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Preface

The success of any control system depends on the precision of the model (non-
linear or linear) of the plant to be controlled. This model can be obtained us-
ing physical laws or identification techniques. Practicing control engineers can
use models to synthesize the appropriate controller to guarantee the required
performances.

For the nonlinear case, the techniques are few and in general hard to ap-
ply. However, if we linearize the nonlinear model to get a linear one in the
state-space representation, for instance, we can find in the literature many
techniques that can be used to get the controller that guarantees the desired
performances. There are now many controllers that we can design for linear
systems, such as the famous PID (proportional, integral, and derivative) con-
troller, the H2 controller, the H∞ controller, the state feedback controller, the
output feedback controller, and the observer-based output feedback controller.
The linear model we will design for our dynamical system will be locally valid
and, to prevent performance degradations, uncertainties will be introduced to
describe the neglected dynamics or any other phenomena, such as aging.

In the literature we can find different types of uncertainties, among them
the norm bounded, the polytopic, and the linear fractional transformation.
Nowadays, there are interesting results for the analysis and design of the class
of linear systems with or without uncertainties. We are also able to control
systems with some special nonlinearities, like saturation, using different types
of controllers such as the state feedback controller and the output feedback
controller. The last two decades we have brought new control design tools that
can be used to design control systems that meet the required specifications.

In practical systems, the state vector is often not available for feedback
for practical reasons such as, the nonavailability of the appropriate sensor
to measure the components of the state vector or limitations in the budget.
Therefore the design of an appropriate filter is required to estimate the state
vector that can be used for control purposes. Many techniques can be used to
estimate the state vector, including H2 filtering and H∞ filtering.



x Preface

In practice, some industrial systems, such as those with abrupt changes
in their dynamics, can not be appropriately described by the famous linear
time-invariant state-space representation. Such systems can be adequately
described by the class of stochastic switching systems called piecewise deter-
ministic systems or jump systems, which have two components in the state
vector. The first component of this state vector takes values in Rn and evolves
continuously in time, it represents the classical state vector generally used in
modern control theory. The second takes values in a finite set and switches
in a random manner between the finite number of states. This switching is
represented by a continuous-time Markov process taking values in a finite
space. The state vector of the class of piecewise deterministic systems is usu-
ally denoted by (x(t), r(t)). This class of systems has been successfully used
to model different practical systems such as manufacturing systems, commu-
nications systems, aerospace systems, power systems, and economics systems.

This book gives up-to-date approaches for the analysis and design of con-
trol systems for the class of piecewise deterministic systems with or without
uncertainties in the system matrices and/or in the transition probability rate
matrix. This book can be used as a textbook for graduate-level engineer-
ing courses or as a reference for practicing control engineers and researchers
in control engineering. Prerequisites to this book are elementary courses on
mathematics, matrix theory, probability, optimization techniques, and control
system theory.

We are deeply indebted to our colleagues P. Shi, V. Dragan, S. Al-Amer,
A. Benzaouia, H. Liu and O. L. V. Costa for reading the manuscript, in full
or in part, and making corrections and suggestions. We would also like to
thank students J. Raouf and V. Remillard for their help in solving some of
the examples in the book.

The draft of this book was completed in April 2004. We added new results
that are related to the topics covered by this book as we became aware of them
through journals and conference proceedings. However, because of the rapid
developments of the subjects, it is possible that we inadvertently omitted some
results and references. We apologize to any author or reader who feels that
we have not given credit where it is due.

El-Kébir Boukas
Montréal, Canada
April 25th, 2005
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Introduction

This chapter introduces the class of stochastic switching systems we discuss
in this book by giving the motivation for studying it. After giving some prac-
tical systems, it also defines the problems we deal with. The contents of this
book can be viewed as an extension of the class of linear time-invariant sys-
tems studied extensively in the last few decades. As will be shown by some
examples, this class of systems is more general since it allows the modeling
of systems with some abrupt changes in the state equation that cannot be
described using the class of linear time-invariant systems. In this volume we
concentrate mainly on the linear case, which has been extensively studied and
reported in the literature. References [52, 12, 45, 51] and the references therein
are particularly noted. But we would like to advise the reader that nonlinear
models have also been introduced; we again refer the reader to [12, 45, 52]
and the references therein.

1.1 Overview

Linear time-invariant systems have been and continue to be the engine of con-
trol theory development. They have been successfully used to model different
industrial systems. Most running industrial plants are designed based on the
theory of such a class of systems.

Systems with nonlinear behavior are generally linearized around an op-
erating point; the theory of linear systems is then used for the analysis and
design. Sometimes, when the nonlinearities are critical, it is preferable to use
a nonlinear model for the analysis and design.

Nowadays there are interesting results on such a class of linear systems
that can be used to analyze and design control systems. Among the problems
that have been successfully solved are the stability problem, the stabilization
problem, the filtering problem, and their robustness. Controllers such as the
state feedback and the dynamic output feedback (or the special observer-based
output control) are usually used in the stabilization problems. Various design
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approaches that use the algebraic Riccati equation (ARE), linear matrix in-
equalities (LMIs), among others, have been developed. For more details on
these results, we refer the reader to [31, 41, 59, 66, 12] and the references
therein.

In practice, some industrial systems cannot be represented by the class
of linear time-invariant model since the behavior of the state equation of
these systems is random with some special features. As examples we mention
those with abrupt changes and breakdowns of components. Such classes of
dynamical systems can be adequately described by the class of stochastic
switching systems or the class of piecewise deterministic systems, which is the
subject of this book.

If we restrict ourselves to the continuous-time version, this class of systems
was introduced by Krasovskii and Lidskii [48]. These two authors built the
formalism of this class of systems and studied the optimal control problem.
In 1969, Sworder [60] studied the jump linear regulator. In 1971, Wonham
[63] extended the formalism of the class of systems to include Gaussian noise
in the state equation and studied the stability problem and the jump linear
quadratic optimization problem. In 1990, Mariton summarized the established
results, including his results and those of other researchers in his book [52]. In
1990, Ji and Chizeck [44] studied the controllability, observability, stability,
and stabilizability problems. They also considered the jump linear regulator
by developing the coupled set of Riccati equations. In 1993 de Souza and
Fragoso [33] studied the H∞ control problem. In 1995, Boukas [9] studied the
robust stability of this class of systems. In all these contributions, the results
are stated in the form of Riccati equations for the optimization problem or
Lyapunov equations for the stability problem.

In the last decade, with the introduction of LMIs in control theory, we
have seen the use of this technique for some results on the class of piecewise
deterministic systems. Most of the problems like stability, stabilization, H∞
control, and filtering. have been tackled and LMI results have been reported
in the literature.

Among the authors who contributed to the stability problem and/or its
robustness are Wonham [63], Ji and Chizeck [44], Feng et al. [40], Boukas [9],
Dragan and Morozan [34, 35], Shi et al. [57], Benjelloun and Boukas [6], Boukas
and Liu [14, 11, 13, 10], Boukas and Shi [16] , Boukas and Yang [20, 19], Costa
and Boukas [25], Costa and Fragoso [28, 27], and Kats and Martynyuk [45].
For more details on the recent review of the literature on this topic, we refer
the reader to Boukas and Liu [12], Kats and Martynyuk [45], Mahmoud and
Shi [51], and the references therein. The existing results are either in the form
of Lyapunov equations or LMIs. The stabilization problem has also attracted
many researchers and interesting results have been reported in the literature:
Ji and Chizeck [44], Benjelloun et al. [8], Boukas and Liu [13, 15, 11], Boukas et
al. [18], Cao and Lam [22], Shi and Boukas [56], de Souza and Fragoso [33], Ait-
Rami and El-Ghaoui [1], Bao et al. [5], Dragan and Morozan [34, 35], Ezzine
and Karvaoglu [39], Costa et al. [26]. For more details, we refer the reader to
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Boukas and Liu [12] and Mahmoud and Shi [51] and the references therein.
Among the stabilization techniques that were studied are the state feedback
stabilization, output feedback stabilization, H∞ state feedback stabilization,
and H∞ output feedback stabilization. Among the authors who tackled the
state feedback stabilization are Ji and Chizeck [44], Ait-Rami and El-Ghaoui
[1], Bao et al. [5], Benjelloun et al. [8], Boukas and Liu [15, 11], Boukas et al.
[18], Costa and Boukas [25], Dragan and Morozan [34, 35], and the references
therein. For the H∞ stabilization we quote the work of Aliyu and Boukas
[2, 3], Benjelloun et al. [7], Boukas and Liu [10, 13, 14], Boukas and Shi [17],
Cao and Lam [22, 23], Cao et al. [24], Costa and Marques [30], Dragan et
al. [36], and the references therein. The filtering problem has been studied by
Boukas and Liu [11], Costa and Guerra [29], Dufour and Bertrand [37, 38],
Liu et al. [50], Shi et al. [58], Wang et al. [62], Xu et al. [65], and the references
therein.

Manufacturing systems, power systems, communications systems, and
aerospace systems are some applications in which this class of systems has
been used successfully to model industrial plants. In manufacturing systems,
for instance, piecewise deterministic systems were used to model production
planning and/or maintenance planning. Olsder and Suri [54] were the first
to use the formalism in manufacturing systems and studied the production
planning with failure-prone machines. After 1980, the model was extended by
many authors and other optimization problems were considered. Among the
authors who contributed to the field are Gershwin and his coauthors, Zhang
and his coauthors, and Boukas and his coauthors. The books of Gershwin
[42] and Sethi and Zhang [55] and the references therein summarize most of
the contributions in this area up to 1994. In this direction of research, most
of the authors are interested by developing production and/or maintenance
planning. Their methodology, used to develop the production and/or main-
tenance policies is, in general, dynamic programming and some computation
tools.

1.2 State-Space Representation

Mathematically a dynamical system can be interpreted as an operator that
maps the inputs to outputs. More specifically, if the system represents an
industrial plant P that has as inputs u(t) and w(t) and outputs y(t) and z(t),
the relationship between these inputs and outputs is given by the following
equation: [

y(t)
z(t)

]
= P

[
u(t)
w(t)

]
. (1.1)

The vectors y(t) and z(t) are referred to, respectively, as the measured
output and the controlled output. More often, the measured output y(t) is
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used to design a control law u(.) that, maps this output to an action that will
give to the closed loop system the desired behavior for the controlled output
z(t), despite the presence of exogenous input w(t). Mathematically, this is
represented by

u(t) = K(y(t)). (1.2)

P

K

z(t)

y(t)

w(t)

u(t)

Fig. 1.1. Feedback system block diagram.

Control engineers often represent this operator when controlled in a closed
loop by block diagram as illustrated in Figure 1.1. The inputs and the outputs
are almost time varying and are linked by the following dynamics:⎧⎪⎨⎪⎩

ẋ(t) = f(x(t), u(t), w(t)),
y(t) = g(x(t), u(t)),
z(t) = h(x(t), u(t)),

(1.3)

where x(t) ∈ Rn; u(t) ∈ Rm; y(t) ∈ Rp, z(t) ∈ Rq, and w(t) ∈ Rs represent,
respectively, the state vector, input vector, measured output vector, controlled
output of the system at time t, and exogenous input that has to satisfy some
conditions as it will be presented further, f(.), g(.), and h(.) are given smooth
vector-valued functions.

Remark 1. In (1.3) the functions f(.), g(.), and h(.) are in general nonlinear in
their arguments. The first equation is a differential equation that is referred to
as the state equation and the second and the third are pure algebraic equations
that represent, respectively, the output equations for y(t) and z(t).

This nonlinear model can always be linearized around the equilibrium
point (0, 0), which gives⎧⎪⎨⎪⎩

ẋ(t) = Ax(t) + Bu(t) + Bww(t),
y(t) = Cyx(t) + Dyu(t),
z(t) = Czx(t) + Dzu(t),

(1.4)
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where A, B, Bw, Cy, Dy, Cz, and Dz are appropriate constant matrices with
appropriate dimensions.

In general, this linearized model will never represent adequately the non-
linear dynamical system. The following model is used to take care of the
uncertainties that may represent the neglected dynamics, for instance, and
the effect of external random disturbances:⎧⎪⎪⎪⎨⎪⎪⎪⎩

dx(t) = [A + ΔA(t)] x(t)dt + [B + ΔB(t)] u(t)dt

+Bwwdt + W1x(t)dω(t),
y(t) = [Cy + ΔCy(t)] x(t) + [Dy + ΔDy(t)] u(t) + W2w(t),
z(t) = [Cz + ΔCz(t)] x(t) + [Dz + ΔDz(t)] u(t),

(1.5)

where the matrices A, B, Bw, Cy, Dy, Cz, and Dz keep the same meaning;
as before; ΔA(t), ΔB(t), ΔCy(t), ΔDy(t), ΔCz(t), and ΔDz(t) represent,
respectively, the uncertainties in the matrices A, B, Cy, Dy, Cz, and Dz; W1

and W2 are given matrices with appropriate dimensions; ω(t) and w(t) are
external disturbances that have some properties to be discussed later in this
book.

Sometimes systems cannot be put in the previous form for physical reasons.
These systems are referred to as singular systems. The state equation of such
a class of systems is given by the following:⎧⎪⎪⎪⎨⎪⎪⎪⎩

Edx(t) = Ax(t)dt + Bu(t)dt + Bww(t)dt

+W1x(t)dω(t),
y(t) = Cyx(t) + Dyu(t) + W2w(t),
z(t) = Czx(t) + Dzu(t),

(1.6)

where the matrices A, B, Bw, Cy, Dy, Cz, Dz, W1, and W2 keep the same
meaning as before and E is singular matrix that has a rank equal to nE , which
is less than n (the dimension of the system).

The uncertain model is given in a similar way to the regular one as follows:⎧⎪⎪⎪⎨⎪⎪⎪⎩
Edx(t) = [A + ΔA(t)] x(t)dt + [B + ΔB(t)] u(t)dt

+Bww(t)dt + W1x(t)dω(t),
y(t) = [Cy + ΔCy(t)] x(t) + [Dy + ΔDy(t)] u(t) + W2w(t),
z(t) = [Cz + ΔCz(t)] x(t) + [Dz + ΔDz(t)] u(t),

(1.7)

where the different components keep the same meaning as before.
The models (1.4)–(1.7) have been extensively used to describe different

type of systems. In the literature, we can find many references that deal
with problems like stability, stabilizability, H∞ control, filtering, and their
robustness. For more information on these topics, we refer the reader to
[31, 41, 59, 66, 12] and the references therein. Unfortunately these state equa-
tions cannot represent adequately some systems, such as those with abrupt
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changes. In the next section we will present a model that generalizes this one
and that appropriately models the behavior of systems with breakdowns and
abrupt changes in their dynamics.

1.3 Stochastic Switching Systems

Let us consider a simple system with the following dynamics:

ẋ(t) = a(t)x(t) + bu(t), x(0) = x0, (1.8)

where x(t) ∈ R, u(t) ∈ R, b is a given constant, and a(t) is a Markov process
that switches between two values a1 and a2 with the following transition rates
matrix:

Λ =
[
−p p
q −q

]
,

where p and q are positive scalars.
The switches between the two modes are instantaneous and they occur

randomly. Based on probability theory, we can find the steady-state probabil-
ities that give how long the process a(t) will spend in mode #1 and in mode
#2, respectively. These two probabilities can be computed using the following
relations: [

π1 π2

] [−p p
q −q

]
= 0,

π1 + π2 = 1.

The resolution of these equations gives

π1 =
q

p + q
,

π2 =
p

p + q
.

When time t evolves, the state equation of the system will switch in random
between the following two dynamics:

ẋ(t) = a1x(t) + bu(t),
ẋ(t) = a2x(t) + bu(t).

This simple system belongs to the class of stochastic switching systems or
piecewise deterministic systems. This class of systems is more general since it
can be used to model practical systems with special features like breakdowns
or abrupt changes in the parameters.

The question now is how to handle, for instance, the stability of such a
system. Also, when the system with some appropriate scalars a1, a2, p, and q
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is unstable, how can we design the appropriate controller that stochastically
stabilizes the system? We can continue our list of problems until it is clear
that the theory of LTI systems does not apply and some extensions are needed
to handle the new problems raised.

Since the behavior of the system is stochastic, all the concepts should be
stochastic. For the stability problem, the concept has been extended and two
approaches are available. The first approach is due to Gihman and Skorohod
[43]. The second one is due to Kushner [49] and is a direct extension of the
Lyapunov approach that we will use extensively in the rest of this volume.
Kushner’s approach generalizes the Lyapunov approach to handle the stability
of the class of systems we are dealing with here.

The class of piecewise deterministic systems is a switching class of sys-
tems that has two components in the state vector. The first component takes
values in Rn, evolves continuously in time, and represents the classical state
vector that is usually used in the modern control theory. The second one
takes values in a finite set and switches in a random manner between the
finite number of states. This component is represented by a continuous-time
Markov process. Usually the state vector of the class of piecewise determin-
istic systems is denoted by (x(t), r(t)). The evolution of this class of systems
in time is comprised of two state equations, the switching and the continuous
state equation described below.

• Switching: Let S = {1, 2, · · · , N} be an index set. Let {r(t), t ≥ 0} be a
continuous-time Markov process with right continuous trajectories taking
values in S with the following stationary transition probabilities:

P [r(t + h) = j|r(t) = i] =

{
λijh + o(h), i �= j,

1 + λiih + o(h), otherwise,
(1.9)

where h > 0; limh→0
o(h)

h = 0; and λij ≥ 0 is the transition probability

rate from the mode i to the mode j at time t and λii = −
N∑

j=1,
j �=i

λij .

• Continuous state equation:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

dx(t) = A(r(t), t)x(t)dt + B(r(t), t)u(t)dt + Bw(r(t))w(t)dt

+W1(r(t))x(t)dω(t), x(0) = x0,

y(t) = [Cy(r(t)) + ΔCy(r(t), t)] x(t)
+ [Dy(r(t)) + ΔDy(r(t), t)] u(t) + W2(r(t))w(t),

z(t) = [Cz(r(t)) + ΔCz(r(t), t)] x(t)
+ [Dz(r(t)) + ΔDz(r(t), t)] u(t),

(1.10)

where x(t) ∈ Rn is the state vector at time t; u(t) ∈ Rp is the control at
time t; w(t) ∈ Rm is an arbitrary external disturbance with norm-bounded
energy or bounded average power; ω(t) ∈ R is a standard Wiener process
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that is supposed to be independent of the Markov process {r(t), t ≥ 0},
Bw(r(t)); and W1(r(t)) and W2(r(t)) are known matrices; A(r(t), t) and
B(r(t), t) are, respectively, the state matrix and the control matrix that
are assumed to contain uncertainties and their expressions for every i ∈ S
are given by

A(i, t) = A(i) + DA(i)FA(i, t)EA(i),
B(i, t) = B(i) + DB(i)FB(i, t)EB(i),

with A(i), DA(i), EA(i), B(i), DB(i), and EB(i) are known matrices; and
FA(i, t) and FB(i, t) are the uncertainty of the state matrix and the control
matrix, respectively, that are assumed to satisfy the following:{

F�
A (i, t)FA(i, t) ≤ I,

F�
B (i, t)FB(i, t) ≤ I;

Cy(i), Dy(i), Cz(i), and Dz(i) are given matrices with appropriate dimen-
sions. The matrices ΔCy(i, t), ΔDy(i, t), ΔCz(i, t), and ΔDz(i, t) are given
by the following expression:

ΔCy(i, t) = DCy
(i)FCy

(i, t)ECy
(i),

ΔDy(i, t) = DDy
(i)FDy

(i, t)EDy
(i),

ΔCz(i, t) = DCz
(i)FCz

(i, t)ECz
(i),

ΔDz(i, t) = DDz
(i)FDz

(i, t)EDz
(i),

where DCy
(i), ECy

(i), DDy
(i), EDy

(i), DCz
(i), ECz

(i), and DDz
(i), EDz

(i)
are given matrices with appropriate dimensions and FCy

(i, t), FDy
(i, t),

FCz
(i, t), and FDz

(i, t) are the uncertainties on the output matrices that
are assumed to satisfy the following:⎧⎪⎪⎪⎨⎪⎪⎪⎩

F�
Cy

(i, t)FCy
(i, t) ≤ I,

F�
Dy

(i, t)FDy
(i, t) ≤ I,

F�
Cz

(i, t)FCz
(i, t) ≤ I,

F�
Dz

(i, t)FDz
(i, t) ≤ I.

An example of the evolution of the mode r(t) and the state vector x(t) in
time t is illustrated in Figure 1.2 when S = {1, 2} and x(t) ∈ R.

Remark 2. It is well known that every sample path of the process {r(t), t ≥ 0}
is a right-continuous step function (see Anderson [4]).

When the Wiener process is not acting on the state equation for all t ≥ 0,
the previous state equation becomes⎧⎪⎨⎪⎩

ẋ(t) = A(r(t), t)x(t) + B(r(t), t)u(t) + Bw(r(t))w(t), x(0) = x0,

y(t) = Cy(r(t), t)x(t) + Dy(r(t), t)u(t),
z(t) = Cz(r(t), t)x(t) + Dz(r(t), t)u(t).

(1.11)
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x(t)

r(t)

t

t

t1 t2 t3 t4

Fig. 1.2. Evolution of the mode r(t) and the state x(t) in time t.

To these dynamics we associate those of the nominal system that supposes
all the uncertainties equal to zero, that is,⎧⎪⎨⎪⎩

ẋ(t) = A(r(t))x(t) + B(r(t))u(t) + Bw(r(t))w(t), x(0) = x0,

y(t) = Cy(r(t))x(t) + Dy(r(t))u(t),
z(t) = Cz(r(t))x(t) + Dz(r(t))u(t).

(1.12)

For the singular stochastic switching systems we have the following dy-
namics:⎧⎪⎪⎪⎨⎪⎪⎪⎩

Edx(t) = A(r(t), t)x(t)dt + B(r(t), t)u(t)dt + Bw(r(t))w(t)dt

+W1(r(t))x(t)dω(t), x(0) = x0,

y(t) = Cy(r(t), t)x(t) + Dy(r(t), t)u(t) + W2(r(t))w(t),
z(t) = Cz(r(t), t)x(t) + Dz(r(t), t)u(t),

(1.13)

where the matrices keep the same meaning as before and E is a singular
matrix.

This book studies the class of piecewise deterministic systems (regular and
singular). For the regular class of stochastic switching systems, we focus on the
stochastic stability problem and the stabilization problem by using different
types of controllers like the state feedback controller, the static output feed-
back, the dynamic output feedback controller (or the observer-based output
feedback control), the H∞ control problem, and the filtering problem. For the
singular case an introduction to the subject is provided and only the stochas-
tic stability and the stochastic stabilization using state feedback controllers
are tackled.

In the next few pages we define each problem. Let us start with the stochas-
tic stability problem. In theory there exist two different concepts of stability,
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which we refer to as internal stability and input-output stability. Therefore,
a linear system is internally stable if the solution of the state vector corre-
sponding to a zero input will converge to zero for any initial conditions. For
the input-output stability, a linear system is said to be input-output stable
if the state system remains bounded for all bounded inputs. If we denote by
x(t;x0, r0) the solution of the system (1.12) at time t, the system will be
stochastically stable if the system state remains bounded for any initial con-
ditions x0 and r0, respectively, of the state vector x(t) and the mode r(t).
There are different concepts of stochastic stability and for more details on
these concepts, we refer the reader to Chapter 2 as well as the References
section.

The stochastic stabilization problem consists of designing a stabilizing con-
troller that forces the system state to be stochastically stable and have the
desired behavior. Different approaches of stochastic stabilization exist and can
be used to attain the desired goal. Among these techniques are

• state feedback stabilization,
• output feedback stabilization.

These techniques will be discussed in Chapter 3 for nominal and uncertain
systems.

Practical systems are always affected by external disturbances that may
degrade the system performance. To overcome the negative effects of the ex-
ternal disturbances that are supposed to have finite energy or finite average
power, the H∞ technique was proposed. Contrary to optimal control, which
handles the case of external disturbances that must satisfy some special as-
sumptions, H∞ control requires only that the external disturbance have finite
energy or finite average power. H∞ control is a way minimize the worst-case
gain of the system. This optimization problem can be stated as a game opti-
mization problem with two players; the designer, who is seeking a controller
that minimizes the gain, and nature, which seeks an external disturbance that
maximizes the gain.

The goal of H∞ control is to seek a controller (state feedback, dynamic
output feedback, static output feedback) that minimizes the H∞ norm of the
system closed-loop transfer matrix between the controlled output z(t) and
the external disturbance w(t) that belongs to L2[0, T ], with ΔA(r(t), t) =
ΔB(r(t), t) ≡ 0, that is,

‖Gzw‖∞ = sup
‖w(t)‖2,[0,T ] �=0

‖z(t)‖2,[0,T ]

‖w(t)‖2,[0,T ]
, (1.14)

where ‖Gzw‖ is the transfer matrix between the output z(t) and the external
disturbance w(t).

The H∞ control problem can be defined on either finite or infinite horizon
(T → ∞). In the rest of this section, we develop the finite horizon case. To
get the infinite horizon case, we let T go to infinity with the appropriate
assumptions.
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The H∞-norm cost function (1.14) is not acceptable as an objective func-
tion since this cost depends on the controller; that is, the supremum makes
this function independent of a particular disturbance input.

A quadratic objective function that yields tractable solutions of the dif-
ferential game is referred to as a suboptimal solution to the H∞ optimization
control problem. It can be obtained by considering the following bound on
the closed-loop H∞ norm:

‖Gzw‖∞ = sup
‖w(t)‖2,[0,T ] �=0

‖z(t)‖2,[0,T ]

‖w(t)‖2,[0,T ]
< γ,

where γ is referred to as the performance bound.
This suboptimal controller must also satisfy the following bound:

‖Gzw‖2
∞ = sup

‖w(t)‖2,[0,T ] �=0

‖z(t)‖2
2,[0,T ]

‖w(t)‖2
2,[0,T ]

< γ2. (1.15)

To make the supremum satisfy this inequality, the following should hold:

‖z(t)‖2
2,[0,T ]

‖w(t)‖2
2,[0,T ]

≤ γ2 − ε2, (1.16)

which gives

‖z(t)‖2
2,[0,T ] − γ2‖w(t)‖2

2,[0,T ] ≤ −ε2‖w(t)‖2
2,[0,T ]. (1.17)

Note that the satisfaction of this inequality for all disturbance inputs and
some ε is equivalent to the bound on the closed-loop H∞ norm (1.16). There-
fore, the left-hand side of (1.17) can be used as an objective function of our
H∞ optimization control problem. The optimization problem we should solve
is given by

min
u(.)

E

[∫ T

0

[
z�(t)z(t) − γ2w�(t)w(t)

]
dt

]
,

subject to the autonomous state equation (1.12).
When the uncertainties are present in the dynamics, the robust H∞ con-

trol consists of making the gain from the exogenous w(t) to the controlled
output z(t), (L2-gain) less than or equal to γ > 0, that is,∫ T

0

‖z(t)‖2dt ≤ γ2

∫ T

0

‖w(t)‖2dt,

for all T > 0 and for all admissible uncertainties. Note that T can be chosen
to be infinite.
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Mathematically the robust H∞ control problem can be stated as follows.
Given a positive γ, find a controller that robustly stabilizes the system and
guarantees

sup
w(.)∈L2[0,∞]

‖zt‖2
2

‖wt‖2
2

≤ γ2

for all admissible uncertainties. More details on this subject can be found in
Chapter 4.

The state vector most often is not accessible for feedback for many practical
and technological reasons, which limits the use of state feedback control. To
overcome this, either we use output feedback control or get an estimate of
the state vector using the filtering techniques and then use state feedback
control. The filtering problem consists of determining an estimate x̂(t) of the
state vector x(t) or ẑ(t) of the controlled output z(t) using the measurement
of the output y(t). There are many techniques that can be used to accomplish
such an estimation depending on the structure of the studied systems. Among
these techniques are

• Kalman filtering,
• H2 filtering,
• H∞ filtering.

The different filtering techniques will be covered in Chapter 5. In the rest
of this section, we restrict ourselves to H∞ filtering and determine how the
filtering problem can be solved using H∞ control theory. For this purpose, let
the control u(t) ≡ 0 for all t ≥ 0. Notice that this is not a restriction since if
the control is not equal to zero, the way to handle this case is similar to the
one we develop here. H∞ filtering can be stated as follows. Given a nominal
dynamical systems with exogenous input that can be deterministic but not
known and measured output, design a filter to estimate an unmeasured output
such that the mapping from the exogenous input to the estimation error is
minimized or no larger than some prescribed level in terms of the H∞ norm.
Mathematically, the H∞ filtering problem is stated as follows. Given γ > 0,
find a filter such that

sup
w∈L2[0,∞]

‖z(t) − ẑ(t)‖2
2

‖w(t)‖2
2

< γ2

holds for all w(t) ∈ L2[0,∞].
The filtering problem can be regarded as a special H∞ control problem

that keeps the H∞ norm of the system transfer matrix between the estimation
error and the exogenous disturbance less than a given positive constant γ.

The design of a linear time-invariant filter of order n for system (1.12)
with the following form:{

ẋc(t) = KAxc(t) + KBy(t), xc(0) = 0,
ẑ(t) = KCxc(t),

(1.18)
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is brought to an H∞ control problem that can make the extended system
{(x(t), e(t)), t ≥ 0} asymptotically stable when t goes to infinity and the
estimation error e(t) = z(t) − ẑ(t) satisfies the following condition:

‖e(t)‖2 ≤ γ‖w(t)‖2. (1.19)

When the uncertainties are acting on the system dynamics, the robust H∞
filtering can be treated in the same way as the robust H∞ control problem.
It consists of making the extended system {(x(t), e(t)), t ≥ 0} asymptotically
stable when t goes to infinity and the estimation error e(t) = z(t) − ẑ(t)
satisfies (1.19) for all admissible uncertainties.

1.4 Practical Examples

As a first example, let us consider a production system with failure-prone
machines. For simplicity of presentation, let us assume that the production
system consists of one machine and produces one part type. Let us also assume
that the machine state is described by a continuous-time Markov process
{r(t), t ≥ 0} with finite state space S = {0, 1}. r(t) = 0 means that the
machine is under repair and no part can be produced. r(t) = 1 means that
the machine is operational and can produce parts. The switching between
these two states is described by the following probability transitions:

Pr[r(t + Δt) = j|r(t) = i] =

{
λijΔt + o(Δt), if i �= j,

1 + λiiΔt + o(Δt), otherwise,

with λij ≥ 0 when i �= j, λii = −
∑

j �=i λij , and limΔt→0
o(Δt)

Δt = 0.
Let x(t) denote the stock level of the production system at time t. When

x(t) ≥ 0, it represents a surplus and when x(t) < 0 it represents the backlog.
Let us assume that the produced parts deteriorate with time with a constant
rate ρ. Let u(t) and d(t) represent, respectively, the production rate and the
constant demand rate at time t.

The stock level is then described by the following dynamics:

ẋ(t) = −ρx(t) + b(r(t))u(t) − d(t),

with

b(r(t)) =

{
1, if r(t) = 1,
0, otherwise.

When the stock level x(t) is negative there is no deterioration of the stock.
The production rate u(t) is assumed to satisfy the following constraints:

0 ≤ u(t) ≤ ū,
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with ū a given positive constant. If we assume that the demand rate d is given,
one of the problems that we can solve is determining the production rate u(.)
such that the stock level remains always close to zero.

The previous model can be extended to handle the more general cases
of a production system producing p parts. The Markov process in this case
represents the different state that the system production can occupy and that
belongs to a finite set S = {1, 2, · · · , N}. The stock level x(t) for this system
is described by the following system of differential equations:

ẋ(t) = Ax(t) + B(r(t))u(t) − Id(t),

where

x(t) ∈ Rp, u(t) ∈ Rp,

A = diag [−ρ1, · · · ,−ρp] ,
B = diag [b1(r(t)), · · · , bp(r(t))] ,
I = diag [1, · · · , 1] ,

with ρi, i = 1, · · · , p is the deterioration rate of the part i and bj(r(t)) is
defined as previously. Similarly, if we fix the demand rate, how can we keep
up production to ensure that the stock level x(t) is always close to zero?

Our second practical example is borrowed from the aerospace industry.
It consists of a VTOL (vertical take-off and landing) helicopter. The corre-
sponding model presented here was developed by Narendra and Tripathi [53]
and was used recently by de Farias et al. [32]. This system was also used by
Kose et al. [47] in the deterministic framework. Let x1(t), x2(t), x3(t), and
x4(t) denote, respectively, the horizontal velocity, vertical velocity, pitch rate,
and pitch angle at time t. The evolution of the state vector with time can be
described by the following system of differential equations:⎧⎪⎨⎪⎩

ẋ(t) = A(r(t))x(t) + B(r(t))u(t) + Bww(t),
y(t) = Cyx(t) + Dyu(t),
z(t) = Czx(t) + Dzw(t),

where x(t), y(t), and z(t) represent, respectively, the state vector, measured
output, and controller output; w(t) is the external disturbance that is sup-
posed to have finite energy. The different matrices in this model are assumed
to be given by

A(r(t)) =

⎡⎢⎢⎣
−0.04 0.04 0.02 −0.5
0.05 −1.01 0.0 −4.0
0.1 a32(r(t)) −0.71 a34(r(t))
0.0 0.0 1.0 0

⎤⎥⎥⎦ ,

B(r(t)) =

⎡⎢⎢⎣
0.44 0.18

b21(r(t)) −7.60
−5.52 4.49
0.0 0.0

⎤⎥⎥⎦ , Bw =

⎡⎢⎢⎣
0.1 0.0
0.0 0.1
0.1 0.0
0.0 0.1

⎤⎥⎥⎦ ,
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Bz =
[

0.0 0.1
0.1 0.0

]
, By =

[
0.0 0.1
0.1 0.0

]
, Cy =

[
1 0 1 0
0 1 0 1

]
,

Dy =
[

0 0.1 0 0
0 0 0.1 0

]
, Cz =

[
0 1 0 1
1 0 1 0

]
, Dz =

[
0.1 0.0
0.0 0.1

]
.

The parameter r(t) is modeled by a continuous-time Markov process tak-
ing values in a finite space S = {1, 2, 3} and describing the changes in the
air speed, which we assume to have instantaneous switches. These modes cor-
respond, respectively, to 135, 60, and 170 knots. The speed 135 corresponds
to the nominal value. The switching between these modes is assumed to be
described by the transition matrix that belongs to the polytope represented
by

Λ1 =

⎡⎣−2.09 1.07 1.02
0.07 −0.07 0.0
0.02 0.0 −0.02

⎤⎦ ,

Λ2 =

⎡⎣−0.02 0.01 0.01
0.001 −0.001 0.0
0.09 0.0 −0.09

⎤⎦ ,

Λ3 =

⎡⎣−0.05 0.002 0.048
0.02 −0.02 0.0
0.09 0.0 −0.09

⎤⎦ .

The global transition matrix Λ is described by

Λ =
3∑

j=1

αjΛj ,

with α1 = 0.80, α2 = 0.1, and α3 = 0.1.
The parameters a32(r(t)), a34(r(t)), and b21(r(t)) are supposed to take the

values of Table 1.1. This model will be used in different chapters to show the
effectiveness of the developed results.

Airspeed (knots) a32(r(t)) a34(r(t)) b21(r(t))

135 0.37 1.42 3.55
60 0.07 0.12 1.0
170 0.51 2.52 5.11

Table 1.1. Parameters of the state and the input matrices.

As a third example, we consider an electrical circuit that can give us a
stochastic singular system, illustrated by Figure 1.3. We assume that the
position of the switch follows a continuous-time Markov process {r(t), t ≥ 0}
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with three states, S = {1, 2, 3}. This Markov process is the consequence of a
random request that may result from the choice of an operator. Let us assume
that at time t, the Markov process r(t) occupies the state 2, r(t) = 2. Letting
the electrical current in the circuit be denoted by i(t) and using the basic
electrical circuits laws, we get

u(t) = vR(t) + vL(t) + vC(t),
vR(t) = Ri(t),

vL(t) = L
di(t)
dt

,

a(r(t))i(t) =
dvC(t)

dt
,

with

a(r(t)) =

⎧⎪⎨⎪⎩
1

C1
if r(t) = 1,

1
C2

if r(t) = 2,
1

C3
if r(t) = 3.

These equations can be rewritten in matrix form as follows:⎡⎢⎢⎣
L 0 0 0
0 0 1 0
0 0 0 0
0 0 0 0

⎤⎥⎥⎦
⎡⎢⎢⎢⎣

di(t)
dt

dvL(t)
dt

dvC(t)
dt

dvR(t)
dt

⎤⎥⎥⎥⎦ =

⎡⎢⎢⎣
0 1 0 0

a(r(t)) 0 0 0
−R 0 0 1
0 1 1 1

⎤⎥⎥⎦
⎡⎢⎢⎣

i(t)
vL(t)
vC(t)
vR(t)

⎤⎥⎥⎦

+

⎡⎢⎢⎣
0
0
0
−1

⎤⎥⎥⎦u(t).

u(t)

R L 1

2

3

C1 C2 C3

Fig. 1.3. Electrical circuit.

If we choose x�(t) = [i(t), vR(t) + vL(t), vR(t) + vL(t) + vC(t), vR(t)], we
get the following equivalent state representation:
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L 0 0 0
L 1 −1 0
0 −1 1 0
L 0 0 0

⎤⎥⎥⎦ ẋ(t) =

⎡⎢⎢⎣
0 1 1 −1

−a(r(t)) 1 1 −1
a(r(t)) − R 0 0 1

−R 1 0 0

⎤⎥⎥⎦x(t)

+

⎡⎢⎢⎣
−1
−1
0
0

⎤⎥⎥⎦u(t),

which gives the following model:

Eẋ(t) = A(r(t))x(t) + Bu(t),

where

E =

⎡⎢⎢⎣
L 0 0 0
L 1 −1 0
0 −1 1 0
L 0 0 0

⎤⎥⎥⎦ , A(r(t)) =

⎡⎢⎢⎣
0 1 1 −1

−a(r(t)) 1 1 −1
a(r(t)) − R 0 0 1

−R 1 0 0

⎤⎥⎥⎦ ,

B =

⎡⎢⎢⎣
−1
−1
0
0

⎤⎥⎥⎦ .

This model gives the form of stochastic singular systems that we will treat in
Chapter 6.

The three models in this section present the framework of the class of
systems we will be considering in this volume. The second model will be used
in the rest of this book to show the effectiveness of the proposed results in
each chapter and the last example will be used in Chapter 6.

1.5 Organization of the Book

The rest of the book is organized as follows. Chapter 2 treats the stochastic
stability problem and its robustness. Different concepts of stochastic stability
are studied. The uncertainties are supposed to affect the system state matrix
and/or the transition probability rate matrix. Most of the developed results
are in the form of LMIs, which makes them solvable using the existing tools
in the marketplace.

Chapter 3 deals with the stabilization problem and its robustness. Different
types of controllers such as state feedback and output feedback, including the
special case referred to as observer-based output control, are considered and
design procedures for each controller are developed. LMI synthesis methods
are developed for each controller. Many numerical examples are worked out
to show the usefulness of the developed results.
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In Chapter 4 we consider systems with external disturbances that can be
arbitrary with the only restriction being bounded energy or bounded average
power instead of Gaussian as it is the case for the linear quadratic Gaussian
regulator. Different types of controllers that stochastically stabilize the class
of systems that we are considering in this book, and assure the γ-disturbance
rejection, are discussed. LMI design approaches are developed for this purpose.

Chapter 5 considers the filtering problem of the class of piecewise determin-
istic systems and its robustness. Kalman filtering and H∞ filtering problems
are treated and LMI conditions are developed to synthesize the gains of these
filters.

In Chapter 6, the singular class of piecewise deterministic systems is in-
troduced and some appropriate tools for the analysis and synthesis of this
class of systems are developed. More specifically the stochastic stability and
stochastic stabilization problems and their robustness are treated. LMI results
are developed.

In all the chapters numerical examples are given to show the usefulness
of each result. We include simple examples to allow the reader to follow the
steps of the development.

1.6 Notation and Abbreviations

The notation used in this book is quite standard in control theory. The study
of dynamical piecewise deterministic systems is mainly based on state-space
representation; therefore, we will extensively use vectors and matrices in all
our developments. Vectors and matrices are represented by lower and upper
letters, respectively. The matrices in our volume will always depend on the
system mode. When the mode occupies the state, r(t) = i, and any matrix
A(r(t)) will be written as A(i). The following table summarizes most of the
symbols used in this book.

Symbol Meaning

Rn Set of real n-dimensional vectors
Rn×m Set of real n × m matrices
N Set of natural numbers
S Mode state space, S = {1, 2, · · · , N},

where N is a positive natural number
x(t) State vector at time t, x(t) ∈ Rn

y(t) Measured output vector at time t, y(t) ∈ Rq

z(t) Controlled output vector at time t, z(t) ∈ Rp

u(t) Control input vector at time t, u(t) ∈ Rm

w(t) Exogenous input that has finite energy
ω(t) External disturbance vector at time t, ω(t) ∈ R

(Wiener process)
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Symbol Meaning

I Identity matrix (the size can be obtained
from the context)

{r(t), t ≥ 0} Markov process describing the system mode
at time t

P[.] Probability measure
Λ [λij ] Transition probability rates matrix between the

different modes of the system that belongs to S
λij Jump rate from mode i to mode j, (i, j ∈ S )
A(i) State matrix, A ∈ Rn×n

ΔA(i, t) Uncertainty on the matrix A(i) ∈ Rn×n

B(i) Input matrix B(i) ∈ Rn×m

F (i, t) Norm-bounded uncertainty
‖.‖2 2-norm (vector, signal, or system)
‖.‖∞ ∞-norm (vector, signal, or system)
E [.] Mathematical expectation
L2 [0,∞[ Set of integrable functions on [0,∞[,

L2[0,∞[� {f(t)|
∫∞
0

f�(s)f(s)ds < ∞}
diag [A1, · · · , An] Real matrix with diagonal elements A1, · · · , An

tr (A) Trace of the square matrix A, A ∈ Rn×n

A� Transpose of the real matrix A, A ∈ Rn×m

Si(X) Si(X) =
[√

λi1Xi,
√

λi2Xi, · · · ,
√

λii−1Xi ,√
λii+1Xi, · · · ,

√
λiNXi

]
Xi(X) Xi(X) = diag [X1, · · · , Xi−1, Xi+1, · · · , XN ]
λmax(A) Maximum eigenvalue of the square matrix A
λmin(A) Minimum eigenvalue of the square matrix A
V (x(t), i) Lyapunov candidate function that depends on the

State vector x(t) and the mode i
L V (., .) Infinitesimal operator of the Lyapunov function
Pi > 0 Symmetric and positive-definite matrix
Pi ≥ 0 Symmetric and semi-positive-definite matrix
Pi < 0 Symmetric and negative-definite matrix
Pi ≤ 0 Symmetric and semi-negative-definite matrix
Q > 0 Set of symmetric and positive-definite matrix

(Q = (Q1, · · · , QN ) > 0, each component Qi > 0,
i = 1, · · · , N)

Q ≥ 0 Set of symmetric and semi-positive definite matrix
(Q = (Q1, · · · , QN ) ≥ 0, each component Qi ≥ 0,
i = 1, · · · , N)

Q < 0 Set of symmetric and negative definite matrix
(Q = (Q1, · · · , QN ) > 0, each component Qi > 0,
i = 1, · · · , N)
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Symbol Meaning

Q ≤ 0 Set of symmetric and semi-negative definite matrix
(Q = (Q1, · · · , QN ) ≥ 0, each component Qi ≤ 0,
i = 1, · · · , N)

X > Y Means that X − Y is symmetric and positive-definite
matrix for symmetric and positive-definite
matrices X and Y

P−�(i) Inverse and the transpose of the nonsingular
matrix P (i)

SS Stochastically stable
MSQS Mean square quadratically stable
LMI Linear matrix inequality
GEVP Generalized eigenvalue problem



2

Stability Problem

Consider a linear time-invariant system with the following dynamics:{
ẋ(t) = Ax(t),
x(0) = x0,

where x(t) ∈ Rn is the state vector at time t, x0 ∈ Rn is the initial state, and
A is a constant known matrix with appropriate dimension. The stability of
this class of systems has been extensively studied and many interesting results
can be used to check the stability of a given system of this class. Lyapunov
equations or equivalent LMI conditions are often used to check stability.

Since stability is the first requirement in any design specification, it con-
tinues to attract many researchers from the control and mathematics commu-
nities. For the class of systems we are considering in this book, the developed
results for the class of linear time-invariant systems cannot be used directly
and must be adapted to take care of the stochastic effect in the dynamic.
For piecewise deterministic systems, the concept of stochastic stability is used
since the state equations of these systems are stochastic. The stochastic sta-
bility problem is, in some sense, more complicated compared to the one of
the deterministic dynamical systems. As we will see later in this chapter, the
stability of the system in each mode does not imply the stochastic stability of
the whole system. The reverse is also not true. Our goal in this chapter is to
develop LMI-based stability conditions for the class of piecewise deterministic
systems.

The rest of this chapter is organized as follows. In Section 2.1 the stochastic
stability problem is stated and some useful definitions are given. Section 2.2
presents the results of stability. Both Lyapunov equations and LMI results are
given. In Section 2.3 the robust stochastic stability is studied and LMI results
are developed. Section 2.4 covers the stochastic stability and its robustness
for the class of piecewise deterministic systems with Wiener process. Most of
the results are illustrated by numerical examples to show the effectiveness of
the results.
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2.1 Problem Statement

Let us consider a dynamical system defined in a probability space (Ω,F , P)
and assume that its state equation is described by the following differential
equation: {

ẋ(t) = A(r(t), t)x(t),
x(0) = x0,

(2.1)

where x(t) ∈ Rn is the state vector; x0 ∈ Rn is the initial state; {r(t), t ≥ 0}
is a continuous-time Markov process taking values in a finite space S =
{1, 2, · · · , N} and describing the evolution of the mode at time t; A(r(t), t) ∈
Rn×n is a matrix with an appropriate dimension that is supposed to have the
following form for every i ∈ S :

A(i, t) = A(i) + DA(i)FA(i, t)EA(i), (2.2)

with A(i), DA(i), and EA(i) are real known matrices; and FA(i, t) is an un-
known real matrix that satisfies the following:

F�
A (i, t)FA(i, t) ≤ I. (2.3)

The Markov process {r(t), t ≥ 0} with values in the finite set S , describes
the switching between the different modes and its evolution is governed by
the following probability transitions:

P [r(t + h) = j|r(t) = i]

=

{
λijh + o(h), when r(t) jumps from i to j ,

1 + λiih + o(h), otherwise,
(2.4)

where λij is the transition rate from mode i to mode j with λij ≥ 0 when
i �= j and λii = −

∑N
j=1,j �=i λij and o(h) is such that limh→0

o(h)
h = 0.

Notice that it is difficult to get the exact transition probability rate ma-
trix, Λ = [λij ], of the Markov process we are using to describe the switching
between the different modes of the system. Therefore, uncertainties should
sometimes be included in the model to correct the used dynamics that de-
scribe the switching. The analysis and the design approaches we will use
should take care of these uncertainties. In the rest of this chapter we will
assume sometimes that the matrix Λ belongs to a polytope, that is,

Λ =
κ∑

k=1

αkΛk, (2.5)

where κ is a given positive integer; 0 ≤ αk ≤ 1; and Λk is a known transition
matrix and its expression is given by
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Λk =

⎡⎢⎣ λk
11 · · · λk

1N
...

. . .
...

λk
N1 · · · λk

NN

⎤⎥⎦ , (2.6)

where λk
ij keeps the same meaning as previous, with

∑κ
k=1 αk = 1.

Let x(t;x0, r0) be the solution of system (2.1)–(2.5) at time t when the
initial conditions are (x0, r0). In the rest of this chapter we will use x(t) instead
of x(t;x0, r0).

Remark 3. The uncertainties that satisfy conditions (2.3) and (2.5) are re-
ferred to as admissible. The uncertainty term in (2.3) is supposed to depend
on the system’s mode r(t) and on time t. The results developed in the rest of
this chapter will remain valid even if the uncertainties are chosen to depend
on the system’s state x(t), the mode r(t), and time t.

Our aim in this chapter is to develop conditions that we can use to check if
a dynamical system is stochastically stable and if it is robustly stochastically
stable. It is preferable that these conditions be in the LMI formalism to allow
the use of existing powerful tools such as Matlab LMI Toolbox or Scilab.
Before giving results on stochastic stability and its robustness, let us define
the different concepts of stability used in the rest of this book.

For system (2.1), when FA(i, t) ≡ 0, for all modes and for t ≥ 0, that is
we drop the system’s uncertainties, we have the following definitions.

Definition 1. System (2.1), with FA(i, t) = 0 for all modes and for all t ≥ 0,
is said to be

1. stochastically stable (SS) if there exists a finite positive constant T (x0, r0)
such that the following holds for any initial condition (x0, r0):

E

[∫ ∞

0

‖x(t)‖2dt|x0, r0

]
≤ T (x0, r0); (2.7)

2. mean square stable (MSS) if

lim
t→∞ E‖x(t)‖2 = 0, (2.8)

holds for any initial condition (x0, r0);
3. mean exponentially stable (MES) if there exist positive constants α and β

such that the following holds for any initial condition (x0, r0):

E
[
‖x(t)‖2|x0, r0

]
≤ α‖x0‖e−βt. (2.9)

Remark 4. From the previous definitions, we can see that MES implies MSS
and SS.
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When the system’s uncertainties are not equal to zero, the concept of sto-
chastic stability becomes robust stochastic stability and is defined for system
(2.1) as follows.

Definition 2. System (2.1) is said to be

1. robustly stochastically stable (RSS) if there exists a finite positive constant
T (x0, r0) such that condition (2.7) holds for any initial condition (x0, r0)
and for all admissible uncertainties;

2. robust mean exponentially stable (RMES) if there exist positive constants
α and β such that condition (2.9) holds for any initial condition (x0, r0)
and for all admissible uncertainties.

Remark 5. From these definitions, we can see that RMES implies RSS.

In the next section we give results on stochastic stability that can be used
to check if a dynamical system of the class of piecewise deterministic systems
is stochastically stable.

2.2 Stability

Let us now consider a dynamical system of the class of systems described by
(2.1) and let the uncertainties be equal to zero for all the modes and for all
t ≥ 0.

Theorem 1. Let Q = (Q(1), · · · , Q(N)) > 0 be a given set of symmet-
ric and positive-definite matrices. System (2.1) is stochastically stable if
and only if there exists a set of symmetric and positive-definite matrices
P = (P (1), · · · , P (N)) > 0 such that the following holds for each i ∈ S :

A�(i)P (i) + P (i)A(i) +
N∑

j=1

λijP (j) = −Q(i). (2.10)

Furthermore, the stochastic stability implies the exponential mean square sta-
bility.

Proof: First notice that the joint process {(x(t), r(t)), t ≥ 0} is a time-
homogeneous Markov process with the infinitesimal operator L acting on
smooth functions V (x(t), r(t)).

Let us now start by the necessity proof. For this purpose, suppose that the
system (2.1) is stochastically stable, which means that the following holds:

E

[∫ ∞

0

‖x(t;x0, r0)‖2dt

]
< ∞,

for all x0 ∈ Rn. The last inequality implies that
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E

[∫ ∞

0

x�(t)Q(r(t))x(t)dt

∣∣∣∣x0, r0

]
< ∞,

for any given symmetric and positive-definite matrix Q(i) > 0, i ∈ S .
Let the function Ψ : R+ × R+ × Rn × S be defined by

Ψ(T, t, x(t), i) Δ= E

[∫ T

t

x�(s)Q(r(s))x(s)ds

∣∣∣∣x(t) = x, r(t) = i

]
. (2.11)

Using the time-homogeneous property, we have, with a slight abuse of
notation, that

Ψ(T, t, x, i) = Ψ(T − t, x, i)

= E

[∫ T−t

0

x�(s)Q(r(s))x(s)ds|x0 = x, r0 = i

]

= x�(t)E

[∫ T−t

0

Φ�(s)Q(r(s))Φ(s)ds|r0 = i

]
x(t)

Δ= x�(t)P (T − t, i)x(t),

where Φ(s) is the transition matrix.
Since the system is stochastically stable, P (·, i) is a monotonically increas-

ing and positive-definite matrix-valued function and bounded from above.
Thus

P (i) = lim
T→∞

P (T, i) (2.12)

exists. Here, P (i) > 0 is also positive-definite. Let T be an arbitrarily fixed
time. For any T > s > t > 0,

d

dt
E [Ψ(T − t, x, i)| evaluated along the system trajectory]

= lim
s→t

1
s − t

[E (Ψ(T − s, x(s), r(s))|x(t) = x, r(t) = i) − Ψ(T − t, x, i)]

=
∂

∂t
Ψ(T − t, x, i) + L Ψ(T − t, x, i)

= x�(t)
[
A�(i)P (T − t, i) + P (T − t, i)A(i)

]
x(t)

+
N∑

j=1

λijx
�(t)P (T − t, j)x(t) + x�(t)

∂

∂t
P (T − t, x, i)x(t)

= x�(t)
[

∂

∂t
P (T − t, i) + A�(i)P (T − t, i) + P (T − t, i)A(i)

+
M∑

j=1

λijP (T − t, j)
]
x(t). (2.13)
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On the other hand, by (2.11) we have

E [Ψ(T − s, x(s), r(s))|x(t) = x, r(t) = i] − Ψ(T − t, x, i)
= [E(Ψ(T − s, x(s), r(s)) − Ψ(T − t, x, i)|x(t) = x, r(t) = i)]

= E

{
E

[∫ T

s

x�(v)Q(r(v))x(v)dv|x(s), r(s)

]

− E

{∫ T

t

x�(v)Q(r(v))x(v)dv|x(t) = x, r(t) = i

}
|x(t) = x, r(t) = i

}

= E

{∫ T

s

x�(v)Q(r(v))x(v)dv −
∫ T

t

x�(v)Q(r(v))x(v)dv|x(t) = x, r(t) = i

}

= −E

{∫ s−t

0

x�(u)Q(r(u))x(v)du|x0 = x, r0 = i

}
= −x�E

{∫ s−t

0

Φ�(u)Q(r(u))Φ(u)du|r0 = i

}
x. (2.14)

However,

lim
s→t

1
s − t

E

{∫ s−t

0

Φ�(u)Q(r(u))Φ(u)du|r0 = i

}
= lim

s→t
E

{
1

s − t

∫ s−t

0

Q(r(u))du|r(0) = i

}
= E{Q(i)|r0 = i} = Q(i)

since Φ(0) = I.
This implies

d

dt
EΨ(T − t, x, i) = −x�Q(i)x. (2.15)

Let T go to infinity in (2.13) and note that ∂
∂tP (T − t, j) tends to zero

as T tends to infinity. Then (2.13), (2.14), and (2.15) give (2.10). This proves
necessity.

For sufficiency, let us assume that P (i) > 0, for i ∈ S solves (2.10).
Define a stochastic Lyapunov function candidate V (x(t), r(t)) by the following
expression:

V (x(t), r(t)) = x�(t)P (r(t))x(t), (2.16)

If at time t, x(t) = x and r(t) = i, for i ∈ S , the infinitesimal operator
acting on V (.) and emanating from the point (x, i) at time t is given by:

L V (x(t), i) =
N∑

j=1

λijV (x(t), j) + x�A�(i)
∂

∂x
V (x(t), i)
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= x�(t)

⎡⎣∑
j∈S

λijP (j) + A�(i)P (i) + P (i)A(i)

⎤⎦x(t)

= −x�(t)Q(i)x(t). (2.17)

Thus,

L V (x(t), i) ≤ −min
i∈S

λmin [Q(i)] x�(t)x(t). (2.18)

By Dynkin’s formula, we obtain

E[V (x(t), i)] − V (x0, r0) = E

[∫ t

0

L V (x(s), r(s))ds

]
≤ −min

i∈S
{λmin(Q(i))}E

[∫ t

0

x�(s)x(s)ds|(x0, r0)
]

,

implying, in turn,

min
i∈S

{λmin(Q(i))}E
[∫ t

0

x�(s)x(s)ds|(x0, r0)
]

≤ E [V (x(0), r0)] − E [V (x(t), i)]
≤ E [V (x(0), r0)] .

This yields that

E

[∫ t

0

x�(s)x(s)ds|(x0, r0)
]
≤ E [V (x(0), r0)]

mini∈S {λmin(Q(i))}

holds for any t > 0. Letting t go to infinity implies that

E

[∫ ∞

0

x�(s)x(s)ds|(x0, r0)
]

is bounded by a constant T (x0, r0) given by

T (x0, r0) =
E [V (x(0), r0)]

mini∈S {λmin(Q(i))} ,

which implies that (2.1) is exponentially mean square stable and therefore sto-
chastically stable. This completes the proof of sufficiency. The last statement
of Theorem 1 is already proved in the proof of the sufficiency. This completes
the proof of the theorem. �

Note that when a set of symmetric and positive-definite matrices {P (i), i ∈
S } is given and we must solve for Q(i), i ∈ S , via (2.10), the positive defi-
niteness of Q(i), i ∈ S is only sufficient for the stability of the system (2.1),
but not necessary. This can be illustrated by a simple example.
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Example 1. Consider a system with one mode and the system parameters are
given by

A =
[
−1 4
0 −1

]
.

If we choose Q in (2.10) equal to the identity matrix, I, then using (2.10) we
obtain

P =
[
−2 4
4 −2

]
,

which is not positive-definite. However, this system is obviously stable since
both poles of A are negative.

Note that if the system has only a single mode, then (2.10) reduces to the
condition for deterministic stability. That is, the stochastic stability becomes
one of the deterministic systems. However, for jump linear systems with mul-
tiple modes, stability in each mode is neither necessary nor sufficient for the
stochastic stability of system (2.1).

To illustrate that the stochastic stability of system (2.1) does not imply
that each model is deterministically stable, let us consider an example.

Example 2. Consider a system with two modes, that is, S = {1, 2}. The
system parameters are given by

• mode #1: A(1) = 0.25,
• mode #2: A(2) = −1.5.

Let the switching between the two modes be described by the following
transition matrix:

Λ =
[
−1 1
1 −1

]
.

This system is not stable in mode 1 because A(1) > 0. With this set of
data and Q(i) = 1, (2.10) becomes[

−0.5P (1) + P (2) = −1,
−4P (2) + P (1) = −1.

Solving the above equations yields P (1) = 5.0 > 0, P (2) = 1.5 > 0. So this
system is stochastically stable. This means that the stability of A(i), i ∈ S is
not necessary for the system to be stochastically stable.

Theorem 1 provides a sufficient and necessary condition for system (2.1)
to be stochastically stable, which is not easy to test. The following corollary
gives a necessary condition for stochastic stability that is easier to test.
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Corollary 1. If system (2.1) is stochastically stable, then for each i ∈ S ,
the matrix A(i) + 1

2λiiI is stable; that is, all its eigenvalues have negative real
parts.

Proof: Since system (2.1) is stochastically stable, letting Q(i) = I in
(2.10), we obtain that the set of coupled Lyapunov equations (2.10) has a set of
symmetric and positive-definite solutions, denoted by (P (1), · · · , P (N)) > 0,
that is,

A�(i)P (i) + P (i)A(i) +
∑
j∈S

λijP (j) = −I, i ∈ S ,

which can be rewritten as[
A�(i) +

1
2
λiiI

]
P (i) + P (i)

[
A(i) +

1
2
λiiI

]

= −

⎡⎣∑
j �=i

λijP (j) + I

⎤⎦ , i ∈ S .

Since
∑

j �=i λijP (j)+I is symmetric and positive-definite, the last equation
implies matrix A(i) + 1

2λiiI is stable, that is, all its eigenvalues have negative
real parts. This completes the proof of Corollary 1. �

The above corollary gives a necessary condition for system (2.1) to be
stochastically stable, but the following example shows it is not sufficient.

Example 3. Consider a two-mode system with the following data:

• mode #1: A(1) = 1,
• mode #2: A(2) = 0.5.

The switching between the two modes is described by the following tran-
sition matrix:

Λ =
[
−3 3
2 −2

]
.

For this set of data, we obtain from (2.10)[
2P (1) − 3P (1) + 3P (2) = −1,
P (2) − 2P (2) + 2P (1) = −1.

The solution of this system is P (1) = − 4
5 , P (2) = − 3

5 . P (1) and P (2) are
not positive-definite. Thus, by Theorem 1, this system is not stable. But we
have A(1)+ 1

2λ11 = − 1
2 and A(2)+ 1

2λ22 = − 1
2 . That is, they are both stable.

Therefore, we see that this necessary condition given by Corollary 1 is not
sufficient for stochastic stability.

From the above theorem, we obtain the following one.
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Theorem 2. System (2.1) is stochastically stable if and only if there exists
a set of symmetric and positive-definite matrices P = (P (1), · · · , P (N)) > 0
such that the following coupled LMIs are feasible:

A�(i)P (i) + P (i)A(i) +
∑
j �=i

λijP (j) < 0, i ∈ S . (2.19)

Proof: First let us prove the necessity. Suppose that system (2.1) is sto-
chastically stable. By letting Q(i) = I and using the theorem on stability, we
have that

A�(i)P (i) + P (i)A(i) +
∑
j �=i

λijP (j) = −I, i ∈ S

have a set of feasible solutions P (i), i ∈ S satisfying P (i) > 0. The last
equation means that this set of matrices P (i), i ∈ S , satisfies (2.19).

On the other hand, if (2.19) has a set of feasible solutions P (i), i ∈ S , by
defining Q(i) Δ= −[A�(i)P (i)+P (i)A(i)+

∑
j �=i λijP (i)], which is symmetric,

positive-definite, and satisfies

A�(i)P (i) + P (i)A(i) +
∑
j �=i

λijP (j) = −Q(i), i ∈ S ,

we conclude that system (2.1) is stochastically stable. �
Theorem 2 provides an LMI-based condition for the stability of system

(2.1), which can be checked easily by using LMI Toolbox of Matlab or Scilab.

Example 4. To show the usefulness of Theorem 2, let us consider a system
having dynamics (2.1) and the system parameters as follows: S = {1, 2, 3}
and

Λ =

⎡⎣−10 5 5
1 −2 1

0.7 0.3 −1

⎤⎦ , A(1) =

⎡⎣2.5 0.3 0.8
0 3 0.2
0 0.5 2

⎤⎦
A(2) =

⎡⎣−2.5 1.2 0.3
−0.5 −5 1
0.25 1.2 −5

⎤⎦ , A(3) =

⎡⎣−2 1.5 −0.4
2.2 −3 0.7
1.1 0.9 −2

⎤⎦ .

With this set of data, solving (2.19) yields

P (1) =

⎡⎣35.8075 17.3278 7.7457
17.3278 35.8390 9.5721
7.7457 9.5721 19.1130

⎤⎦ ,

P (2) =

⎡⎣10.8900 3.3784 1.1620
3.3784 7.4710 2.0628
1.1620 2.0628 5.2354

⎤⎦ ,
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P (3) =

⎡⎣20.6740 10.6676 1.7184
10.6676 12.4321 1.8633
1.7184 1.8633 9.1467

⎤⎦ .

Since the eigenvalues of A(1) are (2.5, 3.0916, 1.9084), mode 1 is not stable.
However, direct computation gives

A�(i)P (i) + P (i)A(i) +
∑
j �=i

λijP (j)

=

⎡⎣−21.2175 6.8695 3.9122
6.8695 −23.8719 4.6806
3.9122 4.6806 −26.5458

⎤⎦ ,

with eigenvalues (−30.4096,−28.3270,−12.8985). This means that this system
is stochastically stable.

Next we proceed to consider the almost-sure stability. For this purpose,
let us give the lemma.

Lemma 1. Consider a matrix in the following companion form:

A =

⎡⎢⎢⎢⎢⎢⎢⎣

0 1 0 · · · 0
0 0 1 · · · 0
...

...
...

. . .
...

0 0 0
... 1

a1 a2 a3 · · · an

⎤⎥⎥⎥⎥⎥⎥⎦ , (2.20)

with distinct-real eigenvalues λ1, · · · , λn satisfying |λi −λj | ≥ 1, (i �= j), then
there exists a constant M > 0 and a positive integer k, both independent of
λ1, · · · , λn, and a nonsingular matrix T such that

‖T‖ ≤ M

(
max

1≤i≤n
|λi|

)k

, ‖T−1‖ ≤ M

(
max

1≤i≤n
|λi|

)k

, (2.21)

and

T−1AT = diag{λ1, λ2, · · · , λn}.

Proof: Because A has distinct real eigenvalues, A can be put in diagonal
form. The transformation matrix is given by

T =

⎡⎢⎢⎢⎢⎢⎣
1 1 1 · · · 1
λ1 λ2 λ3 · · · λn

λ2
1 λ2

2 λ2
3 · · · λ2

n
...

...
...

. . .
...

λn−1
1 λn−1

2 λn−1
3 · · · λn−1

n

⎤⎥⎥⎥⎥⎥⎦ ,
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and T−1AT = diag{λ1, λ2, · · · , λn}. To prove that T satisfies the required
condition, we use the 1-norm. Recall that all matrix norms are equivalent
over the real field. First notice that

T−1 =
adj(T )
det(T )

=
adj(T )∏

1≤i≤j≤n(λi − λj)
.

With |λi − λj | ≥ 1, ‖T−1‖ ≤ ‖adj(T )‖. All entries of T and adj(T ) are
polynomials of λ1, · · · , λn, and there exists an M > 0 and a positive integer
k > 0, both independent of λ1, · · · , λn, such that (2.21) holds. This completes
the proof. �

Let us consider the following dynamics:{
ẋ(t) = A(r(t))x(t) + B(r(t))u(t),
x(0) = x0,

(2.22)

where all the parameters of these dynamics keep the same meaning as before
with B(i) a known matrix for each i ∈ S .

Let us now consider a state feedback controller of the form

u(t) = K(i)x(t),when r(t) = i,

and show the results of the following theorem.

Theorem 3. Assume that {r(t), t ≥ 0} is a finite-state ergodic Markov chain
with invariant measure π. If there exists an i ∈ S such that πi > 0, then
(2.22) is almost surely stabilizable. As a consequence, we conclude that indi-
vidual mode controllability implies almost-sure stabilizability.

Proof: We first prove the second statement, i.e., the individual mode con-
trollability implies the almost-sure stabilizability. Without loss of generality,
we only prove the single input case. For any j ∈ S , the individual mode con-
trollability assumption implies that (A(j), B(j)) is controllable. Therefore,
there exists a nonsingular matrix T1(j) such that

T1(j)A(j)T−1
1 (j) =

⎡⎢⎢⎢⎢⎢⎢⎣

0 1 0 · · · 0
0 0 1 · · · 0
...

...
...

. . .
...

0 0 0
... 1

a1(j) a2(j) a3(j) · · · an(j)

⎤⎥⎥⎥⎥⎥⎥⎦
Δ= A1(j),

T1(j)B(j) =

⎡⎢⎢⎢⎢⎢⎣
0
0
...
0
1

⎤⎥⎥⎥⎥⎥⎦ Δ= B1(j).
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Let λ1, · · · , λn be negative-real numbers satisfying 2n ≥ |λi − λj | ≥ 1(i �=
j). Choose a matrix K1(j) such that

A1(j) − B1(j)K1(j)
Δ= Ā(j)

has eigenvalues λ1, · · · , λn for any j ∈ S . Now Ā(j) is in companion form
and from Lemma 1 there exist l > 0, M1 > 0, and nonsingular matrices
T2(j)(j ∈ S ) satisfying

‖T2(j)‖ ≤ M1

(
max

1≤i≤n
|λi|

)l

,

‖T−1
2 (j)‖ ≤ M1

(
max

1≤i≤n
|λi|

)l

,

such that
T−1

2 Ā(j)T2(j) = diag{λ1, · · · , λn} Δ= D, j ∈ S .

Choose the feedback control u(t) = −K(r(t))x(t) where

K(j) = K1(j)T1(j), T (j) = T−1
1 T2(j), j ∈ S .

Then the closed-loop system becomes

ẋ(t) = T (j)DT−1(j)x(t). (2.23)

From the choice of T1(j) and T2(j), there exists an M2 > 0 and m > 0,
both independent of λ1, · · · , λn and j, such that

‖T (j)‖ ≤ M2

(
max

1≤i≤n
|λi|

)m

,

‖T−1(j)‖ ≤ M2

(
max

1≤i≤n
|λi|

)m

.

With λj < 0, let λ = max1≤i≤n λi, then there exists an M3 > 0, indepen-
dent of λ1, · · · , λn and j, such that

‖eDt‖ ≤ M3e
λt, t ≥ 0.

From the sojourn-time description of a finite-state Markov chain, (2.23) is
almost surely stable if and only if the state transition matrix Φ(., .) satisfies
the following:

Φ(t, 0) = eÃ(r(k))(t−tk)eÃ(r(k−1))(τk−1) · · · eÃ(r0)τ0 → 0, a.s.(t → ∞),(2.24)

where Ã(j) = T (j)DT−1(j), (j ∈ S ). A simple computation yields

‖Φ(t, 0)‖ = ‖T (r(k))eD(t−tk)T−1(r(k))T (r(k − 1))eDτk−1T−1(r(k − 1))
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· · ·T (r0)eDτ0T−1(r0)‖
≤ ‖T (r(k))‖‖eD(t−tk)‖‖T−1(r(k))‖‖T (r(k − 1))‖‖eDτk−1‖
· · · ‖T (r0)‖‖eDτ0‖‖T−1(r0)‖

≤
[
M2

(
max

1≤i≤n
λi

)m]2(k+1)

Mk+1
3 eλ(τk+τk−1+···+τ0)

Δ=
[
Meλ(τk+···+τ0)/(k+1)

]k+1

, (2.25)

where M = (M2 max1≤i≤n |λi|l)2M3. Since {r(t), t ≥ 0} is a finite-state er-
godic Markov chain and from the Law of Large Numbers, there exists a non-
random constant a > 0, the average sojourn time, such that

lim
k→∞

τk + · · · + τ0

k + 1
= a, a.s.

Hence

lim
k→∞

Meλ(τk+···+τ0)/(k+1) = Meλa ≤ [M2(|λ| + 2n)l]2M3e
λa → 0,

(λ → −∞).

Thus, we can choose |λ| sufficiently large so that Meλa < 1.
From (2.25) we have

lim
t→∞Φ(t, 0) = 0, a.s. (2.26)

that is, (2.23) is almost surely stable. Therefore, (2.1) is almost surely stabi-
lizable.

Next we prove the first statement. Without loss of generality, we assume
that (A(1), B(1)) is controllable and π1 > 0. We choose K(2) = K(3) = · · · =
K(N) = 0, and choose K(1) and λ as in the first half of the proof. Then there
exists an M > 0 and α, both independent of λ, such that

‖eA(i)t‖ ≤ Meαt, (i �= 1), (2.27)
‖e(A(1)−B(1)K(1))t‖ ≤ p(λ)eλt,∀t ≥ 0, (2.28)

where p(λ) is a polynomial with degree independent of λ. Let γ1
k denote the

time occupied by state 1 during the time interval (0, tk) and γ2
k denote the

time occupied by the states 2, 3, · · · , N during the interval (0, tk). From the
ergodicity of {r(t), t ≥ 0},

lim
k→∞

γ1
k

tk
= π1, lim

k→∞
γ2

k

t + k
= 1 − π1. (2.29)

As in the first half of the proof, we obtain that

‖Φ(tk, 0)‖ ≤
[
(Mp(λ))(k+1)/tkeλγ1

k/tk+αγ2
k/tk

]tk

, (2.30)
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and the term [(Mp(λ))1/aeπ1λ+(1−π1)α] has the limit

(Mp(λ))1/aeπ1λ+(1−π1)α → 0(λ → −∞).

Therefore, we can conclude that the system is almost surely stabilizable. This
completes the proof of Theorem 3. �

The above discussion reveals that for jump linear systems, stochastic sta-
bility and mean square stability are equivalent. In fact, this conclusion holds
only for the case that the mode process has finite states. The following ex-
ample shows that when the system has an infinite number of modes, this
conclusion is false.

Example 5. Consider a one-dimensional system with the system mode repre-
sented by a Poisson process θ(t) with parameter λ. Then the state equation
system is described by

ẋ(t) = −bθ(t)x(t), t ≥ 0, (2.31)

where x(t) ∈ R and bi, i ≥ 1, are scalars defined by

bi =
λ

2
log

(
i + 1

i

)
, i ≥ 1, (2.32)

which means that bi are positive and tends to zero when i increases (goes to
infinity). In this setting, the trajectories of the state process are decreasing
and connected solutions of (2.31) given by

x(t) = ane−bn+θ0−1(t−τn−1) a.s. τn−1 ≤ t < τn, (2.33)

where a1 = x0 and τ0 = 0 < τ1 < τ2 < · · · is the sequence of jump times, and
we appeal to the fact that once the Poisson process is known to be in state
i, it can only arrive to state i + 1 through one jump. A consequence of the
continuity of (2.33) on every jump point is that

lim
t→τn

x(τn) = ane−bn+θ0−1(τn−τn−1) = an+1, n ≥ 1, (2.34)

from which calculation of a2 and a3 easily show us that

an = x0 exp

{
−

n−1∑
i=1

bi+θ0−1(τi − τi−1), n = 2, 3, · · · ,

}
. (2.35)

Furthermore, the sequence of jump times τ0 = 0 < τ1 < τ2 < · · · < τn < ∞
a.s. Now, since −λii are bounded from above, it follows that in any interval
[0, d], d < ∞, almost all sample paths of the process {θ(t), t ≥ 0} have only
finitely many jump points τn. Consequently, with probability one, jump point
sequences converging to some finite point τ̄ do not exist, so that

lim
n→∞ τn = ∞, a.s. (2.36)
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and (2.33) indeed represents the trajectory of the state process {x(t), t ≥ 0}.
We shall now show that the system is not stochastically stable for second-

order random variable x0, with E[x2
0] �= 0 and deterministic θ0 ∈ S .

From (2.36) and (2.34), we write that∫ ∞

0

x2(t)dt =
∞∑

n=1

∫ τn

τn−1

x2(t)dt ≥
∞∑

n=1

a2
n+1(τn − τn−1) a.s., (2.37)

where we use the fact that (2.33) is a decreasing function.
Taking the mathematical expectation on both sides of (2.37) and using

Fubini’s Theorem, we obtain∫ ∞

0

E[x2(t)]dt ≥
∞∑

n=1

E

⎡⎣(x0 exp

{
−

n∑
i=1

bi+θ0−1(τi − τi−1)

})2

(τn − τn−1)

⎤⎦
=

∞∑
n=1

E

[
x2

0 exp

{
−2

n−1∑
i=1

bi+θ0−1(τi − τi−1)

}]
× exp{−2bn+θ0−1(τn − τn−1)}(τn − τn−1)

= E[x2
0]
{ ∞∑

n=1

E

[
exp

{
−2

n−1∑
i=1

bi+θ0−1(τi − τi−1)

}]

×E[exp{−2bn+θ0−1(τn − τn−1) + log(τn − τn−1)}]
}

≥ E[x2
0]
( ∞∑

n=1

[
−2

n−1∑
i=1

bi+θ0−1E[τi − τi−1]

]

× exp {−2bn+θ0−1E[τn − τn−1] + E[log(τn − τn−1)]}
)

= E[x2
0]

( ∞∑
n=1

exp

[
−λ

2

n∑
i=1

λ

2
log

(
i + θ0

i + θ0 − 1

)])
× exp{E[log(τn − τn−1)]}

= E[x2
0]

( ∞∑
n−1

θ0

n + θ0
exp

{∫ ∞

0

log(s)λe−λsds

})

= E[x2
0]d1

∞∑
n=1

θ0

n + θ0
= ∞, (2.38)

where d1 = exp
{∫∞

0
log(s)λeλsds

}
is finite and positive and does not depend

on n. This means that the system under study is not stochastically stable.
Next we proceed to show that the system is mean square stable. For this

purpose, we write

E
[
x2(τn)|x0, θ0

]
= E

[
a2

n+1|x0, θ0

]
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= x2
0

[
n∏

i=1

exp{−2bi+θ0−1(τi − τi−1)}|θ0

]

= x2
0

n∏
i=1

E[exp{−2bi+θ0−1}(τi − τi−1)|θ0]

= x2
0

n∏
i=1

{
− exp(−2(bi+θ0−1 + λ)s)

1 + 2bi+θ0−1

λ

∣∣∣∣∞
0

}

= x2
0

(
n∏

i=1

(
1 + log

(
i + θ0

i + θ0 − 1

)))−1

.

Now,

n∑
i=1

log
(

i + θ0

i + θ0 − 1

)
= log(n + θ0) − log(θ0) → ∞(n → ∞).

Therefore, we have

E[x2(τn)|x0, θ0] → 0(n → ∞).

Since almost all trajectories of {x} are decreasing, we have from (2.36)
that

lim
t→∞x2(t) = lim

τn→∞x2(τn) = lim
n→∞x2(τn) a.s.

Appealing to the Lebesgue monotone convergence theorem, we have, for
any joint distribution of (x0, θ0), that

lim
t→∞ E

[
x2(t)

]
= E

[
lim

t→∞x2(t)
]

= lim
n→∞ E

[
x2(τn)

]
= lim

n→∞ E
[
E
[
x2(τn)

]]
= E

[
lim

n→∞ E(x2(τn))
]

= 0.

This proves that the system under study is mean square stable.

The next theorem states another result using a LMI framework for sto-
chastic stability. It gives an LMI condition that we should satisfy to guarantee
the stochastic stability of our class of systems.

Theorem 4. System (2.1) with all the uncertainties equal to zero is stochas-
tically stable if and only if there exists a set of symmetric and positive-definite
matrices P = (P (1), · · · , P (N)) > 0 such that the following holds for every
i ∈ S :

A�(i)P (i) + P (i)A(i) +
N∑

j=1

λijP (j) < 0. (2.39)
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Proof: The proof of necessity is similar to the one of Theorem 2 and the
detail is omitted. To prove the sufficiency of this theorem, let us consider the
following Lyapunov function:

V (x(t), r(t)) = x�(t)P (r(t))x(t),

where P (i) > 0 is a symmetric and positive-definite matrix for every i ∈ S .
Let L denote the infinitesimal operator of the Markov process {(x(t), r(t)),

t ≥ 0}. If at time t, x(t) = x and r(t) = i for i ∈ S , the expression of the
infinitesimal operator acting on V (.) and emanating from the point (x, i) at
time t is given by (see Appendix A)

L V (x(t), i) = lim
h→0

E [V (x(t + h), r(t + h))|x(t) = x, r(t) = i] − V (x(t), i)
h

= ẋ�(t)P (i)x(t) + x�(t)P (i)ẋ(t) +
N∑

j=1

λijx
�(t)P (j)x(t)

= x�(t)A�(i)P (i)x(t) + x�(t)P (i)A(i)x(t)

+
N∑

j=1

λijx
�(t)P (j)x(t)

= x�(t)

⎡⎣A�(i)P (i) + P (i)A(i) +
N∑

j=1

λijP (j)

⎤⎦x(t)

= x�(t)Λn(i)x(t).

Using condition (2.39) we get

L V (x(t), i) ≤ −min
i∈S

{λmin (−Λn(i))}x�(t)x(t). (2.40)

Combining this again with Dynkin’s formula (see Appendix A) yields

E [V (x(t), i)] − E [V (x(0), r0)] = E

[∫ t

0

L V (x(s), r(s))ds|(x0, r0)
]

≤ −min
i∈S

{λmin(−Λn(i))}E

[∫ t

0

x�(s)x(s)ds|(x0, r0)
]

,

implying, in turn,

min
i∈S

{λmin(−Λn(i))}E
[∫ t

0

x�(s)x(s)ds|(x0, r0)
]

≤ E [V (x(0), r0)] − E [V (x(t), i)]
≤ E [V (x(0), r0)] .

This yields that
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E

[∫ t

0

x�(s)x(s)ds|(x0, r0)
]
≤ E [V (x(0), r0)]

mini∈S {λmin(−Λn(i))}

holds for any t > 0. Letting t go to infinity implies that

E

[∫ ∞

0

x�(s)x(s)ds|(x0, r0)
]

is bounded by a constant T (x0, r0) given by

T (x0, r0) =
E [V (x(0), r0)]

mini∈S {λmin(−Λn(i))} ,

which ends the proof of Theorem 4. �

Example 6. Let us consider a numerical example to show the validity of the
results of the previous theorem. For this purpose, let us assume that the
dynamical system considered in this example has two modes and its state
space belongs to R2. Its state equation is supposed to be described by (2.1)
with all the uncertainties equal to zero and the different remaining matrices
as follows:

Λ =
[
−3 3
2 −2

]
, A(1) =

[
−2.1 0.1
0.1 1.1

]
, A(2) =

[
−1.9 −0.1
−0.1 0.9

]
.

First notice that the two modes are unstable in the deterministic sense
since the eigenvalues in mode 1 and mode 2 are, respectively, (−2.1031, 1.1031)
and (−1.9036, 0.9036).

Solving the set of coupled LMIs (2.39), we conclude that the system is
infeasible. Therefore the system is not stochastically stable.

Example 7. In this second example, we show that the stability of one mode
or both is not a necessary condition for the stochastic stability of the whole
system. For this purpose, let us consider a dynamical system that has two
modes and the switching between these two modes is described by the follow-
ing transition probability rate matrix:

Λ =
[
−4 4
7 −7

]
.

The state matrices A(r(t)) in each mode are given by

A(1) =
[
−2 0.2
2 −5

]
, A(2) =

[
1 0.2
0 −5

]
.

Notice that mode 1 is stable while mode 2 is unstable in the determin-
istic sense since the eigenvalues for these modes are, respectively, (−1.8721,
−5.1279) and (1.0,−5.0).
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Solving now the set of coupled LMIs (2.39), we get

P (1) =
[

0.9673 0.0653
0.0653 0.1389

]
, P (2) =

[
1.5775 0.0689
0.0689 0.1378

]
.

As can be seen, the two matrices are symmetric and positive-definite,
therefore based on the result of the previous theorem, the studied system
is stochastically stable.

Example 8. In this example let us consider a system with two modes. The
state equation of this system in each mode is described by (2.1) with the
following matrices:

A(1) =
[
−1.0 0.1
0.0 −2.0

]
, A(2) =

[
−0.1 0.0
0.0 0.2

]
.

The transition probability rate matrix between these modes is given by

Λ =
[
−1 1
5 −5

]
.

Notice that mode 1 is stable and mode 2 is unstable in the deterministic
sense since the eigenvalues for these modes are, respectively, (−1.0,−2.0) and
(−0.1, 0.2).

For the steady-state probabilities transition (see Appendix A), we have

[
π1 π2

] [−1.0 1.0
5.0 −5.0

]
= 0,

π1 + π2 = 1,

which gives π1 = 5
6 and π2 = 1

6 . This means that the system spends more time
in the stable mode, which therefore affects the stability of the global system.

Solving now the set of coupled LMIs (2.39), we get

P (1) =
[

39.6196 1.2015
1.2015 21.8963

]
, P (2) =

[
49.7876 1.1642
1.1642 37.8007

]
.

As can be seen, the two matrices are symmetric and positive-definite,
therefore based on the results of the previous theorem, the studied system
is stochastically stable.

Example 9. In this example we want to show that the stochastic stability of
the whole dynamical system does not imply the stability of each mode. For
this purpose let us consider a dynamical system of the class we are studying
with the following data:

A(1) =
[

0.01 0.0
0.0 −0.2

]
, A(2) =

[
−0.1 0.0
0.0 0.2

]
.
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The transition probability rate matrix between these modes is given by

Λ =
[
−4 4
5 −5

]
.

Notice that the two modes are unstable in the deterministic sense since
the eigenvalues for these modes are, respectively, (0.01,−0.2) and (−0.1, 0.2).

For the steady-state probabilities we have[
π1 π2

] [−4.0 4.0
5.0 −5.0

]
= 0,

π1 + π2 = 1,

which gives π1 = 5
9 and π2 = 4

9 . This means that the system spends almost
the same time at the two modes.

Solving now the set of coupled LMIs (2.39), we get

P (1) =
[

34.4895 0.0
0.0 22.4475

]
, P (2) =

[
33.7245 0.0

0.0 24.5555

]
.

As can be seen, the two matrices are symmetric and positive-definite; there-
fore based on the results of the previous theorem, the system is stochastically
stable.

For this system, if we change the transition probability rate matrix to

Λ =
[
−2 2
5 −5

]
,

which gives π1 = 5
7 and π2 = 2

7 , the system spends more time in the first
mode.

Solving now the LMI (2.39), we get

P (1) =
[

0.7032 0.0
0.0 0.8306

]
, P (2) =

[
0.6948 0.0

0.0 0.9464

]
.

As can be seen the two matrices are symmetric and positive-definite; there-
fore based on the result of the previous theorem, the studied system is sto-
chastically stable. Based on these two cases we conclude that the stability
in the deterministic sense for each mode is not a necessary condition for the
stochastic stability of the global system.

Example 10. In this example we show that stability in each mode is not neces-
sary for the stochastic stability of the system. For this purpose, let us consider
the following data:

• mode #1:

A(1) =
[

0.25 −1
0 −2

]
,
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• mode #2:

A(2) =
[
−2 −1
0 0.25

]
.

Let the switching between the two modes be described by the following
transition rate matrix:

Λ =
[
−p p
q −q

]
.

For the steady-state probabilities we have

[
π1 π2

] [−p p
q −q

]
= 0,

π1 + π2 = 1,

which gives π1 = q
p+q and π2 = p

p+q . If we let p = q, this means that the
system spends almost the same time at the two modes. Solving now the set
of coupled LMIs (2.39) with p = q = 2, we get

P (1) =
[

0.9988 −0.3388
−0.3388 0.9447

]
, P (2) =

[
0.4782 −0.2452
−0.2452 2.0443

]
,

which are both symmetric and positive-definite matrices. This implies that
the system is stochastically stable even if the two modes are unstable in the
deterministic sense.

Now if we solve the set of coupled LMIs (2.39) with p = q = 0.02, we find
that the system is stochastically unstable.

Example 11. In this example we show that instability in each mode is not
necessary for the stochastic stability of the system. For this purpose, let us
consider the following data:

• mode #1:

A(1) =
[
−1 5
0 −2

]
,

• mode #2:

A(2) =
[
−2 0
5 −1

]
.

Let the switching between the two modes be described by the following
transition rate matrix:

Λ =
[
−p p
q −q

]
.
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For the steady-state probabilities we have

[
π1 π2

] [−p p
q −q

]
= 0,

π1 + π2 = 1,

which gives π1 = q
p+q and π2 = p

p+q . Solving now the set of coupled LMIs
(2.39) with p = q = 0.02, we get

P (1) =
[

0.4677 0.6361
0.6361 1.9124

]
, P (2) =

[
1.9124 0.6361
0.6361 0.4677

]
,

which are both symmetric and positive-definite matrices. This implies that
the system is stochastically stable even if the two modes are stable in the
deterministic sense.

If we solve the set of the coupled LMIs (2.39) with p = q = 2, we find that
the system is stochastically unstable.

Theorem 5. The following statements are equivalent:

1. System (2.1) is MSS
2. The N -coupled LMIs

A�(i)P (i) + P (i)A(i) +
N∑

j=1

λijP (j) < 0 (2.41)

are feasible for some symmetric and positive-definite matrices P = (P (1),
· · · , P (N)) > 0.

3. For any given set of symmetric and positive-definite matrices Q = (Q(1),
· · · , Q(N)) > 0, there exists a unique set of matrices P = (P (1), · · · ,
P (N)) > 0 satisfying the following:

A�(i)P (i) + P (i)A(i) +
N∑

j=1

λijP (j) = −Q(i). (2.42)

For well-known reasons (for instance that parameters change due to wear-
ing), it is always desirable that the systems should have a prescribed degree
of stability α. The question we are facing now is if a stochastically stable dy-
namical system of our class has the degree of stability α (α is a given positive
constant). To answer this question, we should develop the type of conditions
we have to use in this case. For this purpose, let us make the following variable
change:

x̃(t) = eαtx(t).

Differentiating this relation with respect to time gives
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˙̃x(t) = αeαtx(t) + eαtẋ(t) = [A(r(t), t) + αI] eαtx(t) = [A(r(t), t) + αI] x̃(t)
= Aα(r(t), t)x̃(t), (2.43)

where Aα(r(t), t) = A(r(t), t) + αI.
Letting the uncertainties be equal to zero and applying the stability results

of Theorem 4 to system (2.43) when the uncertainties are fixed to zero, the
following must hold for every i ∈ S to guarantee its stability:

A�
α (i)P (i) + P (i)Aα(i) +

N∑
j=1

λijP (j) < 0,

which gives

[A(i) + αI]� P (i) + P (i) [A(i) + αI] +
N∑

j=1

λijP (j) < 0.

The following theorem gives the stochastic stability results for systems
with a prescribed degree of stability α.

Corollary 2. Let α be a given positive constant. System (2.1) with all the
uncertainties equal to zero is stochastically stable and has a degree of stochastic
stability equal to α if and only if there exists a set of symmetric and positive-
definite matrices P = (P (1), · · · , P (N)) > 0 such that the following holds for
every i ∈ S :

[A(i) + αI]� P (i) + P (i) [A(i) + αI] +
N∑

j=1

λijP (j) < 0. (2.44)

From the practical point of view, the determination of the maximum degree
of stability is of great importance. This maximum can be obtained in our case
by solving the following optimization problem:⎧⎪⎪⎨⎪⎪⎩

max α≥0,
P=(P (1),··· ,P (N))>0

α,

s.t.:
[A(i) + αI]� P (i) + P (i) [A(i) + αI] +

∑N
j=1 λijP (j) < 0.

Notice that the constraints of this optimization problem are nonlinear in
the decision variables α and P (i), i = 1, 2, · · · , N that we can cast into quasi-
convex problem with respect to these parameters, and therefore we can use
the generalized eigenvalue minimization problem (GEVP) to solve it. For this
purpose notice that the previous constraints can be rewritten as follows:

A�(i)P (i) + P (i)A(i) + 2αP (i) +
N∑

j=1

λijP (j) < 0,
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which gives

2P (i) < − 1
α

⎡⎣A�(i)P (i) + P (i)A(i) +
N∑

j=1

λijP (j)

⎤⎦ .

Letting γ = 1
α the previous optimization becomes

Pn:

⎧⎪⎪⎨⎪⎪⎩
min γ>0,

P=(P (1),··· ,P (N))>0
γ,

s.t.:

2P (i) < −γ
[
A�(i)P (i) + P (i)A(i) +

∑N
j=1 λijP (j)

]
.

(2.45)

If we denote by ᾱ the solution of this optimization problem, the result tells
us that the closed-loop state equation will have decaying behavior with a rate
equal to ᾱ.

Remark 6. Notice that the system should be stable, that is:

A�(i)P (i) + P (i)A(i) +
N∑

j=1

λijP (j) < 0,

and this requires adding an extra condition when solving the GEVP.

Example 12. To show the usefulness of the results of the previous corollary,
let us consider a system with two modes and the following data:

• mode #1:

A(1) =
[

0.2 0.1
0.0 −1.0

]
,

• mode #2:

A(2) =
[
−1.0 0.1
0.2 −2.0

]
.

The switching of the mode is described by the following transition rates ma-
trix:

Λ =
[
−5.0 5.0
4.0 −4.0

]
.

Solving the previous GEVP we get

P (1) = 10−4 ·
[

0.4028 0.0356
0.0356 0.0034

]
, P (2) = 10−4 ·

[
0.3095 0.0279
0.0279 0.0027

]
,

which are both symmetric and positive-definite matrices. The corresponding
degree of stability is α = 0.3791.
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All the results developed in this section are valid only for nominal dynami-
cal systems of the class of piecewise deterministic systems. When functioning,
there is no guarantee that the real system will remain stable even if the condi-
tions used to check the stability are satisfied, since the uncertainties that may
be caused by different phenomena are not taken into account in the analysis.
To avoid this, it is necessary to establish conditions that take care of these un-
certainties. The next section will deal with such problems. It will consider the
stability problem with uncertainties of the state matrix. Section 2.4 will treat
the class of systems with Markovian jumps and Wiener process and chain
up by considering uncertainties on both the state matrix and the transition
probability rate matrix.

2.3 Robust Stability

Let us now return to the class of dynamical systems governed by (2.1) and
assume this time that the uncertainties in the state matrix are not equal to
zero. Our goal is to establish conditions that allow us to check if the considered
system is robustly stochastically stable.

The following theorem gives sufficient conditions in the LMI formalism
that can be used to reach our goal.

Theorem 6. System (2.1) is robustly stochastically stable if there exist a set
of symmetric and positive-definite matrices P = (P (1), · · · , P (N)) > 0 and
a set of positive scalars εA = (εA(1), · · · , εA(N)) > 0 such that the following
holds for every i ∈ S and for all admissible uncertainties:[

Ju(i) P (i)DA(i)
D�

A(i)P (i) −εA(i)I

]
< 0, (2.46)

where Ju(i) = A�(i)P (i) + P (i)A(i) +
∑N

j=1 λijP (j) + εA(i)E�
A (i)EA(i).

Proof: To prove this theorem, let us consider a Lyapunov candidate func-
tion with the following expression:

V (x(t), i) = x�(t)P (i)x(t), (2.47)

where P (i) is a symmetric and positive-definite matrix for every i ∈ S , solu-
tion of (2.46).

Let L be the infinitesimal operator of the Markov process {(x(t), r(t)), t ≥
0}. If at time t, x(t) = x and r(t) = i for i ∈ S , the infinitesimal operator
acting on V (.) and emanating from the point (x, i) at time t is given by

L V (x(t), i) = lim
h→0

E [V (x(t + h), r(t + h))|x(t) = x(t), r(t) = i] − V (x(t), i)
h

= ẋ�(t)P (i)x(t) + x�(t)P (i)ẋ(t) +
N∑

j=1

λijx
�(t)P (j)x(t)
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= x�(t)A�(i, t)P (i)x(t) + x�(t)P (i)A(i, t)x(t)

+
N∑

j=1

λijx
�(t)P (j)x(t).

Using the structure of the uncertainties we get

L V (x(t), i) = x�(t) [A(i) + DA(i)FA(i, t)EA(i)]� P (i)x(t)
+x�(t)P (i) [A(i) + DA(i)FA(i, t)EA(i)] x(t)

+
N∑

j=1

λijx
�(t)P (j)x(t)

= x�(t)
[
A�(i)P (i) + P (i)A(i)

]
x(t)

+2x�(t)P (i)DA(i)FA(i, t)EA(i)x(t)

+x�(t)
N∑

j=1

λijP (j)x(t). (2.48)

Notice that using Lemma 7 in Appendix A we have

2x�(t)P (i)DA(i)FA(i, t)EA(i)x(t) ≤ ε−1
A (i)x�(t)P (i)DA(i)D�

A(i)P (i)x(t)
+εA(i)x�(t)E�

A (i)EA(i)x(t).

Using this relation, (2.48) becomes

L V (x(t), i) ≤ x�(t)

⎡⎣A�(i)P (i) + P (i)A(i) +
N∑

j=1

λijP (j)

⎤⎦x(t)

+ε−1
A (i)x�(t)P (i)DA(i)D�

A(i)P (i)x(t)
+εA(i)x�(t)E�

A (i)EA(i)x(t)
= x�(t)Λu(i)x(t),

with

Λu(i) = A�(i)P (i) + P (i)A(i) +
N∑

j=1

λijP (j)

+ε−1
A (i)P (i)DA(i)D�

A(i)P (i) + εA(i)E�
A (i)EA(i).

Using (2.46) and the Schur complement we conclude that Λu(i) < 0 for
every i ∈ S . Based on this we get in turn that

L V (x(t), i) ≤ −min
i∈S

{λmin (−Λu(i))}x�(t)x(t).

The rest of the proof is similar to the one of Theorem 4 and the details
are omitted. This ends the proof of Theorem 6. �
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Remark 7. The previous proof can be replaced by the following one. In fact,
from the results of Theorem 6, the uncertain system will be stable if the
following LMI holds for each i ∈ S and for all admissible uncertainties:

A�(i, t)P (i) + P (i)A(i, t) +
N∑

j=1

λijP (j) < 0.

Using the expression of the matrix A(i, t), this inequality is equivalent to
the following one:

A�(i)P (i) + P (i)A(i) + P (i)DA(i)FA(i, t)EA(i)

+E�
A (i)F�

A (i, t)D�
A(i)P (i) +

N∑
j=1

λijP (j) < 0.

Based on Lemma 7 in Appendix A we get

P (i)DA(i)FA(i, t)EA(i) + E�
A (i)F�

A (i, t)D�
A(i)P (i)

≤ ε−1
A (i)P (i)DA(i)D�

A(i)P (i) + εA(i)E�
A (i)EA(i).

Using this, the previous inequality will hold if the following holds for every
i ∈ S :

A�(i)P (i) + P (i)A(i) +
N∑

j=1

λijP (j) + εA(i)E�
A (i)EA(i)

+ε−1
A (i)P (i)DA(i)D�

A(i)P (i) < 0.

After using the Schur complement we get the following:⎡⎢⎢⎢⎢⎢⎢⎣

⎡⎢⎢⎣
A�(i)P (i)
+P (i)A(i)

+εA(i)E�
A (i)EA(i)

+
∑N

j=1 λijP (j)

⎤⎥⎥⎦ P (i)DA(i)

D�
A(i)P (i) −εA(i)I

⎤⎥⎥⎥⎥⎥⎥⎦ < 0.

This ends the proof. �

Remark 8. The condition we gave in Theorem 6 is sufficient, which means that
if we are not able to find a set of symmetric and positive-definite matrices
P = (P (1), · · · , P (N)) > 0 that satisfies the condition (2.46), this does not
imply that the dynamical system is not robustly stochastically stable.

Example 13. In this example we show how the results on robust stability given
in the previous theorem can be used. For this purpose let us consider a dy-
namical system with two modes. The different matrices are given by
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• mode #1:

A(1) =
[

0.2 0.1
0.0 −1.0

]
, DA(1) =

[
0.1
0.2

]
, EA(1) =

[
0.2 0.1

]
,

• mode #2:

A(2) =
[
−1.0 0.1
0.2 −2.0

]
, DA(2) =

[
0.13
0.1

]
, EA(2) =

[
0.1 0.2

]
.

The transition probability rate matrix is given by

Λ =
[
−4 4
1 −1

]
.

Letting εA(1) = εA(2) = 0.5 and solving the set of coupled LMIs (2.46),
we get

P (1) =
[

1.8947 0.0972
0.0972 0.7245

]
, P (2) =

[
1.2669 0.0761
0.0761 0.5849

]
.

These two matrices are symmetric and positive-definite and therefore, fol-
lowing the previous theorem, the considered system is robustly stochastically
stable for all the admissible uncertainties.

As we did for the nominal systems, let us see how we can determine if
a given system belonging to the class of systems we are considering has a
prescribed degree of stability α. To answer this question, we will proceed as
we did for the previous section. By applying the results on robust stability of
Theorem 6 for system (2.1), we get for a given positive constant α that this
system will be robustly stochastically stable if there exist a set of symmetric
and positive-definite matrices P = (P (1), · · · , P (N)) > 0 and a set of positive
scalars εA = (εA(1), · · · , εA(N)) > 0 such that the following holds for each
i ∈ S and for all admissible uncertainties:[

Jα
u (i) P (i)DA(i)

D�
A(i)P (i) −εA(i)I

]
< 0, (2.49)

where Jα
u (i) = [A(i) + αI]� P (i) + P (i) [A(i) + αI] +

∑N
j=1 λijP (j) + εA(i)

E�
A (i)EA(i).

The following theorem gives the results on robust stochastic stability for
a dynamical system of the class of piecewise deterministic systems we are
considering to have a prescribed degree of stability equal to α.

Corollary 3. Let α be a given positive constant. If there exists a set of sym-
metric and positive-definite matrices P = (P (1), · · · , P (N)) > 0 and a set
of positive scalars εA = (εA(1), · · · , εA(N)) > 0 such that (2.49) holds for
every i ∈ S and for all admissible uncertainties, then system (2.1) is robustly
stochastically stable.
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In the previous section we computed the maximum prescribed degree of
stability for the nominal dynamical system of our class of systems by solving
the optimization problem (2.45). In a similar way we can solve the follow-
ing optimization problem to get the maximum prescribed degree for robust
stability:

Pu:

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

min γ>0,
εA=(εA(1),··· ,εA(N))>0,

P=(P (1),··· ,P (N))>0,

γ,

s.t.:[
2P (i) 0

0 0

]
< −γ

[
J̃α

u (i) P (i)DA(i)
D�

A(i)P (i) −εA(i)I

]
,

where J̃α
u (i) = A�(i)P (i) + P (i)A(i) +

∑N
j=1 λijP (j) + εA(i)E�

A (i)EA(i).

Example 14. To show the usefulness of the results of the previous corollary,
let us consider the system with two modes of the previous example with the
same data. Letting εA(1) = εA(2) = 0.5 and solving the previous generalized
eigenvalue problem optimization problem we get

P (1) =
[

0.7666 0.0359
0.0359 0.3271

]
, P (2) =

[
0.4475 0.0223
0.0223 0.2474

]
,

which are both symmetric and positive-definite matrices. The corresponding
degree of stability is α = 0.6055.

In the next section we will consider the case when our class of system is
perturbed by a Wiener process and see how this will affect the stability and
robust stability conditions developed earlier.

2.4 Stability of Systems with Wiener Process

In this section we consider the case when an external Wiener process is acting
on the class of systems we are studying and see the effect on the stability
and robust stability conditions developed earlier. In the rest of this section,
we treat the case of systems without uncertainties followed by the case with
norm-bounded uncertainties in the state matrix and polytopic uncertainties
on the transition probability rate matrix.

When the external Wiener process is acting on our class of systems the
state equation becomes{

dx(t) = A(r(t), t)x(t)dt + W(r(t))x(t)dω(t),
x(0) = x0,

(2.50)

where x(t) ∈ Rn is the state vector at time t; ω(t) ∈ R is a standard Wiener
process that is assumed to be independent of the Markov process {r(t), t ≥ 0};
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A(r(t), t) is a matrix with appropriate dimension and its expression is given
by

A(r(t), t) = A(r(t)) + DA(r(t))FA(r(t), t)EA(r(t)),

with A(r(t)); DA(r(t)), EA(r(t)) are known matrices with appropriate di-
mensions and FA(r(t), t) satisfies (2.3); and the matrix W(i) is supposed to
be given for each mode i ∈ S .

Let us now assume that all the uncertainties are equal to zero in the
previous state equation and see how we can establish the conditions that can
be used to check the stochastic stability of this class of systems with Wiener
process.

The result on stochastic stability is given by the following theorem.

Theorem 7. System (2.50) is stochastically stable if and only if there exists
a set of symmetric and positive-definite matrices P = (P (1), · · · , P (N)) > 0
such that the following LMI holds for every i ∈ S :

A�(i)P (i) + P (i)A(i) + W�(i)P (i)W(i) +
N∑

j=1

λijP (j) < 0. (2.51)

Proof: Let us start by the proof of necessity. For this purpose, let us as-
sume that the system is stochastically stable and denote by Φ(.) the transition
matrix corresponding to

dΦ(t) = A(r(t))Φ(t) + W(r(t))Φ(t)dω(t), Φ(0) = I.

Since the system is stable, this implies that for any symmetric and positive-
definite matrix Q(i) > 0, i ∈ S the following holds:

E

[∫ ∞

0

x�(s)Q(r(s))x(s)ds|x(0) = x, r(0) = r0

]
< ∞.

Let the function Ψ : R+ × R+ × Rn × S → Rn be defined by

Ψ(T, t, x, i) = E

[∫ T

t

x�(s)Q(r(s))x(s)ds|x(t) = x, r(t) = i

]
.

As we did previously, by the time-homogeneous property, we get

Ψ(T, t, x, i) = Ψ(T − t, 0, x, i)

= E

[∫ T−t

0

x�(s)Q(r(s))x(s)ds|x(0) = x, r(0) = i

]

= x�E

[∫ T

t

Φ�(s)Q(r(s))Φ(s)ds|r(0) = i

]
x
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= x�P (T − t, i)x
= Θ(T − t, x, i).

From the other side, since the system P (., i) is monotonically increasing,
positive-definite matrix-valued function and bounded from above, thus

P (i) = lim
T→∞

P (T, i)

exists. Hence P (i) is also positive-definite.
Let T be arbitrary fixed time. For any T > s > t > 0, we have

d

dt
E [Θ(T − t, x, i)| evaluated along the system trajectory]

= lim
s→t

1
s − t

[E (Θ(T − s, x(s), r(s))|x(t) = x, r(t) = i) − Θ(T − t, x, i)]

=
∂

∂t
Θ(T − t, x, i) + L Θ(T − t, x, i)

= x�(t)
∂

∂t
P (T − t, x, i)x(t) + x�(t)

[
A�(i)P (T − t, i) + P (T − t, i)A(i)

]
x(t)

+
N∑

j=1

λijx
�(t)P (T − t, j)x(t)

= x�(t)
[
A�(i)P (T − t, i) + P (T − t, i)A(i)

+
N∑

j=1

λijP (T − t, j)
]
x(t). (2.52)

On the other hand, by (2.11) we have

E [Θ(T − s, x(s), r(s))|x(t) = x, r(t) = i] − Θ(T − t, x, i)
= [E(Θ(T − s, x(s), r(s)) − Θ(T − t, x, i)|x(t) = x, r(t) = i)]

= E

{
E

[∫ T

s

x�(v)Q(r(v))x(v)dv|x(s), r(s)

]

−E

{∫ T

t

x�(v)Q(r(v))x(v)dv|x(t) = x, r(t) = i

}
|x(t) = x, r(t) = i

}

= E

{∫ T

s

x�(v)Q(r(v))x(v)dv −
∫ T

t

x�(v)Q(r(v))x(v)dv|x(t) = x, r(t) = i

}

= −E

{∫ s−t

0

x�(v)Q(r(v))x(v)dv|x0 = x, r0 = i

}
= −x�(t)E

{∫ s−t

0

Φ�(u)Φ(u)du|r0 = i

}
x(t). (2.53)
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However,

lim
s→t

1
s − t

E

{∫ s−t

0

Φ�(u)Q(r(u))Φ(u)du|r0 = i

}
= lim

s→t
E

{
1

s − t

∫ s−t

0

Φ�(u)Q(r(u))Φ(u)du|r(0) = i

}
= E{Q(i)|r0 = i} = Q(i),

which implies

d

dt
E [Θ(T − t, x, i)] = −x�(t)Q(i)x(t). (2.54)

Let T go to infinity in (2.52) and note that ∂
∂tP (T − t, i) tends to zero

as T tends to infinity. Then (2.52), (2.53), and (2.54) give the desired result.
This proves necessity.

To prove the sufficiency, let P (i) > 0, i ∈ S be a symmetric and positive-
definite matrix, that represents a solution of the LMI (2.51). Then a Lyapunov
candidate function can be given by the following expression:

V (x(t), i) = x�(t)P (i)x(t),when r(t) = i.

Using the results of Appendix A, the infinitesimal operator of the Markov
process {(x(t), r(t)), t ≥ 0}, acting on V (.) and emanating from the point (x, i)
at time t, when at time t, x(t) = x and r(t) = i for i ∈ S , is given by

L V (x(t), i) = [A(i)x(t)]� Vx(x(t), i) +
N∑

j=1

λijV (x(t), j)

+
1
2
tr

[
x�(t)W�(i)Vxx(x(t), i)W(i)x(t)

]
.

Notice that Vx(x(t), i) = 2P (i)x(t) and Vxx(x(t), i) = 2P (i), which implies

L V (x(t), i) = 2x�(t)A�(i)P (i)x(t) +
N∑

j=1

λijx
�(t)P (j)x(t)

+x�(t)W�(i)P (i)W(i)x(t)
= x�(t)

[
A�(i)P (i) + P (i)A(i)

]
x(t)

+x�(t)

⎡⎣W�(i)P (i)W(i) +
N∑

j=1

λijP (j)

⎤⎦x(t)

= x�(t)Γ (i)x(t),

with Γ (i) = A�(i)P (i) + P (i)A(i) + W�(i)P (i)W(i) +
∑N

j=1 λijP (j).
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Using condition (2.51) we get

L V (x(t), i) ≤ −min
i∈S

{λmin (−Γ (i))}x�(t)x(t),

The rest of the proof is similar to the one of Theorem 4 and the details are
omitted. This ends the proof of Theorem 7. �

Example 15. To illustrate the usefulness of the results of this theorem let us
consider a two-mode dynamical system of the class studied in this section. For
simplicity of presentation, let the state vector x(t) belong to R2 and the state
matrices and the disturbance noise matrices be given by

• mode #1:

A(1) =
[

0.01 0.0
0.0 −0.2

]
, W(1) =

[
0.2 0.0
0.0 0.2

]
,

• mode #2:

A(2) =
[
−0.1 0.0
0.0 0.2

]
, W(2) =

[
0.1 0.0
0.0 0.1

]
.

The transition probability rate matrix between the two modes is given by

Λ =
[
−2.0 2.0
5.0 −5.0

]
.

Solving the set of coupled LMIs (2.51), we get the following matrices:

P (1) =
[

645.4258 0.0
0.0 635.4497

]
, P (2) =

[
621.7449 0.0

0.0 715.8490

]
.

These two matrices are symmetric and positive-definite and, based on the
previous theorem, the system is stochastically stable.

Let us now return to the initial state equation with uncertainties and
Wiener process and establish the stochastic stability conditions.

The following theorem summarizes the results in this case.

Theorem 8. System (2.50) is robustly stochastically stable if there exist a set
of symmetric and positive-definite matrices P = (P (1), · · · , P (N)) > 0 and
a set of positive scalars εA = (εA(1), · · · , εA(N)) > 0 such that the following
LMI holds for each i ∈ S and for all admissible uncertainties:[

Jw(i) P (i)DA(i)
D�

A(i)P (i) −εA(i)I

]
< 0, (2.55)

with Jw(i) = A�(i)P (i) + P (i)A(i) + W�(i)P (i)W(i) + εA(i)E�
A (i)EA(i) +∑N

j=1 λijP (j).
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Proof: Let P (i) > 0, i ∈ S , be a symmetric and positive-definite ma-
trix that represents a solution of the LMI (2.55). Then a Lyapunov function
candidate can be given by the following expression:

V (x(t), i) = x�(t)P (i)x(t),when r(t) = i.

