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Here’s to our wives and girlfriends . . . may
they never meet!

Groucho Marx





Preface

Games has been an interesting domain for artificial intelligence (AI) research since
the origins of the discipline back in the 1950s, although mainly board games such
as chess, checkers, or backgammon. Nevertheless, it is between 1999 and 2000
when a number of researches on AI identify interactive video games as an inter-
esting research domain for AI (see, for example, John E. Laird, Michael van Lent:
“Human-Level AI’s Killer Application: Interactive Computer Games”. AAAI/IAAI
2000: 1171–1178). The long-term dream of AI research of building intelligent
robots with human-like abilities for interacting in the real world is still far from
being fulfilled due, among other causes, to the complexities of sensing and acting
in the real world. Video games provide synthetic worlds where complex behav-
ior can be shown but where perception and actuation are perfectly under control
and, therefore, became a perfect platform for experimenting with software robots
(i.e., agents).

Techniques used for AI in commercial video games are still far from state-of-the
art in academia, but with graphics in video games coming close to photo realis-
tic quality, and multi-processor architectures getting common in console and PC
game platforms, sophisticated artificial intelligence is getting into the focus of the
video game industry as the next big thing for enhancing the player experience, while
profiting from the number of spare CPU cycles available in modern hardware. For
that reason, industry is getting interested in academic research in AI to provide rich,
robust, and scalable techniques for controlling non-player characters and provide
richer narrative schemes in games.

This book collects some of the most relevant results from academia in the area
of artificial intelligence for games. The selection of contributions has been biased
toward rigorous and theoretically grounded work that is also supported with de-
veloped prototypes, which should pave the way for the integration of academic AI
techniques into state-of-the-art electronic entertainment games. The chapters in the
book cover different areas relevant to AI in commercial games: pathfinding, decision
making, learning, authoring, and storytelling.

Regarding pathfinding, the book describes recent real-time heuristic search algo-
rithms that alleviate the scalability problem of A* techniques used in commercial
games, which at the same time exhibit a visually appealing behavior. Techniques
are also presented that, based on the semantic annotation of 3D virtual worlds,
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viii Preface

can learn pathfinding behavior by analyzing traces from actual players. Tools and
techniques are described for incorporating semantic information into the game de-
sign and development process, thus improving the embedded information contained
in immersive game worlds, and leading to new possibilities for NPC constructions
such as meaningful in-game learning and agent portability.

Regarding decision making, the book describes new techniques for authoring
tools that facilitate the construction by game designers (typically non-programmers)
of behavior controlling software, by reusing patterns or actual cases of past be-
havior, represented as behavior trees. Using domination games as a test bed, the
book describes different approaches for building cooperative agents, with differ-
ent requirements for knowledge engineering, from purely hand-coded to inductive
approaches. Techniques for automatically or semi-automatically learning complex
behavior from recorded traces of human players using different combinations of
reinforcement learning and case-based reasoning are also described.

Much research on artificial intelligence in games has been devoted to creating
opponents that play competently against human players, while an alternative goal
is to try to deliver the best possible experience within the context of the game.
This novel goal is much more attainable by approaching AI reasoning for games
as “storytelling reasoning.” Several technological approaches are presented in the
context of such a perspective, including the use of planning techniques for camera
placement and sequencing of plot points in a game, and constraint optimization for
automatically adapting lighting qualities of a scene to the player preferences.

Key results from applied research on AI within the last 10 years have been col-
lected here to provide a reference work for both academia and industry that will help
to close the gap between both worlds.

Madrid Pedro Antonio González-Calero
October 2010 Marco Antonio Gómez-Martín
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Real-Time Heuristic Search for Pathfinding
in Video Games

Vadim Bulitko, Yngvi Björnsson, Nathan R. Sturtevant, and Ramon Lawrence

Abstract Game pathfinding is a challenging problem due to a limited amount of
per-frame CPU time commonly shared among many simultaneously pathfinding
agents. The challenge is rising with each new generation of games due to pro-
gressively larger and more complex environments and larger numbers of agents
pathfinding in them. Algorithms based on A* tend to scale poorly as they must
compute a complete, possibly abstract, path for each agent before the agent can
move. Real-time heuristic search algorithms satisfy a constant bound on the amount
of planning per move, independent of problem size. These algorithms are thus a
promising approach to large scale multi-agent pathfinding in video games. How-
ever, until recently, real-time heuristic search algorithms universally exhibited a
visually unappealing “scrubbing” behavior by repeatedly revisiting map locations.
This had prevented their adoption by video game developers. In this chapter, we
review three modern search algorithms which address the “scrubbing” problem in
different ways. Each algorithm presentation is complete with an empirical evalua-
tion on game maps.

1 Introduction and Related Work

Heuristic search is a core area of artificial intelligence (AI) research and its algo-
rithms have been widely used in planning, game-playing, and agent control. In this
chapter, we are interested in real-time heuristic search algorithms that satisfy a con-
stant upper bound on the amount of planning per action, independent of problem
size. This property is important in a number of applications including autonomous
robots and agents in video games. A common problem in video games is searching
for a path between two locations. In most games, agents are expected to act quickly
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2 V. Bulitko et al.

in response to player’s commands and other agents’ actions. As a result, many game
companies impose a constant time limit on the amount of path planning per move1

(e.g., one millisecond for all simultaneously moving agents).
While in practice this time limit can be satisfied by limiting problem size a pri-

ori, a scientifically more interesting approach is to impose a constant per-action
time limit independent of the problem size. Doing so severely limits the range
of applicable heuristic search algorithms. For instance, static search algorithms
such as A* [15], Iterative Deepening A* (IDA*) [24] and PRA* [38,39], re-planning
algorithms such as D* [37], anytime algorithms such as ARA* [27], and anytime
re-planning algorithms such as AD* [26] cannot guarantee a constant bound on
planning time per action. This is because all of them produce a complete, possi-
bly abstract, solution before the first action can be taken. As the problem increases
in size, their planning time will inevitably increase, exceeding any a priori finite
upper bound.

Real-time search addresses the problem in a fundamentally different way. In-
stead of computing a complete, possibly abstract, solution before the first action
is taken, real-time search algorithms compute (or plan) only a few first actions
for the agent to take. This is usually done by conducting a lookahead search of a
fixed depth (also known as “search horizon,” “search depth,” or “lookahead depth”)
around the agent’s current state and using a heuristic (i.e., an estimate of the remain-
ing travel cost) to select the next few actions. The actions are then taken and the
planning–execution cycle repeats [25]. Since the goal state is not seen in most such
local searches, the agent runs the risks of heading into a dead end or, more gener-
ally, selecting suboptimal actions. To address this problem, most real-time heuristic
search algorithms update (or learn) their heuristic function over time.

The learning process has precluded real-time heuristic search agents from being
widely deployed for pathfinding in video games. The problem is that such agents
tend to “scrub” (i.e., repeatedly revisit) the state space due to the need to fill in
heuristic depressions [19]. As a result, solution quality can be quite low and, visu-
ally, the scrubbing behavior is perceived as irrational.

Since the seminal work on Learning Real-Time A* (LRTA*) [25], researchers
have attempted to speed up the learning process. Most of the resulting algorithms
can be described by the following four attributes:

The local search space is the set of states whose heuristic costs are accessed in
the planning stage. The two common choices are full-width limited-depth looka-
head [14, 16, 17, 25, 31, 33–36], and A*-shaped lookahead [21, 23]. Additional
choices are decision-theoretic-based shaping [32] and dynamic lookahead depth-
selection [7, 29]. Finally, searching in a smaller, abstracted state has been used as
well [13].

The local learning space is the set of states whose heuristic values are updated.
Common choices are: the current state only [7, 14, 25, 33–35], all states within the
local search space [21,23], and previously visited states and their neighbors [16,17,
31, 36].

1 Henceforth, we will use the terms action and move synonymously.
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A learning rule is used to update the heuristic costs of the states in the learning
space. The common choices are mini-min [16, 17, 25, 31, 34–36], its weighted ver-
sions [33], max of mins [7], modified Dijkstra’s algorithm [21], and updates with
respect to the shortest path from the current state to the best-looking state on the
frontier of the local search space [23]. Additionally, several algorithms learn more
than one heuristic function [14, 32, 33].

The control strategy decides on the move following the planning and learning
phases. Commonly used strategies include: the first move of an optimal path to the
most promising frontier state [14, 16, 17, 25], the entire path [7], and backtracking
moves [7, 34–36].

Given the multitude of proposed algorithms, unification efforts have been under-
taken. In particular, [10] suggested a framework, called Learning Real-Time Search
(LRTS), to combine and extend LRTA* [25], weighted LRTA* [33], SLA* [35],
SLA*T [34], and, to a large extent, γ-Trap [7].

A breakthrough in performance came with D LRTA* [12] which, for the first time
in real-time heuristic search, used automatically selected local subgoals instead of
the global goal. The subgoal selection mechanism has later been refined in k Nearest
Neighbors LRTA* (kNN LRTA*), which we review in this chapter.

In this chapter, we review the following three modern real-time heuristic search
algorithms: kNN LRTA*, TBA*, and RIBS.

kNN LRTA* [8, 9] uses a nearest-neighbor algorithm over a database of solved
cases. It introduced the idea of compressing a solution path into a series of subgoals
so that each can be “easily” reached from the previous one. In doing so, it uses
hill-climbing as a proxy for the notion of “easy reachability by LRTA*.”

If precomputing a database of solved cases and compressing them into subgoals
are not feasible, then one can use the following two modern real-time heuristic
search algorithms.

TBA* [2] is a time-bounded variant of the classic A*. Unlike A* that plans a
complete path before committing to the first action, Time-Bounded A* (TBA*) in-
terrupts its planning periodically to act. Because initially a complete path to the goal
is unknown, the agent instead moves toward the most promising state on the open
list, backtracking its steps as necessary. This interleaving of planning and acting
is done in such a way that both real-time behavior and completeness are ensured.
Among the attractions of this algorithm are its simplicity and broad applicability
as well as the fact that reasonable solution quality and real-time performance is
achieved without the need for precomputations or state-space abstractions.

RIBS [40] takes a different approach to learning real-time search. Instead of
learning a heuristic estimate of the distance from an arbitrary state to the goal
as most algorithms have traditionally done, Real-Time Iterative-Deepening Best-
First Search (RIBS) learns accurate distances from the start state. This approach
has just recently been explored, and more work is required to deploy this algo-
rithm in commercial games. But, the study of RIBS has lead to critical insights
in the performance of real-time algorithms and approaches that are likely to be
successful.
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The rest of the chapter is organized as follows. In Sect. 2 we formulate the prob-
lem. Section 3 presents three classic algorithms that serve as the core to TBA*,
kNN LRTA*, and RIBS which are reviewed in Sects. 5–7, respectively. Finally, we
discuss applications beyond pathfinding in Sect. 8 and conclude the chapter.

2 Problem Formulation

We define a heuristic search problem as an undirected graph containing a finite set
of states (vertices) and weighted edges, with a single state designated as the goal
state. At every time step, a search agent has a single current state, a vertex in the
search graph, and takes an action (or makes a move) by traversing an out-edge of
the current state. By traversing an edge between states s1 and s2, the agent changes
its current state from s1 to s2. We say that a state is visited by the agent if and only
if it is the agent’s current state at some point of time. As it is usual in the field of
real-time heuristic search, we assume that path planning happens between the moves
(i.e., the agent does not think while traversing an edge). The “plan a move” – “travel
an edge” loop continues until the agent arrives at its goal state, thereby solving the
problem.

Each edge has a positive cost associated with it. The total cost of edges traversed
by an agent from its start state until it arrives at the goal state is called the solution
cost. We require algorithms to be complete (i.e., produce a path from start to goal
in a finite amount of time if such a path exists). In order to guarantee completeness
for real-time heuristic search, we make the assumption of safe explorability of our
search problems. Specifically, all edge costs are finite and for any states s1,s2,s3, if
there is a path between s1 and s2 and there is a path between s1 and s3, then there is
also a path between s2 and s3.

Formally, all algorithms discussed in this chapter are applicable to any such
heuristic search problem. To keep the presentation focused and intuitive, we use a
particular type of heuristic search problems, video game pathfinding in grid worlds,
for the rest of the chapter. In video game map settings, states are vacant square grid
cells. Each cell is connected to four cardinally (i.e., west, north, east, south) and
four diagonally neighboring cells. Outbound edges of a vertex are moves available
in the corresponding cell, and in the rest of the chapter we will use the terms action
and move interchangeably. The edge costs are defined as 1 for cardinal moves and
1.4 for diagonal moves.2

An agent plans its next action by considering states in a local search space sur-
rounding its current position. A heuristic function (or simply heuristic) estimates the
(remaining) travel cost between a state and the goal. It is used by the agent to rank
available actions and select the most promising one. Furthermore, we consider only
admissible and consistent heuristic functions which do not overestimate the actual

2 We use 1.4 instead of the Euclidean
√

2 to avoid errors in floating point computations.
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remaining cost to the goal and whose difference in values for any two states does not
exceed the cost of an optimal path between these states. In this chapter, we use octile
distance – the minimum cumulative edge cost between two vertices ignoring map
obstacles – as our heuristic. This heuristic is admissible and consistent. An agent
can modify its heuristic function in any state to avoid getting stuck in local minima
of the heuristic function, as well as to improve its action selection with experience.

We evaluate the algorithms presented in this chapter with respect to several per-
formance measures. First, we measure mean planning time in terms of both the
number of states expanded3 as well as the CPU time.

The second performance measure of our study is sub-optimality defined as the
ratio of the solution cost found by the agent to the minimum solution cost −1 and
times 100%. To illustrate, suboptimality of 0% indicates an optimal path and sub-
optimality of 50% indicates a path 1.5 times as costly as the optimal path. We also
measure the precomputation time for kNN LRTA* as well as the memory require-
ments of all three algorithms.

3 The Core Algorithms

TBA*, RIBS, and kNN LRTA* presented later in this chapter build on three classic
heuristic search algorithms: A* [15], IDA* [24], and LRTA* [25]. We briefly review
these algorithms and discuss their drawbacks for real-time heuristic search below.

3.1 A*

The classic A* algorithm [15] is a fundamental algorithm for pathfinding. Given
a start state s and a goal state g, it finds a least-cost path between the two states.
It is a best-first search algorithm and uses a distance-plus-cost-estimate function
to determine which state to expand next. The cost function, denoted f (n), consists
of two parts: f (n) = g(s,n)+ h(n,g) where g(s,n) is the distance of the shortest
path found so far between the start state s and state n, and h(n,g) is the heuristic
estimate of the distance cost of traveling from state n to the goal g. The algorithm
uses two containers to keep track of its search progress: the open list storing states
that have been encountered but not expanded yet, and the closed list storing states
already expanded. The algorithm iteratively picks the state from the open list with
the lowest f -cost, expands the state, and places its children on the open list. To
determine whether a child state goes into the open list, it cannot already be on the
closed list or on the open list with a lower cost. The state just expanded is moved
to the closed list. The role of the closed list is both to avoid state re-expansions and

3 A state is called expanded if all of its immediate children are generated.
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to reconstruct the solution path once the goal is found. This continues until the goal
state is removed from the open list, in which case the solution path is reconstructed
from the closed list.

The algorithm is complete, finds an optimal solution when used with an admis-
sible heuristic, and never re-expands states given a consistent heuristic.

3.2 Iterative Deepening A*

Early researchers noticed that A* could not solve large problems because it would
run out of memory. IDA* [24] was thus developed as an alternate algorithm that
could find optimal solutions, like A*, but that would only require memory usage
linear in the cost of the solution. Most combinatorial puzzles, which were the orig-
inal focus of IDA*, have state spaces exponential in the solution cost, and so are a
natural fit for IDA*. Henceforth, we will call such problems exponential domains.

One way to understand how IDA* works is to contrast it to how A* works. Given
a consistent heuristic, the lowest f -cost of any state in A*’s open list will monoton-
ically increase during search. Imagine that we grouped states according to their cost
when expanded by A*. For instance, all the states with cost 12 might be expanded
first, followed by the states with cost 14, and so on. We demonstrate this in Fig. 1,
showing contours that delineate states of each successive cost.

IDA* will first expand these groups of states in the same order as A* (modulo
tie-breaking among states with equal f -cost) but will subsequently revisit states in
subsequent iterations of the algorithm. It does this because it does not maintain
an open list. Instead, it performs multiple depth-first searches, with each search
bounded by the best f -cost which has yet to be explored. All the states of a particular
cost are explored before the next iteration begins anew. In exponential domains such
as common combinatorial puzzles, the largest number of states will be expanded in
the last iteration, amortizing away the cost of the previous iterations. Because it can
be expensive to maintain an open list, IDA* can be faster than A* in practice.

IDA* works best in exponential domains where the state space does not contain
many cycles. It might, therefore, seem that IDA* is not well suited to grid-based
worlds. These domains are usually polynomial, as the number of states in a map

Fig. 1 Iterative Deepening
A* (IDA*) search contours:
IDA* performs multiple
depth-first searches within
each successive cost frontier
found during search

f = 14

f = 12

f = 16



Real-Time Heuristic Search for Pathfinding in Video Games 7

grows as a polynomial function of length and/or width of the map. Additionally,
there are many cycles on grid-based maps. Surprisingly, IDA* can indeed be adapted
to perform real-time heuristic search in such domains, as we show below.

3.3 Learning Real-Time A*

The core of most real-time heuristic search algorithms is an algorithm called
LRTA* [25]. It is shown below as Algorithm 1 and operates as follows. As long
as the goal state sglobal goal is not reached, the algorithm interleaves planning and ex-
ecution in lines 4–7. The original algorithm always sets its goal sgoal to be the global
goal sglobal goal. Our generalized version used in this chapter selects sgoal dynamically
as we detail below. In line 4, a cost-limited breadth-first search with duplicate detec-
tion is used to find frontier states with cost up to gmax away from the current state s.
For each frontier state ŝ, its value is the sum of the cost of a shortest path from
s to ŝ, denoted by g(s, ŝ), and the estimated cost of a shortest path from ŝ to sgoal

[i.e., the heuristic cost h(ŝ,sgoal)]. The state that minimizes the sum is identified as
s′ in line 5. Ties are broken in favor of higher g costs.4 Remaining ties are broken in
a fixed order. The heuristic value of the current state s is updated in line 6 (we keep
separate heuristic tables for the different goals and we never decrease heuristics).
Finally, we take one step toward the most promising frontier state s′ in line 7.

LRTA* is a special case of value iteration or real-time dynamic programming [1]
and has a problem that has prevented its use in video game pathfinding. Specifi-
cally, it updates a single heuristic value per move on the basis of heuristic values of
nearby states. This means that when the initial heuristic values are overly optimistic
(i.e., too low), LRTA* will frequently revisit these states multiple times, each time
making updates of a small magnitude. This behavior is known as “scrubbing” and
appears highly irrational to an observer. Scrubbing is common in pathfinding due to
dead ends and corners.

Algorithm 1 LRTA*(sstart,sglobal goal,gmax)
1: s← sstart
2: while s �= sglobal goal do
3: if no subgoal is selected or the current subgoal is reached then select a (new) subgoal sgoal
4: generate successor states of s up to gmax cost, generating a frontier
5: find a frontier state s′ with the lowest g(s, s′)+h(s′, sgoal)
6: update h(s, sgoal) to g(s, s′)+h(s′, sgoal)
7: change s one step towards s′
8: end while

4 In the rest of the chapter, we use the terms cost and value interchangeably whenever we refer to
f and g functions on states.
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There are two fundamental approaches to address problems related to heuristic
inaccuracies. First, one can use a more accurate heuristic. Second, one can in-
crease the depth of the lookahead (i.e., by increasing the gmax parameter in LRTA*)
to compensate for heuristic inaccuracies. Deeper lookaheads have been generally
found beneficial in real-time heuristic search [25], though lookahead pathologies
(i.e., detrimental effects of deeper lookahead on solution optimality) have been ob-
served as well [6, 11, 28, 29].

kNN LRTA* takes the former approach and effectively improves the heuristic
quality by computing it with respect to a nearby subgoal as opposed to a distant
global goal. This is done in an automated fashion as presented below.

4 The Three Modern Algorithms

The three real-time search algorithms discussed in this chapter use A*, IDA*, or
LRTA* as their core and enhance them in a number of ways. We review them below.
The space constraints preclude us from presenting technical details. Thus, we will
focus on the key ideas, the underlying intuition, and support them with highlights of
empirical evaluation. We refer the reader to the original publications for additional
details [2, 9, 40].

5 Time-Bounded A*

In the absence of precomputed information for guiding the search, LRTA*-like al-
gorithms tend to preform poorly, often revisiting and re-expanding the same states
over and over again. In contrast, A* with a consistent heuristic never re-expands
a state. However, in A* the first action cannot be taken until an entire solution is
planned. As search graphs grow in size, the planning time before the first action will
grow, eventually exceeding any fixed cut-off. Consequently, A*-like algorithms vi-
olate the real-time property and, thus, do not scale well. One way of alleviating this
problem has been to use A* with hierarchies of state-space abstractions, and search
first for an approximate path in a highly abstracted state space and then refine it
locally in a less abstract one [13, 39]. While faster, their planning time per move
still increases with the number of states, making them non-real-time. Another way
of addressing the problem is to precompute pathfinding information for expediting
the search; however, it may not always be feasible to do so for video game maps.
For example, while hours of precomputation per map may be acceptable for maps
shipping with a game (as the computation is done beforehand at the game studio),
the same is unlikely to be the case for user-generated maps. Also, precomputation
is less useful for maps that change frequently during game play (e.g., a bridge or a
building is blown-up or a new one built).
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Below, we describe a time-bounded version of the A* algorithm, called
TBA* [2], that achieves true real-time behavior while requiring neither precom-
putation nor state space abstractions. It is conceptually the most simple of the three
modern pathfinding algorithms described in here.

5.1 TBA*: Search

The TBA* algorithm expands states in an A* fashion, away from the original start
state, toward the goal until the goal state is expanded. However, unlike A* that plans
a complete path before committing to the first action, TBA* interrupts its search
periodically after a fixed number of state expansions and acts. If the complete path to
the goal has not yet been found, the agent instead moves toward the most promising
state on the open list. This interleaving of planning and acting operations ensures
real-time behavior. A key aspect of TBA* over LRTA*-based algorithms is that it
retains closed and open lists over its planning steps. Thus, on each planning step
it does not start planning from scratch, but continues with its open and closed lists
from the previous planning step.

The basic idea behind TBA* is depicted in Fig. 2. S is the start and G the goal, the
curves represent A* open list after each expansion time-slice, the small solid circles
(a), (b), (c) are states on the open lists with the lowest f -value. The dashed lines are
the shortest paths to them. The first three steps of the agent are: S→ 1→ 2→ 1.
The agent backtracks on the last step because the path to the most promising state
on the outermost frontier, labeled (c), did not go through state 2 where the agent was
situated at the time.

The pseudo-code of TBA* is shown as Algorithm 2. The arguments to the algo-
rithm are the start and goal states, the search problem P, and the per-move search
limit R (expressed as the number of states to expand on each step). The algorithm
keeps track of the current location of the agent using the variable loc. After initial-
izing the agent location as well as several boolean variables that keep track of the
algorithm’s internal state (lines 1–4), the algorithm divides up the resource limit as

Fig. 2 An example of TBA*
in action

s 1 2

G

(a)

(c)

(b)
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Algorithm 2 TBA*(start, goal, P, R)
1: loc← start
2: solutionFound← f alse
3: solutionFoundAndTraced ← f alse
4: doneTrace← true
5: NE = �R× r�
6: NT = (R−NE)× c
7: while loc �= goal do
8: { PLANNING PHASE }
9: if not solutionFound then

10: solutionFound← A∗(lists, start,goal,P,NE)
11: end if
12: if not solutionFoundAndTraced then
13: if doneTrace then
14: pathNew← lists.mostPromisingState()
15: end if
16: doneTrace← traceBack(pathNew, loc,NT )
17: if doneTrace then
18: pathFollow← pathNew
19: if pathFollow.back() = goal then
20: solutionFoundAndTraced ← true
21: end if
22: end if
23: end if
24: { EXECUTION PHASE }
25: if pathFollow.contains(loc) then
26: loc← pathFollow.popFront()
27: else
28: if loc �= start then
29: loc← lists.stepBack(loc)
30: else
31: loc← loc_last
32: end if
33: end if
34: loc_last← loc
35: move agent to loc
36: end while

it must be shared between state expansion and backtracing5 operations (lines 5–6).
The constants r ∈ [0,1] and c stand for the fraction of the resource limit to use for
state expansions and the relative cost of a expansion compared to backtracing (e.g.,
a value of 10 indicates that one state expansion takes ten times more time to exe-
cute than a backtracing step), respectively. The algorithm then enters the main loop
where it repeatedly interleaves planning (lines 8–23) and execution (lines 24–35)
until the agent reaches the goal.

5 We use the term backtracing for the act of tracing a path backwards in the planning phase. The
term backtracking is used in its usual sense – physically moving (backwards) along the path in the
execution phase.
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The planning phase proceeds in two steps: first, a fixed number (NE ) of A* state
expansions are done (lines 9–11), where both the search problem P and the open/-
closed lists are passed to A* as arguments. The former is needed for A* to generate
neighbor states and the latter for A* to resume the search from where it left off
previously. Second, a new path to follow, pathNew, is generated by backtracing the
steps from the most promising state on the open list back to the start state. This is
done with A* closed list contained in the variable lists which also stores A* open
list thereby allowing us to run A* in a time-sliced fashion. The function traceBack
(line 16) backtraces until reaching either the current location of the agent, loc, or
the start state. This is also done in a time-sliced manner (i.e., no more than NT

trace steps per action) to ensure real-time performance. Thus, the backtracing pro-
cess can potentially span several action steps. Each subsequent call to the traceBack
routine continues to build the backtrace from the front location of the path passed
as an argument and adds the new locations to the front of that path [to start tracing
a new path one simply resets the path passed to the routine (lines 13–15)]. Only
when the path has been fully traced back, it is set to become the new path for the
agent to follow (line 18); until then the agent continues to follow its current path,
pathFollow.

In the execution phase, the agent does one of the two things as follows. If
the agent is already on the path to follow it simply moves one step forward along the
path, removing its current location from the path (line 26).6 On the other hand,
if the agent is not on the path – for example, if a different new path has become
more promising – then the agent simply starts backtracking its steps one at a time
(line 29). The agent will sooner or later step onto the path that it is expected to
follow, in the worst case this will happen in the start state.

Note that one special case must be handled. Assume a very long new path is
being traced back. In general, this causes no problems for the agent as it simply
continues to follow its current path until it reaches the end of that path, and if still
waiting for the tracing to finish, it simply backtracks toward the start state. It is
possible, although unlikely, that the agent reaches the start state before a new path
becomes available, thus having no path to follow. However, as the agent must act, it
simply moves back to the state it came from (line 31).

5.2 TBA*: Properties

Real-time property. The number of state expansions and backtraces performed for
each action step is bounded. This is sufficient to claim real-time behavior pro-
vided that the time it takes to expand or backtrace each state is constant-bounded.

6 It is not necessary to keep the part of the path already traversed since it can be recovered from the
closed list.
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In TBA* the open and closed lists grow between action steps; so subsequent plan-
ning steps work with larger lists. However, a careful choice of data structures still
enables (amortized) constant-time operation.7

Completeness. The algorithm expands states in the same manner as A* and is thus
guaranteed to find a path from the start state to the goal provided that one exists. The
algorithm does additionally guarantee that the agent will get on this solution path
and subsequently follow it to the goal. This is done by having the agent backtrack
toward the start state when it has no path to follow; during the backtracking process
the agent is guaranteed to walk onto the solution path A* found – in the worst case
this will be at the start state. TBA* is thus complete.

Memory Complexity. The algorithm uses the same state-expansion strategy as A*
and consequently shares the same memory complexity: in the worst case the open
and closed lists will cover the entire state space. Traditional heuristic updating real-
time search algorithms face a similar worst-case scenario as they may end up having
to store an updated heuristic for every state of the search graph. One advantage
TBA* has over precomputation-based algorithms is that no memory is allocated for
the precomputed data.

5.3 TBA*: Empirical Evaluation

The experiments performed in this section were run using three different maps mod-
eled after game worlds from the popular real-time strategy game Warcraft 3 (shown
in Fig. 3). The maps were scaled up to 512×512 cells to increase the problem dif-
ficulty [12, 39]. On each map 100 different searches were performed with start and
goal locations chosen randomly, although constrained such that the optimal solution
cost was between 230 and 320. Each data point we report below is thus an average
of 300 different pathfinding problems (3 maps× 100 searches on each).

Fig. 3 The maps used in the TBA* experiments

7 Using the standard heap-based implementation of the open list gives times per move sub-
polynomial (logarithmic) in the number of states and, therefore, violates the real-time constraint.
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In the experiments that follow, TBA* was matched against two recent real-time
search algorithms that have been shown particularly effective in pathfinding on
video game maps. They both use state abstraction and precomputation to improve
performance. The algorithms and their parameter settings are:

• PR LRTA* is Path Refinement Learning Real-Time Search [13]. The algorithm
runs LRTA* with a fixed search depth d in an abstract space (abstraction level �
in a clique abstraction hierarchy [39]) and refines the first action using a corridor-
constrained A* running on the original ground-level map. The control parameters
are as follows: abstraction level � ∈ {3,4, . . . ,7}, LRTA* lookahead depth d ∈
{1,3,5,10,15}, and LRTA* heuristic weight γ ∈ {0.2,0.4,0.6,1.0}.

• D LRTA* is a variant of LRTA* equipped with dynamic search depth and
intermediate goal selection [12]. For each map, optimal search depths and inter-
mediate goals (or waypoints) were precomputed beforehand and stored in pattern
databases. State abstraction was used to reduce the amount of precomputation.
We used the abstraction level of 3 (higher levels of abstraction exceeded the real-
time computation cut-off threshold of 1,000 states per action).

• TBA* is our Time-Bounded TBA*; the resource limit R took on the values
{10,25,50,75,100,500,1,000}, but the values of r and c were fixed at 0.9 and
10, respectively.

A later section of the chapter contrasts the performance of TBA* and kNN LRTA*
(thus not included here).

Figure 4 presents the results. The run-time efficiency of the algorithms is plotted.
The x-axis represents the amount of work done in terms of the mean number of
states expanded per action, whereas the y-axis shows the quality of the solution
found relative to an optimal solution (e.g., a value of four indicates that a solution
path four times longer than optimal was found). Each point in the figure represents
a run of one algorithm with a fixed parameter setting. The closer a point is to the
origin, the better performance it represents. Note that we imposed a constraint on the
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parameterization: if the worst-case number of states expanded per action exceeded
a cut-off of 1,000 states, then the particular parameter setting was excluded from
consideration. Also, to focus on the high-performance area close to the center of
origin, we limited the axis limits and, as a result, displayed only a subset of the
aforementioned PR LRTA* and D LRTA* parameter combinations.

We see that TBA* performs on par with these algorithms. However, unlike these,
it requires neither state-space abstractions nor precomputed pattern databases. This
has the advantages of making it both much simpler to implement and better poised
for application in nonstationary search spaces, a common condition in video game
map pathfinding where other agents or newly constructed buildings can block a
path. For example, the data point that is provided for D LRTA*, although showing
a somewhat better computation versus suboptimality tradeoff than TBA*, is at the
expense of extensive precomputation that can take hours for even a single map.

6 k Nearest Neighbors LRTA*

If an agent is expected to solve a number of problems on the same search graph, then
it can make sense to analyze the graph and precompute certain information before
attempting to solve the first problem. In the following, we describe one such type of
precomputation used in k Nearest Neighbors LRTA* (kNN LRTA*).

6.1 kNN LRTA*: Off-Line Subgoal Precomputation

It has been observed in the literature that common heuristic functions are not uni-
formly inaccurate [30]. Namely, they tend to be more accurately closer to the goal
state and less accurate farther away. The intuition for this fact is as follows: heuris-
tic functions usually ignore certain constraints of the search space. For instance,
the Manhattan distance heuristic in a sliding tile puzzle would be perfectly accurate
if the tiles could pass through each other. Likewise, the octile distance on a map
ignores obstacles. The closer a state is to a goal, the fewer constraints a heuristic
function is likely to ignore and, as a result, the more accurate (i.e., closer to the
optimal solution cost) the heuristic is likely to be.

We can use these observations to select subgoals dynamically. The idea is
straightforward: if being far from the goal leads to grossly inaccurate heuristic val-
ues, let us move the goal closer to the agent, thereby improving heuristic accuracy.
We can do this by computing the heuristic function with respect to an intermedi-
ate, and thus nearby, goal as opposed to a distant global goal – the final destination
of an agent. Since an intermediate goal is closer than the global goal, the heuris-
tic values of states around an agent will likely be more accurate. Once the agent
gets to an intermediate goal, the next intermediate goal is selected so that the agent
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makes progress toward its actual global goal. Such dynamic subgoal selection can
be carried out using a precomputed subgoal database as described below.

Intuitively, if an LRTA*-controlled agent is in the state s going to the state sgoal,
then the best subgoal is the state sideal subgoal that resides on an optimal path between
s and sgoal and can be reached by LRTA* along an optimal path with no state re-
visitation. Given that there can be multiple optimal paths between two states, it is
unclear how to computationally efficiently detect the LRTA* agent’s deviation from
an optimal path immediately after it occurs.

On the positive side, detecting state revisitation can be done computationally
efficiently by running a simple greedy hill-climbing agent.8 This is based on the fact
that if a hill-climbing agent can reach a state b from a state a without encountering
a local minimum or a plateau in the heuristic, then an LRTA* agent will travel
from a to b without state revisitation. Thus, we propose an efficiently computable
approximation to sideal subgoal. Namely, we define the subgoal for a pair of states s
and sgoal as the state skNN LRTA* subgoal farthest along an optimal path between s and
sgoal that can be reached by a simple hill-climbing agent. In summary, we select
subgoals to eliminate any scrubbing but do not guarantee that the LRTA* agent
keeps on an optimal path between the subgoals. In practice, however, only a tiny
fraction of our subgoals are reached by the hill-climbing agent suboptimally and
even then the suboptimality is negligible.

This approximation to the ideal subgoal allows us to effectively compute a series
of subgoals for a given pair of start and goal states. Intuitively, we compress an
optimal path into a series of key states such that each of them can be reached from
its predecessor without scrubbing. The compression allows us to save a large amount
of memory without much impact on time-per-move. Indeed, hill-climbing from one
of the key states to the next requires inspecting only the immediate neighbors of the
current state and selecting one of them greedily.

However, it is still infeasible to compute and then compress an optimal path be-
tween every two distinct states in the original search space. We solve this problem by
compressing only a predetermined fixed number of optimal paths between random
states off-line.

We illustrate this intuition with a simple example. Figure 5 shows kNN LRTA*
operation off-line. On this map, two random start and goal pairs are selected, and for
each pair an optimal path is computed between the start and goal. Then each path is
compressed into a series of subgoals such that each of the subgoals can be reached
from the previous one via hill-climbing. The path from S1 to G1 is compressed into
two subgoals and the other path is compressed into a single subgoal.

8 In each state, such a simple greedy hill-climbing agent moves to the immediate neighbor with the
lowest f -cost. It gives up when all children have their h-cost greater than or equal to the h-cost of
the agent’s current state.
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Fig. 5 Example of kNN LRTA* off-line operation. Left: two subgoals (start,goal) pairs are chosen:
(S1,G1) and (S2,G2). Center: optimal paths between them are computed by running A*. Right: the
two paths are compressed into a total of three subgoals

6.2 kNN LRTA*: Online Search

Online, kNN LRTA*, tasked with going from s to sgoal, retrieves the most simi-
lar compressed path from its database and uses the associated subgoals. We define
(dis-)similarity of a database path to the agent’s current situation as the maximum
of the heuristic distances between s and the path’s beginning and between sgoal and
the path’s end. We use maximum because we would like both ends of the path to
be heuristically close to the agent’s current state and the goal, respectively. Indeed,
the heuristic distance ignores walls and thus a large heuristic distance to the path’s
either end tends to make that end hill-climbing unreachable.

Note that high similarity (i.e., both distances being low) does not guarantee that
the path will be useful to the kNN LRTA* agent. For instance, the beginning of the
path can be heuristically very close to the agent but on the other side of a long wall,
making it unreachable without a lot of learning and the associated scrubbing. To ad-
dress this problem, we compliment the fast-to-compute similarity metric with more
computationally demanding hill-climbing reachability checks as detailed below.

We illustrate this process by continuing with the simple example introduced in
Fig. 5. Once this database of two records is built, kNN LRTA* can be tasked with
solving a problem online. In Fig. 6, it is tasked with going from the state S to the
state G. The database is scanned and similarity between (S,G) and each of the two
database records is determined. The records are sorted by their similarity: (S1,G1)
followed by (S2,G2). Then the agent runs hill-climbing reachability checks9: from
S to Si and from Gi to G where i runs the database indices in the order of record
similarity. In this example, S1 is found unreachable by hill-climbing from S and
thus the record (S1,G1) is discarded. The second record passes hill-climbing checks
and the agent is tasked with going to its first subgoal (shown as 1 in the figure).

9 To satisfy the real-time operation constraint, we set an a priori constant limit on the number of
steps in any hill-climbing check online.
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Fig. 6 Example of kNN LRTA* online operation. Left: the agent intends to travel from S to G.
Center: similarity of (S,G) to (S1,G1) and (S2,G2) is computed. Right: while (S1,G1) is more
similar to (S,G) than (S2,G2), its beginning S1 is not reachable from S via hill-climbing, and
hence the record (S2,G2) is selected and the agent is tasked with going to subgoal 1

6.3 kNN LRTA*: Properties

Real-time property. On each move kNN LRTA* invokes LRTA*, which expands
a constant-bounded number of states. On some moves, kNN LRTA* additionally
queries its database to find the appropriate record. Since the database size is inde-
pendent of the number of states, the query time does not grow with the number of
states. The time to sort the records is independent of the total number of states and
so are move-limited hill-climbing checks. Therefore, kNN LRTA*’s planning time
per move does not grow with the total number of states, satisfying the real-time re-
quirement. Note that in practice larger state spaces tend to require larger databases
to provide adequate coverage and maintain solution suboptimality. We study this
empirically in Sect. 6.4.

Completeness. Given a problem, the subgoal selection module of kNN LRTA* will
either return a database record or instruct LRTA* to go to the global goal. In the
latter case, kNN LRTA* is complete because the underlying LRTA* is complete.
In the former case, LRTA* is guaranteed to reach the start state of the record due to
the way records are picked from the database. LRTA* is then guaranteed to reach the
subsequent subgoals due to the completeness of the basic LRTA* and the way the
subgoals are constructed.

6.4 kNN LRTA*: Empirical Evaluation

The experiments in this chapter were run on a set of 1,000 randomly generated
problems across the four maps shown in Fig. 7. There were 250 problems on each
map and they were constrained to have solution cost of at least 1,000. The grid
dimensions varied between 4,096×4,604 and 7,261×4,096 cells. For each prob-
lem, we computed an optimal solution cost by running A*. The optimal cost was in
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Fig. 7 The maps used in our empirical evaluation

the range of [1,003.8,2,999.8] with a mean of 1,881.76, a median of 1,855.2, and
a standard deviation of 549.74. We also measured the A* difficulty defined as the
ratio of the number of states expanded by A* to the number of edges in the resulting
optimal path. For the 1,000 problems, the A* difficulty was in the range of [1,199.8]
with a mean of 62.60, a median of 36.47, and a standard deviation of 64.14.

All algorithms compared were implemented in Java using common data struc-
tures as much as possible. We used Java version 6 under SUSE Enterprise Linux
10 on a 2.1 GHz AMD Opteron processor with 32 GB of RAM. All timings are
reported for single-threaded computations.

We evaluated kNN LRTA* with the following parameters. Database size val-
ues were in {1,000, 5,000, 10,000, 40,000, 60,000, 80,000} records. Online, we
allowed our hill-climbing test to climb for up to 250 steps before concluding that
the destination state is not hill-climbing reachable. This value was picked after some
experimentation and had to be appropriate for the record density on the map. To
illustrate, a larger database requires fewer hill-climbing steps to maintain the likeli-
hood of finding a hill-climbing reachable record for a given problem.

We ran reachability checks on the 10 most similar records. LRTA*’s parame-
ter gmax was set to the cost of the most expensive edge (i.e., 1.4) so that LRTA*
generated only all immediate neighbors of its current state.

We also contrast kNN LRTA*’s performance to that of TBA*, which was run
with the time slices of {5,10,20,50,100,500,1,000,2,000,5,000} and the cost ra-
tio of expanding a state to backtracing set to 10 (explained in the next section).
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6.4.1 Solution Suboptimality and Per-Move Planning Time

We begin the comparisons by looking at average solution suboptimality versus av-
erage time per move. Table 1 shows the individual values. kNN LRTA* produces
the highest quality solutions, followed by TBA*.

TBA* cannot reach kNN LRTA* with the database size of 60,000 and 80,000
records. Additionally, TBA* is noticeably slower per move as it expands more than
one state and allocates some time to backtracing as well. The time per move can be
decreased by lowering the value of cutoff but already with the cutoff of 10, TBA*
produces unacceptably suboptimal solutions (666.5% suboptimal). As a result, kNN
LRTA* dominates TBA* by outperforming it with respect to both measures. This is
intuitive as TBA* does not benefit from subgoal precomputation.

For the sake of reference, we also included A* results in the table. A* is not a
real-time algorithm and its average time per move tends to increase with the number
of states in the map. Additionally, it spends most of its time during the first move
when it computes the entire path. Subsequent moves require a trivial computation.
In the table, we define A*’s mean time per move as the total planning time for a
problem divided by the number of moves in the path A* finds. We average this
quantity over all problems. kNN LRTA* is about 30 times faster than A* per move.

6.4.2 Database Precomputation Time

Suboptimality versus database precomputation time is shown in Table 2. Note that
while the times are roughly between 10 and 100 h, they are reported for single-
threaded computations. Because database records are independent of each other,

Table 1 Suboptimality versus time per move

Algorithm Mean time per move (μs) Solution suboptimality (%)

kNN LRTA*(10000) 7.56 6,851.62
kNN LRTA*(40000) 6.88 620.63
kNN LRTA*(60000) 6.40 12.77
kNN LRTA*(80000) 6.55 11.96

TBA*(5) 14.31 1,504.54
TBA*(10) 26.34 666.50
TBA*(50) 83.31 131.12
TBA*(100) 117.52 64.66

A* 208.03 0

Table 2 Suboptimality versus database precomputation time

Algorithm Precomputation time per map (h) Solution suboptimality (%)

kNN LRTA*(10000) 13.10 6,851.62
kNN LRTA*(40000) 51.89 620.63
kNN LRTA*(60000) 77.30 12.77
kNN LRTA*(80000) 103.09 11.96
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the precomputation process scales up linearly with the number of threads. Thus,
these times can be decreased by an order of magnitude by simply running the code
in parallel on a modern multi-core CPU.

6.4.3 Memory Requirements

Memory is at premium in video games, especially on consoles. TBA* space com-
plexity comes from its open and closed list which it builds online. kNN LRTA*
expands only a single state (the agent’s current state) and thus has the closed list
of one state and the open list of at most eight states (as any grid cell in our maps
has at most eight neighbors). However, it consumes memory as it stores updated
heuristic values. Additionally, it stores its subgoal databases. We will first focus on
the database size. Then we will cover the total memory consumed online: open and
closed lists as well as the updated heuristic values.

kNN LRTA* records have two or more states each, and the number of records
is fixed by the algorithm parameter. Additionally, kNN LRTA* stores start and end
states of each record in a kd-tree. We define relative database size as the ratio of the
total number of states stored in all records to the total number of map grid cells. The
empirical results are found in Table 3.

We will first analyze specifically the amount of memory allocated by the al-
gorithms online. When an algorithm solves a particular problem, we record the
maximum size of its open and closed lists as well as the total number of states whose
heuristic values were updated. We count each updated heuristic value as one state
in terms of storage required.10 Adding these three measures together, we record the
amount of strictly online memory per problem. Averaging the strictly online mem-
ory over all problems, we list the results in Table 4.

TBA*, as time-sliced A*, does not update heuristic values at all. However, its
open and closed lists contribute to the highest memory consumption at 1,353.94
KB. This is intuitive as TBA* does not use subgoals and therefore must “fill in”
potentially large heuristic depressions with its open and closed lists. Also, note that
the total size of these lists does not change with the cutoff as state expansions are

Table 3 Database statistics. All values are averages per map. Precomputation time is
in hours

Algorithm Precomputation time Records Relative size Size (MB)

kNN LRTA*(10000) 13.10 10,000 0.00308 0.25
kNN LRTA*(40000) 51.89 40,000 0.01234 1.00
kNN LRTA*(60000) 77.30 60,000 0.01851 1.51
kNN LRTA*(80000) 103.09 80,000 0.02468 2.01

10 Multiple heuristic updates in the same state do not increase the amount of storage.
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Table 4 Strictly online memory versus solution suboptimality

Algorithm Strictly online memory (KB) Solution suboptimality (%)

kNN LRTA*(10000) 8.62 6,851.62
kNN LRTA*(40000) 5.04 620.63
kNN LRTA*(60000) 4.23 12.77
kNN LRTA*(80000) 4.22 11.96

TBA*(5) 1,353.94 1,504.54
TBA*(10) 1,353.94 666.50
TBA*(50) 1,353.94 83.31
TBA*(100) 1,353.94 64.66

A* 1,353.94 0

Table 5 Solution suboptimality versus cumulative online memory

Algorithm Cumulative online memory (KB) Solution suboptimality (%)

kNN LRTA*(10000) 265.65 6,851.62
kNN LRTA*(40000) 1,034.08 620.63
kNN LRTA*(60000) 1,547.85 12.77
kNN LRTA*(80000) 2,062.20 11.96

TBA*(5) 1,353.94 1,504.54
TBA*(10) 1,353.94 666.50
TBA*(50) 1,353.94 83.31
TBA*(100) 1,353.94 64.66

A* 1,353.94 0

independent of agent’s moves in TBA*. A* has identical memory consumption as it
expands states in the same way as TBA*. Again, kNN LRTA* dominates TBA* for
all cutoff values, using less memory and producing better solutions.

