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Geoinformatics and Atmospheric Science: Introduction

TOMASZ NIEDZIELSKI
1 and KRZYSZTOF MIGAŁA

1

Numerous products of meteorological analyses are

nowadays required to be available in real or near real

time. For instance, this concerns: monitoring net-

works designed to measure weather parameters or air

quality indices, numerical weather predictions or air

quality forecasts. In addition, the dynamics of the

atmosphere and its permanent assessment and pre-

diction influence water management. Therefore,

investigations into hydrologic phenomena or ocean

dynamics have to be enhanced by rapidly available

meteorological products or—e.g., in the case of

ocean–atmosphere interactions—the products them-

selves may make use of ocean-related real- or near-

real-time analyses. In particular, applications of

weather forecasts go beyond meteorology and are

important in environmental protection activities as

well as social and economic analyses.

The aforementioned tasks cannot be efficiently

carried out without the use of recent advances in

geoinformatics, the scope of which is to provide

broadly understood geosciences with information

technologies and infrastructure. In particular, geoin-

formatics—a modern discipline that makes use of

geographic information systems, remote sensing,

computer science as well as physical and empirical

modelling methods—offers computational tools

which are suitable for modelling spatial- or spatio-

temporal phenomena. Not only remotely sensed data

but also in situ measurements can be handled by

geoinformation tools, for instance to produce gridded

data products. The objective of this special issue of

Pure and Applied Geophysics on ‘‘Geoinformatics

and Atmospheric Science’’ is to present recent

geoinformatics-based tools to solve atmospheric and

water-related problems. A particular emphasis is put

on geophysical problems which are associated with

physics of atmosphere, meteorology, hydrology,

ocean dynamics or climatology.

Associated with the special issue was the confer-

ence, the 22nd Cartographic School ‘‘Geoinformatics

and Atmospheric Science’’ held in Wałbrzych-Ksią _z

(Poland) on 6–9 May 2014. Several papers presented

at the 22nd Cartographic School are published in the

special issue, but the selection of the papers has been

successfully enriched by external submissions.

Many papers published in the special issue focus

on Poland, the area which represents the European

transitional zone between oceanic and continental

features of the mid-latitude climate. A meaningful

interseasonal and weather-related variability of the

features within the zone in question causes difficulties

in accurate modelling of the spatial distribution of

atmospheric processes and phenomena. Improving

skillfulness of the spatial modelling approaches for

the said area, in particular operating in real time,

remains one of the most important applications of

geoinformatics in the field of atmospheric science.

Two papers of the special issue focus on oceanic

problems. The work of Vaid (2017) aims to present

the analysis of the biweekly oscillation in sea surface

temperature (SST) changes in the South China Sea,

with a particular emphasis put on its relations with

the Western North Pacific Summer Monsoon. The

author uses SST data acquired by the microwave

imager (TMI) of the Tropical Rainfall Measuring

Mission (TRMM) as well as the satellite-observed

rainfall measurements and heat flux data. It is found

that ocean-to-atmosphere processes induced by the

biweekly oscillation in SST variations in the South

China Sea enhance both sea level pressure and
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surface shortwave radiation flux, during the summer

monsoon. The study confirms the usefulness of

geoinformatics (here, remote sensing data and geo-

computation) to solve the problems of ocean–

atmosphere interactions. Yet another analysis of

monsoon circulation, focused on the Indian Summer

Monsoon, is offered by Yadav and Singh (2017). The

authors concentrate on two specific years, 2013 and

2014, in which the monsoon dynamics differed sig-

nificantly (2013—timely onset and rapid progression;

2014—delayed onset and slow progression). It is

found that those differences were controlled by the

strength of persistent convection over the north

equatorial Indian Ocean in May which implied sev-

eral consequences for the atmospheric circulation

over the study area. In the context of the scope of the

special issue, an emphasis should be placed on

geoinformatics tools which are used to carry out the

analyses—among others the authors utilised the

Ferret software (visualisation and analysis environ-

ment dedicated for meteorologists and

oceanographers) and the NCL environment (language

for research data processing and visualisation).

The special issue consists of a few papers on

mesoscale numerical weather prediction, carried out

using the Weather Research and Forecasting (WRF)

model. The WRF model is a large, computationally

efficient platform dedicated for forecasting the

dynamics of various elements of the atmosphere.

Wałaszek et al. (2017) use the WRF model to simu-

late the cloud cover over Poland in the case study for

a specific period when ozone concentration was very

high. Numerous microphysics parameterization

schemes are used, and the authors arrive at the con-

clusion that the Morrison Double-Moment

microphysics is recommended for the scrutinised

episode. A different application of the WRF model

for Poland is presented by Kryza et al. (2017) and

Ojrzyńska et al. (2017) who makes use of dynamical

downscaling of four meteorological variables (air

temperature, relative humidity, wind speed, wind

direction). The statistical assessment of modelling

skills shows a particularly good agreement between

air temperature simulations and measured data

(Kryza et al. 2017). The calibrated model is used by

Ojrzyńska et al. (2017) to classify macrotypes of

atmospheric circulation in an automatic fashion. The

WRF model may also be used to simulate and predict

air quality, as presented by Werner et al. (2017) who

utilise its version with chemistry known as WRF-

Chem. The authors apply the model in question to

check the impact of direct and indirect feedback

effects of aerosols on simulations of PM10 concen-

tration and the selected meteorological variables.

Yet another example of physically-based mod-

elling of meteorological variables is presented by

Jancewicz and Szymanowski (2017) who make use of

the computational fluid dynamics (CFD) diagnostic

solver Canyon, included in WindStation software, for

the purpose of simulating wind field in mountainous

terrain. The CFD solution is based on: mass conser-

vation, momentum conservation and energy

conservation. The authors concentrate on the

Śnie _znik Massif in southwestern Poland and perform

a wind field reconstruction experiment for a few

specific episodes. The objective of the work is to

quantify the impact of surface roughness computed

on a basis of different source spatial data on the

output wind field simulations. It is found that the

roughness based on LIDAR (Light Detection and

Ranging) data, derived from the information on the

complexity of relief without considering land cover

characteristics, offers the acceptable wind field

reconstruction.

Apart from the above-mentioned physically-based

meteorological modelling, the special issue consists

of two articles that utilise data-based (or empirical)

models to simulate meteorological or climatological

variables. The data-based models usually omit phys-

ical fundamentals that control a given phenomenon,

but they extensively use data processing methods

which aim to build models that associate inputs with

outputs. Many geographic information systems and

environments for scientific computing have such

modelling tools implemented, and therefore the

methods belong to the scope of geoinformatics.

Szymanowski and Kryza (2017) present an extensive

study on the use of mixed deterministic–stochastic

models in modelling air temperature in Poland. The

authors’ main objective is to check if it is justified to

incorporate as many explanatory variables as possible

to improve the accuracy of air temperature modelling.

They arrive at the conclusion that only first 1–3

environmental variables (elevation, location, distance

T. Niedzielski, K. Migała Pure Appl. Geophys.
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from the sea) are meaningful. Deterministic and

stochastic modelling may also be used for simulating

climatological variables, as presented by Szy-

manowski et al. (2017). The authors focus on the

Ewert’s index which quantifies the continentality of

climate. On the example of Poland, which is located

on the contact of continental and oceanic climate

forcing, Szymanowski et al. (2017) perform spatial

interpolation of the index in question. They formulate

recommendations on using specific interpolators, in

particular in the context of possible automation of the

procedure. A different approach for predicting local-

scale extreme weather phenomena is proposed by

Walawender et al. (2017) who utilised the Favourable

Meteorological Conditions (FMC) algorithms and

several data-based statistical models. The authors aim

to forecast thunderstorms, fog, glaze and rime, and

their exercise uses a long time period (45 years) and

concentrates on Poland. The paper serves as a

methodological background for producing predictive

maps, as presented in the Meteorological Hazard

Atlas of Poland.

Since it is difficult to elaborate accurate prog-

noses of drought, which is associated with a long-

term variability of the phenomenon, it is usually

convenient to carry out drought risk assessment.

Ruda et al. (2017) present a multi-stage approach for

quantifying risk level, and illustrate it on the

example area located in southeastern Czechia. A

particular emphasis is put on a role of landscape

complexity in drought development. It is found that

even within a relatively small area, the risk level

varies significantly in space.

A natural area of application of atmospheric

products and reports is hydrology. Two papers pub-

lished in the special issue offer case studies on

applications of geoinformation methods in hydrologic

analyses, in particular in flood hazard assessment.

Mentzafou et al. (2017) use the geographically

weighted regression to classify the Evros river basin

into areas of dissimilar flood hazard categories. A

different approach is explored by Rutkowska et al.

(2017) who presents the L-moment-based analysis for

the upper Vistula river basin. The authors claim that

the approach may be used to estimate flood quantiles

at ungauged sites and therefore has a considerable

potential for flood risk assessment studies.

Atmospheric processes are not only associated

with oceanic and hydrologic phenomena, but also

may have a significant influence on solid Earth. One

of such impacts is the atmospheric mass loading

which remains a part of the entire signal measured at

reference stations of the Global Navigation Satellite

System (GNSS). Peng et al. (2017) consider the time

series of vertical GNSS coordinates of the selected

reference stations located in China. One of the main

findings is decomposition of the seasonal non-tec-

tonic signal into terms which correspond to

atmospheric and soil moisture mass loading. The

GNSS observations and their processing belong to

very important areas of geoinformatics, since they

provide location data for the majority of geoscientific

analyses.
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Biweekly Sea Surface Temperature over the South China Sea and its association

with the Western North Pacific Summer Monsoon

B. H. VAID
1

Abstract—The association of the biweekly intraseasonal (BWI)

oscillation in the Sea Surface Temperature (SST) over the South

China Sea (SCS) and the Western North Pacific Summer Monsoon

is authenticated using version 4 the Tropical Rainfall Measuring

Mission Microwave Imager data (SST and rain) and heat fluxes

from Ocean Atmosphere Flux project data during 1998–2012. The

results suggest that the SCS involves ocean–atmosphere coupling

on biweekly timescales. The positive biweekly SST anomalies lead

the rain anomalies over the SCS by 3 days, with a significant

correlation coefficient (r = 0.6, at 99 % significance levels)

between the SST-rain anomalies. It is evident from lead/lag cor-

relation between biweekly SST and zonal wind shear that warm

ocean surface induced by wind shear may contribute to a favorable

condition of the convective activity over the SCS. The present

study suggests that ocean–to-atmospheric processes induced by the

BWI oscillation in the SCS SST results in enhanced sea level

pressure and surface shortwave radiation flux during the summer

monsoon. Besides, it is observed that the SCS BWI oscillation in

the changes of SST causes a feedback in the atmosphere by

modifying the atmospheric instability. This suggests that the active/

break biweekly cycle of the SST over the SCS is related by sea

level pressure, surface heat fluxes and atmospheric instability. The

potential findings here indicate that the biweekly SST over the SCS

play an important role in the eastward and the southward propa-

gation of the biweekly anomalies in the Western North Pacific.

Key words: Biweekly Intraseasonal Oscillations, Sea surface

temperature, Rain, South China Sea, Western North Pacific Sum-

mer Monsoon.

1. Introduction

Biweekly (also called 10–20 day mode) intrasea-

sonal (BWI) oscillation is one of the major oscillation

and most important component of the tropical varia-

tion on a time scale in between day-to-day weather

together with the Madden–Julian oscillation (MJO)

(MADDEN and JULIAN 1971, 1972). However, knowl-

edge is limited concerning its propagation, especially

in the South China Sea (SCS). An examination of the

intraseasonal oscillations based on the data from the

SCS Monsoon Experiment, showed their influence on

the maintenance and break of the SCS summer

monsoon (SM) (CHAN et al. 2000, 2002; MAO and

CHAN 2005; ZHOU and MILLER 2005); consequently,

the cognition of its temporal evolution is critical for

improving regional intraseasonal weather and climate

prediction. Intraseasonal oscillations of the SCS

involve two intraseasonal time scales in the periods

ranging from 10 to 20 days (KRISHNAMURTI and

ARDANUY 1980) and 30–60 days (MURAKAMI et al.

1984; KRISHNAMURTI and SUBRAHMANYAM 1982; LAU

and PENG 1987). MAO and CHAN (2005), using

National Centers for Environmental Prediction/Na-

tional Center for Atmospheric Research (NCEP-

NCAR) reanalysis data, found that for the years when

both time scales are present, the SCS activities are

basically controlled by the 30–60 day time scale,

modified by the 10–20 day time scale. Assuming that

the 30–60 days and biweekly mode have different

dynamics (CHATTERJEE and GOSWAMI 2004), structure

and propagation (MURAKAMI and FRYDRYCH 1974;

KRISHNAMURTI and ARDANUY 1980; CHEN and CHEN

1993), it is expected that they have different impacts

on the sea surface temperature (SST). While there are

several studies of the 30–60 day air–sea relationship

in the SCS (ZENG and WANG 2009; ROXY and TANI-

MOTO 2011), the biweekly SST variability over the

SCS has not been fully explored yet and the possible

mechanism remains elusive.

The SST investigations over the SCS is very

important because the SM over East Asia and the
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Western North Pacific (WNP) generally starts over

the SCS (WU and WANG 2000, 2001; WANG and LIN

2002). Since the WNP is also the most intensive

among tropical monsoons, its behavior is of great

scientific concern. The concept of the WNP SM was

first introduced by TAO and CHEN (1987) and they

found that its influence on Australian High and cross-

equatorial flows. The convective activity over the

WNP has considerable influence on the weather and

climate in the East Asia (NITTA 1987) and the WNP

sea level pressure (SLP) and wind anomalies play a

key role in linking El Nino Southern Oscillation

(ENSO) to the East Asian climate (WANG and FAN

1999). Besides, the East Asian SM is significantly

influenced by the convective activity over the WNP

(MURAKAMI and MATSUMOTO 1994; UEDA and YASU-

NARI 1996; KAWAMURA and MURAKAMI 1998;

LU 2001). It has also been pointed out that an atmo-

spheric Rossby wave is generated by anomalous

convective activities over the WNP and propagates in

the extra tropics, and influences the interannual and

intraseasonal variations of the East Asian SM.

Obviously, the role of the WNP on weather and cli-

mate variability over the East Asia is noteworthy.

However, the SCS SST association with the WNP has

not yet been discussed so much in the literature. In

this paper, we will focus on the SST over the SCS and

its association with the WNP monsoons. Apart from

the role of the SCS BWI SST oscillation in the WNP

SM, we also provided a step by step process of the

ocean-to-atmosphere interaction involved. The role

of intraseasonal SST anomalies in assisting the con-

viction, particularly for the WNP SM was examined

by analyzing satellite observations along with

reanalysis data. The goal of this paper is to quantify

the impact of BWI oscillations on the SST in the

SCS, investigate the processes that cause its change,

and examine the influence of the SCS SST on the

WNP SM. Neither of these has been previously

examined yet and they are important for under-

standing the coupled mechanisms of BWI oscillation.

The Role of the SCS SST in influencing the SCS

SM has been extensively studied in the literature. For

example; WANG and WU (1997) showed that, from

May to July, the intraseasonal variability

(30–60 days) of the SCS SM is primarily associated

with a northward propagation of the intraseasonal

anomalies from the equator to 25�N. WU (2010)

indicated that the northward propagation of the SCS

SM intraseasonal anomalies relates to the ocean-to-

atmosphere interaction during April-June, involving

the wind-evaporation and cloud-radiation effects on

the SST as well as the SST impacts on lower-level

convergence over the equatorial western Pacific and

atmospheric instability over the Philippine Sea and

the SCS. Thereafter, ROXY and TANIMOTO (2011)

examine the intraseasonal SCS SM variability

(30–60 days) during April–July over the SCS and

showed the northward propagating intraseasonal

anomalies and its association with the SCS SM.

However, in the present study, we presented the SCS

SST influence on the WNP SM and established the

first time observational evidence for the role of the

SCS SST in the eastward and the southward propa-

gation of rainfall associated with the WNP SM. The

objective of this study is to examine, based on

recently available high resolution satellite and

observational data, the evolution and role of BWI

SST oscillation in influencing the intraseasonal vari-

ability of the WNP SM. The study focuses on the

biweekly timescale SST and its influence on eastward

and southward propagating anomalies over the SCS.

In Sect. 2, we describe the data and the basic analytic

methods. In Sect. 3, we begin by demonstrating the

connection between BWI SST oscillation over the

SCS and the WNP monsoons, and continue by

describing in more detail on the southward and

eastward propagation of BWI oscillation to the WNP.

We also provide a step by step process of the ocean-

to-atmosphere interaction involved association of

BWI oscillation on the WNP monsoons. The con-

cluding remarks are given in Sect. 4.

2. Datasets and Methods

The Tropical Rainfall Measuring Mission

(TRMM) Microwave Imager (TMI) provides a novel

observation of tropical SST, unaffected by clouds,

aerosols, and atmospheric water vapor (WENTZ et al.

2000). The TMI reveals intraseasonal SST perturba-

tions considerably larger than the reanalysis product

(SENGUPTA et al. 2001; VECCHI and HARRISON 2002;

VAID et al. 2011). The TMI is a multi-channel, dual

B. H. Vaid Pure Appl. Geophys.
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polarized, conical scanning passive microwave

radiometer designed to take SST measurements over

a wide swath under the TRMM satellite. The design

of the instrument is similar to that of other satellite

radiometers but the resolution of data measurement is

better due to the lower altitude of the satellite orbit.

The TRMM travels in a geosynchronous orbit with an

inclination of 35�. This type of orbit precesses

approximately 7� per day allowing for the TMI to

sample the surface at all times of day as opposed to

the twice per day windows of the polar-orbiting

radiometers. The TRMM is a joint program between

National Aeronautics and Space Administration

(NASA) and the Japan Aerospace Exploration

Agency (JAXA). Version 4 TMI data of the SST and

rainfall are available online through http://www.ssmi.

com/. The present study uses 3-day running means

that have much better spatial coverage than daily

data. The original data on 0.25� 9 0.25� latitude–

longitude grids have been interpolated to 1� 9 1�
latitude–longitude grids with spatial averaging to

reduce the number of missing grids. Sea surface

winds, SLP, relative humidity and air temperature

datasets are obtained from the NCEP-Department of

Energy (NCEP-DOE) Reanalysis Version 2 data

(KANAMITSU et al. 2002).

The surface short wave radiation flux (SSWRF),

surface latent heat flux (SLHF), surface sensible heat

flux (SSHF), surface net heat flux (SNHF) is obtained

at the 1� grid with a temporal resolution of 1 day

from the Woods Hole Oceanographic Institute’s

(WHOI) Objectively Analyzed Air–Sea Fluxes (OA

Flux) project (YU et al. 2008). The OA Flux project

integrates satellite observations with surface moor-

ings, ship reports, and atmospheric model reanalyzed

surface meteorology to develop the OA flux data.

Besides, the lower tropospheric air temperature and

relative humidity are used to derive the equivalent

potential temperature (he or THETA_E), which is a

useful parameter in understanding the atmospheric

stability. The lower tropospheric stability is estimated

as a difference in he between 1000 and 700 mb,

Dhe ¼ he1000 � he700

where he1000 and he700 are he at 1000 and 700 mb,

respectively.

In addition to the above, the Lanczos filtering

technique has been extensively used in the study

(DUCHON 1979). This is a Fourier method of filtering

digital data and has been successively also used in

VAID et al. (2011). The general purpose of filtering

time series is to predictably alter the Fourier ampli-

tudes that describe the series. This can be

accomplished by modifying a given data sequence

with a set of weights called a filter weight function.

The filter weight function is related to the variation

with frequency of the ratio of the Fourier amplitude

of the modified data sequence to that of the given data

sequence and is called as filter response function. In

the Lanczos filter, the filter response function is

expressed as infinite Fourier series so that the weights

become the Fourier coefficients. The Fourier coeffi-

cient of the smoothed response function is determined

by multiplying the original response function by a

function in the Lanczos filter called a sigma factor.

This sigma factor is the principal feature in the filter

as it significantly reduces the amplitude of the Gibbs

oscillation (if a response function with a step change

in the response is desired, the computed response

function would exhibit an oscillation called the Gibbs

oscillation). Digital data involve transforming an

input data sequence xi, where i is time, into an output

data sequence yi, using the linear relationship

yi ¼
X53

k¼�53

wkxi�k

in which the wk are the suitably chosen weights. To

extract the BWI oscillation, a Lanczos band-pass

filter with cutoff periods of 10 and 20 days and 53

weights were applied. The 53 daily weights were

observed to provide very sharp cutoffs of response,

with negligible Gibbs oscillation. Above mentioned

datasets are filtered to BWI oscillations over the SCS

using Lanczos filter. These intraseasonally filtered

anomalies are used in the present study. To determine

the dominant intraseasonal band a wavelet analysis

similar to VAID et al. (2007) is carried out. The

wavelet analysis is a powerful tool for analyzing

multi-scale, nonstationary processes, and can simul-

taneously determine both the dominant bands of

variability and how those bands vary in time (e.g.,

Vol. 174, (2017) Biweekly Sea Surface Temperature over the South China Sea
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MAK 1995; TORRENCE and COMPO 1998). Wavelet

analysis maintains time and frequency localization in

a signal analysis by decomposing or transforming a

one-dimensional time series into a diffuse two-di-

mensional time–frequency image simultaneously.

Therefore, it is possible to get information on both the

time variable amplitude of any ‘‘periodic’’ signals

within the series. We utilize the wavelet analysis

program developed by TORRENCE and COMPO (1998)

and use the Morlet wavelet as the mother wavelet.

3. Results

Analysis of the TRMM TMI data for the period

1998–2012 reveals that the mean SST during the SCS

SM period June to September (JJAS) is above 27 �C
(Fig. 1a), which is conducive for enhanced convec-

tive precipitation (LAU et al. 1998) and is of

paramount importance. Large biweekly fluctuations

in the SST over regions Long. = 115�E–120�E,
Lat. = 15�N–20�N (hereafter Region 1) during the

study period (Fig. 1b) are observed. It is worth to

note that the BWI oscillation over the region 1 is

observed to be the dominant band of variability with

high statistical significance level (statistical signifi-

cance at the 90 % confidence level) during the whole

study period and has been checked using wavelet

analysis. Figure 2b shows a three-dimensional plot,

where x-axis denotes time (1–122 days correspond to

JJAS daily composite during 1998–2012 of original

TMI SST), y-axis denotes period of the signal and

shading gives the information of the power. The

black contours in the Fig. 2b are the 10 % signifi-

cance level, using a red-noise background spectrum.