Using the results of Appendix A, the infinitesimal operator of the Markov
process {(x(t), r(t)) , t ≥ 0} acting on V (.) and emanating from the point (x, i)
at time t, where x(t) = x and r(t) = i for i ∈ S , is given by

L V (x(t), i) = [A(i, t)x(t)]� Vx(x(t)) +
N∑

j=1

λijV (x(t), j)

+
1
2
tr

[
x�(t)W�(i)Vxx(x(t), i)W(i)x(t)

]
.

Using the following expressions for Vx(x(t), i) and Vxx(x(t), i) given, re-
spectively, by Vx(x(t), i) = 2P (i)x(t) and Vxx(x(t), i) = 2P (i), we obtain

L V (x(t), i) = 2x�(t)A�(i, t)P (i)x(t) +
N∑

j=1

λijx
�(t)P (j)x(t)

+x�(t)W�(i)P (i)W(i)x(t)

= x�(t)
[
A�(i)P (i)

+P (i)A(i) + E�
A (i)F�

A (i, t)D�
A(i)P (i)

+P (i)DA(i)FA(i, t)EA(i)

+W�(i)P (i)W(i) +
N∑

j=1

λijP (j)
]
x(t).

Based on the results of Lemma 7 in Appendix A, we have

2x�(t)P (i)DA(i)FA(i, t)EA(i)x(t)
≤ ε−1

A (i)x�(t)P (i)DA(i)D�(i)P (i)x(t)
+εA(i)x�(t)E�

A (i)EA(i)x(t).

Considering this, the previous relation becomes

L V (x(t), i) ≤ x�(t)
[
A�(i)P (i) + P (i)A(i)

+ε−1
A (i)P (i)DA(i)D�

A(i)P (i)
+εA(i)E�

A (i)EA(i) + W�(i)P (i)W(i)

+
N∑

j=1

λijP (j)
]
x(t)
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≤ x�(t)Γu(i)x(t), (2.56)

with

Γu(i) = A�(i)P (i) + P (i)A(i) + ε−1
A (i)P (i)DA(i)D�

A(i)P (i)

+εA(i)E�
A (i)EA(i) + W�(i)P (i)W(i) +

N∑
j=1

λijP (j).

Using condition (2.55) and the Schur complement, we conclude that
Γu(i) < 0 and therefore we get

L V (x(t), i) ≤ −min
i∈S

{λmin (−Γu(i))}x�(t)x(t). (2.57)

The rest of the proof is similar to the one of Theorem 4 and the details
are omitted. This ends the proof of Theorem 8. �

Remark 9. Notice that W(i)P (i)W(i) = W(i)P (i)P−1(i)P (i)W(i), which gives
another form for the LMI of the previous theorem, that is:⎡⎣ J̃w(i) P (i)DA(i) W�(i)P (i)

D�
A(i)P (i) −εA(i)I 0

P (i)W(i) 0 −P (i)

⎤⎦ < 0,

with J̃w(i) = A�(i)P (i) + P (i)A(i) + εA(i)E�
A (i)EA(i) +

∑N
j=1 λijP (j).

Example 16. To show the results of Theorem 8, let us consider an uncertain
system with two modes. The switching between these two modes is described
by the following transition probability rate matrix:

Λ =
[
−4.0 4.0
1.0 −1.0

]
.

The state matrices A(i), i = 1, 2; noise matrices, W(i), i = 1, 2; and the
uncertainties matrices are given by

• mode #1:

A(1) =
[

0.2 0.1
0 −1.0

]
, DA(1) =

[
0.1
0.2

]
, EA(1) =

[
0.2 0.1

]
W (1) =

[
0.1 0.0
0.0 0.1

]
,

• mode #2:

A(2) =
[
−1.0 0.1
0.2 −2.0

]
, DA(2) =

[
0.13
0.1

]
, EA(2) =

[
0.1 0.2

]
W (2) =

[
0.2 0.0
0.0 0.2

]
.
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Solving the set of coupled LMIs (2.55), we get the following matrices:

P (1) =
[

1.9207 0.0988
0.0988 0.7316

]
, P (2) =

[
1.2875 0.0773
0.0773 0.5925

]
.

The eigenvalues of these two matrices are all positive, which implies that
they are symmetric and positive-definite. The conditions of the previous the-
orem are satisfied and consequently the system under study in this example
is robustly stochastically stable.

In most of the previous results we have assumed that the jump rate was
free of uncertainties, which is not real in practice since it is always difficult
to get the exact transition probability matrix. In the rest of this chapter we
will try to take care of the uncertainties that may affect the jump rates and
establish equivalent results to the previous ones. The uncertainties we will
consider for the transition probability rate matrix are polytopic and were
presented earlier in this chapter.

Let us now assume that we have uncertainties on the state matrix and
on the transition probability rate matrix that satisfy the previous given con-
ditions. In this case, the system will be stable if the following holds for all
admissible uncertainties:

A�(i, t)P (i) + P (i)A(i, t) +
κ∑

k=1

N∑
j=1

αkλk
ijP (j) < 0,

which gives

A�(i, t)P (i) + P (i)A(i, t) +
N∑

j=1

μijP (j) < 0,

with μij =
∑κ

k=1 αkλk
ij .

Moreover, if we take care of the expression of A(i, t), we get in a similar
way that [

Juu(i) P (i)DA(i)
D�

A(i)P (i) −εA(i)I

]
< 0,

where Juu = A�(i)P (i) + P (i)A(i) +
∑N

j=1 μijP (j) + εA(i)E�
A (i)EA(i).

The following theorem gives the results that can be used to check if a
given system with uncertainties on the state matrix and on the jump rates is
robustly stochastically stable.

Theorem 9. System (2.1) is robustly stochastically stable if there exist a set
of symmetric and positive-definite matrices P = (P (1), · · · , P (N)) > 0 and
a set of positive scalars εA = (εA(1), · · · , εA(N)) > 0 such that the following
holds for every i ∈ S and for all admissible uncertainties:
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Juu(i) P (i)DA(i)

D�
A(i)P (i) −εA(i)I

]
< 0,

where Juu = A�(i)P (i) + P (i)A(i) +
∑N

j=1 μijP (j) + εA(i)E�
A (i)EA(i).

Example 17. To show the validity of the results of the previous theorem, let
us consider the two-mode system of the previous example with the same data
and W(1) = W(2) = 0.

The switching between the two modes is described by the following tran-
sition rate matrices:

Λ1 =
[
−4.0 4.0
1.0 −1.0

]
, α1 = 0.6,

Λ2 =
[
−3.0 3.0
1.0 −1.0

]
, α2 = 0.4,

which gives

μ =
[
−3.6 3.6
1.0 −1.0

]
.

Letting εA(1) = εA(2) = 0.5 and solving the set of coupled LMIs gives

P (1) =
[

1.9941 0.1012
0.1012 0.7441

]
, P (2) =

[
1.2945 0.0773
0.0773 0.5929

]
,

which are both symmetric and positive-definite matrices. This implies that
the system is stochastically stable.

We can establish similar results when a Wiener process disturbance is
acting on the system. The corresponding result is summarized in the following
theorem, which can be proved following the steps used previously.

Theorem 10. System (2.50) is robustly stochastically stable if there exist a
set of symmetric and positive-definite matrices P = (P (1), · · · , P (N)) > 0
and a set of positive scalars εA = (εA(1), · · · , εA(N)) > 0 such the following
LMI holds for every i ∈ S and for all admissible uncertainties:[

Jw(i) P (i)DA(i)
D�

A(i)P (i) −εA(i)I

]
< 0, (2.58)

with

Jw(i) = A�(i)P (i) + P (i)A(i) + W�(i)P (i)W(i)

+εA(i)E�
A (i)EA(i) +

N∑
j=1

μijP (j).
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Example 18. To show the validity of the results of the previous theorem, let
us consider the two-mode system of Example 16 with the same data. The
switching between the two modes is described by the following transition rate
matrices:

Λ1 =
[
−4.0 4.0
1.0 −1.0

]
, α1 = 0.6,

Λ2 =
[
−3.0 3.0
1.0 −1.0

]
, α2 = 0.4,

which gives

μ =
[
−3.6 3.6
1.0 −1.0

]
.

Letting εA(1) = εA(2) = 0.5 and solving the LMI gives:

P (1) =
[

1.9941 0.1012
0.1012 0.7441

]
, P (2) =

[
1.2945 0.0773
0.0773 0.5929

]
,

which are both symmetric and positive-definite matrices. This implies that
the system is stochastically stable.

Previously we proposed a way to compute the maximum prescribed degree
of stability for the nominal and uncertain dynamical system of our class of
systems by solving the optimization problem (2.45). In a similar manner we
can solve the following optimization to get the maximum prescribed degree
for robust stability when the system is perturbed by external Wiener process
with polytopic uncertainties of the transition probability rate matrix:

Pw:

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

min γ>0,
εA=(εA(1),··· ,εA(N))>0,

P=(P (1),··· ,P (N))>0,

γ,

s.t.:[
2P (i) 0

0 0

]
< −γ

[
J̃α

w(i) P (i)DA(i)
D�

A(i)P (i) −εA(i)I

]
,

where J̃α
w(i) = A�(i)P (i) + P (i)A(i) + W(i)P (i)W(i)

∑N
j=1 μijP (j) + εA(i)

E�
A (i)EA(i).

Example 19. For this example we take the same data as the previous one and
compute the minimum degree of stability the system can have. Solving the
optimization (2.59) with these date gives

P (1) =
[

0.8401 0.0009
0.0009 0.6666

]
, P (2) =

[
0.4722 0.0073
0.0073 0.4207

]
,

which are both symmetric and positive-definite matrices. This implies that the
system is stochastically stable. The minimum degree of stability is α = 0.5548.
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2.5 Notes

In this chapter we covered the stability problem and its robustness. We started
by studying the stochastic stability of the nominal system of the class of piece-
wise deterministic systems and established LMI conditions for this purpose.
Then we considered the case of uncertain systems with uncertainties on the
state matrix and/or on the transition probability rates matrix. Stochastic sta-
bility and robust stochastic stability LMI conditions have been developed for
uncertain systems. The case of Wiener process external disturbance was also
considered and stochastic stability and robust stochastic stability LMI condi-
tions were developed. The material presented in this chapter is based on many
references, among them Ji and Chizeck [44], Boukas [9], Dragan and Morozan
[35], and personal work.



3

Stabilization Problem

One of the most popular control problems, the stabilization problem consists
of determining a control law that forces the closed-loop state equation of a
given system to guarantee the desired design performances. This problem has
and continues to attract many researchers from the control community and
many techniques can be used to solve the stabilization problem for dynamical
systems. From the practical point of view when designing any control system,
the stabilization problem is the most important in the design phase since it
will give the desired performances to the designed control system.

The concepts of stochastic stability and its robustness for the class of
piecewise deterministic systems were presented in the previous chapter. Most
of the developed results are LMI-based conditions that can be used easily to
check if a dynamical system of the class we are considering is stochastically
stable and robustly stochastically stable.

In practice some systems are unstable or their performances are not accept-
able. To stabilize or improve the performances of such systems, we examine
the design of an appropriate controller. Once combined with the system this
controller should stabilize the closed loop and at the same time guarantee the
required performances.

In the literature, we can find different techniques of stabilization that
can be divided into two groups. The first group gathers all the techniques
that assume the complete access to the state vector and the other group is
composed of techniques that are based on partial state vector observation.

For the class of systems under consideration, the following techniques can
be used:

• state feedback stabilization,
• output feedback stabilization.

This chapter will focus on these two techniques and develop LMI-based
procedures to design the corresponding gains. The rest of this chapter is orga-
nized as follows. In Section 3.1, the stabilization problem is stated and some
useful definitions are given. Section 3.2 treats the state feedback stabilization
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for nominal and uncertain classes of piecewise deterministic systems. Section
3.3 covers the stabilization with the static output feedback controller. In Sec-
tion 3.4, output feedback is covered. Section 3.5 deals with observer-output
feedback stabilization. Section 3.6 develops the design of the state feedback
controller with constant gain. All the developed results are in LMI framework,
which makes the resolution of the stabilization problem easier. Many numer-
ical examples are provided to show the usefulness of the developed results.

3.1 Problem Statement

Let us consider a dynamical system defined in a probability space (Ω,F , P)
and assume that its state equation is described by the following differential
equations: {

ẋ(t) = A(r(t), t)x(t) + B(r(t), t)u(t),
x(0) = x0,

(3.1)

where x(t) ∈ Rn is the state vector; x0 ∈ Rn is the initial state; u(t) ∈ Rm is
the control input; {r(t), t ≥ 0} is the continuous-time Markov process taking
values in a finite space S = {1, 2, · · · , N} and describes the evolution of the
mode at time t; A(r(t), t) ∈ Rn×n and B(r(t), t) ∈ Rn×m are matrices with
the following forms:

A(r(t), t) = A(r(t)) + DA(r(t))FA(r(t), t)EA(r(t)),
B(r(t), t) = B(r(t)) + DB(r(t))FB(r(t), t)EB(r(t)),

with A(r(t)), DA(r(t)), EA(r(t)), B(r(t)), DB(r(t)), and EB(r(t)) being real
known matrices with appropriate dimensions; and FA(r(t), t) and FB(r(t), t)
are unknown real matrices that satisfy the following for every i ∈ S :{

F�
A (i, t)FA(i, t) ≤ I,

F�
B (i, t)FB(i, t) ≤ I.

(3.2)

The Markov process {r(t), t ≥ 0} beside taking values in the finite set
S describing the switching between the different modes is governed by the
following probability transitions:

P [r(t + h) = j|r(t) = i]

=

{
λijh + o(h) when r(t) jumps from i to j,

1 + λiih + o(h) otherwise,
(3.3)

where λij is the transition rate from mode i to mode j with λij ≥ 0 when
i �= j and λii = −

∑N
j=1,j �=i λij and o(h) are such that limh→0

o(h)
h = 0.
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As in Chapter 2, we assume that the matrix Λ belongs to a polytope, that
is,

Λ =
κ∑

k=1

αkΛk, (3.4)

with κ a positive given integer, 0 ≤ αk ≤ 1, and Λk a known transition matrix.
Its expression is given by

Λk =

⎡⎢⎣ λk
11 · · · λk

1N
...

. . .
...

λk
N1 · · · λk

NN

⎤⎥⎦ , (3.5)

where λk
ij keeps the same meaning as before, with

∑κ
k=1 αk = 1.

Remark 10. The uncertainties that satisfy the conditions (3.2) and (3.4) are
referred to as admissible. The uncertainty term in (3.2) is supposed to depend
on the system’s mode r(t) and on time t. The results developed in the rest of
this chapter will remain valid even if the uncertainties are chosen to depend
on the system’s state x(t), the mode r(t), and time t.

The problem we face in this chapter is designing a control law u(·) that
maps the state vector x(t) and/or the output vector y(t) and the mode at time
t r(t) into a control action that will give the system the required performances.
Different structures for the control law can be used. Among these are the

• state feedback controller,
• output feedback controller,
• observer-based output feedback controller.

When we have complete access to the system mode r(t), the choice among
these techniques will depend on the problem. For instance, if the state vector
is completely available for feedback, the use of state feedback stabilization is
more appropriate. But in case of partial observation of the state vector, two
solutions are possible. The first one requires an estimation of the state vector
and then the use of the state feedback controller. The second one suggests the
use of output feedback controller or observer-based output feedback control.
In this case, the output is used to compute the control law.

In the rest of this chapter, we show how we can compute the gains for
the mentioned controllers. Both the stabilization and the robust stabilization
problems are treated. The assumption of the complete access to the system
mode r(t) at each time t will be made when necessary.

Definition 3. System (3.1) with FA(r(t), t) = FB(r(t), t) = 0 for all modes
and for t ≥ 0 is said to be stabilizable in the SS (MES, MSQS) sense if there
exists a controller such that the closed-loop system is SS (MES, MSQS) for
every initial condition (x0, r0).
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When the uncertainties are not equal to zero, the previous definition is
replaced by the following one.

Definition 4. System (3.1) is said to be robustly stabilizable in the stochastic
sense if there exists a controller such that the closed-loop system is stochas-
tically stable for every initial condition (x0, r0) and for all admissible uncer-
tainties.

The type of controllers considered in this chapter are presented in the next
sections and the design procedures that can be used to compute the controllers
gains are also developed.

3.2 State Feedback Stabilization

Let us consider a dynamical system and assume that we have complete access
to the state vector x(t) and to the mode r(t) at each time t. The controller
we are planning to design is described by the following structure:

u(t) = K(r(t))x(t), (3.6)

where K(r(t)) is a gain with appropriate dimension to be determined for each
mode r(t) ∈ S .

Remark 11. Notice that the gain of the controller (3.6) is mode dependent,
which requires the knowledge of the mode r(t) at time t to choose the appro-
priate gain among the set of gains K = (K(1),K(2), · · · ,K(N)). In this case,
we determine N gains. Thus when the mode switches from mode i, which uses
the gain K(i), to mode j the controller gain must be switched instantaneously
to the gain K(j) to guarantee the desired performances.

The block diagram of the closed-loop system under the state feedback
controller is represented by Figure 3.1.

ẋ = A(i)x + B(i)u

u = K(i)x

z(t)

x(t)

w(t)

u(t)

Fig. 3.1. State feedback stabilization block diagram (nomi-
nal system).
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Let us consider the stabilization of the nominal system of the class under
study. Letting FA(r(t), t) = FB(r(t), t) = 0 in the state equation (3.1) and
replacing the control u(t) by its expression given in (3.6), the closed-loop state
equation becomes{

ẋ(t) = [A(r(t)) + B(r(t))K(r(t))] x(t),
x(0) = x0.

(3.7)

Using the stability results of Chapter 2, the closed-loop state equation is
stochastically stable if and only if the following is satisfied for every i ∈ S :

[A(i) + B(i)K(i)]� P (i) + P (i) [A(i) + B(i)K(i)]

+
N∑

j=1

λijP (j) < 0. (3.8)

This condition is nonlinear in P (i) and K(i). To transform it into an LMI
form, let X(i) = P−1(i). Pre- and post-multiply (3.8) by X(i) to get

X(i) [A(i) + B(i)K(i)]� + [A(i) + B(i)K(i)] X(i)

+X(i)

⎡⎣ N∑
j=1

λijX
−1(j)

⎤⎦X(i) < 0,

which gives in turn

X(i)A�(i) + X(i)K�(i)B�(i) + A(i)X(i) + B(i)K(i)X(i)

+X(i)

⎡⎣ N∑
j=1

λijX
−1(j)

⎤⎦X(i) < 0.

Letting Si(X) and Xi(X) be defined as follows:⎧⎪⎨⎪⎩
Si(X) =

[√
λi1X(i), · · · ,

√
λii−1X(i),

√
λii+1X(i),

· · · ,
√

λiNX(i)
]

Xi(X) = diag [X(1), · · · , X(i − 1), X(i + 1), · · · , X(N)] ,

the term X(i)
[∑N

j=1 λijX
−1(j)

]
X(i) can be rewritten as follows:

X(i)

⎡⎣ N∑
j=1

λijX
−1(j)

⎤⎦X(i) = λiiX(i) + Si(X)X−1
i (X)S�

i (X).

Letting Y (i) = K(i)X(i) and using the expressions Si(X) and Xi(X) we
get
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X(i)A�(i) + Y �(i)B�(i) + A(i)X(i) + B(i)Y (i)
+λiiX(i) + Si(X)X−1

i (X)S�
i (X) < 0,

which after using the Schur complement gives the following set of coupled
LMIs: [

Jn(i) Si(X)
S�

i (X) −Xi(X)

]
< 0, (3.9)

where Jn(i) = X(i)A�(i) + Y �(i)B�(i) + A(i)X(i) + B(i)Y (i) + λiiX(i).
The following theorem summarizes the results of this development.

Theorem 11. If there exists a set of symmetric and positive-definite matri-
ces X = (X(1), · · · , X(N)) > 0 and a set of matrices Y = (Y (1), · · · , Y (N))
satisfying the following set of coupled LMIs (3.9) for each i ∈ S , then the con-
troller (3.6), with K(i) = Y (i)X−1(i), stabilizes system (3.1) in the stochastic
sense when the uncertainties are equal to zero.

Example 20. In this example we show how the results of this theorem can be
used to synthesize a state feedback controller that stochastically stabilizes a
dynamical system. For this purpose, let us consider a system with two modes
and the following data:

• mode #1:

A(1) =
[

1.0 −0.5
0.1 1.0

]
, B(1) =

[
1.0 0.0
0.0 1.0

]
,

• mode #2:

A(2) =
[
−0.2 −0.5
0.5 −0.25

]
, B(2) =

[
1.0 0.0
0.0 1.0

]
.

The transition probability rates matrix between the two modes is given by

Λ =
[
−2.0 2.0
3.0 −3.0

]
.

First notice that the first mode is instable in the deterministic sense and
the global system is instable. We can stabilize this system using the results of
the previous theorem. Solving the LMIs (3.9), we get

X(1) =
[

0.3408 0.0
0.0 0.3408

]
, X(2) =

[
0.2556 0.0

0.0 0.2556

]
,

Y (1) =
[
−0.5112 0.0059
0.1304 −0.5112

]
, Y (2) =

[
−0.0767 0.0000

0.0 −0.0639

]
,

which gives the following gains:
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K(1) =
[
−1.5000 0.0174
0.3826 −1.5000

]
, K(2) =

[
−0.3000 0.0000
0.0000 −0.2500

]
.

The conditions of the previous theorem are satisfied and therefore the closed-
loop system under the state feedback with the computed gains is stochastically
stable.

In fact, in a similar way, we can also stochastically stabilize the dynamical
system of the class we are considering with a prescribed degree α by using the
following theorem.

Theorem 12. Let α be a positive constant. If there exist a set of symmetric
and positive-definite matrices X = (X(1), · · · , X(N)) > 0 and a set of ma-
trices Y = (Y (1), · · · , Y (N)) satisfying the following set of coupled LMIs for
each i ∈ S : [

Jα
n (i) Si(X)

S�
i (X) −Xi(X)

]
< 0, (3.10)

where Jα
n (i) = X(i) [A(i) + αI]�+Y �(i)B�(i)+[A(i) + αI] X(i)+B(i)Y (i)+

λiiX(i), then the controller (3.6), with K(i) = Y (i)X−1(i), stabilizes system
(3.1) in the stochastic sense when the uncertainties are equal to zero.

Proof: The proof of this theorem follows the same lines of Theorem 11,
replacing the matrix A(i) by A(i)+αI in the previous state equation and the
details are omitted. �

We can also use the results of the following nonlinear optimization to de-
termine a stabilizing controller that guarantees a prescribed degree of stability
equal to α = γ−1:

Pns:

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

min γ>0,
X=(X(1),··· ,X(N))>0,

Y =(Y (1),··· ,Y (N)),

γ,

s.t.:[
2X(i) 0

0 0

]
< −γ

[
J̃α

u (i) Si(X)
S�

i (X) −Xi(X)

]
,

where J̃α
n (i) = X(i)A�(i) + Y �(i)B�(i) + A(i)X(i) + B(i)Y (i) + λiiX(i).

If the optimization problem Pns has a solution ᾱ, then the controller that
stabilizes the dynamical system (3.1) and guarantees the prescribed degree of
stability ᾱ is given by

u(t) = Y (i)X−1(i)x(t), i = 1, 2, · · · , N.

Example 21. In this example, let us consider the same data as in Example 20
and see how we can determine the maximum degree of stochastic stability. To
solve the previous optimization problem, we added some extra constraints on
X(i) and Y (i), i = 1, 2. We have imposed these variables to satisfy
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X(i) > I,

Y (i) < 10I,

for i = 1, 2.
With these constraints the solution of the previous optimization problem

gives

X(1) =
[

1.0058 0.0056
0.0056 1.0056

]
, X(2) =

[
1.0852 −0.0321
−0.0321 1.0892

]
,

Y (1) =
[
−9.9425 3.0890
−2.9741 −9.9414

]
, Y (2) =

[
−9.7965 0.0891
0.2575 −9.7740

]
.

The corresponding gains are

K(1) =
[
−9.9026 3.1270
−2.9020 −9.8699

]
, K(2) =

[
−9.0327 −0.1840
−0.0278 −8.9746

]
.

The maximal degree of stability is ᾱ = 8.9048.

Let us now assume that the previous state equation is changed to{
dx(t) = A(r(t), t)x(t)dt + B(r(t), t)u(t)dt + W(r(t))x(t)dω(t),
x(0) = x0,

(3.11)

where the different components in this equation keep the same meaning, while
W(r(t)) is a given matrix with appropriate dimension and w(t) ∈ R is a Wiener
process acting on the system that we assume to be independent of the Markov
process {r(t), t ≥ 0} as described before.

Let all the uncertainties in the state equation (3.11) be zero and see how
we can design a state feedback controller in the form (3.6). Plugging the
expression of this controller in (3.11) gives{

dx(t) = Ā(r(t))x(t)dt + W(r(t))x(t)dω(t),
x(0) = x0,

(3.12)

where Ā(r(t)) = A(r(t)) + B(r(t))K(r(t)), and K(r(t)) is the controller gain
to be determined for each r(t) ∈ S .

Using the stability results we established in Chapter 2, we should have the
following set of coupled LMIs verified for every i ∈ S to guarantee that the
closed loop is stochastically stable:

Ā�(i)P (i) + P (i)Ā(i) + W�(i)P (i)W(i) +
N∑

j=1

λijP (j) < 0.

Using the expression of Ā(i) we get
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A�(i)P (i) + P (i)A(i) + K�(i)B�(i)P (i) + P (i)B(i)K(i)

+W�(i)P (i)W(i) +
N∑

j=1

λijP (j) < 0, i = 1, 2, · · · , N.

This set of matrix inequalities is nonlinear in the decision variables P (i)
and K(i). To transform it into an LMI, let X(i) = P−1(i). Pre- and post-
multiply the previous set of matrix inequalities by X(i) to get

X(i)A�(i) + A(i)X(i) + X(i)K�(i)B�(i) + B(i)K(i)X(i)

+X(i)W�(i)X−1(i)W(i)X(i) +
N∑

j=1

λijX(i)X−1(j)X(i) < 0.

Letting Y (i) = K(i)X(i) and using the expression of

N∑
j=1

λijX(i)X−1(j)X(i),

as it was established before, and the Schur complement we get⎡⎣ Jw(i) X(i)W�(i) Si(X)
W(i)X(i) −X(i) 0
S�

i (X) 0 −Xi(X)

⎤⎦ < 0, (3.13)

where

Jw(i) = X(i)A�(i) + A(i)X(i) + Y �(i)B�(i) + B(i)Y (i) + λiiX(i).

The following theorem summarizes the results of the stabilization problem.

Theorem 13. If there exist a set of symmetric and positive-definite matrices
X = (X(1), · · · , X(N)) > 0 and a set of matrices Y = (Y (1), · · · , Y (N))
satisfying the following set of coupled LMIs (3.13) for each i ∈ S , then the
controller (3.6), with K(i) = Y (i)X−1(i), stabilizes system (3.11) in the sto-
chastic sense when the uncertainties are equal to zero.

Example 22. To show the usefulness of this theorem, let us consider the two-
mode dynamical system considered in Example 20 with the following extra
data:

• mode #1:

W(1) =
[

0.1 0.0
0.0 0.1

]
,
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• mode #2:

W(2) =
[

0.2 0.0
0.0 0.2

]
.

Solving the LMI (3.13), we get

X(1) =
[

18.2135 −0.0000
−0.0000 18.2135

]
, X(2) =

[
16.1415 0.0000
0.0000 16.1415

]
,

Y (1) =
[
−34.9977 −265.2702
272.5556 −34.9977

]
, Y (2) =

[
−8.3439 −5.1312
5.1312 −7.5368

]
.

The corresponding gains are given by

K(1) =
[
−1.9215 −14.5644
14.9644 −1.9215

]
, K(2) =

[
−0.5169 −0.3179
0.3179 −0.4669

]
.

Based on the results of the previous theorem, we conclude that the system
of this example is stochastically stable under the state feedback controller
with the computed gains.

Let us return to the initial problem and see how we can design a controller
that robustly stabilizes the uncertain class of piecewise deterministic systems
when the uncertainties are acting on the state matrix only. For this purpose,
plugging the controller (3.6) in the state equation (3.1), we get{

ẋ(t) = [A(r(t), t) + B(r(t), t)K(r(t))] x(t),
x(0) = x0.

Using the robust stability results of Chapter 2, the closed-loop state equa-
tion is then stochastically stable if there exists a set of symmetric and positive-
definite matrices P = (P (1), · · · , P (N)) > 0 such that the following is satisfied
for all the admissible uncertainties and for every i ∈ S :

[A(i, t) + B(i, t)K(i)]� P (i) + P (i) [A(i, t) + B(i, t)K(i)]

+
N∑

j=1

λijP (j) < 0. (3.14)

This condition is nonlinear in P (i) and K(i) and depends on the uncertain-
ties. To transform it into an LMI form that does not depend on uncertainties,
let X(i) = P−1(i). Pre- and post-multiply (3.14) by X(i) to get

X(i) [A(i, t) + B(i, t)K(i)]� + [A(i, t) + B(i, t)K(i)] X(i)

+X(i)

⎡⎣ N∑
j=1

λijX
−1(j)

⎤⎦X(i) < 0,
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which gives in turn, after using the expressions of the uncertainties on the
matrices A and B:

X(i)A�(i) + X(i)K�(i)B�(i) + A(i)X(i) + B(i)K(i)X(i)
+DA(i)FA(i, t)EA(i)X(i) + X(i)E�

A (i)F�
A (i, t)D�

A(i)
+DB(i)FB(i, t)EB(i)K(i)X(i)

+X(i)K�(i)E�
B (i)F�

B (i, t)D�
B(i)

+X(i)

⎡⎣ N∑
j=1

λijX
−1(j)

⎤⎦X(i) < 0.

Using Lemma 7 in Appendix A, we have

DA(i)FA(i, t)EA(i)X(i) + X(i)E�
A (i)F�

A (i, t)D�
A(i)

≤ εA(i)DA(i)D�
A(i) + ε−1

A (i)X(i)E�
A (i)EA(i)X(i)

DB(i)FB(i, t)EB(i)K(i)X(i) + X(i)K�(i)E�
B (i)F�

B (i, t)D�
B(i)

≤ εB(i)DB(i)D�
B(i) + ε−1

B (i)X(i)K�(i)E�
B (i)EB(i)K(i)X(i).

Using the same definitions for Si(X) and Xi(X) as before and after letting
Y (i) = K(i)X(i), the closed-loop system will be robustly stochastically stable
if the following holds:

X(i)A�(i) + Y �(i)B�(i) + A(i)X(i) + B(i)Y (i) + λiiX(i)
+εA(i)DA(i)D�

A(i) + εB(i)DB(i)D�
B(i)

+ε−1
A (i)X(i)E�

A (i)EA(i)X(i)
+ε−1

B (i)Y �(i)E�
B (i)EB(i)Y (i)

+Si(X)X−1
i (X)S�

i (X) < 0,

which gives in turn the following set of coupled LMIs after using the Schur
complement:⎡⎢⎢⎣

Ju(i) X(i)E�
A (i) Y �(i)E�

B (i) Si(X)
EA(i)X(i) −εA(i)I 0 0
EB(i)Y (i) 0 −εB(i)I 0
S�

i (X) 0 0 −Xi(X)

⎤⎥⎥⎦ < 0, (3.15)

where

Ju(i) = X(i)A�(i) + Y �(i)B�(i) + A(i)X(i) + B(i)Y (i)
+λiiX(i) + εA(i)DA(i)D�

A(i) + εB(i)DB(i)D�
B(i).

The following theorem summarizes the results on the design of a robust
stabilizing state feedback controller.
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Theorem 14. If there exist a set of symmetric and positive-definite matri-
ces X = (X(1), · · · , X(N)) > 0, a set of matrices Y = (Y (1), · · · , Y (N)),
and a set of positive scalars εA = (εA(1), · · · , εA(N)) > 0 and εB =
(εB(1), · · · , εB(N)) > 0 such that the following set of coupled LMIs (3.15)
holds for each i ∈ S and all admissible uncertainties, then the controller
(3.6), with K(i) = Y (i)X−1(i), robustly stabilizes system (3.1) in the sto-
chastic sense.

Example 23. In this numerical example we show how to design a robust sta-
bilizing state feedback controller using the results of this theorem. For this
purpose let us consider a system with two modes and the following data:

• mode #1:

A(1) =
[

1.0 −0.5
0.1 1.0

]
, DA(1) =

[
0.1
0.2

]
, EA(1) =

[
0.2 0.1

]
,

B(1) =
[

1.0 0.0
0.0 1.0

]
, DB(1) =

[
0.1
0.2

]
, EB(1) =

[
0.2 0.1

]
,

• mode #2:

A(2) =
[
−0.2 0.5
0.0 −0.25

]
, DA(2) =

[
0.13
0.1

]
, EA(2) =

[
0.1 0.2

]
,

B(2) =
[

1.0 0.0
0.0 1.0

]
, DB(2) =

[
0.13
0.1

]
, EB(2) =

[
0.1 0.2

]
.

The transition probability rate matrix between the two modes is given by

Λ =
[
−2.0 2.0
3.0 −3.0

]
.

Letting εA(1) = εA(2) = 0.5 and εB(1) = εB(2) = 0.1 and solving the set
of coupled LMIs (3.15), we get

X(1) =
[

0.3140 −0.0046
−0.0046 0.3297

]
, X(2) =

[
0.2828 −0.0016
−0.0016 0.2867

]
,

Y (1) =
[
−0.6668 0.0482
0.1075 −0.7130

]
, Y (2) =

[
−0.2181 −0.1268
−0.0160 −0.1860

]
,

which gives the following gains:

K(1) =
[
−2.1219 0.1169
0.3110 −2.1586

]
, K(2) =

[
−0.7737 −0.4466
−0.0604 −0.6489

]
.

Using the results of the previous theorem, we conclude that the system of this
example is stochastically stable under the state feedback controller with the
computed gains.
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As we did for the stabilizing controller that prescribes the desired degree of
stability α, similar results for the robustness can be obtained by the following
theorem.

Theorem 15. Let α be a given positive constant. If there exist a set of
symmetric and positive-definite matrices X = (X(1), · · · , X(N)) > 0, a
set of matrices Y = (Y (1), · · · , Y (N)), and a set of positive scalars εA =
(εA(1), · · · , εA(N)) and εB = (εB(1), · · · , εB(N)) such that the following set
of coupled LMIs holds for each i ∈ S and all admissible uncertainties:⎡⎢⎢⎣

Jα
u (i) X(i)E�

A (i) Y �(i)E�
B (i) Si(X)

EA(i)X(i) −εA(i)I 0 0
EB(i)Y (i) 0 −εB(i)I 0
S�

i (X) 0 0 −Xi(X)

⎤⎥⎥⎦ < 0, (3.16)

where

Jα
u (i) = X(i) [A(i) + αI]� + Y �(i)B�(i) + [A(i) + αI] X(i)

+B(i)Y (i) + λiiX(i) + εA(i)DA(i)D�
A(i) + εB(i)DB(i)D�

B(i),

then the controller (3.6), with K(i) = Y (i)X−1(i), robustly stabilizes system
(3.1) in the stochastic sense.

Proof: The proof of this theorem is straightforward and follows the same
lines as before and the details are omitted. �

We can also use the results of the following optimization problem to deter-
mine a stabilizing controller that guarantees a prescribed degree of stability
equal to α = γ−1:

Pus:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

min γ>0,
εA=(εA(1),··· ,εA(N))>0,
εB=(εB(1),··· ,εB(N))>0,
X=(X(1),··· ,X(N))>0,

Y =(Y (1),··· ,Y (N)),

γ,

s.t.:⎡⎢⎢⎢⎣
2X(i) 0 0 0

0 0 0 0
0 0 0 0
0 0 0 0

⎤⎥⎥⎥⎦

< −γ

⎡⎢⎢⎢⎣
J̃α

u (i) X(i)E�
A (i) Y �(i)E�

B (i) Si(X)
EA(i)X(i) −εA(i)I 0 0
EB(i)Y (i) 0 −εB(i)I 0
S�

i (X) 0 0 −Xi(X)

⎤⎥⎥⎥⎦ ,

where

J̃α
u (i) = X(i)A�(i) + Y �(i)B�(i) + A(i)X(i) + B(i)Y (i)
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+λiiX(i) + εA(i)DA(i)D�
A(i) + εB(i)DB(i)D�

B(i).

If the optimization problem Pus has a solution denoted by ᾱ, then the
controller that robustly stabilizes the dynamical system (3.1) and guarantees
the prescribed degree of stability ᾱ, is given by

u(t) = Y (i)X−1(i)x(t), i = 1, 2, · · · , N.

Example 24. To show the usefulness of the results of this theorem, let us con-
sider the system of the previous example and see how we can determine the
maximum degree of stochastic stability. Solving the optimization problem with
the constraints X(i) > I and Y (i) < 10I for i = 1, 2, we get

X(1) =
[

1.6357 −1.4260
−1.4260 4.1989

]
, X(2) =

[
3.8032 −1.6532
−1.6532 3.0954

]
,

Y (1) =
[
−3.4676 3.3010
2.8947 −8.5208

]
, Y (2) =

[
−9.7095 −1.3889
4.4376 −1.5969

]
,

which give the following gains:

K(1) =
[
−2.0379 0.0941
0.0008 −2.0290

]
, K(2) =

[
−3.5789 −2.3602
1.2275 0.1397

]
.

The corresponding ᾱ is equal to 0.5998.

In all the results we developed previously we assumed that the controller
gain is known and no uncertainty is attached. Practically, this is not true
since we will always have errors in implementing the computed gains. As
an example, we can mention the case when the gains are realized electron-
ically using operational amplifiers and passive electronic components. Keel
and Bhattacharyya [46] have shown that the controller may be very sensitive
to the errors in the controller parameters even if the design takes care of the
system uncertainties. To overcome this, the variations parameter as well as
the system uncertainties should be included in the controller design phase.
The goal becomes then how to design a controller that is nonfragile in the
sense that the closed-loop system tolerates a certain change in the controller
parameters as well as the system uncertainties that may affect the different
matrices.

In practice the implementation of the controller is quite different from the
expression (3.6), and an extra term should be added to take care of the errors
that may be caused by reasons different than those mentioned previously. The
controller gain becomes then

K(i, t) = K(i) + ΔK(i, t), (3.17)

with ΔK(i, t) = ρ(i)FK(i, t)K(i), where ρ(i) is an uncertain real parameter
indicating the measure of nonfragility against controller gain variations and
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FK(i, t) is the uncertainty that will be supposed to satisfy the following for
every i ∈ S :

F�
K (i, t)FK(i, t) ≤ I. (3.18)

Let us now assume that the uncertainties of the control matrix B(i) are
equal to zero and see how to synthesize the gain for the state feedback con-
troller with the following form for every i ∈ S :

K(i) = �(i)B�(i)P (i), (3.19)

where �(i) is a real number and P (i) > 0 is symmetric and positive-definite
matrix for every i ∈ S .

Plugging the controller in the state equation (3.1) with FB(i, t) fixed to
zero for all t > 0, we get the following closed-loop dynamics:

ẋ(t) = [A(i, t) + B(i)K(i, t)] x(t)
=

[
A(i) + DA(i)FA(i, t)EA(i) + B(i)

[
�(i)B�(i)P (i)

+ρ(i)FK(i, t)�(i)B�(i)P (i)
]]

x(t). (3.20)

The following theorem gives a design procedure that may be used to synthe-
size a controller in the form (3.17) that robustly stabilizes the system with
nonfragility ρ(i).

Theorem 16. If there exist a set of symmetric and positive-definite ma-
trices X = (X(1), · · · , X(N)) > 0 and a set of positive scalars εA =
(εA(1), · · · , εA(N)), μ = (μ(1), · · · , μ(N)), ν = (ν(1), · · · , ν(N)) and a set
of scalars � = (�(1), · · · , �(N)) satisfying the following set of coupled LMIs
for every i ∈ S and for all admissible uncertainties:⎡⎢⎢⎣

J(i) X(i)E�
A (i) �(i)B(i) Si(X)

EA(i)X(i) −εA(i)I 0 0
�(i)B�(i) 0 −μ(i)I 0
S�

i (X) 0 0 −Xi(X)

⎤⎥⎥⎦ < 0, (3.21)

where

J(i) = X(i)A�(i) + A(i)X(i) + εA(i)DA(i)D�
A(i)

+2�(i)B(i)B�(i) + λiiX(i) + ν(i)B(i)B�(i),

μ(i) =
εK(i)
ρ(i)

,

ν(i) = εK(i)ρ(i),

then the closed-loop system is robustly stochastically stable with nonfragility
ρ(i) under the controller (3.6) with the gain K(i) = �(i)B�(i)X−1(i).
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Proof: Let r(t) = i and P (r(t)) > 0 be a symmetric and positive-definite
matrix and consider the following candidate Lyapunov function given as fol-
lows:

V (x(t), i) = x�(t)P (i)x(t),

where P (i) is the solution of (3.21).
The infinitesimal generator of the Markov process {(x(t), r(t)), t ≥ 0} act-

ing on V (.) and emanating from the point (x, i) at time t, where x(t) = x and
r(t) = i for i ∈ S , is given by

L V (x(t), i) = lim
h→0

E [V (xt+h, r(t + h)) − V (x(t), i)|x(t), i]
h

= ẋ�(t)P (i)x(t) + x�(t)P (i)ẋ(t) +
N∑

j=1

λijx
�(t)P (j)x(t)

= [[A(i, t) + B(i)K(i, t)] x(t)]� P (i)x(t) + x�(t)P (i) [A(i, t)

+B(i)K(i, t)] x(t) +
N∑

j=1

λijx
�(t)P (j)x(t)

= x�(t)A�(i)P (i)x(t) + x�(t)P (i)A(i)x(t)
+2x�(t)P (i)DA(i)FA(i, t)EA(i)x(t)

2�(i)x�(t)P (i)B(i)B�(i)P (i)x(t) +
N∑

j=1

λijx
�(t)P (j)x(t)

+2ρ(i)�(i)x�(t)P (i)B(i)FK(i, t)B�(i)P (i)x(t).

Using Lemma 7 in Appendix A, we get

2x�(t)P (i)DA(i)FA(i, t)EA(i)x(t) ≤ εA(i)x�(t)P (i)DA(i)D�
A(i)P (i)x(t)

+ε−1
A (i)x�(t)E�

A (i)EA(i)x(t),
2ρ(i)�(i)x�(t)P (i)B(i)FK(i, t)B�(i)P (i)x(t)

≤ ε−1
K (i)ρ(i)�2(i)x�(t)P (i)B(i)B�(i)P (i)x(t)

+εK(i)ρ(i)x�(t)P (i)B(i)F�
K (i, t)FK(i, t)B�(i)P (i)x(t)

≤ ε−1
K (i)ρ(i)�2(i)x�(t)P (i)B(i)B�(i)P (i)x(t)

+εK(i)ρ(i)x�(t)P (i)B(i)B�(i)P (i)x(t).

Based on this, the previous expression of L V (x(t), i) becomes

L V (x(t), i) ≤ x�(t)A�(i)P (i)x(t) + x�(t)P (i)A(i)x(t)
+εA(i)x�(t)P (i)DA(i)D�

A(i)P (i)x(t)

+ε−1
A (i)x�(t)E�

A (i)EA(i)x(t) +
N∑

j=1

λijx
�(t)P (j)x(t)
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+ε−1
K (i)ρ(i)�2(i)x�(t)P (i)B(i)B�(i)P (i)x(t)

+εK(i)ρ(i)x�(t)P (i)B(i)B�(i)P (i)x(t)
+2�(i)x�(t)P (i)B(i)B�(i)P (i)x(t)
≤ x�(t)Γ (i)x(t),

with

Γ (i) = A�(i)P (i) + P (i)A(i) + εA(i)P (i)DA(i)D�
A(i)P (i)

+ε−1
A (i)E�

A (i)EA(i) +
N∑

j=1

λijP (j)

+ε−1
K (i)ρ(i)�2(i)P (i)B(i)B�(i)P (i)

+εK(i)ρ(i)P (i)B(i)B�(i)P (i)
+2�(i)P (i)B(i)B�(i)P (i).

The expression Γ (i) is nonlinear in the design parameters �(i) and P (i)
for every i ∈ S . To cast it into an LMI, let us put X(i) = P−1(i) for each
i ∈ S. Let us pre- and post-multiply Γ (i) by X(i) to get

X(i)Γ (i)X(i) = X(i)A�(i) + A(i)X(i) + εA(i)DA(i)D�
A(i)

+ε−1
A (i)X(i)E�

A (i)EA(i)X(i) +
N∑

j=1

λijX(i)X−1(j)X(i)

+ε−1
K (i)ρ(i)�2(i)B(i)B�(i) + εK(i)ρ(i)B(i)B�(i)

+2�(i)B(i)B�(i). (3.22)

Letting Si(X) and Xi(X) be defined as before, and using the Schur com-
plement, we get⎡⎢⎢⎣

J(i) X(i)E�
A (i) �(i)B(i) Si(X)

EA(i)X(i) −εA(i)I 0 0
�(i)B�(i) 0 − εK(i)

ρ(i) I 0
S�

i (X) 0 0 −Xi(X)

⎤⎥⎥⎦ < 0,

where

J(i) = X(i)A�(i) + A(i)X(i) + λiiX(i) + εA(i)DA(i)D�
A(i)

+2�(i)B(i)B�(i) + εK(i)ρ(i)B(i)B�(i),

which is symmetric and negative-definite by hypothesis and therefore we con-
clude that Γ (i) < 0, which implies

L V (x(t), i) ≤ −min
i∈S

{λmin (−Γ (i))}x�(t)x(t).

The rest of the proof is similar to what has been done previously and the
details are omitted. This proves that the closed-loop system is stable under
the chosen controller. �
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Example 25. In this example we show the usefulness of the proposed results.
For this purpose let us consider a system with two modes and two components
in the state vector. Let the data in each mode be given by

• mode #1:

A(1) =
[

1.0 −0.5
0.1 1.0

]
, B(1) =

[
1.0 0.0
0.0 1.0

]
,

DA(1) =
[

0.1
0.2

]
, EA(1) =

[
0.2 0.1

]
,

• mode #2:

A(2) =
[
−0.2 0.5
0.0 −0.25

]
, B(2) =

[
1.0 0.0
0.0 1.0

]
,

DA(2) =
[

0.13
0.1

]
, EA(2) =

[
0.1 0.2

]
.

Let the transition probability rate matrix between these two modes be
given by

Λ =
[
−2.0 2.0
3.0 −3.0

]
.

Letting εA(1) = εA(2) = 0.5, εK(1) = εK(2) = 0.1, and ρ(1) = 0.5,
ρ(2) = 0.6 and solving the LMI (3.21), we get

X(1) =
[

0.0623 0.002
0.002 0.056

]
, X(2) =

[
0.0749 −0.0038
−0.0038 0.0695

]
,

�(1) = −0.1930, �(2) = −0.1592,

which gives the following controller gains:

K(1) =
[
−3.1004 0.1113
0.1113 −3.4498

]
, K(2) =

[
−2.1297 −0.1153
−0.1153 −2.2966

]
.

Let us return to the system with Wiener process disturbance as described
by the state equation (3.11). Assume that the uncertainties are not equal to
zero. How can we synthesize a state feedback controller that robustly stabilizes
the closed-loop system? Plugging the controller (3.6) in (3.11) we get

dx(t) = Ā(r(t), t)x(t)dt + W(r(t))x(t)dω(t), (3.23)

where Ā(r(t), t) = A(r(t), t) + B(r(t), t)K(r(t)).
Using the results of Chapter 2 on the stability condition of piecewise de-

terministic systems with Wiener process, to guarantee the stability of (3.23)
we should satisfy the following for every i ∈ S :
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Ā�(i, t)P (i) + P (i)Ā(i, t) + W�(i)P (i)W(i) +
N∑

j=1

λijP (j) < 0.

Using the expression of Ā(i, t) we obtain

A�(i, t)P (i) + P (i)A(i, t) + K�(i)B�(i, t)P (i) + P (i)B(i, t)K(i)

+W�(i)P (i)W(i) +
N∑

j=1

λijP (j) < 0.

This inequality is nonlinear in the decision variables P (i) and K(i) that
need to be transformed to an equivalent LMI. For this purpose let X(i) =
P−1(i). Pre- and post-multiplying this inequality by X(i) gives

X(i)A�(i, t) + A(i, t)X(i) + X(i)K�(i)B�(i, t)
+B(i, t)K(i)X(i) + X(i)W�(i)X−1(i)W(i)X(i)

+
N∑

j=1

λijX(i)X−1(j)X(i) < 0.

Using the expression of the uncertainties this inequality becomes

X(i)A�(i) + A(i)X(i) + X(i)K�(i)B�(i) + B(i)K(i)X(i)
+DA(i)FA(i, t)EA(i)X(i) + X(i)E�

A (i)F�
A (i, t)DA(i)

+DB(i)FB(i, t)EB(i)K(i)X(i) + X(i)K�(i)E�
B (i)F�

B (i, t)D�
B(i)

+X(i)W�(i)X−1(i)W(i)X(i) +
N∑

j=1

λijX(i)X−1(j)X(i) < 0.

Notice that from Lemma 7 in Appendix A we have:

DA(i)FA(i, t)EA(i)X(i) + X(i)E�
A (i)F�

A (i, t)DA(i)
≤ εA(i)DA(i)D�

A(i) + ε−1
A (i)X(i)E�

A (i)EA(i)X(i)
DB(i)FB(i, t)EB(i)K(i)X(i) + X(i)K�(i)E�

B (i)F�
B (i, t)D�

B(i)
≤ εB(i)DB(i)D�

B(i) + ε−1
B (i)X(i)K�(i)E�

B (i)EB(i)K(i)X(i).

Letting Y (i) = K(i)X(i) and using these inequalities and the Schur com-
plement, the previous inequality will be satisfied if the following holds:⎡⎢⎢⎢⎢⎣

J̃w(i) X(i)E�
A (i) Y �(i)E�

B (i)
EA(i)X(i) −εA(i)I 0
EB(i)Y (i) 0 −εB(i)I
W(i)X(i) 0 0
S�

i (X) 0 0
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X(i)W�(i) Si(X)
0 0
0 0

−X(i) 0
0 −Xi(X)

⎤⎥⎥⎥⎥⎦ < 0, (3.24)

where

J̃w(i) = X(i)A�(i) + A(i)X(i) + Y �(i)B�(i) + B(i)Y (i)
+λiiX(i) + εA(i)DA(i)D�

A(i) + εB(i)DB(i)D�
B(i).

The following theorem summarizes the results on the design of a state
feedback controller that robustly stabilizes the class of systems we are study-
ing when an external disturbance of Wiener process type is acting on the
dynamics.

Theorem 17. If there exist a set of symmetric and positive-definite matri-
ces X = (X(1), · · · , X(N)) > 0, a set of matrices Y = (Y (1), · · · , Y (N)),
and a set of positive scalars εA = (εA(1), · · · , εA(N)) > 0 and εB =
(εB(1), · · · , εB(N)) > 0 such that the following set of coupled LMIs (3.24)
holds for each i ∈ S and all admissible uncertainties, then the controller
(3.6), with K(i) = Y (i)X−1(i), robustly stabilizes system (3.11) in the sto-
chastic sense.

Example 26. To illustrate the usefulness of the results of this theorem let us
consider a two-mode system with the following data:

• mode #1:

A(1) =
[

1.0 −0.5
0.1 1.0

]
, B(1) =

[
1.0 0.0
0.0 1.0

]
,

DA(1) =
[

0.1
0.2

]
, DB(1) =

[
0.1
0.2

]
,

EA(1) =
[
0.2 0.1

]
, EB(1) =

[
0.2 0.1

]
,

W(1) =
[

0.1 0.0
0.0 0.1

]
,

• mode #2:

A(2) =
[
−0.2 0.5
0.0 −0.25

]
, B(2) =

[
1.0 0.0
0.0 1.0

]
,

DA(2) =
[

0.13
0.1

]
, DB(2) =

[
0.13
0.1

]
,

EA(2) =
[
0.1 0.2

]
, EB(2) =

[
0.1 0.2

]
W(2) =

[
0.2 0.0
0.0 0.2

]
.
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The chosen positive scalars εA(i) and εB(i), i = 1, 2, are given by

εA(1) = εA(2) = 0.5,

εB(1) = εB(2) = 0.1.

The switching between the different modes is described by the following
transition matrix:

Λ =
[
−2.0 2.0
3.0 −3.0

]
.

Solving the LMI (3.24), we get

X(1) =
[

0.3240 −0.0033
−0.0033 0.3351

]
, X(2) =

[
0.2943 −0.0009
−0.0009 0.2964

]
,

Y (1) =
[
−0.6019 0.0423
0.1048 −0.6362

]
, Y (2) =

[
−0.1425 −0.1320
−0.0200 −0.1165

]
.

The corresponding controller gains are given by

K(1) =
[
−1.8568 0.1080
0.3042 −1.8953

]
, K(2) =

[
−0.4856 −0.4469
−0.0692 −0.3933

]
.

Based on the results of this theorem, the system of this example is stochasti-
cally stable under the state feedback controller with these gains.

As we did previously, let us try to synthesize a nonfragile controller for
this class of systems when the uncertainties on the control matrix B(r(t)) are
all equal to zero. Plugging the controller with the same expression as before
for the design of a nonfragile controller in the dynamics, we get the following
closed-loop dynamics:

dx(t) = [A(r(t), t) + B(r(t))K(r(t), t)] x(t)dt + W(r(t))x(t)dω(t)
= [A(r(t)) + DA(r(t))FA(r(t), t)EA(r(t))

+B(r(t))
[
�(r(t))B�(r(t))P (r(t))

+ρ(r(t))FK(r(t), t)�(r(t))B�(r(t))P (r(t))
]]

x(t)dt

+W(r(t))x(t)dω(t).

Based on Theorem 8, the closed-loop system will be stable if the following
holds for every i ∈ S :

[A(i, t) + B(i) [K(i) + ρ(i)FK(i, t)K(i)]]� P (i)
+P (i) [A(i, t) + B(i) [K(i) + ρ(i)FK(i, t)K(i)]]

+W�(i)P (i)W(i) +
N∑

j=1

λijP (j) < 0.
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Using the fact that K(i) = �(i)B�(i)P (i) and Lemma 7, we get

2x�(t)P (i)DA(i)FA(i, t)EA(i)x(t) ≤ εA(i)x�(t)P (i)DA(i)D�
A(i)P (i)x(t)

+ε−1
A (i)x�(t)(i)E�

A (i)EA(i)x(t),
2ρ(i)�(i)x�(t)P (i)B(i)FK(i, t)B�(i)P (i)x(t)

≤ ε−1
K (i)ρ(i)�2(i)x�(t)P (i)B(i)B�(i)P (i)x(t)

+εK(i)ρ(i)x�(t)P (i)B(i)F�
K (i, t)FK(i, t)B�(i)P (i)x(t)

≤ ε−1
K (i)ρ(i)�2(i)x�(t)P (i)B(i)B�(i)P (i)x(t)

+εK(i)ρ(i)x�(t)P (i)B(i)B�(i)P (i)x(t).

Based on this, the left-hand side of the previous inequality becomes

Γ (i) = A�(i)P (i) + P (i)A(i) + εA(i)P (i)DA(i)D�
A(i)P (i)

+ε−1
A (i)E�

A (i)EA(i) +
N∑

j=1

λijP (j)

+ε−1
K (i)ρ(i)�2(i)P (i)B(i)B�(i)P (i)

+εK(i)ρ(i)P (i)B(i)B�(i)P (i)
+2�(i)P (i)B(i)B�(i)P (i) + W�(i)P (i)W(i). (3.25)

This inequality is nonlinear in the design parameters �(i) and P (i) for
every i ∈ S . To cast it into an LMI, let us put X(i) = P−1(i) for each i ∈ S .
Pre- and post-multiplying (3.25) by X(i) gives

X(i)Γ (i)X(i) = X(i)A�(i) + A(i)X(i) + εA(i)DA(i)D�
A(i)

+ε−1
A (i)X(i)E�

A (i)EA(i)X(i) +
N∑

j=1

λijX(i)X−1(j)X(i)

+ε−1
K (i)ρ(i)�2(i)B(i)B�(i) + εK(i)ρ(i)B(i)B�(i)

+2�(i)B(i)B�(i) + X(i)W�(i)X−1(i)W(i)X(i). (3.26)

Defining Si(X) and Xi(X) as before and using the Schur complement, we
get ⎡⎢⎢⎢⎢⎣

J(i) X(i)E�
A (i) �(i)B(i)

EA(i)X(i) −εA(i)I 0
�(i)B�(i) 0 −μ(i)I
W(i)X(i) 0 0
S�

i (X) 0 0

X(i)W�(i) Si(X)
0 0
0 0

−X(i) 0
0 −Xi(X)

⎤⎥⎥⎥⎥⎦ < 0,

where

J(i) = X(i)A�(i) + A(i)X(i) + εA(i)DA(i)D�
A(i) + λiiX(i)

+2�(i)B(i)B�(i) + εK(i)ρ(i)B(i)B�(i).
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The following theorem gives a result in the LMI framework that can be
used to design a nonfragile robust controller for the class of systems we are
considering.

Theorem 18. If there exist a set of symmetric and positive-definite matrices
X = (X(1), · · · , X(N)) > 0, a set of positive scalars εA = (εA(1), · · · , εA(N)),
μ = (μ(1), · · · , μ(N)), ν = (ν(1), · · · , ν(N)), and a set of scalars � =
(�(1), · · · , �(N)) satisfying the following set of coupled LMIs for every i ∈ S
and for all admissible uncertainties:⎡⎢⎢⎢⎢⎣

J(i) X(i)E�
A (i) �(i)B(i)

EA(i)X(i) −εA(i)I 0
�(i)B�(i) 0 −μ(i)I
W(i)X(i) 0 0
S�

i (X) 0 0

X(i)W�(i) Si(X)
0 0
0 0

−X(i) 0
0 −Xi(X)

⎤⎥⎥⎥⎥⎦ < 0, (3.27)

where

J(i) = X(i)A�(i) + A(i)X(i) + εA(i)DA(i)D�
A(i) + λiiX(i)

+2�(i)B(i)B�(i) + ν(i)B(i)B�(i),

μ(i) =
εK(i)
ρ(i)

,

ν(i) = εK(i)ρ(i),

then the closed-loop system is robustly stochastically stable with nonfragility
ρ(i) under the controller (3.6) with the gain K(i) = �(i)B�(i)X−1(i), i =
1, 2, · · · , N .

Example 27. In this example, we show the usefulness of the proposed results in
this section. For this purpose let us consider the two-mode system of Example
26 with ΔB(i) = 0, i = 1, 2 and

W(1) =
[

0.2 0.0
0.0 0.2

]
, W(2) =

[
0.1 0.0
0.0 0.1

]
.

Letting εA(1) = εA(2) = 0.5, εK(1) = εK(2) = 0.1, and ρ(1) = 0.5,
ρ(2) = 0.6 and solving the LMI (3.27), we get

X(1) =
[

0.0648 0.0028
0.0028 0.0582

]
, X(2) =

[
0.0807 −0.0036
−0.0036 0.0751

]
,

ν(1) = −0.1803, ν(2) = −0.1431,

which gives the following controller gains:

K(1) =
[
−2.7883 0.1341
0.1341 −3.1053

]
, K(2) =

[
−1.7766 −0.0849
−0.0849 −1.9081

]
.

Based on the results of this theorem, the system of this example is stochasti-
cally stable under the state feedback controller with these gains.
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The results established in this section do not consider the uncertainties on
the jump rates. In the rest of this section, we discuss these uncertainties and
synthesize a controller that can robustly stabilize the class of systems we are
considering whether the Wiener process external disturbance is acting or not.

Let us consider the case when the system is not perturbed by the external
Wiener process. In this case, the closed-loop system will be stable when the
two uncertainties are present if the following holds for every i ∈ S :

[A(i, t) + B(i, t)K(i)]� P (i) + P (i) [A(i, t) + B(i, t)K(i)]

+
κ∑

k=1

N∑
j=1

αkλk
ijP (j) < 0,

which gives

A�(i, t)P (i) + P (i)A(i, t) + K�(i)B�(i, t)P (i)

+P (i)B(i, t)K(i) +
N∑

j=1

μijP (j) < 0,

with μij =
∑κ

k=1 αkλk
ij .

Using the expression of the uncertainties of the state and control matrices
and Lemma 7 in Appendix A, after letting X(i) = P−1(i) and pre- and post-
multiplying the previous expression by X(i), we get

X(i)A�(i) + A(i)X(i) + X(i)K�(i)B�(i)
+B(i)K(i)X(i) + εA(i)DA(i)D�

A(i)
+εB(i)DB(i)D�

B(i) + ε−1
A (i)X(i)E�

A (i)EA(i)X(i)
+ε−1

B (i)X(i)K�(i)E�
B (i)EB(i)K(i)X(i)

+
N∑

j=1

μijX(i)X−1(j)X(i) < 0.

Letting Y (i) = K(i)X(i), and Si(X) and Xi(X) be defined as before by
replacing λij by μij , j = 1, · · · , i − 1, i + 1, · · · , N , we get

X(i)A�(i) + A(i)X(i) + Y �(i)B�(i)
+B(i)Y (i) + εA(i)DA(i)D�

A(i)
+εB(i)DB(i)D�

B(i) + ε−1
A (i)X(i)E�

A (i)EA(i)X(i)
+ε−1

B (i)Y �(i)E�
B (i)EB(i)Y (i)

+Si(X)X−1(X)S�
i (X) + μiiX(i) < 0,

which gives in turn after using the Schur complement:⎡⎢⎢⎣
Ju1(i) X(i)E�

A (i) Y �(i)E�
B (i) Si(X)

EA(i)X(i) −εA(i)I 0 0
EB(i)Y (i) 0 −εB(i)I 0
S�

i (X) 0 0 −Xi(X)

⎤⎥⎥⎦ < 0, (3.28)
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where Ju1(i) = X(i)A�(i) + A(i)X(i) + Y �(i)B�(i) + B(i)Y (i) + μiiX(i) +
εA(i)DA(i)D�

A(i) + εB(i)DB(i)D�
B(i).

The following theorem gives results that can be used to check if a given
system with uncertainties on the state matrix and on the jump rates is robustly
stochastically stable.

Theorem 19. If there exist a set of symmetric and positive-definite matrices
X = (X(1), · · · , X(N)) > 0 and a set of matrices Y = (Y (1), · · · , Y (N))
and a set of positive scalars εA = (εA(1), · · · , εA(N)) > 0 and εB =
(εB(1), · · · , εB(N)) > 0 such that the following set of coupled LMIs (3.28)
holds for every i ∈ S and for all admissible uncertainties, then the controller
(3.6), with K(i) = Y (i)X−1(i), robustly stabilizes system (3.1) in the stochas-
tic sense.

Example 28. To illustrate the results of this theorem let us consider the two-
mode system of Example 26 with W(i) = 0, i = 1, 2.

The switching between the different modes is governed by the following
transition matrices:

Λ1 =
[
−2.0 2.0
3.0 −3.0

]
, α1 = 0.6,

Λ2 =
[
−1.5 1.5
3.50 −3.5

]
, α2 = 0.4.

The corresponding μ is given by

μ =
[
−1.80 1.80
3.20 −3.20

]
.

The positive scalars εA(i) and εB(i), i = 1, 2 are chosen as follows:

εA(1) = εA(2) = 0.5,

εB(1) = εB(2) = 0.1.

Solving the LMI (3.28) we get

X(1) =
[

0.3262 −0.0054
−0.0054 0.3442

]
, X(2) =

[
0.2789 −0.0017
−0.0017 0.2836

]
,

Y (1) =
[
−0.7014 0.0513
0.1133 −0.7512

]
, Y (2) =

[
−0.1995 −0.1270
−0.0160 −0.1671

]
.

The corresponding controller gains are given by

K(1) =
[
−2.1484 0.1155
0.3116 −2.1779

]
, K(2) =

[
−0.7183 −0.4524
−0.0610 −0.5897

]
.

Based on the results of this theorem, the system of this example is stochasti-
cally stable under the state feedback controller with these gains.
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When the Wiener process external disturbance is acting on the class of sys-
tems we are considering, similar results can be obtained following the same
steps presented previously. Omitting the details, these results can be summa-
rized by the following theorem.

Theorem 20. If there exists a set of symmetric and positive-definite matri-
ces X = (X(1), · · · , X(N)) > 0 and a set of matrices Y = (Y (1), · · · , Y (N))
and a set of positive scalars εA = (εA(1), · · · , εA(N)) > 0 and εB =
(εB(1), · · · , εB(N)) > 0 such that the following set of coupled LMIs holds
for every i ∈ S and for all admissible uncertainties:⎡⎢⎢⎢⎢⎣

Jw1(i) X(i)E�
A (i) Y �(i)E�

B (i)
EA(i)X(i) −εA(i)I 0
EB(i)Y (i) 0 −εB(i)I
W(i)X(i) 0 0
S�

i (X) 0 0

X(i)W�(i) Si(X)
0 0
0 0

−X(i) 0
0 −Xi(X)

⎤⎥⎥⎥⎥⎦ < 0, (3.29)

where Jw1(i) = X(i)A�(i) + A(i)X(i) + Y �(i)B�(i) + B(i)Y (i) + μiiX(i) +
εA(i)DA(i)D�

A(i) + εB(i)DB(i)D�
B(i), then the controller (3.6), with K(i) =

Y (i)X−1(i), robustly stabilizes system (3.11) in the stochastic sense.

Example 29. To illustrate the results developed in this theorem let us consider
the two-mode system of Example 26.

Let the positive scalars εA(i) and εB(i), i = 1, 2 be fixed as follows:

εA(1) = εA(2) = 0.50,

εB(1) = εB(2) = 0.10.

The switching between the different modes is described by the following tran-
sition matrices with the appropriate weights:

Λ1 =
[
−2.0 2.0
3.0 −3.0

]
, α1 = 0.6,

Λ2 =
[
−1.50 1.50
3.50 −3.50

]
, α2 = 0.4.

The corresponding μ is given by

μ =
[
−1.80 1.80
3.20 −3.20

]
.

Solving the LMI (3.29), we get
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X(1) =
[

0.3134 −0.0033
−0.0033 0.3242

]
, X(2) =

[
0.2692 −0.0009
−0.0009 0.2717

]
,

Y (1) =
[
−0.5738 0.0399
0.1004 −0.6052

]
, Y (2) =

[
−0.0948 −0.1226
−0.0193 −0.0720

]
.

The corresponding controller gains are given by

K(1) =
[
−1.8300 0.1042
0.3006 −1.8638

]
, K(2) =

[
−0.3536 −0.4524
−0.0725 −0.2654

]
.

Based on the results of this theorem, the system of this example is stochasti-
cally stable under the state feedback controller with these gains.

For the nonfragile controller, we can establish the following results.

Theorem 21. If there exist a set of symmetric and positive-definite ma-
trices X = (X(1), · · · , X(N)) > 0, and a set of positive scalars εA =
(εA(1), · · · , εA(N)), μ = (μ(1), · · · , μ(N)), ν = (ν(1), · · · , ν(N)), and a set
of scalars � = (�(1), · · · , �(N)) satisfying the following set of coupled LMIs
for every i ∈ S and for all admissible uncertainties:⎡⎢⎢⎢⎢⎣

Jf (i) X(i)E�
A (i) �(i)B(i) X(i)W�(i)

EA(i)X(i) −εA(i)I 0 0
�(i)B�(i) 0 −μ(i)I 0
W(i)X(i) 0 0 −X(i)
S�

i (X) 0 0 0

Si(X)
0
0
0

−Xi(X)

⎤⎥⎥⎥⎥⎦ < 0, (3.30)

where

Jf (i) = X(i)A�(i) + A(i)X(i) + εA(i)DA(i)D�
A(i) + μiiX(i)

+2�(i)B(i)B�(i) + ν(i)B(i)B�(i),

μ(i) =
εK(i)
ρ(i)

,

ν(i) = εK(i)ρ(i),

then closed-loop system is robustly stochastically stable with nonfragility ρ(i)
under the controller (3.6) with the gain K(i) = �(i)B�(i)X−1(i), i = 1, 2,
· · · , N .

Example 30. To illustrate the results of this theorem, let us consider the two-
mode system of Example 26 with ΔB(i) = 0, i = 1, 2.
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The positive scalars εA(i) and εB(i), i = 1, 2 are fixed as follows:

εA(1) = εA(2) = 0.5,

εK(1) = εK(2) = 0.1,

ρ(1) = ρ(2) = 0.6.

The switching between the two modes is described by the following transition
rate matrices with the appropriate weights:

Λ(1) =
[
−2.0 2.0
3.0 −3.0

]
, α1 = 0.6,

Λ(2) =
[
−1.50 1.50
3.50 −3.50

]
, α2 = 0.4.

The corresponding μ is given by

μ =
[
−1.80 1.80
3.20 −3.20

]
.

Solving the LMI (3.30), we get

X(1) =
[

0.0687 0.0030
0.0030 0.0612

]
, X(2) =

[
0.0838 −0.0037
−0.0037 0.0771

]
,

ν(1) = −0.1918, ν(2) = −0.1587.

The corresponding controller gains are given by

K(1) =
[
−2.7972 0.1351
0.1351 −3.1431

]
, K(2) =

[
−1.8977 −0.0917
−0.0917 −2.0629

]
.

Based on the results of this theorem, the system of this example is sto-
chastically stable under the state feedback controller with these gains.

This section covered the state feedback stabilization problem. By assuming
complete access to the mode and to the state vector at time t, we developed
many design approaches for different classes of systems. In the next section,
we will relax the assumption on the availability of the state vector x(t) and try
to design an output feedback controller that ensures the same performance.

3.3 Static Output Feedback Stabilization

In the previous section we assumed complete access to the state vector, which
may not always be valid for technological or cost reasons. This assumption
limits the use of the developed results. In this section we concentrate on the
design of a stabilizing static output feedback controller that uses the system
output
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y(t) = C(r(t))x(t)

to compute the control with the form

u(t) = F (r(t))y(t) = F (r(t))C(r(t))x(t), (3.31)

with F (r(t)) the gain to be determined for each r(t) ∈ S .

Remark 12. In this section we assume that the output matrix C(r(t)) has no
uncertainties.

Let us now concentrate on the design of the static output feedback con-
troller (3.31). Plugging the controller expression in the system dynamics (3.1)
gives

ẋ(t) = [A(i) + B(i)F (i)C(i)] x(t),
= Acl(i)x(i),

with Acl(i) = A(i) + B(i)F (i)C(i).
Based on Theorem 4, the closed-loop system is stochastically stable if there

exists a set of symmetric and positive-definite matrices P = (P (1), · · · , P (N))
> 0 such that the following holds:

P (i)Acl(i) + A�
cl(i)P (i) +

N∑
j=1

λijP (j) < 0,

which gives

P (i)A(i) + A�(i)P (i) + P (i)B(i)F (i)C(i) + [P (i)B(i)F (i)C(i)]�

+
N∑

j=1

λijP (j) < 0.

This matrix inequality is nonlinear in the design parameters P (i) and F (i).
To put it into the LMI form, let X(i) = P−1(i). Pre- and post-multiplying
this inequality by X(i) gives

A(i)X(i) + X(i)A�(i) + B(i)F (i)C(i)X(i) + X(i)C�(i)F�(i)B�(i)

+
N∑

j=1

λijX(i)X−1(j)X(i) < 0.

Notice that

N∑
j=1

λijX(i)X−1(j)X(i) = λiiX(i) + Si(X)X−1
i (X)S�

i (X),

with Si(X) and Xi(X) keeping the same definition as before.
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If we let F (i) = Z(i)Y −1(i) and Y (i)C(i) = C(i)X(i) hold for every i ∈ S
for some appropriate matrices that we have to determine, we get

A(i)X(i) + X(i)A�(i) + B(i)Z(i)C(i) + C�(i)Z�(i)B�(i)
+λiiX(i) + Si(X)X−1

i (X)S�
i (X) < 0.

Finally, using the Schur complement gives[
J(i) Si(X)

S�
i (X) −Xi(X)

]
< 0,

with J(i) = A(i)X(i) + X(i)A�(i) + B(i)Z(i)C(i) + C�(i)Z�(i)B�(i) +
λiiX(i).

The following theorem summarizes the results of this development.

Theorem 22. If there exist sets of symmetric and positive-definite matrices
X = (X(1), · · · , X(N)) > 0, and Y = (Y (1), · · · , Y (N)) > 0 and a set of
matrices Z = (Z(1), · · · , Z(N)), such that the following holds for each i ∈ S :⎧⎪⎨⎪⎩

Y (i)C(i) = C(i)X(i),[
J(i) Si(X)

S�
i (X) −Xi(X)

]
< 0,

(3.32)

where

J(i) = A(i)X(i) + X(i)A�(i) + B(i)Z(i)C(i) + C�(i)Z�(i)B�(i)
+λiiX(i),

then system (3.1) is stochastically stable and the controller gain is given by
F (i) = Z(i)Y −1(i), i ∈ S .

Let us now consider the effect of the uncertainties. Based on the results of
Chapter 2, (3.1) is robust stochastically stable if there exist a set of symmetric
and positive-definite matrices P = (P (1), · · · , P (N)) > 0 and a set of positive
scalars εA = (εA(1), · · · , εA(N)), such that the following coupled LMIs hold
for every i ∈ S : [

Ju(i) P (i)DA(i)
D�

A(i)P (i) −εA(i)I

]
< 0, (3.33)

with Ju(i) = P (i)A(i) + A�(i)P (i) +
∑N

j=1 λijP (j) + εA(i)E�
A (i)EA(i).

Following the same steps as for the nominal system, we can establish the
following result for an uncertain system. This result allows the design of a sta-
tic output feedback that robustly stochastically stabilizes the class of systems
we are considering in this book.
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Corollary 4. If there exist sets of symmetric and positive-definite matri-
ces X = (X(1), · · · , X(N)) > 0, and Y = (Y (1), · · · , Y (N)) > 0 and a
set of matrices Z = (Z(1), · · · , Z(N)) and sets of positive scalars εA =
(εA(1), · · · , εA(N)) and εB = (εB(1), · · · , εB(N)), such that the following
holds for each i ∈ S :⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

Y (i)C(i) = C(i)X(i),⎡⎢⎢⎢⎣
JX(i) X(i)E�

A (i) C�(i)Z�(i)E�
B (i) Si(X)

EA(i)X(i) −εA(i)I 0 0
E�

B (i)Z(i)C(i) 0 −εB(i)I 0
S�

i (X) 0 0 −Xi(X)

⎤⎥⎥⎥⎦ < 0,
(3.34)

where

JX(i) = A(i)X(i) + X(i)A�(i) + B(i)Z(i)C(i) + C�(i)Z�(i)B�(i)
+λii(i)X(i) + εA(i)DA(i)D�

A(i) + εB(i)DB(i)D�
B(i),

then (3.1) is robustly stochastically stable and the controller gain is given by
F (i) = Z(i)Y −1(i), i ∈ S .

Example 31. To show the validity of our results, let us consider a two-mode
system with the following data:

• mode #1:

A(1) =

⎡⎣ 0.0 −1.0 1.0
−1.0 3.0 0.0
0.0 0.0 0.0

⎤⎦ , B(1) =

⎡⎣ 0.0 0.2
1.0 0.0
−0.1 1.0

⎤⎦ ,

C(1) =
[

1.0 0.0 1.0
0.3 1.0 0.0

]
,

• mode #2:

A(2) =

⎡⎣ 0.0 1.5 1.5
−1.0 −3.0 0.0
0.0 0.0 0.0

⎤⎦ , B(2) =

⎡⎣0.0 −0.2
1.2 0.0
0.1 1.2

⎤⎦ ,

C(2) =
[

1.0 0.0 1.0
0.1 1.0 0.0

]
.

The switching between the two modes is described by

Λ =
[
−2.0 2.0
1.0 −1.0

]
.

Solving the set of LMIs (3.34) gives
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X(1) =

⎡⎣ 1.1035 −0.0776 −0.2586
−0.0776 1.0839 0.0129
−0.2586 0.0129 1.1229

⎤⎦,Y (1) =
[

0.8643 −0.0647
−0.0647 1.0606

]
,

Z(1) =
[

4.5134 −4.2276
−0.2412 −5.0995

]
, X(2) =

⎡⎣ 1.4311 −0.0637 −0.6375
−0.0637 1.2542 0.0183
−0.6375 0.0183 1.4356

⎤⎦,

Y (2) =
[

0.7982 −0.0454
−0.0454 1.2478

]
, Z(2) =

[
−0.6999 2.0917
−1.1875 0.0496

]
.

This gives the following gains:

F (1) =
[

4.9461 −3.6842
−0.6420 −4.8472

]
, F (2) =

[
−0.7831 1.6478
−1.4886 −0.0145

]
.

Let us now consider the case of the state equation (3.11) and see how
we can design a stabilizing static output feedback controller. Plugging the
controller (3.31) in the system dynamics (3.11) gives

dx(t) = [A(i) + B(i)F (i)C(i)] x(t)dt + W(i)x(t)dω(t)
= Acl(i)x(t)dt + W(i)x(t)dω(t),

with Acl(i) = A(i) + B(i)F (i)C(i).
Based on Theorem 7, the closed-loop system is stochastically stable if there

exists a set of symmetric and positive-definite matrices such that the following
holds:

P (i)Acl(i) + A�
cl(i)P (i) + W�(i)P (i)W(i) +

N∑
j=1

λijP (j) < 0,

which gives

P (i)A(i) + A�(i)P (i) + P (i)B(i)F (i)C(i) + [P (i)B(i)F (i)C(i)]�

+W�(i)P (i)W(i) +
N∑

j=1

λijP (j) < 0.

This matrix inequality is nonlinear in the design parameters P (i) and F (i).
To put it into the LMI form, let X(i) = P−1(i). Pre- and post-multiplying
this inequality by X(i) gives

A(i)X(i) + X(i)A�(i) + B(i)F (i)C(i)X(i)
+X(i)C�(i)F�(i)B�(i) + X(i)W�(i)X−1(i)W(i)X(i)

+
N∑

j=1

λijX(i)X−1(j)X(i) < 0.

Notice that
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N∑
j=1

λijX(i)X−1(j)X(i) = λiiX(i) + Si(X)X−1
i (X)S�

i (X),

with Si(X) and Xi(X) keeping the same definitions as before.
Now if we let F (i) = Z(i)Y −1(i) and Y (i)C(i) = C(i)X(i) hold for every

i ∈ S for some appropriate matrices that we have to determine, we get

A(i)X(i) + X(i)A�(i) + B(i)Z(i)C(i) + C�(i)Z�(i)B�(i)
+X(i)W�(i)X−1(i)W(i)X(i) + λiiX(i) + Si(X)X−1

i (X)S�
i (X) < 0.

Finally, using the Schur complement gives⎡⎣ J(i) X(i)W�(i) Si(X)
W(i)X(i) −X(i) 0
S�

i (X) 0 −Xi(X)

⎤⎦ < 0,

with J(i) = A(i)X(i) + X(i)A�(i) + B(i)Z(i)C(i) + C�(i)Z�(i)B�(i) +
λiiX(i).

The following theorem summarizes the results of this development.

Theorem 23. If there exist sets of symmetric and positive-definite matrices
X = (X(1), · · · , X(N)) > 0, and Y = (Y (1), · · · , Y (N)) > 0 and a set of
matrices Z = (Z(1), · · · , Z(N)), such that the following holds for each i ∈ S :⎧⎪⎪⎪⎨⎪⎪⎪⎩

⎡⎢⎣ J(i) X(i)W�(i) Si(X)
W(i)X(i) −X(i) 0
S�

i (X) 0 −Xi(X)

⎤⎥⎦ < 0,

Y (i)C(i) = C(i)X(i),

(3.35)

where

J(i) = A(i)X(i) + X(i)A�(i) + B(i)Z(i)C(i) + C�(i)Z�(i)B�(i)
+λiiX(i),

then (3.11) is stochastically stable and the controller gain is given by F (i) =
Z(i)Y −1(i), i ∈ S .

For the uncertain system, based on Chapter 2, (3.11) is robustly stochasti-
cally stable if there exist a set of symmetric and positive-definite matrices P =
(P (1), · · · , P (N)) > 0 and a set of positive scalars εA = (εA(1), · · · , εA(N)),
such that the following coupled LMIs hold for every i ∈ S :[

Ju(i) P (i)DA(i)
D�

A(i)P (i) −εA(i)I

]
< 0, (3.36)

with Ju(i) = P (i)A(i) + A�(i)P (i) +
∑N

j=1 λijP (j) + εA(i)E�
A (i)EA(i) +

W�(i)P (i)W(i).
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Following the same steps as for the nominal system, we can establish the
following result for uncertain system using Lemma 7 and the Schur comple-
ment Lemma 4. This result allows the design of a static output feedback that
robustly stochastically stabilizes the class of systems we are considering in
this book.

Corollary 5. If there exist sets of symmetric and positive-definite matri-
ces X = (X(1), · · · , X(N)) > 0, and Y = (Y (1), · · · , Y (N)) > 0 and a
set of matrices Z = (Z(1), · · · , Z(N)), and sets of positive scalars εA =
(εA(1), · · · , εA(N)), and εB = (εB(1), · · · , εB(N)), such that the following
holds for each i ∈ S :⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Y (i)C(i) = C(i)X(i),⎡⎢⎢⎢⎢⎢⎢⎣
JX(i) X(i)E�

A (i) C�(i)Z�(i)E�
B (i)

EA(i)X(i) −εA(i)I 0
E�

B (i)Z(i)C(i) 0 −εB(i)I
W(i)X(i) 0 0
S�

i (X) 0 0
X(i)W�(i)E� Si(X)

0 0
0 0

−X(i) 0
0 −Xi(X)

⎤⎥⎥⎥⎥⎥⎥⎦ < 0,

(3.37)

where

JX(i) = A(i)X(i) + X(i)A�(i) + B(i)Z(i)C(i) + C�(i)Z�(i)B�(i)
+λiiX(i) + εA(i)DA(i)D�

A(i) + εB(i)DB(i)D�
B(i),

then (3.11) is robustly stochastically stable and the controller gain is given by
F (i) = Z(i)Y −1(i), i ∈ S .

Example 32. To show the validity of our results, let us consider a two-mode
system of Example 31 with

W(1) =

⎡⎣1.0 0.0 0.0
0.0 1.0 0.0
0.0 0.0 1.0

⎤⎦ , W(2) =

⎡⎣1.0 0.0 0.0
0.0 1.0 0.0
0.0 0.0 1.0

⎤⎦ .

Solving LMI (3.35) gives

X(1) =

⎡⎣ 1.2691 −0.0653 −0.6528
−0.0653 1.0389 0.0237
−0.6528 0.0237 1.2733

⎤⎦,Y (1) =
[

0.6205 −0.0416
−0.0416 1.0324

]
,
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Z(1) =
[

3.8368 −4.8147
−0.7412 −4.9618

]
, X(2) =

⎡⎣ 1.5880 −0.0984 −0.9841
−0.0984 1.2118 0.0386
−0.9841 0.0386 1.5940

⎤⎦,

Y (2) =
[

0.6099 −0.0598
−0.0598 1.2020

]
, Z(2) =

[
−0.5203 1.2902
−1.2420 −0.2225

]
.

This gives the following gains:

F (1) =
[

5.8870 −4.4263
−1.5211 −4.8674

]
, F (2) =

[
−0.7515 1.0360
−2.0645 −0.2878

]
.

3.4 Output Feedback Stabilization

Previously we covered the design of a state feedback controller that assumes
the availability of the state vector x(t) at each time t. But in reality this
strong assumption is not always true. In fact, some of the state variables are
not measurable by their construction or the lack of appropriate sensors to
give information. The state feedback control that we developed is impossible
to use since the state vector is not available for feedback. Alternatively we
can use the output feedback controller that uses the system’s measurement
to compute the control law. Notice that we can estimate the state vector and
continue to use the state feedback controller. This method will be covered in
Chapter 5.

Let us now focus on output feedback stabilization to see how we can design
the controller that stochastically stabilizes the nominal system and robustly
stochastically stabilizes the uncertain system of the class we are considering.

The structure of the controller we use in this section is given by the fol-
lowing expression:{

ẋc(t) = KA(r(t))xc(t) + KB(r(t))y(t), xc(0) = 0,
u(t) = KC(r(t))xc(t),

(3.38)

where xc(t) ∈ Rn is the controller state; y(t) ∈ Rp is the system’s mea-
surement; and KA(r(t)), KB(r(t)), and KC(r(t)) are the design gains to be
determined.

If we add the system’s measurement to the previous state equation we get{
ẋ(t) = A(r(t), t)x(t) + B(r(t), t)u(t), x(0) = x0,

y(t) = Cy(r(t), t)x(t),
(3.39)

where the matrices A(r(t), t) and B(r(t), t) keep the same meaning as before
and the matrix Cy(r(t), t) is defined as follows:

Cy(r(t), t) = Cy(r(t)) + DCy
(r(t))FCy

(r(t), t)ECy
(r(t)),
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where Cy(r(t)), DCy
(r(t)), and ECy

(r(t)) are real known matrices and FCy

(r(t), t) is an unknown real matrix that satisfies the following for every i ∈
S :

F�
Cy

(i, t)FCy
(i, t) ≤ I.

The block diagram of the closed-loop system (nominal system) under the
output feedback controller is represented by Figure 3.2.

ẋ = A(i)x + B(i)u

y = Cy(i)x

ẋc = KA(i)xc + KB(i)y

u = KC(i)xc

z(t)

y(t)

w(t)

u(t)

Fig. 3.2. Output feedback stabilization block diagram (nom-
inal system).

As we did previously for the state feedback controller, let us see how we
can design the output controller for a nominal system. Combining the system
dynamics (3.39), with all

the uncertainties equal to zero, and the controller dynamics (3.38), we get
the following extended dynamics:⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

η̇(t) =

[
A(i) B(i)KC(i)

KB(i)Cy(i) KA(i)

]
η(t),

η(0) =

[
x0

0

] (3.40)

where η(t) =
[

x(t)
xc(t)

]
.

Let Ã(i) be defined as follows:

Ã(i) =
[

A(i) B(i)KC(i)
KB(i)Cy(i) KA(i)

]
.

Based on the results of Chapter 2, the closed-loop dynamics of the ex-
tended system will be stable if there exists a set of symmetric and positive-
definite matrices P = (P (1), · · · , P (N)) > 0 such that the following holds for
each i ∈ S :

Ã�(i)P (i) + P (i)Ã(i) +
N∑

j=1

λijP (j) < 0. (3.41)
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Let P (i), i ∈ S be defined by

P (i) =
[

P1(i) P2(i)
P�

2 (i) P3(i)

]
,

where P1(i) > 0, P3(i) > 0 are symmetric and positive-definite matrices.
Let us define the following matrices:

W (i) =
[
P1(i) − P2(i)P−1

3 (i)P�
2 (i)

]−1
,

U(i) =
[

W (i) I

W (i) 0

]
,

V (i) =
[

I 0
0 −P−1

3 (i)P�
2 (i)

]
.

Based on these definitions we conclude that

V (i)U(i) =
[

W (i) I

−P−1
3 (i)P�

2 (i)W (i) 0

]
.

Pre- and post-multiply the left-hand side of (3.41) by U�(i)V �(i) and
V (i)U(i) to get

U�(i)V �(i)Ã�(i)P (i)V (i)U(i) + U�(i)V �(i)P (i)Ã(i)V (i)U(i)

+
N∑

j=1

λijU
�(i)V �(i)P (j)V (i)U(i).

Let us now compute

U�(i)V �(i)P (i)Ã(i)V (i)U(i) and U�(i)V �(i)P (j)V (i)U(i),

in function of the system matrices. In fact, for the first term we have

U�(i)V �(i)P (i)Ã(i)V (i)U(i)

=
[

W�(i) −W�(i)P2(i)P−1
3 (i)

I 0

] [
P1(i) P2(i)
P�

2 (i) P3(i)

]
×

[
A(i) B(i)KC(i)

KB(i)Cy(i) KA(i)

] [
W (i) I

−P−1
3 (i)P�

2 (i)W (i) 0

]
=

[
Z1(i) Z2(i)
Z3(i) Z4(i)

]
.

Performing the multiplication we get

Z1(i) = W�(i)P1(i)A(i)W (i) + W�(i)P2(i)KB(i)Cy(i)W (i)
−W�(i)P2(i)P−1

3 (i)P�
2 (i)A(i)W (i)

−W�(i)P2(i)KB(i)Cy(i)W (i)
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−W�(i)P1(i)B(i)KC(i)P−1
3 (i)P�

2 (i)W (i)
−W�(i)P2(i)KA(i)P−1

3 (i)P�
2 (i)W (i)

+W�(i)P2(i)P−1
3 (i)P�

2 (i)B(i)KC(i)P−1
3 (i)P�

2 (i)W (i)
+W�(i)P2(i)KA(i)P−1

3 (i)P�
2 (i)W (i),

Z2(i) = W�(i)P1(i)A(i) − W�(i)P2(i)P−1
3 (i)P�

2 (i)A(i)
−W�(i)P2(i)KB(i)Cy(i) + W�(i)P2(i)KB(i)Cy(i),

Z3(i) = P1(i)A(i)W (i)
+P2(i)KB(i)Cy(i)W (i) − P1(i)B(i)KC(i)P−1

3 (i)P�
2 (i)W (i)

−P2(i)KA(i)P−1
3 (i)P�

2 (i)W (i),

Z4(i) = P1(i)A(i) + P2(i)KB(i)Cy(i).

Using some basic algebraic manipulations and the fact that

W (i)
[
P1(i) − P2(i)P−1

3 (i)P�
2 (i)

]
= I,

the previous elements become

Z1(i) = W�(i)
[
P1(i) − P2(i)P−1

3 (i)P�
2 (i)

]
A(i)W (i)

−W�(i)
[
P1(i) − P2(i)P−1

3 (i)P�
2 (i)

]
B(i)KC(i)P−1

3 (i)P�
2 (i)W (i)

= A(i)W (i) − B(i)KC(i)P−1
3 (i)P�

2 (i)W (i),

Z2(i) = W�(i)
[
P1(i) − P2(i)P−1

3 (i)P�
2 (i)

]
A(i) = A(i),

Z3(i) = P1(i)A(i)W (i) + P2(i)KB(i)Cy(i)W (i)
−P1(i)B(i)KC(i)P−1

3 (i)P�
2 (i)W (i)

−P2(i)KA(i)P−1
3 (i)P�

2 (i)W (i),

Z4(i) = P1(i)A(i) + P2(i)KB(i)Cy(i).

Using all these computations, we get
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U�(i)V �(i)P (i)Ã(i)V (i)U(i)

=

⎡⎢⎢⎢⎢⎢⎢⎣

[
A(i)W (i)

−B(i)KC(i)P−1
3 (i)P�

2 (i)W (i)

]
⎡⎢⎢⎣

P1(i)A(i)W (i)
+P2(i)KB(i)Cy(i)W (i)

−P1(i)B(i)KC(i)P−1
3 (i)P�

2 (i)W (i)
−P2(i)KA(i)P−1

3 (i)P�
2 (i)W (i)

⎤⎥⎥⎦
A(i)[

P1(i)A(i)
+P2(i)KB(i)Cy(i)

]⎤⎦ .

Using the fact that U�(i)V �(i)Ã�(i)P (i)V (i)U(i) is the transpose of
U�(i)V �(i)P (i)Ã(i)V (i)U(i) we get

U�(i)V �(i)Ã�(i)P (i)V (i)U(i)

=

⎡⎣[
W�(i)A�(i)

−W�(i)P2(i)P−1
3 (i)K�

C (i)B�(i)

]
A�(i)⎡⎢⎢⎣

W�(i)A�(i)P1(i)
+W�(i)C�

y (i)K�
B (i)P�

2 (i)
−W�(i)P2(i)P−1

3 (i)K�
C (i)B�(i)P1(i)

−W�(i)P2(i)P−1
3 (i)K�

A (i)P�
2 (i)

⎤⎥⎥⎦
[

A�(i)P1(i)
+C�

y (i)K�
B (i)P�

2 (i)

]

⎤⎥⎥⎥⎥⎥⎥⎦ .

For the term U�(i)V �(i)P (j)V (i)U(i), we have[
W�(i) −W�(i)P2(i)P−1

3 (i)
I 0

] [
P1(j) P2(j)
P�

2 (j) P3(j)

]
×

[
W (i) I

−P−1
3 (i)P�

2 (i)W (i) 0

]

=

⎡⎢⎢⎢⎢⎣
⎡⎢⎢⎣

W�(i)P1(j)W (i)
−W�(i)P2(i)P−1

3 (i)P�
2 (j)W (i)

−W�(i)P2(j)P−1
3 (i)P�

2 (i)W (i)
+W�(i)P2(i)P−1

3 (i)P3(j)P−1
3 (i)P�

2 (i)W (i)

⎤⎥⎥⎦
P1(j)W (i) − P2(j)P−1

3 (i)P�
2 (i)W (i)[

W�(i)P1(j)
−W�(i)P2(i)P−1

3 (i)P�
2 (j)

]
P1(j)

⎤⎦ ,

which can be rewritten as follows using the fact that W−1(j) = P1(j) −
P2(j)P−1

3 (j)P�
2 (j):
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⎡⎣ W�(i)W−1(j)W (i)

+W�(i)
[
P2(i)P−1

3 (i)P3(j) − P�
2 (j)

]
×P−1

3 (j)
[
P2(i)P−1

3 (i)P3(j) − P�
2 (j)

]�
W (i)

⎤⎦ �[
P1(j) − P2(j)P−1

3 (i)P�
2 (i)

]
W (i) P1(j)

⎤⎥⎥⎦ .

Using all the previous algebraic manipulations, the stochastic stability
condition for the closed-loop system becomes[

M̂1(i) M2(i)
M�

2 (i) M3(i)

]
< 0,

with

M̂1(i) = M1(i) +
N∑

j=1

λijW
�(i)

[
P2(i)P−1

3 (i)P3(j) − P�
2 (j)

]
×P−1

3 (j)
[
P2(i)P−1

3 (i)P3(j) − P�
2 (j)

]�
W (i),

M1(i) = A(i)W (i) + W�(i)A�(i) − B(i)KC(i)P−1
3 (i)P�

2 (i)W (i)
−W�(i)P2(i)P−1

3 (i)K�
C (i)B�(i)

+
N∑

j=1

λijW
�(i)W−1(j)W (i),

M2(i) = A(i) + W�(i)A�(i)P1(i) + W�(i)C�
y (i)K�

B (i)P�
2 (i)

−W�(i)P2(i)P−1
3 (i)K�

C (i)B�(i)P1(i)
−W�(i)P2(i)P−1

3 (i)K�
A (i)P�

2 (i)

+
N∑

j=1

λijW
�(i)

[
P1(j) − P2(j)P−1

3 (i)P�
2 (i)

]�
,

M3(i) = P1(i)A(i) + P2(i)KB(i)Cy(i) + A�(i)P1(i)

+C�
y (i)K�

B (i)P�
2 (i) +

N∑
j=1

λijP1(j).

Since

N∑
j=1

λijW
�(i)

[
P2(i)P−1

3 (i)P3(j) − P�
2 (j)

]
P−1

3 (j)

×
[
P2(i)P−1

3 (i)P3(j) − P�
2 (j)

]�
W (i) ≥ 0,

we get the following equivalent condition:[
M1(i) M2(i)
M�

2 (i) M3(i)

]
< 0.
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Letting

P (i) =
[

X(i) Y −1(i) − X(i)
Y −1(i) − X(i) X(i) − Y −1(i)

]
,

that is,

P1(i) = X(i),
P2(i) = Y −1(i) − X(i),
P3(i) = X(i) − Y −1(i),

implies W (i) =
[
P1(i) − P2(i)P−1

3 (i)P�
2 (i)

]−1
= Y (i) and P−1

3 (i)P�
2 (i) = −I.

If we define KB(i) and KC(i) by

KB(i) = P2(i)KB(i) =
[
Y −1(i) − X(i)

]
KB(i),

KC(i) = −KC(i)P−1
3 (i)P�

2 (i)W (i) = KC(i)Y (i),

and use all the previous algebraic manipulations, we get[
M1(i) M2(i)
M�

2 (i) M3(i)

]
< 0,

with

M1(i) = A(i)Y (i) + Y �(i)A�(i) + B(i)KC(i)

+K�
C (i)B�(i) +

N∑
j=1

λijY
�(i)Y −1(j)Y (i),

M2(i) = A(i) + Y �(i)A�(i)X(i) + Y �(i)C�
y (i)K�

B(i)

+K�
C (i)B�(i)X(i)

+Y �(i)K�
A (i)

[
Y −1(i) − X(i)

]�
+

N∑
j=1

λijY
�(i)Y −1(j),

M3(i) = X(i)A(i) + KB(i)Cy(i) + A�(i)X(i)

+C�
y (i)K�

B(i) +
N∑

j=1

λijX(j).

Using the expression of the controller given by⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

KA(i) =
[
X(i) − Y −1(i)

]−1
[
A�(i) + X(i)A(i)Y (i)

+X(i)B(i)KC(i) + KB(i)Cy(i)Y (i)

+
∑N

j=1 λijY
−1(j)Y (i)

]
Y −1(i),

KB(i) =
[
Y −1(i) − X(i)

]−1 KB(i),
KC(i) = KC(i)Y −1(i),
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we have M2(i) = 0. This implies that the stability condition is equivalent to
the following conditions:

M1(i) < 0,

M3(i) < 0,

which gives

A(i)Y (i) + Y �(i)A�(i) + B(i)KC(i) + K�
C (i)B�(i)

+
N∑

j=1

λijY
�(i)Y −1(j)Y (i) < 0,

X(i)A(i) + KB(i)Cy(i) + A�(i)X(i) + C�
y (i)K�

B(i)

+
N∑

j=1

λijX(j) < 0.

Notice that

N∑
j=1

λijY
�(i)Y −1(j)Y (i) = λiiY (i) + Si(Y )Y−1

i (Y )S�
i (Y ),

with

Si(Y ) =
[√

λi1Y (i), · · · ,
√

λii−1Y (i),
√

λii+1Y (i),

· · · ,
√

λiNY (i)
]
,

Yi(Y ) = diag [Y (1), · · · , Y (i − 1), Y (i + 1), · · · , Y (N)] .

Using this, the previous stability conditions become⎡⎣[
A(i)Y (i) + Y �(i)A�(i) + B(i)KC(i)

+K�
C (i)B�(i) + λiiY (i)

]
Si(Y )

S�
i (Y ) −Yi(Y )

⎤⎦ < 0,

X(i)A(i) + KB(i)Cy(i) + A�(i)X(i) + C�
y (i)K�

B(i)

+
N∑

j=1

λijX(j) < 0.

Finally, notice that

U�(i)V �(i)P (i)V (i)U(i) =
[

Y (i) I

I X(i)

]
> 0.

The results of the previous algebraic manipulations are summarized by the
following theorem.
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Theorem 24. Nominal system (3.39) is stochastically stable if and only if
for every i ∈ S , the following set of coupled LMIs is feasible for some
symmetric and positive-definite matrices X = (X(1), · · · , X(N)) > 0 and
Y = (Y (1), · · · , Y (N)) > 0, and matrices KB = (KB(1), · · · ,KB(N)) and
KC = (KC(1), · · · ,KC(N)):⎡⎢⎢⎣

⎡⎣ A(i)Y (i) + Y �(i)A�(i)
+B(i)KC(i)

+K�
C (i)B�(i) + λiiY (i)

⎤⎦ Si(Y )

S�
i (Y ) −Yi(Y )

⎤⎥⎥⎦ < 0, (3.42)

X(i)A(i) + KB(i)Cy(i) + A�(i)X(i) + C�
y (i)K�

B(i)

+
N∑

j=1

λijX(j) < 0, (3.43)[
Y (i) I

I X(i)

]
> 0, (3.44)

with

Si(Y ) =
[√

λi1Y (i), · · · ,
√

λii−1Y (i),
√

λii+1Y (i), · · · ,
√

λiNY (i)
]
,

Yi(Y ) = diag [Y (1), · · · , Y (i − 1), Y (i + 1), · · · , Y (N)] .

Furthermore the dynamic output-feedback controller is given by⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

KA(i) =
[
X(i) − Y −1(i)

]−1
[
A�(i) + X(i)A(i)Y (i)

+X(i)B(i)KC(i) + KB(i)Cy(i)Y (i)

+
∑N

j=1 λijY
−1(j)Y (i)

]
Y −1(i),

KB(i) =
[
Y −1(i) − X(i)

]−1 KB(i),
KC(i) = KC(i)Y −1(i).

(3.45)

Example 33. In this example let us consider a system with two modes and the
following data:

• mode #1:

A(1) =
[

1.0 −0.5
0.1 1.0

]
, B(1) =

[
1.0 0.0
0.0 1.0

]
, C(1) =

[
1.0 0.0
0.0 1.0

]
,

• mode #2:

A(2) =
[
−0.2 −0.5
0.5 −0.25

]
, B(2) =

[
1.0 0.0
0.0 1.0

]
, C(2) =

[
1.0 0.0
0.0 1.0

]
.
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Let us assume that the switching between the two modes is described by
the following transition matrix:

Λ =
[
−2.0 2.0
3.0 −3.0

]
.

Solving the LMIs (3.42)–(3.44), we get

X(1) =
[

155.3339 0.0000
0.0000 155.3339

]
, X(2) =

[
156.7142 −0.0000
−0.0000 156.7142

]
,

Y (1) =
[

85.5704 −0.0000
−0.0000 85.5704

]
, Y (2) =

[
76.2129 0.0000
0.0000 76.2129

]
,

KB(1) =
[
−240.2401 78.9301
−16.7965 −240.2401

]
, KB(2) =

[
−50.1127 −5.2440
5.2440 −42.2770

]
,

KC(1) = 103 ·
[
−0.1707 2.5137
−2.4795 −0.1707

]
, KC(2) =

[
−45.2177 −5.8319
5.8319 −41.4071

]
.

The corresponding controller gains are given by

KA(1) =
[
−2.5413 29.3867
−28.9867 −2.5413

]
, KB(1) =

[
1.5467 −0.5082
0.1081 1.5467

]
,

KC(1) =
[
−1.9946 29.3764
−28.9764 −1.9946

]
, KA(2) =

[
−1.1132 −0.6100
0.6100 −1.0632

]
,

KB(2) =
[

0.3198 0.0335
−0.0335 0.2698

]
, KC(2) =

[
−0.5933 −0.0765
0.0765 −0.5433

]
.

Based on the results of this theorem, the system of this example is sto-
chastically stable under the output feedback controller with the computed
gains.

Let us now consider that the uncertainties are acting on the dynamics
and focus on the design of the output feedback controller with the form given
in (3.38). Using the controller dynamics and system dynamics we get the
following:

η̇(t) =
[

A(i) B(i)KC(i)
KB(i)Cy(i) KA(i)

]
η(t)

+

⎡⎣ DA(i)FA(i, t)EA(i)
[

DB(i)FB(i, t)
×EB(i)KC(i)

]
KB(i)DCy

(i)FCy
(i, t)ECy

(i) 0

⎤⎦ η(t),

with

η(t) =
[

x(t)
xc(t)

]
.
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This dynamics can be rewritten as follows:

η̇(t) =
[
Ã(i) + ΔÃ(i, t)

]
η(t),

with

Ã(i) =
[

A(i) B(i)KC(i)
KB(i)Cy(i) KA(i)

]
,

ΔÃ(i, t) = ΔÃA(i, t) + ΔB̃B(i, t) + ΔC̃Cy
(i, t),

where

ΔÃA(i, t) =
[

DA(i)FA(i, t)EA(i) 0
0 0

]
,

ΔB̃B(i, t) =
[

0 DB(i)FB(i, t)EB(i)KC(i)
0 0

]
,

ΔC̃Cy
(i, t) =

[
0 0

KB(i)DCy
(i)FCy

(i, t)ECy
(i) 0

]
.

Notice that

ΔÃA(i, t) =
[

DA(i) 0
0 0

] [
FA(i, t) 0

0 0

] [
EA(i) 0

0 0

]
= D̃A(i)F̃A(i, t)ẼA(i),

ΔB̃B(i, t) =
[

0 DB(i)
0 0

] [
0 0
0 FB(i, t)

] [
0 0
0 EB(i)KC(i)

]
= D̃B(i)F̃B(i, t)ẼB(i),

ΔC̃Cy
(i, t) =

[
0 0
0 KB(i)DCy

(i)

] [
0 0
0 FCy

(i, t)

] [
0 0

ECy
(i) 0

]
= D̃Cy

(i)F̃Cy
(i, t)ẼCy

(i).

Let us now study the stability of the extended dynamics. Using the results
of Chapter 2, the dynamics are stable if there exists a set of symmetric and
positive-definite matrices P = (P (1), · · · , P (N)) > 0 such that the following
holds for each i ∈ S :

Ã�(i, t)P (i) + P (i)Ã(i, t) +
N∑

j=1

λijP (j) < 0.

Using the expression of Ã(i, t), we get

Ã�(i)P (i) + P (i)Ã(i) + P (i)ΔÃA(i, t) + ΔÃ�
A(i, t)P (i)

+P (i)ΔB̃B(i, t) + ΔB̃�
B (i, t)P (i) + P (i)ΔC̃Cy

(i, t)
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+ΔC̃�
Cy

(i, t)P (i) +
N∑

j=1

λijP (j) < 0.

Based on the Lemma 7 in Appendix A, we have

P (i)ΔÃA(i, t) + ΔÃ�
A(i, t)P (i)

≤ ε̃−1
A (i)P (i)D̃A(i)D̃�

A(i)P (i) + ε̃A(i)Ẽ�
A (i)ẼA(i),

P (i)ΔB̃B(i, t) + ΔB̃�
B (i, t)P (i)

≤ ε̃−1
B (i)P (i)D̃B(i)D̃�

B(i)P (i) + ε̃B(i)Ẽ�
B (i)ẼB(i),

P (i)ΔC̃Cy
(i, t) + ΔC̃�

Cy
(i, t)P (i)

≤ ε̃−1
Cy

(i)P (i)D̃Cy
(i)D̃�

Cy
(i)P (i) + ε̃Cy

(i)Ẽ�
Cy

(i)ẼCy
(i).

Using this and the Schur complement, the previous stability condition will
be satisfied if the following holds:⎡⎢⎢⎣

J̃(i) P (i)D̃A(i) P (i)D̃B(i) P (i)D̃Cy
(i)

D̃�
A(i)P (i) −ε̃A(i)I 0 0

D̃�
B(i)P (i) 0 −ε̃B(i)I 0

D̃�
Cy

(i)P (i) 0 0 −ε̃Cy
(i)I

⎤⎥⎥⎦ < 0,

with

J̃(i) = Ã�(i)P (i) + P (i)Ã(i) +
N∑

j=1

λijP (j) + ε̃A(i)Ẽ�
A (i)ẼA(i)

+ε̃B(i)Ẽ�
B (i)ẼB(i) + ε̃B(i)Ẽ�

Cy
(i)ẼCy

(i).

Again using the Schur complement, we get

J(i) + P (i)
[
D̃A(i) D̃B(i) D̃Cy (i)

]
Υ−1(i)

⎡⎣ D̃�
A(i)

D̃�
B(i)

D̃�
Cy

(i)

⎤⎦P (i)

+
[
Ẽ�

A (i) Ẽ�
B (i) Ẽ�

Cy
(i)

]
Υ (i)

⎡⎣ ẼA(i)
ẼB(i)
ẼCy

(i)

⎤⎦ < 0,

Υ (i) =

⎡⎣ ε̃A(i)I 0 0
0 ε̃B(i)I 0
0 0 ε̃Cy

(i)I

⎤⎦ ,

with J(i) = Ã�(i)P (i) + P (i)Ã(i) +
∑N

j=1 λijP (j).
This set of coupled matrix inequalities that guarantees robust stochas-

tic stability is nonlinear in P (i) and the controller gains, KA(i), KB(i), and
KC(i). To cast it into an LMI form let us pre- and post-multiply this inequal-
ity by U�(i)V �(i) and V (i)U(i), respectively, as we did previously. Before
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multiplying, notice that U�(i)V �(i)J(i)V (i)U(i) has already been computed
and we do not need to recompute it. For the two other terms we have

U�(i)V �(i)
[
Ẽ�

A (i) Ẽ�
B (i) Ẽ�

Cy
(i)

]
Υ (i)

×

⎡⎣ ẼA(i)
ẼB(i)
ẼCy

(i)

⎤⎦V (i)U(i)

= U�(i)V �(i)

⎡⎣ ε̃A(i)Ẽ�
A (i)ẼA(i)

+ε̃B(i)Ẽ�
B (i)ẼB(i)

+ε̃Cy
(i)Ẽ�

Cy
(i)Ẽcy

(i)

⎤⎦V (i)U(i)

= ε̃A(i)
[

W�(i)E�
A (i)EA(i)W (i) W�(i)E�

A (i)EA(i)
E�

A (i)EA(i)W (i) E�
A (i)EA(i)

]

+ε̃B(i)

⎡⎣[
W�(i)P2(i)P−1

3 (i)K�
C (i)E�

B (i)
×EB(i)KC(i)P−1

3 (i)P�
2 (i)W (i)

]
0

0 0

⎤⎦
+ε̃Cy

[
W�(i)E�

Cy
(i)ECy

(i)W (i) W�(i)E�
Cy

(i)ECy
(i)

E�
Cy

(i)ECy
(i)W (i) E�

Cy
(i)ECy

(i)

]
and

U�(i)V �(i)P (i)
[
D̃A(i) D̃B(i) D̃Cy

(i)
]
Υ−1(i)

×

⎡⎣ D̃�
A(i)

D̃�
B(i)

D̃�
Cy

(i)

⎤⎦P (i)V (i)U(i)

= U�(i)V �(i)

⎡⎣ ε̃−1
A (i)P (i)D̃A(i)D̃�

A(i)P (i)
ε̃−1

B (i)P (i)D̃B(i)D̃�
B(i)P (i)

ε̃−1
Cy

(i)P (i)D̃Cy
(i)D̃�

Cy
(i)P (i)

⎤⎦V (i)U(i).

