analyzed in more detail.
In praxis, model transformations are often tested, but seldom verified.

The key properties for verification are the following:

• Consistency. Models should be structurally and type consistent. This
corresponds to syntactical correctness, which is directly implied by
model transformations based on triple graph grammars (see Thm. 6.1)
and can be checked for other graph transformations using character-

184 7 Conclusion and Future Work

istics for well-formedness expressed by graph constraints, which can
also be translated to application conditions of rules in many cases.

• Termination. Model transformations should be terminating, which
cannot be guaranteed for model transformations based on graph trans-
formations in general. But this property can be shown for triple
graph grammars (see Thm 6.8) or using several termination criteria
[EEPT06, VVE+06].

• Uniqueness of Results. The model transformation of a source model
should lead to a unique target model, either with respect to isomor-
phisms of target models or semantical equivalence. While the seman-
tical equivalence of target models is often difficult to analyze, there
are practical results to show the isomorphism of models. A local con-
fluence analysis of the model transformations rules using critical pairs
leads, together with termination, to confluence of the model transfor-
mation and thus to functional behavior.

• Preservation of Semantics. Model transformations should preserve
certain semantical properties of the source model in the target model.
While some approaches use model checking [RSV04] oder theorem
provers [Str08], a more promising approach seems to be to discover a
relation between the semantical rules of the source and target models
as shown for our case study in Subsection 6.3.2 or proposed in [EE08]
for a very restricted set of rules and models.

Graph transformation offers a broad range of analysis methods for the ver-
ification of model transformations. With the Eclipse Modeling Framework
(EMF) [SBPM08], a quasi-standard modeling technology has evolved as an
implementation approach, where EMF models can be considered as graphs
with a spanning tree or forest defining special containment relations. EMF
model transformations can be seen as graph transformations with special
kinds of rules that do not destroy the spanning containment tree or forest.
As already shown in [BET10], also amalgamated rules can be implemented
for EMF transformations.
Altogether, the EMF framework reveals that the formal concepts of graph

transformation can be well applied in a practical setting for model-driven
software development. They are an essential foundation including a mature
theory for a consistent analysis and correctness of software systems based
on algebraic graph and model transformations.

7.3 Case Studies 185

7.3 Case Studies

In this thesis, we have deliberately chosen a very complex and difficult main
example, the model transformation SC2PN from UML statecharts to Petri
nets, for a feasibility study to show that our theory can even be applied
in such challenging cases. In our work, other case studies based on triple
graph transformations occur, which could be analyzed accordingly, where
the analysis is easier since the model transformations can be defined more
direct and the semantics have a closer relation.

• SC2PN. For the definition of statecharts, which are a variant of UML
statecharts including orthogonal regions and nested states, we have
introduced their syntax in Subsection 4.2.2 and their operational se-
mantics using the concept of amalgamated graph transformation in
Subsection 4.2.3. For this semantics, we have shown that a semantical
step is terminating for well-behaved statecharts in Thm. 6.12. While
a general operational semantics for elementary Petri nets is defined in
Subsection 4.2.1, a more specific one adapted for the model transfor-
mation is used for Petri nets with inhibitor and contextual arcs and
open places in Subsection 6.3.1. Both specifications use amalgamated
graph transformation.

In Section 5.3, we have specified the model transformation SC2PN us-
ing triple graph transformations with application conditions. First,
the triple rules are defined that construct both the source and target
models simultaneously. The derived forward rules express the actual
model transformation. In Section 6.1, we have shown that this model
transformation is syntactically correct and complete w. r. t. the target
language of Petri nets, and moreover backward information preserv-
ing. We have shown SC-termination and functional behavior of the
model transformation SC2PN in Section 6.2 and have argued for seman-
tical simulation in Thm. 6.21. While all other results are general re-
sults for a certain class of triple graph transformations, this last result
heavily depends on a thorough investigation of the involved semantical
rules and cannot be easily generalized to other model transformations.

• CD2RDBM. In [BRST05], a case study from class diagrams to rela-
tional database models is introduced. This case study has become
well-established in the model transformation community, with lots of
different implementations and analysis results. In [TEG+05], we have

186 7 Conclusion and Future Work

implemented this case study with our tool AGG and compared this
solution to other implementations. In [EEHP09], the optimization of
the construction of model transformations based on the on-the-fly con-
struction has been demonstrated on this example. Moreover, it has
been shown that the model transformation is syntactically correct,
complete, and SC-terminating.

• AD2CSP. In [BEH07], a case study from a simplified version of activity
diagrams with only actions, binary decisions, and merges to commu-
nicating sequential processes (CSP) was proposed in a tool contest.
We have implemented this case study in [EP08] using triple graph
grammars. Moreover, with the use of special kernel elements and de-
rived negative application conditions we were able to show that this
model transformation is terminating and confluent, i. e. has functional
behavior. Both source and target models could be equipped with se-
mantics, where it should be possible to show bisimilarity with the
methods proposed in this thesis.

• BPMN2BPEL. In [ODHA06], a case study from the Business Process
Modeling Notation (BPMN) to executable processes formulated in
the Business Process Execution Language (BPEL) for Web Services is
specified. In [BEE+10], we have implemented this model transforma-
tion in our tool AGG. For the translation of certain BPMN-elements,
namely Split- and Join-constructs, amalgamation is used, because
an arbitrary number of branches may occur. We have shown parallel
independence of the amalgamated transformations leading to func-
tional behavior of this model transformation.

7.4 Tool Support

The comprehensive theory of typed attributed graph transformation can be
used to describe and analyze visual model transformations. Most of this the-
ory has already been implemented by our TFS group at Technische Univer-
sität Berlin in the integrated tool environment Attributed Graph Grammar
(AGG) system, developed in Java, that supports the development of graph
grammars, as well as their testing and analysis. AGG provides a comprehen-
sive functionality for the input and modification of typed attributed graph
grammars by a mouse/menu-driven visual user interface. The theoretical
concepts are implemented as directly as possible – but, naturally, respect-

7.4 Tool Support 187

ing necessary efficiency considerations – such that AGG offers clear concepts
and sound behavior concerning the graph transformation part. Owing to
its formal foundation, AGG offers validation support in the form of graph
parsing, consistency checking of graphs and graph transformation systems,
critical pair analysis, and analysis of the termination of graph transforma-
tion systems.
AGG supports attributed type graphs with multiplicity constraints and

attribution by use of Java objects. An attribute is declared just like a
variable in a conventional programming language: by specifying its name
and type and assigning a value of this type. In contrast to the theory, each
attribute has at most one value. While Java attributes allow a large variety
of applications to graph transformation, it is clear that the Java semantics
is not covered by the formal foundation.
Internally, AGG follows the single-pushout approach, but the double-push-

out approach can be simulated with proper system settings. For rules, nega-
tive application conditions can be defined. Moreover, global constraints can
be checked after each transformation to decide whether this transformation
is valid. For a simple control flow, layers may be assigned to rules that fix
an order on how the rules are applied.
Lately, AGG has been equipped with amalgamated graph transformation.

As introduced in Chapter 4, a kernel and different multi rules can be speci-
fied in AGG leading to interaction schemes. With maximal disjoint matching,
the amalgamated rule is constructed and applied leading to an amalgamated
transformation. It is ongoing work to implement application conditions with
arbitrary levels of nesting for standard and amalgamated rules to allow the
complete expressiveness of this approach.
Also, AGG offers different analysis techniques for graph transformations:

• Graph constraints allow to check for certain properties.

• Critical pair and dependency analysis detects conflicts and dependen-
cies of transformations.

• Graph parsing allows to decide whether a given graph belong to a
language defined by a graph grammar.

• Termination criteria allow to decide for termination.

To integrate graph and model transformation into the development toolset
Eclipse [Gro09], the EMF Henshin project provides an in-place model trans-
formation language for EMF. The framework supports endogenous trans-
formations of EMF model instances as well as exogenous transformations

188 7 Conclusion and Future Work

generating instances of a target language from given instances of a source
language. It offers a graphical syntax and some support for static analysis
of transformations.
For a more efficient application of triple graph rules, a tool environment

based on the well-known Mathematica software is currently under work
[Ada09]. This seems to be a promising approach for a fast and efficient
model transformation tool.

7.5 Future Work

For future work, the categorical foundation ofM-adhesive categories should
be further analyzed and adapted to our needs. One interesting field of
investigation are finite objects. In many application areas, infinite objects
do not play a role and only finite objects are considered for transformations.
Results concerning the preservation of finiteness and the availability of the
additional properties would be of importance [BEGG10].
Moreover, it would be interesting to investigate how far the definition

of M-adhesive categories and especially the weak van Kampen squares are
necessary for the complete theory. An interesting approach in [Hei09] re-
defines van Kampen squares in a way that we do not have to require all
M-morphisms, but some have to be induced by the van Kampen prop-
erty. This may allow to ease or directly induce efficient pushouts and other
relevant properties.
To analyze local confluence, the critical pair analysis for rules with appli-

cation conditions should be made more efficient. Up to now, to rule out that
a pair is actually a critical pair all extensions have to be checked. Suitable
conditions for extensions as well as for strict AC-confluence should help to
improve the analysis.
The theory of multi-amalgamation is a solid mathematical basis to an-

alyze interesting properties of the operational semantics, like termination,
local confluence, and functional behavior. However, it is left open for future
work to generalize the corresponding results in [EEPT06] like the Concur-
rency, the Embedding and Extension, and the Local Confluence Theorem
to results for multi-amalgamated rules based on the underlying kernel and
multi rules. These results are of special interest in the case of maximal
matchings, where they do not hold in general even for amalgamated trans-
formations. Properties which ensure the local Church-Rosser or Extension

7.5 Future Work 189

Theorem and a critical pair analysis optimized for maximal matchings would
be of great importance.
For the analysis of functional behavior, an important approach could be

the use of forward translation rules [HEOG10], where additional attributes
keep track which source elements have been translated already by the model
transformation. While triple rules are no longer non-deleting in this ap-
proach, we can apply the main results of the theory in Section 3.4 directly
to the model transformation, especially the local confluence and termination
analysis.
A main challenge for future work is to obtain a more general theory to

show the semantical correctness of model transformations. While we have
shown the semantical simulation based on a comparison of the semantical
rules, it would be a great improvement to have a formalism to directly
integrate the semantical rules for the source and target languages into the
triple graph formalism and to show there directly their correspondence.
Graph transformation and several analysis techniques have been imple-

mented in our tool AGG. While the basic mechanisms for negative application
conditions, amalgamated transformations, and maximal disjoint matchings
are already implemented there, it is future work to extend AGG with ar-
bitrary application conditions and the corresponding analysis possibilities.
Moreover, up to now the computing of triple graph grammars is mainly ac-
complished by first flattening the triple graphs to plain graphs with special
edge types for the connection morphisms. This could be improved for a
more direct implementation and an automatic construction of the derived
rules. With these extensions, our examples and the case study in this thesis
can be the input for AGG, where the corresponding analysis can be done
automatically or semi-automatically.

Appendix

A Categorical Results

In this Appendix, we show different results and extensions of the theory in the

main part that are necessary for the full proofs of our theory.

In Section A.1, lemmas for the categorical construction of M-adhesive cate-
gories are shown. Results concerning the functors used for the definition of gen-

eralized AHL Schemas are proven in Section A.2. In Section A.3, the category of

markings is introduced used for the proof that AHL systems are an M-adhesive
category. In Section A.4, different lemmas for the theory of amalgamated trans-

formations are shown.

A.1 Proofs for Construction of M-Adhesive

Categories

In this section, we show how pushouts in general comma categories are constructed

and how to define product, slice, coslice, and comma categories as general comma

categories, which eases the proof for Thm. 3.11.

In a general comma category, pushouts can be constructed component-wise

in the underlying categories if the domain functors of the operations preserve

pushouts. This is a generalization of the corresponding result in [PEL08] for

comma categories.

Lemma A.1

Consider a general comma category G = GComCat((Cj)j∈J , (Fi, Gi)i∈I ; I,J)
based on M-adhesive categories (Cj ,Mj), where Fi preserves pushouts along

Mki -morphisms.

Aj Bj

Cj Dj

A B

C D

f

g′g

f ′

fj

g′jgj

f ′j

(1)j (1)

For objects A = ((Aj), (opAi)), B =

((Bj), (opBi)), and C = ((Cj), (opCi))

∈ G and morphisms f = (fj) : A →
B, g = (gj) : A → C with f ∈
×j∈JMj we have: The diagram (1)

is a pushout in G iff for all j ∈ J (1)j
is a pushout in Cj , with D = ((Dj), (opDj)), f ′ = (f ′

j), and g′ = (g′
j).

Proof ”⇐” Given the morphisms f and g in (1), and the pushouts (1)j in Cj
for j ∈ J . We have to show that (1) is a pushout in G.
Since Fi preserves pushouts alongMki -morphisms, with fki ∈Mki the diagram

(2)i is a pushout for all i ∈ I. Then D = ((Dj), (opDi)) is an object in G,

U. Golas, Analysis and Correctness of Algebraic Graph and Model Transformations,
DOI 10.1007/978-3-8348-9934-7,
© Vieweg+Teubner Verlag | Springer Fachmedien Wiesbaden GmbH 2011

194 A Categorical Results

where, for i ∈ I, opDi is induced by pushout (2)i and Gi(f
′
�i
) ◦ opCi ◦ Fi(gki) =

Gi(f
′
�i
) ◦Gi(g�i) ◦ opAi = Gi(g

′
�i
) ◦Gi(f�i) ◦ opAi = Gi(g

′
�i
) ◦ opBi ◦Fi(fki). It holds

that opDi ◦ Fi(f
′
ki
) = Gi(f

′
�i
) ◦ opCi and opDi ◦ Fi(g

′
ki
) = Gi(g

′
�i
) ◦ opBi . Therefore

f ′ = (f ′
j) and g′ = (g′

j) are morphisms in G such that (1) commutes.