The null hypothesis is defined for the wavelet power

spectrum as assuming that the time series has a mean

power spectrum; if a peak in the wavelet power

spectrum is significantly above this background

spectrum, then it can be assumed to be a true feature

with a certain percent confidence. For definitions,

‘‘significant at the 10 % level’’ is equivalent to ‘‘the

90 % confidence level,’’ and implies a test against a

certain background level, while the ‘‘90 % confi-

dence interval’’ refers to the range of confidence

about a given value. The 90 % confidence implies

that 10 % of the wavelet power should be above this

level. More details can be found in TORRENCE and

COMPO (1998). Based on wavelet analysis (Fig. 2b),

we can interpret that among all other timescales

especially the longer intraseasonal time scales, the

BWI oscillation is observed to be the dominant band

of variability with high statistical significance level

(statistically significant at the 90 % confidence level)

over the region 1 during the whole study period and

therefore signifies the importance of studying

10–20 day oscillations. Also, it can be clearly evident

from Fig. 2c that the BWI oscillation is predominant

Figure 1
a Averaged SST (�C) over the SCS during June–September (1998–2012). b Standard deviation of the BIW oscillations in SST during the same

period and c standard deviation of the BIW oscillations in rain during the same period

B. H. Vaid Pure Appl. Geophys.
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among other timescales as its peak can be seen sur-

plussing the dashed line which is the significance for

the global wavelet spectrum, assuming the same

significance level and background spectrum as in

2(b) and thus it is of paramount interest to study the

BWI oscillation over the region 1.

In the present study, we examined the develop-

ment and sustenance of BWI oscillation over the inset

rectangle (Region 1) in the Fig. 1b. Investigation of

biweekly SST variability is the first and key step

toward understanding air-sea coupling mechanisms

on biweekly time scale. Besides, biweekly evolution

and degeneration of the SST anomalies, and its

association with propagation of the intraseasonal

anomalies were also investigated. Further, we ana-

lyzed satellite derived rainfall data on a biweekly

timescale (Fig. 1c), the significantly large standard

deviation of biweekly rainfall over region 1 is

observed and it seems to be associated with ocean-to-

atmosphere processes as discussed in the later part of

the manuscript. The time series of the biweekly SST

and biweekly rain averaged over the rectangular box

in June–September from 1998 to 2012 years is shown

in Fig. 3. It is evident that both the BWI oscillation in

SST and rain are coherent. The biweekly SST oscil-

lation clearly leads the biweekly rain throughout the

study period. The BWI oscillation in both SST and

rain observed to be slightly weaker in 1998, 2006,

2007, 2010 and 2011 years.

To explain the ocean-to-atmosphere interactions,

the lead-lag correlations (or correlation function

estimates) of the BWI oscillation in SST with respect

to the BWI oscillation in rain over the same region

are estimated from 8 days before to 8 days after, for

the 15 year period (Fig. 4a). A positive correlation is

observed when biweekly SST leads the biweekly rain

Figure 2
a Daily TMI SST (original) composite of JJAS during 1998–2012 over the Region 1. b Normalized wavelet power spectrum using Morlet

wavelet. The power has been scaled by the global wavelet spectrum (at right). The cross-hatched region is the cone of influence, where zero

padding has reduced the variance. Black contour is the 10 % significance level (90 % confidence level), using a red-noise (autoregressive

lag1) background spectrum. c The global wavelet power spectrum (black line). The dashed line is the significance for the global wavelet

spectrum, assuming the same significance level and background spectrum as in b

Vol. 174, (2017) Biweekly Sea Surface Temperature over the South China Sea
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which indicates that the biweekly SST is driving the

atmosphere and it is denoted as an ocean-to-atmo-

sphere effect. A negative correlation is observed

when biweekly SST lags the biweekly rain which

implies that the atmosphere is driving the SST and it

is denoted as an atmosphere–to-ocean effect. The

time lag of the maximum (minimum) correlation

denotes how quickly the atmosphere responds to the

biweekly SST and vice versa. The correlation is close

to zero and insignificant when the biweekly SST and

rain are correlated with a 0 time lag (Fig. 4a), and its

magnitude increases with the lead/lag. This indicates

that the biweekly SST-rain relationship is shifted in

time by several days. Maximum positive correlation

coefficient (r = 0.6, at 99 % significant level) is

observed when the SST leads the precipitation by

3 days (Fig. 4a). This suggests that ocean–to-atmo-

spheric processes induced by the intraseasonal SST

cause to enhance rain during the SM period. Maximum

negative correlation coefficient (r = -0.69, at 99 %

significant level) is obtained when the SST lags the

intraseasonal rains by 3 days, suggesting an ocean

cooling as a response to increased cloudiness associ-

ated with the rain. To understand the ocean-to-

atmosphere interactions involving the SST during the

study period, lead-lag correlations between the SST

and zonal wind shear (U200-U850), SLP, SSWRF,

SSHF, SLHF, SNHF and equivalent potential tem-

perature on biweekly timescale are analyzed. It is

evident from lead/lag correlation between biweekly

Figure 3
The BIW oscillation time series of SST (dotted line) precipitation (solid line) averaged over the inset rectangle in Fig. 1, in June–September,

for the years 1998–2012

B. H. Vaid Pure Appl. Geophys.
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SST and zonal wind shear that warm ocean surface

induced by wind shear may contribute to a favorable

condition of the convective activity over the SCS

(Fig. 4). A negative correlation coefficient is observed

when biweekly SST leads the biweekly SSWRF and

SLP, which indicates that the biweekly SST is driving

the atmosphere and it is denoted as an ocean-to-at-

mosphere effect. Maximum negative correlation

coefficient (r = -0.70, at 99 % significant level) is

observed when the SST leads the biweekly SSWRF

and SLP by 3 days (Fig. 4). This suggests that ocean–

to-atmospheric processes induced by the intraseasonal

SST result in enhancement of SLP and SSWRF during

the SM. Maximum negative correlation coefficient

(r = -0.6, at 99 % significant level) is obtained when

the SST leads the intraseasonal SSWRF by 3 days

suggesting an ocean cooling as a response to increased

cloudiness associated with the rain.

Besides, it is evident from Fig. 4e, f, that

biweekly SST changes are closely related to surface

heat flux anomalies. A positive correlation coefficient

is observed when biweekly SST leads the biweekly

Figure 4
The Lead-lag correlation coefficients between the time series of the BIW oscillation in SST over the rectangular box given in the Fig. 1 and

time series over the same box for a RAIN b USHEAR (U200–U850), c SLP, d SSWRF, e SSHF, f SLHF, g SNHF, h THETA_E. The

correlation coefficients are statistically significant at 99 % confidence level

Vol. 174, (2017) Biweekly Sea Surface Temperature over the South China Sea
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SLHF, SSHF, which indicates that the biweekly SST

is driving the atmosphere, and it is denoted as an

ocean-to-atmosphere effect. A negative correlation

coefficient is observed (r = -0.61, at 99 % signifi-

cance level) when biweekly SST lags the biweekly

rain which implies that the atmosphere is driving the

SST, and it is denoted as an atmosphere–to-ocean

effect. Maximum positive correlation (r = 0.75, at

99 % significant level) is observed when the SST

leads the biweekly SLHF, SSHF by 3 days (Fig. 4).

This suggests that ocean–to-atmospheric processes

induced by the intraseasonal SST results in

enhancement of SLHF, SSHF during the SCS SM.

Maximum negative correlation coefficient

(r = -0.75, at 99 % significant level) is obtained

when the SST lags the intraseasonal SLHF, SSHF by

3 days, suggesting an ocean cooling as a response to

increased cloudiness associated with the rain. The

results suggest that the SCS involves ocean–atmo-

sphere coupling on biweekly timescales. On biweekly

time scale, SST response to the atmosphere is quick

and dramatic, the time lag between the SST anoma-

lies and the atmospheric convection response is of the

order of 3 days. Moreover, it is observed that changes

in the SST cause feedback in the atmosphere which

modifies the atmospheric instability. A negative

correlation coefficient is observed when biweekly

SST leads the biweekly equivalent potential temper-

ature, which indicates that the biweekly change in the

SST cause feedback in the atmosphere by modifying

the atmospheric instability, and it is denoted as an

ocean-to-atmosphere effect. A positive correlation

coefficient is observed when biweekly SST lags the

biweekly equivalent potential temperature, which

implies that the atmospheric instability is driving the

SST, and it is denoted as an atmosphere–to-ocean

effect. This suggests that the active/break biweekly

cycle of the SST over the SCS is related to SLP,

surface heat fluxes, and atmospheric instability. The

phase relationship suggests that the evolution of

biweekly anomalies is a coupled phenomenon.

Modeling studies by KEMBALL-COOK and WANG

(2001) and FU et al. (2008) demonstrated that air-sea

coupling on intraseasonal time scales can improve

Intraseasonal Oscillation (ISO) phase and propaga-

tion, suggesting the importance of air-sea interaction

to ISO dynamics. Due to the crucial part played by

the SCS intraseasonal anomalies in East Asian SM

(CHEN and CHEN 1995; LAU et al. 1998; MAO and

CHAN 2005), it is imperative that a role of the SCS

intraseasonal anomaly in influencing the southward

propagating monsoon intraseasonal anomalies, that is

in the 10–20 day time scales, during the whole study

period is investigated. In the present study, the role of

the BWI oscillation in the SST particularly in the SM

period is examined. None of the previous studies

talked about the role of the BWI oscillation in SST in

generating southward propagating biweekly anoma-

lies over the SCS during the SM. Regression analysis

is used to understand which, among the atmospheric

variables are related to the BWI oscillation in the

SST, and to explore the forms of these relationships.

The BWI oscillation in different variables like rain,

zonal wind shear (U200–U850), SLP, SSWRF,

SLHF, SSHF, SNHF, and equivalent potential tem-

perature at 118�E proceed BWI oscillations in SST

averaged over the region 1 (Fig. 5). The SSWRF,

SLHF, SSHF, SNHF, equivalent potential tempera-

ture, SLP and zonal wind shear (U200–U850) at

118�E are clearly revealed southward propagation

over the SCS, which can be attributed as a response to

the intraseasonal oscillations in the SST within the

10–20 day timescales. Thus, using satellite observa-

tions with high temporal resolution we presented the

evidence that the BWI oscillations in the SST over

the SCS are associated with air–sea interaction and

plays very important role in the WNP SM variability.

Besides, the present study also showed evidence that

biweekly changes in surface heat fluxes, in associa-

tion with SLP and short wave radiation, induce SST

fluctuations in the SCS and that these biweekly SST

changes could contribute to the southward propaga-

tion of rain during the WNP SM through their

impacts on atmospheric instability. In all due fair-

ness, perhaps we can say that biweekly changes in

surface heat fluxes, in association with atmospheric

wind shear and short wave radiation changes, induce

large sub-seasonal SST fluctuations in the SCS and

that these SST changes could contribute to the

southward propagation of rain during the WNP SM

through their impacts on atmospheric instability.

Besides, the BWI SST oscillation in the SCS

influences the WNP SM by coherent eastward prop-

agation of biweekly rainfall, wind shear, SLP, surface

B. H. Vaid Pure Appl. Geophys.
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heat flux anomalies is also presented. The East Asian

SM is significantly influenced by the convective

activity over the WNP (MURAKAMI and MATSUMOTO

1994; UEDA and YASUNARI 1996; KAWAMURA and

MURAKAMI 1998; LU 2001). It has been pointed out

that an atmospheric Rossby wave is generated by

anomalous convective activities over the WNP,

propagates to the extratropics, and influences the

interannual and intraseasonal variations of the East

Asian SM. The convective activity over the WNP has

considerable influence on the weather and climate in

the East Asia (NITTA 1987). WANG and FAN (1999)

pointed out that the WNP sea pressure and wind

anomalies play a key role in linking ENSO to the East

Asian climate, therefore it is important to investigate

the role of the SCS SST in influencing the WNP. As

pointed out earlier in our manuscript the phase rela-

tionship between the SST and rainfall anomalies

suggests an important role of ocean–atmosphere

interaction in the propagation of biweekly anomalies.

This role of biweekly SST anomalies can be

explained by the propagation of biweekly surface

heat flux anomalies. In Fig. 6 the propagation of

SLHF and shortwave radiation anomalies follow

clearly those rainfall anomalies. In the western

Pacific, the eastward propagation of rainfall is clearly

seen due to the SCS SST (Fig. 6). Figure 7 shows the

BWI oscillations of rain, SLP, SSWRF, SNHF and

THETA_E, regressed onto the SCS BWI oscillations

in SST averaged over the rectangle box given in

Fig. 1. From the Fig. 7, SCS SST contribution to the

southward and eastward propagation of biweekly

rainfall anomalies in the western Pacific and over the

Philippine Sea can be conspicuously evident. Fig-

ures 4, 5, 6 and 7 revealed that large zonal wind shear

in the convection region enhance surface heat fluxes

and reduce incoming shortwave radiation and SLP.

The present study proposes that the SCS SST con-

tribution to the southward and eastward propagation

of biweekly rainfall anomalies to the WNP. This

Figure 5
The BWI oscillations a RAIN, b USHEAR (U200–U850), c SLP, d SSWRF, e SSHF, f SLHF, g SNHF, h THETA_E at 118E, regressed onto

the SCS BWI oscillations in SST averaged over the rectangle box given in Fig. 1. The regression coefficients are statistically significant at

99 % confidence level
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present study will be helpful for the better under-

standing of the mechanisms responsible for the

intraseasonal variability of the SCS SST, which has

been shown to be associated with the WNP

monsoons.

4. Concluding Remarks

The new conceptual picture of the BWI oscilla-

tion in SST over the SCS obtained here based on data

from 1998 to 2012, which provides valuable infor-

mation on the behavior of the BWI oscillation

association with the WNP, which is important for

understanding of tropical variability on a time scale

between day-to-day weather over the WNP region.

Analysis of the TMI data for the period 1998–2012

reveals large biweekly fluctuations in the SST over

the SCS during the SCS SM. The study focuses on

the biweekly timescale SST and its influence on

southward propagating anomalies over the SCS. The

propagation of biweekly anomalies is related to the

ocean–atmosphere interaction. These biweekly SST

changes are closely related to surface heat flux

anomalies induced by wind shear. The SST changes

feedback in the atmosphere by modifying the atmo-

spheric instability. The results suggest that the SCS

involves ocean–atmosphere coupling on biweekly

timescales. The positive biweekly SST anomalies

lead the rain anomalies over the SCS by 3 days, with

a significant correlation coefficient (r = 0.6) between

the SST-rain anomalies. Based on lead/lag correlation

analysis between the biweekly SST and rain,

SSWRF, SLHF, SSHF, SNHF, equivalent potential

temperature, SLP and zonal wind shear, it is argued

that an ocean-to-atmosphere effect over the SCS,

where biweekly SST anomalies tend to form a

favorable condition for convective activity and sus-

tain enhanced precipitation during the SM. The

potential findings here indicate that the biweekly SST

Figure 6
The BWI oscillations a RAIN, b USHEAR (U200–U850), c SLP, d SSWRF, e SSHF, f SLHF, g SNHF, h THETA_E at 20 N, regressed onto

the SCS BWI oscillations in SST averaged over the rectangle box given in Fig. 1. The regression coefficients are statistically significant at

99 % confidence level
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over the SCS play an important role in the eastward

and the southward propagation of the biweekly

anomalies to the WNP.
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North Equatorial Indian Ocean Convection and Indian Summer Monsoon June Progression:

a Case Study of 2013 and 2014

RAMESH KUMAR YADAV
1 and BHUPENDRA BAHADUR SINGH1

Abstract—The consecutive summer monsoons of 2013 and

2014 over the Indian subcontinent saw very contrasting onsets and

progressions during the initial month. While the 2013 monsoon saw

the timely onset and one of the fastest progressions during the

recent decades, 2014 had a delayed onset and a slower progression

phase. The monthly rainfall of June 2013 was ?34 %, whereas in

2014 it was -43 % of its long-period average. The progress/onset

of monsoon in June is influenced by large-scale circulation and

local feedback processes. But, in 2013 (2014), one of the main

reasons for the timely onset and fastest progression (delayed onset

and slower progression) was the persistent strong (weak) convec-

tion over the north equatorial Indian Ocean during May. This

resulted in a strong (weak) Hadley circulation with strong (weak)

ascent and descent over the north equatorial Indian Ocean and the

South Indian Ocean, respectively. The strong (weak) descent over

the south Indian Ocean intensified (weakened) the Mascarene High,

which in turn strengthened (weakened) the cross-equatorial flow

and hence the monsoonal circulation.

Key words: ISM, Mascarene High, Hadley circulation, OLR,

Cross-equatorial flow, ENSO.

1. Introduction

Rainfall over the Indian subcontinent has a unique

annual cycle where more than 80 % of the annual

precipitation occurs during a short span of 4 months,

which commences in the month of early June and

continues till September end, most commonly termed

as Indian summer monsoon (ISM) rainfall. ISM,

which is a part of the Asian monsoon system, has

significant temporal and spatial variations. ISM gen-

erally has its onset over the southwest coast around 1

June with a standard deviation of about 8 days, and

progresses northward to cover the entire country by

15 July (Pai and Rajeevan 2009).The onset of ISM is

the most anxiously awaited weather singularity in the

Indian subcontinent as it heralds the rainy season and

marks the end of the hot summer. The onset and

progression of ISM is represented by the abrupt

transition from dry to wet conditions, starting at the

southwest coast of India before rapidly blanketing

most of the rest of the country (Lau and Yang 1996;

Wu and Wang 2001). The onset and progression of

ISM have a pronounced interannual variability

(Joseph et al. 1994; Wang and LinHo 2002; Gadgil

2003; Li and Zhang 2009) that is partly inherited

from large-scale circulation and thermodynamic fea-

tures. Researchers have tried to explain the onset and

progression of ISM by several theories, e.g., land–

ocean heat contrast, shifting of the inter-tropical

convergence zone due to the effect of varying solar

insolation, jet stream theory, etc. Apart from that,

there are remote factors (e.g., El Nino, La Nina) that

have a profound effect on the ISM (Sikka1980;

Angell 1981; Ropelewski and Halpert 1987, 1989;

Rasmusson and Carpenter 1983; Shukla 1987; Yadav

2009a, b).

The ISMs of 2013 and 2014 were quite distinct,

especially in their onset as well as in initial pro-

gression phase during the early monsoon month of

June. The year 2013 witnessed the fastest advance-

ment of ISM in the last 70 years (IMD 2013). The

monsoon covered the entire country in just 16 days

after its onset over the southwest coast on 01 June,

i.e., by 16 June, which is almost a month ahead of its

climatological date. June 2013 was exceptional due to

its strong, timely onset and rapid progression phase.

The rainfall over the country during June 2013 was

134 % of its long-term mean (IMD 2013). On the

other hand, the 2014 monsoon had a delayed onset on1 Indian Institute of Tropical Meteorology, Pashan, Pune 411

008, India. E-mail: yadav@tropmet.res.in
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06 June, exhibited a sluggish northward progression

and covered the whole country by 17 July. During

most of June 2014, the rainfall was almost absent

over central India. The rainfall over the country

during June 2014was only 56.5 % (source: http://www.

imdpune.gov.in/mons_monitor/mm_index.html).

In this study, we have focused on 2013 and 2014

in particular, as none of these 2 years exhibited any

strong El Nino or La Nina type of conditions. Though

the boreal summer of 2014 initially had the signals of

El Nino, it weakened further. In 2014, the cumulative

rainfall prior to August was less than the normal.

Later in the months of August and September 2014

the ISM recovered, but the initial deficiency during

the onset month led to the seasonal rainfall being less

than the normal. Hence in particular, the analysis is

centered on the early phase of the monsoon. To check

the robustness of the feature, we look for other years

as well, omitting the strong cases of El Nino or La

Nina events. Of course, the conditions which build up

over the Indian Subcontinent and around have an

established relationship with the seasonal (June–

September) rainfall, but the strong cross-equatorial

flow of moisture-laden winds is directly influenced by

the presence of sustained high pressure over the mid-

latitudes in the south Indian Ocean. A buildup of

relatively high pressure prior to the month of June,

we argue, may lead to the timely onset and supply the

initial momentum for faster progression.

2. Data and Methodology

The global atmospheric reanalysis dataset ERA-

Interim has been used in this study. ERA-Interim is

the latest European Centre for Medium-Range

Weather Forecasts (ECMWF) global atmospheric

reanalysis of the period 1979 to the present. ERA-

Interim was originally planned as an ‘interim’

reanalysis in preparation for the next-generation

extended reanalysis to replace ERA-40. It uses a

December 2006 version of the ECMWF Integrated

Forecast Model (IFS Cy31r2). It originally covered

dates from 1 January 1989, but an additional decade,

from 1 January 1979, was added later. ERA-Interim

is being continued in real time. The spectral reso-

lution is T255 (about 80 km) and there are 60

vertical levels, with the model top at 0.1 hPa (about

64 km). The data assimilation is based on a 12-h

four-dimensional variational analysis (4D-Var) with

adaptive estimation of biases in satellite radiance

data (VarBC). With some exceptions, ERA-Interim

uses input observations prepared for ERA-40 until

2002, and data from ECMWF’s operational archive

thereafter (Dee et al. 2011). Daily and monthly

outgoing longwave radiation (OLR) data at 2.5�
latitude 9 2.5� longitude grid provided by the

NOAA/OAR/ESRL PSD, Boulder, USA, from the

website http://www.esrl.noaa.gov/psd/ have been

used (Liebmann and Smith 1996). Daily and

monthly means of different atmospheric fields for

the months of May and June have been analyzed to

find out the underlying mechanisms for the onset

and progression of ISM in the two contrasting

consecutive years of 2013 and 2014. The simulta-

neous correlation coefficient of negative Nino-3

index with sea surface temperature (SST) and

200-hPa velocity potential have been calculated to

study the influence of ENSO on SST and Walker

circulation. Nino-3 index is obtained by extracting

SST data from the box 5�N–5�S and 150�W–90�W.

The velocity potential is calculated from the zonal

and meridional wind component.

3. Results

The years 2013 and 2014 were two consecutive

contrasting ISM years with respect to their onset and

progression in the month of June. In 2013, the onset

was timely (01 June) and the progression was very

fast, while in 2014, the onset was delayed (06 June)

and the progression was very lethargic. The cumu-

lative rainfall of 2013 June was ?34 %, whereas

2014 June recorded -43 % of its long-period

average. Therefore, the spatial plots of monthly

means for the month of May 2013 and 2014 and

their difference in atmospheric parameters are

expected to provide further insight into the changes

observed in the succeeding months of June. Figure 1

shows the OLR (gray shaded), mean sea level

pressure (MSLP; contours) and 850-hPa wind (black

arrows) for the month of May 2013 (Fig. 1a), 2014

(Fig. 1b) and the difference of 2013 and 2014
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(a)

(b)

(c)

Figure 1
MSLP (contours, hPa), 850 hPa winds (vectors, ms-1), OLR (gray shaded, Wm-2). a May 2013 and b May 2014. c Difference in May 2013

and May 2014 MSLP (contours), OLR (gray shaded) and 850-hPa wind (vectors)
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(Fig. 1c). The MSLP over Mascarene High was

more intense in 2013 than 2014 (Fig. 1a, b). It

caused the buildup of higher north–south (N–S)

pressure gradient, resulting in stronger cross-equa-

torial flow in 2013 as compared to 2014. Since OLR

is a good proxy for deep convection: in Fig. 1a, b,

low OLR values, less than 220 W/m2, indicate deep

convection and pronounced condensational heating

over the tropical and subtropical regions (Liebmann

and Smith 1996). As compared to 2013, where the

deep convection over the equatorial north Indian

Ocean was much wider, during 2014 it was con-

centrated toward east and deep convection over the

north equatorial Indian Ocean was relatively less

intense. The difference plot of OLR and 850-hPa

wind between 2013 and 2014 (Fig. 1c) shows deep

convection over the south Arabian Sea and intense

cross-equatorial flow in 2013 as compared to 2014.