To compute the expression of this term, notice that for the first term we
have

U�(i)V �(i)
[
P (i)D̃A(i)D̃�

A(i)P (i)
]
V (i)U(i)

= U�(i)V �(i)
[

P1(i)DA(i)D�
A(i)P1(i)

P�
2 (i)DA(i)D�

A(i)P1(i)

P1(i)DA(i)D�
A(i)P2(i)

P�
2 (i)DA(i)D�

A(i)P2(i)

]
V (i)U(i)

=
[

W�(i) −W�(i)P2(i)P−1
3 (i)

I 0

]
[

P1(i)DA(i)D�
A(i)P1(i) P1(i)DA(i)D�

A(i)P2(i)
P�

2 (i)DA(i)D�
A(i)P1(i) P�

2 (i)DA(i)D�
A(i)P2(i)

]
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W (i) I

−P−1
3 (i)P�

2 (i)W (i) 0

]

=

⎡⎢⎢⎢⎢⎣
⎡⎢⎢⎣

W�(i)P1(i)DA(i)D�
A(i)

×
[
P1(i) − P2(i)P−1

3 (i)P�
2 (i)

]
W (i)

−W�(i)P2(i)P−1
3 (i)P�

2 (i)DA(i)D�
A(i)

×
[
P1(i) − P2(i)P−1

3 (i)P�
2 (i)

]
W (i)

⎤⎥⎥⎦
P1(i)DA(i)D�

A(i)
[
P1(i) − P2(i)P−1

3 (i)P�
2 (i)

]
W (i)

W�(i)
[
P1(i) − P2(i)P−1

3 (i)P�
2 (i)

]
DA(i)D�

A(i)P1(i)
P1(i)DA(i)D�

A(i)P1(i)

]
.

Using the fact that
[
P1(i) − P2(i)P−1

3 (i)P�
2 (i)

]
W (i) = I, we get

U�(i)V �(i)
[
P (i)D̃A(i)D̃�

A(i)P (i)
]
V (i)U(i)

=
[

DA(i)D�
A(i) DA(i)D�

A(i)P1(i)
P1(i)DA(i)D�

A(i) P1(i)DA(i)D�
A(i)P1(i)

]
.

For the second term, we have

U�(i)V �(i)
[

P1(i)DB(i)D�
B(i)P1(i)

P�
2 (i)DB(i)D�

B(i)P1(i)

P1(i)DB(i)D�
B(i)P2(i)

P�
2 (i)DB(i)D�

B(i)P2(i)

]
V (i)U(i)

=
[

W�(i) −W�(i)P2(i)P−1
3 (i)

I 0

]
[

P1(i)DB(i)D�
B(i)P1(i) P1(i)DB(i)D�

B(i)P2(i)
P�

2 (i)DB(i)D�
B(i)P1(i) P�

2 (i)DB(i)D�
B(i)P2(i)

]
[

W (i) I

−P−1
3 (i)P�

2 (i)W (i) 0

]

=

⎡⎢⎢⎢⎢⎣
⎡⎢⎢⎣

W�(i)P1(i)DB(i)D�
B(i)

×
[
P1(i) − P2(i)P−1

3 (i)P�
2 (i)

]
W (i)

−W�(i)P2(i)P−1
3 (i)P�

2 (i)DB(i)D�
B(i)

×
[
P1(i) − P2(i)P−1

3 (i)P�
2 (i)

]
W (i)

⎤⎥⎥⎦
P1(i)DB(i)D�

B(i)
[
P1(i) − P2(i)P−1

3 (i)P�
2 (i)

]
W (i)

W�(i)
[
P1(i) − P2(i)P−1

3 (i)P�
2 (i)

]
DB(i)D�

B(i)P1(i)
P1(i)DB(i)D�

B(i)P1(i)

]
=

[
DB(i)D�

B(i) DB(i)D�
B(i)P1(i)

P1(i)DB(i)D�
B(i) P1(i)DB(i)D�

B(i)P1(i)

]
.

For the third term, we have

U�(i)V �(i)

×
[

P2(i)KB(i)DCy
(i)D�

Cy
(i)K�

B (i)P�
2 (i)

P3(i)KB(i)DCy
(i)D�

Cy
(i)K�

B (i)P�
2 (i)
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P2(i)KB(i)DCy
(i)D�

Cy
(i)K�

B (i)P3(i)
P3(i)KB(i)DCy

(i)D�
Cy

(i)K�
B (i)P3(i)

]
×V (i)U(i)

=
[

W�(i) −W�(i)P2(i)P−1
3 (i)

I 0

]
[

P2(i)KB(i)DCy
(i)D�

Cy
(i)K�

B (i)P�
2 (i)

P3(i)KB(i)DCy
(i)D�

Cy
(i)K�

B (i)P�
2 (i)

P2(i)KB(i)DCy
(i)D�

Cy
(i)K�

B (i)P3(i)
P3(i)KB(i)DCy

(i)D�
Cy

(i)K�
B (i)P3(i)

]
[

W (i) I

−P−1
3 (i)P�

2 (i)W (i) 0

]
=

[
0 0
0 P2(i)KB(i)DCy

(i)D�
Cy

(i)K�
B (i)P�

2 (i)W (i)

]
.

Taking into account these computations, we have

U�(i)V �(i)

⎡⎣ ε̃−1
A (i)P (i)D̃A(i)D̃�

A(i)P (i)
ε̃−1

B (i)P (i)D̃B(i)D̃�
B(i)P (i)

ε̃−1
Cy

(i)P (i)D̃Cy
(i)D̃�

Cy
(i)P (i)

⎤⎦V (i)U(i)

= ε̃−1
A (i)

[
DA(i)D�

A(i) DA(i)D�
A(i)P1(i)

P1(i)DA(i)D�
A(i) P1(i)DA(i)D�

A(i)P1(i)

]
+ε̃−1

B (i)
[

DB(i)D�
B(i) DB(i)D�

B(i)P1(i)
P1(i)DB(i)D�

B(i) P1(i)DB(i)D�
B(i)P1(i)

]
+ε̃−1

Cy
(i)

[
0 0
0 P2(i)KB(i)DCy

(i)D�
Cy

(i)K�
B (i)P�

2 (i)W (i)

]
.

Using all these transformations, the previous stochastic stability condition
for the extended state equation becomes [

M̂1(i) M2(i)
M�

2 (i) M3(i)

]

+ε̃−1
A (i)

[
DA(i)D�

A(i) DA(i)D�
A(i)P1(i)

P1(i)DA(i)D�
A(i) P1(i)DA(i)D�

A(i)P1(i)

]
+ε̃−1

B (i)
[

DB(i)D�
B(i) DB(i)D�

B(i)P1(i)
P1(i)DB(i)D�

B(i) P1(i)DB(i)D�
B(i)P1(i)

]
+ε̃−1

Cy
(i)

[
0 0
0 P2(i)KB(i)DCy

(i)D�
Cy

(i)K�
B (i)P�

2 (i)W (i)

]
+ε̃A(i)

[
W�(i)E�

A (i)EA(i)W (i) W�(i)E�
A (i)EA(i)

E�
A (i)EA(i)W (i) E�

A (i)EA(i)

]
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+ε̃B(i)

⎡⎣[
W�(i)P2(i)P−1

3 (i)K�
C (i)E�

B (i)
×EB(i)KC(i)P−1

3 (i)P�
2 (i)W (i)

]
0

0 0

⎤⎦
+ε̃Cy

(i)
[

W�(i)E�
Cy

(i)ECy
(i)W (i) W�(i)E�

Cy
(i)ECy

(i)
E�

Cy
(i)ECy

(i)W (i) E�
Cy

(i)ECy
(i)

]
< 0,

which can be rewritten as follows:[
Ĥ1(i) H2(i)
H�

2 (i) H3(i)

]
< 0,

with

Ĥ1(i) = M̂1(i) + ε̃−1
A (i)DA(i)D�

A(i) + ε̃−1
B (i)DB(i)D�

B(i)
+ε̃AW�(i)E�

A (i)EA(i)W (i)
+ε̃BW�(i)P2(i)P−1

3 (i)K�
C (i)E�

B (i)
×EB(i)KC(i)P−1

3 (i)P�
2 (i)W (i)

+ε̃Cy
(i)W�(i)E�

Cy
(i)ECy

(i)W (i),

H2(i) = M2(i) + ε̃−1
A (i)DA(i)D�

A(i)P1(i)
+ε̃−1

B (i)DB(i)D�
B(i)P1(i)

+ε̃A(i)W�(i)E�
A (i)EA(i)

+ε̃Cy
(i)W�(i)E�

Cy
(i)ECy

(i),

H3(i) = M3(i) + ε̃−1
A (i)P1(i)DA(i)D�

A(i)P1(i)
+ε̃−1

B (i)P1(i)DB(i)D�
B(i)P1(i)

+ε̃−1
Cy

(i)P2(i)KB(i)DCy
(i)D�

Cy
(i)KB(i)P2(i)W (i)

+ε̃A(i)E�
A (i)EA(i) + ε̃Cy

(i)E�
Cy

(i)ECy
(i).

If we define KB(i) and KC(i) as we did previously, that is,

P (i) =
[

X(i) Y −1(i) − X(i)
Y −1(i) − X(i) X(i) − Y −1(i)

]
,

KB(i) = P2(i)KB(i) =
(
Y −1(i) − X(i)

)
KB(i),

KC(i) = −KC(i)P−1
3 (i)P�

2 (i)W (i) = KC(i)Y (i),

and we follow the same steps after choosing the controller gains (putting
H2(i) = 0) as follows:
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KA(i) =
[
X(i) − Y −1(i)

]−1
[
A�(i) + X(i)A(i)Y (i)

+X(i)B(i)KC(i) + KB(i)Cy(i)Y (i)
+

∑N
j=1 λijY

−1(j)Y (i)
+ε̃−1

A (i)X(i)DA(i)D�
A(i) + ε̃−1

B (i)X(i)DB(i)D�
B(i)

+ε̃A(i)E�
A (i)EA(i)Y (i)

+ε̃Cy
(i)E�

Cy
(i)ECy

(i)Y (i)
]
Y −1(i),

KB(i) =
[
Y −1(i) − X(i)

]−1 KB(i),
KC(i) = KC(i)Y −1(i),

we get

H1(i) < 0,

H3(i) < 0,

with

H1(i) = A(i)Y (i) + Y �(i)A�(i) + B(i)KC(i) + K�
C (i)B�(i)

+
N∑

j=1

λijY (i)Y −1(j)Y (i) + ε̃−1
A (i)DA(i)D�

A(i)

+ε̃−1
B (i)DB(i)D�

B(i) + ε̃AY �(i)E�
A (i)EA(i)Y (i)

+ε̃BK�
C (i)E�

B (i)EB(i)KC(i)
+ε̃Cy

(i)Y �(i)E�
Cy

(i)ECy
(i)Y (i),

H3(i) = X(i)A(i) + A�(i)X(i) + KB(i)Cy(i)

+K�
B(i)C�

y (i) +
N∑

j=1

λijX(j)

+ε̃−1
A (i)X(i)DA(i)D�

A(i)X(i)
+ε̃−1

B (i)X(i)DB(i)D�
B(i)X(i)

+ε̃−1
Cy

(i)KB(i)DCy
(i)D�

Cy
(i)K�

B(i)

+ε̃A(i)E�
A (i)EA(i)

+ε̃Cy
(i)E�

Cy
(i)ECy

(i).

Using the fact that

N∑
j=1

λijY (i)Y −1(j)Y (i) = λiiY (i) + Si(Y )Y−1
i (Y )S�

i (Y ),

where Si(Y ) and Yi(Y ) keep the same definitions as before, these two matrix
inequalities are equivalent to the following LMIs:
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JH1(i) Y �(i)E�

A (i) K�
C (i)E�

B (i)
EA(i)Y (i) −ε̃−1

A (i)I 0
EB(i)KC(i) 0 −ε̃−1

B (i)I
ECy

(i)Y (i) 0 0
S�

i (Y ) 0 0

Y �(i)E�
Cy

(i) Si(Y )
0 0
0 0

ε̃−1
Cy

(i)I 0
0 −Yi(Y )

⎤⎥⎥⎥⎥⎦ < 0,

⎡⎢⎢⎣
JH2(i) X(i)DA(i) X(i)DB(i) KB(i)DCy

(i)
D�

A(i)X(i) −ε̃A(i)I 0 0
D�

B(i)X(i) 0 −ε̃B(i)I 0
D�

Cy
(i)K�

B(i) 0 0 −ε̃Cy
(i)I

⎤⎥⎥⎦ < 0,

with

JH1(i) = A(i)Y (i) + Y �(i)A�(i) + B(i)KC(i) + K�
C (i)B�(i)

+λiiY (i) + ε̃−1
A (i)DA(i)D�

A(i) + ε̃−1
B (i)DB(i)D�

B(i),
JH2(i) = X(i)A(i) + A�(i)X(i) + KB(i)Cy(i) + K�

B(i)C�
y (i)

+
N∑

j=1

λijX(j) + ε̃A(i)E�
A (i)EA(i) + ε̃Cy

(i)E�
Cy

(i)ECy
(i).

The results of all these developments are summarized by the following
theorem.

Theorem 25. Let ε̃A = (ε̃A(1), · · · , ε̃A(N)), ε̃B = (ε̃B(1), · · · , ε̃B(N)), and
ε̃Cy

= (ε̃Cy
(1), · · · , ε̃Cy

(N)) be given sets of positive scalars. System (3.51) is
stochastically stable if and only if for every i ∈ S , the following LMIs are
feasible for some symmetric and positive-definite matrices X = (X(1), · · · ,
X(N)) > 0, and Y = (Y (1), · · · , Y (N)) > 0, and matrices KB = (KB(1), · · · ,
KB(N)), and KC = (KC(1), · · · ,KC(N)):⎡⎢⎢⎢⎢⎣

JH1(i) Y �(i)E�
A (i) K�

C(i)E�
B (i)

EA(i)Y (i) −ε̃−1
A (i)I 0

EB(i)KC(i) 0 −ε̃−1
B (i)I

ECy
(i)Y (i) 0 0

S�
i (Y ) 0 0

Y �(i)E�
Cy

(i) Si(Y )
0 0
0 0

ε̃−1
Cy

(i)I 0
0 −Yi(Y )

⎤⎥⎥⎥⎥⎦ < 0, (3.46)
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JH2(i) X(i)DA(i) X(i)DB(i)

D�
A(i)X(i) −ε̃A(i)I 0

D�
B(i)X(i) 0 −ε̃B(i)I

D�
Cy

(i)K�
B(i) 0 0

KB(i)DCy
(i)

0
0

−ε̃Cy
(i)I

⎤⎥⎥⎦ < 0, (3.47)

[
Y (i) I

I X(i)

]
> 0, (3.48)

with

Si(Y ) =
[√

λi1Y (i), · · · ,
√

λii−1Y (i),
√

λii+1Y (i), · · · ,
√

λiNY (i)
]
,

Yi(Y ) = diag [Y (1), · · · , Y (i − 1), Y (i + 1), · · · , Y (N)] .

Furthermore, the dynamic output-feedback controller is given by⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

KA(i) =
[
X(i) − Y −1(i)

]−1
[
A�(i) + X(i)A(i)Y (i)

+X(i)B(i)KC(i) + KB(i)Cy(i)Y (i)
+

∑N
j=1 λijY

−1(j)Y (i)
+ε̃−1

A (i)X(i)DA(i)D�
A(i)

+ε̃−1
B (i)X(i)DB(i)D�

B(i)
+ε̃A(i)E�

A (i)EA(i)Y (i)

+ε̃Cy
(i)E�

Cy
(i)ECy

(i)Y (i)
]
Y −1(i),

KB(i) =
[
Y −1(i) − X(i)

]−1 KB(i),
KC(i) = KC(i)Y −1(i).

(3.49)

Example 34. Let us consider a system with two modes and see how we can
illustrate the developed results in this theorem. Let us assume that the cor-
responding data are as follows:

• mode #1:

A(1) =
[

1.00 −0.50
0.10 1.00

]
, B(1) =

[
1.0 0.0
0.0 1.0

]
, C(1) =

[
1.0 0.0
0.0 1.0

]
,

DA(1) =
[

0.10
0.20

]
, DB(1) =

[
0.10
0.20

]
, DC(1) =

[
0.10
0.20

]
,

EA(1) =
[
0.20 0.10

]
, EB(1) =

[
0.20 0.10

]
, EC(1) =

[
0.20 0.10

]
,

• mode #2:

A(2) =
[
−0.20 0.50
0.0 −0.25

]
, B(2) =

[
1.0 0.0
0.0 1.0

]
, C(2) =

[
1.0 0.0
0.0 1.0

]
,
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DA(2) =
[

0.13
0.10

]
, DB(2) =

[
0.13
0.10

]
, DC(2) =

[
0.13
0.10

]
,

EA(2) =
[
0.10 0.20

]
, EB(2) =

[
0.10 0.20

]
, EC(2) =

[
0.10 0.20

]
.

The switching between the two modes is described by the following tran-
sition matrix:

Λ =
[
−2.0 2.0
3.0 −3.0

]
.

The positive scalars εA(i), εB(i), and εCy
(i), i = 1, 2 are chosen as follows:

εA(1) = εA(2) = 0.50,

εB(1) = εB(2) = 0.10,

εC(1) = εC(2) = 0.10.

Solving the LMIs (3.46)–(3.48), we get

X(1) =
[

2.8679 −1.1001
−1.1001 1.0058

]
, X(2) =

[
11.8504 −5.9146
−5.9146 3.4179

]
,

Y (1) =
[

65.8510 −37.4644
−37.4644 116.3295

]
, Y (2) =

[
86.0951 −29.9875
−29.9875 81.6347

]
,

KB(1) =
[
−120.3571 59.6013
61.2617 −31.7377

]
, KB(2) =

[
−44.3132 55.2044
58.9262 −79.4786

]
,

KC(1) =
[
−198.1368 69.5958
90.6906 −292.8053

]
, KC(2) =

[
−141.1144 −59.3008

7.5585 −96.6843

]
.

The corresponding controller gains are given by

KA(1) =
[
−34.5409 14.0604
25.7147 −16.7391

]
, KB(1) =

[
32.2672 −15.0181
−25.6925 15.1979

]
,

KC(1) =
[
−3.2671 −0.4539
−0.0671 −2.5386

]
, KA(2) =

[
35.3248 −54.8428
82.4890 −118.5219

]
.

KB(2) =
[
−37.6957 53.8016
−82.8657 116.9123

]
, KC(2) =

[
−2.1697 −1.5234
−0.3724 −1.3211

]
.

Based on the results of this theorem, the system of this example is sto-
chastically stable under the output feedback controller with the computed
gains.

Let us now study the effect of external Wiener process disturbance of
the results we developed. For this purpose consider a continuous-time linear
piecewise deterministic system defined in a probability space (Ω,F , P) with
the following dynamics:
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dx(t) = A(r(t))x(t)dt + B(r(t))u(t)dt + W(r(t))x(t)dω(t),
y(t) = Cy(r(t))x(t), x(0) = x0.

(3.50)

The problem consists of designing an output feedback controller that sta-
bilizes the closed loop of the considered class of system. The structure of this
output feedback controller is given by (3.38).

Our goal in this section is to synthesize the gains of the output feedback
controller given by (3.38). Plugging the controller into the dynamics we get
the following closed-loop dynamics:

dη(t) =
[

A(i) B(i)KC(i)
KB(i)Cy(i) KA(i)

]
η(t)dt +

[
W(i) 0

0 0

]
η(t)dω(t)

= Ã(i)η(t)dt + W̃(i)η(t)dω(t), (3.51)

where Ã(i) and W̃(i) are defined by

η(t) =
[

x(t)
xc(t)

]
,

Ã(i) =
[

A(i) B(i)KC(i)
KB(i)Cy(i) KA(i)

]
,

W̃(i) =
[

W(i) 0
0 0

]
.

Let us now return to the initial problem and see how to design the output
feedback controller with the form given by (3.38).

Based on Theorem 8, the closed-loop system will be stable if the following
holds for every i ∈ S :

Ã�(i)P (i) + P (i)Ã(i) + W̃�(i)P (i)W̃(i) +
N∑

j=1

λijP (j) < 0. (3.52)

This inequality is nonlinear in the design parameters KA(i), KB(i), KC(i),
and P (i) for every i ∈ S . To cast it into an LMI, let us define P (i), W (i), U(i),
and V (i) as done previously, and pre- and post-multiply (3.52) by U�(i)V �(i)
and V (i)U(i), respectively, to get

U�(i)V �(i)Ã�(i)P (i)V (i)U(i) + U�(i)V �(i)P (i)Ã(i)V (i)U(i)
+U�(i)V �(i)W̃�(i)P (i)W̃(i)V (i)U(i)

+
N∑

j=1

λijU
�(i)V �(i)P (j)V (i)U(i) < 0. (3.53)

Let us now compute the different terms in this inequality. Using standard
algebraic manipulations as done previously we get
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U�(i)V �(i)P (i)Ã(i)V (i)U(i)

=

⎡⎢⎢⎢⎢⎢⎢⎣

[
A(i)W (i)

−B(i)KC(i)P−1
3 (i)P�

2 (i)W (i)

]
⎡⎢⎢⎣

P1(i)A(i)W (i)
+P2(i)KB(i)Cy(i)W (i)

−P1(i)B(i)KC(i)P−1
3 (i)P�

2 (i)W (i)
−P2(i)KA(i)P−1

3 (i)P�
2 (i)W (i)

⎤⎥⎥⎦
A(i)[

P1(i)A(i)
+P2(i)KB(i)Cy(i)

]⎤⎦ .

Using the fact that

U�(i)V �(i)Ã�(i)P (i)V (i)U(i)

is the transpose of

U�(i)V �(i)P (i)Ã(i)V (i)U(i),

we get

U�(i)V �(i)Ã�(i)P (i)V (i)U(i)

=

⎡⎣[
W�(i)A�(i)

−W�(i)P2(i)P−1
3 (i)K�

C (i)B�(i)

]
A�(i)⎡⎢⎢⎣

W�(i)A�(i)P1(i)
+W�(i)C�

y (i)K�
B (i)P�

2 (i)
−W�(i)P2(i)P−1

3 (i)K�
C (i)B�(i)P1(i)

−W�(i)P2(i)P−1
3 (i)K�

A (i)P�
2 (i)

⎤⎥⎥⎦
[

A�(i)P1(i)
+C�

y (i)K�
B (i)P�

2 (i)

]

⎤⎥⎥⎥⎥⎥⎥⎦ .

For the term U�(i)V �(i)P (j)V (i)U(i), we have[
W�(i) −W�(i)P2(i)P−1

3 (i)
I 0

] [
P1(j) P2(j)
P�

2 (j) P3(j)

]
×

[
W (i) I

−P−1
3 (i)P�

2 (i)W (i) 0

]

=

⎡⎢⎢⎢⎢⎣
⎡⎢⎢⎣

W�(i)P1(j)W (i)
−W�(i)P2(i)P−1

3 (i)P�
2 (j)W (i)

−W�(i)P2(j)P−1
3 (i)P�

2 (i)W (i)
+W�(i)P2(i)P−1

3 (i)P3(j)P−1
3 (i)P�

2 (i)W (i)

⎤⎥⎥⎦
P1(j)W (i) − P2(j)P−1

3 (i)P�
2 (i)W (i)[

W�(i)P1(j)
−W�(i)P2(i)P−1

3 (i)P�
2 (j)

]
P1(j)

⎤⎦ ,
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which can be rewritten as follows:⎡⎢⎢⎣
⎡⎣ W�(i)W−1(j)W (i)

+W�(i)
[
P2(i)P−1

3 (i)P3(j) − P�
2 (j)

]
×P−1

3 (j)
[
P2(i)P−1

3 (i)P3(j) − P�
2 (j)

]�
W (i)

⎤⎦ �[
P�

1 (j) − P2(j)P−1
3 (i)P�

2 (i)
]
W (i) P1(j)

⎤⎥⎥⎦ .

For the term U�(i)V �(i)W̃�(i)P (i)W̃(i)V (i)U(i), notice that

W̃�(i)P (i)W̃(i) =
[

W�(i)P1(i)W(i) 0
0 0

]
,

which implies

U�(i)V �(i)W̃�(i)P (i)W̃(i)V (i)U(i)

=
[

W�(i)W�(i)P1(i)W(i)W (i) W�(i)W�(i)P1(i)W(i)
W�(i)P1(i)W(i)W (i) W�(i)P1(i)W(i)

]
=

[
W�(i) 0

0 I

] [
W�(i)P1(i)W(i) W�(i)P1(i)W(i)
W�(i)P1(i)W(i) W�(i)P1(i)W(i)

]
×

[
W (i) 0

0 I

]
.

Using now all the previous algebraic manipulations, the stability condition
for the closed-loop system becomes[

M̂1(i) M2(i)
M�

2 (i) M3(i)

]
< 0,

with

M̂1(i) = M1(i) +
N∑

j=1

λijW
�(i)

[
P2(i)P−1

3 (i)P3(j) − P�
2 (j)

]
×P−1

3 (j)
[
P2(i)P−1

3 (i)P3(j) − P�
2 (j)

]�
W (i)

+W�(i)W�(i)P1(i)W(i)W (i),
M1(i) = A(i)W (i) + W�(i)A�(i) − B(i)KC(i)P−1

3 (i)P�
2 (i)W (i)

−W�(i)P2(i)P−1
3 (i)K�

C (i)B�(i)

+
N∑

j=1

λijW
�(i)W−1(j)W (i),

M2(i) = A(i) + W�(i)A�(i)P1(i)
+W�(i)C�

y (i)K�
B (i)P�

2 (i)

−W�(i)P2(i)P−1
3 (i)K�

C (i)B�(i)P1(i)
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−W�(i)P2(i)P−1
3 (i)K�

A (i)P�
2 (i)

+
N∑

j=1

λijW
�(i)

[
P1(j) − P2(i)P−1

3 (i)P�
2 (j)

]�
+W�(i)W�(i)P1(i)W(i),

M3(i) = P1(i)A(i) + P2(i)KB(i)Cy(i) + A�(i)P1(i)

+C�
y (i)K�

B (i)P�
2 (i) +

N∑
j=1

λijP1(j)

+W�(i)P1(i)W(i).

Since

N∑
j=1

λijW
�(i)

[
P2(i)P−1

3 (i)P3(j) − P�
2 (j)

]
P−1

3 (j)

×
[
P2(i)P−1

3 (i)P3(j) − P�
2 (j)

]�
W (i) ≥ 0,

and W�(i)W�(i)P1(i)W(i)W (i) ≥ 0, we get the following equivalent condi-
tion: [

M1(i) M2(i)
M�

2 (i) M3(i)

]
< 0.

Letting

P (i) =
[

X(i) Y −1(i) − X(i)
Y −1(i) − X(i) X(i) − Y −1(i)

]
,

where X(i) > 0 and Y (i) > 0 are symmetric and positive-definite matrices
for each i ∈ S, that is,

P1(i) = X(i),
P2(i) = Y −1(i) − X(i),
P3(i) = X(i) − Y −1(i),

implies W (i) =
[
P1(i) − P2(i)P−1

3 (i)P�
2 (i)

]−1
= Y (i) and P−1

3 (i)P�
2 (i) =

−I.
If we define KB(i), and KC(i) by

KB(i) = P2(i)KB(i) =
(
Y −1(i) − X(i)

)
KB(i),

KC(i) = −KC(i)P−1
3 (i)P�

2 (i)W (i) = KC(i)Y (i),

and we use all the previous algebraic manipulations, we get[
M1(i) M2(i)
M�

2 (i) M3(i)

]
< 0,
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with

M1(i) = A(i)Y (i) + Y �(i)A�(i) + B(i)KC(i)

+K�
C (i)B�(i) +

N∑
j=1

λijY
�(i)Y −1(j)Y (i),

M2(i) = A(i) + Y �(i)A�(i)X(i) + Y �(i)C�
y (i)K�

B(i)

+K�
C (i)B�(i)X(i) + Y �(i)K�

A (i)
[
Y −1(i) − X(i)

]�
+

N∑
j=1

λijY
�(i)Y −1(j)

+Y �(i)W�(i)X(i)W(i),
M3(i) = X(i)A(i) + KB(i)Cy(i) + A�(i)X(i)

+C�
y (i)K�

B(i) +
N∑

j=1

λijX(j) + W�(i)X(i)W(i).

Using the expression of the controller given by⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

KA(i) =
[
X(i) − Y −1(i)

]−1
[
A�(i) + X(i)A(i)Y (i)

+X(i)B(i)KC(i) + KB(i)Cy(i)Y (i) + W�(i)X(i)W(i)Y (i)

+
∑N

j=1 λijY
−1(j)Y (i)

]
Y −1(i),

KB(i) =
[
Y −1(i) − X(i)

]−1 KB(i),
KC(i) = KC(i)Y −1(i),

we have M2(i) = 0. This implies that the stability condition is equivalent to
the following conditions:

M1(i) < 0,

M3(i) < 0,

which gives

A(i)Y (i) + Y �(i)A�(i) + B(i)KC(i) + K�
C (i)B�(i)

+
N∑

j=1

λijY
�(i)Y −1(j)Y (i) < 0,

X(i)A(i) + KB(i)Cy(i) + A�(i)X(i) + C�
y (i)K�

B(i)

+
N∑

j=1

λijX(j) + W�(i)X(i)W(i) < 0.

Notice that
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N∑
j=1

λijY
�(i)Y −1(j)Y (i) = λiiY (i) + Si(Y )Y−1

i (Y )S�
i (Y ),

with

Si(Y ) =
[√

λi1Y (i), · · · ,
√

λii−1Y (i),
√

λii+1Y (i),

· · · ,
√

λiNY (i)
]
,

Yi(Y ) = diag [Y (1), · · · , Y (i − 1), Y (i + 1), · · · , Y (N)] .

Using this, the previous stability conditions become⎡⎣[
A(i)Y (i) + Y �(i)A�(i) + B(i)KC(i)

+K�
C(i)B�(i) + λiiY (i)

]
Si(Y )

S�
i (Y ) −Yi(Y )

⎤⎦ < 0,

X(i)A(i) + KB(i)Cy(i) + A�(i)X(i)

+C�
y (i)K�

B(i) +
N∑

j=1

λijX(j) + W�(i)X(i)W(i) < 0.

Finally, notice that

U�(i)V �(i)P (i)V (i)U(i) =
[

Y (i) I

I X(i)

]
> 0.

The results of the previous algebraic manipulations are summarized by the
following theorem.

Theorem 26. System (3.51) is stochastically stable if and only if for every i ∈
S , the following LMIs are feasible for some symmetric and positive-definite
matrices X = (X(1), · · · , X(N)) > 0, and Y = (Y (1), · · · , Y (N)) > 0, and
matrices KB = (KB(1), · · · ,KB(N)), and KC = (KC(1), · · · ,KC(N)):⎡⎢⎢⎣

⎡⎣ A(i)Y (i) + Y �(i)A�(i)
+B(i)KC(i)

+K�
C (i)B�(i) + λiiY (i)

⎤⎦ Si(Y )

S�
i (Y ) −Yi(Y )

⎤⎥⎥⎦ < 0, (3.54)

X(i)A(i) + KB(i)Cy(i) + A�(i)X(i) + C�
y (i)K�

B(i)

+
N∑

j=1

λijX(j) + W�(i)X(i)W(i) < 0, (3.55)[
Y (i) I

I X(i)

]
> 0, (3.56)

with
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Si(Y ) =
[√

λi1Y (i), · · · ,
√

λii−1Y (i),
√

λii+1Y (i),

· · · ,
√

λiNY (i)
]

Yi(Y ) = diag [Y (1), · · · , Y (i − 1), Y (i + 1), · · · , Y (N)] .

Furthermore, the dynamic output-feedback controller is given by⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

KA(i) =
[
X(i) − Y −1(i)

]−1
[
A�(i) + X(i)A(i)Y (i)

+X(i)B(i)KC(i) + KB(i)Cy(i)Y (i) + W�(i)X(i)W(i)Y (i)

+
∑N

j=1 λijY
−1(j)Y (i)

]
Y −1(i),

KB(i) =
[
Y −1(i) − X(i)

]−1 KB(i),
KC(i) = KC(i)Y −1(i).

(3.57)

Example 35. To illustrate the results developed, let us consider the two-mode
system of Example 34 with all the uncertainties equal to zero and

W(1) =
[

0.10 0.0
0.0 0.10

]
, W(2) =

[
0.20 0.0
0.0 0.20

]
.

Solving the LMIs (3.54)–(3.56), we get

X(1) =
[

155.3339 0.0000
0.0000 155.3339

]
, X(2) =

[
156.7142 −0.0000
−0.0000 156.7142

]
,

Y (1) =
[

85.5704 −0.0000
−0.0000 85.5704

]
, Y (2) =

[
76.2129 0.0000
0.0000 76.2129

]
,

KB(1) =
[
−241.0167 −479.2866
541.4202 −241.0167

]
, KB(2) =

[
−53.2470 −7.5294
7.5294 −45.4113

]
,

KC(1) = 103 ·
[
−0.1707 3.3137
−3.2795 −0.1707

]
, KC(2) =

[
−45.2177 −10.8637
10.8637 −41.4071

]
.

The corresponding controller gains are given by

KA(1) =
[
−2.5462 35.1425
−34.7425 −2.5462

]
, KB(1) =

[
1.5517 3.0858
−3.4858 1.5517

]
,

KC(1) =
[
−1.9946 38.7254
−38.3254 −1.9946

]
, KA(2) =

[
−1.1327 −0.6906
0.6906 −1.0827

]
,

KB(2) =
[

0.3398 0.0480
−0.0480 0.2898

]
, KC(2) =

[
−0.5933 −0.1425
0.1425 −0.5433

]
.

Using the results of this theorem, the system of this example is stochasti-
cally stable under the output feedback controller with the computed gains.
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Let us now consider that the state equation contain Wiener process ex-
ternal disturbances and norm-bounded uncertainties. In this case the state
equation becomes⎧⎪⎨⎪⎩

dx(t) = A(r(t), t)x(t)dt + B(r(t), t)u(t) + W(r(t))x(t)dω(t),
y(t) = Cy(r(t))x(t),
x(0) = x0.

(3.58)

Combining these dynamics with those of the controller, we get the follow-
ing:

dη(t) =
[

A(r(t)) B(r(t))KC(r(t))
KB(r(t))Cy(r(t)) KA(r(t))

]
η(t)dt

+

⎡⎢⎢⎣DA(r(t))FA(r(t), t)EA(r(t))
[

DB(r(t))FB(r(t), t)
×EB(r(t))KC(r(t))

]
[

KB(r(t))DCy
(r(t))

×FCy
(r(t), t)ECy

(r(t))

]
0

⎤⎥⎥⎦ η(t)dt

+
[

W(r(t)) 0
0 0

]
η(t)dω(t), (3.59)

with

η(t) =
[

x(t)
xc(t)

]
.

These dynamics can be rewritten as follows:

dη(t) =
[
Ã(r(t)) + ΔÃ(r(t), t)

]
η(t)dt + W̃(r(t))η(t)dω(t),

with

ΔÃ(r(t), t) = ΔÃA(r(t), t) + ΔB̃B(r(t), t) + ΔC̃Cy
(r(t), t),

W̃(r(t)) =
[

W(r(t)) 0
0 0

]
,

where

ΔÃA(r(t), t) =
[

DA(r(t))FA(r(t), t)EA(r(t)) 0
0 0

]
,

ΔB̃B(r(t), t) =
[

0 DB(r(t))FB(r(t), t)EB(r(t))KC(r(t))
0 0

]
,

ΔC̃Cy
(r(t), t) =

[
0 0

KB(r(t))DCy
(r(t))FCy

(r(t), t)ECy
(r(t)) 0

]
.

Notice that



3.4 Output Feedback Stabilization 123

ΔÃA(r(t), t) =
[

DA(r(t)) 0
0 0

] [
FA(r(t), t) 0

0 0

] [
EA(r(t)) 0

0 0

]
= D̃A(r(t))F̃A(r(t), t)ẼA(r(t)),

ΔB̃B(r(t), t) =
[

0 DB(r(t))
0 0

] [
0 0
0 FB(r(t), t)

]
×

[
0 0
0 EB(r(t))KC(r(t))

]
= D̃B(r(t))F̃B(r(t), t)ẼB(r(t)),

ΔC̃Cy
(r(t), t) =

[
0 0
0 KB(r(t))DCy

(r(t))

] [
0 0
0 FCy

(r(t), t)

]
×

[
0 0

ECy
(r(t)) 0

]
= D̃Cy

(r(t))F̃Cy
(r(t), t)ẼCy

(r(t)).

Let us return to the extended dynamics to study their stability. Based
on the results of Chapter 2, these dynamics are stable if there exists a set
of symmetric and positive-definite matrices P = (P (1), · · · , P (N)) > 0 such
that the following holds for each i ∈ S :

Ã�(i, t)P (i) + P (i)Ã(i, t) + W̃�(i)P (i)W̃(i) +
N∑

j=1

λijP (j) < 0.

Using the expression of Ã(i, t), we get

Ã�(i)P (i) + P (i)Ã(i) + P (i)ΔÃA(i, t) + ΔÃ�
A(i, t)P (i)

+P (i)ΔB̃B(i, t) + ΔB̃�
B (i, t)P (i) + P (i)ΔC̃Cy

(i, t)

+ΔC̃�
Cy

(i, t)P (i) + W̃�(i)P (i)W̃(i) +
N∑

j=1

λijP (j) < 0.

Based on Lemma 7 in Appendix A, we have

P (i)ΔÃA(i, t) + ΔÃ�
A(i, t)P (i)

≤ ε̃−1
A (i)P (i)D̃A(i)D̃�

A(i)P (i) + ε̃A(i)Ẽ�
A (i)ẼA(i),

P (i)ΔB̃B(i, t) + ΔB̃�
B (i, t)P (i)

≤ ε̃−1
B (i)P (i)D̃B(i)D̃�

B(i)P (i) + ε̃B(i)Ẽ�
B (i)ẼB(i),

P (i)ΔC̃Cy
(i, t) + ΔC̃�

Cy
(i, t)P (i)

≤ ε̃−1
Cy

(i)P (i)D̃Cy
(i)D̃�

Cy
(i)P (i) + ε̃Cy

(i)Ẽ�
Cy

(i)ẼCy
(i).

Using this and the Schur complement, the stability condition becomes
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J̃(i) P (i)D̃A(i) P (i)D̃B(i) P (i)D̃Cy

(i)
D̃�

A(i)P (i) −ε̃A(i)I 0 0
D̃�

B(i)P (i) 0 −ε̃B(i)I 0
D̃�

Cy
(i)P (i) 0 0 −ε̃Cy

(i)I

⎤⎥⎥⎦ < 0,

with

J̃(i) = Ã�(i)P (i) + P (i)Ã(i) + W̃�(i)P (i)W̃(i)

+
N∑

j=1

λijP (j) + ε̃A(i)Ẽ�
A (i)ẼA(i)

+ε̃B(i)Ẽ�
B (i)ẼB(i) + ε̃B(i)Ẽ�

Cy
(i)ẼCy

(i).

Again using the Schur complement, we get

J(i) + P (i)
[
D̃A(i) D̃B(i) D̃Cy

(i)
]
Υ−1(i)

⎡⎣ D̃�
A(i)

D̃�
B(i)

D̃�
Cy

(i)

⎤⎦P (i)

+
[
Ẽ�

A (i) Ẽ�
B (i) Ẽ�

Cy
(i)

]
Υ (i)

⎡⎣ ẼA(i)
ẼB(i)
ẼCy

(i)

⎤⎦ < 0,

with

J(i) = Ã�(i)P (i) + P (i)Ã(i) + W̃�(i)P (i)W̃(i) +
N∑

j=1

λijP (j).

This set of coupled matrix inequalities that guarantee the robust stochastic
stability is nonlinear in P (i) and the controller gains KA(i), KB(i), and KC(i).
To cast it into an LMI form, let us pre- and post-multiply by U�(i)V �(i) and
V (i)U(i), respectively, as we did previously. Before multiplying, notice that
U�(i)V �(i)J(i)V (i)U(i) has already been computed and we do not need to
compute it again. For the two other terms we have

U�(i)V �(i)
[
Ẽ�

A (i) Ẽ�
B (i) Ẽ�

Cy
(i)

]
Υ (i)

×

⎡⎣ ẼA(i)
ẼB(i)
ẼCy

(i)

⎤⎦V (i)U(i)

= U�(i)V �(i)

⎡⎣ ε̃A(i)Ẽ�
A (i)ẼA(i)

+ε̃B(i)Ẽ�
B (i)ẼB(i)

+ε̃Cy
(i)Ẽ�

Cy
(i)ẼCy

(i)

⎤⎦V (i)U(i)

= ε̃A(i)
[

W�(i)E�
A (i)EA(i)W (i) W�(i)E�

A (i)EA(i)
E�

A (i)EA(i)W (i) E�
A (i)EA(i)

]
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+ε̃B(i)

⎡⎣[
W�(i)P2(i)P−1

3 (i)K�
C (i)E�

B (i)
×EB(i)KC(i)P−1

3 (i)P�
2 (i)W (i)

]
0

0 0

⎤⎦
+ε̃Cy

[
W�(i)E�

Cy
(i)ECy

(i)W (i) W�(i)E�
Cy

(i)ECy
(i)

E�
Cy

(i)ECy
(i)W (i) E�

Cy
(i)ECy

(i)

]
and

U�(i)V �(i)P (i)
[
D̃A(i) D̃B(i) D̃Cy

(i)
]
Υ−1(i)

×

⎡⎣ D̃�
A(i)

D̃�
B(i)

D̃�
Cy

(i)

⎤⎦P (i)V (i)U(i)

= U�(i)V �(i)

⎡⎣ ε̃−1
A (i)P (i)D̃A(i)D̃�

A(i)P (i)
ε̃−1

B (i)P (i)D̃B(i)D̃�
B(i)P (i)

ε̃−1
Cy

(i)P (i)D̃Cy
(i)D̃�

Cy
(i)P (i)

⎤⎦V (i)U(i).

To compute the expression of this term, notice that for the first term we
have

U�(i)V �(i)
[
P (i)D̃A(i)D̃�

A(i)P (i)
]
V (i)U(i)

= U�(i)V �(i)
[

P1(i)DA(i)D�
A(i)P1(i)

P�
2 (i)DA(i)D�

A(i)P1(i)

P1(i)DA(i)D�
A(i)P2(i)

P1(i)DA(i)D�
A(i)P2(i)

]
V (i)U(i)

=
[

W�(i) −W�(i)P2(i)P−1
3 (i)

I 0

]
[

P1(i)DA(i)D�
A(i)P1(i) P1(i)DA(i)D�

A(i)P2(i)
P�

2 (i)DA(i)D�
A(i)P1(i) P�

2 (i)DA(i)D�
A(i)P2(i)

]
[

W (i) I

−P−1
3 (i)P�

2 (i)W (i) 0

]

=

⎡⎢⎢⎢⎢⎢⎢⎣

⎡⎢⎢⎣
W�(i)P1(i)DA(i)D�

A(i)
×

[
P1(i) − P2(i)P−1

3 (i)P�
2 (i)

]
W (i)

−W�(i)P2(i)P−1
3 (i)P�

2 (i)DA(i)
×D�

A(i)
[
P1(i) − P2(i)P−1

3 (i)P�
2 (i)

]
W (i)

⎤⎥⎥⎦
P1(i)DA(i)D�

A(i)
[
P1(i) − P2(i)P−1

3 (i)P�
2 (i)

]
W (i)

W�(i)
[
P1(i) − P2(i)P−1

3 (i)P�
2 (i)

]
DA(i)D�

A(i)P1(i)

P1(i)DA(i)D�
A(i)P1(i)

⎤⎥⎥⎥⎥⎥⎥⎦
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=
[

DA(i)D�
A(i) DA(i)D�

A(i)P1(i)
P1(i)DA(i)D�

A(i) P1(i)DA(i)D�
A(i)P1(i)

]
.

For the second term, we have

U�(i)V �(i)
[

P1(i)DB(i)D�
B(i)P1(i)

P�
2 (i)DB(i)D�

B(i)P1(i)

P1(i)DB(i)D�
B(i)P2(i)

P2(i)DB(i)D�
B(i)P2(i)

]
V (i)U(i)

=
[

W�(i) −W�(i)P2(i)P−1
3 (i)

I 0

]
[

P1(i)DB(i)D�
B(i)P1(i) P1(i)DB(i)D�

B(i)P2(i)
P�

2 (i)DB(i)D�
B(i)P1(i) P�

2 (i)DB(i)D�
B(i)P2(i)

]
[

W (i) I

−P−1
3 (i)P�

2 (i)W (i) 0

]

=

⎡⎢⎢⎢⎢⎢⎢⎣

⎡⎢⎢⎣
W�(i)P1(i)DB(i)D�

B(i)
×

[
P1(i) − P2(i)P−1

3 (i)P�
2 (i)

]
W (i)

W�(i)P2(i)P−1
3 (i)P�

2 (i)DB(i)
×D�

B(i)
[
P1(i) − P2(i)P−1

3 (i)P�
2 (i)

]
W (i)

⎤⎥⎥⎦
P1(i)DB(i)D�

B(i)
[
P1(i) − P2(i)P−1

3 (i)P�
2 (i)

]
W (i)

W�(i)
[
P1(i) − P2(i)P−1

3 (i)P�
2 (i)

]
DB(i)D�

B(i)P1(i)

P1(i)DB(i)D�
B(i)P1(i)

⎤⎥⎥⎥⎥⎥⎥⎦
=

[
DB(i)D�

B(i) DB(i)D�
B(i)P1(i)

P1(i)DB(i)D�
B(i) P1(i)DB(i)D�

B(i)P1(i)

]
,

and for the third term, we have

U�(i)V �(i)

×
[

P2(i)KB(i)DCy
(i)D�

Cy
(i)K�

B (i)P�
2 (i)

P2(i)KB(i)DCy
(i)D�

Cy
(i)K�

B (i)P�
2 (i)

P2(i)KB(i)DCy
(i)D�

Cy
(i)K�

B (i)P3(i)
P3(i)KB(i)DCy

(i)D�
Cy

(i)K�
B (i)P3(i)

]
×V (i)U(i)

=
[

w�(i) −w�(i)P2(i)P−1
3 (i)

I 0

]
[

P2(i)KB(i)DCy
(i)D�

Cy
(i)K�

B (i)P�
2 (i)

P3(i)KB(i)DCy
(i)D�

Cy
(i)K�

B (i)P�
2 (i)
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P2(i)KB(i)DCy
(i)D�

Cy
(i)K�

B (i)P3(i)
P3(i)KB(i)DCy

(i)D�
Cy

(i)K�
B (i)P3(i)

]
[

w(i) I

−P−1
3 (i)P�

2 (i)w(i) 0

]
=

[
0 0
0 P2(i)KB(i)DCy

(i)D�
Cy

(i)K�
B (i)P�

2 (i)

]
.

Taking into account all these computations, we have

U�(i)V �(i)

⎡⎣ ε̃−1
A (i)P (i)D̃A(i)D̃�

A(i)P (i)
ε̃−1

B (i)P (i)D̃B(i)D̃�
B(i)P (i)

ε̃−1
Cy

(i)P (i)D̃Cy
(i)D̃�

Cy
(i)P (i)

⎤⎦V (i)U(i)

= ε̃−1
A (i)

[
DA(i)D�

A(i) DA(i)D�
A(i)P1(i)

P1(i)DA(i)D�
A(i) P1(i)DA(i)D�

A(i)P1(i)

]
+ε̃−1

B (i)
[

DB(i)D�
B(i) DB(i)D�

B(i)P1(i)
P1(i)DB(i)D�

B(i) P1(i)DB(i)D�
B(i)P1(i)

]
+ε̃−1

Cy
(i)

[
0 0
0 P2(i)KB(i)DCy

(i)D�
Cy

(i)K�
B (i)P�

2 (i)

]
.

Using all these transformations, the previous stochastic stability condition
for the extended dynamics become [

M̂1(i) M2(i)
M�

2 (i) M3(i)

]

+ε̃−1
A (i)

[
DA(i)D�

A(i) DA(i)D�
A(i)P1(i)

P1(i)DA(i)D�
A(i) P1(i)DA(i)D�

A(i)P1(i)

]
+ε̃−1

B (i)
[

DB(i)D�
B(i) DB(i)D�

B(i)P1(i)
P1(i)DB(i)D�

B(i) P1(i)DB(i)D�
B(i)P1(i)

]
+ε̃−1

Cy
(i)

[
0 0
0 P2(i)KB(i)DCy

(i)D�
Cy

(i)K�
B (i)P�

2 (i)

]
+ε̃A(i)

[
W�(i)E�

A (i)EA(i)W (i) W�(i)E�
A (i)EA(i)

E�
A (i)EA(i)W (i) E�

A (i)EA(i)

]

+ε̃B(i)

⎡⎣[
W�(i)P2(i)P−1

3 (i)K�
C (i)E�

B (i)
×EB(i)KC(i)P−1

3 (i)P�
2 (i)W (i)

]
0

0 0

⎤⎦
+ε̃Cy

(i)
[

W�(i)E�
Cy

(i)ECy
(i)W (i) W�(i)E�

Cy
(i)ECy

(i)
E�

Cy
(i)ECy

(i)W (i) E�
Cy

(i)ECy
(i)

]
< 0,

with

M1(i) = A(i)W (i) + W�(i)A�(i) − B(i)KC(i)P−1
3 (i)P�

2 (i)W (i)
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−W�(i)P2(i)P−1
3 (i)K�

C (i)B�(i),

M̂1(i) = M1(i) +
N∑

j=1

λijW
�(i)

[
P2(i)P−1

3 (i)P3(j) − P�
2 (j)

]
×P−1

3 (j)
[
P2(i)P−1

3 (i)P3(j) − P�
2 (j)

]
W (i)

+W�(i)W�(i)P1(i)W(i)W (i).

The last inequality can be rewritten as follows:[
Ĥ1(i) H2(i)
H�

2 (i) H3(i)

]
< 0,

with

Ĥ1(i) = M̂1(i) + ε̃−1
A (i)DA(i)D�

A(i) + ε̃−1
B (i)DB(i)D�

B(i)
+ε̃AW�(i)E�

A (i)EA(i)W (i)
+ε̃BW�(i)P2(i)P−1

3 (i)K�
C (i)E�

B (i)EB(i)KC(i)P−1
3 (i)P�

2 (i)W (i)
+ε̃Cy

(i)W�(i)E�
Cy

(i)ECy
(i)W (i),

H2(i) = M2(i) + ε̃−1
A (i)DA(i)D�

A(i)P1(i) + ε̃−1
B (i)DB(i)D�

B(i)P1(i)
+ε̃A(i)W�(i)E�

A (i)EA(i) + ε̃Cy
(i)W�(i)E�

Cy
(i)ECy

(i)

+W�(i)W�(i)P1(i)W(i),
H3(i) = M3(i) + ε̃−1

A (i)P1(i)DA(i)D�
A(i)P1(i)

+ε̃−1
B (i)P1(i)DB(i)D�

B(i)P1(i)
+ε̃−1

Cy
(i)P2(i)KB(i)DCy

(i)D�
Cy

(i)KB(i)P2(i)

+ε̃A(i)E�
A (i)EA(i) + ε̃Cy

(i)E�
Cy

(i)ECy
(i) + W�(i)P1(i)W(i),

where M̂1(i), M1(i), and M3(i) keep the same definition as before.
If we define KB(i) and KC(i) as we did previously, that is,

P (i) =
[

X(i) Y −1(i) − X(i)
Y −1(i) − X(i) X(i) − Y −1(i)

]
,

KB(i) = P2(i)KB(i) =
[
Y −1(i) − X(i)

]
KB(i),

KC(i) = −KC(i)P−1
3 (i)P�

2 (i)W (i) = KC(i)Y (i),

and we follow the same steps as before after choosing the controller gains as
follows:
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KA(i) =
[
X(i) − Y −1(i)

]−1
[
A�(i) + X(i)A(i)Y (i)

+X(i)B(i)KC(i) + KB(i)Cy(i)Y (i) + W�(i)X(i)W(i)Y (i)
+

∑N
j=1 λijY

−1(j)Y (i)
+ε̃−1

A (i)X(i)DA(i)D�
A(i) + ε̃−1

B (i)X(i)DB(i)D�
B(i)

+ε̃A(i)E�
A (i)EA(i)Y (i)

+ε̃Cy
(i)E�

Cy
(i)ECy

(i)Y (i)
]
Y −1(i),

KB(i) =
[
Y −1(i) − X(i)

]−1 KB(i),
KC(i) = KC(i)Y −1(i),

we get

H1(i) < 0,

H2(i) < 0,

with

H1(i) = A(i)Y (i) + Y �(i)A�(i) + B(i)KC(i) + K�
C(i)B�(i)

+
N∑

j=1

λijY (i)Y −1(j)Y (i) + ε̃−1
A (i)DA(i)D�

A(i)

+ε̃−1
B (i)DB(i)D�

B(i) + ε̃AY �(i)E�
A (i)EA(i)Y (i)

+ε̃BK�
C(i)E�

B (i)EB(i)KC(i)
+ε̃Cy

(i)Y �(i)E�
Cy

(i)ECy
(i)Y (i),

H2(i) = X(i)A(i) + A�(i)X(i) + KB(i)Cy(i) + K�
B(i)C�

y (i)

+
N∑

j=1

λijX(j) + W�(i)X(i)W(i)

+ε̃−1
A (i)X(i)DA(i)D�

A(i)X(i) + ε̃−1
B (i)X(i)DB(i)D�

B(i)X(i)
+ε̃−1

Cy
(i)KB(i)DCy

(i)D�
Cy

(i)K�
B(i) + ε̃A(i)E�

A (i)EA(i)

+ε̃Cy
(i)E�

Cy
(i)ECy

(i).

Using the fact that
N∑

j=1

λijY (i)Y −1(j)Y (i) = λiiY (i) + Si(Y )Y−1
i (Y )S�

i (Y ),

where Si(Y ) and Yi(Y ) keep the same definitions as before, these two matrix
inequalities are equivalent to the following LMIs:⎡⎢⎢⎢⎢⎣

JH1(i) Y �(i)E�
A (i) K�

C (i)E�
B (i)

EA(i)Y (i) −ε̃−1
A (i)I 0

EB(i)KC(i) 0 −ε̃−1
B (i)I

ECy
(i)Y (i) 0 0

S�
i (Y ) 0 0
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Y �(i)E�
Cy

(i) Si(Y )
0 0
0 0

ε̃−1
Cy

(i)I 0
0 −Yi(Y )

⎤⎥⎥⎥⎥⎦ < 0,

⎡⎢⎢⎣
JH2(i) X(i)DA(i) X(i)DB(i) KB(i)DCy

(i)
D�

A(i)X(i) −ε̃A(i)I 0 0
D�

B(i)X(i) 0 −ε̃B(i)I 0
D�

Cy
(i)K�

B(i) 0 0 −ε̃Cy
(i)I

⎤⎥⎥⎦ < 0,

with

JH1(i) = A(i)Y (i) + Y �(i)A�(i) + B(i)KC(i) + K�
C(i)B�(i)

+λiiY (i) + ε̃−1
A (i)DA(i)D�

A(i) + ε̃−1
B (i)DB(i)D�

B(i),
JH2(i) = X(i)A(i) + A�(i)X(i) + KB(i)Cy(i) + K�

B(i)C�
y (i)

+
N∑

j=1

λijX(j) + W�(i)X(i)W(i) + ε̃A(i)E�
A (i)EA(i)

+ε̃Cy
(i)E�

Cy
(i)ECy

(i).

The results of all these developments are summarized by the following
theorem.

Theorem 27. Let ε̃A = (ε̃A(1), · · · , ε̃A(N)), ε̃B = (ε̃B(1), · · · , ε̃B(N)), and
ε̃Cy

= (ε̃Cy
(1), · · · , ε̃Cy

(N)) be a given set of positive scalars. System (3.51)
is stochastically stable if and only if for every i ∈ S , the following set of
coupled LMIs is feasible for some symmetric and positive-definite matrices
X = (X(1), · · · , X(N)) > 0, and Y = (Y (1), · · · , Y (N)) > 0, and matrices
KB = (KB(1), · · · ,KB(N)), and KC = (KC(1), · · · ,KC(N)):⎡⎢⎢⎢⎢⎣

JH1(i) Y �(i)E�
A (i) K�

C (i)E�
B (i)

EA(i)Y (i) −ε̃−1
A (i)I 0

EB(i)KC(i) 0 −ε̃−1
B (i)I

ECy
(i)Y (i) 0 0

S�
i (Y ) 0 0

Y �(i)E�
Cy

(i) Si(Y )
0 0
0 0

ε̃−1
Cy

(i)I 0
0 −Yi(Y )

⎤⎥⎥⎥⎥⎦ < 0, (3.60)

⎡⎢⎢⎣
JH2(i) X(i)DA(i) X(i)DB(i) KB(i)DCy

(i)
D�

A(i)X(i) −ε̃A(i)I 0 0
D�

B(i)X(i) 0 −ε̃B(i)I 0
D�

Cy
(i)K�

B(i) 0 0 −ε̃Cy
(i)I

⎤⎥⎥⎦ < 0, (3.61)
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Y (i) I

I X(i)

]
> 0, (3.62)

with

Si(Y ) =
[√

λi1Y (i), · · · ,
√

λii−1Y (i),
√

λii+1Y (i), · · · ,
√

λiNY (i)
]
,

Yi(Y ) = diag [Y (1), · · · , Y (i − 1), Y (i + 1), · · · , Y (N)] .

Furthermore, the dynamic output feedback controller is given by⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

KA(i) =
[
X(i) − Y −1(i)

]−1
[
A�(i) + X(i)A(i)Y (i)

+X(i)B(i)KC(i) + KB(i)Cy(i)Y (i) + W�(i)X(i)W(i)Y (i)
+

∑N
j=1 λijY

−1(j)Y (i)
+ε̃−1

A (i)X(i)DA(i)D�
A(i) + ε̃−1

B (i)X(i)DB(i)D�
B(i)

+ε̃A(i)E�
A (i)EA(i)Y (i) + ε̃Cy

(i)E�
Cy

(i)ECy
(i)Y (i)

]
Y −1(i),

KB(i) =
[
Y −1(i) − X(i)

]−1 KB(i),
KC(i) = KC(i)Y −1(i).

(3.63)

Example 36. To illustrate the theoretical results of this theorem, let us con-
sider the two-mode system of Example 34 with

W(1) =
[

0.10 0.0
0.0 0.10

]
, W(2) =

[
0.20 0.0
0.0 0.20

]
.

Let us fix the positive scalars εA(i), εB(i), and εCy
(i), i = 1, 2 to the

following values:

εA(1) = εA(2) = 0.50,

εB(1) = εB(2) = 0.10,

εCy
(1) = εCy

(2) = 0.10.

Solving the LMIs (3.60)–(3.62), we get

X(1) =
[

2.8024 −1.0797
−1.0797 0.9926

]
, X(2) =

[
11.6193 −5.7986
−5.7986 3.3546

]
,

Y (1) =
[

65.7939 −37.3834
−37.3834 116.1613

]
, Y (2) =

[
85.9922 −29.9200
−29.9200 81.5468

]
,

KB(1) =
[
−119.9443 59.3966
61.0279 −31.6167

]
, KB(2) =

[
−44.4274 55.3544
58.9674 −79.5007

]
,

KC(1) =
[
−197.9419 69.3903
90.4709 −292.3150

]
, KC(2) =

[
−140.8357 −59.2915

7.4807 −96.5781

]
.

The corresponding controller gains are given by
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KA(1) =
[
−35.4105 14.4776
25.5308 −16.6710

]
, KB(1) =

[
33.1375 −15.4353
−25.5087 15.1304

]
,

KC(1) =
[
−3.2664 −0.4538
−0.0670 −2.5380

]
, KA(2) =

[
35.7013 −55.3475
83.4115 −119.7534

]
,

KB(2) =
[

−38.0696 54.3072
−83.7884118.1440

]
,

KC(2) =
[
−2.1675 −1.5223
−0.3727 −1.3211

]
.

Based on the results of this theorem, the system of this example is sto-
chastically stable under the output feedback controller with the computed
gains.

3.5 Observer-Based Output Stabilization

As mentioned earlier, observer-based output feedback control is one of the
alternatives to control the class of systems under consideration. Our goal
in this section is to focus on the design of such a controller. We will restrict
ourselves to the LMI design approach. Note that other techniques exist, mainly
based on the Riccati-like equation approach.

The controller we use in this section is given by{
ν̇(t) = A(r(t))ν(t) + B(r(t))u(t) + L(r(t)) [Cy(r(t))ν(t) − y(t)] ,
u(t) = K(r(t))ν(t),

(3.64)

where ν(t) is the observer state vector, and K(i) and L(i), i ∈ S are constant
gain matrices that have to be determined and constitute one of our main goals
in this section.

Let us now assume that the controller (3.64) exists and show that it sto-
chastically stabilizes the class of systems (3.39). For this purpose, let us define
the observer error by

e(t) = x(t) − ν(t). (3.65)

Combining the nominal system dynamics and the controller dynamics we
get

ė(t) = A(r(t))x(t) + B(r(t))K(r(t))ν(t) − A(r(t))ν(t) − B(r(t))K(r(t))ν(t)
−L(r(t)) [Cy(r(t))ν(t) − y(t)]

= A(r(t)) [x(t) − ν(t)] + L(r(t))Cy(r(t)) [x(t) − ν(t)]
= [A(r(t)) + L(r(t))Cy(r(t))] e(t).

Using the system dynamics and the error dynamics, we get the following:
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ẋ(t)
ė(t)

]
=

[
A(r(t)) + B(r(t))K(r(t)) −B(r(t))K(r(t))

0 A(r(t)) + L(r(t))Cy(r(t))

]
×

[
x(t)
e(t)

]
.

The block diagram of the closed-loop system under the observer-based
output feedback control is represented by Figure 3.3.

ẋ = A(i)x + B(i)u

y = Cy(i)x

ν̇ = Aiν + Biu + Li [Cy(i)ν − y]

u = KC(i)ν

z(t)

y(t)

w(t)

u(t)

Fig. 3.3. Observer-based output feedback stabilization
block diagram (nominal system).

The following theorem states the stability result of the closed loop of the
class of systems we are considering under output feedback control.

Theorem 28. Let K = (K(1), · · · ,K(N)) and L = (L(1), · · · , L(N)) be
given sets of constant matrices. If there exist sets of symmetric and positive-
definite matrices P = (P (1), · · · , P (N)) > 0 and Q = (Q(1), · · · , Q(N)) > 0
satisfying the following set of coupled LMIs for every i ∈ S :[

JP P (i)B(i)
B�(i)P (i) −I

]
< 0,[

JQ K�(i)
K(i) −I

]
< 0,

where

JP = A�(i)P (i) + P (i)A(i) + K�(i)B�(i)P (i) + P (i)B(i)K(i)

+
N∑

j=1

λijP (j),

JQ = A�(i)Q(i) + Q(i)A(i) + Q(i)L(i)Cy(i) + C�
y (i)L�(i)Q(i)

+
N∑

j=1

λijQ(j),

then (3.39) is stochastically stable.
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Proof: Let us consider the Lyapunov functional candidate with the fol-
lowing form:

V (x(t), e(t), r(t) = i) = x�(t)P (i)x(t) + e�(t)Q(i)e(t)

=
[
x�(t) e�(t)

] [P (i) 0
0 Q(i)

] [
x(t)
e(t)

]
,

where P (i) > 0 and Q(i) > 0 are symmetric and positive-definite matrices.
Let L be the infinitesimal generator of the process {(x(t), e(t), r(t)), t ≥

0}. Then, the expression of the infinitesimal operator acting on V (.) and
emanating from the point (x, i) at time t, where x(t) = x and r(t) = i for
i ∈ S , is given by

L V (x(t), e(t), i) = ẋ�(t)P (i)x(t) + x�(t)P (i)ẋ(t) + ė�(t)Q(i)e(t)

+e�(t)Q(i)ė(t) +
N∑

j=1

λij

[
x�(t)P (j)x(t) + e�(t)Q(j)e(t)

]
=

[
[A(i) + B(i)K(i)] x(t) − B(i)K(i)e(t)

]�
P (i)x(t)

+x�(t)P (i)
[
[A(i) + B(i)K(i)] x(t) − B(i)K(i)e(t)

]
+
[
[A(i) + L(i)Cy(i)] e(t)

]�
Q(i)e(t) + e�(t)Q(i)

[
A(i) + L(i)Cy(i)

]
e(t)

+
N∑

j=1

λij

[
x�(t)P (j)x(t) + e�(t)Q(j)e(t)

]
= x�(t)

[
A�(i)P (i) + P (i)A(i) + K�(i)B�(i)P (i) + P (i)B(i)K(i)

+
N∑

j=1

λijP (j)
]
x(t) − 2x�(t)P (i)B(i)K(i)e(t)

+e�(t)
[
A�(i)Q(i) + Q(i)A(i) + Q(i)L(i)Cy(i) + C�

y (i)L�(i)Q(i)

+
N∑

j=1

λijQ(j)
]
e(t).

Note from Lemma 2 (Appendix A) that

−2x�(t)P (i)B(i)K(i)e(t) ≤ x�(t)P (i)B(i)B�(i)P (i)x(t)
+e�(t)K�(i)K(i)e(t),

we get

L V (x(t), e(t), i) ≤ x�(t)
[
A�(i)P (i) + P (i)A(i) + K�(i)B�(i)P (i)
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+P (i)B(i)K(i) + P (i)B(i)B�(i)P (i) +
N∑

j=1

λijP (j)
]
x(t)

+e�(t)
[
A�(i)Q(i) + Q(i)A(i) + Q(i)L(i)Cy(i)

+C�
y (i)L�(i)Q(i) + K�(i)K(i) +

N∑
j=1

λijQ(j)
]
e(t) =

[
x�(t) e�(t)

]
×

[
JP (i) + P (i)B(i)B�(i)P (i) 0

0 JQ(i) + K�(i)K(i)

] [
x(t)
e(t)

]
=

[
x�(t) e�(t)

]
Γ (i)

[
x(t)
e(t)

]
.

Therefore, since Γ (i) < 0 for all i ∈ S , we obtain

L V (x(t), e(t), i) ≤ −min
j∈S

{λmin [−Γ (j)]}
[
x�(t) e�(t)

] [x(t)
e(t)

]
.

Combining this with the Dynkin’s formula, we get

E [V (x(t), e(t), i)] − E [V (x(0), e(0), r0)]

= E

[∫ t

0

L V (x(s), e(s), r(s))ds|(r0, x(0), e(0))
]

≤ −min
j∈S

{λmin [−Γ (j)]}E

[∫ t

0

[
x�(s) e�(s)

] [x(s)
e(s)

]
ds|(r0, x(0), e(0))

]
,

which gives in turn

min
j∈S

{λmin [−Γ (j)]}E

[∫ t

0

[
x�(s) e�(s)

] [x(s)
e(s)

]
ds|(r0, x(0), e(0))

]
≤ E [V (x(0), e(0), r0)] .

This implies that the following relation holds for all t ≥ 0:

E

[∫ t

0

[
x�(s) e�(s)

] [x(s)
e(s)

]
ds|(r0, x(0), e(0))

]
≤ E [V (x(0), e(0), r0)]

minj∈S {λmin [−Γ (j)]} .

This completes the proof of Theorem 28. �

Remark 13. This theorem shows that the proposed control will stochastically
stabilize the class of systems we are dealing with if we are able to find
some matrices that solve our stated sufficient conditions. The rest of the sec-
tion will focus on the design of the controller gain matrices K(i) and L(i),
i = 1, 2, · · · , N . Conditions in the LMI formalism are needed for our control
design.
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We are now in a position to synthesize the observer-based output feedback
control of the form (3.64) that stochastically stabilizes (3.1).

Before giving the design algorithm, let us transform our stability conditions
in the LMI formalism. For this purpose, notice that JP (i) is nonlinear in the
design parameters P (i) and K(i). To put it into the LMI form, let X(i) =
P−1(i) and pre- and post-multiply JP (i) by P−1(i) to get

X(i)A�(i) + A(i)X(i) + B(i)K(i)X(i) + X(i)K�(i)B�(i)

+B(i)B�(i) +
N∑

j=1

λijX(i)X−1(j)X(i) < 0.

By letting Yc(i) = K(i)X(i) and noting the fact that

N∑
j=1

λijX(i)X−1(j)X(i) = λiiX(i) + Si(X)X−1
i (X)S�

i (X),

we have ⎡⎢⎢⎣
⎡⎣X(i)A�(i) + Y �

c (i)B�(i)
+A(i)X(i) + B(i)Yc(i)
+B(i)B�(i) + λiiX(i)

⎤⎦ Si(X)

S�
i (X) −Xi(X)

⎤⎥⎥⎦ < 0.

Let us now transform the condition JQ(i) < 0 in the LMI form. By letting
Yo(i) = Q(i)L(i), we have

JQ(i) = A�(i)Q(i) + Q(i)A(i) + Yo(i)Cy(i) + C�
y (i)Y �

o (i)

+K�(i)K(i) +
N∑

j=1

λijQ(j),

which gives, after using the Schur complement,[
J2(i) K�(i)
K(i) −I

]
< 0,

where J2(i)=A�(i)Q(i)+Q(i)A(i)+Yo(i)Cy(i)+C�
y (i)Y �

o (i)+
∑N

j=1 λijQ(j).
The following theorem summarizes the results for the design of the

observer-based output feedback controller.

Theorem 29. If there exist sets of symmetric and positive-definite matrices
X = (X(1), · · · , X(N)) > 0, Q = (Q(1), · · · , Q(N)) > 0, and sets of matrices
Yc = (Yc(1), · · · , Yc(N)) and Yo = (Yo(1), · · · , Yo(N)) satisfying the following
set of coupled LMIs for each i ∈ S :[

J1(i) Si(X)
S�

i (X) −Xi(X)

]
< 0, (3.66)
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J2(i) K�(i)
K(i) −I

]
< 0, (3.67)

where

J1(i) = X(i)A�(i) + Y �
c (i)B�(i) + A(i)X(i) + B(i)Yc(i)

+B(i)B�(i) + λiiX(i),
J2(i) = A�(i)Q(i) + Q(i)A(i) + Yo(i)Cy(i) + C�

y (i)Y �
o (i)

+
N∑

j=1

λijQ(j),

then the controller gains that stabilize system (3.39) in the stochastic sense
are given by

K(i) = Yc(i)X−1(i), (3.68)
L(i) = Q−1(i)Yo(i). (3.69)

This theorem provides an algorithm to design a feedback controller of the
form (3.64) that stabilizes system (3.39) in the stochastic sense.

Remark 14. Notice that the LMIs of this theorem are independent. Therefore,
we can solve the first one to get K(i), i = 1, 2, · · · , N and then solve the
second one to get L(i), i = 1, 2, · · · , N .

Example 37. To show the usefulness of the results of this theorem, let us con-
sider the two-mode system of Example 34.

Solving the LMIs (3.66)–(3.67), we get

X(1) =
[

0.3408 −0.0000
−0.0000 0.3408

]
, X(2) =

[
0.2556 −0.0000
−0.0000 0.2556

]
,

Yc(1) =
[
−1.0112 −21.0264
21.1627 −1.0112

]
, Yc(2) =

[
−0.5767 −10.8316
10.7038 −0.5639

]
,

Ki(1) =
[
−2.9672 −61.7010
62.1010 −2.9672

]
, Ki(2) =

[
−2.2563 −42.3797
41.8797 −2.2063

]
,

Q(1) = 103 ·
[

6.6508 −0.0000
−0.0000 6.6508

]
, Q(2) = 103 ·

[
6.6508 0.0000
0.0000 6.6508

]
,

Yo(1) = 104 ·
[
−1.0006 0.1330
0.1330 −1.0005

]
, Yo(2) = 103 ·

[
−2.0087 −1.6628
−1.6627 −1.6765

]
.

The corresponding controller gains are given by

K(1) =
[
−2.9672 −61.7010
62.1010 −2.9672

]
, K(2) =

[
−2.2563 −42.3797
41.8797 −2.2063

]
,

L(1) =
[
−1.5044 0.2000
0.2000 −1.5044

]
, L(2) =

[
−0.3020 −0.2500
−0.2500 −0.2521

]
.
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Based on the results of this theorem, the system of this example is sto-
chastically stable under the observer-based output feedback control with the
computed gains.

Let us now consider the uncertainties in the dynamics and see how we can
modify (3.66) and (3.67) to design a robustly observer-based output feedback
control that robustly stochastically stabilizes the class of system under study.

Let us assume that the controller (3.64) exists and show that it robustly
stabilizes the class of systems (3.39). For this purpose, let us define the ob-
server error e(t) as before.

Combining the system dynamics and controller dynamics we get the follow-
ing equation for the error using the same techniques as before and after adding
and subtracting the two terms B(r(t))K(r(t))x(t) and ΔB(r(t), t)K(r(t))x(t):

ė(t) = [A(r(t)) + L(r(t))Cy(r(t))] e(t) + [ΔA(r(t), t) + ΔB(r(t), t)K(r(t))] x(t)
−ΔB(r(t), t)K(r(t))e(t) + L(i)ΔCy(i)x(t).

For the system dynamics, following the same steps as before, we get

ẋ(t) = [A(r(t)) + B(r(t))K(r(t))] x(t)
+ [ΔA(r(t), t) + ΔB(r(t), t)K(r(t))] x(t)

−B(r(t))K(r(t))e(t) − ΔB(r(t), t)K(r(t))e(t).

Using all these developments, we get the following extended dynamics:

[
ẋ(t)
ė(t)

]
=

⎡⎢⎢⎣
[

A(r(t))
+B(r(t))K(r(t))

]
−B(r(t))K(r(t))

0
[

A(r(t))
+L(r(t))Cy(r(t))

]
⎤⎥⎥⎦[

x(t)
e(t)

]

+

⎡⎢⎢⎣
ΔA(r(t), t) + ΔB(r(t), t)K(r(t)) −ΔB(r(t), t)K(r(t))⎡⎣ ΔA(r(t), t)

+ΔB(r(t), t)K(r(t))
+L(i)ΔCy(i)x(t)

⎤⎦ −ΔB(r(t), t)K(r(t))

⎤⎥⎥⎦
×

[
x(t)
e(t)

]
.

The following theorem states the first result on robust stability of the class
of systems we are considering under the controller (3.64).

Theorem 30. Let εA = (εA(1), · · · , εA(N)), εB = (εB(1), · · · , εB(N)), εK =
(εK(1), · · · , εK(N)), εe = (εe(1), · · · , εe(N)), εQ = (εQ(1), · · · , εQ(N)),
εBQ = (εBQ(1), · · · , εBQ(N)), εCy

= (εCy
(1), · · · , εCy

(N)), εBK = (εBK(1),
· · · , εBK(N)) be given sets of positive scalars. Let K = (K(1),
· · · ,K(N)) and L = [L(1), · · · , L(N)] be a given sets of constant matri-
ces. If there exist sets of symmetric and positive-definite matrices P =
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(P (1), · · · , P (N)) > 0 and Q = (Q(1), · · · , Q(N)) > 0 satisfying the following
set of coupled LMIs for every i ∈ S and for all admissible uncertainties:

Γ1(i) = [A(i) + B(i)K(i)]� P (i) + P (i) [A(i) + B(i)K(i)]

+
N∑

j=1

λijP (j) + εA(i)P (i)DA(i)D�
A(i)P (i) + ε−1

A (i)E�
A (i)EA(i)

+εB(i)P (i)DB(i)D�
B(i)P (i) + ε−1

B (i)K�(i)E�
B (i)EB(i)K(i)

+εK(i)P (i)B(i)B�(i)P (i) + εe(i)P (i)B(i)B�(i)P (i)
+εCy

(i)E�
Cy

(i)ECy
(i) + ε−1

Q (i)E�
A (i)EA(i)

+ε−1
BQ(i)K�(i)E�

B (i)EB(i)K(i) < 0, (3.70)

Γ2(i) = [A(i) + L(i)Cy(i)]� Q(i) + Q(i) [A(i) + L(i)Cy(i)] +
N∑

j=1

λijQ(j)

+ε−1
K (i)K�(i)K(i) + ε−1

e (i)K�(i)E�
B (i)EB(i)K(i)

+εQQ(i)DA(i)D�
A(i)Q(i) + εBQ(i)Q(i)DB(i)D�

B(i)Q(i)
+εBK(i)Q(i)DB(i)D�

B(i)Q(i) + ε−1
BK(i)K�(i)E�

B (i)EB(i)K(i)
+ε−1

Cy
(i)Q(i)L(i)DCy

(i)D�
Cy

(i)L�(i)Q(i) < 0, (3.71)

then system (3.39) is stochastically stable.

Proof: Let us consider the Lyapunov functional candidate with the fol-
lowing form:

V (x(t), e(t), r(t) = i) = x�(t)P (i)x(t) + e�(t)Q(i)e(t),

where P (i) > 0 and Q(i) > 0 are symmetric and positive-definite matrices.
Let L be the infinitesimal generator of the process {(x(t), e(t), r(t)), t ≥

0}. Then, the expression of the infinitesimal operator acting on V (.) and
emanating from the point (x, i) at time t, where x(t) = x and r(t) = i for
i ∈ S , is given by

L V (x(t), e(t), i) = ẋ�(t)P (i)x(t) + x�(t)P (i)ẋ(t) + ė�(t)Q(i)e(t)

+e�(t)Q(i)ė(t) +
N∑

j=1

λij

[
x�(t)P (j)x(t) + e�(t)Q(j)e(t)

]
=

[
[A(i) + B(i)K(i) + ΔA(i, t) + ΔB(i, t)K(i)] x(t)

− [B(i)K(i) + ΔB(i, t)K(i)] e(t)
]�

P (i)x(t)

+x�(t)P (i)
[
[A(i) + B(i)K(i) + ΔA(i, t) + ΔB(i, t)K(i)] x(t)

− [B(i)K(i) + ΔB(i, t)K(i)] e(t)
]
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+
[
[ΔA(i, t) + ΔB(i, t)K(i) + L(i)ΔCy(i)] x(t) + [A(i) + L(i)Cy(i)

−ΔB(i, t)K(i)] e(t)
]�

Q(i)e(t) + e�(t)Q(i)
[
[ΔA(i, t)

+ΔB(i, t)K(i) + L(i)ΔCy(i)] x(t) + [A(i) + L(i)Cy(i) − ΔB(i, t)K(i)] e(t)
]

+
N∑

j=1

λij

[
x�(t)P (j)x(t) + e�(t)Q(j)e(t)

]
,

which can be rewritten as follows:

L V (x(t), e(t), i) = x�(t)
[
[A(i) + B(i)K(i)]� P (i)

+P (i) [A(i) + B(i)K(i)] +
N∑

j=1

λijP (j)
]
x(t) + 2x�(t)P (i)ΔA(i, t)x(t)

+2x�(t)P (i)ΔB(i, t)K(i)x(t) − 2x�(t)P (i)B(i)K(i)e(t)

−2x�(t)P (i)ΔB(i, t)K(i)e(t) + e�(t)
[
[A(i) + L(i)Cy(i)]� Q(i)

+Q(i) [A(i) + L(i)Cy(i)] +
N∑

j=1

λijQ(j)
]
e(t)

+2e�(t)Q(i)ΔA(i, t)x(t) + 2e�(t)Q(i)ΔB(i, t)K(i)x(t)
+2e�(t)Q(i)L(i)ΔCy(i)x(t) − 2e�(t)Q(i)ΔB(i, t)K(i)e(t).

Using Lemma 7 from Appendix A, we have

2x�(t)P (i)ΔA(i, t)x(t) = 2x�(t)P (i)DA(i)FA(i, t)EA(i)x(t)
≤ εA(i)x�(t)P (i)DA(i)D�

A(i)P (i)x(t)
+ε−1

A (i)x�(t)E�
A (i)EA(i)x(t),

2x�(t)P (i)ΔB(i, t)K(i)x(t)
= 2x�(t)P (i)DB(i)FB(i, t)EB(i)K(i)x(t)
≤ εB(i)x�(t)P (i)DB(i)D�

B(i)P (i)x(t)
+ε−1

B (i)x�(t)K�(i)E�
B (i)EB(i)K(i)x(t),

−2x�(t)P (i)B(i)K(i)e(t) ≤ εK(i)x�(t)P (i)B(i)B�(i)P (i)x(t)
+ε−1

K (i)e�(t)K�(i)K(i)e(t),

−2x�(t)P (i)ΔB(i, t)K(i)e(t)
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= −2x�(t)P (i)DB(i)FB(i, t)EB(i)K(i)e(t)
≤ εe(i)x�(t)P (i)DB(i)D�

B(i)P (i)x(t)
+ε−1

e (i)e�(t)K�(i)E�
B (i)EB(i)K(i)e(t),

2e�(t)Q(i)ΔA(i, t)x(t) = 2e�(t)Q(i)DA(i)FA(i, t)EA(i)x(t)
≤ εQ(i)e�(t)Q(i)DA(i)D�

A(i)Q(i)e(t)
+ε−1

Q (i)x�(t)E�
A (i)EA(i)x(t),

2e�(t)Q(i)ΔB(i, t)K(i)x(t)
= 2e�(t)Q(i)DB(i)FB(i, t)EB(i)K(i)x(t)
≤ εBQ(i)e�(t)Q(i)DB(i)D�

B(i)Q(i)e(t)
+ε−1

BQ(i)x�(t)K�(i)E�
B (i)EB(i)K(i)x(t),

2e�(t)Q(i)L(i)ΔCy(i)x(t)
= 2e�(t)Q(i)L(i)DCy

(i)FCy
(i, t)ECy

(i)x(t)

≤ ε−1
Cy

(i)e�(t)Q(i)L(i)DCy
(i)D�

Cy
(i)L�(i)Q(i)e(t)

+εCy
(i)x�(t)E�

Cy
(i)ECy

(i)x(t),

−2e�(t)Q(i)ΔB(i, t)K(i)e(t)
= −2e�(t)Q(i)DB(i)FB(i, t)EB(i)K(i)e(t)
≤ εBK(i)e�(t)Q(i)DB(i)D�

B(i)Q(i)e(t)
+ε−1

BK(i)e�(t)K�(i)E�
B (i)EB(i)K(i)e(t).

Using these relations, L V (x(t), e(t), i) can be rewritten as follows:

L V (x(t), e(t), i) ≤ x�(t)
[
[A(i) + B(i)K(i)]� P (i)

+P (i) [A(i) + B(i)K(i)] +
N∑

j=1

λijP (j) + ε−1
Q (i)E�

A (i)EA(i)

+εA(i)P (i)DA(i)D�
A(i)P (i) + ε−1

A (i)E�
A (i)EA(i)

+εB(i)P (i)DB(i)D�
B(i)P (i) + ε−1

B (i)K�(i)E�
B (i)EB(i)K(i)

+εK(i)P (i)B(i)B�(i)P (i) + εe(i)P (i)DB(i)D�
B(i)P (i)

+ε−1
BQ(i)K�(i)E�

B (i)EB(i)K(i) + εCy
(i)E�

Cy
(i)ECy

(i)
]
x(t)
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+e�(t)
[
[A(i) + L(i)Cy(i)]� Q(i) + [A(i) + L(i)Cy(i)]

+
N∑

j=1

λijQ(j) + ε−1
K (i)K�(i)K(i) + ε−1

e (i)K�(i)E�
B (i)EB(i)K(i)

+εQ(i)Q(i)DA(i)D�
A(i)Q(i) + εBQ(i)Q(i)DB(i)D�

B(i)Q(i)
+εBK(i)Q(i)DB(i)D�

B(i)Q(i) + ε−1
BK(i)K�(i)E�

B (i)EB(i)K(i)

+ε−1
Cy

(i)Q(i)L(i)DCy
(i)D�

Cy
(i)L�(i)Q(i)

]
e(t),

which gives

L V (x(t), e(t), i) ≤
[
x�(t) e�(t)

] [Γ1(i) 0
0 Γ2(i)

] [
x(t)
e(t)

]
=

[
x�(t) e�(t)

]
Γ (i)

[
x(t)
e(t)

]
.

Therefore, we obtain

L V (x(t), e(t), i) ≤ −min
j∈S

{λmin [−Γ (j)]}
[
x�(t) e�(t)

] [x(t)
e(t)

]
.

The rest of the proof of Theorem 30 can be obtained by following the same
steps as we did for the previous theorems. �

Remark 15. In the previous theorem we showed that the proposed control will
stochastically stabilize the class of systems we are dealing with if we are able
to find some matrices that solve the given sufficient conditions. Our interest
in the rest of the book will focus on the design of the controller gain matrices
K(i) and L(i), i = 1, 2, · · · , N . Conditions in the LMI formalism are needed
for our control design.

We are now in a position to synthesize the observer-based output feed-
back control (3.64) that stochastically stabilizes (3.39). For this purpose, let
us transform our stability conditions in the LMI formalism. Pre- and post-
multiply (3.70) by P−1(i) to get

P−1(i) [A(i) + B(i)K(i)]� + [A(i) + B(i)K(i)] P−1(i)
+ε−1

A (i)P−1(i)E�
A (i)EA(i)P−1(i) + εB(i)DB(i)D�

B(i)
+ε−1

B (i)P−1(i)K�(i)E�
B (i)EB(i)K(i)P−1(i)

+εA(i)DA(i)D�
A(i) + εK(i)B(i)B�(i) + εe(i)DB(i)D�

B(i)
+ε−1

Q (i)P−1(i)E�
A (i)EA(i)P−1(i) + εCy

(i)P−1(i)E�
Cy

(i)ECy
(i)P−1(i)

+ε−1
BQ(i)P−1(i)K�(i)E�

B (i)EB(i)K(i)P−1(i)

+
N∑

j=1

λijP
−1(i)P (j)P−1(i) < 0.
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By letting X(i) = P−1(i) and Y (i) = K(i)X(i), we have

X(i)A�(i) + Y �(i)B�(i) + A(i)X(i) + B(i)Y (i)
+ε−1

A (i)X(i)E�
A (i)EA(i)X(i) + εB(i)DB(i)D�

B(i)
+εA(i)DA(i)D�

A(i) + ε−1
B (i)Y �(i)E�

B (i)EB(i)Y (i)
+εK(i)B(i)B�(i) + εe(i)DB(i)D�

B(i)
+ε−1

Q (i)X(i)E�
A (i)EA(i)X(i) + εCy

(i)X(i)E�
Cy

(i)ECy
(i)X(i)

+ε−1
BQ(i)Y �(i)E�

B (i)EB(i)Y (i) +
N∑

j=1

λijX(i)X−1(j)X(i) < 0. (3.72)

Notice that

ε−1
A (i)X(i)E�

A (i)EA(i)X(i) + εCy
(i)X(i)E�

Cy
(i)ECy

(i)X(i)

+ε−1
Q (i)X(i)E�

A (i)EA(i)X(i) + ε−1
BQ(i)X(i)E�

B (i)EB(i)X(i)

= X(i)
[
E�

A (i) E�
A (i) E�

B (i) E�
Cy

(i)
]

×
[
diag(εA(i)I, εQ(i)I, εBQ(i)I), εCy

(i)I
]−1

⎡⎢⎢⎣
EA(i)
EA(i)
EB(i)
ECy

(i)

⎤⎥⎥⎦X(i)

= X(i)F�(i)D−1(i)F(i)X(i),

and

N∑
j=1

λijX(i)X−1(j)X(i) = λiiX(i) + Si(X)X−1
i S�

i (X),

with

F�(i) =
[
E�

A (i) E�
A (i) E�

B (i) E�
Cy

(i)
]
,

D(i) = diag(εA(i)I, εQ(i)I, εBQ(i)I, εCy
(i)I),

Si(X) =
[√

λi1X(i), · · · ,
√

λii−1X(i),
√

λii+1X(i),

· · · ,
√

λiNX(i)
]
,

Xi(X) = diag(X(1), · · · , X(i − 1), X(i + 1), · · · , X(N)).

The condition (3.72) becomes

Fc(i) + X(i)F�(i)D−1(i)F(i)X(i)
+ε−1

B (i)Y �(i)E�
B (i)EB(i)Y (i)

+Si(X)X−1
i S�

i (X) < 0,
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with

Fc(i) = X(i)A�(i) + Y �(i)B�(i) + A(i)X(i) + B(i)Y (i)
+εA(i)DA(i)D�

A(i) + εB(i)DB(i)D�
B(i)

+εK(i)B(i)B�(i) + εe(i)DB(i)D�
B(i) + λiiX(i).

Using the Schur complement, we get⎡⎢⎢⎣
Fc(i) X(i)F�(i) Y �(i)E�

B (i) Si(X)
F(i)X(i) −D(i) 0 0
EB(i)Y (i) 0 −εB(i)I 0

S�
i (X) 0 0 −Xi(X)

⎤⎥⎥⎦ < 0.

Let us now transform (3.71) in the LMI form. For this purpose we have

Γ2(i) =
[
[A(i) + L(i)Cy(i)]� Q(i) + Q(i) [A(i) + L(i)Cy(i)]

+
N∑

j=1

λijQ(j) + ε−1
K (i)K�(i)K(i) + ε−1

e (i)K�(i)E�
B (i)EB(i)K(i)

+εQ(i)Q(i)DA(i)D�
A(i)Q(i) + εBQ(i)Q(i)DB(i)D�

B(i)Q(i)
+εBK(i)Q(i)DB(i)D�

B(i)Q(i) + ε−1
BK(i)K�(i)E�

B (i)EB(i)K(i)

+ε−1
Cy

(i)Q(i)L(i)DCy
(i)D�

Cy
(i)L�(i)Q(i)

]
.

By letting Yo(i) = Q(i)L(i), we have

Γ2(i) = A�(i)Q(i) + C�
y (i)Y �

o (i) + Q(i)A(i) + Yo(i)Cy(i)

+
N∑

j=1

λijQ(j) + ε−1
K (i)K�(i)K(i) + ε−1

e (i)K�(i)E�
B (i)EB(i)K(i)

+εQ(i)Q(i)DA(i)D�
A(i)Q(i) + εBQ(i)Q(i)DB(i)D�

B(i)Q(i)
+εBK(i)Q(i)DB(i)D�

B(i)Q(i) + ε−1
BK(i)K�(i)E�

B (i)EB(i)K(i)
+ε−1

Cy
(i)Y (i)DCy

(i)D�
Cy

(i)Y �(i). (3.73)

Notice that

ε−1
K (i)K�(i)K(i) + ε−1

e (i)K�(i)E�
B (i)EB(i)K(i)

+ε−1
BK(i)K�(i)E�

B (i)EB(i)K(i)

= K�(i)
[
I E�

B (i) E�
B (i)

]
[diag(εK(i)I, εe(i)I, εBQ(i)I)]−1

×

⎡⎣ I

EB(i)
EB(i)

⎤⎦K(i)

= K�(i)F�
o (i)D−1

o (i)Fo(i)K(i)
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εQ(i)Q(i)DA(i)D�
A(i)Q(i) + εBQ(i)Q(i)DB(i)D�

B(i)Q(i)
+εBK(i)Q(i)DB(i)D�

B(i)Q(i)
= Q(i)

[√
εQ(i)DA(i)

√
εBQ(i)DB(i)

√
εBK(i)DB(i)

]
×

⎡⎣
√

εQ(i)D�
A(i)√

εBQ(i)D�
B(i)√

εBK(i)D�
B(i)

⎤⎦Q(i)

= Q(i)G�
o (i)Go(i)Q(i),

which gives

Γ2(i) = A�(i)Q(i) + Q(i)A(i) + Yo(i)Cy(i) + C�
o (i)Y �

o (i)
+Q(i)G�

o (i)Go(i)Q(i) + K�(i)F�
o (i)D−1

o (i)Fo(i)K(i)

+
N∑

j=1

λijQ(j) + ε−1
Cy

(i)Y (i)DCy
(i)D�

Cy
(i)Y �(i),

with

Yo(i) = Q(i)L(i),
F�

o (i) =
[
I E�

B (i) E�
B (i)

]
,

Do(i) = diag(εK(i)I, εe(i)I, εBQ(i)I),
G�

o (i) =
[√

εQ(i)DA(i)
√

εBQ(i)DB(i)
√

εBK(i)DB(i)
]
.

After using the Schur complement (3.73) becomes⎡⎢⎢⎣
# K�(i)F�

o (i) Q(i)G�
o (i) Yo(i)DCy

(i)
Fo(i)K(i) −Do(i) 0 0
Go(i)Q(i) 0 −I 0

D�
Cy

(i)Y �(i) 0 0 −εCy
(i)I

⎤⎥⎥⎦ < 0,

where #=A�(i)Q(i) + Q(i)A(i) +Yo(i)C(i)+ C�(i)Y �
o (i)+

∑N
j=1 λijQ(j).

The following theorem gives the way to design the observer-based output
feedback controller.

Theorem 31. Let εA = (εA(i), · · · , εA(N)), εB = (εB(i), · · · , εB(N)), εK =
(εK(i), · · · , εK(N)), εQ = (εQ(i), · · · , εQ(N)), εe = (εe(i), · · · , εe(N)), εBQ =
(εBQ(i), · · · , εBQ(N)), and εBK = (εBK(i), · · · , εBK(N)) be a given sets of
positive scalars. If there exist symmetric and positive-definite matrices X =
(X(1), · · · , X(N)) > 0, Qo = (Qo(1), · · · , Qo(N)) > 0, and matrices Yc =
(Yc(1), · · · , Yc(N)) and Yo = (Yo(1), · · · , Yo(N)) satisfying the following set
of LMIs for each mode i ∈ S :⎡⎢⎢⎣

Fc(i) X(i)F�(i) Y �(i)E�
B (i) Si(X)

F(i)X(i) −D(i) 0 0
EB(i)Y (i) 0 −εB(i)I 0

S�
i (X) 0 0 −Xi(X)

⎤⎥⎥⎦ < 0, (3.74)
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# K�(i)F�

o (i) Q(i)G�
o (i) Yo(i)DCy

(i)
Fo(i)K(i) −Do(i) 0 0
Go(i)Q(i) 0 −I 0

D�
Cy

(i)Y �(i) 0 0 −εCy
(i)I

⎤⎥⎥⎦ < 0, (3.75)

where

Fc(i) = X(i)A�(i) + Y �(i)B�(i) + A(i)X(i) + B(i)Y (i)
+εA(i)DA(i)D�

A(i) + εB(i)DB(i)D�
B(i)

+εK(i)B(i)B�(i) + εe(i)DB(i)D�
B(i) + λiiX(i),

# = A�(i)Q(i) + Q(i)A(i) +Yo(i)C(i)+ C�(i)Y �
o (i)+

N∑
j=1

λijQ(j),

then the controller gains that stabilize system (3.39) in the stochastic sense
are given by

K(i) = Yc(i)X−1(i), (3.76)
L(i) = Q−1

o (i)Yo(i). (3.77)

This theorem provides a procedure to design the observer-output feedback
control of the form (3.64) that stabilizes system (3.39) in the robust stochastic
sense. To solve the LMIs of this theorem, we can solve the first LMI to get
the gain K(i), i = 1, 2, · · · , N , that will be used in the second LMI to get the
second set of gains L(i), i = 1, 2, · · · , N .

Example 38. To show the usefulness of the theoretical results developed in this
theorem, let us consider the two-mode system of Example 34.

The positive constant εA(i) and εB(i), i = 1, 2 are fixed to the following
values:

εA(1) = 0.10,

εB(1) = εK(1) = εQ(1) = εe(1) = εBQ(1) = εBK(1) = 0.50,

εA(2) = 0.10,

εB(2) = εK(2) = εQ(2) = εe(2) = εBQ(2) = εBK(2) = 0.50.

Solving the LMIs (3.74)–(3.75), we get

X(1) =
[

0.3344 −0.0117
−0.0117 0.3459

]
, X(2) =

[
0.2968 −0.0094
−0.0094 0.2966

]
,

Yc(1) =
[
−0.9783 0.0314
0.0969 −0.9987

]
, Yc(2) =

[
−0.4623 −0.1517
−0.0303 −0.4487

]
,

Ki(1) =
[
−2.9254 −0.0084
0.1889 −2.8807

]
, Ki(2) =

[
−1.5752 −0.5612
−0.1500 −1.5178

]
,

Q(1) =
[

35.8239 −11.8485
−11.8485 18.0388

]
, Q(2) =

[
25.1454 −12.7588
−12.7588 31.9395

]
,
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Yo(1) =
[
−48.5105 18.9195
17.5438 −66.1793

]
, Yo(2) =

[
−36.3759 −13.9821
−13.6054 11.3450

]
.

This gives the following gains for the desired controller:

K(1) =
[
−2.9254 −0.0084
0.1889 −2.8807

]
, K(2) =

[
−1.5752 −0.5612
−0.1500 −1.5178

]
,

L(1) =
[
−1.3190 −0.8755
0.1062 −4.2438

]
, L(2) =

[
−2.0855 −0.4714
−1.2590 0.1669

]
.

Based on the results of this theorem, the system of this example is sto-
chastically stable under the observer-based output feedback control with the
computed gains.

Let us now consider that the dynamics are perturbed by a Wiener process.
We want to stochastically stabilize the new dynamics and design the observer-
based output feedback controller that will accomplish this goal. Assume that
the new dynamics are given by the following:⎧⎪⎨⎪⎩

dx(t) = A(r(t), t)x(t)dt + B(r(t), t)u(t)dt + W(r(t))x(t)dω(t),
y(t) = Cy(r(t), t)x(t),
x(0) = x0,

(3.78)

where all the variables and the matrices keep the same meaning as before.
Let the desired controller be given by the following form:⎧⎪⎨⎪⎩
dν(t) = A(r(t))ν(t)dt + B(r(t))u(t)dt + L(r(t)) [Cy(r(t))ν(t) − y(t)] dt

+W(r(t))ν(t)dω(t), ν(0) = 0,
u(t) = K(r(t))ν(t),

(3.79)

where the matrices K(r(t)) and L(r(t)) are design parameters that have to
be determined.

Let us define as before the estimation error e(t) and rewrite the dynamics

(3.78) and those of the error using the state variable η(t) =
[

x(t)
e(t)

]
.

For the dynamics (3.78), we have

dx(t) = [A(r(t)) + ΔA(r(t), t)] x(t)dt + [B(r(t)) + ΔB(r(t), t)] u(t)dt

+W(r(t))x(t)dω(t).

Replacing the control u(t) by its expression and by adding and subtracting
B(r(t))K(r(t))x(t)dt and ΔB(r(t))K(r(t))x(t)dt, we get

dx(t) = [A(r(t)) + B(r(t))K(r(t))] x(t)dt − B(r(t))K(r(t)) [x(t) − ν(t)] dt

−ΔB(r(t), t)K(r(t)) [x(t) − ν(t)] u(t)dt + ΔA(r(t), t)x(t)dt

+ΔB(r(t), t)K(r(t))x(t)dt + W(r(t))x(t)dω(t)
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= [A(r(t)) + B(r(t))K(r(t))] x(t)dt +
[
ΔA(r(t), t)

+ΔB(r(t), t)K(r(t))
]
x(t)dt − B(r(t))K(r(t))e(t)dt

−ΔB(r(t), t)K(r(t))e(t)dt + W(r(t))x(t)dω(t).

For the error dynamics, we have

de(t) = dx(t) − dν(t) = [A(r(t)) + ΔA(r(t), t)] x(t)dt

+ [B(r(t)) + ΔB(r(t), t)] u(t)dt + W(r(t))x(t)dω(t)
−A(r(t))ν(t)dt − B(r(t))K(r(t))ν(t)dt

−L(r(t)) [Cy(r(t))ν(t) − Cy(r(t))x(t) − ΔCy(r(t), t)] dt

−W(r(t))ν(t)dω(t)
= [A(r(t)) + L(r(t))Cy(r(t))] e(t)dt + [ΔA(r(t), t)

+ΔB(r(t), t)K(r(t)) + L(r(t))ΔCy(r(t), t)] x(t)dt

−ΔB(r(t), t)K(r(t))e(t)dt + W(r(t))e(t)dω(t).

By letting η(t), Ã(r(t)), ΔÃ(r(t), t), and W̃(r(t)) be defined as follows:

η(t) =
[

x(t)
e(t)

]
,

Ã(r(t)) =
[

A(r(t)) + B(r(t))K(r(t)) −B(r(t))K(r(t))
0 A(r(t)) + L(r(t))Cy(r(t))

]
,

ΔÃ(r(t), t) =

⎡⎢⎢⎣
ΔA(r(t), t) + ΔB(r(t))K(r(t)) −ΔB(r(t), t)K(r(t))⎡⎣ ΔA(r(t), t)

+ΔB(r(t))K(r(t))
+L(r(t))ΔCy(r(t))

⎤⎦ −ΔB(r(t), t)K(r(t))

⎤⎥⎥⎦ ,

W̃(r(t)) =
[

W(r(t)) 0
0 W(r(t))

]
,

the extended dynamics becomes:

dη(t) =
[
Ã(r(t)) + ΔÃ(r(t), t)

]
η(t)dt + W̃(r(t))η(t)dω(t). (3.80)

As we did previously for systems without external disturbance, let us start
with the study of the nominal class of systems and see how we can design
a stochastically stabilizing observer-based output feedback control and then
take care of the effects of the uncertainties on the system’s matrices.

The following result shows that if there exist sets of gains K = (K(1), · · · ,
K(N)) and L = (L(1), · · · , L(N)), then the observer-based output feedback
control will stochastically stabilize the class of systems disturbed by a Wiener
process (nominal systems) if some appropriate conditions are satisfied.

Theorem 32. Let K(i), i = 1, 2, · · · , N be a given set of gains. If there exist
sets of symmetric and positive-definite matrices P = (P (1), · · · , P (N)) > 0
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and Q = (Q(1), · · · , Q(N)) > 0 such that the following LMIs hold for each
i ∈ S : [

RP (i) P (i)B(i)
B�(i)P (i) −I

]
< 0, (3.81)[

RQ(i) K�(i)
K(i) −I

]
< 0, (3.82)

where

RP (i) = [A(i) + B(i)K(i)]� P (i) + P (i) [A(i) + B(i)K(i)]

+
N∑

j=1

λijP (j) + W�(i)P (i)W(i),

RQ(i) = [A(i) + L(i)Cy(i)]� Q(i) + Q(i) [A(i) + L(i)Cy(i)]

+
N∑

j=1

λijQ(j) + W�(i)Q(i)W(i),

then the closed-loop system is stochastically stable under the controller (3.79).

Proof: Let us consider the Lyapunov candidate function to be given by
the following:

V (x(t), e(t), r(t) = i) = x�(t)P (i)x(t) + e�(t)Q(i)e(t)

=
[
x�(t) e�(t)

] [P (i) 0
0 Q(i)

] [
x(t)
e(t)

]
= η�(t)P(i)η(t),

where the matrices P (i) > 0 and Q(i) > 0 are symmetric and positive-definite
matrices.

Using Theorem 82 from Appendix A, we get

L V (x(t), e(t), i) =
[
Ã(i)η(t)

]�
Vη(x(t), e(t), i)

+
N∑

j=1

λijV (x(t), e(t), j) +
1
2
tr

(
η�(t)W̃�(i)Vηη(x(t), e(t), i)W̃(i)η(t)

)
.

Using the fact that

Vη(x(t), e(t), i) = 2
[

P (i) 0
0 Q(i)

] [
x(t)
e(t)

]
= 2P(i)η(t)

Vηη(x(t), e(t), i) = 2
[

P (i) 0
0 Q(i)

]
= 2P(i),

we obtain the following:
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L V (x(t), e(t), i) = 2η�(t)Ã�(i)P(i)η(t) +
N∑

j=1

λijη
�(t)P(j)η(t)

+η�(t)W̃�(i)P(i)W̃(i)η(t),

which can be rewritten as

L V (x(t), e(t), i) = η�(t)
[
Ã�(i)P(i) + P(i)Ã(i) +

N∑
j=1

λijP(j)

+W̃�(i)P(i)W̃(i)
]
η(t)

= η�(t)Ψ(i)η(t),

with

Ψ(i) = Ã�(i)P(i) + P(i)Ã(i) +
N∑

j=1

λijP(j) + W̃�(i)P(i)W̃(i).

Notice that

P(i)Ã(i) =
[

P (i) 0
0 Q(i)

]⎡⎢⎢⎣
[

A(i)
+B(i)K(i)

]
−B(i)K(i)

0
[

A(i)
+L(i)Cy(i)

]
⎤⎥⎥⎦

=

⎡⎢⎢⎣
[

P (i) [A(i)
+B(i)K(i)]

]
−P (i)B(i)K(i)

0
[

Q(i) [A(i)
+L(i)Cy(i)]

]
⎤⎥⎥⎦ ,

Ã�(i)P(i) =

⎡⎢⎢⎣
[

[A(i)
+B(i)K(i)]� P (i)

]
0

−K�(i)B�(i)P (i)
[

[A(i)
+L(i)Cy(i)]� Q(i)

]
⎤⎥⎥⎦ ,

W̃�(i)P(i)W̃(i) =
[

W�(i) 0
0 W�(i)

] [
P (i) 0

0 Q(i)

]
×

[
W(i) 0

0 W(i)

]
=

[
W�(i)P (i)W(i) 0

0 W�(i)Q(i)W(i)

]
.

Using these expressions, we have

Ψ(i) =
[

J̃P (i) −P (i)B(i)K(i)
−K�(i)B�(i)P (i) J̃Q(i)

]



3.5 Observer-Based Output Stabilization 151

+

[∑N
j=1 λijP (j) 0

0
∑N

j=1 λijQ(j)

]

=

[
J̃P (i) +

∑N
j=1 λijP (j) 0
0 J̃Q(i) +

∑N
j=1 λijQ(j)

]

+
[

0 −P (i)B(i)K(i)
−K�(i)B�(i)P (i) 0

]
,

where

J̃P (i) = [A(i) + B(i)K(i)]� P (i) + P (i) [A(i) + B(i)K(i)]
+W�(i)P (i)W(i),

J̃Q(i) = Q(i) [A(i) + L(i)Cy(i)] + [A(i) + L(i)Cy(i)]� Q(i)
+W�(i)Q(i)W(i).

Notice that [
0 −P (i)B(i)K(i)

−K�(i)B�(i)P (i) 0

]
=

[
0 −P (i)B(i)K(i)
0 0

]
+

[
0 0

−K�(i)B�(i)P (i) 0

]
and [

0 −P (i)B(i)K(i)
0 0

]
=

[
0 −P (i)B(i)
0 0

] [
0 K(i)
0 0

]
.

Using Lemma 3 from Appendix A, we get[
0 −P (i)B(i)K(i)
0 0

]
+

[
0 0

−K�(i)B�(i)P (i) 0

]
≤

[
P (i)B(i)B�(i)P (i) 0

0 K�(i)K(i)

]
.

Using conditions (3.81)–(3.82), we conclude that Ψ(i) < 0 for all i ∈ S
and therefore

L V (x(t), e(t), i) ≤ −min
j∈S

{λmin [−Ψ(j)]}
[
x�(t) e�(t)

] [x(t)
e(t)

]
.

The rest of the proof of this theorem can be obtained in a similar way as
before. �

Let us now return to the determination of the controller parameters K =
(K(1), · · · ,K(N)) and L = (L(1), · · · , L(N)). Let us transform the conditions
(3.81) and (3.82), starting with (3.81). Let X(i) = P−1(i). Pre- and post-
multiplying the left-hand side of this condition by X(i) after using the Schur
complement, we get the following condition, which implies the previous one:
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X(i) [A(i) + B(i)K(i)]� + [A(i) + B(i)K(i)] X(i) + B(i)B�(i)

+
N∑

j=1

λijX(i)X−1(j)X(i) + X(i)W�(i)X−1(i)W(i)X(i) < 0.

This inequality can be rewritten as follows:

X(i)A�(i) + X(i)K�(i)B�(i) + A(i)X(i)

+B(i)K(i)X(i) + B(i)B�(i) +
N∑

j=1

λijX(i)X−1(j)X(i)

+X(i)W�(i)X−1(i)W(i)X(i) < 0,

which, after letting Yc(i) = K(i)X(i) and using the Schur complement and the
fact that

∑N
j=1 λijX(i)X−1(j)X(i) = λiiX(i) + Si(X)X−1(X)S�

i (X) gives⎡⎣ RX(i) X(i)W�(i) Si(X)
W(i)X(i) −X(i) 0
S�

i (X) 0 −X (X)

⎤⎦ < 0,

with

RX(i) = X(i)A�(i) + Y �
c (i)B�(i) + A(i)X(i) + B(i)Yc(i)

+B(i)B�(i) + λiiX(i).

For (3.82), we have

A�(i)Q(i) + Q(i)A(i) + Q(i)L(i)Cy(i) + C�
y (i)L�(i)Q(i)

+
N∑

j=1

λijQ(j) + W�(i)Q(i)W(i) + K�(i)K(i) < 0.

Letting Yo(i) = Q(i)L(i) and using the Schur complement, we get[
RQ(i) K�(i)
K(i) −I

]
< 0,

with

RQ(i) = A�(i)Q(i) + Q(i)A(i) + Yo(i)Cy(i)

+C�
y (i)Y �

o (i) +
N∑

j=1

λijQ(j) + W�(i)Q(i)W(i).