Strictly online memory gives an insight into the algorithms but does not present
a complete picture. Specifically, kNN LRTA* must load its databases into its on-
line memory. Thus, we define the cumulative online memory as the strictly online
memory plus the size of the database loaded. The values are found in Table 5.

TBA* is no longer dominated due to its low memory consumption. The closest
comparison is between kNN LRTA* with 60,000 records and TBA*. While kNN
LRTA* uses 14% more memory than TBA*, it produces solutions of 1.5–14.2 times
better.

7 Real-Time Iterative-Deepening Best-First Search

TBA* is a relatively straightforward extension of A* which allows immediate move-
ment by an agent before A* finds a complete path. However, TBA* is not an
agent-centric algorithm. That is, the memory accesses performed by TBA* hap-
pen at arbitrary places in the map that may not be local to the agent. This can be
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Algorithm 3 RIBS(scurrent , g-cost, sparent , sgoal) {Global: cost_limit← 0 }
1: if scurrent is visited the first time then
2: set parent of scurrent to sparent

3: store g-cost of scurrent

4: end if
5: while scurrent is not sgoal do
6: mark scurrent as visited with current cost_limit
7: for all successor succi with f -cost ≤ cost_limit and unvisited with current cost_limit do
8: if succi never expanded or succi’s parent is scurrent then
9: RIBS(scurrent , g-cost + cost(scurrent , ssucci ), ssucci , sgoal )

10: end if
11: end for
12: if sparent is not nil { only occurs at sstart } then
13: return
14: else
15: increase cost_limit
16: end if
17: end while

important if there are cache or memory concerns, where random memory accesses
are slow. One way to look at RIBS is that it is an agent-centric version of TBA*;
however, there are a few extra pieces that are needed to make RIBS efficient in prac-
tice. If an agent-centric approach is not important, TBA* may be a better option.

The basic approach for RIBS is shown in simplified pseudo-code in Algorithm 3.
A global cost limit is used as the current estimate of the cost to the goal. An agent
begins at the state scurrent and is passed the last state visited, which is used to set up
parent pointers; so the agent can retrace its path if stuck in a dead end (lines 1–4).

Next, the agent computes the f -cost of the successor states, and recursively visits
any states which have f -cost less than or equal to the current bound. If all successors
are visited without finding the goal, then the agent returns to its parent state. If there
is no parent state, then the agent must be in the start state, and there is no path to the
goal with the current bound. In this case, the bound is increased and the procedure
starts over.

This procedure is essentially the same as IDA*, and so it can be proven that, with
a consistent heuristic, when an agent expands a state for the first time it will have
discovered an optimal cost path to that state. As a corollary, RIBS is guaranteed
to identify an optimal path to the goal state by the time it reaches it. Note that it
does not mean that it will have followed such an optimal path. Like other real-time
heuristic search agents, a RIBS agent tends to follow suboptimal paths in practice.

A simple agent running RIBS would take one action per move. An agent moves
forward on line 9 and moves backwards on line 13. The while statement on line 5
really only serves to keep the agent iterating with increasing cost limits at the start
state, as for every other state a parent will be defined causing the while loop to exit
at line 13.

This description of the algorithm is fairly simple to implement, but it is missing
a few details, such as some of the code for initializing new states, the procedure for
updating the cost limit, and some important pruning details. The first two details
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are relatively straightforward, so we will only discuss the pruning details here. Also
note that RIBS is shown as a recursive algorithm that would run until completion,
but it is not hard to break this computation into pieces that could be resumed when
the time limit for the current action expires.

7.1 RIBS: Intuition

Learning h-values can be slow because inaccurate heuristics values are used to up-
date other (also inaccurate) heuristic values. This is particularly problematic if a
learning agent enters a heuristic depression [20], a localized area in the search space
where it has to repeatedly revisit states to raise their heuristic values enough to be
able to continue to explore other parts of the search space. The more frequent and
deeper the depressions are, the more severely the problem manifests itself.

This is illustrated in Fig. 8 with an example of LRTA* behavior on a portion of
a map with a local minima in the corner. To simplify the example, diagonal moves
have cost 1.5. States are marked with their initial heuristic values. Consider part
(a) where the agent is in the shaded state. Using a lookahead of one, the value of
the corner heuristic can be updated from 3 to 5, because a neighbor distance 1 has
heuristic cost 4. In part (b) the agent moves to the highlighted state and makes a
similar update, raising the h-cost to 5.5, before moving to the state updated in part
(c), where that state will be updated to have a heuristic value of 5.5.

After three updates, considerable learning still remains. This is because the
heuristic is being updated locally from neighboring heuristics, which, due to con-
sistency, cannot be considerably larger. Thus, a state must be visited and updated
many times before large changes in the heuristic can occur. As this learning begins
far from the goal state, heuristic estimates are likely to be inaccurate. For the same
reason that heuristic costs (h-costs) tend to be more accurate closer to the goal state,
g-costs tend to be more accurately closer to the start state. RIBS takes advantage of
this fact and learns g-costs for all states visited by the agent. Since the agent begins
in the start state, such a learning process is more efficient than the h-cost learning of
LRTA*: more accurate g costs are learned faster.
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The second key observation is that (accurate) g-costs can be helpful in escap-
ing heuristic depressions. Not only can they greatly reduce the number of times the
agent must revisit states in a heuristic depression, but they are also useful in iden-
tifying dead states and redundant paths. Such identifications require accurate costs
and, as a result, work much better with g-cost learning than with h-cost learning.

Excluding the start and goal, any state on an optimal path must have neighbors
with both higher and lower g-costs. If a state has no neighbors with larger g-costs,
then an optimal path to the goal cannot pass through this state. We thus define a
dead state as follows: Given a start state s and a state n, n is a dead state if n is not
the goal state and if for all non-dead neighbors of n, n1 . . .ni, cost(s,n)≥cost(ni,s).

Consider the example in Fig. 9, which shows g-cost estimates for the same prob-
lem. Upon reaching the corner, the agent can potentially mark each state with the
g-costs in the figure, which are upper bounds on the actual cost to each state. In part
(a) of the figure, the agent can see that the highlighted state in the corner is dead, be-
cause all neighbors can be reached by shorter paths through other states. After this
state is marked dead, in part (b), two more states can be marked dead. Learning that
a state is dead only requires visiting a state a single time, unlike learning a heuristic,
which may take multiple visits. Fortunately, there is more that can be done if we
know the optimal cost to each state.

Consider Fig. 10a. In this case, the states in the corners can be marked as dead and
ignored once the optimal cost is discovered. Note, however, that even after removing
the dead states there are still many paths that lead out through this room, shown
in Fig. 10b. However, because there is only a single doorway to the room, these
paths are all redundant. Detecting and ignoring states on such redundant paths offer
additional saving. This requires two steps. In Fig. 10c, we show two possible optimal
paths leading out of the room. We focus on states A and B, shown in detail in
Fig. 10d.

Fig. 9 Learning g-costs
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Fig. 11 An example map
showing the search
in-progress with the
different types of states

The first step is to mark all parents which are along optimal paths to a state. Each
time a state is generated, if the parent is on an optimal path to the state, the parent is
added to the list of optimal parents for that state. In the case of state B, states A and
D can both reach B with the same cost, and so B maintains this information.

The second step occurs in the next iteration of search. Suppose that A is visited
first. Then, at A we will notice that there is also an optimal path to B through D.
Since there are no other optimal paths through A to a successor of A, A can be
marked dead or redundant, and B is marked to have a single optimal parent of D.
If D were visited first, D would be marked redundant, and only the path through A
would be maintained.

In Fig. 11, we show an example of redundant state removal on a fragment of an
actual game map. The different types of states are labeled with arrows. Most states
have been marked as dead or redundant, meaning that additional exploration focuses
just on the successors of a small fringe of previously expanded states.

The effectiveness of dead state and redundant state pruning will depend on the
problem being solved. We observe that if previously expanded states can be marked
dead and/or redundant at the same rate that new states are expanded, then the per-
formance of RIBS would approach that of TBA*, as TBA* never revisits expanded
states. But, RIBS must first mark states as dead and/or redundant to stop visiting
them, and searches in multiple iterations, so it cannot completely match the perfor-
mance of TBA*, especially given that it obeys agent-centric constraints.

7.2 RIBS: Properties

Real-time property. The number of state expansions performed for each step of
RIBS can be set to any desired constant. Note that RIBS maintains no open or
closed lists and thus does not require sophisticated data representations to satisfy
the real-time constraint.
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Completeness. RIBS, being at its core a time-sliced version of IDA*, is complete
under the same assumptions as IDA*. Also note that, similar to TBA* and unlike
kNN LRTA*, when RIBS finds the goal it will have determined the optimal solution
path, although it will not have followed that path en route to the goal.

Memory complexity. RIBS has the same worst case as TBA* where it will consider
and store information all states in the state space. Unlike kNN LRTA*, however, it
does not require loading or precomputing a database.

7.3 RIBS: Empirical Evaluation in Heuristic Depressions

Of all the algorithms discussed in this chapter, RIBS makes the most restrictive as-
sumptions about what an agent running RIBS is able to perform in the environment.
RIBS assumes no up-front knowledge of the domain, ruling out any opportunity for
precomputation. RIBS also assumes that random access to states far from the agent
is not available, ruling out the TBA* approach. TBA* and kNN LRTA* have better
performance than RIBS in practice because they do not make such assumptions. As
a result, we focus on evaluating RIBS’ ability to quickly escape heuristic depres-
sions. We focus on the comparison between g-learning RIBS and h-learning basic
LRTA*. This showcases RIBS ability to use its accurately learned g-costs to identify
the redundant and dead states as described above.

The basic version of LRTA* which we compare against can be described as fol-
lows: The local search space only includes the neighbors of the current state. The
local learning space is only the current state. The learning rule is mini-min, and
the control strategy is to move to the best neighboring state. Although the local
search space and learning space are small, increasing their size does not signifi-
cantly change the results we present here (see [40] for more details).

We experiment on the map in Fig. 12, where the agent starts in the upper left
corner and must travel to the lower right corner. The default heuristic leads directly
into the corner, from which the agent must then escape. This structure is common
in many maps, and so we experiment directly with this example, scaling the size to
measure performance.

The results of the comparison are shown in Fig. 13. The x-axis is the number
of states in the whole map, while the y-axis is the number of states expanded by

Fig. 12 The example map
used to compare RIBS and
LRTA* performance G
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Fig. 13 RIBS versus LRTA* performance on the example map

each algorithm. Note that both axes use a logarithmic scale. The RIBS line approx-
imates y = 10x as the map gets larger, while the LRTA* approximates y = 0.14x1.5.
This means that, once the map gets large, RIBS can expand each state 10 times
before finding the optimal solution. For LRTA*, however, the number of expan-
sions is polynomial in the size of the map. This explains the “scrubbing” behavior
of LRTA* – the number of expansions that it takes for LRTA* to escape a local
minima can be far more than the number of states in the local minima.

The performance of RIBS and LRTA* crosses when the number of states in the
local minima grows to approximately 1,500 states, which corresponds to a 40×40
room in a larger map, a size that is not unrealistic.

8 Future Work

We presented and evaluated kNN LRTA*, TBA*, and RIBS for grid-based pathfind-
ing. Formally, the algorithms are applicable to arbitrary weighted graphs that satisfy
the constraints at the beginning of Sect. 2. Thus, in principle, they should be appli-
cable to general planning using the ideas from search-based planners ASP [5], the
HSP-family [3], FF [18], SHERPA [22], and LDFS [4]. An actual application is a
subject of future work.

The methods can also be further improved and fine tuned in our problem domain
of pathfinding in video games. Currently one of the main drawbacks of kNN LRTA*
is the long precomputation time needed for generating the off-line databases. While
the time is affordable on the game company side, most players would want their
home-made game maps to be processed in a matter of seconds or minutes. While
the computation can be sped up at a linear scale using multi-core processors, this
would still come up short. One of the main focus of future work on kNN LRTA*
will thus be to shorten the precomputation time; for example, we might be able to
get away with much smaller databases if the database records were generated in a
manner such that they produce a better coverage of the state space.
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Unlike A*, no real-time algorithm can guarantee finding an optimal path. This is
of a little consequence in video game pathfinding as long as approximately optimal
paths are found. More importantly is that the agents navigate the game world in a
rational way, for example, that they do not show visually jarring or indecisive behav-
ior by frequently changing their mind as of where to go. While both kNN LRTA*
and TBA* are much improved in that respect compared to most other mainstream
real-time algorithms, such behavior does still occasionally surface, especially in the
latter. Even a single incident of an irrational pathfinding behavior can break the
player’s immersion.

Some preliminary solutions for TBA* are provided in [2] but more effective so-
lutions are required.

RIBS is a promising approach but, given its recency, further empirical evaluation
as well as algorithmic improvements are necessary. In particular, variants of RIBS
that forgo the eventual identification of optimal paths and, as a result, find better
suboptimal solutions can be explored.

9 Conclusions

In this chapter, we considered the problem of real-time heuristic search whose plan-
ning time per move does not depend on the number of states. We reviewed three
modern algorithms, each with its strengths and weaknesses.

In terms of solution sub-optimality when given equal computing resources (or
vice versa, required computing resources for finding equally good solutions), kNN
LRTA* shows the best performance. Because pathfinding tends to be a rather
computing intensive task in modern games, especially in large game worlds with
multiple agents navigating simultaneously, this metric is of an utmost importance.
This level of online performance comes at the cost of long off-line precomputation
times (hours per map). TBA*, although not being quite as effective as kNN LRTA*,
still shows a good performance and has the benefit of not requiring any precomputa-
tion. It may thus be better poised for environments that dynamically change during
game play. TBA* also uses on average somewhat less memory that kNN LRTA*,
which can be an important consideration on some gaming platforms (e.g., consoles).
Both algorithms thus appear well poised for video game pathfinding.

RIBS is an interesting way of moving TBA* closer to being an agent-centered
approach – an important consideration for some problem domains. The algorithm
also provides added insights into how real-time search agents can learn heuristics.
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Embedding Information into Game Worlds
to Improve Interactive Intelligence
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Abstract Current game worlds are visually rich but information poor – particularly
poor from the artificial intelligence (AI) point of view. Where the player sees a rich
visual representation of 3D objects, internally these are just very sparsely described
collections of points in space. Tools for advanced world creation, character model-
ing, animation, and advancements in computer graphics have brought us into the age
of near photo-realistic interaction; however, these interactions are still very limited
in comparison to the real world, and the information is presented overwhelmingly
for the player, packaged for the Graphics Processing Unit (GPU) with little reflec-
tion or structure suitable for use by AI systems. This problem of a lack of rich
information suitable for consumption by the game AI often limits the true poten-
tial for deeper levels of interaction that are becoming more in-demand by game
players. This chapter presents a number of tools and techniques, which are being
used to improve the embedded information contained in immersive game worlds.
Symbolic annotation of the environmental elements, advanced spatial decomposi-
tion, calculating the information value of the surfaces in an interactive environment,
and visual analysis form the core tools and information generators of our Common
Games Understanding and Learning (CGUL) Toolkit. Using these tools to incor-
porate information into the game design and development process can help create
information-rich interactive worlds. AI developers can work with these environmen-
tal information elements to improve non-player character (NPC) interactions both
with the player and the environment, enhancing interaction, and leading to new pos-
sibilities such as meaningful in-game learning and character portability. Case studies
from two different projects using these techniques provide some additional insight
and reference as to how these techniques have been incorporated into current game
AI and research.
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1 Worlds of Visual Richness and Information Poverty

Creating virtual worlds for games, simulations, interactions, observations, or any
of the varied applications of these constructs is becoming a common task for the
masses. This type of creation activity was once the purview of skilled modelers and
trained digital artisans, but since the turn of the twenty-first century the barrier to
entry has been significantly lowered. Creating virtual worlds is more accessible now
than in times past, but even more amazing is that the graphical fidelity has increased
while making this task easier. It has been the creation of tools that has facilitated this
change—tools with different specialties for each part of the virtual world creation
pipeline.

The first step of the pipeline is modeling, which is the creation of three-
dimensional (3D) virtual objects in a tool that allows the combination and contortion
of primitive shapes into complex models. Models defined by dozens to millions of
vertices can be created using modeling tools such as Autodesk’s Maya (www.
autodesk.com/maya), 3D StudioMax (www.autodesk.com/3dsmax),
or Softimage (www.autodesk.com/softimage); NewTek’s Lightwave 3D
(www.newtek.com/lightwave); the open source Blender (www.blender.
org), or the freely available Google SketchUp (sketchup.google.com).
These tools provide a means for modeling, animating (key framing and interpolat-
ing motion between frames usually based on articulated skeletons associated within
the models), and rendering (the final target visual representation). In this chapter,
we will talk about the modeling and animation aspects, but will assume that ren-
dering will be done in the target interactive environment (i.e., the video game or
simulation). We focus our terminology on polygonal modeling, but other types of
modeling (e.g., NURBS) have similar properties and the reader should apply the
same ideas regardless of the underlying modeling paradigm.

Modeling includes more elements than just the arrangements of vertices in space
to create the desired geometry of the object being modeled. It also includes more
than just static geometry (e.g., buildings and terrain) as many elements are specif-
ically created to be dynamic (e.g., doors in buildings, characters, vehicles, and the
ever-popular gun turrets). Models are textured with colors or imagery (i.e., 2D art)
which is created separately and then projected upon the surface of the model. The
base texture, referred to as the texture, is defined as the 2D pixel array containing
the colors to be applied to the target model by a projection (e.g., spherical, cylindri-
cal, or UV coordinates that map to specific vertices of the geometry). Other types of
texture maps are also applied using the same projection. These include normal maps
(a.k.a., bump maps) that define the surface height details by defining the normals,
or slopes, of the surface allowing for light and shadow to be rendered appropri-
ately giving depth to the base texture (height maps can also be used), specular maps
that define the shininess of the base texture at specific locations, and diffuse maps
that define how light reflects both in color and intensity. Other types of maps exist
such as hit maps used to determine locations of damage, maps to aid in rendering
infrared images showing the heat signatures of modeled objects, and other maps use-
ful for representing various phenomena on the surface of the model. Textures and
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www.autodesk.com/3dsmax
www.autodesk.com/softimage
www.newtek.com/lightwave
www.blender.org
www.blender.org
sketchup.google.com


Embedding Information into Game Worlds to Improve Interactive Intelligence 33

texture maps are typically created with 2D image tools such as Adobe Photoshop
(www.adobe.com/photoshop) and/or The Gimp (www.gimp.org), but are
increasingly being made through procedural tools such as Allegorithmic’s MaPZone
(www.mapzoneeditor.com). The model is usually saved as a mesh containing
the vertex and edge information along with the texture and texture map file names
and their projections onto the model. Thus, a model is saved in the model format
along with the set of textures applied to that model (multiple files).

Dynamic models move and usually have one or more articulated parts. The mod-
eling tools often allow the user to specify the skeletal structures of objects (any
objects, not just simulated organic creatures) and define how the joints operate.
Using a timeline, the user can create key framed poses to animate along the de-
fined degrees of freedom. Forward kinematics is used to calculate the positions of
the object between the key frames. Location and orientation in space can also be set
in addition to the skeletal pose. Another type of texture map is used to define the
weights of the mesh shell around the model skeleton specifying how it deforms with
movement. The animator usually names each animation sequence as a set of frame
numbers, which are typically saved along with the model in the model file. This
process can also be performed with mesh vertex movement over time (i.e., vertex
animation instead of skeletal animation).

The modeling tool can also make scenes that consist of several models ar-
ranged in space. However, these scenes are typically used for rendering and not
for virtual world creation for games or simulation (although they could be used
for this task) using the tool’s renderer for movie or image generation. A game
engine-specific level editor is typically used to assemble components and models
into a world for interaction. Tools such as Ambiera’s Irredit (www.ambiera.
com/irredit) for the Irrlicht 3D Engine (irrlicht.sourceforge.
net); QuArK (quark.planetquake.gamespy.com) for about 45 popu-
lar games using the Source (source.valvesoftware.com), Id Tech (www.
idsoftware.com/business/technology), and other engines, as well as
other editors often packaged with the PC version of a game that are used to create
the immersive virtual worlds generated by those engines. Beyond just the arrange-
ment of models in space, these level editors usually allow for some geometry
creation as well as setting up light, dynamic elements (e.g., doors), and spatial logic
(e.g., an area trigger that will open a gate when the player enters). Engine-focused
level editors consume models from a modeler and allow the designer to assemble
the interactive virtual world. The accessibility of these tools has inspired many in-
dividuals to create content and even whole games. The Mod(ification) Community
consists of thousands of people worldwide who as a hobby make new and interest-
ing virtual worlds for others to experience. Even online in persistent worlds such
as Second Life (secondlife.com) user-generated content including buildings,
clothing, and just about anything imaginable is available and is being created by the
user, not the developer.

The problem with all of these tools in the games and simulation content cre-
ation pipeline spanning texture, texture map, model, animation, and level creation
is the incorporation of information elements with each of the products. Creating
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virtual worlds for people has been the primary task for which these tools have been
created, and they do a tremendous job at providing visually rich worlds for humans.
However, humans are not the only elements interacting in these worlds as more and
more intelligent characters are acting as friends, foes, proxies, and other integral
roles within these virtual worlds. In games, particularly single player games, the
non-player characters (NPCs) are the major actors in creating the drama and inter-
actions to make it a game. Even in multi-player games, NPCs (also known as bots)
round out teams and increase the immersion and action in the first- and third-person
player genres. In the strategy genres (i.e., real-time strategy, turn-based strategy),
the NPCs take and perform actions often at a high level of description from the
players – making everything happen in the game. The core elements of interactiv-
ity in these environments are currently very controlled and explicitly designed and
implemented, but the demand for increased interactivity and deeper immersion is
on the rise. One mechanism to increase the fidelity of interaction in virtual worlds
is to improve the intelligence and behavior spectrum for the NPCs [i.e., improve
the artificial intelligence (AI) driving the game characters]. The first place to start
is to give them more information about the world in which they are interacting. We
must move from our current information-poor worlds to information-rich worlds,
and since the user is becoming a key contributor, we must provide them with the
ability to improve the information of their contributions as well.

The current problem of perception is illustrated in Fig. 1. All of the models, tex-
tures, and the arrangement rendered by the engine display objects recognizable to
a human, but to the machine they appear as a set of points in space with some
connectivity and set relationships. The machine cannot easily determine what it is
perceiving is a house or a tree or a dog or a spaceship or anything really. This is
the same problem that machine vision researchers are trying to solve – recogniz-
ing objects from images. However, in virtual worlds we do not have to solve this
problem, all we need to do is to incorporate some knowledge engineering tasks
into the content creation pipeline, namely, we need to have the creator add infor-
mation elements that are attached and persist with the models, textures, and worlds.

Fig. 1 In a virtual world, the human easily perceives the items in (a) as a house and a tree, but to
the machine the world appears more like (b), as a collection of points in space
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For example, when the modeler makes an oak tree they need to annotate it as an
oak tree, or perhaps more specifically a post oak tree from Texas. The texture and
texture maps could also contain this type of symbolic information, which could be
consumed by intelligent entities in the virtual world.

Our focus is on techniques and tools that can be used to add information to
elements of a virtual world targeted for games and simulations, but this work
can certainly be more broadly impacting. In the sections ahead, we present tools
and techniques for embedding information into virtual world objects (both static
and dynamic) and their surfaces that lead to improved knowledge for consum-
ing and interacting with elements of these environments with the goal that artists
from professionals to hobbyists can incorporate these into their virtual world cre-
ation pipeline.

1.1 The Need for an Information-Rich World

Our own research work is in the field of game artificial intelligence (game AI) where
we are in pursuit of human-level intelligence at both the character level and the sys-
tem level. There is much work to do in this area, but we are strong supporters of
the idea that interactive computer games are an opportunity area for exploring tech-
niques and theories leading to human-level AI [14, 16]. One of the key problems
in our current information-poor virtual worlds is that the playing field is clearly
not level for AI characters (NPCs), especially when competing with humans in the
same space. Hence, in practice game AI is often implemented with a level of cheat-
ing such as using perfect information (i.e., complete world knowledge) and unseen
perception-aiding techniques (e.g., breadcrumb trails to follow the motion of char-
acters). The first step is evening perception, which will allow artificial characters
similar sensory perception of the world that the human players have. The human
brain is a tremendously good pattern matcher to known objects; so most players are
entering into these virtual worlds with 2–80+ years of real world experience. This
is a little hard to compete with from the game AI character perspective, especially
since the field of AI is just a little over 50 years old itself. However, what is really
needed is to at least present similar information to both the human and non-human
players, in this case, presenting object information and spatial relationships in a
more readily processed manner to the NPCs – the same information the human gets
with their eyes and from object recognition with the knowledge they acquired over
time. We can then leverage the intelligence of the game AI designer/developer to
encode proper responses to perception.

An interesting trend over the past few years has been the emergence of 3D object
warehouses that offer downloadable content for free (sketchup.google.com/
3dwarehouse) or purchase (turbosquid.com). Sites such as these make tens
of thousands of models available for use in virtual worlds, rendered scenes, and
any use imaginable. The vast majority of the models made are created by freelance,
hobbyist, and even amateur modelers (many are students learning this art form).

sketchup.google.com/3dwarehouse
sketchup.google.com/3dwarehouse
turbosquid.com
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It is commonplace to just buy off-the-shelf models to use in projects; however, this
continues to propagate and even worsen the problem of information poverty. Given
that embedding information into these creations is currently not a standard prac-
tice or even a step thought about in the process, there is now a massive, growing
number of potential virtual world elements that have no information annotations.
Furthermore, once the models are sold as a product, contact with the original cre-
ator diminishes and so does the full meaning and inspiration information elements
associated with the creation and the creation process.

From a character AI development standpoint, information-rich elements assem-
bled as the worlds are created can flow their specific information into tools for
behavior development and be presented in-game to the AI character as percep-
tions of those objects. This is the key to helping create better AI-driven characters,
providing a flow of meaningful information to better perceive the world objects, de-
termining how to apply actions from the repertoire of available actions of the AI
characters, and gaining some understanding from the elements in their world. We
all make better decisions when better informed.

Acquiring knowledge over time and being able to apply previous knowledge
from old problems toward solving new problems is the process of learning. Hav-
ing more information-rich worlds will also allow NPCs the ability to apply machine
learning techniques over observed sample data from observing other players (human
and artificial) as well as itself. Being able to expand the knowledge of characters and
allowing them to adapt over time is an exciting potential for interactive characters,
which could increase the immersive experiences of virtual worlds.

The sections moving forward are being written as a way to educate the current
and new masses of modelers and tool builders with regard to elements impor-
tant for game AI, providing insight through a particular lens for fellow game AI
practitioners, and establishing a way to move toward common approaches of encap-
sulating information elements for interactive (game) AI in virtual worlds. This is
also a blueprint for the interactive AI researcher and developer to better understand
and help guide the incorporation and usage of information-tagged elements. Be-
yond just information tagging, we will also discuss ways in which the information
could be organized and how additional information can be processed by leveraging
information-tagged elements.

1.2 Overview

This chapter presents a cohesive and integrated view of our key approaches, ideas,
and work in adding, generating, and using information in interactive virtual worlds.
We will begin with basic information tagging to objects, present a method for or-
ganizing information, discuss the generation of knowledge from processing world
information, and then provide some insight into research projects that have incorpo-
rated these techniques and ideas. Throughout the discussion key principles will be
highlighted to allow for easy incorporation into one’s own workflow.
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2 Embedding Information

The fortunate byproduct of the the adoption of standards such as XML is that ASCII-
based, readable formats are in vogue.

This section will present a number of ideas with references to techniques and
tools that can be embedded into the comments or extensible sections of many file
formats. Keeping information as close to the original element as possible is pre-
ferred, but care should be taken to make sure that the added information is preserved
when editing the source.

Key Principle: Prefer embedding information as comments or extensions in the
source files over creating separate information files.

2.1 Information at the Object Level

The lowest level of embedding information should be at the object level. Each model
should be tagged with information that describes what it is (i.e., nouns) and the
properties of the object (i.e., adjectives). As each object also provides some set of
actionable properties (i.e., a verb can be applied to it), an affordance that defines that
property between the object and an actor (e.g., AI character) should also be added.
Affordances are often described merely as the action(s) that can be applied (e.g., an
object an actor can sit upon is described as having the affordance “sit”). The term
affordance was introduced by Gibson to describe all “action possibilities” available
in the environment [6]. For example, if there is an unoccupied chair sitting upright
in the world, there is also an opportunity for sitting in the chair. In game AI, this can
be used to sidestep the symbol grounding problem, at least in virtual environments;
rather than define the quality of chairness, we merely require that anything that can
be used as a chair should have a “sit” affordance defined.

Affordances can be directly added during creation or level design to objects in
games to provide information about what sorts of actions can be taken using the ob-
jects to which they are attached. Affordances may also exist separate from objects
in the environment. If a character possesses a hang glider, for example, it will state
that it can be used as a tool to enable flight, but that it requires a launch point. A
launch point affordance could then be placed at spot on a cliff edge. By the level
designer placing this information in the world, the character AI needs no additional
knowledge about launch points, or even the difference between a hang glider or a
paraglider. Affordances have been successfully used in several games and simula-
tions, including the popular Sims series from Electronic Arts [4].

Formally, we can define the information to be stored in each object model as the
3-tuple (ν , α , Δ ) where ν is the set of all describing nouns (descriptions), α is the
set of all describing adjectives (attributes), and Δ (change) is the set of all affor-
dances. Note that applying an action to an object may change the state of an object
(e.g., change its location or potentially damage it). An embedded synonyms list
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Fig. 2 Objects tagged with
Cyc constants (identifiable by
the hash-dollar prefix) in a
virtual world. Note how more
perceivable the world is from
an information view. Note
that not all objects are labeled
in this figure, but from what
is, the character AI could start
to reason about this world.
Canine AI could head toward
the tree, character AI could
head toward the door and
enter the house, and so forth –
a world of many possibilities

could also be kept for each description to facilitate better understanding and faster
searching for matching concepts or actions, or a lookup using a tool such as Word-
Net (wordnet.princeton.edu) could be used. Foreign language equivalents
could also be embedded or looked up using commonly available translators.

The descriptive tuple elements can be filled out using the standard words and
grammar of the person providing the tags (preferably the creator of the object)
or using descriptive elements from a common sense knowledge base and a rela-
tional ontology such as those provided by ConceptNet (csc.media.mit.edu/
conceptnet) or Research Cyc (research.cyc.com). An example of Cyc
constants (nouns) tagged to object models in a virtual world can be seen in Fig. 2.

Some objects are more complex to model than others, and it is commonplace
to model complex objects as a series of connected parts – particularly objects such
as articulated parts (e.g., the turret of a tank is typically modeled separately from
the body). Each part should contain its own set of annotations as well as the whole
object containing a traceable reference to the information of the constituent com-
ponents. In many game/simulation engines, the model component names can be
retrieved and associated with the information tagging elements, but creators should
be careful to ensure that the names match both in the information tags and the model
part names.

Key Principle: Embed description, attribute, and affordance information within
each object part and the whole object.

Another factor in creating virtual environments and objects is the way in which
the world elements are built, particularly structures that can contain other objects.
Modeling tools typically allow the creation of objects such as extruded rectangles
and then allow the user to remove a portion of it as illustrated in Fig. 3a, b. If the
model was just for visualization, this is perfectly acceptable; however, when the
model is used as an interactive element or an element that will be perceived by
game AI, it can cause problems. If there was a window in the void, it would ap-
pear to be placed in the middle of a wall with a section cutout, and this causes an

wordnet.princeton.edu
csc.media.mit.edu/conceptnet
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Fig. 3 Using a modern modeling tool (Google SketchUp in this case), a user can easily create a
3D object such as the wall in (a), but when creating a window as in (b) the tools can cause prob-
lems from an information standpoint. Panel (b) shows an extruded rectangle with a cutout missing
extruded rectangle making the hole, which can be difficult to reason about spatially especially if
a window occupied the missing cutout. From a game AI and information tagging perspective, it
would be better to model each section of the wall independently with regard to potential physics
engine forces as shown in panel (c)

unnecessarily complex spatial arrangement that may have to be reasoned over by an
NPC. It also causes problems for information tagging as there is a void area to negate
the information and then replace with potentially another object’s information (e.g.,
a window placed in the void). A more simple approach would be to model the wall
and void as shown in Fig. 3c, which allows each segment to stand on its own with
its own properties without any complex spatial arrangement or potential overlap in
void/occupied space from multiple models if a window was installed. This arrange-
ment also shows a structure that could perform more consistently to a real structure
under the influence of forces from a physics engine – something that should also be
taken into consideration.

Key Principle: Keep world geometry simple and avoid the use of object cutouts.

Remember that there are two types of objects in interactive worlds: static ele-
ments that do not change state and dynamic elements that change state in many
degrees of freedom. The principles described to this point apply to both types of
models, but dynamic objects should also contain information pertaining to their
state changes and degrees of freedom to provide information to intelligent entities.
Human players can easily recognize a door in a building or house and have an
intuitive feel for the actions and behaviors it will have under dynamic conditions;
however, NPCs have no idea – How far does the door open? in what direction? and
so forth. Dynamic information can be represented by a set of variables, their ranges,
and actions that can be applied (affordances). Since physics engines are used in
modern games and simulations, all world objects should have a defined mass (and
distribution if not uniform), weight, and center of gravity. This information can
assist in reasoning about these objects and how they will behave when actions are
applied to them.

When creating world objects, simplifying bounding geometry should be provided
to the game/simulation engine for use in collision detection and other calcula-
tions. Default settings in most modeling tools will provide bounding boxes over the
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whole object or the key grouped parts, but oftentimes these boxes are very rough
simplifying boundaries. Ill-fitting bounding geometry can cause problems with not
allowing objects close enough, creating odd force fields around world elements, or
in other cases allowing objects to pass through supposedly solid objects. Content
generators need to include good bounding geometry for their creations.

Reuse from prior projects, off-the-shelf purchases, and using open work are core
elements in modern game development. As these libraries of models, textures, and
other game-ready components are being created, it is important that all of the perti-
nent information be added to these objects. Embedding the information described in
this chapter can greatly facilitate use of created objects into games and simulations
because they lend themselves to supporting game AI and even game physics. Mod-
elers at all levels need to think beyond just the visual aspects and be sure to provide
information complete objects. This notion of information completeness is an impor-
tant concept and may be a deciding factor in whether or not a modeled object can
be used in a game or simulation, especially as game AI increases in complexity – in
fact, making more advanced game AI depends on this in many cases.

In the next sections, we will discuss a number of techniques that have tools
associated with them that were developed from researched techniques discov-
ered by the University of North Carolina at Charlotte’s Game Intelligence Group
(gameintelligencegroup.org). If the reader is interested in any of these
tools or learning more about these techniques, please refer to our website or contact
us directly. Many of these tools, while not available to the public, are shared with
fellow academics and can be licensed to industry.

2.2 Creating Places

Creating virtual worlds or levels by assembling and placing models in the desired
configuration is only the beginning of the work needed to make a viable interac-
tive environment. Even with information complete models, which include proper
bounding boxes for collision detection and resolution, we only have an environment
that player-controlled characters can explore. Character AI could carefully stumble
around exploring and creating a map in its memory, but this would take time and be
rather inefficient. What is needed is a way to represent and understand the free space
between objects in the virtual world to support spatial planning and pathfinding.

There are a number of representations and methods for decomposing the navi-
gable free space that exists between and inside virtual world objects. These range
from simple graph-connected, manually placed way points to advanced automatic
decomposition techniques [10]. While way points have their uses, automated spatial
decomposition methods can provide navigation meshes (navmeshes) that provide
higher coverage of the navigable spaces and a multi-modal method allowing for
reasoning at both a local detailed level and a topological view. Many techniques
based on Graphics Processing Unit (GPU)-like decompositions, vertex connectiv-
ity, and Delaunay triangulation decompose the environments into lots of low order

gameintelligencegroup.org
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shapes (polygons in 2D and polyhedrons in 3D). Low order shapes tend to have
many triangles or pyramids converging at common vertices that make localization
near those points difficult due to character footprint.

Human navigation is not based on thinking about space as moving from one pre-
cise point to another and does not have convergence difficulties in the corners. We
tend to view the world as a series of connected places. This place-centric notion can
be very helpful when creating navigating character AI because we can match the
navmesh representation to our own intuitive view of the world – one in which we
can more naturally understand and more intuitively specify directions to the char-
acter AI. Higher order decompositions such as those we have developed, which are
based on polygon (2D) and polyhedron (3D) seeding and growth [7–10], can pro-
vide complete world coverage. Decomposing all open spaces with regions that touch
each other allows us to create a topological map of the region connectivity, while
also providing a region breakdown that more closely represents a series of connected
places. Figure 4 illustrates some of the basic methods of decomposing navigable
space into a navmesh. We advocate using our Planar Adaptive Space-Filling Vol-
umes (PASFV) algorithm (2D) and Volumetric Adaptive Space-Filling Volumes
(VASFV) algorithm (3D) to create places and the associated navmeshes within a
created world. Navmeshes allow for more efficient path planning using search over
the topological graph and easier pathfinding by reducing local navigation reasoning
to smaller, more manageable places. The decomposition of space can also be lever-
aged to reduce reasoning complexity by compartmentalizing information into the
places where the objects exist. This notion of information compartmentalization is
useful in that it reduces the number of objects and information elements an AI entity
has to reason over to those in its immediate place and possibly the adjacent places.

Information complete models can aid in decomposition methods by biasing the
algorithms toward common elements such as areas covered by grass, sidewalk, or
road. In this manner, the areas covered by like objects and materials can be cohe-
sively decomposed making it easier for character AI to “walk on the sidewalk” or
to “play in the grass.” This generated information now added to the world can also
be organized hierarchically to facilitate improved efficiency in spatial planning or

Fig. 4 (a) A game level from a Quake 3 Mod (Twin Lakes from Urban Terror by Silicon Ice Devel-
opment on id Software’s idTech 3 Engine). (b) This level decomposed with the Hertel–Mehlhorn
algorithm [15], a triangle-based vertex-connecting technique. (c) Same level decomposed with
the Adaptive Space-Filling Volumes algorithm [19]. (d) Same level decomposed with the Planar
Adaptive Space-Filling Volumes (PASFV) algorithm [9]
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other relevant tasks. In addition, it makes it easier to pre-compute and store actions
within those places as is a common technique in game AI for increasing speed and
efficiency.

Key Principle: Leverage knowledge generation techniques such as spatial decom-
position to help provide deeper world knowledge in an intuitive, useful, and efficient
organization.

2.3 Information Services

All of the information we have embedded, then generated, and finally organized is
typically collected and then presented to requesting components of the game en-
gine. The common method for delivery of this type of service is through a code
library that provides the desired functionality in linked code, since games are typi-
cally created with compiled languages. However, it could also be provided through
interprocess communication (IPC) mechanisms with defined protocols – we have
provided services using shared memory in a number of game environments as well
as with code libraries. We have found it helpful to write processing elements that
collect and organize all of the information from the source materials into two files,
one for static information that never changes and one for dynamic information that
has to work with the game engine more closely. The part of our Common Games
Understanding and Learning (CGUL) Toolkit that provides the static information is
called Static Spatial Perception Service (SSPS), and the part that provides the dy-
namic information is called Dynamic Information Augmentation Service (DIAS).

SSPS (pronounced “sips”) at its core provides access to the navigation mesh
and all compartmentalized object information. The mesh itself is represented in
two ways: as a collection of geometric entities and also as a directed graph. The
geometric representation is useful for local place navigation and storage of compart-
mentalized information, while the graph includes search functionality (A* search for
CGUL SSPS) to allow global navigation. When SSPS loads, it reads the navigation
mesh and all object information from an XML file. It then constructs a default graph
to plan through a defined size character bounding box. When a character is instan-
tiated, the SSPS service can generate a new graph based on the actual size of the
character bounding box.

The main SSPS query is findPoint(location, hint). This query searches for lo-
cation in the navigation mesh, returning the unique ID of the place in which it is
contained, or UNDEFINED if it is not contained in any place. The hint provides a
starting point for the search; if provided, this place will be checked first, followed
by all of its adjacent places. The search continues, breadth-first, until the point is
found or all places have been checked.

Search-based (A*) path planning is provided by the findPath(start, end,
start_hint, end_hint) query. This query returns a list of place IDs. If no path is
found, the returned list is empty; otherwise, there is a path through the navigation
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mesh from the starting point to the end point that passes through each of the places
in order. Character AI can use this to traverse the maps moving from place to place.
Navigation between places involves moving from gateway to gateway within the
place by local navigation. Gateways define the connection planes between two
places. Local navigation can use simple centroid movement with obstacle avoid-
ance, probabilistic roadmaps, occupancy grid navigation, or any reasonable method.
Due to the smaller size of a place in comparison to the world, local navigation is
usually fast even using heavy-weight techniques.

Several other SSPS queries exist to support other needs. For example, gener-
ateRandomValidPoint(region, ground) will generate a random point, guaranteed to
be in a free space (navigable) region. The region reference is filled with the ID of
the region in which the new point is contained. The ground parameter is a boolean
value specifying whether the point should be on the ground; if it is false, the gen-
erated point will have a z (height) value between the region’s zmin and zmax values.
If a point is believed to be within a positive space (non-navigable) region, the find-
PointInObject(location) query will search all positive space regions for the given
location.

The primary computation performed by SSPS is the point in polyhedron calcula-
tion, which tends to be very fast once localized, given that the character movement
is not too rapid or that they cannot teleport across the world at random. As the
character is localized, information about all objects (hopefully information com-
plete objects) in the current place is provided and other information is available by
query (e.g., information about adjacent places). Thus, SSPS provides a constant, de-
tailed perception of all static objects in the virtual world to interested entities in the
game/simulation engine.

DIAS is a similar service to SSPS, but it only provides additional information
about dynamic objects. The core game/simulation object usually maintains all dy-
namic information since it controls their behavior and state in accordance with their
design and the engine design paradigm. However, to convey model and other exter-
nal information (e.g., affordances), DIAS serves to augment the internally tracked
dynamic information for the object. It can also be used to help interpret specific en-
gine implementation states to a more common state model to present to the game AI.

Key Principle: Utilize services to provide the information complete data to key
game/simulation engine components and facilitate the use of more advanced AI
techniques to improve both character and system intelligence.

2.4 Virtual World Dynamics

The environments of modern games and simulations are ever changing. As both
players and characters interact with each other and the objects and environments
of the virtual world, context changes often govern new modalities of play and in-
teraction. As more information complete elements comprise these virtual worlds,
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the dynamic nature and potential only increases. We discuss two primary notions
of handling virtual world dynamics to support game AI, namely probabilistic affor-
dances and influence points.

2.4.1 Probabilistic Affordances

The basic concept of affordances is useful in itself as we previously discussed,
but it does not address differences in characters, or how world state may affect
affordances. We approach these issues with the idea of probabilistic affordances.
Probabilistic affordances may present different actions depending on the current
context of the interaction.

Our approach is to create affordances that use information about current world
state and the character AI to determine the currently available set of actions. A prob-
abilistic affordance is a state machine with an input set composed of environment
and character attributes, an output set of actions, and an output set of expected
outcomes. Environment attributes include information about the local place: what
characters are present, their relationships, and the state of any doors, objects, or
other devices in the place. Character health, inventory, action model, and history of
interaction with related affordances are part of the character attributes. The char-
acter action model in this case refers to the actions that the character is capable
of performing. In addition, character attributes may include physical or personality
characteristics. Physical characteristics may be role-playing game (RPG) style at-
tributes such as strength, dexterity, and wisdom. Personality characteristics define
how characters will react in social settings and may be a character’s alignment in an
RPG or a set of Hofstede parameters in a cultural simulation.

The actions output by the affordance are from the character’s action model and
include how the object or world location the affordance is tied to should be used.
For example, the action output for pulling a lever would include three pieces of
information: the pull action, the lever object as the target for the pull action, and
finally the location the character should be standing in to pull the lever. For a sword
on the floor, the character would see the pick up and attack actions, with the sword
as the target for pick up, and the sword as the tool for attack. The pick up action
would include the location of the sword, but the attack action would not provide a
location.

Finally, the expected outcome distribution provides the character a notion of the
expected change in world state after the action has been executed. This is a prob-
ability distribution to allow the specification of outcomes that are uncertain. In the
previous examples, the lever pull action would have two probabilities: the linked
door could open with a 90% probability, the rusty chain that raises the door could
break with a 7% probability, or the lever itself could break with a 3% probability. For
the sword, the pick up action would place the sword into the character’s inventory
with a 95% probability, or the character could trip and fall with a 5% probability.
Until the character picks up the sword, the attack action will have no probability of
success, but once the character has the sword, it will provide probabilities based on
the characteristics of the sword.
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Note that the affordance input requires a history of interaction with related
affordances. This allows additional interesting scenarios. Imagine that our hero has
just entered a dungeon room, and in this room there are four levers, three doors,
and a trap door leading to the pit of infinite doom. The affordances on the levers
have outcomes of opening the door to the exit, the treasure, or a peckish dire badger.
In addition, they have a probability of triggering the trap door to the pit of infinite
doom. As our hero pulls the levers and observes the results, the probabilities should
adjust to reflect his experiences so far. Including the history of how the hero has in-
teracted with each of the levers with the query allows the affordance probabilities to
adjust as he tries each lever. If the first lever opens the exit, the probabilities are now
33% finding the treasure, 33% encountering the monster, and 33% certain death.
Deciding that this is an acceptable risk, the hero chooses to open one more door.
His second attempt releases the dangerously hungry dire badger. After defeating the
monster, the hero can decide that his threshold for danger has been surpassed, and
he is not willing to risk the 50% chance of falling in the pit for the chance to retrieve
the treasure. If our hero fails and falls into the pit of infinite doom, the history of his
interactions with this set of affordances is carried with him to his next life. So long
as the history of interactions is maintained, no other changes need to be made to the
hero’s controller to allow him to make the correct choices when he next enters this
room. In effect, learning occurs, but without the need to explicitly model a learning
process for the character. This updation also applies to interactions with players and
how they change the environment.