Similarly, Fig. 2 shows the SST (color shaded)

and 200-hPa velocity potential (contours) for the

month of May. The SST was warmer than 28 �C in

the tropical Indian and the western Pacific during

both years. The velocity potential shows tripole type

of structure over the tropical Indo-Pacific Ocean with

upper-level divergence (velocity potential minimum)

over the warm pool region of Indonesia and the

western Pacific and convergence (velocity potential

maximum) over the western Indian Ocean and the

eastern Pacific. This structure represents the Walker

circulation with upper-level divergence and conver-

gence over the warm pool region and the eastern

Pacific, respectively. In 2013, the Walker circulation

was much stronger than in 2014. The difference

between the 2013 and 2014 May month shows cooler

SST anomaly all along the equatorial Indo-Pacific

Ocean, except the warm pool region. The difference

pattern resembles the initial stage of La Nina condi-

tions because 2014 had minor signatures of El Nino

during the month which weakened afterward. The

difference in SST over the tropical India Ocean was

very marginal. This suggests that the tropical Indian

Ocean SST was not substantially influential in mod-

ulating the deep convection as observed during the

mentioned years. The velocity potential shows

divergence anomaly all along the tropical Indo-

Pacific Ocean except the western Indian Ocean and

the eastern Pacific.

To study the upper-level horizontal temperature

gradient, the sub-tropical westerly jet stream and

tropical easterly jet stream for the month of May

during 2013 and 2014, the 200-hPa level temperature

(color shaded) and zonal wind (contours) have been

plotted in Fig. 3. The horizontal temperature gradient

between the northern India and the equatorial Indian

Ocean was greater in 2013 than 2014. The sub-trop-

ical westerly jet stream over the north of India and the

tropical easterly jet stream over the equatorial Indian

Ocean were more intense in 2013 than 2014 (Fig. 3c).

This suggests that the deep convection over the north

Indian Ocean during May 2013 had intensified the

upper-level divergence which is directly correlated

with anti-cyclonic circulation. The anti-cyclonic cir-

culation intensified both the sub-tropical westerly jet

toward the north of India and the tropical easterly jet

stream at the equatorial Indian Ocean. The strong

sub-tropical westerly jet stream advected the tem-

peratures to the northern India (Fig. 3a).

Figure 4 shows the Hadley circulation averaged

between the longitudes 60�E and 90�E for May 2013

(upper panel), 2014 (middle panel) and the difference

between 2013 and 2014 (lower panel). In 2013, the

Hadley circulation was more intense than in 2014

(Fig. 4a, b). The difference plot (Fig. 4c) suggests

that there was a slightly northward shift in the ascent

and descent of the Hadley circulation in 2013 when

compared with 2014. In 2013, the ascent and descent

were observed around 10�N and 20�S, respectively,
whereas in 2014, the ascent and descent were con-

fined to the equator and 25�S, respectively. The

strong subsidence over the south Indian Ocean during

2013 was one of the main reasons for the intensifi-

cation of Mascarene High. The stronger Mascarene

High intensified the cross-equatorial monsoonal flow

in 2013 and vice versa for 2014 (Krishnamurti and

Bhalme 1976). The difference between the wind

speed at 850 hPa (Fig. 1) is the confirmation for the

same.

It is well known that the onset and progression of

ISM are also affected by the northward-propagating

intraseasonal variations (ISVs) by transporting

moisture and momentum from tropical Indian Ocean

to the Indian subcontinent (Zhou and Murtugudde

2014). Therefore, to see the northward propagation of

ISVs during 2013 and 2014, we plotted the time–

R. K. Yadav, B. B. Singh Pure Appl. Geophys.
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latitude cross section of OLR averaged over the

longitudes 60�E–90�E from 01 May to 15 June for

2013 (Fig. 5a) and 2014 (Fig. 5b). It is seen that the

persistent deep convection up to mid-May and last

week of May were stagnant over north of the equator,

with no northward propagation observed in 2013. In

(a)

(b)

(c)

Figure 2
SST (color shaded, �C), 200-hPa velocity potential (contours, 106m2s-1). a May 2013 and b May 2014. c Difference in May 2013 and May

2014
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the third week of May 2013, tropical deep convection

was absent, while in 2014 persistent deep and

northward propagation of convection was missing in

May. Similarly, we have plotted time–longitude cross

section of OLR, averaged over the latitudes 10�S–
10�N from 01 May to 15 June to see the eastward

(a)

(b)

(c)

Figure 3
200-hPa temperature (color shaded, �C) and zonal wind (contours, ms-1). a May 2013 and b May 2014. c Difference in May 2013 and May

2014
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(a)

(b)

(c)

Figure 4
May Hadley circulation, representing the latitude–height section (longitude averaged from 60�E to 90�E) of meridional and pressure vertical

velocities for a 2013 and b 2014 (vertical velocity scaled by 100) and c 2013 minus 2014 (vertical velocity scaled by 500)
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propagation of ISVs in 2013 (Fig. 5c) and 2014

(Fig. 5d). The persistent deep convection observed in

the first half of May 2013 shows the eastward

propagation, but for the later period of 2013 and the

whole of 2014, the eastward propagation was miss-

ing. Now, it is clear that the early onset and fast

(a) (b)

(c) (d)

Figure 5
The time–latitude section of OLR (Wm-2) along 15�S to 30�N averaged for the longitude from 60�E to 90�E for a 2013 and b 2014. The

time–longitude section of OLR (Wm-2) along 50�E–110�E averaged for the latitude from 10�S to 10�N for c 2013 and d 2014. The time

length is from 01 May to 15 June
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propagation of 2013 ISM was not initiated by the

northward propagation of strong ISVs in that year.

From the above results, it is clear that persistent

deep convection in the north equatorial Indian Ocean

was one of the main reasons which led to the inten-

sification of Mascarene High and hence the ISM

circulation. Based on the observed features in Fig. 1,

we extracted daily indexes for 2013 and 2014 from

the area-averaged OLR in the region 60�E–90�E and

2.5�S–7.5�N and MSLP in the region 60�E–90�E and

20�S–30�S (with special emphasis on the below

220 Wm-2 values for OLR and above 1019 hPa for

MSLP) termed hereafter as OLRIO and MH,

respectively. The daily plots for May OLRIO and

MH are shown in Fig. 6a, b, respectively. In 2013,

well-organized deep convection was observed in the

first half of May which was missing in 2014. Simi-

larly, Mascarene High was intense between 7 and 24

May in 2013, while in 2014 it consistently lacked in

intensity throughout the month. This clear distinction

in the OLRIO and MH fields in the month of May

was one of the important factors which modified the

onset and progression of ISM in the successive years

of 2013 and 2014.

To see the nature and robustness of the relation-

ship between OLRIO and MH, we calculate the lag

correlation of MH with respect to OLRIO from 01

May to 15 June for 2013 and 2014 and have been

shown in Fig. 7. In 2013, it shows significantly strong

6–8 days lag correlation at 99.9 % confidence level

between MH and OLRIO, which suggests that the

deep convection over the north equatorial Indian

Ocean had fed and enhanced the MSLP over the

Mascarene High through the descent of the Hadley

circulation (Fig. 4). In 2014, the lag correlation

shows 3 days lead of OLRIO over MH significant at

the 95 % confidence level. Since the organized per-

sistent deep convection was missing in 2014,

therefore a strong correlation in 2014 is not expected.

Hence, the persistent deep convection of May 2013

intensified the Mascarene High which established a

good platform with nearly half a month ahead of the

commencement of ISM 2013, while the lack of per-

sistent deep convection over the north equatorial

Indian Ocean failed to intensify the Mascarene High

and remained normal apart from other unfavorable

conditions which delayed the onset and progression

of ISM 2014.

Further, to find out similar events in the past, we

constructed interannual time series for May for

OLRIO and MH. The year-to-year variation in the

period 1979–2013 shows (Fig. 8a) that the relation-

ship was not persistent throughout the data period.

Also the 21-year sliding correlation between the two

time series shows (Fig. 8b) positive correlation

before central year 1995 and negative correlation

after that, suggesting that the relationship has become

frequent in the recent years where the deep convec-

tion over the north equatorial Indian Ocean intensifies

the surface pressure over Mascarene High. In

Table 1, we selected the years with OLR values less

than 220 Wm-2 and MSLP values greater than

1019 hPa in the same year, with their onset date over

the southwest peninsular coast and the percentage

departure of June rainfall in the respective years. The

years with a strong El Nino and La Nina are shown in

bold and bold italic, respectively. 2010, 1999 and

1988, which were strong La Nina years, shows early

onsets, but the percentage departures in June were not

strong. 1997 and 1982 were strong El Nino years;

again, the percentage departures in June were not

strong. 1997 had a delayed onset, while in 1982 the

onset was early. However, during the non-ENSO

years such as 1994, 1989 and 1980, the onset and

June progressions match with the year 2013.

(a)

(b)

Figure 6
Daily variations of a OLRIO (Wm-2) and b MH (hPa) for May

2013 and 2014
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In summary, during the non-ENSO years, the

persistent deep convection during the month of May

over the north Indian Ocean intensifies the local

Hadley cell, which intensifies the Mascarene High.

The intensified Mascarene High intensifies the cross-

equatorial flow which further pushes the deep con-

vection northward over the Indian subcontinent with

abundant moisture supply. This leads to early onset

and rapid progression of ISM.

4. Conclusion and Discussion

The Indian summer monsoons (ISMs) of 2013 and

2014 were contrasting in their onset and initial pro-

gression phases. In 2013, the onset was timely and the

progression of ISM was the fastest in last few dec-

ades, whereas in 2014 the onset was delayed and the

progression was sluggish. The June monthly rainfall

in 2013 was ?34 %, whereas in June 2014 it was

(a) (b)

(c) (d)

Figure 7
Daily variations of OLRIO (Wm-2) and MH (hPa) from 1 May to 15 June a 2013 and c 2014. Lag correlations (black curve) of MH with

respect to OLRIO for the period 1 May to 15 June for b 2013 and d 2014. The 95 and 99.9 % confidence levels are indicated by the dashed

black line. The dotted line is the zero correlation line
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-43 % of its long-period average. In this study, we

have made an attempt to unravel the factors that

generated this discrepancy in the month of June 2013

and 2014. It was found that in 2013, there was per-

sistent deep convection in the first half of May over

the north equatorial Indian Ocean, which intensified

Mascarene High over the south Indian Ocean through

strong Hadley circulation with strong descent over

the south Indian Ocean. There was a lead of 6–8 days

between deep convection over the north equatorial

Indian Ocean to MSLP over the south Indian Ocean,

i.e., the Hadley circulation took 6–8 days to feed the

Mascarene High over the south Indian Ocean. The

intensified Mascarene High intensified the cross-

equatorial flow and hence the monsoonal circulation

was well established half a month ahead, which

caused the timely onset and fastest progression of

monsoon in the year 2013. In 2014, the persistent

deep convection over the north equatorial Indian

Ocean was missing, which led to weaker Hadley

circulation that could not feed the Mascarene High.

Therefore, the weaker Mascarene High in 2014 as

compared to 2013 generated a weaker cross-equato-

rial flow and hence delayed onset and progression of

monsoon 2014 and vice versa. This relationship is

more prominent in the recent non-ENSO years.

(a)

(b)

Figure 8
a Yearwise monthly variations of OLRIO and MH from 1979 to 2013. b Sliding correlations on a 21 year moving window between OLRIO

and MH
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To see the effect of ENSO on the onset and initial

progression of ISM, we have considered Nino-3

index as representative of ENSO. The spatial corre-

lation coefficient of the negative Nino-3 index on

SST (color shaded) and 200-hPa velocity potential

(contours) are shown in Fig. 9. The negative Nino-3

index represents La Nina conditions. The La Nina

years are associated with cool SST anomaly over the

equatorial Indian Ocean and warm anomaly over the

tropical north-western Pacific. The 200-hPa velocity

potential shows significant negative correlation over

south-east Asia and positive correlation over the

equatorial central and eastern Pacific (Fig. 9). This

suggests that the Walker circulation is stronger with

rising motion over Cambodia and subsidence over the

equatorial eastern Pacific during La Nina years and

vice versa during El Nino years. The warming of the

tropical north-western Pacific must have shifted and

intensified the inter-tropical convergence zone to the

Cambodian latitude, which in turn intensifies the

Walker circulation during the La Nina years and vice

versa during the El Nino years. The upper-level

divergence (velocity potential minimum) anomaly

over north-east and southern India (Fig. 9) reinforce

the convective activity which leads to early onset of

ISM during the La Nina years and vice versa for the

El Nino years. In 2013, the upper-level divergence

was centered over the western Pacific, whose influ-

ence on the early onset and fast progression of ISM

was not so prominent. Therefore, the persistent deep

convection over the north India Ocean in the month

of May, like the one observed in 2013, can be a better

indicator for the initial buildup of strong cross-

Table 1

Years with simultaneous OLRIO lower than 220 Wm-2 and MH

greater than 1019 hPa

Year Onset date June % departure

2013 01 June ?34.5

2010 31 May 215.6

1999 25 May 15.1

1997 09 June 16.4

1994 29 May ?29.0

1989 03 June ?19.3

1988 26 May 16.8

1982 29 May 216.8

1980 01 June ?37.7

Bold and bold italic represents the strong El Nino and strong La

Nina years, respectively

Figure 9
Spatial pattern of simultaneous correlation of May negative Nino-3 index vs SST and 200-hPa velocity potential for the period 1979–2014.

SST is shown as shaded, and velocity potential as contours. Positive (negative) velocity potential correlations are indicated by continuous

(dotted) lines. The velocity potential correlation contours start from 0.35 and the intervals are 0.1
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equatorial flow leading to better forecasting of the

initial ISM rainfall. This is also an important research

topic which will contribute to promote progress in the

science of ISM.
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Sensitivity Study of Cloud Cover and Ozone Modeling to Microphysics Parameterization

KINGA WAłASZEK,1 MACIEJ KRYZA,1 MARIUSZ SZYMANOWSKI,2 MAłGORZATA WERNER,1,3 and HANNA OJRZYŃSKA
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Abstract—Cloud cover is a significant meteorological param-

eter influencing the amount of solar radiation reaching the ground

surface, and therefore affecting the formation of photochemical

pollutants, most of all tropospheric ozone (O3). Because cloud

amount and type in meteorological models are resolved by

microphysics schemes, adjusting this parameterization is a major

factor determining the accuracy of the results. However, verifica-

tion of cloud cover simulations based on surface data is difficult

and yields significant errors. Current meteorological satellite pro-

grams provide many high-resolution cloud products, which can be

used to verify numerical models. In this study, the Weather

Research and Forecasting model (WRF) has been applied for the

area of Poland for an episode of June 17th–July 4th, 2008, when

high ground-level ozone concentrations were observed. Four sim-

ulations were performed, each with a different microphysics

parameterization: Purdue Lin, Eta Ferrier, WRF Single-Moment

6-class, and Morrison Double-Moment scheme. The results were

then evaluated based on cloud mask satellite images derived from

SEVIRI data. Meteorological variables and O3 concentrations were

also evaluated. The results show that the simulation using Morrison

Double-Moment microphysics provides the most and Purdue Lin

the least accurate information on cloud cover and surface meteo-

rological variables for the selected high ozone episode. Those two

configurations were used for WRF-Chem runs, which showed

significantly higher O3 concentrations and better model-measure-

ments agreement of the latter.

Key words: Cloud mask, meteorological modeling, ozone,

WRF, Poland, model evaluation.

1. Introduction

Cloud cover plays important role in many atmo-

spheric processes. Not only does it regulate Earth’s

water cycle, but also its energy budget, and therefore

radiative processes on the surface and atmospheric

chemistry, and also interacts with aerosols in the

atmosphere. Cloudiness affects ozone and other sec-

ondary pollutant formation by limiting incoming

radiative fluxes to the surface layer. In meteorological

and chemical transport models, e.g. WRF-Chem

(GRELL et al. 2005; MADRONICH 1987; TIE et al. 2003;

WILD et al. 2000), cloud cover information is passed

on to photolysis schemes, thus influencing nitrogen

dioxide (NO2) oxidation rates.

Cloud amount and cloud type are one of the most

difficult meteorological parameters to predict. Cloud

formation and dynamics depend on a wide variety of

factors and processes, which are not accounted for in

the model explicitly, simply because the atmospheric

system is too complex and the current computational

power is insufficient to resolve them. For these rea-

sons, there is a need to apply approximations, which

increase the uncertainty of cloud cover prediction

(JOHNSON et al. 2015; VAN LIER-WALQUI et al. 2012).

Since cloud microphysics interacts with many other

elements of the weather system resolved by the

model, those uncertainties are replicated and have an

adverse effect on the overall forecast quality. In air

quality modeling, it also affects estimation of pollu-

tant concentrations, particularly ozone and other

photochemical smog compounds, by regulating the

amount of solar energy transferred to the surface.

There are many data types that cloud cover fore-

cast verification can be based on (BRETHERTON et al.

1995). The most commonly used and longest data

series that can be acquired are cloud fraction reports

from ground-based weather stations (e.g. QIAN et al.

2012). Surface data are easily accessible in real time

and widely used for verification of many other

meteorological parameters, such as temperature,

pressure or wind speed, but with cloud cover there are
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some setbacks. As the density of stations may be

sufficient for other meteorological variables, cloudi-

ness measuring network is very irregular and stations

are located predominantly on land, so there is dis-

proportion in data density over land and marine areas.

There are also manual and automated stations, and

the two different methods of gathering cloud fraction

information may provide different outcomes (WMO

2008). Additionally, the number of synoptic stations

worldwide has been decreasing (PETERSON and VOSE

1997; VOSE et al. 1992). Another issue is the fre-

quency of the provided data—surface stations usually

report at synoptic times, whereas regional meteoro-

logical models provide data at finer temporal

resolution (1 h or less). Finally, there is more than

one definition of cloud fraction and there are diffi-

culties in transforming it into a variable that would be

suitable for model verification.

One data source that solves the problem of

irregular and sparse coverage of surface data are

meteorological radars; however, they are designed to

detect precipitation rather than cloud cover and are

not commonly used for that purpose. Finally, there

are satellite images, which not only have very large

spatial extent, but also high spatial and temporal

resolution and data are homogenous across the globe.

Satellite data provide images in over a hundred

spectral bands which allow the diagnosis of a variety

of cloud products, from an unprocessed visible image

to cloud mask, cloud top height, liquid water content,

or brightness temperatures. Although these data are

not always available in real time and go back only a

few decades, it may serve a variety of applications

related to model verification. There are two main

types of satellites providing data for meteorological

purposes: geostationary (e.g., the Meteosat series;

FENSHOLT et al. 2011) and polar-orbiting (e.g.

NASA’s Terra and Aqua; KING et al. 2003). The main

advantage of low Earth orbit satellites is their high

spatial resolution, which may be even less than 1 km

(down to 250 m at sub-satellite point in case of

MODIS) and small distortions of the image. How-

ever, their orbit characteristics result in the data being

available at irregular times, approximately 3–4 times

a day. Geostationary satellites, on the other hand,

which stay above a fixed point on the equator, have

high temporal resolution (15 min for Meteosat

Second Generation), but spatial resolution is much

lower than the polar-orbiting satellites. Meteosat

MSG has 1 and 3 km resolution at sub-satellite point

for High Resolution Visible (HRV) and infrared

channels, respectively, and it decreases toward the

edges of the image. The downside is that their cov-

erage is limited by the satellite’s field of view, so

polar regions are either invisible or excluded because

of large distortions.

Satellite imagery can be processed into a variety

of products, and therefore enable various approaches

to meteorological model verification (TUINDER et al.

2004). One of them is comparison of brightness

temperatures (ZINGERLE and NURMI 2008; SÖHNE et al.

2008). It is usually not a parameter produced directly

by meteorological models, but requires additional

post-processing from other model output variables.

Much more straightforward approach is to use cloud

mask, which can be easily derived from cloud frac-

tions at model levels (CROCKER and MITTERMAIER

2013). Satellite cloud mask is derived from multiple

spectral channels, usually based on visible light and

supported by infrared wavelengths, through a series

of cloud detection tests. These data can then be

compared with the modeled cloud mask to evaluate

its results.

Meteorological model evaluation can also be

based on various methods; one of them, referred to as

categorical verification, uses grid-to-grid comparison,

and another, object-based verification method, pre-

sents the features being verified as objects. In this

study, we use both approaches to compare and

quantify the differences between the cloud mask

derived from the Weather Research and Forecasting

(WRF) meteorological model simulation and satellite

data. Four different microphysics parameterizations

are tested for a selected period, favorable to forma-

tion of tropospheric ozone. Finally, for two

parameterizations of microphysics, ozone concentra-

tions are calculated with the WRF-Chem model, and

the role of microphysics scheme on modeled O3 is

also described with the example of the episode of

high ozone concentrations observed in central

Europe.

There are two main aims of this study. The first

aim is to evaluate the WRF model performance for

cloud cover, using satellite data and objective
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verification approach, and to test the model sensi-

tivity to various microphysics schemes. The second

aim is to examine the sensitivity of the WRF-Chem

modeled ozone to the selected microphysics schemes.

Simulation providing the highest model-measure-

ments agreement will be used in further studies of

tropospheric ozone in Poland.

2. Data and Methods

2.1. Study Area and Period

The analysis is performed for the area of Poland,

which is characterized by transitional type of climate,

with polar continental and polar maritime air masses

being the two main drivers of weather conditions. This

makes weather in Poland very changeable and difficult

to predict. Episodes with stagnant anticyclone, pro-

viding many sunshine hours, high temperatures and

low wind speeds, are not uncommon. This type of

weather is very favorable for ground-level ozone

formation, which is a major issue particularly for large

cities and their peripheries. The EU Directive 2008/50/

EC goal for 2010 has not been met and threshold values

are still being exceeded (KRZYŚCIN et al. 2013;

STASZEWSKI et al. 2012). Because one of the main aims

of this study is to quantify the impact of selected

microphysics parameterizations on air quality model-

ing, the test period is a high ozone episode of June

17th–July 4th, 2008. At that time, a vast anticyclone

prevailed over Poland (Fig. 1), with low wind speed

and high temperatures, which allowed photochemical

smog to form in large cities and high concentrations of

ground-level ozone were observed in Poland. The

threshold value for 1-h average of 180 lg m-3 set by

aforementioned EU Directive was exceeded at four

stations in Poland at least once.

2.2. The WRF Model

In this study, a multi-scale meteorological model,

the Weather Research and Forecasting (WRF) ver-

sion 3.5 (SKAMAROCK and KLEMP 2008) is used for the

area of Poland. Simulations are performed for three

one-way nested domains with grid size of

45 km 9 45 km for the outermost, 15 km 9 15 km

for the intermediate, and 5 km 9 5 km for the

innermost domain, covering the area of interest.

The model has 38 vertical layers with model top at

50 hPa. The domain configuration is presented in

Fig. 2. Four simulations were run, each with a

different microphysics parameterization—Purdue

Lin (LIN et al. 1983), Eta Ferrier (ROGERS et al.

2005), WRF Single-Moment 6-class (HONG and LIM

2006), and Morrison 2-Moment (MORRISON et al.