The following theorem summarizes the results of this development.
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Theorem 33. If there exist sets of symmetric and positive-definite matrices
X = (X(1), · · · , X(N)) > 0 and Q = (Q(1), · · · , Q(N)) > 0 and matrices
Yc = (Yc(1), · · · , Yc(N)) and Yo = (Yo(1), · · · , Yo(N)) such that the following
set of coupled LMIs holds for each i ∈ S :⎡⎣ RX(i) X(i)W�(i) Si(X)

W(i)X(i) −X(i) 0
S�

i (X) 0 −X (X)

⎤⎦ < 0, (3.83)

[
RQ(i) K�(i)
K(i) −I

]
< 0, (3.84)

with

RX(i) = X(i)A�(i) + Y �
c (i)B�(i) + A(i)X(i)

+B(i)Yc(i) + B(i)B�(i) + λiiX(i),
RQ(i) = A�(i)Q(i) + Q(i)A(i) + Yo(i)Cy(i)

+C�
y (i)Y �

o (i) +
N∑

j=1

λijQ(j) + W�(i)Q(i)W(i),

then the controller gains that stochastically stabilize system (3.78) are given
by

K(i) = Yc(i)X−1(i), (3.85)
L(i) = Q−1(i)Yo(i). (3.86)

Example 39. To show the usefulness of the theoretical results developed in this
theorem, let us consider the two-mode system of the previous example.

Solving the LMIs (3.83)–(3.84), we get

X(1) =
[

18.1321 −0.0132
−0.0132 18.2444

]
, X(2) =

[
16.0151 −0.0141
−0.0141 16.2159

]
,

Yc(1) =
[
−11.9152 −272.2874
279.5776 −11.6643

]
, Yc(2) = 103 ·

[
−0.0326 −2.9349
2.9266 −0.0317

]
,

Ki(1) =
[
−0.6680 −14.9249
15.4185 −0.6282

]
, Ki(2) =

[
−2.1920 −180.9908
182.7414 −1.7957

]
,

Q(1) = 104 ·
[

3.7464 −0.0000
−0.0000 3.7464

]
, Q(2) = 104 ·

[
3.7464 0.0000
0.0000 3.7464

]
,

Yo(1) = 104 ·
[
−5.6386 0.7493
0.7493 −5.6386

]
, Yo(2) = 104 ·

[
−1.3123 −0.9741
−0.9741 −0.9931

]
.

This gives the following gains for the desired controller:

K(1) =
[
−0.6680 −14.9249
15.4185 −0.6282

]
, K(2) =

[
−2.1920 −180.9908
182.7414 −1.7957

]
,
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L(1) =
[
−1.5051 0.2000
0.2000 −1.5051

]
, L(2) =

[
−0.3503 −0.2600
−0.2600 −0.2651

]
.

Using the results of this theorem, the system of this example is stochasti-
cally stable under the observer-based output feedback control with the com-
puted gains.

Let us now consider the effects of the uncertainties on the dynamics and
establish the corresponding results that permit us to design the robust stabi-
lizing controller of the form (3.79). Before proceeding with the design of such
a controller, let us assume that some sets of gains characterize the controller
and show that they stabilize our class of systems. The following theorem gives
such results.

Theorem 34. Let εA = (εA(1), · · · , εA(N)), εB = (εB(1), · · · , εB(N)), εQ =
(εQ(1), · · · , εQ(N)), εQ1 = (εQ1(1), · · · , εQ1(N)), εQ2 = (εQ2(1), · · · ,
εQ2(N)), and εP1 = (εP1(1), · · · , εP1(N)) be sets of given positive scalars.
If there exist sets of symmetric and positive-definite matrices P = (P (1), · · · ,
P (N)) > 0 and Q = (Q(1), · · · , Q(N)) > 0 such that the following set of
coupled LMIs holds for each i ∈ S :⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

JP (i) P (i)DA(i) P (i)DB(i) P (i)DB(i)
D�

A(i)P (i) −ε−1
A (i)I 0 0

D�
B(i)P (i) 0 −ε−1

B (i)I 0
D�

B(i)P (i) 0 0 −ε−1
P1

(i)I
EB(i)K(i) 0 0 0
EB(i)K(i) 0 0 0
B�(i)P (i) 0 0 0

K�(i)E�
B (i) K�(i)E�

B (i) P (i)B(i)
0 0 0
0 0 0
0 0 0

−εB(i)I 0 0
0 −εQ2(i)I 0
0 0 −I

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
< 0, (3.87)

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

JQ(i) Q(i)DA(i) Q(i)DB(i) Q(i)DB(i)
D�

A(i)Q(i) −ε−1
Q1

(i)I 0 0
D�

B(i)Q(i) 0 −ε−1
Q2

(i)I 0
D�

B(i)Q(i) 0 0 −ε−1
Q (i)I

EB(i)K(i) 0 0 0
EB(i)K(i) 0 0 0

K(i) 0 0 0
D�

Cy
(i)L�(i)Q(i) 0 0 0
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K�(i)E�
B (i) K�(i)E�

B (i) K�(i) Q(i)L(i)DCy
(i)

0 0 0 0
0 0 0 0
0 0 0 0

−εP1(i)I 0 0 0
0 −εQ(i)I 0 0
0 0 −I 0
0 0 0 −εCy

(i)I

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
< 0, (3.88)

where

JP (i) = [A(i) + B(i)K(i)]� P (i) + P (i) [A(i) + B(i)K(i)]

+
N∑

j=1

λijP (j) + W�(i)P (i)W(i) + ε−1
A (i)E�

A (i)EA(i)

+εCy
(i)E�

Cy
(i)ECy

(i) + ε−1
Q1

(i)E�
A (i)EA(i),

JQ(i) = [A(i) + L(i)Cy(i)]� Q(i) + Q(i) [A(i) + L(i)Cy(i)]

+
N∑

j=1

λijQ(j) + W�(i)Q(i)W(i),

then the closed-loop system is stochastically stable under the controller (3.79).

Proof: Considering the same Lyapunov candidate function as the previous
theorem and following the same steps, we get

L V (x(t), e(t), i) = 2η�(t)Ã�(i)P(i)η(t) + 2η�(t)ΔÃ�(i, t)P(i)η(t)

+
N∑

j=1

λijη
�(t)P(j)η(t) + η�(t)W̃�(i)P(i)W̃(i)η(t),

which can be rewritten as

L V (x(t), e(t), i) = η�(t)
[
Ã�(i)P(i) + P(i)Ã(i) +

N∑
j=1

λijP(j)

+ΔÃ�(i, t)P(i) + P(i)ΔÃ(i, t)

+W̃�(i)P(i)W̃(i)
]
η(t).

Notice that

P(i)ΔÃ(i, t) =
[

P (i) 0
0 Q(i)

]
×

[
ΔA(i, t) + ΔB(i, t)K(i) −ΔB(i, t)K(i)

ΔA(i, t) + ΔB(i, t)K(i) + L(i)ΔCy(i, t) −ΔB(i, t)K(i)

]
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=

⎡⎢⎢⎣
P (i)ΔA(i, t) + P (i)ΔB(i, t)K(i) −P (i)ΔB(i, t)K(i)⎡⎣ Q(i)ΔA(i, t)

+Q(i)ΔB(i, t)K(i)
+Q(i)L(i)ΔCy(i, t)

⎤⎦ −Q(i)ΔB(i, t)K(i)

⎤⎥⎥⎦ ,

ΔÃ�(i, t)P(i)

=

⎡⎢⎢⎣
[

ΔA�(i, t)P (i)
+K�(i)ΔB�(i, t)P (i)

] ⎡⎣ ΔA�(i, t)Q(i)
+K�(i)ΔB�(i, t)Q(i)

ΔC�
Cy

(i)L�(i)Q(i)

⎤⎦
−K�(i)ΔB�(i, t)P (i) −K�(i)ΔB�(i, t)Q(i)

⎤⎥⎥⎦ ,

and [
P (i)ΔA(i, t) 0

0 0

]
=

[
P (i)DA(i)FA(i, t)EA(i) 0

0 0

]
=

[
P (i)DA(i) 0

0 0

] [
FA(i, t) 0

0 0

] [
EA(i) 0

0 0

]
,

[
0 0

Q(i)ΔA(i, t) 0

]
=

[
0 0

Q(i)DA(i)FA(i, t)EA(i) 0

]
=

[
0 0
0 Q(i)DA(i)

] [
0 0
0 FA(i, t)

] [
0 0

EA(i) 0

]
,

[
P (i)ΔB(i, t)K(i) 0

0 0

]
=

[
P (i)DB(i)FB(i, t)EB(i)K(i) 0

0 0

]
=

[
P (i)DB(i) 0

0 0

] [
FB(i, t) 0

0 0

] [
EB(i)K(i) 0

0 0

]
,

[
0 0

Q(i)ΔB(i, t)K(i) 0

]
=

[
0 0

Q(i)DB(i)FB(i, t)EB(i)K(i) 0

]
=

[
0 0
0 Q(i)DB(i)

] [
0 0
0 FB(i, t)

] [
0 0

EB(i)K(i) 0

]
,

[
0 0

Q(i)L(i)ΔCy(i, t) 0

]
=

[
0 0

Q(i)L(i)DCy
(i)FCy

(i, t)ECy
(i) 0

]
=

[
0 0
0 Q(i)L(i)DCy

(i)

] [
0 0
0 FCy

(i, t)

] [
0 0

ECy
(i) 0

]
,
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0 −P (i)ΔB(i, t)K(i)
0 0

]
=

[
0 −P (i)DB(i)FB(i, t)EB(i)K(i)
0 0

]
=

[
0 −P (i)DB(i)
0 0

] [
0 0
0 FB(i, t)

] [
0 0
0 EB(i)K(i)

]
,

[
0 0
0 −Q(i)ΔB(i, t)K(i)

]
=

[
0 0
0 −Q(i)DB(i)FB(i, t)EB(i)K(i)

]
=

[
0 0
0 −Q(i)DB(i)

] [
0 0
0 FB(i, t)

] [
0 0
0 EB(i)K(i)

]
.

Using Lemma 7 from Appendix A, we get[
P (i)ΔA(i, t) 0

0 0

]
+

[
ΔA�(i, t)P (i) 0

0 0

]
≤ εA(i)

[
P (i)DA(i) 0

0 0

] [
D�

A(i)P (i) 0
0 0

]
+ε−1

A (i)
[

E�
A (i) 0
0 0

] [
EA(i) 0

0 0

]
=

[
εA(i)P (i)DA(i)D�

A(i)P (i) + ε−1
A (i)E�

A (i)EA(i) 0
0 0

]
,

[
P (i)ΔB(i, t)K(i) 0

0 0

]
+

[
K�(i)ΔB�(i, t)P (i) 0

0 0

]
≤ εB(i)

[
P (i)DB(i) 0

0 0

] [
D�

B(i)P (i) 0
0 0

]
+ε−1

B (i)
[

K�(i)E�
B (i) 0

0 0

] [
EB(i)K(i) 0

0 0

]
=

[
εB(i)P (i)DB(i)D�

B(i)P (i) + ε−1
B (i)K�(i)E�

B (i)EB(i)K(i) 0
0 0

]
,

[
0 0

Q(i)ΔA(i, t) 0

]
+

[
0 ΔA�(i, t)Q(i)
0 0

]
≤ εQ1(i)

[
0 0
0 Q(i)DA(i)D�

A(i)Q(i)

]
+ε−1

Q1
(i)

[
E�

A (i)EA(i) 0
0 0

]
=

[
ε−1

Q1
(i)E�

A (i)EA(i) 0
0 εQ1(i)Q(i)DA(i)D�

A(i)Q(i)

]
,
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0 0

Q(i)ΔB(i, t)K(i) 0

]
+

[
0 K�(i)ΔB�(i, t)Q(i)
0 0

]
≤ εQ2(i)

[
0 0
0 Q(i)DB(i)D�

B(i)Q(i)

]
+ε−1

Q2
(i)

[
K�(i)E�

B (i)EB(i)K(i) 0
0 0

]
=

[
ε−1

Q2
(i)K�(i)E�

B (i)EB(i)K(i) 0
0 εQ2(i)Q(i)DB(i)D�

B(i)Q(i)

]
,

[
0 0

Q(i)L(i)ΔCy(i, t) 0

]
+

[
0 ΔC�

y (i, t)L�(i)Q(i)
0 0

]
≤ ε−1

Cy
(i)

[
0 0
0 Q(i)L(i)DCy

(i)D�
Cy

(i)L�(i)Q(i)

]
+εCy

(i)
[

E�
Cy

(i)ECy
(i) 0

0 0

]
=

[
εCy

(i)E�
Cy

(i)ECy
(i) 0

0 ε−1
Cy

(i)Q(i)L(i)DCy
(i)D�

Cy
(i)L�(i)Q(i)

]
,

[
0 −P (i)ΔB(i, t)K(i)
0 0

]
+

[
0 0

−K�(i)ΔB�(i, t)P (i)

]
≤ εP1(i)

[
P (i)DB(i)D�

B(i)P (i) 0
0 0

]
+ε−1

P1
(i)

[
0 0
0 K�(i)E�

B (i)EB(i)K(i)

]
=

[
εP1(i)P (i)DB(i)D�

B(i)P (i) 0
0 ε−1

P1
(i)K�(i)E�

B (i)EB(i)K(i)

]
,

[
0 0
0 −Q(i)ΔB(i, t)K(i)

]
+

[
0 0
0 −K�(i)ΔB�(i, t)Q(i)

]
≤ εQ(i)

[
0 0
0 Q(i)DB(i)D�

B(i)Q(i)

]
+ε−1

Q (i)
[

0 0
0 K�(i)E�

B (i)EB(i)K(i)

]

=

⎡⎣0 0

0
[

εQ(i)Q(i)DB(i)D�
B(i)Q(i)

+ε−1
Q (i)K�(i)E�

B (i)EB(i)K(i)

]⎤⎦ .

Using all these transformations, we obtain
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L V (x(t), e(t), i) ≤ η�(t)Ψ(i)η(t),

with

Φ(i) = Ã�(i)P(i) + P(i)Ã(i) +
N∑

j=1

λijP(j) + W̃�(i)P(i)W̃(i)

+
[

εA(i)P (i)DA(i)D�
A(i)P (i) + ε−1

A (i)E�
A (i)EA(i) 0

0 0

]

+

⎡⎣[
εB(i)P (i)DB(i)D�

B(i)P (i)
+ε−1

B (i)K�(i)E�
B (i)EB(i)K(i)

]
0

0 0

⎤⎦
+

[
ε−1

Q1
(i)E�

A (i)EA(i) 0
0 εQ1(i)Q(i)DA(i)D�

A(i)Q(i)

]
+

[
ε−1

Q2
(i)K�(i)E�

B (i)EB(i)K(i) 0
0 εQ2(i)Q(i)DB(i)D�

B(i)Q(i)

]
+

[
εCy

(i)E�
Cy

(i)ECy
(i) 0

0 ε−1
Cy

(i)Q(i)L(i)DCy
(i)D�

Cy
(i)L�(i)Q(i)

]

+
[

εP1(i)P (i)DB(i)D�
B(i)P (i) 0

0 ε−1
P1

(i)K�(i)E�
B (i)EB(i)K(i)

]

+

⎡⎣0 0

0
[

εQ(i)Q(i)DB(i)D�
B(i)Q(i)

+ε−1
Q (i)K�(i)E�

B (i)EB(i)K(i)

]⎤⎦ .

Notice that

P(i)Ã(i) =
[

P (i) 0
0 Q(i)

]⎡⎢⎢⎣
[

A(i)
+B(i)K(i)

]
−B(i)K(i)

0
[

A(i)
+L(i)Cy(i)

]
⎤⎥⎥⎦

=

⎡⎢⎢⎣
[

P (i) [A(i)
+B(i)K(i)]

]
−P (i)B(i)K(i)

0
[

Q(i) [A(i)
+L(i)Cy(i)]

]
⎤⎥⎥⎦ ,

Ã�(i)P(i) =

⎡⎢⎢⎣
[

[A(i)
+B(i)K(i)]� P (i)

]
0

−K�(i)B�(i)P (i)
[

[A(i)
+L(i)Cy(i)]� Q(i)

]
⎤⎥⎥⎦ ,

W̃�(i)P(i)W̃(i) =
[

W�(i) 0
0 W�(i)

] [
P (i) 0

0 Q(i)

]
×

[
W(i) 0

0 W(i)

]
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=
[

W�(i)P (i)W(i) 0
0 W�(i)Q(i)W(i)

]
.

Using these expressions, we have

Φ(i) =
[

J̄P (i) −P (i)B(i)K(i)
−K�(i)B�(i)P (i) J̄Q(i)

]
+

[∑N
j=1 λijP (j) 0

0
∑N

j=1 λijQ(j)

]

=

[
J̄P (i) +

∑N
j=1 λijP (j) 0
0 J̄Q(i) +

∑N
j=1 λijQ(j)

]

+
[

0 −P (i)B(i)K(i)
−K�(i)B�(i)P (i) 0

]
,

where

J̄P (i) = [A(i) + B(i)K(i)]� P (i) + P (i) [A(i) + B(i)K(i)]
+W�(i)P (i)W(i)
+εA(i)P (i)DA(i)D�

A(i)P (i) + ε−1
A (i)E�

A (i)EA(i)
+εB(i)P (i)DB(i)D�

B(i)P (i)
+ε−1

B (i)K�(i)E�
B (i)EB(i)K(i)

+ε−1
Q1

(i)E�
A (i)EA(i)

+ε−1
Q2

(i)K�(i)E�
B (i)EB(i)K(i)

+εP1(i)P (i)DB(i)D�
B(i)P (i) + εCy

(i)E�
Cy

(i)ECy
(i),

J̄Q(i) = Q(i) [A(i) + L(i)Cy(i)] + [A(i) + L(i)Cy(i)]� Q(i)
+W�(i)Q(i)W(i)
+εQ1(i)Q(i)DA(i)D�

A(i)Q(i)
+εQ2(i)Q(i)DB(i)D�

B(i)Q(i)
+ε−1

P1
(i)K�(i)E�

B (i)EB(i)K(i)

+εQ(i)Q(i)DB(i)D�
B(i)Q(i)

+ε−1
Q (i)K�(i)E�

B (i)EB(i)K(i)

+ε−1
Cy

(i)Q(i)L(i)DCy
(i)D�

Cy
(i)L�(i)Q(i).

Notice that[
0 −P (i)B(i)K(i)
0 0

]
=

[
0 −P (i)B(i)
0 0

] [
0 K(i)
0 0

]
.

Using Lemma 2 from Appendix A, we get[
0 −P (i)B(i)K(i)
0 0

]
+

[
0 0

−K�(i)B�(i)P (i) 0

]
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≤
[

P (i)B(i)B�(i)P (i) 0
0 K�(i)K(i)

]
.

letting JP (i) and JQ(i) be defined as follows:

JP (i) = [A(i) + B(i)K(i)] P (i) + P (i) [A(i) + B(i)K(i)]�

+W�(i)P (i)W(i) +
∑
ij

λijP (j) + ε−1
A (i)E�

A (i)EA(i)

+εCy
(i)E�

Cy
(i)ECy

(i) + ε−1
Q1

(i)E�
A (i)EA(i)

JQ(i) = Q(i) [A(i) + L(i)Cy(i)] + [A(i) + L(i)Cy(i)]� Q(i)

+W�(i)Q(i)W(i) +
N∑

j=1

λijQ(j),

and taking care of all these transformations, we get⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

JP (i) P (i)DA(i) P (i)DB(i) P (i)DB(i)
D�

A(i)P (i) −ε−1
A I 0 0

D�
B(i)P (i) 0 −ε−1

B I 0
D�

B(i)P (i) 0 0 −ε−1
P1

I

EB(i)K(i) 0 0 0
EB(i)K(i) 0 0 0
B�(i)P (i) 0 0 0

K�(i)E�
B (i) K�(i)E�

B (i) P (i)B(i)
0 0 0
0 0 0
0 0 0

−εBI 0 0
0 −εQ2I 0
0 0 −I

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
< 0,

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

JQ(i) Q(i)DA(i) Q(i)DB(i) Q(i)DB(i)
D�

A(i)Q(i) −ε−1
Q1

I 0 0
D�

B(i)Q(i) 0 −ε−1
Q2

I 0
D�

B(i)Q(i) 0 0 −ε−1
Q I

EB(i)K(i) 0 0 0
EB(i)K(i) 0 0 0

K(i) 0 0 0
D�

Cy
(i)L�(i)Q(i) 0 0 0
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K�(i)E�
B (i) K�(i)E�

B (i) K�(i) Q(i)L(i)DCy
(i)

0 0 0 0
0 0 0 0
0 0 0 0

−εP1I 0 0 0
0 −εQI 0 0
0 0 −I 0
0 0 0 −εCy

(i)I

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
< 0,

which are both negative-definite by hypothesis.
Using (3.87)–(3.88), we conclude that Φ(i) < 0 for all i ∈ S and therefore

L V (x(t), e(t), i) ≤ −min
j∈S

{λmin [−Φ(j)]}
[
x�(t) e�(t)

] [x(t)
e(t)

]
.

The rest of the proof of this theorem can be obtained using the same steps
used in the proof of Theorem 32. �

Let us now return to the determination of the controller parameters
K = (K(1), · · · ,K(N)) and L = (L(1), · · · , L(N)). Transform the condi-
tions (3.87) and (3.88), starting with (3.87). Let X(i) = P−1(i). Pre- and
post-multiplying the left-hand side of the equivalence of this condition (using
the Schur complement) by X(i) gives the following condition, which implies
the previous one:

X(i) [A(i) + B(i)K(i)]� + [A(i) + B(i)K(i)] X(i)
+X(i)W�(i)X−1(i)W(i)X(i)
+εA(i)DA(i)D�

A(i) + ε−1
A (i)X(i)E�

A (i)EA(i)X(i)
+εB(i)DB(i)D�

B(i) + ε−1
B (i)X(i)K�(i)E�

B (i)EB(i)K(i)X(i)
+ε−1

Q1
(i)X(i)E�

A (i)EA(i)X(i)

+ε−1
Q2

(i)X(i)K�(i)E�
B (i)EB(i)K(i)X(i) + εCy

(i)X(i)E�
Cy

(i)ECy
(i)X(i)

+εP1(i)DB(i)D�
B(i) +

N∑
j=1

λijX(i)X−1(j)X(i) + B(i)B�(i) < 0.

This inequality can be rewritten as follows:

X(i)A�(i) + X(i)K�(i)B�(i) + A(i)X(i) + B(i)K(i)X(i)
+B(i)B�(i) + εA(i)DA(i)D�

A(i) + ε−1
A (i)X(i)E�

A (i)EA(i)X(i)
+εB(i)DB(i)D�

B(i) + ε−1
B (i)X(i)K�(i)E�

B (i)EB(i)K(i)X(i)
+ε−1

Q1
(i)X(i)E�

A (i)EA(i)X(i) + εCy
(i)X(i)E�

Cy
(i)ECy

(i)X(i)

+ε−1
Q2

(i)X(i)K�(i)E�
B (i)EB(i)K(i)X(i) + εP1(i)DB(i)D�

B(i)

+
N∑

j=1

λijX(i)X−1(j)X(i) + X(i)W�(i)X−1(i)W(i)X(i) < 0,
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which, after letting Yc(i) = K(i)X(i) and using the Schur complement and the
fact that

∑N
j=1 λijX(i)X−1(j)X(i) = λiiX(i) + Si(X)X−1(X)S�

i (X), gives⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

RX(i) X(i)E�
A (i) X(i)E�

A (i) Y �
c (i)E�

B (i)
EA(i)X(i) −εA(i)I 0 0
EA(i)X(i) 0 −εQ1(i)I 0
EB(i)Yc(i) 0 0 −εB(i)I
EB(i)Yc(i) 0 0 0
W(i)X(i) 0 0 0

ECy
(i)X(i) 0 0 0

S�
i (X) 0 0 0

Y �
c (i)E�

B (i) X(i)W�(i) X(i)E�
Cy

(i) Si(X)
0 0 0 0
0 0 0 0
0 0 0 0

−εQ2(i)I 0 0 0
0 −X(i) 0 0
0 0 −I 0
0 0 0 −X (X)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
< 0,

with

RX(i) = X(i)A�(i) + Y �
c (i)B�(i) + A(i)X(i) + B(i)Yc(i)

+B(i)B�(i) + λiiX(i)
+εA(i)DA(i)D�

A(i) + εB(i)DB(i)D�
B(i)

+εP1(i)DB(i)D�
B(i).

For (3.88), following the same steps as for the inequality (3.87), we have

Q(i) [A(i) + L(i)Cy(i)] + [A(i) + L(i)Cy(i)]� Q(i) + W�(i)Q(i)W(i)
+εQ1(i)Q(i)DA(i)D�

A(i)Q(i) + εQ2(i)Q(i)DB(i)D�
B(i)Q(i)

+ε−1
P1

(i)K�(i)E�
B (i)EB(i)K(i) + εQ(i)Q(i)DB(i)D�

B(i)Q(i)

+ε−1
Q (i)K�(i)E�

B (i)EB(i)K(i) + K�(i)K(i) +
N∑

j=1

λijQ(j)

+ε−1
Cy

(i)Q(i)L(i)DCy
(i)D�

Cy
(i)L�(i)Q(i) < 0.

Letting Yo(i) = Q(i)L(i) and using the Schur complement, we get
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RQ(i) Q(i)DA(i) Q(i)DB(i) Q(i)DB(i)
D�

A(i)Q(i) −ε−1
Q1

(i)I 0 0
D�

B(i)Q(i) 0 −ε−1
Q2

(i)I 0
D�

A(i)Q(i) 0 0 −ε−1
Q (i)I

EB(i)K(i) 0 0 0
EB(i)K(i) 0 0 0

K(i) 0 0 0
D�

Cy
(i)Y �

o (i) 0 0 0

K�(i)E�
B (i) K�(i)E�

B (i) K�(i) Yo(i)Dcy
(i)

0 0 0 0
0 0 0 0
0 0 0 0

−εP1(i)I 0 0 0
0 −εQ(i)I 0 0
0 0 −I 0
0 0 0 −εCy

(i)I

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
< 0,

with

RQ(i) = A�(i)Q(i) + Q(i)A(i) + Yo(i)Cy(i) + C�
y (i)Y �

o (i)

+
N∑

j=1

λijQ(j) + W�(i)Q(i)W(i).

The following theorem summarizes the results of this development.

Theorem 35. Let εA = (εA(1), · · · , εA(N)), εB = (εB(1), · · · , εB(N)), εQ =
(εQ(1), · · · , εQ(N)), εQ1 = (εQ1(1), · · · , εQ1(N)), εQ2 = (εQ2(1), · · · ,
εQ2(N)), and εP1 = (εP1(1), · · · , εP1(N)) be sets of given positive scalars.
If there exist sets of symmetric and positive-definite matrices X = (X(1), · · · ,
X(N)) > 0 and Q = (Q(1), · · · , Q(N)) > 0 and matrices Yc = (Yc(1), · · · ,
Yc(N)) and Yo = (Yo(1), · · · , Yo(N)) such that the following set of coupled
LMIs holds for each i ∈ S :⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

RX(i) X(i)E�
A (i) X(i)E�

A (i) Y �
c (i)E�

B (i)
EA(i)X(i) −εA(i)I 0 0
EA(i)X(i) 0 −εQ1(i)I 0
EB(i)Yc(i) 0 0 −εB(i)I
EB(i)Yc(i) 0 0 0
W(i)X(i) 0 0 0

ECy
(i)X(i) 0 0 0

S�
i (X) 0 0 0
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Y �
c (i)E�

B (i) X(i)W�(i) X(i)E�
Cy

(i) Si(X)
0 0 0 0
0 0 0 0
0 0 0 0

−εQ2(i)I 0 0
0 −X(i) 0
0 0 −I 0
0 0 0 −X (X)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
< 0, (3.89)

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

RQ(i) Q(i)DA(i) Q(i)DB(i) Q(i)DB(i)
D�

A(i)Q(i) −ε−1
Q1

(i)I 0 0
D�

B(i)Q(i) 0 −ε−1
Q2

(i)I 0
D�

A(i)Q(i) 0 0 −ε−1
Q (i)I

EB(i)K(i) 0 0 0
EB(i)K(i) 0 0 0

K(i) 0 0 0
D�

Cy
(i)Y �

o (i) 0 0 0

K�(i)E�
B (i) K�(i)E�

B (i) K�(i) Yo(i)Dcy
(i)

0 0 0 0
0 0 0 0
0 0 0 0

−εP1(i)I 0 0 0
0 −εQ(i)I 0 0
0 0 −I 0
0 0 0 −εCy

(i)I

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
< 0, (3.90)

with

RX(i) = X(i)A�(i) + Y �
c (i)B�(i) + A(i)X(i) + B(i)Yc(i)

+B(i)B�(i) + λiiX(i)
+εA(i)DA(i)D�

A(i) + εB(i)DB(i)D�
B(i)

+εP1(i)DB(i)D�
B(i),

RQ(i) = A�(i)Q(i) + Q(i)A(i) + Yo(i)Cy(i) + C�
y (i)Y �

o (i)

+
N∑

j=1

λijQ(j) + W�(i)Q(i)W(i),

then the controller gains that stochastically stabilize system (3.78) are given
by

K(i) = Yc(i)X−1(i), (3.91)
L(i) = Q−1(i)Yo(i). (3.92)

Example 40. To show the usefulness of the developed results in this theorem,
let us consider the two-mode system of the example considered before with
the same data.
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Fix the required positive scalars to the following values:

εA(1) = 0.10,

εB(1) = εQ(1) = εQ1(1) = εQ2(1) = εP (1) = 0.50,

εA(2) = 0.10,

εB(2) = εQ(2) = εQ1(2) = εQ2(2) = εP (2) = 0.50.

Solving the LMIs (3.89)–(3.90), we get

X(1) =
[

0.2375 −0.0032
−0.0032 0.2538

]
, X(2) =

[
0.2119 −0.0010
−0.0010 0.2220

]
,

Yc(1) =
[
−1.5026 −0.0270
0.0156 −1.4673

]
, Yc(2) =

[
−1.0779 −0.1456
−0.0421 −1.0979

]
,

Q(1) =
[

65.6278 −24.0341
−24.0341 29.3642

]
, Q(2) =

[
42.7741 −26.7655
−26.7655 57.0332

]
,

Yo(1) =
[
−87.1069 37.2563
37.2085 −121.1409

]
, Yo(2) =

[
−146.6626 29.8761
30.2071 −46.8421

]
.

The corresponding gains for the considered controller are given by

K(1) =
[
−6.3302 −0.1874
−0.0131 −5.7818

]
, K(2) =

[
−5.0911 −0.6797
−0.2228 −4.9460

]
,

L(1) =
[
−1.2327 −1.3468
0.2582 −5.2278

]
, L(2) =

[
−4.3851 0.2613
−1.5283 −0.6987

]
.

Based on the results of this theorem, the system of this example is sto-
chastically stable under the observer-based output feedback control with the
computed gains.

3.6 Stabilization with Constant Gains

Earlier in this chapter we supposed complete access to the system mode. In
reality, this is hard to achieve and we must estimate the mode to continue to
apply the previous results. In this section, we relax this assumption and try
to synthesize controllers that do not require knowledge of the mode.

Let us start by designing a constant gain state feedback controller for the
nominal system. The structure for this controller is given by

u = K x(t), (3.93)

where K is a constant gain that we have to determine.
Using the nominal system dynamics (3.1) and the expression of the con-

troller, we get the following expression for the closed-loop system:

ẋ(t) = [A(r(t)) + B(r(t))K ] x(t).
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Theorem 36. Let K be a given gain matrix. If there exists a symmetric and
positive-definite matrix P > 0 such that the following set of LMIs holds for
each i ∈ S :

A�(i)P + K �B�(i)P + PA(i) + PB(i)K < 0, (3.94)

then the nominal system (3.1) is stochastically stable under the state feedback
controller with constant gain.

Proof: Let P > 0 be a symmetric and positive-definite matrix and definite
the Lyapunov candidate function as follows:

V (xt, r(t) = i) = x�(t)Px(t).

Let L denote the infinitesimal generator of the Markov process (x(t), r(t)).
The expression of the infinitesimal operator acting on V (.) and emanating
from the point (x, i) at time t, where x(t) = x and r(t) = i for i ∈ S , is given
by

L V (x(t), i) = ẋ�(t)Px(t) + x�(t)P ẋ(t) +
N∑

j=1

λijx
�(t)Px(t).

Using the fact that
∑N

j=1 λij = 0 for every i ∈ S , we get

L V (x(t), i) = ẋ�(t)Px(t) + x�(t)P ẋ(t)

= [[A(i) + B(i)K ] x(t)]� Px(t) + x�(t)P [A(i) + B(i)K ] x(t)
= x�(t)

[
A�(i)P + K �B�(i)P + PA(i) + PK B(i)

]
x(t)

= x�(t)Λ(i)x(t),

with Λ(i) = A�(i)P + K �B�(i)P + PA(i) + PB(i)K .
Using (3.94) we get

L V (x(t), i) ≤ −min
i∈S

{λmin (−Λ(i))}x�(t)x(t).

The rest of the proof of Theorem 36 can be obtained following the same steps
as before. �

From this theorem, it is possible to stochastically stabilize the class of
systems we are considering if condition (3.94) is satisfied. The P we need is
constant and does not depend on the mode i.

To determine the gain K , transform the condition (3.94). For this purpose,
let X = P−1 and pre- and post-multiply this inequality by X to give:

XA�(i) + XK �B�(i) + A(i)X + B(i)K X < 0.

Letting K = K X, we get
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XA�(i) + K�B�(i) + A(i)X + B(i)K < 0.

If this LMI is feasible, the controller gain is given by

K = KX−1 = KP. (3.95)

The controller gain can be determined by solving the LMI of the following
theorem.

Theorem 37. If there exist a symmetric and positive-definite matrix X > 0
and a constant gain K such that the following set of LMIs holds for each
i ∈ S :

XA�(i) + A(i)X + K�B�(i) + B(i)K < 0, (3.96)

then the state feedback controller with the gain K = KX−1 stochastically
stabilizes the nominal system.

Example 41. Let us consider the system with two modes considered in the
previous example. Notice that the system is instable in mode 1 and it is
stochastically instable. Solving the LMI (3.96), we get

X =
[

0.4791 0.1129
0.1129 0.4698

]
,

which is a symmetric and positive-definite matrix. Using (3.96) gives the fol-
lowing constant gain:

K =
[

9.8277 −51.0015
51.1597 −14.6804

]
.

With this controller, the closed-loop state equation becomes

ẋ(t) = Acl(i)x(t),

with

Acl(i) =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

[
10.8277 −51.5015
51.2597 −13.6804

]
,when i = 1,

[
9.6277 −51.5015
51.6597 −14.9304

]
, otherwise.

(3.97)

The standard conditions for stochastic stability can be summarized as
follows: If there exists a set of symmetric and positive-definite matrices P =
(P (1), P (2)) > 0 such that the following holds for each r(t) = i ∈ S :
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A�
cl(i)P (i) + P (i)Acl(i) +

N∑
j=1

λijP (j) < 0,

then the closed-loop state equation is stochastically stable.
Using these conditions, we get the following matrices:

P (1) =
[

8.5974 −2.0276
−2.0276 8.4410

]
, P (2) =

[
5.5621 −0.4028
−0.4028 5.6338

]
,

which are both symmetric and positive-definite and therefore the closed-loop
system is stochastically stable under the constant gain state feedback con-
troller.

If the uncertainties are acting on the dynamics, the previous results can
be extended to handle this case. In fact, if we replace A(i) and B(i) by A(i)+
ΔA(i, t) and B(i) + ΔB(i, t), respectively, in the previous condition, we get
for every i ∈ S :

XA�(i) + A(i)X + K�B�(i) + B(i)K + XΔA�(i, t)
+ΔA(i, t)X + K�ΔB�(i, t) + ΔB(i, t)K < 0.

Using Lemma 7 from Appendix A, we get

XΔA�(i, t) + ΔA(i, t)X ≤ εA(i)DA(i)D�
A(i)

+ε−1
A (i)XE�

A (i)EA(i)X,

K�ΔB�(i, t) + ΔB(i, t)K ≤ εB(i)DB(i)D�
B(i)

+ε−1
B (i)K�E�

B (i)EB(i)K.

Based on these inequalities we need to have the following to guarantee the
stochastic stability of the closed-loop state equation:

XA�(i) + A(i)X + K�B�(i) + B(i)K
+εA(i)DA(i)D�

A(i) + εB(i)DB(i)D�
B(i)

+ε−1
A (i)XE�

A (i)EA(i)X
+ε−1

B (i)K�E�
B (i)EB(i)K < 0,

which implies the previous one.
Using the Schur complement, we get⎡⎣ J (i) XE�

A (i) K�E�
B (i)

EA(i)X −εA(i)I 0
EB(i)K 0 −εB(i)I

⎤⎦ < 0, (3.98)

with

J (i) = XA�(i) + A(i)X + K�B�(i) + B(i)K
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+εA(i)DA(i)D�
A(i) + εB(i)DB(i)D�

B(i).

The following theorem determines the controller with constant gain that
robustly stochastically stabilizes the class of systems we are studying.

Theorem 38. If there exist symmetric and positive-definite matrices X > 0
and sets of positive constants εA = (εA(1), · · · , εA(N)) and εB = (εB(1), · · · ,
εB(N)) and a constant gain K such the following sets of LMIs (3.98) hold for
every i ∈ S , then the stabilizing controller gain is K = KX−1.

Example 42. To design a robust stabilizing controller with constant gain, let
us consider again the two-mode system of the previous example.

Letting εA(1) = εA(2) = 0.5 and εB(1) = εB(2) = 0.1 and solving the
LMIs (3.98), we get

X =
[

0.2641 0.0897
0.0897 0.2001

]
, K =

[
−0.5365 −0.0496
−0.0315 −0.5139

]
,

which gives the following gain:

K =
[
−2.2975 0.7827
0.8891 −2.9678

]
.

Using the results of this theorem, the system of this example is stochasti-
cally stable under the state feedback controller with the computed constant
gain.

Let us now consider the effects of external Wiener process disturbance
to see how we can design a controller with constant gain that stochastically
and/or robustly stochastically stabilizes the system.

Based on the results of Chapter 2, the free nominal system will be stochas-
tically stable if there exists a symmetric and positive-definite matrix P > 0,
such that the following holds for each i ∈ S :

A�(i)P + PA(i) + W�(i)PW(i) < 0.

Plugging the controller expression into the system dynamics, we get the
following dynamics for the closed loop:

dx(t) = [A(r(t)) + B(r(t))K ] x(t)dt + W(i)x(t)dω(t).

Replacing A(i) by A(i) + B(i)K , we get the following condition for sto-
chastic stability of the closed-loop state equation for every i ∈ S :

[A(i) + B(i)K ]� P + P [A(i) + B(i)K ] + W�(i)PW(i) < 0.

Notice that this inequality is nonlinear in the design parameters P > 0
and K . Let X = P−1. To put it into LMI form, pre- and post-multiply this
inequality by X. After some simple algebraic manipulations, we get



3.6 Stabilization with Constant Gains 171

XA�(i) + XK �B�(i) + A(i)X + B(i)K X

+XW�(i)P−1W(i)P < 0.

Letting K = K X, we obtain the following LMI:[
J (i) XW�(i)

W(i)X −X

]
< 0, (3.99)

where

J (i) = XA�(i) + XA(i) + K�B�(i) + B(i)K.

The following theorem summarizes the results of this development.

Theorem 39. If there exist a symmetric and positive-definite matrix X > 0
and a constant gain K such that the following set of LMIs (3.99) holds for
each i ∈ S , then the state feedback controller with the gain K = KX−1

stochastically stabilizes the system.

Example 43. To show the usefulness of the results of this theorem, let us con-
sider the two-mode system of the previous example. Solving the LMI (3.99),
we get

X =
[

11.7639 1.8477
1.8477 11.6092

]
, K =

[
−15.5182 19.8940
−19.0505 −16.6443

]
,

which is a symmetric and positive-definite matrix. (3.95) gives the following
constant gain:

K =
[
−1.6290 1.9729
−1.4300 −1.2061

]
.

With this controller, the closed-loop state equation becomes

ẋ(t) = Acl(r(t))x(t),

with

Acl(i) =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

[
−0.6290 1.4729
−1.3300 −0.2061

]
,when r(t) = 1,

[
−1.8290 1.4729
−0.9300 −1.4561

]
, otherwise.

The standard conditions for stochastic stability can be summarized as
follows: If there exists a set of symmetric and positive-definite matrices P =
(P (1), P (2)) > 0 such that the following holds for each i ∈ S :
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A�
cl(i)P (i) + P (i)Acl(i) +

N∑
j=1

λijP (j) < 0,

then the closed-loop system is stochastically stable.
Using these conditions, we get the following matrices:

P (1) =
[

23.2198 −1.0277
−1.0277 31.4927

]
, P (2) =

[
13.4892 1.7971
1.7971 17.1656

]
,

which are both symmetric and positive-definite. Therefore the closed-loop sys-
tem is stochastically stable under the constant gain state feedback controller.

If both the external Wiener process and the uncertainties are acting on the
systems, similar results can be obtained. In fact, if we replace A(i)+B(i)K by
A(i)+ΔA(i, t)+B(i)K +ΔB(i, t)K , we get the following required condition
that guarantees robust stochastic stability:

[A(i) + ΔA(i, t) + B(i)K + ΔB(i, t)K ]� P

+P [A(i) + ΔA(i, t) + B(i)K + ΔB(i, t)K ]
+W�(i)PW(i) < 0.

Notice that this inequality is nonlinear in the design parameters P > 0
and K . Let X = P−1. To put it into LMI form, let us pre- and post-multiply
this inequality by X. After some simple algebraic manipulations, we get for
every i ∈ S :

XA�(i) + XK �B�(i) + A(i)X + B(i)K X

+XW�(i)P−1W(i)X + XΔA�(i, t) + ΔA(i, t)X
+XK �ΔB�(i, t) + ΔB(i, t)K X < 0.

Using Lemma 7, we can transform the term XΔA�(i, t) + ΔA(i, t)X and
XK �ΔB�(i, t) + ΔB(i, t)K X as before, and after letting K = K X, we
obtain the required LMI that guarantees the stochastic stability of the closed-
loop: ⎡⎢⎢⎣

J (i) XE�(i) K�E�
B (i)

EA(i)X −εA(i)I 0
EB(i)K 0 −εB(i)I
W(i)P 0 0

XW�(i)
0
0

−X

⎤⎥⎥⎦ < 0, (3.100)

where

J (i) = XA�(i) + A(i)X + K�B�(i) + B(i)K
+εA(i)DA(i)D�

A(i) + εB(i)DB(i)D�
B(i).

The following theorem summarizes the results of this development.
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Theorem 40. If there exist a symmetric and positive-definite matrix X > 0
and sets of positive constants εA = (εA(1), · · · , εA(N)) and εB = (εB(1), · · · ,
εB(N)) and a constant gain K such the following sets of LMIs (3.100) hold
for every i ∈ S then the stabilizing controller gain is K = KX−1.

Example 44. To design a robust stabilizing controller with constant gain, let
us consider again the system with two modes of the previous example. Letting
εA(1) = εA(2) = 0.5 and εB(1) = εB(2) = 0.1 and solving the LMIs (3.100),
we get

P =
[

0.4208 0.0578
0.0578 0.4165

]
, K =

[
−0.5702 0.0343
0.0044 −0.6076

]
,

which gives the following gain:

K =
[
−1.3931 0.2755
0.2147 −1.4885

]
.

Using the results of this theorem, the system of this example is stochastically
stable under the state feedback controller with the computed constant gain.

3.7 Case Study

To end this chapter let us consider the system described in Chapter 1 involving
the VTOL helicopter. With the same data given in Chapter 1 and assuming
that we have access to the state vector, let us design a state feedback controller
using the developed design method. Solving the set of coupled LMIs, we get

X(1) =

⎡⎢⎢⎣
0.6065 0.0053 0.0872 0.0395
0.0053 0.5756 0.0103 0.0031
0.0872 0.0103 0.6253 −0.0854
0.0395 0.0031 −0.0854 0.5060

⎤⎥⎥⎦ ,

X(2) =

⎡⎢⎢⎣
1.1272 0.0239 0.2684 0.2290
0.0239 1.0095 0.0275 0.0129
0.2684 0.0275 1.1807 −0.2519
0.2290 0.0129 −0.2519 0.7662

⎤⎥⎥⎦ ,

X(3) =

⎡⎢⎢⎣
1.1347 0.0128 0.1733 0.2183
0.0128 1.0560 0.0264 0.0342
0.1733 0.0264 1.2140 −0.2585
0.2183 0.0342 −0.2585 1.0168

⎤⎥⎥⎦ ,

Y (1) =
[
−0.0436 −0.0125 −0.0838 0.1196
−0.0396 −0.0673 −0.0 −0.2067

]
,

Y (2) =
[
−0.0966 0.1326 −0.0591 −0.0611
−0.1242 −0.0567 0.0 −0.4055

]
,
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Y (3) =
[
−0.0154 0.1039 −0.1804 0.6468
−0.1239 −0.0234 0.0 −0.0982

]
,

which gives the following gains:

K(1) =
[
−0.0731 −0.0207 −0.0925 0.2266
−0.0301 −0.1135 −0.0505 −0.4139

]
,

K(2) =
[
−0.0578 0.1354 −0.0580 −0.0838
0.0412 −0.0460 −0.1330 −0.5846

]
,

K(3) =
[
−0.1448 0.0782 0.0125 0.6678
−0.0939 −0.0185 −0.0025 −0.0764

]
.

We can also assume that we do not have access to the mode and try to
design a constant gain state feedback controller. Using the previous results
and solving the set of LMIs, we have

X =

⎡⎢⎢⎣
3.3304 −1.0031 0.1220 0.6575
−1.0031 1.4556 0.2100 −0.4049
0.1220 0.2100 1.4461 −0.5585
0.6575 −0.4049 −0.5585 0.9409

⎤⎥⎥⎦ ,

Y =
[

0.1386 0.1416 0.2689 0.2778
−0.0621 0.1817 0.4079 −0.2551

]
,

which gives the following constant gain:

K =
[
−0.0465 0.1876 0.4156 0.6552
0.0186 0.0719 0.2235 −0.1205

]
.

If we assume that the state vector is not accessible, we can design an
output feedback controller using the previous results. Using the same data as
before and solving the appropriate set of coupled LMIs gives

X(1) =

⎡⎢⎢⎣
9.7282 −1.8814 −0.2079 −1.9571
−1.8814 4.7466 1.9035 3.6740
−0.2079 1.9035 9.2696 1.4797
−1.9571 3.6740 1.4797 14.7762

⎤⎥⎥⎦ ,

X(2) =

⎡⎢⎢⎣
8.8208 −1.4447 0.3358 1.1365
−1.4447 4.2255 1.4165 4.9098
0.3358 1.4165 9.4633 0.4707
1.1365 4.9098 0.4707 10.5495

⎤⎥⎥⎦ ,

X(3) =

⎡⎢⎢⎣
9.7866 −3.3633 1.0574 −0.4175
−3.3633 6.1659 2.7704 4.5104
1.0574 2.7704 7.5558 −1.2452
−0.4175 4.5104 −1.2452 8.9236

⎤⎥⎥⎦ ,

Y (1) =

⎡⎢⎢⎣
6.1898 0.0671 0.8070 0.3487
0.0671 5.8269 0.0888 0.0155
0.8070 0.0888 6.2532 −0.7316
0.3487 0.0155 −0.7316 5.2439

⎤⎥⎥⎦ ,
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Y (2) =

⎡⎢⎢⎣
10.4897 0.2056 2.4237 1.9123
0.2056 9.5823 0.2373 0.0815
2.4237 0.2373 11.0087 −2.1617
1.9123 0.0815 −2.1617 7.2361

⎤⎥⎥⎦ ,

Y (3) =

⎡⎢⎢⎣
10.3650 0.1051 1.4839 1.7359
0.1051 9.9009 0.1995 0.2453
1.4839 0.1995 11.1810 −2.1769
1.7359 0.2453 −2.1769 9.3320

⎤⎥⎥⎦ ,

KB(1) =

⎡⎢⎢⎣
−3.3800 5.1499
−5.4839 0.3679
1.5367 0.0

−14.1434 13.5104

⎤⎥⎥⎦ ,

KB(2) =

⎡⎢⎢⎣
−4.1110 2.5550
−3.9626 1.0908
1.7776 0.0
−4.8024 16.8858

⎤⎥⎥⎦ ,

KB(3) =

⎡⎢⎢⎣
−3.5742 2.2258
−5.4298 1.4920
2.5429 −0.0

−15.4107 17.4410

⎤⎥⎥⎦ ,

KC(1) =
[
−0.3879 −0.2185 −0.8007 1.0865
−0.3573 −0.7192 −0.0 −2.2098

]
,

KC(2) =
[
−0.8189 1.0843 −0.5558 −0.6340
−1.0365 −0.5550 −0.0 −3.8356

]
,

KC(3) =
[
−0.1996 0.8602 −1.5629 5.8799
−1.0439 −0.2591 0.0 −0.9351

]
,

which gives the following gains:

KA(1) =

⎡⎢⎢⎣
−0.8071 0.6479 −0.7407 0.1657
−0.9743 −0.8361 −1.0124 −0.6135
0.8275 −0.0130 0.0909 −1.6445
−0.8736 1.1252 0.1745 1.1515

⎤⎥⎥⎦ ,

KB(1) =

⎡⎢⎢⎣
0.7175 −0.6640
1.0119 0.5559
−0.5036 0.0556
0.8608 −1.1607

⎤⎥⎥⎦ ,

KC(1) =
[
−0.0608 −0.0358 −0.0965 0.1979
−0.0266 −0.1213 −0.0446 −0.4255

]
,

KA(2) =

⎡⎢⎢⎣
−1.0678 −1.1790 −1.0286 −1.9246
−2.7181 −6.1764 −1.5655 −5.4328
1.0969 −0.1029 −0.3614 −1.2342
0.7875 4.3755 1.7833 4.4348

⎤⎥⎥⎦ ,
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KB(2) =

⎡⎢⎢⎣
1.0047 1.2911
2.4371 5.7491
−0.5630 −0.7171
−0.7801 −4.4594

⎤⎥⎥⎦ ,

KC(2) =
[
−0.0492 0.1165 −0.0606 −0.0940
0.0344 −0.0508 −0.1192 −0.5742

]
,

KA(3) =

⎡⎢⎢⎣
−0.2155 −3.5038 −0.1381 −3.8405
0.9598 −10.5379 0.8146 −10.2005
0.0594 5.5874 −1.0472 4.1746
−2.2909 7.7417 −1.1495 7.8591

⎤⎥⎥⎦ ,

KB(3) =

⎡⎢⎢⎣
0.1085 3.6175
−0.8997 10.1916
0.3646 −5.6498
2.2687 −7.8583

⎤⎥⎥⎦ ,

KC(3) =
[
−0.1298 0.0720 0.0033 0.6531
−0.0856 −0.0231 −0.0047 −0.0848

]
.

For the observer-based output feedback controller, using the same data as
before and solving the appropriate set of coupled LMIs gives

X(1) =

⎡⎢⎢⎣
76.2103 0.6638 10.9612 4.9596
0.6638 72.3326 1.2929 0.3932
10.9612 1.2929 78.5798 −10.7318
4.9596 0.3932 −10.7318 63.5807

⎤⎥⎥⎦ ,

X(2) =

⎡⎢⎢⎣
141.6507 3.0038 33.7306 28.7827
3.0038 126.8566 3.4561 1.6248
33.7306 3.4561 148.3684 −31.6521
28.7827 1.6248 −31.6521 96.2770

⎤⎥⎥⎦ ,

X(3) =

⎡⎢⎢⎣
142.5915 1.6080 21.7749 27.4260
1.6080 132.6978 3.3168 4.2958
21.7749 3.3168 152.5544 −32.4800
27.4260 4.2958 −32.4800 127.7716

⎤⎥⎥⎦ ,

Yc(1) =
[
−5.6210 −6.4418 −5.9411 15.0267
−5.2413 −6.1006 0.0 −25.9682

]
,

Yc(2) =
[
−12.2878 13.0699 −2.8444 −7.6732
−15.8768 −3.7312 0.0 −50.9584

]
,

Yc(3) =
[
−2.0774 7.4119 −18.0888 81.2837
−15.8380 −1.2188 −0.0 −12.3391

]
,

which gives the gains

K(1) =
[
−0.0842 −0.0890 −0.0298 0.2384
−0.0339 −0.0809 −0.0505 −0.4138

]
,
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K(2) =
[
−0.0707 0.1061 −0.0198 −0.0669
0.0387 −0.0192 −0.1330 −0.5843

]
,

K(3) =
[
−0.1529 0.0345 0.0472 0.6798
−0.0959 −0.0055 −0.0025 −0.0764

]
.

Using this set of gains and solving the other set of coupled LMIs gives

Q(1) =

⎡⎢⎢⎣
1.3964 0.2046 0.0651 0.0539
0.2046 2.4239 −0.0332 0.2200
0.0651 −0.0332 1.3019 −0.1052
0.0539 0.2200 −0.1052 0.7997

⎤⎥⎥⎦ ,

Q(2) =

⎡⎢⎢⎣
1.4429 0.1126 0.0149 0.1668
0.1126 2.0044 0.0530 0.5171
0.0149 0.0530 1.3584 −0.2004
0.1668 0.5171 −0.2004 0.6454

⎤⎥⎥⎦ ,

Q(3) =

⎡⎢⎢⎣
1.4050 0.0540 0.0987 0.0798
0.0540 1.9969 0.0673 0.5242
0.0987 0.0673 1.2275 −0.1072
0.0798 0.5242 −0.1072 0.6142

⎤⎥⎥⎦ ,

Yo(1) =

⎡⎢⎢⎣
−0.6682 2.6114
−1.9517 3.1193
0.3768 −0.0
−2.4647 −0.4393

⎤⎥⎥⎦ ,

Yo(2) =

⎡⎢⎢⎣
−0.5672 1.9127
−0.9708 3.4482
0.2759 −0.0
−1.6452 −0.5542

⎤⎥⎥⎦ ,

Yo(3) =

⎡⎢⎢⎣
−0.6580 3.2837
−2.7291 3.4712
0.3580 0.0
−3.0845 −0.7045

⎤⎥⎥⎦ ,

which gives the following set of gains:

L(1) =

⎡⎢⎢⎣
−0.2932 1.7356
−0.5153 1.2313
0.0555 −0.1380
−2.9133 −1.0232

⎤⎥⎥⎦ ,

L(2) =

⎡⎢⎢⎣
−0.0873 1.5375
0.2466 2.5532
−0.2174 −0.6325
−2.7919 −3.4984

⎤⎥⎥⎦ ,
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L(3) =

⎡⎢⎢⎣
−0.0873 1.5375
0.2466 2.5532
−0.2174 −0.6325
−2.7919 −3.4984

⎤⎥⎥⎦ .

3.8 Notes

This chapter dealt with the stochastic stabilization problem and the robust-
ness of the class of piecewise deterministic systems. Under some appropriate
assumptions, different types of controllers like state feedback, output feed-
back, and observer-based output feedback have been studied and LMI design
approaches have been developed for the nominal systems and also for sys-
tems with norm-bounded uncertainties. The results we developed can easily
be solved using any LMI Toolbox such as Matlab or Scilab. Most of the results
in this chapter are based on the work of the author and his coauthors. The
three stabilization techniques require complete access to the mode and the
state vector of the system at time t. We have also relaxed the dependence of
the gain on the mode and we developed design approach for a state feedback
controller with constant gain.



4

H∞ Control Problem

In the stabilization chapter we discussed the design of controllers that guar-
antee the stochastic stability of the closed loop for nominal and uncertain
dynamical systems belonging to the class of piecewise deterministic systems
we are considering in this book. In practice we are interested in more than
stability and its robustness; for instance, designing a controller that rejects the
effect of external disturbance that may act on the system dynamics. Among
the controllers we can use to reach this goal, the linear quadratic regulator is
a good candidate for stabilizing and rejecting the effect of disturbances for the
class of piecewise deterministic systems. Unfortunately this approach requires
special assumptions on these external disturbances that should be Gaussian
with some given statistical properties that are difficult to satisfy.

An alternative that copes with the limitation of the linear quadratic reg-
ulator was proposed to synthesize controllers to stabilize systems subject to
arbitrary external disturbances with finite energy or finite average power, and
simultaneously guarantee the disturbance rejection with some desired level.

In this chapter, we study the design of controllers for the class of piece-
wise deterministic systems that guarantee disturbance rejection and ensure
stochastic stability. The robustness problem of this class of systems is also
discussed.

The rest of the chapter is organized as follows. In Section 4.1, the H∞
control problem is stated and the effectiveness definitions given. Section 4.2
deals with the state feedback H∞ stabilization problem and its robustness.
In the Section 4.3, the output feedback H∞ stabilization problem is covered.
The robust stabilization of this controller is also described. Section 4.4 treats
the observer-based output feedback H∞ stabilization and its robustness. Sec-
tion 4.5 treats the H∞ stabilization for stochastic switching systems with
multiplicative noise. All the results developed in this chapter are in the LMI
framework and are illustrated by simple examples.
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4.1 Problem Statement

Let us consider a dynamical system defined in a probability space (Ω,F , P)
and assume that its dynamics are described by the following differential equa-
tions:⎧⎪⎨⎪⎩

ẋ(t) = A(r(t), t)x(t) + B(r(t), t)u(t) + Bω(r(t))ω(t), x(0) = x0,

y(t) = Cy(r(t), t)x(t) + Dy(r(t), t)u(t) + By(r(t))ω(t),
z(t) = Cz(r(t), t)x(t) + Dz(r(t), t)u(t) + Bz(r(t))ω(t),

(4.1)

where x(t) ∈ Rn is the state vector; u(t) ∈ Rm is the control vector; y(t) ∈ Rp

is the measured output; z(t) ∈ Rq is the controlled output; and ω(t) ∈ Rl is the
system external disturbance. The matrices A(r(t), t), B(r(t), t), Cy(r(t), t),
Dy(r(t), t), Cz(r(t), t), and Dz(r(t), t) are given by⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

A(r(t), t) = A(r(t)) + DA(r(t))FA(r(t), t)EA(r(t)),
B(r(t), t) = B(r(t)) + DB(r(t))FB(r(t), t)EB(r(t)),
Cy(r(t), t) = Cy(r(t)) + DCy

(r(t))FCy
(r(t), t)ECy

(r(t)),
Cz(r(t), t) = Cz(r(t)) + DCz

(r(t))FCz
(r(t), t)ECz

(r(t)),
Dy(r(t), t) = Dy(r(t)) + DDy

(r(t))FDy
(r(t), t)EDy

(r(t)),
Dz(r(t), t) = Dz(r(t)) + DDz

(r(t))FDz
(r(t), t)EDz

(r(t)),

where A(r(t)), B(r(t)), Bω(r(t)), Cy(r(t)), Dy(r(t)), By(r(t)), Cz(r(t)),
Dz(r(t)), Bz(r(t)), DA(r(t)), EA(r(t)), DB(r(t)), EB(r(t)), DCy

(r(t)),
ECy

(r(t)), DCz
(r(t)), ECz

(r(t)), DDy
(r(t)), EDy

(r(t)), DDz
(r(t)), and

EDz
(r(t)) are known real matrices with appropriates dimensions. The matrices

FA(r(t), t), FB(r(t), t), FCy
(r(t), t), FDy

(r(t), t), FCz
(r(t), t), and FDz

(r(t), t)
are time-varying unknown matrices satisfying the following for every i ∈ S :⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

F�
A (i, t)FA(i, t) ≤ I,

F�
B (i, t)FB(i, t) ≤ I,

F�
Cy

(i, t)FCy
(i, t) ≤ I,

F�
Dy

(i, t)FDy
(i, t) ≤ I,

F�
Cz

(i, t)FCz
(i, t) ≤ I,

F�
Dz

(i, t)FDz
(i, t) ≤ I.

The Markov process {r(t), t ≥ 0} besides taking values in the finite set
S represents the switching between the different modes where we assume the
behavior is described by the following probability transitions:

P [r(t + h) = j|r(t) = i]

=

{
λijh + o(h) when r(t) jumps from i to j ,

1 + λiih + o(h) otherwise,
(4.2)
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where λij is the transition rate from mode i to mode j with λij ≥ 0 when
i �= j and λii = −

∑N
j=1,j �=i λij and o(h) is such that limh→0

o(h)
h = 0.

The system disturbance ω(t) is assumed to belong to L2[0,∞), which
means that the following holds:∫ ∞

0

ω�(t)ω(t)dt < ∞. (4.3)

This implies that the disturbance has finite energy.
In the rest of this chapter we deal with the design of controllers that

stochastically stabilize closed-loop systems and guarantee the disturbance re-
jection with a certain level γ > 0. We also discuss the design of robust con-
trollers that guarantee the same goal. Mathematically we are concerned with
the design of a controller that guarantees the following for all ω ∈ L2[0,∞):

‖z(t)‖2 < γ
[
‖ω(t)‖2

2 + M(x0, r0)
] 1

2 ,

where γ > 0 is a prescribed level of disturbance rejection to be achieved; x0 and
r0 are the initial conditions of the state vector and the mode, respectively, at
time t = 0; and M(x0, r0) is a constant that depends on the initial conditions
(x0, r0).

Let us begin this chapter by developing results for the nominal system,
when all uncertainties are equal to zero. Before proceeding let us define the
different concepts we will use for this purpose.

Definition 5. Let γ > 0 be a given positive constant. System (4.1) with u(t) ≡
0 is said to be stochastically stable with γ-disturbance attenuation if there exists
a constant M(x0, r0) with M(0, r0) = 0, for all r0 ∈ S , such that the following
holds:

‖z‖2
Δ=

[
E

∫ ∞

0

z�(t)z(t)dt|(x0, r0)
]1/2

≤ γ
[
‖ω‖2

2 + M(x0, r0)
] 1

2 . (4.4)

Definition 6. System (4.1) with u(t) ≡ 0 is said to be internally mean square
quadratically stable (MSQS) if there exists a set of symmetric and positive-
definite matrices P = (P (1), · · · , P (N)) > 0 satisfying the following for every
i ∈ S :

A�(i)P (i) + P (i)A(i) +
N∑

j=1

λijP (j) < 0. (4.5)

By Definition 1 it is obvious that system (4.1) is internally MSQS when
ω(t) ≡ 0, (4.1) being free of input disturbance. Likewise, we can give the
following definitions:

Definition 7. System (4.1) with u(t) ≡ 0 is said to be internally SS (MES)
if it is SS (MES) when ω(t) ≡ 0.
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Definition 8. System (4.1) is said to be stabilizable with γ-disturbance rejec-
tion in the SS (MES, MSQS) sense if there exists a control law such that the
closed-loop system under this control law is SS (MES, MSQS) and satisfies
(4.4).

For uncertain dynamics we have similar definitions that are summarized
as follows:

Definition 9. Let γ > 0 be a given positive constant. System (4.1) with u(t) ≡
0 is said to be robustly stochastically stable with γ-disturbance attenuation if
there exists a constant M(x0, r0) with M(0, r0) = 0 for all r0 ∈ S , such that
the following holds for all admissible uncertainties:

‖z‖2
Δ=

[
E

∫ ∞

0

z�(t)z(t)dt|(x0, r0)
] 1

2

≤ γ
[
‖ω‖2

2 + M(x0, r0)
] 1

2 . (4.6)

Definition 10. System (4.1) with u(t) ≡ 0 is said to be internally robust mean
square quadratically stable (RMSQS) if there exists a set of symmetric and
positive-definite matrices P = (P (1), · · · , P (N)) > 0 satisfying the following
for every i ∈ S and for all admissible uncertainties:

A�(i, t)P (i) + P (i)A(i, t) +
N∑

j=1

λijP (j) < 0. (4.7)

By Definition 1 it is obvious that system (4.1) is internally RMSQS when
ω(t) ≡ 0, (4.1) being free of input disturbance. Likewise, we can give the
following definitions:

Definition 11. System (4.1) with u(t) ≡ 0 is said to be internally RSS
(RMES) if it is RSS (RMES) when ω(t) ≡ 0.

Definition 12. System (4.1) is said to be robust stabilizable with γ-disturbance
rejection in the RSS (RMES, RMSQS) sense if there exists a control law such
that the closed-loop system under this control law is RSS (RMES, RMSQS)
and satisfies (4.6).

The following theorem shows that when ω(t) �≡ 0, internal MSQS implies
stochastic stability.

Theorem 41. If system (4.1) with u(t) ≡ 0 is internally MSQS, then it is
stochastically stable.

Proof: To prove this theorem, let us consider a candidate Lyapunov func-
tion defined as follows:

V (x(t), r(t)) = x�(t)P (r(t))x(t),

where P (i) > 0 is symmetric and positive-definite matrix for every i ∈ S .
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As before, the infinitesimal operator L of the Markov process {(x(t), r(t)),
t ≥ 0} acting on V (x(t), r(t)) and emanating from the point (x, i) at time t,
where x(t) = x and r(t) = i for i ∈ S , is given by:

L V (x(t), i) = ẋ�(t)P (i)x(t) + x�(t)P (i)ẋ(t) +
N∑

j=1

λijx
�(t)P (j)x(t)

= x�(t)

⎡⎣A�(i)P (i) + P (i)A(i) +
N∑

j=1

λijP (j)

⎤⎦x(t)

+2x�(t)P (i)Bω(i)ω(t).

Using Lemma 7 in Appendix A, we get the following for any εw(i) > 0:

2x�(t)P (i)Bω(i)ω(t) ≤ ε−1
w (i)x�(t)P (i)Bω(i)B�

ω (i)P (i)x(t)
+εw(i)ω�(t)ω(t).

Combining this with the expression of L V (x(t), i) yields

L V (x(t), i) ≤ x�(t)

⎡⎣A�(i)P (i) + P (i)A(i) +
N∑

j=1

λijP (j)

⎤⎦x(t)

+ε−1
w (i)x�(t)P (i)Bω(i)B�

ω (i)P (i)x(t) + εw(i)ω�(t)ω(t)

= x�(t)

⎡⎣A�(i)P (i) + P (i)A(i) +
N∑

j=1

λijP (j)

⎤⎦x(t)

+x�(t)
[
ε−1

w (i)P (i)Bω(i)B�
ω (i)P (i)

]
x(t) + εw(i)ω�(t)ω(t),

= x�(t)Ξ(i)x(t) + εw(i)ω�(t)ω(t), (4.8)

with

Ξ(i) = A�(i)P (i) + P (i)A(i) +
N∑

j=1

λijP (j)

+ε−1
w (i)P (i)Bω(i)B�

ω (i)P (i).

Based on Dynkin’s formula, we get the following:

E [V (x(t), i) − V (x0, r0)] = E

[∫ t

0

L V (x(s), r(s))ds|x0, r0

]
,

which combined with (4.8) yields

E [V (x(t), i) − V (x0, r0)] ≤ E

[∫ t

0

x�(s)Ξ(r(s))x(s)ds|x0, r0

]
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+εw(i)
∫ t

0

ω�(s)ω(s)ds. (4.9)

Since V (x(t), i) is nonnegative, (4.9) implies

E[V (x(t), i)] + E

[∫ t

0

x�(s)[−Ξ(r(s))]x(s)ds|x0, r0

]
≤ V (x0, r0) + εw(i)

∫ t

0

ω�(s)ω(s)ds,

which yields

min
i∈S

{λmin(−Ξ(i))}E
[∫ t

0

x�(s)x(s)ds

]
≤ E

[∫ t

0

x�(s)[−Ξ(r(s))]x(s)ds

]
≤ V (x0, r0) + εw(i)

∫ ∞

0

ω�(s)ω(s)ds.

This proves that system (4.1) is stochastically stable. �
Let us now establish what conditions should be satisfied if we want (4.1)

be stochastically stable with γ-disturbance rejection. The following theorem
gives such conditions.

Theorem 42. Let γ be a given positive constant. If there exists a set of sym-
metric and positive-definite matrices P = (P (1), · · · , P (N)) > 0 such that the
following set of coupled LMIs holds for every i ∈ S :⎡⎢⎢⎣ J0(i)

[
C�

z (i)Bz(i)
+P (i)Bω(i)

]
[

B�
z (i)Cz(i)

+B�
ω (i)P (i)

]
B�

z (i)Bz(i) − γ2I

⎤⎥⎥⎦ < 0, (4.10)

where J0(i) = A�(i)P (i)+P (i)A(i)+
∑N

j=1 λijP (j)+C�
z (i)Cz(i), then system

(4.1) with u(t) ≡ 0 is stochastically stable and satisfies the following:

‖z‖2 ≤
[
γ2‖ω‖2

2 + x�
0 P (r0)x0

] 1
2 , (4.11)

which means that the system with ut = 0 for all t ≥ 0 is stochastically stable
with γ-disturbance attenuation.

Proof: From (4.10) and using the Schur complement, we get the following
inequality:

A�(i)P (i) + P (i)A(i) +
N∑

j=1

λijP (j) + C�
z (i)Cz(i) < 0,

which implies the following since C�
z (i)Cz(i) ≥ 0:
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A�(i)P (i) + P (i)A(i) +
N∑

j=1

λijP (j) < 0.

Based on Definition 6, this proves that the system under study is internally
MSQS. Using Theorem 41, we conclude that system (4.1) with u(t) ≡ 0 is
stochastically stable.

Let us now prove that (4.11) is satisfied. To this end, let us define the
following performance function:

JT = E

[∫ T

0

[z�(t)z(t) − γ2ω�(t)ω(t)]dt

]
.

To prove (4.11) it suffices to establish that J∞ is bounded, that is,

J∞ ≤ V (x0, r0) = x�
0 P (r0)x0.

Notice that for V (x(t), i) = x�(t)P (i)x(t), we have

L V (x(t), i) = x�(t)

⎡⎣A�(i)P (i) + P (i)A(i) +
N∑

j=1

λijP (j)

⎤⎦x(t)

+x�(t)P (i)Bω(i)ω(t) + ω�(t)B�
ω (i)P (i)x(t),

and

z�(t)z(t) − γ2ω(t)ω(t)

= [Cz(i)x(t) + Bz(i)ω(t)]� [Cz(i)x(t) + Bz(i)ω(t)] − γ2ω(t)ω(t)
= x�(t)C�

z (i)Cz(i)x(t) + x�(t)C�
z (i)Bz(i)ω(t)

+ω�(t)B�
z (i)Cz(i)x(t) + ω�(t)B�

z (i)Bz(i)ω(t) − γ2ω�(t)ω(t),

which implies the following equality:

z�(t)z(t) − γ2ω�(t)ω(t) + L V (x(t), r(t)) = η�(t)Θ(r(t))η(t),

with

Θ(i) =

⎡⎢⎢⎣ J0(i)
[

C�
z (i)Bz(i)

+P (i)Bω(i)

]
[

B�
z (i)Cz(i)

+B�
ω (i)P (i)

]
B�

z (i)Bz(i) − γ2I

⎤⎥⎥⎦
η�(t) =

[
x�(t) ω�(t)

]
.

Therefore,

JT = E

[∫ T

0

[z�(t)z(t) − γ2ω�(t)ω(t) + L V (x(t), r(t))]dt

]
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−E

[∫ T

0

L V (x(t), r(t))]dt

]
.

Using now Dynkin’s formula,

E

[∫ T

0

L V (x(t), r(t))dt|x0, r0

]
= E[V (x(T ), r(T ))] − V (x0, r0),

we get

JT = E

[∫ T

0

η�(t)Θ(r(t))η(t)dt

]
− E[V (x(T ), r(T ))] + V (x0, r0).

Since Θ(i) < 0 and E[V (x(T ), r(T ))] ≥ 0, (4.12) implies the following:

JT ≤ V (x0, r0),

which yields J∞ ≤ V (x0, r0), i.e., ‖z‖2
2 − γ2‖ω‖2

2 ≤ x�
0 P (r0)x0.

This gives the desired results:

‖z‖2 ≤
[
γ2‖ω‖2

2 + x�
0 P (r0)x0

] 1
2 .

This ends the proof of the theorem. �

Example 45. To illustrate the effectiveness of the results of this theorem, let
us consider a two-mode system with the following data:

• mode #1:

A(1) =
[
−0.5 1.0
0.3 −2.5

]
, B(1) =

[
1.0 0.0
0.0 1.0

]
,

Bw(1) =
[

1.0 0.0
0.0 1.0

]
, Cz(1) =

[
1.0 0.0
0.0 1.0

]
,

Bz(1) =
[

1.0 0.0
0.0 1.0

]
, Dz(1) =

[
1.0 0.0
0.0 1.0

]
,

• mode #2:

A(2) =
[
−1.0 0.1
0.2 −2.0

]
, B(2) =

[
1.0 0.0
0.0 1.0

]
,

Bw(2) =
[

1.0 0.0
0.0 1.0

]
, Cz(2) =

[
1.0 0.0
0.0 1.0

]
,

Bz(2) =
[

1.0 0.0
0.0 1.0

]
, Dz(2) =

[
1.0 0.0
0.0 1.0

]
.
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The switching between the two modes is assumed to be described by the
following transition matrix:

Λ =
[
−2.0 2.0
3.0 −3.0

]
.

The desired disturbance level for this example is fixed to γ = 5.0. Solving the
LMI (4.10), we get

P (1) =
[

11.8533 2.5811
2.5811 6.4475

]
, P (2) =

[
10.9411 1.3425
1.3425 6.6235

]
.

Based on the results of the theorem we conclude that the system is sto-
chastically stable and guarantees the disturbance rejection of the desired level
γ.

Let us return to the dynamics (4.1) and consider now that the uncertain-
ties are not equal to zero. In this case the system with u(t) = 0 for all t ≥ 0
is internally mean square quadratically stable if there exists a set of symmet-
ric and positive-definite matrices P = (P (1), · · · , P (N)) > 0, such that the
following holds for all admissible uncertainties and for every i ∈ S :

A�(i, t)P (i) + P (i)A(i, t) +
N∑

j=1

λijP (j) < 0.

This condition is useless since it contains the uncertainties FA(i, t). Let us
transform it into a useful one that can be used to check the robust stability.

If we use the expression of A(i, t), we get

A�(i)P (i) + P (i)A(i) +
N∑

j=1

λijP (j) + P (i)DA(i)FA(i, t)EA(i)

+E�
A (i)F�

A (i, t)D�
A(i)P (i) < 0.

Using now Lemma 7 in Appendix A, the previous inequality will be satis-
fied if the following holds:

A�(i)P (i) + P (i)A(i) +
N∑

j=1

λijP (j) + εA(i)E�
A (i)EA(i)

+ε−1
A (i)P (i)DA(i)D�

A(i)P (i) < 0,

with εA(i) > 0 for all i ∈ S .
Using the Schur complement we get the desired condition:[

J0(i) P (i)DA(i)
D�

A(i)P (i) −εA(i)I

]
< 0, (4.12)
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with J0(i) = A�(i)P (i) + P (i)A(i) +
∑N

j=1 λijP (j) + εA(i)E�
A (i)EA(i).

The results of this development are summarized by the following theorem.

Theorem 43. If there exist a set of symmetric and positive-definite ma-
trices P = (P (1), · · · , P (N)) > 0 and a set of positive scalars εA =
(εA(1), · · · , εA(N)) such that the following set of coupled LMIs (4.12) holds
for every i ∈ S and for all admissible uncertainties, then system (4.1) with
u(t) = 0 for all t ≥ 0 is internally mean square quadratically stable.

The following result shows that if (4.1) is internally mean square stochas-
tically stable for all admissible uncertainties, it is also robustly stochastically
stable.

Theorem 44. Let ω(.) ∈ L2[0,∞). If the system (4.1) with u(t) = 0 for
all t ≥ 0 is internally mean square stochastically stable for all admissible
uncertainties, it is also stochastically stable.

Proof: The proof of this theorem is similar to the one of the previous
theorem and the details are omitted �

Theorem 45. If there exists a set of symmetric and positive-definite matrices
P = (P (1), · · · , P (N)) > 0 such that the following set of coupled LMIs holds
for every i ∈ S and for all admissible uncertainties:⎡⎢⎢⎣ Ju(i)

[
C�

z (i, t)Bz(i)
+P (i)Bw(i)

]
[

B�(i)Cz(i, t)
+B�

w (i)P (i)

]
B�

z (i)Bz(i) − γ2I

⎤⎥⎥⎦ < 0, (4.13)

with Ju(i) = A�(i, t)P (i)+P (i)A(i, t)+
∑N

j=1 λijP (j)+C�
z (i, t)Cz(i, t), then

system (4.1) with u(t) = 0 for all t ≥ 0 is robustly stochastically stable and
satisfies the disturbance rejection of level γ,

‖z‖2 ≤
[
γ2‖ω‖2

2 + x�
0 P (r0)x0

] 1
2 . (4.14)

Proof: Start by proving that if the LMI (4.13) is satisfied then it is implied
that the system is robustly stochastically stable. Notice that if the LMI (4.13)
is satisfied for every i ∈ S , then it is implied that

A�(i, t)P (i) + P (i)A(i, t) +
N∑

j=1

λijP (j) + C�
z (i, t)Cz(i, t) < 0,

and since C�
z (i, t)Cz(i, t) ≥ 0 for all i ∈ S and for all t, then we get

A�(i, t)P (i) + P (i)A(i, t) +
N∑

j=1

λijP (j) < 0,
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which implies that the system is mean square quadratically stable.
Let us prove also that the LMI (4.13) implies that the system satisfies the

disturbance rejection of level γ. For this purpose, choose a Lyapunov function
V (x(t), r(t)) defined as

V (x(t), r(t)) = x�(t)P (r(t))x(t),

where P (i) > 0, i ∈ S , is symmetric and positive-definite matrix.
The infinitesimal operator L of the Markov process {(x(t), r(t)), t ≥ 0}

acting on V (.) and emanating from the point (x, i) at time t, where x(t) = x
and r(t) = i for i ∈ S is given by

L V (x(t), i) = x�(t)

⎡⎣A�(i, t)P (i) + P (i)A(i, t) +
N∑

j=1

λijP (j)

⎤⎦x(t)

+2x�(t)P (i)Bw(i)ω(t).

Let us define the following performance function:

JT = E

[∫ T

0

[z�(t)z(t) − γ2ω�(t)ω(t)]dt

]
.

To prove (4.14), it suffices to establish that J∞ is bounded for all admissible
uncertainties, that is,

J∞ ≤ V (x0, r0) = x�
0 P (r0)x0.

Notice that

L V (x(t), i) = x�(t)

⎡⎣A�(i, t)P (i) + P (i)A(i, t) +
N∑

j=1

λijP (j)

⎤⎦x(t)

+x�(t)P (i)Bω(i)ω(t) + ω�(t)B�
ω (i)P (i)x(t),

and

z�(t)z(t) − γ2ω(t)ω(t)

= [Cz(i, t)x(t) + Bz(i)ω(t)]� [Cz(i, t)x(t) + Bz(i)ω(t)]
−γ2ω(t)ω(t)

= x�(t)C�
z (i, t)Cz(i, t)x(t) + x�(t)C�

z (i, t)Bz(i)ω(t)
+ω�(t)B�

z (i)Cz(i, t)x(t)
+ω�(t)B�

z (i)Bz(i)ω(t) − γ2ω�(t)ω(t),

which implies

z�(t)z(t) − γ2ω�(t)ω(t) + L V (x(t), i) = η�(t)Θu(i)η(t),
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with

Θu(i) =

⎡⎢⎢⎣ Ju(i)
[

C�
z (i, t)Bz(i)

+P (i)Bω(i)

]
[

B�
z (i)Cz(i, t)

+B�
ω (i)P (i)

]
B�

z (i)Bz(i) − γ2I

⎤⎥⎥⎦ ,

η�(t) =
[
x�(t) ω�(t)

]
.

Therefore,

JT = E

[∫ T

0

[
z�(t)z(t) − γ2ω�(t)ω(t) + L V (x(t), r(t))

]
dt

]

−E

[∫ T

0

L V (x(t), r(t))dt

]
.

From Dynkin’s formula, we get

E

[∫ T

0

L V (x(t), r(t))dt|x0, r0

]
= E [V (x(T ), r(T ))] − V (x0, r0),

which implies

JT = E

[∫ T

0

η�(t)Θu(r(t))η(t)dt

]
− E[V (x(T ), r(T ))] + V (x0, r0).(4.15)

Since Θu(i) < 0 and E[V (x(T ), r(T ))] ≥ 0, (4.15) implies the following:

JT ≤ V (x0, r0),

which yields J∞ ≤ V (x0, r0), i.e., ‖z‖2
2 − γ2‖ω‖2

2 ≤ x�
0 P (r0)x0.

This gives the desired results:

‖z‖2 ≤
[
γ2‖ω‖2

2 + x�
0 P (r0)x0

] 1
2 ,

which gives (4.14). This ends the proof of the theorem. �
The LMI of this theorem is useless since it depends on the uncertainties.

Let us transform it to get an equivalent LMI condition that does not depend
on the system uncertainties, which we can use easily to check if a given system
is robustly stochastically stable. For this purpose, notice that⎡⎢⎢⎢⎢⎢⎢⎣

⎡⎢⎢⎣
A�(i, t)P (i)
+P (i)A(i, t)

+
∑N

j=1 λijP (j)
+C�

z (i, t)Cz(i, t)

⎤⎥⎥⎦ [
C�

z (i, t)Bz(i)
+P (i)Bω(i)

]
[

B�
z (i)Cz(i, t)

+B�
ω (i)P (i)

]
B�

z (i)Bz(i) − γ2I

⎤⎥⎥⎥⎥⎥⎥⎦ =
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J1(i, t) P (i)Bω(i)

B�
ω (i)P (i) −γ2I

]
+[

C�
z (i, t)
B�

z (i)

] [
Cz(i, t) Bz(i)

]
.

Using the Schur complement we show that this is equivalent to the follow-
ing inequality: ⎡⎣ J1(i, t) P (i)Bω(i) C�

z (i, t)
B�

ω (i)P (i) −γ2I B�
z (i)

Cz(i, t) Bz(i) −I

⎤⎦ < 0.

Using the expressions of A(i, t) and Cz(i, t) we get⎡⎣ J1(i) P (i)Bω(i) C�
z (i)

B�
ω (i)P (i) −γ2I B�

z (i)
Cz(i) Bz(i) −I

⎤⎦
+

⎡⎣E�
A (i)F�

A (i, t)D�
A(i)P (i) 0 0

0 0 0
0 0 0

⎤⎦
+

⎡⎣P (i)DA(i)FA(i, t)EA(i) 0 0
0 0 0
0 0 0

⎤⎦
+

⎡⎣ 0 0 E�
Cz

(i)F�
Cz

(i, t)D�
Cz

(i)
0 0 0
0 0 0

⎤⎦
+

⎡⎣ 0 0 0
0 0 0

DCz
(i)FCz

(i, t)ECz
(i) 0 0

⎤⎦ < 0,

with J1(i) = A�(i)P (i) + P (i)A(i) +
∑N

j=1 λijP (j).
Notice that ⎡⎣E�

A (i)F�
A (i, t)D�

A(i)P (i) 0 0
0 0 0
0 0 0

⎤⎦
=

⎡⎣E�
A (i) 0 0
0 0 0
0 0 0

⎤⎦⎡⎣F�
A (i, t) 0 0

0 0 0
0 0 0

⎤⎦⎡⎣D�
A(i)P (i) 0 0

0 0 0
0 0 0

⎤⎦ ,

⎡⎣P (i)DA(i)FA(i, t)EA(i) 0 0
0 0 0
0 0 0

⎤⎦
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=

⎡⎣P (i)DA(i) 0 0
0 0 0
0 0 0

⎤⎦⎡⎣FA(i, t) 0 0
0 0 0
0 0 0

⎤⎦⎡⎣EA(i) 0 0
0 0 0
0 0 0

⎤⎦ ,

⎡⎣ 0 0 E�
Cz

(i)F�
Cz

(i, t)D�
Cz

(i)
0 0 0
0 0 0

⎤⎦
=

⎡⎣0 0 E�
Cz

(i)
0 0 0
0 0 0

⎤⎦⎡⎣0 0 0
0 0 0
0 0 F�

Cz
(i, t)

⎤⎦⎡⎣0 0 0
0 0 0
0 0 D�

Cz
(i)

⎤⎦ ,

and ⎡⎣ 0 0 0
0 0 0

DCz
(i)FCz

(i, t)ECz
(i) 0 0

⎤⎦
=

⎡⎣0 0 0
0 0 0
0 0 DCz

(i)

⎤⎦⎡⎣0 0 0
0 0 0
0 0 FCz

(i, t)

⎤⎦⎡⎣ 0 0 0
0 0 0

ECz
(i) 0 0

⎤⎦ .

Using Lemma 7 in Appendix A, we get⎡⎣P (i)DA(i)FA(i, t)EA(i) 0 0
0 0 0
0 0 0

⎤⎦
+

⎡⎣E�
A (i)F�

A (i, t)D�
A(i)P (i) 0 0

0 0 0
0 0 0

⎤⎦
≤ ε−1

A (i)

⎡⎣P (i)DA(i) 0 0
0 0 0
0 0 0

⎤⎦⎡⎣D�
A(i)P (i) 0 0

0 0 0
0 0 0

⎤⎦
+εA(i)

⎡⎣E�
A (i) 0 0
0 0 0
0 0 0

⎤⎦⎡⎣EA(i) 0 0
0 0 0
0 0 0

⎤⎦
=

⎡⎣ ε−1
A (i)P (i)DA(i)D�

A(i)P (i) + εA(i)E�
A (i)EA(i) 0 0

0 0 0
0 0 0

⎤⎦ ,

⎡⎣0 0 E�
Cz

(i)F�
Cz

(i, t)D�
Cz

(i)
0 0 0
0 0 0

⎤⎦
+

⎡⎣ 0 0 0
0 0 0

DCz
(i)FCz

(i, t)ECz
(i) 0 0

⎤⎦
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≤ ε−1
Cz

(i)

⎡⎣ 0 0 E�
Cz

(i)
0 0 0
0 0 0

⎤⎦⎡⎣ 0 0 0
0 0 0

ECz
(i, t) 0 0

⎤⎦
+εCz

(i)

⎡⎣ 0 0 0
0 0 0
0 0 DCz

(i)

⎤⎦⎡⎣0 0 0
0 0 0
0 0 D�

Cz
(i)

⎤⎦
=

⎡⎣ ε−1
Cz

(i)E�
Cz

(i)ECz
(i, t) 0 0

0 0 0
0 0 εCz

(i)DCz
(i)D�

Cz
(i)

⎤⎦ .

Using these transformations, we get⎡⎣ Jn(i) P (i)Bω(i) C�
z (i)

B�
ω (i)P (i) −γ2I B�

z (i)
Cz(i) Bz(i) −I

⎤⎦
+

⎡⎣ ε−1
A (i)P (i)DA(i)D�

A(i)P (i) + εA(i)E�
A (i)EA(i) 0 0

0 0 0
0 0 0

⎤⎦
+

⎡⎣ ε−1
Cz

(i)E�
Cz

(i)ECz
(i, t) 0 0

0 0 0
0 0 εCz

(i)DCz
(i)D�

Cz
(i)

⎤⎦ < 0,

with Jn(i) = A�(i)P (i) + P (i)A(i) +
∑N

j=1 λijP (j).
Let Jm(i), Wn(i), and Tm(i) be defined as

Jm(i) = Jn(i) + εA(i)E�
A (i)EA(i),

Wm(i) = diag [εA(i)I, εCz
(i)I] ,

Tm(i) =
(
P (i)DA(i), E�

Cz
(i)

)
,

and using the Schur complement we get the equivalent inequality:⎡⎢⎢⎣
Jm(i) P (i)Bω(i) C�

z (i)
B�

ω (i)P (i) −γ2I B�
z (i)

Cz(i) Bz(i) −I + εCz
(i)DCz

(i)D�
Cz

(i)
T �

m (i) 0 0

Tm(i)
0
0

−Wm(i)

⎤⎥⎥⎦ < 0. (4.16)

The following theorem summarizes the results of this development.

Theorem 46. Let γ be a positive constant. If there exist a set of symmetric
and positive-definite matrices P = (P (1), · · · , P (N)) > 0 and sets of positive
scalars εA = (εA(1), · · · , εA(N)) and εCz

= (εCz
(1), · · · , εCz

(N)) such that
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the following set of coupled LMIs (4.16) holds for every i ∈ S and for all
admissible uncertainties, then the system (4.1) is robustly stochastically stable
and moreover the system satisfies the disturbance rejection of level γ.

Example 46. To illustrate the effectiveness of the results of this theorem, let
us consider the two-mode system of Example 45 with the following extra data:

• mode #1:

DA(1) =
[

0.10
0.20

]
, EA(1) =

[
0.20 0.10

]
,

DB(1) =
[

0.10
0.20

]
, EB(1) =

[
0.20 0.10

]
,

DCz
(1) =

[
0.10
0.20

]
, ECz

(1) =
[
0.20 0.10

]
,

DDz
(1) =

[
0.10
0.20

]
, EDz

(1) =
[
0.20 0.10

]
,

• mode #2:

DA(2) =
[

0.13
0.10

]
, EA(2) =

[
0.10 0.20

]
,

DB(2) =
[

0.13
0.10

]
, EB(2) =

[
0.10 0.20

]
,

DCz
(2) =

[
0.13
0.10

]
, ECz

(2) =
[
0.10 0.20

]
,

DDz
(2) =

[
0.13 0.10

]
, EDz

(2) =
[
0.10 0.20

]
.

Solving the LMI (4.16), we get

P (1) =
[

2.7536 0.4831
0.4831 3.2025

]
, P (2) =

[
2.2407 0.1031
0.1031 3.2327

]
.

Based on the results of this theorem, we conclude that the system is sto-
chastically stable and satisfies the disturbance rejection of level γ = 2.7901.

4.2 State Feedback Stabilization

In this section the structure of the controller we consider is given by the
following form:

u(t) = K(i)x(t), (4.17)

where x(t) is the state vector and K(i), i ∈ S is a design parameter with an
appropriate dimension that has to be chosen. In this section we assume the
complete access to the state vector and to the mode at each time t.
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Let us drop the uncertainties from the dynamics and see how we can design
a controller of the form (4.17). Plugging the expression of the controller in the
dynamics (4.1), we get{

ẋ(t) = Ā(i)x(t) + Bw(i)ω(t),
z(t) = C̄z(i)x(t) + Bz(i)ω(t),

(4.18)

where Ā(i) = A(i) + B(i)K(i) and C̄z(i) = Cz(i) + Dz(i)K(i).
Using the results of Theorem 42 we get the following results for the sto-

chastic stability and disturbance rejection of level γ > 0 for the closed-loop
dynamics.

Theorem 47. Let γ be a given positive constant and K = (K(1), · · · ,K(N))
be a set of given gains. If there exists a set of symmetric and positive-definite
matrices P = (P (1), · · · , P (N)) > 0 such that the following set of coupled
LMIs holds for every i ∈ S :⎡⎢⎢⎣ J̄0(i)

[
C̄�

z (i)Bz(i)
+P (i)Bω(i)

]
[

B�
z (i)C̄z(i)

+B�
ω (i)P (i)

]
B�

z (i)Bz(i) − γ2I

⎤⎥⎥⎦ < 0, (4.19)

with J̄0(i) = Ā�(i)P (i)+P (i)Ā(i)+
∑N

j=1 λijP (j)+C̄�
z (i) C̄z(i), then system

(4.1) is stochastically stable under the controller (4.17) and satisfies

‖z‖2 ≤
[
γ2‖ω‖2

2 + x�
0 P (r0)x0

] 1
2 , (4.20)

which means that the system is stochastically stable with γ-disturbance atten-
uation.

To synthesize the controller gain, let us transform the LMI (4.19) into a
form that can be used easily to compute this gain for every mode i ∈ S .
Notice that ⎡⎢⎢⎣ J̄0(i)

[
C̄�

z (i)Bz(i)
+P (i)Bω(i)

]
[

B�
z (i)C̄z(i)

+B�
ω (i)P (i)

]
B�

z (i)Bz(i) − γ2I

⎤⎥⎥⎦ =

[
J̄1(i) P (i)Bω(i)

B�
ω (i)P (i) −γ2I

]
+

[
C̄�

z (i)
B�

z (i)

] [
C̄z(i) Bz(i)

]
,

with J̄1(i) = Ā�(i)P (i) + P (i)Ā(i) +
∑N

j=1 λijP (j).
Using the Schur complement we show that (4.19) is equivalent to the

following inequality:
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z (i)

B�
ω (i)P (i) −γ2I B�

z (i)
C̄z(i) Bz(i) −I

⎤⎦ < 0.

Since Ā(i) is nonlinear in K(i) and P (i), the previous inequality is also
nonlinear. Therefore it cannot be solved using existing linear algorithms. To
transform it into an LMI, let X(i) = P−1(i). As we did many times previously,
let us pre- and post-multiply this inequality by diag[X(i), I, I], which gives⎡⎣ J̄X(i) Bω(i) X(i)C̄�

z (i)
B�

ω (i) −γ2I B�
z (i)

C̄z(i)X(i) Bz(i) −I

⎤⎦ < 0,

with J̄X(i) = X(i)Ā�(i) + Ā(i)X(i) +
∑N

j=1 λijX(i)X−1(j)X(i).
Notice that

X(i)Ā�(i) + Ā(i)X(i) = X(i)A�(i) + A(i)X(i) + Y �(i)B�(i)
+B(i)Y (i),

N∑
j=1

λijX(i)X−1(j)X(i) = λiiX(i) + Si(X)X−1
i (X)S�

i (X),

X(i) [Cz(i) + Dz(i)K(i)]� = X(i)C�
z (i) + Y �(i)D�

z (i),

where Y (i) = K(i)X(i), and Si(X) and Xi(X) are defined as

Si(X) =
[√

λi1X(i), · · · ,
√

λii−1X(i),
√

λii+1X(i),

· · · ,
√

λiNX(i)
]
,

Xi(X) = diag [X(1), · · · , X(i − 1), X(i + 1), · · · , Y (N)] .

Using the Schur complement implies that the previous inequality is equiv-
alent to the following:⎡⎢⎢⎢⎢⎢⎢⎣

J(i) Bω(i)
[

X(i)C�
z (i)

+Y �(i)D�
z (i)

]
Si(X)

B�
ω (i) −γ2I B�

z (i) 0[
Cz(i)X(i)

+Dz(i)Y (i)

]
Bz(i) −I 0

S�
i (X) 0 0 −Xi(X)

⎤⎥⎥⎥⎥⎥⎥⎦ < 0, (4.21)

with J(i) = X(i)A�(i) + A(i)X(i) + Y �(i)B�(i) + B(i)Y (i) + λiiX(i).
From this discussion we get the following theorem.

Theorem 48. Let γ be a positive constant. If there exist a set of symmet-
ric and positive-definite matrices X = (X(1), · · · , X(N)) > 0 and a set of
matrices Y = (Y (1), · · · , Y (N)) such that the following set of coupled LMIs
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(4.21) holds for every i ∈ S , then system (4.1) under the controller (4.17)
with K(i) = Y (i)X−1(i) is stochastically stable and, moreover, the closed-loop
system satisfies the disturbance rejection of level γ.

Example 47. To illustrate the effectiveness of the results developed in this
theorem, let us consider the two-mode system of Example 45 with the same
data.

Solving the LMI (4.21), we get

X(1) =
[

2.5267 −0.0000
−0.0000 2.5267

]
, X(2) =

[
2.2378 −0.0000
−0.0000 2.2378

]
,

Y (1) =
[
−4.8707 −1.1826
−2.1020 0.1826

]
, Y (2) =

[
−2.7171 0.6162
−1.2876 −0.4792

]
.

Based on the results of this theorem, we conclude that the system is stochas-
tically stable under the state feedback controller given by

u(t) = K(i)x(t), i = 1, 2,

with

K(1) =
[
−1.9277 −0.4681
−0.8319 0.0723

]
, K(2) =

[
−1.2141 0.2754
−0.5754 −0.2141

]
,

and that satisfies the desired disturbance rejection of level γ = 5.0.

The controller that stochastically stabilizes the system and at the same
time guarantees the minimum disturbance rejection is of great practical in-
terest. This controller can be obtained by solving the following optimization
problem:

P :

⎧⎪⎨⎪⎩
min ν>0,

X=(X(1),··· ,X(N))>0,
Y =(Y (1),··· ,Y (N)),

ν,

s.t. : (4.21) with ν = γ2.

The following corollary gives the results on the design of the controller
that stochastically stabilizes the system (4.1) and simultaneously guarantees
the smallest disturbance rejection level.

Corollary 6. Let ν > 0, X = (X(1), · · · , X(N)) > 0, and Y = (Y (1), · · · ,
Y (N)) be the solution of the optimization problem P. Then the controller
(4.17) with K(i) = Y (i)X−1(i) stochastically stabilizes the class of systems we
are considering and, moreover, the closed-loop system satisfies the disturbance
rejection of level

√
ν.
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Example 48. To illustrate the theoretical results of this theorem, let us con-
sider the two-mode system of Example 45 with the same data. Solving the
problem P, we get

X(1) =
[

36.2448 −0.0000
−0.0000 36.2448

]
, X(2) =

[
33.4662 −0.0000
−0.0000 33.4662

]
,

Y (1) = 103 ·
[
−9.8677 −0.0236
−0.0235 −9.7952

]
, Y (2) = 103 ·

[
−9.7516 −0.0050
−0.0050 −9.7181

]
.

The corresponding gains are given by

K(1) =
[
−272.2522 −0.6507
−0.6493 −270.2522

]
, K(2) =

[
−291.3851 −0.1500
−0.1500 −290.3851

]
.

Based on the results of this corollary we conclude that the system is sto-
chastically stable and guarantees the disturbance of level γ = 1.0394.

Let us examine the dynamics (4.1) when the uncertainties are not equal to
zero and see how to synthesize the state feedback controller of the form (4.17)
that robustly stabilizes the class of systems we are studying while guaranteeing
the desired disturbance rejection of level γ. Following the same steps for the
nominal case starting from the results of Theorem 45, we get⎡⎣ J̄0(i, t) P (i)Bω(i) C̄�

z (i, t)
B�

ω (i)P (i) −γ2I B�
z (i)

C̄z(i, t) Bz(i) −I

⎤⎦ < 0, (4.22)

with

J̄0(i, t) = Ā�(i, t)P (i) + P (i)Ā(i, t) +
N∑

j=1

λijP (j),

Ā(i, t) = A(i, t) + B(i, t)K(i),
C̄z(i, t) = Cz(i, t) + Dz(i, t)K(i).

Using the expressions of Ā(i, t), C̄z(i, t) and their components, we obtain
the following inequality:⎡⎢⎢⎢⎢⎣

J1(i) P (i)Bω(i)
[

C�
z (i)

+K�(i)D�
z (i)

]
B�

ω (i)P (i) −γ2I B�
z (i)[

Dz(i)K(i)
+Cz(i)

]
Bz(i) −I

⎤⎥⎥⎥⎥⎦
+

⎡⎣E�
A (i)F�

A (i, t)D�
A(i)P (i) 0 0

0 0 0
0 0 0

⎤⎦
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+

⎡⎣P (i)DA(i)FA(i, t)EA(i) 0 0
0 0 0
0 0 0

⎤⎦
+

⎡⎣P (i)DB(i)FB(i, t)EB(i)K(i) 0 0
0 0 0
0 0 0

⎤⎦
+

⎡⎣K�(i)E�
B (i)F�

B (i, t)D�
B(i)P (i) 0 0

0 0 0
0 0 0

⎤⎦
+

⎡⎣ 0 0 K�(i)E�
Dz

(i)F�
Dz

(i, t)D�
Dz

(i)
0 0 0
0 0 0

⎤⎦
+

⎡⎣ 0 0 0
0 0 0

DDz
(i)FDz

(i, t)EDz
(i)K(i) 0 0

⎤⎦
+

⎡⎣0 0 E�
Cz

(i)F�
Cz

(i, t)D�
Cz

(i)
0 0 0
0 0 0

⎤⎦
+

⎡⎣ 0 0 0
0 0 0

DCz
(i)FCz

(i, t)ECz
(i) 0 0

⎤⎦ < 0,

with

J1(i) = A�(i)P (i) + P (i)A(i) + K�(i)B�(i)P (i)

+P (i)B(i)K(i) +
N∑

j=1

λijP (j).

Notice that ⎡⎣E�
A (i)F�

A (i, t)D�
A(i)P (i) 0 0

0 0 0
0 0 0

⎤⎦
=

⎡⎣E�
A (i) 0 0
0 0 0
0 0 0

⎤⎦⎡⎣F�
A (i, t) 0 0

0 0 0
0 0 0

⎤⎦⎡⎣D�
A(i)P (i) 0 0

0 0 0
0 0 0

⎤⎦ ,

⎡⎣P (i)DA(i)FA(i, t)EA(i) 0 0
0 0 0
0 0 0

⎤⎦
=

⎡⎣P (i)DA(i) 0 0
0 0 0
0 0 0

⎤⎦⎡⎣FA(i, t) 0 0
0 0 0
0 0 0

⎤⎦⎡⎣EA(i) 0 0
0 0 0
0 0 0

⎤⎦ ,
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⎡⎣P (i)DB(i)FB(i, t)EB(i)K(i) 0 0
0 0 0
0 0 0

⎤⎦
=

⎡⎣P (i)DB(i) 0 0
0 0 0
0 0 0

⎤⎦⎡⎣FB(i, t) 0 0
0 0 0
0 0 0

⎤⎦⎡⎣EB(i)K(i) 0 0
0 0 0
0 0 0

⎤⎦ ,

⎡⎣K�(i)E�
B (i)F�

B (i, t)D�
B(i)P (i) 0 0

0 0 0
0 0 0

⎤⎦
=

⎡⎣K�(i)E�
B (i) 0 0

0 0 0
0 0 0

⎤⎦⎡⎣F�
B (i, t) 0 0

0 0 0
0 0 0

⎤⎦⎡⎣D�
B(i)P (i) 0 0

0 0 0
0 0 0

⎤⎦ ,

⎡⎣0 0 K�(i)E�
Dz

(i)F�
Dz

(i, t)D�
Dz

(i)
0 0 0
0 0 0

⎤⎦
=

⎡⎣0 0 K�(i)E�
Dz

(i)
0 0 0
0 0 0

⎤⎦⎡⎣0 0 0
0 0 0
0 0 F�

Dz
(i, t)

⎤⎦⎡⎣0 0 0
0 0 0
0 0 D�

Dz
(i)

⎤⎦ ,

⎡⎣ 0 0 0
0 0 0

DDz
(i)FDz

(i, t)EDz
(i)K(i) 0 0

⎤⎦
=

⎡⎣0 0 0
0 0 0
0 0 DDz

(i)

⎤⎦⎡⎣0 0 0
0 0 0
0 0 FDz

(i, t)

⎤⎦⎡⎣ 0 0 0
0 0 0

EDz
(i)K(i) 0 0

⎤⎦ ,

⎡⎣ 0 0 E�
Cz

(i)F�
Cz

(i, t)D�
Cz

(i)
0 0 0
0 0 0

⎤⎦
=

⎡⎣0 0 E�
Cz

(i)
0 0 0
0 0 0

⎤⎦⎡⎣0 0 0
0 0 0
0 0 F�

Cz
(i, t)

⎤⎦⎡⎣0 0 0
0 0 0
0 0 D�

Cz
(i)

⎤⎦ ,

and ⎡⎣ 0 0 0
0 0 0

DCz
(i)FCz

(i, t)ECz
(i) 0 0

⎤⎦
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=

⎡⎣0 0 0
0 0 0
0 0 DCz

(i)

⎤⎦⎡⎣0 0 0
0 0 0
0 0 FCz

(i, t)

⎤⎦⎡⎣ 0 0 0
0 0 0

ECz
(i) 0 0

⎤⎦ .

Using Lemma 7 in Appendix A, we get⎡⎣P (i)DA(i)FA(i, t)EA(i) 0 0
0 0 0
0 0 0

⎤⎦
+

⎡⎣E�
A (i)F�

A (i, t)D�
A(i)P (i) 0 0

0 0 0
0 0 0

⎤⎦
≤ εA(i)

⎡⎣P (i)DA(i) 0 0
0 0 0
0 0 0

⎤⎦⎡⎣D�
A(i)P (i) 0 0

0 0 0
0 0 0

⎤⎦
+ε−1

A (i)

⎡⎣E�
A (i) 0 0
0 0 0
0 0 0

⎤⎦⎡⎣EA(i) 0 0
0 0 0
0 0 0

⎤⎦
=

⎡⎣ εA(i)P (i)DA(i)D�
A(i)P (i) + ε−1

A (i)E�
A (i)EA(i) 0 0

0 0 0
0 0 0

⎤⎦ ,

⎡⎣P (i)DB(i)FB(i, t)EB(i)K(i) 0 0
0 0 0
0 0 0

⎤⎦
+

⎡⎣K�(i)E�
B (i)F�

B (i, t)D�
B(i)P (i) 0 0

0 0 0
0 0 0

⎤⎦
≤ εB(i)

⎡⎣P (i)DB(i) 0 0
0 0 0
0 0 0

⎤⎦⎡⎣D�
B(i)P (i) 0 0

0 0 0
0 0 0

⎤⎦
+ε−1

B (i)

⎡⎣K�(i)E�
B (i) 0 0

0 0 0
0 0 0

⎤⎦⎡⎣EB(i)K(i) 0 0
0 0 0
0 0 0

⎤⎦

=

⎡⎢⎢⎣
[

εB(i)P (i)DB(i)D�
B(i)P (i)

+ε−1
B (i)K�(i)E�

B (i)EB(i)K(i)

]
0 0

0 0 0
0 0 0

⎤⎥⎥⎦ ,

⎡⎣0 0 K�(i)E�
Dz

(i)F�
Dz

(i, t)D�
Dz

(i)
0 0 0
0 0 0

⎤⎦
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+

⎡⎣ 0 0 0
0 0 0

DDz
(i)FDz

(i, t)EDz
(i)K(i) 0 0

⎤⎦
≤ ε−1

Dz
(i)

⎡⎣ 0 0 K�(i)E�
Dz

(i)
0 0 0
0 0 0

⎤⎦⎡⎣ 0 0 0
0 0 0

EDz
(i)K(i) 0 0

⎤⎦
+εDz

(i)

⎡⎣ 0 0 0
0 0 0
0 0 DDz

(i)

⎤⎦⎡⎣ 0 0 0
0 0 0
0 0 D�

Dz
(i)

⎤⎦
=

⎡⎣ ε−1
Dz

(i)K�(i)E�
Dz

(i)EDz
(i, t)K(i) 0 0

0 0 0
0 0 εDz

(i)DDz
(i)D�

Dz
(i)

⎤⎦ ,

⎡⎣0 0 E�
Cz

(i)F�
Cz

(i, t)D�
Cz

(i)
0 0 0
0 0 0

⎤⎦
+

⎡⎣ 0 0 0
0 0 0

DCz
(i)FCz

(i, t)ECz
(i) 0 0

⎤⎦
≤ ε−1

Cz
(i)

⎡⎣ 0 0 E�
Cz

(i)
0 0 0
0 0 0

⎤⎦⎡⎣ 0 0 0
0 0 0

ECz
(i, t) 0 0

⎤⎦
+εCz

(i)

⎡⎣ 0 0 0
0 0 0
0 0 DCz

(i)

⎤⎦⎡⎣0 0 0
0 0 0
0 0 D�

Cz
(i)

⎤⎦
=

⎡⎣ ε−1
Cz

(i)E�
Cz

(i)ECz
(i) 0 0

0 0 0
0 0 εCz

(i)DCz
(i)D�

Cz
(i)

⎤⎦ .

Using all these transformations we get⎡⎣ J1(i) P (i)Bω(i) C�
z (i) + K�(i)D�

z (i)
B�

ω (i)P (i) −γ2I B�
z (i)

Dz(i)K(i) + Cz(i) Bz(i) −I

⎤⎦
+

⎡⎣ εA(i)P (i)DA(i)D�
A(i)P (i) + ε−1

A (i)E�
A (i)EA(i) 0 0

0 0 0
0 0 0

⎤⎦

+

⎡⎢⎢⎣
[

εB(i)P (i)DB(i)D�
B(i)P (i)

+ε−1
B K�(i)E�

B (i)EB(i)K(i)

]
0 0

0 0 0
0 0 0

⎤⎥⎥⎦
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+

⎡⎣ ε−1
Dz

(i)K�(i)E�
Dz

(i)EDz
(i)K(i) 0 0

0 0 0
0 0 εDz

(i)DDz
(i)D�

Dz
(i)

⎤⎦
+

⎡⎣ ε−1
Cz

(i)K�(i)E�
Cz

(i)ECz
(i, t)K(i) 0 0

0 0 0
0 0 εCz

(i)DCz
(i)D�

Cz
(i)

⎤⎦ < 0,

with

J1(i) = A�(i)P (i) + P (i)A(i) + K�(i)B�(i)P (i)

+P (i)B(i)K(i) +
N∑

j=1

λijP (j).

Let J2(i), W(i), and T (i) be defined as

J2(i) = J1(i) + ε−1
A (i)E�(i)EA(i) + ε−1

B (i)K�(i)E�
B (i)EB(i)K(i),

W(i) = diag[ε−1
A (i)I, ε−1

B (i)I, εCz
(i)I, εDz

(i)I],
T (i) =

(
P (i)DA(i), P (i)DB(i),K�(i)E�

Cz
(i),K�(i)E�

Dz
(i)

)
.

Using the Schur complement we get the equivalent inequality:⎡⎢⎢⎢⎢⎢⎢⎣
J2(i) P (i)Bω(i)

[
C�

z (i)
+K�(i)D�

z (i)

]
B�

ω (i)P (i) −γ2I B�
z (i)[

Dz(i)K(i)
+Cz(i)

]
Bz(i) −U(i)

T �(i) 0 0

T (i)
0
0

−W(i)

⎤⎥⎥⎦ < 0,

with U(i) = I − εDz
(i)DDz

(i)D�
Dz

(i) − εCz
(i)DCz

(i)D�
Cz

(i).
This matrix inequality is nonlinear in P (i) and K(i). To put it into LMI

form, let X(i) = P−1(i). Pre- and post-multiply this matrix inequality by
diag[X(i), I, I, I] to get⎡⎢⎢⎢⎢⎢⎢⎣

J3(i) Bω(i)
[

X(i)C�
z (i)

+X(i)K�(i)D�
z (i)

]
B�

ω (i) −γ2I B�
z (i)[

Dz(i)K(i)X(i)
+Cz(i)X(i)

]
Bz(i) −U(i)

T �(i)X(i) 0 0

X(i)T (i)
0
0

−W(i)

⎤⎥⎥⎦ < 0,
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with

J3(i) = X(i)A�(i) + A(i)X(i) + X(i)K�(i)B�(i)
+B(i)K(i)X(i) + ε−1

A (i)X(i)E�
A (i)EA(i)X(i)

+ε−1
B (i)X(i)K�(i)E�

B (i)EB(i)K(i)X(i)

+
N∑

j=1

λijX(i)X−1(j)X(i).