Fi(Aki) Fi(Bki)

Fi(Cki) Fi(Dki)

Gi(A�i) Gi(B�i)

Gi(C�i) Gi(D�i)

Gi(X�i)

Fi(Xki)

Fi(fki
)

Fi(g
′
ki

)
Fi(gki

)

Fi(f
′
ki

)

Gi(f�i
)

Gi(g
′
�i
)

Gi(g�i
)

Gi(f
′
�i
)

opAi opBi

opCi

opDi

Fi(hki
)

Fi(kki
)

Fi(xki
)

Gi(h�i
)

Gi(k�i
)

Gi(x�i
)

opXi

(2)i

It remains to show that (1) is a pushout. Given an object X = ((Xj), (opXi))

and morphisms h = (hj) : B → X and k = (kj) : C → X in G such that

h ◦ f = k ◦ g. From pushouts (1)j we obtain unique morphisms xj : Dj → Xj
such that xj ◦ g′

j = hj and xj ◦ f ′
j = kj for all j ∈ J . Since (2)i is a pushout, from

Gi(x�i) ◦ opDi ◦Fi(g′
ki
) = Gi(x�i) ◦Gi(g′

�i
) ◦ opBi = Gi(h�i) ◦ opBi = opXi ◦F(hki) =

opXi ◦ Fi(xki) ◦ Fi(g
′
ki
) and Gi(x�i) ◦ opDi ◦ Fi(f

′
ki
) = Gi(x�i) ◦ Gi(f

′
�i
) ◦ opCi =

Gi(k�i)◦opCi = opXi ◦Fi(k�i) = opXi ◦Fi(xki)◦Fi(f ′
ki
) it follows that Gi(x�i)◦opDi =

opXi ◦Fi(xki). Therefore x = (xj) ∈ G, and x is unique with respect to x ◦ g′ = h

and x ◦ f ′ = k.

”⇒” Given the pushout (1) in G we have to show that (1)j are pushouts in Cj
for all j ∈ J . Since (Cj ,Mj) is an M-adhesive category there exists a pushout
(1′)j over fj ∈Mj and gj in Cj .

Aj Bj

Cj Ej

A B

C E

f

g∗g

f∗

fj

g∗jgj

f∗j

(1′)j (1′)

Therefore (using ”⇐”) there is a
corresponding pushout (1′) in G over

f and g with E = ((Ej), (opEi)), f
∗ =

(f∗
j) and g∗ = (g∗

j). Since pushouts

are unique up to isomorphism it fol-

lows that E
∼
= D, which means Ej

∼
=

Dj and therefore (1)j is a pushout in Cj for all j ∈ J .
A standard comma category is an instantiation of a general comma category.

A.2 Proofs for Generalized AHL Schemas as anM-Adhesive Category 195

Lemma A.2

A comma category A = ComCat(F : C → X, G : D → X, I) is a special case of
a general comma category.

Proof With I as given, J = {1, 2}, C1 = C, C2 = D, Xi = X, Fi = F and

Gi = G for all i ∈ I the resulting general comma category is obviously isomorphic
to A.

Product, slice and coslice categories are special cases of comma categories.

Lemma A.3

For product, slice and coslice categories, we have the following isomorphic comma

categories:

1. C×D ∼
= ComCat(!C : C→ 1, !D : D→ 1, ∅),

2. C\X ∼
= ComCat(idC : C→ C, X : 1→ C, {1}) and

3. X\C ∼
= ComCat(X : 1→ C, idC : C→ C, {1}),

where 1 is the final category, !C : C → 1 is the final morphism from C, and

X : 1→ C maps 1 ∈ 1 to X ∈ C.

Proof This is obvious.

A.2 Proofs for Generalized AHL Schemas as

an M-Adhesive Category

In this section, we give the additional proofs used in Thm. 3.23 to show that the

category of generalized HLR schemas is anM-adhesive category.
Lemma A.4

The functor H : Specs×Sets→ Sets : (SP, M) �→M, (fSP , fM) �→ fM preserves

pushouts alongM1 ×M2-morphisms.

Proof In a product category, a square is a pushout if and only if the component-

(SP0, M0) (SP1, M1)

(SP2, M2) (SP3, M3)

M0 M1

M2 M3

(fSP ,fM)

(gSP ,gM) (g′SP ,g
′
M)

(f ′SP ,f
′
M)

fM

gM g′M

f ′M

(1) (2)

wise squares are push-

outs in the underlying

categories. Thus, if

(1) is a pushout in

Specs×Sets also (2)
is a pushout in Sets,

which means that H preserves pushouts.

Lemma A.5

The functor H : Specs × Sets → Sets : (SP = (S, OP, E), M) �→ S,

(fSP , fM) �→ fSP,S preserves pullbacks alongM1 ×M2-morphisms.

196 A Categorical Results

Proof In a product category, a square is a pullback if and only if the component-

wise squares are pullbacks in the underlying categories. Thus, if (3) is a pullback

in Specs × Sets also (4) is a pullback in Specs. In Specs, pullbacks are con-
structed component.wise on the signature part (with some special treatment of

the equations). Thus, also (5) is a pullback in Sets, which means that H preserves

pullbacks.

(SP0, M0) (SP1, M1)

(SP2, M2) (SP3, M3)

SP0 SP1

SP2 SP3

S0 S1

S2 S3

(fSP ,fM)

(gSP ,gM) (g′SP ,g
′
M)

(f ′SP ,f
′
M)

fSP

gSP g′SP

f ′SP

fSP,S

gSP,S g′SP,S

f ′SP,S

(3) (4) (5)

Lemma A.6

The functor H : Specs × Sets → Sets : (SP, M) �→ (TSIG(X) × M)⊕,

(fSP , fM) �→ (f#
SP × fM)

⊕ preserves pullbacks alongM1 ×M2-morphisms.

Proof The product functor × preserves general pullbacks and, as shown in

[EEPT06], the functor �⊕ preserves pullbacks along injective morphisms. Thus,

it lasts to show that T : Specs → Sets : SP �→ TSIG(X), where we forget the

type information of the terms, preserves pullbacks.

In Specs, the pullback (4) is constructed component-wise on the sorts, oper-

ations and variables, which means that S0 = {(s1, s2) | g′
SP,S(s1) = f ′

SP,S(s2)},
OP0 = {(op1, op2) : (s

1
1, s

1
2)...(s

n
1 , sn2) → (s1, s2) | g′

SP,OP (op1 : s11...s
n
1 → s1) =

f ′
SP,OP (op2 : s

1
2...s

n
2 → s2)} and X0 = {(x1, x2) | g′

SP,X(x1) = f ′
SP,X(x2)}. There-

fore, the terms in TSIG0(X0) are defined by TSIG0,s(X0) = X0,s ∪ {(c1, c2) |
(c1, c2) :→ s ∈ OP0} ∪ {(op1, op2)(t1, .., tn) | (op1, op2) : s1...sn → s ∈ OP0, ti ∈
TSIG0,si(X0)}.
We have to show that TSIG0(X0) is isomorphic to the pullback object P over

f ′#
SP and g′#

SP with P = {(t1, t2) | g′#
SP (t1) = f ′#

SP (t2)}. Since P is a pullback,

with f ′#
SP ◦g#SP = g′#

SP ◦f#
SP we get an induced morphism i : TSIG0(X0)→ P with

i(t) = (f#
SP (t), g

#
SP (t)), which means that i is inductively defined by i(c1, c2) =

(c1, c2) for constants, i(x1, x2) = (x1, x2) for variables and i((op1, op2)(t1, ..., tn))

= (op1(i(t1)1, ..., i(tn)1), op2(i(t1)2, ..., i(tn)2)) for complex terms.

TSIG0(X0) TSIG1(X1)

TSIG2(X2) TSIG3(X3)

f
#
SP

g
#
SP g

′#
SP

f
′#
SP

(6)

f ′
SP , g′

SP are specification morphisms and

f ′#
SP , g′#

SP are inductively defined on terms.

This means that, for a pair (t1, t2) ∈ P , the

terms t1 and t2 have to have the same struc-

ture. Define j : P → TSIG0(X0) inductively

by j(c1, c2) = (c1, c2) for constants, j(x1, x2) =

(x1, x2) for variables and j(op1(t
1
1, ..., t

n
1), op2(t

1
2, ..., t

n
2)) = (op1, op2)(j(t

1
1, t

1
2), ...,

j(tn1 , tn2)) for complex terms.

By induction, it can be shown that i ◦ j = idP and j ◦ i = idTSIG0 (X0). This

means that i and j are isomorphisms and (6) is a pullback in Sets.

A.3 Proofs for AHL Systems as anM-adhesive Category 197

Lemma A.7

The functor H : Specs × Sets → Sets : (SP, M) �→ Pfin(Eqns(SIG, X)), (fSP ,

fM) �→ Pfin(f#
SP) preserves pullbacks alongM1 ×M2-morphisms.

Proof In [EEPT06], it is shown that P preserves pullbacks along injective mor-
phisms. Analogously, this can be shown for Pfin, since if we start the construction
for finite sets, this property is preserved. Thus, it lasts to show that Eqns pre-

serves pullbacks, which can be proven similar to the proof for sets of terms in

Lemma A.6 above.

A.3 Proofs for AHL Systems as an

M-adhesive Category

In this section, we define the categoryMarkings of markings and show that this

category is an M-adhesive category. Moreover, we combine nets with markings
and show under which conditions the resulting category of net systems is also an

M-adhesive category.

A.3.1 The Category of Markings

In general, a marking of a net can be seen as a multiset, i. e. an element of a free

commutative monoid – in the case of P/T nets of P ⊕, in the case of AHL nets of
(A⊗ P)⊕, where ⊗ means the type-correct product. As a consequence, we could
use the category FCMonoids of free commutative monoids for our markings.

Unfortunately, in many cases the morphisms between P/T or AHL systems should

not be marking-strict, which means that the marking on each place p has to be

equal in both nets, as is the case for morphisms in FCMonoids.

For this reason, we define the category Markings, where the objects are sets

combined with a function to natural numbers defining the quantity of each element

of the set. For morphisms, we only require a mapping between the sets that at

least preserves these quantities.

Definition A.8 (Category Markings)

The category Markings consists of

• objects (S, s) with a set S and a function s : S → N,

• morphisms f : (S, s) → (T, t) with a function f : S → T such that ∀s1 ∈
S : s(s1) ≤ t(f(s1)),

• a composition g ◦ f of f : (S, s) → (T, t), g : (T, t) → (U, u) with ∀si ∈ S :

g ◦ f(s1) = g(f(s1)) as in Sets,

• identities id(S,s) : (S, s)→ (S, s) with id(S,s) = idS as in Sets.

198 A Categorical Results

This category is well-defined since the morphisms are basically morphisms in

Sets, and for the composition we have ∀s1 ∈ S : s(s1) ≤ t(f(s1)) ≤ u(g(f(s1))),

which means g ◦ f is a valid Markings-morphism.

Now we shall show that the category of markings with a suitable morphism

classMstrict of strict morphisms is anM-adhesive category. First we define this
morphism classMstrict, and then we prove some lemmas which are necessary to

show the desired result.

Definition A.9 (strict morphism)

A morphism f : (S, s)→ (T, t) inMarkings is marking-strict if ∀s1 ∈ S : s(s1) =

t(f(s1)). A morphism f : (S, s) → (T, t) in Markings is strict, if f is injective

and marking-strict. All strict morphisms form the morphism class Mstrict.

The category FCMonoids of free commutative monoids is a subcategory of

Markings, where the morphisms in FCMonoids are exactly the marking-strict

morphisms.

Lemma A.10

Mstrict is a class of monomorphisms closed under composition and decomposition.

Proof Given morphisms f : (S, s)→ (T, t), g : (T, t)→ (U, u) in Markings the

following properties hold:

1. If f is strict, then it is injective and we inherit from Sets that it is a

monomorphism.

2. Injective morphisms in Sets are closed under composition and decomposi-

tion. This holds also in Markings.

3. If f , g are strict we have ∀s1 ∈ S : s(s1)
f strict
= t(f(s1))

g strict
= u(g(f(s1))),

which means that also g ◦ f is strict.

4. If g, g ◦ f are strict we have ∀s1 ∈ S : s(s1)
g◦f strict
= u(g(f(s1)))

g strict
=

t(f(s1)), which means that also f is strict.

The next proofs are very similar to the proofs for P/T systems being an M-
adhesive category in [PEHP08]. We generalize these proofs to the category of

markings. First we shall show that pushouts along Mstrict-morphisms exist and

preserveMstrict-morphisms.

Lemma A.11

(A, a) (B, b)

(C, c) (D, d)

m

n

f g(1)

In Markings, pushouts along Mstrict-morphisms exist

and preserveMstrict, i. e. given morphisms f and m with

m strict, then the pushout (1) exists and n is also a strict

morphism.

A.3 Proofs for AHL Systems as anM-adhesive Category 199

Proof Given f , m with m ∈Mstrict we construct D as pushout object in Sets,

which means D = (C
�∪ B)\m(A) with inclusion n : C → D, and g : B → D :

b1 ∈ B\m(A) �→ b1, m(a1) �→ f(a1). For d1 ∈ D, d is defined by

(1) d1 = b1 ∈ B\m(A): d(b1) = b(b1),

(2) d1 = c1 ∈ C: d(c1) = c(c1).

Obviously, d : D → N is well-defined. First we shall show that g, n areMarkings-

morphisms and n is strict.

1. ∀b1 ∈ B we have:

1. b1 ∈ B\m(A) and b(b1)
(1)
= d(b1) = d(g(b1)) or

2. ∃a1 ∈ A with b1 = m(a1) and b(b1) = b(m(a1))
m strict
= a(a1) ≤ c(f(a1))

(2)
= d(f(a1)) = d(g(m(a1))) = d(g(b1)).

This means that g ∈Markings.
2. ∀c1 ∈ C we have:

1. c(c1)
(2)
= d(c1) = d(n(c1)).