2009), referred to as SIM1, SIM2, SIM3 and SIM4,

respectively. Purdue Lin and Morrison schemes are

currently the only two microphysics options that

account for aerosol direct effects and are both widely

used in WRF-Chem simulations (FORKEL et al. 2015;

SAIDE et al. 2012; ZHANG et al. 2012). Eta Ferrier and

WSM 6-class are also used in many applications,

including model evaluation based on satellite data

(GRASSO et al. 2014; OTKIN and GREENWALD 2008),

studies of model sensitivity to microphysics for

convective conditions (HONG et al. 2009) and heavy

precipitation episodes (SEGELE et al. 2013). Other

physics options remained the same for all model runs

and include the Kain-Fritsch cumulus scheme, Yon-

sei University PBL scheme, unified Noah land-

surface model, and RRTMG (IACONO et al. 2008)

and RRTM (MLAWER et al. 1997) shortwave and

longwave radiation, respectively. The model was

initialized by the ERA-Interim data, available every

6 h with 0.7� 9 0.7� horizontal resolution.

After evaluation of the cloud cover mask for the

four WRF model simulations, the best and the worst

configurations, in terms of the agreement with the

satellite data, were used for the WRF-Chem model

runs for the end of the study period—June 31st to

July 4th. Details for the WRF and WRF-Chem model

configurations are provided in Table 1. Because the

differences between the two model runs are of

interest here, the simple approach was applied,

including restriction of the temporal variations in

emissions from nature, while the TNO MACC II

emissions (KUENEN et al. 2014) are assumed constant

during the entire simulation. The chemical boundary

conditions of trace gases consist of idealized, north-

ern hemispheric, mid-latitude, clean environmental

profiles based upon the results from the NOAA

Aeronomy Lab Regional Oxidant Model (LIU et al.

1996). With all these simplifications it was

Vol. 174, (2017) Sensitivity Study of Cloud Cover and Ozone Modeling to Microphysics Parameterization

35



Reprinted from the journal

computationally efficient to study the impact of

microphysics parameterization on ozone concentra-

tions, but it also influenced the chemistry model

agreement with the measurements.

2.3. Measurements for Model Evaluation

The dataset used for evaluation of the model

results is the cloud mask product, derived from the

Meteosat Second Generation (MSG) SEVIRI instru-

ment satellite imagery (DERRIEN and RAOUL 2010).

This geostationary satellite offers high and constant

temporal resolution, consistent with the WRF model

output times (1 h), which is why it has been chosen

over MODIS even despite its lower spatial resolution.

For generation of this product, a High Resolution

Visible (HRV) channel and 11 infrared channels,

particularly useful for nighttime hours and necessary

for distinction of clouds from e.g. snow cover, were

used. Data are available every 15 min, but here the

images at full hours were used to match the WRF

model output. The final cloud mask product is

obtained from Eumetsat, after a series of tests

determining whether each grid cell is clear or cloudy.

Cloud mask is a pessimistic field, which means that a

grid cell can be classified as clear of clouds only if it

passes every test. The full methodology of generation

of the cloud mask product is described by DERRIEN

and RAOUL (2010). HRV channel has a 1 km 9 1 km

resolution at sub-satellite point, whereas the remain-

ing channels have 3 km 9 3 km grid. The final

product resolution is reduced to the lower grid

resolution. Because of the curvature of the Earth,

resolution decreases with distance to sub-satellite

point and for Poland it drops to approximately

6–7 km. This is close to the spatial resolution of the

Figure 1
Synoptic situation for the first day of the study period (17.06.2008). Similar conditions prevailed throughout the whole period (17.06-

04.07.2008)
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inner domain (d03) of the WRF model (5 km 9

5 km) and the satellite data are resampled to the WRF

grid for the spatial comparison.

For evaluation of other meteorological parame-

ters, data from 57 synoptic stations in Poland were

used. Ozone concentrations modeled with WRF-

Chem were compared with hourly data derived from

AirBase, from urban (Wrocław—Korzeniowskiego,

WRK), suburban (Wrocław—Bartnicza, WRB), and

regional background station (Śnie _zka, SNI) in SW

Poland.

2.4. Evaluation of the Model Results Using the Cloud

Cover Mask

There are multiple approaches that can be adopted

to verification of cloud cover modeling. Here, two

methods are used to evaluate the simulation results.

First is categorical verification, which is probably the

most widely used method. It is based on grid–to-grid

comparison of measured and modeled values. Then, a

contingency table is built, based on which various

skill scores may be calculated. The main weakness of

Figure 2
WRF model domain configuration. D01, d02 and d03 domains have spatial resolution of 45 km 9 45 km, 15 km 9 15 km, and

5 km 9 5 km, respectively. Results from domain d03 are analyzed
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this method is underestimation of model skill when

analyzed phenomena are shifted in space. To over-

come that weakness, an objective verification method

can be used. This approach was initially developed

for rainfall data and that is how it is commonly used,

but it can be adopted to other applications, including

cloudiness (CROCKER and MITTERMAIER 2013). In this

approach, it is not grid cells, but objects, that are

analyzed. An object is a continuous area that fulfills

certain criterion, e.g. occurrence of precipitation or

cloud cover. In this paper both approaches are used

for evaluation of cloud cover simulations and the

results are compared. A comparison of example

maps, including percentage of area covered by clouds

and number of cloud patches for satellite and WRF

simulations, is also made.

2.5. Categorical Verification

Categorical verification involves a simple and

intuitive approach that compares corresponding grid

cells of observation and forecast. It can be applied to

any phenomenon with values broken into categories;

however, the most common use is for binary

forecasts, e.g. occurrence of rainfall or cloud cover.

In this case, a 2 9 2 contingency table is built,

presenting the count of grid cells falling into each of

four categories: hits, misses, false alarms, and correct

negatives (Table 2). A number of error measures can

be calculated based on these data, four of which were

selected for this study: Threat Score (TS), Probability

of Detection (POD), False Alarm Ratio (FAR), and

Frequency Bias Index (FBI; Table 3). Threat Score,

also known as the Critical Success Index, measures

the fraction of observed and forecast events that were

correctly forecast (GILBERT 1884). The range of

values is from 0 (no skill) to 1 (perfect score). It is

sensitive to climatological frequency of the event and

produces lower scores for rare events (SCHAEFER

1990). However, it allows to compare different model

runs for the same domain and period of time, which is

one of the aims of this study. Probability of Detec-

tion, also known as Hit Rate, measures the fraction of

observed events that were correctly forecast. It also

ranges from 0 (no skill) to 1 (all observed events were

predicted). It is sensitive only to misses and hits and

can be improved by overforecasting (JOLLIFFE and

STEPHENSON 2003). Probability of Detection is usually

used with False Alarm Ratio (probability of false

detection), which measures the fraction of ‘‘yes’’

forecasts that were false alarms. The range of values

is from 0 (no false alarms) to 1 (all ‘‘yes’’ forecasts

were incorrect). Opposite to POD, it can be improved

by underforecasting (WILKS 2006). Frequency Bias

Index determines whether the model is under- or

overforecasting the analyzed phenomenon. It ranges

from 0 to infinity, with 1 as the perfect score. It

should be noted that FBI is not a measure of model

accuracy since it does not provide information on the

magnitude of forecast errors (JOLLIFFE and STEPHENSON

2003). A summary of skill scores used in this study is

provided in Table 3. Because in categorical verifica-

tion only respective grid cells are compared, the so-

called double penalty problem is an important issue.

For example, when the forecast is even slightly

shifted in space, the error may be counted twice—

Table 1

Physics and chemistry parameterizations used in WRF and WRF-

Chem model runs

Parameter

Cumulus scheme Kain-Fritsch

Planetary boundary layer Yonsei University

Land-surface model NOAH LSM

Shortwave radiation RRTMG

Longwave radiation RRTM

Microphysics Purdue Lin (SIM1)

Eta Ferrier (SIM2)

WSM6 (SIM3)

Morrison 2-Moment (SIM4)

Gas-phase chemistry RADM2

Aerosol model MADE/SORGAM

Photolysis scheme Fast-J

Wet deposition Simplified parameterization

for wet scavenging

Table 2

Contingency table used for categorical verification

Forecast Observed

Yes No

Yes a (hit) b (false alarm)

No c (miss) d (correct negative)

Skill scores are calculated based on the number of grid cells falling

into each category
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once as a miss, and once as a false alarm. It may

falsely reduce the score of model skill, as the event is,

in fact, forecasted. In objective verification methods

this issue is eliminated, because it is the objects, not

individual grid cells, that are analyzed, and the

distance of horizontal shift is also being accounted

for as a part of the SAL measure.

2.6. Objective Verification

The Structure–Amplitude–Location (SAL)

method was originally developed as a tool for

verification of precipitation field forecasts (WERNLI

et al. 2008). After simplification, the approach can be

successfully applied also for other binary variables,

such as cloud mask, which has been done previously,

for example, by CROCKER and MITTERMAIER (2013) or

ZINGERLE and NURMI (2008).

First, separate event fields need to be identified

within a given domain. These objects are then

compared to the respective observed fields, e.g. from

Doppler radars or, in this case, satellite images.

Afterward, geometric features of the objects, in this

case–cloud cover (Cobs—cloud cover from satellite

image, Cmod—from the model), are compared. The

first parameter is structure (S), which is defined as the

average volume of objects, but because cloud mask

field is uniform, it can be treated as a flat object and

the structure component describes only its size

(denoted as V in Eq. 1). S takes values from -2 to

2, where negative values mean that model underes-

timates average size of objects and positive values

mean overestimation

S ¼ VðCmodÞ � VðCobsÞ
0:5½VðCmodÞ þ VðCobsÞ�

: ð1Þ

The second component of the SAL measure is

amplitude (A), which calculates the domain-average

cloud field. It can be interpreted as the degree to

which the model is over- or underestimating the total

amount of clouds in the domain. For data with

continuous values, the size is understood as the total

volume of objects, whereas for binary data it is the

total area (D in Eq. 2). A takes values from -2 to 2 as

well, with negative values meaning underestimation

of total cloud amount within the domain and positive

values—overestimation. Please note that structure

and amplitude components of SAL are nonlinear, for

example S = -1 means that model underestimates

average cloud size three times, and similar statement

is true for amplitude. In general, S and A values

depend on observed total cloud amount and cloud

size and therefore cannot be directly compared to

studies for another region or episode. However, it

allows to assess performance of different models for a

fixed domain

A ¼ DðCmodÞ � DðCobsÞ
0:5½DðCmodÞ þ DðCobsÞ�

ð2Þ

For the location component, two parts of the

measure are calculated: one parameter (L1) determi-

nes the distance between the observed and predicted

domain-wide center of mass (X in Eq. 3), normalized

by the use of the diagonal length of the domain (d in

Eqs. 3 and 4). On the other hand, the L2 parameter

measures the observed and predicted average distance

between the objects center of mass and the domain

Table 3

Skill scores calculated for cloud cover based on contingency table (above; a hit, b false alarm, c miss, d correct negative)

Name Definition Interpretation Range of values

Threat score or Critical Success Index TS ¼ a

a þ b þ c
Fraction of observed and/or forecast

events that were correctly predicted

0–1

1: perfect score

Probability of detection or hit rate POD ¼ a

a þ c
Fraction of observed events that were

correctly forecast

0–1

1: perfect score

False alarm ratio FAR ¼ b

a þ b
Fraction of forecast events that were false

alarms

0–1

0: perfect score

Frequency Bias Index FBI ¼ a þ b

a þ c
Ratio of the frequency of forecast events

to the frequency of observed events

0–?
1: perfect score
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overall center of mass. For binary data, center of

mass is simply the geometrical center (denoted as r;

Eq. 4). The L component is defined as the sum of L1

and L2 (WERNLI et al. 2008)

L1 ¼ XðCmodÞ � XðCobsÞj j
d

ð3Þ

L2 ¼ 2
rðCmodÞ � rðCobsÞj j

d

� �
ð4Þ

The results of object-based verification are then

presented on SAL diagrams, which show the values

of all components and relationship between them

(Fig. 5). Because the values of S and A components

have the same range of values, they are represented

on the axes, whereas the value of L is represented by

the color of the data points. Dotted lines denote mean

values of S and A and the sides of the rectangle are

the first and third quartiles. These elements facilitate

interpretation of the diagram, as the closer the dotted

lines are to the center of the diagram and the smaller

the rectangle, the more accurate is the forecast.

2.7. Evaluation of Meteorological Variables

and Ozone Concentration

Besides cloud cover, the impact of the micro-

physics scheme on three surface meteorological

variables was analyzed: air temperature and relative

humidity at 2 m, and wind speed at 10 m. Three

statistical metrics were calculated for each parameter

for all model runs based on observational data from

synoptic stations: Mean Error (ME), Mean Absolute

Error (MAE), and Index of Agreement (IOA). Mean

Error was selected to show how much the model

under- or overestimates measured values, whereas

Mean Absolute Error shows the absolute value of

errors. Index of Agreement is a standardized measure

of the overall model-measurement agreement (WILL-

MOTT 1981). The formulas and value range of the

above statistics are presented in Table 4.

After the analysis of meteorological model sim-

ulations, the best and the worst simulations were

selected for the WRF-Chem model runs. For these

simulations, spatial distribution of mean O3 concen-

tration and the differences between model runs are

presented. For three air quality measurement stations

representing different environments, temporal vari-

ability of measured and modeled 1-h average

concentrations were compared.

3. Results and Discussion

3.1. Cloud Cover

Figures 3 and 4 present example cloud mask

images from the satellite product and four WRF

simulations for morning (9 AM UTC, 11 AM local

time) and afternoon (3 PM UTC, 5 PM local time)

hours. In both cases, the locations of modeled cloudy

areas correspond to the satellite-derived image, but

total cloud amount in the domain is smaller (39 % for

SIM4 compared to 59 % on satellite image), partic-

ularly in the afternoon. Differences between

simulations are much less pronounced than those

between the model and satellite product, which

suggest that the selection of the microphysics

scheme has limited impact on the cloud mask results.

The modeled clouds form patches of small cells

rather than one vast cloudy area, like the satellite

image—every simulation gives at least twice as many

cloud cells as satellite. There are two reasons for this.

It is related to the fact that cloud mask product

Table 4

Error statistics calculated for temperature, relative humidity, wind speed and ozone concentrations

Name Definition Range of values

Mean error ME ¼
P

ðsim�obsÞ
n

-? to ?
0: perfect score

Mean absolute error MAE ¼
P

sim�obsj j
n

. 0 to ?
0: perfect score

Index of agreement IOA ¼
P

ðsim�obsÞ2P
ð sim�obsj jþ obs�obsj jÞ 0 to 1

1: perfect score
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Figure 3
An example of MSG satellite cloud mask product and WRF simulation results for 20 June 2008, 9 AM UTC
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Figure 4
An example of MSG satellite cloud mask product and WRF simulation results for 20 June 2008, 3 PM UTC
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generated from Meteosat images has coarser spatial

resolution over Poland than the WRF model domains.

After resampling to the spatial resolution of the WRF

model, the number of cells marked as cloudy might

increase. It is also possibly the main reason why for

all model simulations a set of orographic clouds in

the Carpathians is visible in the morning, which is

shown as a single cloud patch in the satellite image.

The second reason is that the entire WRF model grid

cell has to reach saturation level before it is marked

as cloudy. Considering summer convective condition

this might be unlikely, therefore the WRF model

provides lower number of grid cells with clouds, if

compared with satellite data. This is also supported

by the larger differences between the WRF and

satellite cloud mask for the afternoon hours, if

compared to morning (Figs. 3, 4).

Considering the differences between simulations,

they are much smaller than differences between any

of the simulations and the satellite cloud mask. SIM4

produces the largest cloud amount and SIM1 the

smallest. Another noticeable thing is a distinct

quantitative difference between SIM4 and other

simulations—cloud cells are larger and cover more

area, which is supported by the value of FBI

(Table 5).

3.2. The SAL Method

The results of the simulations evaluated with the

SAL method are shown in Fig. 5. It shows that for all

simulations both cloud size and total cloud amount,

represented by S and A components, are underesti-

mated by the model, as the majority of data points lie

in lower left quadrants of the plots. The main cause is

the fact that WRF does not account for subgrid-scale

cumulus clouds in the cloud fraction output, which

leads to underestimation of modeled cloud cover, as

the whole grid cell needs to be saturated to produce

cloud. Satellite cloud mask, on the other hand, is a

pessimistic field, which means that only the cells

which pass all tests can be flagged as cloud-free,

which increases the discrepancy between modeled

and satellite-derived cloud cover. The best S and

A values are for SIM4, as the rectangle limited by

S and A first and third quartiles is small and located

closest to the center of the diagram. It may be

explained by the fact that Morrison Double-Moment

is the most sophisticated of the selected microphysics

options and the only double-moment scheme. SIM3

and SIM2 present similar performance, whereas

SIM1 underestimates both cloud amount and size

the most. For all simulations, the points with S and

A components close to zero have generally also small

L values; however, there are some exceptions—

particularly in the lower right quadrant. There is a

high density of data points with large location

component and at the same time structure is signif-

icantly underestimated and amplitude is close to the

median value. There are very few points with

overestimated cloud amount and size, and most of

them have small to moderate L component value.

There are almost no data points with underestimated

amount and overestimated cloud size at the same

time. This is expected because grid cells on the edges

of clouds are less likely to reach saturation, which

causes decrease in both cloud size and total cloud

cover. A study conducted by CROCKER and MITTER-

MAIER (2013) for the United Kingdom shows that

UK4 and UKV models tend to overestimate cloud

cover.

3.3. Categorical Verification

Table 5 shows four categorical verification mea-

sures. The results present poor model performance,

Table 5

Categorical verification measures calculated for all WRF runs (TS Threat score, POD Probability of Detection, FAR false alarm ratio, FBI

Frequency Bias Index)

TS POD FAR FBI

SIM1 0.39 0.45 0.27 0.71

SIM2 0.40 0.47 0.28 0.74

SIM3 0.42 0.50 0.29 0.82

SIM4 0.42 0.53 0.30 0.94
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with TS not exceeding 0.5. As this measure is

sensitive to both misses and false alarms, it is

essential to examine which element had the most

influence on the results. The values of POD are very

low, which indicates large fraction of missed events,

therefore it can be concluded that forecasting clear

sky when cloud cover is present is a major issue,

which is caused by subgrid-scale cloudiness not being

resolved by microphysics schemes in WRF. It also

shows that nearly half of the observed cloudy grid

points are not resolved by the model. SIM4 simula-

tion gives the best result in terms of TS and FBI,

which is very close to unity, but False Alarm Ratio is

also higher here than for the remaining simulations. It

suggests that the reason of high threat score is that

this model run forecasts more cloud than other

simulations, but otherwise it is not necessarily

attributed to model skill.

Figure 5
SAL diagrams for all WRF simulations, with Structure (Eq. 1) and Amplitude (Eq. 2) values are given by the position of the point on the

diagram and Location (Eqs. 3 and 4) value is given by its color. Dotted lines indicate median values and the rectangles enclose points within

1st and 3rd quartiles of Structure and Amplitude
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The values of POD averaged for each hour of day

are presented in Fig. 6. All simulations present a

similar trend, with the lowest value shortly after

sunrise and highest for late afternoon (above 0.6 for

SIM4). It indicates that the WRF model is more

skilled in resolving afternoon than morning cloudi-

ness. However, one has to be careful in drawing

direct conclusions, since most skill scores depend on

total observed or modeled cloud amount. SIM4 has

the highest values of all simulations for all but 1 h

and the differences are the largest for 17:00–19:00

(up to 0.04). The results are much poorer for SIM1

and SIM2, where this parameter falls below 0.4.

However, a better POD score is usually associated

with larger FAR, because POD may be improved by

overforecasting, as the number of hits (to which POD

is sensitive) is larger, but the number of false alarms,

to which FAR is sensitive, also rises (Fig. 7).

3.4. Meteorological Variables

Modeled temperature, relative humidity and wind

speed are evaluated based on hourly data from

synoptic stations located in Poland. The results are

summarized in Table 6. Temperature and humidity

are overestimated and wind speed is underestimated

by all model runs, which is shown by Mean Error.

The differences in Mean Absolute Error between

simulations are also small. Model-measurements

agreement of wind speed, represented by IOA, shows
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Figure 6
Hourly values of Probability of Detection (POD) averaged for the study period for each of the four simulations
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Hourly values of False Alarm Ratio (FAR) averaged for the study period for each of the four simulations
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a significant advantage of SIM2 over the other

simulations. Generally, there are small differences

between the WRF model running with different

microphysics schemes, with SIM2 showing slightly

better performance. Because the study period is

dominated by stagnant anticyclone with low wind

speed and no precipitation, the differences between

model runs with different microphysics schemes are

not pronounced. However, studies conducted for

longer and more diverse periods show that Morrison

Double-Moment scheme provides the most consis-

tency with observations for meteorological variables

and aerosol concentrations (BARÓ et al. 2015).

3.5. Ozone Concentrations

Figure 8 presents average 1-h ozone concentra-

tions in the innermost WRF model domain for SIM1

and Fig. 9 for SIM4. Both maps show similar spatial

pattern, with O3 increasing toward the south-west,

reaching 90 lg m-3 in the Czech Republic. The

concentrations modeled with SIM4 are generally

higher than SIM1, particularly for areas with higher

O3 levels and over the Baltic Sea in the north, where

the differences between SIM4 and SIM1 exceed

7 lg m-3 (Fig. 10). The differences between model

runs are confirmed by the time series charts in

Fig. 11, which show that SIM4 produces higher O3

levels for all sites. Better performance of the

simulation running with Morrison microphysics

may be a result of the fact that it is a double-moment

scheme that takes into account aerosol direct effects.

However, both simulations capture the daily ozone

cycle in the urban environment, although the ampli-

tude of changes is much lower than observed. This

could be linked to constant temporal emission profile

applied, since it does not account for diurnal or

weekly changes in anthropogenic emission, mainly

from transport (e.g. morning and afternoon peaks in

NOx emission). Another possible source of errors

may be inadequate chemistry scheme, underestimat-

ing the rate of O3 formation and destruction

processes. Both of these reasons may be verified by

changing emission input data or applying a different

chemical mechanism. Model errors are on similar

level to the study by FORKEL et al. (2015); however, it

should be noted that the study period here is shorter.

For rural station O3 concentration is underestimated

for the entire period by both simulations, which may

be explained by underestimated background concen-

trations (default values used with WRF-Chem).

4. Conclusions

Although categorical verification of cloud cover

forecast provides valuable information about model

performance, it may falsely understate model skill in

cases when clouds are even slightly dislocated.

However, this type of verification can capture the

model tendency to underestimate total cloud amount

within the domain and enables the identification of

possible sources of uncertainties. Objective verifica-

tion methods may serve as a supplement to

categorical approach, as it provides additional infor-

mation on the structure of model-measurements

discrepancies. The objective approach provides both

direct information on whether the total cloudiness in

the domain is over- or underestimated and to what

extent, and also brings more detailed information on

Table 6

Error statistics calculated for WRF simulations of three meteorological variables: temperature (T2), relative humidity (RH2), and wind speed

(WSPD)

T2 RH2 WSPD

ME (�C) MAE (�C) IOA (–) ME (%) MAE (%) IOA (–) ME (ms-1) MAE (ms-1) IOA (–)

SIM1 0.135 1.694 0.947 1.998 10.438 0.869 -0.072 1.238 0.798

SIM2 0.098 1.672 0.949 1.664 10.097 0.878 -0.097 1.241 0.979

SIM3 0.146 1.692 0.947 2.209 10.491 0.868 -0.083 1.233 0.801

SIM4 0.266 1.695 0.947 0.746 10.323 0.871 -0.082 1.234 0.800

The numbers in italics denote simulations with lowest values of each statistic
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the size and location of modeled cloud patches

compared to the observed ones. By analyzing objects

(i.e. cloudy areas) instead of individual grid points it

also eliminates the double penalty problem, which

becomes a large issue with high spatial resolution of

meteorological models; therefore, model perfor-

mance is not underestimated, as in the case of

categorical verification method.