Notice that

X(i)T (i) =
(
DA(i), DB(i), X(i)K�(i)E�

Cz
(i), X(i)K�(i)E�

Dz
(i)

)
,

and

N∑
j=1

λijX(i)X−1(j)X(i) = λiiX(i) + Si(X)X−1(X)S�
i (X).

Letting Y (i) = K(i)X(i) and using the Schur complement we obtain⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

J̃(i) Bω(i)
[

X(i)C�
z (i)

+Y �(i)D�
z (i)

]
B�

ω (i) −γ2I B�
z (i)[

Dz(i)Y (i)
+Cz(i)X(i)

]
Bz(i) −U(i)

Z�(i) 0 0
S�

i (X) 0 0

(4.23)

Z(i) Si(X)
0 0
0 0

−V(i) 0
0 −Xi(X)

⎤⎥⎥⎥⎥⎦ < 0, (4.24)

with

J̃(i) = X(i)A�(i) + A(i)X(i) + Y �(i)B�(i) + B(i)Y (i)
+εA(i)DA(i)D�

A(i) + εB(i)DB(i)D�
B(i)

+λiiX(i),
U(i) = I − εDz

(i)DDz
(i)D�

Dz
(i) − εCz

(i)DCz
(i)D�

Cz
(i),

Z(i) =
(
X(i)E�

A (i), Y �(i)E�
B (i), Y �(i)E�

Cz
(i), Y �(i)E�

Dz
(i)

)
,

V(i) = diag[εA(i)I, εB(i)I, εCz
(i)I, εDz

(i)I].

The following theorem summarizes the results of this development.
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Theorem 49. Let γ be a positive constant. If there exist a set of sym-
metric and positive-definite matrices X = (X(1), · · · , X(N)) > 0 and a
set of matrices Y = (Y (1), · · · , Y (N)) and sets of positive scalars εA =
(εA(1), · · · , εA(N)), εB = (εB(1), · · · , εB(N)), εCz

= (εCz
(1), · · · , εCz

(N)),
and εDz

= (εDz
(1), · · · , εDz

(N)) such that the following set of coupled LMIs
(4.24) holds for every i ∈ S and for all admissible uncertainties, then the
system (4.1) under the controller (4.17) with K(i) = Y (i)X−1(i) is stochas-
tically stable and, moreover, the closed-loop system satisfies the disturbance
rejection of level γ.

Example 49. To show the effectiveness of the theoretical results of this theo-
rem, let us consider the two-mode system of Example 46 with the same data.

Fix the required positive constant to the following values:

εA(1) = εA(2) = 0.50,

εB(1) = εB(2) = εC(1) = εC(2) = εD(1) = εD(2) = 0.10.

Solving the LMI (4.24), we get

X(1) =
[

1.2271 0.0800
0.0800 0.9253

]
, X(2) =

[
1.7939 0.0942
0.0942 1.1861

]
,

Y (1) =
[
−1.3360 −0.2774
−0.2751 −0.6293

]
, Y (2) =

[
−0.2270 −0.1418
−0.1485 0.3717

]
.

The corresponding gains are given by

K(1) =
[
−1.0753 −0.2068
−0.1808 −0.6645

]
, K(2) =

[
−0.1208 −0.1099
−0.0996 0.3213

]
.

Based on the results of this theorem, we conclude that the system is sto-
chastically stable and guarantees the desired disturbance rejection of level
γ = 5.0.

As was done for the nominal system, we can determine the controller that
stochastically stabilizes the class of systems we are considering and at the same
time guarantees the minimum disturbance rejection by solving the following
optimization problem:

Pu :

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

min ν>0,
εA=(εA(1),··· ,εA(N))>0,
εB=(εB(1),··· ,εB(N))>0,

εCz =(εDz (1),··· ,εCz (N))>0,
εDz =(εDz (1),··· ,εDz (N))>0,

X=(X(1),··· ,X(N))>0,
Y =(Y (1),··· ,Y (N)),

ν,

s.t. : (4.24) with ν = γ2.

The following corollary summarizes the results on the design of the con-
troller that stochastically stabilizes the system (4.1) and simultaneously guar-
antees the smallest disturbance rejection level.
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Corollary 7. Let ν > 0, εA = (εA(1), · · · , εA(N)) > 0, εB = (εB(1), · · · ,
εB(N)) > 0, εCz

= (εCz
(1), · · · , εCz

(N)) > 0, εDz
= (εDz

(1), · · · , εDz
(N)) >

0, X = (X(1), · · · , X(N)) > 0, and Y = (Y (1), · · · , Y (N)) be the solu-
tion of the optimization problem Pu. Then the controller (4.17) with K(i) =
Y (i)X−1(i) stochastically stabilizes the class of systems we are considering
and, moreover, the closed-loop system satisfies the disturbance rejection of
level

√
ν.

Example 50. To illustrate the effectiveness of the results developed in this
theorem, let us consider the two-mode system of Example 49 with the same
data.

The required positive scalars are fixed to the following values:

εA(1) = εA(2) = 0.50,

εB(1) = εB(2) = εC(1) = εC(2) = εD(1) = εD(2) = 0.10.

Solving the problem Pu gives

X(1) =
[

0.8525 0.0321
0.0321 0.7363

]
, X(2) =

[
1.0584 0.0414
0.0414 0.8281

]
,

Y (1) =
[
−1.5699 −0.1755
−0.1659 −1.2116

]
, Y (2) =

[
−0.9827 −0.0893
−0.0812 −0.5942

]
,

which gives the following gains:

K(1) =
[
−1.8356 −0.1584
−0.1329 −1.6397

]
, K(2) =

[
−0.9261 −0.0615
−0.0488 −0.7150

]
.

Based on the results of this corollary, we conclude that the system is
stochastically stable and assures a disturbance rejection level equal to γ =
1.0926.

Let us now discuss the design of a nonfragile controller that robustly sto-
chastically stabilizes the class of systems we are considering and simultane-
ously guarantees the desired disturbance rejection of level γ. For this purpose,
let the matrices B(i, t), Dy(i, t), and Dz(i, t) be free of uncertainties, that is,

B(i, t) = B(i),
Dy(i, t) = Dy(i),
Dz(i, t) = Dz(i).

Following the steps of Chapter 3, the nonfragile controller gain we will be
synthesizing has the following form:

K(i, t) = K(i) + ΔK(i, t), (4.25)

with ΔK(i, t) given by
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ΔK(i, t) = ρ(i)FK(i, t)K(i),

where ρ(i) is an uncertain real parameter indicating the measure of non-
fragility against controller gain variations and FK(i, t) is the uncertainty that
will be supposed to satisfy the following for every i ∈ S :

F�
K (i, t)FK(i, t) ≤ I.

Plugging the expression of the state feedback controller with the gain given
by (4.25) in the dynamics (4.1), we obtain the following closed-loop dynamics:⎧⎪⎨⎪⎩

ẋ(t) = [A(i, t) + B(i) [K(i) + ρ(i)FK(i, t)K(i)]]x(t) + Bw(i)ω(t),
y(t) = [Cy(i, t) + Dy(i) [K(i) + ρ(i)FK(i, t)K(i)]]x(t) + By(i)ω(t),
z(t) = [Cz(i, t) + Dz(i) [K(i) + ρ(i)FK(i, t)K(i)]]x(t) + Bz(i)ω(t).

These dynamics will be robustly stochastically stable and have the desired
disturbance rejection of level γ if the following holds for every i ∈ S and for
all admissible uncertainties:⎡⎣ J̄0(i, t) P (i)Bω(i) C̄�

z (i, t)
B�

ω (i)P (i) −γ2I B�
z (i)

C̄z(i, t) Bz(i) −I

⎤⎦ < 0, (4.26)

with

J̄0(i, t) = Ā�(i, t)P (i) + P (i)Ā(i, t) +
N∑

j=1

λijP (j),

Ā(i, t) = A(i, t) + B(i) [K(i) + ρ(i)FK(i, t)K(i)] ,
C̄z(i, t) = Cz(i, t) + Dz(i) [K(i) + ρ(i)FK(i, t)K(i)] .

The controller gain we are designing is assumed to have the following form:

K(i) = �(i)B�(i)P (i),

where P (i) > 0 is a design parameter that is symmetric and positive-definite
matrix for every i ∈ S that is the solution of (4.26).

Using the expression of A(i, t) we get

Ā�(i, t)P (i) + P (i)Ā(i, t) +
N∑

j=1

λijP (j) =

A�(i)P (i) + P (i)A(i) + P (i)DA(i)FA(i, t)EA(i)
+E�

A (i, t)F�
A (i, t)D�

A(i)P (i)
+K�(i)B�(i)P (i) + P (i)B(i)K(i)

+ρ(i)P (i)B(i)FK(i, t)K(i)
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+ρ(i)K�(i)F�
K (i, t)B�(i)P (i) +

N∑
j=1

λijP (j),

and

C̄z(i, t) = Cz(i) + DCz
(i)FCz

(i, t)ECz
(i)

+Dz(i)
[
�(i)B�(i)P (i) + ρ(i)�(i)FK(i, t)B�(i)P (i)

]
= Cz(i) + DCz

(i)FCz
(i, t)ECz

(i)
+�(i)Dz(i)B�(i)P (i) + ρ(i)�(i)Dz(i)FK(i, t)B�(i)P (i).

From Lemma 7 in Appendix A, we get

P (i)DA(i)FA(i, t)EA(i) + E�
A (i, t)F�

A (i, t)D�
A(i)P (i)

≤ εA(i)P (i)DA(i)D�
A(i)P (i) + ε−1

A (i)E�
A (i)EA(i),

ρ(i)�(i)P (i)B(i)FK(i, t)B�(i)P (i)
+ρ(i)�(i)P (i)B(i)F�

K (i, t)B�(i)P (i)
≤ ε−1

K (i)ρ(i)�2(i)P (i)B(i)B�(i)P (i)
+εK(i)ρ(i)P (i)B(i)F�

K (i, t)FK(i, t)B�(i)P (i)
≤ ε−1

K (i)ρ(i)�2(i)P (i)B(i)B�(i)P (i)
+εK(i)ρ(i)P (i)B(i)B�(i)P (i),

and ⎡⎣0 0 E�
Cz

(i)F�
Cz

(i)D�
Cz

(i)
0 0 0
0 0 0

⎤⎦
+

⎡⎣ 0 0 0
0 0 0

DCz
(i)FCz

(i, t)ECz
(i) 0 0

⎤⎦
≤ ε−1

Cz
(i)

⎡⎣ 0 0 E�
Cz

(i)
0 0 0
0 0 0

⎤⎦⎡⎣ 0 0 0
0 0 0

ECz
(i) 0 0

⎤⎦
+εCz

(i)

⎡⎣ 0 0 0
0 0 0
0 0 DCz

(i)

⎤⎦⎡⎣0 0 0
0 0 0
0 0 D�

Cz
(i)

⎤⎦
=

⎡⎣ ε−1
Cz

(i)E�
Cz

(i)ECz
(i) 0 0

0 0 0
0 0 εCz

(i)DCz
(i)D�

Cz
(i)

⎤⎦ ,
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K (i, t)D�

Dz
(i)

0 0 0
0 0 0

⎤⎦
+

⎡⎣ 0 0 0
0 0 0

ρ(i)�(i)Dz(i)FK(i, t)B�(i)P (i) 0 0

⎤⎦
≤ ρ(i)ε−1

Dz
(i)

⎡⎣ 0 0 �(i)P (i)B(i)
0 0 0
0 0 0

⎤⎦⎡⎣ 0 0 0
0 0 0

�(i)B�(i)P (i) 0 0

⎤⎦
+ρ(i)εDz

(i)

⎡⎣ 0 0 0
0 0 0
0 0 DDz

(i)

⎤⎦⎡⎣0 0 0
0 0 0
0 0 D�

Dz
(i)

⎤⎦

=

⎡⎢⎢⎢⎢⎣
[

ε−1
Dz

(i)ρ(i)�2(i)P (i)
×B(i)B�(i)P (i)

]
0 0

0 0 0

0 0
[

ρ(i)εDz
(i)DDz

(i)
×D�

Dz
(i)

]
⎤⎥⎥⎥⎥⎦ .

Using all these transformations the previous matrix inequality becomes⎡⎣ J(i) P (i)Bω(i)
B�

ω (i)P (i) −γ2I

�(i)Dz(i)B�(i)P (i) + Cz(i) Bz(i)

C�
z (i) + �(i)P (i)B(i)D�

z (i)
B�

z (i)
−Uρ(i)

⎤⎦ < 0,

with

J(i) = A�(i)P (i) + P (i)A(i) + P (i)B(i)K(i)

+K�(i)B�(i)P (i) +
N∑

j=1

λijP (j)

+εA(i)P (i)DA(i)D�
A(i)P (i) + ε−1

A (i)E�
A (i)EA(i)

+ε−1
K (i)ρ(i)�2(i)P (i)B(i)B�(i)P (i)

+εK(i)ρ(i)P (i)B(i)B�(i)P (i)
+ε−1

Dz
(i)ρ(i)�2(i)P (i)B(i)B�(i)P (i) + ε−1

Cz
(i)E�

Cz
(i)ECz

(i)

Uρ(i) = I − εCz
(i)DCz

(i)D�
Cz

(i) − ρ(i)εDz
(i)DDz

(i)D�
Dz

(i).

Letting

Z(i) =
[
E�

A (i), �(i)P (i)B(i), E�
Cz

(i), �(i)P (i)B(i)
]
,

N (i) = diag
[
εA(i)I,

εK(i)
ρ(i)

I, εCz
(i)I,

εDz
(i)

ρ(i)
I

]
,
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and using the Schur complement we get⎡⎢⎢⎣
J̄(i) P (i)Bω(i)

B�
ω (i)P (i) −γ2I

�(i)Dz(i)B�(i)P (i) + Cz(i) Bz(i)
Z�(i) 0

C�
z (i) + �(i)P (i)B(i)D�

z (i) Z(i)
B�

z (i) 0
−Uρ(i) 0

0 −N (i)

⎤⎥⎥⎦ < 0,

where

J̄(i) = A�(i)P (i) + P (i)A(i) + P (i)B(i)K(i)

+K�(i)B�(i)P (i) +
N∑

j=1

λijP (j)

+εA(i)P (i)DA(i)D�
A(i)P (i) + εK(i)ρ(i)P (i)B(i)B�(i)P (i).

This inequality is nonlinear in �(i) and P (i). To cast it into an LMI, let
X(i) = P−1(i) and pre- and post-multiply the previous inequality matrix by
diag [X(i), I, I, I] to imply⎡⎢⎢⎣

J̃(i) Bω(i)
B�

ω (i) −γ2I

�(i)Dz(i)B�(i) + Cz(i)X(i) Bz(i)
L�(i)X(i) 0

X(i)C�
z (i) + �(i)B(i)D�

z (i) X(i)L(i)
B�

z (i) 0
−Uρ(i) 0

0 −N (i)

⎤⎥⎥⎦ < 0, (4.27)

with

J̃(i) = X(i)A�(i) + A(i)X(i) + B(i)K(i)X(i)

+X(i)K�(i)B�(i) +
N∑

j=1

λijX(i)X−1(j)X(i)

+εA(i)DA(i)D�
A(i) + εK(i)ρ(i)B(i)B�(i).

Letting Y (i) = K(i)X(i) and noticing that

X(i)L(i) =
[
X(i)E�

A (i), �(i)B(i), X(i)E�
Cz

(i), �(i)B(i)
]

N∑
j=1

λijX(i)X−1(j)X(i) = λiiX(i) + Si(X)X−1
i (X)S�

i (X),
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and after using the Schur complement again, we get⎡⎢⎢⎢⎢⎣
Ĵ(i) Bω(i)

B�
ω (i) −γ2I

�(i)Dz(i)B�(i) + Cz(i)X(i) Bz(i)
U�(i) 0
S�

i (X) 0

X(i)C�
z (i) + �(i)B(i)D�

z (i) U(i) Si(X)
B�

z (i) 0 0
−Uρ(i) 0 0

0 −W(i) 0
0 0 −Xi(X)

⎤⎥⎥⎥⎥⎦ < 0, (4.28)

with

Ĵ(i) = X(i)A�(i) + A(i)X(i) + B(i)Y (i) + Y �(i)B�(i)
+λiiX(i) + εA(i)DA(i)D�

A(i) + εK(i)ρ(i)B(i)B�(i),
U(i) =

[
X(i)E�

A (i), X(i)E�
Cz

(i), �(i)B(i), �(i)B(i)
]
,

W(i) = diag
[
εA(i)I, εCz

(i)I,
εDz

(i)
ρ(i)

I,
εK(i)
ρ(i)

I

]
.

The following theorem summarizes the results of this development.

Theorem 50. Let γ be a positive constant. If there exist a set of symmetric
and positive-definite matrices X = (X(1), · · · , X(N)) > 0 and a set of ma-
trices Y = (Y (1), · · · , Y (N)) and positive scalars εA = (εA(1), · · · , εA(N)),
εCz

= (εCz
(1), · · · , εCz

(N)), εDz
= (εDz

(1), · · · , εDz
(N)), and εK = (εK(1),

· · · , εK(N)) such that the following set of coupled LMIs (4.28) holds for every
i ∈ S and for all admissible uncertainties, then the system (4.1) under the
controller (4.17) with K(i) = Y (i)X−1(i) is stochastically stable and, more-
over, the closed-loop system satisfies the disturbance rejection of level γ.

Example 51. To show the effectiveness of the results of this theorem, let us
consider the two-mode system of Example 49 with the same data except that
ΔB(i, t) = 0 for every i ∈ S .

Let us fix all the required positive scalars to the following values:

εA(1) = εA(2) = 0.5,

εC(1) = εC(2) = εD(1) = εD(2) = εK(1) = εK(2) = 0.1,

ρ(1) = ρ(2) = 0.5.

The desired disturbance rejection level is fixed to γ = 5.0.
Solving the problem Pw, we get

X(1) =
[

5.3344 −0.4466
−0.4466 5.6761

]
, X(2) =

[
5.0491 −0.4032
−0.4032 4.8075

]
,
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Y (1) =
[
−11.1933 15.4484
−28.0308 2.7894

]
, Y (2) =

[
0.1564 6.3403

−10.8011 3.6176

]
,

�(1) = −5.4060, �(2) = −4.8388.

The corresponding controller gains are given by

K(1) =
[
−1.8828 2.5735
−5.2482 0.0785

]
, K(2) =

[
0.1372 1.3303
−2.0932 0.5770

]
.

Based on the results of this theorem, we conclude that the system is sto-
chastically stable and guarantees the desired disturbance level.

As done previously, we can determine a nonfragile controller that stochas-
tically stabilizes the class of systems we are considering and simultaneously
guarantees the minimum disturbance rejection by solving the following opti-
mization problem:

Pw :

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

min ν>0,
εA=(εA(1),··· ,εA(N))>0,
εB=(εB(1),··· ,εB(N))>0,

εCz =(εDz (1),··· ,εDz (N))>0,
εDz =(εDz (1),··· ,εDz (N))>0,

X=(X(1),··· ,X(N))>0,
Y =(Y (1),··· ,Y (N)),

ν,

s.t. : (4.28) with ν = γ2.

(4.29)

The following corollary summarizes the results of the design of the con-
troller that stochastically stabilizes the system (4.1) and simultaneously guar-
antees the smallest disturbance rejection level.

Corollary 8. Let ν > 0, εA = (εA(1), · · · , εA(N)) > 0, εCz
= (εCz

(1), · · · ,
εCz

(N)) > 0, εDz
= (εDz

(1), · · · , εDz
(N)) > 0, εK = (εK(1), · · · , εK(N)) >

0, X = (X(1), · · · , X(N)) > 0, and Y = (Y (1), · · · , Y (N)) be the solu-
tion of the optimization problem Pw. Then the controller (4.17) with K(i) =
Y (i)X−1(i) stochastically stabilizes the class of systems we are considering
and, moreover, the closed-loop system satisfies the disturbance rejection of
level

√
ν.

Example 52. To show the effectiveness of the results of this theorem, let us
consider the two-mode system of the previous example with the same data.

The required positive scalars are fixed to the following values:

εA(1) = εA(2) = 0.5,

εC(1) = εC(2) = εD(1) = εD(2) = εK(1) = εK(2) = 0.1,

ρ(1) = ρ(2) = 0.5.

Solving the problem Pw, we get
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X(1) =
[

16.0649 −0.0112
−0.0112 16.0720

]
, X(2) =

[
15.2067 −0.0220
−0.0220 15.1748

]
,

Y (1) =
[
−164.2228 −51.6292
−57.0415 −66.0119

]
, Y (2) =

[
−35.4198 −22.8874
−20.8337 −49.6442

]
,

�(1) = −17.0442, �(2) = −16.1671.

The corresponding controller gains are given by

K(1) =
[
−10.2247 −3.2195
−3.5536 −4.1097

]
, K(2) =

[
−2.3314 −1.5116
−1.3748 −3.2735

]
.

Based on the results of this corollary, we conclude that the system is
stochastically stable and guarantees a disturbance level equal to γ = 1.0043.

Notice that in designing the state feedback controller, we have always
assumed complete access to the system mode. This assumption may not be
practically valid in some cases and an alternative is required. In the rest of
this section we focus on the design of the state feedback controller that does
not require access to the system mode. The structure of this controller is given
by the following expression:

u(t) = K x(t), (4.30)

where K is a constant gain to be determined.
Plugging the controller’s expression into the system dynamics we get

ẋ(t) = Ā(r(t))x(t) + Bw(r(t))ω(t),
z(t) = C̄z(r(t))x(t) + Bz(r(t))ω(t),

where Ā(r(t)) = A(r(t)) + B(r(t))K , C̄z(r(t)) = Cz(r(t)) + Dz(r(t))K .
Based on what we developed earlier, we have the following results.

Theorem 51. Let γ be a given positive constant and K a given constant
gain. If there exists a symmetric and positive-definite matrix P > 0 such that
the following set of LMIs holds for every i ∈ S :[

J̄0(i) C̄z(i)Bz(i) + PBw(i)
B�

z (i)C̄z(i) + B�
w (i)P B�

z (i)Bz(i) − γ2I

]
< 0, (4.31)

where J̄0(i) = Ā�(i)P + PĀ(i) + C̄�
z (i) C̄z(i), then system (4.1) is stochasti-

cally stable and satisfies the following:

‖z‖2 ≤
[
γ2‖ω‖2

2 + x�(0)Px(0)
] 1

2 . (4.32)

Proof: The proof of this theorem is direct and the detail is omitted. �
To synthesize the controller gain, let us transform the LMI (4.31) into a

form that can be used easily to compute this gain. Notice that
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Ā�(i)P + PĀ(i) + C̄�

z (i)C̄z(i) C̄�
z (i)Bz(i) + PBω(i)

B�
z (i)C̄z(i) + B�

ω (i)P B�
z (i)Bz(i) − γ2I

]
=[

Ā�(i)P + PĀ(i) PBω(i)
B�

ω (i)P −γ2I

]
+

[
C̄�

z (i)
B�

z (i)

] [
C̄z(i) Bz(i)

]
.

Using the Schur complement we show that (4.31) is equivalent to the
following inequality:⎡⎣ Ā�(i)P + PĀ(i) PBω(i) C̄�

z (i)
B�

ω (i)P −γ2I B�
z (i)

C̄z(i) Bz(i) −I

⎤⎦ < 0.

Since Ā(i) is nonlinear in K and P , the previous inequality is then non-
linear and therefore it cannot be solved using existing linear algorithms. To
transform it into an LMI, let X = P−1. As done many times previously, pre-
and post-multiply this inequality by diag[X, I, I], which gives⎡⎣XĀ�(i) + Ā(i)X Bω(i) XC̄�

z (i)
B�

ω (i) −γ2I B�
z (i)

C̄z(i)X Bz(i) −I

⎤⎦ < 0.

Notice that

XĀ�(i) + Ā(i)X = XA�(i) + A(i)X + Y �B�(i) + B(i)Y,

X(i) [Cz(i) + Dz(i)K(i)]� = X(i)C�
z (i) + Y �(i)D�

z (i),

where Y = K X.
Using the Schur complement again implies that the previous inequality is

equivalent to the following:⎡⎣ J(i) Bω(i) XC�
z (i) + Y �D�

z (i)
B�

ω (i) −γ2I B�
z (i)

Cz(i)X + Dz(i)Y Bz(i) −I

⎤⎦ < 0, (4.33)

with J(i) = XA�(i) + A(i)X + Y �B�(i) + B(i)Y .
From this discussion and using the expression of X, we get the following

theorem.

Theorem 52. Let γ be a positive constant. If there exist a symmetric and
positive-definite matrix X > 0 and a matrix Y such that the following set of
LMIs (4.33) holds for every i ∈ S , then the system (4.1) under the controller
(4.30) with K = Y X−1 is stochastically stable and, moreover, the closed-loop
system satisfies the disturbance rejection of level γ.

Example 53. Let us in this example consider the two-mode system of Example
45 with the same data. Solving the LMI of the previous theorem when γ = 5.0
we get
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X =
[

9.5507 1.1766
1.1766 4.5472

]
, Y =

[
−6.7818 −0.8451
−0.8451 −2.8332

]
,

which gives the following gain:

K =
[
−0.7098 −0.0022
−0.0121 −0.6199

]
.

With this controller, the closed-loop state equation becomes

ẋ(t) = Acl(i)x(t),

with

Acl(i) =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

[
−1.2098 0.9978
0.2879 −3.1199

]
,when i = 1,

[
−1.7098 0.0978
0.1879 −2.6199

]
, otherwise.

The standard conditions for stochastic stability can be summarized as
follows: If there exists a set of symmetric and positive-definite matrices P =
(P (1), P (2)) > 0 such that the following holds for each r(t) = i ∈ S :

A�
cl(i)P (i) + P (i)Acl(i) +

N∑
j=1

λijP (j) < 0,

then the closed-loop system is stochastically stable.
Using these conditions, we get the following matrices:

P (1) =
[

12.9296 2.3139
2.3139 6.2671

]
, P (2) =

[
11.2888 −0.1445
−0.1445 8.0984

]
,

which are both symmetric and positive-definite matrices and therefore the
closed-loop system is stochastically stable under the constant gain state feed-
back controller.

From the practical point of view, the controller that stochastically sta-
bilizes the system and simultaneously guarantees the minimum disturbance
rejection is of great interest. This controller can be obtained by solving the
following optimization problem:

Pc :

⎧⎪⎨⎪⎩
min ν>0,

X>0,
Y,

ν,

s.t. : (4.33) with ν = γ2.

(4.34)

The following corollary gives the results of the design of the controller that
stochastically stabilizes the system (4.1) and simultaneously guarantees the
smallest disturbance rejection level.
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Corollary 9. Let ν > 0, X > 0, and Y be the solution of the optimization
problem Pc. Then the controller (4.30) with K = Y X−1 stochastically sta-
bilizes the class of systems we are considering and, moreover, the closed-loop
system satisfies the disturbance rejection of level

√
ν.

Example 54. In this example let us consider the same system of the previ-
ous example with the same data. Solving the LMI of the previous theorem
iteratively, we get

X =
[

3.2560 0.3312
0.3312 1.8966

]
, Y =

[
−4.4808 −0.4168
−0.4168 −2.8857

]
,

which gives the following gain:

K =
[
−1.3783 0.0210
0.0273 −1.5263

]
.

With this controller, the closed-loop state equation becomes

ẋ(t) = Acl(i)x(t),

with

Acl(i) =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

[
−1.8783 1.0210
0.3273 −4.0263

]
,when i = 1,

[
−2.3783 0.1210
0.2273 −3.5263

]
, otherwise.

The standard conditions for stochastic stability can be summarized as
follows: If there exists a set of symmetric and positive-definite matrices P =
(P (1), P (2)) > 0 such that the following holds for each r(t) = i ∈ S :

A�
cl(i)P (i) + P (i)Acl(i) +

N∑
j=1

λijP (j) < 0,

then the closed-loop system is stochastically stable.
Using these conditions, we get the following matrices:

P (1) =
[

7.2981 1.0301
1.0301 3.9112

]
, P (2) =

[
7.0007 −0.3456
−0.3456 5.7152

]
,

which are both symmetric and positive-definite matrices and therefore the
closed-loop system is stochastically stable under the constant gain state feed-
back controller. The corresponding minimal disturbance rejection level γ is
equal to 1.0043.



4.2 State Feedback Stabilization 217

Let us now focus on the design of a robust state feedback controller with
constant gain. Assume that the dynamics (4.1) have uncertainties and see
how we can design a controller of the form (4.30) that robustly stabilizes the
class of systems we are studying and at the same time guarantees the desired
disturbance rejection of level γ. Following the same steps for the nominal case
starting from the results of Theorem 52, we get⎡⎣ J̄0(i, t) PBω(i) C̄�

z (i, t)
B�

ω (i)P −γ2I B�
z (i)

C̄z(i, t) Bz(i) −I

⎤⎦ < 0, (4.35)

with

J̄0(i, t) = Ā�(i, t)P + PĀ(i, t),
Ā(i, t) = A(i, t) + B(i, t)K ,

C̄z(i, t) = Cz(i, t) + Dz(i, t)K .

Using the expressions of Ā(i, t), C̄z(i, t), and their components, we obtain
the following inequality:⎡⎢⎢⎢⎢⎣

J1(i) PBω(i)
[

C�
z (i)

+K �D�
z (i)

]
B�

ω (i)P −γ2I B�
z (i)[

Dz(i)K
+Cz(i)

]
Bz(i) −I

⎤⎥⎥⎥⎥⎦
+

⎡⎣E�
A (i)F�

A (i, t)D�
A(i)P 0 0

0 0 0
0 0 0

⎤⎦
+

⎡⎣PDA(i)FA(i, t)EA(i) 0 0
0 0 0
0 0 0

⎤⎦
+

⎡⎣PDB(i)FB(i, t)EB(i)K 0 0
0 0 0
0 0 0

⎤⎦
+

⎡⎣K �E�
B (i)F�

B (i, t)D�
B(i)P 0 0

0 0 0
0 0 0

⎤⎦
+

⎡⎣ 0 0 K �E�
Dz

(i)F�
Dz

(i, t)D�
Dz

(i)
0 0 0
0 0 0

⎤⎦
+

⎡⎣ 0 0 0
0 0 0

DDz
(i)FDz

(i, t)EDz
(i)K 0 0

⎤⎦
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+

⎡⎣ 0 0 E�
Cz

(i)F�
Cz

(i, t)D�
Cz

(i)
0 0 0
0 0 0

⎤⎦
+

⎡⎣ 0 0 0
0 0 0

DCz
(i)FCz

(i, t)ECz
(i) 0 0

⎤⎦ < 0,

with J1(i) = A�(i)P + PA(i) + K �B�(i)P + PB(i)K .
Notice that ⎡⎣E�

A (i)F�
A (i, t)D�

A(i)P 0 0
0 0 0
0 0 0

⎤⎦
=

⎡⎣E�
A (i) 0 0
0 0 0
0 0 0

⎤⎦⎡⎣F�
A (i, t) 0 0

0 0 0
0 0 0

⎤⎦⎡⎣D�
A(i)P 0 0
0 0 0
0 0 0

⎤⎦ ,

⎡⎣PDA(i)FA(i, t)EA(i) 0 0
0 0 0
0 0 0

⎤⎦
=

⎡⎣PDA(i) 0 0
0 0 0
0 0 0

⎤⎦⎡⎣FA(i, t) 0 0
0 0 0
0 0 0

⎤⎦⎡⎣EA(i) 0 0
0 0 0
0 0 0

⎤⎦ ,

⎡⎣PDB(i)FB(i, t)EB(i)K 0 0
0 0 0
0 0 0

⎤⎦
=

⎡⎣PDB(i) 0 0
0 0 0
0 0 0

⎤⎦⎡⎣FB(i, t) 0 0
0 0 0
0 0 0

⎤⎦⎡⎣EB(i)K 0 0
0 0 0
0 0 0

⎤⎦ ,

⎡⎣K �E�
B (i)F�

B (i, t)D�
B(i)P 0 0

0 0 0
0 0 0

⎤⎦
=

⎡⎣K �E�
B (i) 0 0

0 0 0
0 0 0

⎤⎦⎡⎣F�
B (i, t) 0 0

0 0 0
0 0 0

⎤⎦⎡⎣D�
B(i)P 0 0
0 0 0
0 0 0

⎤⎦ ,

⎡⎣0 0 K �E�
Dz

(i)F�
Dz

(i, t)D�
Dz

(i)
0 0 0
0 0 0

⎤⎦
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=

⎡⎣0 0 K �E�
Dz

(i)
0 0 0
0 0 0

⎤⎦⎡⎣0 0 0
0 0 0
0 0 F�

Dz
(i, t)

⎤⎦⎡⎣0 0 0
0 0 0
0 0 D�

Dz
(i)

⎤⎦ ,

⎡⎣ 0 0 0
0 0 0

DDz
(i)FDz

(i, t)EDz
(i)K 0 0

⎤⎦
=

⎡⎣0 0 0
0 0 0
0 0 DDz

(i)

⎤⎦⎡⎣0 0 0
0 0 0
0 0 FDz

(i, t)

⎤⎦⎡⎣ 0 0 0
0 0 0

EDz
(i)K 0 0

⎤⎦ ,

⎡⎣ 0 0 E�
Cz

(i)F�
Cz

(i, t)D�
Cz

(i)
0 0 0
0 0 0

⎤⎦
=

⎡⎣0 0 E�
Cz

(i)
0 0 0
0 0 0

⎤⎦⎡⎣0 0 0
0 0 0
0 0 F�

Cz
(i, t)

⎤⎦⎡⎣0 0 0
0 0 0
0 0 D�

Cz
(i)

⎤⎦ ,

and ⎡⎣ 0 0 0
0 0 0

DCz
(i)FCz

(i, t)ECz
(i) 0 0

⎤⎦
=

⎡⎣0 0 0
0 0 0
0 0 DCz

(i)

⎤⎦⎡⎣0 0 0
0 0 0
0 0 FCz

(i, t)

⎤⎦⎡⎣ 0 0 0
0 0 0

ECz
(i) 0 0

⎤⎦ .

Using now Lemma 7 in Appendix A, we get⎡⎣PDA(i)FA(i, t)EA(i) 0 0
0 0 0
0 0 0

⎤⎦
+

⎡⎣E�
A (i)F�

A (i, t)D�
A(i)P 0 0

0 0 0
0 0 0

⎤⎦
≤ εA(i)

⎡⎣PDA(i) 0 0
0 0 0
0 0 0

⎤⎦⎡⎣D�
A(i)P 0 0
0 0 0
0 0 0

⎤⎦
+ε−1

A (i)

⎡⎣E�
A (i) 0 0
0 0 0
0 0 0

⎤⎦⎡⎣EA(i) 0 0
0 0 0
0 0 0

⎤⎦
=

⎡⎣ εA(i)PDA(i)D�
A(i)P + ε−1

A (i)E�
A (i)EA(i) 0 0

0 0 0
0 0 0

⎤⎦ ,
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⎡⎣PDB(i)FB(i, t)EB(i)K 0 0
0 0 0
0 0 0

⎤⎦
+

⎡⎣K �E�
B (i)F�

B (i, t)D�
B(i)P 0 0

0 0 0
0 0 0

⎤⎦
≤ εB(i)

⎡⎣PDB(i) 0 0
0 0 0
0 0 0

⎤⎦⎡⎣D�
B(i)P 0 0
0 0 0
0 0 0

⎤⎦
+ε−1

B (i)

⎡⎣K �E�
B (i) 0 0

0 0 0
0 0 0

⎤⎦⎡⎣EB(i)K 0 0
0 0 0
0 0 0

⎤⎦
=

⎡⎣ εB(i)PDB(i)D�
B(i)P + ε−1

B (i)K �E�
B (i)EB(i)K 0 0

0 0 0
0 0 0

⎤⎦ ,

⎡⎣0 0 K �E�
Dz

(i)F�
Dz

(i, t)D�
Dz

(i)
0 0 0
0 0 0

⎤⎦
+

⎡⎣ 0 0 0
0 0 0

DDz
(i)FDz

(i, t)EDz
(i)K 0 0

⎤⎦
≤ ε−1

Dz
(i)

⎡⎣ 0 0 K �E�
Dz

(i)
0 0 0
0 0 0

⎤⎦⎡⎣ 0 0 0
0 0 0

EDz
(i)K 0 0

⎤⎦
+εDz

(i)

⎡⎣ 0 0 0
0 0 0
0 0 DDz

(i)

⎤⎦⎡⎣0 0 0
0 0 0
0 0 D�

Dz
(i)

⎤⎦
=

⎡⎣ ε−1
Dz

(i)K �E�
Dz

(i)EDz
(i)K 0 0

0 0 0
0 0 εDz

(i)DDz
(i)D�

Dz
(i)

⎤⎦ ,

⎡⎣0 0 E�
Cz

(i)F�
Cz

(i, t)D�
Cz

(i)
0 0 0
0 0 0

⎤⎦
+

⎡⎣ 0 0 0
0 0 0

DCz
(i)FCz

(i, t)ECz
(i) 0 0

⎤⎦
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≤ ε−1
Cz

(i)

⎡⎣ 0 0 E�
Cz

(i)
0 0 0
0 0 0

⎤⎦⎡⎣ 0 0 0
0 0 0

ECz
(i, t) 0 0

⎤⎦
+εCz

(i)

⎡⎣ 0 0 0
0 0 0
0 0 DCz

(i)

⎤⎦⎡⎣0 0 0
0 0 0
0 0 D�

Cz
(i)

⎤⎦
=

⎡⎣ ε−1
Cz

(i)E�
Cz

(i)ECz
(i) 0 0

0 0 0
0 0 εCz

(i)DCz
(i)D�

Cz
(i)

⎤⎦ .

Using these transformations we get⎡⎣ J1(i) PBω(i) C�
z (i) + K �D�

z (i)
B�

ω (i)P −γ2I B�
z (i)

Dz(i)K + Cz(i) Bz(i) −I

⎤⎦
+

⎡⎣ εA(i)PDA(i)D�
A(i)P + ε−1

A (i)E�
A (i)EA(i) 0 0

0 0 0
0 0 0

⎤⎦
+

⎡⎣ εB(i)PDB(i)D�
B(i)P + ε−1

B K �E�
B (i)EB(i)K 0 0

0 0 0
0 0 0

⎤⎦
+

⎡⎣ ε−1
Dz

(i)K �E�
Dz

(i)EDz
(i)K 0 0

0 0 0
0 0 εDz

(i)DDz
(i)D�

Dz
(i)

⎤⎦
+

⎡⎣ ε−1
Cz

(i)E�
Cz

(i)ECz
(i) 0 0

0 0 0
0 0 εCz

(i)DCz
(i)D�

Cz
(i)

⎤⎦ < 0,

with J1(i) = A�(i)P + PA(i) + K �B�(i)P + PB(i)K .
Let J2(i), W(i), and T (i) be defined as

J2(i) = J1(i) + ε−1
A (i)E�

A (i)EA(i) + ε−1
B (i)K �E�

B (i)EB(i)K ,

W(i) = diag[ε−1
A (i)I, ε−1

B (i)I, εCz
(i)I, εDz

(i)I],
T (i) =

(
PDA(i), PDB(i), E�

Cz
(i),K �E�

Dz
(i)

)
.

Using the Schur complement we get the equivalent inequality:⎡⎢⎢⎢⎢⎢⎢⎣
J2(i) PBω(i)

[
C�

z (i)
+K �D�

z (i)

]
B�

ω (i)P −γ2I B�
z (i)[

Dz(i)K
+Cz(i)

]
Bz(i) −U(i)

T �(i) 0 0

T (i)
0
0

−W(i)

⎤⎥⎥⎦ < 0,
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with U(i) = I − εDz
(i)DDz

(i)D�
Dz

(i) − εCz
(i)DCz

(i)D�
Cz

(i).
This matrix inequality is nonlinear in P and K . To put it into LMI form,

let X = P−1. Pre- and post-multiply this matrix inequality by diag[X, I, I, I]
to get ⎡⎢⎢⎢⎢⎢⎢⎣

J3(i) Bω(i)
[

XC�
z (i)

+XK�(i)D�
z (i)

]
XT (i)

B�
ω (i) −γ2I B�

z (i) 0[
Dz(i)K X
+Cz(i)X

]
Bz(i) −U(i) 0

T �(i)X 0 0 −W(i)

⎤⎥⎥⎥⎥⎥⎥⎦ < 0,

with

J3(i) = XA�(i) + A(i)X + XK �B�(i)
+B(i)K X + ε−1

A (i)XE�
A (i)EA(i)X(i)

+ε−1
B (i)XK �E�

B (i)EB(i)K X.

Notice that

XT (i) =
(
DA(i), DB(i), XE�

Cz
(i), XK �E�

Dz
(i)

)
.

Letting Y = K X and using the Schur complement we obtain⎡⎢⎢⎢⎢⎢⎢⎣
J̃(i) Bω(i)

[
XC�

z (i)
+Y �D�

z (i)

]
Z(i)

B�
ω (i) −γ2I B�

z (i) 0[
Dz(i)Y

+Cz(i)X

]
Bz(i) −U(i) 0

Z�(i) 0 0 −V(i)

⎤⎥⎥⎥⎥⎥⎥⎦ < 0, (4.36)

with

J̃(i) = XA�(i) + A(i)X + Y �B�(i) + B(i)Y
+εA(i)DA(i)D�

A(i) + εB(i)DB(i)D�
B(i),

U(i) = I − εDz
(i)DDz

(i)D�
Dz

(i) − εCz
(i)DCz

(i)D�
Cz

(i),

Z(i) =
[
XE�

A (i), Y �E�
B (i), X�E�

Cz
(i), Y �E�

Dz
(i)

]
,

V(i) = diag[εA(i)I, εB(i)I, εCz
(i)I, εDz

(i)I].

The following theorem summarizes the results of this development.

Theorem 53. Let γ be a positive constant. If there exist a symmetric and
positive-definite matrix X > 0 and a matrix Y and sets of positive scalars εA =
(εA(1), · · · , εA(N)), εB = (εB(1), · · · , εB(N)), εCz

= (εCz
(1), · · · , εCz

(N)),
and εDz

= (εDz
(1), · · · , εDz

(N)) such that the following set of LMIs (4.36)
holds for every i ∈ S and for all admissible uncertainties, then the system
(4.1) under the controller (4.30) with K = Y X−1 is stochastically stable and,
moreover, the closed-loop system satisfies the disturbance rejection of level γ.
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Example 55. To show the effectiveness of the theoretical results of this theo-
rem, let us consider the two-mode system of Example 49 with the same data.
Let us fix the required positive constant to the following values:

εA(1) = εA(2) = 0.50,

εB(1) = εB(2) = εC(1) = εC(2) = εD(1) = εD(2) = 0.10.

Solving the LMI (4.36) with γ = 5.0, we get

X =
[

3.7967 −2.8740
−2.8740 4.5911

]
, Y =

[
−3.5141 2.8775
2.8017 −3.8579

]
.

The corresponding gains are given by

K =
[
−0.8575 0.0900
0.1936 −0.7191

]
.

Based on the results of this theorem, we conclude that the system is
stochastically stable and guarantees the desired disturbance rejection level
γ = 5.0.

With this controller, the closed-loop state equation becomes

ẋ(t) = Acl(i)x(t),

with

Acl(i) =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

[
−1.3575 1.0900
0.4936 −3.2191

]
,when i = 1,

[
−1.8575 0.1900
0.3936 −2.7191

]
, otherwise.

The standard conditions for stochastic stability can be summarized as
follows: If there exists a set of symmetric and positive-definite matrices P =
(P (1), P (2)) > 0 such that the following holds for each r(t) = i ∈ S :

A�
cl(i)P (i) + P (i)Acl(i) +

N∑
j=1

λijP (j) < 0,

then the closed-loop system is stochastically stable.
Using these conditions, we get the following matrices:

P (1) =
[

11.7556 2.5739
2.5739 6.0528

]
, P (2) =

[
10.3809 0.2804
0.2804 7.7345

]
,

which are both symmetric and positive-definite matrices and therefore the
closed-loop system is stochastically stable under the constant gain state feed-
back controller.
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As done for nominal system, we can determine the controller that stochas-
tically stabilizes the class of systems we are considering and simultaneously
guarantees the minimum disturbance rejection by solving the following opti-
mization problem:

Pu :

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

min ν>0,
εA=(εA(1),··· ,εA(N))>0,
εB=(εB(1),··· ,εB(N))>0,

εCz =(εDz (1),··· ,εCz (N))>0,
εDz =(εDz (1),··· ,εDz (N))>0,

X>0,
Y,

ν,

s.t. : (4.16) with ν = γ2.

The following corollary summarizes the results of the design of the con-
troller that stochastically stabilizes the system (4.1) and simultaneously guar-
antees the smallest disturbance rejection level.

Corollary 10. Let ν > 0, εA = (εA(1), · · · , εA(N)) > 0, εB = (εB(1), · · · ,
εB(N)) > 0, εCz

= (εCz
(1), · · · , εCz

(N)) > 0, εDz
= (εDz

(1), · · · , εDz
(N)) >

0, X > 0, and Y be the solution of the optimization problem Pu. Then the
controller (4.30) with K = Y X−1 stochastically stabilizes the class of sys-
tems we are considering and, moreover, the closed-loop system satisfies the
disturbance rejection of level

√
ν.

Example 56. To illustrate the effectiveness of the results developed in this
theorem, let us consider the two-mode system of the previous example with
the same data.

The required positive scalars are fixed to the following values:

εA(1) = εA(2) = 0.50,

εB(1) = εB(2) = εC(1) = εC(2) = εD(1) = εD(2) = 0.10.

Solving the problem Pu gives

X =
[

28.8798 −38.7485
−38.7485 55.0593

]
, Y =

[
−29.9278 38.8262
38.7400 −56.0388

]
,

which gives the following gains:

K =
[
−1.6168 −0.4327
−0.4333 −1.3227

]
.

Based on the results of this theorem, we conclude that the system is sto-
chastically stable and assures a disturbance rejection level equal to γ = 1.0043.

With this controller, the closed-loop state equation becomes

ẋ(t) = Acl(i)x(t),

with
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Acl(i) =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

[
−2.1168 0.5673
−0.1333 −3.8227

]
,when i = 1,

[
−2.6168 −0.3327
−0.2333 −3.3227

]
, otherwise.

The standard conditions for stochastic stability can be summarized as
follows: If there exists a set of symmetric and positive-definite matrices P =
(P (1), P (2)) > 0 such that the following holds for each r(t) = i ∈ S :

A�
cl(i)P (i) + P (i)Acl(i) +

N∑
j=1

λijP (j) < 0,

then the closed-loop system is stochastically stable.
Using these conditions, we get the following matrices:

P (1) =
[

6.2321 0.0531
0.0531 3.9069

]
, P (2) =

[
6.2483 −1.0435
−1.0435 5.9999

]
,

which are both symmetric and positive-definite matrices and therefore the
closed-loop system is stochastically stable under the constant gain state feed-
back controller.

4.3 Output Feedback Stabilization

As mentioned earlier in Chapter 3, state feedback stabilization is sometimes
difficult to use since complete access to the state vector is not always possible
for reasons such as lack of technology or inadequate budget. To overcome this
difficulty, we use output feedback control or observer-based output feedback
control. In this section, we focus on the design of output feedback control and
see how to compute the gains of this controller. The structure we use is given
by the following dynamics:{

ẋc(t) = KA(r(t))xc(t) + KB(r(t))y(t), xc(0) = 0,
u(t) = KC(r(t))xc(t),

(4.37)

where xc(t) is the state of the controller and KA(i), KB(i), and KC(i) are
design parameters to be determined.

For simplicity in development, we assume that in the dynamics (4.1), the
matrices Dy(r(t)) and By(r(t)) are always equals to zero for each mode.

Using (4.1) and (4.37), we get the following dynamics for the extended
system:

η̇(t) =
[

A(r(t)) B(r(t))KC(r(t))
KB(r(t))Cy(r(t)) KA(r(t))

]
η(t) +

[
Bw(r(t))

0

]
ω(t)
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= Ã(r(t))η(t) + B̃w(r(t))ω(t),

with

η(t) =
[

x(t)
xc(t)

]
,

Ã(r(t)) =
[

A(r(t)) B(r(t))KC(r(t))
KB(r(t))Cy(r(t)) KA(r(t))

]
,

B̃w(r(t)) =
[

Bw(r(t))
0

]
.

For the controlled output, we have

z(t) =
[
Cz(r(t)) Dz(r(t))KC(r(t))

]
η(t) + Bz(r(t))ω(t)

= C̃z(r(t))η(t) + B̃z(r(t))ω(t).

Based on the previous results of this chapter, the extended system will
be stochastically stable and guarantee the disturbance rejection of level
γ, if there exists a set of symmetric and positive-definite matrices P =
(P (1), · · · , P (N)) > 0 such that the following holds for each i ∈ S :

J̃(i) + C̃�
z (i)C̃z(i)

+
[
C̃�

z (i)B̃z(i) + P (i)B̃w(i)
] [

γ2I − B̃�
z (i)B̃z(i)

]−1

×
[
B̃�

z (i)C̃z(i) + B̃�
w (i)P (i)

]
< 0, (4.38)

with J̃(i) = Ã�(i)P (i) + P (i)Ã(i) +
∑N

j=1 λijP (j).
Let P (i), i ∈ S be defined by

P (i) =
[

P1(i) P2(i)
P�

2 (i) P3(i)

]
,

where P1(i) > 0, P3(i) > 0.
Let us now define the following matrices:

W (i) =
[
P1(i) − P2(i)P−1

3 (i)P�
2 (i)

]−1
,

U(i) =
[

W (i) I

W (i) 0

]
,

V (i) =
[

I 0
0 −P−1

3 (i)P�
2 (i)

]
.

Based on these definitions, we conclude that

V (i)U(i) =
[

W (i) I

−P−1
3 (i)P�

2 (i)W (i) 0

]
.
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Pre- and post-multiply the-left hand side of (4.38) by U�(i)V �(i) and
V (i)U(i), respectively, to get

U�(i)V �(i)
[
J̃(i) + C̃�

z (i)C̃z(i)
]
V (i)U(i)

+U�(i)V �(i)
[
C̃�

z (i)B̃z(i) + P (i)B̃w(i)
]

×
[
γ2I − B̃�

z (i)B̃z(i)
]−1 [

B̃�
z (i)C̃z(i) + B̃�

w (i)P (i)
]
V (i)U(i) < 0.

Now compute

U�(i)V �(i)P (i)Ã(i)V (i)U(i)

and

U�(i)V �(i)P (j)V (i)U(i)

in function of the system data. The other required terms are computed later.
In fact, for the first term we have

U�(i)V �(i)P (i)Ã(i)V (i)U(i)

=
[

W�(i) −W�(i)P2(i)P−1
3 (i)

I 0

] [
P1(i) P2(i)
P�

2 (i) P3(i)

]
×

[
A(i) B(i)KC(i)

KB(i)Cy(i) KA(i)

] [
W (i) I

−P−1
3 (i)P�

2 (i)W (i) 0

]
=

[
Z1(i) Z2(i)
Z3(i) Z4(i)

]
.

Performing the matrices multiplication we get

Z1(i) = W�(i)P1(i)A(i)W (i) − W�(i)P2(i)KB(i)Cy(i)W (i)
−W�(i)P2(i)P−1

3 (i)P�
2 (i)A(i)W (i)

−W�(i)P1(i)B(i)KC(i)P−1
3 (i)P�

2 (i)W (i)
−W�(i)P2(i)KA(i)P−1

3 (i)P�
2 (i)W (i)

+W�(i)P2(i)P−1
3 (i)P�

2 (i)B(i)KC(i)P−1
3 (i)P�

2 (i)W (i)
+W�(i)P2(i)KA(i)P−1

3 (i)P�
2 (i)W (i) + W�(i)P2(i)KB(i)Cy(i)W (i),

Z2(i) = W�(i)P1(i)A(i) − W�(i)P2(i)P−1
3 (i)P�

2 (i)A(i)
−W�(i)P2(i)KB(i)Cy(i) + W�(i)P2(i)KB(i)Cy(i),

Z3(i) = P1(i)A(i)W (i) + P2(i)KB(i)Cy(i)W (i)
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−P1(i)B(i)KC(i)P−1
3 (i)P�

2 (i)W (i)
−P2(i)KA(i)P−1

3 (i)P�
2 (i)W (i),

Z4(i) = P1(i)A(i) + P2(i)KB(i)Cy(i).

Using some basic algebraic manipulations and

W (i)
[
P1(i) − P2(i)P−1

3 (i)P�
2 (i)

]
= I,

the previous elements Z1(i), Z2(i), Z3(i), and Z4(i) become

Z1(i) = W�(i)
[
P1(i) − P2(i)P−1

3 (i)P�
2 (i)

]
A(i)W (i)

−W�(i)
[
P1(i) − P2(i)P−1

3 (i)P�
2 (i)

]
B(i)KC(i)

×P−1
3 (i)P�

2 (i)W (i)
= A(i)W (i) − B(i)KC(i)P−1

3 (i)P�
2 (i)W (i),

Z2(i) = W�(i)
[
P1(i) − P2(i)P−1

3 (i)P�
2 (i)

]
A(i) = A(i),

Z3(i) = P1(i)A(i)W (i) + P2(i)KB(i)Cy(i)W (i)
−P1(i)B(i)KC(i)P−1

3 (i)P�
2 (i)W (i)

−P2(i)KA(i)P−1
3 (i)P�

2 (i)W (i),

Z4(i) = P1(i)A(i) + P2(i)KB(i)Cy(i).

Using all these computations, we get

U�(i)V �(i)P (i)Ã(i)V (i)U(i)

=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎡⎣ A(i)W (i)
−B(i)KC(i)

×P−1
3 (i)P�

2 (i)W (i)

⎤⎦ A(i)⎡⎢⎢⎢⎢⎢⎢⎣
P1(i)A(i)W (i)

+P2(i)KB(i)Cy(i)W (i)
−P1(i)B(i)KC(i)
×P−1

3 (i)P�
2 (i)W (i)

−P2(i)KA(i)
×P−1

3 (i)P�
2 (i)W (i)

⎤⎥⎥⎥⎥⎥⎥⎦
[

P1(i)A(i)
+P2(i)KB(i)Cy(i)

]

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

Using the fact that U�(i)V �(i)Ã�(i)P (i)V (i)U(i) is the transpose of
U�(i)V �(i)P (i)Ã(i)V (i)U(i) we get
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U�(i)V �(i)Ã�(i)P (i)V (i)U(i)

=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎡⎣ W�(i)A�(i)
−W�(i)P2(i)

×P−1
3 (i)K�

C (i)B�(i)

⎤⎦
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

W�(i)A�(i)P1(i)
+W�(i)C�

y (i)
×K�

B (i)P�
2 (i)

−W�(i)P2(i)P−1
3 (i)

×K�
C (i)B�(i)P1(i)
−W�(i)P2(i)

×P−1
3 (i)K�

A (i)P�
2 (i)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
A�(i)

[
A�(i)P1(i)

+C�
y (i)K�

B (i)P�
2 (i)

]

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

For the term U�(i)V �(i)P (j)V (i)U(i), we have[
W�(i) −W�(i)P2(i)P−1

3 (i)
I 0

] [
P1(j) P2(j)
P�

2 (j) P3(j)

]
[

W (i) I

−P−1
3 (i)P�

2 (i)W (i) 0

]

=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

W�(i)P1(j)W (i)
−W�(i)P2(i)

×P−1
3 (i)P�

2 (j)W (i)
−W�(i)P2(j)

×P−1
3 (i)P�

2 (i)W (i)
+W�(i)P2(i)P−1

3 (i)
×P3(j)P−1

3 (i)P�
2 (i)W (i)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
⎡⎣ W�(i)P1(j)

−W�(i)P2(i)
×P−1

3 (i)P�
2 (j)

⎤⎦

P1(j)W (i) − P2(j)P−1
3 (i)P�

2 (i)W (i) P1(j)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

which can be rewritten as follows using the fact that W−1(j) = P1(j) −
P2(j)P−1

3 (j)P�
2 (j) and some algebraic manipulations:⎡⎢⎢⎣

⎡⎣ W�(i)W−1(j)W (i)
+W�(i)

[
P2(i)P−1

3 (i)P3(j) − P�
2 (j)

]
P−1

3 (j)
×

[
P2(i)P−1

3 (i)P3(j) − P�
2 (j)

]�
W (i)

⎤⎦ �[
P1(j) − P2(j)P−1

3 (i)P�
2 (i)

]
W (i) P1(j)

⎤⎥⎥⎦ .

For the term U�(i)V �(i)C̃�
z (i)C̃z(i)V (i)U(i), we have

U�(i)V �(i)C̃�
z (i)C̃z(i)V (i)U(i)

=
[

W�(i) −W�(i)P2(i)P−1
3 (i)

I 0

] [
C�

z (i)
K�

C (i)D�
z (i)

]
×

[
Cz(i) Dz(i)KC(i)

] [ W (i) I

−P−1
3 (i)P�

2 (i)W (i) 0

]
=

[
W�(i) −W�(i)P2(i)P−1

3 (i)
I 0

]
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C�

z (i)Cz(i) C�
z (i)Dz(i)KC(i)

K�
C (i)D�

z (i)Cz(i) K�
C (i)D�

z (i)Dz(i)KC(i)

]
[

W (i) I

−P−1
3 (i)P�

2 (i)W (i) 0

]

=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎡⎢⎢⎢⎢⎣
W�(i)C�

z (i)Cz(i)W (i)
−W�(i)C�

z (i)Dz(i)KC(i)P−1
3 (i)P�

2 (i)W (i)
−W�(i)P2(i)P−1

3 (i)K�
C (i)D�

z (i)Cz(i)W (i)
+W�(i)P2(i)P−1

3 (i)K�
C (i)D�

z (i)
×Dz(i)KC(i)P−1

3 (i)P�
2 (i)W (i)

⎤⎥⎥⎥⎥⎦
[

C�
z (i)Cz(i)W (i) − C�

z (i)Dz(i)KC(i)
×P−1

3 (i)P�
2 (i)W (i)

]
⎡⎣ W�(i)C�

z (i)Cz(i)
−W�(i)P2(i)P−1

3 (i)K�
C (i)

×D�
z (i)Cz(i)

⎤⎦
C�

z (i)Cz(i)

⎤⎥⎥⎦ .

For the term U�(i)V �(i)C̃�
z (i)Bz(i), we have

U�(i)V �(i)C̃�
z (i)Bz(i)

=
[

W�(i) −W�(i)P2(i)P−1
3 (i)

I 0

] [
C�

z (i)
K�

C (i)D�
z (i)

]
Bz(i)

=

⎡⎢⎢⎣
⎡⎣ W�(i)C�

z (i)Bz(i)
−W�(i)P2(i)P−1

3 (i)
×K�

C (i)D�
z (i)Bz(i)

⎤⎦
C�

z (i)Bz(i)

⎤⎥⎥⎦ .

For the term U�(i)V �(i)P (i)B̃w(i), we have

U�(i)V �(i)P (i)B̃w(i)

=
[

W�(i) −W�(i)P2(i)P−1
3 (i)

I 0

] [
P1(i) P2(i)
P�

2 (i) P3(i)

] [
Bw(i)

0

]

=

⎡⎢⎢⎣
⎡⎣ W�(i)P1(i)Bw(i)
−W�(i)P2(i)P−1

3 (i)
×P�

2 (i)Bw(i)

⎤⎦
P1(i)Bw(i)

⎤⎥⎥⎦
=

[
Bw(i)

P1(i)Bw(i)

]
.

Using all the previous computations, the stability condition for the closed-
loop system becomes[

M̂1(i) M2(i)
M�

2 (i) M3(i)

]
+

[
N1(i)
N2(i)

]
N−1(i)

[
N�

1 (i)
N�

2 (i)

]
< 0,
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that is,[
M̂1(i) + N1(i)N−1(i)N�

1 (i) M2(i) + N1(i)N−1(i)N�
2 (i)

M�
2 (i) + N2(i)N−1(i)N�

1 (i) M3(i) + N2(i)N−1(i)N�
2 (i)

]
< 0,

with

M̂1(i) = M1(i) + W�(i)C�
z (i)Cz(i)W (i)

+W�(i)P2(i)P−1
3 (i)K�

C (i)D�
z (i)Dz(i)

×KC(i)P−1
3 (i)P�

2 (i)W (i)

+
N∑

j=1

λijW
�(i)

[
P2(i)P−1

3 (i)P3(j) − P�
2 (j)

]
P−1

3 (j)

×
[
P2(i)P−1

3 (i)P3(j) − P�
2 (j)

]�
W (i),

M1(i) = A(i)W (i) + W�(i)A�(i)
−B(i)KC(i)P−1

3 (i)P�
2 (i)W (i)

−W�(i)P2(i)P−1
3 (i)K�

C (i)B�(i)

+
N∑

j=1

λijW
�(i)W−1(j)W (i)

−W�(i)C�
z (i)Dz(i)KC(i)P−1

3 (i)P�
2 (i)W (i)

−W�(i)P2(i)P−1
3 (i)K�

C (i)D�
z (i)Cz(i)W (i),

M2(i) = A(i) + W�(i)A�(i)P1(i) + W�(i)C�
y (i)K�

B (i)P�
2 (i)

−W�(i)P2(i)P−1
3 (i)K�

C (i)B�(i)P1(i)
−W�(i)P2(i)P−1

3 (i)K�
A (i)P�

2 (i)

+
N∑

j=1

λijW
�(i)

[
P1(j) − P2(j)P−1

3 (i)P�
2 (i)

]�
+W�(i)C�

z (i)Cz(i)
−W�(i)P2(i)P−1

3 (i)K�
C (i)D�

z (i)Cz(i),
M3(i) = P1(i)A(i) + P2(i)KB(i)Cy(i) + A�(i)P1(i)

+C�
y (i)K�

B (i)P�
2 (i) +

N∑
j=1

λijP1(j) + C�
z (i)Cz(i),

N (i) = γ2I − B�
z (i)Bz(i),

N1(i) = W�(i)C�
z (i)Bz(i)

−W�(i)P2(i)P−1
3 (i)K�

C (i)D�
z (i)Bz(i) + Bw(i),

N2(i) = C�
z (i)Bz(i) + P1(i)Bw(i).

Since
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N∑
j=1

λijW
�(i)

[
P2(i)P−1

3 (i)P3(j) − P�
2 (j)

]
P−1

3 (j)

×
[
P2(i)P−1

3 (i)P3(j) − P�
2 (j)

]�
W (i)

+W�(i)P2(i)P−1
3 (i)K�

C (i)D�
z (i)Dz(i)KC(i)P−1

3 (i)P�
2 (i)W (i) ≥ 0,

we get the following equivalent condition:[
M1(i) + N1(i)N−1(i)N�

1 (i) M2(i) + N1(i)N−1(i)N�
2 (i)

M�
2 (i) + N2(i)N−1(i)N�

1 (i) M3(i) + N2(i)N−1(i)N�
2 (i)

]
< 0.

Letting

P (i) =
[

X(i) Y −1(i) − X(i)
Y −1(i) − X(i) X(i) − Y −1(i)

]
,

that is,

P1(i) = X(i),
P2(i) = Y −1(i) − X(i),
P3(i) = X(i) − Y −1(i),

implies W (i) =
[
P1(i) − P2(i)P−1

3 (i)P�
2 (i)

]−1
= Y (i) and P−1

3 (i)P�
2 (i) = −I.

If we define KB(i) and KC(i) by

KB(i) = P2(i)KB(i) =
[
Y −1(i) − X(i)

]
KB(i),

KC(i) = −KC(i)P−1
3 (i)P�

2 (i)W (i) = KC(i)Y (i),

and we use all the previous development, we get[
M�

1(i) + N1(i)N−1(i)N�
1 (i) M2(i) + N1(i)N−1(i)N�

2 (i)
M�

2 (i) + N2(i)N−1(i)N�
1 (i) M3(i) + N2(i)N−1(i)N�

2 (i)

]
< 0,

with

M�
1(i) = A(i)Y (i) + Y �(i)A�(i) + B(i)KC(i) + K�

C (i)B�(i)

+
N∑

j=1

λijY
�(i)Y −1(j)Y (i) + Y �(i)C�

z (i)Dz(i)KC(i)

+K�
C (i)D�

z (i)Cz(i)Y (i) + Y �(i)C�
z (i)Cz(i)Y (i),

M2(i) = A(i) + Y �(i)A�(i)X(i) + Y �(i)C�
y (i)K�

B(i)

+K�
C (i)B�(i)X(i) − Y �(i)K�

A (i)
[
X(i) − Y −1(i)

]�
+

N∑
j=1

λijY
�(i)Y −1(j) + Y �(i)C�

z (i)Cz(i) + K�
C (i)D�

z (i)Cz(i),



4.3 Output Feedback Stabilization 233

M3(i) = X(i)A(i) + KB(i)Cy(i) + A�(i)X(i) + C�
z (i)Cz(i)

+C�
y (i)K�

B(i) +
N∑

j=1

λijX(j),

N (i) = γ2I − B�
z (i)Bz(i),

N1(i) = Y �(i)C�
z (i)Bz(i) + K�

C (i)D�
z (i)Bz(i) + Bw(i),

N2(i) = C�
z (i)Bz(i) + X(i)Bw(i).

Using the following expressions for the controller parameters:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

KA(i) =
[
X(i) − Y −1(i)

]−1
[
A�(i) + X(i)A(i)Y (i)

+X(i)B(i)KC(i) + KB(i)Cy(i)Y (i)
+C�

z (i)Cz(i)Y (i) + C�
z (i)Dz(i)KC(i)

+N2(i)N−1(i)N�
1 (i)

+
∑N

j=1 λijY
−1(j)Y (i)

]
Y −1(i),

KB(i) =
[
Y −1(i) − X(i)

]−1 KB(i),
KC(i) = KC(i)Y −1(i),

we have M2(i) = 0, which implies that the stability condition is equivalent
to the following conditions:

M1(i) + Y �(i)C�
z (i)Cz(i)Y (i) + N1(i)N−1(i)N�

1 (i) < 0,

M3(i) + N2(i)N−1(i)N�
2 (i) < 0,

which gives[
A(i) + K�

C (i)D�
z (i)Cz(i)

]
Y (i) + B(i)KC(i) + Y �(i)C�

z (i)Cz(i)Y (i)

+Y �(i)
[
A�(i) + C�

z (i)Dz(i)KC(i)
]
+ K�

C(i)B�(i)

+
N∑

j=1

λijY
�(i)Y −1(j)Y (i) + N1(i)N−1(i)N�

1 (i) < 0,

and

X(i)A(i) + KB(i)Cy(i) + A�(i)X(i) + C�
y (i)K�

B(i)

+
N∑

j=1

λijX(j) + C�
z (i)Cz(i) + N2(i)N−1(i)N�

2 (i) < 0.

Notice that

N∑
j=1

λijY
�(i)Y −1(j)Y (i) = λiiY (i) + Si(Y )Y−1

i (Y )S�
i (Y ),
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with Si(Y ) and Yi(Y ) as defined before.
Using this, the previous stability conditions become⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎡⎢⎢⎢⎢⎣
K�

C (i)D�
z (i)Cz(i)Y (i)

+Y �(i)C�
z (i)Dz(i)KC(i)

+A(i)Y (i) + Y �(i)A�(i)
+B(i)KC(i)

+K�
C (i)B�(i) + λiiY (i)

⎤⎥⎥⎥⎥⎦ N1(i) Y �(i)C�
z (i) Si(Y )

N�
1 (i) −N (i) 0 0

Cz(i)Y (i) 0 −I 0
S�

i (Y ) 0 0 −Yi(Y )

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
< 0,

⎡⎢⎢⎣
⎡⎣ X(i)A(i) + KB(i)Cy(i)

+A�(i)X(i) + C�
z (i)Cz(i)

+C�
y (i)K�

B(i) +
∑N

j=1 λijX(j)

⎤⎦ N2(i)

N�
2 (i) −N (i)

⎤⎥⎥⎦ < 0.

Notice that if⎡⎣K�
C (i)D�

z (i)Cz(i)Y (i) 0 0
0 0 0
0 0 0

⎤⎦ +

⎡⎣Y �(i)C�
z (i)Dz(i)KC(i) 0 0

0 0 0
0 0 0

⎤⎦
≤

⎡⎣K�
C(i)D�

z (i)Dz(i)KC(i) 0 0
0 0 0
0 0 0

⎤⎦ +

⎡⎣Y �(i)C�
z (i)Cz(i)Y (i) 0 0

0 0 0
0 0 0

⎤⎦ ,

we get ⎡⎢⎢⎢⎢⎢⎢⎣
JX(i) Y �(i)C�

z (i) K�
C(i)D�

z (i) Y �(i)C�
z (i)

Cz(i)Y (i) −I 0 0
Dz(i)KC(i) 0 −I 0
Cz(i)Y (i) 0 0 −I

N�
1 (i) 0 0 0

Si(Y ) 0 0 0

N1(i) Si(Y )
0 0
0 0
0 0

−N (i) 0
0 −Yi(Y )

⎤⎥⎥⎥⎥⎥⎥⎦ < 0,

⎡⎢⎢⎣
⎡⎣ X(i)A(i) + KB(i)Cy(i)

+A�(i)X(i) + C�
z (i)Cz(i)

+C�
y (i)K�

B(i) +
∑N

j=1 λijX(j)

⎤⎦ N2(i)

N�
2 (i) −N (i)

⎤⎥⎥⎦ < 0,

with JX(i) = A(i)Y (i) + Y �(i)A�(i) + B(i)KC(i) + K�
C (i)B�(i) + λiiY (i).
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Finally notice that

U�(i)V �(i)P (i)V (i)U(i) =
[

Y (i) I

I X(i)

]
.

The results of the previous development are summarized by the following
theorem.

Theorem 54. System (4.1) is stable if and only if for every i ∈ S the
following LMIs are feasible for some symmetric and positive-definite ma-
trices X = (X(1), · · · , X(N)) > 0, and Y = (Y (1), · · · , Y (N)) > 0,
and matrices KA = (KA(1), · · · ,KA(N)), KB = (KB(1), · · · ,KB(N)), and
KC = (KC(1), · · · ,KC(N)):⎡⎢⎢⎢⎢⎢⎢⎣

JX(i) Y �(i)C�
z (i) K�

C (i)D�
z (i) Y �(i)C�

z (i)
Cz(i)Y (i) −I 0 0

Dz(i)KC(i) 0 −I 0
Cz(i)Y (i) 0 0 −I

N�
1 (i) 0 0 0

Si(Y ) 0 0 0

N1(i) Si(Y )
0 0
0 0
0 0

−N (i) 0
0 −Yi(Y )

⎤⎥⎥⎥⎥⎥⎥⎦ < 0, (4.39)

⎡⎢⎢⎣
⎡⎣ X(i)A(i) + KB(i)Cy(i)

+A�(i)X(i) + C�
z (i)Cz(i)

+C�
y (i)K�

B(i) +
∑N

j=1 λijX(j)

⎤⎦ N2(i)

N�
2 (i) −N (i)

⎤⎥⎥⎦ < 0, (4.40)

[
Y (i) I

I X(i)

]
> 0, (4.41)

with

JX(i) = A(i)Y (i) + Y �(i)A�(i) + B(i)KC(i) + K�
C (i)B�(i) + λiiY (i)

Si(Y ) =
[√

λi1Y (i), · · · ,
√

λii−1Y (i),
√

λii+1Y (i),

· · · ,
√

λiNY (i)
]
,

Yi(Y ) = diag [Y (1), · · · , Y (i − 1), Y (i + 1), · · · , Y (N)] .

Furthermore the dynamic output feedback controller is given by
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KA(i) =
[
X(i) − Y −1(i)

]−1
[
A�(i) + X(i)A(i)Y (i)

+X(i)B(i)KC(i) + KB(i)Cy(i)Y (i)
+N2(i)N−1(i)N�

1 (i)

+
∑N

j=1 λijY
−1(j)Y (i)

]
Y −1(i),

KB(i) =
[
Y −1(i) − X(i)

]−1 KB(i),
KC(i) = KC(i)Y −1(i).

(4.42)

Example 57. To illustrate the results of this theorem, let us consider the two-
mode system of Example 45 with the following extra data:

• mode #1:

A(1) =
[
−0.5 1.0
0.3 −2.5

]
, B(1) =

[
1.0 0.0
0.0 1.0

]
,

Bw(1) =
[

1.0 0.0
0.0 1.0

]
, Cz(1) =

[
1.0 0.0
0.0 1.0

]
,

Bz(1) =
[

1.0 0.0
0.0 1.0

]
, Dz(1) =

[
1.0 0.0
0.0 1.0

]
,

Cy(1) =
[

1.0 0.0
0.0 1.0

]
,

• mode #2:

A(2) =
[
−1.0 0.1
0.2 −2.0

]
, B(2) =

[
1.0 0.0
0.0 1.0

]
,

Bw(2) =
[

1.0 0.0
0.0 1.0

]
, Cz(2) =

[
1.0 0.0
0.0 1.0

]
,

Bz(2) =
[

1.0 0.0
0.0 1.0

]
, Dz(2) =

[
1.0 0.0
0.0 1.0

]
,

Cy(2) =
[

1.0 0.0
0.0 1.0

]
.

Solving LMIs (4.39)–(4.41), we get

X(1) =
[

131.7769 0.4868
0.4868 131.1781

]
, X(2) =

[
131.7924 0.3609
0.3609 131.1062

]
,

Y (1) =
[

0.4843 −1.1468
−1.1468 2.7880

]
, Y (2) =

[
0.2461 −0.6813
−0.6813 2.0074

]
,

KB(1) = 103 ·
[
−8.4260 −0.1195
−0.1195 −8.1164

]
,

KB(2) = 103 ·
[
−8.3574 −0.0445
−0.0445 −8.1763

]
,
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KC(1) =
[
−0.5271 −1.1465
−1.1468 1.7772

]
, KC(2) =

[
−0.7652 −0.6807
−0.6808 0.9941

]
.

The controller gains are given by

KA(1) = 104 ·
[
−1.2755 −0.3518
−0.4526 −0.5948

]
, KB(1) =

[
192.1449 52.9780
53.3990 83.5483

]
,

KC(1) =
[
−78.9255 −32.8749
−32.8544 −12.8762

]
, KA(2) = 103 ·

[
−9.2179 −1.6985
−2.2843 −4.9327

]
,

KB(2) =
[

138.2775 25.4226
25.6205 71.1886

]
, KC(2) = 104 ·

[
−66.9426 −23.0582
−23.0770 −7.3367

]
.

Based on the results of this theorem, we conclude that the system is sto-
chastically stable under the designed controller and guarantees the disturbance
rejection with a level equal to γ = 1.7354.

Let us now consider the case when the system is subject to norm-bounded
uncertainties and see how to design an output feedback controller that ro-
bustly stochastically stabilizes the system and simultaneously guarantees the
disturbance rejection of level γ. Let us plug the controller expression in the
system dynamics and combining the two dynamics, we get the following:[

ẋ(t)
ẋc(t)

]
=

[
A(r(t), t) B(r(t), t)KC(r(t))

KB(r(t))Cy(r(t), t) KA(r(t))

] [
x(t)
xc(t)

]
+

[
Bw(r(t))

0

]
w(t)

= Ã(r(t), t)η(t) + B̃w(r(t))ω(t),

with

η(t) =
[

x(t)
xc(t)

]
,

Ã(r(t), t) =
[

A(r(t), t) B(r(t), t)KC(r(t))
KB(r(t))Cy(r(t), t) KA(r(t))

]
,

B̃w(r(t)) =
[

Bw(r(t))
0

]
.

For the controlled output, we have

z(t) = Cz(r(t), t)x(t) + Dz(r(t), t)KC(r(t))xc(t) + Bz(r(t))ω(t)
=

[
Cz(r(t), t) Dz(r(t), t)KC(r(t))

]
η(t) + Bz(r(t))ω(t)

= C̃z(r(t), t)η(t) + B̃z(r(t))ω(t),

with

C̃z(r(t), t) =
[
Cz(r(t), t) Dz(r(t), t)KC(r(t))

]
,
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B̃z(r(t)) = Bz(r(t)).

Notice that the matrices Ã(r(t), t) and C̃z(r(t), t) can be rewritten as fol-
lows:

Ã(r(t), t) = Ã(r(t)) + Δ̃A(r(t), t) + Δ̃B(r(t), t) + Δ̃Cy(r(t), t),

C̃z(r(t), t) = C̃z(r(t)) + Δ̃CCz
(r(t), t) + Δ̃DDz

(r(t), t),

with

Ã(r(t)) =
[

A(r(t)) B(r(t))KC(r(t))
KB(r(t))Cy(r(t)) KA(r(t))

]
,

C̃z(r(t)) =
[
Cz(r(t)) Dz(r(t))KC(r(t))

]
,

Δ̃A(r(t), t) =
[

DA(r(t))FA(r(t), t)EA(r(t)) 0
0 0

]
=

[
DA(r(t)) 0

0 0

] [
FA(r(t), t) 0

0 0

] [
EA(r(t)) 0

0 0

]
= D̃A(r(t))F̃A(r(t), t)ẼA(r(t)),

Δ̃B(r(t), t) =
[

0 DB(r(t))FB(r(t), t)EB(r(t))KC(r(t))
0 0

]
=

[
0 DB(r(t))
0 0

] [
0 0
0 FB(r(t), t)

] [
0 0
0 EB(r(t))KC(r(t))

]
= D̃B(r(t))F̃B(r(t), t)ẼB(r(t)),

Δ̃Cy(r(t), t) =
[

0 0
KB(r(t))DCy

(r(t))FCy
(r(t), t)ECy

(r(t)) 0

]
=

[
0 0
0 KB(r(t))DCy

(r(t))

] [
0 0
0 FCy

(r(t), t)

] [
0 0
0 ECy

(r(t))

]
= D̃Cy

(r(t))F̃Cy
(r(t), t)ẼCy

(r(t)),

Δ̃CCz
(r(t), t) =

[
DCz

(r(t))FCz
(r(t))ECz

(r(t)) 0
]

=
[
DCz

(r(t)) 0
] [FCz

(r(t), t) 0
0 0

] [
ECz

(r(t)) 0
0 0

]
= D̃Cz

(r(t))F̃Cz
(r(t), t)ẼCz

(r(t)),

Δ̃DDz
(r(t), t) =

[
0 DDz

(r(t))FDz
(r(t))EDz

(r(t))KC(r(t))
]

=
[
0 DDz

(r(t))
] [0 0

0 FDz
(r(t), t)

] [
0 0
0 EDz

(r(t))KC(r(t))

]
= D̃Dz

(r(t))F̃Dz
(r(t), t)ẼDz

(r(t)).

Using the previous results on stochastic stability and disturbance rejection,
the closed-loop system will be robustly stochastically stable and guarantee the
disturbance rejection of level γ if the following holds:
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z (i, t)

B̃�
w (i)P (i) −γ2I B̃�

z (i)
C̃z(i, t) B̃z(i) −I

⎤⎦ < 0,

with J̃(i, t) = Ã�(i, t)P (i) + P (i)Ã(i, t) +
∑N

j=1 λijP (j).
Using the expression of Ã(i, t) and C̃z(i, t), we rewrite this inequality as

follows: ⎡⎣ J̃(i) P (i)B̃w(i) C̃�
z (i)

B̃�
w (i)P (i) −γ2I B̃�

z (i)
C̃z(i) B̃z(i) −I

⎤⎦
+

⎡⎣P (i)D̃A(i)F̃A(i, t)ẼA(i) + Ẽ�
A (i)F̃�

A (i, t)D̃�
A(i)P (i) 0 0

0 0 0
0 0 0

⎤⎦
+

⎡⎣P (i)D̃B(i)F̃B(i, t)ẼB(i) + Ẽ�
B (i)F̃�

B (i, t)D̃�
B(i)P (i) 0 0

0 0 0
0 0 0

⎤⎦

+

⎡⎢⎢⎢⎣
[

P (i)D̃Cy
(i)F̃Cy

(i, t)ẼCy
(i)

+Ẽ�
Cy

(i)F̃�
Cy

(i, t)D̃�
Cy

(i)P (i)

]
0 0

0 0 0
0 0 0

⎤⎥⎥⎥⎦
+

⎡⎣ 0 0 Ẽ�
Cz

(i)F̃�
Cz

(i, t)D̃�
Cz

(i)
0 0 0

D̃Cz
(i)F̃Cz

(i, t)ẼCz
(i) 0 0

⎤⎦
+

⎡⎣ 0 0 Ẽ�
Dz

(i)F̃�
Dz

(i, t)D̃�
Dz

(i)
0 0 0

D̃Dz
(i)F̃Dz

(i, t)ẼDz
(i) 0 0

⎤⎦ < 0,

with J̃(i) = Ã�(i)P (i) + P (i)Ã(i) +
∑N

j=1 λijP (j).
Notice that if⎡⎣P (i)D̃A(i)F̃A(i, t)ẼA(i) + Ẽ�

A (i)F̃�
A (i, t)D̃�

A(i)P (i) 0 0
0 0 0
0 0 0

⎤⎦
=

⎡⎣P (i)D̃A(i) 0 0
0 0 0
0 0 0

⎤⎦⎡⎣ F̃A(i, t) 0 0
0 0 0
0 0 0

⎤⎦⎡⎣ ẼA(i) 0 0
0 0 0
0 0 0

⎤⎦
+

⎡⎣ Ẽ�
A (i, t) 0 0

0 0 0
0 0 0

⎤⎦⎡⎣ F̃�
A (i) 0 0
0 0 0
0 0 0

⎤⎦⎡⎣ D̃�
A(i)P (i) 0 0

0 0 0
0 0 0

⎤⎦
≤ ε−1

A (i)

⎡⎣P (i)D̃A(i)D̃�
A(i)P (i) 0 0

0 0 0
0 0 0

⎤⎦
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+εA(i)

⎡⎣ Ẽ�
A (i)ẼA(i) 0 0

0 0 0
0 0 0

⎤⎦
≤

⎡⎣ ε−1
A (i)P (i)D̃A(i)D̃�

A(i)P (i) + εA(i)Ẽ�
A (i)ẼA(i) 0 0

0 0 0
0 0 0

⎤⎦ ,

⎡⎣P (i)D̃B(i)F̃B(i, t)ẼB(i) + Ẽ�
B (i)F̃�

B (i, t)D̃�
B(i)P (i) 0 0

0 0 0
0 0 0

⎤⎦
=

⎡⎣P (i)D̃B(i) 0 0
0 0 0
0 0 0

⎤⎦⎡⎣ F̃B(i, t) 0 0
0 0 0
0 0 0

⎤⎦⎡⎣ ẼB(i) 0 0
0 0 0
0 0 0

⎤⎦
+

⎡⎣ Ẽ�
B (i) 0 0
0 0 0
0 0 0

⎤⎦⎡⎣ F̃�
B (i, t) 0 0

0 0 0
0 0 0

⎤⎦⎡⎣ D̃�
B(i)P (i) 0 0

0 0 0
0 0 0

⎤⎦
≤ ε−1

B (i)

⎡⎣P (i)D̃B(i)D̃�
B(i)P (i) 0 0

0 0 0
0 0 0

⎤⎦
+εB(i)

⎡⎣ Ẽ�
B (i)ẼB(i) 0 0

0 0 0
0 0 0

⎤⎦
≤

⎡⎣ ε−1
B (i)P (i)D̃B(i)D̃�

B(i)P (i) + εB(i)Ẽ�
B (i)ẼB(i) 0 0

0 0 0
0 0 0

⎤⎦ ,

⎡⎣P (i)D̃Cy
(i)F̃Cy

(i, t)ẼCy
(i) + Ẽ�

Cy
(i)F̃�

Cy
(i, t)D̃�

Cy
(i)P (i) 0 0

0 0 0
0 0 0

⎤⎦
=

⎡⎣P (i)D̃Cy
(i) 0 0

0 0 0
0 0 0

⎤⎦⎡⎣ F̃Cy
(i, t) 0 0
0 0 0
0 0 0

⎤⎦⎡⎣ ẼCy
(i) 0 0

0 0 0
0 0 0

⎤⎦
+

⎡⎣ Ẽ�
Cy

(i, t) 0 0
0 0 0
0 0 0

⎤⎦⎡⎣ F̃�
Cy

(i) 0 0
0 0 0
0 0 0

⎤⎦⎡⎣ D̃�
Cy

(i)P (i) 0 0
0 0 0
0 0 0

⎤⎦
≤ ε−1

Cy
(i)

⎡⎣P (i)D̃Cy
(i)D̃�

Cy
(i)P (i) 0 0

0 0 0
0 0 0

⎤⎦
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+εCy
(i)

⎡⎣ Ẽ�
Cy

(i)ẼCy
(i) 0 0

0 0 0
0 0 0

⎤⎦
≤

⎡⎣ ε−1
Cy

(i)P (i)D̃Cy
(i)D̃�

Cy
(i)P (i) + εCy

(i)Ẽ�
Cy

(i)ẼCy
(i) 0 0

0 0 0
0 0 0

⎤⎦ ,

⎡⎣ 0 0 Ẽ�
Cz

(i)F̃�
Cz

(i, t)D̃�
Cz

(i)
0 0 0

D̃Cz
(i)F̃Cz

(i, t)ẼCz
(i) 0 0

⎤⎦
=

⎡⎣0 0 Ẽ�
Cz

(i)
0 0 0
0 0 0

⎤⎦⎡⎣0 0 0
0 0 0
0 0 F̃�

Cz
(i, t)

⎤⎦⎡⎣0 0 0
0 0 0
0 0 D̃�

Cz
(i)

⎤⎦
+

⎡⎣ 0 0 0
0 0 0
0 0 D̃Cz

(i)

⎤⎦⎡⎣0 0 0
0 0 0
0 0 F̃Cz

(i, t)

⎤⎦⎡⎣ 0 0 0
0 0 0

ẼCz
(i) 0 0

⎤⎦
= ε−1

Cz
(i)

⎡⎣ Ẽ�
Cz

(i)ẼCz
(i) 0 0

0 0 0
0 0 0

⎤⎦ + εCz
(i)

⎡⎣ 0 0 0
0 0 0
0 0 D̃Cz

(i)D̃�
Cz

(i)

⎤⎦
=

⎡⎣ ε−1
Cz

(i)Ẽ�
Cz

(i)ẼCz
(i) 0 0

0 0 0
0 0 εCz

(i)D̃Cz
(i)D̃�

Cz
(i)

⎤⎦ ,

and ⎡⎣ 0 0 Ẽ�
Dz

(i)F̃�
Dz

(i, t)D̃�
Dz

(i)
0 0 0

D̃Dz
(i)F̃Dz

(i, t)ẼDz
(i) 0 0

⎤⎦
=

⎡⎣0 0 Ẽ�
Dz

(i)
0 0 0
0 0 0

⎤⎦⎡⎣0 0 0
0 0 0
0 0 F̃�

Dz
(i, t)

⎤⎦⎡⎣0 0 0
0 0 0
0 0 D̃�

Dz
(i)

⎤⎦
+

⎡⎣ 0 0 0
0 0 0
0 0 D̃Dz

(i)

⎤⎦⎡⎣0 0 0
0 0 0
0 0 F̃Dz

(i, t)

⎤⎦⎡⎣ 0 0 0
0 0 0

ẼDz
(i) 0 0

⎤⎦
= ε−1

Dz
(i)

⎡⎣ Ẽ�
Dz

(i)ẼDz
(i) 0 0

0 0 0
0 0 0

⎤⎦ + εDz
(i)

⎡⎣ 0 0 0
0 0 0
0 0 D̃Dz

(i)D̃�
Dz

(i)

⎤⎦
=

⎡⎣ ε−1
Dz

(i)Ẽ�
Dz

(i)ẼDz
(i) 0 0

0 0 0
0 0 εDz

(i)D̃Dz
(i)D̃�

Dz
(i)

⎤⎦ ,
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the previous conditions for robust stochastic stability will be satisfied if the
following holds for each i ∈ S :⎡⎣ Ã�(i)P (i) + P (i)Ã(i) +

∑N
j=1 λijP (j) P (i)B̃w(i) C̃�

z (i)
B̃�

w (i)P (i) −γ2I B̃�
z (i)

C̃z(i) B̃z(i) −I

⎤⎦
+

⎡⎣ ε−1
A (i)P (i)D̃A(i)D̃�

A(i)P (i) + εA(i)Ẽ�
A (i)ẼA(i) 0 0

0 0 0
0 0 0

⎤⎦
+

⎡⎣ ε−1
B (i)P (i)D̃B(i)D̃�

B(i)P (i) + εB(i)Ẽ�
B (i)ẼB(i) 0 0

0 0 0
0 0 0

⎤⎦
+

⎡⎣ ε−1
Cy

(i)P (i)D̃Cy
(i)D̃�

Cy
(i)P (i) + εCy

(i)Ẽ�
Cy

(i)ẼCy
(i) 0 0

0 0 0
0 0 0

⎤⎦
+

⎡⎣ ε−1
Cz

(i)Ẽ�
Cz

(i)ẼCz
(i) 0 0

0 0 0
0 0 εCz

(i)D̃Cz
(i)D̃�

Cz
(i)

⎤⎦
+

⎡⎣ ε−1
Dz

(i)Ẽ�
Dz

(i)ẼDz
(i) 0 0

0 0 0
0 0 εDz

(i)D̃Dz
(i)D̃�

Dz
(i)

⎤⎦ < 0,

which can be rewritten as follows:⎡⎢⎢⎢⎢⎣
J̃(i) P (i)B̃w(i) C̃�

z (i)
B̃�

w (i)P (i) −γ2I B̃�
z (i)

C̃z(i) B̃z(i)

⎡⎣ −I

+εCz
(i)D̃Cz

(i)D̃�
Cz

(i)
+εDz

(i)D̃Dz
(i)D̃�

Dz
(i)

⎤⎦
⎤⎥⎥⎥⎥⎦ < 0,

where

J̃(i) = Ã�(i)P (i) + P (i)Ã(i) +
N∑

j=1

λijP (j)

+ ε−1
A (i)P (i)D̃A(i)D̃�

A(i)P (i) + εA(i)Ẽ�
A (i)ẼA(i)

+ ε−1
B (i)P (i)D̃B(i)D̃�

B(i)P (i) + εB(i)Ẽ�
B (i)ẼB(i)

+ ε−1
Cy

(i)P (i)D̃Cy
(i)D̃�

Cy
(i)P (i) + εCy

(i)Ẽ�
Cy

(i)ẼCy
(i)

+ ε−1
Cz

(i)Ẽ�
Cz

(i)ẼCz
(i) + ε−1

Dz
(i)Ẽ�

Dz
(i)ẼDz

(i).

If we define Υ (i) and Ψ(i) as follows:

Υ (i) =

⎡⎣ εA(i)I 0 0
0 εB(i)I 0
0 0 εCy

(i)I

⎤⎦ ,
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Ψ(i) =
[

εCz
(i)I 0
0 εDz

(i)I

]
,

J̃(i) can be rewritten as

J̃(i) = Ã�(i)P (i) + P (i)Ã(i) +
N∑

j=1

λijP (j)

+ P (i)
[
D̃A(i) D̃B(i) D̃Cy

(i)
]
Υ−1(i)

⎡⎣ D̃�
A(i)

D̃�
B(i)

D̃�
Cy

(i)

⎤⎦P (i)

+
[
Ẽ�

A (i) Ẽ�
B (i) Ẽ�

Cy
(i)

]
Υ (i)

⎡⎣ ẼA(i)
ẼB(i)
ẼCy

(i)

⎤⎦
+

[
Ẽ�

Cz
(i) Ẽ�

Dz
(i)

]
Ψ−1(i)

[
ẼCz

(i)
ẼDz

(i)

]
.

If we define R(i) as follows:

R(i) = I − εCz
(i)D̃Cz

(i)D̃�
Cz

(i) − εDz
(i)D̃Dz

(i)D̃�
Dz

(i)

= I − εCz
(i)DCz

(i)D�
Cz

(i) − εDz
(i)DDz

(i)D�
Dz

(i),

which should be positive-definite, the previous LMI becomes[
J̃(i) P (i)B̃w(i)

B̃�
w (i)P (i) −γ2I

]
+

[
C̃�

z (i)
B̃�

z (i

]
R−1(i)

[
C̃z(i) B̃z(i)

]
< 0,

which gives in turn the following:⎡⎢⎢⎣ J̃(i) + C̃�
z (i)R−1(i)C̃z(i)

[
P (i)B̃w(i)

+C̃�
z (i)R−1(i)B̃z(i)

]
[

B̃�
w (i)P (i)

+B̃�
z (i)R−1(i)C̃z(i)

]
−γ2I + B̃�

z (i)R−1(i)B̃z(i)

⎤⎥⎥⎦ < 0.

Using the Schur complement again, we get

J̃(i) + C̃�
z (i)R−1(i)C̃z(i) +

[
P (i)B̃w(i) + C̃�

z (i)R−1(i)B̃z(i)
]

×
[
γ2I − B̃�

z (i)R−1(i)B̃z(i)
]−1 [

B̃�
w (i)P (i) + B̃�

z (i)R−1(i)C̃z(i)
]

< 0,

which gives the following after using the expression of J̃(i):

Ã�(i)P (i) + P (i)Ã(i) +
N∑

j=1

λijP (j)
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+P (i)
[
D̃A(i) D̃B(i) D̃Cy

(i)
]
Υ−1(i)

⎡⎣ D̃�
A(i)

D̃�
B(i)

D̃�
Cy

(i)

⎤⎦P (i)

+
[
Ẽ�

A (i) Ẽ�
B (i) Ẽ�

Cy
(i)

]
Υ (i)

⎡⎣ ẼA(i)
ẼB(i)
ẼCy

(i)

⎤⎦
+

[
Ẽ�

Cz
(i) Ẽ�

Dz
(i)

]
Ψ−1(i)

[
ẼCz

(i)
ẼDz

(i)

]
+C̃�

z (i)R−1(i)C̃z(i) +
[
P (i)B̃w(i) + C̃�

z (i)R−1(i)B̃z(i)
]

×
[
γ2I − B̃�

z (i)R−1(i)B̃z(i)
]−1

×
[
B̃�

w (i)P (i) + B̃�
z (i)R−1(i)C̃z(i)

]
< 0. (4.43)

Let P (i) have the following form:

P (i) =
[

P1(i) P2(i)
P�

2 (i) P3(i)

]
. (4.44)

As before, we pre- and post-multiply the right-hand side of this inequality
by, respectively, U�(i)V �(i) and V (i)U(i) to make it useful.

Notice that some of the terms have already been computed and we do not
need to recompute them. For the other terms we have

U�(i)V �(i)P (i)
[
D̃A(i) D̃B(i) D̃Cy

(i)
]

=

⎡⎢⎢⎣
⎡⎣ W�(i)P1(i)

−W�(i)P2(i)
×P−1

3 (i)P�
2 (i)

⎤⎦ ⎡⎣ W�(i)P2(i)
−W�(i)P2(i)
×P−1

3 (i)P3(i)

⎤⎦
P1(i) P2(i)

⎤⎥⎥⎦
×

[
D̃A(i) D̃B(i) D̃Cy (i)

]
=

[
I 0

P1(i) P2(i)

] [
DA(i) 0 0 DB(i) 0 0

0 0 0 0 0 KB(i)DCy
(i)

]
=

[
DA(i) 0 0 DB(i) 0 0

P1(i)DA(i) 0 0 P1(i)DB(i) 0 P2(i)KB(i)DCy
(i)

]
,

U�(i)V �(i)
[
Ẽ�

A (i) Ẽ�
B (i) Ẽ�

Cy
(i)

]
=

[
W�(i) −W�(i)P2(i)P−1

3 (i)
I 0

] [
E�

A (i) 0 0 0
0 0 0 K�

C (i)E�
B (i)

0 0
0 E�

Cy
(i)

]
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=
[

W�(i)E�
A (i) 0 0 −W�(i)P2(i)P−1

3 (i)K�
C (i)E�

B (i)
E�

A (i) 0 0 0

0 −W�(i)P2(i)P−1
3 (i)E�

Cy
(i)

0 0

]
,

U�(i)V �(i)
[
Ẽ�

Cz
(i) Ẽ�

Dz
(i)

]
=

[
W�(i) −W�(i)P2(i)P−1

3 (i)
I 0

] [
E�

Cz
(i) 0

0 0

0 0
0 K�

C (i)E�
Dz

(i)

]

=

⎡⎣W�(i)E�
Cz

(i) 0 0
[
−W�(i)P2(i)P−1

3 (i)
×K�

C (i)E�
Dz

(i)

]
E�

Cz
(i) 0 0 0

⎤⎦ ,

U�(i)V �(i)C̃�
z (i)

=
[

W�(i) −W�(i)P2(i)P−1
3 (i)

I 0

] [
C�

z (i)
K�

C (i)D�
z (i)

]
=

[
W�(i)C�

z (i) − W�(i)P2(i)P−1
3 (i)K�

C (i)D�
z (i)

C�
z (i)

]
,

U�(i)V �(i)P (i)B̃w(i) =
[

I 0
P1(i) P2(i)

] [
Bw(i)

0

]
=

[
Bw(i)

P1(i)Bw(i)

]
,

and

U�(i)V �(i)C̃�
z (i)R−1(i)B̃z(i)

=

⎡⎣[
W�(i)C�

z (i)R−1(i)Bz(i)
−W�(i)P2(i)P−1

3 (i)K�
C (i)D�

z (i)R−1(i)Bz(i)

]
C�

z (i)R−1(i)Bz(i)

⎤⎦ .

If we define the following variables:

N1(i) = Cz(i)W (i) − Dz(i)KC(i)P−1
3 (i)P�

2 (i)W (i),
N2(i) = Cz(i),
N3(i) = I − εCz

(i)DCz
(i)D�

Cz
(i) − εDz

(i)DDz
(i)D�

Dz
(i) = R(i),

N4(i) = W�(i)C�
z (i)N −1

3 (i)Bz(i)
−W�(i)P2(i)P−1

3 (i)K�
C (i)D�

z (i)N −1
3 (i)Bz(i)
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+Bw(i),
N5(i) = P1(i)Bw(i) + C�

z (i)N −1
3 (i)Bz(i),

N6(i) = γ2I − B�
z (i)N −1

3 (i)Bz(i),
N7(i) =

[
DA(i) 0 0 DB(i) 0 0

]
,

N8(i) =
[
P1(i)DA(i) 0 0 P1(i)DB(i) 0 P2(i)KB(i)DCy

(i)
]
,

N �
9 (i) =

[
W�(i)E�

A (i) 0 0
[
−W�(i)P2(i)P−1

3 (i)
×K�

C (i)E�
B (i)

]
0
[

−W�(i)P2(i)
×P−1

3 (i)E�
Cy

(i)

]]
,

N �
10 (i) =

[
E�

A (i) 0 0 0 0 0
]
,

N �
11 (i) =

[
W�(i)E�

Cz
(i) 0 0 −W�(i)P2(i)P−1

3 (i)K�
C (i)E�

Dz
(i)

]
,

N �
12 (i) =

[
E�

Cz
(i) 0 0 0

]
,

and using all the previous computations, (4.43) becomes

Z1(i) + Z2(i) + Z3(i) + Z4(i) + Z5(i) + Z6(i) < 0, (4.45)

with

Z1(i) = Ã�(i)P (i) + P (i)Ã(i) +
N∑

j=1

λijP (j) =⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

A(i)W (i)
+W�(i)A�(i)

+
∑N

j=1 λijW
�(i)W−1(j)W (i)

−B(i)KC(i)P−1
3 (i)P�

2 (i)W (i)
−W�(i)P2(i)P−1

3 (i)K�
C (i)B�(i)

+
∑N

j=1 λijW
�(i)

[
P2(i)P−1

3 (i)P3(j) − P�
2 (j)

]
×P−1

3 (j)
[
P2(i)P−1

3 (i)P3(j) − P�
2 (j)

]�
W (i)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
⎡⎢⎢⎢⎢⎣

A�(i) + P1(i)A(i)W (i)
+P2(i)KB(i)Cy(i)W (i)

−P1(i)B(i)KC(i)P−1
3 (i)P�

2 (i)W (i)
−P2(i)KA(i)P−1

3 (i)P�
2 (i)W (i)

+
∑N

j=1

[
P1(j) − P2(j)P−1

3 (i)P�
2 (i)

]
W (i)

⎤⎥⎥⎥⎥⎦
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A(i) + W�(i)A�(i)P1(i)

+W�(i)C�
y (i)K�

B (i)P�
2 (i)

−W�(i)P2(i)P−1
3 (i)K�

C (i)B�(i)P1(i)
−W�(i)P2(i)P−1

3 (i)K�
A (i)P�

2 (i)
+

∑N
j=1 λijW

�(i)
[
P1(j) − P2(i)P−1

3 (i)P�
2 (j)

]

⎤⎥⎥⎥⎥⎦

⎡⎣ P1(i)A(i) + P2(i)KB(i)Cy(i)
+A�(i)P1(i) + C�

y (i)K�
B (i)P�

2 (i)
+

∑N
j=1 λijP1(j)

⎤⎦

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
=

[
M1(i) M2(i)
M�

2 (i) M3(i)

]
,

Z2(i) = U�(i)V �(i)P (i)
[
D̃A(i) D̃B(i) D̃Cy (i)

]
×Υ−1(i)

⎡⎣ D̃�
A(i)

D̃�
B(i)

D̃�
Cy

(i)

⎤⎦P (i)V (i)U(i)

=
[

DA(i) 0 0 DB(i) 0 0
P1(i)DA(i) 0 0 P1(i)DB(i) 0 P2(i)KB(i)DCy

(i)

]

×Υ−1(i)

⎡⎢⎢⎢⎢⎢⎢⎣
D�

A(i) D�
A(i)P1(i)

0 0
0 0

D�
B(i) D�

B(i)P1(i)
0 0
0 D�

Cy
(i)K�

B (i)P2(i)

⎤⎥⎥⎥⎥⎥⎥⎦
=

[
N7(i)Υ−1(i)N �

7 (i) N7(i)Υ−1(i)N �
8 (i)

N8(i)Υ−1(i)N �
7 (i) N8(i)Υ−1(i)N �

8 (i)

]
,

Z3(i) = U�(i)V �(i)
[
Ẽ�

A (i) Ẽ�
B (i) Ẽ�

Cy
(i)

]
Υ (i)

⎡⎣ ẼA(i)
ẼB(i)
ẼCy

(i)

⎤⎦
=

⎡⎣W�(i)E�
A (i) 0 0

[
−W�(i)P2(i)P−1

3 (i)
×K�

C (i)E�
B (i)

]
0
[

−W�(i)P2(i)
×P−1

3 (i)E�
Cy

(i)

]
E�

A (i) 0 0 0 0 0

⎤⎦
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×Υ (i)

⎡⎢⎢⎢⎢⎢⎢⎣
EA(i)W (i) EA(i)

0 0
0 0

−EB(i)KC(i)P−1
3 (i)P�

2 (i)W (i) 0
0 0

−EC(i)P−1
3 (i)P�(i)W (i) 0

⎤⎥⎥⎥⎥⎥⎥⎦
=

[
N �

9 (i)Υ (i)N9(i) N �
9 (i)Υ (i)N10(i)

N �
10 (i)Υ (i)N9(i) N �

10 (i)Υ (i)N10(i)

]
,

Z4(i) = U�(i)V �(i)
[
Ẽ�

Cz
(i) Ẽ�

Dz
(i)

]
Ψ−1(i)

[
ẼCz

(i)
ẼDz

(i)

]
V (i)U(i)

=
[

W�(i)E�
Cz

(i) 0 0 −W�(i)P2(i)P−1
3 (i)K�

C (i)E�
Dz

(i)
E�

Cz
(i) 0 0 0

]

×Ψ−1(i)

⎡⎢⎢⎣
ECz

(i)W (i) ECz
(i)

0 0
0 0

−EDz
(i)KC(i)P−1

3 (i)P�
2 (i)W (i) 0

⎤⎥⎥⎦
=

[
N �

11 (i)Ψ−1(i)N11(i) N �
11 (i)Ψ−1(i)N12(i)

N �
12 (i)Ψ−1(i)N11(i) N �

12 (i)Ψ−1(i)N12(i)

]
,

Z5(i) = U�(i)V �(i)C̃z(i)R−1(i)C̃z(i)V (i)U(i)

=
[

W�(i)C�
z (i) − W�(i)P2(i)P−1

3 (i)K�
C (i)D�

z (i)
C�

z (i)

]
×R−1(i)

[[
Cz(i)W (i)

−Dz(i)KC(i)P−1
3 (i)P�

2 (i)W (i)

]
Cz(i)

]
=

[
N �

1 (i)N −1
3 (i)N1(i) N �

1 (i)N −1
3 (i)N2(i)

N �
2 (i)N −1

3 (i)N1(i) N �
2 (i)N −1

3 (i)N2(i)

]
,

Z6(i) = U�(i)V �(i)
[
P (i)B̃w(i) + C̃�

z (i)R−1(i)B̃z(i)
]

×
[
γ2I − B̃�

z (i)R−1(i)B̃z(i)
]−1 [

B̃�
w (i)P (i) + B̃�

z (i)R−1(i)C̃z(i)
]

=

⎡⎢⎢⎣
⎡⎣ W�(i)C�

z (i)N −1
3 (i)Bz(i)

−W�(i)P2(i)P−1
3 (i)K�

C (i)D�
z (i)

×N −1
3 (i)Bz(i) + Bw(i)

⎤⎦
P1(i)Bw(i) + C�

z (i)N −1
3 (i)Bz(i)

⎤⎥⎥⎦[
γ2I

−B�
z (i)R−1(i)Bz(i)

]−1

×

⎡⎣⎡⎣ W�(i)C�
z (i)(i)N −1

3 (i)Bz(i)
−W�(i)P2(i)P−1

3 (i)K�
C (i)D�

z (i)
×N −1

3 (i)Bz(i) + Bw(i)

⎤⎦�[
P1(i)Bw(i)

+C�
z (i)N −1

3 (i)Bz(i)

]� ⎤⎦
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=
[

N4(i)N −1
6 (i)N �

4 (i) N4(i)N −1
6 (i)N �

5 (i)
N5(i)N −1

6 (i)N �
4 (i) N5(i)N −1

6 (i)N �
5 (i)

]
.

If we use the expression of the controller (4.49), then (4.45) implies

M�
2 (i) + N �

2 (i)N −1
3 (i)N1(i) + N5(i)N −1

6 (i)N �
4 (i)

+N8(i)Υ−1(i)N �
7 (i) + N �

10 (i)Υ (i)N9(i)
+N �

12 (i)Ψ−1(i)N11(i) = 0,

and using the fact that

N∑
j=1

λijW
�(i)

[
P2(i)P−1

3 (i)P3(j) − P�(j)
]

×P−1
3 (i)

[
P2(i)P−1

3 (i)P3(j) − P�(j)
]�

W (i) > 0,

we get

M1(i) + N �
1 (i)N −1

3 (i)N1(i) + N4(i)N −1
6 (i)N �

4 (i)
+N7(i)Υ−1(i)N �

7 (i) + N �
9 (i)Υ (i)N9(i)

+N �
11 (i)Ψ−1(i)N11(i) < 0,

M3(i) + N �
2 (i)N −1

3 (i)N2(i) + N5(i)N −1
6 (i)N �

5 (i)
+N8(i)Υ−1(i)N �

8 (i) + N �
10 (i)Υ (i)N10(i)

+N �
12 (i)Ψ−1(i)N12(i) < 0,

with

M1(i) = A(i)W (i) + W�(i)A�(i)

+
N∑

j=1

λijW
�(i)W−1(j)W (i)

−B(i)KC(i)P−1
3 (i)P�

2 (i)W (i)
−W�(i)P2(i)P−1

3 (i)K�
C (i)B�(i),

M2(i) = A(i) + W�(i)A�(i)P1(i)
+W�(i)C�

y (i)K�
B (i)P�

2 (i)

−W�(i)P2(i)P−1
3 (i)K�

C (i)B�(i)P1(i)
−W�(i)P2(i)P−1

3 (i)K�
A (i)P�

2 (i)

+
N∑

j=1

W�(i)
[
P1(j) − P2(i)P−1

3 (i)P�
2 (j)

]
,

M3(i) = P1(i)A(i) + A�(i)P1(i) + P2(i)KB(i)Cy(i)

+C�
y (i)K�

B (i)P�
2 (i) +

N∑
j=1

λijP1(j).
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If we let

P (i) =
[

X(i) Y −1(i) − X(i)
Y −1(i) − X(i) X(i) − Y −1(i)

]
,

where X(i) > 0 and Y (i) > 0 are symmetric and positive-definite matrices, it
means that

P1(i) = X(i),
P2(i) = Y −1(i) − X(i),
P3(i) = X(i) − Y −1(i),

which implies that

W (i) =
[
P1(i) − P2(i)P−1

3 (i)P�
2 (i)

]−1
= Y (i),

and P−1
3 (i)P�

2 (i) = −I.
Notice also that

N∑
j=1

λijY
�(i)Y −1(i)Y (i) = λiiY (i) + Si(Y )Y−1

i (Y )S�
i (Y ),

where

Si(Y ) =
[√

λi1Y (i), · · · ,
√

λii−1Y (i),
√

λii+1Y (i), · · · ,
√

λiNY (i)
]
,

Yi(Y ) = diag [Y (1), · · · , Y (i − 1), Y (i + 1), · · · , Y (N)] .