This means that n ∈Markings and n is strict.

(A, a) (B, b)

(C, c) (D, d)

(E, e)

m

n

f g

x
h

k

(1)

It remains to show the pushout property.

Given Markings-morphisms h : (C, c) →
(E, e), k : (B, b) → (E, e) with h ◦ f = k ◦m,

we have a unique induced morphism x in Sets

with x ◦ n = h and x ◦ g = k. We shall show

that x ∈ Markings, i. e. ∀d1 ∈ D : d(d1) ≤
e(x(d1)).

1. For d1 = b1 ∈ B\m(A) we have
d(b1)

(1)
= b(b1) ≤ e(k(b1)) = e(x(g(b1)) = e(x(b1)).

2. For d1 = c1 ∈ C we have d(c1)
(2)
= c(c1) ≤ e(h(c1)) = e(x(n(c1))) = e(x(c1)).

As next property, we shall show that pullbacks alongMstrict-morphisms exist

and preserveMstrict-morphisms.

Lemma A.12

InMarkings, pullbacks alongMstrict-morphisms exist and preserveMstrict, i. e.

given morphisms g and n with n strict, then the pullback (1) exists and m is also

a strict morphism.

Proof Given g, n with n ∈ Mstrict we construct A as pullback object in Sets,

which means A = g−1(n(C)) with inclusion m : A → B and f : A → C : a �→
n−1(g(a)). For all a1 ∈ A, a is defined by

(∗) a(a1) = b(m(a1)).

200 A Categorical Results

Obviously, a is a well-defined marking. f is a well-defined function since n is

injective. We have to show that f , m are Markings-morphisms and m is strict.

1. ∀a1 ∈ A we have: a(a1)
(∗)
= b(m(a1)) ≤ d(g(m(a1)) = d(n(f(a1))

n strict
=

c(f(a1)).

This means f ∈Markings.
2. ∀a1 ∈ A we have: a(a1)

(∗)
= b(m(a1)).

This means m ∈Markings and m is strict.

(A, a) (B, b)

(C, c) (D, d)

(E, e)

m

n

f g

x

h

k

(1)

To show the pullback property, for given

Markings-morphisms h : (E, e) → (C, c), k :

(E, e) → (B, b) with n ◦ h = g ◦ k, we have

a unique induced morphism x in Sets with

f ◦ x = h and m ◦ x = k. We shall show

that x ∈ Markings, i. e. ∀e1 ∈ E : e(e1) ≤
a(x(e1)). For e1 ∈ E we have e(e1) ≤ b(k(e1))

= b(m(x(e1)))
m strict
= a(x(e1)).

It remains to show theM-van Kampen property forMarkings. We know that
(Sets,M) is an M-adhesive category for the class M of injective morphisms,

hence pushouts in Sets along injective morphisms are M-van Kampen squares.
But we have to give an explicit proof for the markings, because a square (1) in

Markings with m, n ∈ Mstrict, which is a pushout in Sets, is not necessarily a

pushout inMarkings, since we may have d(g(b1)) > b(b1) for some b1 ∈ B\m(A).
Lemma A.13

In Markings, pushouts alongMstrict-morphisms areM-van Kampen squares.
Proof Given the following commutative cube (2) with m ∈ Mstrict and (f ∈
Mstrict or t, u, v ∈ Mstrict), where the bottom face is a pushout and the back

faces are pullbacks, we have to show that the top face is a pushout if and only if

the front faces are pullbacks.

(A′, a′)

(B′, b′)

(A, a)

(B, b)

(C′, c′)

(D′, d′)

(C, c)

(D, d)

m′

s

f ′

g′

t
m

f

n′

u

v

n
g

(2)

”⇒” If the top face is a pushout
then the front faces are pullbacks

in Sets, since all squares are push-

outs or pullbacks in Sets, where

the M-van Kampen property

holds. For a pullback (1) withm, n

∈ Mstrict, the function a of A is

completely determined by the fact

that m ∈Mstrict as shown in the

proof of Lemma A.12. Hence a diagram (1) in Markings with m, n ∈ Mstrict is

a pullback in Markings if and only if it is a pullback in Sets. This means, the

front faces are also pullbacks in Markings.

A.3 Proofs for AHL Systems as anM-adhesive Category 201

”⇐” If the front faces are pullbacks we know that the top face is a pushout

in Sets. To show that it is also a pushout in Markings we have to verify the

conditions (1) and (2) from the construction in Lemma A.11.

(1) For b′
1 ∈ B′\m′(A′) we have to show that d′(g′(b′

1)) = b′(b′
1).

If f is strict then also g and g′ are strict, since the bottom face is a pushout
and the right front face is a pullback, and Mstrict is preserved by both

pushouts and pullbacks. This means that b′(b′
1) = d′(g′(b′

1)).

Otherwise t and v are strict. Since the right back face is a pullback and

b′
1 ∈ B′\m′(A′) we have t(b′

1) ∈ B\m(A). With the bottom face being a

pushout we have by (1) in Lemma A.11

(∗) d(g(t(b′
1)))

(1)
= b(t(b′

1)).

It follows that d′(g′(b′
1))

v strict
= d(v(g′(b′

1))) = d(g(t(b′
1)))

(∗)
= b(t(b′

1))
t strict
=

b′(b′
1).

(2) For c′
1 ∈ C′ we have to show that d′(n′(c′

1)) = c′(c′
1).

With m being strict also n and n′ are strict, since the bottom face is a

pushout and the left front face is a pullback, and Mstrict is preserved by

both pushouts and pullbacks. This means that c′(c′
1) = d′(n′(c′

1)).

Theorem A.14

The category (Markings,Mstrict) is anM-adhesive category.

Proof By Lemma A.10, the morphism class Mstrict has the required proper-

ties. Moreover, we have pushouts and pullbacks along Mstrict-morphisms in

Markings, as shown in Lemma A.11 and Lemma A.12, respectively. By Lem-

ma A.13, pushouts along strict morphisms are M-van Kampen squares. Hence
all properties ofM-adhesive categories are fulfilled.

A.3.2 From Nets to Net Systems

Now we combine nets with markings and show that under certain conditions the

category of the corresponding net systems is also an M-adhesive category. The
term net means any variant of Petri nets, for example place/transition nets, AHL

nets or generalized AHL nets.

The general idea is to define for a net N a marking set M(N) dependent on N ,

where the actual marking is a function m : M(N)→ N. For place/transition nets

this marking set is the set P of places, for AHL nets and generalized AHL nets

this marking set is the set (A ⊗ P). Then the category of the corresponding net

systems can be seen as a subcategory of a comma category of nets and markings,

where the marking set is compatible with the net.

202 A Categorical Results

Definition A.15 (Net system)

Given a category Nets of nets, a net system S = (N, m) is given by a net N ∈
Nets and a function m : M(N) → N, where M : Nets → Sets is a functor

assigning a marking set to each net N .

For net systems S = (N, m) and S′ = (N ′, m′), a net system morphism fS : S →
S′ is a net morphism fN : N → N ′ such that M(fN) : (M(N), m)→ (M(N ′), m′)
is a Markings-morphism.

Net systems and net system morphisms form the category Systems.

Theorem A.16

Given an M-adhesive category (Nets,M′) of nets with a marking set functor
M : Nets → Sets that preserves pushouts and pullbacks along M′-morphisms,
then the category (Systems,M) of net systems over these nets is anM-adhesive
category, where M is the class of all morphisms fS = (fN) with fN ∈ M′ and
M(fN) ∈Mstrict.

Proof First we define the category C = ComCat(M, V, {1}) with V :Markings

→ Sets, V (T, t) = T, V (f) = f . We can apply Thm. 3.11 Item 6 using that

M preserves pushouts alongM′ and V preserves pullbacks alongMstrict, which

follows from the construction in the proof of Lemma A.12. It follows that (C,MC)

withMC = (M′ ×Mstrict)|C is anM-adhesive category.
Now we only consider objects (N, (T, t), op1) ∈ C where op1 : M(N)→ T is an

identity, i. e. M(N) = T . This restriction leads to the full subcategory D of C.

By construction, the category D is isomorphic to the category Systems:

• For an object D = (N, (T, t), op1) ∈ D we have op1 : M(N) → T is an

identity, i. e. D = (N, (M(N), t : M(N) → N), idM(N)), which is a one-to-

one correspondence to the net system (N, t) ∈ Systems.
• For a morphism f = (fN , fM) : D → D′ with D = (N, (T, t), op1) and

D′ = (N ′, (T ′, t′), op1
′
) we have D = (N, (M(N), t : M(N) → N), idM(N))

and D′ = (N ′, (M(N ′), t′ : M(N ′) → N), idM(N′)), and by the definition

of morphisms in a comma category idM(N′) ◦M(fN) = V (fM) ◦ idM(N).

This means that M(fN) = V (fM), which corresponds to the morphism

fS = (fN) ∈ Systems, where M(fN) is a Markings-morphism.

To apply Thm. 3.11 Item 1 we have to show that D has pushouts and pullbacks

along MD-morphisms with MD = MC |D that are preserved by the inclusion

functor. Given objects (Ni, (M(Ni), mi), op1i = idM(Ni)) for i = 0, 1, 2 and mor-

phisms fS = (fN , fM) : (N0, (M(N0), m0), op10) → (N1, (M(N1), m1), op11) and

gS = (gN , gM) : (N0, (M(N0), m0), op10)→ (N2, (M(N2), m2), op12) with fS ∈MD

we can construct the pushout (1) of fN , gN in Nets with fN ∈ M′. Since

M preserves pushouts along M′-morphisms, (2) is a pushout in Sets. By as-
sumption, we have M(fN) ∈ Mstrict. Now we can use the construction in the

proof of Lemma A.11 to construct a marking m3 : M(N3) → N leading to the

A.4 Proofs for Amalgamated Transformations 203

pushout (3) inMarkings. By the construction of pushouts in comma categories,

(N3, (M(N3), m3), op13 = idM(N3)) is a pushout in C and D.

N0 N1

N2 N3

M(N0) M(N1)

M(N2) M(N3)

(M(N0), m0) (M(N1), m1)

(M(N2), m2) (M(N3), m3)

fN

f ′N

gN g′N

M(fN)

M(f ′N)

M(gN) M(g′N)

M(fN)

M(f ′N)

M(gN) M(g′N)(1) (2) (3)

Analogously, this can be done for pullbacks using the fact that M preserves

pullbacks alongM′-morphisms and the construction of pullbacks in Markings.
This means that we can apply Thm. 3.11 and (Systems,M) ∼

= (D,MD) is an

M-adhesive category.

A.4 Proofs for Amalgamated Transformations

In this section, we formulate and proof different properties of diagrams concerning

pullbacks, pushouts, pushout complements, and colimits inM-adhesive categories
where the additional properties hold.

Lemma A.17

A B

C D

A B

C′ D

C

m

n

f g

m

n′

f ′ g

n

f

c

(1) (2)

If (1) is a pushout, (2) is a pull-

back, and n′ ∈ M then there

exists a unique morphism c : C′

→ C such that c◦f ′ = f , n◦c =
n′, and c ∈M.

Proof Since (2) is a pullback, n′ ∈M implies that m ∈M, and then also n ∈M
because (1) is a pushout.

A

C′′ C′

C D

f ′
f∗

f

v

n

v′ n′(3)

Construct the pullback (3) with v, v′ ∈ M, and
since n′◦f = g◦m = n◦f there is a unique morphism
f∗ : A → C′′ with v ◦ f∗ = f ′ and v′ ◦ f∗ = f . Now

consider the following cube (4), where the bottom

face is pushout (1), the back left face is a pullback

because m ∈ M, the front left face is pullback (2),
and the front right face is pullback (3).

By pullback composition and decomposition also the back right face is a pull-

back, and then the VK property implies that the top face is a pushout. Since (5)

is a pushout and pushout objects are unique up to isomorphism this implies that

v is an isomorphism and C′′ ∼
= C′. Now define c := v′ ◦ v−1 and we have that

c ◦ f ′ = v′ ◦ v−1 ◦ f ′ = v′ ◦ f∗ = f , n ◦ c = n ◦ v′ ◦ v−1 = n′, and c ∈ M by

decomposition ofM-morphisms.

204 A Categorical Results

A C′′

A C′′

A

C′′

A

C

A

C′

B

D

f∗

f ′

idA v

f∗

idA

idA

v

v′
f

m

f ′

m

n′

g
n

(4)

(5)

Lemma A.18

A B

C D

E

F

f

f ′

m n o

g

g′

(1) (2)

If (1)+ (2) is a pullback, (1) is a pushout, (2)

commutes, and o ∈M then also (2) is a pull-

back.

Proof With o ∈M, (1)+(2) being a pullback, and (1) being a pushout we have
A B B

C D

E

F

f b

f ′

m n o

g

g′

(4) (3)

that m, n ∈ M. Construct the pull-
back (3) of o and g′, it follows that
n ∈ M and we get an induced mor-

phism b : B → B with g ◦ b = g,

n ◦ b = n, and by decomposition of

M-morphisms b ∈M.
A C

B D

B

m

n

b◦f f ′

n

f

b

(4)

By pullback decomposition, also (4) is a pullback

and we can apply Lemma A.17 with pushout (1) and

n ∈ M to obtain a unique morphism b ∈ M with

n ◦ b = n and b ◦ b ◦ f = f . Now n ∈ M and

n ◦ b ◦ b = n ◦ b = n implies that b ◦ b = idB , and

similarly n ∈M and n◦ b◦ b = n◦ b = n implies that

b ◦ b = idB , which means that B and B are isomorphic such that also (2) is a

pullback.

Lemma A.19

A′

B′

A

B

C′

D′

C

D

m′

a

f ′

g′

b
m

f

n′

c

n
g

d

Given the following commutative cube

with the bottom face as a pushout, then

the front right face has a pushout com-

plement over g ◦ b if the back left face

has a pushout complement over f ◦ a.