Some actions are only possible with the assistance of others. Affordances as dis-
cussed so far only support a single character; one character queries the affordance
for the details of the actions that are possible, and then can attempt them alone. We
extend the notion of probabilistic affordances to provide multiple slots. A slot is
an action that one character can take to activate the affordance, and multiple slots
allow multiple characters to work together to achieve some action not possible with
a single character. Each slot is either required or optional. Required slots must be
filled for the action to be successful; optional slots may enable it to complete faster
or provide a better chance of success for results that are uncertain.

To return to the levers example, a multiple character affordance might be required
to pull a particularly rusty lever. This lever has three action slots, two of which are
required and the third is optional. One character does not have the strength to pull
this lever, but two can. However, if only two characters attempt to pull the lever,
it only has a 60% chance of working. A third character can join and improve the
chance of the lever pull opening the door. Thus, this can help facilitate collaboration
between not only NPCs but also players and NPCs.

Probabilistic affordances start with the artist annotated affordances for an object
and are then extended by the game/level designer into the probabilistic affordance
framework, which takes into account the multiple contexts and requirements for us-
ing and interacting with virtual world objects. This also puts a significant portion
of the prerequisite information for intelligent use of an object with the object in the
place it resides. This reduces the burden for remembering/storing all world interac-
tions with the character and distributes it throughout the virtual world to be retrieved
at the proper time under the proper context.
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Key Principle: Probabilistic affordances should be added in the annotation phase
of modeling and/or level design, but can update through interaction providing the
ability for game AI to change with virtual world dynamics.

2.4.2 Influence Points

Influence points provide a technique to add information to the game world at run-
time so that characters can take advantage of new information that was not available
at the time the world was created. The primary use of influence points in our research
has been to allow the addition of tactical information to the environment by enabling
characters to use the world as a blackboard for communicating observed conditions
to teammates. Influence points are similar to the idea of influence maps, but take
advantage of navigation mesh decompositions – which we highly encourage as a
spatial navigation structure as previously discussed. Individual influences are set in a
specific place instead of using a high-resolution grid map. Because a place includes
an area that would be covered by a much larger number of map cells, this allows
much greater efficiency than influence maps. The influence of an entity on a map
may not be limited to a single region – in these cases, additional child influence
points are added to neighboring regions. To demonstrate the idea, we present an
example of how characters can use influence points to further enrich the world with
information.

A character is attempting to make it to a goal, the gold mine, to fetch resources
as shown in Fig. 5. The character starts at its home base and has a choice between
two paths. The longer path is defended by a friendly turret. The other path is short,
but unknown. The character travels the short path and is ambushed by enemy forces.
After retreating from the battle, it updates the navigation mesh by adding an enemy
influence to the area where it was attacked.

Fig. 5 Example world in which influence mapping can provide useful tactical information
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Now the path passes through an area where the enemy is powerful. The longer
path, on the other hand, passes through an area that is well protected by a defensive
turret. After running its pathfinding algorithm a second time, the character finds
that the least expensive path (incorporating chance of injury as a cost) is the longer
path that passes the defensive turret. The character now follows the longer path and
makes it to the gold mine successfully, returning valuable resources to home base.
Other characters can now use this information as well, as it is maintained in the
world representation rather than in the initial character’s internal memory. The point
strength of the influence decays over time to represent uncertainty about changes in
the world, but it can be updated after creation.

In this example, if a grid-based technique is used, the character must spend a
nontrivial amount of time inserting influence into the map, and potentially updating
the large number of cells affected by the enemy and ally forces. If a navigation mesh
is used, however, the insertion and update steps could be far less expensive; insertion
is O(n) in the number of regions in the navigation mesh, and updates to influence
values can be made in constant time for decreasing values [or O(n) for increasing
values] [12].

While our example shows the influence points used primarily as a tactical tool,
they can also be used to provide other types of information. Characters can label
the world with information about events that have occurred or mark a region as a
target for a particular activity. For example, if a character makes a mess in a virtual
kitchen, it could place a “dirty” influence in the room. This would mark the kitchen
as a target for another character to clean, or get into an argument with its virtual
roommate/spouse about housekeeping responsibilities.

Key Principle: Dynamically embedding information into the environment at run-
time can greatly improve character intelligence by adjusting to changes within the
game/simulation.

2.5 Information from Interaction Observation

Running analytics on every aspect of a game including all player and NPC decisions
and actions, as well as tracking spatial movements to understand level utilization
and overall performance, is a popular focus in today’s game industry – especially in
online games where keeping interest high keeps paid subscribers engaged. The key
to this is logging. Log everything useful that does not affect game play by slowing
down the system, and with user permission collect these data to improve game play
and the user experience.

Key Principle: Log and collect as much relevant data from game play and interac-
tion as possible without impacting game performance.

Collecting data is just the first step, what is interesting is what additional infor-
mation can be learned from that data. In many cases, there is so much data that it can
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Fig. 6 Example analytics derived from logged data collected from the (a) Urban Combat Testbed
and visualized using (b) PlayerViz showing the player traces and interactions over time for (c)
an entire play session. This can be further analyzed through visual data mining, developing math
models to automatically create (d) heat-maps showing the commonality of behaviors in spatial
locations across a number of players/characters

become unwieldy to work with and gain knowledge. Visualizing the data and using
an interactive visualization process to manipulate, isolate, enhance, and frame the
data, such as is provided by our PlayerViz tool (shown in Fig. 6b), can be useful for
performing visual data mining to find patterns in the data. Math models can be built
around discovered regular patterns and used to generate other visualizations such as
heat-maps (shown in Fig. 6d) of phenomena occurrence in the virtual world [18,20].
Such analysis can be useful for understanding interaction problems, exploits, use of
environmental elements, and problems with level design. The key unit of analysis
we use is the player trace (shown in Fig. 6c), which captures player/character spatial
motion colored over the passage of time, gaze direction, and any interactions (e.g.,
pushing a button, firing a weapon).

Player traces that capture the view frustum of the player can also be used in
conjunction with world geometry to track what surfaces the players viewed. Over
a number of players, we can use a texture painting technique to radially and dis-
tance weigh observation from the virtual fovea point to the incident world geometry.
Summation of the observations on the world geometry surfaces can provide a single
value of the information value of that surface, and visual examination can present
the observation density revealing the highest value location on that surface to place
artifacts for interaction or desired observation. Conversely, this information can be
used to identify good locations to hide artifacts in the virtual world. While this is
a context-sensitive approach, it can be very useful to guide level design, art detail
focus, and understand behavioral influence [3].

Data collection and analysis are a key part of modern game design and develop-
ment. It can greatly assist in understanding how embedded virtual world information
is used, misused, or simply ignored. It can guide attention resources in level design,
information tagging, and many aspects of game creation toward issues of impor-
tance – improving the overall efficiency of the game creation process.

Key Principle: A wealth of additional information can be learned and used to im-
prove game play and interactivity from logged data, and interactive visualization
tools can significantly assist in this knowledge discovery.
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3 Case Studies

The process of adding and deriving information to support game AI starts with
model creation, it is integrated in level design, used in engine accessible services,
dynamically expanded in-game, and augmented through additional discovery and
analysis. The two projects in this section met project goals and were evaluated in
their own unique ways; however, both depended on elements of information tagging
and knowledge creation from the techniques presented here to be successful.

3.1 The Transfer Learning Project

The first year effort of the Defense Advanced Research Projects Agency (DARPA)
Transfer Learning Program led by the ISLE Team (www.isle.org) used the Uni-
versity of Texas at Arlington’s Urban Combat Testbed (a Quake3 total conversion
mod) [21] to explore the mechanisms of learning in a source experience and apply-
ing that learned knowledge to a target experience where the difference between the
source and target examined a particular type of learning (e.g., memorization, ex-
trapolating, restructuring, abstracting, generalizing, and so forth). Sub-teams from
Stanford University (ICARUS architecture agents), the University of Michigan
(SOAR architecture agents), and the University of Texas at Austin (reinforcement
learning agents) leveraged SSPS, DIAS, and an early version of PlayerViz to suc-
cessfully show artificial transfer learning that in most cases exceeded that of humans
under similar conditions [2]. This rare occurrence of using multiple academic, high-
quality AI agent architectures in the same testbed was possible because of the
information embedded and conveyed in the environmental objects.

Specifically, a navmesh similar to that shown in Fig. 4b was used for all agent
navigation. World objects such as doors and crates were all annotated by Research
Cyc constants and used to perform object and spatial reasoning using information
provided in-game by SSPS and DIAS. The focus was primarily on solving spatial
puzzles; so there was a heavy reliance on the information provided for the AI to
solve problems by learning in one environment and then applying that solution to
a similar problem, which sometimes came down to simple symbolic substitution
(e.g., climb over create instead of a bush). However, none of this could have been
accomplished without embedding information and providing dynamic updates.

3.2 DASSIEs

The DARPA-supported Dynamic Adaptable Super-Scalable Intelligent Entities
(DASSIEs) Project addresses the problem of building an intuitive user interface for
interactive character design. DASSIEs makes use of each of the elements described

www.isle.org
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Fig. 7 The DASSIEs Project BehaviorShop v1.0 overall behavior layer builder, which is a graph-
ical subsumption/behavior-based control specification tool, is shown in panel (a). The specific
behavior layer builder including a graphical, spatial selector for the target environment is shown in
panel (b). The BehaviorShop specified character is executed by the BEHAVEngine in our FI3RST
(FIrst and 3rd-person Realtime Simulation Testbed) environment is shown in panel (c)

in Sect. 2 to support the BehaviorShop interface and the BEHAVEngine AI engine
in multiple target game/simulation environments. Figure 7 shows the DASSIEs
components in action.

BEHAVEngine is an AI engine for implementing AI characters using hierarchi-
cal behavior-based subsumption controllers [13]. Information from the simulation
environment is received by a perceptual model, which augments the raw world
state with additional information. This includes querying affordances to determine
available actions. Part of this process can make queries to the character’s working
memory through the memory model. The memory model itself provides a store for
character state information as well as a facility for making queries from relational
ontologies (such as ConceptNet and ResearchCyc). Once the world state has been
processed into percepts, this information flows into the subsumption controller. The
subsumption controller makes decisions about what behaviors to run, and individ-
ual behaviors process the current set of percepts to generate appropriate actions.
Behaviors may also query the perceptual and memory models, gaining access to
working memory (probabilistic) affordance information, influence points, ontolo-
gies, and the SSPS/DIAS services. Finally, the behaviors send action requests to the
action model, which can build commands for the simulation environment to execute
actions, use affordances, and move through the world. The action model can also
query the SSPS service to find paths through the environment.

BehaviorShop is a GUI for creating characters for BEHAVEngine [11]. It pro-
vides support for creating behavior for individuals and teams of characters in a
modular fashion. Information about character behaviors is loaded from metadata
provided by BEHAVEngine, while information about the simulation environment is
received from the game/simulation environment from embedded information and in-
formation processed by the CGUL tools as described in Sect. 2. SSPS queries allow
BehaviorShop to display maps of the environment, which allow users to more eas-
ily create spatial behaviors for characters. Object information can be queried from
the game environment object database and includes information about affordances.
Ontology information can also be used to specify the qualities of objects for use in
the behaviors rather than binding specific object types or instances in the character
definition.
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DASSIEs highly leverages the work described in this chapter to make character
behavior specification easy enough for the novice user to specify, while powerful
enough to act intelligently in many roles in the game/simulation environment [5].
One of the key aspects of DASSIEs is that information flows from the world up.
Having an information complete world with a built-in navigation mesh and struc-
tures for dynamic information storage and adjustment allows for BEHAVEngine to
mostly just provide an architectural framework for behavior organization and fir-
ing. BEHAVEngine also provides a set of perception sensors, which convey much
of the embedded information, and actuators, which provide a set of actions in which
the characters can interact in the world. Many of the symbolic annotations from
the world percepts are left ungrounded until specified for behavior inclusion in
BehaviorShop. The base set of actions in BEHAVEngine is dictated by the affor-
dance actions, but is often just scripted from a library of existing low-level actions
and then grounded to the affordance language. BehaviorShop provides the char-
acter programming interface in a subsumption architecture, behavior-based control
paradigm [1,17], which starts off as an empty shell and is then populated with action
and perception choices passed from BEHAVEngine and the simulation environment.
Most of the behavior specification is done through building piecewise English sen-
tences or graphical selection/drawing (e.g., patrol routes). In this manner, the rich
world information comes through the AI engine to the programming/configuration
environment. Meaning is given to the symbolic information in BehaviorShop and
executed in the environment using BEHAVEngine.

The key strength of DASSIEs and our approach to embedding information is that
the subject matter expert (not a computer scientist) creating the models, environ-
ments, and context can effectively specify in a simple manner how they intend for
those elements to be used in interaction or at a minimum how to be perceived. When
propagated through a tool like BehaviorShop, they can then also more easily spec-
ify how the AI should behave in these environments. Thus, not only can we make
smarter AI by providing more information, but we can also enlist the help of the
non-programmer content creator to make better interactive AI.

4 Summary

Better AI in games and simulation comes at the expense of having more informa-
tion in which to perceive, reason, and ultimately act upon. The current trend toward
procedural and user-generated content as well as libraries of pre-made 3D assets un-
fortunately provides the means to continue to make information-poor virtual worlds.
These environments are often difficult for AI to reason in because of the sparseness
of information and lack of a designer/programmer to inject information. This chap-
ter discusses the specific issues with the current trends in virtual world creation and
provides some suggestive guidance on how to make and use information-rich worlds
by embedding information into world objects and environments – building worlds
with regard to the AI and physics engines as well as leveraging organizational tools
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to provide intuitive paradigms for reasoning about space. We forward the notion
of having information complete objects and virtual worlds that makes them more
amenable to AI. Techniques for handling the dynamic nature of these objects and
environments are presented through probabilistic affordances and influence points
to provide a complete notion of virtual world specification and use with regard to the
AI, making light of the importance of embedded information and providing methods
to handle embedded dynamic information. The importance of logging and analysis
in understanding and improving virtual world construction and embedded informa-
tion to move toward efficient and information rich environments is discussed, and we
end with two case examples that leverage information-rich environments to achieve
their advanced AI goals.
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Abstract Building the behaviour for non-player characters (NPC) in a game is a
collaborative effort between AI designers and programmers. Programmers provide
to the designers with the building blocks for specifying behaviours in the game, and
designers use some combination of state machines, scripting and visual languages to
build complex behaviours by composing the basic pieces the programmers provide.
Behaviour trees (BTs) are the technology of choice for AI programmers to build
NPC behaviour. Although BTs can be naturally built using visual languages that re-
quire no programming, in general, they are considered too complex for being built
by designers without a programming background. In this chapter, we propose a
number of techniques for facilitating the collaborative work of behaviour design
through BTs. We provide tools for creating and managing a library of reusable
fragments of BTs, intended for both programmers and designers. Such library is ac-
cessed through retrieval mechanisms that also support the definition of query nodes
in BTs that can be expanded at run-time. In order to harness such an expressive
power in behaviour design, we also propose an extension to the component-based
architecture that supports a number of sanity checks to validate BTs, both at design
and run-time.

1 Introduction

Building the behaviour for non-player characters (NPC) in a game is a collaborative
effort between AI designers and programmers. Programmers provide to the design-
ers with the building blocks for specifying behaviour in the game, as a collection of
parametrized systems, entity types and actions those entities may execute. Designers
use some combination of state machines, scripting, visual languages and map edi-
tors to build complex behaviours by composing the basic pieces the programmers
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provide. Just to give a hint about the magnitude of the task, developing a game such
as Far Cry 21, according to [8], required an average number of 150 people (includ-
ing testers) during 43 months, which results, making a conservative assumption of a
20% of designers, in 30 designers working for 3 years in creating game play content
for a shooter.

Ideally, a detailed design document should serve as the specification contract be-
tween designers and programmers: before entering into production stage, it should
be perfectly clear which building blocks the programmers should build and what
building blocks the designers would count on for designing the game levels. How-
ever, in actual development, the design of the game usually becomes a moving
target, with designers coming up with new requirements for programmers as new
mechanics are explored. Furthermore, programmers overwhelmed by their current
tasks can feel tempted to let designers use their dubious scripting skills to implement
such additions, which, later on, will probably result in the programmer debugging a
designer’s script during crunch time.

A key problem in this process is that a good game designer may not have pro-
gramming skills, but nevertheless what a designer is actually doing most of the time
is building portions of a software system. A possible solution for this problem is to
hire designers who know how to program, which actually some companies do (Dou-
ble Fine fired the whole level design department in the mid of the development of
Pshyconauts, and hired fresh college graduates from Computer Science departments
to script the levels [3]). Another approach, also used in industry, is to let designers
use visual languages that are supposed to facilitate the process, by hiding the formal
syntax of the programming language, and controlling through a GUI the sentences
that can be built with the visual language. UNREALKISMET, integrated in the Un-
real Development Kit game editor [6], and FLOW-GRAPH EDITOR, integrated in the
Sandbox Editor of CryENGINE 3 SDK [2], are two of such visual scripting tools
that let designers model the gameplay of a level without touching a single line of
code through some variation of data flow diagrams.

For AI programmers, according to the number of papers dedicated to the subject
in the editions 3 and 4 of the AI Game Programming Wisdom book series [14, 15],
behaviour trees (BTs) are the technology of choice for programming the AI of NPCs
in different game genres. BTs have been proposed as an evolution for hierarchical
finite state machines (HFSMs) intended to solve FSM scalability problems by em-
phasizing behaviour reuse [10]. In BTs instead of explicit transitions from one state
to another, each node defines procedurally how to traverse its children. BTs are goal
structures that represent how a high-level goal can be decomposed into lower level
ones until reaching the leaves of the tree, which contain primitive goals that can be
achieved by available actions. In this chapter, we propose a number of techniques
for facilitating the collaboration between AI programmers and designers through
the collaborative construction of BTs.

Although BTs can be naturally built using visual languages that require no pro-
gramming, in general, they are considered too complex for being built by designers

1 Far Cry 2 is a first person shooter developed by Ubisoft Montreal released on 2008.
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without programming skills. The use of different levels of abstraction, implicit
transitions and arbitrarily complex control structures for composite nodes make
BTs as expressive as general purpose programming languages, and therefore not
convenient for designers to use. Nevertheless, BTs have been successfully used by
professional game designers in released commercial games, by focusing designers
on building BTs for high-level strategic behaviour that relies on lower level reac-
tive behaviour that programmers provide, typically also as BTs [22, 23]. Building
upon this idea of BT fragments at different levels of abstraction, we provide tools
for creating and managing a library of reusable fragments of BTs, intended for both
programmers and designers. The library is equipped with an authoring tool that pro-
motes to build new BTs by composing other BTs already in the library. Note that
such a library supports collaborations between different roles: between program-
mers, who have an easy access to low-level BTs designed by other programmers,
between designers accessing high-level BTs designed by other designers, and for
designers to build high-level BTs reusing those that programmers designed. Con-
sidering the number of people involved and the duration of the process, as hinted
above, having a principled way of accessing somebody else’s BTs can become cru-
cial to avoid a situation where BTs become a new form of spaghetti code that only
its author, if anybody, dares to modify.

A library of reusable fragments of BTs requires a query language and a retrieval
mechanism that returns BT fragments relevant for a given need. The query language
that we propose is based on a declarative representation of the game world, a domain
model that names and classifies the types of entities available in the game, along
with their properties, available actions and goals. The same language will be used
to annotate BT fragments with the intended goal, as well as the restrictions on the
type of entities that can execute the BT or the parameter values it can receive.

The possibility of retrieving BT fragments from a library naturally leads to a
second contribution of the work presented here. BTs can be extended to include
query nodes that specify queries that will be executed at run time, resulting in the
substitution of the query node with the retrieved BT fragment. This mechanism pro-
vides a controlled form of emergent behaviour, as well as an easy way to introduce
variability in the responses of an NPC, and will also allow for high-level BTs to au-
tomatically incorporate new BT fragments as they are incorporated into the library.

Having designers build BT fragments with parameters and query nodes may eas-
ily result in unusable BTs. This may also be the case for BTs with query nodes even
when designed by programmers, since BTs generated on the fly through this mech-
anism could be impossible to execute. Thus, to harness such an expressive power in
behaviour design, we also propose an extension to the component-based architec-
ture that supports a number of sanity checks to validate BTs, both at design and at
run-time, through reflective components that are able to validate a given BT.

The rest of the chapter runs as follows. Section 2 presents the BT model that
will be extended in later sections. Section 3 presents the mechanisms of a library
of reusable BT fragments and shows how this naturally leads to extend BTs with
query nodes. Section 4 presents the main ideas of a component-based architecture
and how this can be extended to validate BTs. The chapter ends with a clarifying
example and some conclusions.
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2 Behaviour Trees

Finite state machines (FSMs) are the most used technology for AI on games, easy
to understand, deterministic and fast. Designers are also used to them, and they can
be defined using simple (even graphical) tools. Unfortunately when they are used
to define complex behaviours, FSMs require more and more states that can become
the FSM hard to control.

A way to scale up FSMs is to consider that a state can hide another FSM to decide
its actions. Instead of having a flat set of states, they are arranged in different levels,
creating an HFSM. Apart from adding more structure to the states, they ease the
reuse of low-level FSM and provide different views of the HFSM depending on the
detail they are observed, which facilitates their comprehension.

HFSMs expand the complexity of the AI of the NPCs that can be implemented
with this technology, but, obviously, they also suffer of their own threshold that
makes them too complex. Curiously, the bottleneck in the FSMs and HFSM scal-
ability are not the states, but transitions. Transitions grow much faster than states,
and they become uncontrollable sooner.

A way to overcome this problem is to completely remove transitions. The result-
ing structure is not a (H)FSM anymore but it is useful anyway. Without transitions,
an AI of an NPC is defined using a “cloud of states”, and a procedural way to choose
which one is the active one. An AI of an NPC is not in a state anymore, but execut-
ing a behaviour. The selection mechanism that picks up the current behaviour hides
the old nasty transitions and plays the role of a referee. It can use any information
about the virtual environment to arbitrate between them.

This new scheme is enriched with a new ingredient: behaviours (the old states)
can end. Although a behaviour could last many game cycles, eventually it could de-
cide that it has finished its labour and a new behaviour selection should be triggered.
Even better, behaviours can inform about the success or failure of their execution,
information that enriches the decision-making process done by the selection mech-
anism choosing the new behaviour.

We can go even further considering the selection mechanism as a behaviour
with sub-behaviours as children. With this fresh perspective, hierarchy comes to
the surface: a behaviour could easily be implemented as a new low-level selection
mechanism with its own sub-behaviours. This new decision structure is called BT.
This step is similar to that taken when moving from FSMs to HFSMs. Now we have
compound behaviours that are decomposed on sub-behaviours.

BTs can be drawn using a tree representation that could be confused with the
FSM classical representation. Keep in mind that each edge in FSMs represents a
transition, but BTs’ edges represent parent–child relationships; an internal “decision
node” chooses among all its children which one should be executed next; all “tran-
sitions” between behaviours are decided by those selector nodes, not by behaviours
themselves as was done by states in a FSM.

Note that, depending on the context, nodes in a BT can be seen as states, be-
haviours or actions. In this context, “behaviour” is a synonym of (transitionless)
“state”, while “action” corresponds to a primitive behaviour that can only appear as
a leaf in a BT.
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The literature is full of proposals for different decision nodes; for the goals of this
chapter, we only require three of them: sequences, static priority list and dynamic
priority list. For all of them, the child order is important: children nodes are not a
set of behaviours, but a list.

Sequences are simple composite behaviours that execute their children in the
order they are defined. Keep in mind that behaviours end, so sequence nodes wait
until the current active child ends with success to launch the next one. If any child
fails, the sequence also immediately fails, throwing the problem up in the hierarchy.
Sequences end with success when their last child does.

To introduce static and dynamic priority list, a new concept must be first pre-
sented. Children behaviours can be guarded by conditions, indicating when that
child can be chosen. Keep in mind that these conditions are not preconditions, be-
cause a valid candidate child (which condition is true) could, after all, fail: true
conditions do not guarantee the complete correct execution of the guarded be-
haviour.

With conditions in mind, a static priority list node evaluates its children condi-
tions in order and activates the first one whose condition is true. The child order
represents a behaviour priority, with the first child having a higher priority than
the next ones. A dynamic priority list is similar, but it continuously reevaluates
conditions of prior nodes to the active one and switches to a higher priority node
whenever possible, as soon as its condition becomes true. In contrast to sequences,
priority lists fail if all of their children fail. If any child ends successfully, the priority
list also ends with success.

Although they are not important for this chapter, BTs usually provide with a
second family of internal nodes known as decorators. Decorators have only one
child, and they add or modify the original child behaviour. Examples of decorators
are control modifiers (negating the child result, or forcing a concrete one) or filters
(repeating the child behaviour while it succeeds, avoiding it to be fired too often
using a timer, etc.). Decorators bring into BTs the expressive power of a general
purpose programming language [13].

Apart from the lack of transitions, other crucial aspect to overcome the scalabil-
ity problem in FSMs is considering nodes as behaviours instead of states. This new
point of view introduces the idea of a goal for every behaviour and, with this vision,
design is simpler because hierarchy let designers think in terms of goals and sub-
goals instead of states and substates. Most actions have a primary goal along with a
number of additional goals that depend on the action context [24]. For example, the
primary goal of the action “move-to” is to change location from x to y, but in an ur-
ban fight scenario we can be moving to get under cover from enemy fire or to assist
a fallen comrade. Having actions focus only on their primary goal can sometimes
lead to unintelligent behaviour. For example, if an agent is moving to a destination
and is attacked, it will continue to move, even when it would be totally destroyed
by doing so. Instead of adding conditional statements to every action that specify all
the exceptions to normal behaviour, we can handle multiple goals and make them
part of a hierarchy, which prioritizes goals higher up in the hierarchy, i.e. staying
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alive is more important than moving to point y; so if some condition higher up in
the BT becomes activated for self protection, the whole branch being executed can
be pruned.

Hierarchy also supports reusability, because a BT fragment can be seen as a black
box that provides a specific behaviour that can be attached to more complex BTs as
a child. Throughout the game production, more and more behaviours (general and
enough reusable BTs) will be available for the designers’ team, saving time from
reinventing the wheel.

2.1 A Domain Model for Behaviour Trees

For reusability becoming true, reusable BTs should allow some kind of parametriza-
tion. For example, designers may build a BT for an enemy that attacks using an
available weapon and picks an item up afterwards. Although the concrete weapon
and item could be hard-coded in the BT, this spoils nearly all opportunity for reusing
it; so an elaborate mechanism to specify parameters should be available. The sys-
tem should be good enough to let parameters be bound both in design and runtime,
depending on the circumstances.

Keep in mind that both FSMs and BTs are static structures used to model NPC AI.
In runtime, the same FSM could be used for multiple NPC simultaneously, each of
them storing the current state and other information needed to “run” the FSM. Some-
thing similar occurs for BTs, where each NPC should keep track which behaviours
are activated, which ones have failed and so on. For parameter passing between
nodes, the NPC runtime structure is enriched with an “execution context” (or black-
board) specific for each NPC, where behaviours read information (attribute–value
pairs) to be used in the decision-making process using the guards (conditions). The
set of attributes in the context is the portion of the game state that can be accessed
by the NPC. Values will be specified by designers during development (e.g. to force
an NPC to pick up a concrete weapon), or written by some actions (leaf behaviours)
in runtime (e.g. the treasure found by a search behaviour).

In order to be able to reason with BTs independently of the underlying game
engine, we need to model the context and parameter passing mechanisms. Further-
more, we need to specify the collection of goals and the restrictions on the type of
entities that can execute the BT or the parameter values it can receive. We propose
the use of ontologies to represent both the knowledge and the entities. Ontologies
are a standard mechanism for knowledge representation, based on conceptual hier-
archies, defined using the is-a relation where abstract concepts are located on the
top of the taxonomy, while specific concepts are located in its leaves.

To model the knowledge on our domain we use a behaviour ontology, which
provides different classes used to categorize the behaviours in terms of the goals
they fulfil. In the ontology, we can find behaviour classes like Attack Behaviours,
Defend Behaviours or Resource Gathering Behaviours. Each class can have sev-
eral instances that represent the different behaviours for that goal. For instance,
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Fig. 1 Behaviour tree (BT) for steal resource from weakest player

in the class Resource Gathering Behaviours, we can find Steal Resource
From Weakest Player (Fig. 1) or in the class Attack Behaviours we can
find behaviours like Long Range Stealth Attack or Hand To Hand
Stealth Attack.

To classify the entities that form the context in which behaviours are executed,
we use an entity ontology. In the top of the entity ontology, we can find, for in-
stance, classes like Alive that represents the alive creatures. Going down through the
ontology, we will have subclasses like Monster and Player that are alive creatures.
Player, in turn, subsumes the Human and Computer categories that respectively
represent the player’s avatar and an AI-controlled avatar.

Additionally, a set of relations exists between behaviours and entities. These re-
lations are used to express the restrictions on the parameters of the behaviours.

Parameters are referenced in two places in the BT:

• The set of parameters that will be used in the BT is declared in the root of the tree.
Each declaration consists in three elements: the relation between the behaviour
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and the entity in the parameter, the class from the entity ontology that will be
the parent of the entity and the name that will be used to reference the parameter
later in the BT.

For instance, in the Steal Resource BT in Fig. 1, we have the parameter
declaration (hasTarget, entity: PLAYER). This means that an input
parameter is declared for the relation hasTarget. The entity type of the input
parameter is PLAYER, which means that the target of this behaviour can only be
a PLAYER (resources can only be stolen from players, whether they are human
or AI controlled). To reference this input parameter inside the BT, the identifier
entity should be used.

• In the invocation of other BTs or leaf behaviours, parts of the execution context
are bound to the input parameters of the invoked behaviour in the parameter
passing mechanism.

This is the case of the invocation of the leaf Search by the BT Steal
Resource From Weakest Player. In this case, the value of the param-
eter entity from Steal Resource From Weakest Player is bound
to the input parameter target of Search.

The NPC context provides a storage structure similar to that found in object-
oriented programming languages. For example, ?this will refer to the NPC
executing the BT (with information such as ?this.health or ?this.
aggressive), ?world will refer to the virtual environment state (?world.
time) and ?target will refer to the game entity target for the behaviour
(?target.distance). As a conclusion, NPC context provides a way to consult
the game state, both of the virtual environment and the NPC state itself.

Using this notation, we can represent a tree such as the one shown in Fig. 1.

3 A Library of Reusable Behaviour Trees

One of the main advantages of using BTs for the AI design is the reusability they
provide. The main reusability components are basic actions provided by program-
mers, but BTs combining several nodes could also become reusable behaviours to
be chained into more complex BTs. For example, a programmer could create a
StealthWalking BT using simple actions that look for dark zones and walk
through them. Once it is available, other designers could use it to create behaviours
such as SurpriseAttack or Spy.

BT reusability is possible because of two features that are common in most of
everyday videogames. First of all, modularity in behaviours: complex behaviours
can be decomposed into simpler behaviours that are somehow combined. Second,
simpler behaviours tend to recur within complex behaviours of the same game,
or even in different games of the same genre. For instance, in an action game,
a Hand to hand attack could be a complex behaviour that is composed of
two simpler behaviours like Go to (enemy) and Attack with knife; on
the other hand, Long range attack could be composed of Go to (cover)
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and Shoot ray gun. Both features are useful to build new complex behaviours
based on simple behaviours as the reusable building blocks.

Programmers and designers should keep an eye on BT reusability in two aspects.
They should create BTs trying to make them general enough to be later reused.
And, at the same time, they should try to reuse previously made BTs, instead of
reinventing the wheel creating the same basic behaviours again and again. This is
quite important because although BTs make easier the creation of behaviours for
NPCs, it still take a lot of time to wire them up because of the large number of
behaviours that can be involved in the process (Halo 2 had an average of 60 different
behaviours arranged in 4 layers [10]).

To assist game designers in the creation and edition of BTs, we have developed
the eCo Behaviour Editor. The eCo editor is an authoring tool that provides the
users with a graphical interface which allows them to manually create or modify
behaviours just by “drawing” them. It includes tools for loading, saving and import-
ing the behaviours from disk, drawing and erasing nodes and edges from the trees,
and specifying their content. Once the behaviour is complete, it is possible to use
the included code generation tool to generate the source code corresponding to the
behaviour.

Nevertheless, the more outstanding feature of the eCo editor is BT reusability.
Every manually designed behaviour is stored and indexed in a database that allows
easy BT retrieval of previously stored behaviours. We use techniques imported from
the case base reasoning (CBR) area, where data (cases) are stored in such a way that
search becomes more than only matching.

CBR is based on the intuition that new problems are often similar to previously
encountered problems, and therefore that past solutions may be reused, directly or
through adaptation, in other situations. CBR systems typically apply retrieval and
matching algorithms to a case base of past problem–solution pairs. Another very
important feature of CBR is its coupling to learning. A strong effort has been done in
the CBR community to solve the problems of similarity and adaptation in different
contexts, with different approaches to case representation, organization and storage,
and amount of knowledge, from knowledge intensive to data intensive approaches.

CBR is specially well suited to deal with the modularity and reuse properties
of the behaviours; it assists the user in the reuse of behaviours by allowing her to
query a case base. Each case of the case base represents a behaviour. By means
of these queries, the user can make an approximate retrieval of behaviours previ-
ously created, which will have similar characteristics and satisfy some conditions.
The retrieved behaviours can be reused, modified and combined to get the required
behaviours.

Although the more important component of each case is the BT itself (the be-
haviour that want to be retrieved), they also store metainformation that is used in
the search process. We use XML files to store all this information, which is defined
by the following attributes:

1. Header: Includes the case number, used to identify the case in the case base, and
a textual description that describes in natural language the behaviour represented
by the case.
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2. Goals: This attribute enumerates the list of goals from the behaviour ontology
satisfied by this behaviour.

3. Parameters: This attribute is the set of parameters received by the behaviour (e.g.
the enemy to attack or the weapon to use), along with the restrictions of type of
each one of them. The type is built from the classes in the ontology which an
individual belongs to.

4. Descriptors: This attribute is a set of restrictions declared over the game state
(context variables such as ?this, ?target or ?world mentioned previ-
ously). The values of the descriptors can be either symbolic or numeric. The
descriptors specify under which circumstances of the game state is appropriate
to run the behaviour.

As an example, Table 1 shows the set of behaviours that satisfy the goal Attack.
When a designer creates a new BT, she must enrich it with all this information.

Although this could be seen as tedious and useless, they could be used it later while
retrieving previously stored BTs to be mixed with new ones.

We distinguish between two types of queries: functionality-based queries and
structure-based queries. In the former, the user provides a set of descriptors to spec-
ify the desired functionality of the searched behaviour. In the latter, a behaviour is
retrieved whose composition of nodes and edges is similar to the one specified in
the query.

3.1 Functionality-Based Retrieval

The most common usage of the CBR system in the editor is when the user wants to
obtain a behaviour similar to a query in terms of its functionality. The functionality
is expressed by means of a set of descriptors regarding the game state.

The eCo editor provides a query form, shown in Fig. 2, for the user to enter the
parameters of the query. The attributes that form a query are:

1. Goals: Goals of the behaviour ontology that must fulfill the retrieved behaviour.
The class of the goal can be selected in the tree on the left side of the query form,
which shows the behaviours taxonomy. The query may only retrieve behaviours
for the selected class or any of its subclasses.

2. Parameters: Restrictions on the type of the input parameters of the retrieved be-
haviours. For example, weapon should be a firearm.

3. Descriptors: A set of restrictions declared over the game state that describe the
behaviour to be retrieved.

4. Weights: The weight of each descriptor in the final similarity calculation.
5. Textual description: A natural language description of the behaviour that will be

compared with the description in the header of the cases. The textual description
allows the user to fine-tune the search.

6. Cases retrieved: The maximum number of behaviours the user wants to be
retrieved.
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Table 1 Behaviours that satisfy the goal Attack

Case Parameters Goals Descriptors

C1 Hand-to-hand stealth attack
(hasTarget, entity: ALIVE) Attack ?target.distance ≤MEDIUM

?this.personality = STEALTHY
?this.defensive ≥MEDIUM
?this.health ≤MEDIUM
?this.underAttack = LOW
?world.time = NIGHT

Tries to approach an enemy without being noticed and attacks him using a close range,
stealthy weapon. The entity executing it must remain undetected for the behaviour
to be effective

C2 Long range stealth attack
(hasTarget, entity: ALIVE) Attack ?target.distance ≥MEDIUM

?this.personality = STEALTHY
?this.defensive ≥MEDIUM
?this.health ≤MEDIUM
?this.underAttack = LOW
?world.time = NIGHT

Looks for cover in the surroundings and attacks the enemy with a stealthy weapon. The
entity executing it must remain undetected for the behaviour to be effective

C3 Berserker
(hasTarget, entity: ALIVE) Attack ?target.distance = MEDIUM

?this.personality = BRUTE
?this.aggressive = HIGH
?this.health = HIGH

Attacks an entity with the most powerful weapon available and without caring about
own safety. This behaviour is used for very aggressive entities. A defensive entity
will not show this behaviour

C4 Grenade attack
(hasTarget, entity: ENTITY) Attack ?target.distance = HIGH

?this.personality = BRUTE
?this.aggressive ≥MEDIUM

Throws a grenade to an enemy and takes cover to avoid being affected by the explosion

C5 Elusive attack
(hasTarget, entity: ALIVE) Attack ?this.personality = TIMID

?this.aggressive ≤MEDIUM
?this.defensive ≥MEDIUM
?this.health ≤MEDIUM
?this.underAttack ≥MEDIUM

Approaches the enemy and shoots him while trying to cover behind the objects in the
game world and zigzags to avoid being hit. It is a defensive behaviour useful when
the entity is being attacked or when the health is low

The execution of the query goes as follows. First of all, the cases for the Goal
specified in the query are retrieved. The similarity with the remaining cases is con-
sidered 0. If the user has specified any restrictions on the Parameters, they are
checked. Any candidate who does not satisfy the Parameters restrictions is excluded
from the candidate set (again, its similarity is 0).
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Fig. 2 Retrieval interface

Then, the attributes of the query are compared to the attributes describing the
BTs in the case base using a similarity function. Given a query, Q, and a case from
the case base, C, the similarity value is obtained as follows:

sim (Q,C) =

⎧
⎪⎨

⎪⎩

• The class of C does not belong to the goals of Q⇒ 0

• The restrictions on parameters in Q do not hold in C⇒ 0

• otherwise⇒ simatr (Q,C)

simatr (Q,C) = ∑
d∈D(Q,C)

wd · simloc (Qd ,Cd)

D(Q,C) = Q.descriptors∩C.descriptors

simloc(Qd ,Cd) = 1− |Qd .value−Cd .value|
sized

D(Q,C) is the intersection of the sets of descriptors of Q and C and sized is
the size of the interval of valid values for a descriptor d. Each wd is the weight
corresponding to the descriptor d, normalized so that the sum of all the wd is 1.
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To obtain the global similarity value between each of the cases and the query, the
weighted similarity of the Descriptors is aggregated with the similarity due to the
Textual description of each behaviour. Using a string similarity measure, the Textual
description of the query is compared to the description in the Header of the case.

Finally, the candidates are sorted by their similarity value and the most similar
ones to the query are retrieved.

3.2 Structure-Based Retrieval

In some circumstances, the behaviour designer knows the general structure of the
BT (i.e. the distribution of the nodes and their generic functionality). In these situa-
tions, it would be easier and faster for the designer if he could “sketch” the tree and
let the editor find a similar one in the case base.

The user can draw a tree with empty nodes (a tree pattern) and let the system
find a similar one with all nodes defined. But, by entering these data alone, the
retrieved BT would be similar to the query only in terms of its shape. The behaviour
it implements could be any. Hence, we need to allow the behaviour designer to
point out the desired functionality of the retrieved tree, and then compare the desired
functionality with the functionality implemented in the nodes of the trees in the case
base.

The functionality of the drawn nodes is expressed by linking each node to a
Functionality Query that the user must build to express the desired behaviour that
should be contained in the node. The linked functionality queries are compared to
the descriptors in the nodes of the behaviours in the case base during the query
process.

Keep in mind that a functionality-based query (previous section) could be speci-
fied using one of these new structure-based queries, drawing just a root node with no
children. In that sense, we can see structure-based retrieval as an additional refine-
ment search step, where the designer wants to impose some structural restrictions to
the children nodes. Retrieval compares the sketched tree with those BTs in the case
base, using any of the existing techniques in the literature for comparing ordered
trees (like [18, 19, 21]).

Our approach to these structure-based queries is to use the drawing facilities of
the editor to “draw” the BT pattern, and then assign functionality-based queries to
the nodes, which will show the functionality of each node. Figure 3 shows the query
editor for the structure-based queries. In the left pane the user can draw a behaviour
pattern and in the right pane he or she can specify the desired functionality of the
retrieved behaviour by entering a functionality query. Additionally, each node can
be linked to another functionality query, as we have already mentioned, to tune up
the search.

Further explanations regarding functionality- and structure-based retrieval can be
found in [4].
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Fig. 3 Structural queries

3.3 Query Nodes at Run Time

Reusability and modularity are important advantages of using BTs. Each BT repre-
sents an abstraction that can be reused as a composing piece of other BTs. Different
BTs are created independently during the game design phase and they can be assem-
bled as pieces of other existing BTs. The collection of game BTs includes different
ways of solving a certain goal, e.g. different ways of getting food or stealth walking.

The search facilities included in our eCo editor described in the previous sec-
tion provides static reuse: once the behaviour designer has chosen a suitable BT
provided by the query, it is tied to the new BT been created. However, through-
out the game development, both programmers and designers add more and more
reusable BTs that could have been also suitable (even better) for those searches
done previously. Then, to make the process consistent and useful, it is important to
review the pre-existing BTs that include a certain goal to check whether it is conve-
nient to assemble newer BTs (representing new ways to solve certain goals). This
consistency checking process generates an extra effort that is sometimes skipped.
That means that the behaviours added in the late design phases are not taken into
account by the behaviours that were included in the early design phases.
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To address this problem we propose a dynamic approach where the CBR system
is queried at run time to find the most appropriate behaviour from a case base of
implemented behaviours using BTs. The CBR processes work always with an up-
to-date behaviour case base that allows retrieving the most convenient behaviour
according to a certain query using the whole collection of designed behaviours and
avoiding the extra cost of pre-checking its adequacy with newer behaviours.

Keep in mind that the reusing possibilities described in the previous section were
an extra functionality provided by the eCo editor, which do not require runtime
infrastructure in the BT framework. However, runtime queries require a new BT
node, called query node, that stores the query attributes specified in design time and
makes the BT retrieval at runtime.

The attributes that describe these queries are the same ones used in the queries
at design time (Sect. 3), adding a new requery field. Once the behaviour has been
retrieved and is running, there may occur changes in the game state that would
make another behaviour more suitable for the current situation. Using the Requery
parameters, we can specify the conditions or changes in the game state that should
make the system repeat the query. Note that, although the query is done again, the
results can be the same. In that case, the behaviour being executed is not restarted.

Although we have defended the advantage of runtime queries because they use
all the available BTs, they provide an even more important benefit: they can use the
current world state to select the more suitable behaviour. Parameters can now refer
to the complete game state (?this, ?world and ?target), not only to static
restrictions on the input parameters.

The retrieval process is very similar to the one explained for the functionality
based retrieval. The main difference is that the values of the descriptors are not
specified in the query. In this case, the query specifies the relevant descriptors and
the values are taken from the game state at runtime, at the instant of time that the
query is run.

Figure 4 shows an example of a query node that retrieves an Attack behaviour.

Fig. 4 Guard area behaviour



70 G. Flórez-Puga et al.

4 Reflective Components

Although runtime search of BTs provides a lot of advantages against the static
search at design time, they can become quite dangerous because the retrieved BT
could not fit the NPC features. For example, an NPC could query for a behaviour to
run away from the player and receive a behaviour that uses a nearby car. At runtime,
the system should check whether the retrieved BT is suitable for the target NPC
answering questions such as whether the NPC can drive.

Before explaining our proposal to solve this problem, we need to introduce some
implementation details about how game entities are usually coded. The runtime
object-management system is in general an important part of a videogame, and cre-
ating this piece of code takes a great amount of time. To mention just two examples,
a mature game such as Half-Life dated at 1999 has more than 65,000 non-empty
no-comments lines of code on that module, while Far Cry at 2004 exceeds 95,000
lines of C/C++ code2 even though the majority of the module was actually written
in LUA [9].

This reveals that when creating this module we should try to design it to promote
reusability in the sense that every single piece of code general enough to be used on
a different title should be reused.

When we inspect how this module is usually coded, we find that it was tradition-
ally based on an inheritance hierarchy, where all different kinds of entities derived
from the same base class often called CEntity. Some of the consequences of this
extensive use of class inheritance were an increase in the compilation time [11], a
code base difficult to understand and big base classes. To mention just two exam-
ples, the base class of Half-Life 1 had 87 methods and 20 public attributes while
Sims 1 ended up with more than 100 methods. The consequence is the well-known
fragile base class problem [17].

Due to all these problems, today developers tend to use a different approach,
the so-called component-based systems [1, 7, 16, 20]. Instead of having entities of
a concrete class which define their exact behaviour, now each entity is just a com-
ponent container where every functionality, skill or ability that the entity has is
implemented by a component. From the developer point of view, every compo-
nent inherits from a specific class or interface (called, for example, IComponent),
while an entity becomes just a list of IComponents.

As the components are now generic objects with a common interface independent
of their functionality, the usual method invocation is not enough. We cannot have
a piece of code calling a method like moveTo(), because no such method even
exists. What we have now is a component (a class called for example MoveTo that
inherits from the previous IComponent) that is able to move the entity from one
point to another; however, externally this is just an IComponent indistinguishable
from the other.