If we define KB(i) and KC(i) by

KB(i) = P2(i)KB(i) =
[
Y −1(i) − X(i)

]
KB(i),

KC(i) = −KC(i)P−1
3 (i)P�

2 (i)W (i) = KC(i)Y (i),

the expressions of N1(i), · · · ,N12(i) become

N1(i) = Cz(i)Y (i) + Dz(i)KC(i),
N2(i) = Cz(i),
N3(i) = I − εCz

(i)DCz
(i)D�

Cz
(i) − εDz

(i)DDz
(i)D�

Dz
(i),

N4(i) = Y �(i)C�
z (i)N −1

3 (i)Bz(i)
+K�

C (i)D�
z (i)N −1

3 (i)Bz(i) + Bw(i),
N5(i) = X(i)Bw(i) + C�

z (i)N −1
3 (i)Bz(i),

N6(i) = γ2I − B�
z (i)N −1

3 (i)Bz(i),
N7(i) =

[
DA(i) 0 0 DB(i) 0 0

]
,

N8(i) =
[
X(i)DA(i) 0 0 X(i)DB(i) 0 KB(i)DCy

(i)
]
,
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N �
9 (i) =

[
Y �(i)E�

A (i) 0 0 K�
C(i)E�

B (i) 0 Y �(i)E�
C (i)

]
,

N10(i) =
[
EA(i) 0 0 0 0 EC(i)

]
,

N �
11 (i) =

[
Y �(i)E�

Cz
(i) 0 0 K�

C (i)E�
Dz

(i)
]
,

N �
12 (i) =

[
E�

Cz
(i) 0 0 0

]
.

The following theorem summarizes the results of these developments.

Theorem 55. Let εA = (εA(1), · · · , εA(N)), εB = (εB(1), · · · , εB(N)), εCy
=

(εCy
(1), · · · , εCy

(N)), εCz
= (εCz

(1), · · · , εCz
(N)), and εDz

= (εDz
(1), · · · ,

εDz
(N)) be sets of positive scalars. Let γ be a given positive number. Sys-

tem (4.1) is stable if and only if for every i ∈ S , the following LMIs
are feasible for some set of symmetric and positive-definite matrices X =
(X(1), · · · , X(N)) > 0, and Y = (Y (1), · · · , Y (N)), and matrices KA =
(KA(1), · · · ,KA(N)), KB = (KB(1), · · · ,KB(N)), and KC = (KC(1), · · · ,
KC(N)): ⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

M1(i) N �
1 (i) N4(i) N7(i)

N1(i) −N3(i) 0 0
N �

4 (i) 0 −N6(i) 0
N �

7 (i) 0 0 −Υ (i)
N9(i) 0 0 0
N11(i) 0 0 0
S�

i (Y ) 0 0 0

N �
9 (i) N �

11 (i) Si(Y )
0 0 0
0 0 0
0 0 0

−Υ−1(i) 0 0
0 −Ψ(i) 0
0 0 −Yi(Y )

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
< 0, (4.46)

⎡⎢⎢⎢⎢⎢⎢⎣
M3(i) N �

2 (i) N5(i) N8(i)
N2(i) −N3(i) 0 0
N �

5 (i) 0 −N6(i) 0
N �

8 (i) 0 0 −Υ (i)
N10(i) 0 0 0
N12(i) 0 0 0

N �
10 (i) N �

12 (i)
0 0
0 0
0 0

−Υ−1(i) 0
0 −Ψ(i)

⎤⎥⎥⎥⎥⎥⎥⎦ < 0, (4.47)

[
Y (i) I

I X(i)

]
> 0, (4.48)
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with

M1(i) = A(i)Y (i) + Y �(i)A�(i) + λiiY (i)
+ B(i)KC(i) + K�

C (i)B�(i),
M3(i) = X(i)A(i) + A�(i)X(i) + KB(i)Cy(i)

+ C�
y (i)K�

B(i) +
N∑

j=1

λijX(j),

Si(Y ) =
[√

λi1Y (i),

· · · ,
√

λii−1Y (i),
√

λii+1Y (i), · · · ,
√

λiNY (i)
]
,

Yi(Y ) = diag [Y (1), · · · , Y (i − 1), Y (i + 1), · · · , Y (N)] .

Furthermore, the dynamic output feedback controller is given by⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

KA(i) =
[
X(i) − Y −1(i)

]−1
[
A�(i) + X(i)A(i)Y (i)

+X(i)B(i)KC(i) + KB(i)Cy(i)Y (i)
+N �

2 (i)N −1
3 (i)N1(i) + N5(i)N −1

6 (i)N �
4 (i)

+N8(i)Υ−1(i)N �
7 (i) + N �

10 (i)Υ (i)N9(i)
+N �

12 (i)Ψ−1(i)N11(i)

+
∑N

j=1 λijY
−1(j)Y (i)

]
Y −1(i),

KB(i) =
[
Y −1(i) − X(i)

]−1 KB(i),
KC(i) = KC(i)Y −1(i).

(4.49)

4.4 Observer-Based Output Stabilization

In this section we study a second method to design a stabilizing controller
that uses the measurement of the input and output vectors of the system to
estimate the system state which can then be used for feedback. This technique
is called observer-based output feedback control. We focus on the design of
such feedback stabilization to see if we can compute the gains of this controller.
The structure is given by the following dynamics:⎧⎪⎨⎪⎩

ẋc(t) = A(r(t))xc(t) + B(r(t))u(t) + Bw(r(t))ω1(t)
+L(r(t)) [Cy(r(t))xc(t) − y(t)] , xc(0) = 0,

u(t) = K(r(t))xc(t),
(4.50)

where xc(t) is the state of the observer and L(i) and K(i) are gains to be
determined for each mode i ∈ S .

In this section we assume that the external disturbances of the state equa-
tions are different and are denoted, respectively, as ω1(t) and ω2(t).
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For simplicity in development, we assume in the dynamics (4.1) that the
matrices Dy(i), Bz(i), and Dz(i) are always equal to zero for each mode i ∈ S .

Using (4.1) and (4.50), and letting the observer error be defined by

e(t) = x(t) − xc(t), (4.51)

we get

ẋ(t) = A(r(t))x(t) + B(r(t))K(r(t))xc(t) + Bw(r(t))ω1(t)
= [A(r(t)) + B(r(t))K(r(t))] x(t) − B(r(t))K(r(t))e(t) + Bw(r(t))ω1(t),

and

ẋc(t) = [A(r(t)) + B(r(t))K(r(t))] xc(t) − L(r(t))Cy(r(t))e(t)
+Bw(r(t))ω1(t) − L(r(t))By(r(t))ω2(t)

= [A(r(t)) + B(r(t))K(r(t))] x(t)
− [A(r(t)) + B(r(t))K(r(t)) + L(r(t))Cy(r(t))] e(t)
Bw(r(t))ω1(t) − L(r(t))By(r(t))ω2(t).

Combining these equations with the error equation, we get the following
dynamics for error:

ė(t) = [A(r(t)) + L(r(t))Cy(r(t))] e(t) + L(r(t))By(r(t))ω2(t),

which gives the following dynamics for the extended system:

η̇(t) =

⎡⎣A(r(t)) + B(r(t))K(r(t)) −B(r(t))K(r(t))

0
[

A(r(t))
+L(r(t))Cy(r(t))

]⎤⎦ η(t)

+
[

Bw(r(t)) 0
0 L(r(t))By(r(t))

] [
ω1(t)
ω2(t)

]
= Ã(r(t))η(t) + B̃w(r(t))ω(t),

with

η(t) =
[

x(t)
e(t)

]
,

Ã(r(t)) =

⎡⎣A(r(t)) + B(r(t))K(r(t)) −B(r(t))K(r(t))

0
[

A(r(t))
+L(r(t))Cy(r(t))

]⎤⎦ ,

B̃w(r(t)) =
[

Bw(r(t)) 0
0 L(r(t))By(r(t))

]
.

For the controlled output we have

z(t) =
[
Cz(r(t)) 0

]
η(t)
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= C̃z(r(t))η(t).

Based on the previous results of this chapter, the extended system will
be stochastically stable and guarantee the disturbance rejection of level
γ if there exists a set of symmetric and positive-definite matrices P̃ =
(P̃ (1), · · · , P̃ (N)) > 0 such that the following holds for each i ∈ S :

J̃(i) + C̃�
z (i)C̃z(i) + γ−2P̃ (i)B̃w(i)B̃�

w (i)P̃ (i) < 0, (4.52)

with J̃(i) = Ã�(i)P̃ (i) + P̃ (i)Ã(i) +
∑N

j=1 λijP̃ (j).
Let P̃ (i) be given by

P̃ (i) =
[

P (i) 0
0 Q(i)

]
,

with P (i) and Q(i) symmetric and positive-definite matrices, and using the
expression of the matrices Ã(i), we get

Ã�(i)P̃ (i) =

⎡⎢⎢⎣
[

A�(i)P (i)
+K�(i)B�(i)P (i)

]
0

−K�(i)B�(i)P (i)
[

A�(i)Q(i)
+C�

y (i)L�(i)Q(i)

]
⎤⎥⎥⎦ ,

P̃ (i)B̃w(i) =
[

P (i)Bw(i) 0
0 Q(i)L(i)By(i)

]
,

C̃�
z (i)C̃z(i) =

[
C�

z (i)Cz(i) 0
0 0

]
.

Based on these computations we get

J̃(i) + C̃�
z (i)C̃z(i) =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎡⎢⎢⎢⎢⎢⎢⎣

A�(i)P (i)
+P (i)A(i)

+P (i)B(i)K(i)
+K�(i)B�(i)P (i)

+C�
z (i)Cz(i)

+
∑N

j=1 λijP (j)

⎤⎥⎥⎥⎥⎥⎥⎦ −P (i)B(i)K(i)

−K�(i)B�(i)P (i)

⎡⎢⎢⎢⎢⎣
A�(i)Q(i)
+Q(i)A(i)

+Q(i)L(i)Cy(i)
+C�

y (i)L�(i)Q(i)
+

∑N
j=1 λijQ(j)

⎤⎥⎥⎥⎥⎦

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

Notice that[
0 P (i)B(i)K(i)
0 0

]
=

[
P (i)B(i)K(i) 0

0 0

] [
I 0
0 0

] [
0 I

0 0

]
.

Using Lemma 7 in Appendix A, we get
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−
[

0 P (i)B(i)K(i)
0 0

]
−

[
0 P (i)B(i)K(i)
0 0

]�
≤ ε−1

P (i)
[

P (i)B(i)K(i)K�(i)B�(i)P (i) 0
0 0

]
+ εP (i)

[
0 0
0 I

]
.

Based on all these computations, the stochastic stability condition (4.52)
will be satisfied if the following holds:⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

A�(i)P (i)
+P (i)A(i)

+P (i)B(i)K(i)
+K�(i)B�(i)P (i)

+C�
z (i)Cz(i)

+ε−1
P (i)P (i)B(i)K(i)

×K�(i)B�(i)P (i)
+γ−2P (i)Bw(i)
×B�

w (i)P (i)
+

∑N
j=1 λijP (j)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
0

0

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

A�(i)Q(i)
+Q(i)A(i)

+Q(i)L(i)Cy(i)
+C�

y (i)L�(i)Q(i)
+εP (i)I

+γ−2Q(i)L(i)By(i)
×B�

y (i)L�(i)Q(i)
+

∑N
j=1 λijQ(j)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

< 0,

which implies in turn that

A�(i)P (i) + P (i)A(i) + P (i)B(i)K(i) + K�(i)B�(i)P (i)
+C�

z (i)Cz(i) + ε−1
P (i)P (i)B(i)K(i)K�(i)B�(i)P (i)

+γ−2P (i)Bw(i)B�
w (i)P (i) +

N∑
j=1

λijP (j) < 0,

A�(i)Q(i) + Q(i)A(i) + Q(i)L(i)Cy(i) + C�
y (i)L�(i)Q(i)

+εP (i)I + γ−2Q(i)L(i)By(i)B�
y (i)L�(i)Q(i) +

N∑
j=1

λijQ(j) < 0.

Using the Schur complement these conditions become⎡⎣ JP (i) P (i)Bw(i) P (i)B(i)K(i)
B�

w (i)P (i) −γ2I 0
K�(i)B�(i)P (i) 0 −εP (i)I

⎤⎦ < 0,

[
JQ(i) Q(i)L(i)By(i)

B�
y (i)L�(i)Q(i) −γ2I

]
< 0,
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where

JP (i) = A�(i)P (i) + P (i)A(i) + P (i)B(i)K(i) + K�(i)B�(i)P (i)

+C�
z (i)Cz(i) +

N∑
j=1

λijP (j),

JQ(i) = A�(i)Q(i) + Q(i)A(i) + Q(i)L(i)Cy(i) + C�
y (i)L�(i)Q(i)

+εP (i)I +
N∑

j=1

λijQ(j).

These two inequalities are nonlinear in their design parameters. To put
them in the LMI setting let us change some variables. For the first LMI,
notice that it implies the following:[

JP (i) P (i)Bw(i)
B�

w (i)P (i) −γ2I

]
< 0.

Let X(i) = P−1(i). Pre- and post-multiply this LMI by diag(X(i), I) to
get [

X(i)JP (i)X(i) Bw(i)
B�

w (i) −γ2I

]
< 0.

Using the fact that

X(i)JP (i)X(i) = X(i)A�(i) + A(i)X(i) + B(i)K(i)X(i)

+X(i)K�(i)B�(i) + X(i)C�
z (i)Cz(i)X(i) +

N∑
j=1

λijX(i)X−1(j)X(i),

and

N∑
j=1

λijX(i)X−1(j)X(i) = λiiX(i) + Si(X)X−1
i (X)S�

i (X),

with Si(X) and Xi(X) and letting Yc(i) = K(i)X(i), we get⎡⎢⎢⎣
JP (i) Bw(i) X(i)C�

z (i) Si(X)
B�

w (i) −γ2I 0 0
Cz(i)X(i) 0 −I 0
S�

i (X) 0 0 −Xi(X)

⎤⎥⎥⎦ < 0,

with

JP (i) = X(i)A�(i) + A(i)X(i) + B(i)Yc(i) + Y �
c (i)B�(i) + λiiX(i).



4.4 Observer-Based Output Stabilization 257

For the second nonlinear matrix inequality, letting Yo(i) = Q(i)L(i) implies
the following LMI: [

JQ(i) Yo(i)By(i)
B�

y (i)Y �
o (i) −γ2I

]
< 0,

where

JQ(i) = A�(i)Q(i) + Q(i)A(i) + Yo(i)Cy(i) + C�
y (i)Y �

o (i)

+εP (i)I +
N∑

j=1

λijQ(j).

The following theorem summarizes the results of this development.

Theorem 56. Let γ be a given positive constant. If there exist sets of sym-
metric and positive-definite matrices X = (X(1), · · · , X(N)) > 0 and Q =
(Q(1), · · · , Q(N)) > 0 and sets of matrices Yc = (Yc(1), · · · , Yc(N)) and
Yo = (Yo(1), · · · , Yo(N)) such that the following sets of coupled LMIs hold
for every i ∈ S :⎡⎢⎢⎣

JP (i) Bw(i) X(i)C�
z (i) Si(X)

B�
w (i) −γ2I 0 0

Cz(i)X(i) 0 −I 0
S�

i (X) 0 0 −Xi(X)

⎤⎥⎥⎦ < 0, (4.53)

[
JQ(i) Yo(i)By(i)

B�
y (i)Y �

o (i) −γ2I

]
< 0, (4.54)

with

JP (i) = X(i)A�(i) + A(i)X(i) + B(i)Yc(i) + Y �
c (i)B�(i) + λiiX(i),

JQ(i) = A�(i)Q(i) + Q(i)A(i) + Yo(i)Cy(i) + C�
y (i)Y �

o (i)

+εP (i)I +
N∑

j=1

λijQ(j),

then the observer-based output feedback control with the following gains:

L(i) = Q−1(i)Yo(i), (4.55)
K(i) = Yc(i)X−1(i), (4.56)

stochastically stabilizes the class of systems we are studying and at the same
time guarantees the disturbance rejection of level γ.

From the practical point of view, the observer-based output feedback con-
trol that stochastically stabilizes the system and at the same time guarantees
the minimum disturbance rejection is of great interest. This controller can be
obtained by solving the following optimization problem:
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P :

⎧⎪⎪⎪⎨⎪⎪⎪⎩
min ν>0,

X=(X(1),··· ,X(N))>0,
Q=(Q(1),··· ,Q(N))>0,
Yc=(Yc(1),··· ,Yc(N)),
Yo=(Yo(1),··· ,Yo(N)),

ν,

s.t. : (4.53) and (4.54), with ν = γ2.

The following corollary gives the results of the design of the controller that
stochastically stabilizes the system (4.1) and simultaneously guarantees the
smallest disturbance rejection level.

Corollary 11. Let ν > 0, X = (X(1), · · · , X(N)) > 0, Q = (Q(1), · · · ,
Q(N)) > 0, Yc = (Yc(1), · · · , Yc(N)), and Yo = (Yo(1), · · · , Yo(N)) be
the solution of the optimization problem P. Then the controller (4.50) with
K(i) = Yc(i)X−1(i) and L(i) = Q−1(i)Yo(i) stochastically stabilizes the class
of systems we are considering and, moreover, the closed-loop system satisfies
the disturbance rejection of level

√
ν.

Example 58. To show the validity of the previous results let us consider a
system with two modes with the following data:

• mode #1:

A(1) =

⎡⎣1.0 0.0 1.0
0.0 1.0 0.0
0.0 1.0 1.0

⎤⎦ , B(1) =

⎡⎣0.3 0.0 0.1
0.0 0.3 0.1
0.0 0.2 1.0

⎤⎦ ,

Bw(1) =

⎡⎣0.3 0.0 0.1
0.0 0.3 0.1
0.0 0.2 1.0

⎤⎦ , Cy(1) =

⎡⎣0.3 0.0 0.1
0.0 0.3 0.1
0.0 0.2 1.0

⎤⎦ ,

By(1) =

⎡⎣0.3 0.0 0.1
0.0 0.3 0.1
0.0 0.2 1.0

⎤⎦ , Cz(1) =

⎡⎣0.3 0.0 0.1
0.0 0.3 0.1
0.0 0.2 1.0

⎤⎦ ,

• mode #2:

A(2) =

⎡⎣1.0 0.0 1.0
0.0 −1.0 0.0
0.0 1.0 −1.0

⎤⎦ , B(2) =

⎡⎣0.1 0.0 0.1
0.2 0.0 0.1
0.0 0.2 0.2

⎤⎦ ,

Bw(2) =

⎡⎣0.1 0.0 0.1
0.2 0.0 0.1
0.0 0.2 0.2

⎤⎦ , Cy(2) =

⎡⎣0.1 0.0 0.1
0.2 0.0 0.1
0.0 0.2 0.2

⎤⎦ ,

By(2) =

⎡⎣0.1 0.0 0.1
0.2 0.0 0.1
0.0 0.2 0.2

⎤⎦ , Cz(2) =

⎡⎣0.1 0.0 0.1
0.2 0.0 0.1
0.0 0.2 0.2

⎤⎦ .

The switching between the two modes is described by the following tran-
sition matrix:
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Λ =
[
−2.0 2.0
1.0 −1.0

]
.

Letting γ = 1.0001 and εP (1) = εP (2) = 0.1 and solving the LMIs (4.53)–
(4.54), we get

X(1) =

⎡⎣ 0.4359 0.0001 −0.0016
0.0001 0.4342 −0.0130
−0.0016 −0.0130 0.3980

⎤⎦ ,

X(2) =

⎡⎣ 0.5546 0.0009 −0.0044
0.0009 0.5556 −0.0127
−0.0044 −0.0127 0.5172

⎤⎦ ,

Q(1) =

⎡⎣ 0.2309 0.0524 −0.1490
0.0524 0.3142 −0.1873
−0.1490 −0.1873 0.3085

⎤⎦ ,

Q(2) =

⎡⎣ 0.1816 −0.0238 0.0133
−0.0238 0.9020 0.1864
0.0133 0.1864 0.7542

⎤⎦ ,

Yc(1) =

⎡⎣−1.2225 −30.8435 −10.0310
16.6117 −17.9955 −154.9530
−3.7886 46.5175 29.7948

⎤⎦ ,

Yc(2) =

⎡⎣ 1.6423 −6.7984 −12.8747
31.2102 11.1533 32.5000
−11.4035 14.7539 −32.1622

⎤⎦ ,

Yo(1) =

⎡⎣−2.0854 −0.1062 0.2608
0.0702 −1.8611 0.1915
0.1362 0.4518 −0.6117

⎤⎦ ,

Yo(2) =

⎡⎣ 4.5711 −5.1555 −0.0411
−4.2065 2.0675 0.5072
5.2752 −2.9807 −0.5636

⎤⎦ .

The corresponding gains are given by

K(1) =

⎡⎣−2.8798 −71.8554 −27.5711
36.7147 −53.1929 −390.9547
−8.4448 109.4810 78.4204

⎤⎦ ,

K(2) =

⎡⎣ 2.7816 −12.8149 −25.1842
56.7476 21.4392 63.8493
−21.0923 25.1832 −61.7515

⎤⎦ ,

L(1) =

⎡⎣−13.1190 −1.2448 −0.4532
−1.7251 −8.1503 −0.9834
−6.9423 −4.0854 −2.7990

⎤⎦ ,
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L(2) =

⎡⎣ 23.8431 −27.7796 −0.0591
−5.6820 2.3959 0.7534
7.9790 −4.0554 −0.9324

⎤⎦ .

Previously, we used the following decomposition:[
0 P (i)B(i)K(i)
0 0

]
=

[
P (i)B(i)K(i) 0

0 0

] [
0 I

0 0

]
,

which gives us some terms that we have ignored since they are positive, which
may give conservative results. We can use another decomposition and get less
conservative results. Notice that[

0 P (i)B(i)K(i)
0 0

]
=

[
P (i)B(i) 0

0 0

] [
0 K(i)
0 0

]
,

which implies [
0 P (i)B(i)K(i)
0 0

]
+

[
0 P (i)B(i)K(i)
0 0

]�
≤

[
P (i)B(i)B�(i)P (i) 0

0 K�(i)K(i)

]
.

Following the same reasoning as before, we get

A�(i)P (i) + P (i)A(i) + P (i)B(i)K(i) + K�(i)B�(i)P (i) + C�
z (i)Cz(i)

+P (i)B(i)B�(i)P (i) + γ−2P (i)Bw(i)B�
w (i)P (i) +

N∑
j=1

λijP (j) < 0,

A�(i)Q(i) + Q(i)A(i) + Q(i)L(i)Cy(i) + C�
y (i)L�(i)Q(i) + K�(i)K(i)

+γ−2Q(i)L(i)By(i)B�
y (i)L�(i)Q(i) +

N∑
j=1

λijQ(j) < 0.

These two matrix inequalities are nonlinear in the design parameters that
we should put in the LMI form. Let us transform the first one. Let X(i) =
P−1(i) and pre- and post-multiply this inequality by X(i) to give

X(i)A�(i) + A(i)X(i) + B(i)K(i)X(i) + X(i)K�(i)B�(i)
+X(i)C�

z (i)Cz(i)X(i) + B(i)B�(i) + γ−2Bw(i)B�
w (i)

+
N∑

j=1

λijX(i)X−1(j)X(i) < 0.

Let Yc(i) = K(i)X(i) and use the expression

N∑
j=1

λijX(i)X−1(j)X(i) = λiiX(i) + Si(X)X−1
i (X)X�

i (X)
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to give ⎡⎢⎢⎣
JP(i) X(i)C�

z (i) Bw(i) Si(X)
Cz(i)X(i) −I 0 0

B�
w 0 −γ2I 0

S�
i (X) 0 0 −Xi(X)

⎤⎥⎥⎦ < 0,

with JP(i) = X(i)A�(i)+A(i)X(i)+B(i)Yc(i)+Y �
c (i)B�(i)+B(i)B�(i)+

λiiX(i).
For the second inequality, let Yo(i) = Q(i)L(i) to give⎡⎣ JQ(i) K�(i) Yo(i)By(i)

K(i) −I 0
B�

y (i)Y �
o (i) 0 −γ2I

⎤⎦ < 0,

with JQ(i) = A�(i)Q(i)+Q(i)A(i)+Yo(i)Cy(i)+C�
y (i)Y �

o (i)+
∑N

j=1 λijQ(j).
The following theorem summarizes the results of this development.

Theorem 57. Let γ be a given positive constant. If there exist sets of sym-
metric and positive-definite matrices X = (X(1), · · · , X(N)) > 0 and Q =
(Q(1), · · · , Q(N)) > 0 and sets of matrices Yc = (Yc(1), · · · , Yc(N)) and
Yo = (Yo(1), · · · , Yo(N)) such that the following sets of coupled LMIs hold
for every i ∈ S :⎡⎢⎢⎣

JP(i) X(i)C�
z (i) Bw(i) Si(X)

Cz(i)X(i) −I 0 0
B�

w 0 −γ2I 0
S�

i (X) 0 0 −Xi(X)

⎤⎥⎥⎦ < 0, (4.57)

⎡⎣ JQ(i) K�(i) Yo(i)By(i)
K(i) −I 0

B�
y (i)Y �

o (i) 0 −γ2I

⎤⎦ < 0, (4.58)

with

JP(i) = X(i)A�(i) + A(i)X(i) + B(i)Yc(i) + Y �
c (i)B�(i)

+B(i)B�(i) + λiiX(i),
JQ(i) = A�(i)Q(i) + Q(i)A(i) + Yo(i)Cy(i) + C�

y (i)Y �
o (i)

+εP (i)I +
N∑

j=1

λijQ(j),

then the observer-based output feedback control with the following gains:

L(i) = Q−1(i)Yo(i), (4.59)
K(i) = Yc(i)X−1(i), (4.60)

stochastically stabilizes the class of systems we are studying and at the same
time guarantees the disturbance rejection of level γ.
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Remark 16. Notice that the second LMI depends on the solution of the first
one. Therefore, to get the solution, we should solve the first set of LMIs to
get K = (K(1), · · · ,K(N)), which enters in the second set of LMIs.

Let us now consider the uncertainties in the dynamics and see how to
modify conditions (4.53) and (4.54) to design a robust observer-based output
feedback control that robustly stochastically stabilizes the class of systems
under study.

Combining the system dynamics and the controller dynamics and using
the same techniques as before for the nominal system, we get the following:

• for the system dynamics:

ẋ(t) = [A(r(t)) + ΔA(r(t), t)] x(t) + [B(r(t)) + ΔB(r(t), t)] K(r(t))xc(t)
+Bw(r(t))ω1(t)

= [A(r(t)) + ΔA(r(t), t) + [B(r(t)) + ΔB(r(t), t)] K(r(t))] x(t)
− [B(r(t)) + ΔB(r(t), t)] K(r(t))e(t) + Bw(r(t))ω1(t),

• for the controller dynamics:

ẋc(t) = A(r(t))xc(t) + B(r(t))u(t) + L(r(t)) [Cy(r(t))xc(t) − y(t)]
+Bw(r(t))ω1(t)

= [A(r(t)) + B(r(t))K(r(t))] xc(t) + Bw(r(t))ω1(t)
+L(r(t)) [Cy(r(t))xc(t) − [Cy(r(t)) + ΔCy(t)] x(t)
−By(r(t))ω2(t)]

= [A(r(t)) + B(r(t))K(r(t)) − L(r(t))ΔCy(r(t))] x(t)
− [L(r(t))Cy(r(t)) + [A(r(t)) + B(r(t))K(r(t))]] e(t)
+Bw(r(t))ω1(t) − L(r(t))By(r(t))ω2(t),

• for the error dynamics:

ė(t) = ẋ(t) − ẋc(t)
= [A(r(t)) + ΔA(r(t), t) + [B(r(t)) + ΔB(r(t), t)] K(r(t))] x(t)

− [B(r(t)) + ΔB(r(t), t)] K(r(t))e(t) + Bw(r(t))ω1(t)
− [A(r(t)) + B(r(t))K(r(t)) − L(r(t))ΔCy(r(t), t)] x(t)
+ [L(r(t))Cy(r(t)) + [A(r(t)) + B(r(t))K(r(t))]] e(t)
+L(r(t))By(r(t))ω2(t) − Bw(r(t))ω1(t)

= [ΔA(r(t), t) + ΔB(r(t), t)K(r(t)) + L(r(t))ΔCy(r(t), t)] x(t)
+ [A(r(t)) + L(r(t))Cy(r(t)) − ΔB(r(t), t)K(r(t))] e(t)
+L(r(t))By(r(t))ω2(t),

• for the extended dynamics:
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η̇(t) =
[
Ã(r(t)) + ΔÃ(r(t), t)

]
η(t) + B̃w(r(t))ω(t)

= Ã(r(t), t)η(t) + B̃w(r(t))ω(t),

where

η(t) =
[

x(t)
e(t)

]
,

ω(t) =
[

ω1(t)
ω2(t)

]
,

Ã(r(t)) =
[

A(r(t)) + B(r(t))K(r(t)) −B(r(t))K(r(t))
0 A(r(t)) + L(r(t))Cy(r(t))

]
,

Δ̃A(r(t), t) =

⎡⎢⎢⎣
ΔA(r(t), t) + ΔB(r(t), t)K(r(t)) −ΔB(r(t), t)K(r(t))⎡⎣ ΔA(r(t), t)

+ΔB(r(t), t)K(r(t))
+L(r(t))ΔCy(r(t), t)

⎤⎦ −ΔB(r(t), t)K(r(t))

⎤⎥⎥⎦ ,

B̃w(r(t)) =
[

Bw(r(t)) 0
0 L(r(t))By(r(t))

]
.

For the controlled output, we have

z(t) = [Cz(r(t)) + ΔCz(r(t), t)] x(t) =
[
C̃z(r(t)) + Δ̃Cz(r(t), t)

]
η(t),

with

C̃z(r(t)) =
[
Cz(r(t)) 0

]
,

ΔC̃z(r(t), t) =
[
ΔCz(r(t), t) 0

]
.

The extended uncertain system will be stochastically stable and guarantee
the disturbance rejection of level γ, if there exists a set of symmetric and
positive-definite matrices P̃ = (P̃ (1), · · · , P̃ (N)) > 0 such that the following
holds for each i ∈ S :

J̃u(i, t) + C̃�
z (i, t)C̃z(i, t) + γ−2P̃ (i)B̃w(i)B̃�

w (i)P̃ (i) < 0, (4.61)

with J̃u(i, t) = Ã�(i, t)P̃ (i) + P̃ (i)Ã(i, t) +
∑N

j=1 λijP̃ (j).
Using the Schur complement, we obtain⎡⎣ J̃u(i, t) P̃ (i)B̃w(i) C̃�

z (i, t)
B̃�

w (i)P̃ (i) −γ2I 0
C̃z(i, t) 0 −I

⎤⎦ < 0.

Based on the expressions of Ã(i, t), C̃z(i, t), we get⎡⎣ J̃(i) P̃ (i)B̃w(i) C̃�
z (i)

B̃�
w (i)P̃ (i) −γ2I 0
C̃z(i) 0 −I

⎤⎦
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+

⎡⎣ΔÃ�(i, t)P̃ (i) + P̃ (i)ΔÃ(i, t) 0 ΔC̃�
z (i, t)

0 0 0
ΔC̃z(i, t) 0 0

⎤⎦ < 0,

where J̃(i) = Ã�(i)P (i) + P (i)Ã(i) +
∑N

j=1 λijP (j).
Let P̃ (i) be given by

P̃ (i) =
[

P (i) 0
0 Q(i)

]
,

where P (i) and Q(i) are symmetric and positive-definite matrices, and using
the expression of the matrices Ã(i), we get

Ã�(i)P (i) =

⎡⎢⎢⎣
[

A�(i)P (i)
+K�(i)B�(i)P (i)

]
0

−K�(i)B�(i)P (i)
[

A�(i)Q(i)
+C�

y (i)L�(i)Q(i)

]
⎤⎥⎥⎦ ,

P (i)B̃w(i) =
[

P (i)Bw(i) 0
0 Q(i)L(i)By(i)

]
,

N∑
j=1

λijP̃ (j) =

[∑N
j=1 λijP (j) 0

0
∑N

j=1 λijQ(j)

]
,

P̃ (i)
[

ΔA(i, t) 0
0 0

]
=

[
P (i)DA(i)FA(i, t)EA(i) 0

0 0

]
,

P̃ (i)
[

ΔB(i, t)K(i) 0
0 0

]
=

[
P (i)DB(i)FB(i, t)EB(i)K(i) 0

0 0

]
,

P̃ (i)
[

0 0
ΔA(i, t) 0

]
=

[
0 0

Q(i)DA(i)FA(i, t)EA(i) 0

]
,

P̃ (i)
[

0 0
ΔB(i, t)K(i) 0

]
=

[
0 0

Q(i)DB(i)FB(i, t)EB(i)K(i) 0

]
,

P̃ (i)
[

0 0
L(i)ΔCy(i, t) 0

]
=

[
0 0

Q(i)L(i)DCy
(i)FCy

(i, t)ECy
(i) 0

]
,

P̃ (i)
[

0 −ΔB(i, t)K(i)
0 0

]
=

[
0 −P (i)DB(i)FB(i, t)EB(i)K(i)
0 0

]
,

P̃ (i)
[

0 0
0 −ΔB(i, t)K(i)

]
=

[
0 0
0 −Q(i)DB(i)FB(i, t)EB(i)K(i)

]
.

Based on Lemma 7 in Appendix A, we get[
P (i)DA(i)FA(i, t)EA(i) 0

0 0

]
+

[
P (i)DA(i)FA(i, t)EA(i) 0

0 0

]�
≤ εA(i)

[
P (i)DA(i)D�

A(i)P (i) 0
0 0

]
+ ε−1

A (i)
[

E�
A (i)EA(i) 0

0 0

]
,
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[
P (i)DB(i)FB(i, t)EB(i)K(i) 0

0 0

]
+

[
P (i)DB(i)FB(i, t)EB(i)K(i) 0

0 0

]�
≤ εB(i)

[
P (i)DB(i)D�

B(i)P (i) 0
0 0

]
+ ε−1

B (i)
[

K�(i)E�
B (i)EB(i)K(i) 0

0 0

]
,

[
0 0

Q(i)DA(i)FA(i, t)EA(i) 0

]
+

[
0 0

Q(i)DA(i)FA(i, t)EA(i) 0

]�
≤ ε−1

C (i)
[

0 0
0 Q(i)DA(i)D�

A(i)Q(i)

]
+ εC(i)

[
E�

A (i)EA(i) 0
0 0

]
,

[
0 0

Q(i)DB(i)FB(i, t)EB(i)K(i) 0

]
+

[
0 0

Q(i)DB(i)FB(i, t)EB(i)K(i) 0

]�
≤ ε−1

D (i)
[

0 0
0 Q(i)DB(i)D�

B(i)Q(i)

]
+ εD(i)

[
K�(i)E�

B (i)EB(i)K(i) 0
0 0

]
,

[
0 0

Q(i)L(i)DCy
(i)FCy

(i, t)ECy
(i) 0

]
+

[
0 0

Q(i)L(i)DCy
(i)FCy

(i, t)ECy
(i) 0

]�
≤ ε−1

Cy
(i)

[
0 0
0 Q(i)L(i)DCy

(i)D�
Cy

(i)L�(i)Q(i)

]
+ εCy

(i)
[

E�
Cy

(i)ECy
(i) 0

0 0

]
,

[
0 −P (i)DB(i)FB(i, t)EB(i)K(i)
0 0

]
+

[
0 −P (i)DB(i)FB(i, t)EB(i)K(i)
0 0

]�
≤ εE(i)

[
P (i)DB(i)D�

B(i)P (i) 0
0 0

]
+ ε−1

E (i)
[

0 0
0 K�(i)E�

B (i)EB(i)K(i)

]
,

[
0 0
0 −Q(i)DB(i)FB(i, t)EB(i)K(i)

]
+

[
0 0
0 −Q(i)DB(i)FB(i, t)EB(i)K(i)

]�
≤ ε−1

F (i)
[

0 0
0 Q(i)DB(i)D�

B(i)Q(i)

]
+ εF (i)

[
0 0
0 K�(i)E�

B (i)EB(i)K(i)

]
,

⎡⎢⎢⎣
0 0 0 0
0 0 0 0
0 0 0 0

DCz
(i)FCz

(i, t)ECz
(i) 0 0 0

⎤⎥⎥⎦ +

⎡⎢⎢⎣
0 0 0 0
0 0 0 0
0 0 0 0

DCz
(i)FCz

(i, t)ECz
(i) 0 0 0

⎤⎥⎥⎦
�
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≤ εG(i)

⎡⎢⎢⎣
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 DCz

(i)D�
Cz

(i)

⎤⎥⎥⎦ + ε−1
G (i)

⎡⎢⎢⎣
E�

Cz
(i)ECz

(i) 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

⎤⎥⎥⎦ .

Based on these computations and the ones we did for the nominal dynam-
ics, we get⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

A�(i)P (i)
+P (i)A(i)

+P (i)B(i)K(i)
+K�(i)B�(i)P (i)

+C�
z (i) [I − εG(i)DCz

(i)
×D�

Cz
(i)

]−1
Cz(i)

+ε−1
P (i)P (i)B(i)K(i)

×K�(i)B�(i)P (i)
+γ−2P (i)Bw(i)
×B�

w (i)P (i)
+εA(i)P (i)DA(i)D�

A(i)P (i)
+ε−1

A (i)E�
A (i)EA(i)

+εB(i)P (i)DB(i)D�
B(i)P (i)

+ε−1
B (i)K�(i)E�

B (i)EB(i)K(i)
+εC(i)E�

A (i)EA(i)
+εD(i)K�(i)E�

B (i)EB(i)K(i)
+εCy

(i)E�
Cy

(i)ECy
(i)

+εE(i)P (i)DB(i)D�
B(i)P (i)

+ε−1
G (i)E�

Cz
(i)ECz

(i)
+

∑N
j=1 λijP (j)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

0

0

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

A�(i)Q(i)
+Q(i)A(i)

+Q(i)L(i)Cy(i)
+C�

y (i)L�(i)Q(i)
+εP (i)I

+γ−2Q(i)L(i)By(i)
×B�

y (i)L�(i)Q(i)
+ε−1

C (i)Q(i)DA(i)D�
A(i)Q(i)

+ε−1
D (i)Q(i)DB(i)D�

B(i)Q(i)
+ε−1

Cy
(i)Q(i)L(i)DCy

(i)
×D�

Cy
(i)L�(i)Q(i)

+ε−1
E (i)K�(i)E�

B (i)EB(i)K(i)
+ε−1

F (i)Q(i)DB(i)D�
B(i)Q(i)

+εF (i)K�(i)E�
B (i)EB(i)K(i)

+εG(i)DCz
(i)D�

Cz
(i)

+
∑N

j=1 λijQ(j)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

< 0,
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which implies in turn that

A�(i)P (i) + P (i)A(i) + P (i)B(i)K(i) + K�(i)B�(i)P (i)

+C�
z (i)

[
I − εG(i)DCz

(i)D�
Cz

(i)
]−1

Cz(i)

+ε−1
P (i)P (i)B(i)K(i)K�(i)B�(i)P (i) + γ−2P (i)Bw(i)B�

w (i)P (i)
+εA(i)P (i)DA(i)D�

A(i)P (i) + ε−1
A (i)E�

A (i)EA(i)
+εB(i)P (i)DB(i)D�

B(i)P (i) + ε−1
B (i)K�(i)E�

B (i)EB(i)K(i)
+εC(i)E�

A (i)EA(i) + εD(i)K�(i)E�
B (i)EB(i)K(i)

+εCy
(i)E�

Cy
(i)ECy

(i) + εE(i)P (i)DB(i)D�
B(i)P (i)

+ε−1
G (i)E�

Cz
(i)ECz

(i) +
N∑

j=1

λijP (j) < 0,

A�(i)Q(i) + Q(i)A(i) + Q(i)L(i)Cy(i) + C�
y (i)L�(i)Q(i)

+εP (i)I + γ−2Q(i)L(i)By(i)B�
y (i)L�(i)Q(i)

+ε−1
C (i)Q(i)DA(i)D�

A(i)Q(i) + ε−1
D (i)Q(i)DB(i)D�

B(i)Q(i)
+ε−1

Cy
(i)Q(i)L(i)DCy

(i)D�
Cy

(i)L�(i)Q(i) + ε−1
E (i)K�(i)E�

B (i)EB(i)K(i)

+ε−1
F (i)Q(i)DB(i)D�

B(i)Q(i) + εF (i)K�(i)E�
B (i)EB(i)K(i)

+εG(i)DCz
(i)D�

Cz
(i) +

N∑
j=1

λijQ(j) < 0.

These two conditions are nonlinear in the design parameters P (i), Q(i),
K(i), and L(i). To put them in the LMI framework let us proceed as before.
For this purpose, let us transform the first condition. Let X(i) = P−1(i), and
pre- and post-multiply the first condition by X(i) to yield

X(i)A�(i) + A(i)X(i) + B(i)K(i)X(i) + X(i)K�(i)B�(i)

+X(i)C�
z (i)

[
I − εG(i)DCz

(i)D�
Cz

(i)
]−1

Cz(i)X(i)

+ε−1
P (i)B(i)K(i)K�(i)B�(i) + γ−2Bw(i)B�

w (i)
+εA(i)DA(i)D�

A(i) + ε−1
A (i)X(i)E�

A (i)EA(i)X(i)
+εB(i)DB(i)D�

B(i) + ε−1
B (i)X(i)K�(i)E�

B (i)EB(i)K(i)X(i)
+εC(i)X(i)E�

A (i)EA(i)X(i) + εD(i)X(i)K�(i)E�
B (i)EB(i)K(i)X(i)

+εCy
(i)X(i)E�

Cy
(i)ECy

(i)X(i) + εE(i)DB(i)D�
B(i)

+ε−1
G (i)X(i)E�

Cz
(i)ECz

(i)X(i) +
N∑

j=1

λijX(i)X−1(j)X(i) < 0.

Letting Yc(i) = K(i)X(i) and using the previous expression for
∑N

j=1 λij

X(i)X−1(j)X(i), and noticing that ε−1
P (i)B(i)K(i)K�(i)B�(i) > 0, we get

the following LMI:
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JX(i) X(i)C�
z (i) Bw(i) X(i)E�

A (i) Y �
c (i)E�

B (i)
Cz(i)X(i) −I + εG(i)DCz

(i)D�
Cz

(i) 0 0 0
B�

w (i) 0 −γ2I 0 0
EA(i)X(i) 0 0 −εA(i)I 0
EB(i)Yc(i) 0 0 0 −ε−1

D (i)I
EB(i)Yc(i) 0 0 0 0
EA(i)X(i) 0 0 0 0
ECy

(i)X(i) 0 0 0 0
ECz

(i)X(i) 0 0 0 0
S�

i (X) 0 0 0 0

Y �
c (i)E�

B (i) X(i)E�
A (i) X(i)E�

Cy
(i) X(i)E�

Cz
(i) Si(X)

0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0

−εB(i)I 0 0 0 0
0 −ε−1

C (i)I 0 0 0
0 0 −ε−1

Cy
(i)I 0 0

0 0 0 −εG(i)I 0
0 0 0 0 −Xi(X)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
< 0,

where

JX(i) = X(i)A�(i) + A(i)X(i) + B(i)Yc(i) + Y �
c (i)B�(i) + λiiX(i)

+εA(i)DA(i)D�
A(i) + εB(i)DB(i)D�

B(i) + εE(i)DB(i)D�
B(i).

For the second condition, letting Yo(i) = Q(i)L(i) yields⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

JQ(i) Yo(i)By(i) Q(i)DA(i) Q(i)DB(i)
B�

y (i)Y �
o (i) −γ2I 0 0

D�
A(i)Q(i) 0 −εC(i)I 0

D�
B(i)Q(i) 0 0 −εD(i)I

D�
Cy

(i)Y �
o (i) 0 0 0

D�
B(i)Q(i) 0 0 0

EB(i)K(i) 0 0 0
EB(i)K(i) 0 0 0

Yo(i)DCy
(i) Q(i)DB(i) K�(i)E�

B (i) K�(i)E�
B (i)

0 0 0 0
0 0 0 0
0 0 0 0

−εCy
(i)I 0 0 0

0 −εF (i)I 0 0
0 0 −εE(i)I 0
0 0 0 −ε−1

F (i)I

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
< 0,

where
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JQ(i) = A�(i)Q(i) + Q(i)A(i) + Yo(i)Cy(i) + C�
y (i)Y �

o (i)

+εP (i)I + εG(i)DCz
(i)D�

Cz
(i) +

N∑
j=1

λijQ(j).

The following theorem summarizes the results of this development.

Theorem 58. Let εA = (εA(1), · · · , εA(N)) > 0, εB = (εB(1), · · · , εB(N)) >
0, εC = (εC(1), · · · , εC(N)) > 0, εCy

= (εCy
(1), · · · , εCy

(N)) > 0, εD =
(εD(1), · · · , εD(N)) > 0, εE = (εE(1), · · · , εE(N)) > 0, εF = (εF (1), · · · ,
εF (N)) > 0, εG = (εG(1), · · · , εG(N)) > 0, εP = (εP (1), · · · , εP (N)) > 0 be
sets of positive scalars. Let γ be a given positive constant. If there exist sets
of symmetric and positive-definite matrices X = (X(1), · · · , X(N)) > 0 and
Q = (Q(1), · · · , Q(N)) > 0 and sets of matrices Yc = (Yc(1), · · · , Yc(N)) and
Yo = (Yo(1), · · · , Yo(N)) such that the following LMIs hold for every i ∈ S :⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

JX(i) X(i)C�
z (i) Bw(i) X(i)E�

A (i) Y �
c (i)E�

B (i)
Cz(i)X(i) −I + εG(i)DCz

(i)D�
Cz

(i) 0 0 0
B�

w (i) 0 −γ2I 0 0
EA(i)X(i) 0 0 −εA(i)I 0
EB(i)Yc(i) 0 0 0 −ε−1

D (i)I
EB(i)Yc(i) 0 0 0 0
EA(i)X(i) 0 0 0 0
ECy

(i)X(i) 0 0 0 0
ECz

(i)X(i) 0 0 0 0
S�

i (X) 0 0 0 0

Y �
c (i)E�

B (i) X(i)E�
A (i) X(i)E�

Cy
(i) X(i)E�

Cz
(i) Si(X)

0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0

−εB(i)I 0 0 0 0
0 −ε−1

C (i)I 0 0 0
0 0 −ε−1

Cy
(i)I 0 0

0 0 0 −εG(i)I 0
0 0 0 0 −Xi(X)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
< 0, (4.62)

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

JQ(i) Yo(i)By(i) Q(i)DA(i) Q(i)DB(i)
B�

y (i)Y �
o (i) −γ2I 0 0

D�
A(i)Q(i) 0 −εC(i)I 0

D�
B(i)Q(i) 0 0 −εD(i)I

D�
Cy

(i)Y �
o (i) 0 0 0

D�
B(i)Q(i) 0 0 0

EB(i)K(i) 0 0 0
EB(i)K(i) 0 0 0
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Yo(i)DCy
(i) Q(i)DB(i) K�(i)E�

B (i) K�(i)E�
B (i)

0 0 0 0
0 0 0 0
0 0 0 0

−εCy
(i)I 0 0 0

0 −εF (i)I 0 0
0 0 −εE(i)I 0
0 0 0 −ε−1

F (i)I

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
< 0, (4.63)

then the observer-based control with the following gains:

L(i) = Q−1(i)Yo(i), (4.64)
K(i) = Yc(i)X−1(i), (4.65)

robustly stochastically stabilizes the class of systems we are studying and at
the same time guarantees the disturbance rejection of level γ.

From the practical point of view, the observer-based control that stochas-
tically robustly stabilizes the system and at the same time guarantees the
minimum disturbance rejection is of great interest. This controller can be
obtained by solving the following optimization problem:

P :

⎧⎪⎪⎪⎨⎪⎪⎪⎩
min ν>0,

X=(X(1),··· ,X(N))>0,
Q=(Q(1),··· ,Q(N))>0,
Yc=(Yc(1),··· ,Yc(N)),
Yo=(Yo(1),··· ,Yo(N)),

ν,

s.t. : (4.62) and (4.63) with ν = γ2.

The following corollary gives the results of the design of the controller that
stochastically stabilizes the system (4.1) and simultaneously guarantees the
smallest disturbance rejection level.

Corollary 12. Let ν > 0, X = (X(1), · · · , X(N)) > 0, Q = (Q(1), · · · ,
Q(N)) > 0, Yc = (Yc(1), · · · , Yc(N)), and Yo = (Yo(1), · · · , Yo(N)) be
the solution of the optimization problem P. Then the controller (4.50) with
K(i) = Yc(i)X−1(i) and L(i) = Q−1(i)Yo(i) stochastically stabilizes the class
of systems we are considering and, moreover, the closed-loop system satisfies
the disturbance rejection of level

√
ν.

Example 59. To illustrate the results of the previous theorem, let us consider
the two-mode system with state space in R3 of the previous example with the
following extra data:

• mode #1:

DA(1) =

⎡⎣0.1
0.2
0.2

⎤⎦ , EA(1) =
[
0.2 0.1 0.1

]
,
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DB(1) =

⎡⎣0.1
0.2
0.2

⎤⎦ , EB(1) =
[
0.2 0.1 0.1

]
,

DCy
(1) =

⎡⎣0.1
0.2
0.2

⎤⎦ , ECy
(1) =

[
0.2 0.1 0.1

]
,

• mode #2:

DA(2) =

⎡⎣0.13
0.1
0.1

⎤⎦ , EA(2) =
[
0.1 0.2 0.2

]
,

DB(2) =

⎡⎣0.13
0.1
0.1

⎤⎦ , EB(2) =
[
0.1 0.2 0.2

]
,

DCy
(2) =

⎡⎣0.13
0.1
0.1

⎤⎦ , ECy
(2) =

[
0.1 0.2 0.2

]
.

Let

εA(1) = εA(2) = 0.5, εB(1) = εB(2) = 0.1, εC(1) = εC(2) = 0.1,

εCy
(1) = εCy

(2) = 0.1, εD(1) = εD(2) = 0.1, εE(1) = εE(2) = 0.1,

εF (1) = εF (2) = 0.1, εG(1) = εG(2) = 0.1, εP (1) = εP (2) = 0.1.

Solving the optimization problem iteratively we get γ = 1.0001 and the
corresponding matrices are

X(1) =

⎡⎣ 1.1891 −1.2714 −0.3465
−1.2714 4.7803 −1.8519
−0.3465 −1.8519 4.7348

⎤⎦ ,

X(2) =

⎡⎣ 2.5471 1.1317 −0.6506
1.1317 5.9863 −5.0774
−0.6506 −5.0774 8.4276

⎤⎦ ,

Yc(1) =

⎡⎣−11.6591 23.8088 6.5857
27.5583 −58.2554 9.1138
−5.2481 9.8404 −23.0591

⎤⎦ ,

Yc(2) =

⎡⎣ 35.2732 −57.7214 17.8767
164.8969 −19.2224 147.5903
−182.4561 47.9403 −156.7615

⎤⎦ ,

Q(1) =

⎡⎣ 0.2121 −0.0225 −0.1250
−0.0225 0.1953 −0.1768
−0.1250 −0.1768 0.3743

⎤⎦ ,
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Q(2) =

⎡⎣ 0.2453 −0.2391 −0.1802
−0.2391 7.3322 −3.5416
−0.1802 −3.5416 4.0056

⎤⎦ ,

Yo(1) =

⎡⎣−2.6968 0.8976 0.2141
1.0410 −1.0789 0.0700
0.1182 0.9326 −1.0586

⎤⎦ ,

Yo(2) =

⎡⎣5.4077 −7.4053 0.4305
1.9615 −1.2240 −1.5041
3.9213 −2.0942 −3.0715

⎤⎦ ,

L(1) =

⎡⎣−16.7451 6.7031 −4.0813
−2.3959 −0.8230 −6.8220
−6.4068 4.3406 −7.4131

⎤⎦ ,

L(2) =

⎡⎣30.5904 −39.0788 −0.5410
4.1933 −4.4382 −1.0558
6.0624 −6.2045 −1.7246

⎤⎦ ,

K(1) =

⎡⎣−2.9970 5.4655 3.3093
13.6955 −8.7333 −0.4888
−9.8416 −3.2112 −6.8462

⎤⎦ ,

K(2) =

⎡⎣ 21.0037 −21.3461 −9.1176
68.6938 6.4495 26.7015
−79.1390 4.1125 −22.2328

⎤⎦ .

As we did for the nominal system, we can establish other results that do
not neglect anything resulting from the transformation of the terms:[

0 P (i)B(i)K(i)
0 0

]
+

[
0 P (i)B(i)K(i)
0 0

]�
.

We can use another decomposition and get less conservative results. In
fact, notice that[

0 P (i)B(i)K(i)
0 0

]
=

[
P (i)B(i) 0

0 0

] [
0 K(i)
0 0

]
,

which implies [
0 P (i)B(i)K(i)
0 0

]
+

[
0 P (i)B(i)K(i)
0 0

]�
≤

[
P (i)B(i)B�(i)P (i) 0

0 K�(i)K(i)

]
.

Following the same reasoning as before, we get

A�(i)P (i) + P (i)A(i) + P (i)B(i)K(i) + K�(i)B�(i)P (i)
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+C�
z (i)

[
I − εG(i)DCz

(i)D�
Cz

(i)
]−1

Cz(i)

+P (i)B(i)B�(i)P (i) + γ−2P (i)Bw(i)B�
w (i)P (i)

+εA(i)P (i)DA(i)D�
A(i)P (i) + ε−1

A (i)E�
A (i)EA(i)

+εB(i)P (i)DB(i)D�
B(i)P (i) + ε−1

B (i)K�(i)E�
B (i)EB(i)K(i)

+εC(i)E�
A (i)EA(i) + εD(i)K�(i)E�

B (i)EB(i)K(i)
+εCy

(i)E�
Cy

(i)ECy
(i) + ε−1

E (i)P (i)DB(i)D�
B(i)P (i)

+ε−1
G (i)E�

Cz
(i)ECz

(i) +
N∑

j=1

λijP (j) < 0,

A�(i)Q(i) + Q(i)A(i) + Q(i)L(i)Cy(i) + C�
y (i)L�(i)Q(i)

+K�(i)K(i) + γ−2Q(i)L(i)By(i)B�
y (i)L�(i)Q(i)

+ε−1
C (i)Q(i)DA(i)D�

A(i)Q(i) + ε−1
D (i)Q(i)DB(i)D�

B(i)Q(i)
+ε−1

Cy
(i)Q(i)L(i)DCy

(i)D�
Cy

(i)L�(i)Q(i) + ε−1
E (i)K�(i)E�

B (i)EB(i)K(i)

+ε−1
F (i)Q(i)DB(i)D�

B(i)Q(i) + εF (i)K�(i)E�
B (i)EB(i)K(i)

+εG(i)DCz
(i)D�

Cz
(i) +

N∑
j=1

λijQ(j) < 0.

These two conditions are nonlinear in design parameters P (i), Q(i), K(i),
and L(i). To put them in the LMI framework let us proceed as before. For
this purpose, let us transform the first condition. Let X(i) = P−1(i) and pre-
and post-multiply the first condition by X(i) to yield

X(i)A�(i) + A(i)X(i) + B(i)K(i)X(i) + X(i)K�(i)B�(i)

+X(i)C�
z (i)

[
I − εG(i)DCz

(i)D�
Cz

(i)
]−1

Cz(i)X(i)

+B(i)B�(i) + γ−2Bw(i)B�
w (i)

+εA(i)DA(i)D�
A(i) + ε−1

A (i)X(i)E�
A (i)EA(i)X(i)

+εB(i)DB(i)D�
B(i) + ε−1

B (i)X(i)K�(i)E�
B (i)EB(i)K(i)X(i)

+εC(i)X(i)E�
A (i)EA(i)X(i) + εD(i)X(i)K�(i)E�

B (i)EB(i)K(i)X(i)
+εCy

(i)X(i)E�
Cy

(i)ECy
(i)X(i) + ε−1

E (i)DB(i)D�
B(i)

+ε−1
G (i)X(i)E�

Cz
(i)ECz

(i)X(i) +
N∑

j=1

λijX(i)X−1(j)X(i) < 0.

Letting Yc(i) = K(i)X(i) and using the previous expression for

N∑
j=1

λijX(i)X−1(j)X(i),

and noticing that ε−1
P (i)B(i)K(i)K�(i)B�(i) > 0, we get the following LMI:
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JX(i) X(i)C�
z (i) Bw(i) X(i)E�

A (i) Y �
c (i)E�

B (i)
Cz(i)X(i) −I + εG(i)DCz

(i)D�
Cz

(i) 0 0 0
B�

w (i) 0 −γ2I 0 0
EA(i)X(i) 0 0 −εA(i)I 0
EB(i)Yc(i) 0 0 0 −ε−1

D (i)I
EB(i)Yc(i) 0 0 0 0
EA(i)X(i) 0 0 0 0
ECy

(i)X(i) 0 0 0 0
ECz

(i)X(i) 0 0 0 0
S�

i (X) 0 0 0 0

Y �
c (i)E�

B (i) X(i)E�
A (i) X(i)E�

Cy
(i) X(i)E�

Cz
(i) Si(X)

0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0

−εB(i)I 0 0 0 0
0 −ε−1

C (i)I 0 0 0
0 0 −ε−1

Cy
(i)I 0 0

0 0 0 −εG(i)I 0
0 0 0 0 −Xi(X)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
< 0, (4.66)

where

JX(i) = X(i)A�(i) + A(i)X(i) + B(i)Yc(i) + Y �
c (i)B�(i) + B(i)B�(i)

+λiiX(i) + εA(i)DA(i)D�
A(i) + εB(i)DB(i)D�

B(i)
+ε−1

E (i)DB(i)D�
B(i).

For the second condition, letting Yo(i) = Q(i)L(i) yields⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

JQ(i) Yo(i)By(i) Q(i)DA(i) Q(i)DB(i) Yo(i)DCy
(i)

B�
y (i)Y �

o (i) −γ2I 0 0 0
D�

A(i)Q(i) 0 −εC(i)I 0 0
D�

B(i)Q(i) 0 0 −εD(i)I 0
D�

Cy
(i)Y �

o (i) 0 0 0 −εCy
(i)I

D�
B(i)Q(i) 0 0 0 0

EB(i)K(i) 0 0 0 0
EB(i)K(i) 0 0 0 0

K(i) 0 0 0 0
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Q(i)DB(i) K�(i)E�
B (i) K�(i)E�

B (i) K�(i)
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

−εF (i)I 0 0 0
0 −εE(i)I 0 0
0 0 −ε−1

F (i)I 0
0 0 0 −I

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
< 0, (4.67)

where

JQ(i) = A�(i)Q(i) + Q(i)A(i) + Yo(i)Cy(i) + C�
y (i)Y �

o (i)

+εG(i)DCz
(i)D�

Cz
(i) +

N∑
j=1

λijQ(j).

The following theorem summarizes the results of this development.

Theorem 59. Let εA = (εA(1), · · · , εA(N)) > 0, εB = (εB(1), · · · , εB(N)) >
0, εC = (εC(1), · · · , εC(N)) > 0, εCy

= (εCy
(1), · · · , εCy

(N)) > 0, εD =
(εD(1), · · · , εD(N)) > 0, εE = (εE(1), · · · , εE(N)) > 0, εF = (εF (1), · · · ,
εF (N)) > 0, εG = (εG(1), · · · , εG(N)) > 0, εP = (εP (1), · · · , εP (N)) > 0 be
sets of positive scalars. Let γ be a given positive constant. If there exist sets
of symmetric and positive-definite matrices X = (X(1), · · · , X(N)) > 0 and
Q = (Q(1), · · · , Q(N)) > 0 and sets of matrices Yc = (Yc(1), · · · , Yc(N)) and
Yo = (Yo(1), · · · , Yo(N)) such that the following LMIs (4.66) and (4.67) hold
for every i ∈ S , then the observer-based control with the following gains:

L(i) = Q−1(i)Yo(i), (4.68)
K(i) = Yc(i)X−1(i), (4.69)

robustly stochastically stabilizes the class of systems we are studying and at
the same time guarantees the disturbance rejection of level γ.

4.5 Stochastic Systems with Multiplicative Noise

Let us consider a dynamical system defined in a probability space (Ω,F ,P)
and assume that its dynamics are described by the following differential equa-
tions: ⎧⎪⎪⎪⎨⎪⎪⎪⎩

dx(t) = A(r(t), t)x(t)dt + B(r(t), t)u(t)dt + Bw(r(t))ω(t)dt

+W(r(t))x(t)dw(t), x(0) = x0,

y(t) = Cy(r(t), t)x(t) + Dy(r(t), t)u(t) + By(r(t))ω(t),
z(t) = Cz(r(t), t)x(t) + Dz(r(t), t)u(t) + Bz(r(t))ω(t),

(4.70)
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where x(t) ∈ Rn is the state vector; x0 ∈ Rn is the initial state; y(t) ∈ Rny

is the measured output; z(t) ∈ Rnz is the controlled output; u(t) ∈ Rm is the
control input; and ω(t) ∈ Rl is the system external disturbance. w(t) ∈ R is a
standard Wiener process that is assumed to be independent of {r(t), t ≥ 0},
which is a continuous-time Markov process taking values in a finite space
S = {1, · · · , N} and describing the evolution of the mode at time t, when
r(t) = i. The matrices A(r(t), t), B(r(t), t), Cy(r(t), t), Dy(r(t), t), Cz(r(t), t),
and Dz(r(t), t) are given by⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

A(i, t) = A(i) + DA(i)FA(i, t)EA(i),
B(i, t) = B(i) + DB(i)FB(i, t)EB(i),
Cy(i, t) = Cy(i) + DCy

(i)FCy
(i, t)ECy

(i),
Cz(i, t) = Cz(i) + DCz

(i)FCz
(i, t)ECz

(i),
Dy(i, t) = Cy(i) + DDy

(i)FDy
(i, t)EDy

(i),
Dz(i, t) = Dz(i) + DDz

(i)FDz
(i, t)EDz

(i),

where the matrices A(i), B(i), Bw(i), W(i), Cy(i), Dy(i), By(i), Cz(i), Dz(i),
and Bz(i) are given matrices with appropriate dimensions.

Let us drop the uncertainties and see how we can design a state feedback
controller that stochastically stabilizes the nominal system. Before giving the
results that determine such a controller, let us prove the following theorem.

Theorem 60. If system (4.70) with u(t) ≡ 0 is internally MSQS, then it is
stochastically stable.

Proof: To prove this theorem, let us consider a candidate Lyapunov func-
tion defined as follows:

V (x(t), r(t)) = x�(t)P (r(t))x(t),

where P (i) > 0 is symmetric and positive-definite matrix for every i ∈ S .
The infinitesimal operator L of the Markov process {(x(t), r(t)), t ≥ 0}

acting on V (.) and emanating from the point (x, i) at time t, when at time t,
x(t) = x and r(t) = i for i ∈ S , is given by:

L V (x(t), i) = ẋ�(t)P (i)x(t) + x�(t)P (i)ẋ(t)

+x�(t)W�(i)P (i)W(i)x(t) +
N∑

j=1

λijx
�(t)P (j)x(t)

= x�(t)
[
A�(i)P (i) + P (i)A(i) + W�(i)P (i)W(i)

= +
N∑

j=1

λijP (j)
]
x(t)

+2x�(t)P (i)Bω(i)ω(t).
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Using Lemma 7 from Appendix A, we get the following for any εw(i) > 0:

2x�(t)P (i)Bω(i)ω(t) ≤ εw(i)x�(t)P (i)Bω(i)B�
ω (i)P (i)x(t)

+ε−1
w (i)ω�(t)ω(t).

Combining this with the expression L V (x(t), i) yields

L V (x(t), i) ≤ x�(t)
[
A�(i)P (i) + P (i)A(i) + W�(i)P (i)W(i)

+
N∑

j=1

λijP (j)
]
x(t) + εw(i)x�(t)P (i)Bω(i)B�

ω (i)P (i)x(t)

+ε−1
w (i)ω�(t)ω(t)

= x�(t)
[
A�(i)P (i) + P (i)A(i) + W�(i)P (i)W(i)

+
N∑

j=1

λijP (j)
]
x(t) + x�(t)

[
εw(i)P (i)Bω(i)B�

ω (i)P (i)
]
x(t)

+ε−1
w (i)ω�(t)ω(t),

= x�(t)Ξ(i)x(t) + ε−1(i)ω�(t)ω(t), (4.71)

with

Ξ(i) = A�(i)P (i) + P (i)A(i) + W�(i)P (i)W(i) +
N∑

j=1

λijP (j)

+εw(i)P (i)Bω(i)B�
ω (i)P (i).

Based on Dynkin’s formula, we get the following:

E [V (x(t), i)] − V (x0, r0) = E

[∫ t

0

L V (x(s), r(s))ds|x0, r0

]
,

which combined with (4.71) yields

E[V (x(t), i) − V (x0, r0)] ≤ E

[∫ t

0

x�(s)Ξ(r(s))x(s)ds|x0, r0

]
+ε−1

w (i)
∫ t

0

ω�(s)ω(s)ds. (4.72)

Since V (x(t), i) is nonnegative, (4.72) implies

E[V (x(t), i)] + E

[∫ t

0

x�(s)[−Ξ(r(s))]x(s)ds|x0, r0

]
≤ V (x0, r0)] + ε−1

w (i)
∫ t

0

ω�(s)ω(s)ds,
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which yields

min
i∈S

{λmin(−Ξ(i))}E
[∫ t

0

x�(s)x(s)ds

]
≤ E

[∫ t

0

x�(s)[−Ξ(r(s))]x(s)ds

]
≤ V (x0, r0) + ε−1

w (i)
∫ ∞

0

ω�(s)ω(s)ds.

This proves that system (4.70) is stochastically stable. �
Let us now establish what conditions should we satisfy if we want to get

system (4.70), with u(t) = 0 for all t ≥ 0, stochastically stable and has γ-
disturbance rejection. The following theorem gives such conditions.

Theorem 61. Let γ be a given positive constant. If there exists a set of sym-
metric and positive-definite matrices P = (P (1), · · · , P (N)) > 0 such that the
following LMI holds for every i ∈ S⎡⎢⎢⎣ J0(i)

[
C�

z (i)Bz(i)
+P (i)Bω(i)

]
[

B�
z (i)Cz(i)

+B�
ω (i)P (i)

]
B�

z (i)Bz(i) − γ2I

⎤⎥⎥⎦ < 0, (4.73)

where J0(i) = A�(i)P (i)+P (i)A(i)+W�(i)P (i)W(i)+
∑N

j=1 λijP (j)+C�
z (i)

Cz(i), then system (4.70) with u(t) ≡ 0 is stochastically stable and satisfies
the following:

‖z‖2 ≤
[
γ2‖w‖2

2 + x�
0 P (r0)x0

] 1
2 , (4.74)

which means that the system with u(t) = 0 for all t ≥ 0 is stochastically stable
with γ-disturbance attenuation.

Proof: From (4.73) and using the Schur complement, we get the following
inequality:

A�(i)P (i) + P (i)A(i) + W�(i)P (i)W(i) +
N∑

j=1

λijP (j) + C�
z (i)Cz(i) < 0,

which implies the following since C�
z (i)Cz(i) ≥ 0:

A�(i)P (i) + P (i)A(i) + W�(i)P (i)W(i) +
N∑

j=1

λijP (j) < 0.

Based on Definition 6, this proves that the system under study is internally
MSQS. Using Theorem 60, we conclude that system (4.70) with u(t) ≡ 0 is
stochastically stable.

Let us now prove that (4.74) is satisfied. To this end, define the following
performance function:
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JT = E

[∫ T

0

[z�(t)z(t) − γ2ω�(t)ω(t)]dt

]
.

To prove (4.74), it suffices to establish that J∞ is bounded, that is,

J∞ ≤ V (x0, r0) = x�
0 P (r0)x0.

Notice that for V (x(t), i) = x�(t)P (i)x(t) we have

L V (x(t), i) = x�(t)
[
A�(i)P (i) + P (i)A(i) + W�(i)P (i)W(i)

+
N∑

j=1

λijP (j)
]
x(t) + x�(t)P (i)Bω(i)ω(t) + ω�(t)B�

ω (i)P (i)x(t),

and

z�(t)z(t) − γ2ω�(t)ω(t)

= [Cz(i)x(t) + Bz(i)ω(t)]� [Cz(i)x(t) + Bz(i)ω(t)] − γ2ω�(t)ω(t)
= x�(t)C�

z (i)Cz(i)x(t) + x�(t)C�
z (i)Bz(i)ω(t)

+ω�(t)B�
z (i)Cz(i)x(t) + ω�(t)B�

z (i)Bz(i)ω(t) − γ2ω�(t)ω(t),

which implies the following equality:

z�(t)z(t) − γ2ω�(t)ω(t) + L V (x(t), i) = η�(t)Θ(i)η(t),

with

Θ(i) =

⎡⎢⎢⎣ J0(i)
[

C�
z (i)Bz(i)

+P (i)Bω(i)

]
[

B�
z (i)Cz(i)

+B�
ω (i)P (i)

]
B�

z (i)Bz(i) − γ2I

⎤⎥⎥⎦ ,

η�(t) =
[
x�(t) ω�(t)

]
.

Therefore,

JT = E

[∫ T

0

[
z�(t)z(t) − γ2ω�(t)ω(t) + L V (x(t), r(t))

]
dt

]

−E

[∫ T

0

L V (x(t), r(t))dt

]
.

Using Dynkin’s formula,

E

[∫ T

0

L V (x(t), r(t))]dt|x0, r0

]
= E[V (x(T ), r(T ))] − V (x0, r0),
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we get

JT = E

[∫ T

0

η�(t)Θ(r(t))η(t)dt

]
− E[V (x(T ), r(T ))] + V (x0, r0).

Since Θ(i) < 0 and E[V (x(T ), r(T ))] ≥ 0, this implies the following:

JT ≤ V (x0, r0),

which yields J∞ ≤ V (x0, r0), i.e., ‖z‖2
2 − γ2‖ω‖2

2 ≤ x�
0 P (r0)x0.

This gives the desired results:

‖z‖2 ≤
[
γ2‖ω‖2

2 + x�
0 P (r0)x0

] 1
2 .

This ends the proof of the theorem. �
Let us see how we can design a controller of the form (4.17). Plugging the

expression of the controller in the dynamics (4.70), we get{
dx(t) = Ā(i)x(t)dt + Bw(i)w(t)dt + W(i)x(t)dω(t),
z(t) = C̄z(i)x(t) + Bz(i)w(t),

(4.75)

where Ā(i) = A(i) + B(i)K(i) and C̄z(i) = Cz(i) + Dz(i)K(i).
Using the results of Theorem 61, we get the following for the stochas-

tic stability and the disturbance rejection of level γ > 0 for the closed-loop
dynamics.

Theorem 62. Let γ be a given positive constant and K = (K(1), · · · ,K(N))
be a set of given gains. If there exists a set of symmetric and positive-definite
matrices P = (P (1), · · · , P (N)) > 0 such that the following LMI holds for
every i ∈ S : ⎡⎢⎢⎣ J̄0(i)

[
C̄�

z (i)Bz(i)
+P (i)Bω(i)

]
[

B�
z (i)C̄z(i)

+B�
ω (i)P (i)

]
B�

z (i)Bz(i) − γ2I

⎤⎥⎥⎦ < 0, (4.76)

with J̄0(i) = Ā�(i)P (i) + P (i)Ā(i) + W(i)P (i)W(i) +
∑N

j=1 λijP (j) + C̄�
z (i)

C̄z(i), then system (4.70) is stochastically stable under the controller (4.17)
and satisfies the following:

‖z‖2 ≤
[
γ2‖w‖2

2 + x�
0 P (r0)x0

] 1
2 , (4.77)

which means that the system is stochastically stable with γ-disturbance atten-
uation.
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To synthesize the controller gain, let us transform the LMI (4.76) into a
form that can be used easily to compute the gain for every mode i ∈ S .
Notice that ⎡⎢⎢⎣ J̄0(i)

[
C̄�

z (i)Bz(i)
+P (i)Bω(i)

]
[

B�
z (i)C̄z(i)

+B�
ω (i)P (i)

]
B�

z (i)Bz(i) − γ2I

⎤⎥⎥⎦ =

[
J̄1(i) P (i)Bω(i)

B�
ω (i)P (i) −γ2I

]
+

[
C̄�

z (i)
B�

z (i)

] [
C̄z(i) Bz(i)

]
,

with J̄1(i) = Ā�(i)P (i) + P (i)Ā(i) + W(i)P (i)W(i) +
∑N

j=1 λijP (j).
Using the Schur complement we show that (4.76) is equivalent to the

following inequality:⎡⎣ J̄1(i) P (i)Bω(i) C̄�
z (i)

B�
ω (i)P (i) −γ2I B�

z (i)
C̄z(i) Bz(i) −I

⎤⎦ < 0.

Since Ā(i) is nonlinear in K(i) and P (i), the previous inequality is nonlin-
ear and therefore cannot be solved using existing linear algorithms. To trans-
form it to an LMI, let X(i) = P−1(i). Pre- and post-multiply this inequality
by diag[X(i), I, I] to give⎡⎣ J̄X(i) Bω(i) X(i)C̄�

z (i)
B�

ω (i) −γ2I B�
z (i)

C̄z(i)X(i) Bz(i) −I

⎤⎦ < 0,

with

J̄X(i) = X(i)Ā�(i) + Ā(i)X(i) + X(i)W(i)X−1(i)W(i)X(i)

+
N∑

j=1

λijX(i)X−1(j)X(i).

Notice that

X(i)Ā�(i) + Ā(i)X(i) = X(i)A�(i) + A(i)X(i) + Y �(i)B�(i)
+B(i)Y (i),

N∑
j=1

λijX(i)X−1(j)X(i) = λiiX(i) + Si(X)X−1
i (X)S�

i (X),

X(i) [Cz(i) + Dz(i)K(i)]� = X(i)C�
z (i) + Y �(i)D�

z (i),
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where Y (i) = K(i)X(i), and Si(X) and Xi(X) are defined as before.
Using the Schur complement again implies that the previous inequality is

equivalent to the following:⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

J(i) Bω(i)
[

X(i)C�
z (i)

+Y �(i)D�
z (i)

]
X(i)W�(i) Si(X)

B�
ω (i) −γ2I B�

z (i) 0 0[
Cz(i)X(i)

+Dz(i)Y (i)

]
Bz(i) −I 0 0

W(i)X(i) 0 0 −X(i) 0
S�

i (X) 0 0 0 −Xi(X)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
< 0,

with J(i) = X(i)A�(i) + A(i)X(i) + Y �(i)B�(i) + B(i)Y (i) + λiiX(i).
From this discussion we get the following theorem.

Theorem 63. Let γ be a positive constant. If there exist a set of symmet-
ric and positive-definite matrices X = (X(1), · · · , X(N)) > 0 and a set of
matrices Y = (Y (1), · · · , Y (N)) such that the following LMI holds for every
i ∈ S :

�
���������

J(i) Bω(i)

�
X(i)C�

z (i)

+Y �(i)D�
z (i)

�
X(i)W�(i) Si(X)

B�
ω (i) −γ2I B�

z (i) 0 0�
Cz(i)X(i)

+Dz(i)Y (i)

�
Bz(i) −I 0 0

W(i)X(i) 0 0 −X(i) 0

S�
i (X) 0 0 0 −Xi(X)

�
���������

< 0, (4.78)

with J(i) = X(i)A�(i)+A(i)X(i)+Y �(i)B�(i)+B(i)Y (i)+λiiX(i), then the
system (4.70) under the controller (4.17) with K(i) = Y (i)X−1(i) is stochas-
tically stable and, moreover, the closed-loop system satisfies the disturbance
rejection of level γ.

From the practical point of view, the controller that stochastically stabi-
lizes the class of systems and simultaneously guarantees the minimum distur-
bance rejection is of great interest. This controller can be obtained by solving
the following optimization problem:

P :

⎧⎪⎨⎪⎩
min ν>0,

X=(X(1),··· ,X(N))>0,
Y =(Y (1),··· ,Y (N)),

ν,

s.t. : (4.78) with ν = γ2.

The following corollary gives the results of the design of the controller that
stochastically stabilizes the system (4.70) and simultaneously guarantees the
smallest disturbance rejection level.

Corollary 13. Let ν > 0, X = (X(1), · · · , X(N)) > 0, and Y = (Y (1), · · · ,
Y (N)) be the solution of the optimization problem P. Then the controller



4.5 Stochastic Systems with Multiplicative Noise 283

(4.17) with K(i) = Y (i)X−1(i) stochastically stabilizes the class of systems we
are considering and, moreover, the closed-loop system satisfies the disturbance
rejection of level

√
ν.

Previously we developed results that determine the state feedback con-
troller that stochastically stabilizes the class of systems we are treating in
this chapter and at the same time rejects the disturbance w(t) with the de-
sired level γ > 0. The conditions we developed are in the LMI form, which
makes their resolution easy. In the rest of this section we give some numerical
examples to show the effectiveness of our results. Two numerical examples are
presented.

Example 60. Let us consider a system with two modes with the following data:

• transition probability rate matrix:

Λ =
[
−2.0 2.0
3.0 −3.0

]
,

• mode #1:

A(1) =
[

1.0 −0.5
0.1 1.0

]
, B(1) =

[
1.0 0.0
0.0 1.0

]
, Bw(1) =

[
1.0 0.0
0.0 1.0

]
,

Bz(1) =
[

1.0 0.0
0.0 1.0

]
, W(1) =

[
0.1 0.0
0.0 0.1

]
, Cz(1) =

[
1.0 0.0
0.0 1.0

]
,

Dz(1) =
[

1.0 0.0
0.0 1.0

]
,

• mode #2:

A(2) =
[
−0.2 −0.5
0.5 −0.25

]
, B(2) =

[
1.0 0.0
0.0 1.0

]
, Bw(2) =

[
1.0 0.0
0.0 1.0

]
,

Bz(2) =
[

1.0 0.0
0.0 1.0

]
, W(2) =

[
0.2 0.0
0.0 0.2

]
, Cz(2) =

[
1.0 0.0
0.0 1.0

]
,

Dz(2) =
[

1.0 0.0
0.0 1.0

]
.

Notice that the system is instable in mode 1 and is stochastically instable.
Letting γ = 10 and solving the LMI (4.78), we get

X(1) =
[

35.2579 2.3259
2.3259 29.7626

]
, Y (1) =

[
−37.3452 −2.3342
−2.3117 −31.8415

]
,

X(2) =
[

44.3439 −1.2064
−1.2064 39.3224

]
, Y (2) =

[
−45.5124 1.4861
1.4905 −40.7028

]
,

which gives the following gains:
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K(1) =
[
−1.0595 0.0044
0.0050 −1.0702

]
, K(2) =

[
−1.0262 0.0063
0.0055 −1.0349

]
.

All the conditions in Theorem 63 are satisfied and therefore the closed-loop
system is stochastically stable under the state feedback controller designed for
this system. The system also assures the disturbance rejection of level 10.

Example 61. To design a stabilizing controller that assures the minimum dis-
turbance rejection, let us reconsider the system with two modes from the
previous example and solve the optimization problem P . The resolution of
such a system gives

X(1) =
[

1.9289 −0.0471
−0.0471 1.8714

]
, Y (1) =

[
−2.9289 0.0471
0.0471 −2.8714

]
,

X(2) =
[

2.0797 −0.1916
−0.1916 2.1665

]
, Y (2) =

[
−3.0797 0.1916
0.1916 −3.1665

]
,

which gives the following gains:

K(1) =
[
−1.5188 −0.0131
−0.0131 −1.5347

]
, K(2) =

[
−1.4848 −0.0429
−0.0429 −1.4654

]
.

Using the results of Corollary 13, the system of this example is stochasti-
cally stable under the state feedback controller with the computed constant
gain and ensures the disturbance rejection of level γ = 1.0.

Let us now consider the effect of the uncertainties and see how to design
the state feedback controller that robustly stochastically stabilizes the class
of systems we are considering in this section. Before doing this let us give the
following definition.

Definition 13. System (4.70) with u(t) ≡ 0 and w(t) ≡ 0 for all t ≥ 0 is
said to be internally mean square quadratically stable (MSQS) if there exists
a set of symmetric and positive-definite matrices P = (P (1), · · · , P (N)) > 0
satisfying the following for every i ∈ S :

A�(i)P (i) + P (i)A(i) + W(i)P (i)W(i) +
N∑

j=1

λijP (j) < 0. (4.79)

Based on the previous definition, the uncertain system with u(t),∀t ≥ 0,
will be stochastically stable if the following holds for every i ∈ S and for all
admissible uncertainties:

A�(i, t)P (i) + P (i)A(i, t) + W�(i)P (i)W(i) +
N∑

j=1

λijP (j) < 0.

This condition is useless since it contains the uncertainties FA(i, t). Let us
now transform it into a useful condition that can be used to check the robust
stability.
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If we use the expression A(i, t), we get

A�(i)P (i) + P (i)A(i) + W�(i)P (i)W(i) +
N∑

j=1

λijP (j)

+P (i)DA(i)FA(i, t)EA(i) + E�
A (i)F�

A (i, t)D�
A(i)P (i) < 0.

Using Lemma 7 of Appendix A, the previous inequality will be satisfied if
the following holds:

A�(i)P (i) + P (i)A(i) + W�(i)P (i)W(i) +
N∑

j=1

λijP (j) + εA(i)E�
A (i)EA(i)

+ε−1
A (i)P (i)DA(i)D�

A(i)P (i) < 0,

with εA(i) > 0 for all i ∈ S .
Using the Schur complement we get the desired condition:[

J0(i) P (i)DA(i)
D�

A(i)P (i) −εA(i)I

]
< 0, (4.80)

with

J0(i) = A�(i)P (i) + P (i)A(i) + W�(i)P (i)W(i) +
N∑

j=1

λijP (j)

+εA(i)E�
A (i)EA(i).

The results of this development are summarized by the following theorem.

Theorem 64. If there exist a set of symmetric and positive-definite ma-
trices P = (P (1), · · · , P (N)) > 0 and a set of positive scalars εA =
(εA(1), · · · , εA(N)) such that the following LMI (4.80) holds for every i ∈ S
and for all admissible uncertainties, then system (4.70) with u(t) = 0 and
w(t) = 0 for all t ≥ 0 is internally mean square quadratically stable.

Theorem 65. If system (4.70) with u(t) ≡ 0 is internally mean square sto-
chastically stable for all admissible uncertainties, then it is also robust sto-
chastically stable.

Proof: To prove this theorem, consider a candidate Lyapunov function to
be defined as follows:

V (x(t), r(t)) = x�(t)P (r(t))x(t),

where P (i) > 0 is a symmetric and positive-definite matrix for every i ∈ S .
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The infinitesimal operator L of the Markov process {(x(t), r(t)), t ≥ 0}
acting on V (.) and emanating from the point (x, i) at time t, where x(t) = x
and r(t) = i for i ∈ S , is given by

L V (x(t), i) = ẋ�(t)P (i)x(t) + x�(t)P (i)ẋ(t)

+x�(t)W�(i)P (i)W(i)x(t) +
N∑

j=1

λijx
�(t)P (j)x(t)

= x�(t)
[
A�(i)P (i) + P (i)A(i) + W�(i)P (i)W(i)

+
N∑

j=1

λijP (j)
]
x(t) + 2x�(t)P (i)DA(i)FA(i, t)EA(i)x(t)

+2x�(t)P (i)Bω(i)ω(t).

Using Lemma 7 in Appendix A, we get the following:

2x�(t)P (i)DA(i)FA(i, t)EA(i)x(t) ≤ εA(i)x�(t)E�
A (i)EA(i)x(t)

+ε−1
A (i)x�(t)P (i)DA(i)D�

A(i)P (i)x(t)
2x�(t)P (i)Bω(i)ω(t) ≤ ε−1

w (i)x�(t)P (i)Bω(i)B�
ω (i)P (i)x(t)

+εw(i)ω�(t)ω(t).

Combining this with the expression L V (x(t), i) yields

L V (x(t), i) ≤ x�(t)
[
A�(i)P (i) + P (i)A(i) + W�(i)P (i)W(i)

+
N∑

j=1

λijP (j)
]
x(t) + εA(i)x�(t)E�

A (i)EA(i)x(t)

+ε−1
A (i)x�(t)P (i)DA(i)D�

A(i)P (i)x(t)
+ε−1

w (i)x�(t)P (i)Bω(i)B�
ω (i)P (i)x(t) + εw(i)ω�(t)ω(t)

= x�(t)

⎡⎣A�(i)P (i) + P (i)A(i) + W�(i)P (i)W(i) +
N∑

j=1

λijP (j)

⎤⎦x(t)

+εA(i)x�(t)E�
A (i)EA(i)x(t) + ε−1

A (i)x�(t)P (i)DA(i)D�
A(i)P (i)x(t)

+x�(t)
[
ε−1

w (i)P (i)Bω(i)B�
ω (i)P (i)

]
x(t) + εw(i)ω�(t)ω(t),

= x�(t)Υ (i)x(t) + ε(i)ω�(t)ω(t), (4.81)

with

Υ (i) = A�(i)P (i) + P (i)A(i) + W�(i)P (i)W(i) +
N∑

j=1

λijP (j)

+εA(i)E�
A (i)EA(i) + ε−1

A (i)P (i)DA(i)D�
A(i)P (i)
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+ε−1
w (i)P (i)Bw(i)B�

w (i)P (i).

If Υ (i) < 0 for each i ∈ S , we get the following equivalent inequality
matrix:

Ξ(i) =

⎡⎣ Jw(i) P (i)Bw(i) P (i)DA(i)
B�

w (i)P (i) −εw(i)I 0
D�

A(i)P (i) 0 −εA(i)I

⎤⎦ < 0,

with Jw(i) = A�(i)P (i) + P (i)A(i) + W�(i)P (i)W(i) +
∑N

j=1 λijP (j) +
εA(i)E�

A (i)EA(i).
Based on Dynkin’s formula, we get the following:

E [V (x(t), i)] − V (x0, r0) = E

[∫ t

0

L V (x(s), r(s))ds|x0, r0

]
,

which combined with (4.81) yields

E [V (x(t), i)] − V (x0, r0) ≤ E

[∫ t

0

x�(s)Ξ(r(s))x(s)ds|x0, r0

]
+εw(i)

∫ t

0

ω�(s)ω(s)ds. (4.82)

Since V (x(t), i) is nonnegative, (4.82) implies

E [V (x(t), i)] + E

[∫ t

0

x�(s) [−Ξ(r(s))] x(s)ds|x0, r0

]
≤ V (x0, r0) + εw(i)

∫ t

0

ω�(s)ω(s)ds,

which yields

min
i∈S

{λmin(−Ξ(i))}E
[∫ t

0

x�(s)x(s)ds

]
≤ E

[∫ t

0

x�(s)[−Ξ(r(s))]x(s)ds

]
≤ V (x0, r0) + εw(i)

∫ ∞

0

ω�(s)ω(s)ds.

This proves that system (4.70) is stochastically stable. �
Let us now establish what conditions we should satisfy if we want sys-

tem (4.70), with u(t) = 0 for all t ≥ 0, to be stochastically stable with
γ-disturbance rejection. The following theorem gives such conditions.

Theorem 66. Let γ be a given positive constant. If there exists a set of sym-
metric and positive-definite matrices P = (P (1), · · · , P (N)) > 0 such that the
following LMI holds for every i ∈ S :
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[

C�
z (i, t)Bz(i)

+P (i)Bω(i)

]
[

B�
z (i)Cz(i, t)

+B�
ω (i)P (i)

]
B�

z (i)Bz(i) − γ2I

⎤⎥⎥⎦ < 0, (4.83)

where Ju(i) = A�(i, t)P (i) + P (i)A(i, t) + W�(i)P (i)W(i) +
∑N

j=1 λijP (j) +
C�

z (i, t)Cz(i, t), then system (4.70) with u(t) ≡ 0 is robustly stochastically
stable and satisfies the following:

‖z‖2 ≤
[
γ2‖w‖2

2 + x�
0 P (r0)x0

] 1
2 , (4.84)

which means that the system with u(t) = 0 for all t ≥ 0 is stochastically stable
with γ-disturbance attenuation.

Proof: From (4.83) and using the Schur complement, we get the following
inequality:

A�(i, t)P (i) + P (i)A(i, t) + W�(i)P (i)W(i) +
N∑

j=1

λijP (j)

+C�
z (i, t)Cz(i, t) < 0,

which implies the following since C�
z (i, t)Cz(i, t) ≥ 0:

A�(i, t)P (i) + P (i)A(i, t) + W�(i)P (i)W(i) +
N∑

j=1

λijP (j) < 0.

Based on Definition 13, this proves that the system under study is inter-
nally MSQS. Using Theorem 65, we conclude that system (4.70) with u(t) ≡ 0
is robust stochastically stable.

Let us now prove that (4.84) is satisfied. To this end, let us define the
following performance function:

JT = E

[∫ T

0

[z�(t)z(t) − γ2ω�(t)ω(t)]dt

]
.

To prove (4.84), it suffices to establish that J∞ is bounded, that is:

J∞ ≤ V (x0, r0) = x�
0 P (r0)x0.

Notice that for V (x(t), i) = x�(t)P (i)x(t), we have

L V (x(t), i) = x�(t)
[
A�(i, t)P (i) + P (i)A(i, t) + W�(i)P (i)W(i)

+
N∑

j=1

λijP (j)
]
x(t) + x�(t)P (i)Bω(i)ω(t)
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+ω�(t)B�
ω (i)P (i)x(t),

and

z�(t)z(t) − γ2ω�(t)ω(t)

= [Cz(i, t)x(t) + Bz(i)ω(t)]� [Cz(i, t)x(t) + Bz(i)ω(t)] − γ2ω�(t)ω(t)
= x�(t)C�

z (i, t)Cz(i, t)x(t) + x�(t)C�
z (i, t)Bz(i)ω(t)

+ω�(t)B�
z (i)Cz(i, t)x(t) + ω�(t)B�

z (i)Bz(i)ω(t) − γ2ω�(t)ω(t),

which implies the following equality:

z�(t)z(t) − γ2ω�(t)ω(t) + L V (x(t), i) = η�(t)Θu(i)η(t),

with

Θu(i) =

⎡⎢⎢⎣ Ju(i)
[

C�
z (i, t)Bz(i)

+P (i)Bω(i)

]
[

B�
z (i)Cz(i, t)

+B�
ω (i)P (i)

]
B�

z (i)Bz(i) − γ2I

⎤⎥⎥⎦ ,

η�(t) =
[
x�(t) ω�(t)

]
.

Therefore,

JT = E

[∫ T

0

[z�(t)z(t) − γ2ω�(t)ω(t) + L V (x(t), r(t))]dt

]

−E

[∫ T

0

L V (x(t), r(t))]dt

]
.

Using Dynkin’s formula, that is,

E

[∫ T

0

L V (x(t), r(t))dt|x0, r0

]
= E[V (x(T ), r(T ))] − V (x0, r0),

we get

JT = E

[∫ T

0

η�(t)Θu(r(t))η(t)dt

]
− E[V (x(T ), r(T ))] + V (x0, r0). (4.85)

Since Θu(i) < 0 and E[V (x(T ), r(T ))] ≥ 0, (4.85) implies the following:

JT ≤ V (x0, r0),

which yields J∞ ≤ V (x0, r0), i.e., ‖z‖2
2 − γ2‖ω‖2

2 ≤ x�
0 P (r0)x0.

This gives the desired results:

‖z‖2 ≤
[
γ2‖ω‖2

2 + x�
0 P (r0)x0

] 1
2 .



290 4 H∞ Control Problem

This ends the proof of the theorem. �
Let us see how we can design a controller of the form (4.17). Plugging the

expression of the controller in the dynamics (4.70), we get{
dx(t) = Ā(i, t)x(t)dt + Bw(i)w(t)dt + W(i)x(t)dω(t),
z(t) = C̄z(i, t)x(t) + Bz(i)w(t),

(4.86)

where Ā(i, t) = A(i, t) + B(i, t)K(i) and C̄z(i, t) = Cz(i, t) + Dz(i, t)K(i).
Using the results of Theorem 66, we get the following for the stochas-

tic stability and the disturbance rejection of level γ > 0 for the closed-loop
dynamics.

Theorem 67. Let γ be a given positive constant and K = (K(1), · · · ,K(N))
be a set of given gains. If there exists a set of symmetric and positive-definite
matrices P = (P (1), · · · , P (N)) > 0 such that the following LMI holds for
every i ∈ S : ⎡⎢⎢⎣ J̄0(i, t)

[
C̄�

z (i, t)Bz(i)
+P (i)Bω(i)

]
[

B�
z (i)C̄z(i, t)

+B�
ω (i)P (i)

]
B�

z (i)Bz(i) − γ2I

⎤⎥⎥⎦ < 0, (4.87)

with J̄0(i, t) = Ā�(i, t)P (i) + P (i)Ā(i, t) + W�(i)P (i)W(i) +
∑N

j=1 λijP (j) +
C̄�

z (i, t)C̄z(i, t), then system (4.70) is stochastically stable under the controller
(4.17) and satisfies the following:

‖z‖2 ≤
[
γ2‖w‖2

2 + x�
0 P (r0)x0

] 1
2 , (4.88)

which means that the system is stochastically stable with γ-disturbance atten-
uation.

To synthesize the controller gain, let us transform the LMI (4.87) into a
form that can be used easily to compute the gain for every mode i ∈ S .
Notice that ⎡⎢⎢⎣ J̄0(i, t)

[
C̄�

z (i, t)Bz(i)
+P (i)Bω(i)

]
[

B�
z (i)C̄z(i, t)

+B�
ω (i)P (i)

]
B�

z (i)Bz(i) − γ2I

⎤⎥⎥⎦ =

[
J̄1(i, t) P (i)Bω(i)

B�
ω (i)P (i) −γ2I

]
+

[
C̄�

z (i, t)
B�

z (i)

] [
C̄z(i, t) Bz(i)

]
,

with J̄1(i, t) = Ā�(i, t)P (i) + P (i)Ā(i, t) + W�(i)P (i)W(i) +
∑N

j=1 λijP (j).
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Using the Schur complement we show that (4.87) is equivalent to the
following inequality:⎡⎣ J̄1(i, t) P (i)Bω(i) C̄�

z (i, t)
B�

ω (i)P (i) −γ2I B�
z (i)

C̄z(i, t) Bz(i) −I

⎤⎦ < 0.

Using the expressions of Ā(i, t) and C̄z(i, t) and their components, we
obtain the following inequality:⎡⎢⎢⎢⎢⎣

J1(i) P (i)Bω(i)
[

C�
z (i)

+K�(i)D�
z (i)

]
B�

ω (i)P (i) −γ2I B�
z (i)[

Dz(i)K(i)
+Cz(i)

]
Bz(i) −I

⎤⎥⎥⎥⎥⎦
+

⎡⎣E�
A (i)F�

A (i, t)D�
A(i)P (i) 0 0

0 0 0
0 0 0

⎤⎦
+

⎡⎣P (i)DA(i)FA(i, t)EA(i) 0 0
0 0 0
0 0 0

⎤⎦
+

⎡⎣P (i)DB(i)FB(i, t)EB(i)K(i) 0 0
0 0 0
0 0 0

⎤⎦
+

⎡⎣K�(i)E�
B (i)F�

B (i, t)D�
B(i)P (i) 0 0

0 0 0
0 0 0

⎤⎦
+

⎡⎣ 0 0 K�(i)E�
Dz

(i)F�
Dz

(i, t)D�
Dz

(i)
0 0 0
0 0 0

⎤⎦
+

⎡⎣ 0 0 0
0 0 0

DDz
(i)FDz

(i, t)EDz
(i)K(i) 0 0

⎤⎦
+

⎡⎣0 0 E�
Cz

(i)F�
Cz

(i, t)D�
Cz

(i)
0 0 0
0 0 0

⎤⎦
+

⎡⎣ 0 0 0
0 0 0

DCz
(i)FCz

(i, t)ECz
(i) 0 0

⎤⎦ < 0,

with

J1(i) = A�(i)P (i) + P (i)A(i) + K�(i)B�(i)P (i) + W�(i)P (i)W(i)
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+P (i)B(i)K(i) +
N∑

j=1

λijP (j).

Based on Lemma 7 in Appendix A, we get⎡⎣ J1(i) P (i)Bω(i) C�
z (i) + K�(i)D�

z (i)
B�

ω (i)P (i) −γ2I B�
z (i)

Dz(i)K(i) + Cz(i) Bz(i) −I

⎤⎦
+

⎡⎣ εA(i)P (i)DA(i)D�
A(i)P (i) + ε−1

A (i)E�
A (i)EA(i) 0 0

0 0 0
0 0 0

⎤⎦

+

⎡⎢⎢⎣
[

εB(i)P (i)DB(i)D�
B(i)P (i)

+ε−1
B K�(i)E�

B (i)EB(i)K(i)

]
0 0

0 0 0
0 0 0

⎤⎥⎥⎦
+

⎡⎣ ε−1
Dz

(i)K�(i)E�
Dz

(i)EDz
(i)K(i) 0 0

0 0 0
0 0 εDz

(i)DDz
(i)D�

Dz
(i)

⎤⎦
+

⎡⎣ ε−1
Cz

(i)E�
Cz

(i)ECz
(i, t) 0 0

0 0 0
0 0 εCz

(i)DCz
(i)D�

Cz
(i)

⎤⎦ < 0,

with

J1(i) = A�(i)P (i) + P (i)A(i) + K�(i)B�(i)P (i)

+P (i)B(i)K(i) + W�(i)P (i)W(i) +
N∑

j=1

λijP (j).

Let J2(i), W(i), and T (i) be defined as

J2(i) = J1(i) + ε−1
A (i)E�(i)EA(i) + ε−1

B (i)K�(i)E�
B (i)EB(i)K(i),

W(i) = diag[ε−1
A (i)I, ε−1

B (i)I, εCz
(i)I, εDz

(i)I],
T (i) =

(
P (i)DA(i), P (i)DB(i), E�

Cz
(i),K�(i)E�

Dz
(i)

)
,

and using the Schur complement we get the equivalent inequality:⎡⎢⎢⎢⎢⎢⎢⎣
J2(i) P (i)Bω(i)

[
C�

z (i)
+K�(i)D�

z (i)

]
T (i)

B�
ω (i)P (i) −γ2I B�

z (i) 0[
Dz(i)K(i)

+Cz(i)

]
Bz(i) −U(i) 0

T �(i) 0 0 −W(i)

⎤⎥⎥⎥⎥⎥⎥⎦ < 0,

with U(i) = I − εDz
(i)DDz

(i)D�
Dz

(i) − εCz
(i)DCz

(i)D�
Cz

(i).
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This inequality is nonlinear in K(i) and P (i) and therefore it cannot solved
using existing linear algorithms. To transform it to an LMI, let X(i) = P−1(i).
Pre- and post-multiply this inequality by diag[X(i), I, I, I] to give⎡⎢⎢⎢⎢⎢⎢⎣

J3(i) Bω(i)
[

X(i)C�
z (i)

+X(i)K�(i)D�
z (i)

]
X(i)T (i)

B�
ω (i) −γ2I B�

z (i) 0[
Dz(i)K(i)X(i)

+Cz(i)X(i)

]
Bz(i) −U(i) 0

T �(i)X(i) 0 0 −W(i)

⎤⎥⎥⎥⎥⎥⎥⎦ < 0,

with

J3(i) = X(i)A�(i) + A(i)X(i) + X(i)K�(i)B�(i)
+X(i)W�(i)X−1(i)W(i)X(i)
+B(i)K(i)X(i) + ε−1

A (i)X(i)E�
A (i)EA(i)X(i)

+ε−1
B (i)X(i)K�(i)E�

B (i)EB(i)K(i)X(i)

+
N∑

j=1

λijX(i)X−1(j)X(i).

Notice that

X(i)T (i) =
(
DA(i), DB(i), X(i)E�

Cz
(i), X(i)K�(i)E�

Dz
(i)

)
,

and

N∑
j=1

λijX(i)X−1(j)X(i) = λiiX(i) + Si(X)X−1(X)S�
i (X).

Letting Y (i) = K(i)X(i) and using the Schur complement we obtain⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

J̃(i) Bω(i)
[

X(i)C�
z (i)

+Y �(i)D�
z (i)

]
B�

ω (i) −γ2I B�
z (i)[

Dz(i)Y (i)
+Cz(i)X(i)

]
Bz(i) −U(i)

X(i)W(i) 0 0
Z�(i) 0 0
S�

i (X) 0 0

X(i)W�(i) Z(i) Si(X)
0 0 0
0 0 0

−X(i) 0 0
0 −V(i) 0
0 0 −Xi(X)

⎤⎥⎥⎥⎥⎥⎥⎦ < 0, (4.89)



294 4 H∞ Control Problem

with

J̃(i) = X(i)A�(i) + A(i)X(i) + Y �(i)B�(i) + B(i)Y (i)
+εA(i)DA(i)D�

A(i) + εB(i)DB(i)D�
B(i) + λiiX(i),

U(i) = I − εDz
(i)DDz

(i)D�
Dz

(i) − εCz
(i)DCz

(i)D�
Cz

(i),

Z(i) =
(
X(i)E�

A (i), Y �(i)E�
B (i), X�(i)E�

Cz
(i), Y �(i)E�

Dz
(i)

)
,

V(i) = diag[εA(i)I, εB(i)I, εCz
(i)I, εDz

(i)I].

The following theorem summarizes the results of this development.

Theorem 68. Let γ be a positive constant. If there exist a set of sym-
metric and positive-definite matrices X = (X(1), · · · , X(N)) > 0 and a
set of matrices Y = (Y (1), · · · , Y (N)) and sets of positive scalars εA =
(εA(1), · · · , εA(N)), εB = (εB(1), · · · , εB(N)), εCz

= (εCz
(1), · · · , εCz

(N)),
and εDz

= (εDz
(1), · · · , εDz

(N)) such that the following LMI (4.89) holds for
every i ∈ S and for all admissible uncertainties, then the system (4.70) un-
der the controller (4.17) with K(i) = Y (i)X−1(i) is stochastically stable and,
moreover, the closed-loop system satisfies the disturbance rejection of level γ.

From the practical point of view, the controller that stochastically stabi-
lizes the class of systems and simultaneously guarantees the minimum distur-
bance rejection is of great interest. This controller can be obtained by solving
the following optimization problem:

Pu :

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

min ν>0,
εA=(εA(1),··· ,εA(N))>0,
εB=(εB(1),··· ,εB(N))>0,

εCz =(εDz (1),··· ,εCz (N))>0,
εDz =(εDz (1),··· ,εDz (N))>0,

X=(X(1),··· ,X(N))>0,
Y =(Y (1),··· ,Y (N))

ν,

s.t. : (4.89) with ν = γ2.

The following corollary gives the results of the design of the controller that
stochastically stabilizes the system (4.70) and simultaneously guarantees the
smallest disturbance rejection level.

Corollary 14. Let ν > 0, εA = (εA(1), · · · , εA(N)) > 0, εB = (εB(1), · · · ,
εB(N)) > 0, εCz

= (εCz
(1), · · · , εCz

(N)) > 0, εDz
= (εDz

(1), · · · , εDz
(N)) >

0, X = (X(1), · · · , X(N)) > 0, and Y = (Y (1), · · · , Y (N)) be the solu-
tion of the optimization problem Pu. Then the controller (4.17) with K(i) =
Y (i)X−1(i) stochastically stabilizes the class of systems we are considering
and, moreover, the closed-loop system satisfies the disturbance rejection of
level

√
ν.

We developed results that determine the state feedback controller that
stochastically stabilizes the class of systems treated in this chapter and at
the same time rejects the disturbance w(t) with the desired level γ > 0. The
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conditions we developed are in the LMI form, which makes their resolution
easy. In the rest of this section we will give a numerical example to show the
effectiveness of our results.

Example 62. Let us consider the two-mode system of Example 49 with the
following extra data:

• mode #1:

W(1) =
[

0.1 0.0
0.0 0.1

]
,

• mode #2:

W(2) =
[

0.2 0.0
0.0 0.2

]
.

The required positive scalars are fixed to the following values:

εA(1) = εA(2) = 0.50,

εB(1) = εB(2) = εCz
(1) = εCz

(2) = εDz
(1) = εDz

(2) = 0.10.

Solving the problem Pu gives

X(1) =
[

0.0769 −0.1335
−0.1335 0.5794

]
, Y (1) =

[
−1.0610 0.1437
0.1392 −1.5717

]
,

X(2) =
[

0.1433 −0.1433
−0.1433 0.5533

]
, Y (2) =

[
−1.1449 0.1518
0.1478 −1.5304

]
,

which gives the following gains:

K(1) =
[
−22.2878 −4.8864
−4.8327 −3.8260

]
, K(2) =

[
−10.4069 −2.4204
−2.3394 −3.3718

]
.

Using the results of Corollary 14, the system of this example is stochasti-
cally stable under the state feedback controller with the computed constant
gain and assures the disturbance rejection of level γ = 1.01.

The goal of this section is to design an observer-based output feedback
control that stochastically stabilizes the class of stochastic switching systems
with Wiener process we are considering in this paper and at the same time
rejects the effect of the external disturbance w(t) with a desired level γ > 0.
The structure of the controller we use here is given by the following expression:⎧⎪⎨⎪⎩

dxc(t) = A(r(t))xc(t)dt + B(r(t))u(t)dt + Bw(r(t))w(t)dt

+L(r(t)) [Cy(r(t))xc(t) − y(t)] dt + W(r(t))xc(t)dω(t), xc(0) = 0,
u(t) = K(r(t))xc(t),

(4.90)
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where xc(t) is the state of the controller and L(i) and K(i) are gains to be
determined for each mode i ∈ S .

We are mainly concerned with the design of such a controller. LMI-based
conditions are searched since the design becomes easier and the gain can be
obtained by solving the appropriate LMIs using the developed algorithms. In
the rest of this section, we assume the complete access to the mode and the
state vector at time t.

For simplicity, we will assume in the dynamics (4.70) that the matrices
Dy(i) and Bz(i) are always equal to zero for each mode i ∈ S . Using (4.70)
and (4.90) and letting the observer error be defined by e(t) = x(t)−xc(t), we
get

dx(t) = A(r(t))x(t)dt + B(r(t))K(r(t))xc(t)dt + Bw(r(t))w(t)dt

+W(r(t))x(t)dω(t)
= [A(r(t)) + B(r(t))K(r(t))] x(t)dt − B(r(t))K(r(t))e(t)dt + Bw(r(t))w(t)dt

+W(r(t))x(t)dω(t),

and

dxc(t) = [A(r(t)) + B(r(t))K(r(t))] xc(t)dt − L(r(t))Cy(r(t))e(t)dt

[Bw(r(t)) − L(r(t))By(r(t))] w(t)dt + W(r(t))xc(t)dω(t).

Combining these equations with the error expression, we get the following
dynamics for error:

de(t) = [A(r(t)) + L(r(t))Cy(r(t))] e(t)dt

+ L(r(t))By(r(t))w(t)dt + W(r(t))e(t)dt,

which gives the following dynamics for the extended system:

η̇(t) =

⎡⎣A(r(t)) + B(r(t))K(r(t)) −B(r(t))K(r(t))

0
[

A(r(t))
+L(r(t))Cy(r(t))

]⎤⎦ η(t)

+
[

Bw(r(t))
L(r(t))By(r(t))

]
w(t)dt +

[
W(r(t)) 0

0 W(r(t))

]
η(t)dω(t)

= Ã(r(t))η(t)dt + B̃w(r(t))w(t)dt + W̃(r(t))η(t)dω(t),

with

η(t) =
[

x(t)
e(t)

]
,

Ã(r(t)) =

⎡⎣A(r(t)) + B(r(t))K(r(t)) −B(r(t))K(r(t))

0
[

A(r(t))
+L(r(t))Cy(r(t))

]⎤⎦ ,
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B̃w(r(t)) =
[

Bw(r(t))
L(r(t))By(r(t))

]
, W̃(r(t)) =

[
W(r(t)) 0

0 W(r(t))

]
.

For the controlled output, we have

z(t) = Cz(r(t)) + Dz(r(t))K(r(t))xc(t) + Dz(r(t))K(r(t))x(t)
−Dz(r(t))K(r(t))x(t)

=
[
Cz(r(t)) + Dz(r(t))K(r(t)) −Dz(r(t))K(r(t))

]
η(t)

= C̃z(r(t))η(t).

Based on the previous results, the extended system will be stochastically
stable and guarantee the disturbance rejection of level γ if there exists a set
of symmetric and positive-definite matrices P̃ = (P̃ (1), · · · , P̃ (N)) > 0 such
that the following holds for each i ∈ S :

J̃(i) + C̃�
z (i)C̃z(i) + γ−2P̃ (i)B̃w(i)B̃�

w (i)P̃ (i) < 0, (4.91)

with J̃(i) = Ã�(i)P̃ (i) + P̃ (i)Ã(i) +
∑N

j=1 λijP̃ (j) + W̃(i)P̃ (i)W(i).
Let P̃ (i) be given by

P̃ (i) =
[

P (i) 0
0 Q(i)

]
,

with P (i) and Q(i) symmetric and positive-definite matrices, and using the
expression of the matrices Ã(i), we get

Ã�(i)P̃ (i) =

⎡⎢⎢⎣
[

A�(i)P (i)
+K�(i)B�(i)P (i)

]
0

−K�(i)B�(i)P (i)
[

A�(i)Q(i)
+C�

y (i)L�(i)Q(i)

]
⎤⎥⎥⎦ ,

P̃ (i)B̃w(i) =
[

P (i)Bw(i)
Q(i)L(i)By(i)

]
,

P̃ (i)B̃w(i)B̃�
w (i)P̃ (i) =

⎡⎢⎢⎣
[

P (i)Bw(i)
×B�

w (i)P (i)

] [
P (i)Bw(i)

×B�
y (i)L�(i)Q(i)

]
[

Q(i)L(i)
×By(i)B�

w (i)P (i)

] [
Q(i)L(i)

×By(i)B�
y (i)L�(i)Q(i)

]
⎤⎥⎥⎦ ,

C̃�
z (i)C̃z(i) =⎡⎢⎢⎣

[[
C�

z (i) + K�(i)D�
z (i)

]
× [Cz(i) + Dz(i)K(i)]

] [
−

[
C�

z (i) + K�(i)D�
z (i)

]
×Dz(i)K(i)

]
[

−K�(i)D�
z (i)

× [Cz(i) + Dz(i)K(i)]

] [
K�(i)D�

z (i)
×Dz(i)K(i)

]
⎤⎥⎥⎦ ,

W̃(i)P̃ (i)W(i) =
[

W�(i)P (i)W(i) 0
0 W�(i)Q(i)W(i)

]
,
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N∑
j=1

λijP̃ (i) =

[∑N
j=1 λijP (j) 0

0
∑N

j=1 λijQ(j)

]
.