Both methods are consistent with the conclusion

that all WRF simulations underestimate the amount of

cloud cover. This may have further consequences on

e.g. overestimation of the summer air temperature by

the WRF model which was shown by KRYZA et al.

(2015, this issue) for Central and Eastern Europe. One

important factor is that satellite cloud mask is a pes-

simistic field, meaning that only a grid point that

Figure 8
Mean O3 concentration for the episode of 30 June–4 July 2008 (SIM1, Purdue Lin)

Vol. 174, (2017) Sensitivity Study of Cloud Cover and Ozone Modeling to Microphysics Parameterization

47



Reprinted from the journal

passed all cloud detection tests can be classified as

cloud-free. Although these data are consistent with

MODIS and point surface observations, it will rather

present more than less clouds (CROCKER and MITTER-

MAIER 2013). Another issue is the resolution of data—

satellite cloud mask has similar, but not the same grid

size as the model. Coarser resolution results in pre-

senting a set of small cloud cells (e.g. Altocumulus

floccus) as one wide patch, whereas the model

resolves it differently. It may result in false underes-

timation of cloud cover and the average size of cloud

cells, which may be the case here. Additionally, both

methods are agreeable that SIM4 provides the best

results of cloud cover and SIM1 presents significantly

poorer performance. It refers to all analyzed cloud

properties—SIM4 has the least underestimation of

Figure 9
Mean O3 concentration for the episode of 30 June–4 July 2008 (SIM4, Morrison 2-Moment)

K. Wałaszek et al. Pure Appl. Geophys.

48



Reprinted from the journal

cloud size and total cloud amount, as well as its

location within the domain. The difference is not as

significant for surface meteorological variables, as

only one performance measure for wind speed

responds to the change in microphysics parameteri-

zation. However, the change of microphysics

scheme has significant impact on WRF-Chem mod-

eled ozone concentrations, particularly for high ozone

conditions. This could be attributed to the fact that

cloud cover is used as input for photolysis schemes. It

is important for risk assessment of critical ozone

levels exceedance and its prediction. Therefore, the

Morrison Double-Moment microphysics parameteri-

zation will be used in further research regarding the

modeling of ozone concentrations during summer

episodes in Poland and Central Europe.

Figure 10
Differences in mean O3 concentration between SIM4 (Purdue Lin) and SIM1 (Morrison 2-Moment)
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Figure 11
Temporal variability of modeled and measured O3 concentrations at WRK, WRB, and SNI station
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High-Resolution Dynamical Downscaling of ERA-Interim Using the WRF Regional Climate

Model for the Area of Poland. Part 1: Model Configuration and Statistical Evaluation

for the 1981–2010 Period
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Abstract—In this work, we present the results of high-resolu-

tion dynamical downscaling of air temperature, relative humidity,

wind speed and direction, for the area of Poland, with the Weather

Research and Forecasting (WRF) model. The model is configured

using three nested domains, with spatial resolution of 45 km 9

45 km, 15 km 9 15 km and 5 km 9 5 km. The ERA-Interim

database is used for boundary conditions. The results are evaluated

by comparison with station measurements for the period

1981–2010. The model is capable of reproducing the main clima-

tological features of the study area. The results are in very close

agreement with the measurements, especially for the air tempera-

ture. For all four meteorological variables, the model performance

captures seasonal and daily cycles. For the air temperature and

winter season, the model underestimates the measurements. For

summer, the model shows higher values, compared with the mea-

surements. The opposite is the case for relative humidity. There is a

strong diurnal pattern in mean error, which changes seasonally. The

agreement with the measurements is worse for the seashore and

mountain areas, which suggests that the 5 km 9 5 km grid might

still have an insufficient spatial resolution. There is no statistically

significant temporal trend in the model performance. The larger

year-to-year changes in the model performance, e.g. for the years

1982 and 2010 for the air temperature should therefore be linked

with the natural variability of meteorological conditions.

Key words: Dynamical downscaling, high resolution, WRF

model, Poland.

1. Introduction

Downscaling is a method used to obtain geo-

graphical distribution and time evolution of small-

scale features given large-scale coarse-resolution

analyses, forecasts or simulations (HONG and KANA-

MITSU 2014). There are two main downscaling

methods: statistical and dynamical (BENESTAD 2008).

Dynamical downscaling utilizes a dynamical regional

model, forced by coarse-resolution data (GIORGI and

BATES 1989). Statistical downscaling is based on the

relations between the large-scale parameters and

regional-scale observations (KIM et al. 1984). Both

approaches were compared, e.g. by HUTH et al.

(2015). There is also a combined approach, named

statistical–dynamical downscaling, which has also

gained importance in climate research in recent years.

Statistical–dynamical downscaling combines the

benefit of both the statistical and dynamical approa-

ches, and was presented, e.g. by FUENTES and

HEIMANN (2000) and REYERS et al. (2015). Here, the

work is focused on dynamical downscaling at high

spatial resolution. High-resolution models benefit,

e.g. from detailed surface forcing information,

including topography and land use, and local features,

like sea breeze, can be explicitly resolved (HEIKKILA

et al. 2011; SOARES et al. 2012; CZERNECKI 2013).

With the grid scale smaller than several kilometres,

the explicit treatment of the entrainment process at

the top of the planetary boundary layer may be

applied and the advantages of this were shown, e.g.

by HONG and DUDHIA (2012). There is also certain

criticism related with dynamical downscaling and

high resolution. This has been addressed, e.g. by
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PIELKE (2013) and MURPHY (1999), and is mainly

related to the regional model and its settings. Many

parameterization schemes, utilized in regional stud-

ies, were developed for coarse resolutions. This may

lead to high positive bias in precipitation, which was

reported, e.g. by SHRESTHA et al. (2013). The devel-

opment of the precipitation physics parameterization

scheme for a smooth transition to cloud resolving

scales is now in progress (HONG and KANAMITSU 2014;

GRELL and FREITAS 2013). Other sources of uncer-

tainty are related with large-scale fields provided by

the global climate models, the unphysical treatment

of the lateral boundary conditions and inconsistencies

in the dynamics and physics between the global and

regional climate models.

Central Europe and Poland comprise a geographi-

cal region of transitional climate, with large seasonal

and year-to-year variability. There are some examples

of statistical downscaling applied for this area, pre-

sented, e.g. by MAROSZ et al. (2013) and MAROSZ and

JAKUSIK (2014). Examples of dynamical downscaling

at high spatial resolution include simulations for short

periods or limited to small areas of selected catch-

ments (PAVLIK et al. 2011; CZERNECKI 2013). The

results of the European Coordinated Regional Climate

Downscaling Experiment (EURO-CORDEX) project

show the importance of dynamical downscaling for

this area and also address the uncertainties related with

this approach (GIORGI and GUTOWSKI 2015). KATRAG-

KOU et al. (2015) show the influence of the various

physics scheme on the WRF model performance for

Europe. KOTLARSKI et al. (2014) show the role of

model grid resolution on the results of dynamical

downscaling for the EURO-CORDEX domain. The

demand for meteorological information, available for a

long-term period, at high spatial and temporal resolu-

tion, and developed homogenously for a large area is

increasing. This information is a must for other stud-

ies, such as ecology and tick diseases (KIEWRA et al.

2014), air quality (WAłASZEK et al. 2015; WERNER et al.

2011; HERNANDEZ-CEBALLOS et al. 2014) or hydrolog-

ical forecasting (Jeziorska and Niedzielski, this issue).

In this work, we present the application of the

WRF model for dynamical downscaling of the ERA-

Interim data for the area of Poland, with high spatial

resolution of 5 km 9 5 km. The model configuration

is described and the results are compared with

instantaneous surface meteorological measurements

of air temperature, relative humidity and wind speed

and direction. The model performance is summarized

using both the domain-wide statistics and the spatial

approach, where individual stations are assessed. In

the second part of this work (OJRZYŃSKA et al. 2015,

this issue), we address the model performance for

daily rainfall and air temperature, and analyse the

results in terms of circulation type.

2. Data and Methods

2.1. Study Area

The study is focused on the territory of Poland in

Central Europe, located between 49�000N and

54�500N, and 14�070E and 24�090E (Fig. 1). The area

of Poland is 312 679 km2, with the altitude varying

between 1.8 m below (Northern Poland) and 2499 m

above sea level (Southern Poland). The average

height of Poland is 173 m a.s.l., and the areas located

in zones 100–200 m a.s.l. (49.7 %) and 0–100 m

a.s.l. (25.2 %) cover the majority of the country area.

The regions with elevation above 1000 m a.s.l. cover

about 0.2 %. Poland is characterized by transitional

characteristics of climate with strong, varying mar-

itime and continental influences and prevailing

western flow. The long-term annual mean air tem-

perature varies from ca. 9 �C in the west, to below

5 �C in the mountains and SE part of Poland. In

winter and fall, the west–east gradient in air temper-

ature is pronounced, with a warm belt along the

Baltic Sea shore. In summer, the mean air temper-

ature decreases from the south (excluding mountains)

to the north. West and south-west wind directions are

the most frequent, with the frequency exceeding

20 %. The annual mean wind speed is in the range

from 3 to 4 m s-1 for the majority of the study area,

with the highest values observed close to the Baltic

Sea shore and in the mountains (LORENC 2005). The

annual mean relative humidity is the highest in the

north of the country ([84 %; LORENC 2005) and

decreases towards the south (except for the

mountains).
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2.2. The WRF Model Configuration

The Advanced Research Weather Research and

Forecasting Model (WRF) version 3.4.1 was used in

this study (SKAMAROCK et al. 2008). The model was

run, for each year separately, for the 1981–2010

period. For each year, the simulation was started

14 days in advance, and these 14 days were treated as

a spin-up time and removed from the analysis. The

large-scale meteorological boundary conditions were

taken from the ERA-Interim reanalysis of the Euro-

pean Centre for Medium Range Forecasting (DEE

et al. 2011). The model configuration was selected

after running and evaluation of the model for the

chosen test periods (KRYZA et al. 2013, 2015;

WAłASZEK et al. 2014a). The WRF model configura-

tion applied in this study includes three one-way

nested domains, with spatial resolution changing

from 45 km 9 45 km for the outermost domain (d01,

Figure 1
The WRF model domains and meteorological sites used for model evaluation
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100 9 115 grid cells; Fig. 1) through

15 km 9 15 km (d02, 106 9 106 grid cells), to

5 km 9 5 km for the innermost domain (d03,

187 9 195 grid cells). All the domains have 51

vertical layers. The model configuration in terms of

physics is summarized in Table 1. All the domains

share the same options of physics for radiation,

microphysics and boundary layer scheme. For con-

vection, coarse-resolution domains d01 and d02 use

the Kain–Fritsch scheme (KAIN 2004). For the fine

resolution d03, convection is explicitly resolved.

2.3. Meteorological Measurements

In this study, we use meteorological measure-

ments provided by the Polish Institute of

Meteorology and Hydrology-National Research Insti-

tute (IMGW-PIB), available for 66 stations located in

Poland (Fig. 1). The focus of this study is on the

meteorological variables which are of wide interest

for other applications, including ecology and hydrol-

ogy. The model evaluation is, therefore, presented for

air temperature at 2 m (T2), relative humidity at 2 m

(RH), wind speed (WSPD) and direction (WDIR) at

10 m. The measurements were available every 3 h.

Only the data that passed the quality control at the

IMGW-PIB are used for the model evaluation.

2.4. Evaluation of the Model Results

The WRF model results are compared with the

measurements described above. For this comparison,

we used the WRF model domain d03 data from a grid

cell, in which the measuring site is located. It should

be noticed here that we used the area averages (WRF

model grid cell) and point values (measuring sites) in

this work. The model error is calculated as the

difference between the modelled and observed value,

and the model performance was summarized using

the following domain-wide error statistics:

• Mean error (ME)—calculated as the arithmetic

mean from the model minus observation. This

statistic indicates the general tendency for over-

(ME[0) or underestimation (ME\0) of the given

meteorological value by the model. The expected

value is zero. The units are the same as for the

analysed meteorological variable. For wind direc-

tion, the ME statistic is calculated as the shortest

angular distance between the mean modelled and

measured wind directions. The mean wind direc-

tion was calculated using the R software circular

package. The positive/negative values of ME for

wind direction mean that the modelled wind

direction is shifted clockwise/counterclockwise if

compared to the measurements.

• Mean absolute error (MAE)—calculated as an

arithmetic mean of the absolute values of the model

errors. The expected value is zero, and the units are

the same as for the analysed meteorological vari-

able. MAE was calculated for T2, RH and WSPD.

• Index of agreement (IOA)—calculated after EMERY

et al. (2001) as a standardized measure of the

degree of model prediction error:

IOA ¼ 1 � IJ � RMSE2
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• where RMSE is the square root of the mean-

squared difference in prediction–observation pair-

ings with valid data within a given analysis region

Table 1

The WRF model physics options used in this study

d01 d02 d03

Short-wave radiation RRTMG (IACONO et al. 2008)

Long-wave radiation RRTM (MLAWER et al. 1997)

Planetary boundary layer Yonsei University scheme (HONG et al. 2006)

Cumulus convection Kain-Fritsch (KAIN 2004) Explicitly resolved

Microphysics Goddard (TAO et al. 1989)

Land surface model Noah land surface model
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and for a given time, Pi
j is the individual predicted

quantity at site i and time j, Oi
j is the individual

observed quantity at site i and time j and MO is the

observed mean. IOA varies between 0 and 1, and

the expected value is 1 (perfect model perfor-

mance). IOA is unitless and was calculated for T2,

RH2 and WSPD. The IOA is calculated for a given

month using the 3-hourly values from all the

stations and all the years considered.

• Pearson’s correlation coefficient (R)—calculated

using the R circular package suitable for handling

circular data. This statistic was calculated for wind

direction only. R varies between -1 and ?1 and

the expected value is ?1. R is unitless.

All the above-mentioned statistics were calculated

domain-wide for the entire study period of

1981–2010 and separately for each season: winter

(December, January and February, DJF), spring

(March, April and May, MAM), summer (June, July

and August, JJA) and fall (September, October and

November, SON). ME and IOA (R in the case of

wind direction) were calculated also separately for

each station and the season, to spatially assess the

model performance. All the statistics were calculated

using the model and measurements available every

3 h.

In our study, we evaluate the model performance

for the long period of 1981–2010. It is, therefore, of

interest to check if the model performance shows

some temporal characteristics, e.g. if the model

performs better for the more recent years. We analyse

this issue using the Taylor diagrams (TAYLOR 2001).

In each plot, prepared separately for each season, we

summarize the model performance for each year of

the study period. The details on the Taylor diagrams

are provided by TAYLOR (2001). Also, we apply tests

for statistical significance of the ME, MAE and IOA

trends in the 1981–2010 period, using Mann–Kendall

tests (MANN 1945; KENDALL 1970).

3. Results

The results are organized as follows. First, the

domain-wide error statistics are presented. Second,

seasonal and diurnal variability in model perfor-

mance is addressed and the spatial distribution of the

model errors is presented. Finally, the model perfor-

mance is summarized for each year separately, using

the Taylor diagrams.

The model performance is summarized for the

entire domain and the period of 1981–2010 in

Table 2. The model has a general tendency for

overestimation of the observed air temperature. The

wind speed is also slightly overestimated. The rela-

tive humidity and wind direction have negative ME.

For the WDIR, this means that the wind direction is

shifted counterclockwise compared with the mea-

surements. MAE is higher compared to ME and

reaches 1.7 K for T2, 9 % for RH2 and 1.5 m s-1 for

WSPD. In terms of Index of Agreement, the model is

in very close agreement with the measurements for

T2, with IOA above 0.99 (1.0 means a ‘‘perfect

model performance’’). For RH2 and WSPD, the

Index of Agreement is lower, but still above 0.8. For

WDIR, the Pearson correlation coefficient is close to

0.8 for the entire study period.

The general model performance, summarized

with domain-wide statistics for the entire period

1981–2010, changes significantly if the statistics are

calculated for months and seasons (Figs. 2 and 3).

This is especially noticeable when ME is considered.

The air temperature is underestimated for the winter

months of January, February and December (Fig. 2).

March and November have a mean error close to

zero, and for the warm season the model overesti-

mates the observed values of air temperature. For the

relative humidity, the annual cycle in model perfor-

mance is opposite, with an overestimation for cold

months and underestimation for spring, summer and

fall. For the wind speed, ME is above zero for all the

months, except spring. The largest errors, in terms of

absolute value of ME, are for late summer and fall.

For the wind direction, the ME values are always

below zero, and the largest errors, in terms of the

absolute value of ME, are for spring and summer.

IOA for T2 is very high for all the months, with

slightly lower values for summer and fall. There is a

strong annual cycle in IOA for relative humidity. The

highest values of IOA are for the warm season

months, with a drop in IOA for winter. Both the wind

speed and direction show a similar annual cycle for

the IOA and correlation coefficient, respectively.

Cold season months have the highest values of IOA
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and R. The warm season is characterized by smaller

values of these statistics.

For certain months, the model errors are signifi-

cantly higher compared to the general summary

presented in Table 2 and, for some months, the

acceptance criteria, defined by EMERY et al. (2001) for

air temperature ME (-0.5 K\ME\ 0.5 K), are not

met. Noticeably, the annual variability in IOA

statistic is very small, especially for T2. Here, the

acceptance criteria defined by EMERY et al. (2001) are

met for T2 and WSPD (not defined for RH2 and

WDIR).

Apart from the annual cycle in the model per-

formance, the ME, MAE and IOA/R also show a

daily pattern, which changes between the seasons

(Figs. 4, 5). For the air temperature, ME is negative

for all hours in winter and positive for summer and

autumn. For winter, the largest ME, in terms of the

absolute values, are calculated for night hours. For

spring, summer and autumn months, the largest errors

are observed for morning hours and, especially for

summer and spring, are small in early afternoon. For

spring, the air temperature is underestimated for 18

UTC. The relative humidity shows a reversed daily

Table 2

Domain-wide statistics for the entire 1981–2010 period

T2 RH2 WSPD WDIR

ME 0.23 -1.45 0.13 -7.60

MAE 1.66 8.93 1.45 –

IOA 0.99 0.86 0.82 –

R – – – 0.78

For ME and MAE, the units are K for T2, % for RH2, m s-1 for WSPD and degrees for WDIR. IOA and R are unitless

Figure 2
Domain-wide mean error for T2, WSPD, RH2 and WDIR for each month (x axis) in the 1981–2010 period
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Figure 3
Domain-wide IOA for T2, WSPD, RH2 and R for WDIR for each month (x axis) in the 1981–2010 period

Figure 4
Daily cycle (hours—x axis) in ME for T2, WSPD, RH2 and WDIR for DJF (blue), MAM (green), JJA (red) and SON (orange)
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cycle. It is overestimated for winter for all hours and

underestimated for the remaining seasons. This

underestimation shows a pronounced daily pattern for

summer, but not for autumn. For autumn, RH2 ME is

ca. 5 % for the entire day, with slightly higher ME in

terms of the absolute values for morning hours. For

spring, ME is underestimated for 6 and 9 UTC and

overestimated for 18 UTC. For the remaining hours,

ME is close to zero.

The wind speed is overestimated for the entire day

during winter, summer and autumn. For winter, ME

is the highest for the night and morning hours. A

similar pattern is for summer and autumn, but the

minimum ME values are shifted towards earlier hours

when compared to winter (9 and 12 UTC), and the

highest ME are for 6 UTC and afternoon hours. For

spring, there is a change of sign for ME during the

day. Night and early morning hours are overesti-

mated, with maximum at 6 UTC. For daytime (9–18

UTC), the model underestimates the observed wind

speed. For the wind direction, ME is negative for all

seasons and hours. The exceptions are for spring 21

UTC and winter 15 UTC. The absolute values of ME

for WDIR are very small for winter and are consid-

erably higher for spring and, especially, summer

months. For both spring and summer seasons, the

largest errors are for 6, 18 and 21 UTC. For 21 UTC,

ME is negative for summer and positive for spring.

The daily cycle of IOA for the air temperature is

not so pronounced as for ME. Especially for winter,

spring and autumn, the IOA is at a very high level

throughout the day. For summer, IOA is lower for all

hours, if compared to other seasons, and the lowest

values are calculated for 3 and 6 UTC. For the rela-

tive humidity, the daily cycle is stronger, compared to

air temperature, and is similar for all seasons. The

maximum values are for 9–15 UTC and there is a

decrease in IOA for the night and morning. The IOA

values are the highest for spring, when compared

with other seasons.

There is practically no daily cycle in IOA for the

wind speed. The IOA values differ between the sea-

sons, but remain at ca. the same level for all hours.

For wind direction, there is also no daily pattern in

Figure 5
Daily cycle (hours—x axis) in IOA for T2, WSPD, RH2 and R for WDIR for DJF (blue), MAM (green), JJA (red) and SON (orange)
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IOA values for winter and autumn. For spring and

summer, there is a decrease in IOA for afternoon

hours (for summer also for 21 UTC).

The spatial patterns of all simulated meteorolog-

ical variables analysed are in agreement with the

general climatological knowledge for this area

(Fig. 6, T2 and WSPD presented as an example). For

the winter air temperature, there is a strong decrease

in air temperature towards the east, with increasing

continentality of climate. The warming effect of the

Baltic Sea is noticeable along the coast. The coldest

areas are the mountains in the south and lowlands in

the north-eastern part of Poland, influenced by a more

continental climate. A very similar pattern is

observed in the measurements. The model repro-

duced very well the warm belt along the sea coast and

Figure 6
1981–2010 mean T2 (�C) and WSPD (m s-1) for winter (DJF) and summer season calculated with WRF (gridded data) and measurements

(points). Please notice inconsistent colour tables for winter and summer
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the cold region in NE Poland. However, the warm

areas of SW Poland are slightly overestimated com-

pared with the measurements. For summer, the S–N

gradient is stronger compared to winter (except for

the mountains in the south, where the air temperature

is determined by terrain height) and related to the

elevation of the sun. The modelled summer air tem-

perature is also higher than that measured for almost

all of the stations shown in Fig. 6. This overestima-

tion is stable for the entire area and does not exceed

1 K for the majority of the meteorological stations

used in this comparison. The wind speed does not

show significant changes in spatial pattern if winter

and summer seasons are compared. In general, a

higher wind speed is calculated for the winter season,

and this is in agreement with the general climato-

logical knowledge for this region. The highest wind

speeds are observed and calculated with the WRF

model for the narrow belt along the seashore (indi-

vidual grid cells with wind speed exceeding 6 m s-1

for both winter and summer seasons) and for the

mountains in the south (above 8 m s-1), both for

summer and winter seasons, and this is also con-

firmed by other studies for this area (e.g. CZERNECKI

2013). Large area of elevated wind speed in Central

Poland is related to large frequency of winds from the

west and lack of orographic barrier from this

direction.