Proof Construct the initial pushout (1) over f . Since the back left face has a

pushout complement there is a morphism b∗ : Bf → A′ such that a ◦ b∗ = bf .

A.4 Proofs for Amalgamated Transformations 205

A′

B′

A

B

C′

D′

C

D Bf

Cf

Bf B

Cf D

m′

a

f ′

g′

b
m

f

n′

c

d

n
g

af

bf

cf

b∗

m◦bf

n◦cf

af g(2)

(1)

The bottom face

being a pushout

implies that (2) as

the composition is

the initial pushout

over g. Now b◦m′◦
b∗ = m ◦ a ◦ b∗ =
m ◦ bf , and the

pushout comple-

ment of g◦b exists.
Lemma A.20

A

B

C

D

E

F

m n

f

f ′

o

g

g′

(1) (2)

Given pullbacks (1) and (2) with pushout

complements over f ′ ◦m and g′ ◦ n, respec-

tively, then also (1)+(2) has a pushout com-

plement over (g′ ◦ f ′) ◦m.

Proof Let C′ and E′ be the pushout complements of (1) and (2), respectively.

A B

C

C′

D

E

E′

F

A B

C′C D

E′ G F

m

n

f
n∗

f∗
f ′

o

g
o∗

g∗
g′

c

e

m

n∗

f∗ f ′

g′

e

c

g∗

(1′)

(2′)

(1)

(3) (4)

By Lemma A.17 there

are morphisms c and e

such that c◦f = f∗, n∗◦
c = n, e ◦ g = g∗, and
o∗ ◦ e = o. Now (2′) can
be decomposed into

pushouts (3) and (4),

and (1′) + (4) is also a
pushout and the pushout complement of (g′ ◦ f ′) ◦m.

Lemma A.21

Given the following pushouts (1i) and (3i) with bi ∈ M for i = 1, . . . , n, mor-

phisms fij : Bi → Cj with cj ◦ fij = di for all i �= j, and the limit (2) such that

gi is the induced morphism into E using cj ◦ fij ◦ bi = di ◦ bi = ci ◦ ai, then (4)

is the colimit of (hi)i=1,...,n, where li is the induced morphism from pushout (3i)

compared with e ◦ gi = ci ◦ ei ◦ gi = ci ◦ ai = di ◦ bi.

Ai Ci

Bi D

Ai E

Bi Fi

D

Ai

E

Cj D

E Fi

D

ai

bi ci

di

gi

bi hi

ki

di li

e

ei e

cj

i�=j:fij◦bi
i=j:ai

gi

ci◦ai

hi

lie(3i)(1i)

(2)

(4)

Proof We prove this by induction over n.

206 A Categorical Results

A1 C1

B1 D

C1

C1 D

C1 D

D

ai

bi ci

di

ei e

ci

hi

lie
(11) (2)

(41)

I.B. n = 1: For n =

1, we have that C1 is the

limit of c1, i. e. E = C1, it

follows that F1 = C1 for

the pushout (31) = (11),

and obviously (41) is a

colimit.

I.S. n → n + 1: Consider the pushouts (1i) with bi ∈ M for i = 1, . . . , n + 1,

morphisms fij : Bi → Cj with cj ◦ fij = di for all i �= j, the limits (2n) and

(2n+1) of (ci)i=1,...,n and (ci)i=1,...,n+1, respectively, leading to pullback (5n+1)

by construction of limits. Moreover, gin and gin+1 are the induced morphisms into

En and En+1, respectively, leading to pushouts (3in) and (3in+1). By induction

hypothesis, (4n) is the colimit of (hin)i=1,...,n, and we have to show that (4n+1)

is the colimit of (hin+1)i=1,...,n+1.

Ai Ci

Bi D

En

Ci D

Ai En

Bi Fin

En Fin

D

En+1 Cn+1

En D

En+1

Ci D

Ai En+1

Bi Fin+1

En+1 Fin+1

D

ai

bi ci

di

ein en

ci

gin

bi hin

kin

hin

linen

en+1n+1

pn+1
cn+1

en

ein+1 en+1

ci

gin+1

bi
hin+1

kin+1

hin+1

lin+1en+1

(1i) (2n) (3in)
(4n)

(5n+1) (2n+1) (3in+1)
(4n+1)

Bn+1

En

Ci D

fn+1i dn+1

mn+1

ein en

ci

(2n)

Since (2n) is a limit and ci ◦ fn+1i = dn+1 for all i =

1, . . . , n, we obtain a unique morphism mn+1 with ein ◦
mn+1 = fn+1i and en ◦ mn+1 = dn+1. Since (1n+1) is a

pushout and (5n+1) is a pullback, by M-pushout-pullback
decomposition also (5n+1) and (6n+1) are pushouts, and

it follows that Fn+1n+1 = En. From pushout (3in+1 and

hin ◦ pn+1 ◦ gin+1 = hin ◦ gin = kin ◦ bi we get an in-

duced morphism qin+1 with qin+1 ◦ hin+1 = hin ◦ pn+1 and

qin+1 ◦ kin+1 = kin, and from pushout decomposition alsy (7in+1) is a pushout.

An+1 En+1

Bn+1 En

Cn+1

D

Ai En+1

Bi Fin+1

En

Fin

gn+1n+1

bn+1 pn+1

mn+1

en+1n+1

cn+1

en

dn+1

an+1

gin+1

bi hin+1

kin+1

pn+1

hin

qin+1

kin

gin

(6n+1) (5n+1) (3in+1) (7in+1)

To show that (4n+1) is a colimit, consider an object X and morphisms (xi) and

y with xi ◦ hin+1 = y for i = 1, . . . , n and xn+1 ◦ pn+1 = y. From pushout (7in+1)

A.4 Proofs for Amalgamated Transformations 207

we obtain a unique morphism zi with zi ◦ qin+1 = xi and zi ◦ hin = xn+1. Now

colimit (4n) induces a unique morphism z with z ◦ en = xn+1 and z ◦ lin = zi. It

follows directly that z ◦ lin+1 = z ◦ lin ◦ qin+1 = zi ◦ qin+1 = xi and z ◦ en+1 =

z ◦ en ◦ pn+1 = xn+1 ◦ pn+1 = y. The uniqueness of z follows directly from the

construction, thus (4n+1) is the required colimit.

En+1En Fin+1

D

X

En+1 En

Fin+1 Fin

X

En Fin

D

X

pn+1 hin+1

lin+1en
en+1

xixn+1

z

y

pn+1

hin+1 hin

qin+1
xn+1

xi

zi

hin

linen

z

zixn+1

(7in+1)
(4n)

Lemma A.22

Ai C

Bi Di

C Di

E

+Ai +Bi

C E

Ai

+AiC

Bi

+Bi E

ai

bi ci

di

ci

c ei

b

a e

c

bi

b

iAi iBi

ea

ai ei◦di

(1i)
(2)

(3)

=
=

=

Given the following

diagrams (1i) for i =

1, . . . , n, (2), and

(3), with b = +bi,

and a and e induced

by the coproducts

+Ai and +Bi, re-

spectively, then we

have:

1. If (1i) is a pushout and (2) a colimit then also (3) is a pushout.

2. If (3) is a pushout then we find a decomposition into pushout (1i) and

colimit (2) with ei ◦ di = e ◦ iBi

Proof 1. Given an object X and morphisms y, z with y◦a = z◦b. From pushout
(1i) we obtain with z◦iBi ◦bi = z◦b◦iAi = y◦a◦iAi = y◦ai a unique morphism xi
with xi ◦ci = y and xi ◦di = z ◦ iBi . Now colimit (2) implies a unique morphism x

with x◦c = y and x◦ei = xi. It follows that x◦e◦iBi = x◦ei◦di = xi◦di = z◦iBi ,
and since z is unique w. r. t. z◦iBi it follows that z = x◦e. Uniqueness of x follows

from the uniqueness of x and xi, and hence (3) is a pushout.

+Ai +Bi

C E

X

Ai C

Bi

X

Di

C Di

E

X

Bi +Bi

Z

b

a e

c

y

z

x

ai

bi ci

di

y

z◦iBi

xi

ci

c ei

y

x

xi

iBi

z
z◦iBi

(3) (1i)
(2)

208 A Categorical Results

2. Define ai := a◦ iAi . Now construct pushout (1i). With e◦ iBi ◦bi = e◦b◦ iAi =
c ◦ ai pushout (1i) induces a unique morphism ei with ei ◦ di = e ◦ iBi and

ei ◦ ci = c. Given an object X and morphisms y, yi with yi ◦ ci = y we obtain

a morphism z with z ◦ iBi = yi ◦ di from coproduct +Bi. Then we have that

y ◦ a ◦ iAi = yi ◦ ci ◦ ai = yi ◦ di ◦ bi = z ◦ iBi ◦ bi = z ◦ b ◦ iAi , and from coproduct

+Ai it follows that y◦a = z◦b. Now pushout (3) implies a unique morphism x with

x◦c = y and x◦e = z. From pushout (1i) using x◦ei◦di = x◦e◦iBi = z◦iBi = yi◦di
and x ◦ ei ◦ ci = x ◦ c = y = yi ◦ ci it follows that x ◦ ei = yi, thus (2) is a colimit.

Ai C

Bi

E

Di

C Di

E

X

Bi +Bi

X

+Ai +Bi

C E

X

ai

bi ci

di

c

e◦iBi

ei

ci

c ei

y

x

yi

iBi

z
yi◦di

b

a e

c

y

z

x

(1i)
(2)

(3)

Lemma A.23

Ai Bi

Ci Di

A B

C D

fi

gi hi

ki

f

g h

k

(5i) (10)

Consider colimits (1) – (4) such that

(5i) is a pushout for all i = 1, . . . , n

and (7k) – (9k) commute for all k =

1, . . . , m. Then also (10) is a pushout.

Ai Aj

A

Bi Bj

B

Ci Cj

C

Di Dj

D

Ai Bi

Aj Bj

Ai Ci

Aj Cj

Bi Di

Bj Dj

Ci Di

Cj Dj

ak

ai aj

bk

bi bj

ck

ci cj

dk

di dj

fi

ak bk

fj

gi

ak ck

gj

hi

bk dk

hj

ki

ck dk

kj

(1) (2) (3) (4)

(6k) (7k) (8k) (9k)

Proof The morphisms f , g, h, and k are uniquely induced by the colimits. We

show this examplarily for the morphism f : From colimit (1), with bj ◦ fj ◦ ak =

bj ◦ bk ◦ fi = bi ◦ fi we obtain a unique morphism f with f ◦ ai = bi ◦ fi. It follows
directly that k ◦ h = h ◦ f .

Now consider an object X and morphisms y, z with y ◦g = z ◦f . From pushout
(5i) with y ◦ci ◦gi = y ◦g ◦ai = z ◦f ◦ai = z ◦bi ◦fi we obtain a unique morphism
xi with xi ◦ ki = y ◦ ci and xi ◦ hi = z ◦ bi.

A.4 Proofs for Amalgamated Transformations 209

Ai Aj

A

B

A B

C D

X

Ai Bi

Ci Di

X

ak

ai aj

bi◦fi bj◦fj
f

f

g h

k z

y
x

fi

gi hi

ki
z◦bi

y◦ci
xi

(1)

(10) (5i)

Di Dj

D

X

Bi Bj

B

X

bk

bi bj

z◦bi z◦bj
z

dk

di dj

xi xj

x

(4) (2)

For all k = 1, . . . , m, xj ◦ dk ◦ ki =

xj ◦ kj ◦ ck = y ◦ cj ◦ ck = y ◦ ci and

xj ◦ dk ◦ hi = xj ◦ hj ◦ bk = z ◦ bj ◦
bk = z ◦bi, and pushout (5i) implies that
xi = xj ◦ dk. This means that colimit

(4) implies a unique x with x ◦ di = xi.

Now consider colimit (2), and x◦h◦ bi =
x ◦ di ◦ hi = xi ◦ hi = z ◦ bi implies that

x ◦ h = z. Similarly, x ◦ k = y, and the uniqueness follows from the uniqueness of

x with respect to (4). Thus, (10) is indeed a pushout.

Lemma A.24

+Ai +Bi

C D

+fi

c d

e

(5)

Consider colimits (1) and (2) such that (3i) commutes

for all i = 1, . . . , n, f is an epimorphism, and (4) is a

pushout with f induced by colimit (1). Then also (5) is

a pushout, where c and d are induced from the coprod-

ucts.

A Ai

A

B Bi

B

A B

Ai Bi

A B

C D

ai

a ai

bi

b bi

f

ai bi

fi

f

c d

e

(1) (2)
(3i) (4)

Proof Since (1) is a colimit and bi ◦ fi ◦ ai = bi ◦ bi ◦ f = b ◦ f , we actually get

A Ai

A

B

ai

a ai

b◦f bi◦fi
f

(1)

an induced f with f ◦ ai = bi ◦ fi and f ◦ a = b ◦ f . From the

coproducts, we obtain induced morphisms c with c ◦ iAi =

c◦ai and d with d◦ iBi = d◦bi. Moreover, for all i = 1, . . . , n

we have that d◦(+fi)◦iAi = d◦iBi◦fi = d◦bi◦fi = d◦f◦ai =
e ◦ c ◦ ai = e ◦ c ◦ iAi . Uniqueness of the induced coproduct

morphisms leads to d ◦ (+fi) = e ◦ c, i. e. (5) commutes.

We have to show that (5) is a pushout. Given morphisms

x, y with x ◦ c = y ◦ (+fi), we have that y ◦ iBi ◦ bi ◦ f =

210 A Categorical Results

y ◦ iBi ◦ fi ◦ ai = y ◦ (+fi) ◦ iAi ◦ ai = x ◦ c ◦ iAi ◦ ai = x ◦ c ◦ ai ◦ ai = x ◦ c ◦ a for

all i = 1, . . . , n. f being an epimorphisms implies that y ◦ iBi ◦ bi = y ◦ iBj ◦ bj
for all i, j. Now define y′ := y ◦ iBi ◦ bi, and from colimit (2) we obtain a unique

morphism y with y ◦ bi = y ◦ iBi and y ◦ b = y′.