2 Lines of code (LOC) obtained using SLOCCount by David A. Wheeler.
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The communication is therefore performed in a different way, using message
passing. The IComponent is viewed as a communication port that is able to re-
ceive and process messages. A message is just a piece of data with an identification
and some optional parameters (the implementation may vary from a plain struct
with generic fields used in different ways depending on the type of message, to a
base class such as CMessage and a hierarchy of messages). Components have a
method like handleMessage() that is called externally to send the piece of in-
formation to it; depending on the concrete component, the message will be ignored
or processed accordingly. In this scenario, entities play the role of the broadcaster
of messages. Both, internal components and external modules may send messages
to the entity that are automatically distributed among all of its components. The
message types that a component can process usually correspond with basic entity-
actions. Consequently, an entity is able to execute as many actions as the sum of
messages its components can process. For instance, when the AI component (which
provides the entity with the ability to think) wants to move the entity from one
point to another, it sends a MoveTo message to all the components of its entity.
The component that implements the ability of movement (MoveTo component in
our previous example) intercepts the message, calculates the path to be followed
and emits periodically UpdatePosition messages to notify other components
(graphical and physical among others) the change of the position.

As entities are now just a list of components, the concrete components (or abil-
ities) that constitute them may be specified in an external file (usually known as
blueprint) that is processed in execution time. This approach eases the creation
of new kind of entities, because it does not require any development task but just
the selection of the different skills we want our new entity to have from a set of
components.

The approach also fosters the reuse of the components in other projects. As the
responsibility of every component is neatly defined and it is in charge of just a small
set of tasks, most of them are general enough to be useful in other applications.

In order to allow fine-grained adjustment of the behaviour (or skills) of different
entities, their definition may also set the values of different attributes that com-
ponents use as parameters of their behaviours. For instance, the component that
provides the entity with the ability of picking up objects may use an attribute that
specify the strength of the entity.

Keep in mind that entities construction in runtime is now generic due to the
blueprint file described previously. Therefore, the concrete parameter values (such
as the strength of each NPC race) must be also provided as data instead of being
hard coded in source. This information is also provided in an external file, known
as archetypes, containing the default values for each parameter of each entity in the
blueprint. Map files for game levels will have the opportunity to override the default
archetype values for some concrete entities, providing, for example, more strength
than the default one to a specific NPC.

As an example, Fig. 5 presents a Patrol Soldier entity built by com-
ponents. This figure contains parts of the both mentioned entity descriptions
files where the blueprints file reflects the abilities of the entity as a collection
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Fig. 5 Patrol Soldier entity built by components

of components and the archetypes file displays the attribute–value pairs that makes
the fine-grained data-oriented entity description possible. The blueprints shows that
a Patrol Soldier can be rendered and animated, can collide with other physic
entities, execute BTs, walk from one place to another, etc., while the archetypes file
sets the entity attributes to their default values.

Note that both entity description files just add information to the entity ontology
described in Sect. 2.1, where the Patrol Soldier would be a specialization of
the Computer category that represents an AI-controlled avatar. So entities in the
blueprint and archetypes files must fit with entities described there.

It is important to stress that our entity ontology just simplify the entity distribu-
tion, in a high level, through is-a relations, but these relations do not involve that a
child concept has all the abilities that its parent ontology concept has. Entity ontolo-
gies are excellent mechanisms to take high-level decisions, but their is-a relation is
not a good idea to implement low-level details in big projects as it has been exposed
in this section. That is the reason why the entity ontology is not translated in hier-
archy classes when implementing our games in a programming language such as
C++ but in entities built by components.

The reusability that components give us comes at a price, though. As the en-
tity definition is made from text files, the consistence of the created entity class is
not guaranteed. Prior the use of components, when new entity class was developed
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completely in a programming language such as C++, the compiler itself checked
whether the new class was complete before allowing programmers to create an ob-
ject of it. Therefore, an entity with the ability of, say, walk to a location was always
able to set the walk animation; otherwise the setAnimation()method invoca-
tion would not have compile.

When the declaration of entities becomes the addition of a set of lines in a
text file, developer may forget to provide the entity class with some ability that
is needed by other components. Following with the previous example and noticing
the Patrol Soldier entity blueprint (Fig. 5), if the entity has the ability to walk
from one point to another (which implies the blueprint file states that the entity pos-
sesses a particular component such as the MoveTo component), it should also be
able to change the animation presented on the screen (possessing another component
such as the AnimatedGraphic component) because the MoveTo component just
sends a SetAnimation message and update regularly the entity position sending
SetPosition messages.

Our solution to this problem is what we call reflective components [12]. This
technique consists in enhancing components with some methods that allow us to
check, at design time and even at run time, whether an entity is able to perform an
action (and therefore has that particular ability).

During runtime, components that are related to the behaviour of the entity
(AI components) such as those that manage BTs (BTExecuter component in
Fig. 5), send messages to the entity they belong to order which actions must be
executed. This is due to AI components that do not have the ability of executing
these primitive entity actions because they only perform the decision-making pro-
cess. In that sense, an entity with just the BTExecuter component is not complete,
because it is not able to actually execute the tasks that the AI selects.

Because now entities are specified in terms of their components, and that a com-
ponent can be seen as an ability that an entity has, it makes sense therefore to try
to identify the failures related to the inherent nature of the entities using such a
description. The easy (and naive) approach is to make direct associations between
basic actions (or messages that represent them) and components that are capable of
executing these actions (process these messages).

Nevertheless, this approach would not be enough. Sometimes a component could
not be able to carry out an action, although it has the ability to do it, either because
it needs the collaboration of other components, which may not be in the entity,
or because the component cannot correctly execute the action with the parameters
associated with this action.

Let us imagine a situation where the BTExecuter sent a MoveTo message
to makes the entity walks. The only existence of the MoveTo component would
not assure the correct execution of the action since the MoveTo component would
send setAnimation and SetPosition that other components should process.
In the same way, the existence of a AnimatedGraphic component would not
assure the correct execution of a SetAnimation message because the 3D model
associated with the component could not have the given animation.
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In order to manage both kinds of errors and with the purpose of giving a
fine-grained approach, the methods we propose to enhance the component-based
systems will accept messages that encapsulate actions to ask whether they are able
to handle a concrete message according to their configuration. So, we shall query
them using the same messages that BT actions (or other kind of AI systems) gener-
ate during the game execution. Then, if any component needed the collaboration of
other components, it would only have to query the entity it belongs with the same
message that it would generate during runtime and finally the component would
return if the collaboration succeeded. Furthermore, as messages and components
are parametrized, the new check methods can carry out fine-grained approach using
them in the association process.

So, to check whether a full BT can be carried out by an entity, the BTExecuter
component, for every action of its behaviour, just has to query to their entity com-
ponents if some of them are able to execute it. Note that this is general enough. In
games where a task may be performed using different methods, each entity capable
of performing that task will be provided with the component that executes it using a
particular method. As the behaviour component queries for the ability of executing
the task instead of asking for the particular component that implements a method,
the consistency check will work.

Again, we have a coarse-grain approach, though, not due to the reflective com-
ponents but due to the BT action iteration. Just iterating over the list of actions of
the BT is not precise enough since, in this way, the system would only validate or
invalidate associations between BTs and entities; but if the system invalidated an
association, it would not locate where and why this association was invalidated, so
it cannot be fixed easily.

Therefore, a fine-grained approach should locate which branches of the BT were
not able to be carried out by the entity and which node and the reason that made it
crash. Bearing in mind that a BT may have different decision nodes (Sect. 2) and the
chosen children to be evaluated depends on them, different kinds of nodes have to
be evaluated by different methods.

As its name denotes, a sequence represents a chain of behaviours. Thus, to val-
idate a sequence, all its children nodes must have been validated with the entity
before. Therefore, if there was one node of the sequence that was not validated,
the whole sequence would be invalidated knowing why and where the problem
would be.

But both static and dynamic priority lists represent a behaviour that chooses be-
tween different ways of resolving a problem. So only one of the child nodes would
be executed during the game rather than in previous example, in which all the chil-
dren would be executed (sometimes more than one child is executed, but only if
there are more children available and child guards changes during the selector exe-
cution). As a result of this, a fault detected in a child of the selector was less critical
than faults detected in a child of sequences. This is because there were probably an-
other choice (other child) selectable by the selector. Therefore, we could call these
faults as warnings, instead of failures, if the child node that fails has at least one
other brother node that has been validated.
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So, although interested readers are referred to [12] for more details, to
summarize, to validate a BT with an entity, the BTExecutor would try to validate
the root node of the BT with the entity it belongs and this would be recursively
spread to all the nodes of the tree. Finally, the leaves of the tree, which contains the
final actions, would be checked with the entity, passing the messages that they gen-
erate during runtime to the check method of the entity. The entity would broadcast
the passed message to its components and they would validate/invalidate the action.
Return signals would go up from leaves to the root of the BT and, as a result of
this, failures and warnings would be located and associated with one branch of the
BT (depending on the decision nodes). Therefore, how these failures and warnings
would be fixed or reported in design time would depend on how the tool works.
Nevertheless, the easier way for solving a warning during runtime is to remove the
whole branch, while failures must directly invalidate the association between the
entity and the BT.

Once all this infrastructure is working, it is easy to use it as a sanity check for all
the runtime retrieved BTs for our query nodes. In this way, we avoid blindly trying
to run a BT that will fail later because the entity is unable to execute some of the
primitive actions. The next section will describe a detailed example of the whole
process.

5 Example

Let us imagine a shooter game in which a soldier watches over the approach roads
of a bunker, patrolling the area and killing the enemies (players) without being seen
whenever it is possible. The behaviour executed by this NPC can be the one shown
in Fig. 4, which represents the BT corresponding to the goal Guard Area. This
BT has two branches, one to patrol and another to kill the enemy. As there are several
ways to kill an enemy, and the chosen way will depend on the virtual environment,
the NPC type and its parameters, the Guard Area Behaviour BT has a query
node to choose the attack behaviour.

On the other hand, Fig. 5 shows the Patrol Soldier entity type made up of
components with its default attributes. During the game, an entity of the Patrol
Soldier type, among others, will carry out the Guard Area BT (Fig. 4); so, as
we will see, the attack behaviour will be chosen accordingly.

The execution context of the Guard Area BT is composed of three variables:
?this, ?world and ?target. ?this denotes the NPC executing the BT and its
attributes describe its properties. ?world denotes the virtual environment in which
the game takes place. ?target is an input variable for the Attack behaviour and
denotes the entity targeted for this behaviour.

To execute this behaviour, the nodeGuard Area is executed. Being a dynaymic
priority list, it will try to execute the first of its children and, if it is not possible, it
will pass to the next one. The first child of the Guard Area node is a sequence, so
it tries to execute all of its children, one after the other, beginning with Is Entity
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Seen. Now suppose that Is Entity Seen fails (there are no visible entities of
type PLAYER). This makes the sequence to fail and the next behaviour in the pri-
ority list, Patrol, is then executed. As the Guard Area behaviour is a dynamic
priority list, it will keep trying to execute the first child (the sequence) in the subse-
quent cycles.

While executing Patrol, let us suppose that a PLAYER is seen by the NPC. The
Patrol behaviour is interrupted to launch again the sequence. It tries to execute
again the behaviour Is Entity Seen, succeeding this time. The entity detected
by Is Entity Seen is stored in the attribute ?this.target, and the next
behaviour in the sequence is executed. The next behaviour is a query, so it has to be
solved to a BT before it can be executed.

The attributes for this query are:

1. Header: The name of the query behaviour (Attack (?target)”) and a de-
scription (“Query behaviour Attack”).

2. Domain: The retrieved behaviours should belong to the class Attack or to any
of its children.

3. Parameters: The retrieved behaviour has to have an input parameter, target,
which should be applicable to an entity of class PLAYER.

4. Descriptors: This attribute lists the game state descriptors that are considered
relevant for the query:

• ?target.distance: The distance to the target entity.
• ?this.personality: The personality attribute of the entity executing the

behaviour.
• ?this.aggressive and ?this.defensive: The aggressiveness and

defensiveness levels of the entity.
• ?this.health: The health of the entity.
• ?this.underAttack: Measures the attack received by the entity, being
LOW when it is not being attacked and HIGH when being attacked by several
entities in the close range.

• ?world.time: The current time in the simulation environment (NIGHT or
DAY).

5. Weights: The similarity section of the query refers to the importance of the
descriptors for this query. The distance, personality of the entity and the fact
of being attacked (the underAttack condition) are very important. The
health and the current time are important. The aggressiveness and
defensiveness are taken into account, but they are not as important as the
rest.

6. Requery: The query has to be repeated when there is a significative change in the
time, health or underAttack descriptors.

7. Cases retrieved: The query will retrieve all the cases in the case base.

To retrieve a BT, we have to compare the query with all the cases in the case
base. First, we filter the case base using the Goal attribute, keeping only the cases
that belong to the Goal class or any of its subclasses. In the next step, we also take
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Table 2 Game state
and similarity values

(a) Game state

Descriptor Game state

target.distance HIGH
this.personality STEALTHY
this.aggressive HIGH
this.defensive MEDIUM
this.health MEDIUM
this.underAttack LOW
world.time NIGHT

(b) Similarity

Case Similarity

C1 0,90
C2 1,00
C3 0,42
C4 0,60
C5 0,39

away all the cases with parameters that are not compatible with the ones in the query.
Finally, the values of the descriptors of the cases are compared with the values of
the relevant descriptors of the game state. Using the weights, a similarity value is
obtained for each case.

For instance, let us imagine a night situation in which the NPC is close enough
to a player to detect it but not so close, thus the player has not seen and attacked it
yet. After filtering the case base, the query process retrieves the set of cases shown
in Table 1 (the ones for the Attack goal). Then, every case has to be compared
with the query. The values of the relevant descriptors of the query are retrieved
from the game state and compared to the corresponding descriptors in the cases.
Table 2a, b shows the values of the relevant descriptors for our example query and
the results of calculations of the similarity values for each case and the query. As
it is shown in the table, stealth behaviours are predominant over the rest because of
the night situation, the personality of the NPC and due to the fact that the NPC is
not under attack. Long Range Stealth Attack has better score than Hand
To Hand Stealth Attack just because of the distance between the NPC and
the player.

Once the set of cases has been retrieved and ordered by its similarity, the query
process must return the most similar behaviour to the query but, at the same time, the
NPC must be able to carry out this behaviour. There should be taken into account
that the behaviours stored in the case base may not be suitable for every entity.
Different entity types will have different abilities, and even entities of the same type
could have different parameter values (e.g. strength).

Here is where the reflective components, described in Sect. 4, become useful.
When the first part of the query process ends up with a list of BTs ordered by its
similarity with the query, the query process iterates over them looking for the first
one that may be executed by the actual entity. The query process will finally return
the behaviour most similar to the query that can be carried out by the NPC.

In our example, the query process has to check which of the retrieved BTs can be
executed by the Patrol Soldier entity, whose components are listed in Fig. 5.
We will reduce our explanation just to the two most similar BTs retrieved from
the query, Long Range Stealth Attack and Hand To Hand Stealth
Attack, which appear in Fig. 6a, b. These BTs need special skills to be carried
out, so the query process must assure, by means of our reflecting components, the
NPC will be able to execute these retrieved BTs. When validating Long Range
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Fig. 6 BTs of the example

Stealth Attack before its execution, the system detects that the Shoot To
action cannot be carried out by the NPC. Although a Patrol Soldier has a
ShootTo component that allows long-range attacks with firearms and a Patrol
Soldier has a rifle and a gun, it does not have a silencer and thus the action will
not be successful, and consequently this BT is rejected.

Then is the turn of the Hand To Hand Stealth Attack BT. In the same
way, when validating Hand To Hand Stealth Attack before its execution,
the system detects that the Stab action cannot be carried out by the NPC. In this
case, the failure returned by the Stab action is because the NPC does not have a
sharp arm like a knife. The failure is propagated to the sequence node; however, in
this case, the failure is not propagated further on because the static priority list node
has another valid choice to execute: the Break The Neck action.

Consequently, the Hand To Hand Stealth Attack BT is the behaviour
returned due to the fact that it is the most similar behaviour to the query that can
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be executed by the NPC. Once the retrieval process has ended, the execution of
the original BT continues in the query node of the original BT and it executes the
recovered Hand To Hand Stealth Attack BT in a transparent way.

6 Conclusions

BTs are a great tool for design AI game behaviour because they have an easy
graphical representation and promote reuse of complete or partial BTs based on
their hierarchical nature. Unfortunately, they intrinsically include some program-
ming concepts that provide them with the expressive power of a general purpose
programming language, making them difficult to understand for non-technical de-
signers. As a consequence, BTs are mainly used by programmers, who draw the
behaviours instead of just writing down in some concrete programming language.
Designers are, usually, in charge of very high-level BTs, with just a few nodes that
are easy to create and debug. They are built putting together more complex BTs cre-
ated by programmers; so designers must have an easy access to the library of BTs
where all the BTs created for the game team are stored.

This can be, in fact, quite complex. At the end of the game developing cycle,
the team can have produced a quite high amount of BTs, where designers (and also
programmers) must dive into in order to look for concrete behaviours while creating
new ones. Some kind of automatic search is welcome in the BT library to alleviate
the time spent while looking for BTs. In this chapter, we have presented a tool for
BT design that includes such a feature, using CBR techniques to retrieve the more
adecuate BTs [4].

On the other hand, as was stated in this chapter, during game production AI de-
signers create BTs mixing the basic behaviours with aggregation in BTs. At the same
time, developers create new basic behaviours depending on the ongoing necessities
(the Stealth attack of our example would be one of them). As a result, de-
signers will have more basic behaviours to play with at the end of the production,
and the last created BTs will be richer than the first ones.

The ad hoc solution for this consistent problem is to revise the older BTs for
detecting whether they could be improved using the more recent basic behaviours
created by the development team. Unfortunately, this revision effort needs a lot of
time and should be performed during all the game production timeline.

Using our query nodes [5], on the contrary, old BTs are automatically benefited
from new behaviours if they are correctly stored and annotated in the case base. The
example has shown that, when using our technique in the Attack node, no revision
is needed if a new Stealth Attack behaviour is developed.

The main advantage of our proposal is that the number of basic behaviours can
grow throughout the game development and, even so, be quite sure that they will be
used in older complex behaviours. Having this confidence when using static BTs re-
quires a manual revision of the previous developed BTs, something only affordable
if the number of added behaviours is kept low. Consequently, our proposal provides
a better scalability for the growth of basic behaviours.
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As a welcomed secondary effect, and due to the fact that the query nodes take
into account all the basic behaviours in the case base, BTs using them could pro-
vide richer behaviours with no design effort. The manual alternative would require
the substitution of our query node with a priority list (as in the example) with all
the available basic behaviours. Again, this becomes impractical, demonstrating that
query nodes provide a better scalability also in the number of basic behaviours con-
sidered at run-time.

Unfortunately, all these advantages do not come for free. The cost for this saving
is, obviously, categorizing each new basic behaviour for the query node to recover
it in the correct moments. Behaviour and entities ontologies (the vocabulary for
describing our cases) must also be created, although they could be reused between
projects (after all, reuse is one of the goals of ontologies).

At run-time, our query node will spend more time the first time for extracting
the appropriate basic behaviour if comparing with a priority list. But, due to the re-
query attribute in the query node, we avoid spending time every AI cycle to change
the first election, something that priority lists do not do. On the other hand, debug
behaviours using our query nodes will be a bit more complex due to the new uncer-
tainty ingredient added to the behaviour selection. This problem can, in fact, be seen
as an advantage, because some emergent behaviour usually is considered to provide
game variability.
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Game AI for Domination Games

Chad Hogg, Stephen Lee-Urban, Héctor Muñoz-Avila, Bryan Auslander,
and Megan Smith

Abstract In this chapter, we present an overview of several techniques we have
studied over the years to build game AI for domination games. Domination is a game
style in which teams compete for control of map locations and has been very popular
over the years. Due to the rules of the games, good performance is mostly dependent
on overall strategy rather than the skill of individual team members. Hence, this
makes domination games an ideal testbed to study game AI.

1 Introduction

Domination is a game style in which teams of players compete to control certain
locations on a map called domination points within a real-time environment. Specif-
ically, a domination point is controlled by the team whose player last stepped on
it. Each second the teams earn points for each of the domination points that they
currently control and have controlled for all of some preceding time window. In
addition to moving around on the map, players are able to engage in combat with
players from the opposite team when they are nearby. A player who is killed in
combat respawns at a point randomly selected from a set of pre-determined spawn
points on the map. In the meantime, the player who killed them may be able to take
advantage of this to gain control of a domination point that the killed player had
been defending.

Domination games have been used, either exclusively or as an option, in a variety
of game genres, including first-person shooters (e.g., Half-Life�, Call of Duty�),
role-playing games (e.g., World of Warcraft�), and third-person shooters (e.g.,
Gears of War 2�). In addition, many other games that do not perfectly fit the dom-
ination model have similar characteristics. For example, Counter-Strike�, which
is among the most popular multiplayer games ever released, also consists of two
teams competing in a real-time environment in which strategic control of certain
locations (such as bomb sites and hostage drop-offs) is vital to success.
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Although an individual player who is highly skilled in combat gives his team
a definite advantage, this is much less true than in other game types where, for
example, points are awarded for each kill. Instead, team-based strategy is of high
importance in these games. Although no player has control over the actions of his
teammates, many of these games have built-in communication systems to allow
players to devise and execute specific strategies with their teammates. We suspect
that the team-oriented nature of these games is a primary reason for their enduring
success, and it also makes them an excellent testbed for AI development.

In addition, domination games can generally be classified as having the following
properties: Domination games are non-deterministic; success in combat requires
both skill and luck, and it is not possible to predict whether or not a player will
successfully reach his objective. Domination games are also adversarial; two or
more teams compete to control the domination points. Finally, domination games
are imperfect information games; a team only knows the locations of those opponent
players that are within the range of view of one of the team’s own players. These
conditions make domination games a good testbed for evaluating algorithms that
integrate planning and execution.

We refer to individual players who are not human-controlled as bots. The purpose
of our research is not to improve the combat performance of individual bots, and
so we use the same Finite State Machine-based bot logic for all of our computer-
controlled players. Our interest is in the overarching strategies that teams of bots
pursue.

Over the years, we have devised several methods that integrate planning and
execution for selecting a team’s strategy in domination games. Table 1 shows a
summary of the three algorithms that we will discuss in this chapter: HTNBOTS,
RETALIATE, and CBRETALITE. HTNBOTS uses hierarchical task network (HTN)
representation techniques to generate new plans [3]. It monitors the current situa-
tion in the game; when the circumstances change, it generates new plans on the fly.
RETALIATE uses reinforcement learning (RL) techniques; it uses a Q-learning al-
gorithm to find policies that represent competent ways to play the game [16]. The
third system is CBRETALITE [1]. CBRETALITE is built on top of RETALIATE; it
stores and retrieves a library of policies, which are reused by the RL algorithm from
RETALIATE.

We have conducted a study that compares these three approaches. In this chapter,
we report on the architectures of these three systems and comparisons among the
knowledge requirements and performance results of the three systems.

Table 1 Three systems for
playing domination games

Game AI Description

HTNBOTS Replanning algorithm. Uses HTN
planning techniques to generate
plans on-the-fly

RETALIATE Generates policies that adapt to the
opponent using RL techniques

CBRETALITE Stores and reuses policies
generated by RETALIATE
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2 DOM: A Generic Domination Game Environment

Our initial experiments with each of our three systems used the commercially avail-
able game Unreal Tournament� as the simulation environment. While this simulator
provides a useful API for controlling teams of bots, we found that a number of fac-
tors made it difficult to perform large-scale experiments and extract useful data from
them.

Instead, we built a game environment, called DOM, which captures the essence
of domination games [1]. The basic rules in DOM are the following: Each time a
bot on team t passes over a domination point, and that point will belong to t. Team t
receives one point for every five game ticks that it owns a domination point. Teams
compete to be the first to earn a predefined number of points. No awards are given for
killing an opponent team’s bot, which respawns immediately in a location selected
randomly from a set of map locations, and then continues to play. A location is
captured by a team whenever one of its bots moves on top of the location, and within
the next five game ticks no bot from another team moves on top of that location.

The total number of possible states in the game is at least O(2×1034), assuming a
standard map of 70×70 cells, four domination locations, and three bots per team [2].
It would be infeasible for our agents to reason in such a complicated world; so we
have used an abstraction of states and actions that was first described in the work on
RETALIATE [16]. In the abstracted description of the world, the current state consists
only of the ownership of each domination point; each point is either owned by one
of the teams or is unowned at any point in time. Thus, for an environment with d
domination points and t teams, the total number of possible states is dt+1. We also
abstract away the possible actions of the bots. In this abstraction, each action states
only to which domination location each of the bots on a team should go. Thus,
for an environment with d domination points and b bots per team, the number of
actions available to a team is bd . The details of how a bot moves from one location
to another are strictly determined by a shortest-path algorithm.

3 The Game AI Systems

We briefly summarize each of the three algorithms we investigated that integrate
planning and execution for playing DOM. Each of the algorithms focus on control-
ling which domination locations team-member bots are sent to. Consequently, the
behavior of the individual bots can be pre-determined by a standard FSM. Our algo-
rithms do not make a priori assumptions about what that behavior is, which allows
bots to be used as plug-ins. In principle, this allows the design decisions for the
team AI to be made independently of the design decisions relating to the control of
individual bot behavior. Similarly, using bots as plug-ins, the game developer can
swap different bot types in and out of the game, and even use bots developed for
single-player non-team modes in multi-player games. For further details of these
algorithms, please see the references.
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3.1 HTNBOTS

HTNBOTS is a dynamic replanning algorithm that uses HTN planning techniques
to generate plans [3, 8]. HTN planning proceeds by decomposing high-level tasks
such as win domination game into simpler tasks such as send bot b1 to location L1.
There are two kinds of tasks: compound and primitive. Compound tasks, such as win
domination game, can be further decomposed into subtasks whereas primitive tasks
cannot. The primitive tasks denote concrete actions, such as send bot b1 to location
L1. Each level in an HTN adds detail on how to achieve the high-level tasks. The
sequencing of the leaves in a fully expanded HTN yields the plan for achieving the
high-level tasks.

3.1.1 Planning Knowledge in HTNBOTS

HTN planners require that the planning knowledge be provided in the form of meth-
ods and operators. A method encodes how to achieve a compound task and consists
of three elements:

• Head: The task being achieved, called the head of the method.
• Preconditions: The set of preconditions indicating the conditions that must be

fulfilled for the method to be applicable.
• Subtasks: The subtasks needed to achieve the head.

Table 2 shows an example of a method (?<string> indicates that <string> is a
variable). The task that this method achieves is that team T gains control of locations
?L1 and ?L2. This method is applicable when the variables ?L1 and ?L2 refer to
domination locations and the variables ?bot1, ?bot2, and ?bot3 refer to distinct bots
on team T . The method accomplishes its head by ordering one of the bots to go to
location ?L1, another to go to location ?L2, and the third to patrol between those
two locations.

Table 2 Example method and operator in HTNBOTS

Method Operator

Head: Control2Locations(T , ?L1, ?L2) Head: sendBot(b, ?LD)
Preconditions: Preconditions:

domLocation(?L1) botLocation(b, ?LC)
domLocation(?L2) Effects:
teamMember(?bot1, T ) ¬ botLocation(?b, ?LC)
teamMember(?bot2, T ) botLocation(?b, ?LD)
teamMember(?bot3, T )
different(?bot1, ?bot2, ?bot3)

Subtasks:
sendBot(?bot1, ?L1)
sendBot(?bot2, ?L2)
patrol(?bot3, ?L1, ?L2)
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Operators define valid actions in the domain. An operator consists of:

• Head: The primitive task that the operator accomplishes.
• Preconditions: The conditions that must be true for the operator to be applicable.
• Effects: How the current situation changes as a result of applying the operator.

Table 2 also shows an example of an operator. This operator sends a bot b to
a location ?LD. The operator is applicable when bot b is at location ?LC. After
successful execution of the operator, bot b will no longer be in location ?LC, and
will instead be in location ?LD. The preconditions and effects of operators allow
the planner to construct a plan that will achieve the primitive task if the action
is executed successfully. Because these plans are executed in a nondeterministic
environment, this is not always the case.

3.1.2 HTN Planning in HTNBOTS

The following are the steps performed by HTNBOTS to decompose a compound
task, t:

1. M← select all methods whose head matches t
2. m← select a method from M that is applicable
3. decompose t with the subtasks of m

For selecting an applicable method, m, HTNBOTS checks whether the precondi-
tions are valid in the current state of the game world. This is accomplished through
a communication protocol between HTNBOTS and the game engine. For example,
for the method shown in Table 2, each of its six preconditions must be fulfilled in
the game world, which will also result in the variables being instantiated to concrete
objects in the game world. If the method is used, then it will decompose the task
Control2Locations (T , ?L1, ?L2) (with proper instantiation of the variables) into the
three subtasks indicated in the method.

The three steps above are repeated recursively for each compound task in the
subtasks of m until a primitive task is reached. For achieving a primitive task,
HTNBOTS performs the following steps:

1. O← select all operators whose head matches t
2. o← select an operator from O that is applicable
3. Execute action for operator o

Once again the communication protocol is used to determine whether an opera-
tor is applicable by checking whether the operator’s preconditions are valid in the
current state of the game world. The communication protocol is also used to execute
the action indicated by the operator. An action is a ground instance of an operator.
That is, the operator’s variables are instantiated with objects (the particular objects
are identified by the game engine when determining whether the operator is appli-
cable). The game engine has code for executing actions. For example, if the action
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is sendBot(b33, L77), then the game engine will compute a path from the current
location of bot b33 to location L77. The code for executing the action will also
determine what to do in in-game situations such as encountering an opponent.

3.1.3 Plan Execution

In HTNBOTS each action indicates a concrete activity to be executed by one bot.
As a result, HTNBOTS can execute actions in parallel if these are performed by dif-
ferent bots. Once the plan is generated, HTNBOTS will start executing each action
in the order indicated by the plan. The following steps are performed for each action
a in the plan:

1. Check whether the bot b assigned for performing a is performing another action;
if not then execute a.

2. If b is performing another action, then wait until b is done, and then execute a.

These steps ensure consistency in the execution of the plan. On the other hand,
they might unnecessarily delay the executions of other actions (e.g., those actions
to be performed by other bots that occur later in the plan). More sophisticated ex-
ecution control could be implemented (e.g., if a latter action is not dependent on a
currently delayed action, it could be executed).

When a plan is executed, HTNBOTS keeps constant track of the preconditions
of the method decomposing the top-level task (i.e., to win a domination game). If
a percentage of these preconditions that are no longer valid is greater than a prede-
fined threshold, a new plan is generated and executed. The rationale is that we only
want to change the plan if enough conditions in the game have changed making
it necessary to adapt to these changes. Typically methods decomposing the top-
level tasks have preconditions about ownership of the domination locations, and the
method indicates strategies for dealing with those situations. When domination loca-
tion ownership changes substantially, it makes sense to immediately generate a new
plan to adapt to the new situation. HTN plan generation in HTNBOTS is extremely
fast making this process seamlessly.

3.2 RETALIATE

We used RL to create RETALIATE which uses Q-learning [15] to acquire winning
strategies for games in DOM. Unlike some other forms of learning, RL does not
require annotated training examples to learn, nor does RL need an expert to provide
feedback to the learner. In RL, interaction with the world is the only way the agent
gains information: the agent (1) senses the state of the environment, (2) chooses
which action to take, (3) performs the action, and (4) receives a (scalar) reward or
punishment. Under the RL approach, time is spent crafting the representation of the
game state, called the “problem model” – that is, how the various complexities of
complete game states are abstracted into a simpler form that RL can use. This is
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typically significantly easier than manually designing and implementing strategies
in complete symbolic representations, such as HTNBOTS . The problem model used
by RETALIATE is presented in Sect. 3.2.2.

In this section, we first briefly describe RL in general and Q-learning in particular.
Next, we present the way in which we modeled the states and actions of DOM to
increase the efficiency of our application of the Q-learning process. This section is
concluded with the RETALIATE algorithm.

3.2.1 Reinforcement Learning

RL is a form of machine learning where an agent or team of agents learns a policy –
what action to select in every perceived world state – in a potentially stochastic
environment. The goal in RL is to arrive at an optimal policy which is the one
that maximizes the rewards received, through a process of trial and error. For an
overview of RL in general, see [15].

The purpose of RL algorithms is to find a policy π that maximizes the sum of
the returned rewards. A policy π is a mapping from states to actions indicating for
each state s, the action π(s) that should be chosen. This mapping is calculated using
the rewards received from previous action selections in states already visited. Each
state-action value is a representation of the expected future rewards of taking s in a,
and assumes that policy π is used for all subsequent action selections. Rewards are
obtained from the environment as a result of the agent’s actions and are measured as
U(s′)−U(s), the difference between the utilities of the current state s and the next
state s′ that will be reached after executing an action. In Sect. 3.2.2, we present our
definition of the utility and reward functions for use of the RETALIATE algorithm
in DOM.

In RL, including Q-learning, the choice of which action to take in state s, that is
π(s), involves the use of estimates of the expected value of taking each action in ev-
ery possible game state. These estimates are derived from the rewards received after
taking a selected action in a given state. There exist multiple ways for keeping track
of the estimates, and in Q-learning the most straightforward approach is to maintain
a “Q-table” that associates with each (state,action) pair the estimated value Q(s,a)
of the pair, called the “Q-value”. The value of the reward, R, is used to perform an
update on the Q-table entry Q(s,a) for the previous state s in which the last action a
was ordered. The Q-table approach is only feasible when the number of states and
actions in the problem model is limited, not only because the table size can become
very large otherwise (the size of the table is the number of states multiplied by the
number of actions), but also because the amount of learning cycles required to arrive
at an accurate estimate of the Q-value grows with the number of state-action pairs.

The update on the Q-table entry Q(s,a) for the previous state s in which the last
action a was executed is computed according to the following formula, which is
standard for updating the entries in a Q-table in temporal difference learning:

Q(s,a) = Q(s,a)+ α{R + γ ∗ argmax
a′

[Q(s′,a′)−Q(s,a)]} (1)
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In this computation, the Q-value in the Q-table for the action a that was just taken
in state s, Q(s,a) is updated. The function argmax returns the value from the Q-table
of the best team action that can be performed in the new state, s′, which is simply
the highest value associated with s′ in the table for any a′. The value of γ , which
is called the discount-rate parameter, adjusts the importance of future rewards in
making current decisions.

In order to safeguard against creating Q-values (and therefore policies) that are
stuck in a local optimum, action selection is often performed using an “ε-greedy
strategy”; rather than always executing the action of highest estimated value in a
given state, when the system is in state s, with a probability of 1− ε , it selects the
action a with the highest Q(s,a), and with a probability ε it selects a random action.
The policy π used by a Q-learning agent in this case is therefore the combination of
ε-greedy action selection with a Q-table.

3.2.2 Problem Model: Definition of States and Actions

When deciding upon the problem model to use in RL, one must consider the es-
sential features of the problem being addressed. For example, while the amount
of ammunition remaining is important for an individual team member, the overall
team’s strategy might safely ignore this detail. A problem model that takes into con-
sideration too many features of the game state can lead to a learning problem that
is very difficult, or impossible, for the system to solve in a reasonable amount of
time. Similarly, an overly simplified problem model leads to a system that does not
play very well, or one that has very limited capabilities. The trick is to model the
problem in such a way that learning can happen quickly, while simultaneously being
rich enough to support a range of interesting behaviors.

In RETALIATE, game states are represented in the problem model as a tuple
indicating the owner Oi of the domination location i. For instance, if there are
three domination locations, the state (E,F,F) describes the state where the first
domination location is owned by the enemy and the other two domination loca-
tions are owned by our friendly team. Neutral ownership of a domination location
is also considered and is represented by an N in the relevant location in the tu-
ple. For three domination locations and two teams, there are 27 unique states of
the game, taking into account that domination locations are initially not owned by
either team.

The addition of other parameters was considered to increase the information con-
tained in each state. The additional information slowed the RETALIATE learning
process considerably, reduced the effectiveness of the RL team, and ultimately was
not worth the additional computational cost. In contrast, not only did the simpler
definition greatly reduce size of the state space, leading to more rapid learning, but,
as our result show, it also contained sufficient information to develop a winning pol-
icy. The separation of parameters – those used to define team tactics versus those
used for individual behavior – is one of the central qualities of RETALIATE.
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In RETALIATE, states are associated with a set of team actions. A team action
is defined as a tuple indicating the individual action Ai that bot i takes – for a team
of three bots, a team action tuple consists of three individual actions. An individual
action specifies to which domination location a bot should move. For example, in
the team action (Loc1,Loc2,Loc3), the three individual actions send bot1 to dom-
ination location 1, bot2 to domination location 2, and bot3 to domination location
3, whereas in (Loc1,Loc1,Loc1), the individual actions send all three bots to dom-
ination location 1. If a bot is already in a location that it is told to move to, the
action is interpreted as instructing the bot to stay where it is. Individual bot actions
are executed in parallel and, for a game with three domination locations and three
bots, there are 27 unique team actions because each bot can be sent to three different
locations. The Q-table therefore contains 27×27 = 729 Q-value entries.

Despite the simplicity in the representation of our problem model, it not only
proves effective but it actually mimics how human teams play domination games.
The most common error of novice players in this kind of game is to fight opponents
in locations other than the domination ones; these fights should be avoided because
they generally do not contribute to victories in these kinds of games. Part of the
reason for that is that if a player is killed away from a domination location, it will
not have a direct effect on ownership and hence will not have an effect on the score.
Consequently, it is common for human teams to focus on coordinating to which
domination points each team member should go, and this is precisely the kind of
behavior that our problem model represents.

3.2.3 The RETALIATE Algorithm

Algorithm 1 presents pseudocode for the RETALIATE online learning algorithm.
RETALIATE is designed to run across multiple game instances so that the policy,
and therefore the RETALIATE -controlled team, can adapt continuously to changes
in the environment while keeping track of what was learned in previous games.

Algorithm 1 RETALIATE(Qt)
1: Input: Q-Table Qt

2: Output: updated Q-table
3: ε is 0.1, α is 0.2, γ is 1.0, and state sprev is maintained internally
4: if rand(0,1) > ε then {epsilon greedy selection}
5: action a← applicable action with max value in Q-table
6: else
7: action a← random applicable action from Q-table
8: end if
9: state snow← Execute(a)

10: reward R←U(snow)−U(sprev)
11: Qt(sprev ,a)← Qt(sprev,a)+α(R+ γmaxa′Qt(snow,a′)−Qt(sprev,a))
12: sprev← snow
13: return Qt
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These changes can include changes in our own players (e.g., different type of bot),
changes in the opponent team (e.g., changes of tactics), and changes in the game
world (e.g., a new map).

RETALIATE is controlled by three Q-learning parameters: the “epsilon-greedy”
parameter ε , which controls the tradeoff between exploration and exploitation by
setting the rate at which the algorithm selects a random action rather than the one
that is expected to perform best, the “step-size” parameter α , which influences the
rate of learning, and the “step-size” parameter γ , which determines the present value
of future rewards. For our empirical evaluations, we found that setting ε to 0.1 and α
to 0.2 works well. RETALIATE diverges from the traditional discounting of rewards
by setting γ equal to one so that possible future rewards were as important as in
selecting the current action as immediate rewards. Initially, we set γ < 1 to place an
emphasis on immediate rewards but found that the rate of adaptation of RETALIATE

was slower than when γ was set to one.
RETALIATE starts by either initializing all entries in the Q-table with a default

value, which was 0.5 in our case study, or restoring the Q-table from the previous
game. The game is then started, and the game state representation sprev is initialized
to each domination location having neutral ownership (N,N,N).

The following computations are iterated through until the current game is over.
First, the next team action to execute, a, is selected using the epsilon-greedy
parameter; this means that a random team action is chosen with probability ε , or the
team action with the maximum value in the Q-table for state s is selected with prob-
ability 1− ε . By stochastically selecting actions, we ensure that there is a chance
of trying new actions, or trying actions whose values are less than the current max-
imum in the Q-table. This is important to ensure that RL experiments with a wide
range of behaviors before deciding which is optimal.

The selected action a is then executed, and the resulting state, snow, is observed.
Each bot can either succeed in accomplishing its individual action or fail (e.g., the
bot is killed before it could reach its destination). Either way, executing a team action
takes only a few seconds because the individual actions are executed in parallel.
Updates to the Q-table occur when either the individual actions have completed
(whether successfully or unsuccessfully), or domination location ownership changes
because of the actions of the opposing team.

Next, the reward R for taking a in sprev is computed as the difference between
the utilities in the new state snow and the previous state sprev. The reward function,
which determines the scale of a reward, is computed as R = U(snow)−U(sprev).
Specifically, the utility of a state s is defined by the function U(s) = F(s)−E(s),
where F(s) is the number of friendly domination locations and E(s) is the number
of enemy-controlled domination locations. For example, relative to team A, a state
in which team A owns two domination locations and team B owns one domination
location has a higher utility than a state in which team A owns only one domination
location and team B owns two.

Finally, the Q-value Qt(sprev,a) for taking action a in state sprev is used in the
standard Q-table update function presented in (1). Having completed the current
update, the new state snow is backed up in variable sprev for the next update, and the
modified Q-table is returned.
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3.3 CBRETALITE

One of the limitations of RL agents in general and RETALIATE in particular is that
the process of converging to an optimal policy may be slow. Worse, when the sit-
uation changes in a way that is not reflected directly in the states observed by the
agent, a policy that was previously optimal may no longer be a good choice, and
the slow process of finding an optimal policy for the new problem must begin. This
is a result of the trial-and-error process by which RL agents incrementally update
their policies based on experience. It is possible to fine-tune the parameters of the
Q-learning algorithm to adapt very quickly to changing conditions, but this has its
own tradeoffs.

Instead, we developed a new system, CBRETALITE, that applies case-based rea-
soning (CBR) techniques to RETALIATE. The CBRETALITE system stores a library
of cases, each of which contains a winning policy and the conditions under which
that policy was learned. When the current policy is highly ineffective, the system
searches for a case that matches the current situation and begins using the policy
from that case. As a result, it is able to quickly change its strategy to counter the
different strategies of a dynamic opponent.

3.3.1 Case-Based Reasoning

CBR is a general problem-solving strategy in which new scenarios are compared
with problems that were previously solved, and a successful solution to a previous
problem that is similar to the current scenario is adapted to solve the current prob-
lem. The knowledge artifacts that store information about previous problem-solving
episodes are called cases, and typically consist of two components: a representation
of the problem that was solved and a representation of the successful solution to the
problem. A widely used model of CBR includes four steps: Retrieve, Reuse, Revise,
and Retain.

In the Retrieve step, the system searches for one or more cases in its case library
that have a problem that is similar to the current problem. In the Reuse step, a solu-
tion to the current problem is produced, either as a direct copy of the solution from a
retrieved case, or adapted to take into account the differences there may be between
the problem in the case and the current case. In the Revise step, the system updates
its knowledge base as a result of the success or failure of the attempt to solve the
current problem with the solution generated in the Reuse step. In the Retain step,
a new case is inserted into the case library. This consists of a problem that was re-
cently solved as well as the solution to that problem. This solution may have been
generated from scratch, provided by a tutor, or produced from an existing case. Ad-
vanced CBR-based system may also have a feature to manage the case library, such
as by removing redundant cases.
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3.3.2 CBR in CBRETALITE

In CBRETALITE, the solution part of each case is a Q-table, as learned by
RETALIATE. The problem representation consists of a set of features describing
the current game situation, which are not part of the state representation used within
the Q-learning algorithm.

When a DOM game begins, there is very limited information available, but
CBRETALITE selects a case based on what it does know. The Q-table from that
case is used to make decisions during the game and is updated using the Q-learning
algorithm exactly as in RETALIATE. After a certain time window, CBRETALITE de-
termines whether or not it has recently been successful, based on the rate at which
each team’s score has been changing.

If it has been highly successful, a new case is created and added to the case
library. The problem section of this new case consists of the values of the relevant
features at this time. The solution section of this new case consists of the Q-table
that the agent is currently using, which is likely to have been updated somewhat in
the time since it was copied from an existing case.

If CBRETALITE has been very unsuccessful, it will abandon the current Q-table
and instead search for a case in the case library that is similar to the current situation
and begin using its Q-table. If there is no case sufficiently similar to the current
situation, or if CBRETALITE is neither winning nor losing by a significant margin,
then it will neither store nor retrieve a case, but will continue using and updating its
current Q-table.

If CBRETALITE has a new case to store and finds that there is already a case in
the library with a very similar problem, it will compare how successful the agent
was when each of the two cases was created, and will retain only the one with the
Q-table that gave the agent the most success.

3.3.3 Features and Similarity

The representation of the problem used in the case library consists of several features
that, based on observation and trial-and-error, seemed likely to correlate highly with
the effectiveness of different strategies. Specifically, CBRETALITE uses the follow-
ing features:

• Team Size: The number of bots on each team.
• Team Score: The current score of each team.
• Bot Distance: The distance between each bot in the game and each domination

location.
• Ownership: The fraction of time over a rolling time window in which each dom-

ination location was owned by each of the teams.

To compute the level of similarity between one problem and another, CBRE-
TALITE uses a local similarity metric for each feature type and a global similarity
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metric that aggregates the values of each local similarity metric. Local similarities
are valued between zero and one and are computed by matching sensory readings
from a time window within the current game world with those stored in the case.
The value of the aggregate is simply the sum of the local similarity for each feature,
divided by the number of features.

The Team Size feature type records the number of bots on a team. Teams are
assumed to be of equal size; however, this assumption could be dropped using a
feature for each team. If x is the size of the team in the current game and y is the
team size from a case, SimTsize(x,y) is equal to one when x = y and zero otherwise.

The Team Score feature type records the score of each team. Hence, if x is the
score of team A in the current game and y is the score of team B from a case, then
the similarity is computed by SimTScore(x,y) = 1− (|x− y|/SCORE_LIMIT ). The
constant SCORE_LIMIT is the score to which games are played. In our case-base,
team A is always CBRETALITE and team B is the opponent.

The next feature type, Bot Distance, uses the Euclidian distance of each bot
to each domination location to compute similarity. That is, each case contains,
for each opponent bot b and for each domination location l, the absolute value
of the Euclidian distance from b to l. Specifically, if x is the Euclidian distance
of b to l in the current game and y the analogous distance from the case, then
SimDist(x,y) = 1− (|x− y|/MAX_DIST). The constant MAX_DIST is the maxi-
mum Euclidian distance any two points can be in a map. With an opposing teams
of size 3 and a map with 3 domination locations, there are 3×3 = 9 of elements of
this feature.