Based on these computations we get

J̃(i) + C̃�
z (i)C̃z(i) + γ−2P (i)Bw(i)B�

w (i)P (i) =⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

A�(i)P (i) + P (i)A(i)
+P (i)B(i)K(i)

+K�(i)B�(i)P (i)
+C�

z (i)Cz(i)
+C�

z (i)Dz(i)K(i)
+K�(i)D�

z (i)Cz(i)
+K�(i)D�

z (i)Dz(i)K(i)
+γ−2P (i)Bw(i)B�

w (i)P (i)
+

∑N
j=1 λijP (j)

+W�(i)P (i)W(i)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎣
−P (i)B(i)K(i)

+γ−2P (i)Bw(i)B�
y (i)L�(i)Q(i)

−C�
z (i)Dz(i)K(i)

−K�(i)D�
z (i)Dz(i)K(i)

⎤⎥⎥⎦

⎡⎢⎢⎣
−K�(i)B�(i)P (i)

+γ−2Q(i)L(i)By(i)B�
w (i)P (i)

−K�(i)D�
z (i)Cz(i)

−K�(i)D�
z (i)Dz(i)K(i)

⎤⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

A�(i)Q(i) + Q(i)A(i)
+Q(i)L(i)Cy(i)

+C�
y (i)L�(i)Q(i)

+K�(i)D�
z (i)Dz(i)K(i)

+γ−2Q(i)L(i)By(i)B�
y (i)L�(i)Q(i)

+
∑N

j=1 λijQ(j)
+W�(i)Q(i)W(i)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

Notice that[
0 P (i)B(i)K(i)
0 0

]
=

[
P (i)B(i)K(i) 0

0 0

] [
0 I

0 0

]
,

[
0 P (i)Bw(i)B�

y (i)L�(i)Q(i)
0 0

]
=

[
P (i)Bw(i) 0

0 0

] [
0 B�

y (i)L�(i)Q(i)
0 0

]
,

[
0 C�

z (i)Dz(i)K(i)
0 0

]
=

[
0 C�

z (i)
0 0

] [
0 Dz(i)K(i)
0 0

]
,

[
0 K�(i)D�

z (i)Dz(i)K(i)
0 0

]
=

[
K�(i)D�

z (i) 0
0 0

] [
0 Dz(i)K(i)
0 0

]
.

Using Lemma 7 in Appendix A, we get

−
[

0 P (i)B(i)K(i)
0 0

]
−

[
0 P (i)B(i)K(i)
0 0

]�
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≤
[

P (i)B(i)K(i)K�(i)B�(i)P (i) 0
0 0

]
+

[
0 0
0 I

]
,

[
0 P (i)Bw(i)B�

y (i)L�(i)Q(i)
0 0

]
+

[
0 P (i)Bw(i)B�

y (i)L�(i)Q(i)
0 0

]�
≤

[
P (i)Bw(i)B�

w (i)P (i)
0 0

]
+

[
0 0
0 Q(i)L(i)By(i)B�

y (i)L�(i)Q(i)

]
,

−
[

0 C�
z (i)Dz(i)K(i)

0 0

]
−

[
0 C�

z (i)Dz(i)K(i)
0 0

]�
≤

[
C�

z (i)Cz(i) 0
0 0

]
+

[
0 0
0 K�(i)D�

z (i)Dz(i)K(i)

]
,

−
[

0 K�(i)D�
z (i)Dz(i)K(i)

0 0

]
−

[
0 K�(i)D�

z (i)Dz(i)K(i)
0 0

]�
≤

[
K�(i)D�

z (i)Dz(i)K(i) 0
0 0

]
+

[
0 0
0 K�(i)D�

z (i)Dz(i)K(i)

]
.

Based on all these computations, the stochastic stability condition (4.91)
will be satisfied if the following holds:
�
�����������������������������������������������

�
������������������������

A�(i)P (i) + P (i)A(i)
+P (i)B(i)K(i)

+K�(i)B�(i)P (i)

+C�
z (i)Cz(i)

+C�
z (i)Dz(i)K(i)

+K�(i)D�
z (i)Cz(i)

+K�(i)D�
z (i)Dz(i)K(i)

+γ−2P (i)Bw(i)B�(i)P (i)

+P (i)B(i)K(i)K�(i)B�(i)P (i)

+γ−2P (i)Bw(i)B�
w (i)P (i)

+C�
z (i)Cz(i)

+K�(i)D�
z (i)Dz(i)K(i)

+
�N

j=1 λijP (j)

+W�(i)P (i)W(i)

�
������������������������

0

0

�
������������������

A�(i)Q(i) + Q(i)A(i)
+Q(i)L(i)Cy(i)

+C�
y (i)L�(i)Q(i)

+K�(i)D�
z (i)Dz(i)K(i)

+γ−2Q(i)L(i)By(i)B�
y (i)L�(i)Q(i)

+I

+γ−2Q(i)L(i)By(i)B�
y (i)L�(i)Q(i)

+K�(i)D�
z (i)Dz(i)K(i)

+K�(i)D�
z (i)Dz(i)K(i)

+
�N

j=1 λijQ(j)

+W�(i)Q(i)W(i)

�
������������������

�
�����������������������������������������������

< 0,



300 4 H∞ Control Problem

which implies in turn that

A�(i)P (i) + P (i)A(i) + P (i)B(i)K(i) + K�(i)B�(i)P (i) + 2C�
z (i)Cz(i)

+C�
z (i)Dz(i)K(i) + K�(i)D�

z (i)Cz(i) + 2K�(i)D�
z (i)Dz(i)K(i)

+2γ−2P (i)Bw(i)B�
w (i)P (i) + P (i)B(i)K(i)K�(i)B�(i)P (i)

+
N∑

j=1

λijP (j) + W�(i)P (i)W(i) < 0

A�(i)Q(i) + Q(i)A(i) + Q(i)L(i)Cy(i) + C�
y (i)L�(i)Q(i)

+3K�(i)D�
z (i)Dz(i)K(i) + 2γ−2Q(i)L(i)By(i)B�

y (i)L�(i)Q(i)

+I +
N∑

j=1

λijQ(j) + W�(i)Q(i)W(i) < 0.

Noticing from Lemma 7 that

C�
z (i)Dz(i)K(i) + D�

z (i)K�(i)Cz(i) ≤ C�
z (i)Cz(i) + K�(i)D�

z (i)Dz(i)K(i),

and using the Schur complement, these conditions become⎡⎢⎢⎣
JP (i)

√
2P (i)Bw(i)

√
3K�(i)D�

z (i) P (i)B(i)K(i)√
2B�

w (i)P (i) −γ2I 0 0√
3Dz(i)K(i) 0 −I 0

K�(i)B�(i)P (i) 0 0 −I

⎤⎥⎥⎦ < 0,

⎡⎣ JQ(i)
√

2Q(i)L(i)By(i)
√

3K�(i)D�
z (i)√

2B�
y (i)L�(i)Q(i) −γ2I 0√
3Dz(i)K(i) 0 −I

⎤⎦ < 0,

where

JP (i) = A�(i)P (i) + P (i)A(i) + P (i)B(i)K(i) + K�(i)B�(i)P (i)

+3C�
z (i)Cz(i) +

N∑
j=1

λijP (j) + W�(i)P (i)W(i),

JQ(i) = A�(i)Q(i) + Q(i)A(i) + Q(i)L(i)Cy(i) + C�
y (i)L�(i)Q(i)

+I +
N∑

j=1

λijQ(j) + W�(i)Q(i)W(i).

These two inequalities are nonlinear in the design parameters. To put
them in the LMI setting let us change some variables. Notice that the first
LMI implies the following:⎡⎣ JP (i)

√
2P (i)Bw(i)

√
3K�(i)D�

z (i)√
2B�

w (i)P (i) −γ2I 0√
3Dz(i)K(i) 0 −I

⎤⎦ < 0.
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Let X(i) = P−1(i). Pre- and post-multiply this LMI by diag(X(i), I) to
get ⎡⎣ X(i)JP (i)X(i)

√
2Bw(i)

√
3X(i)K�(i)D�

z (i)√
2B�

w (i) −γ2I 0√
3Dz(i)K(i)X(i) 0 −I

⎤⎦ < 0.

Using the fact that

X(i)JP (i)X(i) = X(i)A�(i) + A(i)X(i) + B(i)K(i)X(i)

+X(i)K�(i)B�(i) + 3X(i)C�
z (i)Cz(i)X(i) +

N∑
j=1

λijX(i)X−1(j)X(i)

+X(i)W�(i)X−1(i)W(i)X(i),
N∑

j=1

λijX(i)X−1(j)X(i) = λiiX(i) + Si(X)X−1
i (X)S�

i (X),

and after letting Yc(i) = K(i)X(i), we get⎡⎢⎢⎢⎢⎢⎢⎣

X(i)JP (i)X(i)
√

2Bw(i)
√

3Y �
o (i)D�

z (i)√
2B�

w (i) −γ2I 0√
3Dz(i)Yo(i) 0 −I√
3Cz(i)X(i) 0 0
W(i)X(i) 0 0
S�

i (X) 0 0
√

3X(i)C�
z (i) X(i)W�(i) Si(X)

0 0 0
0 0 0
−I 0 0
0 −X(i) 0
0 0 −Xi(X)

⎤⎥⎥⎥⎥⎥⎥⎦ < 0, (4.92)

with

JP (i) = X(i)A�(i) + A(i)X(i) + B(i)Yc(i) + Y �
c (i)B�(i) + λiiX(i).

For the second nonlinear matrix inequality, letting Yo(i) = Q(i)L(i) implies
the following LMI:⎡⎣ JQ(i)

√
2Yo(i)By(i)

√
3K�(i)D�

z (i)√
2B�

y (i)Y �
o (i) −γ2I 0√

3Dz(i)K(i) 0 −I

⎤⎦ < 0, (4.93)

where

JQ(i) = A�(i)Q(i) + Q(i)A(i) + Yo(i)Cy(i) + C�
y (i)Y �

o (i)
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+I + W�(i)Q(i)W(i) +
N∑

j=1

λijQ(j).

The following theorem summarizes the results of this development.

Theorem 69. Let γ be a given positive constant. If there exist sets of sym-
metric and positive-definite matrices X = (X(1), · · · , X(N)) > 0 and Q =
(Q(1), · · · , Q(N)) > 0 and sets of matrices Yc = (Yc(1), · · · , Yc(N)) and
Yo = (Yo(1), · · · , Yo(N)) such that the following LMIs (4.92)–(4.93) hold for
every i ∈ S , then the observer-based output feedback control with the following
gains:

L(i) = Q−1(i)Yo(i), (4.94)
K(i) = Yc(i)X−1(i), (4.95)

stochastically stabilizes the class of systems we are studying and at the same
time guarantees the disturbance rejection of level γ.

Remark 17. Notice that the second LMI depends on the solution of the first.
Therefore, to solve these two LMIs, we should solve the first one to get the
gains K = (K(1), · · · ,K(N)) that enter in the second LMI.

From the practical point of view, the observer-based output feedback con-
trol that stochastically stabilizes the system and at the same time guarantees
the minimum disturbance rejection is of great interest. This controller can be
obtained by solving the following optimization problem:

P :

⎧⎪⎪⎪⎨⎪⎪⎪⎩
min ν>0,

X=(X(1),··· ,X(N))>0,
Q=(Q(1),··· ,Q(N))>0,
Yc=(Yc(1),··· ,Yc(N)),
Yo=(Yo(1),··· ,Yo(N)),

ν,

s.t. : (4.92) and (4.93) with ν = γ2.

Remark 18. To solve this optimization, we can proceed by the search method.
We fix γ and solve the first LMI that gives the gain K(i) that enters in the
second LMI. Then decrease the disturbance rejection parameter γ until an
infeasible solution for one of the two LMIs is obtained. The previous solution
gives the optimal solution.

The following corollary gives the results on the design of the controller
that stochastically stabilizes the system (4.70) and simultaneously guarantees
the smallest disturbance rejection level.

Corollary 15. Let ν > 0, X = (X(1), · · · , X(N)) > 0, X = (X(1), · · · ,
X(N)) > 0, Yc = (Yc(1), · · · , Yc(N)), and Yo = (Yo(1), · · · , Yo(N)) be
the solution of the optimization problem P. Then the controller (4.90) with
K(i) = Yc(i)X−1(i) and L(i) = Q−1(i)Yo(i) stochastically stabilizes the class
of systems we are considering and, moreover, the closed-loop system satisfies
the disturbance rejection of level

√
ν.
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Example 63. To show the validity of the previous results let us consider a
system with two modes with the following data:

• mode #1:

A(1) =

⎡⎣1.0 0.0 1.0
0.0 1.0 0.0
0.0 1.0 1.0

⎤⎦ , B(1) =

⎡⎣0.3 0.0 0.1
0.0 0.3 0.1
0.0 0.2 1.0

⎤⎦ ,

Bw(1) =

⎡⎣0.3 0.0 0.1
0.0 0.3 0.1
0.0 0.2 1.0

⎤⎦ , Cy(1) =

⎡⎣0.3 0.0 0.1
0.0 0.3 0.1
0.0 0.2 1.0

⎤⎦ ,

By(1) =

⎡⎣0.3 0.0 0.1
0.0 0.3 0.1
0.0 0.2 1.0

⎤⎦ , Cz(1) =

⎡⎣0.3 0.0 0.1
0.0 0.3 0.1
0.0 0.2 1.0

⎤⎦ ,

Dz(1) =

⎡⎣0.3 0.0 0.1
0.0 0.3 0.1
0.0 0.2 1.0

⎤⎦ , W(1) =

⎡⎣0.3 0.0 0.1
0.0 0.3 0.1
0.0 0.2 1.0

⎤⎦ ,

• mode #2:

A(2) =

⎡⎣1.0 0.0 1.0
0.0 −1.0 0.0
0.0 1.0 −1.0

⎤⎦ , B(2) =

⎡⎣0.1 0.0 0.1
0.2 0.0 0.1
0.0 0.2 0.2

⎤⎦ ,

Bw(2) =

⎡⎣0.1 0.0 0.1
0.2 0.0 0.1
0.0 0.2 0.2

⎤⎦ , Cy(2) =

⎡⎣0.1 0.0 0.1
0.2 0.0 0.1
0.0 0.2 0.2

⎤⎦ ,

By(2) =

⎡⎣0.1 0.0 0.1
0.2 0.0 0.1
0.0 0.2 0.2

⎤⎦ , Cz(2) =

⎡⎣0.1 0.0 0.1
0.2 0.0 0.1
0.0 0.2 0.2

⎤⎦ ,

Dz(2) =

⎡⎣0.1 0.0 0.1
0.2 0.0 0.1
0.0 0.2 0.2

⎤⎦ , W(2) =

⎡⎣0.1 0.0 0.1
0.2 0.0 0.1
0.0 0.2 0.2

⎤⎦ .

The switching between the two modes is described by the following tran-
sition matrix:

Λ =
[
−2.0 2.0
1.0 −1.0

]
.

Letting γ = 3.34 and solving the LMIs (4.92)–(4.93), we get:

X(1) =

⎡⎣ 0.0785 0.0187 −0.0323
0.0187 0.1166 −0.0576
−0.0323 −0.0576 0.0829

⎤⎦ ,

X(2) =

⎡⎣ 0.1202 0.0501 −0.0828
0.0501 0.2936 −0.1708
−0.0828 −0.1708 0.2657

⎤⎦ ,
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Q(1) =

⎡⎣ 2.3823 −0.0324 −0.6153
−0.0324 6.7195 −3.1886
−0.6153 −3.1886 3.2197

⎤⎦ ,

Q(2) =

⎡⎣ 1.1971 −0.0835 −0.0826
−0.0835 1.7468 −0.2846
−0.0826 −0.2846 2.0237

⎤⎦ ,

Yc(1) =

⎡⎣−1.1284 −0.0805 0.1328
0.0159 −1.1255 0.1105
0.0047 0.2289 −0.3606

⎤⎦ ,

Yc(2) =

⎡⎣ 3.3509 −3.5017 −0.3577
6.6375 −3.6129 −2.2431
−6.5908 3.5848 0.3956

⎤⎦ ,

Yo(1) =

⎡⎣−9.6863 −6.8668 −0.7993
−7.3390 −5.8202 −2.9695
−7.9262 −5.7653 −2.7436

⎤⎦ ,

Yo(2) =

⎡⎣−10.4511 −11.0495 −6.4701
−7.0889 −4.1117 −10.1378
−8.7223 −8.9604 −8.7097

⎤⎦ .

The corresponding gains are given by

K(1) =

⎡⎣−16.3710 −0.6398 −5.2117
0.1224 −13.6946 −8.1380
−2.0789 −0.3847 −5.4259

⎤⎦ ,

K(2) =

⎡⎣ 33.6556 −19.7178 −3.5320
62.0216 −26.4275 −6.1011
−67.8515 19.7155 −6.9842

⎤⎦ ,

L(1) =

⎡⎣−6.4854 −4.6746 −1.0927
−5.4330 −4.0794 −1.7935
−9.0818 −6.7240 −2.8371

⎤⎦ ,

L(2) =

⎡⎣−9.4840 −9.8576 −6.2766
−5.4007 −3.6969 −7.0073
−5.4569 −5.3503 −5.5456

⎤⎦ .

4.6 Case Study

To end this chapter let us return to the VTOL helicopter example of Chapter
1 and apply some of the developed results to this system. We will mainly
restrict ourselves to the nominal system. Using the data of Chapter 1, let
us first design a state feedback controller that stochastically stabilizes the
helicopter and at the same time rejects the disturbance with a given level γ.
Letting γ = 0.5 and solving the appropriate set of LMIs we get
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X(1) =

⎡⎢⎢⎣
0.2948 −0.0967 −0.0509 0.2359
−0.0967 0.4735 0.0806 −0.0692
−0.0509 0.0806 0.5861 −0.1301
0.2359 −0.0692 −0.1301 0.3039

⎤⎥⎥⎦ ,

X(2) =

⎡⎢⎢⎣
0.5358 −0.1826 −0.1263 0.4308
−0.1826 0.7168 0.1990 −0.1771
−0.1263 0.1990 0.9789 −0.2827
0.4308 −0.1771 −0.2827 0.5069

⎤⎥⎥⎦ ,

X(3) =

⎡⎢⎢⎣
0.5136 −0.3434 −0.2898 0.4981
−0.3434 0.8304 0.2714 −0.3010
−0.2898 0.2714 1.0378 −0.3592
0.4981 −0.3010 −0.3592 0.6783

⎤⎥⎥⎦ ,

Y (1) =
[

0.1380 −0.5555 0.3817 0.3061
−0.0559 −0.2238 0.4803 0.0584

]
,

Y (2) =
[

0.0208 0.2869 0.0214 0.1261
−0.1425 0.1284 −0.0317 −0.1510

]
,

Y (3) =
[

0.3216 0.0463 −0.0813 0.7911
0.0347 0.1631 0.0593 0.3081

]
,

which gives the following gains:

K(1) =
[
−2.0082 −1.3939 1.2906 2.8017
−1.7305 −0.7550 1.1888 1.8727

]
,

K(2) =
[
−0.5063 0.4613 0.1257 0.9104
0.0552 0.1437 −0.1664 −0.3874

]
,

K(3) =
[
−1.4854 0.2581 0.3186 2.5403
−1.0905 0.2063 0.2018 1.4535

]
.

We can also design a constant gain state feedback controller that guaran-
tees the same objectives. Letting γ = 0.5 and solving the appropriate set of
LMIs, we get

X =

⎡⎢⎢⎣
0.6490 −0.5358 −0.2832 0.6274
−0.5358 0.8143 0.2957 −0.5365
−0.2832 0.2957 0.9708 −0.4392
0.6274 −0.5365 −0.4392 0.6911

⎤⎥⎥⎦ ,

Y =
[

0.1268 0.1184 0.2606 0.2574
−0.1550 0.3269 0.3146 −0.1189

]
,

which gives the gain:

K =
[
−2.5407 0.6112 1.0778 3.8384
−1.0915 0.5199 0.5620 1.5796

]
.
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If we assume that we do not have access to the state vector, we can use
either output feedback controller or observer-based output feedback controller.
Letting again γ = 0.5 and solving the appropriate set of LMIs, we get the
following matrices for the output feedback controller:

X(1) =

⎡⎢⎢⎣
18.3522 −4.8565 −6.6867 −5.0359
−4.8565 8.2721 7.4568 9.1974
−6.6867 7.4568 16.9620 3.6472
−5.0359 9.1974 3.6472 21.9054

⎤⎥⎥⎦ ,

X(2) =

⎡⎢⎢⎣
14.3232 −0.5857 −1.8638 −1.3489
−0.5857 7.4600 5.7177 8.6247
−1.8638 5.7177 15.6892 4.1220
−1.3489 8.6247 4.1220 18.1248

⎤⎥⎥⎦ ,

X(3) =

⎡⎢⎢⎣
25.6622 −16.2530 −8.8191 −7.0241
−16.2530 26.1734 12.4299 15.0785
−8.8191 12.4299 17.5084 −2.9124
−7.0241 15.0785 −2.9124 22.9078

⎤⎥⎥⎦ ,

Y (1) =

⎡⎢⎢⎣
2.4550 −2.2490 −2.0781 2.6473
−2.2490 4.7090 1.7095 −2.2865
−2.0781 1.7095 5.0399 −1.9624
2.6473 −2.2865 −1.9624 3.1506

⎤⎥⎥⎦ ,

Y (2) =

⎡⎢⎢⎣
4.4938 −4.1125 −3.6648 4.7086
−4.1125 6.9810 3.4775 −4.2270
−3.6648 3.4775 7.5519 −3.7221
4.7086 −4.2270 −3.7221 5.1686

⎤⎥⎥⎦ ,

Y (3) =

⎡⎢⎢⎣
4.7736 −5.2514 −4.9484 5.3736
−5.2514 8.5485 4.1335 −5.9808
−4.9484 4.1335 10.5045 −4.2725
5.3736 −5.9808 −4.2725 6.8252

⎤⎥⎥⎦ ,

KB(1) =

⎡⎢⎢⎣
−8.6649 21.3022
−13.1845 −10.6297
0.3871 −0.0000

−17.8135 13.2153

⎤⎥⎥⎦ , KB(2) =

⎡⎢⎢⎣
−6.8412 5.9010
−7.3190 −0.4590
−2.1510 −0.0000
−2.1010 19.4061

⎤⎥⎥⎦ ,

KB(3) =

⎡⎢⎢⎣
−13.6704 27.2062
−12.9241 −6.7154
8.7135 −0.0000

−29.4058 38.3058

⎤⎥⎥⎦ ,

KC(1) =
[

2.4658 0.9919 2.1873 4.5482
0.7630 2.4123 1.2451 1.8877

]
,

KC(2) =
[

1.4441 2.5580 3.4823 2.5940
−0.9652 3.5037 0.9561 −0.7786

]
,
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KC(3) =
[

4.3388 4.5172 5.4320 12.6411
1.6440 6.8877 2.4956 6.6399

]
,

which gives the following set of gains:

KA(1) =

⎡⎢⎢⎣
−12.2726 −10.2856 −13.3531 −10.7779
−29.7243 −46.3163 −37.9057 −52.8599
14.4585 8.1245 2.6309 −4.6477
12.9983 19.6996 18.1768 22.4359

⎤⎥⎥⎦ ,

KA(2) =

⎡⎢⎢⎣
−25.0359 −36.2574 −36.8525 −46.5552
−66.5947 −111.8581 −100.9157 −140.8424
18.3847 11.7572 7.5583 0.2403
44.9711 73.1096 70.7291 93.6719

⎤⎥⎥⎦ ,

KA(3) = 103 ·

⎡⎢⎢⎣
−0.0782 −1.6168 −0.4124 −1.8744
−0.1571 −3.3930 −0.8562 −3.9326
0.0961 1.7956 0.4522 2.0679
0.1091 2.4361 0.6161 2.8263

⎤⎥⎥⎦ ,

KB(1) =

⎡⎢⎢⎣
11.2210 10.8168
31.4836 40.0747
−5.7709 −8.4136
−13.8496 −19.4622

⎤⎥⎥⎦ ,

KB(2) =

⎡⎢⎢⎣
28.7384 40.1719
79.2098 114.4381
−10.4118 −15.0794
−53.9396 −79.2146

⎤⎥⎥⎦ , KB(3) = 103 ·

⎡⎢⎢⎣
0.2614 1.8556
0.5431 3.8799
−0.2881 −2.0635
−0.3886 −2.7910

⎤⎥⎥⎦ ,

KC(1) =
[
−2.6646 1.0334 0.9382 5.0169
−1.2987 1.0624 0.4087 2.7160

]
,

KC(2) =
[
−1.9223 1.0750 0.8945 3.7764
−0.2365 0.7963 −0.0030 0.7139

]
,

KC(3) =
[
−5.1469 3.8145 0.4729 9.5429
−3.1381 3.3207 0.0492 6.3842

]
.

Letting γ = 0.5 and solving the appropriate set of LMIs for the design of
the observer-based output feedback control, we get

X(1) =

⎡⎢⎢⎣
0.7041 −0.0223 0.0102 0.2514
−0.0223 0.7798 0.0491 −0.0623
0.0102 0.0491 0.8747 −0.1517
0.2514 −0.0623 −0.1517 0.5995

⎤⎥⎥⎦ ,

X(2) =

⎡⎢⎢⎣
1.7575 0.0620 0.4759 0.4574
0.0620 1.3634 0.1096 −0.0410
0.4759 0.1096 1.9321 −0.3803
0.4574 −0.0410 −0.3803 1.1229

⎤⎥⎥⎦ ,
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X(3) =

⎡⎢⎢⎣
1.7911 0.0498 0.2979 0.4661
0.0498 1.4406 0.0857 0.0003
0.2979 0.0857 1.8743 −0.3977
0.4661 0.0003 −0.3977 1.5035

⎤⎥⎥⎦ ,

Yc(1) =
[

0.1261 0.1834 −0.0142 0.3168
−0.0360 0.1073 −0.0000 −0.0880

]
,

Yc(2) =
[
−0.1719 0.2195 −0.0986 −0.0392
−0.2433 −0.0331 −0.0000 −0.5692

]
,

Yc(3) =
[

0.0191 0.0968 −0.2871 0.9983
−0.2292 −0.0383 0.0000 −0.1035

]
,

Q(1) =

⎡⎢⎢⎣
2.1557 −0.6623 −0.9628 −0.6915
−0.6623 1.0232 0.9562 1.0889
−0.9628 0.9562 2.5423 1.4246
−0.6915 1.0889 1.4246 4.7794

⎤⎥⎥⎦ ,

Q(2) =

⎡⎢⎢⎣
1.2563 −0.0912 −0.2356 0.3869
−0.0912 0.7063 0.6606 1.1761
−0.2356 0.6606 2.7263 0.9792
0.3869 1.1761 0.9792 3.1284

⎤⎥⎥⎦ ,

Q(3) =

⎡⎢⎢⎣
2.8558 −1.8796 −1.0045 −1.0200
−1.8796 2.1295 1.3480 1.6847
−1.0045 1.3480 1.9694 0.0808
−1.0200 1.6847 0.0808 2.7941

⎤⎥⎥⎦ ,

Yo(1) =

⎡⎢⎢⎣
−0.7389 −0.1460
0.2689 −0.6476
−0.5037 −0.7826
−1.1943 2.6974

⎤⎥⎥⎦ , Yo(2) =

⎡⎢⎢⎣
−0.9843 0.0656
−0.1650 −0.2153
−0.0724 −0.1663
0.0406 3.5329

⎤⎥⎥⎦ ,

Yo(3) =

⎡⎢⎢⎣
−0.7060 −1.6128
−0.0168 0.6717
0.3243 −0.4543
−2.0357 4.6174

⎤⎥⎥⎦ ,

which gives the following set of gains:

K(1) =
[
−0.0217 0.2769 0.0698 0.5840
0.0047 0.1283 −0.0321 −0.1435

]
,

K(2) =
[
−0.0921 0.1682 −0.0387 −0.0044
0.0426 −0.0336 −0.1200 −0.5661

]
,

K(3) =
[
−0.1856 0.0719 0.0277 0.7288
−0.1228 −0.0232 0.0149 −0.0268

]
,

L(1) =

⎡⎢⎢⎣
−0.4152 −0.4223
0.7996 −1.5455
−0.4566 −0.4392
−0.3560 0.9863

⎤⎥⎥⎦ , L(2) =

⎡⎢⎢⎣
−1.1547 −1.7478
−1.7195 −7.5510
0.0024 0.1293
0.8014 4.1436

⎤⎥⎥⎦ ,
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L(3) =

⎡⎢⎢⎣
−1.1547 −1.7478
−1.7195 −7.5510
0.0024 0.1293
0.8014 4.1436

⎤⎥⎥⎦ .

4.7 Notes

This chapter dealt with the H∞ control problem of the class of piecewise
deterministic systems. Different types of controllers such as state feedback,
output feedback, and observer-based output feedback were discussed and a
design approach of each controller was developed in LMI form. Robust and
nonfragile controllers were designed. The results of this chapter are based
mainly on the work of the author and his coauthors. All of our results have
been tested on the practical example presented in Chapter 1, which is bor-
rowed from aerospace industry. The corresponding model we presented was
developed by Narendra and Tripathi [53] and was used recently by de Farias
et al. [32]. This system was also used by Kose et al. [47] in the deterministic
framework.



5

Filtering Problem

In the previous chapters we assumed complete access to the state vector to
compute state feedback control. But as is well known, sometimes this access is
not possible for physical or cost reasons. In order to continue to use the state
feedback controller, we can estimate the state vector. This technique has been
used for many years and continues in many industrial applications ranging
from aerospace to economics, including engineering, biology, geoscience, and
management. In real-time applications, care should be taken to guarantee
that the estimation dynamics be faster than those of the closed loop of the
considered systems.

The estimation problem is fundamental in control theory. It consists of
estimating the unavailable state variables of a studied system. This problem
has been extensively investigated, and nowadays many techniques, such as
Kalman filtering and H∞ filtering, can be used to solve practical estimation
problems.

Kalman filtering estimates the state vector of a given system perturbed by
a Wiener process (Gaussian). The design of the desired filter is based on the
critical assumption that the model of the system is well known and that the
external Wiener process disturbance has some known statistical properties
that are difficult to satisfy in practice. All the models used in practice for
systems to be controlled have uncertainties that result from different causes,
such as wearing and neglected dynamics.

To overcome the difficulties of the Kalman filtering problem, an alterna-
tive approach, called the H∞ filtering problem, has been developed to deal
with the issues of external disturbances and measurement noises. Contrary to
Kalman filtering in this estimation approach, the external disturbance is an
arbitrary signal with norm-bounded energy or bounded average power rather
than Gaussian. In the H∞ setting the filter is designed to minimize the worst
case induced L2 gain from system disturbance error to estimation error. Com-
pared to Kalman filtering, this approach presents many advantages, among
them that this technique does not require the statistical assumptions of the
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Kalman filter. Also, the filter designed by this approach is more robust when
the system has uncertainties.

In the rest of this chapter, we cover the techniques of Kalman filtering
and H∞ filtering and their robustness. The rest of this chapter is organized
as follows. In Section 5.1, the filtering problem is stated and some necessary
definitions are given. Section 5.2 treats Kalman filtering and its robustness.
In Section 5.3, the H∞ filtering problem is developed and its robustness is
also treated. Some numerical examples are provided to show the validity of
the developed results.

5.1 Problem Statement

Let us consider a dynamical system defined in a probability space (Ω,F , P)
and assume that its dynamics are described by the following differential equa-
tions: ⎧⎪⎨⎪⎩

ẋ(t) = A(r(t), t)x(t) + B(r(t), t)w(t), x(0) = x0,

y(t) = Cy(r(t), t)x(t) + Dy(r(t))v(t),
z(t) = Cz(r(t), t)x(t) + Dz(r(t))v(t),

(5.1)

where x(t) ∈ Rn is the state vector; w(t) ∈ Rq and v(t) are the noise signals;
y(t) ∈ Rm is the measurement; and z(t) ∈ Rp is the signal to be estimated.
The matrices A(r(t), t), B(r(t), t), Cy(r(t), t), and Cz(r(t), t) are given by the
following expressions:

A(r(t), t) = A(r(t)) + DA(r(t))FA(r(t), t)EA(r(t)),
B(r(t), t) = B(r(t)) + DB(r(t))FB(r(t), t)EB(r(t)),

Cy(r(t), t) = Cy(r(t)) + DCy
(r(t))FCy

(r(t), t)ECy
(r(t)),

Cz(r(t), t) = Cz(r(t)) + DCz
(r(t))FCz

(r(t), t)ECz
(r(t)),

where A(r(t)), B(r(t)), Cy(r(t)), Dy(r(t)), Cz(r(t)), Dz(r(t)), DA(r(t)),
EA(r(t)), DB(r(t)), EB(r(t)), DCy

(r(t)), ECy
(r(t)), DCz

(r(t)), and ECz
(r(t))

are known real matrices with appropriate dimensions and FA(r(t), t),
FB(r(t), t), FCy

(r(t), t), and FCz
(r(t), t) are unknown matrices representing

parameter uncertainties and are assumed to satisfy the following assumption.

Assumption 5.1.1 Let the uncertainties FA(r(t), t), FB(r(t), t), FCy
(r(t), t),

and FCz
(r(t), t) satisfy the following for every r(t) = i ∈ S and t ≥ 0:⎧⎪⎪⎪⎨⎪⎪⎪⎩

F�
A (i, t)FA(i, t) ≤ I,

F�
B (i, t)FB(i, t) ≤ I,

F�
Cy

(i, t)FCy
(i, t) ≤ I,

F�
Cz

(i, t)FCz
(i, t) ≤ I.

(5.2)
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The Markov process {r(t), t ≥ 0}, besides taking values in the finite set
S , represents the switching between the different modes. Its dynamics are
described by the following probability transitions:

P [r(t + h) = j|r(t) = i]

=

{
λijh + o(h) when r(t) jumps from i to j,

1 + λiih + o(h) otherwise,
(5.3)

where λij is the transition rate from mode i to mode j with λij ≥ 0 when
i �= j and λii = −

∑N
j=1,j �=i λij and o(h) is such that limh→0

o(h)
h = 0.

Remark 19. The uncertainties that satisfy this assumption will be referred to
as admissible. In our case we are considering uncertainties that depend on
mode r(t) and time t only. This is not a restriction of our results, which will
remain valid even if the uncertainties are chosen to depend on the mode r(t),
state x(t), and time t.

The filtering problem consists of computing an estimate ẑ(t) of the signal
z(t) via a causal Markovian jump linear filter, which provides a uniformly
small estimation error z(t) − ẑ(t) for all w(t) satisfying some properties irre-
spective of the admissible uncertainties when there exist.

The following definitions will be used in this chapter. For more details we
refer the reader to Chapter 2.

Definition 14. System (5.1), with w(t) = 0 for all t ≥ 0, is said to be sto-
chastically quadratically stable if there exists a set of symmetric and positive-
definite matrices P = (P (1), · · · , P (N)) > 0 such that the following holds for
each i ∈ S :

A(i)P (i) + P (i)A�(i) +
N∑

i=1

λijP (j) < 0. (5.4)

For the uncertain case, we have the following definition.

Definition 15. System (5.1), with w(t) = 0 for all t ≥ 0, is said to be ro-
bustly stochastically quadratically stable if there exists a set of symmetric and
positive-definite matrices P = (P (1), · · · , P (N)) > 0 such that the following
holds for each i ∈ S and for all admissible uncertainties:

[A(i) + ΔA(i, t)] P (i) + P (i) [A(i) + ΔA(i, t)]� +
N∑

i=1

λijP (j) < 0. (5.5)

Remark 20. Notice that if we transpose the previous inequalities we get
equivalent conditions for stochastic quadratic stability and robust stochas-
tic quadratic stability, respectively, that is,
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A�(i)P (i) + P (i)A(i) +
N∑

i=1

λijP (j) < 0,

[A(i) + ΔA(i, t)]� P (i) + P (i)
[
A(i) + Ã(i, t)

]
+

N∑
i=1

λijP (j) < 0.

In this chapter we deal with Kalman filtering and H∞ filtering techniques.
In both cases, we cover the determination of the filter when the uncertainties
are equal to zero and when they are present in the dynamics.

5.2 Kalman Filtering

Kalman filtering is one of the most popular estimation techniques and has
been applied with success to different fields such as, for instance, engineering,
biology, geoscience, economics, and management.

In the rest of this section we concentrate on the design of a stochastic stable
quadratic state estimator that guarantees that the estimator error covariance
has a guaranteed bound for all admissible uncertainties when they are acting
on the system dynamics. The noise signal will be assumed to be a stationary
Gaussian noise. Notice that the noise for the measurement can be different
from the one in the state equation.

The theory of Kalman filtering requires the following assumptions for the
system state and measurement noises:⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

E [w(t)] = 0,

E
[
w(t)w�(t)

]
= Wδ(t),W > 0,

E [v(t)] = 0,
E
[
v(t)v�(t)

]
= V δ(t), V > 0,

E
[
w(t)v�(t)

]
= 0,

(5.6)

where δ(.) is the Dirac function.

Theorem 70. System (5.1) with w(t) = 0 for all t ≥ 0 is stochastically stable
if it is stochastically quadratically stable.

Proof: Since system (5.1) is stochastically quadratically stable, there is
a set of symmetric and positive-definite matrices P = (P (1), · · · , P (N)) > 0
satisfying for every i ∈ S :

A�(i)P (i) + P (i)A(i) +
N∑

j=1

λijP (j) < 0.

Let us consider the Lyapunov candidate function given by
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V (x(t), r(t)) = x�(t)P (r(t))x(t). (5.7)

where P (i) is a symmetric and positive-definite matrix for every i ∈ S .
The infinitesimal operator L of the Markov process {(x(t), r(t)), t ≥ 0}

acting on V (.) and emanating from the point (x, i) at time t, where x(t) = x
and r(t) = i for i ∈ S , is given by:

L V (x(t), i) = ẋ�(t)P (i)x(t) + x�(t)P (i)ẋ(t) +
N∑

j=1

λijx
�(t)P (j)x(t).

Using the expression of the dynamics (5.1), we get:

L V (x(t), i) = x�(t)

⎡⎣A�(i)P (i) + P (i)A(i) +
N∑

j=1

λijP (j)

⎤⎦x(t)

= x�(t)Θ(i)x(t),

where Θ(i) = A�(i)P (i) + P (i)A(i) +
∑N

j=1 λijP (j).
Since Θ(i) < 0 for all i ∈ S , it can be easily shown that the following

holds:

L V (x(t), i) ≤ −α‖x(t)‖2,

where α = mini∈S {λmin(−Θ(i))} > 0.
Using Dynkin’s formula, we obtain

E[V (x(t), i)] − E[V (x0, r0)] = E

[∫ t

0

[L V (xs, r(s))] ds|x0, r0

]
≤ −αE

[∫ t

0

‖xs‖2ds|x0, r0

]
.

Since E[V (x(t), i)] ≥ 0, the last equation implies

αE

[∫ t

0

‖xs‖2ds|x0, r0

]
≤ E[V (x(t), i)] + αE

[∫ t

0

‖xs‖2ds|x0, r0

]
≤ E[V (x0, r0)],∀t > 0.

This holds for all t ≥ 0, which proves that the system under study is stochas-
tically stable. This completes the proof of Theorem 70. �

Theorem 71. System (5.1) with w(t) = 0 for all t ≥ 0 is robustly stochasti-
cally stable for all admissible uncertainties if it is stochastically quadratically
stable.

Proof: Since system (5.1) is stochastically quadratically stable, then there
is a set of symmetric and positive-definite matrices P = (P (1), · · · , P (N)) > 0
satisfying for every i ∈ S :
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A�(i, t)P (i) + P (i)A(i, t) +
N∑

j=1

λijP (j) < 0,

for all admissible uncertainties. Let the Lyapunov candidate function be given
by

V (x(t), r(t)) = x�(t)P (r(t))x(t).

The infinitesimal operator L of the Markov process {(x(t), r(t)), t ≥ 0}
acting on V (.) and emanating from the point (x, i) at time t, where x(t) = x
and r(t) = i for i ∈ S , is given by

L V (x(t), i) = ẋ�(t)P (i)x(t) + x�(t)P (i)ẋ(t) +
N∑

j=1

λijx
�(t)P (j)x(t).

Using the expression of the dynamics (5.1), we get

L V (x(t), i) = x�(t)

⎡⎣A�(i, t)P (i) + P (i)A(i, t) +
N∑

j=1

λijP (j)

⎤⎦x(t)

= x�(t)
[
A�(i)P (i) + P (i)A(i) + E�

A (i)F�
A (i, t)D�

A(i)P (i)

+P (i)DA(i)FA(i, t)EA(i) +
N∑

j=1

λijP (j)
]
x(t)

= x�(t)Θ0(i)x(t),

where

Θ0(i) = A�(i)P (i) + P (i)A(i) + E�
A (i)F�

A (i, t)D�
A(i)P (i)

+P (i)DA(i)FA(i, t)EA(i) +
N∑

j=1

λijP (j).

Using Lemma 7 in Appendix A, we can show that there exists a set of
positive scalars εA = (εA(1), · · · , εA(N)) > 0 such that the following holds
for every i ∈ S :

L V (x(t), i) ≤ x�(t)Θ(i)x(t),

where

Θ(i) = A�(i)P (i) + P (i)A(i) + εA(i)P (i)DA(i)D�
A(i)P (i)

+ε−1
A (i)E�

A (i)EA(i) +
N∑

j=1

λijP (j).
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Since Θ(i) < 0 for all i ∈ S , it can be easily shown that the following
holds:

L V (x(t), i) ≤ −α‖x(t)‖2,

where α = mini∈S {λmin(−Θ(i))} > 0.
Using Dynkin’s formula, we obtain

E[V (x(t), i)] − E[V (x0, r0)] = E

[∫ t

0

[L V (xs, r(s))] ds|x0, r0

]
≤ −αE

[∫ t

0

‖xs‖2ds|x0, r0

]
.

Since E[V (x(t), i)] ≥ 0, the last equation implies

αE

[∫ t

0

‖xs‖2ds|x0, r0

]
≤ E[V (x(t), i)] + αE

[∫ t

0

‖xs‖2ds|x0, r0

]
≤ E[V (x0, r0)],∀t > 0.

This holds for all t ≥ 0, which proves that the system under study is stochas-
tically stable. This completes the proof of Theorem 71. �

Theorem 72. System (5.1) with w(t) = 0 for all t ≥ 0 is robustly sto-
chastically quadratically stable if there exist a sequence of positive numbers
εA = (εA(1), · · · , εA(N)) and a set of symmetric and positive-definite matri-
ces P = (P (1), · · · , P (N)) > 0 satisfying the following for each i ∈ S and
for all admissible uncertainties:⎡⎢⎢⎢⎢⎣

⎡⎢⎢⎣
A�(i)P (i)
+P (i)A(i)

+
∑N

j=1 λijP (j)
+εA(i)E�

A (i)EA(i)

⎤⎥⎥⎦ P (i)DA(i)

D�
A(i)P (i) −εA(i)I

⎤⎥⎥⎥⎥⎦ < 0. (5.8)

Proof: By virtue of the previous result, system (5.1) with w(t) = 0 for all
t ≥ 0 is robustly stochastically quadratically stable if the following holds for
each i ∈ S and all the admissible uncertainties:

A�(i, t)P (i) + P (i)A(i, t) +
N∑

j=1

λijP (j) < 0.

Since A(i, t) = A(i) + DA(i)FA(i, t)EA(i), this inequality becomes

A�(i)P (i) + P (i)A(i) +
N∑

j=1

λijP (j) + P (i)DA(i)FA(i, t)EA(i)
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+E�
A (i)F�

A (i, t)D�
A(i)P (i) < 0.

Using Lemma 7 in Appendix A, we have

P (i)DA(i)FA(i, t)EA(i) + E�
A (i)F�

A (i, t)D�
A(i)P (i)

≤ ε−1
A (i)P (i)DA(i)D�

A(i)P (i) + εA(i)E�
A (i)EA(i).

Taking into account this inequality and using the Schur complement, we obtain
the desired results and this ends the proof. �

Let us now return to the goal of this section, which is designing a stochas-
tically stable estimator such that the error covariance of the state vector x(t)
is bounded even in the presence of all admissible uncertainties in the system
dynamics.

The state estimator we use in this section is given by:{
˙̂x(t) = KA(r(t))x̂(t) + KB(r(t))y(t),
x̂(0) = x0,

(5.9)

where KA(r(t)) and KB(r(t)) are the filter gains to be determined for all the
modes.

The estimator error is defined as follows:

e(t) = x(t) − x̂(t).

From this, (5.1), and the filter expression (5.9), we get

ė(t) = ẋ(t) − ˙̂x(t)
= A(r(t), t)x(t) + B(r(t), t)w(t) − KA(r(t))x̂(t)

−KB(r(t))Cy(r(t), t)x(t) − KB(r(t))Dy(r(t))w(t)
= [A(r(t), t) − KA(r(t)) − KB(r(t))Cy(r(t), t)] x(t)

+KA(r(t)) [x(t) − x̂(t)] + B(r(t), t)w(t) − KB(r(t))Dy(r(t))w(t)
= [A(r(t), t) − KA(r(t)) − KB(r(t))Cy(r(t), t)] x(t) + KA(r(t))e(t)

+ [B(r(t), t) − KB(r(t))Dy(r(t))] w(t).

Using this expression, the augmented dynamics system becomes

˙̃x(t) = Ã(r(t), t)x̃(t) + B̃(r(t), t)w(t), x̃(0) = x̃0,

where

x̃(t) =
[

x(t)
x(t) − x̂(t)

]
,

Ã(r(t), t) =
[

A(r(t), t) 0
A(r(t), t) − KA(r(t)) − KB(r(t))Cy(r(t), t) KA(r(t))

]
=

[
A(r(t)) 0

A(r(t)) − KA(r(t)) − KB(r(t))Cy(r(t), t) KA(r(t))

]
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+
[

ΔA(r(t), t) 0
ΔA(r(t), t) − KB(r(t))ΔCy(r(t), t) 0

]
,

B̃(r(t), t) =
[

B(r(t), t)
B(r(t), t) − KB(r(t))Dy(r(t))

]
=

[
B(r(t))

B(r(t)) − KB(r(t))Dy(r(t))

]
+

[
ΔB(r(t), t)
ΔB(r(t), t)

]
.

Notice that

ΔÃ(r(t), t) =
[

ΔA(r(t), t) 0
ΔA(r(t), t) − KB(r(t))ΔCy(r(t), t) 0

]
=

[
ΔA(r(t), t) 0
ΔA(r(t), t) 0

]
+

[
0 0

−KB(r(t))ΔCy(r(t), t) 0

]
=

[
DA(r(t))FA(r(t), t)EA(r(t)) 0
DA(r(t))FA(r(t), t)EA(r(t)) 0

]
+

[
0 0

−KB(r(t))DCy
(r(t))FCy

(r(t), t)ECy
(r(t)) 0

]
=

[
DA(r(t))
DA(r(t))

]
FA(r(t), t)

[
EA(r(t)) 0

]
+

[
0

−KB(r(t))DCy
(r(t))

]
FCy

(r(t), t)
[
ECy

(r(t)) 0
]

= D̃A(r(t))FA(r(t), t)ẼA(r(t)) + D̃Cy
(r(t))FCy

(r(t), t)ẼCy
(r(t)),

with

D̃A(r(t)) =
[

DA(r(t))
DA(r(t))

]
,

ẼA(r(t)) =
[
EA(r(t)) 0

]
,

D̃Cy
(r(t)) =

[
0

−KB(r(t))DCy
(r(t))

]
,

ẼCy
(r(t)) =

[
ECy

(r(t)) 0
]
,

and

ΔB̃(r(t), t) =
[

ΔB(r(t), t)
ΔB(r(t), t)

]
=

[
DB(r(t))FB(r(t), t)EB(r(t))
DB(r(t))FB(r(t), t)EB(r(t))

]
=

[
DB(r(t))
DB(r(t))

]
FB(r(t), t)EB(r(t))

= D̃B(r(t))FB(r(t), t)ẼB(r(t)),

with

D̃B(r(t)) =
[

DB(r(t))
DB(r(t))

]
,

ẼB(r(t)) = EB(r(t)).
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Definition 16. Given the dynamics (5.1), the state estimator (5.9) is said
to be a stochastically stable estimator if there exists a set of symmetric and
positive-definite matrices P = (P (1), · · · , P (N)) > 0 such that the following
holds for each i ∈ S :

Ã(i)P (i) + P (i)Ã�(i) +
N∑

i=1

λijP (j) + B̃(i)B̃�(i) < 0. (5.10)

For the robust case, we have the following definition.

Definition 17. Given the dynamics (5.1), the state estimator (5.9) is said to
be a robustly stochastically stable estimator if there exists a set of symmet-
ric and positive-definite matrices P = (P (1), · · · , P (N)) > 0 such that the
following holds for each i ∈ S and for all admissible uncertainties:

[
Ã(i) + ΔÃ(i, t)

]
P (i) + P (i)

[
Ã(i) + ΔÃ(i, t)

]�
+

N∑
i=1

λijP (j)

+
[
B̃(i) + ΔB̃(i, t)

] [
B̃(i) + ΔB̃(i, t)

]�
< 0. (5.11)

Definition 18. The state estimator (5.9) is said to be a guaranteed cost state
estimator for the class of systems we are considering if there exists a symmet-
ric and positive-definite matrix R such that

E{(x − x̂)(x − x̂)�} ≤ R (5.12)

or

E{(x − x̂)(x − x̂)�} ≤ tr(R) (5.13)

holds for all admissible uncertainties.

Remark 21. In the rest of this chapter we refer to the state estimator (5.9) as
an estimator that provides a guaranteed cost matrix R.

Let us now drop the uncertainties from the dynamics (5.1) and see how
we can design the gain filter parameters KA(i) and KB(i) for all the modes.
Based on the previous definition, the filter (5.9) is quadratically stochastically
stable if there exists a set of symmetric and positive-definite matrices P =
(P (1), · · · , P (N)) > 0 such that the following holds for every i ∈ S :

Ã(i)P (i) + P (i)Ã�(i) +
N∑

i=1

λijP (j) + B̃(i)B̃�(i) < 0.

Now let P (i) = diag[P1(i), P2(i)], where P1(i) and P2(i) are symmetric
and positive-definite matrices. Let X(i) = P−1(i). Pre- and post-multiply the
previous inequality by X(i) to get
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X(i)Ã(i) + Ã�(i)X(i) +
N∑

i=1

λijX(i)X−1(j)X(i)

+X(i)B̃(i)B̃�(i)X(i) < 0.

Using the fact that

N∑
i=1

λijX(i)X−1(j)X(i) = λiiX(i) + Si(X)X−1
i (X)S�

i (X),

with

Si(X) =
[
S1i(X) 0

0 S2i(X)

]
,

Xi(X) =
[
X1i(X) 0

0 X2i(X)

]
,

S1i(X) =
[√

λi1X1(i), · · · ,
√

λii−1X1(i),
√

λii+1X1(i),

· · · ,
√

λiNX1(i)
]
,

S2i(X) =
[√

λi1X2(i), · · · ,
√

λii−1X2(i),
√

λii+1X2(i),

· · · ,
√

λiNX2(i)
]
,

X1i(X) = diag [X1(1), · · · , X1(i − 1), X1(i + 1), · · · , X1(N)] ,
X2i(X) = diag [X2(1), · · · , X2(i − 1), X2(i + 1), · · · , X2(N)] .

Using the Schur complement, we get⎡⎣X(i)Ã(i) + Ã�(i)X(i) + λiiX(i) X(i)B̃(i) Si(X)
B̃�(i)X(i) −I 0
S�

i (X) 0 −Xi(X)

⎤⎦ < 0.

Based on the expressions of Ã(i), B̃(i), and X(i), we get

X(i)Ã(i) =
[

X1(i)A(i) 0
X2(i)A(i) − X2(i)KA(i) − X2(i)KB(i)Cy(i) X2(i)KA(i)

]
,

X(i)B̃(i) =
[

X1(i)B(i)
X2(i)B(i) − X2(i)KB(i)Dy(i)

]
,

λiiX(i) =
[

λiiX1(i) 0
0 λiiX2(i)

]
,

which imply
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�
���������������

�
�A�(i)X1(i)

+X1(i)A(i)
+λiiX1(i)

�
�

�
� A�(i)X2(i)

−K�
A (i)X2(i)

−C�
y (i)K�

B (i)X2(i)

�
�

�
� X2(i)A(i)

−X2(i)KA(i)
−X2(i)KB(i)Cy(i)

�
�

�
� K�

A (i)X2(i)
+X2(i)KA(i)

+λiiX2(i)

�
�

B�(i)X1(i)

�
B�(i)X2(i)

−D�
y (i)K�

B (i)X2(i)

�

S�
1i(X) 0

0 S�
2i(X)

X1(i)B(i) S1i(X) 0�
X2(i)B(i)

−X2(i)KB(i)Dy(i)

�
0 S2i(X)

−I 0 0
0 −X1i(X) 0
0 0 −X2i(X)

�
�������

< 0.

Letting Y (i) = X2(i)KA(i) and Z(i) = X2(i)KB(i), we get the following
LMI:

�
�����������

�
A�(i)X1(i) + X1(i)A(i)

+λiiX1(i)

� �
A�(i)X2(i) − Y �(i)

−C�
y (i)Z�(i)

�
�

X2(i)A(i) − Y (i)
−Z(i)Cy(i)

� �
Y �(i) + Y (i)

+λiiX2(i)

�

B�(i)X1(i)

�
B�(i)X2(i)

−D�
y (i)Z�(i)

�

S�
1i(X) 0

0 S�
2i(X)

X1(i)B(i) S1i(X) 0�
X2(i)B(i)
−Z(i)Dy(i)

�
0 S2i(X)

−I 0 0
0 −X1i(X) 0
0 0 −X2i(X)

�
�������

< 0. (5.14)

The results of this development are summarized by the following theorem.

Theorem 73. If there exist sets of symmetric and positive-definite matrices
X1 = (X1(1), · · · , X1(N)) > 0 and X2 = (X2(1), · · · , X2(N)) > 0 and sets of
matrices Y = (Y (1), · · · , Y (N)) and Z = (Z(1), · · · , Z(N)) satisfying the fol-
lowing set of LMIs (5.14) for every i ∈ S , then the filter (5.9) is a guaranteed
cost state estimator and the gains are given by{

KA(i) = X−1
2 (i)Y (i),

KB(i) = X−1
2 (i)Z(i).

(5.15)
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Example 64. To illustrate the results of this theorem, let us consider a two-
mode system with the following data:

• mode #1:

A(1) =

⎡⎣−3.0 1.0 0.0
0.3 −2.5 1.0
−0.1 0.3 −3.8

⎤⎦ , B(1) =

⎡⎣1.0
0.0
1.0

⎤⎦ ,

Cy(1) =
[
0.1 1.0 0.0

]
, Dy(1) =

[
0.2

]
,

• mode #2:

A(2) =

⎡⎣−4.0 1.0 0.0
0.3 −3.0 1
−0.1 0.3 −4.8

⎤⎦ , B(2) =

⎡⎣1.0
0.0
2.0

⎤⎦ ,

Cy(2) =
[
0.8 0.4 0.0

]
, Dy(2) =

[
0.1

]
.

The switching between the two modes is described by the following tran-
sition rate matrix:

Λ =
[
−2.0 2.0
1.0 −1.0

]
.

Solving the LMI of the previous theorem, we get

X1(1) =

⎡⎣ 0.3251 0.0421 −0.0137
0.0421 0.4056 0.0347
−0.0137 0.0347 0.2965

⎤⎦ ,

X1(2) =

⎡⎣ 0.3846 0.0433 −0.0297
0.0433 0.4565 0.0291
−0.0297 0.0291 0.3044

⎤⎦ ,

X2(1) =

⎡⎣0.4124 0.1013 0.0755
0.1013 0.4537 0.1262
0.0755 0.1262 0.3977

⎤⎦ ,

X2(2) =

⎡⎣0.4517 0.0913 0.0555
0.0913 0.5413 0.1197
0.0555 0.1197 0.4215

⎤⎦ ,

Y (1) =

⎡⎣−1.0652 −0.6438 −0.6657
−0.5275 −0.8897 −0.5892
−0.5667 −0.5879 −1.1556

⎤⎦ ,

Y (2) =

⎡⎣−1.2414 −0.6077 −0.6817
−0.5667 −1.1770 −0.6455
−0.5416 −0.6030 −1.2854

⎤⎦ ,

Z(1) =

⎡⎣ 0.1278
−0.6279
−0.5518

⎤⎦ , Z(2) =

⎡⎣−0.1660
−0.6951
−0.5598

⎤⎦ ,
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which give the following gains:

KA(1) =

⎡⎣−2.3272 −1.0449 −1.0551
−0.4056 −1.5047 −0.3409
−0.8543 −0.8023 −2.5969

⎤⎦ ,

KA(2) =

⎡⎣ 2.5593 −0.8739 −1.0864
−0.4328 −1.8525 −0.3910
−0.8249 −0.7895 −2.7957

⎤⎦ ,

KB(1) =

⎡⎣ 0.8269
−1.2492
−1.1480

⎤⎦ , KB(2) =

⎡⎣ 0.0286
−1.0525
−1.0256

⎤⎦ .

Let us now consider the effect of the system uncertainties on the design
of the guaranteed cost state estimator. For this purpose we should satisfy the
following: [

Ã(i) + ΔÃ(i, t)
]
P (i) + P (i)

[
Ã(i) + ΔÃ(i, t)

]�
+

N∑
j=1

λijP (j) +
[
B̃(i) + ΔB̃(i, t)

] [
B̃(i) + ΔB̃(i, t)

]�
< 0.

Using the expressions of ΔÃ(i, t) and ΔB̃(i, t) and Lemma 7 and Lemma
8 in Appendix A, respectively, we get

D̃A(i)FA(i, t)ẼA(i)P (i) + P (i)Ẽ�
A (i)F�

A (i, t)D̃�
A(i) ≤ ε−1

A (i)D̃A(i)D̃�
A(i)

+εA(i)P (i)Ẽ�
A (i)ẼA(i)P (i),

D̃Cy
(i)FCy

(i, t)ẼCy
(i)P (i) + P (i)Ẽ�

Cy
(i)F�

Cy
(i, t)D̃�

Cy
(i)

≤ ε−1
Cy

(i)D̃Cy
(i)D̃�

Cy
(i) + εCy

(i)P (i)Ẽ�
Cy

(i)ẼCy
(i)P (i),[

B̃(i) + ΔB̃(i, t)
] [

B̃(i) + ΔB̃(i, t)
]�

≤ B̃(i)B̃�(i) + B̃(i)Ẽ�
B (i)

×
[
εB(i)I − ẼB(i)Ẽ�

B (i)
]−1

ẼB(i)B̃�(i) + εB(i)D̃B(i)D̃�
B(i).

Based on these inequalities, the previous condition becomes

Ã(i)P (i) + P (i)Ã�(i) +
N∑

j=1

λijP (j) + ε−1
A (i)D̃A(i)D̃�

A(i)

+εA(i)P (i)Ẽ�
A (i)ẼA(i)P (i) + B̃(i)B̃�(i)

+ε−1
Cy

(i)D̃Cy
(i)D̃�

Cy
(i) + εCy

(i)P (i)Ẽ�
Cy

(i)ẼCy
(i)P (i)

+B̃(i)Ẽ�
B (i)

[
εB(i)I − ẼB(i)Ẽ�

B (i)
]−1

ẼB(i)B̃�(i)

+εB(i)D̃B(i)D̃�
B(i) < 0.
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Let P (i) = diag[P1(i), P2(i)] with P1(i) and P2(i) symmetric and positive-
definite matrices. Let X(i) = P−1(i). Pre- and post-multiply the previous
inequality by X(i) to get

X(i)Ã(i) + Ã�(i)X(i) +
N∑

j=1

λijX(i)X−1(j)X(i) + εA(i)Ẽ�
A (i)ẼA(i)

+ε−1
A (i)X(i)D̃A(i)D̃�

A(i)X(i) + X(i)B̃(i)B̃�(i)X(i)

+ε−1
Cy

(i)X(i)D̃Cy
(i)D̃�

Cy
(i)X(i) + εCy

(i)Ẽ�
Cy

(i)ẼCy
(i)

+X(i)B̃(i)Ẽ�
B (i)

[
εB(i)I − ẼB(i)Ẽ�

B (i)
]−1

ẼB(i)B̃�(i)X(i)

+εB(i)X(i)D̃B(i)D̃�
B(i)X(i) < 0.

Using the Schur complement, we get
�
������������������

�
�����

X(i)Ã(i)

+Ã�(i)X(i)
+λiiX(i)

+εA(i)Ẽ�
A (i)ẼA(i)

+εCy (i)Ẽ�
Cy

(i)ẼCy (i)

�
�����

X(i)B̃(i) Si(X) X(i)D̃A(i)

B̃�(i)X(i) −I 0 0

S�
i (X) 0 −Xi(X) 0

D̃�
A(i)X(i) 0 0 −εA(i)I

ẼB(i)B̃�(i)X(i) 0 0 0

D̃�
B(i)X(i) 0 0 0

D̃�
Cy

(i)X(i) 0 0 0

X(i)B̃(i)Ẽ�
B (i) X(i)D̃B(i) X(i)D̃Cy (i)

0 0 0
0 0 0
0 0 0

−
�
εB(i)I − ẼB(i)Ẽ�

B (i)
�

0 0

0 −ε−1
B (i)I 0

0 0 −εCy (i)I

�
����������

< 0.

Noticing that

Ẽ�
A (i)ẼA(i) =

[
E�

A (i)EA(i) 0
0 0

]
,

Ẽ�
Cy

(i)ẼCy
(i) =

[
E�

Cy
(i)ECy

(i) 0
0 0

]
,

X(i)D̃A(i) =
[

X1(i)DA(i)
X2(i)DA(i)

]
,

X(i)B̃(i)Ẽ�
B (i) =

[
X1(i)B(i)E�

B (i)
X2(i)B(i)E�

B (i) − X2(i)KB(i)Dy(i)E�
B (i)

]
,
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X(i)D̃B(i) =
[

X1(i)DB(i)
X2(i)DB(i)

]
,

X(i)D̃Cy
(i) =

[
0

−X2(i)KB(i)DCy
(i)

]
,

ẼB(i)Ẽ�
B (i) = EB(i)E�

B (i),

and using the previous expression for X(i)Ã(i), Ã�(i)X(i), X(i)B̃(i),
B̃�(i)X(i), λiiX(i), Si(X), and Xi(X), we get the following equivalent LMI
after letting Y (i) = X2(i)KA(i) and Z(i) = X2(i)KB(i):

�
��������������������������

�
���

A�(i)X1(i) + X1(i)A(i)
+λiiX1(i)

+εA(i)E�
A (i)EA(i)

+εCy (i)E�
Cy

(i)ECy (i)

�
���
�

A�(i)X2(i) − Y �(i)

−C�
y (i)Z�(i)

�

�
X2(i)A(i) − Y (i)

−Z(i)Cy(i)

� �
Y �(i) + Y (i)

+λiiX2(i)

�

B�(i)X1(i)

�
B�(i)X2(i)

−D�
y (i)Z�(i)

�

S�
1i(X) 0

0 S�
2i(X)

D�
A(i)X1(i) D�

A(i)X2(i)

EB(i)B�(i)X1(i)

�
EB(i)B�(i)X2(i)

−EB(i)D�
y (i)Z�(i)

�

D�
B(i)X1(i) D�

B(i)X2(i)

0 −D�
Cy

(i)Z�(i)

X1(i)B(i) S1i(X) 0 X1(i)DA(i)�
X2(i)B(i)
−Z(i)Dy(i)

�
0 S2i(X) X2(i)DA(i)

−I 0 0 0
0 −X1i(X) 0 0
0 0 −X2i(X) 0
0 0 0 −εA(i)I
0 0 0 0
0 0 0 0
0 0 0 0

X1(i)B(i)E�
B (i) X1(i)DB(i) 0�

X2(i)B(i)E�
B (i)

−Z(i)Dy(i)E�
B (i)

�
X2(i)DB(i) −Z(i)DCy (i)

0 0 0
0 0 0
0 0 0
0 0 0

− 	
εB(i)I − EB(i)E�

B (i)



0 0
0 −ε−1

B (i)I 0
0 0 −εCy (i)I

�
���������������

< 0. (5.16)
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The results of this development are summarized by the following theorem.

Theorem 74. Let εB = (εB(1), · · · , εB(N)) be a given set of positive scalars.
If there exist sets of symmetric and positive-definite matrices X1 = (X1(1),
· · · , X1(N)) > 0 and X2 = (X2(1), · · · , X2(N)) > 0, sets of matrices
Y = (Y (1), · · · , Y (N)) and Z = (Z(1), · · · , Z(N)), and sets of positive scalars
εA = (εA(1), · · · , εA(N)) and εCy

= (εCy
(1), · · · , εCy

(N)) satisfying the fol-
lowing the set of LMIs (5.16) for every i ∈ S , then the filter (5.9) is a
guaranteed cost state estimator and the gains are given by{

KA(i) = X−1
2 (i)Y (i),

KB(i) = X−1
2 (i)Z(i).

(5.17)

Example 65. To illustrate the results of the previous theorem, let us consider
the system of the previous example with the following extra data:

• mode #1:

DA(1) =

⎡⎣ 0.1
0.01
0.0

⎤⎦ , EA(1) =
[
0.1 0.2 0.0

]
,

DB(1) =

⎡⎣0.1
0.1
0.0

⎤⎦ , EB(1) =
[
0.1

]
,

DCy
(1) =

[
0.2

]
, ECy

(1) =
[
0.1

]
,

• mode #2:

DA(2) =

⎡⎣0.2
0.1
0.0

⎤⎦ , EA(2) =
[
0.1 1.0 0.02

]
,

DB(2) =
[
0.1 1.0 0.0

]
, EB(2) =

[
0.02

]
,

DCy
(2) =

[
0.1

]
, ECy

(2) =
[
0.01

]
.

Solving the LMI of the previous theorem, we get

X1(1) = 10−3 ·

⎡⎣0.3901 0.4781 0.4119
0.4781 0.6968 0.5443
0.4119 0.5443 0.5219

⎤⎦ ,

X1(2) =

⎡⎣0.0001 0.0001 0.0001
0.0001 0.0014 0.0002
0.0001 0.0002 0.0002

⎤⎦ ,

X2(1) = 10−3 ·

⎡⎣0.0907 0.2818 0.3070
0.2818 0.4971 0.5069
0.3070 0.5069 0.3563

⎤⎦ ,
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X2(2) = 10−3 ·

⎡⎣−0.4562 −0.1674 0.6966
−0.1674 0.2448 0.3879
0.6966 0.3879 0.1134

⎤⎦ ,

Y (1) =

⎡⎣−0.0001 −0.0012 −0.0009
−0.0007 −0.0000 −0.0012
−0.0008 −0.0009 −0.0001

⎤⎦ ,

Y (2) =

⎡⎣−0.2736 −0.1927 −0.0025
0.0011 −0.0002 −0.0015
−0.0018 −0.0005 −0.0000

⎤⎦ ,

Z(1) = 10−3 ·

⎡⎣0.5416
0.0362
0.0269

⎤⎦ , Z(2) =

⎡⎣ 0.9537
−0.0007
−0.0002

⎤⎦ ,

which give the following gains:

KA(1) =

⎡⎣−4.9348 19.2437 0.9510
1.2661 −18.8446 4.3377
0.0685 7.7659 −7.2276

⎤⎦ ,

KA(2) =

⎡⎣−219.3289 −151.5680 0.7011
510.1277 355.7673 −0.4170
−413.8264 −290.4277 −3.2239

⎤⎦ ,

KB(1) =

⎡⎣−7.7939
5.4013
−0.8926

⎤⎦ , KB(2) = 103 ·

⎡⎣ 0.7490
−1.7651
1.4356

⎤⎦ .

This section covered the filtering problem under a severe assumption on
the external disturbance that is hard to justify in practice. The next section
will relax this assumption and replace it with another one that requires only
that the external disturbance have finite energy or finite power.

5.3 H∞ Filtering

To overcome the limitation of Kalman filtering, the H∞ approach has been
developed. Its advantage is that does not require knowledge of the external
disturbance statistics. It also tolerates the existence of uncertainties in the
system dynamics. This approach is based on the assumption that external dis-
turbances can be chosen arbitrarily with the only restriction to have bounded
energy or bounded average power. The approach of H∞ filtering provides an
estimator that guarantees that the L2-gain from the noise signals to the esti-
mation error is bounded by a prescribed level γ (given positive constant). In
the rest of this section, we use this technique to estimate the state vector of
the class of systems we are considering.
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In order to put the H∞ filtering problem of the class of systems (5.1) in
the stochastic setting, let us introduce the space L2 [Ω,F , P] of F-measurable
processes z(t) − ẑ(t) for which the following holds:

‖z − ẑ‖2
Δ=

{
E

[∫ ∞

0

[z(t) − ẑ(t)]� [z(t) − ẑ(t)] dt

]} 1
2

< ∞. (5.18)

The goal of this section is to design a linear n-order filter of the following
form: {

˙̂x(t) = KA(r(t))x̂(t) + KB(r(t))y(t), x̂(0) = 0,
ẑ(t) = KC(r(t))x̂(t),

(5.19)

which gives an estimate of the state vector x̂(t) at time t and can ensure
that the extended system (x(t), x(t) − x̂(t)) is stochastically stable and the
estimation error z(t) − ẑ(t) is bounded for all noises w(t) ∈ L2[0,∞). The
matrices KA(r(t)), KB(r(t)), and KC(r(t)) are design parameters that should
be determined in order to estimate the state vector properly.

Let us now drop the uncertainties from the dynamics and see how we can
design the H∞ filter with the structure defined by (5.19) for the nominal
system. We consider that v(t) = w(t) for the rest of this chapter.

If we combine the dynamical system dynamics (5.1) with the filter dynam-
ics (5.19), we get the following:

˙̃x(t) = Ã(r(t))x̃(t) + B̃(r(t))w(t), x̃(0) = (x�
0 , x�

0 )�, (5.20)

where

x̃(t) =
[

x(t)
x(t) − x̂(t)

]
,

Ã(r(t)) =
[

A(r(t)) 0
A(r(t)) − KB(r(t))Cy(r(t)) − KA(r(t)) KA(r(t))

]
,

B̃(r(t)) =
[

B(r(t))
B(r(t)) − KB(r(t))Dy(r(t))

]
.

The estimation error e(t) = z(t) − ẑ(t) satisfies the following:

e(t) = C̃(r(t))x̃(t) + D̃(r(t))w(t), (5.21)

with

C̃(r(t)) =
[
Cz(r(t)) − KC(r(t)) KC(r(t))

]
,

D̃(t) = Dz(r(t)).

Remark 22. To get the extended dynamics we computed

ẋ(t) − ˙̂x(t) = A(r(t))x(t) + B(r(t))w(t) − KA(r(t))x̂(t) − KB(r(t))y(t)
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= [A(r(t)) − KB(r(t))Cy(r(t)) − KA(r(t))] x(t)
+KA(r(t)) (x(t) − x̂(t)) + [B(r(t)) − KB(r(t))Dy(r(t))] w(t),

for the second component of the state vector x̃(t) and

e(t) = z(t) − ẑ(t)
= Cz(r(t))x(t) + Dz(r(t))w(t) − KC(r(t))x̂(t)

=
[
Cz(r(t)) − KC(r(t)) KC(r(t))

] [ x(t)
x(t) − x̂(t)

]
+ Dz(r(t))w(t)

= C̃(r(t))x̃(t) + D̃(r(t))w(t)

for the estimation error equation.

The next theorem states that when the filter (5.19) exists (that is, we can
get a set of gains KA = (KA(1), · · · ,KA(N)), KB = (KB(1), · · · ,KB(N)),
and KC = (KC(1), · · · ,KC(N))), the extended dynamics are stochastically
stable and the estimation error z(t) − ẑ(t) is bounded for all signals w(t) ∈
L2[0,∞) if some given conditions are satisfied.

Theorem 75. Let γ be a given positive constant and R a given symmetric
positive-definite matrix representing the weighting of the initial conditions.
Let KA = (KA(1), · · · ,KA(N)), KB = (KB(1), · · · ,KB(N)), and KC =
(KC(1), · · · ,KC(N)) be given gains. If there exist symmetric and positive-
definite matrices P = (P (1), · · · , P (N)) > 0 such that the following hold for
every i ∈ S : ⎡⎣ J̃1(i) P (i)B̃(i) C̃�(i)

B̃�(i)P (i) −γ2I D̃�(i)
C̃(i) D̃(i) −I

⎤⎦ < 0, (5.22)

[
I I

]
P (r0)

[
I

I

]
≤ γ2R, (5.23)

where J̃1(i) = Ã�(i)P (i) + P (i)Ã(i) +
∑N

j=1 λijP (j), then the extended sys-
tem is stochastically stable and, moreover, the estimation error satisfies the
following:

‖z(t) − ẑ‖2 ≤ γ
[
‖w‖2

2 + x�
0 Rx0

] 1
2 . (5.24)

Proof: Let us first set r(t) = i ∈ S and prove the stochastic stability of
the extended system. For this purpose, from (5.22) we get

Ã�(i)P (i) + P (i)Ã(i) +
N∑

j=1

λijP (j) < 0,

which implies that the extended system is stochastically stable.
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Let us now prove the second part of the theorem, which indicates that the
estimation error is bounded for all signals w(t) ∈ L2[0,∞). To this end, let
us define the following H∞ performance:

JT = E

[∫ T

0

[
e�(t)e(t) − γ2w�(t)w(t)

]
dt

]
,∀T > 0, (5.25)

and let L be the infinitesimal generator of the Markov process {(x(t), r(t)),
t ≥ 0}.

Consider the following Lyapunov function candidate as follows:

V (x̃(t), r(t)) = x̃�(t)P (r(t))x̃(t). (5.26)

The infinitesimal operator L of the Markov process {(x̃(t), r(t)), t ≥ 0}
acting on V (.) and emanating from the point (x̃, i) at time t, where x̃(t) = x̃
and r(t) = i for i ∈ S , is given by:

L V (x̃t, i) = ˙̃x�(t)P (i)x̃(t) + x̃�(t)P (i) ˙̃x(t) +
N∑

j=1

λij x̃
�(t)P (j)x̃(t)

=
[
Ã(i)x̃(t) + B̃(i)w(t)

]�
P (i)x̃(t) + x̃�(t)P (i)

[
Ã(i)x̃(t) + B̃(i)w(t)

]
+

N∑
j=1

λij x̃
�(t)P (j)x̃(t)

= x̃�(t)

⎡⎣Ã�(i)P (i) + P (i)Ã(i) +
N∑

j=1

λijP (j)

⎤⎦ x̃(t)

+x̃�(t)P (i)B̃(i)w(t) + w�(t)B̃�(i)P (i)x̃(t),

and

e�(t)e(t) − γ2w�(t)w(t)

=
[
C̃(i)x̃(t) + D̃(i)w(t)

]� [
C̃(i)x̃(t) + D̃(i)w(t)

]
− γ2w�(t)w(t)

= x̃�(t)C̃�(i)C̃(i)x̃(t) + x̃�(t)C̃�(i)D̃(i)w(t)
+w�(t)D̃�(i)C̃(i)x̃(t) + w�(t)D̃�(i)D̃(i)w(t) − γ2w�(t)w(t).

Combining these two relations, we get

e�(t)e(t) − γ2w�(t)w(t) + L V (xt, i)

= x̃�(t)
[
Ã�(i)P (i) + P (i)Ã(i)

+
N∑

j=1

λijP (j) + C̃�(i)C̃(i)
]
x̃(t)
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+x̃�(t)
[
P (i)B̃(i) + C̃�(i)D̃(i)

]
w(t)

+w�(t)
[
B̃�(i)P (i) + D̃�(i)C̃(i)

]
x̃(t)

+w�(t)
[
D̃�(i)D̃(i) − γ2I

]
w(t),

which gives in matrix form:

e�(t)e(t) − γ2w�(t)w(t) + L V (xt, i)

=
[
x̃�(t) w�(t)

]
Λn(i)

[
x̃(t)
w(t)

]
= ξ̃�(t)Λn(i)ξ̃(t), (5.27)

with ξ̃(t) =
[

x̃(t)
w(t)

]
and Λn(i) defined by

Λn(i) =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

⎡⎢⎢⎣
Ã�(i)P (i)
+P (i)Ã(i)

+
∑N

j=1 λijP (j)
+C̃�(i)C̃(i)

⎤⎥⎥⎦ [
P (i)B̃(i)

+C̃�(i)D̃(i)

]
[

B̃�(i)P (i)
+D�(i)C̃(i)

] [
D̃�(i)D̃(i)

−γ2I

]

⎤⎥⎥⎥⎥⎥⎥⎥⎦
.

Adding and subtracting L V (xt, i) to the H∞ performance (5.25), we get
the following:

JT = E

[∫ T

0

[e�(t)e(t) − γ2w�(t)w(t) + L V (x̃t, r(t))]dt

]

−E

[∫ T

0

L V (x̃t, r(t))dt

]
.

Using Dynkin’s formula, we obtain

E

[∫ T

0

L V (x̃t, r(t))dt

]
= E[V (x̃T , r(T ))] − E[V (x̃0, r0)].

From (5.26), we have

E[V (x̃0, r0)] = E[x̃�(0)P (r0)x̃(0)]. (5.28)

Note that x̃�(0) =
[
x�(0) x�(0) − x̂�(0)

]� =
[
x�

0 , x�
0

]�.
In view of (5.23) and (5.28), we have

E[V (x̃(0), r(0))] =
{

E

[
x�(0)

[
I I

]
P (r0)

[
I

I

]
x(0)

]}



5.3 H∞ Filtering 333

≤ γ2E
[
x�(0)Rx(0)

]
.

Notice that the H∞ performance JT can be rewritten as follows:

JT = E

[∫ T

0

ξ̃�t Λn(r(t))ξ̃tdt

]
+ E[V (x̃(0), r0)] − E[V (x̃(T ), r(T ))],

which implies

JT ≤ E

[∫ T

0

ξ̃�t Λn(r(t))ξ̃tdt

]
+ E[V (x̃(0), r0)]. (5.29)

Combining this with the fact that Λn(i) < 0 for all i ∈ S , the following
holds for all T > 0:

JT ≤ E[V (x̃(0), r0)] ≤ γ2x�(0)Rx(0).

Therefore, we get

J∞ = E

[∫ ∞

0

[e�(t)e(t) − γ2w�(t)w(t)]dt

]
≤ γ2x�(0)Rx(0).

This gives in turn that

‖e‖2
2 ≤ γ

[
‖w‖2

2 + x�(0)Rx(0)
]

and this ends the proof of Theorem 75. �
For a given set of gains of the filter of the form (5.19), we can compute the

minimum disturbance rejection by solving the following convex optimization
problem:

Pn:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

min v>0,
P=(P (1),··· ,P (N))>0

v,

s.t.:⎡⎢⎣ J̃1(i) P (i)B̃(i) C̃�(i)
B̃�(i)P (i) −vI D̃�(i)

C̃(i) D̃(i) −I

⎤⎥⎦ < 0,

[
I I

]
P (r0)

[
I

I

]
≤ vR,

where v = γ2.
But since we have not yet developed a way to choose the filter gains,

this optimization problem is useless. The design of the filter gains should be
included in an optimization problem similar to this one, which can help us
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to determine simultaneously the filter gains and the minimum disturbance
rejection.

Notice that the condition (5.22) is nonlinear in P (i) and the design filter
parameters. To cast the design of the H∞ filter in the LMI framework, let
us transform this condition in order to compute the gains KA(i), KB(i), and
KC(i).

Compute J̃1(i), P (i)B̃(i), C̃�(i), B̃�(i)P (i), and D̃�(i) in function of A(i),
B(i), Cy(i), Dy(i), Cz(i), and Dz(i). Using the expression of Ã(i), B̃(i), C̃(i),
and D̃(i), and assuming that P (i) = diag[X1(i), X2(i)] we get

J̃1(i) = Ã�(i)P (i) + P (i)Ã(i) +
N∑

j=1

λijP (j)

=
[

A(i) 0
A(i) − KB(i)Cy(i) − KA(i) KA(i)

]� [
X1(i) 0

0 X2(i)

]
+

[
X1(i) 0

0 X2(i)

] [
A(i) 0

A(i) − KB(i)Cy(i) − KA(i) KA(i)

]
+

N∑
j=1

λij

[
X1(j) 0

0 X2(j)

]

=
[

A�(i) A�(i) − C�
y (i)K�

B (i) − K�
A (i)

0 K�
A (i)

] [
X1(i) 0

0 X2(i)

]
+

[
X1(i) 0

0 X2(i)

] [
A(i) 0

A(i) − KB(i)Cy(i) − KA(i) KA(i)

]
+

N∑
j=1

λij

[
X1(j) 0

0 X2(j)

]

=

⎡⎢⎢⎢⎢⎢⎢⎣

⎡⎣ A�(i)X1(i)
+X1(i)A(i)

+
∑N

j=1 λijX1(j)

⎤⎦ ⎡⎣ A�(i)X2(i)
−C�

y (i)K�
B (i)X2(i)

−K�
A (i)X2(i)

⎤⎦
⎡⎣ X2(i)A(i)
−X2(i)KB(i)Cy(i)

−X2(i)KA(i)

⎤⎦ ⎡⎣ K�
A (i)X2(i)

+X2(i)KA(i)
+

∑N
j=1 λijX2(j)

⎤⎦

⎤⎥⎥⎥⎥⎥⎥⎦ ,

P (i)B̃(i) =
[

X1(i) 0
0 X2(i)

] [
B(i)

B(i) − KB(i)Dy(i)

]
=

[
X1(i)B(i)

X2(i)B(i) − X2(i)KB(i)Dy(i)

]
,

C̃(i) =
[
Cz(i) − KC(i) KC(i)

]
,

D̃(i) = Dz(i).

Using these relations, (5.22) becomes
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⎡⎣ A�(i)X1(i)
+X1(i)A(i)

+
∑N

j=1 λijX1(j)

⎤⎦ ⎡⎣ A�(i)X2(i)
−C�

y (i)K�
B (i)X2(i)

−K�
A (i)X2(i)

⎤⎦
⎡⎣ X2(i)A(i)
−X2(i)KB(i)Cy(i)

−X2(i)KA(i)

⎤⎦ ⎡⎣ K�
A (i)X2(i)

+X2(i)KA(i)
+

∑N
j=1 λijX2(j)

⎤⎦
B�(i)X1(i)

[
B�(i)X2(i)

−D�
y (i)K�

B (i)X2(i)

]
Cz(i) − KC(i) KC(i)

X1(i)B(i) C�
z (i) − K�

C (i)[
X2(i)B(i)

−X2(i)KB(i)Dy(i)

]
K�

C (i)

−γ2I D�
z (i)

Dz(i) −I

⎤⎥⎥⎥⎥⎦ < 0.

Letting Y (i) = X2(i)KA(i), Z(i) = X2(i)KB(i), and W (i) = KC(i), we
get ⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎡⎣ A�(i)X1(i)
+X1(i)A(i)

+
∑N

j=1 λijX1(j)

⎤⎦ ⎡⎣ A�(i)X2(i)
−C�

y (i)Z�(i)
−Y �(i)

⎤⎦
⎡⎣ X2(i)A(i)
−Z(i)Cy(i)

−Y (i)

⎤⎦ ⎡⎣ Y �(i)
+Y (i)

+
∑N

j=1 λijX2(j)

⎤⎦
B�(i)X1(i)

[
B�(i)X2(i)
−D�

y (i)Z�(i)

]
Cz(i) − W (i) W (i)

X1(i)B(i)
[

C�
z (i)

−W�(i)

]
[

X2(i)B(i)
−Z(i)Dy(i)

]
W�(i)

−γ2I D�
z (i)

Dz(i) −I

⎤⎥⎥⎥⎥⎥⎥⎦ < 0. (5.30)

For the second relation of the theorem, we have for r0 ∈ S :

[
I I

] [X1(r0) 0
0 X2(r0)

] [
I

I

]
= X1(r0) + X2(r0) < γ2R. (5.31)

The following theorem gives the results for the design of the gains of the
H∞ filter.

Theorem 76. Let γ and R be, respectively, a given positive constant and
a symmetric and positive-definite matrix representing the weighting of the
initial conditions. If there exist sets of symmetric and positive matrices
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X1 = (X1(1), · · · , X1(N)) > 0, X2 = (X2(1), · · · , X2(N)) > 0, and matrices
Y = (Y (1), · · · , Y (N)), Z = (Z(1), · · · , Z(N)), and W = (W (1), · · · ,W (N))
satisfying the following LMIs (5.30)–(5.31) for every i ∈ S , then there exists
a filter of the form (5.19) such that the estimation error is stochastically stable
and bounded by

‖z − ẑ‖2 ≤ γ
[
‖w‖2

2 + x�
0 Rx0

] 1
2 . (5.32)

The filter’s gains are given by⎧⎪⎨⎪⎩
KA(i) = X−1

2 (i)Y (i),
KB(i) = X−1

2 (i)Z(i),
KC(i) = W (i).

(5.33)

Example 66. To show the usefulness of the results of the previous theorem, let
us consider a two-mode system with the following data:

• mode #1:

A(1) =

⎡⎣−3.0 1.0 0.0
0.3 −2.5 1.0
−0.1 0.3 −3.8

⎤⎦ , B(1) =

⎡⎣1.0
0.0
1.0

⎤⎦ ,

Cy(1) =
[
0.1 1.0 0.0

]
, Dy(1) =

[
0.2

]
,

Cz(1) =
[
0.1 1.0 0.0

]
, Dz(1) =

[
2
]
,

• mode #2:

A(2) =

⎡⎣−4.0 1.0 0.0
0.3 −3.0 1.0
−0.1 0.3 −4.8

⎤⎦ , B(2) =

⎡⎣1.0
0.0
2.0

⎤⎦ ,

Cy(2) =
[
0.8 0.4 0.0

]
, Dy(2) =

[
0.1

]
,

Cz(2) =
[
0.7 0.1 0.0

]
, Dz(2) =

[
3.0

]
.

The switching between the two modes is described by the following tran-
sition rate matrix:

Λ =
[
−2.0 2.0
1.0 −1.0

]
.

Let γ = 3.2. Solving the LMI of the previous theorem, we get

X1(1) =

⎡⎣ 0.4550 0.0594 −0.0937
0.0594 0.8202 0.1464
−0.0937 0.1464 0.3339

⎤⎦ ,
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X1(2) =

⎡⎣ 0.6481 0.1897 −0.0466
0.1897 0.6430 0.1188
−0.0466 0.1188 0.2227

⎤⎦ ,

X2(1) =

⎡⎣ 0.2468 0.0736 −0.0579
0.0736 0.5412 0.0858
−0.0579 0.0858 0.2679

⎤⎦ ,

X2(2) =

⎡⎣ 0.6846 0.1937 −0.0594
0.1937 0.4612 0.0575
−0.0594 0.0575 0.1159

⎤⎦ ,

Y (1) =

⎡⎣−1.9012 −0.4551 −0.4489
−0.9434 −1.1422 −0.6304
−0.8838 −0.6897 −1.3025

⎤⎦ ,

Y (2) =

⎡⎣−2.6610 −0.1501 −0.0875
−1.1614 −0.9220 −0.2901
−0.5432 −0.1691 −0.3244

⎤⎦ ,

Z(1) =

⎡⎣ 0.6668
−0.6417
−0.6286

⎤⎦ , Z(2) =

⎡⎣ 0.9559
−0.2011
−0.0397

⎤⎦ ,

W (1) =
[
0.4269 −0.1865 −0.2150

]
,

W (2) =
[
0.4434 −0.0228 −0.0067

]
,

which gives the following gains for the H∞ filter:

KA(1) =

⎡⎣−9.0652 −2.0157 −3.1796
0.3417 −1.4316 0.1559
−5.3691 −2.5520 −5.6001

⎤⎦ ,

KA(2) =

⎡⎣−4.6004 0.3629 −0.3474
0.3121 −2.1243 −0.1192
−7.2000 −0.2180 −2.9176

⎤⎦ ,

KB(1) =

⎡⎣ 2.8010
−1.3597
−1.3052

⎤⎦ , KB(2) =

⎡⎣ 1.9095
−1.4044
1.3337

⎤⎦ ,

KC(1) =
[
0.4269 −0.1865 −0.2150

]
,

KC(2) =
[
0.4434 −0.0228 −0.0067

]
.

If the initial conditions are equal to zero, the previous results become easier
and are given by the following corollary.

Corollary 16. Let the initial conditions of system (5.1) be zero. Let γ be a
given positive constant. If there exist sets of symmetric and positive matrices
X1 = (X1(1), · · · , X1(N)) > 0, X2 = (X2(1), · · · , X2(N)) > 0, and matrices
Y = (Y (1), · · · , Y (N)), Z = (Z(1), · · · , Z(N)), and W = (W (1), · · · ,W (N))
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satisfying the LMI (5.30) for every i ∈ S , then there exists a filter of the form
(5.19) such that the estimation error is stochastically stable and bounded by

‖z − ẑ‖2 ≤ γ‖w‖2.

The filter’s gains are given by (5.33).

The minimal noise attenuation level γ that can be verified by the filter
of the form of (5.19) can be obtained by solving the following optimization
problem:

P0 :

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

min v>0,
X1=(X1(1),··· ,X1(N))>0,
X2=(X2(1),··· ,X2(N))>0,

Y =(Y (1),··· ,Y (N)),
Z=(Z(1),··· ,Z(N)),

W=(W (1),··· ,W (N)),

v,

s.t.

Θv(i) < 0,

X1(r0) + X2(r0) < vR,

where Θv(i) is obtained from (5.30) by replacing γ2 by v. Thus, if the convex
optimization problem P0 has a solution v, then by using Theorem 76, the
corresponding error of the filter (5.19) is stable with noise attenuation level√

v.
Let us now return to the dynamics of this chapter as given by (5.1) and

consider the effect of the uncertainties. As we did previously, let us assume
that there exists a filter of the form (5.19) and see under which conditions the
estimation error will be robustly stable in the stochastic sense and bounded
for all admissible uncertainties and all signals w(t) ∈ L2[0,∞).

Let us establish the uncertain extended dynamics in a different form. From
the dynamics (5.1) notice that we have

ẋ(t) = [A(i) + ΔA(i, t)] x(t) + [B(i) + ΔB(i, t)] w(t), (5.34)

with ΔA(i, t) = DA(i)FA(i, t)EA(i) and ΔB(i, t) = DB(i)FB(i, t)EB(i).
For the estimation error dynamics x̃(t) = x(t) − x̂(t) we have

ẋ(t) − ˙̂x(t) = [A(i) + ΔA(i, t)] x(t) + [B(i) + ΔB(i, t)] w(t)
−KA(i)x̂(t) − KB(i)y(t)

= [A(i) + ΔA(i, t) − KB(i) [Cy(i) + ΔCy(i, t)] − KA(i)] x(t)
+KA(i) [x(t) − x̂(t)] + [B(i) + ΔB(i, t) − KB(i)Dy(i)] w(t),

with ΔCy(i, t) = DCy
(i)FCy

(i, t)ECy
(i).

Based on these calculations, the extended dynamics become

˙̃x(t) =
[
Ã(i) + ΔÃ(i, t)

]
x̃(t) +

[
B̃(i) + ΔB̃(i, t)

]
w(t), (5.35)
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where

x̃(t) =
[

x(t)
x(t) − x̂(t)

]
,

Ã(i) =
[

A(i) 0
A(i) − KB(i)Cy(i) − KA(i) KA(i)

]
,

ΔÃ(i, t) =
[

ΔA(i, t) 0
ΔA(i, t) − KB(i)ΔCy(i, t) 0

]
,

B̃(i) =
[

B(i)
B(i) − KB(i)Dy(i)

]
,

ΔB̃(i, t) =
[

ΔB(i, t)
ΔB(i, t)

]
.

Notice that

ΔÃ(i, t) =
[

ΔA(i, t) 0
ΔA(i, t) − KB(i)ΔCy(i, t) 0

]
=

[
ΔA(i, t) 0
ΔA(i, t) 0

]
+

[
0 0

−KB(i)ΔCy(i, t) 0

]
=

[
DA(i)FA(i, t)EA(i) 0
DA(i)FA(i, t)EA(i) 0

]
+

[
0 0

−KB(i)DCy
(i)FCy

(i, t)ECy
(i) 0

]
=

[
DA(i)
DA(i)

]
FA(i, t)

[
EA(i) 0

]
+

[
0

−KB(i)DCy
(i)

]
FCy

(i, t)
[
ECy

(i) 0
]

= D̃A(i)FA(i, t)ẼA(i) + D̃Cy
(i)FCy

(i, t)ẼCy
(i),

with

D̃A(i) =
[

DA(i)
DA(i)

]
,

ẼA(i) =
[
EA(i) 0

]
,

D̃Cy
(i) =

[
0

−KB(i)DCy
(i)

]
,

ẼCy
(i) =

[
ECy

(i) 0
]
,

and

ΔB̃(i, t) =
[

ΔB(i, t)
ΔB(i, t)

]
=

[
DB(i)FB(i, t)EB(i)
DB(i)FB(i, t)EB(i)

]
=

[
DB(i)
DB(i)

]
FB(i, t)EB(i)
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= D̃B(i)FB(i, t)ẼB(i),

with

D̃B(i) =
[

DB(i)
DB(i)

]
,

ẼB(i) = EB(i).

For the estimation error, we have

e(t) = z(t) − ẑ(t) = Cz(i, t)x(t) + Dz(i)w(t) − KC(i)x̂(t)
= [Cz(i)x(t) + ΔCz(i, t)] x(t) − KC(i)x(t)

+KC(i) [x(t) − x̂(t)] + Dz(i)w(t)
=

[[
Cz(i) − KC(i) KC(i)

]
+

[
ΔCz(i, t) 0

]]
×

[
x(t)

x(t) − x̂(t)

]
+ Dz(i)w(t)

=
[
C̃(i) + ΔC̃(i, t)

]
x̃(t) + D̃(i)w(t),

where

C̃(i) =
[
Cz(i) − KC(i) KC(i)

]
,

ΔC̃z(i, t) =
[
ΔCz(i, t) 0

]
=

[
DCz

(i)FCz
(i, t)ECz

(i) 0
]

= DCz
(i)FCz

(i, t)
[
ECz

(i) 0
]

= D̃Cz
(i)FCz

(i, t)ẼCz
(i),

D̃(i) = Dz(i).

Using the first condition of Theorem 75 for the uncertain extended system,
we get ⎡⎢⎢⎢⎣

J̃(i, t) P (i)
[
B̃(i) + ΔB̃(i, t)

][
B̃�(i) + ΔB̃�(i, t)

]
P (i) −γ2I[

C̃(i) + ΔC̃(i, t)
]

D̃(i)[
C̃�(i) + ΔC̃�(i, t)

]
D̃�(i)
−I

⎤⎥⎦ < 0,

with

J̃(i, t) =
[
Ã(i) + ΔÃ(i, t)

]�
P (i) + P (i)

[
Ã(i) + ΔÃ(i, t)

]
+

N∑
j=1

λijP (j).

This last relation can be rewritten as follows:



5.3 H∞ Filtering 341⎡⎣ J̃(i) P (i)B̃(i) C̃�
z (i)

B̃�(i)P (i) −γ2I D̃�
z (i)

C̃z(i) D̃z(i) −I

⎤⎦
+

⎡⎣ΔÃ�(i, t)P (i) + P (i)ΔÃ(i, t) P (i)ΔB̃(i, t) ΔC̃�
z (i, t)

ΔB̃�(i, t)P (i) 0 0
ΔC̃z(i, t) 0 0

⎤⎦ < 0,

with J̃(i) = Ã�(i)P (i) + P (i)Ã(i) +
∑N

j=1 λijP (j).
This gives in turn: ⎡⎣ J̃(i) P (i)B̃(i) C̃�

z (i)
B̃�(i)P (i) −γ2I D̃�

z (i)
C̃z(i) D̃z(i) −I

⎤⎦
+

⎡⎣P (i)ΔÃ(i, t) P (i)ΔB̃(i, t) ΔC̃�
z (i, t)

0 0 0
0 0 0

⎤⎦
+

⎡⎣ΔÃ�(i, t)P (i) 0 0
ΔB̃�(i, t)P (i) 0 0

ΔC̃z(i, t) 0 0

⎤⎦ < 0.

Using now the expressions of the uncertainties, we get⎡⎣ J̃(i) P (i)B̃(i) C̃�
z (i)

B̃�(i)P (i) −γ2I D̃�
z (i)

C̃z(i) D̃z(i) −I

⎤⎦
+

⎡⎣P (i)D̃A(i)FA(i, t)ẼA(i) 0 0
0 0 0
0 0 0

⎤⎦
+

⎡⎣ Ẽ�
A (i)F�

A (i, t)D̃�
A(i)P (i) 0 0

0 0 0
0 0 0

⎤⎦
+

⎡⎣P (i)D̃Cy
(i)FCy

(i, t)ẼCy
(i) 0 0

0 0 0
0 0 0

⎤⎦
+

⎡⎣ Ẽ�
Cy

(i)F�
Cy

(i, t)D̃�
Cy

(i)P (i) 0 0
0 0 0
0 0 0

⎤⎦
+

⎡⎣0 P (i)D̃B(i)FB(i, t)ẼB(i) 0
0 0 0
0 0 0

⎤⎦
+

⎡⎣ 0 0 0
Ẽ�

B (i)F�
B (i, t)D̃�

B(i)P (i) 0 0
0 0 0

⎤⎦



342 5 Filtering Problem

+

⎡⎣ 0 0 Ẽ�
Cz

(i)F�
Cz

(i, t)D̃�
Cz

(i)
0 0 0
0 0 0

⎤⎦
+

⎡⎣ 0 0 0
0 0 0

D̃Cz
(i)FCz

(i, t)ẼCz
(i) 0 0

⎤⎦ < 0.

Notice that ⎡⎣P (i)D̃A(i)FA(i, t)ẼA(i) 0 0
0 0 0
0 0 0

⎤⎦
=

⎡⎣P (i)D̃A(i) 0 0
0 0 0
0 0 0

⎤⎦⎡⎣FA(i, t) 0 0
0 0 0
0 0 0

⎤⎦⎡⎣ ẼA(i) 0 0
0 0 0
0 0 0

⎤⎦ ,

⎡⎣P (i)D̃Cy
(i)FCy

(i, t)ẼCy
(i) 0 0

0 0 0
0 0 0

⎤⎦
=

⎡⎣P (i)D̃Cy
(i) 0 0

0 0 0
0 0 0

⎤⎦⎡⎣FCy
(i, t) 0 0
0 0 0
0 0 0

⎤⎦⎡⎣ ẼCy
(i) 0 0

0 0 0
0 0 0

⎤⎦ ,

⎡⎣0 P (i)D̃B(i)FB(i, t)ẼB(i) 0
0 0 0
0 0 0

⎤⎦
=

⎡⎣0 P (i)D̃B(i) 0
0 0 0
0 0 0

⎤⎦⎡⎣0 0 0
0 FB(i, t) 0
0 0 0

⎤⎦⎡⎣0 0 0
0 ẼB(i) 0
0 0 0

⎤⎦ ,

⎡⎣ 0 0 Ẽ�
Cz

(i)F�
Cz

(i, t)D̃�
Cz

(i)
0 0 0
0 0 0

⎤⎦
=

⎡⎣0 0 Ẽ�
Cz

(i)
0 0 0
0 0 0

⎤⎦⎡⎣0 0 0
0 0 0
0 0 F�

Cz
(i, t)

⎤⎦⎡⎣0 0 0
0 0 0
0 0 D̃�

Cz
(i)

⎤⎦ ,

and ⎡⎣ Ẽ�
A (i)F�(i, t)D̃�

A(i)P (i) 0 0
0 0 0
0 0 0

⎤⎦
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=

⎡⎣ Ẽ�
A (i) 0 0
0 0 0
0 0 0

⎤⎦⎡⎣F�
A (i, t) 0 0

0 0 0
0 0 0

⎤⎦
×

⎡⎣ D̃�
A(i)P (i) 0 0

0 0 0
0 0 0

⎤⎦ ,

⎡⎣ Ẽ�
Cy

(i)F�
Cy

(i, t)D̃�
Cy

(i)P (i) 0 0
0 0 0
0 0 0

⎤⎦
=

⎡⎣ Ẽ�
Cy

(i) 0 0
0 0 0
0 0 0

⎤⎦⎡⎣F�
Cy

(i, t) 0 0
0 0 0
0 0 0

⎤⎦
×

⎡⎣ D̃�
Cy

(i)P (i) 0 0
0 0 0
0 0 0

⎤⎦ ,

⎡⎣ 0 0 0
Ẽ�

B (i)F�
B (i, t)D̃�

B(i)P (i) 0 0
0 0 0

⎤⎦
=

⎡⎣0 0 0
0 Ẽ�

B (i) 0
0 0 0

⎤⎦⎡⎣0 0 0
0 F�

B (i, t) 0
0 0 0

⎤⎦
×

⎡⎣ 0 0 0
D̃�

B(i)P (i) 0 0
0 0 0

⎤⎦ ,

⎡⎣ 0 0 0
0 0 0

D̃Cz
(i)FCz

(i, t)ẼCz
(i) 0 0

⎤⎦
=

⎡⎣0 0 0
0 0 0
0 0 D̃Cz

(i)

⎤⎦⎡⎣0 0 0
0 0 0
0 0 FCz

(i, t)

⎤⎦
×

⎡⎣ 0 0 0
0 0 0

ẼCz
(i) 0 0

⎤⎦ .

Using Lemma 7 in Appendix A, we get⎡⎣P (i)D̃A(i)FA(i, t)ẼA(i) 0 0
0 0 0
0 0 0

⎤⎦
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+

⎡⎣ Ẽ�
A (i)F�

A (i, t)D̃�
A(i)P (i) 0 0

0 0 0
0 0 0

⎤⎦
≤ ε̃−1

A (i)

⎡⎣P (i)D̃A(i) 0 0
0 0 0
0 0 0

⎤⎦⎡⎣ D̃�
A(i)P (i) 0 0

0 0 0
0 0 0

⎤⎦
+ε̃A(i)

⎡⎣ Ẽ�
A (i) 0 0
0 0 0
0 0 0

⎤⎦⎡⎣ ẼA(i) 0 0
0 0 0
0 0 0

⎤⎦
=

⎡⎣ ε̃−1
A (i)P (i)D̃A(i)D̃�

A(i)P (i) + ε̃A(i)Ẽ�
A (i)EA(i) 0 0

0 0 0
0 0 0

⎤⎦ ,

⎡⎣P (i)D̃Cy
(i)FCy

(i, t)ẼCy
(i) 0 0

0 0 0
0 0 0

⎤⎦
+

⎡⎣ Ẽ�
Cy

(i)F�
Cy

(i, t)D̃�
Cy

(i)P (i) 0 0
0 0 0
0 0 0

⎤⎦
≤ ε̃−1

Cy
(i)

⎡⎣P (i)D̃Cy
(i) 0 0

0 0 0
0 0 0

⎤⎦⎡⎣ D̃�
Cy

(i)P (i) 0 0
0 0 0
0 0 0

⎤⎦
+ε̃Cy

(i)

⎡⎣ Ẽ�
Cy

(i) 0 0
0 0 0
0 0 0

⎤⎦⎡⎣ ẼCy
(i) 0 0

0 0 0
0 0 0

⎤⎦
=

⎡⎣ ε̃−1
Cy

(i)P (i)D̃Cy
(i)D̃�

Cy
(i)P (i) + ε̃Cy

(i)Ẽ�
Cy

(i)ECy
(i) 0 0

0 0 0
0 0 0

⎤⎦ ,

⎡⎣0 P (i)D̃B(i)FB(i, t)ẼB(i) 0
0 0 0
0 0 0

⎤⎦
+

⎡⎣ 0 0 0
Ẽ�

B (i)F�
B (i, t)D̃�

B(i)P (i) 0 0
0 0 0

⎤⎦
≤ ε̃−1

B (i)

⎡⎣ 0 P (i)D̃B(i) 0
0 0 0
0 0 0

⎤⎦⎡⎣ 0 0 0
D̃�

B(i)P (i) 0 0
0 0 0

⎤⎦
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+ε̃B(i)

⎡⎣ 0 0 0
0 Ẽ�

B (i) 0
0 0 0

⎤⎦⎡⎣0 0 0
0 ẼB(i) 0
0 0 0

⎤⎦
=

⎡⎣ ε̃−1
B (i)P (i)D̃B(i)D̃�

B(i)P (i) 0 0
0 +ε̃B(i)Ẽ�

B (i)EB(i) 0
0 0 0

⎤⎦ ,

⎡⎣0 0 Ẽ�
Cz

(i)F�
Cz

(i, t)D̃�
Cz

(i)
0 0 0
0 0 0

⎤⎦ +

⎡⎣ 0 0 0
0 0 0

D̃Cz
(i)FCz

(i, t)ẼCz
(i) 0 0

⎤⎦
≤ ε̃−1

Cz
(i)

⎡⎣ 0 0 Ẽ�
Cz

(i)
0 0 0
0 0 0

⎤⎦⎡⎣ 0 0 0
0 0 0

ẼCz
(i) 0 0

⎤⎦
+ε̃Cz

(i)

⎡⎣ 0 0 0
0 0 0
0 0 D̃Cz

(i)

⎤⎦⎡⎣0 0 0
0 0 0
0 0 D̃�

Cz
(i)

⎤⎦
=

⎡⎣ ε̃−1
Cz

(i)Ẽ�
Cz

(i)ẼCz
(i) 0 0

0 0 0
0 0 ε̃Cz

(i)D̃Cz
(i)D̃�

Cz
(i)

⎤⎦ .

Based on these transformations and after using the Schur complement we
get the following:⎡⎢⎢⎢⎢⎢⎢⎢⎣

⎡⎣ J̃(i)
+ε̃A(i)Ẽ�

A (i)ẼA(i)
+ε̃Cy

(i)Ẽ�
Cy

(i)ẼCy
(i)

⎤⎦ P (i)B̃(i)

B̃�(i)P (i) −γ2I + ε̃B(i)Ẽ�
B (i)ẼB(i)

C̃(i) D̃(i)
T �(i) 0

C̃�(i) T (i)
D̃�(i) 0

−I + ε̃Cz
(i)D̃Cz

(i)D̃�
C (i) 0

0 −W

⎤⎥⎥⎦ < 0,

with

T (i) =
[
P (i)D̃A(i) P (i)D̃Cy

(i) P (i)D̃B(i) Ẽ�
Cz

(i)
]
,

W =

⎡⎢⎢⎣
ε̃A(i)I 0 0 0

0 ε̃Cy
(i)I 0 0

0 0 ε̃B(i)I 0
0 0 0 ε̃Cz

(i)I

⎤⎥⎥⎦ .
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Let us now use P (i) =
[

X1(i) 0
0 X2(i)

]
, with X1(i) and X2(i) as symmetric

and positive-definite matrices, and try to write the parameters of the extended
dynamics as a function of the original ones, that is,

J1(i) =

⎡⎢⎢⎢⎢⎢⎢⎣

⎡⎣ A�(i)X1(i)
+X1(i)A(i)

+
∑N

j=1 λijX1(j)

⎤⎦ ⎡⎣ A�(i)X2(i)
−C�

y (i)K�
B (i)X2(i)

−K�
A (i)X2(i)

⎤⎦
⎡⎣ X2(i)A(i)
−X2(i)KB(i)Cy(i)

−X2(i)KA(i)

⎤⎦ ⎡⎣ K�
A (i)X2(i)

+X2(i)KA(i)
+

∑N
j=1 λijX2(j)

⎤⎦

⎤⎥⎥⎥⎥⎥⎥⎦ ,

P (i)B̃(i) =
[

X1(i)B(i)
X2(i)B(i) − X2(i)KB(i)Dy(i)

]
,

C̃z(i) =
[
Cz(i) − KC(i) KC(i)

]
,

D̃z(i) = Dz(i),

ε̃A(i)Ẽ�
A (i)ẼA(i) = ε̃A(i)

[
E�

A (i)
0

] [
EA(i) 0

]
=

[
ε̃A(i)E�

A (i)EA(i) 0
0 0

]
,

ε̃Cy
(i)Ẽ�

Cy
(i)ẼCy

(i) = ε̃Cy
(i)

[
E�

Cy
(i)

0

] [
ECy

(i) 0
]

=
[

ε̃Cy
(i)E�

Cy
(i)ECy

(i) 0
0 0

]
,

ε̃B(i)Ẽ�
B (i)ẼB(i) = ε̃B(i)E�

B (i)EB(i),
ε̃Cz

(i)D̃Cz
(i)D̃�

Cz
(i) = ε̃Cz

(i)DCz
(i)D�

Cz
(i),

T (i) =
[
P (i)D̃A(i) P (i)D̃Cy

(i) P (i)D̃B(i) Ẽ�
C (i)

]
=

[[
X1(i)DA(i)
X2(i)DA(i)

] [
0

−X2(i)KB(i)DCy
(i)

]
[

X1(i)DB(i)
X2(i)DB(i)

] [
E�

Cz
(i)

0

]]
=

[
T1(i)
T2(i)

]
,

with

T1(i) =
[
X1(i)DA(i) 0 X1(i)DB(i) E�

Cz
(i)

]
,

T2(i) =
[
X2(i)DA(i) −X2(i)KB(i)DCy

(i) X2(i)DB(i) 0
]
.