The spatial distribution of the IOA statistics for

winter and summer seasons is presented in Fig. 7

with the example of T2 and WSPD. Both meteoro-

logical variables show some similar features. The

IOA values are generally lower for the seashore sta-

tions and mountains in the south. This is both for

winter and, especially, for summer, for which the

IOA values are smaller. For the lowland stations of

central Poland, the IOA values are very high for T2

for both seasons. For the wind speed, the lowland

stations show smaller IOA in summer, compared to

winter.

For the wind direction, the Pearson correlation

coefficient for each station during the summer and

winter seasons is presented in Fig. 8. There is a

strong change in the model performance if winter and

summer are compared. The correlation coefficient is

higher for winter, when wind speed is, on average,

stronger and exceeds 0.8 for the majority of the

lowland stations. For summer, this statistic shows

lower values for all the stations, and the decrease is

the strongest for the seashore and the stations located

in southern Poland. The station with the lowest R for

wind direction, both for DJF and JJA, is Kłodzko,

located in the mountain valley in SW Poland. This

station is strongly influenced by the local orography

(e.g. strong funnelling effects in winter during the

frequent advections from the south); therefore, the

spatial resolution of the WRF model (5 km 9 5 km

grid) may not be sufficient to properly resolve all the

physical processes in this location.

In this study, the WRF model has been run for the

30-year period of 1981–2010. The question as to

whether the model performance changes over time

should be considered. This might be related to dif-

ferent reasons, including changes in the quality of the

measurements, land use (constant land use was

applied for all years) or the quality of the boundary

and initial data. To address this question, the model

performance has been summarized for each year and

season separately and the model performance is

summarized using the Taylor diagrams (Fig. 9).

There is no statistically significant trend in model

performance for all four meteorological parameters

considered (only T2 and WSPD are presented for

consistency) and all the model performance matrices

used. The year-to-year changes in the model perfor-

mance can be attributed to natural variability of

climate. Year-to-year changes are especially large for

the winter season and T2, with the two outliers in the

plot for years 1982 and 2010. Year 2010 is also away

from all the remaining points for winter WSPD

(Fig. 9). For summer, all the years are clustered in the

plot and characterized by similar values of correlation

and standard deviation. For WSPD, some clustering

is also present, especially in winter, and lower cor-

relations for the summer season.

4. Summary and Conclusions

In our study, we have applied the regional domain

Weather Research and Forecasting model to dynam-

ically downscale the coarse-resolution Era-Interim

data to a high spatial resolution of 5 km 9 5 km grid.

The application of the regional meteorological model
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WRF for the long-term period was undertaken to

provide consistent spatial meteorological information

for the entire area of Poland to various stakeholders

who require this kind of information. Noticeably, this

information has already supported ecological studies

on tick activity (KIEWRA et al. 2014) and hydrological

forecasting with HydroProg model (JEZIORSKA and

NIEDZIELSKI 2015, this issue). To our knowledge, this

is the first study that analyses the WRF model per-

formance for this geographical area at high spatial

and temporal resolution and for a long-term period of

30 years. Therefore, the main focus of this paper was

on the general quantification of the model perfor-

mance for the meteorological variables, which are of

Figure 7
IOA for T2 and WSPD for the 1981–2010 period for the winter (DJF) and summer (JJA) seasons
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wide interest for other researches, e.g. for such

problems as air temperature and humidity, wind

speed and direction.

The WRF model results are, in general, in good

agreement with the measurements. The model per-

formance is better for the cold season and worse for

warm months. This is especially clear for the mean

error and might be linked with stronger convection in

summer and larger variability of meteorological

conditions. For summer, the WRF model was also

found to be in worse agreement with the measure-

ments for wind direction compared to other variables

(T2 and RH2), and this supports the earlier findings

by CZERNECKI (2013). For the wind direction, it is also

noticeable that the current spatial resolution of the

model domain may not be sufficient to properly

resolve the wind conditions in areas of complex ter-

rain. An example is the Kłodzko station, for which

the model did not properly reflect strong funnelling

effects, caused by specific terrain configuration. The

other issues are related with wind measurements,

including changes of sensors during this long-term

period, e.g. in the 1990s.

There are strong seasonal and diurnal cycles in the

model performance, which are especially clear for the

mean error statistics. The WRF model underestimates

the air temperatures for cold seasons and overesti-

mates them for warm periods. Similar findings were

presented for Eastern Europe (EURO-CORDEX

subdomain EA) by KOTLARSKI et al. (2014) using the

multi-model ensemble approach. The underestima-

tion in winter is observed for the entire day. Also for

the warm season, the air temperature is overestimated

for the entire day. The cycles are of opposite sign if

T2 and RH2 are considered. All these cycles might be

of importance for further application of the down-

scaling results, e.g. in hydrological modelling with

the deterministic models. An example is TOPMO-

DEL (JEZIORSKA and NIEDZIELSKI 2015, this issue), for

which the temporal variability of evaporation has to

be provided. There is a decrease in the model per-

formance for wind speed and direction during hours

with low wind speed. Large errors for these hours

might also be related with errors in the wind speed

measurements, which are of higher uncertainty for

calm wind.

The index of agreement statistics is very high for

air temperature, regardless of season. The IOA values

are above 0.9 for all months and hours, which means

that the WRF model results meet the acceptance

Figure 8
Correlation coefficient for WDIR for the 1981–2010 period for the winter (DJF) and summer (JJA) seasons

M. Kryza et al. Pure Appl. Geophys.

64



Reprinted from the journal

criteria proposed by EMERY et al. (2001) for air

temperature at IOA[0.7. This means that the results

obtained in this study are reliable and applicable for

other research. The criteria are also met for wind

speed (IOA[0.6). However, the mean error for air

temperature usually exceeds the ±0.5 threshold pro-

posed by EMERY et al. (2001), which suggests the

need for application of the bias correction before the

results are applied to other studies. For summer, there

is a negative bias for air temperature and positive for

relative humidity. The magnitude of this bias shows

small spatial variability and is below 1 K for air

temperature and 5 % for relative humidity.

Spatial and seasonal changes in the index of

agreement are small for air temperature and relative

humidity. For the wind speed, the changes are more

pronounced. For all the meteorological variables

considered, the model performance is worse for the

Figure 9
Normalized Taylor diagrams for T2 and WSPD for the winter (left column) and summer (right)
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seashore and mountain areas. Especially for the

mountains, this could be related to insufficient spatial

resolution of the WRF model domain. This is espe-

cially clear if the specific stations, like Kłodzko,

located in a valley, are considered. Here, strong wind

funnelling effects are observed, which were not

resolved properly by the model because of the

smoothing of the terrain topography by the applica-

tion of the 5 km 9 5 km grid. However, the

uncertainty related to wind speed and direction

measurements, mentioned above, is also of impor-

tance here.

Spatial distribution of meteorological variables

obtained with the WRF model is in close agreement

both with the station measurements and with general

climatological knowledge for this area. Some sea-

sonal and spatial features are well resolved by the

model, including the warm belt along the sea coast,

and the east–west gradient in spatial pattern of air

temperature for winter. The 5 km 9 5 km model

resolution results in a high spatial variability of the

meteorological variables, especially for wind speed

over mountainous regions. However, this resolution

might still not be sufficient for solving local meteo-

rological phenomena, which was demonstrated, e.g.

by CZERNECKI (2013).

There is no statistically significant temporal trend

in the model performance. The larger year-to-year

changes in the model performance, e.g. for year 1982

and 2010 for the air temperature should, therefore, be

linked with the natural variability of meteorological

conditions.

The results of this study have generated a sub-

stantial spatial meteorological data set, which will be

made available using the OGC services to a wide

community. It is therefore important to know the

limitations of this database before this information is

used for other research. There is also a need for

further evaluation of the WRF model results for the

study area. This has already been undertaken by

CZERNECKI (2013) for wind speed, WAłASZEK et al.

(2014b) solar radiation and cloudiness and KRYZA

et al. (2015) the planetary boundary layer height.

This is especially important as the WRF model

becomes widely used for this area for various appli-

cations, e.g. aerosol feedback effect studies (WERNER

et al. 2015a, this issue), emission modelling (WERNER

et al. 2015b) and wind energy (CZERNECKI 2013).
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Extreme daily precipitation totals in Poland during summer: the

role of regional atmospheric circulation, Clim Res 56, 245–259.

MLAWER, E. J., TAUBMAN, S. J., BROWN, P. D., IACONO, M. J., and

CLOUGH, S.A. (1997), Radiative transfer for inhomogeneous

atmospheres: RRTM, a validated correlated-k model for the

longwave, Journal of Geophysical Research: Atmospheres

102(D14), 16663–16682.

MURPHY, J. (1999), An evaluation of statistical and dynamical

techniques for downscaling local climate, J. Climate 12,

2256–2284.
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High-Resolution Dynamical Downscaling of ERA-Interim Using the WRF Regional Climate

Model for the Area of Poland. Part 2: Model Performance with Respect to Automatically

Derived Circulation Types
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Abstract—This paper presents the application of the high-res-

olution WRF model data for the automatic classification of the

atmospheric circulation types and the evaluation of the model

results for daily rainfall and air temperatures. The WRF model

evaluation is performed by comparison with measurements and

gridded data (E-OBS). The study is focused on the area of Poland

and covers the 1981–2010 period, for which the WRF model has

been run using three nested domains with spatial resolution of

45 km 9 45 km, 15 km 9 15 km and 5 km 9 5 km. For the

model evaluation, we have used the data from the innermost

domain, and data from the second domain were used for circulation

typology. According to the circulation type analysis, the anticy-

clonic types (AAD and AAW) are the most frequent. The WRF

model is able to reproduce the daily air temperatures and the error

statistics are better, compared with the interpolation-based gridded

dataset. The high-resolution WRF model shows a higher spatial

variability of both air temperature and rainfall, compared with the

E-OBS dataset. For the rainfall, the WRF model, in general,

overestimates the measured values. The model performance shows

a seasonal pattern and is also dependent on the atmospheric cir-

culation type, especially for daily rainfall.

Key words: Atmospheric circulation, rainfall, air tempera-

ture, WRF, dynamical downscaling, ERA-Interim, circulation

types.

1. Introduction

Spatial meteorological information is a key ele-

ment in various environmental studies, including air

pollution, hydrology (JEZIORSKA and NIEDZIELSKI 2015,

this issue) and wind energy production (BADGER et al.

2014; MENDEZ et al. 2014). This information can be

provided in various ways, including GIS-based

interpolation (SZYMANOWSKI et al. 2013) and statisti-

cal or dynamical downscaling (GIORGI and BATES

1989; LO et al. 2008; CZERNECKI 2013). There is also a

combined approach, named statistical–dynamical

downscaling, which has also gained importance in

climate research in recent years. Statistical–dynami-

cal downscaling combines the benefit of both

techniques and was presented, e.g. by FUENTES and

HEIMANN (2000) and REYERS et al. (2015). The per-

formance of these approaches is also evaluated in

different ways, by comparing the results with avail-

able measurements and with other reference spatial

data, including gridded information.

Atmospheric circulation plays a major role in

daily, seasonal and spatial distribution of weather-

related parameters, including air temperature and

rainfall. Poland (Central Europe) is notable for tran-

sitional characteristics of climate, from maritime in

the west to more continental in the east, and this

region is the focus of the current study. There are

many studies that link the local meteorological fea-

tures, usually based on station measurements, with

large-scale circulation patterns, classified into dif-

ferent groups using various approaches. For example,

OSUCHOWSKA-KLEIN (1992) and NIEDŹWIEDŹ (1981)

analysed the relation between the air temperature and
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atmospheric circulation using a classification based

on sea level pressure, while other authors proved that

the spatial variability of air temperature and precip-

itation is highly correlated with the geopotential

height at upper isobaric levels (WIBIG 1991, 2001;

KO _zUCHOWSKI et al. 1992). USTRNUL (2000) and

USTRNUL et al. (2010) have shown that a circulation

type with anticyclonic ridge forms the most favour-

able conditions for the high air temperatures in

summer. For winter, anticyclonic types with easterly

flows are favourable for extremely low air tempera-

tures. Synoptic conditions favourable to frosty,

freezing and severe freezing days for Poland were

analysed by BIELEC-BĄKOWSKA and ŁUPIKASZA (2009)

and USTRNUL et al. (2014). BEDNORZ (2012) and

BEDNORZ and WIBIG (2008) showed that the atmo-

spheric circulation has a large impact on intense

thaws and snow conditions. ŁUPIKASZA (2010) anal-

ysed the relationship between atmospheric circulation

and high daily precipitation in Poland, using various

methods of classifications of circulation types.

NIEDŹWIEDŹ (1981), TWARDOSZ and NIEDŹWIEDŹ (2001)

and TWARDOSZ et al. (2011) analysed the role of

synoptic circulation patterns on daily rainfall in

south-west Poland for a long period and found that

the advection of air masses from the west and

cyclonic troughs are the most favourable to precipi-

tation events. Finally, the circulation patterns were

used during the construction of the GIS-based maps

of meteorological elements spatial variability (USTR-

NUL 2006; OJRZYŃSKA 2015).

A detailed weather and climate analysis based on

various data sets should be supported by the analysis

of atmospheric circulation. There are different

approaches to the classification of circulation types,

and several of these methods were applied for the

study area addressed in this paper (e.g. LITYNSKI 1969;

NIEDŹWIEDŹ 1981; OSUCHOWSKA-KLEIN 1978; GER-

STENGARBE et al. 1993; USTRNUL 1997; WIBIG 2001;

HUTH et al. 2008; PIOTROWSKI 2009; WOYCIECHOWSKA

and USTRNUL 2011; BEDNORZ 2012). The results of the

733 COST action Harmonisation and applications of

weather type classification for European Regions

(cost733.met.no/FinalEvent.html) emphasize that

high spatial variability of atmospheric circulation

patterns preclude a general and universal method for

circulation type classification and justifies the

development and application of regional methodol-

ogy. A long time series of meteorological data

provides the opportunity to apply complex classifi-

cation schemes with large numbers of distinct types.

This kind of classifications could be troublesome in

statistical analysis and practical applications, but also

more circulation types allow a more detailed weather

description in case studies. In this study, we develop

an approach similar to the Objective Weather Type

Classification (Die objective Wetterlagenklassifika-

tion) of the German Weather Service (BISSOLLI AND

DITTMANN 2001), which, apart from e.g. cyclonality

and direction of the air masses advection, utilizes

information on the humidity of the air. A modifica-

tion of the original classification scheme described by

BISSOLLI AND DITTMANN (2001) was previously suc-

cessfully applied for the Sudetes Mountains (SW

Poland) and their foreland (OJRZYŃSKA 2015), using

coarse resolution gridded meteorological data. Here,

the objective classification scheme is fed with the

WRF-derived meteorological information, available

at high spatial resolution. This is a novelty, as pre-

vious studies used coarse resolution meteorological

information for classification of circulation types,

coming from global reanalysis databases like NCEP

or ERA (USTRNUL 1997; BISSOLLI AND DITTMANN 2001;

PIOTROWSKI 2009; WOYCIECHOWSKA and USTRNUL

2011; OJRZYŃSKA 2015).

In the first part of this twin paper (KRYZA et al.

2016), we have evaluated the results of the ERA-

Interim dynamical downscaling with the Weather

Research and Forecasting (WRF) model for the per-

iod 1981–2010 using 3-hourly measurements of air

temperature, humidity and wind speed and direction.

Here, the focus is on evaluation of daily rainfall and

air temperature for the same period, with the context

of synoptic situation. Earlier reports by JIMÉNEZ et al.

(2013) suggest that the model performance might rely

on the synoptic situation, and their analysis was

focused on wind condition for complex terrain.

In this work, we first describe and apply a method

for automatic classification of the circulation types

(ACCT) in Poland and then apply the method to the

extended period of 1981–2010 with WRF model data.

Secondly, we compare the WRF model for daily

rainfall and air temperature with respect to the cir-

culation types derived by application of the ACCT

H. Ojrzyńska et al. Pure Appl. Geophys.
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method. The analysis of the regional dynamical

downscaling with the WRF model is complemented

by comparison with spatial data obtained through a

geostatistical (spatial interpolation) method. This

spatial comparison is also performed with respect to

the circulation type, to assess if the model perfor-

mance changes with the atmospheric circulation

pattern.

2. Data and Methods

2.1. The WRF Model

The details of the WRF model (SKAMAROCK et al.

2008) configuration are provided in the first part of

this twin paper (KRYZA et al. 2016). Here, we only

provide some important remarks on the model

configuration. The model has been run for a 30-year

long period of 1981–2010, using ERA-Interim data as

initial and boundary conditions. The model was

applied for three one-way nested domains: d01

(45 km 9 45 km grid for Europe), d02

(15 km 9 15 km grid for Central Europe) and d03

(5 km 9 5 km grid for Poland). In this study, we

compare the measurements with the results from the

innermost domain (d03) covering Poland with a

5 km 9 5 km grid resolution, and the d02 results are

used for classification of the circulation types. The

model results are available for every 3 h, and the

daily mean air temperature is calculated by averaging

all time frames available for a given day. The WRF

model rainfall is available for every 3 h as accumu-

lated precipitation and was recalculated into daily

sums. The same time spans (6 UTC–6 UTC) were

used both for the model data and the measurements.

2.2. Calculation of Circulation Types

The methodology of classification refers to the

assumptions of ‘‘Die objective Wetterlagenklassifika-

tion’’ (BISSOLLI and DITTMANN 2001), modified

according to OJRZYŃSKA (2015). One circulation type

for each day is determined, using the daily meteoro-

logical data available for the domain d02. Four criteria

of the classification are calculated individually for

every grid cell of the model domain. Each of the

criteria results in two to five different types. The

domain-wide type of the particular criterion is calcu-

lated as the mode grid cell type within the model

domain. The final circulation types (40) are composed

of types of classification criteria in the following order:

direction of advection (characters in positions 1–2 in

type name), cyclonality at 825 hPa (position 3),

cyclonality at 500 hPa (position 4), and humidity type

(position 5; Fig. 1). The algorithm was applied here

using the WRF d02 meteorological data, with

15 km 9 15 km spatial resolution, and the calendar

of atmospheric circulation types for the area of Poland

for the years 1981–2010 was prepared. The classifi-

cation scheme applied here utilizes the following

meteorological information:

2.2.1 Direction of Advection

The direction of advection is calculated directly from

the u and v wind components, provided by the WRF

model for 700 hPa isobaric level. If the wind speed

exceeds 2 m s-1, the wind direction for the analysed

grid cell is assigned, using four main directions: NE,

NW, SE, SW. Otherwise, if the wind speed is below

the threshold value, the XX class is assigned to the

grid cell. The dominant wind direction for the entire

domain is the one that occurs for more than 50 % of

the grid cells in this domain. If there is no prevailing

wind direction for the area, the final type of criterion

‘‘direction of advection’’ is classified as XX.

2.2.2 Cyclonality for 825 (Lower) and 500 (Upper)

Isobaric Level

Cyclonality is calculated as an approximated value of

r2/, where r is the nabla operator and / is a value

of the geopotential. Cyclonality is calculated sepa-

rately for the 500 and 825 hPa isobaric levels. A

positive value of r2/ is classified for the cyclonic

type (C), and negative for the anticyclonic (A) type.

The calculation of grid cell cyclonality is a two-step

procedure, based on the 3 9 3 grid neighbourhood.

In the first step, every grid cell from a given

neighbourhood is multiplied by value 1, while the

analysed grid cell (centre of a given 3 9 3
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neighbourhood) is multiplied by -8. In the second

step, the mean value from all nine grid cells is

calculated. The result is attributed to the analysed

grid as an approximate value of r2/. The calculation

of r2/ is preceded by the generalization of the

geopotential, which is averaged using a low-pass

filter with size 3 9 3 grid cells.

2.2.3 Humidity Type

The humidity type for each grid cells is calculated as

a result of subtracting the daily mean value of

tropospheric precipitable water (PW) and the suit-

able areal long-term monthly mean of PW. A positive

value of the difference is classified for wet (W) type

Figure 1
Circulation type classification scheme—real case for 01.04. 2001. The SWACW acronym, used here as an example, stands for: SW advection

direction from south-west, A anticyclonic type at 825 hPa, C cyclonic type for 500 hPa, W wet type according to humidity-type class
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and negative for dry type (D). The long-term mean

PW is calculated using the WRF model data for the

d02 domain.

An automatic tool for the circulation type classi-

fication took a form of script, prepared using the

NCAR Command Language (NCL Software, Version

6.1.2, 2013). The script reads sequential netCDF files,

which contain the outputs from the WRF model. The

above-mentioned meteorological information, needed

to determine the circulation type, is calculated for

each grid cell and classified according to the classi-

fication criteria. The atmospheric circulation type is

determined by the combination of the four classifi-

cation criteria described above (direction of

advection, lower and upper cyclonality and humidity

type). This method allows for easy grouping of the

detailed classification and reduction of particular

classification criteria. This characteristic was utilized

for the results of this study. The algorithm is flexible

in terms of, e.g. the incorporation of additional

meteorological parameters and can be applied for

other areas and the WRF model configuration (e.g. in

terms of spatial extent and grid resolution).

2.3. Meteorological Data for the WRF Model

Evaluation

In this work, first we compare the 5 km 9 5 km

WRF model results with the meteorological mea-

surements of daily rainfall and daily mean air

temperature, gathered at 66 synoptic stations in

Poland for the 1981–2010 period. For comparison,

we used the WRF model domain d03 data from a grid

cell, in which the measuring site is located. It should

be noted here that we used the area averages (WRF

model grid cell) and point values (measuring sites) in

this work. The spatial distribution of the measure-

ment sites is presented in the first part of this twin

paper (please see Fig. 1 at KRYZA et al. 2016).

Secondly, we compare the WRF model results with

the gridded meteorological information available for

Europe and described by HAYLOCK et al. (2008).

The European land-only daily high-resolution

gridded data (E-OBS; HAYLOCK et al. 2008) for daily

rainfall and daily mean air temperature are available

for all Europe with 0.25� 9 0.25� spatial resolution.

This dataset was developed by three-step spatial

interpolation. First, the monthly mean values are

interpolated with thin-plate splines. Second, the

anomalies with regard to the monthly mean are

interpolated using the kriging algorithm. The final

map is calculated by applying the interpolated

anomaly to the interpolated monthly mean (HAYLOCK

et al. 2008). In this work we used E-OBS data version

10.0.

2.4. The WRF Model Evaluation

The WRF model results are compared with the

measurements of the rainfall and daily mean air

temperatures. The WRF modelled rainfall and air

temperature were extracted for the nearest grids

where the synoptic stations are located and compared

with the station measurements. A grid-to-point com-

parison is performed. In the same way, the E-OBS

database is compared with the measurements. This is

done to assess the differences between these two

approaches that provide the spatial climatological

information: dynamical regional climate model and

geostatistical method, and to address the uncertainty

related to each dataset. The model error is calculated

as the difference between the modelled (by WRF or

from E-OBS) and the observed value and the results

are summarized using three error statistics:

• Mean error (ME) calculated as an arithmetic mean

from the model error for the air temperature in �C.