Ai +Ai

C

Bi +Bi

D

Ai +Ai

Bi +Bi

+Ai +Bi

C D

X

+fi

c d

e
y

z
x

iBi

d◦bi
d

iAi

c◦ai
c

iAi

fi +fi

iBi

(5)

Now x ◦ c ◦ ai = x ◦ c ◦ iAi = y ◦ (+fi) ◦ iAi = y ◦ iBi ◦ fi = y ◦ bi ◦ fi = y ◦ f ◦ ai
and x ◦ c ◦ a = x ◦ c ◦ ai ◦ ai = y ◦ f ◦ i ◦ ai = y ◦ f ◦ a, and the uniqueness of the

induced colimit morphism implies that y ◦ f = x ◦ c. This means that X can be

compared to pushout (4), and we obtain a unique morphism z with z ◦ d = y and

z ◦ e = x. Now z ◦d◦ iBi = z ◦d◦ bi = y ◦ bi = y ◦ iBi , and it follows that z ◦d = y.

Similarly, the uniqueness of z w. r. t. to the pushout propert of (5) follows, thus

(5) is a pushout.

B Bi

B

X

A Ai

A

X

A B

C D

X

bi

b bi

y′ y◦iBi
y

ai

a ai

y◦f◦a y◦f◦ai
y◦f

f

c d

e
y

z
x

(2) (1)

(4)

Bibliography

[Ada09] Adamek, J.: Konzeption und Implementierung einer Anwendung-

sumgebung für attributierte Graphtransformation basierend auf Math-

ematica. Diplomarbeit, Technische Universität Berlin, 2009.

[AGG] AGG: The AGG Homebase. URL: http://tfs.cs.tu-berlin.de/agg/.

[AHS90] Adámek, J., H. Herrlich and G. Strecker: Abstract and Con-

crete Categories. Wiley, 1990.

[BBG05] Beydeda, S., M. Book and V. Gruhn (editors): Model-Driven

Software Development. Springer, 2005.

[BDE+07] Batory, D., O. Diaz, H. Ehrig, C. Ermel, U. Prange and

G. Taentzer: Model Transformations Should be Functors. Bulletin

of the EATCS, 92:75–81, 2007.

[Bee02] Beeck, M. von der: A Structured Operational Semantics for UML-

statecharts. Software and Systems Modeling, 1:130–141, 2002.

[BEE+10] Biermann, E., H. Ehrig, C. Ermel, U. Golas and G. Taentzer:

Parallel Independence of Amalgamated Graph Transformations Ap-

plied to Model Transformation. In Engels, G., C. Lewerentz,

W. Schäfer, A. Schürr and B. Westfechtel (editors): Graph

Transformations and Model-Driven Engineering. Essays Dedicated to

M. Nagl on the Occasion of his 65th Birthday, volume 5765 of LNCS,

pages 121–140. Springer, 2010.

[BEGG10] Braatz, B., H. Ehrig, K. Gabriel and U. Golas: Finitary M-

Adhesive Categories. In Ehrig, H., A. Rensink, G. Rozenberg

and A. Schürr (editors): Graph Transformations. Proceedings of

ICGT 2010, volume 6372 of LNCS, pages 234–249. Springer, 2010.

[BEH07] Bisztray, D., K. Ehrig and R. Heckel: Case Study: UML to CSP

Transformation. In Proceedings of AGTIVE 2007 Graph Transfor-

mation Tool Contest, 2007.

[BELT04] Bardohl, R., H. Ehrig, J. de Lara and G. Taentzer: Integrat-

ing Meta Modelling with Graph Transformation for Efficient Visual

Language Definition and Model Manipulation. InWermelinger, M.

and T. Margaria-Steffens (editors): Fundamental Approaches to

Software Engineering. Proceedings of FASE 2004, volume 2984 of

LNCS, pages 214–228. Springer, 2004.

U. Golas, Analysis and Correctness of Algebraic Graph and Model Transformations,
DOI 10.1007/978-3-8348-9934-7,
© Vieweg+Teubner Verlag | Springer Fachmedien Wiesbaden GmbH 2011

212 Bibliography

[BET10] Biermann, E., C. Ermel and G. Taentzer: Lifting Parallel

Graph Transformation Concepts to Model Tranformations based on

the Eclipse Modeling Framework. Electronic Communications of the

EASST, 26:1–19, 2010.

[BFH87] Böhm, P., H.-R. Fonio and A. Habel: Amalgamation of Graph

Transformations: A Synchronization Mechanism. Journal of Com-

puter and System Sciences, 34(2-3):377–408, 1987.

[BKMW09] Boronat, A., A. Knapp, J. Meseguer and M. Wirsing: What

Is a Multi-modeling Language? In Corradini, A. and U. Monta-

nari (editors): Recent Trends in Algebraic Development Techniques.

Proceedings of WADT 2008, volume 5486 of LNCS, pages 71–87.

Springer, 2009.

[BKS04] Baldan, P., B. König and I. Stürmer: Generating Test Cases for

Code Generators by Unfolding Graph Transformation Systems. In

Ehrig, H., G. Engels, F. Parisi-Presicce and G. Rozenberg

(editors): Graph Transformations. Proceedings of ICGT 2004, vol-

ume 3256 of LNCS, pages 194–209. Springer, 2004.

[BNBK06] Balasubramanian, D., A. Narayanan, C. van Buskirk and

G. Karsai: The Graph Rewriting and Transformation Language:

GReAT. Electronic Communications of the EASST, 1:1–8, 2006.

[BRST05] Bézivin, J., B. Rumpe, A. Schürr and L. Tratt: Model Trans-

formation in Practice Workshop Announcement. 2005.

[CH03] Czarnecki, K. and S. Helsen: Classification of Model Transforma-

tion Approaches. In Proceedings of the GTMDA Workshop at OOP-

SLA 2003, 2003.

[DF05] Denney, E. and B. Fischer: Certifiable Program Generation. In

Glück, R. and M. Lowry (editors): Generative Programming and

Component Engineering. Proceedings of GPCE 2005, volume 3676 of

LNCS, pages 17–28. Springer, 2005.

[EE08] Ermel, C. and K. Ehrig: Visualization, Simulation and Analysis of

Reconfigurable Systems. In Schürr, A., M. Nagl and A. Zündorf

(editors): Applications of Graph Transformations with Industrial Rel-

evance. Proceedings of AGTIVE 2007, volume 5088 of LNCS, pages

265–280. Springer, 2008.

[EEE+07] Ehrig, H., K. Ehrig, C. Ermel, F. Hermann and G. Taentzer:

Information Preserving Bidirectional Model Transformations. In

Dwyer, M.B. and A. Lopes (editors): Fundamental Approaches

to Software Engineering. Proceedings of FASE 2007, volume 4422 of

LNCS, pages 72–86. Springer, 2007.

Bibliography 213

[EEE09] Ehrig, H., K. Ehrig and C. Ermel: Refactoring of Model Transfor-

mations. Electronic Communications of the EASST, 18:1–19, 2009.

[EEEP07] Ehrig, H., K. Ehrig, C. Ermel and U. Prange: Model Trans-

formations by Graph Transformation are Functors. Bulletin of the

EATCS, 93:134–142, 2007.

[EEHP09] Ehrig, H., C. Ermel, F. Hermann and U. Prange: On-the-Fly

Construction, Correctness and Completeness of Model Transforma-

tions Based on Triple Graph Grammars. In Schürr, A. and B. Selic

(editors): Model Driven Engineering Languages and Systems. Pro-

ceedings of MODELS 2009, volume 5795 of LNCS, pages 241–255.

Springer, 2009.

[EEKR99] Ehrig, H., G. Engels, H.-J. Kreowski and G. Rozenberg (ed-

itors): Handbook of Graph Grammars and Computing by Graph

Transformation, Volume 2: Applications, Languages and Tools.

World Scientific, 1999.

[EEL+05] Ehrig, H., K. Ehrig, J. de Lara, G. Taentzer, D. Varró and

S. Varró-Gyapay: Termination Criteria for Model Transformation.

In Cerioli, M. (editor): Fundamental Approaches to Software En-

gineering. Proceedings of FASE 2005, volume 3442 of LNCS, pages

214–228. Springer, 2005.

[EEPT06] Ehrig, H., K. Ehrig, U. Prange andG. Taentzer: Fundamentals

of Algebraic Graph Transformation. EATCS Monographs. Springer,

2006.

[EHHS00] Engels, G., J.H. Hausmann, R. Heckel and S. Sauer: Dynamic

Meta Modeling: A Graphical Approach to the Operational Seman-

tics of Behavioral Diagrams in UML. In Evans, A., S. Kent and

B. Selic (editors): The Unified Modeling Language. Proceedings of

UML 2000, volume 1939 of LNCS, pages 323–337. Springer, 2000.

[EHKP91a] Ehrig, H., A. Habel, H.-J. Kreowski and F. Parisi-Presicce:

From Graph Grammars to High Level Replacement Systems. In

Ehrig, H., H.-J. Kreowski and Rozenberg G. (editors): Graph

Grammars and Their Application to Computer Science, volume 532

of LNCS, pages 269–291. Springer, 1991.

[EHKP91b] Ehrig, H., A. Habel, H.-J. Kreowski and F. Parisi-Presicce:

Parallelism and Concurrency in High-Level Replacement Systems.

Mathematical Structures in Computer Science, 1(3):361–404, 1991.

[EHL10a] Ehrig, H., A. Habel and L. Lambers: Parallelism and Concur-

rency Theorems for Rules with Nested Application Conditions. Elec-

tronic Communications of the EASST, 26:1–23, 2010.

214 Bibliography

[EHL+10b] Ehrig, H., A. Habel, L. Lambers, F. Orejas and U. Golas:

Local Confluence for Rules with Nested Application Conditions. In

Ehrig, H., A. Rensink, G. Rozenberg and A. Schürr (editors):

Graph Transformations. Proceedings of ICGT 2010, volume 6372 of

LNCS, pages 330–345. Springer, 2010.

[EHPP04] Ehrig, H., A. Habel, J. Padberg and U. Prange: Adhesive High-

Level Replacement Categories and Systems. In Ehrig, H., G. En-

gels, F. Parisi-Presicce and G. Rozenberg (editors): Graph

Transformations. Proceedings of ICGT 2004, volume 3256 of LNCS,

pages 144–160. Springer, 2004.

[EHS09] Ehrig, H., F. Hermann and C. Sartorius: Completeness and Cor-

rectness of Model Transformations based on Triple Graph Grammars

with Negative Application Conditions. Electronic Communications of

the EASST, 18:1–18, 2009.

[EK76] Ehrig, H. and H.-J. Kreowski: Parallelism of Manipulations in

Multidimensional Information Structures. In Mazurkiewicz, A.

(editor): Mathematical Foundations of Computer Science. Proceed-

ings of MFCS 1976, volume 45 of LNCS, pages 285–293. Springer,

1976.

[EKMR99] Ehrig, H., H.-J. Kreowski, U. Montanari and G. Rozenberg

(editors): Handbook of Graph Grammars and Computing by Graph

Transformation, Volume 3: Concurrency, Parallelism and Distribu-

tion. World Scientific, 1999.

[EKR+08] Engels, G., A. Kleppe, A. Rensink, M. Semenyak,

C. Soltenborn and H. Wehrheim: From UML Activities to

TAAL - Towards Behaviour-Preserving Model Transformations. In

Schieferdecker, I. and A. Hartman (editors): Model Driven Ar-

chitecture – Foundations and Applications. Proceedings of ECMDA-

FA 2008, volume 5095 of LNCS, pages 94–109. Springer, 2008.

[EKTW06] Ehrig, K., J.M. Küster, G. Taentzer and J. Winkelmann: Gen-

erating Instance Models from Meta Models. In Gorrieri, R. and

H. Wehrheim (editors): Formal Methods for Open Object-Based

Distributed Systems. Proceedings of FMOODS 2006, volume 4037 of

LNCS, pages 156–170. Springer, 2006.

[EP06] Ehrig, H. and U. Prange: Weak Adhesive High-Level Replacement

Categories and Systems: A Unifying Framework for Graph and Petri

Net Transformations. In Futatsugi, K., J.-P. Jouannaud and

J. Meseguer (editors): Algebra, Meaning and Computation. Essays

Dedicated to J.A. Goguen on the Occasion of His 65th Birthday, vol-

ume 4060 of LNCS, pages 235–251. Springer, 2006.

Bibliography 215

[EP08] Ehrig, H. and U. Prange: Formal Analysis of Model Transfor-

mations Based on Triple Graph Rules with Kernels. In Ehrig, H.,

R. Heckel, G. Rozenberg and G. Taentzer (editors): Graph

Transformations. Proceedings of ICGT 2008, volume 5214 of LNCS,

pages 178–193. Springer, 2008.

[EPS73] Ehrig, H., M. Pfender and H.J. Schneider: Graph Grammars:

an Algebraic Approach. In Foundations of Computer Science. Pro-

ceedings of FOCS 1973, pages 167–180. IEEE, 1973.

[EPT04] Ehrig, H., U. Prange and G. Taentzer: Fundamental Theory for

Typed Attributed Graph Transformation. In Ehrig, H., G. Engels,

F. Parisi-Presicce and G. Rozenberg (editors): Graph Transfor-

mations. Proceedings of ICGT 2004, volume 3256 of LNCS, pages

161–177. Springer, 2004.

[Erm06] Ermel, C.: Simulation and Animation of Visual Languages based

on Typed Algebraic Graph Transformation. PhD thesis, Technische

Universität Berlin, 2006.

[Erm09] Ermel, C.: Visual Modelling and Analysis of Model Tranformations

Based on Graph Tranformation. Bulletin of the EATCS, 99:135–152,

2009.

[Far01] Farwer, B.: Comparing Concepts of Object Petri Net Formalisms.