The final category of feature, Ownership, uses the fraction of time each team t has
owned each domination location l during the time window δ to compute similarity.
So, if x is the fraction of time t has controlled l in the current game and y is the
analogous fraction from the case, then SimOwn(x,y) = 1− |x− y|. With two teams
and three domination locations, this category has a total of six elements.

4 Knowledge Representation Requirements

The three agents have some common requirements: an API that allows them to
sense information from the game world and sends commands to execute in the game
world. All agents require a representation of the potential states of the world. The
details of the representation vary from agent to agent but basically the state contains
information about (1) which team owns each location, (2) where are the bots located,
and (3) the score of the game. The agents also require information about the actions
that the bots can make. This is basically a state-transition function S×A→ S that
indicates for each state s and action a what next state will be reached if a is taken
in s. Aside from these common requirements, some comparisons about each agent’s
knowledge representation requirements can be made (Table 3 summarizes the three
systems).
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Table 3 Knowledge
requirements of systems

Game AI Description

HTNBOTS Action transition model represented
as operators and HTN methods

RETALIATE Action transition model
CBRETALITE Action transition model, features for

the cases, similarity metric

4.1 HTNBOTS Has the Largest Knowledge Engineering Effort

HTNBOTS uses the SHOP HTN planning algorithm [10]. SHOP uses a domain-
independent algorithm to generate plans that are then executed as outlined in
Sect. 3.1. In order to use SHOP, methods and operators must be provided. As ex-
plained in Sect. 3.1, methods encode how to achieve a compound task, whereas
operators define valid actions in the domain, and methods provide knowledge about
how to combine the actions to solve problems in the domain (Table 2 shows an
example method and operator). A single operator can describe multiple transitions
using variables; every possible instantiation of variables into constants is one pos-
sible transition. Hence, the collection of all operators encodes the state transition
function, which as pointed out before is a common knowledge requirement for all
agents. Creating methods requires a deep understanding of the domain to understand
the ways in which problems can be solved. The difficulty of creating a list of meth-
ods to model completely a domain is a well-known limitation of HTN planning, and
research has been conducted aiming at learning this knowledge automatically from
a collection of sample plan traces [6, 17, 18].

4.2 RETALIATE Has the Lowest Knowledge Engineering Effort

RETALIATE only needs a state transition model (roughly equivalent to the operators
in HTN planning) as input. For example, the operator from Table 2 is represented as
multiple transitions of the form:

[s,sendbot(b,LD),s′] (2)

for every bot b and for every pair of states (s,s′) such that s is a state where b is in
LC and s′ is a state where b is in LD. There is no knowledge about how to combine
actions to solve problems because, as explained in Sect. 3.2, RETALIATE learns this
knowledge as policies using Q-learning.

4.3 CBRETALITE Has a Low Knowledge Engineering Effort

In addition to the state transition model of RETALIATE, CBRETALITE needs to
identify the features F that will be used to describe the problem section of cases.
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There are many possible features of the game world that could be used, and selecting
those that are most likely to contain useful information can be more of an art than a
science. Additionally, an appropriate local similarity metric for each feature must be
identified. Our global similarity metric is a weighted average of the local similarity
metrics used for each feature, and setting these weights to an appropriate value is
another knowledge engineering challenge.

To offset these burdens, we have also investigated a system to automate much
of knowledge engineering process [5]. In that work, we include a large number of
features and initially weight them all equally. Through an iterative process, we learn
new weights that accurately represent the usefulness of the individual features and
can remove those that have very low weights.

It is possible for a CBR system to be provided with a case library designed
by experts, which would substantially increase the knowledge engineering effort
required to use the system. While CBRETALITE will work with cases of any prove-
nance, we have only used cases that it learns through its own experience. Thus,
the case library is learned automatically and does not contribute to the knowledge
engineering burden.

5 Game Performance Comparisons

To test the performance of our AI agents, we pitted them against a variety of
hard-coded agents in the DOM game. The performance metric we used is the fi-
nal score of the agent minus the final score of the opponent. This performance was
measured in a variety of maps in a 3-bot versus 3-bot and 4-bot versus 4-bot set-
tings. To determine the effectiveness of learning algorithms, we typically played
several games against the same opponent sequentially, maintaining the knowledge
base between them. The opponents were ranked among three classes of teams:

• Easy-difficulty opponents. The team encodes a simplistic strategy that is easy to
counter.

• Medium-difficulty opponents. The team encodes a somewhat more difficult strat-
egy to counter.

• Hard-difficulty opponents. The team’s strategy is very difficult to counter.

This categorization was obtained through observation of multiple games across
different games. The individual behavior of each bot was controlled by the same
finite state machine; so this was not a factor for the difference in performance
among the teams. We further define opponent strategy as either dynamic or static;
dynamic opponents change their strategy over time while static opponents do not.
Table 4 presents a summary of the results. For details please refer to the individual
papers [1, 3, 7, 9, 16].

Some of the easy-difficulty opponents distributed bots among domination points
in a fixed, hard-coded strategy. Others intelligently selected a subset of domination
locations to contend for ordering one bot to defend each and any remaining bots to
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Table 4 Performance of the
three systems

Game AI Description

HTNBOTS Solid performance versus easy- and
medium-difficulty opponents. It loses
versus hard-difficulty opponents

RETALIATE Solid performance versus easy- and
medium-difficulty opponents. It wins
versus some of the hard-difficulty
opponents but loses to others

CBRETALITE Improves the performance of
RETALIATE against easy- and
medium-difficulty opponents.

patrol between them. Medium-difficulty opponents used more complex strategies,
such as always sending each bot to the unowned domination point that it is closest
to, if any such points exist, or distributing the bots evenly among the domination
points that it does not own, without using any to defend the points that it does own.
The hard-difficulty opponents used even more complex strategies or dynamically
selected among strategies based on the current situation.

5.1 HTNBOTS Has a Solid Performance Versus the Easy
and Medium Static Opponents

HTNBOTS was the first system we built to play DOM games. Initially we had a
relatively small set of opponents, which over time we found to be easy- and medium-
difficult opponents. Against these the initial knowledge base did well. As we added
more competent opponents over the years, the performance of HTNBOTS was poor
even against some of the more recent medium-difficulty opponents. This was the
result of lack of experience with the DOM game, which meant that the first encod-
ings we created were a bit naïve. Against the most difficult ones, the performance
of HTNBOTS is not as good as the other two agents. We also played HTNBOTS

against RETALIATE and CBRETALITE directly, and it was usually defeated. This
revealed some shortcomings in its knowledge base. Recently, the knowledge base
of HTNBOTS went through a major overhaul, resulting in significant performance
improvement [7, 9]. It now solidly beats all easy- and medium-difficulty opponents
from our latest testbed. It is still outperformed by RETALIATE and CBRETALITE

when competing versus the most difficult opponents. We believe that further im-
provements are attainable by modifying the existing HTN methods.

Over time, RETALIATE achieves a solid performance versus the easy- and
medium- static opponents, versus dynamic opponents, and versus some of the most
difficult opponents.

RETALIATE was the second game agent we created to play DOM games, and we
benefitted from our experiences with HTNBOTS. In particular, we identified a small
number of features, such as ownership of the domination locations, that are crucial
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representatives of the state of the game world. Against easy-difficulty opponents,
RETALIATE quickly achieves a good performance (typically very early in the first
game). Against medium-difficulty opponents, it will learn a winning policy within
the first half of the game. Against some of the difficult opponents, it will still learn a
winning policy within the first game. However, against others of the hard-difficulty
opponents, it does not seem to be able to converge to a winning policy. We be-
lieve that the main factor for this latter behavior is that the current set of features
selected is not sufficient to capture all necessary conditions that would allow RE-
TALIATE to counter the strategies of these very difficult opponents. Nevertheless,
it is remarkable that RETALIATE is able to learn a winning policy versus most op-
ponents within one game. We also tested RETALIATE versus dynamic opponents
(i.e., opponents that change their strategy over time), and it was able to adapt versus
these opponents as well.

5.2 CBRETALITE Improves the Performance Over RETALIATE

on Easy- and Medium-Difficulty Opponents

CBRETALITE was conceived with the idea of improving on the shortcomings
of RETALIATE. Specifically, we expected it to find a winning policy faster than
RETALIATE by short-circuiting the RL process in that it would immediately retrieve
a “good” policy from the case library and, hence, void the need for RETALIATE to
find a winning policy from scratch. For most of the easy- and medium-difficulty op-
ponents, CBRETALITE was able to find a winning policy quicker than RETALIATE.
This was less so versus the more difficult opponents. In some cases, it was able to
improve on RETALIATE but the difference between the two was not statistically sig-
nificant. We believe that the reason for these results is the same as the reason why
RETALIATE cannot converge to a winning policy versus some of the hard opponents.
Namely, that there are not enough features represented in the state to identify cer-
tain situations in the game world where taking one action over another one would be
desirable. Still, we found the results promising as CBR helps to address one of the
most significant shortcomings of RL by reducing the time the RL algorithm takes to
converge to a winning policy.

6 Final Remarks

Game AI has received a lot of attention over recent years. There have been a
number of works showcasing the use of AI techniques such as RL, planning, and
CBR. With very few exceptions, including the Bridge Baron� and F.E.A.R.� sys-
tems, both of which use AI planning techniques [11, 13], there have been very few
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fielded applications of these techniques into modern commercial games. Our work
showcases some of these difficulties:

• Difficulty in creating the knowledge bases. Developing competent players us-
ing deliberative reasoning such as HTN planning can require a significant effort
to create the knowledge bases. This is consistent with observations about using
HTN planning in other domains.

• Time to generate competent policies. Learning algorithms such as RL require
some time until they converge to competent policies.

At the same time our study points to some promising capabilities. The crucial
point is that game researchers have pointed out the need to create competitive AI
rather than the most perfect possible one [12,14]. The goal for common commercial
game applications is, after all, not to create an AI that will become unbeatable for
a human player but one that is competitive for an average player. With this goal in
mind, our study points to the following possibilities:

• Capability to create competent AI. It is feasible to create good AI with deliber-
ative reasoning techniques such as HTN planning. In fact our experiments show
that even the first, somewhat naïve version of the knowledge base could beat
all easy-difficulty and some of the medium-difficulty opponents. Further work
was sufficient to create a competitive version that could only be beaten by the
hard-difficulty opponents.

• Capability to learn competent AI. It is feasible to learn good AI within reasonable
time. Albeit it requires a careful analysis of the features of the state of the game
to identify a small subset of these features that is sufficient to guarantee good
performance. In addition, CBR can further improve the speed upon which good
performance is achieved by skipping several trial-and-error iterations.

For future work, the results of our study points toward an intriguing direction:
deliberative AI such as HTN planning could be combined with learning techniques
such as combining CBR and RL techniques to attain competent Game AI. Each
could be used to address the shortcomings of the other one. HTN planning can start
with somewhat competent game AI. This will reduce the knowledge engineering
effort compared to creating a knowledge base that is fully competent. At the same
time, it guarantees a minimum performance level from the outset of the game unlike
RL. Using learning techniques one could improve the knowledge base to fill it with
newly discovered strategies that the learning algorithm finds while playing. This
would address the shortcoming of HTN planning where the initial knowledge base
may encode some flawed strategies. There is a challenge with this direction, which
is how to combine the symbolic plan generation process of HTN planning with the
stochastic mechanism of RL. In recent work [4], we have begun initial work toward
this combination.
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Case-Based Reasoning and User-Generated
Artificial Intelligence for Real-Time
Strategy Games

Santiago Ontañón and Ashwin Ram

Abstract Creating artificial intelligence (AI) for complex computer games requires
a great deal of technical knowledge as well as engineering effort on the part of
game developers. This chapter focuses on techniques that enable end-users to cre-
ate AI for games without requiring technical knowledge using case-based reasoning
(CBR) techniques. AI creation for computer games typically involves two steps: (a)
generating a first version of the AI, and (b) debugging and adapting it via exper-
imentation. We will use the domain of real-time strategy games to illustrate how
CBR can address both steps.

1 Introduction

Over the last 30 years computer games have become much more complex, offering
incredibly realistic simulations of the real world. As the realism of the virtual worlds
that these games simulate improves, players also expect the characters inhabiting
these worlds to behave in a more realistic way. Thus, game developers are increas-
ingly focusing on developing the intelligence of these characters. However, creating
artificial intelligence (AI) for modern computer games is both a theoretical and en-
gineering challenge. For this reason, it is hard for end-users to customize the AI of
games in the same way they currently customize graphics, sound, maps, or avatars.

This chapter focuses on techniques to achieve user-generated AI, i.e., on tech-
niques which would enable end-users to author AI for games. This is a complex
task, since modern computer games are very complex. For example, real-time strat-
egy (RTS) games (which will be the focus of this chapter) require complex strategic
reasoning which includes resource handling, terrain analysis, or long-term plan-
ning under severe real-time constraints and without having complete information.
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Because of all of these reasons, programming AI for RTS games is a hard problem.
Thus, we would like to allow end-users to create AI without programming.

When a user wants to create an AI, the most natural way to describe the desired
behavior is by demonstration. Just let the user play a game demonstrating the de-
sired behavior of the AI. Therefore, a promising solution to this problem is learning
from demonstration (LfD) techniques. However, LfD techniques have their own
limitations, and, given the complexity of RTS games and the lack of strong do-
main theories, it is not possible to generate an AI by generalization of a few human
demonstrations.

The first key idea presented in this chapter is to use case-based reasoning
(CBR) [1, 9] approaches for LfD. While it is hard to completely generalize an AI
from a set of traces, it is possible to break demonstrations into smaller pieces, which
contain specific instances of how the user wants the AI to behave in different situa-
tions. For instance, from a demonstration, the sequence of actions the user has used
in a specific scenario to destroy an enemy tower can be extracted. These pieces cor-
respond to what in CBR are called cases, i.e., concrete problem-solving episodes.
Each case contains the actions the user wants the AI to perform in a concrete specific
situation. Moreover, it is also possible to adapt cases to similar situations. Using a
CBR approach to LfD, we do not need to completely generalize a demonstration.
It is enough with being able to adapt pieces of it to similar situations. Moreover, as
we will see, classic CBR frameworks need to be extended to deal with this problem.
In order to illustrate these ideas, we will introduce a system called Darmok 2 (D2),
which is capable of learning how to play RTS games through LfD.

The second key idea presented in this chapter is that when creating AIs, either
using LfD or directly coding them, it is very hard to achieve the desired result in the
first attempt. Thus, using self-adaptation techniques, given a particular AI, it can be
automatically adapted fixing some issues it might contain, or making it ready for
an unforeseen situation. Again, self-adaptation is a hard problem because of two
main reasons: first, how to detect that something needs to be fixed, and second, once
an issue has been identified, how to fix it. We will see how this problem can again
be addressed using CBR ideas, and specifically we will present a meta-reasoning
approach inspired in CBR that addresses this problem. The main idea is to define a
collection of failure-patterns (which could be seen as cases in a CBR system), that
capture which failures to look for and how to fix them. In order to illustrate this idea,
we will introduce the Meta-Darmok system, which uses meta-reasoning to improve
its performance at playing RTS games.

In summary, the main idea of this chapter is the following. Authoring AI typically
requires two processes: (a) creating an initial version of the AI and (b) debugging
it. LfD is a natural way to help end-users with (a), and self-adaptation techniques
can help users with (b). Moreover, both LfD and self-adaptation are challenging
problems with many open questions. CBR can be used to address many of these
open questions and thus make both learning from demonstration and self-adaptation
feasible in the domain of complex computer games such as RTS games.

The remainder of this chapter is organized as follows. Section 2 very briefly
introduces CBR. Sections 3 and 4 contain the main technical content of the chapter.
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Section 3 focuses on CBR techniques for LfD in RTS games, and Sect. 4 focuses on
CBR-inspired meta-reasoning techniques for self-adaptation. Section 5 concludes
the chapter and outlines open problems to achieve user-generated AI.

2 Case-Based Reasoning

CBR [1, 9] is a problem-solving methodology based on reusing specific knowledge
of previously experienced and concrete problem situations (cases). Given a new
problem to solve, instead of trying to solve the problem from scratch, a CBR system
will look for similar and relevant cases in its case base, and then adapt the solutions
in these cases to the problem at hand. A typical case in a CBR system consists of a
triple: problem, solution, and outcome, where the outcome represents the result of
applying a particular solution to a particular problem.

The activity of a CBR system can be summarized in the CBR cycle, shown in
Fig. 1, which consists of four stages: Retrieve, Reuse, Revise, and Retain. In the Re-
trieve stage, the system selects a subset of cases from the case base that are relevant
to the current problem. The Reuse stage adapts the solution of the cases selected
in the retrieve stage to the current problem. In the Revise stage, the obtained so-
lution is examined by an oracle, which gives the correct solution (as in supervised
learning). Finally, in the Retain stage, the system decides whether to incorporate the
new solved case into the case base or not.

While inductive machine learning techniques learn from sets of examples by
constructing a global model (a decision tree, a linear discrimination function, etc.)
and then forgetting the examples, CBR systems do not attempt to generalize the

Fig. 1 The case-based reasoning cycle
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cases they learn. CBR aligns with the ideas of lazy learning [2] in machine learning,
where all kinds of generalization are performed at problem-solving time (during
the Reuse stage). Thus, CBR systems only need to perform the minimum amount
of generalization required to solve the problem at hand. As we will see, this is an
important feature, since, for complex tasks like RTS games, attempting to learn a
complete model of how to play the game by generalizing from a set of examples
might be unfeasible.

3 Generating AI by Demonstration

A promising technology to achieve user-generated AI is LfD [20]. The goal of LfD
is to learn how to perform a task by observing an expert. In this section, we will first
introduce the main ideas of LfD, with a special emphasis on case-based approaches.
Then we will explain how can they be applied to achieve user-generated AI by
explaining how this is solved in the D2 system, which has been used to power a
social gaming website, Make ME Play ME (MMPM), based around the idea of
user-generated AI.

3.1 Background

LfD (also known as programming by demonstration or programming by exam-
ple) has been widely studied in AI since early times [4] and specially in robotics
[11] where lots of robotics-specific algorithms for learning movements from hu-
man demonstrations have been devised [14]. The main motivation behind LfD
approaches is that learning a task from scratch, without any prior knowledge, is
a very hard problem. When humans learn new tasks, they extract initial biases from
instructors or by observing other humans. LfD techniques aim at imitating this pro-
cess. However, LfD also poses many theoretical challenges.

LfD techniques typically attempt at learning a policy for a dynamic environment.
This task cannot be addressed directly with inductive machine learning techniques
because of several reasons: first, the performance metric might not be defined at
the action level (i.e., we cannot create examples to learn using supervised learn-
ing); and second, we have the temporal blame assignment problem (it is hard to
know which actions to blame or reward in case of failure or success). Without back-
ground knowledge, as evidenced by research in reinforcement learning, there is a
prohibitively large space to explore.

In the same way as for supervised learning, we can divide the approaches to LfD
in two large groups: eager approaches and lazy approaches, although work on LfD
has focused on eager approaches [4, 10, 15, 20] except for a handful of exceptions
like [8]. Eager methods aim at synthesizing a strategy, policy, or program, where as
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lazy approaches simply store the demonstrations (maybe with some preprocessing),
and only attempt to generalize when facing a new problem. Let us present some
representative work of LfD.

Tinker [10] is a programming by demonstration system, which could write arbi-
trary Lisp programs (containing even conditionals and recursion). The user provides
examples as input/output pairs, where the output is a sequence of actions, and Tin-
ker generalizes those examples to construct generic programs. Tinker allows the user
to build incrementally, providing first simple examples and then move on to more
complex examples. When Tinker needs to distinguish in between two situations, it
prompts the user to provide a predicate that would distinguish them. Tinker is a clas-
sic example of an eager approach to LfD, where the system is trying to completely
synthesize a program from the examples. Other eager approaches to LfD have been
developed both in abstract AI domains [4] and in robotics domains [15].

In Tinker, we can already see one of the recurring elements in LfD systems:
traces. A trace is the computer representation of a demonstration. It usually contains
the sequence of actions that the user executed to solve a given problem. Thus, a pair
problem/trace constitutes a demonstration, which is equivalent to a training example
in supervised learning.

Schaal [20] studied the benefits of LfD in the context of reinforcement learn-
ing. He showed that under certain circumstances, the Q-value matrix can be primed
using the data from the demonstration and achieved better results than a standard
approach. This priming of the value matrix is a way to use the knowledge in the
demonstrations to bias subsequent learning, and thus avoid blind search of the search
space of policies. However, not all reinforcement learning approaches benefited
from using the knowledge in the demonstrations. Note, moreover, that reinforce-
ment learning also falls into the eager LfD approaches category, since it tries to
obtain a complete policy.

Schaal’s work evidences another of the important aspects in LfD: not all ma-
chine learning techniques easily benefit from the knowledge contained in the
demonstrations.

In this chapter, however, we will focus on lazy approaches to LfD, based on
CBR, which are characterized for not attempting to learn a general algorithm or
strategy from demonstration, but at storing the demonstrations in some minimally
generalized form to then adapt them to solve new problems. Other researchers have
pursued similar ideas, like the work of Floyd et al. [8], which focuses on learning
to imitate RoboCup players. Lazy approaches to LfD are interesting, since they can
potentially avoid the expensive exploration of the large search space of programs or
strategies. While the central problem of eager LfD approaches is how to generalize
a demonstration to form a program, the central problem of lazy LfD approaches
becomes how to adapt a demonstration to a new problem.

In order to apply LfD to a given task, several problems have to be addressed: how
to generate demonstrations, how to represent each demonstration (trace) , how to
segment demonstrations (which parts demonstrate which tasks and subtasks), which
information to extract from the demonstrations, and how this information will be
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used by the learning algorithm. The remainder of this section will focus on a lazy
LfD approach to learn AI in the context of computer games, and on how to address
the issues mentioned above.

3.2 Learning from Demonstration in Darmok 2

D2 [16] is a real-time case-based planning [21] system designed to play RTS games.
D2 implements the on-line case-based planning cycle (OLCBP) as introduced in
[17]. The OLCBP cycle attempts to provide a high-level framework to develop
case-based planning systems that operate online, i.e., that interleave planning and
execution in real-time domains. The OLCBP cycle extends the traditional CBR cy-
cle by adding two additional processes, namely plan expansion and plan execution.
The main focus of D2 is to explore learning from unannotated human demonstra-
tions and the use of adversarial planning techniques. In this section we will focus
on the former.

3.2.1 Representing Demonstrations, Plans, and Cases

A demonstration in D2 is represented as a list of triples [〈t1,G1,A1〉, . . . ,〈t1,Gn,An〉],
where each triple contains a time stamp ti game state Gi and a set of actions Ai (that
can be empty). The set of triples represent the evolution of the game and the actions
executed by each of the players at different time intervals. The set of actions Ai rep-
resent actions that were issued at ti by any of the players in the game. The game state
is stored using an object-oriented representation that captures all the information in
the state: map, players, and other entities (entities include all the units a player con-
trols in an RTS game: e.g., tanks).

Unlike in traditional STRIPS planning [7], actions in RTS games may not always
succeed, they may have nondeterministic effects, and they might not have an imme-
diate effect, but be durative. Moreover, in a system like D2, it is necessary to be able
to monitor executing actions for progress and check whether they are succeeding
or failing. Thus, a typical representation of preconditions and postconditions is not
enough. An action a is defined in D2 as a tuple containing seven elements including
success conditions and failure conditions [16]. However, for the purposes of LfD,
precondition and postcondition suffice.

Plans in D2 are represented as hierarchical petri nets. Petri nets [13] offer an
expressive formalism for representing plans that include conditionals, loops, or par-
allel sequences of actions. In short, a petri net is a graph consisting of two types
of nodes: transitions and states. Transitions contain conditions and link states to
each other. Each state might contain tokens, which are required to fire transitions.
The flow of tokens in a petri net represents its status. In D2, the plans that will
be learned by observing demonstrations consist of hierarchical petri nets, where
some states will be associated with sub-plans, which can be primitive actions or
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S0: 1

Gold>400

Timeout(500)0

<gamestate>
<entity id=“E14“ type = “Player”>

<gold>1200</gold>

Wood>300

S1: 0

NewUnitBy(U4)

!Exists(E4)0 Train(E4,”peasant”) <wood>1000</wood>
<gold>1200</wood>

<gamestate>
<entity id=“E14“ type = “Player”>

<owner>player1</owner>
</entity>
<entity id=“E15“ type = “Player”>

<gold>1200</gold>

ExistsPath(E5,(17,18))

S2: 0Timeout(500)0
<wood>1000</wood>
<owner>player2</owner>

</entity>
<entity id=“E4“ type = “Townhall”> 

<x>6</x>
<y>0</y>

S3: 0

Status(E5)==“harvest”

!Exists(E5)0 est(E5,(17,18))Harv

<y>0</y>
<owner>player1</owner>
<hitpoints>2400</hitpoints>

</entity>
…
</gamestate>

S4: 0 1.0
OUTCOME:

Episode 1:Snippet 1:

GOAL:

STATE:

Fig. 2 A case in D2 consisting of a snippet and an episode. The snippet contains two actions,
and the episode says that this snippet succeeded in achieving the goal Wood >300 in the specified
game state. The game state representation is not fully included due to space limitations

subgoals. The left-hand side of Fig. 2 shows an example of a petri net representing
a plan consisting of two actions to be executed in sequence: Train(E4,“peasant”)
and Harvest[E5,(17,18)]. Note that the handling of preconditions, postconditions,
etc. is handled by the petri net, making the execution module of D2 a simple petri
net simulation component.

When D2 learns plans from demonstrations, each plan is stored as a case. Cases
in D2 are represented like cases in the Darmok system [17], consisting of a col-
lection of plan snippets with episodes associated with them. As shown in Fig. 2, a
snippet is a petri net, and an episode is a structure storing the outcome obtained when
a particular snippet was executed in a particular game state intending to achieve a
particular goal. The outcome is a real number in the interval [0,1] representing how
well the goal was achieved: 0 represents total failure and 1 total success.

3.2.2 Learning Plans and Cases from Demonstration

D2’s case base is populated by learning both snippets and episodes from human
demonstrations. The input to the learning algorithm is one demonstration D (of
length n), a player p (D2 will learn only from the actions of player p in the demon-
stration D), and a set of goals G for which to look for plans. The output is a collection
of snippets and episodes. The set of goals G can be fixed beforehand for every par-
ticular domain and is equivalent to the list of tasks in the HTN planning framework
(thus, the inputs are the same as for the HTN-Maker algorithm). The learning pro-
cess of D2 can be divided into three stages: goal matrix generation, dependency
graph generation, and hierarchical composition.
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Table 1 Goal matrix for a set
of five goals {g1,g2,g3,
g4,g5} and for a small trace
consisting of only 12 entries
(corresponding to the actions
shown in Fig. 3, A12 = /0)

Demonstration g1 g2 g3 g4 g5

〈t1,G1,A1〉
〈t2,G2,A2〉
〈t3,G3,A3〉
〈t4,G4,A4〉
〈t5,G5,A5〉
〈t6,G6,A6〉 �
〈t7,G7,A7〉 � �
〈t8,G8,A8〉 � � �
〈t9,G9,A9〉 � � � �
〈t10,G10,A10〉 � � � �
〈t11,G11,A11〉 � � � �
〈t12,G12,A12〉 � � � � �

The first step is to generate the goal matrix. The goal matrix M is a boolean
matrix, where each row represents a triplet in the demonstration D, and each column
represents one of the goals in G. Mi, j is true if the goal g j is satisfied at time ti in the
demonstration. An example goal matrix can be seen in Table 1.

Once the goal matrix is constructed, a set of raw plans P are extracted from it in
the following way:

1. For each goal g j ∈ G do

a. For each 0 < i≤ n such that Mi, j ∧¬Mi−1, j do

i. Find the largest 0 < l < i such that ¬Ml, j ∧ (l = 1∨Ml−1, j)
ii. Generate a raw plan from the actions executed by player p in the set Al ∪

Al+1∪ ...∪Ai−1 and add it to P

For example, five plans could be generated from the goal matrix in Table 1. One
for g1 with actions Al∪ . . .∪A12, one for g2 with actions Al∪ . . .∪A8, one for g3 with
actions Al∪ . . .∪A7, one for g4 with actions Al∪ . . .∪A6, and one for g5 with actions
Al∪ . . .∪A9. Note that the intuition behind this process is just to look at sequences of
actions that happened before a particular goal was satisfied, since those actions are a
plan to reach that goal. Many more plans could be generated by selecting subsets of
those plans, but since D2 works under tight real-time constraints, currently it learns
only a small subset of plans from each demonstration.

Note that this process is enough to learn a set of raw plans for the goals in G.
The snippets will be constructed from the aforementioned sets of actions, and the
episode will be generated by taking the game state in which the earliest action in
a particular plan was executed. Note that all plans extracted using this method are
plans that succeeded; thus all episodes have outcome equal to 1. However, these raw
plans might contain unnecessary actions and would be monolithic, i.e., they will not
be decomposable hierarchically into subgoals. Dependency graph generation and
hierarchical composition are used to solve both problems.

Given a plan consisting of a partially ordered collection of actions, a dependency
graph [24] is a directed graph where each node represents one action in the plan,
and edges represent dependencies among actions. Such a graph is used by D2 to
remove unnecessary actions from the learned plans.
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1.- Harvest(U2,(0,16))

Plan
2

2.- Train(U4,”peasant”)
3.- Harvest(U3,(17,23))
4.- Train(U4,”peasant”)
5.- Build(U5,”LumberMill”,(4,23))

1 3 4

6.- Build(U5,”Barracks”,(8,22))
7.- Train(U6,”archer”)
8.- Build(U5,”tower”)

5 6

7 9

8

9.- Train(U6,”archer”)
10.- Attack(U7,EU1)
11.- Attack(U8,EU2) 10 11

Fig. 3 An example dependency graph constructed from a plan consisting of 11 actions in an RTS
game

Such a graph is easily constructed by checking each pair of actions ai and a j in
the plan, and checking first of all whether there is any order restriction between ai

and a j. Only those pairs for which ai can happen before a j will be considered. Next,
if one of the postconditions of ai matches any precondition of a j, and there is no
action ak that has to happen after ai that also matches with that precondition, then
an edge is drawn from ai to a j in the dependency graph, annotating it with which
is the pair of postcondition/precondition that matched. Figure 3 shows an example
dependency graph (where the labels in the edges have been omitted for clarity). The
plan shown in the figure shows how each action is dependent on each other, and it is
useful to determine which actions contribute to the achievement of particular goals.

D2 constructs a dependency graph of the plan resulting from using the complete
set of actions that a player p executed in a demonstration D. This dependency graph
will be used to remove unnecessary actions from the smaller raw plans learned from
the goal matrix in the following way:

1. For each plan p ∈ P do

a. Extract the subgraph of the dependency graph containing only the actions in p
b. Detect which is the subset of actions A from the actions in p such that their

postconditions match with the goal of plan p
c. Remove from p all actions that according to the subgraph do not contribute

directly or indirectly to any of the actions in A

Moreover, the plan graph provides additional internal structure to the plan, indi-
cating which actions can be executed in parallel, and which ones have to be executed
in a sequence. All this information is exploited when generating the petri net corre-
sponding to the plan.

Finally, D2 analyzes the set of plans P resulting from the previous step using
the dependency graph to see whether any of those plans are a sub-plan of another
plan. Given two plans pi, p j ∈ P, if the set of actions in pi is a subset of the set of
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2

1 3 4 g2

5 6

7 9

8 9 8

10 11

10 11

Fig. 4 The nodes greyed out in the left dependency graph correspond to the actions in the plan
learned from a goal g2, after substituting those actions by a single subgoal, the resulting plan graph
looks like the one on the right

actions in p j, D2 assumes that pi is a sub-plan of p j, and all the actions in pi also
contained in p j are substituted by a single subgoal in p j. Converting flat plans into
hierarchical ones is important in D2, since it allows D2 to combine plans learned
from one demonstration with plans learned from another at run time, increasing its
flexibility.

Figure 4 shows an example of this process taking the plan graph of the plan
learned for goal g1 in Table 1, and substituting some of its actions by a single sub-
goal g2. The actions marked in gray in the left-hand side of Fig. 4 correspond to the
actions in the plan learned for g2.

Note that the order in which we attempt to substitute actions by subgoals in plans
will result in different final plans. Currently, D2 uses the heuristic of attempting
first to substitute larger plans first. However, this issue is a subject of our ongoing
research effort. Let us explain how can D2 be used for achieving user-generated AI.

Finally, it is worth to remark that D2’s goal is not to learn how to play the game
in an optimal way, but to learn the player’s strategy. In this sense, it differs from
other LfD strategies. For example, the techniques presented by Schaal [20] used
LfD only to bias the learning process, which would proceed then to optimize the
strategy using standard reinforcement learning.

3.3 Using Darmok 2 for User-Generated AI: Make ME Play ME

Make ME Play ME1 is a project to build a social gaming website (see Fig. 5) based
on the idea of user-generated AI and powered by D2. In MMPM, users do not just

1 http://www.makemeplayme.com

http://www.makemeplayme.com
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Fig. 5 The game selection page of Make ME Play ME

play games, they create their own AIs, called Mind Engines (MEs). Users train their
own MEs, which can play the different games available in the website, and compete
against the MEs created by other players. MMPM is not the first web or game where
users can create their own AIs and make them compete with others, but it is the first
one where users can create their own AIs by demonstration: users do not require
programming knowledge, they just have to play a series of games demonstrating the
strategy they want their ME to use.

In order to make user-generated AI a reality, many user interaction problems need
to be addressed in addition to the technical problems concerning LfD explained
in the previous section: for instance, how to generate demonstrations, or how to
visualize the result of learning. In our work on MMPM, we focused on the first of
these problems. The latter is still subject of our future work.

The user flow works as follows:

1. Play demonstration games: The user selects a game, configures it (selecting num-
ber of players, opponents, map, etc.), and then simply plays. The user can repeat
this process as many times as desired. For each game played, a trace will be
automatically saved by MMPM.

2. Create a ME: To create a ME, the user first selects which games does he wants
to create a ME. Then MMPM lists the set of all available traces for that game
(generated in the previous step). The user simply selects a subset of them (which
will constitute the set of demonstrations), and the ME is created automatically,
without further user intervention.



114 S. Ontañón and A. Ram

3. Play with the ME: at this point the user can already wither play against its own
ME, or make the ME play with other users’ MEs. MMPM lets users challenge
other users’ MEs. For each ME, a chess-like ELO score is computed, creating a
leader-board of MEs. The users are thus motivated to create better MEs, which
can climb up the leader boards.

Thanks to the technology developed in D2, the learning process is completely
transparent to the user, who only needs to play games. There are no parameters that
need to be set by the user. In order to achieve that, all the game-specific parameters
of D2 are set before hand. When a new game is added to MMPM, the game creator
is responsible for defining the goal ontology, and for specifying any other parameter
that D2 needs to know about the game (e.g., whether the game is turn-based or real-
time). Currently, MMPM hosts three different games, but more are on preparation,
and it even has the functionality to allow users to upload their own games.

3.4 Discussion

MMPM and D2 allow users to author AIs simply by demonstrations. For instance,
in previous work, we showed how it is easy to author an AI for the game Wargus
(a clone of WARCRAFT II) by demonstration which can defeat the built-in AI [17].
Moreover, the resulting AIs clearly use the strategies demonstrated by the users. The
learning process of D2 is efficient and learning does not take any perceptible time.
Moreover, the planning algorithms of D2 are also efficient enough to work on real
time in the set of games available in MMPM.

However, MMPM and D2 still display a number of limitations, some of which
clearly correspond to open problems in LfD.

• First of all, the case-based planning approach of D2 is suitable for some kind of
games (like RTS games), but breaks when the game becomes more reactive than
deliberative. For example, one of the games in MMPM (BattleCity) is a purely
reactive game, for which learning plans does not make much sense and where a
more reactive approach like that in [8] should work much better.

• In addition to demonstrations, some LfD approaches also allow the user to
provide feedback when the system performs the learned strategies to continue
learning. In the context of D2 and computer games, it would be very valuable to
allow such feedback, since it will enable the user to fine-tune the demonstrated
strategies. However, this raises both technical and user-interface problems. The
main technical problem is related to the delayed blame assignment problem:
if the user provides a negative feedback, which of the previous decisions is to
blame? Additionally, there would be user-interface problems that need to be
solved about how can the user provide feedback on the actions being executed
by the AI, specially in RTS games where a large number of actions is executed
per second.
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• Another issue, subject for our future research and common to all lazy learning
approaches, is how to visualize the result of learning. Eager LfD techniques learn
a policy or a program which can be displayed to the user in some form. But lazy
LfD techniques do not. The only thing that could be displayed are the set of plans
being learned. But that can be a potentially very large number of plans, and which
does not include the procedure for selecting which plan to select in each situation
(which is performed at run-time).

• Clearly, the biggest problem in LfD is how to generalize from a demonstration
to a general strategy. Specifically, D2 is based on case-based planning, and this
problem is translated into how can plans be adapted to new situations. This is a
well-known problem in the case-based planning community [21] and has been
widely studied. In D2 we used an approach with a collection of simplification
assumptions which allow D2 to be able to adapt plans in real time [24]. However,
those assumptions have been designed with RTS games in mind. Finding general
ways to adapt plans in an efficient way for other game genres is still an open
research issue.

4 Self-Adaptive AI Through Meta-Reasoning

Last section focused on techniques to easily generate AI for games. In this section,
we are going to turn our attention to the complementary problem of how can AI
self-adapt to fix any flaws that might have occurred during the learning process, or
to adapt the AI to novel situations. This is known as the adaptive-AI problem in
game AI. This section will provide a brief overview of the problem, and then focus
on a solution which combines CBR with meta-reasoning, specifically designed for
the problem of achieving user-generated AI in games.

4.1 Background

The most widely used techniques for authoring AI in commercial games are scripts
[5] and finite-state machines [19] (and recently, behavior trees [18]). These tech-
niques share one feature: once they have been authored, the behavior of the AI will
be static: i.e., it will always be the same game after game (ignoring the trivial dif-
ferences which can be introduced adding randomness). Static behavior can lead to
suboptimal user experience, since, for instance, users might find a hole in the AI and
exploit it continuously, or there might be an unpredicted situation or player strategy
to which the AI does not know how to react. Trying to address this issue is known
as achieving adaptive game AI [23].

Basically, adaptive game AI aims at developing techniques which allow for au-
tomatic self-modification of the game AI. A potential benefit is for fixing potential
failures of the AI, but other uses have been explored, like using self-adaptation for
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automatically adjusting the difficulty level of games [22]. In this section, we are
interested in the former and, specifically, in developing techniques which ease user-
generated AI. Algorithms that enable self-adaptive AI would enable the users to
create AI in an easier way, since some errors in their AI could be automatically
fixed by the adaptive AI. Before presenting how CBR can be used to address this
issue, let us briefly introduce some brief background and existing work.

Spronck et al. [23] identified a collection of requirements for adaptive game
AI. Four are computational requirements: speed, effectiveness, robustness, and effi-
ciency; and four are functional requirements: clarity, variety, consistency, and scala-
bility. Some of those eight properties, however, apply only to on-line techniques for
self-adaptation. Our interest in self-adaptive AI concerns allowing user-generated
AI, and thus off-line adaptive AI techniques are also interesting. The most basic
elements required to define adaptive AI are:

• Representation of the AI: a script, a collection of rules, a set of cases, etc.
• Performance criteria: if the AI has to be adapted, it is to improve in some mea-

sure. For instance, we might want to make the AI better, or better exhibit a
particular strategy, or better adjust to the skill level of the player.

• Allowed modifications: which adaptations are allowed? Some times, adaptation
simply means selecting among a set of given rule sets, some times, the rules or
scripts can be actually adapted. This defines the space of possible adaptations.

• Adaptation strategy: which machine learning technique to use.

The most common approach to adaptive AI is letting the user define a collec-
tion of scripts or rules that define the behavior of the AI, and then learn which of
those scripts or which subset of rules works better for each particular game situation
according to a predefined performance criteria. This approach has been attempted
both using reinforcement learning [23] and CBR [3].

Let us now present a technique that can be combined to the LfD techniques pre-
sented in the previous section, to ease the job of a user who wants to create an AI.

4.2 Automatic Plan Adaptation in Meta-Darmok

Meta-Darmok [12] is a case-based planning system based on the Darmok system
[17], which is a predecessor to the D2 system described in the previous section.
Meta-Darmok learns plans from expert demonstrations and then uses them to play
games using case-based planning. Meta-Darmok is designed to play Wargus, and
specially to automatically adapt Darmok’s learned plans over time. The performance
of Darmok, as well as D2, highly depends on the quality of the demonstrations
provided by the user. If the demonstrations are poor, Darmok’s behavior will be
poor. If there is a mistake in one of the plans learnt from an expert trace, Darmok
will repeat that mistake again and again each time Darmok retrieves that plan. The
meta-reasoning approach presented in this section provides Darmok exactly with
that capability, resulting in a system called Meta-Darmok, shown in Fig. 6.
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Fig. 6 Meta-reasoning flow of Meta-Darmok

Meta-Darmok’s adaptation approach is based on the following idea: instead of
fixing the plans one by one, a user can fix a collection of plans by defining a set
of typical failures and associating a fix with them. Meta-Darmok’s meta-reasoning
layer constantly monitors the plans being executed to see whether any of the user-
defined failures is happening. If failures occur, Meta-Darmok will execute the
appropriate fixes. Moreover, Meta-Darmok’s plan fixing happens off-line, after a
game has been played. Note that this approach is radically different from approaches
like reinforcement-learning, where the behavior is optimized by trial and error.

Specifically Meta-Darmok’s approach consists of four parts: Trace Recording,
Failure Detection, Plan Modification, and the Daemon Manager. During trace
recording, a trace holding important events happening during the game is recorded.
Failure detection involves analyzing the execution trace to find issues with the ex-
ecuting plans using a set of failure patterns [26]. These failure patterns capture the
set of user-defined prototypical failures. Once a set of failures has been identified,
the failed conditions can be resolved by appropriately revising the plans using a set
of plan modification routines. These plan modification routines are created using
a combination of basic modification operators (called modops, as explained later).
Specifically, in Meta-Darmok, the modifications are inserted as daemons, which
monitor for failure conditions to happen during execution when Darmok retrieves
some particular plans; but in general, they could be implemented in a different way.
A daemon manager triggers the execution of such daemons when required.

4.2.1 Trace Recording

While Meta-Darmok is playing a game, the trace recording module records an exe-
cution trace, which contains information related to basic events including the name
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of the plan that was being executed, the corresponding game state when the event
occurred, the time at which the plan started, failed, or succeeded, and the delay from
the moment the plan became ready for execution to the time when it actually started
executing. The execution trace provides a considerable advantage in performing
plan adaptation with respect to only analyzing the instant in which the failure oc-
curred, since the trace can help localize past events that could possibly have been
responsible for the failure.

Once a game finishes, an abstracted trace is created from the execution trace
that Darmok generates. While the execution trace contains all the information con-
cerning plan execution during the game, the abstracted trace contains only some
key pieces of information: those needed to determine whether any failure pattern
occurred during the game. The information included in the abstracted trace depends
on which conditions are used in the failure patterns. For instance, for the set of pat-
terns used in Meta-Darmok, information about hit points, location, actions being
executed by the units, and in which cycles were units created or killed is included.

4.2.2 Failure Detection

Failure detection involves localizing the failures in the trace. Traces can be ex-
tremely large, especially in the case of complex RTS games on which the system
may spend a lot of effort attempting to achieve a particular goal. In order to avoid
the potentially very expensive search process of finding which actions are respon-
sible for failures, the set of user-provided failure patterns can be used [6]. Failure
patterns can be seen as a case-based approach to failure detection, and they greatly
simplify the blame-assignment process into a search for instances of the particular
problematic patterns.

Failure patterns are defined as finite state machines (FSMs) that look for generic
patterns in the abstracted trace. An example of a failure pattern represented as FSM
is Very Close Resource Gathering Location failure (VCRGLfail) (shown in Fig. 7)

ActionStart(Harvest(U,POS)) InRangeOfEnemy(U)

U busy with
another action

1 Fail

2

0

Fig. 7 FSM corresponding to the failure pattern VCRGLfail. This pattern detects a failure if the
FSM ends in the Fail state. When a unit is ordered to start harvesting, the FSM moves to state 1, if
the unit stops harvesting, it will move to state 2, and only when the unit gets in range of an enemy
unit while harvesting, the FSM will end in the Fail state
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Table 2 Some example failure patterns and their associated plan modification operators

Failure pattern Plan modification operator

Resource idle failure (e.g., resource like
peasant, building, enemy units could be
idle)

Use the resource in a more productive manner
(e.g., send peasant to gather more
resources or use the peasant to create a
building that could be needed later on)

Very close resource gathering location failure Change the location for resource gathering to
a more appropriate one

Inappropriate enemy attacked failure Direct the attack toward the more dangerous
enemy unit

Inappropriate attack location failure Change the attack location to a more
appropriate one

Basic operator failure Adding a basic action that fixes the failed
condition

that detects whether a peasant is gathering resources at a location that is too close
to the enemy. This could lead to an opening for enemy units to attack early. Other
examples of failure patterns and their corresponding plan modification operators
are given in Table 2. Each failure pattern is associated with modification routines.
When a failure pattern generates a match in the abstracted trace, an instantiation of
the failure pattern is created. Each instantiation contains which were the particular
events in the abstracted trace that matched with the pattern. This is used to instantiate
particular plan modification routines that are targeted to the particular plans that
were to blame for the failure.

4.2.3 Plan Modification

Once the cause of the failure is identified, it needs to be addressed through the appro-
priate modifications (modops). Modops can take the form of inserting or removing
steps at the correct position in the failed plan, or changing some parameter of an
executing plan. Each failure pattern has a sequence of modops associated with it.
This sequence is called a plan modification routine.