This gives us the following:
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JX1 U(i) X1(i)B(i)

U�(i) JX2

[
X2(i)B(i)

−X2(i)KB(i)Dy(i)

]
B�(i)X1(i)

[
B�(i)X2(i)

−D�
y (i)K�

B (i)X2(i)

]
−γ2I + εB(i)E�

B (i)EB(i)

Cz(i) − KC(i) KC(i) Dz(i)
T �

1 (i) T �
2 (i) 0

C�
z (i) − K�

C (i) T1(i)
K�

C (i) T2(i)
D�

z (i) 0
−I + εCz

(i)DCz
(i)D�

Cz
(i) 0

0 −W

⎤⎥⎥⎥⎥⎦ < 0,

where

JX1 = A�(i)X1(i) + X1(i)A(i) +
N∑

j=1

λijX1(j)

+ε̃A(i)E�
A (i)EA(i) + ε̃Cy

(i)E�
Cy

(i)ECy
(i),

JX2 = K�
A (i)X2(i) + X2(i)KA(i) +

N∑
j=1

λijX2(j),

U(i) = A�(i)X2(i) − C�
y (i)K�

B (i)X2(i) − K�
A (i)X2(i).

Letting Y (i) = X2(i)KA(i), Z(i) = X2(i)KB(i), and W (i) = KC(i), we
get ⎡⎢⎢⎢⎢⎣

JX1 U(i) X1(i)B(i)
U�(i) JX2 X2(i)B(i) − Z(i)Dy(i)

B�(i)X1(i) B�(i)X2(i) − D�
y (i)Z�(i) −γ2I + ε̃B(i)E�

B (i)EB(i)
Cz(i) − W (i) W (i) Dz(i)

T �
1 (i) T �

2 (i) 0

C�
z (i) − W�(i) T1(i)

W�(i) T2(i)
D�

z (i) 0
−I + εCz

(i)DCz
(i)D�

Cz
(i) 0

0 −W

⎤⎥⎥⎥⎥⎦ < 0,

where

JX1 = A�(i)X1(i) + X1(i)A(i) +
N∑

j=1

λijX1(j)

+ε̃A(i)E�
A (i)EA(i) + ε̃Cy

(i)E�
Cy

(i)ECy
(i),

JX2 = Y �(i) + Y (i) +
N∑

j=1

λijX2(j),
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U(i) = A�(i)X2(i) − C�
y (i)Z�(i) − Y �(i),

T1(i) =
[
X1(i)DA(i) 0 X1(i)DB(i) E�

Cz
(i)

]
,

T2(i) =
[
X2(i)DA(i) −Z(i)DCy

(i) X2(i)DB(i) 0
]
.

The following theorem gives the results for the design of the gains of the
H∞ filter.

Theorem 77. Let γ and R be, respectively, a given positive constant and a
symmetric and positive-definite matrix representing the weighting of the ini-
tial conditions. If there exist sets of symmetric and positive matrices X1 =
(X1(1), · · · , X1(N)) > 0, X2 = (X2(1), · · · , X2(N)) > 0, and matrices Y =
(Y (1), · · · , Y (N)), Z = (Z(1), · · · , Z(N)), and W = (W (1), · · · ,W (N)), and
sets of positive scalars ε̃A = (ε̃A(1), · · · , ε̃A(N)), ε̃B = (ε̃B(1), · · · , ε̃B(N)),
ε̃C = (ε̃C(1), · · · , ε̃C(N)), and ε̃Cy

= (ε̃Cy
(1), · · · , ε̃Cy

(N)) satisfying the fol-
lowing LMIs for every i ∈ S for all admissible uncertainties:⎡⎢⎢⎢⎢⎣

JX1 U(i) X1(i)B(i)
U�(i) JX2 X2(i)B(i) − Z(i)Dy(i)

B�(i)X1(i) B�(i)X2(i) − D�
y (i)Z�(i) −γ2I + ε̃B(i)E�

B (i)EB(i)
Cz(i) − W (i) W (i) Dz(i)

T �
1 (i) T �

2 (i) 0

C�
z (i) − W�(i) T1(i)

W�(i) T2(i)
D�

z (i) 0
−I + ε̃Cz

(i)DCz
(i)D�

Cz
(i) 0

0 −W

⎤⎥⎥⎥⎥⎦ < 0, (5.36)

X1(r0) + X2(r0) < γ2R, (5.37)

then there exists a filter of the form (5.19) such that the estimation error is
stochastically stable and bounded by

‖z − ẑ‖2 ≤ γ
[
‖w‖2

2 + x�
0 Rx0

] 1
2 . (5.38)

The filter gains are given by⎧⎪⎨⎪⎩
KA(i) = X−1

2 (i)Y (i),
KB(i) = X−1

2 (i)Z(i),
KC(i) = W (i).

(5.39)

If the initial conditions are equal to zero, the previous results become easier
and are given by the following corollary.

Corollary 17. Let the initial conditions of system (5.1) be zero. Let γ and
R be, respectively, a given positive constant and a symmetric and positive-
definite matrix representing the weighting of the initial conditions. If there



5.3 H∞ Filtering 349

exist symmetric and positive matrices X1 = (X1(1), · · · , X1(N)) > 0, X2 =
(X2(1), · · · , X2(N)) > 0, and matrices Y = (Y (1), · · · , Y (N)), Z = (Z(1),
· · · , Z(N)), and W = (W (1), · · · ,W (N)), and sets of positive scalars ε̃A =
(ε̃A(1), · · · , ε̃A(N)), ε̃B = (ε̃B(1), · · · , ε̃B(N)), ε̃C = (ε̃C(1), · · · , ε̃C(N)), and
ε̃Cy

= (ε̃Cy
(1), · · · , ε̃Cy

(N)) satisfying the LMIs (5.36)–(5.37) for every i ∈
S , then there exists a filter of the form (5.19) such that the estimation error
is stochastically stable and bounded by

‖z − ẑ‖2 ≤ γ‖w‖2. (5.40)

The filter gains are given by⎧⎪⎨⎪⎩
KA(i) = X−1

2 (i)Y (i),
KB(i) = X−1

2 (i)Z(i),
KC(i) = W (i).

(5.41)

The minimal noise attenuation level γ that can be verified by the filter
of the form of (5.19) can be obtained by solving the following optimization
problem:

P1 :

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

min v>0,
X1=(X1(1),··· ,X1(N))>0,
X2=(X2(1),··· ,X2(N))>0,

Y =(Y (1),··· ,Y (N)),
Z=(Z(1),··· ,Z(N)),

W=(W (1),··· ,W (N)),

v,

s.t.

Ψv(i) < 0,

X1(r0) + X2(r0) < vR,

where Ψv(i) is obtained from (5.36) by replacing γ2 by v. Thus, if the convex
optimization problem P1 has a solution v, then by using Theorem 77, the
corresponding error of the filter (5.19) is stable with noise attenuation level√

v.

Example 67. To show the usefulness of the results on robust H∞ filtering, let
us consider the same system of Example 66 with the following extra data:

• mode #1:

DA(1) =

⎡⎣ 0.1
0.01
0.0

⎤⎦ , EA(1) =
[
0.1 0.2 0.0

]
,

DB(1) =

⎡⎣ 0.1
0.01
0.0

⎤⎦ , EB(1) =
[
0.1

]
,

DCy
(1) =

[
0.2

]
, ECy

(1) =
[
0.1

]
,

ECz
(1) =

[
0.01 0.2 0.02

]
, DCz

(1) =
[
0.2

]
,



350 5 Filtering Problem

• mode #2:

DA(2) =

⎡⎣0.2
0.1
0.0

⎤⎦ , EA(2) =
[
0.1 1 0.02

]
,

DB(2) =

⎡⎣0.1
1

0.0

⎤⎦ , EB(2) =
[
0.02

]
,

DCy
(2) =

[
0.1

]
, ECy

(2) =
[
0.01

]
,

ECz
(2) =

[
0.0 0.01 0.1

]
, DCz

(2) =
[
0.3

]
.

The required positive scalars are

εA(1) = εA(2) = εB(1) = εB(2) = εCy
(1) = εCy

(2) = εCy
(1) = εCy

(2) = 0.1.

Letting γ = 3.1 and solving LMIs (5.36), we get

X1(1) =

⎡⎣ 0.8091 −0.0968 −0.2500
−0.0968 0.4640 0.0817
−0.2500 0.0817 0.5950

⎤⎦ ,

X1(2) =

⎡⎣ 0.8839 −0.1779 −0.3102
−0.1779 0.2617 0.1025
−0.3102 0.1025 0.4106

⎤⎦ ,

X2(1) =

⎡⎣ 1.1596 0.0027 −0.4042
0.0027 0.7079 0.1684
−0.4042 0.1684 0.7864

⎤⎦ ,

X2(2) =

⎡⎣ 1.1558 −0.2274 −0.5523
−0.2274 0.2575 0.0930
−0.5523 0.0930 0.5223

⎤⎦ ,

Y (1) =

⎡⎣−1.9846 0.7822 0.6965
−0.2953 −1.3059 0.2741
0.2570 −0.2890 −1.4980

⎤⎦ ,

Y (2) =

⎡⎣−4.2764 −1.4911 0.3010
−0.2820 −1.9178 −0.0669
−2.4172 −2.4012 −3.2604

⎤⎦ ,

Z(1) =

⎡⎣−0.0252
0.2978
−0.1132

⎤⎦ , Z(2) =

⎡⎣4.4270
2.8044
4.9579

⎤⎦ ,

W (1) =
[
0.1212 0.6145 0.0194

]
,

W (2) =
[
0.4689 0.2171 0.1646

]
,

which gives the following gains:
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KA(1) =

⎡⎣−1.9212 0.8501 −0.1623
−0.2661 −1.9645 0.9071
−0.6037 0.4902 −2.1826

⎤⎦ ,

KA(2) =

⎡⎣−13.4326 −9.6045 −5.7118
−6.5793 −11.3307 −0.9274
−17.6598 −12.7355 −12.1169

⎤⎦ ,

KB(1) =

⎡⎣−0.1343
0.4972
−0.3195

⎤⎦ , KB(2) =

⎡⎣21.2821
19.3760
28.5458

⎤⎦ ,

KC(1) =
[
0.1212 0.6145 0.0194

]
,

KC(2) =
[
0.4689 0.2171 0.1646

]
.

5.4 Notes

This chapter dealt with the filtering problem of the class of stochastic switch-
ing systems. Two types of filters have been studied and LMI-based results
have been established to design these filters. The design of robust filters is
also tackled and the LMI procedure to design filters established. Most of the
results presented in this chapter are based on the work of the author and his
coauthors.



6

Singular Stochastic Switching Systems

In the previous chapters we dealt with many classes of systems, including reg-
ular stochastic switching systems with and without Brownian disturbance. For
these classes of systems we studied the stability and stabilization problems.
Many stabilization techniques have been considered and most of the results
we developed are in the LMI framework, which makes the results powerful
and tractable.

In reality, not all the systems are regular and we may encounter physical
systems that cannot be modeled by the previous class of systems. These sys-
tems may be modeled more adequately by the class of singular systems shown
in Chapter 1 for electrical circuit. In the literature, these systems are also re-
ferred to as descriptor systems, implicit systems, generalized state-space sys-
tems, semi-state systems, or differential-algebraic systems. Singular systems
arise in many practical systems such as electrical circuits, power systems, and
networks (for more examples see [31] and the references therein). The goal of
this chapter is to introduce the class of singular stochastic switching systems
and consider some of the problems treated earlier to see how we can extend
the previous results to this case.

The rest of this chapter is organized as follows. In Section 6.1, the different
problems are stated and the necessary assumptions given. Section 6.2 deals
with the stability problem of the class of singular stochastic switching systems,
and LMI conditions are developed to check if a given system is stochastically
stable. The robust stability problem is also considered. Section 6.3 treats the
stabilization problem and its robustness. State feedback controller is consid-
ered and LMI design approaches are developed to synthesize the stabilizing
and the robust stabilizing controllers.

6.1 Problem Statement

Let us consider a dynamical singular system defined in a probability space
(Ω,F , P) and assume that its dynamics are described by the following differ-
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ential systems: {
Eẋ(t) = A(r(t), t)x(t) + B(r(t), t)u(t),
x(0) = x0,

(6.1)

where x(t) ∈ Rn is the state vector; x0 ∈ Rn is the initial state; u(t) ∈ Rm

is the control input; {r(t), t ≥ 0} is a continuous-time Markov process taking
values in a finite space S = {1, 2, · · · , N} that describes the evolution of
the mode at time t; E is a known singular matrix with rank (E) = nE < n;
and A(r(t), t) ∈ Rn×n and B(r(t), t) ∈ Rn×m are matrices with the following
forms for every i ∈ S :

A(i, t) = A(i) + DA(i)FA(i, t)EA(i),
B(i, t) = B(i) + DB(i)FB(i, t)EB(i),

with A(i), DA(i), EA(i), B(i), DB(i) and EB(i) are real known matrices with
appropriate dimensions; and FA(i, t) and FB(i, t) are unknown real matrices
that satisfy {

F�
A (i, t)FA(i, t) ≤ I,

F�
B (i, t)FB(i, t) ≤ I.

(6.2)

The Markov process {r(t), t ≥ 0} that represents the switching between
the different modes is described by the following probability transitions:

P [r(t + h) = j|r(t) = i] =

⎧⎪⎨⎪⎩
λijh + o(h), when r(t) jumps from i to j ,

1 + λiih + o(h), otherwise.
(6.3)

where λij is the transition rate from mode i to mode j with λij ≥ 0 when
i �= j and λii = −

∑N
j=1,j �=i λij and o(h) is such that limh→0

o(h)
h = 0.

As we did in the previous chapters, we assume that the matrix Λ belongs
to a polytope, that is,

Λ =
κ∑

k=1

αkΛk, (6.4)

where κ is a positive given integer; 0 ≤ αk ≤ 1, with
∑κ

k=1 αk = 1; and Λk

is a known transition matrix and its expression is given by

Λk =

⎡⎢⎣ λk
11 · · · λk

1N
...

. . .
...

λk
N1 · · · λk

NN

⎤⎥⎦ , (6.5)

where λk
ij keeps the same meaning as before.



6.1 Problem Statement 355

Remark 23. The uncertainties that satisfy the conditions (6.2) and (6.4) are
referred to as admissible. The uncertainty term in (6.2) is supposed to depend
on the system mode r(t) and on time t.

Throughout this chapter, we assume that the system state x(t) and the
system mode r(t) are completely accessible for feedback when necessary.

Remark 24. The matrix E is supposed to be singular, which makes the dy-
namics (6.1) different from those usually used to describe the behavior of the
time-invariant dynamical systems as considered in the previous chapters.

Remark 25. Notice that when E is not singular, (6.1) can be transformed
easily to the class of Markov jump linear systems and the results developed
earlier can be used to check the stochastic stability, design the appropriate
controller that stochastically stabilizes this class of systems, and even design
the appropriate filter.

The following definitions will be used in the rest of this chapter.

Definition 19. (Dai [31])

i. System (6.1) is said to be regular if the characteristic polynomial det(sE−
A(i)) is not identically zero for each mode i ∈ S .

ii. System (6.1) is said to be impulse free, if deg(det(sE − A(i))) = rank(E)
for each mode i ∈ S .

Definition 20. System (6.1) with u(t) ≡ 0 is said to be stochastically stable
if there exists a constant M(x0, r0) > 0 such that the following holds for any
initial conditions (x0, r0):

E

[∫ ∞

0

x�(t)x(t)|x0, r0

]
≤ M(x0, r0). (6.6)

Definition 21. System (6.1) is said to be stochastically stabilizable if there
exists a control

u(t) = K(i)x(t), (6.7)

with K(i) a constant matrix such that the closed-loop system is stochastically
stable.

The robust stochastic stability and the robust stochastic stabilizability are
defined in a similar manner. For more details, we refer the reader to Chapter
2.

The goal of this chapter is to develop LMI-based stability conditions for
system (6.1) with u(t) ≡ 0 and design a state feedback controller of the form
(6.7) that stochastically stabilizes the class of systems under study. The robust
stochastic stability and robust stabilization are also treated.



356 6 Singular Stochastic Switching Systems

Before closing this section, let us give a transformation that facilitates the
determination of the solution of system (6.1). For simplicity, let us assume
that the uncertainties are all equal to zero either in the matrix A(i) or the
matrix B(i) for all i ∈ S . In fact, for singular systems, we know that we can
find, using Jordan canonical form decomposition, nonsingular matrices M̂(i)
and N̂(i) for this purpose (see Dai [31]). The searched transformation will
divide the state vector into components named, respectively, slow and fast
and denoted, respectively, by η1(t) ∈ Rn1 and η2(t) ∈ Rn2 with n = n1 + n2.
This can be obtained by choosing

N̂(i)η(t) = x(t).

Using this transformation, the nominal dynamics become

EN̂(i)η̇(t) = A(i)N̂(i)η(t) + B(i)u(t).

If we pre-multiply this equation by M̂(i) and use the fact that

M̂(i)EN̂(i) =
[

I 0
0 N(i)

]
,

M̂(i)A(i)N̂(i) =
[

A1(i) 0
0 I

]
,

M̂(i)B(i) =
[

B1(i)
B2(i)

]
,

where N(i) ∈ Rn2×n2 a nilpotent matrix (i.e., a square matrix whose eigen-
values are all 0, it is also a square matrix, N(i), such that Np(i) = 0 for some
positive integer power p) and I ∈ Rn1×n1 an identity matrix with appropriate
dimension, with n1 + n2 = n, we get[

I 0
0 N(i)

] [
η̇1(t)
η̇2(t)

]
=

[
A1(i) 0

0 I

] [
η1(t)
η2(t)

]
+

[
B1(i)
B2(i)

]
u(t),

which can be rewritten as follows:

η̇1(t) = A1(i)η1(t) + B1(i)u(t),
N(i)η̇2(t) = η2(t) + B2(i)u(t).

For the first differential equation, the solution is given by ( Boukas [9])

η1(t) = eA1(i)tη1(0) +
∫ t

0

eA1(i)(t−τ)B1(i)u(τ)dτ,

which is completely determined by the initial conditions and the values of the
control in the interval [0, t].

For the second differential equation, let us assume that control u(t) is
p-times piecewise continuously differentiable. Therefore, by differentiating p-
times and at each differentiation pre-multiplying by N(i), we have
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N(i)η(1)
2 (t) = η2(t) + B2(i)u(t),

N2(i)η(2)
2 (t) = N1(i)η(1)

2 (t) + N1(i)B2(i)u(1)(t),
...

Np(i)η(p)
2 (t) = Np−1(i)η(p−1)

2 (t) + Np−1(i)B2(i)u(p−1)(t),

where η
(k)
2 (t) and u(k)(t) stand, respectively, for the k-times derivative of η2(t)

and u(t).
Using the fact that Np(i) = 0 and by adding all these equations we get

0 = η2(t) +
p−1∑
k=1

Nk(i)B2(i)u(k)(t),

which gives in turn

η2(t) = −
p−1∑
k=1

Nk(i)B2(i)u(k)(t).

These equations are useful for stochastic stability. As when u(t) = 0 for all
t ≥ 0, the stochastic stability of the system (6.1) is brought to the one of the
first differential equation related to the stochastic stability of the slow state
variable linked to the matrix A1(i), i ∈ S , since the second gives η2(t) = 0
for all t ≥ 0.

6.2 Stability Problem

This section addresses the stability problem of system (6.1) with u(t) ≡ 0.
Let us assume that u(t) = 0 for t ≥ 0 and all the uncertainties on the

state matrix are equal to zero, and study the stochastic stability of the nominal
system. Our concern is to establish LMI conditions that can be used to check if
a given dynamical system belonging to the class of systems we are considering
in this chapter is stochastically stable. The following theorem states the first
result of stability of such a class of systems.

Theorem 78. System (6.1) is regular, impulse-free, and stochastically stable
if there exists a set of nonsingular matrices P = (P (1), · · · , P (N)) such that
the following coupled LMIs hold for every i ∈ S :{

E�P (i) = P�(i)E ≥ 0,

A�(i)P (i) + P�(i)A(i) +
∑N

j=1 λijE
�P (j) < 0.

(6.8)

Proof: Under the condition of Theorem 78, we first show the regularity
and absence of impulses of system (6.1). Based on what was presented earlier,
choose two nonsingular matrices M̂ and N̂ such that
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M̂EN̂ =
[

I 0
0 0

]
and write

M̂A(i)N̂ =

[
Â1(i) Â2(i)
Â3(i) Â4(i)

]
, M̂−�P (i)N̂ =

[
P̂1(i) P̂2(i)
P̂3(i) P̂4(i)

]
.

By the first relation of (6.8) it can be shown that P̂2(i) = 0. Pre- and
post-multiplying the second inequality of (6.8) by N̂� and N̂ , respectively,
gives [

∗ ∗
∗ Â�

4 (i)P̂4(i) + P̂�
4 (i)Â4(i)

]
< 0,

where ∗ will not be used in the following development. Then we have

Â�
4 (i)P̂4(i) + P̂�

4 (i)Â4(i) < 0,

which implies that Â4(i) is nonsingular. System (6.1) is therefore regular and
impulse-free.

Next we show the stochastic stability. Let L denote the weak infinitesimal
generator of the Markov process {(x(t), r(t)), t ≥ 0}. Let us consider the
following Lyapunov function:

V (x(t), r(t)) = x�(t)E�P (r(t))x(t),

where P (i), i ∈ S , is a solution of (6.8).
The infinitesimal operator L of the Markov process {(x(t), r(t)), t ≥ 0}

acting on V (.) and emanating from the point (x, i) at time t, where x(t) = x
and r(t) = i for i ∈ S , is given by:

L V (x(t), i) = ẋ�(t)E�P (i)x(t) + x�(t)E�P (i)ẋ(t)

+
N∑

j=1

λijx
�(t)E�P (j)x(t).

Now if we use the fact that E�P (i) = P�(i)E holds, we get

L V (x(t), i) = ẋ�(t)E�P (i)x(t) + x�(t)P�(i)Eẋ(t)

+
N∑

j=1

λijx
�(t)E�P (j)x(t)

= x�(t)

⎡⎣A�(i)P (i) + P�(i)A(i) +
N∑

j=1

λijE
�P (j)

⎤⎦x(t)

= x�(t)Θ(i)x(t),
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with Θ(i) = A�(i)P (i) + P�(i)A(i) +
∑N

j=1 λijE
�P (j).

Therefore, if the following holds:

A�(i)P (i) + P�(i)A(i) +
N∑

j=1

λijE
�P (j) < 0,

then

L V (x(t), i) ≤ −α‖x(t)‖2,

where α = mini∈S {λmin(−Θ(i))} > 0.
Using Dynkin’s formula, we obtain

E[V (x(t), i)] − E[V (x0, r0)] = E

[∫ t

0

[L V (xs, r(s))] ds|x0, r0

]
≤ −αE

[∫ t

0

‖xs‖2ds|x0, r0

]
.

Since E[V (x(t), i)] ≥ 0, the last equation implies

αE

[∫ t

0

‖xs‖2ds|x0, r0

]
≤ E[V (x(t), i)] + αE

[∫ t

0

‖xs‖2ds|x0, r0

]
≤ E[V (x0, r0)],∀t > 0.

This proves that the system under study is stochastically stable and this
completes the proof of Theorem 78. �

Remark 26. Notice that when the matrix E = I, the first condition of (6.8)
becomes P (i) = P�(i), i ∈ S , which means in this case that the matrix
P (i), i ∈ S is symmetric and positive-definite and the results of the previous
theorem become those of Chapter 2.

The above theorem provides LMI-based test conditions for system (6.1) to
be stochastically stable. To illustrate the effectiveness of these results, let us
give a numerical example.

Example 68. Consider a singular linear system with two modes, that is, S =
{1, 2}, and assume that its dynamics are described by (6.1) and its data are
given by

• mode #1:

A(1) =

⎡⎣−1.0 0.0 −3.0
3.0 0.0 −1.0
0.0 −1.0 1.0

⎤⎦ ,
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• mode #2:

A(2) =

⎡⎣−1.0 0.0 −2.0
2.0 0.0 −1.0
0.0 −1.0 1.0

⎤⎦ .

The switching between the two modes is described by the following tran-
sition rates:

Λ =
[
−2 2
1 −1

]
.

The singular matrix E is given by

E =

⎡⎣1.0 0.0 0.0
0.0 0.0 1.0
0.0 0.0 0.0

⎤⎦ .

With the above data, solving LMIs (6.8) gives the following solution:

P (1) =

⎡⎣0.8210 0.0950 0.0000
0.0950 0.8762 0.0000
2.5594 0.5731 −0.5290

⎤⎦ ,

P (2) =

⎡⎣0.8063 0.1086 0.0000
0.1086 0.9203 0.0000
1.7199 0.5175 −0.5396

⎤⎦ .

Therefore, according to Theorem 78, the system under study is stochasti-
cally stable.

Let us now consider the effects of the uncertainties on the state matrix
with u(t) = 0 for t ≥ 0 and see how the stochastic stability conditions can be
modified to guarantee that the system (6.1) is regular, impulse-free, and ro-
bustly stochastically stable for all admissible uncertainties. We are interested
in establishing conditions that can help us to check if a given system with the
dynamics (6.1) is regular, impulse-free, and robustly stochastically stable.

Based on Theorem 78, the free uncertain system (6.1) (with u(t) Δ= 0,∀t ≥
0) will be regular, impulse-free, and robustly stochastically stable if there
exists a set of nonsingular matrices P = (P (1), · · · , P (N)) such that the
following holds for every i ∈ S :{

E�P (i) = P�(i)E ≥ 0,

P�(i)A(i, t) + A�(i, t)P (i) +
∑N

j=1 λijE
�P (j) < 0.

Notice that the second LMI can be rewritten as

P�(i)A(i) + A�(i)P (i) +
N∑

j=1

λijE
�P (j)
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+P�(i)DA(i)FA(i)EA(i) + E�
A (i)F�

A (i)D�
A(i)P (i) < 0.

Using Lemma 7 in Appendix A, we have

P�(i)DA(i)FA(i)EA(i) + E�
A (i)F�

A (i)D�
A(i)P (i)

≤ ε−1
A (i)P�(i)DA(i)D�

A(i)P (i) + εA(i)E�
A (i)EA(i).

Using this inequality and the Schur complement, we get the sufficient
conditions of the following theorem.

Theorem 79. System (6.1) is robustly stochastically stable if there exist a set
of nonsingular matrices P = (P (1), · · · , P (N)) and a set of positive scalars
εA = (εA(1), · · · , εA(N)) such that the following set of LMIs holds for each
i ∈ S and for all admissible uncertainties:⎧⎪⎨⎪⎩

E�P (i) = P�(i)E ≥ 0,[
J̃(i) P�(i)DA(i)

D�
A(i)P (i) −εA(i)I

]
< 0,

(6.9)

with J̃(i) = A�(i)P (i) + P�(i)A(i) +
∑N

j=1 λijE
�P (j) + εA(i)E�

A (i)EA(i).

Example 69. To show the usefulness of the results of this theorem, let us con-
sider the two-mode system of the previous example with the following data:

• mode #1:

DA(1) =

⎡⎣0.1
0.2
0.0

⎤⎦ ,

EA(1) =
[
0.2 0.1 0.1

]
,

• mode #2:

DA(2) =

⎡⎣0.2
0.1
0.0

⎤⎦ ,

EA(2) =
[
0.1 0.2 0.1

]
.

Let εA(1) = εA(2) = 0.1 and solve the set of coupled LMIs (6.9) to give

P (1) =

⎡⎣0.2935 0.0189 0.0000
0.0189 0.2810 0.0000
0.9045 0.2037 −0.1724

⎤⎦ ,

P (2) =

⎡⎣0.2694 0.0243 0.0000
0.0243 0.2953 0.0000
0.5620 0.1736 −0.1808

⎤⎦ ,

which gives two nonsingular matrices. Therefore the system is robustly sto-
chastically stable.
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If we now consider uncertainties on system matrix and transition rates, we
can easily establish the results in the following corollary.

Corollary 18. System (6.1) is robustly stochastically stable if there exist a set
of nonsingular matrices P = (P (1), · · · , P (N)) and a set of positive scalars
εA = (εA(1), · · · , εA(N)) such that the following holds for each i ∈ S and for
all admissible uncertainties:⎧⎪⎨⎪⎩

E�P (i) = P�(i)E[
J̃(i) P (i)DA(i)

D�
A(i)P (i) −εA(i)I

]
< 0,

(6.10)

with

J̃(i) = A�(i)P (i) + P�(i)A(i) +
κ∑

k=1

N∑
j=1

λk
ijE

�P (j) + εA(i)E�
A (i)EA(i).

Example 70. To show the usefulness of the results of this corollary, let us
consider the two-mode system of the previous example with the following
data:

Λ1 =
[
−2 2
1 −1

]
, α1 = 0.6,

Λ2 =
[
−3 3
1 −1

]
, α2 = 0.4.

Let εA(1) = εA(2) = 0.1 and solve the set of coupled LMIs (6.10) to give

P (1) =

⎡⎣0.2928 0.0201 0.0000
0.0201 0.2820 0.0000
0.9039 0.2040 −0.1738

⎤⎦ , P (2) =

⎡⎣0.2685 0.0235 0.0000
0.0235 0.2929 0.0000
0.5597 0.1738 −0.1793

⎤⎦ ,

which gives two nonsingular matrices. Therefore the system is robustly sto-
chastically stable.

Our goal in this section was to study the stochastic stability and robustness
of the class of stochastic switching systems. Using a simple expression for
the Lyapunov function and some algebraic calculations, we developed LMI
conditions that can be used to check if a given system is stable. In the next
section we establish design algorithms for stabilizing controllers.

6.3 Stabilization Problem

This section deals with the stabilization problem. We consider here only the
design of the state feedback controller that achieves closed-loop dynamics
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that are regular, impulse-free, and stochastically stable. The block diagram
of the closed-loop system under the state feedback controller is represented
by Figure 6.1. As can be seen, complete access to the state vector and to
the mode is crucial for this type of stabilization. Both the stabilization of
the nominal system and the uncertain system are tackled in this chapter.
For the stabilization problem of the nominal system, combining the system
dynamics (6.1) and the controller expression (6.7) gives the following closed-
loop dynamics: {

ẋ(t) = Acl(r(t))x(t),
x(0) = x0,

(6.11)

where Acl(r(t)) = A(r(t)) + B(r(t))K(r(t)).

Eẋ = A(i)x + B(i)u

u = K(i)x

y(t)

x(t)

w(t)

u(t)

Fig. 6.1. State feedback stabilization block diagram (nomi-
nal system).

Based on the results of Theorem 78, these dynamics will be regular,
impulse-free, and stochastically stable if there exists a set of nonsingular ma-
trices P = (P (1), · · · , P (N)) such that the following set of coupled LMIs holds
for each i ∈ S :{

E�P (i) = P�(i)E ≥ 0,

P�(i)Acl(i) + A�
cl(i)P (i) +

∑N
j=1 λijE

�P (j) < 0.

Pre- and post-multiply the second LMI, respectively, by P−�(i) and
P−1(i) to get

Acl(i)P−1(i) + P−�(i)A�
cl(i) +

N∑
j=1
j �=i

λijP
−�(i)E�P (j)P−1(i)

+λiiP
−�(i)E� < 0. (6.12)

If the following holds for each i ∈ S :
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E�P (j) ≤ εjP
�(j)P (j), εj > 0, (6.13)

then a sufficient condition for (6.12) is

Acl(i)P−1(i) + P−�(i)A�
cl(i) + λiiP

−�(i)E�

+
N∑

j=1
j �=i

λijεjP
−�(i)P�(j)P (j)P−1(i) < 0.

If we define

Gi =
[√

λi1P
−�(i), · · · ,

√
λii−1P

−�(i),
√

λii+1P
−�(i), · · · ,

√
λiNP−�(i)

]
,

Ji = diag
[
ε−1
1 P−1(1)P−�(1), · · · , ε−1

i−1P
−1(i − 1)P−�(i − 1),

ε−1
i+1P

−1(i + 1)P−�(i + 1), · · · , ε−1
N P−1(N)P−�(N)

]
,

then we obtain

N∑
j=1
j �=i

λijεjP
−�(i)P�(j)P (j)P−1(i) = GiJ

−1
i G�

i .

Using this we have [
J̃0(i) Gi

G�
i −Ji

]
< 0, (6.14)

where J̃0(i) = Acl(i)P−1(i) + P−�(i)A�
cl(i) + λiiP

−�(i)E�.
Based on Lemma 9 in Appendix A, we get the following for each i ∈ S :

ε−1
i P−1(i)P−�(i) = P−1(i) (εiI)

−1
P−�(i) ≥ P−1(i) + P−�(i) − εiI,

that is, Ji ≥ Wi, which implies the following sufficient condition:[
J̃0(i) Gi

G�
i −Wi

]
< 0, (6.15)

where

Wi = diag
[
P−1(1) + P−�(1) − ε1I, · · · , P−1(i − 1) + P−�(i − 1) − εi−1I,

P−1(i + 1) + P−�(i + 1) − εi+1I, · · · , P−1(N) + P−�(N) − εN I
]
.

Using the expression of Acl(i), letting X(i) = P−1(i), and Y (i) =
K(i)X(i), and noting that (6.13) can be rewritten as

X�(i)E� ≤ εiI,

we get the following results for the stabilization.
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Theorem 80. There exists a state feedback controller of the form (6.7) such
that the closed-loop system (6.1) is regular, impulse-free, and stochastically
stable if there exist a set of nonsingular matrices X = (X(1), · · · , X(N)),
a set of matrices Y = (Y (1), · · · , Y (N)), and a set of positive scalars ε =
(ε1, · · · , εN ) such that the following set of coupled LMIs holds for each i ∈ S :

εiI ≥ X�(i)E� = EX(i) ≥ 0, (6.16)[
Ĵ(i) Si(X)

S�
i (X) −Xi(X)

]
< 0, (6.17)

where

Ĵ(i) = A(i)X(i) + X�(i)A�(i) + B(i)Y (i) + Y �(i)B�(i) + λiiX
�(i)E�,

Xi(X) = diag
[
X(1) + X�(1) − ε1I, · · · , X(i − 1) + X�(i − 1) − εi−1I,

X(i + 1) + X�(i + 1) − εi+1I, · · · , X(N) + X�(N) − εN I
]
,

Si(X) =
[√

λi1X
�(i), · · · ,

√
λii−1X

�(i),
√

λii+1X
�(i), · · · ,

√
λiNX�(i)

]
.

The stabilizing controller gain is given by K(i) = Y (i)X−1(i), i ∈ S .

Example 71. Let us consider a two-mode dynamical singular system with dy-
namics described by (6.1) and assume that the data are given by

• mode #1:

A(1) =

⎡⎣ 1.0 0.5 1.0
−0.2 1.0 2.0
0.0 0.0 0.0

⎤⎦ , B(1) =

⎡⎣ 0.0 0.2
1.0 0.0
−0.1 1.0

⎤⎦ ,

• mode #2:

A(2) =

⎡⎣−1.2 0.3 0.0
1.2 1.0 0.0
0.0 0.4 0.0

⎤⎦ , B(2) =

⎡⎣ 0.0 0.2
1.2 0.0
−0.1 1.2

⎤⎦ .

The switching between the two modes is described by the following tran-
sition matrix:

Λ =
[
−2 2
1 −1

]
.

The singular matrix E is given by

E =

⎡⎣1 0 0
0 1 0
0 0 0

⎤⎦ .

Let us fix the parameters ε1 and ε2 to the following values:



366 6 Singular Stochastic Switching Systems

ε1 = ε2 = 0.1.

With the above set of data, solve (6.16)–(6.17) to get the following solution:

X(1) =

⎡⎣ 0.0714 −0.0015 0.0
−0.0015 0.0743 0.0
−0.0541 0.0050 0.1936

⎤⎦ ,

X(2) =

⎡⎣ 0.0855 −0.0008 0.0
−0.0008 0.0784 0.0
−0.0556 0.0028 0.2090

⎤⎦ ,

Y (1) =
[

0.1640 −0.1970 −0.0000
−0.1443 −0.4094 −0.2375

]
,

Y (2) =
[
−0.1040 −0.1620 −0.0000
−0.0159 −0.0393 −0.1702

]
.

In view of Theorem 80, we conclude that the system under study is sto-
chastically stabilizable and a set of stabilizing gains is given by

K(1) =
[

2.2430 −2.6094 −0.0000
−3.0602 −5.4891 −1.2269

]
,

K(2) =
[
−1.2355 −2.0803 −0.0000
−0.7199 −0.4804 −0.8142

]
.

Let us now consider robust stabilization using a state feedback controller
of the form (6.7). As we did for the nominal case, let see how we can extend the
previous results on the theorems on stabilization. Combining the expression of
the controller and the dynamics of the system, we get the following closed-loop
system:

Eẋ(t) = A(r(t), t)x(t) + B(r(t), t)K(r(t))x(t)
= [A(r(t)) + B(r(t))K(r(t)) + DA(r(t))FA(r(t), t)EA(r(t))

+DB(r(t))FB(r(t), t)EB(r(t))K(r(t))] x(t)
= Acl(r(t), t)x(t),

with

Acl(r(t), t) = A(r(t)) + B(r(t))K(r(t)) + DA(r(t))FA(r(t), t)EA(r(t))
+DB(r(t))FB(r(t), t)EB(r(t))K(r(t)).

Based on Theorem 80, the closed-loop uncertain system is regular, impulse-
free, and stochastically stable if there exist a set of nonsingular matrices X =
(X(1), · · · , X(N)), a set of matrices Y = (Y (1), · · · , Y (N)), and a set of
positive scalars ε = (ε1, · · · , εN ) such that the following set of coupled LMIs
holds for each i ∈ S :
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εiI ≥ X�(i)E� = EX(i) ≥ 0,[

Ĵ(i) Si(X)
S�

i (X) −Xi(X)

]
< 0,

where

Ĵ(i) = [A(i) + DA(i)FA(i)EA(i)] X(i) + X�(i) [A(i) + DA(i)FA(i)EA(i)]�

+ [B(i) + DB(i)FB(i)EB(i)] Y (i) + Y �(i) [B(i) + DB(i)FB(i)EB(i)]�

+λiiX
�(i)E�,

Xi(X) = diag
[
X(1) + X�(1) − ε1I, · · · , X(i − 1) + X�(i − 1) − εi−1I,

X(i + 1) + X�(i + 1) − εi+1I, · · · , X(N) + X�(N) − εN I
]
,

Si(X) =
[√

λi1X
�(i), · · · ,

√
λii−1X

�(i),
√

λii+1X
�(i), · · · ,

√
λiNX�(i)

]
,

and the controller gain in this case is given by K(i) = Y (i)X−1(i), i ∈ S .
Using Lemma 7 in Appendix A, we get

DA(i)FA(i)EA(i)X(i) + X�(i) [DA(i)FA(i)EA(i)]�

≤ εA(i)DA(i)D�
A(i) + ε−1

A (i)X�(i)E�
A (i)EA(i)X(i),

DB(i)FB(i)EB(i)Y (i) + Y �(i) [DB(i)FB(i)EB(i)]�

≤ εB(i)DB(i)D�
B(i) + ε−1

B (i)Y �(i)E�
B (i)EB(i)Y (i).

Using the Schur complement we have the following results.

Theorem 81. There exists a state feedback controller of the form (6.7) such
that the closed-loop system (6.1) is regular, impulse-free, and robustly sto-
chastically stable if there exist a set of nonsingular matrices X = (X(1), · · · ,
X(N)), a set of matrices Y = (Y (1), · · · , Y (N)), and sets of positive scalars
ε = (ε1, · · · , εN ), εA = (εA(1), · · · , εA(N), and εB = (εB(1), · · · , εB(N) such
that the following set of coupled LMIs holds for each i ∈ S :

εiI ≥ X�(i)E� = EX(i) ≥ 0, (6.18)⎡⎢⎢⎣
Ĵ(i) X�(i)E�

A (i) Y �(i)E�
B (i) Si(X)

EA(i)X(i) −εA(i)I 0 0
EB(i)Y (i) 0 −εB(i)I 0
S�

i (X) 0 0 −Xi(X)

⎤⎥⎥⎦ < 0, (6.19)

where

Ĵ(i) = A(i)X(i) + X�(i)A�(i) + B(i)Y (i) + Y �(i)B�(i)
+εA(i)DA(i)D�

A(i) + εB(i)DB(i)D�
B(i) + λiiX

�(i)E�,

Xi(X) = diag
[
X(1) + X�(1) − ε1I, · · · , X(i − 1) + X�(i − 1) − εi−1I,

X(i + 1) + X�(i + 1) − εi+1I, · · · , X(N) + X�(N) − εN I
]
,
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Si(X) =
[√

λi1X
�(i), · · · ,

√
λii−1X

�(i),
√

λii+1X
�(i), · · · ,

√
λiNX�(i)

]
.

The stabilizing controller gain is given by K(i) = Y (i)X−1(i), i ∈ S .

Example 72. To show the usefulness of this theorem, let us consider the two-
mode system of Example 71 with the following extra data:

• mode #1:

DA(1) =

⎡⎣0.1
0.2
0.1

⎤⎦ , EA(1) =
[
0.2 0.1 0.1

]
,

DB(1) =

⎡⎣0.2
0.1
0.1

⎤⎦ , EB(1) =
[
0.1 0.2

]
,

• mode #2:

DA(2) =

⎡⎣0.1
0.2
0.1

⎤⎦ , EA(2) =
[
0.2 0.1 0.1

]
,

DB(2) =

⎡⎣0.2
0.1
0.1

⎤⎦ , EB(2) =
[
0.1 0.2

]
.

The matrix E is given by the following expression:

E =

⎡⎣1.0 0.0 0.0
0.0 0.0 1.0
1.0 0.0 0.0

⎤⎦ .

Fix the parameters ε1, ε2, εA(1), εA(2), εB(1), and εB(2) to the following
values:

ε1 = ε2 = 0.1,

εA(1) = εA(2) = 0.1,

εB(1) = εB(2) = 0.1.

Solving LMIs (6.18)–(6.19) gives

X(1) =

⎡⎣ 0.0697 −0.0010 0.0
−0.0010 0.0730 0.0
−0.0517 −0.0014 0.1733

⎤⎦ ,

X(2) =

⎡⎣ 0.0856 −0.0008 0.0
−0.0008 0.0772 0.0
−0.0552 0.0022 0.1985

⎤⎦ ,
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Y (1) =
[

0.1028 −0.1850 −0.2393
−0.1330 −0.1397 −0.2571

]
,

Y (2) =
[
−0.1033 −0.1601 0.0104
−0.0121 −0.0609 −0.1789

]
,

which gives the following gains:

K(1) =
[

0.4145 −2.5563 −1.3807
−3.0365 −1.9826 −1.4835

]
,

K(2) =
[
−1.1926 −2.0862 0.0522
−0.7296 −0.7696 −0.9015

]
.

As we did for the stochastic stability case, let us also consider the case
where we have uncertainties on the system matrices and on the transition
rates. In this case, the corresponding results can be established following the
same steps as before. These results are given by the following corollary.

Corollary 19. There exists a state feedback controller of the form (6.7) such
that the closed-loop system (6.1) is regular, impulse-free, and robustly sto-
chastically stable if there exist a set of matrices X = (X(1), · · · , X(N)),
Y = (Y (1), · · · , Y (N)), and sets of positive scalars ε = (ε1, · · · , εN ), εA =
(εA(1), · · · , εA(N), and εB = (εB(1), · · · , εB(N) such that the following set
of coupled LMIs holds for each i ∈ S :

εiI ≥ X�(i)E� = EX(i) ≥ 0, (6.20)⎡⎢⎢⎣
Ĵ(i) X�(i)E�

A (i) Y �(i)E�
B (i) Si(X)

EA(i)X(i) −εA(i)I 0 0
EB(i)Y (i) 0 −εB(i)I 0
S�

i (X) 0 0 −Xi(X)

⎤⎥⎥⎦ < 0, (6.21)

where

Ĵ(i) = A(i)X(i) + X�(i)A�(i) + B(i)Y (i) + Y �(i)B�(i)

+εA(i)DA(i)D�
A(i) + εB(i)DB(i)D�

B(i) +
κ∑

k=1

αkλk
iiX

�(i)E�,

Xi(X) = diag
[
X(1) + X�(1) − ε1I, · · · , X(i − 1) + X�(i − 1) − εi−1I,

X(i + 1) + X�(i + 1) − εi+1I, · · · , X(N) + X�(N) − εN I
]
,

Si(X) =

⎡⎣√√√√ κ∑
k=1

αkλk
i1X

�(i), · · · ,

√√√√ κ∑
k=1

αkλk
ii−1X

�(i),

√√√√ κ∑
k=1

αkλk
ii+1X

�(i),

· · · ,

√√√√ κ∑
k=1

αkλk
iNX�(i)

⎤⎦ .

The stabilizing controller gain is given by K(i) = Y (i)X−1(i), i ∈ S .
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Example 73. To show the usefulness of this theorem, let us consider the two-
mode system of Example 72 with the following extra data:

Λ1 =
[
−1 1
1 −1

]
, α1 = 0.6,

Λ2 =
[
−2 2
1 −1

]
, α2 = 0.4.

Solving LMIs (6.20)–(6.21) gives

X(1) =

⎡⎣ 0.0714 −0.0010 0.0
−0.0010 0.0735 0.0
−0.0592 −0.0013 0.1853

⎤⎦ ,

X(2) =

⎡⎣ 0.0819 −0.0008 0.0
−0.0008 0.0754 0.0
−0.0526 0.0017 0.1927

⎤⎦ ,

Y (1) =
[

0.1168 −0.1818 −0.2684
−0.1417 −0.1378 −0.2367

]
,

Y (2) =
[
−0.1002 −0.1521 0.0058
−0.0177 −0.0545 −0.1657

]
,

which gives the following gains:

K(1) =
[

0.4024 −2.4926 −1.4486
−3.0709 −1.9355 −1.2778

]
,

K(2) =
[

1.2220 −2.0290 0.0303
−0.7749 −0.7108 −0.8601

]
.

6.4 Constant Gain Stabilization

Previously we assumed complete access to the system mode r(t) at each time
to compute the state feedback controller of the form (6.7). This assumption
could for some physical reasons be violated making the developed results
unusable. To overcome this, we can design a constant gain state feedback
controller that does not require access to the mode. The structure of such
controller is given by the following form:

u(t) = Kx(t), (6.22)

where K is a common gain for all the modes to be determined.

Remark 27. Since the gain K is common to all the modes, we do not need to
switch the gain as done previously when the system mode switches from one
mode to another. Notice that this may be restrictive in some cases.
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Before designing such a controller, let us modify our previous stochastic
stability conditions.

Corollary 20. System (6.1) is regular, impulse-free, and stochastically stable
if there exists a nonsingular matrix P such that the following coupled LMIs
hold for every i ∈ S : {

E�P = P�E,

A�(i)P + P�A(i) < 0.
(6.23)

Proof: The proof of this corollary is similar to the one of Theorem 78. In
fact, if we choose a Lyapunov candidate function of the following form:

V (x(t), r(t) = i) = x�(t)Px(t), when r(t) = i,

we get from Theorem 78:{
E�P = P�E,

A�(i)P + P�A(i) +
∑N

j=1 λijE
�P < 0.

And since
∑N

j=1 λij = 0, we get the results of the corollary. �
For the robust stochastic stability, we get the following results.

Corollary 21. System (6.1) is robustly stochastically stable if there exist a
nonsingular matrix P and a set of positive scalars εA = (εA(1), · · · , εA(N))
such that the following set of LMIs holds for each i ∈ S and for all admissible
uncertainties: ⎧⎪⎨⎪⎩

E�P = P�E ≥ 0,[
J̃(i) P�DA(i)

D�
A(i)P −εA(i)I

]
< 0,

(6.24)

with J̃(i) = A�(i)P + P�A(i) + εA(i)E�
A (i)EA(i).

Proof: The proof of this corollary is similar to the one of Theorem 79 and
the details are omitted. �

With these results, let us now focus on the design of a constant gain
stabilizing controller for the nominal system and the uncertain system. Let us
first handle the nominal case. Plugging the controller expression in the system
dynamics gives

Eẋ(t) = A(i)x(t) + B(i)Kx(t),
= [A(i) + B(i)K] x(t),
= Acl(i)x(t).
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Based on Corollary 20, the closed-loop dynamics will be regular, impulse-
free, and stochastically stable if there exists a nonsingular matrix P such that
the following set of LMIs holds for each i ∈ S :{

E�P = P�E,

A�
cl(i)P + P�Acl(i) < 0,

which gives in turn:{
E�P = P�E,

A�(i)P + P�A(i) + P�B(i)K + K�B�(i)P < 0.

Notice that the second matrix inequality of these conditions is nonlinear
in the design parameters K and P . To put it in the LMI setting, pre- and
post-multiply this matrix inequality, respectively, by P−� and P−1 to get

P−�A�(i) + A(i)P−1 + P−�K�B�(i) + B(i)KP−1 < 0.

Letting X = P−1 and Y = KX gives

X�A�(i) + A(i)X + Y �B�(i) + B(i)Y < 0.

The results of this development are summarized by the following corollary.

Corollary 22. There exists a state feedback controller of the form (6.22) such
that the closed-loop system (6.1) is regular, impulse-free, and stochastically
stable if there exist a nonsingular matrix X and a matrix Y such that the
following set of coupled LMIs holds for each i ∈ S :

X�E� = EX ≥ 0, (6.25)
A(i)X + X�A�(i) + B(i)Y + Y �B�(i) < 0. (6.26)

The stabilizing controller gain is given by K = Y X−1.

For the robust constant gain stabilization, the closed-loop state equation
will be regular, impulse-free, and robustly stochastically stable for all the
admissible uncertainties if there exists a nonsingular matrix P such that the
following set of LMIs holds for every i ∈ S and for all admissible uncertainties:{

E�P = P�E ≥ 0,

Ā�P + P�Ā(i) < 0,

with Ā(i) = A(i) + DA(i)FA(i)EA(i) + BK + DB(i)FB(i)EB(i)K.
The second matrix inequality can be rewritten as follows:

A�(i)P + P�A(i) + P�BK + K�B�(i)P + P�DA(i)FA(i)EA(i)
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+E�
A (i)F�

A (i)D�
A(i)P + P�DB(i)FB(i)EB(i)K

+K�E�
B (i)F�

B (i)D�
B(i)P < 0.

Pre- and post-multiply this matrix inequality, respectively, by P−� and
P−1 to give

P−�A�(i) + A(i)P−1 + BKP−1 + P−�K�B�(i) + DA(i)FA(i)EA(i)P−1

+P−�E�
A (i)F�

A (i)D�
A(i) + DB(i)FB(i)EB(i)KP−1

+P−�K�E�
B (i)F�

B (i)D�
B(i) < 0.

Letting X = P−1, Y = KX, and using Lemma 7 in Appendix A, we get

DA(i)FA(i)EA(i)X + X�E�
A (i)F�

A (i)D�
A(i)

≤ εA(i)DA(i)D�
A(i) + ε−1

A (i)X�E�
A (i)EA(i)X,

DB(i)FB(i)EB(i)Y + Y �E�
B (i)F�

B (i)D�
B(i)

≤ εB(i)DB(i)D�
B(i) + ε−1

B (i)Y �E�
B (i)EB(i)Y.

Using this and the Schur complement we get the following results.

Corollary 23. There exists a state feedback controller of the form (6.22) such
that the closed-loop system (6.1) is regular, impulse-free, and robustly stochas-
tically stable if there exist a nonsingular matrix X, a matrix Y , and sets of
positive scalars εA = (εA(1), · · · , εA(N) and εB = (εB(1), · · · , εB(N) such
that the following set of coupled LMIs holds for each i ∈ S and for all admis-
sible uncertainties:

X�E� = EX ≥ 0, (6.27)⎡⎣ J̃(i) X�E�
A (i) Y �E�

B (i)
EA(i)X −εA(i)I 0
EB(i)Y 0 −εB(i)I

⎤⎦ < 0, (6.28)

with

J(i) = A(i)X + X�A�(i) + B(i)Y + Y �B�(i) + εA(i)DA(i)D�
A(i)

+εB(i)DB(i)D�
B(i).

The stabilizing controller gain is given by K = Y X−1.

Remark 28. When the uncertainties are on the transition rate matrix, the
results of the previous corollaries will remain valid and can be used either
to check the robust stochastic stability or to design the constant gain state
feedback controller.
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6.5 Notes

This chapter dealt with the singular class of stochastic switching systems. The
stability problem and the stabilization problem have been considered and LMI
conditions were developed. The conditions we developed in this chapter are
tractable using commercial optimization tools. The content of this chapter is
mainly based on the work of the author and his coauthors.



Appendix A

Mathematical Review

Our goal is to make this book self-contained and easy to understand. This
appendix recalls some concepts used in this book and is organized as follows.
In Section A.1, basic concepts on linear algebra are given. In Section A.2,
matrix theory is reviewed and some important results are given to facilitate
the understanding of the results developed in this book. In Section A.3 we
present the stochastic processes and their links to what we are treating in
this volume. In Section A.4, some important lemmas that are useful for our
analysis and design are presented and some proofs are given.

A.1 Linear Algebra

In this section some important concepts in real analysis are reviewed. The
material presented here is only an introduction to some concepts and for
more details we refer the reader to the appropriate books.

Let K be the field of real numbers and B a class of objects. B is a linear
space over the field K if the following hold:

• sum: for any x and y belonging to B, their sum is also an element of B,
i.e.,

∀x, y ∈ B, x + y ∈ B,

• product: for any x ∈ B, its product by any scalar α ∈ K is also an element
of B, i.e.,

∀x ∈ B,∀α ∈ K , αx ∈ B,

• commutative:

∀x, y ∈ B, x + y = y + x,
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• associative:

∀x, y, z ∈ B, [x + y] + z = x + [y + z] ,

∀α, β ∈ K ,∀x ∈ X , [αβ] x = α [βx] ,

• zero element:

∀x ∈ B,∃v ∈ B, x + v = x,

• distributivity of sum/product:

∀x, y ∈ B,∀α ∈ K , α [x + y] = αx + αy,

• distributivity of product/sum:

∀α, β ∈ K ,∀x ∈ X , [α + β] x = αx + βx.

The elements of B are called vectors and any subset of B that is a linear
space is called a subspace. Therefore, for a given subspace B0, if we have n
vectors, x1, · · · , xn we have the following:

• a vector x ∈ B0 is a linear combination of vectors x1, · · · , xn that belong
to B0 if the following holds:

x = α1x1 + · · · + αnxn =
n∑

j=1

αjxj ,

• vectors x1, · · · , xn are linearly dependent if and only if

0 = α1x1 + · · · + αnxn =
n∑

j=1

αjxj ,

and there is some αj �= 0,
• vectors x1, · · · , xn are linearly independent if

0 = α1x1 + · · · + αnxn =
n∑

j=1

αjxj ,

which implies αj = 0 for j = 1, · · · , n. In this case, the set of vectors
x1, · · · , xn is called a basis of the subspace B0. Also, the maximum number
of linearly independent vectors is called the dimension of the considered
linear space.

For two vectors x and y with n components, respectively, the scalar prod-
uct, which is also called the inner product, is defined as

〈x, y〉 .=
n∑

j=1

xjyj = x�y = y�x.

The scalar product satisfies the following properties:
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• 〈x, x〉 > 0 for all x �= 0,
• 〈x, y〉 =≺ y, x �,
• 〈αx + βy, z〉 = α〈x, z〉 + β〈y, z〉 for all α and β in R.

When two vectors x and y are orthogonal, we have ≺ x, y �=≺ y, x �= 0.
Let x be a vector that belongs to the subspace B0. The norm of x de-

noted by ‖x‖ is a nonnegative-valued function of x satisfying the following
properties:

• ‖x‖ ≥ 0 for all x ∈ B0 and ‖x‖ = 0 if and only if x = 0,
• ‖αx‖ = |α|‖x‖ for all α elements of R and x ∈ B0,
• ‖x + y‖ ≤ ‖x‖ + ‖y‖ for all x and y belonging to the subspace B0.

The subspace is called normed linear space if for every x in this subspace
the norm of x is finite.

The usual norms are

• ‖x‖1 =
∑n

j=1 |xj |, 1-norm,

• ‖x‖2 =
√

x�x =
[∑n

j=1 x2
j

] 1
2
, 2-norm or Euclidean norm,

• ‖x‖p =
[∑n

j=1 |xj |p
] 1

p

, p-norm (1 ≤ p < ∞),
• ‖x‖∞ = supj |xj |, ∞-norm.

Two norms a and b are equivalent if there exist two positive constants M
and N such that the following holds:

N‖x‖a ≤ ‖x‖b ≤ M‖x‖a.

For vector functions, we can also talk about norms. Let B be a linear space
of Lebesgue-measurable functions defined on R. The Lp-norm of a function
f(t) ∈ B is defined by

‖f‖Lp
=

[∫ ∞

−∞
|f(t)|pdt

] 1
p

, when 1 ≤ p < ∞,

‖f‖L∞ = sup
−∞<t<∞

|f(t)|, when p = ∞.

A.2 Matrix Theory

In this section we recall certain concepts on matrix theory. The material here
is only an introduction to the matrix theory. For more details on the different
concepts, we refer the reader to the appropriate books.

A rectangular (real or complex) matrix with n rows and m columns is
defined as follows:
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A =

⎡⎢⎢⎢⎣
a11 a12 · · · a1m

a21 a22 · · · a2m

...
...

. . .
...

an1 an2 · · · anm

⎤⎥⎥⎥⎦ .

When the number of rows is equal to the number of columns, that is,
n = m, the real matrix is called a square matrix. The transpose of the matrix
A is obtained by interchanging the rows and columns, that is,

A� =

⎡⎢⎢⎢⎣
a11 a21 · · · an1

a12 a22 · · · an2

...
...

. . .
...

a1m a2m · · · anm

⎤⎥⎥⎥⎦ .

The conjugate matrix Ā is obtained from the matrix A (when A is a
complex matrix) by replacing every element of the matrix A by its complex
conjugate, that is,

Ā =

⎡⎢⎢⎢⎣
ā11 ā12 · · · ā1m

ā21 ā22 · · · ā2m

...
...

. . .
...

ān1 ān2 · · · ānm

⎤⎥⎥⎥⎦ .

A square matrix A is

• symmetric if A = A�,
• Hermitian if A = Ā�,
• skew-symmetric if A = −A�,
• skew-Hermitian if A = −Ā�.

The minor M(i, j) of a square matrix A of size n is the determinant of
(n−1)×(n−1) matrix formed from A by crossing out the ith row and the jth
column. Notice also that each element aij has a cofactor denoted by C(i, j)
that differs from M(i, j) at most by a sign change, that is,

C(i, j) = (−1)i+jM(i, j).

The determinant of a square matrix A of size n is defined by

det(A) =
n∑

j=i

ajkC(j, k).

A singular matrix A has a determinant equal to zero, det(A) = 0, and a
nonsingular matrix A has a nonzero determinant, det(A) �= 0.
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The inverse of a square matrix, A (when it exists), denoted by A−1 is
defined as follows:

A−1 =
A+

det(A)
,

where A+ is the adjoint matrix of A defined as A+ = [C(i, j)]� = C(j, i).
A matrix A is said to be

• normal if AĀ−1 = Ā�A,
• involutory if A−1 = A,
• orthogonal if A−1 = A�,
• unitary if A−1 = Ā�.

The trace of a square matrix A is defined as

tr(A) .=
n∑

i=1

aii.

For a square matrix of size n, we have tr(A) =
∑n

i=1 λi, and det(A) =
Πn

i=1λi with λi is the eigenvalue of the matrix A. The eigenvalues of a sym-
metric matrix are all real.

A symmetric square matrix of size n is

• positive-definite if all the eigenvalues of A are positive,
• positive-semi-definite if all the eigenvalues of A are zero or positive,
• negative-definite if all the eigenvalues of −A are positive,
• negative-semi-definite if all the eigenvalues of −A are zero or positive.

To end this section on matrix algebra, let us give some useful identities:

• for any matrix A we have [
A�]� = A,

• for any matrices A and B, we have

[A + B + C]� = A� + B� + C�,

• for any matrices A, B, and C, we have

[ABC]� = C�B�A�,

[
A B
C ABC

]�
=

[
A� C�

B� C�B�A�

]
,

• for any matrix A that has an inverse, we have[
A−1

]−1
= A,
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• for any matrix A that has an inverse, we have[
A�]−1

=
[
A−1

]�
,

• for any matrices A and B with appropriate dimensions that the product
AB has an inverse, we have

[AB]−1 = B−1A−1,

• for any matrix A, we have

tr
[
A�] = tr [A] ,

• for any matrices A and B with appropriate dimensions, we have

tr [A + B] = tr [A] + tr [B] ,

• for any matrices A and B with appropriate dimensions, we have:

tr [AB] = tr [BA]

• for any matrices A and P (nonsingular) with appropriate dimensions, we
have

tr
[
P−1AP

]
= tr [A] ,

• for any square matrix A, we can always express it as a sum of a symmetric
matrix A1 and a skew-symmetric matrix A2, that is,

A = A1 + A2,

with

A1 =
A + A�

2
, A2 =

A − A�

2
.

Let us now give some useful relations for integration and differentiation
of vectors and matrices. If we assume, for instance, that the state vector
x(t) ∈ Rn is given by

x(t) =

⎡⎢⎣ x1(t)
...

xn(t)

⎤⎥⎦ ,

then we have

ẋ(t) =

⎡⎢⎣ ẋ1(t)
...

ẋn(t)

⎤⎥⎦ ,
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∫ t

0

x(s)ds =

⎡⎢⎣
∫ t

0
x1(s)ds

...∫ t

0
xn(s)ds

⎤⎥⎦ .

For a matrix P (t) ∈ Rn×m defined as follows:

P (t) =

⎡⎢⎢⎢⎣
p11(t) p12(t) · · · p1m(t)
p21(t) p22(t) · · · p2m(t)

...
...

. . .
...

pn1(t) pn2(t) · · · pnm(t)

⎤⎥⎥⎥⎦ ,

we have

Ṗ (t) =

⎡⎢⎢⎢⎣
ṗ11(t) ṗ12(t) · · · ṗ1m(t)
ṗ21(t) ṗ22(t) · · · ṗ2m(t)

...
...

. . .
...

ṗn1(t) ṗn2(t) · · · ṗnm(t)

⎤⎥⎥⎥⎦ ,

∫ t

0

P (s)ds =

⎡⎢⎢⎢⎢⎣
∫ t

0
p11(s)ds

∫ t

0
p12(s)ds · · · p1m(s)ds∫ t

0
p21(s)ds

∫ t

0
p22(s)ds · · · p2m(s)ds

...
...

. . .
...∫ t

0
pn1(s)ds

∫ t

0
pn2(s)ds · · ·

∫ t

0
pnm(s)ds

⎤⎥⎥⎥⎥⎦ .

The following useful relations are also of interest in this book:

• for any two matrices with appropriate dimensions A(t) and B(t), we have

d

dt
[A(t) + B(t)] = Ȧ(t) + Ḃ(t),

d

dt
[A(t)B(t)] = Ȧ(t)B(t) + A(t)Ḃ(t),

d

dt

[
A−1(t)

]
= −A−1Ȧ(t)A−1,

• for any function v(x(t), t) that represents a Lyapunov function (a scalar
function), we have

d

dt
v(x(t), t) =

∂v

∂t
+

[
∂v

∂x

]� [
∂x

∂t

]
,

• for a vector x that may represent the state vector and a matrix B with
appropriate dimension, we have

∂
(
B�x

)
∂x

= B =
∂
(
x�B

)
∂x

,
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• for a vector x that may represent the state vector and a matrix A with
appropriate dimension, we have

∂ (Ax)
∂x

= A�,

∂
(
x�A�)
∂x

= A,

• for a vector x that may represent the state vector and a matrix P with ap-
propriate dimension that is assumed to be symmetric and positive-definite,
we have

∂
(
x�Px

)
∂x

=
[
P + P�]x = 2Px.

As we did for vectors, we can also introduce norms for matrices. Therefore,
for a vector x ∈ Rn, the norm of a matrix A is defined by

‖A‖ = sup
x�=0

‖Ax‖
‖x‖ = sup

‖x‖=1

‖Ax‖,

where sup stand for supremum or the least upper bound. This norm is defined
through the norm of the vector x and it is referred to as the induced norm.
Notice that for different ‖x‖ we have different ‖A‖. We have the following for
the useful norms. For any matrix A ∈ Rn×n with the components aij , we have

• for the 1-norm of x, i.e.: ‖x‖1, we have ‖A‖1 = maxj (
∑n

i=1 |aij |) = largest
column absolute sum;

• for the 2-norm of x, i.e.: ‖x‖2 (Euclidean norm), we have ‖A‖2 =
√

λmax,
with λmax is the largest eigenvalue of the matrix A�A;

• for the ∞-norm of x, i.e.: ‖x‖∞, we have ‖A‖∞ = maxi

(∑n
j=1 |aij |

)
=

largest row absolute sum.

The following properties hold for the norms of matrices:

• ‖A‖ ≥ 0 and ‖A‖ = 0 if and only if the matrix A is equal to the null
matrix,

• ‖aA‖ = |a|‖A‖ for all a ∈ R,
• ‖A + B‖ ≤ ‖A‖ + ‖B‖,
• ‖AB‖ ≤ ‖A‖‖B‖.

A.3 Markov Process

In this section we deal with the definitions of certain terms used in probability
theory. The material presented here is only an introduction of probability
concepts and for more details about these concepts, we refer the reader to the
appropriate books.

A probability space consists of
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• a set Ω;
• a collection F of subsets of Ω, called events, including the set Ω and

verifying the following properties:
1. if A is an event, then the complement Ā = {ω ∈ Ω| ω �∈ A} is also

an event; the complement of the set Ω is the empty set, denoted by ∅,
which is also an event;

2. if A1, A2 are two events, then their intersection A1∩A2 and their union
A1 ∪ A2 are also events;

3. if A1, A2, · · · , Ak are events, then �∞
k=1Ak and �∞

k=1Ak are also events;
• a function P(.) that assigns to each event A a real number, called the

probability of the event, satisfying the following properties:
1. P(A) ≥ 0 for every event A;
2. P(Ω) = 1;
3. P(A1 ∪ A2) = P(A1) + P(A2) for every pair of disjoint events A1 and

A2;
4. P(�∞

k=1Ak) =
∑∞

k=1 P(Ak) for every sequence of mutually disjoint
events A1, A2, · · · , Ak.

The function P(.), referred to as a probability measure, assigns to each
event a real positive number between 0 and 1.

Let us consider probability space (Ω,F , P). A one-dimensional random
variable defined on this probability space is a function from Ω to R, i.e.:
x : ω → R, such that for every scalar b the set {ω ∈ Ω|x(ω) ≤ b} is an event,
i.e., it belongs to the collection F .

An n-dimensional random vector x = (x1, x2, · · · , xn) is an n-tuple of
random variables x1, x2, · · · , xn; each one is defined on the same probability
space (Ω, F , P ).

The distribution function (or cumulative distribution function) F : R → R

of a random variable x is defined by

F (z) = P({ω ∈ Ω|x(ω) ≤ z}).

It is defined as the probability that random variable takes a value less than
or equal to z.

The distribution function F : Rn → R of a random vector x = {x1, x2, · · · ,
xn} is defined by

F (z1, z2, · · · , zn) = P ({ω ∈ Ω|x1(ω) ≤ z1, x2(ω) ≤ z2, · · · , xn(ω) ≤ zn, }).

Given the distribution function of a random vector x, the (marginal) dis-
tribution function of each random variable xi is obtained by

Fi(zi) = lim
zj→∞

j �=i

F (z1, z2, · · · , zn).

When the random variables x1, x2, · · · , xn are independent, we have
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F (z1, z2, · · · , zn) = F (z1)F (z2) · · ·F (zn).

When the random variable is continuous, we say that the random variable
vector x is characterized by a piecewise probability density function f : Rn →
R if f(.) is piecewise continuous and

F (z1, z2, · · · , zn) =
∫ z1

−∞

∫ z2

−∞
· · ·

∫ zn

−∞
f(y1, y2, · · · , yn)dy1dy2 · · · dyn.

The expected value of a random variable x is defined by

E{x} =
∫ ∞

−∞
zdF (z),

provided that the integral above is defined.
The expected value of a random vector is defined as

E{x} = (E{x1}, E{x2}, · · · , E{xn}).

The conditional probability of two events A and B is defined by

P(B|A) =

{
P(A∩B)

P(A) if P(A) > 0,

0 if P(A) = 0.

If B1, B2, · · · are a countable (possibly finite) collection of mutually exclu-
sive and exhaustive events (i.e., the sets Bi are disjoint and their union is Ω)
and A is an event, then we have

P(A) =
∑

i

P(A,Bi)

From this we can prove that

P(A) =
∑

i

P(Bi)P(A|Bi).

This is called the theorem of total probability. The conditional expectation of
a vector x is defined by

E{x|w} =
∫

Rn

zdF (z|w),

provided that the integral is well defined.
Let the state of a physical system be observed at the discrete moments of

time n = 0, 1, 2, · · · and let Xn denote this state at time n. Let Xn take values
in the state space S with finite or countably infinite number of states. The
conditional probability or transition probability is described by the following
relation:
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P [Xn+1 = xn+1|Xn = xn, · · · , X0 = x0] .

In practice many systems have the property that, given the present state,
the past states have no influence on the future. This property is called the
Markov property, and systems having this property are called Markov chains.
The Markov property is defined by the requirement that

P [Xn+1 = xn+1|Xn = xn, · · · , X0 = x0] = P [Xn+1 = xn+1|Xn = xn] ,

for every choice of n and the numbers xn, · · · , x0.

Example 74. To show the concept of the Markov chain, let us assume that the
state of a given machine can be described by a Markov chain with two states
denoted, respectively, as operational and under repair. Let Xn be the state of
the machine at time n. When the machine is operational at time n, we write
Xn = 1 and when it is under repair we write Xn = 0. Therefore the state
space in this case is S = {1, 0}. The transition probabilities in this case are

P [Xn+1 = 1|Xn = 0] = p,

P [Xn+1 = 0|Xn = 1] = q.

Let the initial state be given by the following probability:

P [X0 = 0] = π(0).

Based on the probability theory we have the following probability transi-
tion matrix:

P =
[

1 − p p
q 1 − q

]
.

Now try to estimate the state of the machine at time n + 1 when the
initial probability of the initial state at time 0 is given. We need to compute
P [Xn+1 = 0] and P [Xn+1 = 1]. Using the fact that the machine is described
by a Markov chain we get

P [Xn+1 = 0] = P [Xn+1 = 0 and Xn = 0] + P [Xn+1 = 0 and Xn = 1] ,

which gives

P [Xn+1 = 0] = P [Xn+1 = 0|Xn = 0] P [Xn = 0]
+P [Xn+1 = 0|Xn = 1] P [Xn = 1]

= (1 − p)P [Xn = 0] + qP [Xn = 1]
= (1 − p)P [Xn = 0] + q (1 − P [Xn = 0])
= (1 − p − q)P [Xn = 0] + q.

This relation is valid for each n, therefore:
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• for n = 1, we have

P [X1 = 0] = (1 − p − q)π(0) + q,

• for n = 2, we have

P [X2 = 0] = (1 − p − q)P [X1 = 0] + q

= (1 − p − q)2π(0) + q [1 + (1 − p − q)] ,

• for n, it can be proven that the probability at repair state at time n is
given by

P [Xn = 0] = (1 − p − q)nπ(0) + q
n−1∑
j=0

[1 − p − q]j .

If we assume that p + q > 0, in this case we get

n−1∑
j=0

[1 − p − q]j =
1 − (1 − p − q)n

p + q
.

Using this we have

P [Xn = 0] =
q

p + q
+ (1 − p − q)n

[
π(0) − q

p + q

]
,

P [Xn = 1] =
p

p + q
+ (1 − p − q)n

[
π(1) − 1

p + q

]
.

If we assume that p and q are neither equal to zero nor equal to one, then
0 < p + q < 2, which implies that |1 − p − q| < 1. In this case we can let
n → ∞, which gives

lim
n→∞ P [Xn = 0] =

q

p + q
,

lim
n→∞ P [Xn = 1] =

p

p + q
.

This example shows how to perform the computation of the steady state
of the Markov chain when it exists. Now consider the general case in which
the Markov chain Xn has more than two states in the state space S . Let
us restrict ourselves to the computation of the m-step transition function
Pm(x, y), which gives the probability of going from x to y in m steps. Let
P [y, x] denote the P [X1 = y|X0 = x], i.e.:

P [y, x] = P [X1 = y|X0 = x] ,∀x, y ∈ S .

It is such that
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P [y, x] ≥ 0,∑

y∈S P [y, x] = 1,∀x ∈ S .

If the Markov chain has stationary probabilities, we see that:

P [Xn+1 = y|Xn = x] = P [y, x] .

It follows from the Markov property that

P [Xn+1 = y|X0 = x0, · · · , Xn = x] = P [y, x] .

The initial distribution of the Markov chain is

π(x) = P [X0 = x] , x ∈ S .

This initial distribution satisfies the following:{
π(x) ≥ 0,∑

x∈S π(x) = 1.

The joint distribution of X0, · · · , Xn can easily be expressed in terms of
the transition function and the initial distribution. In fact, we have

P [X1 = x1, X0 = x0] = P [X0 = x0] P [X1 = x1|X0 = x0]
= P [x1, x0] π(x0).

We can use the Markov property to get

P [X2 = x2, X1 = x1, X0 = x0]
= P [X1 = x1, X0 = x0] P [X2 = x2|X1 = x1, X0 = x0]
= P [x2, x1] P [x1, x0] π(x0).

For the more general case, we get

P [Xn = xn, · · · , X1 = x1, X0 = x0]
= P [xn, xn−1] P [xn−1 = xn−2] · · ·P [x2, x1] P [x1, x0] π(x0).

For the m-step, we have

P [Xn+m = xn+m, · · ·Xn = xn, Xn−1 = xn−1, · · · , X0 = x0]
= P [Xn+m = xn+m, · · · , Xn+1 = xn+1|Xn = xn, · · · , X0 = x0]

×P [Xn = xn, · · · , X0 = x0] ,

which gives

P [Xn+m = xn+m, · · · , Xn+1 = xn+1|Xn = xn, · · · , X0 = x0]
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=
P [Xn+m = xn+m, · · · , Xn = xn, Xn−1 = xn−1, · · · , X0 = x0]

P [Xn = xn, · · · , X0 = x0]

=
P [xn+m, xn+m−1] P [xn+m−1, xn+m−2] · · ·P [x1, x0] π(x0)

P [xn, xn−1] · · ·P [x1, x0] π(x0)
= P [xn+m, xn+m−1] · · ·P [xn+1, xn] .

Let A0, · · · , An−1 be subsets of S . It follows that

P [Xn+m = ym, · · · , Xn+1 = y1|Xn = x, · · · , Xn−1 ∈ An−1, X0 ∈ A0]
= P [ym, ym−1] · · ·P [y1, x] .

Let B1, · · · , Bm be subsets of S . It follows that

P [Xn+m ∈ Bm, · · · , Xn+1 ∈ B1|Xn = x, · · · , Xn−1 ∈ An−1, X0 ∈ A0]

=
∑

y1∈S

· · ·
∑

ym∈S

P [ym, ym−1] · · ·P [y1, x] .

The m-step transition function Pm [y, x], which gives the probability of
going from x to y, is defined by

Pm [y, x] =
∑
y1

· · ·
∑

ym−1

P [y, ym−1] · · ·P [y2, y1] P [y1, x] .

It can be shown that

Pn+m [y, x] =
∑

z

Pn [z, x] Pm [y, z] .

It can also be shown that

P [Xn = y] =
∑

z

Pn [Xn = y,X0 = x]

=
∑

x

P [Xn = y|X0 = x] P [X0 = 0] .

We see that

P [Xn = y] =
∑

x

Pn [y, x] π(x).

Let us now consider the case of continuous-time Markov process with finite
state space S . In this case, the stochastic process is denoted by X(t) and we
have

P [X(t) ∈ A|X(s) = x(s), s ≤ τ ] = P [X(t) ∈ A|X(τ) = x(τ)] ,

where A is a subset of S and t any time larger than τ .
Based on what we developed for the Markov chain, we can write
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P [X(t) = i] =
∑

j

P [X(t) = i|X(τ) = j] P [X(τ) = j] .

If we now replace t by t + h and τ by t in the previous relation, we get

P [X(t + h) = i] =
∑

j

P [X(t + h) = i|X(t) = j] P [X(t) = j] .

Let us define λij as follows if it exists:

λij = lim
h→0

P [X(t + h) = j|X(t) = i]
h

(A.1)

or

P [X(t + h) = j|X(t) = i] = λijh + o(h) (A.2)

with limh→0
o(h)

h .
Let us compute the P [X(t + h) = i]. This can be given by

P [X(t + h) = i] =
∑
j∈S

P [X(t + h) = i|X(t) = j] P [X(t) = j] . (A.3)

Using now the definition of λij we get:

P [X(t + h) = i] =
∑

j �=i∈S

λijhP [X(t) = j]

+P [X(t + h) = i|X(t) = i] P [X(t) = i] + o(h).

To shorten our notation let us define

pi [t] = P [X(t) = i] .

Then the previous expression becomes

pi [t + h] =
∑

j �=i∈S

λijhpj [t] + P [X(t + h) = i|X(t) = i] P [X(t) = i] + o(h).

By using the conditional expectation that satisfies∑
j∈S

P [X(t + h) = j|X(t) = i] = 1,

we get

P [X(t + h) = i|X(t) = i] = 1 −
∑
j �=i

P [X(t + h) = j|X(t) = i]

= 1 −
∑
j �=i

λijh + o(h).
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Plugging this in the previous equation we get

pi [t + h] =
∑

j �=i∈S

λijhpj [t] +

⎡⎣1 −
∑
j �=i

λijh

⎤⎦ pi [t] + o(h).

Since λii = −
∑

j �=i λij we have

pi [t + h] =
∑

j �=i∈S

λijhpj [t] + λiihpi [t] + pi [t] + o(h),

which becomes

pi [t + h] =
∑
j∈S

λijhpj [t] + pi [t] + o(h).

Now if we use the Taylor expansion we get

pi [t] +
dpi [t]

dt
=

∑
j∈S

λijhpj [t] + pi [t] + o(h),

which gives finally

dpi [t]
dt

=
∑
j∈S

λijhpj [t] .

Remark 29. The steady-state regime corresponds to the case where we have

dpi [t]
dt

= 0,

which gives in turn ∑
j∈S

λijpj = 0.

Notice that the amount of time the Markov process {r(t), t ≥ 0} spent in
mode i before making a transition into a different mode follows an exponential
distribution with rate νi. Also, when the Markov process leaves the mode i,
it will reach the mode j that is different from mode i with a probability Pij .

Let {r(t), t ≥ 0} be a stochastic Markov process defined on (Ω,F , P) and
taking values in a finite set S . For each t, ω → r(t)(ω) is a measurable map
from (Ω × F ) → S .

Let a dynamical system of the class of systems we are studying in this
book subject to an additive noise be described by the following differential
equation:

dx(t) = A(r(t))x(t)dt + B(r(t))u(t)dt + f(x(t), r(t))dw(t), (A.4)



A.3 Markov Process 391

where x(t) is the state of the system; r(t) is the mode and w(t) is Wiener
process acting on the system; and A(r(t)), B(r(t)), and f(x(t), r(t)) are known
with some appropriate dimensions and characteristics.

Let x(t) be the solution of the system (A.4) when the initial conditions
are x(t) = x and r(t) = i at time t when the control u(t) = 0 for all t ≥ 0.

Definition 22. The operator L (.), also called the averaged derivative at point
(t, x(t) = x, r(t) = i), is defined by the following expression:

L V (x(t), r(t))

= lim
h→0

1
h

[E [V (x(t + h), r(t + h))|x(t) = x, r(t) = i] − V (x, i)] ,

where E [.|.] is the conditional mathematical expectation.

The value of L V (.) can be interpreted as an averaged value of the deriv-
ative of the function V (x, i) along all realizations of the Markov process
{(x(t), r(t)), t ≥ 0} emanating from the point (x, i) at time t.

Remark 30. The operator L V (.) is also referred to as the weak infinitesimal
operator of the process {(x(t), r(t)), t ≥ 0}.

Let the initial conditions of the process {(x(t), r(t)), t ≥ 0} be fixed to
(x, i). Let us denote by LijV (x, i) = V (x(t + h), r(t + h)) − V (x, i). At any
time τ ∈ (t, t + h] we have two possible events:

• the process {r(t), t ≥ 0} does not jump, i.e.: r(τ) = i for τ ∈ (t, t + h] and
the probability of this event is 1 + λiih + o(h); then LiiV (x, i) is given by

LiiV (.) =

[
∂V (x, i)

∂s
+

[
∂V (x, i)

∂x

]�
[A(i)x(t)]

+
1
2

[x(t + h) − x]�
∂V 2(x, i)

∂x2
[x(t + h) − x]

]
h,

where

V �
x (x, i) =

[
∂V (x(t), i)

∂x

]�
=

[
∂V (x(t), i)

∂x1
, · · · ,

∂V (x(t), i)
∂xn

]
,

Vxx(x, i) =
∂V 2(x(t), i)

∂x2
=

[
∂V 2(x(t), i)

∂xk∂xm

]n

k=1,m=1

,

• the process {r(t), t ≥ 0} jumps from mode i to j �= i, i.e.: r(τ) = j for
τ ∈ (t, t+h] and the probability of this event is λijh+o(h); then LijV (x, i)
is given by

LijV (.) = V (x(t + h), j) − V (x, i).
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Remark 31. Notice that all the partial derivatives are computed at the point
(t, x, i).

Using these relations, the possible events, and the fact that x�Px =
tr

[
Pxx�], and after dividing by h and letting h go to zero, we get

L V (x(t), i) =
∂V (x(t), i)

∂s
+

[
∂V (x(t), i)

∂x

]�
[A(i)x(t)]

+
1
2

∂V 2(x(t), i)
∂x2

f(x(t), i)f�(x(t), i)

+
N∑

j=1

λij [V (x(t), j) − V (x(t), i)] .

When the control is not equal to zero and when the corresponding infini-
tesimal operator is denoted by LuV (.) we get the following results.

Theorem 82. Let V (x(t), r(t)) be a function from Rn × S into R such that
V (x(t), r(t)) and Vx(x(t), r(t)) are continuous in x for any r(t) ∈ S and
such that |V (x(t), r(t))| < γ (1 + ‖x‖) for a constant γ, the generator Lu of
(x(t), r(t)) under an admissible control law u, for x(t) solution of (A.4) and
{r(t), t ≥ 0} a continuous-time Markov process taking values in a finite state
space S with transition rate matrix Λ, is given by

LuV (x(t), r(t)) = [A(r(t))x(t) + B(r(t))u(t)]� Vx(x(t), r(t))

+
1
2
tr
(
f�(x(t), r(t))Vxx(x(t), r(t))f(x(t), r(t))

)
+

N∑
j=1

V (x(t), j). (A.5)

A.4 Lemmas

This section presents a number of results that are extensively used in different
proofs of the proposed theorems in this book. These results are given in the
form of lemmas. The first lemma is critical in our development since it is used
to cast a nonlinear problem into the framework of an LMI.

Lemma 2. Let X and Y be two real constant matrices of compatible dimen-
sions; then the following equation:

±X�Y ± Y �X ≤ X�X + Y �Y,

holds.



A.4 Lemmas 393

Proof: The proof follows from the following inequality:

0 ≤ [X ∓ Y ]� [X ∓ Y ] .

Expanding the right-hand side of this inequality implies that

0 ≤ X�X ∓ X�Y ∓ Y �X + Y �Y,

which gives the result

±X�Y ± Y �X ≤ X�X + Y �Y.

This ends the proof of the lemma. �
Lemma 3. Let X and Y be real constant matrices of compatible dimensions,
then the following equation:

X�Y + Y �X ≤ εX�X + ε−1Y �Y,

holds for any ε > 0.

Proof: The proof follows from the following inequality:

0 ≤
[√

εX� − 1√
ε
Y �

] [√
εX − 1√

ε
Y

]
.

Expanding the right-hand side of this inequality implies that

0 ≤ εX�X − X�Y − Y �X + ε−1Y �Y,

which gives in turn the desired result. This ends the proof of the lemma. �
Lemma 4. (Schur Complement) Let the symmetric matrix M be partitioned
as

M =
[

X Y
Y � Z

]
,

with X and Z being symmetric matrices. We have

1. M is nonnegative-definite if and only if either⎧⎪⎨⎪⎩
Z ≥ 0,

Y = L1Z,

X − L1ZL�
1 ≥ 0,

(A.6)

or ⎧⎪⎨⎪⎩
X ≥ 0,

Y = XL2,

Z − L�
2 XL2 ≥ 0,

(A.7)

holds, where L1, L2 are some (nonunique) matrices of compatible dimen-
sions;
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2. M is positive-definite if and only if either{
Z > 0,

X − Y Z−1Y � > 0,
(A.8)

or {
X > 0,

Z − Y �X−1Y > 0.
(A.9)

The matrix X − Y Z−1Y � is called the Schur complement X(Z) in M .

Proof: We begin with proving (A.6).
Necessity : Clearly, Z ≥ 0 is necessary. We can prove the necessity of X −

Y Z−1Y �. Let x be a vector and partition it as x =
[

x1

x2

]
. According to the

partitioning of M , we have

x�Mx = x�
1 Xx1 + 2x�

1 Y x2 + x�
2 Zx2. (A.10)

Let x2 be such that Zx2 = 0. If Y x2 �= 0, let x1 = −αY x2, α > 0. Then

x�Mx = α2x�
2 Y �XY x2 − 2αx�

2 Y �Y x2,

which is negative for a sufficiently small α > 0. Therefore

Xx2 = 0 =⇒ Y x2 = 0,∀x2,

which implies

Y = L1Z (A.11)

for some (nonunique) L1.
Since M ≥ 0, the quadratic form (A.10) has for any x1 a minimum over

x2. Thus differentiating (A.10) with respect to x�
2 we have

0 =
∂(x�Mx)

∂x�
2

= 2Y �x1 + 2Zx2 = 2ZL�
1 x1 + 2Zx2,

where

ZL�x1 = −Zx2. (A.12)

Using (A.11) and (A.12) in (A.10), we find that the minimum of x�Mx
over x2 and for any x1 is

min
x2

x�Mx = x�
1

[
X − L1ZL�

1

]
x1,
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which proves the necessity of X − L1ZL�
1 ≥ 0.

Sufficiency : The conditions (A.6) are therefore necessary for M ≥ 0, and
since together they imply that the minimum of x�Mx over x2 for any x1 is
nonnegative, they are also sufficient.

By the same argument, conditions (A.7) can be derived as those of (A.6)
by starting with X. (2.) is a direct corollary of (1). This ends the proof of the
Lemma 4. �

Let U ∈ Rn×k. U⊥ is said to be the orthogonal complement of U if U�U⊥ =
0 and [UU⊥] is of maximum rank (which means that [UU⊥] is nonsingular).

Lemma 5. Let G, U , and V be given matrices with G being symmetric.

1. Then there exists a matrix X such that the following inequality holds:

G + UXV � + V X�U� > 0, (A.13)

if and only if the following ones hold:{
U�
⊥GU⊥ > 0,

V �
⊥ GV⊥ > 0,

(A.14)

where U⊥, V⊥ are the orthogonal complements of U and V respectively;
2. U�

⊥GU⊥ > 0 holds if and only if there exists a scalar σ such that

G − σUU� > 0.

Proof: (See Boyd et al. [21] pp. 32–33).
Using Lemma 5, we can eliminate some matrix variables in a matrix in-

equality; therefore a nonlinear problem can be cast into the LMI framework.
This reduces the computation burden significantly for the problem under con-
sideration.

Lemma 6. Let X ∈ Rn×n and Y ∈ Rn×n be symmetric and positive-definite
matrices. Then there exists a symmetric and positive-definite matrix P > 0

satisfying P =
[

Y #
# #

]
, P−1 =

[
X #
# #

]
if and only if X − Y −1 ≥ 0.

Lemma 7. (See [64]) Let Y be a symmetric matrix and H, E be given ma-
trices with appropriate dimensions and F satisfying F�F ≤ I. Then we have

1. for any ε > 0, HFE + E�F�H� ≤ εHH� + 1
εE�E;

2. Y + HFE + E�F�H� < 0 holds if and only if there exists a scalar ε > 0
such that the following holds: Y + εHH� + ε−1E�E < 0.

Lemma 8. (see [61]) Let A,D,F,E be real matrices of appropriate dimen-
sions with ‖F‖ ≤ 1. Then we have
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1. for any matrix P > 0 and scalar ε > 0 satisfying εI − EPE� > 0,

(A + DFE)P (A + DFE)�

≤ APA� + APE�(εI − EPE�)−1EPA� + εDD�; (A.15)

2. for any matrix P > 0 and scalar ε > 0 satisfying P − εDD� > 0,

(A + DFE)�P−1(A + DFE) ≤ A�(P − εDD�)−1A + ε−1E�E.

Lemma 9. (see [12])

1. For any x, y ∈ Rn,

± 2x�y ≤ x�Xx + y�X−1y (A.16)

holds for any X > 0.
2. For any matrices U and V ∈ Rn×n with V > 0, we have

UV −1U� ≥ U + U� − V �. (A.17)

Proof: The proof of (i) is trivial and can be found in the Appendix of [12].
For the proof of (ii), note that since V > 0, we have the following:

(U − V )V −1(U − V )� > 0,

which yields

UV −1U� − UV −1V � − V V −1U� + V ≥ 0.

This gives the desired results and ends the proof of the lemma. �
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Montréal, 1995.

10. E. K. Boukas and Z. K. Liu, “Robust stability and H∞ control of discrete-time
jump linear systems with time delay: An LMI approach,” ASME, Journal of
Dynamic Systems, Measurement, and Control.

11. ——, “Delay-dependent robust stability and stabilization of uncertain linear
systems with discrete and distributed time delays,” in IEEE American Control
Conference, Arlingtion, Virginia, June 25–27, 2001.

12. ——, Deterministic and stochastic time-delay systems. Birkhauser, Boston,
Cambridge, MA, 2002.



398 References

13. ——, Systems with time delay, stability, stabilization, H∞ and their robustness.
In Decison and control in management science Essays in Honor of A. Haurie,
G. Zaccour, Ed. Kluwer Academic Publisher, Boston, MA, 2002.

14. E. K. Boukas, Z. K. Liu, and G. X. Liu, “Delay-dependent robust stability and
H∞ control of jump linear systems with time delay,” International Journal of
Control, vol. 74, no. 4, pp. 329–331, 2001.

15. E. K. Boukas, Z. K. Liu, and P. Shi, “Delay-dependent stability and output
feedback stabilization of Markovian jump systems with time delay,” IEE, Pro-
ceedings Control Theory and Applications, vol. 149, no. 5, pp. 379–387, 2002.

16. E. K. Boukas and P. Shi, “Stochastic stability and guaranteed cost control of
discrete-time uncertain systems with Markovian jumping parameters,” Interna-
tional Journal of Robust and Nonlinear Control, vol. 8, no. 13, pp. 1155–1167,
1998.

17. ——, “H∞ control for discrete-time linear systems with Frobenius norm-
bounded uncertainties,” Automatica, vol. 35, no. 9, pp. 1625–1631, 1999.

18. E. K. Boukas, P. Shi, and K. Benjelloun, “On stabilization of uncertain linear
systems with Markovian jumping parameters,” International Journal of Control,
vol. 72, pp. 842–850, 1999.

19. E. K. Boukas and H. Yang, “Stability of discrete-time linear systems with
Markovian jumping parameters,” Mathematics Control, Signals and Systems,
vol. 8, pp. 390–402, 1995.

20. ——, “Exponential stability of stochastic Markovian jumping parameters,” Au-
tomatica, vol. 35, no. 8, pp. 1437–1441, 1999.

21. S. Boyd, L. El-Ghaoui, E. Feron, and V. Balakrishnan, Linear Matrix Inequali-
ties in System and Control Theory. SIAM, Philadelphia, 1994.

22. Y. Y. Cao and J. Lam, “Stochastic stabilizability and H∞ control for discrete-
time jump linear systems with time delay,” in Proceedings of the 14th IFAC
World Congress, Beijing, China, 1999.

23. ——, “Robust H∞ control of uncertain Markovian jump systems with time
delay,” IEEE Transactions on Automatic Control, vol. 45, no. 1, pp. 77–83,
2000.

24. Y. Y. Cao, Y. X. Sun, and J. Lam, “Delay-dependent robust H∞ control for un-
certain systems with time-varying delays,” IEE Proceedings D, Control Theory
and Applications, vol. 145, no. 3, 1998.

25. O. L. V. Costa and E. K. Boukas, “Necessary and sufficient conditions for robust
stability and stabilizability of continuous-time linear systems with Markovian
jumps,” Journal of Optimization Theory and Applications, 1998.

26. O. L. V. Costa, J. B. R. do Val, and J. C. Geromel, “Continuous-time state-
feedback H2 control of Markovian jump linear systems via convex analysis,”
Automatica, vol. 35, no. 2, pp. 259–268, 1999.

27. O. L. V. Costa and M. D. Fragoso, “Necessary and sufficient conditions for mean
square stability of discrete-time linear systems subject to Markovian jumps,”
in Proceedings of the 9th International Symposium on Mathematics Theory of
Networks and Systems, Kobe, Japan, 1991, pp. 85–86.

28. ——, “Stability results for discrete-time linear systems with Markovian jumping
parameters,” Journal of Mathematical Analysis and Applications, vol. 179, no. 2,
pp. 154–178, 1993.

29. O. L. V. Costa and S. Guerra, “Stationary filter for linear minimum mean square
error estimator of discrete-time Markovian jump systems,” IEEE Transactions
on Automatic Control, vol. 47, no. 8, pp. 1351–1356, August 2002.



References 399

30. O. L. V. Costa and R. P. Marques, “Mixed H2/H∞ control of discrete-time
Markovian jump linear systems,” IEEE Transactions on Automatic Control,
vol. 43, pp. 95–100, 1998.

31. L. Dai, Singular Control Systems, Lecture Notes in Control and Information
Sciences, Springer-Verlag, New York, NY, 1989.

32. D. P. de Farias, J. C. Geromel, J. B. R. do Val, and O. L. V. Costa, “Output
feedback control of Markov jump linear systems in continuous time,” IEEE
Transactions on Automatic Control, vol. 45, no. 5, pp. 944–949, 2000.

33. C. E. de Souza and M. D. Fragoso, “H∞ control for linear systems with Markov-
ian jumping parameters,” Control Theory and Advanced Technology, vol. 9,
no. 2, pp. 457–466, 1993.

34. V. Dragan and T. Morozan, “Stability and robust stabilization of linear stochas-
tic systems described by differential equations with Markovian jumping and
multiplicative white noise,” Institute of Mathematics of Romanian Academy
Science, Technical report 17/1999, 1999.

35. ——, “Stability and robust stabilization to linear stochastic systems described
by differential equations with Markovian jumping and multiplicative white
noise,” Stochastic Analysis and Applications, vol. 20, no. 1, pp. 33–92, 2000.

36. V. Dragan, P. Shi, and E.-K. Boukas, “Control of singularly perturbed systems
with Markovian jump parameters: an H∞ approach,” Automatica, vol. 35, no. 8,
pp. 1369–1378, August 1999.

37. F. Dufour and P. Bertrand, “The filtering problem for continuous-time linear
systems with Markovian switching coefficients,” Systems and Control Letters,
vol. 23, no. 5, pp. 453–461, 1994.

38. ——, “An image-based filter for discrete-time Markovian jump linear systems,”
Automatica, vol. 32, no. 2, pp. 241–247, 1996.

39. J. Ezzine and D. Karvanoglu, “On almost-sure stabilization of discrete-time
parameter systems, an LMI approach,” International Journal of Control, vol. 68,
no. 5, pp. 1129–1146, 1997.

40. X. Feng, K. A. Loparo, Y. Ji, and H. J. Chizeck, “Stochastic stability properties
of jump linear systems,” IEEE Transactions on Automatic Control, vol. 37,
no. 1, pp. 38–53, 1992.

41. B. A. Francis, A Course in H∞ Control Theory. Springer-Verlag, New York,
1987.

42. S. B. Gershwin, Manufacturing Systems Engineering. Prentice-Hall, Englewood
Cliffs, NJ, 1994.

43. I. I. Gihman and A. V. Skorohod, Stochastic Differential Equations. Springer-
Verlag, New York, NY, 1965.

44. Y. Ji and H. J. Chizeck, “Controllability, stabilizability, and continuous-time
Markovian jump linear quadratic control,” IEEE Transactions on Automatic
Control, vol. 35, no. 7, pp. 777–788, 1990.

45. I. Y. Kats and A. A. Martynyuk, Stability and Stabilization on Nonlinear Sys-
tems with Random Structure. Taylor and Francis, London, New York, NY, 2002.

46. L. H. Keel and L. Bhattacharyya, “Robust, fragile, or optimal,” IEEE Trans-
actions on Automatic Control, vol. 42, pp. 1098–1105, 1997.

47. I. E. Kose, F. Jabbari, and W. E. Schmitendorf, “A direct characterization of L2-
gain controllers for LPV systems,” IEEE Transactions on Automatic Control,
vol. 43, no. 9, pp. 1302–1407, 1998.



400 References

48. N. N. Krasovskii and E. A. Lidskii, “Analysis design of controller in systems with
random attributes–Part 1,” Automatic Remote Control, vol. 22, pp. 1021–1025,
1961.

49. H. J. Kushner, Stochastic Stability and Control. Academic Press, New York,
NY, 1967.

50. H. Liu, F. Sun, K. He, and Z. Sun, “Design of reduced-order H∞ filter for
Markovian jumping systems with time delay,” IEEE Transactions on Circuits
and Systems II, vol. 51, pp. 607–612, November 2004.

51. M. S. Mahmoud and P. Shi, Methodologies for control of jump time-delay sys-
tems. Kluwer, Boston, MA, 2003.

52. M. Mariton, Jump Linear Systems in Automatic Control. Marcel Dekker, New
York, NY, 1990.

53. K. S. Narendra and S. S. Tripathi, “Identification and optimization of aircraft
dynamics,” Journal of Aircraft, vol. 10, no. 4, pp. 193–199, 1973.

54. G. L. Olsder and R. Suri, “Time optimal control of parts-routing in a man-
ufacturing system with failure prone machines,” in Proceedings of 19th IEEE
Conference on Decision and Control, 1980, pp. 722–727.

55. S. Sethi and Q. Zhang, Hierarchical Decision Making in Stochastic Manufactur-
ing Systems. Birkhauser, Boston, 1994.

56. P. Shi and E. K. Boukas, “H∞ control for Markovian jumping linear systems
with parametric uncertainty,” Journal of Optimization Theory and Applications,
vol. 95, no. 1, pp. 75–99, 1997.

57. P. Shi, E. K. Boukas, and R. K. Agarwal, “Control of Markovian jump discrete-
time systems with norm bounded uncertainty and unknown delays,” IEEE
Transactions on Automatic Control, vol. 44, no. 11, pp. 2139–2144, 1999.

58. ——, “Kalman filtering for continuous-time uncertain systems with Markovian
jumping parameters,” IEEE Transactions on Automatic Control, vol. 44, no. 8,
pp. 1592–1597, 1999.

59. A. Stoorvogel, The H∞ Control Problem. Prentice-Hall, Englewood Cliffs, NJ,
1992.

60. D. D. Sworder, “Feedback control of a class of linear systems with jump pa-
rameters,” IEEE Transactions on Automatic Control, vol. 14, no. 1, pp. 9–14,
1969.

61. Y. Wang, L. Xie, and C. E. de Souza, “Robust control of a class of uncertain
systems,” Systems and Control Letters, vol. 19, pp. 139–149, 1992.

62. Z. Wang, J. Lam, and X. Liu, “Exponential filtering for uncertain Markovian
jump time-delay systems with nonlinear disturbances,” IEEE Transactions on
Circuits and Systems II, vol. 51, no. 5, pp. 262–268, May.

63. W. M. Wonham, “Random differential equations in control theory.” In Proba-
bilistic Methods in Applied Mathematics, A. T. Bharucha-Reid, Ed. Academic
Press, New York, NY, 1971.

64. L. Xie, “Output feedback H∞ control of systems with parameter uncertainty,”
International Journal of Control, vol. 63, no. 4, pp. 741–750, 1996.

65. S. Xu, T. Chen, and J. Lam, “Robust H∞ filtering for uncertain Markovian
jump systems with mode-dependent time delays,” IEEE Transactions on Auto-
matic Control, vol. 48, no. 5, pp. 900–907, May 2003.

66. K. Zhou, J. C. Doyle, and K. Glover, Robust Optimal Problem. Prentice-Hall,
Upper Saddle River, NJ, 1996.



Index

L∞-norm, 377
Lp-norm, 377
∞-norm, 377
H∞ filter, 328

design, 330, 336
design example, 336

H∞ performance, 197
p-norm, 377
1-norm, 377
2-norm, 377

case study
VTOL, 173, 304

constant gain state-feedback controller,
213

design, 90, 168, 170, 173, 214, 216,
223, 224

singular system
design, 372

decomposition lemma, 395
dynamics

Wiener process, 50

filter
H∞ filter, 328, 338

nominal system, 328
uncertain system, 338

design, 322, 327
Kalman filter, 324

nominal system, 314
uncertain system, 324

filtering
H∞ filtering, 328, 338

nominal system, 328
uncertain system, 338

filtering problem, 312
Kalman filtering, 314, 324

nominal system, 314
uncertain system, 324

Finsler Lemma, 395

impulse-free
definition, 355

Kalman filter, 314
design, 322

Lemma A.1, 392, 393
Lemma A.2

Schur Complement, 393
Lemma A.3

Finsler Lemma, 395
Lemma A.4

Decomposition Lemma, 395
Lemma A.5, 395
Lemma A.6, 395
linear space

definition, 375

mathematical model, 3
linear, 5
nonlinear, 4
Wiener process, 5

matrix
definition, 378
Hermitian, 378
inverse, 379



402 Index

inverse of the product of two matrices,
380

involutory, 379
minor, 378
negative-definite, 379
negative-semi-definite, 379
norm of a matrix, 382
normal, 379
orthogonal, 379
positive-definite, 379
positive-semi-definite, 379
skew-Hermitian, 378
skew-symmetric, 378
symmetric, 378
trace, 379
trace of the product of two matrices,

380
trace of the sum of two matrices, 380
unitary, 379

nominal system, 5
nonfragile state-feedback controller

design, 76, 83, 87
norm

L∞-norm, 377
Lp-norm, 377
∞-norm, 377
p-norm, 377
1-norm, 377
2-norm, 377
definition, 376
equivalence between two norms, 377
expression, 377
norm of a matrix

properties, 382

observer-based output feedback
controller

design, 137, 153
LMI conditions, 257
LMI conditions design, 262

output feedback controller, 4
design, 103, 121
LMI conditions design, 236

probability space
definition, 382

random variable

conditional probability, 384
definition, 383
density function, 384
distribution function, 383

marginal distribution function, 383
expectation value, 384

regular system
definition, 355

robust H∞ filter
design, 348
design example, 349

robust Kalman filter
design, 327

robust observer-based output feedback
controller

design, 146, 165
LMI conditions design, 270, 275

robust output feedback controller
design, 113, 131
LMI conditions design, 252

robust stability, 46
definition, 24
internal stability, 188
numerical example, 48
robust mean exponential stability, 24
robust mean square quadratic

stability
definition, 182

robust stability with disturbance
rejection

LMI conditions, 188
robust stochastic stability, 24
robust stochastic stability with

disturbance rejection, 188
stochastic stability

LMI conditions, 46
robust stabilizability

definition
disturbance rejection, 182

singular system
LMI conditions, 370
state-feedback controller, 370

state feedback control
LMI conditions, 72

stochastic stabilizability, 64
robust stabilization

definition
disturbance rejection, 182

singular system



Index 403

LMI conditions, 370
state-feedback controller, 370

state feedback control
LMI conditions, 72

stochastic stabilization, 64
robust state-feedback controller

singular system
design, 370

robust stochastic stability
LMI conditions, 46, 361, 362

robust stochastic stabilizability
constant state-feedback controller

LMI conditions, 223
nonfragile state-feedback controller

LMI conditions, 83, 211
observer-based output feedback

controller
LMI conditions, 146, 270, 275

output feedback controller
LMI conditions, 113, 252

state-feedback controller
LMI conditions, 72, 73, 80, 205

robust stochastic stabilization
constant state-feedback controller

LMI conditions, 223
nonfragile state-feedback controller

LMI conditions, 83, 211
observer-based output feedback

controller
LMI conditions, 146, 270, 275

output feedback controller
LMI conditions, 113, 252

state-feedback controller
LMI conditions, 72, 73, 80, 205

scalar product
definition, 376

Schur complement, 393
singular system

constant gain state-feedback
controller, 372

definition, 353
impulse-free, 355
regular, 355
robust stabilizability

LMI conditions, 368, 370, 373
robust stabilization

LMI conditions, 368, 370
robust stochastic stability

LMI conditions, 361, 362
stabilizability, 362

LMI conditions, 365, 372
stabilizanility

constant gain state-feedback
controller, 372

stabilization, 362
constant gain state-feedback

controller, 372
LMI conditions, 365, 372

stability
definition, 23
internal stability

definition, 181, 182
internal stability, 182
mean exponential stability, 23
mean square quadratic stability

definition, 181
mean square stability, 23
robust stochastic stability

LMI conditions, 361, 362, 371
singular system

LMI conditions, 357
stochastic stability, 23

definition, 355
disturbance rejection, 184
LMI conditions, 37, 371
prescribed degree of stability, 44
Wiener process, 50

stabilizability
constant gain state-feedback

controller, 168
design, 170, 173, 216, 224
design example, 174, 305

definition, 63
different controllers, 63
mean exponentially stable, 63
mean square quadratically stable, 63
observer-based output feedback, 132,

147, 154
nominal system, 132

observer-based output feedback
controller

design example, 178, 309
output feedback, 95, 104, 114, 122

nominal system, 95
uncertain system, 104

output feedback controller
design example, 176, 307



404 Index

problem formulation, 62
singular system, 362

LMI conditions, 365
state feedback, 64, 68, 74, 78, 81, 84

LMI conditions, 66
nominal system, 64
uncertain system, 70

state-feedback controller
design, 197, 206, 212, 282, 283, 294
design example, 174, 305

static output feedback, 88
nominal system, 88

stochastic stabilizability, 63
stabilization

H∞ control
formulation, 10

constant gain state-feedback
controller, 168

design, 170, 173, 216, 224
design example, 174, 305

definition, 63
disturbance rejection, 182

different controllers, 63
mean exponentially stable, 63
mean square quadratically stable, 63
observer-based output feedback, 132,

147, 154
nominal system, 132

observer-based output feedback
controller

design example, 178, 309
output feedback, 95, 104, 114, 122

nominal system, 95
uncertain system, 104

output feedback controller
design example, 176, 307

problem formulation, 62
robust H∞ control, 12
singular system, 362

LMI conditions, 365
state feedback, 64, 68, 70, 74, 78, 81,

84
LMI conditions, 66
nominal system, 64
uncertain system, 70

state-feedback controller
design, 197, 206, 212, 282, 283, 294
design example, 174, 305

static output feedback, 88

nominal system, 88
stochastic stabilization, 63

state-feedback controller, 64
design, 66, 67, 69, 72, 73, 80, 86, 197,

205, 206, 211, 212, 282, 283, 294
uncertain system, 80

robust stabilizability
singular system, 370

robust stabilization
singular system, 370

singular system
design, 368
LMI conditions, 368

state-space
representation, 3

linear, 5
nonlinear, 4
singular case, 5
singular uncertain system, 5
uncertain linear system, 5

static output feedback controller
design, 93

stochastic differential equation, 390
stochastic process

Markov process, 388
averaged derivative, 391
infinitesimal operator, 391
Markov chain, 384

stochastic stability
equivalent results, 43
LMI setting, 29
Lyapunov equations, 24
numerical example, 39, 40

stochastic stabilizability
constant state-feedback controller

LMI conditions, 213, 214
controllers, 63
nonfragile state-feedback controller

LMI conditions, 76
observer-based output feedback

controller
LMI conditions, 137, 257, 262

output feedback controller
LMI conditions, 103, 236

state-feedback controller
LMI conditions, 66, 69, 197

static output feedback controller
LMI conditions, 90, 93

stochastic stabilization



Index 405

constant state-feedback controller

LMI conditions, 213, 214

controllers, 63

nonfragile state-feedback controller

LMI conditions, 76

observer-based output feedback
controller

LMI conditions, 137, 257, 262

output feedback controller

LMI conditions, 103, 236

state-feedback controller

LMI conditions, 66, 69, 197

static output feedback controller

LMI conditions, 90, 93

stochastic switching system

example, 6

stochastic switching systems

definition, 6

filtering, 12

norm-bounded uncertainties, 8

production system example, 13

regular case

example, 13

singular case, 9

electrical circuit, 15

example, 13
stability, 9
stabilization, 10
state-space representation, 7
VTOL example, 14
with Wiener process, 9

uncertain dynamics
regular model, 5
singular model, 5

uncertainty
jump rate, 22
norm-bounded type, 22, 62, 180, 313,

354
polytopic, 354

VTOL
constant gain state-feedback

controller, 174, 305
example, 173, 304
observer-based output feedback

controller, 178, 309
output feedback controller, 176, 307
state-feedback controller, 174, 305

Wiener process, 5



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (ISO Coated)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Perceptual
  /DetectBlends true
  /DetectCurves 0.1000
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /Warning
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 150
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /Warning
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 150
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 600
  /MonoImageMinResolutionPolicy /Warning
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <>
    /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
    /ESP <>
    /FRA <>
    /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
    /JPN <>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /PTB <>
    /SUO <>
    /SVE <>
    /ENU (Use these settings to create Adobe PDF documents for journal articles and eBooks for online presentation. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [595.276 841.890]
>> setpagedevice