Fundamenta Informaticae, 47(3-4):247–258, 2001.

[FSB04] Fleurey, F., J. Steel and B. Baudry: Validation in Model-Driven

Engineering: Testing Model Transformations. In Model, Design and

Validation. Proceedings of MoDeVa 2004, pages 29–40. IEEE, 2004.

[GBG+06] Geiß, R., G.V. Batz, D. Grund, S. Hack and A.M. Szalkowski:

GrGen: A Fast SPO-Based Graph Rewriting Tools. In Corradini,

A., H. Ehrig, U. Montanari, L. Ribeiro and G. Rozenberg (ed-

itors): Graph Transformations. Proceedings of ICGT 2006, volume

4178 of LNCS, pages 383 – 397. Springer, 2006.

[GEH10] Golas, U., H. Ehrig and A. Habel: Multi-Amalgamation in Ad-

hesive Categories. In Ehrig, H., A. Rensink, G. Rozenberg and

A. Schürr (editors): Graph Transformations. Proceedings of ICGT

2010, volume 6372 of LNCS, pages 346–361. Springer, 2010.

[GGL+06] Giese, H., S. Glesner, J. Leitner, W. Schfer and R. Wagner:

Towards Verified Model Transformations. In Baudry, B., D. Hearn-

den, N. Rapin and J.G. Süß (editors): Proceedings of MoDeV2a

2006, pages 78–93, 2006.

[GKM09] Grønmo, R., S. Krogdahl and B. Møller-Pedersen: A Col-

lection Operator for Graph Transformation. In Paige, R. (editor):

216 Bibliography

Theory and Practice of Model Transformations. Proceedings of ICMT

2009, volume 5563 of LNCS, pages 67–82. Springer, 2009.

[God96] Godefroid, P.: Partial-Order Methods for the Verification of Con-

current Systems – An Approach to the State-Explosion Problem, vol-

ume 1032 of LNCS. Springer, 1996.

[GP98] Gogolla, M. and F. Parisi-Presicce: State Diagrams in UML: A

Formal Semantics Using Graph Transformations. In Software Engi-

neering. Proceedings of ICSE 1998, pages 55–72. IEEE, 1998.

[Gro09] Gronback, R.C.: Eclipse Modeling Project: A Domain-Specific

Language (DSL) Toolkit. Addison-Wesley, 2009.

[GZ06] Geiger, L. and A. Zündorf: Tool Modeling with Fujaba. Electronic

Notes in Theoretical Computer Science, 148(1):173–186, 2006.

[Har87] Harel, D.: Statecharts: A Visual Formalism for Complex Systems.

Science of Computer Programming, 8:231–274, 1987.

[Hei09] Heindel, T.: A Category Theoretical Approach to the Concurrent

Semantics of Rewriting. PhD thesis, Universität Duisburg-Essen,

2009.

[HEOG10] Hermann, F., H. Ehrig, F. Orejas and U. Golas: Formal Anal-

ysis of Functional Behaviour for Model Transformations based on

Triple Graph Grammars. In Ehrig, H., A. Rensink, G. Rozen-

berg and A. Schürr (editors): Graph Transformations. Proceedings

of ICGT 2010, volume 6372 of LNCS, pages 155–170. Springer, 2010.

[HJE06] Hoffmann, B., D. Janssens and N. van Eetvelde: Cloning and

Expanding Graph Transformation Rules for Refactoring. Electronic

Notes in Theoretical Computer Science, 152:53–67, 2006.

[HJSW09] Heidenreich, F., J. Johannes, M. Seifert and C. Wende:

JaMoPP: The Java Model Parser and Printer. Technical Report

TUD-FI09-10, Technische Universität Dresden, 2009.

[HKR+10] Hülsbusch, M., B. König, A. Rensink, M. Semenyak,

C. Soltenborn andH. Wehrheim: Verifying Full Semantic Preser-

vation of Model Transformation is Hard. Electronic Communications

of the EASST, 2010. To appear.

[HMTW95] Heckel, R., J. Müller, G. Taentzer and A. Wagner: Attributed

Graph Transformations with Controlled Application of Rules. Tech-

nical Report B-19, Universitat de les Illes Balears, 1995.

[HP05] Habel, A. and K.-H. Pennemann: Nested Constraints and Appli-

cation Conditions for High-Level Structures. In Kreowski, H.-J.,

U. Montanari, F. Orejas, G. Rozenberg and G. Taentzer (ed-

itors): Formal Methods in Software and Systems Modeling. Essays

Bibliography 217

Dedicated to H. Ehrig on the Occasion of His 60th Birthday, volume

3393 of LNCS, pages 293–308. Springer, 2005.

[HP09] Habel, A. and K.-H. Pennemann: Correctness of High-Level

Transformation Systems Relative to Nested Conditions. Mathemati-

cal Structures in Computer Science, 19(2):245–296, 2009.

[Hue80] Huet, G.: Confluent Reductions: Abstract Properties and Applica-

tions to Term Rewriting Systems. Journal of the ACM, 27(4):797–

821, 1980.

[JAB+06] Jouault, F., F. Allilaire, J. Bézivin, I. Kurtev and P. Val-

duriez: ATL: a QVT-like TransformationLanguage. In Tarr, P.L.

and W.R. Cook (editors): OOPSLA Companion, pages 719–720.

ACM, 2006.

[JABK08] Jouault, F., F. Allilaire, J. Bézivin and I. Kurtev: ATL: A

Model Transformation Tool. Science of Computer Programming,

72(1-2):31–39, 2008.

[JLS07] Johnstone, P.T., S. Lack and P. Sobociński: Quasitoposes,

Quasiadhesive Categories and Artin Glueing. In Mossakowski, T.,

U. Montanari and M. Haveraaen (editors): Algebra and Coalge-

bra in Computer Science. Proceedings of CALCO 2007, volume 4626

of LNCS, pages 312–326. Springer, 2007.

[KA06] Küster, J.M. and M. Abd-El-Razik: Validation of Model Trans-

formations - First Experiences Using a White Box Approach. In

Kühne, T. (editor): Models in Software Engineering. Proceedings

of MoDELS Workshops 2006, volume 4364 of LNCS, pages 193–204.

Springer, 2006.

[KGKK02] Kuske, S., M. Gogolla, R. Kollmann and H.-J. Kreowski: An

Integrated Semantics for UML Class, Object and State Diagrams

Based on Graph Transformation. In Butler, M., L. Petre and

K. Sere (editors): Integrated Formal Methods. Proceedings of IFM

2002, volume 2335 of LNCS, pages 11–28. Springer, 2002.

[KN07] Karsai, G. and A. Narayanan: On the Correctness of Model Tran-

formations in the Development of Embedded Systems. In Kordon,

F. and O. Sokolsky (editors): Composition of Embedded Systems.

Scientific and Industrial Issues. Monterey Workshop 2006, volume

4888 of LNCS, pages 1–18. Springer, 2007.

[KR04] Köhler, M. and H. Rölke: Properties of Object Petri Nets. In

Cortadella, J. and W. Reisig (editors): Applications and Theory

of Petri Nets. Proceedings of ICATPN 2004, volume 3099 of LNCS,

pages 278–297. Springer, 2004.

218 Bibliography

[KS06] König, A. and A. Schürr: Tool Integration with Triple Graph

Grammars - A Survey. Electronic Notes in Theoretical Computer

Science, 148(1):113–150, 2006.

[Kus01] Kuske, S.: A Formal Semantics of UML State Machines Based on

Structured Graph Transformation. In Gogolla, M. and C. Ko-

bryn (editors): The Unified Modeling Language. Modeling Lan-

guages, Concepts, and Tools. Proceedings of UML 2001, volume 2185

of LNCS, pages 241–256. Springer, 2001.

[LBE+07] Lara, J. de, R. Bardohl, H. Ehrig, K. Ehrig, U. Prange and

G. Taentzer: Attributed Graph Transformation with Node Type

Inheritance. Theoretical Computer Science, 376(3):139–163, 2007.

[Lei06] Leitner, J.: Verifikation von Modelltransformationen basierend auf

Triple Graph Grammatiken. Diplomarbeit, Universität Karlsruhe,

2006.

[LEO08] Lambers, L., H. Ehrig and F. Orejas: Efficient Conflict Detec-

tion in Graph Transformation Systems by Essential Critical Pairs.

Electronic Notes in Theoretical Computer Science, 211:17–26, 2008.

[LEOP08] Lambers, L., H. Ehrig, F. Orejas and U. Prange: Parallelism

and Concurrency in Adhesive High-Level Replacement Systems with

Negative Application Conditions. Electronic Notes in Theoretical

Computer Science, 203(6):43–66, 2008.

[LEPO08] Lambers, L., H. Ehrig, U. Prange and F. Orejas: Embed-

ding and Confluence of Graph Transformations with Negative Ap-

plication Conditions. In Ehrig, H., R. Heckel, G. Rozenberg

and G. Taentzer (editors): Graph Transformations. Proceedings of

ICGT 2008, volume 5214 of LNCS, pages 162–177. Springer, 2008.

[LG08] Lara, J. de and E. Guerra: Pattern-Based Model-to-Model

Transformation. In Ehrig, H., R. Heckel, G. Rozenberg and

G. Taentzer (editors): Graph Transformations. Proceedings of

ICGT 2008, volume 5214 of LNCS, pages 426–441. Springer, 2008.

[Löw93] Löwe, M.: Algebraic Approach to Single-Pushout Graph Transfor-

mation. Theoretical Computer Science, 109:181–224, 1993.

[LPE07] Levendovszky, T., U. Prange and H. Ehrig: Termination Cri-

teria for DPO Transformations with Injective Matches. Electronic

Notes in Theoretical Computer Science, 175(4):87–100, 2007.

[LS04] Lack, S. and P. Sobociński: Adhesive Categories. In

Walukiewicz, I. (editor): Foundations of Software Science and

Computation Structures. Proceedings of FOSSACS 2004, volume

2987 of LNCS, pages 273–288. Springer, 2004.

Bibliography 219

[LS05] Lack, S. and P. Sobociński: Adhesive and Quasiadhesive Cat-

egories. Theoretical Informatics and Applications, 39(3):511–545,

2005.

[LV02] Lara, J. de and H. Vangheluwe: Computer Aided Multi-Paradigm

Modelling to Process Petri-Nets and Statecharts. In Corradini, A.,

H. Ehrig, H.-J. Kreowski and G. Rozenberg (editors): Graph

Transformation. Proceedings of ICGT 2002, volume 2505 of LNCS,

pages 239–253. Springer, 2002.

[Mac71] MacLane, S.: Categories for the Working Mathematician. Number 5

in Graduate Texts in Mathematics. Springer, 1971.

[MB03] Marschall, F. and P. Braun: Model Transformations for the MDA

with BOTL. In Rensink, A. (editor): Proceedings of MDAFA 2003,

pages 25–36, 2003.

[MG06] Mens, T. and P. van Gorp: A Taxonomy of Model Transforma-

tion. Electronic Notes in Theoretical Computer Science, 152:125–142,

2006.

[MP96] Maggiolo-Schettini, A. and A. Peron: A Graph Rewriting

Framework for Statecharts Semantics. In Cuny, J., H. Ehrig,

G. Engels and G. Rozenberg (editors): Graph Grammars and

Their Application to Computer Science, volume 1073 of LNCS, pages

107–121. Springer, 1996.

[NK08a] Narayanan, A. and G. Karsai: Towards Verifying Model Transfor-

mations. Electronic Notes in Theoretical Computer Science, 211:191–

200, 2008.

[NK08b] Narayanan, A. and G. Karsai: Verifying Model Transformations
by Structural Correspondence. Electronic Communications of the

EASST, 10:1–14, 2008.

[ODHA06] Ouyang, C., M. Dumas, A.H.M. ter Hofstede and W.M.P van

der Aalst: From BPMN Process Models to BPEL Web Services.

In Web Services. Proceedings of ICWS 2006, pages 285–292. IEEE,

2006.

[OMG05] OMG: MOF QVT Final Adopted Specification, 2005.

[OMG08] OMG: Systems Modeling Language (OMG SysML), Version 1.1,

2008.

[OMG09a] OMG: Business Process Model and Notation (BPMN), Version 1.2,

2009.

[OMG09b] OMG: Unified Modeling Language (OMG UML), Superstructure,

Version 2.2, 2009.

220 Bibliography

[OW09] Orejas, F. and M. Wirsing: On the Specification and Verification

of Model Transformations. In Palsberg, J. (editor): Semantics and

Algebraic Specification. Essays Dedicated to Peter D. Mosses on the

Occasion of His 60th Birthday, volume 5700 of LNCS, pages 140–161.

Springer, 2009.

[PE07] Prange, U. and H. Ehrig: From Algebraic Graph Transformation

to Adhesive HLR Categories and Systems. In Bozapalidis, S. and

G. Rahonis (editors): Algebraic Informatics. Proceedings of CAI

2007, volume 4728 of LNCS, pages 122–146. Springer, 2007.

[PEHP08] Prange, U., H. Ehrig, K. Hoffmann and J. Padberg: Trans-

formations in Reconfigurable Place/Transition Systems. In Degano,

P., R. De Nicola and J. Meseguer (editors): Concurrency, Graphs

and Models. Essays Dedicated to U. Montanari on the Occasion of

His 65th Birthday, volume 5065 of LNCS, pages 96–113. Springer,

2008.

[PEL08] Prange, U., H. Ehrig and L. Lambers: Construction and Prop-

erties of Adhesive and Weak Adhesive High-Level Replacement Cat-

egories. Applied Categorical Structures, 16(3):365–388, 2008.

[PER95] Padberg, J., H. Ehrig and L. Ribeiro: Algebraic High-Level Net

Transformation Systems. Mathematical Structures in Computer Sci-

ence, 5(2):217–256, 1995.

[Plu93] Plump, D.: Hypergraph Rewriting: Critical Pairs and Undecidability

of Confluence. In Sleep, M.R,M.J. Plasmeijer andM.C.J.D. van

Eekelen (editors): Term Graph Rewriting, pages 201–214. Wiley,

1993.