Once the failure patterns are detected from the execution trace, the corresponding
plan modification routines and the failed conditions are inserted as daemons for the
plan in which these failed conditions are detected. The daemons act as a meta-level
reactive plan that operates over the executing plan at runtime. The conditions for the
failure pattern become the preconditions of the daemon, and the plan modification
routine consisting of basic modops becomes the steps to execute when the daemon
executes. The daemons operate over the executing plan, monitor their execution,
detect whether a failure is about to happen, and repair the plan according to the
defined plan modification routines.

Note that Meta-Darmok does not directly modify the plans in the case base
of Darmok, but reactively modifies those plans when Darmok is executing them.
In the current system, we have defined 20 failure patterns and plan modification
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routines for Wargus. The way Meta-Darmok improves over time is by accumulating
the daemons that the meta-reasoner generates (which are associated with particu-
lar maps). Thus, over time, Meta-Darmok improves performance by learning which
combination of daemons improves the performance of Darmok for each map. Using
this approach, we managed to multiply by 2 the win-ratio of Darmok against the
built-in AI of Wargus [12].

The adaptation system can be easily extended by writing other patterns of failure
(as described in [25]) that could be detected from the abstracted trace and the ap-
propriate plan modifications to the corresponding plans that need to be carried out
to correct the failed situation.

4.3 Using Meta-Darmok for User-Generated AI

In order to use Meta-Darmok for user-generated AI, we integrated Meta-Darmok
into a behavior authoring environment, which we call an intelligent IDE (iIDE).
Specifically, we integrated authoring by demonstration, visualization of the behavior
execution, and self-adaptation through meta-reasoning. The iIDE allows the game
developer to specify initial versions of the required AI by demonstrating them in-
stead of having to explicitly code the AI. The iIDE observes these demonstrations
and automatically learns plans (that we will call behaviors in this section) from
them. Then, at runtime, the system monitors the performance of these learned be-
haviors that are executed. The system allows the author to define new failure patterns
on the executed behavior set, checks for predefined failure patterns, and suggests ap-
propriate revisions to correct failed behaviors. This approach to allow definition of
possible failures with the behaviors, detecting them at run-time, and proposing and
allowing a fix selection for the failed conditions enables the author to define poten-
tial failures within the learnt behaviors and revise them in response to things that
went wrong during execution.

Here we will focus only on how meta-reasoning is integrated into the iIDE (for
more details about the iIDE reported here, see [25]). In order to integrate Meta-
Darmok into the iIDE, we added to functionalities:

• Behavior Execution Visualization and Debugging: The iIDE presents the results
of the executing behaviors in a graphical format, where the author can view their
progress and change them. The author can also pause and fast-forward the game
to whichever point he chooses while running the behaviors, make a change in
the behaviors if required, and start it up again with the new behaviors to see the
performance of the revised behaviors. The capability of the iIDE to fast-forward
and start from a particular point further allows the author to easily replicate a
possible bug late in the game execution and debug it. Figure 8 shows a screenshot
of the execution visualization view in the iIDE, showing an executing behavior
(including the current state of all the subgoals and actions).

• Failure Detection and Fixing: The iIDE authoring tool allows the author to visu-
alize relevant chronological events from a game execution trace. The data allow
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Fig. 8 A screenshot of the iIDE, showing the behavior execution visualization interface

Fig. 9 Overview of how the iIDE interacts with the author and the game

the author define new failure patterns by defining combinations of these basic
events and pre-existing failure conditions. Each failure pattern is associated with
a possible fix. A fix is basically a proposed modification for a behavior that fixes
the error detected by the failure pattern. When a failure pattern is detected, the
iIDE suggests a list of possible fixes, from which the author can select an appro-
priate one to correct the failed behavior. These techniques were also previously
developed by us in the context of believable characters [26].

Figure 9 shows an overview of how all the components fit together to allow the
author to edit a proper behavior set for the game. The iIDE controls Meta-Darmok
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by sending the behaviors that the author is creating. Meta-Darmok then runs the
behaviors in the game and generates a trace of what happened during execution.
This trace is sent back to the iIDE so that proper information can be shown to the
author. Basically, the iIDE makes the functionality of Meta-Darmok (LfD and self-
adaptation through meta-reasoning) accessible to the user to allow easy behavior
authoring.

We evaluated this iIDE with a small set of users, and the conclusions found that
users felt authoring by demonstration was more convenient than writing our behav-
iors through coding. Note that it took not more than 25 min to generate behaviors
to play Wargus (that includes the time to generate the demonstration playing plus
trace annotation). However, since Meta-Darmok is based on the old Darmok system,
which required trace annotation, users felt that annotation was difficult, since it was
difficult to remember the actions they had performed.

Concerning self-adapting behaviors using meta-reasoning, users felt it was a very
useful feature. However, they had problems with our specific implementation be-
cause the requirement that a failure pattern should occur inside the game to be able
to define it was a setback. Users could think of simple failure patterns which they
would like to add without having to even run the game. However, despite these prob-
lems, users were able to successfully define failure patterns. A more comprehensive
explanation of the evaluation results can be found at [25].

4.4 Discussion

The techniques presented in this section successfully allow a system to detect prob-
lems in the behaviors being executed by the AI and fix them. However, we do so at
the expense of letting the user be the one who specifies the sets of failures to look
for, in the form of failure patterns.

Clearly, the problem of self-adapting AI contains two problems: detecting that
something has to be changed, and change it. Both of them are, as of today, open
problems. In our approach, we used a domain-knowledge intensive approach for
detecting that something has to be changed, by letting the user specify domain-
dependent failure patterns, which for the purposes of user-generated AI worked
adequately, but at the expense of making the user having to manipulate concepts
like conditions, actions, etc. when defining the failure patterns.

However, detecting that something has to be changed is a challenging problem.
For example, in techniques such as dynamic scripting [23], we need to define a
performance metric. In case the goal is just to adapt an AI to make it stronger or
weaker, a performance metric is easy to define (percentage of wins, or some related
measure should suffice). However, when the goal is to adapt an AI to better behave
the way the user wants, this is harder, and interfaces to allow the user to provide
feedback are required.

In general, for behavior creation, as we explained above, LfD is an intuitive way
in which a user can provide domain knowledge. The iIDE presented in this section
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is an attempt to achieve the same thing for the problem of adapting an already
created behavior. Other strategies that can be used are direct positive or negative
reinforcement from the user when behaviors are being executed. This requires the
user to constantly provide feedback, whereas failure patterns can be given once and
be reused multiple times.

5 Conclusions

This chapter has focused on CBR techniques to achieve user-generated AI. We have
presented two complementary techniques, LfD and self-adaptation, which when
combined can help the task of an end-user who wants to author AI without pro-
gramming. In particular, the LfD technique presented in this chapter has been used
to power the social gaming website Make ME Play ME, in which users compete to
create good AIs by demonstration.

The work presented in this chapter indicates that to enable user-generated AI, we
need to address both technical and user-interface problems. D2 and Meta-Darmok
are attempts at addressing the technical challenges, and MMPM and the iIDE are
attempts at addressing the user-interface problems.

Moreover, although the techniques presented in this chapter are useful for achiev-
ing user-generated AI, we have listed a number of open problems that need to be
solved before they can be applied to a broad variety of games by end-users. In the
case of LfD, the two main open problems of the approaches presented here are how
to present the learned strategies to the user in a human-understandable way, and
how to achieve generic and efficient plan adaptation (for adapting learned plans to
new situations). Concerning self-adaptation, the main problems of a failure-pattern-
based approach are enabling the easy definition of failure patterns for end-users in
an intuitive way.
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Game AI as Storytelling

Mark Riedl, David Thue, and Vadim Bulitko

Abstract Much research on artificial intelligence in games has been devoted to
creating opponents that play competently against human players. We argue that the
traditional goal of AI in games-to win the game-is but one of several interesting
goals to pursue. We promote the alternative goal of making the human player’s play
experience “better,” i.e., AI systems in games should reason about how to deliver
the best possible experience within the context of the game. The key insight we
offer is that approaching AI reasoning for games as “storytelling reasoning” makes
this goal much more attainable. We present a framework for creating interactive
narratives for entertainment purposes based on a type of agent called an experience
manager. An experience manager is an intelligent computer agent that manipulates
a virtual world to dynamically adapt the narrative content the player experiences,
based on his or her actions and inferences about his or her preferred style of play.
Following a theoretical perspective on game AI as a form of storytelling, we discuss
the implications of such a perspective in the context of several AI technological
approaches.

1 From Adversarial Agents to Experience Management

Historically, games have been played between human opponents. However, with the
advent of the computer came the notion that one might play with or against a com-
putational surrogate. Dating back to the 1950s with early efforts in computer chess,
approaches to game artificial intelligence (AI) have been designed around adversar-
ial, or zero-sum, games. The goal of intelligent game-playing agents in these cases
is to maximize their payoff. Simply put, they are designed to win the game. Cen-
tral to the vast majority of techniques in AI is the notion of optimality, implying
that the best performing techniques seek to find the solution to a problem that will
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result in the highest (or lowest) possible evaluation of some mathematical function.
In adversarial games, this function typically evaluates to symmetric values such as
+1 when the game is won and−1 when the game is lost. That is, winning or losing
the game is an outcome or an end. While there may be a long sequence of actions
that actually determine who wins or loses the game, for all intents and purposes, it is
a single, terminal event that is evaluated and “maximized.” In recent years, similar
approaches have been applied to newer game genres: real-time strategy, first person
shooters, role-playing games, and other games in which the player is immersed in a
virtual world. Despite the relative complexities of these environments compared to
chess, the fundamental goals of the AI agents remain the same: to win the game.

There is another perspective on game AI often advocated by developers of mod-
ern games: AI is a tool for increasing engagement and enjoyability. With this
perspective in mind, game developers often take steps to “dumb down” the AI game
playing agents by limiting their computational resources [30] or making subopti-
mal moves [58] such as holding back an attack until the player is ready or “rubber
banding” to force strategic drawbacks if the AI ever gets the upper hand. The game-
playing agent is adversarial but is designed to be noncompetitive through the use of
ad hoc rules with the intention that the player feel powerful.

In this chapter, we focus on game AI which, instead of being designed to win
more often, reasons in a principled manner about how to make the human player’s
experience in a game or virtual world more enjoyable. While the outcome of a game
is important, it is not the only aspect of a game that a player evaluates. How one
reaches the ending can often be just as, if not more, important than what the ending
is; a hard fought battle that results in a loss can be more enjoyable than an easy
win. Extrapolating from the observation that experience can be more important than
outcome, we suggest that the goal of computer game AI is to reason about and
deliver an enjoyable experience. Game AI thus becomes a tool in the arsenal of the
game designer, to be used whenever one would want a real person to play a given
role but no one is available or willing. Examples of such roles are:

• Opponents, companions, and NPCs that play roles that are not “fun” to play such
as shopkeepers, farmers, and victims

• Dungeon master
• Plot writer
• Game designer

As we go down this list, game AI is charged with taking progressively more respon-
sibility for the quality of the human player’s experience in the game. To leverage this
model, we redefine the task of game AI agents as the creation of an enjoyable player
experience, and define payoffs that allow them to optimize the particular qualities
of the experience that its designers might desire. Regardless of whether the AI agent
is choosing how to oppose or assist the player1 or how the storyline should unfold,
the player’s enjoyment is its central concern.

1 Roberts et al. [48] use the term beyond adversarial to denote that a game AI system can choose to
help or hinder the player based on its assessment of the player’s past, current, and future experience.
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1.1 Reasoning About Experience as Proxy for Designer
and Player

We define an experience as one or more interrelated events directly observed or
participated in by a player. In games, these events are causally linked series of chal-
lenges that play out in a simulated environment [49]. Intuitively, it is the job of the
game designer to make decisions about how to shape the player’s experience in a
virtual world to make it enjoyable. One way game designers do this is using a “story
on rails” to lead players through a dramatically engaging sequence of challenges.
While game design approaches have been effective in creating engaging and enjoy-
able experiences, there is a growing trend toward greater player agency and greater
content customization, and neither of these can be achieved easily at the time of
game design:

• Player agency. Player agency is the ability for the player to do whatever he or she
wants at any time. While player agency is typically very high at the action level –
the player has the ability to move about the environment and perform actions –
agency at the plot level has typically been restricted to a single storyline or a small
number of storyline branches. One reason for this restriction is the combinatorial
explosion of authoring storyline branches [9,46]; the amount of content that must
be authored at least doubles at every branching point, yet a player will only see
one branch.

• Customization. Players enjoy having opportunities to experience game play that
is consistent with their preferred play style [52]. In one study, Thue et al. [53]
demonstrated that the player model-based adaptation of players’ in-game ex-
periences resulted in greater reports of fun. The information required to make
customization decisions, however, is not available at design time; it must be
learned by observing the player during game play.

In short, to achieve greater levels of player agency and greater levels of content
customization, the computational game system must assume responsibility for the
player’s experience during play time. The role of determining what the player’s ex-
perience should be (including how the game world responds to the player’s actions)
can be delegated to the computational game system itself.

1.2 Leveraging Storytelling

How can an intelligent system in a game or virtual world make decisions about, or
indirectly influence, the events that occur in the simulated environment such that the
positive qualities of the player’s experience are increased? As with game designers,
an intelligent system can leverage correlations between experience and narrative to
reason about how to manage a player’s experience. A narrative is the recounting of
a sequence of events that have a continuant subject and constitute a whole [40].
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Thus, both “experience” and “narrative” are descriptions of sequences of events.
From a game design perspective, an experience is a description – at some level of
abstraction or specificity – of events that are expected to unfold.

An Experience Manager – a generalization of the concept of Drama Man-
ager first proposed by Laurel [26] and first investigated by Bates and colleagues
(cf. [5, 25]) – is an intelligent system that attempts to coerce the state of the world
such that a structured narrative unfolds over time without reducing the perceived
agency of the interactive player. An Experience Manager uses the principle of nar-
rative to look ahead into possible futures of the player’s experience to determine
what should happen in the world over time to bring about an enjoyable, structured
experience. The projection of a narrative sequence into the future enables the Expe-
rience Manager to evaluate the global structure of possible player experiences in a
way that cannot be achieved by looking at any single world state in isolation. The
question that must be addressed is: in light of an interactive player, how can a com-
putational system project a narrative into the future toward maximizing the positive
qualities of the player’s experience?

In artificial intelligence, problems are often modeled as state spaces, where every
point in this abstract space is a particular configuration of the game environment.
While a game playing agent may attempt to maximize expected payoff by choosing
which state to transition to next, a system attempting to optimize player experience
must choose a sequence of states through which the game should transition. We
refer to a sequence of state transitions as a trajectory through state space. Choosing
a trajectory is nontrivial; even when the state space is finite, the number of possible
trajectories can be infinite when loops are allowed, as is often the case with stories.
Figure 1a, b shows two possible trajectories through state space. Every point in the
oval is a possible state configuration for the entire virtual world. Actions, performed
by the player or the computational system (possibly through the actions of non-
player characters), cause transitions from one world state configuration to the next;
in any given state, there are potentially many actions that can be performed. If we
assume that states of the right side of the oval are terminal states, then the trajectory
in Fig. 1a may be one that reaches a terminal state in the fewest transitions, a metric
classically used to determine the efficiency and optimality of a solution.

The trajectory in Fig. 1b, however, may enter parts of state space that, when taken
together, are more interesting, dramatic, or pedagogically meaningful. The chal-
lenge is to computationally find the one trajectory in the space of all trajectories that
will optimize the player’s experience (Fig. 1a–c).

Because a narrative is the recounting of a nonrandom sequence of events, any
trajectory through a state space is a narrative. Making the connection between a
trajectory of states in a game and a narrative enables us to cast the search for a
particular trajectory as the problem of generating a story. The computational gen-
eration of stories is still an open problem; story generation algorithms exist that
can produce event sequences for games or virtual worlds, although not at a level
comparable to human creative performance. Further, the problem of story gener-
ation is made more complex by the fact that an interactive player has the ability
to act in the world, making it impossible to guarantee that any narrative sequence
will unfold as expected. That is, if the player, knowingly or inadvertently, performs
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Fig. 1 The experience management problem is to compute trajectories through state space

actions that cause the virtual world state to deviate from the expected trajectory, the
next best trajectory must be computed, as shown in Fig. 1c. In that sense, manag-
ing the player’s experience is the problem of searching for many alternative stories.
In this chapter, we describe a technique for experience management that uses story
generation technologies to manage an interactive player in a virtual world. The goal
of the approach is to coerce the events in a virtual world such that the player has an
enjoyable experience with certain well-defined narrative properties.

The heart of experience management is the tension between meaningful player
agency and the desire to bring about a narrative experience that is coherent and
conforms to the designer’s pragmatic and esthetic ideals [43]. Having considered the
Experience Manager as a proxy for the designer, we may also consider the extent to
which the player’s preferences are part of the definition of the “optimal” narrative
trajectories. A player model informs the trajectory search about what the player will
find interesting and enjoyable, such that when there are multiple ways of achieving
the designer’s pragmatic and esthetic requirements, the trajectory that appeals most
to the player can be selected.

In this chapter, we discuss how game AI can be reinterpreted as storytelling for
the purpose of reasoning about the human player’s experience, thereby creating
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greater player agency through more meaningful interactions, and affording more
customization of experience. We begin with an overview of narrative intelligence –
the ability to reason about narrative – and narratological foundations of computa-
tional storytelling. In Sect. 3, we provide a computational representation of narrative
and narrative construction. In Sect. 4, we describe how an Experience Manager
can use the ability to computationally generate narrative to manage the player’s
interactive experience in a game or virtual world. Finally, in Sect. 5, we address cus-
tomization of the player’s interactive experience through learning a model of the
player and using it to optimize his or her particular narrative trajectory.

2 Narrative Intelligence and Narratological Foundations

Narrative as entertainment, in the form of oral, written, or visual storytelling, plays
a central role in many forms of entertainment media, including novels, movies,
television, and theater. Narrative is also used in education and training contexts to
motivate and to illustrate. One of the reasons for the prevalence of storytelling in
human culture may be due to the way in which narrative is a cognitive tool for sit-
uated understanding [10, 18, 19, 21, 36]. There is evidence that suggests that we, as
humans, build cognitive structures that represent the real events in our lives using
models similar to the ones used for narrative to better understand the world around
us [10]. Our understanding of the world is achieved by “constructing reality” as a
sequence of related events from our senses [11]. While we tend to understand inan-
imate objects through cause and effect, we attempt to understand the intentional
behavior of others through a sophisticated process of interpretation with narrative at
its core [10]. This narrative intelligence [7, 33] is central in the cognitive processes
that we use across a range of experiences, from entertainment to active learning.

Narratologists break narrative down into at least two layers of interpretation:
fabula and sjuzet [3]. The fabula of a narrative is an enumeration of all the events
that occur in the story world between the time the story begins and the time the
story ends. The events in the fabula are temporally sequenced in the order that they
occur, which is not necessarily the same order in which they are told. The sjuzet of
a narrative is a subset of the fabula that is presented via narration to the audience.
If the narrative is written or spoken word, the narration is in natural language. If the
narrative is a cinematic presentation, computer game, or virtual world, the narration
is through the actions of characters and the camera shots that capture that action.
While it is the narrated sjuzet that is directly exposed to the audience, it is the fabula
of a narrative that is the content of the narrative (i.e., what the narrative is about).

In this chapter we focus on fabula: what happens (or what is expected to happen)
in the virtual world or game. Readers interested in how stories can be computation-
ally structured at the sjuzet level should see Montfort [37], Cheong and Young [14],
Bae and Young [2], and Jhala [24].

There are many aspects that determine whether a story is accepted by the audi-
ence as “good.” Many of these aspects are subjective in nature, such as the degree
to which the audience empathizes with the protagonist. Other aspects appear to
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be more universal across a wide variety of genres. Cognitive psychologists have
determined that the ability of an audience to comprehend a narrative is strongly
correlated with the causal structure of the story [8, 20, 21, 56] and the attribution
of intentions to the characters that are participants in the events [19–21]. Story
comprehension requires the perception of causal connectedness of story events and
the ability to infer the intentions of characters. Accordingly, we assert that two
nearly universal qualities of narratives are logical causal progression and character
believability.

The causality of events is an inherent property of narratives and ensures a whole
and continuant subject [13]. Causality refers to the notion that there is a relationship
between temporally ordered events such that one event changes the story world in a
particular way that enables future events to occur [54]. For a story to be considered
successful, it must contain a degree of causal coherence that allows the audience to
follow the logical succession of events and predict possible outcomes. One can think
of the property of logical causal progression as the enforcement of the “physics” of
the story world in the sense that there are certain things that can and cannot hap-
pen based on the actual state of the story world and the characters within it. For
example, in fairy tales, the world is such that wild animals such as wolves can eat
people without killing them. Character believability [6] is the audience perception
that arises when the actions performed by characters do not negatively impact the
audience’s suspension of disbelief. Goal-oriented behavior is a primary requirement
for believability [12,31]. Specifically, we, as humans, ascribe intentionality to agents
with minds [16]. The implication is that if a character is to be perceived as believ-
able, one should be able to, through observations of the character, infer and predict
its motivations and intentions. For a greater analysis of goal-directed behavior in
character believability, see Riedl and Young [47].

3 Computing Narrative Structure

Addressing experience management as story generation, there are two problems to
consider. The first is how to computationally model narrative structure. The second
is how to computationally model the process of constructing narrative and manag-
ing interactive experiences. This section addresses the computational representation
of narrative in detail, but only touches on algorithms for generation due to the fact
that there are still many open research problems that remain to be addressed. The
general consensus among psychologists and computer scientists is that a narrative
can be modeled as a semantic network of concepts [20,51,55,60]. Nearly all cogni-
tive representations of narrative rely on causal connections between story events as
one of the primary elements that predict human narrative comprehension. Follow-
ing others [28, 39, 43, 45, 47, 60], we use AI plan-like representations of narrative
as transitions through state space. Plan representations have been used in numer-
ous narrative intelligence systems; they correlate well with the narratological and
cognitive constructs that have been associated with narrative reasoning.
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3.1 Narrative as Plans

Partial-order causal link (POCL) plans [57], in particular, have been used suc-
cessfully to computationally reason about narrative structure because of strong
correlations between representation and cognitive and narratological concepts
[15, 60]. A POCL plan is a directed acyclic graph in which nodes are operations
(also called actions) which, when executed, change the world state. Arcs capture
causal and temporal relations between actions. A causal link, denoted ai →c a j,
captures the fact that the execution of action ai will cause condition c to be in true
in the world, and that condition is necessary for the execution of subsequent action
a j. Causal links, unique to POCL plans, are representationally significant due to the
importance of causality in narratives. Temporal links capture ordering constraints
between actions when one action must be performed before another. Temporal and
causal links create a partial ordering between actions, meaning that it is possible
that some actions can occur during overlapping time intervals.

A narrative is a sequence of events – significant changes to the state of the story
world. The mapping of narrative to plan is straightforward. Events are represented
by plan actions, which are partially ordered with respect to each other by the tem-
poral links. The term “event” captures the nuance that not all changes to the world
state are intentional on behalf of some agent or character. Thus, some events can be
accidents, automatic reactions to other changes, and forces of nature. Partial order-
ing is a favorable feature of a story representation because it is often the case that
actions in the fabula occur simultaneously. In the remainder of this chapter, we will
use the terms “action” and “event” interchangeably. Note that a narrative plan for
an interactive game or virtual world contains events to be initiated by the player and
non-player characters. Figure 2 shows an example of a plan representing a narrative
sequence for a simplified version of Little Red Riding Hood [22]. Boxes represent
events. Solid arrows are causal links where the labels on the links describe the rele-
vant conditions. Dashed arrows represent temporal constraints between events. For
clarity not all causal and temporal links are shown. There are three types of special
constructs shown in the figure. The initial state is a description of the story world as
a set of logical propositions. The initial state specifies characters in the story world,
the properties of characters, and relationships between characters, props, and the
world. The outcome is a description of how the story world should be different after
the story completes. In Fig. 2, the outcome is that the Granny character has cake,
Granny is not in the state of being eaten, and Little Red Riding Hood (“Red” for
short) is also not in the state of being eaten. Finally, author goals are intermediate
states that must be achieved as some point during the course of the story. In the ex-
ample, the two author goals are that Granny becomes eaten by something and Red
becomes eaten by something. Author goals are used to preserve the authorial intent
of the designer, as described in Sect. 3.2.

Next, we overview how plans are computationally constructed. Planners are
search algorithms that solve the planning problem: given an initial world state, a
domain theory, and a goal situation, find a sound sequence of operators that trans-
forms the world from the initial state into a state in which the goal situation holds.



Game AI as Storytelling 133

Initial State

1: Red Greet Wolf

2: Red Tell Wolf About Granny

Author Goal 1

5: Hunter Kill Wolf

6: Red Escape Wolf

3: Wolf Eat Red

8: Red Give Granny Cake

knows(wolf, red) knows(wolf, granny)

knows(wolf, red)

Outcome

Author Goal 2

¬ alive(wolf)

¬ eaten(granny)

¬ eaten(granny)

eaten(granny)

has(red, cake)

alive(wolf)
alive(wolf)

alive(wolf)
alive(wolf)

4: Wolf Eat Granny

7: Granny Escape Wolf

¬ eaten(red)

¬ eaten(red)

eaten(red)

has(granny, cake)

¬ alive(wolf)

Fig. 2 The story of Little Red Riding Hood represented as a partially ordered plan

Fig. 3 Portion of a domain library for Little Red Riding Hood

The domain theory describes the “physics” of the world – how the world works and
how it can be changed. The domain theory is often a library of action (or event) tem-
plates where applicability criteria and world state update rules are specified through
logical statements. Specifically, events have preconditions and effects. The precon-
dition of an event is a logical statement that must be true in the world for the event
to legally occur. The effect of an event is a logical statement that describes how
the world would be different if the events were to occur. Figure 3 shows two event
templates from the domain library for the Little Red Riding Hood world.

There are many algorithms that solve the planning problem. In this section, we
highlight partial-order planning (POP) [38,57]. POP planners are refinement search
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algorithms, meaning they inspect a plan, identify a flaw – a reason why the current
plan being inspected cannot be an actual solution – and attempt to revise the plan
to eliminate the flaw. The process iteratively repairs one flaw at a time until no
flaws remain. It is often the case that there is more than one way to repair a flaw,
in which case the planner picks the most promising repair, but remembers the other
possibilities. Should it make a mistake, the planner can backtrack to revisit any
previous decision point. We favor POP because the particular way in which flaws
are identified and revised in POP is analogous to cognitive planning behavior in
adult humans when faced with unfamiliar situations [41].

The refinement search process starts with an empty plan. A flaw is detected,
and zero or more new plans are produced in which the flaw is repaired (and often
introducing new flaws). These plans become part of the fringe of a space consisting
of all possible complete and incomplete plans. The process is repeated by picking
the most promising plan on the fringe and iterating.

In POP, there are two types of flaws: open conditions and causal threats. An
open condition flaw exists when an event (or the outcome) has a precondition that
has not been satisfied by the effect of a preceding event (or the initial state). An open
condition flaw is repaired by applying one of the following strategies:

1. Select an existing event in the plan that has an effect that unifies with the precon-
dition in question.

2. Select and instantiate an event template from the domain library that has an effect
that unifies with the precondition in question.

A causal threat flaw occurs when the temporal constraints do not preclude the pos-
sibility that an action ak with effect ¬c can occur between ai and a j when there is
a causal link ai →c a j requiring that c remain true. Causal threats are repaired by
adding additional temporal constraints that force ak to occur before ai or after a j. By
iteratively repairing flaws, the current plan progressively gets closer to a solution.
The algorithm terminates when it finds a plan that has no flaws. More details on
POP are provided by Weld [57].

3.2 Preserving Designer Intent

A narrative generator assumes responsibility for the structure of the player’s expe-
rience during gameplay. It is, however, desirable that a designer is able to constrain
the space of possible experiences the player can have to enforce a particular es-
thetic or pragmatic vision. We extend the standard POCL plan representation to
include author goals [42], partially specified intermediate states that the story must
pass through at some point before the story concludes. Potential solutions that do
not satisfy each author goal state description at some point between the initial state
and the end state are pruned from consideration. Author goals serve two impor-
tant purposes. First, author goals constrain the narrative search space such that it
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is impossible for a generator to produce a story that does not meet certain criteria
imposed by the designer.2 Second, author goals can be used to force complexity in
the story. The importance of author goals as part of the narrative representation be-
comes clear in the context of the Little Red Riding Hood example. Without author
goals, achieving the outcome – Granny has cake, Granny is not eaten, and Red is not
eaten – is trivial. Red need only give some cake to Granny, which can be achieved
with a single event. The author goals – Granny is eaten, and Red is eaten – force the
story generator to figure out how to have both Granny and Red eaten and then later
saved.

3.3 Generating Believable Stories

If plans are good representations of narratives, might it also make sense to use plan-
ning algorithms to construct narratives? Young and Saver [59] provide neurological
evidence of functional similarity between planning and narrative generation in the
human brain. Planning algorithms, however, are general problem solvers that make
strong assumptions about the nature of the problem being solved. Specifically, a
planner is an algorithm that attempts to find a sequence of operations that trans-
forms the world state from an initial configuration into one in which a given goal
situation holds. While a resultant set of operations – a plan – can be considered a
narrative, that narrative is unlikely to be believable or to contain esthetic features
such as a dramatic arc that would be favorable for the task of creating engaging ex-
periences [47]. The reason that conventional planners are not guaranteed to generate
believable narrative plans is because of their emphasis on achieving valid plans; they
disregard the requirement that characters will appear motivated by intentions other
than the author’s goals. Even with a heuristic that favors plans in which characters
appear believable, it is possible for a conventional planner to return a plan that is not
believable when it finds a shorter, valid solution before it finds a longer, valid, and
believable solution.

To reliably generate narrative plans in which characters appear believable, nar-
rative planners must use new definitions for plan completeness that include believ-
ability, coupled with mechanisms for selecting actions that move the planner toward
complete, believable solutions. Extensions to POP, implemented in the FABULIST

story generation system [47], allow planners to search for narrative sequences
that are both logically and causally coherent but also present events that explain
the underlying motivations of characters. This is one step toward computationally
achieving the “illusion of life” necessary for suspension of disbelief [6]. Future work
in story generation must also consider esthetics such as dramatic arc – the cadence
of rising action, climax, and falling action – and suspense. While efforts are under-
way to explore computational reasoning about such story esthetics (cf. [1,17]), there

2 In the absence of a well-defined evaluation function that can rate the “goodness” of a narrative
trajectory, the designer’s intent is the only guidance the story generator has.
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are many open research questions to be addressed in the pursuit of computational
systems that can assume full responsibility for the quality of a player’s interactive
experience. In the remainder of this chapter, we will describe our approach to ex-
perience management in the context of simple POP, although more sophisticated
algorithms exist that are keyed to the specific problem of generating believable nar-
rative sequences.

4 Experience Management

Player experience in a virtual world or game can be expressed as a narrative, pro-
jecting an ideal trajectory of state transitions into the future. This narrative is not
necessarily the sequence of moves that a rational computer opponent would take to
maximize expected payoff but rather the one that delivers a “good” experience to
the player. In a virtual world modeled after Little Red Riding Hood, this may be the
sequence that raises the stakes for the player but then allows the player to overcome
adversity to save the day. In a game of chess, this may be the sequence that sets
up a dramatic come-from-behind victory. Thus far, however, we have not addressed
the fact that the player is not just another character in the story, but a human with
his or her own goals and the ability to make gameplay choices that differ from the
idealized narrative sequence. That is, the human player neither knows the script nor
is expected to follow it.

Experience management is the process whereby a player’s agency is balanced
against the desire to bring about a coherent, structured narrative experience. On one
hand, we want the player to have the perception that he or she has the ability to make
decisions that impact the world in a meaningful way (e.g., at the plot level). On the
other hand, the designer wants the player to have an experience that meets certain
esthetic and pragmatic guidelines. Can we allow meaningful player agency while
still achieving the goal of bringing about an experience that has the features desired
by the designer? Designers of heavily plot-driven computer games often resort to a
“story on rails” approach, where although there may be an appearance of agency,
the world is structured so that a single pre-scripted plot sequence unfolds; side-
quests are then often added to enhance the player’s feeling of agency. The “story
on rails” approach is diametrically opposite of simulation style games, in which
there is no pre-scripted plot sequence, and any narrative structure emerges from the
interactions of autonomous non-player characters and human players.

Our approach to experience management, as implemented in the AUTOMATED

STORY DIRECTOR framework [44] and the MIMESIS system [62], balances player
agency and narrative structure by allowing meaningful player agency and then
generating novel narrative trajectories when the player, intentionally or inadver-
tently, exerts their agency. Consider trajectory space – the set of all possible
trajectories through state space. One trajectory, the exemplar trajectory, is the
human designer’s preferred story; it is the best possible experience according to
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that designer. The exemplar trajectory projects the player’s actions and non-player
character actions into the future. Players may still exert their agency, however, and
we categorize their actions as follows [43]:

• Constituent – the player knowingly or unknowingly performs the action that is
listed as the next action in the narrative. For example, after the Wolf has eaten
Red and Granny, the player, in the role of the hunter, kills the Wolf.

• Consistent – the player performs an action that is not part of the narrative but
does not significantly alter the state of the world and the narrative sequence can
continue. For example, early in the game, the player talks to Red.

• Exceptional – the player performs an action that is not part of the narrative, and
the world state is changed such that some portion of the narrative cannot con-
tinue. For example, the player kills the Wolf before the Wolf meets Red, or the
player takes the cake away from Red.

In the case that the player performs an exceptional action, the Experience Manager
must figure out how to allow the player’s action3 and still achieve an experience
with the requisite structure. Note that the exceptional player action may not imme-
diately threaten the narrative, as the change to the world may impact an action that
is projected to occur far downstream in time. Handling an exceptional player action
is tantamount to finding the next best trajectory, given a world state altered by the
player’s exceptional action.

4.1 Anticipating Necessary Narrative Plan Adaptations

Using plan structures to model narrative is advantageous because, by capturing the
causal relationships between actions, a narrative plan can be analyzed for points in
which exceptional player actions are possible. That is, assuming the narrative plan
executes as expected, we can look into the future and identify possible exceptional
actions. We use a technique similar to that described by Riedl et al. [43] to analyze
the causal structure of the scenario to determine all possible inconsistencies between
plan and virtual world state that can occur during the entire duration of the narrative.
Inconsistencies arise due to exceptional player actions performed in the world. The
technique identifies intervals of the narrative plan during which it is possible for an
exceptional action to occur.

For every possible inconsistency that can arise that threatens a causal link in the
plan, an alternative narrative plan is generated. For each possible inconsistency that

3 One can also consider attempting to prevent the exceptional action in a natural and unobtrusive
manner. Riedl et al. [43] describe a technique called intervention whereby the exceptional action
is surreptitiously replaced by a nearly identical action that does not affect the world state in a way
that prevents the narrative from progressing. For example, if shooting a character prevents that
character from performing a critical task in the future, then shoot can be replaced by gun-jam that
prevents the character from dying and allowing the narrative to continue. However, if intervention
is chosen, it effectively removes player agency, which may or may not be noticed by the player.
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can arise, we use the following repair process to find an alternative trajectory. First,
we assume that the narrative will progress as expected until the threatened interval
begins. Next, we assume the worst case: that the player will perform the exceptional
action that creates the inconsistency. By simulating the execution of the exceptional
player action, we can infer the state that the world would be in if the action were to
occur. Finally, the following repair processes are tried in order until one succeeds in
generating a narrative that meets the designer’s intent:

(a) The threatened causal link is removed, leaving an open condition flaw on the
terminus event, and the planner is invoked.

(b) The threatened causal link is removed, the terminus event and all other events
(except author goals) that are causally downstream (e.g. there is a path from
the threatened causal link to a given event through the directed graph of causal
links) are removed, open condition flaws are identified on the remaining events,
and the planner is invoked.

(c) The threatened causal link is removed, the terminus event and all other events
(including author goals) that are causally downstream are removed, open condi-
tions flaws are identified on the remaining steps, and the planner is invoked.

(d) The remaining plan is discarded, a new outcome situation and new author goals
are selected, and the planner is invoked.

To illustrate the tiers of repair strategies, consider the narrative plan in Fig. 4a.
Event e1 establishes condition c in the world, which is necessary for event e2. Sup-
pose it is possible for the player to perform an action that causes ¬c to become true
during the interval between the completion of e1 and the beginning of e2. The possi-
ble inconsistency is found during causal analysis, and the tier (i) strategy is invoked.
A copy of the plan is made and updated to reflect the state the world would be in
should all events preceding the interval in question have occurred. That is, the initial

Exemplar Tier i Tier ii Tier iii

a.goal1

a.goal2

I

e1

e2

e3

e4

c

G

a.goal1

a.goal2

I'

e2

e3

e4

G

a.goal1

a.goal2

I'

e4

G

a.goal2

I'

e4

G

a b c d

Fig. 4 Illustration of the tiered re-planning strategies considering a single possible inconsistency
resulting in ¬c in exemplar (a). (b)–(d) show how the exemplar is prepared for re-planning for
each tier
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state now represents the world state after e1 has occurred, and action e1 is no longer
part of the narrative. The tier (i) strategy removes only the causal links in the interval
in question that are threatened by the exceptional player action. Figure 4b shows the
copy of the plan after tier (i) preprocessing but before the story generator is invoked
to fill back in causally necessary events. Ovals indicate flaws in the plan due to pre-
processing. Replanning will most likely result in the insertion of new events before
e2 that reestablish c in the world.

Suppose that the tier (i) strategy fails, the story generator cannot find any par-
tially ordered sequence of new events that can fill the gap created by removing the
threatened causal link. The Experience Manager advances to the tier (ii) strategy,
and removes threatened causal links, the events satisfied by the threatened links,
and all events that are causally downstream except author goals. A causally down-
stream event is any action ei such that there is a path in the graph of causal links
from a removed event to ei. In this example, action e3 is causally downstream but
e4 is not. Figure 4c shows the copy of the plan after tier (ii) preprocessing. The tier
(iii) strategy is similar to tier (ii) except that causally downstream author goals are
also removed. The underlying assumption is that tier (ii) failed because the author
goals were interfering with the ability of the story generator to find a valid plan.
Figure 4d shows the copy of the plan after tier (iii) preprocessing. Finally, should all
other strategies fail, the tier (iv) strategy (not shown) deletes all actions in the plan,
replaces the outcome situation G with a new outcome situation G′, and instantiates
any number of new author goals. The new outcome and author goals come from a
list of alternative author goals specified at design time by the human designer. If
the final tier of replanning fails, we resort to a non-managed virtual world, relying
completely on game play dynamics and the autonomy of non-player characters to
create an emergent narrative experience.

We use the tiered strategy approach to compensate for the fact that story planners
are not yet at human-level ability for story creation. In the absence of a story planner
that can reliably evaluate the “goodness” of a narrative sequence, the tiered strategy
approach is built on the assumption that the human-authored exemplar narrative is
the ideal experience, and that any necessary changes should preserve the original
narrative structure as much as possible. This assumption is not true in all cases
and can result in situations where the Experience Manager attempts to undo the
consequences of the player’s actions [44]. As story generation techniques improve
(see Sect. 3.3 for pointers to potential improvements), reliance on such assumptions
will become unnecessary, simplifying the operation of the Experience Manager.

4.2 Computation of Contingencies

Story replanning is performed offline to avoid delays due to computation [43, 44];
for any sufficiently rich world, the online generation of narrative structure can ex-
ceed acceptable response times in an interactive game or virtual world. The result of
the offline replanning process is a tree of contingency plans in which each plan
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represents a complete narrative starting either at the initial world state (for the
exemplar) or at the point in which an inconsistency can occur at play time. If the
player performs an exceptional action, the system simply looks up the appropriate
branch in the tree of contingencies and seamlessly begins using the new trajectory
to manage the player’s experience from that point on. The contingency tree is neces-
sary for dynamic execution; by pre-generating the tree, an Experience Manager can
rapidly switch to alternative narrative plans when player actions make this necessary.
Riedl and Young [46] show that the contingency tree is functionally equivalent, but
more expressive, than a choose-your-own-adventure style branching story. The ad-
ditional expressivity comes from the fact that player actions can be performed at any
time (e.g., in any interval). Note that a tree of contingency plans can be potentially
infinite in depth. We use a simple user model to determine which exceptional ac-
tions are most probable, and focus on making those parts of the tree more complete
(cf. [44]). Additionally, as a matter of practicality, we cap the depth to which the
tree can grow.

Figure 5 shows a portion of the contingency tree automatically generated for the
Little Red Riding Hood domain. As before, inside the plan nodes solid arrows rep-
resent causal links and dashed arrows represent temporal constraints. The vertical
i-beams alongside each plan node represent intervals during which exceptional ac-
tions can occur and result in inconsistencies that need to be handled. The arrows
between plan nodes indicate which contingency narrative plan should be used if
an inconsistency does in fact occur during interactive execution. The actual contin-
gency tree for even the simple Little Red Riding Hood world requires thousands of
contingencies, most of which are minor variations of each other (see Sect. 4.3 for
execution details).

For online narrative plan execution, events in the current narrative plan are in-
terpreted as abstract descriptions at the level commonly associated with plot. The
events are used to generate directives to an underlying execution system that reg-
ulates game play. Each event can be thought of as a subset of the virtual world’s
overall state space. The execution system may or may not include semi-autonomous
characters [34, 44]. We point the interested reader to details on the AUTOMATED

STORY DIRECTOR framework [44] for specifics on one possible execution system.

4.3 Example: Little Red Riding Hood

Our approach to experience management, as implemented in the AUTOMATED

STORY DIRECTOR framework [44], is illustrated in an interactive experience based
loosely on the Little Red Riding Hood tale. The virtual world was built on a MOO
(a text-based, object-oriented, multi-user dimension). Figure 6 shows a screenshot
of the Little Red Riding Hood story in execution.

The player assumes the role of the Hunter (in the screenshot in Fig. 6, the player
has chosen the name Fred). Although the Hunter is not the title character, the hunter
is the character that ultimately “saves the day.” Note that experience management
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Fig. 6 Screenshot of the Little Red Riding Hood interactive story playing out in a MOO

can be performed regardless of which character the player controls. Experience
management works best in rich virtual worlds with many characters. To make the
Little Red Riding Hood domain more suitable for experience management, we ex-
tended the domain to include two extra characters: a fairy and a monster named
Grendel. The fairy has the power to resurrect dead characters. Grendel, like the
Wolf, is capable of swallowing other characters alive. In this simple example, the
principal way in which the player expresses his or her agency is through the act
of killing other characters at times other than that specified in the current narrative
trajectory. A portion of the contingency narrative plan tree is shown in Fig. 5, only
showing a few interesting branches (for space, plans are truncated to show only the
actions that occur before the author goals). The exemplar narrative plan is the root
of the contingency tree, shown at the left of the figure. Consider the narrative plan
node labeled 1. To reach this trajectory, the player must create an inconsistency by
killing the Wolf before it can eat either Red or Granny. The simplest alternative
trajectory is to have the Fairy resurrect the Wolf, who then continues as normal. If
for some reason the Fairy is also killed by the player, Grendel can fill the role of
the character who eats Red and Granny, achieving the author goals. Note that in
the exemplar narrative, the plot points specifying that the Wolf eat Red and that the
Wolf eat Granny are unordered with respect to each other. This creates the possibil-
ity of multiple branches based on a race condition between the player’s killing of
the Wolf and the achievement of the two author goals: the Wolf can be killed be-
fore eating Red or Granny (contingency plan 1); the Wolf can be killed after eating
Red but before eating Granny (contingency plan 2); or the Wolf can be killed after
eating Granny but before eating Red (contingency plan 3). Each possible ordering
of events in the race condition results in a slightly different narrative trajectory. The
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Little Red Riding Hood domain and exemplar narrative shown in Fig. 2 result in
1,319 branches when the contingency tree is generated to a depth of 5 (the root of
the tree, the exemplar narrative, is at depth 0). With a depth of 5, the contingency tree
can handle five exceptional player actions in one play session before reverting to an
emergent, unmanaged world. It takes approximately 43 min (approximately 11 min
spent on garbage collection) to generate the contingency tree on an Intel Core2 Duo
3 GHz system with 3 GB of RAM and 100 GB of virtual memory running ALLEGRO

CL� 8.0.

5 Player Modeling

Having considered the Experience Manager as a proxy for the designer, we may
also consider the extent to which the player’s preferences are part of the definition
of “optimal” narrative trajectories.

Building and using models of player behavior is becoming increasingly preva-
lent in commercial video games, as doing so enables a computational game system
to learn about the player to make decisions that impact the player’s experience in
a positive way. Player modeling in games has been used to maximize coherence,
interest, and enjoyment.

• Maximizing coherence of player experience. A player model can be used to
predict when the player might perform actions that diverge from the expected
sequence and respond appropriately [23, 32].

• Maximizing interest. Learning player preferences over plot points and other nar-
ratively salient situations allows a game system to present an experience that is
customized to the player’s interests [4, 29, 50].

• Maximizing enjoyment. Learning player preferences over style of play has been
shown to translate directly toward more engaging, enjoyable experiences [35,53].

The greater the Experience Manager’s knowledge of its audience, the more informed
its decisions about the player’s experience will be. Due to the dynamic nature of
games and virtual worlds, the point at which the Experience Manager has the most
information about the player is just before a decision needs to be made. These facts
motivate both learning and using a player model regularly during the course of the
player’s experience, and we present these tasks as two computational challenges for
an Experience Manager to overcome: learning a profile of the player, and effectively
using this model to positively affect the player’s experience.

5.1 Learning About the Player

One promising approach, as implemented in the PASSAGE system [52, 53], is to
learn about the player regularly throughout their interactive experience. One ad-
vantage of this approach, as opposed to learning about the player before game play
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begins, is that if the player’s preferences change as the experience unfolds, the player
model can be refined. Specifically, we propose to learn the player’s preferences
toward different styles of play [52], drawn from Laws’ theory [27] for providing
entertaining pen-and-paper role playing games. Laws identifies the following play
styles:

• Fighter ( f ) – for players who enjoy engaging in combat
• Method Actor (m) – for players who enjoy having their personality tested
• Storyteller (s) – for players who enjoy considering complex plots
• Tactician (t) – for players who enjoy thinking creatively
• Power Gamer (p) – for players who enjoy gaining special items and abilities

Thus, a player model is a vector of scalars, 〈 f ,m,s, t, p〉, describing the extent to
which the player has exhibited the traits of each play style. To determine whether
the player is exhibiting a particular play style, player actions in the domain theory
are annotated as being indicative of different styles of play; whenever the player
performs an action that has been annotated, the corresponding value in the model
increases. The player model is thus an estimate of the player’s inclinations toward
playing in each of the modeled styles.