A positive value of ME suggests a tendency for

overestimation, while a negative value suggests

underestimation of the air temperature by the

model. For the rainfall, ME is given in percent,

with the values[100 % showing overestimation of

rainfall and\100 % showing underestimation.

• Mean absolute error (MAE) calculated as the mean

value of the absolute model error. The units are �C
for the air temperature and mm/day for rainfall.

• Index of agreement (IOA) calculated using the

formula proposed by EMERY et al. (2001), as a

standardized measure of the degree of model

prediction error. Details for IOA are provided in

part 1 of this paper. The values vary between 0 (no

agreement) and 1 (perfect match). IOA is unitless.
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The error statistics are calculated using the data

from all available stations and for the entire study

period, each month and for each determined groups

of circulation types. Histograms and the quantile–

quantile plots are provided both for the WRF and

E-OBS comparison with the measurements. The

WRF and E-OBS are also compared spatially for

long-term periods. Additionally, the IOA statistic was

calculated for each grid separately for selected groups

of atmospheric circulation types to give an insight

into spatial differences between the WRF and the

E-OBS datasets.

Similar to the approach used for the WRF model

evaluation, the rainfall and air temperature values

from E-OBS datasets were extracted for the grid in

which the meteorological stations were located. It

must be emphasised that the E-OBS database is based

on the same measurements that are used here to

evaluate the results of the WRF model and, therefore,

should show very similar values as the measure-

ments. However, because of the relatively coarse grid

of 0.25�, there might be some issues related with

spatial averaging and reduction of the extremes,

which is one of the key points of this work. This

includes, among others, averaging of the extreme

values, both for air temperature and rainfall (WIBIG

et al. 2014). Additionally, for rainfall, the coarse

resolution of the E-OBS database makes it less prone

to incorrect spatial allocation of rainfall. The quan-

tification of the differences between the E-OBS data

and the measurements is important, because the

E-OBS is used later in this work for the WRF model

spatial evaluation.

The spatial distribution of the long-term mean

values of rainfall and air temperatures was calculated

with the WRF and E-OBS data and compared, using

the original spatial resolutions of both datasets. This

was done to show the value added by the higher

spatial resolution of the WRF model. Secondly, we

aggregated the WRF model data to the coarser

E-OBS grid, and for each common grid cell we

calculated the index of agreement and mean error

statistics. This was possible, because for the entire

period and each grid cell, time series of the WRF and

E-OBS meteorological information was available.

The IOA and ME were calculated for selected types

of atmospheric circulation and presented as maps.

3. Results

The results are organized as follows. First, the

general comparison of the WRF and E-OBS data with

measurements is presented, including spatial com-

parison of the WRF and E-OBS data. Both datasets

are also compared spatially, using the source spatial

resolutions of WRF and E-OBS. Secondly, the

information on the circulation types and frequency is

provided. Finally, the WRF model and E-OBS per-

formance are summarized with respect to the

circulation types, and spatial distribution of the

rainfall and air temperature, calculated with these two

sources, is compared, using the common E-OBS

spatial resolution.

3.1. WRF and E-OBS Comparison

with Meteorological Measurements

Comparison of the WRF and E-OBS performance

for the entire 1981–2010 period is summarized in

Fig. 2 for the air temperature and rainfall. For the air

temperature, both WRF and E-OBS databases have a

small positive bias if the entire period and all months

are considered. However, if the seasonal performance

is analysed, ME changes significantly for WRF, with

negative values in winter months and the highest

positive values for autumn. The seasonal changes in

E-OBS ME are smaller. There is also a seasonal

pattern in MAE, both for WRF and E-OBS. For WRF,

MAE is the highest for winter and autumn, while for

E-OBS there is also a secondary maximum in summer.

Noticeably, the MAE is significantly smaller for WRF,

compared with E-OBS, for all months. The WRF

model performance is also better in terms of IOA,

which is higher when compared with E-OBS for all

months of the study period. The differences in IOA are

especially large for the summer months. The better

agreement of the WRF model in terms of MAE and

IOA, compared with E-OBS, shows the strength of the

dynamical downscaling approach for providing long-

term meteorological information, even before applying

the bias correction techniques.

For the rainfall, the E-OBS is in closer agree-

ment with the measurements in terms of all three

statistics considered. The WRF model significantly

overestimates the observed rainfall, while the
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E-OBS gridded values are slightly underestimated.

There is also a clear seasonal pattern in the WRF

model performance for rainfall. The largest differ-

ences between the WRF modelled and the observed

daily precipitation are for summer months, when the

convective rainfall dominates the total precipitation.

For this season, local, intensive rainfall episodes

may contribute to the majority of the monthly

precipitation sum, and these events are likely to be

missed or shifted both in time and space by WRF

because of its local character.

The histograms of the daily 2 m air temperatures

for the period 1981–2010, calculated with observa-

tions, WRF and E-OBS data, are presented in Fig. 3

for each season separately: winter (December–Fe-

bruary, DJF), spring (March–May, MAM), summer

(June–August, JJA) and fall (September–November,

SON). The E-OBS data reproduce the air

Figure 2
Summary of the WRF (black points) and E-OBS (grey points) error statistics for daily air temperature (left column) and rainfall (right) for the

1981–2010 period (all) and each month
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temperatures very well. The WRF modelled air

temperature is shifted towards cold values for

December–February, which is in agreement with the

ME plot shown in Fig. 2. For spring (March–May),

all three sources are in close agreement, with slightly

lower frequencies of air temperatures close to 8–9 �C
for the WRF model. For summer (June–August) and

fall (September–November), the WRF air tempera-

ture is shifted towards warm values. For all seasons,

the WRF model reproduces the minimum observed

air temperatures better than E-OBS. This might be

linked with the higher spatial resolution of the WRF

model. The highest air temperatures are overesti-

mated except for winter (Fig. 3).

Similar features are shown if the modelled

quantiles are plotted against the observed quantiles

(Fig. 4). For WRF, higher quantiles are overestimated

for all seasons except winter. Low quantiles are well

reproduced by WRF for all seasons.

The frequency and intensity of the precipitation

events are addressed with the observed, WRF and

E-OBS rainfall distribution, presented in histograms

(Fig. 5). The WRF model fails to reproduce the lower

end of the spectrum, with lower frequencies for all

the seasons, except for autumn. The E-OBS repro-

duces the lower values and no rainfall days well for

all the seasons. The WRF model shows a consider-

ably lower number of cases with no rain. For rainfall

in the range from 0.2 to 0.5 mm, the WRF model is

closer to the measurements compared to E-OBS. The

WRF model overestimates the daily rainfall, espe-

cially the high values, for all the seasons, except for

Figure 3
Histograms of daily mean air temperatures observed (red) from E-OBS (blue) and WRF (green)
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autumn (Fig. 6). The E-OBS, on the contrary,

underestimates the values, which is the largest for

summer and autumn.

The spatial patterns of the mean monthly air

temperature and rainfall sums, calculated with the

WRF and E-OBS gridded data, are presented in

Figs. 7 and 8. There is a large spatial variability in the

WRF-based maps, both for the air temperature and

rainfall. This is related to the significantly higher

spatial resolution of the WRF data. For the air

temperature, both WRF and E-OBS show similar

spatial patterns. The grid-to-grid correlation coeffi-

cient is 0.94 for January and 0.87 for July. The WRF

model shows higher values of the air temperatures, if

summarized for the entire model domain, with the

mean grid-to-grid difference at 0.26 and 1.28 for

January and July, respectively. Some features, e.g.

warm areas of the cities, are missing entirely in the

E-OBS map.

For the rainfall, grid-to-grid correlations are

smaller, and are close to 0.5, both for January and

July. The WRF maps also show higher rainfall

values, compared to E-OBS, with mean differences of

14 and 41 mm for January and July, respectively.

Both WRF and E-OBS show the highest rainfall for

the mountainous areas in the south. However, the

second area of increased rainfall, located in northern

Poland, is shifted westward in the E-OBS maps, when

compared with WRF. This is both for January and

July.

Figure 4
Quantiles (from 0.05 to 1 in steps of 0.05) for daily air temperature at 2 m for E-OBS (blue) and WRF (green). Mod is for modelled (WRF and

E-OBS, y axis) and obs is for observed values (x axis)
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3.2. Circulation Types Analysis

The circulation types classification applied in

this study resulted in 40 distinct circulation types.

There are seven most frequent types, with fre-

quency exceeding 4 % in the years 1981–2010,

mainly anticyclonic: SWAAW, SWAAD,

NWAAW, NWAAD, NEAAD and NWACD,

NWCCD and SWCAW (Fig. 9). The next four

most frequent types (2–4 %) are characterised with

advection from the SW sector: SWACD, SWACW,

SWCCD and SWCCW. The least frequent circula-

tion types are those of the XX sector and some

types with the advection from sectors NE

(NEACW, NECAD, NECAW) and SE (SEACD,

SEACW, SECAD). To assure the meaningful

statistical analysis of the WRF model performance

for rainfall and air temperature regarding the

circulation types, the least frequent types were

aggregated for further analysis. Finally, nine groups

of various circulation types were distinguished

(Table 1). Three groups contain only dry circula-

tion types: AAD, ACD and CdD. The five groups

of wet types are: AAW, WACW, EACW, WCdW

and ECdW. All types from the XX sector are

classified to group XX. This group, together with

EACW, has the lowest frequency (*1 %) in the

1981–2010 period, but both are specified because

of their specific air temperature and rainfall distri-

bution. The frequency for most of the remaining

groups exceeds 10 % (Fig. 10).

Figure 5
Histograms of daily rainfall: observed (red), from E-OBS (blue) and WRF (green)
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The WRF and E-OBS agreement with the mea-

surements for the air temperature and rainfall, with

respect to the circulation types, is summarised in

Fig. 11. For the air temperature, the WRF data have

small positive ME for all groups, and the ME is

below 0.5 �C for most of the circulation types

analysed, except for ECdW. For the E-OBS data,

small ME is found for WACW, XX, ECdW and

EACW types, for which the frequency of the

occurrence is relatively low. For more frequent

groups of types, e.g. groups ACD and AAD, the

E-OBS data overestimate the air temperatures above

0.5 �C, and the ME is significantly higher, compared

with WRF. For the wet groups of AAW and WCdW,

the E-OBS is underestimated and has the largest

MAE, while the WRF model shows small overesti-

mation. The IOA for both datasets are very high for

all the circulation types, both for E-OBS and WRF.

The WRF model results have slightly higher values of

IOA, especially for the wet circulation types with

advection from the western sector (e.g. WCdW).

The WRF model overestimates the measured

rainfall for all circulation types. This is especially

the case for eastern or unidentified direction of

advection (e.g. ECdW, EACW and XX; Fig. 11).

Especially for group XX, ME shows almost two times

higher rainfall in the period 1981–2010 than the

measured value. On the contrary, the E-OBS database

shows significant underestimation for the XX group.

The MAE and IOA also show worse performance of

Figure 6
Quantiles (0.025, 0.1, 0.25, 0.5, 0.6, 0.7, 0.8, 0.9, 0.95 and 0.99) for daily rainfall at 2 m for E-OBS (blue) and WRF (green). Mod is for

modelled (WRF and E-OBS, y axis) and obs is for observed values (x axis)
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the WRF model for rainfall, compared to the E-OBS

database, and MAE is especially large if the eastern

wet types are considered (e.g. ECdW). For dry

circulation types, MAE for the WRF model is below

1.5 mm/day, and for the majority of circulation types,

the E-OBS MAE does not exceed 1.0 mm/day,

except for the wet types of eastern advection. There

were similar findings for the IOA statistics, which

was higher for all the circulation types for E-OBS,

compared to WRF. Both E-OBS and WRF show the

lowest IOA for XX.

The statistical summary of the daily air temper-

ature and rainfall is presented for the measurements,

WRF and E-OBS data in Figs. 12 and 13. The

variability of the air temperature and rainfall within

each of the circulation type group is relatively small

Figure 7
Spatial pattern of mean (1981–2010) air temperature for January (top row) and July (bottom) for WRF (left column) and E-OBS (right)
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and the groups are different in terms of, e.g. the

median value. This suggests that the classification

method properly distinguishes the circulation types,

according to, e.g. KALKSTEIN et al. (1987) and

USTRNUL et al. (2010). The largest differences in the

median value between the circulation types and air

temperature are observed in spring and reach 8 �C in

CdD and EACW. The interquartile range is also the

largest for spring, for which it reaches 8 �C. The

smallest differences in the median value between the

groups of circulation types (about 1 �C) concern dry

type groups in the winter seasons (AAD, ACD, CdD)

and wet, lower cyclonic groups in autumn (WCdW,

ECdW). For all the seasons, the largest spread of air

temperatures is the lower anticyclonic group of

circulation types: AAD, AAW and ACD, which are

Figure 8
Spatial pattern of mean (1981–2010) monthly rainfall for January (top row) and July (bottom) for WRF (left column) and E-OBS (right)
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also the most frequent. For spring to autumn, an

increased dispersion is found in the types with

advection from the eastern sector (EACW, ECdW).

The higher dispersion of the air temperatures for

summer types with eastern advection could be related

with the large variability of cloudiness and humidity

in convective unstable air masses. The high extremes

of temperature in XX and anticyclonic groups may be

linked with long-lasting occurrence of this types and

intense insolation and irradiation.

For precipitation, the differences between groups

of circulation types are the highest for summer and

winter (differences exceed 2 mm/day for the median

value). The dispersion of precipitation values, accord-

ing to the interquartile range, is the highest for the

wet-type group, especially for AAW, WACW and

Figure 9
Frequency of circulation types for Poland in the years 1981–2010

Table 1

Circulation types and groups of circulation types determined using ACCT for the 1981–2010 period

Group of circulation types Circulation types belong to the group

Acronym Long name

AAD Lower anticyclonic, upper anticyclonic dry SWAAD, NWAAD, NEAAD, SEAAD

ACD Lower anticyclonic, upper cyclonic dry SWACD, NWACD, NEACD, SEACD

CdD Lower cyclonic dry SWCCD, NWCCD, NECCD, SECCD, SWCAD, NWCAD, NECAD,

SECAD

AAW Lower anticyclonic, upper anticyclonic wet SWAAW, NWAAW, NEAAW, SEAAW

WACW Western, lower anticyclonic, upper cyclonic wet SWACW, NWACW

EACW Eastern, lower anticyclonic, upper cyclonic wet NEACW, SEACW

WCdW Western, lower cyclonic wet SWCCW, NWCCW, SWCAW, NWCAW

ECdW Eastern, lower cyclonic wet NECCW, SECCW, NECAW, SECAW

XX Unidentified direction of advection/without

advection

XXAAD, XXAAW, XXACD, XXACW, XXCAD, XXCAW, XXCCD,

XXCCW
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WCdW. Days with advection from the east (ECdW,

EACW) have a large interquartile range, except for

the winter months. The outliers here reach

100 mm/day. There is a strong seasonal variability

in the interquartile range for all groups of atmo-

spheric circulation types. The values vary from 1.4 to

3.6 mm/day for winter months, to 3.2–7.2 mm/day

for autumn. In summer, the interquartile range for

most of the circulation-type groups is in the range

from 5.2 to 7.0 mm/day and reaches the maximum

(14 mm/day) for group ECdW, which contains the

types with unstable convective air masses.

The box plots presented in Figs. 12 and 13 also

show the differences in the WRF and E-OBS data and

the observations. This is especially true for the

outliers, which were covered in the general model

performance statistics presented above. For the air

temperature and the winter months, there is a close

agreement between the E-OBS and the measurements

for the group types with high frequency (AAD,

AAW, ACD, CdD) in terms of quartiles and the high

outliers (Fig. 12). For groups ACD and CdC, the

WRF model also shows a very good agreement with

the measurements, but for the lower and upper

anticyclonic group types (AAD, AAW) and most of

the less frequent groups of circulation types, the

median temperature together with the first and third

quartile is lower, compared with the measurements.

The WRF model, in general, better reproduces the

lower outliers when compared with E-OBS, and for

the majority of the groups in winter, the lower

outliers are underestimated by WRF and overesti-

mated by E-OBS. For the less frequent type of group,

excluding XX, the WRF model shows closer agree-

ment with the measured air temperatures than the

E-OBS..

For spring and summer, both E-OBS and the

WRF models reproduce the air temperatures well,

especially for the wet type (Fig. 12). For summer, the

WRF model overestimates the median value for the

majority of the circulation types. The differences

between the temperature quartiles from WRF and

observed datasets are small and usually do not exceed

1 �C. For groups AAW and WCdW, the WRF model

shows higher maximum values of air temperatures,

compared with the measurements, for both spring and

summer. In summer, WRF shows closer agreement

with the measurements for the low outliers, but,

similar to E-OBS, the model overestimates air

temperature. In spring, the WRF model reproduces

well the higher air temperatures.

For autumn, the WRF model reproduces well the

median value both for frequent and rare circulation

types. The high values are usually overestimated,

especially for the most common circulation types of

AAD, AAW and ACD, for which the E-OBS shows a

Figure 10
Frequency of groups of circulation types for Poland in the years 1981–2010
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closer agreement with the measurements than WRF.

However, for the less frequent groups, like WCdW or

EACW, the upper outliers are better represented by

the WRF model.

For rainfall, the box plots show that for the WRF

model there is a significantly higher number of days

with rainfall, compared to the measurements

(Fig. 13). On the contrary, the E-OBS data give a

Figure 11
Statistical performance of WRF (black points) and E-OBS (grey points) for daily air temperature (left column) and rainfall above 0.1 mm/day

(right column) according to the group of circulation types

Figure 12
Comparison of the observed (red) and WRF (green) and E-OBS

(blue) modelled air temperature for the 1981–2010 period for

circulation types. Box plot width is proportional to the group of

circulation-type frequency. The box plot hinges show the first and

third quartiles, the whiskers are 1.5 times the hinges spread or to the

data extreme (if 1.5* the hinge spread is smaller than the extreme

value) and circles are the outliers, which are above/below the 1.5

times the box length

c
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smaller number of days with rainfall compared to the

measurements. Regardless of the season, the median

values of precipitation for WRF data are in a better

agreement with the measurements than E-OBS for the

majority of the circulation types, especially in groups

AAW, WCdW and ACD. For summer, the WRF

model gives higher daily rainfall for all the circula-

tion types. The same is observed for winter and

spring in the lower cyclonic types of the group. For

autumn, the WRF median is higher, compared to the

measurements only for AAW and ECdW.

For the majority of the circulation types and

regardless of the season, the first quartile for the WRF

model is about 0.1 mm higher, compared with the

observations, while this difference for E-OBS

exceeds 1.0 mm, especially for the spring and

summer months (Fig. 13). For higher daily rainfall

values, represented by the third quartile, the E-OBS is

in better agreement with the measurements for all

circulation types, except for the autumn and winter

months. For all the circulation types, the third

quartiles of precipitation in the WRF model are

0.5–2.0 mm higher than in the observed datasets in

spring and summer. In the winter and autumn months,

they are about 1.0 mm lower, but only for lower

anticyclonic groups of circulation types, with any

differences in other groups. The WRF model also

shows higher than measured highest daily rainfall

values for all the circulation types, but these extreme

values are in closer agreement with the observation

than for E-OBS.

For a spatial evaluation of the WRF model results

for the daily mean air temperature and rainfall, with

respect to the circulation type, we used the E-OBS

data. The most important result is that the differences

between the WRF and E-OBS are not spatially

constant and change with the circulation type. The

example is presented in Fig. 14 for the air temper-

ature, with the most common lower/upper

anticyclonic wet circulation type (AAW) and eastern,

lower anticyclonic, upper cyclonic wet type (EACW).

For the AAW circulation type, the highest IOA is for

northern and eastern Poland. For EACW, the highest

values are for northern and western areas of the

country. For EACW, there is a large area of

decreased IOA in SE Poland, which is not visible

for AAW. The absolute minimum values are different

for AAW and EACW, but cover approximately the

same area of southern Poland. Similarly, there are

large changes in spatial distribution of ME for these

circulation types. The lowest ME covers the northern

and eastern areas of Poland for AAW, while for

EACW it is N and NW. The largest values are for

central and southern Poland in AAW, while for

EACW there is a large area of high ME in SE Poland.

The same changes in the WRF and E-OBS spatial

agreement are found for rainfall (Fig. 15). There are

also large changes, e.g. in IOA which is significantly

lower for AAW compared to EACW.

4. Summary and Conclusions

In our study, we have presented the results of

high-resolution dynamical downscaling of daily

rainfall and air temperature with the regional climate

model WRF. The results were evaluated by compar-

ison with measurements and gridded data.

Additionally, we presented the method for automatic

classification of atmospheric circulation types, which

utilize the high-resolution WRF model output. The

method for the automatic classification of the circu-

lation types (ACCT) for Poland, based on the WRF

data (wind direction, cyclonality and humidity of air

masses), was applied for the entire period of

1981–2010. The WRF model performance was

evaluated for daily precipitation and air temperature,

individually for each month and also with respect to

the group of circulation types. The analysis of the

regional dynamical downscaling with the WRF

model was complemented by comparison with spatial

data obtained with the geostatistical method (E-

OBS).

The main findings of this work are:

Figure 13
Comparison of the observed (red) and WRF (green) and E-OBS

(blue) modelled daily rainfall (above 0.1 mm/day) for the

1981–2010 period for circulation types. Box plot width is

proportional to the number of days with rainfall for a given

circulation type. Please notice the log Y axis. The box plot hinges

show the first and third quartiles, the whiskers are 1.5 times the

hinges spread or to the data extreme (if 1.5* the hinge spread is

smaller than the extreme value) and circles are the outliers, which

are above/below 1.5 times the box length

c
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• A tool for automatic derivation of circulation

schemes was developed and used with high-

resolution gridded meteorological data. The tool

is flexible in terms of spatial domain resolution,

location and meteorological input. The advantage

of ACCT classification is that it provides the

opportunity of type grouping depending on the

research aim, while in long time series, a large

number of circulation types permit detailed case

studies. The classification scheme can also be

extended by incorporating other classification

criteria.

• The variability of the air temperature and precip-

itation between particular types and groups of

circulation types confirmed the usefulness of the

classification methodology. The worst results were

connected with the anticyclonic group type and

with the types with unstable convective air masses.

Figure 14
ME and IOA between the WRF and E-OBS air temperature data for AAW and EACW circulation types in the 1981–2010 period
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The authors are aware that worse results, in terms

of larger variability of meteorological parameters,

could be caused by the difficulty in choosing the

mode value of classification types for the large area

of Poland, with its considerable spatial variability.

The classification scheme will therefore be mod-

ified to allow for spatial variability of circulation

type for a given day within the area that is

analysed.

• In general, the WRF model shows a good agreement

with the observed daily air temperature, especially

for its lowest values. The higher air temperatures are,

except for the winter months, overestimated. The

error statistics of ME, MAE and IOA for WRF also

show a better model–measurements agreement

compared to E-OBS. The E-OBS overestimates the

lower air temperatures in most seasons, which might

be linked with the coarser spatial resolution

Figure 15
ME and IOA between the WRF and E-OBS rainfall data for AAW and EACW circulation types in the 1981–2010 period
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compared to WRF. The spatial patterns of the air

temperature and rainfall are similar for both WRF

and E-OBS, when the long-term mean values are

compared. The WRF model shows a larger spatial

variability because of the higher spatial resolution.