[Plu95] Plump, D.: On Termination of Graph Rewriting. In Nagl, M. (edi-

tor): Graph-Theoretic Concepts in Computer Science. Proceedings of

WG 1995, volume 1017 of LNCS, pages 88–100. Springer, 1995.

[PR69] Pfaltz, J.L. and A. Rosenfeld: Web Grammars. In Walker,

D.E. and L.M. Norton (editors): Proceedings of IJCAI 1969, pages

609–620. William Kaufmann, 1969.

[Pra71] Pratt, T.W.: Pair Grammars, Graph Languages and String-to-

Graph Translations. Journal of Computer and System Sciences,

5(6):560–595, 1971.

[Pra07] Prange, U.: Algebraic High-Level Nets as Weak Adhesive HLR Cat-

egories. Electronic Communications of the EASST, 2:1–13, 2007.

[Pra08] Prange, U.: Towards Algebraic High-Level Systems as Weak Ad-

hesive HLR Categories. Electronic Notes in Theoretical Computer

Science, 203(6):67–88, 2008.

Bibliography 221

[RACH00] Reggio, G., E. Astesiano, C. Choppy and H. Hussmann:

Analysing UML Active Classes and Associated State Machines - A

Lightweight Formal Approach. In Maibaum, T. (editor): Fundamen-

tal Approaches to Software Engineering. Proceedings of FASE 2000,

volume 1783 of LNCS, pages 127–146. Springer, 2000.

[RK09] Rensink, A. and J.-H. Kuperus: Repotting the Geraniums: On

Nested Graph Tranformation Rules. Electronic Communications of

the EASST, 18:1–15, 2009.

[Roz97] Rozenberg, G. (editor): Handbook of Graph Grammars and Com-

puting by Graph Transformation, Volume 1: Foundations. World

Scientific, 1997.

[RSV04] Rensink, A., Á. Schmidt and D. Varró: Model Checking Graph

Transformations: A Comparison of Two Approaches. In Ehrig,

H., G. Engels, F. Parisi-Presicce and G. Rozenberg (editors):

Graph Transformations. Proceedings of ICGT 2004, volume 3256 of

LNCS, pages 226–241. Springer, 2004.

[San00] Sand, M.: Design und Implementierung einer Komponente zur

Transformation von UML-Statecharts in stochastiche Petrinetze. Stu-

dienarbeit, Universität Erlangen, 2000.

[SBPM08] Steinberg, S., F. Budinsky, M. Paternostro and E. Merks:

EMF: Eclipse Modeling Framework, 2nd Edition. Addison-Wesley,

2008.

[Sch94] Schürr, A.: Specification of Graph Translators With Triple Graph

Grammars. In Tinhofer, G. (editor): Graph-Theoretic Concepts in

Computer Science. Proceedings of WG 1994, volume 903 of LNCS,

pages 151–163. Springer, 1994.

[Ste08a] Stevens, P.: A Landscape of Bidirectional Model Transformations.

In Lämmel, R., J. Visser and J. Saraiva (editors): Generative and

Transformational Techniques in Software Engineering II. Proceedings

of GTTSE 2007, volume 5235 of LNCS, pages 408–424. Springer,

2008.

[Ste08b] Stevens, P.: Towards an Algebraic Theory of Bidirectional Trans-

formations. In Ehrig, H., R. Heckel, G. Rozenberg and

G. Taentzer (editors): Graph Transformations. Proceedings of

ICGT 2008, volume 5214 of LNCS, pages 1–17. Springer, 2008.

[Str08] Strecker, M.: Modeling and Verifying Graph Transformations in

Proof Assistants. Electronic Notes in Theoretical Computer Science,

203(1):135–148, 2008.

[SV06] Stahl, T. and M. Völter: Model-Driven Software Development.

Wiley, 2006.

222 Bibliography

[Tae96] Taentzer, G.: Parallel and Distributed Graph Transformation -

Formal Description and Application to Communication Based Sys-

tems. PhD thesis, TU Berlin, 1996.

[Tae10] Taentzer, G.: Why Model Tranformations Should be Based on Al-

gebraic Graph Tranformation Concepts. Electronic Communications

of the EASST, 30:1–10, 2010.

[TB94] Taentzer, G. and M. Beyer: Amalgamated Graph Transforma-

tions and Their Use for Specifying AGG - an Algebraic Graph Gram-

mar System. In Schneider, H.-J. and H. Ehrig (editors): Graph

Transformations in Computer Science, volume 776 of LNCS, pages

380–394. Springer, 1994.

[TEG+05] Taentzer, G., K. Ehrig, E. Guerra, J. de Lara, L. Lengyel,

T. Levendovsky, U. Prange, D. Varró and S. Varró-Gyapay:

Model Transformation by Graph Transformation: A Comparative

Study. In Proceedings of the MTP workshop at MoDELS 2005, 2005.

[TR05] Taentzer, G. and A. Rensink: Ensuring Structural Constraints in

Graph-Based Models with Type Inheritance. In Cerioli, M. (edi-

tor): Fundamental Approaches to Software Engineering. Proceedings

of FASE 2005, volume 3442 of LNCS, pages 64–79. Springer, 2005.

[Var02] Varró, D.: A Formal Semantics of UML Statecharts by Model Tran-

sition Systems. In Corradini, A., H. Ehrig, H.-J. Kreowski

and G. Rozenberg (editors): Graph Transformation. Proceedings

of ICGT 2002, volume 2505 of LNCS, pages 378–392. Springer, 2002.

[VB07] Varró, D. and A. Balogh: The Model Transformation Language

of the VIATRA2 Framework. Science of Computer Programming,

68(3):214–234, 2007.

[VP03] Varró, D. and A. Pataricza: Automated Formal Verification of

Model Tranformations. In Jürjens, J., B. Rumpe, R. France and

E.B. Fernandez (editors): Proceedings of Critical Systems Develop-

ment with UML 2003, volume TUM-I0323, pages 63–78. Technische

Universität München, 2003.

[VVE+06] Varró, D., S. Varró-Gyapay, H. Ehrig, U. Prange and

G. Taentzer: Termination Analysis of Model Transformations

by Petri Nets. In Corradini, A., H. Ehrig, U. Montanari,

L. Ribeiro and G. Rozenberg (editors): Graph Transformations.

Proceedings of ICGT 2006, volume 4178 of LNCS, pages 260–274.

Springer, 2006.

[W3C07] W3C: XSL Transformations (XSLT) Version 2.0, 2007.

Index

AC-consistent, 57

action-event graph, 158

AHL net, 42

morphism, 42

AHL net system, 45

morphism, 45

AHL schema, 40

morphism, 40

amalgamated rule, 69

amalgamated transformation, 71

application condition, 49

conflict-inducing, 59

derived, 56

equivalence, 47

extension, 59

S-, S-extending, 124

S-consistent, 125

T -, T -extending, 124

T -consistent, 125

translated, 126

attributed graph, 21

morphism, 21

attributed type graph, 21

backward information preserving, 155

backward rule, 118, 127

boundary consistent, 57

category

AGraphs, 21

AGraphsATG, 21

AHLNets, 44

AHLNets(SP), 42

AHLSchemas, 42

AHLSchemas(SP), 40

AHLSystems, 45

AHLSystems(SP), 45

general comma, 26

Graphs, 20

GraphsTG, 20

M-adhesive, 23
Markings, 197

Systems, 202

TripleGraphs, 116

TripleGraphsTG, 116

complement rule, 64, 66

complement-compatible, 62

completeness, 154

Completeness Theorem, 59

Concurrency Theorem, 55

concurrent rule, 54

condition, 47

conflict-inducing application condi-

tion, 59

confluence, 57

local, 57

strict AC-, 60

consistency, 57

consistent matches, 71

constraint, 48

Construction Theorem, 26

correctness

syntactical, 154

critical pair, 59

cube pushout–pullback property, 24

derived application condition, 56

derived rule, 118, 127

derived span, 56

diagonal property, 30

U. Golas, Analysis and Correctness of Algebraic Graph and Model Transformations,
DOI 10.1007/978-3-8348-9934-7,
© Vieweg+Teubner Verlag | Springer Fachmedien Wiesbaden GmbH 2011

224 Index

direct transformation, 49

E ′–M′ pair factorization, 25, 30
strong, 30

E-concurrent rule, 54

E-dependency relation, 54

E-graph, 21

E-related, 54

effective pushout, 25, 39

elementary Petri net, 93

Embedding Theorem, 57

epi–M factorization, 25, 30

equivalence of conditions, 47

extension application condition, 59

extension diagram, 55

Extension Theorem, 57

factorization

E ′–M′ pair, 25, 30
epi–M, 25, 30
strong E ′–M′ pair, 30

forward consistent match, 175

forward rule, 118, 127

functional behavior, 161

general comma category, 26

generalized AHL net, 44

morphism, 44

generalized AHL net system, 45

morphism, 45

generalized AHL schema, 42

morphism, 42

grammar

M-adhesive, 51
M-adhesive with amalgamation,

80

triple graph, 118

graph, 20

attributed, 21

morphism, 20

triple, 17, 116

typed, 20

typed attributed, 21

typed triple, 116

independence

parallel, 52

parallel amalgamation, 81

parallel bundle, 81

sequential, 52

information preserving, 155

initial pushout, 25, 34

interaction scheme, 88

inverse rule, 50

kernel morphism, 62

kernel rule, 62

labeled transition system, 162

language, 51, 80

of statecharts, 102, 137

source, 118

target, 118

triple, 118

Local Church-Rosser Theorem, 53, 84

local confluence, 57

Local Confluence Theorem, 60

M-adhesive category, 23
M-adhesive grammar, 51

with amalgamation, 80

M-adhesive transformation system, 51
with amalgamation, 80

M-pushout–pullback decomposition,

24

marking-strict, 198

match, 49, 117, 120

forward consistent, 175

match consistent, 131

partially, 173

matching

maximal weakly disjoint, 89

maximal weakly independent, 89

maximal weakly disjoint matching, 89

maximal weakly independent match-

ing, 89

Index 225

MDSD, 7

model transformation, 8, 134

completeness, 154

from statecharts to Petri nets,

136, 148

functional behavior, 161

semantical correctness, 163

semantical simulation, 163

syntactical correctness, 154

model-driven software development, 7

morphism

AHL net, 42

AHL net system, 45

AHL schema, 40

attributed graph, 21

generalized AHL net, 44

generalized AHL net system, 45

generalized AHL schema, 42

graph, 20

kernel, 62

net system, 202

strict, 198

triple graph, 116

typed attributed graph, 21

typed graph, 20

typed triple graph, 116

multi rule, 62

multi-amalgamable, 71

multi-amalgamated rule, 69

Multi-Amalgamation Theorem, 75

net system, 202

morphism, 202

parallel amalgamation independence,

81

parallel bundle independence, 81

parallel independence, 52

of partially match consistent ex-

tensions, 177

parallel rule, 52

Parallelism Theorem, 53, 84

partially match consistent, 173

partially source consistent, 173

pushout

effective, 25, 39

initial, 25, 34

rule, 11, 49

amalgamated, 69

backward, 118, 127

complement, 64, 66

concurrent, 54

derived, 118, 127

forward, 118, 127

inverse, 50

kernel, 62

multi, 62

parallel, 52

source, 118, 127

target, 118, 127

triple, 117, 120

s-amalgamable, 71

S-application condition, 124

S-consistent, 125

S-extending application condition, 124

satisfaction

of condition, 47

of constraint, 49

SC-terminating, 156

SC2PN, 148

semantical correctness, 163

semantical simulation, 163

semantics

for elementary Petri nets, 93

for statecharts, 104, 109

sequential independence, 52

shift

over morphism, 48

over rule, 50

source consistent, 131

partially, 173

source language, 118

source rule, 118, 127

statecharts, 98

226 Index

well-behaved, 158

strict AC-confluence, 60

strict morphism, 198

strong E ′–M′ pair factorization, 30
syntactical correctness, 154

T -application condition, 124

T -consistent, 125

T -extending application condition, 124

target language, 118

target rule, 118, 127

terminating, 58, 156

Theorem

Comparison of languages, 149

Completeness, 59, 154

Concurrency, 55

Construction, 26

Embedding, 57

Extension, 57

Local Church-Rosser, 53, 84

Local Confluence, 60

Multi-Amalgamation, 75

On-the-fly construction, 176

Parallelism, 53, 84

Partial match consistency, 178

Semantics-simulation, 169

Syntactical correctness, 154

Termination, 157, 159

toB, 126

toF , 126

toS, 126

toT , 126

transformation, 11, 49

amalgamated, 71

model, 134

triple, 117, 120

transformation system

M-adhesive, 51
M-adhesive with amalgamation,

80

triple graph, 118

translated application condition, 126

triple graph, 17, 116

morphism, 116

triple graph grammar, 118

triple graph transformation system,

118

triple language, 118

triple rule, 117, 120

triple transformation, 117, 120

type graph, 20, 116

attributed, 21

typed attributed graph, 21

morphism, 21

typed graph, 20

morphism, 20

typed triple graph, 116

morphism, 116

van Kampen square, 23

V LSC , 102

V LSC2, 137

weak bisimulation relation, 162

weak complement rule, 66

weak simulation relation, 162

weakly independent matches, 71

well-behaved statecharts, 158

	Foreword
	Abstract
	Zusammenfassung
	Contents
	List of Figures
	1 Introduction
	2 Introduction to Graph and Model Transformation, and Related Work
	2.1 Model Transformation
	2.2 Graph Transformation
	2.3 Model Transformation Based on Graph Transformation

	3 M-Adhesive Transformation Systems
	3.1 Graphs, Typed Graphs, and Typed Attributed Graphs
	3.2 M-Adhesive Categories
	3.2.1 Introduction to M-Adhesive Categories
	3.2.2 Construction of M-Adhesive Categories
	3.2.3 Preservation of Additional Properties via Constructions
	3.2.3.1 Binary Coproducts
	3.2.3.2 Epi–M Factorization
	3.2.3.3 E'–M' Pair Factorization
	3.2.3.4 Initial Pushouts