5.2 Using a Player Model

Given the goal of maximizing player enjoyment, we can leverage the primary as-
sumption of the PASSAGE system [52]: that players will enjoy events which allow
them to play in their modeled play-styles more than events which favor other styles
of play. Annotations on events (those performed by players and NPCs) indicating
the play style that they are most suited for link the player model to the real-time
execution of a narrative sequence. Thus the player model, represented as a vector
of play style preference strengths, acts as a metric for each sequence to calculate its
expected utility. This calculation could be as simple as examining the distribution of
actions in the narrative sequence based on their annotations as to which play styles
they support. For example, with a model of 〈 f = 1,m = 0,s = 0, t = 1, p = 2〉, the
ideal narrative for this player would be made up of a collection of actions, distributed
such that 25% appeal to fighters, 25% to tacticians, and 50% to power gamers. In
the event that a narrative is not ideal for a player, the expected utility will be some
value in the interval [0,1) indicating appropriateness based on event annotations.

Previously, we considered how to determine whether a player action is excep-
tional or not. We now consider why the player performs an exceptional action. There
are many reasons why exceptions occur, including ignorance of the plotline, acci-
dent, malicious behavior (ie., trying to “break” the game),4, or expression of a style

4 The “cooperative contract” of interactive entertainment [61] suggests that if a player is not inter-
ested in being entertained in the way the game was designed, the designer need not be responsible
for entertaining the malicious player.
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of play that differs from the expected play style. If the exception occurs because
of an expression of a particular play style, we wish to optimize the player’s experi-
ence by repairing the narrative, accommodating the player’s action into the narrative
structure, and making any adjustments necessary to increase the expected utility of
the subsequent narrative plan. Because the Experience Manager cannot know the
precise configuration of the player model until the moment the exception is exe-
cuted, narrative branches that account for many different possible configurations of
the player model must be generated before the game being played.

Fortunately, the generation of narrative branches is one of the key features of the
approach to experience management described earlier.

We extend our experience management approach to use the real-time dynamics of
the player model in the following way. Instead of sequentially working through the
four tiers of re-planning strategies (see Fig. 4a–d) escalating only when one of the
strategies fails, the system executes all four strategy tiers for every possible incon-
sistency. Further, we modify tier (iv) to draw from many different sets of alternative
author goals instead of selecting the next best set. We propose this because author
goals force the story planner to consider trajectories that pass through different por-
tions of state space [42]. In the absence of a human-level story generator, using sets
of varied author goals forces the Experience Manager to explore a wider variety of
trajectories, whereas without guidance, the planner may err on the side of making
the fewest changes that it can.

The modifications described above result in one or more alternative branches for
any given possible inconsistency. For example, if there are three sets of alternative
author goals, then the maximum number of alternative branches per possible incon-
sistency is seven: one from tier (i), one from tier (ii), one from tier (iii), and three
from tier (iv). See Fig. 7 for an illustration of branching execution incorporating a
player model. The figure introduces decision nodes (diamonds) that select a child
node (a narrative plan) based on the player model. In the illustration, killing the Wolf
before event 1 has completed results in a possible inconsistency – the Wolf is unable
to complete the action or any subsequent actions – and the possible inconsistency
can be repaired in one of three ways.

When an inconsistency arises due to an exceptional player action, the system
knows definitively that the current plan cannot continue to execute; the only non-
determinism at this point is which branch to take. The system calculates the expected
utility of each branch based on the configuration of the player model at the time the
exceptional player action occurs. Thus the branch that actually begins execution at
the time of the exceptional user action both restores causal coherence and tunes the
player’s experience according to his or her preferred play style.

The experience management approach incorporating real-time dynamics of the
player model increases the number of narrative contingencies that must be gener-
ated a priori. However, the increase is by a linear number of branches per branching
point and thus does not significantly increase the computational complexity of build-
ing the tree of contingency narratives. There is also an additional burden placed
on the human designer in the sense that he or she must now provide as many
sets of author goals as possible. Event templates for the world domain must also
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1: Red Greet Wolf

Initial State

2: Red Tell Wolf About Granny

a.goal 1 a.goal 2

5: Hunter Kill Wolf

6: Red Escape Wolf

3: Wolf Eat Red

8: Red Give Granny Cake

knows(wolf, red)

knows(wolf, red)

knows(wolf, granny)

Outcome

¬ alive(wolf)

¬ alive(wolf)

¬ alive(wolf)

¬ alive(wolf)

¬ eaten(granny)

¬ eaten(granny)

eaten(granny)

(has red cake)

¬ has(red, cake)

alive(wolf)

alive(wolf)

alive(wolf)

alive(wolf)

4: Wolf Eat Granny

7: Granny Escape Wolf

¬ eaten(red)

¬ eaten(red)

eaten(red)

has(granny, cake)

¬ alive(wolf)

Fig. 7 A portion of a tree of narrative plan contingencies with decision nodes for inspecting the
real-time player model

be annotated according to style of play. These additional authorial requirements
are deemed relatively negligible, and future advancements in story generation will
be less reliant on authorial guidance from humans. The added benefit is that there
are multiple contingencies available for every possible inconsistency, meaning that
the Experience Manager can optimize the narrative trajectory the player is on, with
respect to the choices available.

The extensions to experience management, merging AUTOMATED STORY

DIRECTOR and PASSAGE, have not been implemented; however, we believe
the combination of story generation-based experience management and player
model to be a promising way to address player agency and customization.

6 Conclusions

Experience management is the process whereby a player’s agency is balanced
against the desire to bring about a coherent, structured narrative experience. Intu-
itively, this is what game designers do when they construct a game world with a
narrowly prescribed set of paths that deliver the player to a satisfying conclusion.
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However, due to the growing trend toward greater player agency and greater content
customization, we must consider computational approaches that offload design and
management of the player’s game play experience onto automated computational
systems. In this work, we present an approach to automated, real-time experience
management, in which we leverage the correlations between narrative and experi-
ence. By generating narrative trajectories that project possible experience into the
future, a system is able to coerce a game or virtual world so that designer intent
is preserved without diminishing player agency. The system is also able to reason
about the narrative trajectory that maximizes the player’s enjoyment based on ac-
quired information about the preferences of the player toward certain styles of play.
Thus, when the player exerts his or her agency in ways that are inconsistent with
the provided narrative structure, the system is capable of seamlessly recovering and
bringing the narrative trajectory in line with the player’s inferred desires.

This perspective on how Artificial Intelligence can be used to create engaging
gameplay expands the traditional role of an AI agent from adversarial opponent –
focused on maximizing competitive payoff over time (e.g., beating the player) – to
an agent with the goal of increasing the player’s enjoyment. While there are many
open research questions that remain with regard to generating better stories, the
experience management framework suggests that whenever the global experience
of a computer game is more important than achieving any one terminal state, be it a
non-narrative game like chess or a game highly driven by plot, modeling the AI as
storytelling is a beneficial approach.
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Intelligent Machinima Generation for Visual
Storytelling

Arnav Jhala and R. Michael Young

Abstract This chapter describes Darshak, an end-to-end system that automatically
generates camera shot sequences for generation from a given story and visualization
goals. The shot sequences that are generated by Darshak are visualized on a com-
mercial 3D game engine automatically by an execution module implemented on the
game engine.

1 Visual Storytelling: Motivation and Example

Through video is becoming increasingly prevalent in human culture. Last few
decades have seen entertainment and educational applications involving interactive
and non-interactive narratives, communicated through a variety of media including
moving visuals in films, television, and more recently in video games. Experienced
consumers of visual narration have learned established creative conventions for ef-
fective visual storytelling. A better understanding of the creation, consumption, and
evaluation of cinematic styles is pertinent for creating tools that can assist in such a
process, enhance human creativity in creating visual material, and use this medium
for educational purposes. In this chapter, we present an intelligent movie directing
and cinematography system – Darshak. Development and evaluation of Darshak
provide insight into the process of identification and evaluation of visual cinematic
devices (e.g., shot composition, camera transitions) and the creative process of cine-
matic reasoning through a computational algorithm that performs exploration of the
creative space of these devices to automatically produce compelling visualizations.
This enables directed systematic exploration of the large space of possible visual
realizations of stories.

Unlike text, 2D art, and music, cinema is a relatively new art-form that has only
received serious academic attention over the last half century. Storytelling through
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the moving image has rapidly evolved from short silent films to CG composited SFX
laden movies. Throughout this evolution, cinematic artists took advantage of the
constraints of the technology of a given era and developed sophisticated idioms that
had powerful impact on their viewers. More recently, cheap cameras, the internet
distribution venues, and the ability to generate animation through low-cost game
engines have generated a new breed of amateur video producers.

Film directors and cinematographers have identified and established creative con-
ventions for effective visual storytelling. These conventions have been developed
through an exploration of possibilities afforded by the constrained technologies
(e.g., the physical film camera), and using computational methods (e.g., editing soft-
ware, CG compositing) to create powerful experiences. Developers of each of these
types of cinematic venues have experimented with principles of which some have
been learned so well by the viewers that they define entire genres of stylistic film-
making. For example, it is easy for a trained eye to identify a western themed film
from the typical camera shots and transitions that are used during scenes that involve
conflict among opposing parties. These conventions even hold when the setting is
not of a typical western town, but is futuristic (e.g., Cowboy Bebop Anime). We will
explore computational representations of such cinematic rules and algorithms that
can reason about cinematic rules for creating compelling visualizations.

The use of patterns of shots and shot sequences in film has been well documented
by cinematographers [1,10]. These film idioms are understood by cinematographers
and film audiences as stereotypical ways of communicating specific story elements
or contexts. In recent work, we have begun the process of formalizing filmic com-
municative actions in terms of the actions’ intentional constraints. This approach
has been useful for selecting low-level camera operators for filming individual ac-
tions. This representation can be used to depict more abstract cinematic discourse
structures intended to convey the rhetorical structure of a cinematic discourse (e.g.,
rising action, climax, denouement).

A number of researchers in computer graphics [2,18] have addressed the issue of
automating camera placement, though primarily from the point of view of geometric
composition rather than cinematic discourse. The virtual cinematographer system
developed by [5] models the shots in a film idiom as a finite state machine that se-
lects state transitions based on the run-time state of the world. Tomlinson et al. [19]
have used expressive characters for driving the cinematography module for selec-
tion of shots and lighting in virtual environment populated with autonomous agents.
More recently, the use of neural network and genetic algorithm-based approaches in
finding best geometric compositions [8, 9] has been investigated.

This work has been limited to the extent that the overall structure and flow of the
cinematic discourse it produces is typically built from local geometric information
about the setting. Decisions about shot selection are based, to a large extent, on
the content of individual shots with little consideration to the relation each shot or
shot sequence bears to its adjacent sequences. In situations where camera motion
is made coherent, it is done through geometric means and not the context of the
underlying narrative. Constructing cinematic discourse that attends to these inter-
sequence intentional relationships is critical in narrative, where the dynamics of
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the situation model as the narrative unfolds is critical to the user’s experience (as
evidenced by the role of expectation and expectation violation noted above). This
dependence on the careful construction of inter-sequence relationships is common
to both the work we propose and much of the work on natural language discourse
generation and is the motivation for our exploration of those techniques to produce
cinematic discourse.

2 Darshak System Architecture

Chatman [3] proposed a bipartite representation of narrative. In Chatman’s model,
a narrative can be viewed as composed of two interrelated parts: the story and the
discourse. The story describes the fictional world with all its content, characters,
actions, events, and settings. The discourse contains medium-specific communica-
tive content responsible for the telling of the narrative, for instance, a selection of
a subset of events from the fabula, an ordering over these events for recounting,
and linguistic communicative actions to tell the story. In this project, our focus is
on representation and reasoning about elements at the discourse level, specifically
narrative discourse that is communicated visually through the use of cinematic con-
ventions by moving a virtual camera in a 3D environment rendered within a game
engine.

Cinematic discourse in the Darshak system is generated by a hierarchical par-
tial order causal link planner whose abstract actions represent cinematic patterns
and whose primitive actions correspond to individual camera shots. As shown in
Fig. 1, the system takes as input an operator library, a story plan, and a set of
communicative goals. The operator library contains a collection of action operators

Fig. 1 Overview of
Darshak’s architecture



154 A. Jhala and R.M. Young

that represent camera placement actions, transitions, abstract cinematic idioms, and
narrative patterns. Camera placement and transition actions, represented as primi-
tive operators, affect the focus of visual they represent and have preconditions that
encode continuity rules in cinematography. Operators representing abstract cine-
matic idioms and narrative patterns affect the beliefs of the viewers and encode
recipes for sequencing primitive or abstract operators. A description of the story to
be filmed is the input as a plan data structure that contains the description of the
initial state of the story world, a set of goals achieved by the story characters’ ac-
tions, and a totally ordered sequence of the story characters’ actions and the causal
relationships between them. The input story plan is added to the knowledge base for
the discourse planner in a declarative form using first-order predicates that describe
the elements of the data structure. The communicative goals given to the system
describe a set of belief states to be established in the mind of the viewer.

The cinematic discourse planning algorithm performs both causal planning and
temporal scheduling. To build a discourse plan, it selects camera operators from the
operator library and adds them to the plan to satisfy specific communicative goals
or preconditions of other communicative actions already in the plan. The algorithm
binds variables in the camera operators, like start-time and end-time, relating the
camera actions to corresponding actions in the story plan.

The output of the planning algorithm is a plan data structure containing a tempo-
rally ordered hierarchical structure of camera operators with all operator variables
bound. The resulting plan is merged with the story plan and sent to a game engine
for execution (Fig. 2).

2.1 An Example of Automated Machinima Generation in Darshak

The process of creation of a visualization plan in Darshak is illustrated by the fol-
lowing story about a thief, Lazarus Lane, who goes to a town in Lincoln County,
Nevada to steal the tax money that is stored in the local bank. In the story, Lane suc-
cessfully steals the money after winning Sheriff Bob’s favor and being appointed
as the deputy. The entire input story is shown in Table 1. The initial state for the
discourse planning problem contains sentences about the story actions. The goal
state contains the lone goal for the discourse planner [BEL V (HAS TAXMONEY

LANE)]. It is assumed that the viewer has no prior beliefs about the story world.
The discourse generated by the planner communicates to the viewer how Lane suc-
cessfully steals the tax money from Lincoln county. As a discourse planner, Darshak
operates on planning communicative actions that serve to manipulate the beliefs of
viewers about the story. Darshak’s communicative operators are designed to query
conditions and actions in the story world that are related to the content of commu-
nication. In this example, the condition (HAS TAXMONEY LANE) will be queried
for the actions in the story that lead to the establishment of that condition as well as
the relevant causal chain of events leading up to this condition.
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Fig. 2 Snapshots of Darshak’s output for the example story. Videos of different visualizations can
be found at: http://www.youtube.com/user/cyclonurb

Initially, the goal of the planning problem is established by instantiating a new
discourse action in the plan: SHOW-ROBBERY (LANE, TAXMONEY, BANK). This
action is chosen because it has an effect [BEL V (HAS LANE TAXMONEY)]. From
the planner’s perspective, the SHOW-ROBBERY action is causally motivated by the
open condition of the goal state. The abstract action selected by the planner repre-
sents one of the narrative patterns that can be used to achieve the goal of telling the
viewer the story of a character obtaining an object through a sequence of actions in

http://www.youtube.com/user/cyclonurb
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Table 1 Example story Step 1 Lane goes to the Bar
Step 2 Lane asks the Bartender for a drink
Step 3 Lane overhears that Vinny the outlaw has murdered the

town’s deputy Sheriff
Step 4 Lane overhears that Sheriff Bob has cancelled the plans for

going out of town as the town is without a deputy
Step 5 Lane goes to see Vinny
Step 6 Vinny threatens Lane
Step 7 Lane Shoots Vinny
Step 8 Lane goes to Sheriff
Step 9 Sheriff Bob appoints Lane as Deputy Sheriff
Step 10 Sheriff Bob leaves town
Step 11 Lane goes to the bank
Step 12 Lane Threatens the Teller
Step 13 Teller gives Lane the tax money from the bank vault

the story-world.1 Given this choice, the planner instantiates the action and adds it to
the discourse plan, and updates the open conditions list with the pre-conditions of
the SHOW-ROBBERY action.

The abstract action is then decomposed in the next planning step into constituent
actions. In this example, the SHOW-ROBBERY action is expanded to three sub-
actions: SHOW-ROBBERY-ACTION, SHOW-THREAT, and SHOW-RESOLUTION.
The discourse actions are bound to story actions through the instantiation of
constraints on the operators. The SHOW-ROBBERY-ACTION, in this case, has
constraints that bind the story step that this action films. The step in the story plan
that indicates successful robbery is Step 13, where the teller gives Lane the tax
money from the vault. This action has the effect (HAS LANE TAXMONEY). The
corresponding constraint on the SHOW-ROBBERY-ACTION operator is [EFFECT ?S

(HAS ?CHAR ?OBJ)] which binds ?S to STEP13, ?CHAR to LANE, and ?OBJ to
TAXMONEY. In this way, constraints on the discourse operators are checked by
queries into the knowledge base describing story plan; as a result, correct bindings
for the story world steps are added to the plan structure. Once the step is correctly
bound, the start and end temporal variables for the SHOW-ROBBERY-ACTION are
bound to (START STEP13) and (END STEP13), respectively, and the temporal
constraint graph is updated with these new variables. The planning process contin-
ues with expansion of abstract actions and addition of new actions to satisfy open
conditions.2 Figure 3 illustrates a complete camera plan.

During the addition of temporal constraints to the discourse plan, the planner
maintains a simple temporal graph [20] of all the steps’ time variables and checks

1 At this point, the planner could have chosen any of the other patterns with the effect [BEL V
(HAS ?CHARACTER ?OBJECT)] that would have also satisfied the story world’s constraints.
2 As part of the planning process, the planner creates an entire space of possible plans that might
solve its planning problem. The example here traces a single path through the construction process
leading to the correct solution.
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Fig. 3 Fully realized discourse plan for the example story. The story plan steps are shown on the
right. The discourse plan actions are shown hierarchically from left to right. Right most actions are
primitive actions and actions to the left are abstract actions. Primitive camera actions film the story
world actions that they are adjacent to in the figure. Dotted red lines show the temporal sequence
of actions from top to bottom and black arrows depict causal links between story world actions

for consistency of the graph after the addition of each action. Each temporal variable
has a protection interval during which it satisfies all the constraints imposed on it
by the camera operators. As actions are added to the plan, the temporal consistency
checking algorithm constantly updates this protection interval and checks for invalid
intervals to prune inconsistent temporal orderings for the actions.

2.1.1 Representation of Stylistic Elements

Cinematographers typically make use of a relatively small number of primitive
camera shots [1]. From a cinematographer’s perspective, primitive shot specifica-
tions describe the composition of the scene with respect to the underlying geometric
context. The main goal of a cinematographer when choosing a primitive shot is to
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compose the shot such that the viewer focuses on a certain aspect of the scene that
is being framed. Through a sequence of coherent focus shifts, scenes are built that
communicate the story. Represented as plan operators, primitive shot definitions
capture certain coherence and shot-composition rules. For example, to avoid dis-
orienting the viewer, one of the preconditions of a tracking shot – a shot where the
camera moves relative to the movement of the view target – is that the actor or object
that the operator is tracking should be in focus before movement starts. Adding a
precondition (INFOCUS ?F)@[TSTART) to a tracking camera shot operator ensures
that a jump to tracking camera will not occur if it involves a focus shift from another
object or from a different shot composition.

Composition and focus of primitive shots contribute to the overall dramatic pre-
sentation of the story. Van Sijll, in her book Cinematic Storytelling [17], lists
100 camera shot conventions that are used to convey various dramatic elements
in movies. Each shot’s dramatic value is described with respect to its screenplay and
blocking. Darshak’s representation of operators captures a subset of these dramatic
effects of camera actions. Nine primitive operators and several variations of these
operators are implemented in the system. For instance, three variants of the LookAt
operator are LookAt-Close, LookAt-Medium, and LookAt-LongShot, which view
an actor or object from progressively farther distances with appropriate cinematic
framing for each distance.

Film idioms lend themselves to a hierarchical representation, with sub-parts that
are themselves characterizations of idioms and a reduction that terminates in the
types of primitive shots described above. While primitive shot types determine
viewer’s focus, abstract shot types represent the effect of focus and focus shifts
on the mental states of the viewer. Individual shots like LookAt, described above,
have a denotative meaning associated with them that focus the viewer’s attention
on elements in the frame. Abstract shot types also encode relationships between
primitive operators and provide a mechanism for expressing established idioms as
specific recipes or decompositions. Abstract plan operators, such as those used in
typical HTN-style planning [16], are used in Darshak to capture such communica-
tive phenomena by explicitly representing the different ways in which sequences of
more primitive shots can convey discourse-level information about the story being
filmed.

There are established patterns of effective storytelling that have been documented
by narrative theorists [6,14]. These patterns implicitly manipulate focus of attention
in effective ways. These narrative patterns are also operationalized as plan operators
in Darshak. This representation allows the operator designer to specify constraints
on salient elements according to their preferences. It is possible to describe narrative
patterns as hierarchical plan operators. The parameters of the pattern are captured
using the parameters of the operator. The role of each parameter within the context
of the story is represented by constraints on the parameters of the operator. The
variations of each pattern can be expressed in terms of collections of alternative
decomposition operators, all decomposing the same abstract action but each with
varying sets of applicability constraints.
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3 DPOCL-T Algorithm for Generating Cinematic Discourse

In addition to their use in generating plans for physical activity (e.g., robot task
planning), planning algorithms have been successfully used in the generation of ef-
fective textual discourse [12] as well as for story generation [15]. As described in
the previous section, the representation of narrative discourse operators in Darshak
encodes a rich formal representation of the causal structure of the plan. Each de-
pendency between goals, preconditions, and effects is carefully delineated during
the plan construction process. The system searches through the space of all possible
plans during the construction process and thus can characterize the plan it produces
relative to the broader context of other potential solutions to its planning problems.

To build Darshak, we extended our earlier work [21] on the DPOCL hierarchical
planning algorithm to create Decompositional Partial-Order Causal Link planning
algorithm with Temporal constraints (DPOCL-T). DPOCL-T forms the core plan-
ning algorithm used in Darshak.3 The following section provides formal definitions
of the constituent parts that make up a DPOCL-T planning problem.

3.1 Action Representation

DPOCL-T supports durative actions with temporal constraints on temporal vari-
ables. Actions are defined using a set of action schemata consisting of an action
type specification, a set of free object variables, a set of temporal variables, a set of
temporally indexed preconditions of the action, a set of temporally indexed effects,
a set of binding constraints on the variables of the action, and a set of temporal
constraints on the temporal variables of the action.

This action representation differs from previous approaches to discourse plan-
ning in its explicit representation of temporal variables and constraints on these
variables. The set of temporal variables implicitly contains two distinguished sym-
bols that denote the start and end of the action instantiated from the schema in which
they occur.

Actions that are directly executable by a camera are called primitive. Actions that
represent abstractions of more primitive actions are called abstract actions. Abstract
actions have zero or more decomposition schemata; each decomposition scheme
for a given abstract action describes a distinct recipe or sub-plan for achieving the
abstract action’s communicative goals.

3 Space limitations prevent us from providing a full discussion of the DPOCL planning algorithm.
For more details, see [21].
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3.2 Domain, Problem, and Plan

A planning problem in DPOCL-T specifies a starting world state, a partial
description of desired goal state, and a set of operators that are available for
execution in the world. Since conditions are temporally indexed, the initial state of
the camera problem not only specifies the state of the world at the beginning of
execution but also indicates the story actions and events that occur in the future (i.e.
during the temporal extent of the camera plan). As a result, DPOCL-T is able to
exploit this knowledge to generate camera plans that carefully coordinate their ac-
tions with those of the unfolding story. DPOCL-T plans are similar to those built by
DPOCL except for the manner in which temporal ordering is specified. In DPOCL,
the relative ordering of steps is expressed through explicit pair-wise ordering links
defining a partial order on step execution. In DPOCL-T, the ordering is implicitly
expressed by the temporally constrained variables of the steps.

3.3 DPOCL-T Algorithm

Given a problem definition as described in the previous section, the planning algo-
rithm generates a space of possible plans whose execution starting in the problem’s
initial state would satisfy the goals specified in the problem’s goal state. The
DPOCL-T algorithm generates plans using a refinement search through this space.
The algorithm is provided in Fig. 4. At the top level, DPOCL-T creates a graph of
partial plans. At each iteration, the system picks a node from the fringe of the graph
and generates a set of child nodes from it based on the plan it represents. Plans
at these child nodes represent single-step refinements of the plan at their parent
node. Plan refinement involves either causal planning, where steps’ preconditions
are established by the addition of new preceding steps in the plan, or episodic de-
composition, where sub-plans for abstract actions are added to the plan. The final
step of each iteration involves checks to resolve any causal or temporal inconsisten-
cies that have been added to the child plans during plan refinement. Iteration halts
when a child plan is created that has no flaws (i.e., that has no conflicts, no pre-
conditions that are not causally established, and no abstract steps without specified
sub-plans).

3.3.1 Causal Planning

In conventional planning algorithms, an action is added to a plan being constructed
just when one of the action’s effects establishes an unestablished precondition of
another step in the plan. To mark this causal relationship, a data structure called a
causal link is added to the plan, linking the two steps and that condition that holds
between their relative execution times.
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Fig. 4 Sketch of the camera planning algorithm

In DPOCL-T, causal planning also requires enforcing temporal constraints on
the intervals in which the relevant preconditions and effects hold. When Darshak
establishes a causal link between two steps s1 and s2, additional constraints are
also added to the plan. Suppose that s1 (ending it execution at time t1) establishes
condition p needed by a precondition of s2 at time t2. When the causal link between
s1 and s2 is added, Darshak also updates its constraint list to include the constraint
t1≤ t <t2. Further, because p must now be guaranteed to hold between t1 and t2,
Darshak checks at each subsequent iteration that this constraint holds. In this case,
we adopt terminology used by [13] and call the interval [t1, t) a protection interval
on the condition pi.
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3.3.2 Decompositional Planning

Decomposition schemata in DPOCL-T are similar to their counterparts in DPOCL,
both in their content and in their manner of use. The sole point of difference is
in the schemata’s representation of temporal constraints – rather than include a
set of explicit pair-wise orderings between steps within a decomposition schema,
DPOCL-T specifies partial orderings via constraints on the time variables determin-
ing the decomposition’s constituent steps’ execution.

3.3.3 Management of Temporal Constraints

As new steps are added to a plan being built, the effects of these steps may threaten
the execution of other steps in the plan. That is, their effects might undo conditions
established earlier in the plan and needed by the preconditions of some steps later
in the plan. In DPOCL-T, a global list of temporal constraints is maintained as a di-
rected graph of all the time variables involved in the plan’s current steps. Whenever
the planner adds a step, all the step’s time variables are added to the directed graph,
and the graph is completed with the step’s new constraints representing the edges of
the graph. Another step’s precondition is threatened by a newly added step just when
the effect of the new step changes the needed condition within its protection interval.
Such threats are detected by identifying a cycle in the temporal constraints graph.

The Darshak algorithm produces plans offline from given stories, and we are
concerned with the quality of generated plans rather than fast execution of the algo-
rithm. The exponential explosion of the plan space is mitigated by careful design of
operators with variable binding and temporal constraints. For complex domains, the
hierarchical representation of operators makes this approach scalable. There is a sig-
nificant authorial burden in writing domain specifications that can be eased through
storyboarding interfaces.

3.4 Camera Control on the Game Engine

A virtual cinematography module, represented by several classes containing cine-
matic rules and camera placement commands, is responsible for managing execution
of story and camera plans on the game engine. The high-level camera directives that
are generated by the camera planner are translated to geometric constraints for input
to a constraint solver for camera placement. The translator accepts the abstract an-
notated action sequence and translates its contents into a set of geometric constraints
characterizing the best shot-composition given (a) the geometry of the world and (b)
the position of the shot’s characters. The translator uses the cinematic rules to gen-
erate constraints on the composition of the camera’s frame. These constraints are
input to a constraint solver that computes a heuristically best position of the camera,
given the geometry of the world and the constraints that are required for a cinematic
presentation of the shot (Fig. 5).
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Fig. 5 Representation of camera actions in different modules

The rules of composition on the game engine are described in the form of
geometric constraints. The forms and values of constraints are motivated by the
attributes of the setting as specified by the designer, and these are related to the
actual properties of a camera such as location, field-of-view, and orientation.

3.4.1 Constraint Solver

Given a director’s shot request is expressed in the form of visual composition
constraints, the system positions the camera to satisfy the given constraints in the
context of the given 3D virtual scene. The desired visual message or camera shot is
expressed in the form of constraints on how subjects appear in the frame. The con-
straint solver then attempts to find values for each camera parameter so that all given
constraints are satisfied within a heuristically optimal degree to their respective op-
timal or preferred values. The camera constraint system in Darshak supports 15
different types of constraints on camera attributes in relation to the scene and partic-
ipants. Constraints include framing a subject in the camera’s field of view, viewing
a subject from a desired vantage angle, excluding or obscuring an undesired subject
from the frame, avoiding occlusions, and a variety of constraints on how the sub-
ject’s image is projected into the frame. Any constraint that can be applied to an
object can also be applied to a designated part of the object’s geometry. The scene
and object geometry is represented using a combination of oriented bounding boxes
and binary space partition trees. These geometric data structures are used to estimate
projections of subjects in the frame, fraction of occlusion between subjects, and to
keep the camera inside the walls and architectural features of a building interior.
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An execution monitor, which is implemented on the Unreal Tournament (UT)
game engine, manages the execution of actions communicated by the server. It re-
ceives both the camera actions and story world actions. The primitive camera action
classes (close-up, medium-shot, long-shot, track-actor, pan-actor-to-actor, internal-
shot) use the cinematographer object to set up constraints (location, orientation,
movement, and lens) for the player’s camera. The player’s view is updated after get-
ting recommendation for the camera position from the cinematographer, which takes
into consideration the currently set up constraint values for updating the camera
location.

4 Empirical Evaluation

To evaluate the effects of different visualization strategies, three visualizations of the
same story were prepared: one with a fixed camera position within the setting, one
with an over-the-shoulder camera following the protagonist, and one with camera
plan automatically generated by Darshak. The purpose for running these experi-
ments was twofold. First, to investigate whether visualization strategies do indeed
affect comprehension. Second, to evaluate the quality of visualization generated by
Darshak using a representation of camera shots as communicative actions. The ob-
jective of the experiments was to determine whether visualizations generated by
Darshak are coherent (as measured by viewers’ perceptions of the attributes of the
underlying stories).

Our experimental approach was to first map the stories being shown to subjects
into a representation previously developed and validated as a cognitive model of
narrative. We then probed subjects’ understanding of the narrative that was pre-
sented in a cinematic to determine how closely their understanding aligned with
the cognitive model’s predictions about a viewer’s mental model. As the underlying
story elements in this system were defined as plan data structures themselves, the
experimental design was based on previous work [4] relating these data structures
to the mental models that users form during comprehension. To do this, a mapping
is defined from plan data structures onto a subset of the conceptual graph structures
adopted from the QUEST model, developed by Graesser et al. [7]. In the QUEST
model [7], stories are represented as conceptual graph structures containing concept
nodes and connective arcs. Together with a specific arc search procedure, QUEST
was originally used to provide a cognitive model of question–answering in the con-
text of stories (supported question types include why, how, when, enablement, and
consequence questions). In our work, we make use only of the graph structures,
referred to here as QUEST Knowledge Structures (or QKSs). They describe the
reader’s conception of narrative events and their relationships. The composition of
nodes and arcs in a QKS structure reflects the purpose of the elements they signify
in the narrative. For instance, if nodes A and B are two events in a story such that A
causes or enables B, then A and B are represented by nodes in the QKS graph and
are connected by a consequence type of arc.
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Techniques used by Graesser et al. to validate the QUEST model were based on
goodness-of-answer (GOA) ratings for question–answer pairs about a story shown
to readers. Subjects were provided with a question about the story and an answer to
the question, then asked to rate how appropriate they thought the provided answer
was given the story that they had read. GOA ratings obtained from their subjects
were compared to ratings predicted by the arc search procedures from QUEST
model. Results from their experiments clearly showed a correlation between the
model and the cognitive model developed by readers to characterize stories.

The algorithm for converting a Partial-Order Causal Link (POCL) plan data
structure to the corresponding QKS structure is adopted from Christian and
Young [4]. In this experiment, first the story, represented as a plan data struc-
ture, is converted to a corresponding QKS structure. Predictor variables proposed
in the QUEST model are used to calculate predictions for the GOA ratings – the
measure of goodness of answer for a question/answer pair related to the events in
the story. These GOA ratings are compared against data collected from participants
who watch a video of the story filmed using different visualization strategies. The
three predictors that are correlated to the GOA ratings are arc search, constraint sat-
isfaction, and structural distance. Correspondence between GOA ratings indicated
by these predictor variables and by human subjects would be taken as an indication
that the cinematic used to tell the story had been effective at communicating its
underlying narrative structure.

4.1 Method

4.1.1 Design

To create story visualizations, we used two stories (S1 – shown in Table 1, and S2
– not shown) and three visualization strategies for each story (V1 – fixed camera,
V2 – over-the-shoulder camera angle, and V3 – Darshak driven camera), creating
six treatments. Treatments were identified by labels with story label as prefix fol-
lowed by the label of the visualization. For instance, S2V1 treatment would refer
to a visualization of the second story (S2) with fixed camera angle strategy (V1).
Participants were randomly assigned to one of six groups (G1–G6). Thirty partic-
ipants, primarily undergraduate and graduate students from the Computer Science
Department at NC State University, participated in the experiment. Each partici-
pant was first shown a video and then asked to rate question–answer pairs of three
forms: how, why, and what enabled. The process was repeated for each subject with
a second video.

A Youden squares design [11] was used to distribute subject groups among our
six treatments. This design was chosen to account for the inherent coherence in the
fabula and to account for the effects of watching several videos in order. Assum-
ing a continuous response variable, the experimental design, known as a Youden
square, combines Latin Squares with balanced, incomplete block designs (BIBD).
The Latin Square design is used to block on two sources of variation in complete
blocks. Youden squares are used to block on two sources of variation – in this case,
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story and group – but cannot set up the complete blocks for latin squares designs.
Each row (story) is a complete block for the visualizations, and the columns (groups)
form a BIBD. Since both group and visualization appear only once for each story,
tests involving the effects of visualization are orthogonal for those testing the ef-
fects of the story type. The Youden square design isolates the effect of the visual
perspective from the story effect.

Each story used in the experiment had 70 QKS nodes. Of the 70 QKS nodes, ten
questions were generated from randomly selected QKS elements and converted to
one of the three question types supported by QUEST: how, why, and what enabled.
For each of the ten questions, approximately 15 answer nodes were selected from
nodes that were within a structural distance of three in the QKS graph generated
from the story data structure. These numbers were chosen to have similar magnitude
to Christian and Young’s previous experiments, for better comparison.

4.1.2 Procedure

Each participant went through three stages during the experiment. The entire ex-
periment was carried out in a single session for each participant. Total time for a
single participant was between 30 and 45 min. Initially, each participant was briefed
on the experimental procedure and was asked to sign the consent form. They were
then asked to read the instructions for participating in the study. After briefing, they
watched a video of one story with a particular visualization according to the group
assignment (Table 2). For each video, users provided GOA ratings for the question–
answer pairs related to the story in the video. Participants were asked to rate the
pairs along a four-point scale: good, somewhat good, somewhat bad, and bad. This
procedure is consistent with earlier experiments [4,7]. Next, they watched a second
video with a different story and visualization followed by a questionnaire about the
second story. The videos were shown in different orders to common groups to ac-
count for discrepancies arising from the order in which participants were shown the
two videos.

4.2 Results and Discussion

The mean overall GOA ratings recorded for the two stories are shown in Table 3
along with the standard deviations. These distributions of GOA scores do not present

Table 2 2×3 Youden squares design for the experiment. G1
through G6 represent six groups of participants with five members
in each group. They are arranged so that each story and visualiza-
tion pair has a common group for other visualizations

Viz Master shot Over the shoulder Darshak

S1 G1,G4 G2,G5 G3,G6
S2 G5,G3 G6,G1 G4,G2
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Table 3 Mean GOA ratings
and standard deviations from
the experiment

GOA (SD) V1 V2 V3

S1 1.69 (±0.91) 1.74 (±0.82) 1.70 (±0.79)
S2 1.76 (±0.59) 1.51 (±0.67) 1.78 (±0.59)

Fig. 6 GOA ratings for Story 1 across the three visualization strategies (S1 and S2 are stories,
V1 – Master Shot, V2 – Over-the-Shoulder shot, and V3 – Darshak are visualization strategies)

any problem for multiple regression analyses as the means do not show ceiling or
floor effects. The standard deviations are high enough to rule out the potential prob-
lem of there being a restricted range of ratings. GOA ratings were recorded along
a four-point scale (Strongly Disagree, Disagree, Agree, Strongly Agree) for each
question–answer pair. This was done to match the scale used in the original QUEST
experiments. The GOA numbers shown in Table 3 indicate on preliminary observa-
tion that the GOA ratings for V1(Master Shot) and V3 (Darhsak) are significantly
correlated with V2 (Over-the-Shoulder shots). The standard deviations for V3 are
lower than the other treatments in both stories. This indicates that participants con-
verge better on rating questions in Darshak-generated visualizations.

An interesting observation for V2 is that in story 2 the mean GOA ratings are
significantly lower than the other two treatments with a significantly high standard
deviation. These numbers support the intuition that participants form their own in-
terpretation of events in the story while looking at shots that are over-the-shoulder
leading to the wide disparity in ratings in going from story 1 to story 2. While
mean ratings provide an overall idea of the participant’s responses, GOA ratings for
individual questions across different visualizations provide more insights into the
differences across visualizations. Figure 6 summarizes mean GOA ratings for indi-
vidual questions related to story 1 for the three visualization treatments. Question
numbers 1, 8, and 10 are particularly interesting as there is a big variation in the
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GOA ratings for the master shot visualization and the other two treatments, which
have quite similar ratings. The question–answer pairs in discussion here are pre-
sented below:

1. Question: Why did Lane challenge Vinny?
Answer: Because he wanted to kill Vinny.

8. Question: Why did Lane challenge Vinny?
Answer: Because Lane wanted to steal tax money.

10. Question: Why did Lane meet Sheriff Bob?
Answer: Because Lane needed a job.

In Q1 and Q10, the ratings for V1 are significantly lower. This could be explained
by examining the relationships between the question–answer nodes. In all three
cases, the question answer nodes are two or more arcs away in distance along the
causal chain of events. In case of the arc-search and structural distance predictors
from QUEST, these are good answers as they do lie on a causal chain of events
leading to the question. The necessity and sufficiency constraints in the constraint
satisfaction predictor reduce the strength of the answer. In Q1, for example, it is not
necessary for Lane to challenge Vinny. He could just shoot him right away. In this
case, viewers who were familiar with the gunfight setting chose to label the chal-
lenge as being an important step in killing Vinny as, for them, it forms an integral
part of the gunfight sequence. In the master-shot visualization, the gunfight sequence
was not even recognized as a gunfight by most participants (information obtained
from post-experiment interview). This analysis indicates that additional considera-
tion of the “why” type of questions on other nodes is needed to determine the effects
of visualization strategies on GOA ratings related to perceived causal connections
between events in the story.

Figure 7 shows the average ratings for each question for the second story.
The interesting responses are the ones that have a significant variation in mean

Fig. 7 GOA ratings for Story 2 across the three visualization strategies (S1 and S2 are stories,
V1 – Master Shot, V2 – Over-the-Shoulder shot, and V3 – Darshak are visualization strategies)
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ratings across different visualizations. In this story, unlike the data for story 1, the
differences between ratings were relatively smaller. The interesting observations,
however, were the ones where one of the treatments rated the answer as a “bad”
answer (rating <1.5) and the other treatments rated the answer as a “good” answer
(rating >1.5).

Post-experiment interviews were carried out after participants completed the rat-
ing forms for both stories. During these interviews, the participants were asked to
give subjective answers to questions about quality of the story and videos. The main
purpose of these questions was to get additional information about metrics that were
not considered in previous approaches but may play a role in the analysis of GOA
ratings. The data collected from this survey provide insight into a possible extension
of the cognitive model of story understanding that takes into account features of dis-
course that are not currently represented. Based on the subjective data, a majority
of the subjects preferred system-generated videos to the other two videos. Most
users reported that visualization did affect their engagement in the story. System-
generated visualizations were rated as being more engaging. Users preferred camera
movements over static camera shots as they perceived the scene to be more dynamic
and interesting. While these qualitative responses are hard to measure statistically,
they do point to uniformity among experiment participants regarding their prefer-
ence for system-generated visualizations over other visualization strategies.

There are several caveats to the evaluation strategy based on cognitive models of
story comprehension. The results of the study only address the cognitive aspect of
story perception and do not directly measure specific discourse effects and aesthetic
quality of produced output. Further work is needed within a richer story domain
with opportunity to exploit subtleties of visual communication to fully evaluate the
potential of Darshak’s ability of generating aesthetic sequences. The current focus
for Darshak, however, is on generating coherent sequences. A sound evaluation of
coherence presented in this chapter establishes Darshak’s success for this focus.

5 Conclusion

In this chapter, we have presented the design, development, and evaluation of a sys-
tem that plans cinematic visualizations of stories. As games move toward dynamic
environments, props, and narrative experiences, it becomes important to think about
automated ways of dramatic communication as the space of possible variations of
individual games increases. A deeper understanding and computational modeling of
the way directors and cinematographers craft dramatic experiences will lead to bet-
ter experiences within games. There are three immediate areas of research that this
work leads to. First, incorporating cinematic conventions in a reactive system that
interactively works to share the control of the camera with a player in game envi-
ronments. Second, incorporating a player model and taking into account individual
player preferences into the cinematic conventions used by the system. Third, using
cinematic techniques to let players record and share their game-playing experiences.
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Intelligent Adaptive Lighting
Enhancing the Video Game Experience

Magy Seif El-Nasr, Joseph Zupko, and Chinmay Rao

Abstract The game industry is currently exploring the development of designs
that can appeal to a wide market with users exhibiting different tastes, tenancies,
behaviors, abilities, and life styles. This problem requires the industry to look for
innovative design solutions and tools. Artificial intelligence (AI) techniques can
be used to adapt the game experience to players’ skills, behaviors, and abilities.
Recently, several adaptive systems have been proposed including adaptive character
AI [Spronck et al., Online adaptation of game opponent ai in theory and practice.
In: 4th International Conference on Intelligent Games and Simulation (GAME-ON
2004), pp. 93–100, 2003] and game design [Charles et al., Player-centred game de-
sign: Player modelling and adaptive digital games. In: DIGRA 2005 – Changing
Views: Worlds in Play – Electronic Proceedings (2005); Yannakakis and Hallam
Real-time game adaptation for optimizing player satisfaction. In: IEEE Transac-
tions on Computational Intelligence and AI in Games, pp. 121–133, 2009]. In this
chapter, we discuss an intelligent adaptive system that adapts lighting in a 3D game
to enhance the users’ experience. Lighting design is well known among designers,
directors, and visual artists for its vital role in influencing viewers’ perception by
evoking moods, directing gaze to important areas (i.e., providing visual focus), and
conveying visual tension. The intelligent lighting systems discussed in this chap-
ter adapt lighting qualities, in terms of visual attention and affective properties, by
integrating a constraint optimization system built based on cinematic and theatric
techniques. The system has been in development and refinement for 9 years. In this
chapter, we will discuss the systems as well as their evaluation through different
game prototypes, specifically highlighting their effect on the users’ experience.
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1 Introduction

During the past few years, interactive environments that facilitate engagement and
involvement, such as social media, 3D games, and social games, have become a
very important area of research. The technical contributions and design innova-
tions made to advance such environments have a direct impact on applications used
for education, training, entertainment as well as communication and software de-
sign. Research within this area was recently acknowledged as a priority area by the
Canadian Science, Technology and Innovation Council as well as by the National
Science Foundation (NSF) and the National Institutes of Health (NIH) in the USA.
This resulted in many funded projects that explore the utility of these environments
for health therapy and education, to mention a few applications.

One of the important factors that make these environments popular is their ability
to engage users at an emotional level [24, 38]. To stimulate emotional involvement,
developers often allocate much time and effort to artistic content development and
esthetics, specifically to define the look and feel of the environment. In fact, a typi-
cal AAA-title production cycle ranges 2–6 years of production with 100–200 people
(artists, programmers, and designers) and over a $20 million dollar budget. While
companies differ in terms of the ratio of artists to programmers to designers, most of
the companies we have interviewed acquired more artists on their production teams
than programmers (personal communication). According to John Buchanan, Tech-
nical Director at Relic Entertainment, the industry is a content development industry
where the development and perfection of art assets and environment design are re-
garded as the most important factors in producing a successful game. Therefore,
visual design and perfecting the look and feel of these environments are considered
tasks of highest priority.

Games are interactive, and thus by nature unpredictable, i.e., users are free to
do whatever they want in whatever area they want. Currently, however, most games
are developed to constrain interactions in ways that can be predictable by designers.
This ensures that designers are able to produce the kind of polish needed. While this
is true for most games, there are games that rely on procedural content generation,
such as open world games, simulation games, etc. For these games, developing pro-
cedural encounters and gameplay elements are important. To produce the expected
polish procedural visual esthetic systems are required.

In the past, there has been some research in both academia and industry ex-
ploring the development of procedural content. For example, The Sims (Electronic
Arts, 2000) and The Movies (Activision, 2005) use intelligent adaptive systems
to procedurally simulate emotions and personality within their believable charac-
ters. In addition, Spore (Electronic Arts, 2009) was also well recognized for its
push toward better systems for believable procedural animation. From the aca-
demic side, procedural believable characters has been a topic of interest since the
1990s with several researchers making clear and significant contributions, includ-
ing Mateas and Stern [34], Institute of Creative technology’s team at USC [47],
Justine Cassell [14], Ken Perlin [42], Seif El-Nasr [22], and the seminal work of the
Oz project group at CMU [4, 5, 33]. In addition to the believable character work,
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the academic community just recently started shifting toward other game procedu-
ral systems, including procedural level and environment generation [28,44,45], and
procedural game design [40].

As the research on procedural game content start to develop, a need to look into
procedural systems for visual esthetics and design will become important. Currently
there are very few systems that focus on visual esthetics, such as lighting or camera.
Most of the work in graphics have focused on producing a physically correct model,
e.g., a physically correct model of lighting [39, 50], or a physically correct model
of vegetation [46], etc. Very little work investigated procedural esthetic systems,
yet as argued above, a game cannot be successful without the polish and esthetics.
Thus, while physically correct procedural modeling is important, developing better
procedural visual esthetic systems is even more crucial for emotionally engaging
simulations or games.

This chapter focuses on procedural visual design, in particular lighting and its
possible effect on the users’ experience. Specifically, we will discuss several sys-
tems we developed to allow procedural control of lighting while taking visual design
goals into consideration. Controlling lighting procedurally within an engaging ex-
perience requires consideration of realistic or physical as well as esthetic qualities
of light. Unlike the physical qualities, esthetic lighting qualities are not scientifically
studied or formalized, and thus are not easily modeled within a procedural system.
In this chapter, we discuss the first dynamic esthetic lighting system we developed:
the Expressive Lighting Engine (ELE). This system was developed and published in
2003 [19, 21]. Based on this system, we developed two systems: Adaptive Lighting
System for Visual Attention (ALVA) and Temporal Dynamic Expressive Lighting
Engine (TDELE). Using these two systems, we explore the effect of lighting on
two properties of lighting esthetic: evoking emotions or affect and directing visual
attention.

The chapter is divided into the following sections. First, we will discuss light-
ing design from an esthetic viewpoint, detailing the role of lighting within a media
production, including theater, film, or interactive media. This will give the reader a
clearer picture of the elusive terms used here, e.g., esthetics or lighting design. We
will then outline the previous work within the area. Since there are very few research
works that target esthetic lighting systems, we will focus on applied techniques used
by the game industry. Following this discussion, we will outline three systems that
we developed, specifically ELE, ALVA, and TDELE. The last section will discuss
some experiments we conducted to measure the impact of ALVA and TDELE on
the user experience. The chapter then concludes by discussing the current state and
open problems within this area.

2 Lighting Design

Every light has a job to do, every light must fit and balance within the overall shot,
every light interacts with others and with the action. They all work together in a web of
complexity.

—Brown 96
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Visual esthetics is an elusive term. Since this chapter is concerned with lighting
design from an esthetics perspective, we will briefly discuss what we mean by the
word “esthetics,” specifically lighting esthetics. According to the Stanford philos-
ophy encyclopedia, esthetics is defined as the study of beauty [51]. Specifically, it
is the study of emotional sensations that we feel as we see particular designs or
artifacts that we deem beautiful based on our own judgments and tastes. Simon
Neidenthal [41] offered three different meanings to the term “Game Esthetics.”
He defined it as a term referring to: (1) “the sensory phenomena that the player
encounters in the game (visual, aural, haptic, embodied),” (2) “those aspects of
digital games that are shared with other art forms (and thus provides a means
of generalizing about art),” or (3) “is an expression of the game experienced as
pleasure, emotion, sociability, form giving, etc. (with reference to ‘the esthetic ex-
perience’)” [41]. While these definitions provide a clearer picture of the term, they
do not define a workable design model. Thus, in this section, we will use Foss’ dis-
cussion of narrative functions [25] as a method for defining lighting design functions
and lighting esthetics.

When designing lighting for a theater, film, or game production, designers often
explore several functions of light; these include realistic, lyrical, dramatic, and es-
thetic. A lighting design achieves realism by conforming to a realistic color palette,
conservatively changing light colors to preserve visual continuity, and selecting
angles of light that adhere to the direction of practical sources. These decisions
increase the credibility of the scene and help the audience identify with and relate to
the scene. To achieve lyrical goals, designers need to set up lights to evoke moods
or emotions. Lighting designers use several perceptual rules to adjust colors and
angles of lights to achieve a desired mood [2, 12]. For instance, lighting design-
ers may vary the degree of visibility of a character’s face to affect the audience’s
emotions and feelings since it is known that less visible faces elicit uneasiness [26].
Another example that is most commonly used is the increase in contrast, i.e., the
increase in the amount of darkness within a frame, to elicit fear and a sense of
mystery [2, 26]. In addition, lighting is often configured to serve various dramatic
goals, including emphasize dramatic tension, attract viewer’s attention to important
objects or characters, and provide good visibility for the action and characters within
the scene. A scene typically follows a dramatic shape [3], which describes the in-
crease/decrease of dramatic tension through time. Lighting designers design lights
to parallel such escalation or drop of tension. They use contrast or affinity of sat-
uration, brightness, or warmth/coolness of color to show tension [8]. Even though
game designers do not adjust lighting during interaction, they manually select col-
ors to parallel the anticipated tension and mood [13]. For example, in Silent Hill,
designers used darkness and red-colored tints to signify danger and increase tension
when fighting zombies or when zombies are near.

We have conducted a qualitative study using 30 movies, including The Cook, The
Thief, His Wife and Her Lover (1989), Equilibrium (2002), Shakespeare in Love
(1998), Citizen Kane (1941), and The Matrix (1999). The goal of the study was to
identify cinematic techniques used for lyrical and dramatic functions. According to
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our study, the techniques used can be divided into shot-based color techniques: color
techniques used in one shot, and scene-based color techniques: techniques used on
a sequence of shots.

An example for shot-based color technique is the use of high brightness contrast
in one shot. High brightness contrast denotes a large difference between brightness
in one or two areas in the scene and the rest of the scene. This effect is not new; it was
used in paintings during the Baroque era and was termed Chiaroscuro – an Italian
word meaning light and dark. This kind of composition has also been used in many
movies to increase tension or emotional reaction. Perhaps the most well-known ex-
amples of movies that use this kind of effect are film noir movies, e.g., Citizen Kane
(1941), The Shanghai Gesture (1941), This Gun For Hire (1942). Another varia-
tion on this technique is the contrast between warm and cool colors, which can be
seen in many Color Noir movies. These kinds of patterns are usually used in peak
moments in an experience, such as a turning point. Lower contrast compositions
usually precede these heightened shots, thus developing another form of contrast:
contrast between shots.

In addition to color and brightness contrast, filmmakers have also used affinity of
color to elicit emotional responses [6, 8–11, 16, 17, 26]. Movies such as The Cook,
The Thief, His Wife and Her Lover sustain an affinity of highly saturated warm col-
ors for a period of time. The temporal factor is key to the effect of this approach; this
is due to the nature of the eye. The eye tries to balance the projected color to achieve
white color. Hence, when projected with red color, the eye tries to compensate the
red with cyan to achieve white color. This causes eye fatigue, which in turn affects
participant’s stress level, thus affecting affect. This technique can also be seen in
games, such as Devil May Cry. In contrast, designers have also used desaturated
colors to project low energy scenes, thus decreasing affect. For example, Equilib-
rium (2002) and The English Patient (1996) both used low saturation cool colors to
increase detachment and decrease affect.

Of course the perception of contrast, saturation, and warmth of color of any shot
within a continuous movie depends on colors used in the preceding shots. Several
movies used contrast between shots to evoke emotions [2,8]. For instance, filmmak-
ers used warm saturated colors in one shot, then cool saturated colors in another,
thus forming a warm/cool contrast between shots to decrease affect.

In addition to evoking emotions and setting overall moods, lighting designers
select angles, colors, and positions for each light in a scene to provide information
about the action, the characters, or their relationships. For instance, if the scene’s
goal is to show distress of character y, then the lighting should emphasize this goal
by focusing on character y and adjusting the colors to parallel the negative mood
of the character. Also, light angles communicate character traits that emphasize the
dramatic motive. For example, a character that is under-lit is often characterized as
sinister or mysterious [12].

Lighting designers also consider modeling and depth that can be created and
stimulated through lighting in a scene [6]. A widely used technique for modeling
is 3-point lighting, where three lights are used to light a character: a backlight, a
key light, and a fill light. Backlight is positioned behind the character with a slight
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downward angle and is used to separate the character from the background. Key
light provides the key source of illumination and is positioned at a front offset angle
to emphasize texture and shape. Fill light is positioned to mirror the effect of the
key light. Another important esthetic quality of light is depth. Depth is established
by varying the colors and contrast between lights lighting the background and those
lighting the foreground of a scene.

The role of a lighting designer is to establish a lighting design that serves the
goals described above. However, these goals are often in conflict with one another.
To illustrate this problem, consider the following example. A scene is established
in a room with one window. The lighting designer adjusts the angles of light to
appear as if coming from the window. At some point the character stands in a corner
that is not directly lit by the window. According to the director, this moment is
very important for the dramatic development of the scene, and the character’s face
should be sufficiently visible. Therefore, to achieve the dramatic goal, the lighting
designer should add lights to establish good visibility. On the other hand, if the
lighting design is to serve realism, lights that do not conform to the direction of
light emitted by practical sources should not be added – and there lies the lighting
designer’s dilemma.

This example illustrates how lighting design, as many design tasks, involves
tradeoffs. Lighting designers favor some goals over others depending on the light-
ing style chosen and the dramatic situation. In the example above, for instance, if
the lighting designer chooses a realistic style, he or she will sacrifice the dramatic
goal. On the other hand, if he or she chooses to conform to the dramatic and realistic
goals, then character blocking and camera placement will need to be changed.

3 Current Game Lighting Techniques

The lighting design process in games is deeply tied to the rapidly changing render-
ing technology. The game industry has developed several approaches to lighting.
Until recently, most video game lighting was precalculated (according to an inter-
view in [52]). Often, an algorithm such as radiosity [35] is used and the radiance1

of a surface is “baked” into the surface using light maps, which store the view-
independent radiance of the surface. This approach supplies lighting designers with
the freedom to allocate a lighting setup that fulfills dramatic goals set by the static
story or setup [6, 11].

With current technologies and the emphasis on developing more responsive
games considering the interaction, there is a move toward incorporating dynamic
lighting (interview presented in [52]). The dynamic lighting approach is based on
mathematically simple light primitives and is calculated at runtime. Real-time ren-
dering typically allows only a few visible dynamic lights per object (8–10), but

1 Radiance is the light emitted by a surface.



Intelligent Adaptive Lighting 177

deferred rendering technologies [31] allow for many visible dynamic lights (40–50).
However, due to tradeoffs with a deferred approach [37], non-deferred rendering is
still often used; hence, it is not safe to assume that more than a few dynamic lights
can be used per object in a real-time rendering environment.

Still much of the industry techniques rely on static lighting. However, technolog-
ical advancements in rendering allows designers to display better lighting, using
spherical harmonics [27]. Spherical harmonics allow irradiance2 to be stored at
points in space and efficiently applied at runtime. Samples are commonly stored as
either a surface-aligned texture similar to light maps or in coarsely spaced grids [15].
Although spherical harmonics require more storage and processing than light maps,
they offer the capacity to produce effects that light maps cannot, such as bump map-
ping [7] and low frequency specularity [15]. Spherical harmonics are mostly static
but can be rotated [27].

Although this kind of static approach is highly restrictive as it cannot dynamically
adjust based on interactions or context, it is the approach that is most widely used
in the industry. The reason is that in most games it is often desirable to constrain
the interaction to provide a more manageable and predictable game; i.e., designers
often constrain the interaction to specific spaces and develop systems that are pre-
dictable allowing lighting designers to manually light the space, given the camera
perspective.

Even though the constrained and predictable approach is the most widely used,
there are opportunities to develop and incorporate procedural lighting, but this will
highly depend on the game genre. For example, games like open world games or
procedural games would benefit from procedural content and procedural visual de-
sign. In addition, as technology advances and games start to target different markets,
adaptive systems will become a necessity. Thus, procedural visual design systems
may at some point be incorporated into different genre depending on how technol-
ogy and designs progress.

4 Current Lighting Systems

In the past few years, we have experimented with several ideas for adaptive lighting
design tools that can be used to enhance the game experience. There were two goals
to these lighting systems: (1) a clear impact on the gaming experience, i.e., these
systems enabled a better gaming experience, and (2) a clear impact on the utility
of these systems as tools for designers in a production process, e.g., cutting down
production time or enabling better or faster prototyping at preproduction. In this
chapter, we will only focus on (1).

2 Irradiance is light incident to a surface.
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4.1 Expressive Lighting Engine

ELE was developed and published in 2003 with the two goals above in mind [18,21].
Since the goal was to develop a tool that will allow designers to light a scene within
a game or interactive narrative environment, and since we know that esthetic, con-
trast, and the look and feel of an environment is of great importance to designers, it
was required that the lighting system accommodate esthetic goals. Previous work on
lighting, as discussed above, mostly concentrated on physically based lighting with
no focus on esthetics. Therefore, creating a model for lighting design became an im-
portant research goal, especially since there are no esthetic lighting models that can
be used to derive the system. Additionally, since game environments are normally
interactive, and thus unpredictable, the lighting system will also need to adjust the
lighting dynamically in real-time given specific contexts or based on specific con-
straints that the artists or designers indicate. Therefore, ELE was developed with
the following two main requirements in mind: (1) adapt to the unpredictable envi-
ronment and (2) provide a method for manipulating and encoding esthetic lighting
design. Discussing the esthetic model behind ELE and how ELE achieves dynamic
lighting is beyond the scope of this chapter; readers are referred to [18,21] for more
details. However, we will summarize the system here.

ELE uses constraint optimization algorithms to compose and adapt lighting
design dynamically and in real-time, accommodating user interaction while achiev-
ing esthetic design goals. ELE automatically, in real-time, selects and modulates
the lighting configuration, including number of lights, their positions, colors, and
angles, satisfying several visual design (or perceptual) goals: directing visual at-
tention, establishing depth, accommodating visibility, evoking moods, paralleling
dramatic tension, and maintaining visual continuity.

These design goals were identified based on cinematic and theatric lighting de-
sign theories as well as tacit knowledge collected by the first author while working in
theater lighting. These goals are entered as numeric constraints into ELE. It should
be noted that these goals also conflict with one another. For example, choosing a
lighting configuration that establishes a particular atmosphere or mood may hinder
visibility. ELE takes that into account.

ELE is composed of three subsystems, shown in Fig. 1, a lighting allocation sub-
system selects best number of lights and placements, an angle subsystem selects
best angles for each light, and a color subsystem selects best color for each light.
ELE sits on top of a rendering or game engine. All movements and changes in the
environment are communicated to ELE using an xml structure called WAMP. Simi-
larly, ELE communicates the layout, angles, and colors for each light in another xml
format called LAMP, which is then passed on to the rendering engine.

The layout subsystem uses level layout, scene graph information, and artistic
constraints to create a light layout. The system divides the level into n different
areas and then categorizes these areas as focus, non-focus, or background. This
information is then used to achieve the design goal mentioned above. To compute the
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WAMP (World Action Message Protocol)

Fig. 1 ELE’s architecture

light layout based on these goals, the system minimizes a multi-objective function
to determine the number of lights to use for each area:

popt = argmax
p

[λvV (p)+ λdD(p)+ λmM(p)+ λVCVC(p)]

where p is the light configuration and λ are weights representing constraints: λv is
the importance of visibility, λd is the importance of depth, λm is the importance of
modeling, and λvc is the importance of visual continuity. V (p) is visibility given p,
D(p) is depth given p, M(p) is modeling given p, and VC(p) is visual continuity
given p.

In determining the angles of light, ELE also takes into account the use of light
angles in projecting depth, modeling, and mood, where mood is evoked through
the angle of light on a character. For example, a character can be lit from below,
creating a sense of evil or mystery. ELE uses nonlinear optimization to select an
angle for each key light that minimizes the following function:

λv[1−V(K,s)]+ λ−|k− k−|+ λm|k−m|+ λl min
i
|k− li|

where k and s are defined as the key light azimuth angle relative to the camera and
the subject angle relative to the key light. k− is the key light azimuth angle from
the previous frame and the λs represent artistic constraints. Specifically, λ− is the
cost of changing the key light angle over time (to enforce visual continuity), λm is
the cost of deviation from the mood azimuth angle, m is the mood azimuth angle
suggested by the artist, λs is the cost of azimuth angle deviation from a practical
source direction, li is the azimuth angle of light emitted by the practical source
i, and λv is the cost of deviation from an orientation of light that establishes best
visibility.
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As mentioned above, the interaction of lighting colors in a scene composes the
contrast and feeling of the entire image. Similar to the angle and layout systems,
ELE uses a nonlinear optimization to search through a nine-dimensional space of
RGB values. It differentiates among focus colors, non-focus colors, and background
areas to select a color for each individual light in the scene. The multi-objective cost
function evaluates a color against the lighting design goals, including establishing
depth, conforming to color-style and constraints, paralleling dramatic tension, ad-
hering to desired hue, saturation, lightness, and maintaining visual continuity.

ELE was the beginning of several explorations that followed. In Sect. 4.2, we will
discuss ALVA which is a system developed based on ELE to explore the impact of
manipulating lighting within an FPS game. In Sect. 4.3, we will discuss TDELE a
system based on ELE developed to explore the role of lighting in evoking emotions.
Section 5 will discuss experiments we conducted with these systems showing their
impact on the user experience.

4.2 Adaptive Lighting System for Visual Attention

While ELE included a goal for manipulating visual focus, it did that through adjust-
ing brightness of the focus area in comparison to the non-focus area. The problem
with this approach is that it does not always generate the right results, especially
when the non-focus areas are lit with very bright light. Instead, we developed a
new system ALVA that encodes several rules based on psychology of visual atten-
tion [49], thus extending ELE’s ability to manipulate the lighting specifically for
visual focus.

Figure 2 shows the architecture for ALVA. We indicated the places (shaded in the
figure) where ALVA adds a significant improvement to ELE. We will concentrate
on these main shaded areas in this section.

4.2.1 Layout

To achieve and maintain visual attention, ALVA uses some game parameters, in-
cluding level or zone configuration, quests, number of characters, number of objects
within the scene, architectural points of importance, their dimensions, camera posi-
tion, and anticipated movements. It uses these parameters to identify areas of visual
focus. Unlike ELE, ALVA identifies these focus areas using authored rules that
designers encode in the system. These rules identify when specific objects or char-
acters become important and how important they are given a game state, player’s
goals, and missions. An example rule can be as follows:

(defrule
trigger: (goal ?player (get key1))
action: (attend-to questobjectID123 100))
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Fig. 2 ALVA’s architecture. Shaded areas signify areas of enhancements on ELE

where questobjectID123 is a quest object related to the goal of getting
key1. Thus, this rule indicates that if the player’s goal is to get key1, then the
questobjectID123 should be highlighted with 100% importance. Examples of
important objects ALVA can highlight include, visible enemies, visible quest ob-
jects, and parts of a level identified by the designer as an object that can lead the
player forward (this is important for platform games or spatial puzzles games like
Prince of Persia).

Based on these authored rules and the game state, ALVA creates focus areas,
which are represented as cylinders around the important objects. Unlike ELE, ALVA
assumes several areas of focus rather than just one focus area. It also gives each
area an importance level. This is important for games, because most often there are
several areas that are important for the players to attend to with different attention
levels. ALVA first determines these focus points and their importance.

Like ELE, ALVA divides the visible area into several foreground areas depending
on the maximum number of lights that can be used, the number of non-focus objects
in the level, and the focus objects computed. Additionally, ALVA creates several
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background areas by dividing the background into several pieces and allocating an
area for each piece. Allocating and dividing these areas are done in the same manner
as ELE.

Once these areas are allocated, like ELE, ALVA uses a greedy algorithm to merge
areas that are sufficiently near one another, thus enhancing performance by decreas-
ing the number of areas that need to be lit. The algorithm is as follows:

Repeat for each area a
if ∃a′ s.t. |a − a′| < ε, and both are focus areas with

same importance (or non-focus) then merge a, a′

It then allocates some lights to each area. Once lights are allocated, ALVA as-
signs angles and colors to each light such that visual foci are established and visual
continuity is maintained. Since colors impact visual attention, we will discuss colors
here. Readers can assume angles to be set to 45◦ azimuth and 45◦ elevation relative
to characters’ faces, which are good angles for establishing visibility and character
modeling as defined by [36]. It should be noted that the process of allocating light
areas, angles, and colors occurs on each event, including change of camera angle,
change of location of an object, on entrance of a level, etc.

4.2.2 Colors

Color is a complex phenomenon that has been studied by several disciplines, includ-
ing psychology, psychophysics, vision, and visual design [8, 26, 29]. From earlier
work, we know that color affects attention and emotions [8, 11, 35]. These research
works have identified several features of color that play a significant role in affecting
attention: contrast, warmth, and brightness.

To use these features, we need to first define the attributes of color and de-
velop formulae for defining these attributes in terms of RGB values. We define the
attributes of color that are of interest as: brightness, warmth, and saturation. We
calculate lightness instead of brightness. Lightness and saturation are calculated by
transforming the RGB color to the HSL color space [43].

Warmth, on the other hand, is an elusive quality. It impacts our attention, as
discussed by Block and Treisman [8, 48]. Warm colors are defined to be colors
with high proportion of reds and greens [29], while cold colors are colors with high
proportion of blues relative to the reds and greens [29].

Several psychology and psychophysics theories describe warm and cool colors.
However, none of them presented data that can be used to formulate warmth and
coolness of colors in terms of the HSL or RGB color models. The best effort to mea-
sure this elusive quality is described in an unpublished paper by Katra and Wooten.
They gathered results from several experiments in which subjects rated colors on a
scale of −5 to 5, where 5 is warm and −5 is cold. The stimuli were controlled for
hue and saturation [30].
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Based on their results, we used a multiple linear regression method to formulate
an equation describing color warmth, described in RGB color space. The formula is
as follows:

warmth
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where k is a constant.
Another important concept that is constantly used by ALVA is contrast. Film

and theater lighting designers differentiate between three different types of contrast:
lightness, warmth, and saturation contrast [8]. Contrast is measured as the difference
between the lightness, warmth, or saturation of lights lighting the focus areas com-
pared to lights lighting the surrounding areas. We use the same formulation used by
ELE to measure contrast:

contrastφ (c) = ∑
i�=focus

|φ(cfocus)−φ(ci)|

where φ represents either lightness, warmth, or saturation.

4.2.3 Contrast and Balance

ALVA first assigns colors to each light in the level in a similar fashion to ELE,
where constraint-based optimization is used to choose best colors for all lights in
the scene to accommodate artists’ constraints based on esthetic color choices, mood,
and depth. Once this is done, ALVA then revises the color assignments based on
visual attention, as shown in Fig. 2. Thus, the assignment of color happens in two
phases. This was done to simplify the equations involved for constraint optimization
and provide modularity.

ALVA revises the color assignments based on visual attention. Research showed
that our attention is directed toward warmer colored objects when they are sur-
rounded by cool colored objects, but the impact may not be the same if a warm
colored object is surrounded by objects whose color projects the same degree of
warmth [8, 29, 49]. Thus, contrast is key to modulating and adapting visual focus.

Following this theory, ALVA embeds several rules to manipulate colors of lights
on the objects. These rules fall into several cases: level entry, changes in positions
within the level, and during an event that stimulates a lighting change. It is impor-
tant to differentiate between these cases because the constraints imposed on lighting
changes are different for each case. For example, upon an entry of a level, there are
no constraints on lighting changes with regards to visual continuity. This is because
the player has never seen the level before, and so it is fine to perform any kind of
edits. During play within the level, lighting should incur very little changes, espe-
cially overall level lighting due to the desirability to maintain visual continuity. If
there is a lighting motivation, i.e., there is an event that causes lighting change, then
the system has freedom to change the lighting connected to the event.
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ALVA is a beginning for us to explore the impact of lighting on perception and
user experience. In Sect. 5, we will discuss some of the experiments we ran to de-
termine the impact of using ALVA or a system like ALVA on user experience.

4.3 Temporal Dynamic Expressive Lighting Engine

We have adapted ELE to embed patterns of lighting that evoke tension based on
our previous qualitative study [1,20]. We will briefly review these patterns here; the
reader is referred to [1] for more details on the films and games used as well as the
method used to extract these patterns. Based on the qualitative study discussed in
Sect. 2, we formulated the following patterns:

Pattern I Subjecting audience to affinity of high saturated colors (where high satu-
ration ranges from 70% to 100%) for some time increases arousal.

Pattern II Subjecting audience to contrast in terms of high saturated then low sat-
urated colors (where saturation ranges from 100% to 10%) over a sequence of
shots decrease arousal.

Pattern III Subjecting audience to contrast in terms of low saturated then high sat-
urated colors (where saturation ranges from 10% to 100%) over a sequence of
shots increase arousal.

Pattern IV Subjecting audience to contrast in terms of high brightness then low
brightness (where brightness ranges from 100% to 10%) over a sequence of shots
decrease arousal.

Pattern V Subjecting audience to contrast in terms of low brightness then high
brightness (where brightness ranges from 10% to 100%) over a sequence of shots
increase arousal.

Pattern VI Subjecting audience to contrast in terms of warmth then cool colors
(where warmth ranges from 100% to 10%) over a sequence of shots decrease
arousal.

Pattern VII Subjecting audience to contrast in terms of cool then warm colors
(where warmth ranges from 10% to 100%) over a sequence of shots increase
arousal.

Pattern VIII Subjecting audience to increase of brightness contrast subjected in a
shot (where brightness contrast is measured in terms of difference between bright
and dark spots in an image) over a sequence of shots increases arousal.

Pattern IX Subjecting audience to decrease of brightness contrast subjected in a
shot (where brightness contrast is measured in terms of difference between bright
and dark spots in an image) over a sequence of shots decrease arousal.

Pattern X Subjecting audience to increase of warmth/cool color contrast subjected
in a shot (where contrast is measured in terms of difference between warm and
cool spots in an image) over a sequence of shots increases arousal.

Pattern XI Subjecting audience to decrease of warmth/cool color contrast subjected
in a shot (where contrast is measured in terms of difference between warm and
cool spots in an image) over a sequence of shots decreases arousal.
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Based on these patterns, we adapted ELE and embedded these patterns
developing a new system called TDELE. TDELE extends ELE by adding a state
that keeps track of ticks (simulation time) as well as the history of lighting color
compositions used in the past. This state is represented as a list of light colors for
each area as well as contrast value and contrast type; color values are stored in
terms of RGB and HSL as well as calculated warmth value. Based on this state
information, the desired pattern given the patterns listed above, and the desired
tension level, the system calculates constraint values, including desired saturation
level, desired warmth value, and desired contrast level. These values are then given
to the system to manipulate the current frame. Note that ELE already balances these
values with the required visibility, motivation, etc. Therefore, the resulting lighting
setup created presents a balanced lighting design.

There are several advantages to using such a system. First, the system embeds
several patterns that are not used in the current dynamic lighting design methods in
games. Second, it presents a system that establishes a well-balanced lighting design.
Third, it allows designers to quickly compose the scene by just choosing the pattern
and tweaking it, rather than redesigning the lighting in every level.

We created two prototypes using TDELE. The first prototype was developed to
evaluate the use of the patterns to evoke affect. For this purpose, we created an in-
teractive 3D environment using WildTangent, a publicly available web-based game
engine; the environment is shown in Fig. 3. The task of the user was to navigate
through the environment. The lighting conditions were varied as a function of time.
The figure shows three screenshots taken at different times during the interaction.
The lighting system was configured to use pattern IX, where brightness contrast sub-
jected was decreased as a function of time (where brightness contrast is measured
in terms of difference between bright and dark spots in an image). As the figure
shows, visibility was well balanced with the contrast effect, as contrast increases or
decreases in time.

The second prototype is a First Person Shooter (FPS) game that uses an imple-
mentation of TDELE on top of the Unreal Engine [23]. An interface was added
to enable designers to integrate their own tension formula and link it to these pat-
terns. For example, they can define tension as the rise and fall of health within a
FPS game. In this case, the TDELE manipulates the lighting in the room to project
rise and fall of health and number of enemies as a symbol of tension. It should be

Fig. 3 Linearly increasing brightness contrast (where center of room is the focus)
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Fig. 4 Varying brightness contrast

Fig. 5 Linearly increasing saturation

noted that designers can use this tool to induce any of the patterns discussed above.
Thus, they can project the same lighting effects, such as the use of saturated warm
colored lights, etc. They can also use it to create a contrast effect such as high con-
trast (e.g., leftmost screenshot in Fig. 3) and sustain it over time.

The lighting compositions varied with the level composed. For example, in
the beginning a decrease of brightness contrast was established through the open-
ing scene, shown in Fig. 4. During the game, the designer authored rules within
TDELE to increase or decrease tension based on tension as defined above. The
author used a combination of patterns I and III, where increase in tension was
projected as an increase in warmth and saturation of surrounding lights. Thus,
if the user is confronted with many monsters and his or her health is dropping
over time, the warmth and saturation of color will increase over time showing an
increase in tension. While if the player is killing monsters and danger level is di-
minishing, warmth and saturation will decrease through time. Screenshots from
the game are depicted in Fig. 5. A video of the demo can be found at URL:
http://www.sfu.ca/~magy/ondisplay.html.

5 Effect of ADAPTIVE Lighting on the Users’ Experience

Since the goal of the systems discussed above was to have a clear impact on the
gaming experience, we developed studies that attempted to verify and validate these
goals. Results of these studies will be discussed in this section.

http://www.sfu.ca/~magy/on display.html
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5.1 Results of Using ALVA in an FPS Game

To measure visual attention within a 3D game and compare the use of lighting for
visual attention, we designed an experiment where we asked 26 students from a
300-level undergraduate class at Penn State University to play two games: (1) a
game mod of Unreal we developed with static lighting and (2) the same game mod
of Unreal but with ALVA dynamically adapting the lighting for best visual attention.
The order by which the games were introduced was chosen randomly to balance the
order effect. Additionally, we asked participants to wear an eye tracker. We recorded
their eye movements superimposed on the game video for later analysis. We also
observed and analyzed their behaviors to determine points of frustration and engage-
ment. At the end of each session, we interviewed them to gauge their experience and
engagement.

From the 26 students, only 16 were usable due to problems with the eye tracker
data. Ten of the 26 subjects wore contact lenses, or had dark eye colors or dark
eye lashes, which caused calibration problems. From the 16 students, 13 students
identified themselves as non-FPS gamers: three non-gamers and ten casual games,
while three identified themselves as FPS gamers. We asked them to sign up for a
30-min session. The experimenter introduced the procedure and then asked them to
wear a head-mounted eye tracker to track their gaze locations. For this experiment,
we used ISCN ETL-500 eye tracker. The experimenter asked them to play Soul
Calibur II on the Play Station for 10 min. During this time, he or she calibrated the
eye tracker. Also, this 10-min session was used to get them acquainted with wearing
the eye tracker while playing.

After this 10-min session, we asked them to play the two Unreal Tournament
games, for 10 min each. The game developed for this experiment was composed
of seven different environments (levels). The objective was to get to the exit going
through all seven environments without dying. We asked them to play the game for
7–10 min. If they die, they were asked to restart the game. A normal play through
the game took an average FPS gamer 7 min to complete. We asked them to play the
two different versions of the game for 10 min each: one with ALVA and the other
with static lighting. Figure 6 shows two screenshots from a level within the game;
screenshot shown on the right shows the level with ALVA, and the one on the left
shows the same point in the level but without ALVA. As can be seen the character
in the figure to the right is more noticeable due to the obvious light glowing around
him than the character on the left screenshot. It should be noted that no specific
treatments were made for the lighting embedded in the enemy textures.

Fig. 6 Two screenshots
comparing the system with
ALVA (right) and without
ALVA (left)
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While playing the game, we asked participants to shout when they see an enemy.
The order of which version of the game they played first was randomized to mini-
mize the order bias effect. After each session, we briefly interviewed them asking
them to reflect on their experience.

During the play sessions, two researchers took observational notes identifying
points of frustration, engagement, searching and environment scanning moments,
and enemy misses. We also recorded their game play sessions; the video recorded
showed their eye movements as a white cursor superimposed on the actual game
play video. We used a counter to keep track of simulation time, measured in ct
(counter time) rather than in seconds. We noted every time the user shouted that he
or she spotted an enemy. We noted places when subjects did not remember to shout
and were reminded to do so.

Using this video, we were able to analyze the time, in terms of simulation counter
time, it took them to spot an enemy, given the time the enemy appeared and the time
they shouted that they spotted him. In analyzing the taped and observed interaction,
we noted all enemy clear misses, where participants visually scanned the environ-
ment and missed the enemy even though he or she was not hidden in the shadows
or behind obstacles. We also noted the number of times the player was killed during
the play session.

By analyzing the observed and videotaped responses, we deduced that non-
gamers and casual gamers were able to spot the enemy faster with the dynamic
lighting system than without it, and thus were able to survive longer (see Fig. 7).
Using ALVA, we calculated the average time for spotting enemies as: 4 ct for
gamers, 26 ct for casual gamers, and 46 ct for non-gamers. Using the static light-
ing system, average times were 8 ct for gamers and 38 ct for casual gamers. For
non-gamers, it was harder to quantify the spotting time due to the fact that most of
the time they did not spot an enemy before they were killed. Please note that the
numbers above were deduced manually and may not be accurate figures due to the
eye tracker time lags, time it took us to confirm a spotting event, and the movement
of the player. However, since the same procedure was done on data collected from
gamers as well as non-gamers, we deduce that the difference presented is valid.

Fig. 7 Difference in counter
time of spotting times
between FPS gamers, casual
gamers, and non-gamers
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Table 1 t-Test analysis on results of counter time of spotting

Mean SD t-Test Significance

FPS gamers-Static 8 2.65 2.449 95% confidence, no statistical significance
FPS gamers-ALVA 4 1

Casual gamers-Static 38 13.17 2.2832 95% confidence, statistically significant
Casual gamers-ALVA 28 10.14

Non gamers-Static 100 0 15.59 95% confidence, statistically significant
Non gamers-ALVA 46 6

Fig. 8 Difference in deaths
times between FPS gamers,
casual gamers, and
non-gamers
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We ran a t-test analysis on this data comparing each group and deducing signifi-
cance. Results are shown in Table 1. As it can be seen, for FPS gamers, their spotting
counter time did not show any significance with or without ALVA. But for casual
gamers and even more for non-gamers, the results of spotting time show significant
improvement with ALVA than without. This leads us to conclude that the introduc-
tion of ALVA significantly improved the enemy spotting time of casual gamers and
non-gamers. It should be noted, however, that the number of participants are low
to draw any conclusive evidence. However, it is still worthwhile to note these re-
sults and variance to show the success of the method and suggest an opportunity for
further exploration.

The number of times players died before reaching the end of the level varied.
In comparison with the static lighting approach, the number of deaths for casual
gamers and non-gamers was considerably less (Fig. 8). The figure shows the maxi-
mum deaths that occurred over all categories, rather than average. As with the game
with static lighting, FPS gamers’ death times was 0–1, where two gamers achieved
the objective in 7 min with no death and one achieved the objective in 10 min with
one death. For casual gamers, death times varied from two to six, with six of them
completing the level within the allotted 10 min and four were unable to complete
the level. One of the non-gamers completed the level; the number of deaths ranged
from 4 to 6. None of the non-gamers quit before our imposed deadline of 10 min.

We also ran a t-test analysis on this data comparing each group and deducing
significance. Results are shown in Table 2. Similar to spotting time, the number of
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Table 2 t-Test analysis on results of number of deaths

Mean SD t-Test Significance

FPS gamers-Static 0.33 0.58 0 95% confidence, no statistical significance
FPS gamers-ALVA 0.33 0.58

Casual gamers-Static 6.7 2.214 2.6364 95% confidence, statistically significant
Casual gamers-ALVA 4.4 1.65

Non gamers-Static 9.33 1.15 4.914 95% confidence, statistically significant
Non gamers-ALVA 5 1

deaths of FPS gamers was not significantly different with the system with ALVA and
the system without. However, for casual and non-gamers the results show statistical
significance in the reduction of the number of deaths of these players when playing
within the system with ALVA than the system without. This leads us to conclude
that the introduction of ALVA significantly improved the number of deaths of casual
gamers and non-gamers.

Interviews with players emphasized that gamers were fine with the game, non-
gamers and casual gamers were happy with the game, but some expressed inability
to react quickly enough to win. It should be noted that playing an FPS requires
fast reflexes in addition to fast spotting times. Thus, these results are not surprising.
However, helping non-gamers spot enemies faster achieved slightly better results
and less overall frustration based on our observations.

5.2 Results of Studies Exploring the TDELE

5.2.1 Results from Simple Environment (Prototype 1 Shown in Fig. 3)

To validate the effect of lighting on affect, we conducted several experiments test-
ing each pattern individually within a 3D interactive environment using the simple
environment shown in Fig. 3. The environment was composed of six rooms where
participants are only allowed to navigate through the environment; thus no object
manipulation was required [1].

To validate whether there was an influence on arousal with time, we moni-
tored participant’s physiological responses using the SenseWear� PRO2 Armband,
a wearable body monitor that enables continuous collection of low-level physio-
logical factors. It includes several sensors that continuously gather heat flux, skin
temperature, near body temperature, and galvanic skin response data from the body.
However, it does not include a heart rate monitor. We used the Triax Elite for that
purpose. It is composed of a stopwatch and a heart rate monitor strap that displays
heart rate, current running pace, and pace target information for interval training.
We were able to collect readings from these devices and feed it through MATLAB
for further data analysis.
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We ran 19 experiments, one experiment for each pattern identified. For each
experiment we gathered readings from 20 to 24 participants. We asked participants
to volunteer for more than one experiment if they can. If they signed up for more
than one experiment, we asked that when they sign up for times to perform the
experiment such that experiments are 1 week apart. We think a 1-week period is
enough time to eliminate bias of prior exposure to one experiment on the results col-
lected in the other experiment. Participants were male graduate and undergraduate
students between the ages of 18–30 from the Information Science and Technology,
Electrical Engineering, and Computer Science departments of The Pennsylvania
State University. Students were recruited from classes taught in Computer Science,
Information Sciences and Technology and Electrical Engineering. We specifically
targeted male students due to fluctuations on female hormonal state which may af-
fect arousal, and thus interfere with the results.

All 19 experiments followed the same procedure. In accordance to IRB regu-
lations, before they started the experiment, participants were given consent forms
and a brief introduction of the entire experiment. We also asked them to take a color
blindness test to check whether they can differentiate between colors. Data collected
from participants who did not pass the color blindness test were ignored from the
data analysis phase; however, they were allowed to continue the experiment and
were given credit. Since the experiment is based on color, we require participants to
be able to differentiate between colors.

Once they are done with the test, participants were asked to wear the BodyMedia
device around their arm and the heart rate device around their chest. They were then
asked to navigate within a 3D environment that does not exhibit any of the patterns
depicted above. This was done to allow them to relax and get acquainted with the
controls and the environment.

After 1–2 min of interacting within this environment, we asked them to navigate
through one of the 19 environments developed for this study. Later, participants were
asked to fill out a questionnaire which was used as a self report. This procedure was
repeated for all the patterns discussed above. We used a different pool of people for
each pattern to alleviate the bias of knowing the environment. The experiments were
conducted over a period of 3 weeks.

All data collected through the physiological devices were analyzed using a linear
prediction (LP) model with the covariance method. In the LP model, also known
as the autoregressive (AR) model, the current sample x(n) is approximated by a
linear combination of past samples of the input signal [32]. We are then looking for
a vector a, of d coefficients, d being the order of the LP model. Provided that the
a vector is estimated, the predicted value is computed simply by FIR filtering of the
p past samples with the coefficients using equation:

x̂(n) =
p

∑
i=1

aix(n− i)

We used the covariance method of least squares LP to design a casual lin-
ear estimator for an output or target sequence based on an input (evocative)
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sequence. As shown above, most patterns describe a linear relationship between
color properties over time such as warmth, contrast, or saturation. Thus, a linear
estimation model will suffice. We built an estimation filter using the response data
recorded from participants.

The participants were divided into a test and a training set of equal number.
The physiological response of the training set and the input color pattern are used
to design a filter that is applied on the test set physiological response. The p + 1
response of the test set is estimated and compared to the recorded p+1 value of the
response. This approach was used to test the hypothesis of whether individual visual
parameters affect physiological response variables.

If the mean-squared error on a test set is sizeably smaller than the variance of the
output sequence for some amount of delay/latency between the causal inputs and
the target output, it indicates that there exists a linear correlation between the two
sequences. If it is not, then a linear correlation does not exist. Using this method,
we can deduce with some confidence that there is a linear relationship between the
participants’ arousal and the pattern used. All results show that the variance of the
color patterns was more than the error test values, indicating that there is a linear
correlation. Due to space limitations, we will not discuss results of all 19 experi-
ments here, but instead will discuss one set of experiments. Readers are referred
to [1] for more details.

We ran subjects through six environments set up with high saturation with six
different colors (red, green, yellow, orange, blue, and cyan). The hypothesis is that
arousal will increase as a function of time within a high saturated environment.
Results shown in Table 3 confirm this result. Specifically, using the data analysis
approach, we derived the results depicted in Table 3. As shown in the table, the
variance of the color patterns was more than the error test values; this indicates that
there is a linear correlation between the expected response (linear increase in arousal

Table 3 Physiological data
analysis of red environment

GSR Heat flux Temperature

Red Variance 2.40E-04 6.963 0.0207
Error test 7.19E-05 4.1778 0.0124

Yellow Variance 1.92E-06 1.1147 4.66E-04
Error test 1.15E-06 0.8917 3.72E-04

Orange Variance 6.93E-04 4.1521 0.0068
Error test 4.16E-04 2.4913 0.0041

Cyan Variance 2.23E-06 0.327 5.36E-04
Error test 8.91E-07 0.0473 2.14E-04

Blue Variance 4.94E-06 0.6724 0.0021
Error test 3.46E-06 0.4707 0.0014

Green Variance 1.30E-05 3.0224 0.0039
Error test 9.08E-06 2.1157 0.0027
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through time) and the physiological response. The low error rate also indicates that
all participants had the same reaction, an increase in arousal as time passes within
a 100% saturation. As shown by the results, the specific colors do not have any
significant impact on arousal.

These experiments and results validate the relationship between arousal increase/
decrease as a result of manipulation of lighting and texture colors over time. How-
ever, we did not attempt to deduce valence component of emotions within this
experiment. An interesting future direction is to explore the relationship between
these patterns and valence or emotions. We anticipate that these patterns will have
specific influence on arousal and valence but may not induce specific emotional
states, but still, this needs to be validated.

5.2.2 Results of Using TDELE Within a Game

As discussed in Sect. 4, we also developed a game as a mod to the Unreal envi-
ronment that exhibits the patterns defined in TDELE as we wanted to test them
within a game rather than just an environment. We presented this game as well as
the same game with just static lighting for comparative analysis at the Interactiv-
ity venue of Computer Human Interaction Conference 2005 [23]. Several people
played the demo after the researcher explained the premise of the game. All par-
ticipants who played the game with the lighting system were also invited to play
the game without the lighting system (i.e., using a static lighting design); this is
important to clearly identify the difference in the experience.

Through observation and interaction with the participants, many interesting ob-
servations were made. Participants were excited about the system and voluntarily
came to discuss their experience with the author after their play session. An inter-
esting result was that many non-FPS players loved the game and the effect of the
lighting. Some commented that it was beautiful and esthetically pleasing to play
with the lighting changes than with just static lighting. Some commented that they
saw lighting as a method for portraying game information, which was unique in
their experience.

Several FPS gamers played the two versions of the game. Some commented that
the lighting gave them too much information and that impeded their game play, i.e.,
made the game too easy. Several others noted some disturbance by the lighting. One
explanation was that many FPS players try to emotionally detach themselves from
the game, but the lighting effects subconsciously attempt to draw the players in by
manipulating the projected tension. In addition, some of them commented that this
effect made them feel as if they are not in control. Perhaps this result confirms the
success of the patterns in projecting tension, but alludes to the fact that the use of
these patterns may need more study for different game genre. Further investigations
are needed within this direction to confirm the effect on lighting on emotions and
validate the patterns discussed within a game.
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6 Conclusion

In this chapter, we discussed several lighting systems: ELE, ALVA, and TDELE.
ELE was discussed first as it was the base for the other two lighting systems. ALVA
and TDELE were developed to explore the esthetic value of procedural lighting
in evoking tension and affect (TDELE) and manipulate visual attention (ALVA) in
real-time. Experimental results show that using ALVA was an attractive alternative
for casual and non-gamers, i.e., non-FPS gamers, as it can adapt to their visual abil-
ities. An industry person from Microsoft commented that the system can be used
to train non-FPS gamers to gradually become better within FPS games if we can
dynamically tune out the lighting emphasis on visual attention. This may be a good
use of such a system, and it can be a great tool to make FPS games more accessi-
ble. However, the experiments discussed are limited. For example, the number of
subjects is really small. Also, we did not measure the impact of reaction time and
how that may have impacted the data or results collected. Nevertheless, the results
are promising and reinforce that this area of research is important, but requires more
research to establish its utility within a game. Experiments with TDELE also show
some promise. The results show clearly that participants all went through the same
reaction, given the environments they were asked to navigate through. Yet again,
more experiments are needed to explore this direction further.

As the industry starts to expand its market, adaptable game systems will become
increasingly important. As this shift starts to occur, there will be a need for adap-
tive and procedural systems. One cannot think of adaptive game systems without
adaptive esthetics. As argued before, visual esthetics is very important to game de-
velopment. Therefore, when one embarks on the road of building procedural games,
one must start exploring and integrating procedural visual esthetics systems, such as
camera and lighting. Therefore, we see opportunities in the use of the systems and
theories discussed in this chapter in next generation games. However, the research
is still in its infancy. These systems are still small explorations in a big design space
that needs more work to uncover. Work is also needed to establish more theoretical
models around these results.
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