	3.3 Algebraic High-Level Petri Nets
	3.4 Transformations in M-Adhesive Systems
	3.4.1 Conditions and Constraints over Objects
	3.4.2 Rules and Transformations
	3.4.3 Main Analysis Results in M-Adhesive Transformation Systems
	3.4.3.1 Local Church-Rosser and Parallelism Theorem
	3.4.3.2 Concurrency Theorem
	3.4.3.3 Embedding and Extension Theorem
	3.4.3.4 Critical Pairs and Local Confluence Theorem

	4 Amalgamated Transformations
	4.1 Foundations and Analysis of Amalgamated Transformations
	4.1.1 Kernel, Multi, and Complement Rules
	4.1.2 Amalgamated Rules and Transformations
	4.1.3 Parallel Independence of Amalgamated Transformations
	4.1.4 Other Results for Amalgamated Transformations
	4.1.5 Interaction Schemes and Maximal Matchings
	4.1.6 Main Results for Amalgamated Transformations Based on Maximal Matchings

	4.2 Operational Semantics Using Amalgamation
	4.2.1 Semantics for Elementary Nets
	4.2.2 Syntax of Statecharts
	4.2.3 Semantics for Statecharts

	5 Model Transformation Based on Triple Graph Transformation
	5.1 Introduction to Triple Graph Transformation
	5.1.1 The Category of Triple Graphs
	5.1.2 Triple Graph Transformation

	5.2 Triple Graph Transformation with Application Conditions
	5.2.1 S-and T -Consistent Application Conditions
	5.2.2 Composition and Decomposition of Triple Transformations

	5.3 Model Transformation SC2PN from Statecharts to Petri Nets

	6 Analysis, Correctness, and Construction of Model Transformations
	6.1 Syntactical Correctness
	6.2 Termination and Functional Behavior
	6.2.1 Termination
	6.2.2 Termination of Statecharts Semantics
	6.2.3 Functional Behavior

	6.3 Semantical Simulation and Correctness
	6.3.1 Simulation of Petri Nets
	6.3.2 Semantical Correctness of the Model Transformation SC2PN

	6.4 On-the-Fly Construction of Model Transformations

	7 Conclusion and Future Work
	7.1 Theoretical Contributions
	7.2 Relevance for Model-Driven Software Development
	7.3 Case Studies
	7.4 Tool Support
	7.5 Future Work

	Appendix
	A Categorical Results
	A.1 Proofs for Construction of M-Adhesive Categories
	A.2 Proofs for Generalized AHL Schemas as an M-Adhesive Category
	A.3 Proofs for AHL Systems as an M-adhesive Category
	A.3.1 The Category of Markings
	A.3.2 From Nets to Net Systems

	A.4 Proofs for Amalgamated Transformations

	Bibliography
	Index

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 149
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 149
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 599
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ARA <FEFF06270633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F00620065002000500044004600200645062A064806270641064206290020064406440637062806270639062900200641064A00200627064406450637062706280639002006300627062A0020062F0631062C0627062A002006270644062C0648062F0629002006270644063906270644064A0629061B0020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644064506460634062306290020062806270633062A062E062F062706450020004100630072006F0062006100740020064800410064006F006200650020005200650061006400650072002006250635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E0635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E>
 /BGR <FEFF04180437043f043e043b043704320430043904420435002004420435043704380020043d0430044104420440043e0439043a0438002c00200437043000200434043000200441044a0437043404300432043004420435002000410064006f00620065002000500044004600200434043e043a0443043c0435043d04420438002c0020043c0430043a04410438043c0430043b043d043e0020043f044004380433043e04340435043d04380020043704300020043204380441043e043a043e043a0430044704350441044204320435043d0020043f04350447043004420020043704300020043f044004350434043f0435044704300442043d04300020043f043e04340433043e0442043e0432043a0430002e002000200421044a04370434043004340435043d043804420435002000500044004600200434043e043a0443043c0435043d044204380020043c043e0433043004420020043404300020044104350020043e0442043204300440044f0442002004410020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200441043b0435043404320430044904380020043204350440044104380438002e>
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /CZE <FEFF005400610074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002c0020006b00740065007200e90020007300650020006e0065006a006c00e90070006500200068006f006400ed002000700072006f0020006b00760061006c00690074006e00ed0020007400690073006b00200061002000700072006500700072006500730073002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f007400650076015900ed007400200076002000700072006f006700720061006d0065006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076011b006a016100ed00630068002e>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e4007400740065006900640020006b00760061006c006900740065006500740073006500200074007200fc006b006900650065006c007300650020007000720069006e00740069006d0069007300650020006a0061006f006b007300200073006f00620069006c0069006b0065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740069006400650020006c006f006f006d006900730065006b0073002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e00740065002000730061006100740065002000610076006100640061002000700072006f006700720061006d006d006900640065006700610020004100630072006f0062006100740020006e0069006e0067002000410064006f00620065002000520065006100640065007200200035002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e000d000a>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /GRE <FEFF03a703c103b703c303b903bc03bf03c003bf03b903ae03c303c403b5002003b103c503c403ad03c2002003c403b903c2002003c103c503b803bc03af03c303b503b903c2002003b303b903b1002003bd03b1002003b403b703bc03b903bf03c503c103b303ae03c303b503c403b5002003ad03b303b303c103b103c603b1002000410064006f006200650020005000440046002003c003bf03c5002003b503af03bd03b103b9002003ba03b103c42019002003b503be03bf03c703ae03bd002003ba03b103c403ac03bb03bb03b703bb03b1002003b303b903b1002003c003c103bf002d03b503ba03c403c503c003c903c403b903ba03ad03c2002003b503c103b303b103c303af03b503c2002003c503c803b703bb03ae03c2002003c003bf03b903cc03c403b703c403b103c2002e0020002003a403b10020005000440046002003ad03b303b303c103b103c603b1002003c003bf03c5002003ad03c703b503c403b5002003b403b703bc03b903bf03c503c103b303ae03c303b503b9002003bc03c003bf03c103bf03cd03bd002003bd03b1002003b103bd03bf03b903c703c403bf03cd03bd002003bc03b5002003c403bf0020004100630072006f006200610074002c002003c403bf002000410064006f00620065002000520065006100640065007200200035002e0030002003ba03b103b9002003bc03b503c403b103b303b503bd03ad03c303c403b503c103b503c2002003b503ba03b403cc03c303b503b903c2002e>
 /HEB <FEFF05D405E905EA05DE05E905D5002005D105D405D205D305E805D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005D405DE05D505EA05D005DE05D905DD002005DC05D405D305E405E105EA002005E705D305DD002D05D305E405D505E1002005D005D905DB05D505EA05D905EA002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E05D005DE05D905DD002005DC002D005000440046002F0058002D0033002C002005E205D905D905E005D5002005D105DE05D305E805D905DA002005DC05DE05E905EA05DE05E9002005E905DC0020004100630072006F006200610074002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E>
 /HRV (Za stvaranje Adobe PDF dokumenata najpogodnijih za visokokvalitetni ispis prije tiskanja koristite ove postavke. Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)
 /HUN <FEFF004b0069007600e1006c00f30020006d0069006e0151007300e9006701710020006e0079006f006d00640061006900200065006c0151006b00e90073007a00ed007401510020006e0079006f006d00740061007400e100730068006f007a0020006c006500670069006e006b00e1006200620020006d0065006700660065006c0065006c0151002000410064006f00620065002000500044004600200064006f006b0075006d0065006e00740075006d006f006b0061007400200065007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c0020006b00e90073007a00ed0074006800650074002e0020002000410020006c00e90074007200650068006f007a006f00740074002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200035002e0030002c0020007600610067007900200061007a002000610074007400f3006c0020006b00e9007301510062006200690020007600650072007a006900f3006b006b0061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d00690020006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b00750072006900650020006c0061006200690061007500730069006100690020007000720069007400610069006b007900740069002000610075006b01610074006f00730020006b006f006b007900620117007300200070006100720065006e006700740069006e00690061006d00200073007000610075007300640069006e0069006d00750069002e0020002000530075006b0075007200740069002000500044004600200064006f006b0075006d0065006e007400610069002000670061006c006900200062016b007400690020006100740069006400610072006f006d00690020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200035002e0030002000610072002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
 /LVI <FEFF0049007a006d0061006e0074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006100730020006900720020012b00700061016100690020007000690065006d01130072006f00740069002000610075006700730074006100730020006b00760061006c0069007401010074006500730020007000690072006d007300690065007300700069006501610061006e006100730020006400720075006b00610069002e00200049007a0076006500690064006f006a006900650074002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006f002000760061007200200061007400760113007200740020006100720020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200035002e0030002c0020006b0101002000610072012b00200074006f0020006a00610075006e0101006b0101006d002000760065007200730069006a0101006d002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /POL <FEFF0055007300740061007700690065006e0069006100200064006f002000740077006f0072007a0065006e0069006100200064006f006b0075006d0065006e007400f300770020005000440046002000700072007a0065007a006e00610063007a006f006e00790063006800200064006f002000770079006400720075006b00f30077002000770020007700790073006f006b00690065006a0020006a0061006b006f015b00630069002e002000200044006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d006900650020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006e006f00770073007a0079006d002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /RUM <FEFF005500740069006c0069007a00610163006900200061006300650073007400650020007300650074010300720069002000700065006e007400720075002000610020006300720065006100200064006f00630075006d0065006e00740065002000410064006f006200650020005000440046002000610064006500630076006100740065002000700065006e0074007200750020007400690070010300720069007200650061002000700072006500700072006500730073002000640065002000630061006c006900740061007400650020007300750070006500720069006f006100720103002e002000200044006f00630075006d0065006e00740065006c00650020005000440046002000630072006500610074006500200070006f00740020006600690020006400650073006300680069007300650020006300750020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e00300020015f00690020007600650072007300690075006e0069006c006500200075006c0074006500720069006f006100720065002e>
 /RUS <FEFF04180441043f043e043b044c04370443043904420435002004340430043d043d044b04350020043d0430044104420440043e0439043a043800200434043b044f00200441043e043704340430043d0438044f00200434043e043a0443043c0435043d0442043e0432002000410064006f006200650020005000440046002c0020043c0430043a04410438043c0430043b044c043d043e0020043f043e04340445043e0434044f04490438044500200434043b044f00200432044b0441043e043a043e043a0430044704350441044204320435043d043d043e0433043e00200434043e043f0435044704300442043d043e0433043e00200432044b0432043e04340430002e002000200421043e043704340430043d043d044b04350020005000440046002d0434043e043a0443043c0435043d0442044b0020043c043e0436043d043e0020043e0442043a0440044b043204300442044c002004410020043f043e043c043e0449044c044e0020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200431043e043b043504350020043f043e04370434043d043804450020043204350440044104380439002e>
 /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200070006f0075017e0069007400650020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b0074006f007200e90020007300610020006e0061006a006c0065007001610069006500200068006f0064006900610020006e00610020006b00760061006c00690074006e00fa00200074006c0061010d00200061002000700072006500700072006500730073002e00200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d006f006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076016100ed00630068002e>
 /SLV <FEFF005400650020006e006100730074006100760069007400760065002000750070006f0072006100620069007400650020007a00610020007500730074007600610072006a0061006e006a006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b006900200073006f0020006e0061006a007000720069006d00650072006e0065006a016100690020007a00610020006b0061006b006f0076006f00730074006e006f0020007400690073006b0061006e006a00650020007300200070007200690070007200610076006f0020006e00610020007400690073006b002e00200020005500730074007600610072006a0065006e006500200064006f006b0075006d0065006e0074006500200050004400460020006a00650020006d006f0067006f010d00650020006f0064007000720065007400690020007a0020004100630072006f00620061007400200069006e002000410064006f00620065002000520065006100640065007200200035002e003000200069006e0020006e006f00760065006a01610069006d002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /TUR <FEFF005900fc006b00730065006b0020006b0061006c006900740065006c0069002000f6006e002000790061007a006401310072006d00610020006200610073006b013100730131006e006100200065006e0020006900790069002000750079006100620069006c006500630065006b002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e00200020004f006c0075015f0074007500720075006c0061006e0020005000440046002000620065006c00670065006c0065007200690020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200035002e003000200076006500200073006f006e0072006100730131006e00640061006b00690020007300fc007200fc006d006c00650072006c00650020006100e70131006c006100620069006c00690072002e>
 /UKR <FEFF04120438043a043e0440043804410442043e043204430439044204350020044604560020043f043004400430043c043504420440043800200434043b044f0020044104420432043e04400435043d043d044f00200434043e043a0443043c0435043d044204560432002000410064006f006200650020005000440046002c0020044f043a04560020043d04300439043a04400430044904350020043f045604340445043e0434044f0442044c00200434043b044f0020043204380441043e043a043e044f043a04560441043d043e0433043e0020043f0435044004350434043404400443043a043e0432043e0433043e0020043404400443043a0443002e00200020042104420432043e04400435043d045600200434043e043a0443043c0435043d0442043800200050004400460020043c043e0436043d04300020043204560434043a0440043804420438002004430020004100630072006f006200610074002004420430002000410064006f00620065002000520065006100640065007200200035002e0030002004300431043e0020043f04560437043d04560448043e04570020043204350440044104560457002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200038002000280038002e0032002e00310029000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300031003000200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f0061006400650064002000610074002000680074007400700073003a002f002f0070006f007200740061006c002d0064006f0072006400720065006300680074002e0073007000720069006e006700650072002d00730062006d002e0063006f006d002f00500072006f00640075006300740069006f006e002f0046006c006f0077002f00740065006300680064006f0063002f00640065006600610075006c0074002e0061007300700078000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c00200030003800200061006e0064002000500069007400530074006f0070002000530065007200760065007200200030003800200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e000d>
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