• The close WRF–measurements agreement, quanti-

fied by ME, MAE and IOA for the air temperatures, is

independent of group of circulation types. However,

there is a seasonal variability in temperature agree-

ment in particular circulation types considered. In

contrast to small overestimation for all circulation

types for spring and autumn, the winter months are

underestimated, especially for frequent lower and

upper anticyclonic groups of types (AAW, AAD). For

all the seasons, except the summer, the WRF model

shows lower, compared with the measurements,

minima of the air temperature. In winter, the WRF

model better reproduces the air temperatures for the

coldest groups of circulation types (ACD, CdD). For

warmer groups of circulation types in winter and

autumn, E-OBS is in better agreement with the

measurements. In spring and summer months, the

mean air temperatures are in closer agreement with

the measurements for the WRF model.

• The error statistics for the rainfall shows a worse

performance of the WRF model, compared with

E-OBS. This is especially the case for the summer

months. The WRF model overestimates the mea-

sured rainfall, especially the higher daily values.

The WRF model also gives more days with

rainfall, compared to the measurements. However,

the E-OBS underestimates the precipitation values

mainly in the summer and autumn months.

• The differences between WRF and E-OBS for

precipitation are similar in all groups of circulation

types. For the spring and summer months, the WRF

model overestimates the daily precipitation sums.

This overestimation is especially large for the XX

and eastern groups of circulation types. The

maximum sums of precipitation for WRF are

higher than the observed values, but are in better

agreement with the measurements when compared

to E-OBS. In winter and autumn, the modelled

precipitation sums are close to the measurements

(e.g. in WCdW) or underestimated for the lower

anticyclonic-type groups.

• The spatial distribution of the differences between

the WRF and E-OBS data changes significantly

according to the atmospheric circulation type. This

is of significant practical importance, as the large-

scale atmospheric circulation pattern determines

the uncertainty related to the meteorological

information provided by the WRF model.

In this work we have shown that the WRF model

performance depends strongly on the type of atmo-

spheric circulation. This is especially the case for

rainfall. This suggests that the model evaluation

should also consider some indices related with cir-

culation types, as presented in this study. Also, it

means that the circulation type can be used to assess

the uncertainty related with the numerical weather

forecasting. High-resolution WRF model data can be

used to determine the circulation types using the

ACCT, with respect to, e.g. humidity of air mass.

The overall poor WRF model performance for

rainfall shows the need for improvement. The

uncertainty in the WRF model prediction for rainfall

is high and changes both seasonally and with circu-

lation type. The model performance could be

improved, e.g. by data assimilation (e.g. GNSS data,

as suggested by SCHWITALLA et al. 2011).
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LANO, J., MUÑOZ-ROLDÁN, A. (2013), An evaluation of WRF’s

ability to reproduce the surface wind over complex terrain based

on typical circulation patterns, Journal of Geophysical Research:

Atmospheres 118, 7651–7669.

KALKSTEIN, L.S., TAN, G., SKINDLOV, J.A. (1987), An evaluation of

three clustering procedures for use in synoptic climatological

classification, Jour. Appl. Meteor., 26, 17–730.

KRYZA, M., WAłASZEK, K., OJRZYŃSKA, H., SZYMANOWSKI, M.,
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górnej Wisły (Rozpr. Hab. UJ 58, Kraków 1981).
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Aerosol-Radiation Feedback and PM10 Air Concentrations Over Poland
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Abstract—We have implemented the WRF-Chem model ver-

sion 3.5 over Poland to quantify the direct and indirect feedback

effects of aerosols on simulated meteorology and aerosol concen-

trations. Observations were compared with results from three

simulations at high spatial resolutions of 5 9 5 km: (1) BASE—

without any aerosol feedback effects; (2) DIR—with direct aerosol-

radiative effects (3) INDIR—with direct and indirect aerosol-ra-

diative effects. We study the overall effect during January 2011 as

well as selected episodes of the highest differences in PM10 con-

centrations between the three simulations. For the DIR simulation,

the decrease in monthly mean incoming solar radiation

(SWDOWN) appears for the entire study area. It changes geo-

graphically, from about -8.0 to -2.0 W m-2, respectively for the

southern and northern parts of the country. The highest changes do

not correspond to the highest PM10 concentration. Due to the solar

radiation changes, the surface mean monthly temperature (T2)

decreases for 96 % of the area of Poland, but not more than 1.0 �C.

Monthly mean PBLH changes by more than ±5 m for 53 % of the

domain. Locally the differences in PBLH between the DIR and

BASE are higher than ± 20 m. Due to the direct effect, for 84 %

of the domain, the mean monthly PM10 concentrations increase by

up to 1.9 lg m-3. For the INDIR simulation the spatial distribution

of changes in incoming solar radiation as well as air temperature is

similar to the DIR simulation. The decrease of SWDOWN is

noticed for the entire domain and for 23 % of the domain is higher

than -5.0 W m-2. The absolute differences of PBLH are slightly

higher for INDIR than DIR but similarly distributed spatially. For

daily episodes, the differences between the simulations are higher,

both for meteorology and PM10 concentrations, and the pattern of

changes is usually more complex. The results indicate the potential

importance of the aerosol feedback effects on modelled meteorol-

ogy and PM10 concentrations.

Key words: WRF-Chem, feedback, aerosol, PM10, Poland.

1. Introduction

Aerosol particles have an important role in the

climate system acting on the global radiation budget

in two ways—directly by scattering and absorbing the

incoming radiation or indirectly by altering the cloud

properties (e.g. CHARLSON et al. 1992; ANDREAE et al.

2005; ROSENFELD et al. 2008). Furthermore, a climate-

biosphere feedback mechanism on diffuse radiation

can alter net ecosystem exchange significantly

(MERCADO et al. 2009) and it has been suggested that

this process will also be very important on the

emission of particle precursors such as isoprene from

nature (WILTON et al. 2011). Additionally, studies of

human health indicated that there are significant

correlations between particulate matter levels and

increased respiratory and cardiovascular diseases, and

mortality (POPE et al. 2002; PEREZ et al. 2008). Many

chemical transport models (CTMs) have been

developed to better understand the physical and

chemical processes of gas-phase species and partic-

ulate matter. The models generally underestimate

PM2.5 and PM10 mass concentrations by

4.0–14.0 lg m-3 (10–50 %) and 6.5–18.0 lg m-3

(20–50 %), respectively (TUCCELLA et al. 2012). It is,

therefore, important to explore the processes that

relate to PM concentrations to explain this

underestimation.

Most CTMs are implemented as offline models,

where the meteorological input data are provided by
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an independent model. In that solution it is impossi-

ble to simulate the complexity of the aerosol-cloud-

radiation feedback process. Additionally, the decou-

pling between the meteorological and chemical

model leads to a loss of information because of the

physical and chemical processes occurring on a time

scale smaller than the output time step of the mete-

orological data (ZHANG 2008). It is well accepted that

weather has a profound impact on air quality as well

as that atmospheric composition can influence both

weather and climate. Coupling of atmospheric

dynamics, pollutant transport, chemical reactions and

atmospheric composition will remain one of the most

challenging tasks over the next decades as they are

strongly integrated processes (JACOBSON 2002; ZHANG

2008; BAKLANOV et al. 2014).

Accurately simulating these feedbacks requires

the use of online-coupled meteorology-chemistry

models, e.g. GATOR-MMTD (JACOBSON et al. 1996),

WRF-Chem (GRELL et al. 2005), GEM-AQ (KAMINSKI

et al. 2007), GEM-MACH (MORAN et al. 2010),

among which the weather research and forecasting

with chemistry (WRF-Chem) model represents a

state-of-the-science online model. ZHANG (2008)

applied WRF-Chem over eastern Texas and showed

that the presence of aerosols leads to a decrease in

surface temperature by up to 0.18 �C. By coupling a

cloud microphysics module with WRF, LYNN et al.

(2007) illustrated the suppression of precipitation by

continental aerosol in the Sierra Nevada Mountains.

ZHANG et al. (2010) applied WRF-Chem over North

America at a 36 km 9 36 km resolution to examine

the influence of direct and indirect feedback effects

on meteorology and photolysis rate. Despite the rel-

atively coarse resolution, the results of ZHANG et al.

(2010) indicated the potential importance of the

aerosol feedbacks on a regional scale, even at a time

scale of a month. Similar studies on feedback effects

have been undertaken for Europe by FORKEL et al.

(2012), where the WRF-Chem model was imple-

mented at a resolution of 22.5 9 22.5 km. This work

has shown that over the European continent, many of

the spatial changes in meteorological parameters and

pollutants due to aerosol effects are not only a general

feature but also a result of the prevailing meteoro-

logical situation. It was suggested that a more

pronounced feedback mechanism from aerosols can

be expected with increased horizontal resolution (e.g.

5 vs. 50 km) or by focusing on episodes compared to

long term means.

In this study we explored the direct and indirect

feedback effects of aerosols on both meteorology and

PM concentrations. We focused on the difference

between specific episodes and long-term means and

Table 1

Model components and configuration

Category D01 D02 D03

Simulation period 01–30 of January 2011

Domains Europe Central Europe Poland

Horizontal resolutions 45 km 15 km 5 km

Vertical resolution 35 layers

Shortwave and longwave radiation RRTMG

Land-surface model Noah LSM

Boundary layer scheme YSU

Cumulus parameterization GRELL and DENVENYI (2002) GRELL and DENVENYI (2002) Explicitly resolved

Microphysics LIN et al. (1983)

Prognostic cloud droplet number Prognostic equation used only for the INDIR simulation

Analysis nudging (FDDA) Yes Yes No

Gas-phase mechanism RADM2

Aerosol model MADE/SORGAM

Photolysis scheme Fast-J

Wet deposition Simplified parameterisation for wet scavenging

Sea salt parameterisation Yes (MADE/SORGAM sea salt emission)

Please refer to the WRF and the WRF-Chem user’s guides for a complete description of the options

M. Werner et al. Pure Appl. Geophys.

94



Reprinted from the journal

implemented for this purpose the WRF-Chem model

version 3.5 at high spatial resolution (5 km 9 5 km)

over Poland. With this we studied an extended period

that contains several episodes of high measured

PM10 concentrations: January 2011. The aim of this

study was twofold: first we wanted to compare the

model results of meteorological variables and PM10

concentrations with available measurements. Second,

Table 2

Mean spatial error statistics (58 stations, January 2011) for meteorological surface variables (T2, RH2, W10) for the BASE, DIR and INDIR

simulations

T2 RH2 PSFC W10

BASE DIR INDIR BASE DIR INDIR BASE DIR INDIR BASE DIR INDIR

MB -2.081 -2.224 -2.226 3.858 4.013 4.032 1.539 1.555 1.564 0.593 0.587 0.589

MGE 2.540 2.637 2.636 6.925 6.937 6.918 4.067 4.070 4.074 1.504 1.503 1.507

NMB -16.356 -18.095 -18.186 0.044 0.046 0.046 0.002 0.002 0.002 0.264 0.262 0.262

NMGE 17.576 18.879 18.953 0.078 0.078 0.078 0.004 0.004 0.004 0.485 0.485 0.486

RMSE 3.168 3.275 3.275 9.671 9.694 9.678 4.151 4.153 4.158 1.896 1.896 1.898

IOA 0.853 0.848 0.848 0.612 0.609 0.610 0.907 0.907 0.907 0.787 0.787 0.787

Figure 1
Diurnal cycle in mean bias for T2 for Poland for January 2012

Table 3

Error statistics for SWDOWN for Warszawa, Sopot and Strzy_zów

Warszawa Sopot Strzy _zów INDIR

BASE DIR INDIR BASE DIR INDIR BASE DIR

MB 67.470 58.178 57.522 31.435 27.587 27.379 55.318 42.491 43.842

MGE 73.233 64.354 64.408 44.987 41.191 42.099 71.316 61.163 61.003

NMB 1.703 1.468 1.452 0.495 0.434 0.431 0.652 0.500 0.516

NMGE 1.848 1.624 1.626 0.708 0.648 0.663 0.840 0.720 0.719

RMSE 108.739 95.871 96.049 62.713 57.626 59.870 101.156 85.810 85.662

IOA 0.510 0.551 0.548 0.854 0.870 0.860 0.780 0.821 0.824
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we quantified the feedback effects on modelled

aerosol concentrations and meteorological

parameters.

2. Methodology

2.1. WRF-Chem Setup

The Weather Research and Forecasting (WRF)

model is a mesoscale non-hydrostatic meteorological

model that includes a large number of options. These

options include parameterisations of the Planetary

Boundary Layer, the land surface description, cloud

microphysics, radiation and convection processes.

WRF-Chem is a version of WRF coupled online with

a chemistry model where meteorological and chem-

ical components of the model are predicted

simultaneously. A complete description of the model

is given by GRELL et al. (2005) and FAST et al. (2006).

The main options for physical and chemical schemes

used here are listed in Table 1. These include the

Noah Land Surface Model (CHEN and DUDHIA 2001),

YSU boundary layer physics (HONG et al. 2006),

RRTMG long- and short-wave radiation

scheme (IACONO et al. 2008), Grell 3D parameterisa-

tion with radiative feedback and shallow convection

(GRELL 2002), the Lin microphysics scheme (LIN

et al. 1983). The convection was explicitly resolved

for the innermost domain (d03), which is of the main

focus of this paper, and no analysis nudging (FDDA)

was included for this domain. For the BASE and DIR

simulation we used the LIN et al. (1983) scheme with

the prognostic cloud droplet number turned off. In the

INDIR simulation the cloud droplet number of grid

scale clouds was calculated by a prognostic equation.

The gas phase chemistry model used in this study

was the regional acid deposition model, version 2

(RADM2, STOCKWELL et al. 1990). The aerosol

module included the Modal Aerosol Dynamics Model

for Europe (MADE, ACKERMANN et al. 1998) for the

inorganic fraction and the Secondary Organic Aero-

sol Model (SORGAM, SCHELL et al. 2001) for the

carbonaceous secondary fraction.

The model was run for January 2011 with three

one-way nested domains. This study focuses on

domain 3, which covers Poland at 5 km 9 5 km

spatial resolution and hourly temporal resolution. The

simulations were driven by the NCEP final analysis,

available every 6 h, with 1� 9 1� spatial resolution

and TNO MACC II emissions, with 1/8� 9 1/16�
spatial resolution (KUENEN et al. 2014). Temporal

variations in emissions are restricted to emissions

from nature, while the TNO MACC II emissions are

assumed constant during the entire simulation. The

chemical boundary conditions of trace gases consist

of idealised, northern hemispheric, mid-latitude,

clean environmental profiles based upon the results

from the NOAA Aeronomy Lab Regional Oxidant

Model (LIU et al. 1996). The simulation uses a spin

up, with the model simulation started on 30 Decem-

ber 2010. To study the influence of the feedback

effects, we run three simulations: (1) BASE—base-

line simulation, without any aerosol feedback effects;

(2) DIR—direct aerosol-radiative effects only (also

includes semi-direct effects); (3) INDIR—direct

aerosol-radiative effects and indirect effects (also

includes semi-direct and second indirect effects).

2.2. Evaluation of the WRF-Chem Model Results

The WRF modelled air temperature at 2 m (T2),

relative humidity at 2 m (RH2), surface pressure

(PSFC) and wind speed at 10 m (W10) were com-

pared with 3-hourly measurements from 58 sites

provided by the Institute of Meteorology and Water

Management in Poland. The model evaluation was

done for all three simulations—BASE, DIR and

INDIR. The following statistics were calculated for

all available stations as mean values for January

2011: mean bias (MB), mean gross error (MGE),

normalised mean bias (NMB), normalised mean gross

error, root mean square error (RMSE) and index of

agreement (IOA).

Modelled downward short wave flux at ground

surface (SWDOWN) was compared with measure-

ments from three stations under the Poland-AOD

network (Warszawa, Sopot, Strzy _zów) and provided

by the Institute of Geophysics, University of Warsaw.

For Warszawa and Strzy _zów the data were available

for the entire analysed period and for Sopot for the

first 18 days of January. The time series of modelled

and observed values were provided for all stations

and individual statistics for daylight hours for each

station were calculated. Additionally we used all
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stations from the World Radiation Data Centre

available for Poland for January 2011. This included

three stations (Kołobrzeg, Belsk and Zakopane)

available at daily temporal resolution. For these

stations we plotted time series with measured and

aggregated to daily modelled values SWDOWN.

Measured hourly PM10 concentrations were pro-

vided by the Chief Inspectorate of Environmental

Protection in Poland. 55 stations with data availabil-

ity above 75 % were used to validate the modelled

results. First, the average statistics, for the entire

domain (FAC2, MB, RMSE, IOA) for all three

simulations were calculated and presented in a

table and a mean scatter plot was plotted. Then, for

three sites located in the large Polish cities (Wars-

zawa, Poznań, Łódź, marked in Fig. 8), time series of

modelled and observed data were plotted and indi-

vidual scatter plots presented. To check the

importance of station location on model performance

we used additional information on station types and

plotted three Taylor diagrams (for the INDIR

simulation):

1. according to type of station (background, indus-

trial and traffic)

2. according to station type of area (rural, suburban

and rural)

3. using only background stations and plotted

according to station area type.

Finally the spatial distribution of MB between the

INDIR simulation and observations is presented.

3. Results

3.1. Meteorology

The summary of domain-wide error statistics for

all sites and the entire period of January 2011 is

presented in Table 2. For all the simulations (BASE,

DIR, INDIR) the lowest NMB and NMGE is for

PSFC and the highest for T2. A high Index of

Agreement occurs for all meteorological parameters,

with only RH2 below 0.70. Inclusion of feedback

effects slightly changes the statistics for T2, RH2,

PSFC and W10. The highest decrease in model

performance between BASE and INDIR simulation is

for the air temperature. The mean bias of T2 was

plotted at 3-hourly temporal resolution (Fig. 1). MB

changes during the day but for all the simulations the

lowest bias (below 1.5 �C) is at 9 and 12 am, whereas

for the rest hours is above 2.0 �C. These diurnal

changes are consistent with results reported by KRYZA

et al. (2015) for a long-term WRF simulation for

Poland for years 1981–2010.

There is a reasonably good Index of Agreement

(above 0.75) between modelled and observed solar

radiation (SWDOWN) for Sopot and Strzy _zów but

observed values are overestimated by the model

(Table 3; Fig. 2). The best performance has been

obtained for the station located at the sea coast

(Sopot) and the worse for Warszawa. Inclusion of the

direct feedback improves all error statistics for the

three sites; however, inclusion of indirect feedback

increases MGE and RMSE for two of them, if

compared to DIR. Time series plotted for daily values

available from the World Radiation Data Centre for

Belsk, Kołobrzeg and Zakopane (Fig. 1 in supple-

mentary materials) present a similar trend as for

hourly measurements from POLAND-AOD. The

measurements are overestimated by the model, with

the best agreement between model and observations

for the sea cost station (Kołobrzeg) and worst for

Zakopane (at the base of the mountains).

Temporal changes in SWDOWN, T2, PBLH and

differences for the BASE, DIR and INDIR simula-

tions are described for two locations—Łódź and Łeba

(Fig. 3, figures for WSPD and RH2 are available in

supplementary materials, Fig. 2). The first station is

in the area with the highest positive differences of

PM10 concentrations between INDIR and BASE, and

the second is located in the area of the negative

differences. Generally, the peak values of SWDOWN

are highest for BASE and appear at the same time for

all simulations. An exception is, e.g., the 12th and

17th January in Łódź, where the highest solar

radiation is for INDIR and DIR, respectively. The

highest differences in T2 appear for the same

episodes as for SWDOWN. For selected periods the

temperature in Łódź, for the INDIR simulation is up

to 2.5 �C lower than that for BASE. High variability

between DIR and INDIR simulations appears on

02nd–04th of January at Łódź station and 10–14th,

10–24th of January at Łeba. For several episodes
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Figure 2
Modelled vs. observed hourly variation of SWDOWN
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PBLH differs between DIR and INDIR simulation by

more than 200 m. For Łódź, the lowest differences

between the simulations are for the 4–9th and

11–15th of January, which also coincide with small

differences in the air temperature. This is also a

period with relatively lower values of solar radiation

at the surface in comparison to the last 10 days of the

month.

Mean monthly solar radiation for the BASE

simulation for January 2011 in Poland domain was

53.3 W m-2. Inclusion of direct effects in the model

decreases the monthly mean solar radiation by

3.5 W m-2. It changes geographically from about

-8.0 to -2.0 W m-2, respectively, for the southern

and northern parts of the country. The lowest

decrease is for the Baltic Sea. Solar radiation

decrease is observed for the entire domain and it is

more than -5.0 W m-2 for about 15 % of the area

(Table 4). The highest changes do not correspond to

the highest surface PM10 concentrations (Figs. 4, 9).

Daily mean solar radiation changes from about -20.0

up to 10.0 W m-2, both for 19th and 29th of January

(Fig. 5). For the 19th the increase in SWDOWN was

noticed for about 24 % of the domain. Inclusion of

both direct and indirect feedback causes a decrease in

monthly mean solar radiation equal to 3.8 W m-2.

The spatial distribution of changes are similar to

changes for DIR, both for monthly and daily values

(Figs. 4, 5). The decrease is apparent for the entire

domain and for 23 % of the domain it is higher than

5.0 W m-2. Due to the solar radiation changes, the

surface mean monthly temperature (T2) decreases

Figure 3
Hourly time series of differences in SWDOWN, T2 and PBLH between the DIR and BASE and INDIR and BASE simulations for two

selected locations (left: Łódź, right: Łeba)
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over 96 % of the domain, but the decrease is less than

1.0 �C (Table 4). Locally, in the north part of the

country an increase was observed, of up to 0.5 �C.

Daily variability is higher than monthly and for the

19th January varies between -1.5 and 2.0 �C, but for

the majority of the area (about 75 %) it is negative.

There are no significant differences between the

results for the INDIR and DIR simulations (Table 4).

Mean PBLH for the BASE simulation in January

2011 was 243.3 m and varied from 62 to 502 m. The

highest was over sea and the lowest in the south-

eastern Poland. PBLH changes by more than ±5 m

for 42 % of the domain when the direct feedback

effect was included. The highest differences, both in

the case of the DIR and INDIR simulations, were

modelled for northern and southern Poland. For the

northern part of the domain, DIR gives higher PBL

than the BASE simulation up to 14 m, whereas for

the southern part PBLH is lower for DIR by up to

23 m. For the episodes of the 19th and 29th January

the differences exceed 20 m, respectively, for about

33 and 10 % of the domain; however, for some

regions the difference is above 50 m and locally even

exceeds 100 m.

3.2. PM10 Concentrations

The model results for all three simulations have

been compared with the surface PM10 measurements.

There are no large differences in mean model

performance among the simulations (Table 5;

Fig. 6). For all of the three runs the FAC2 statistic

is 0.89, MB equal from -9.54 to -9.70 lg m-3 and

Table 4

Percentage area with differences between simulations in the following ranges given in the table

SWDOWN [W m-2] (monthly mean = 53.3)

Range B-10 (-10, -5[ (-5, -1[ (-1, 0[ (0, 1[ (1, 5[ (5, 10[ [10

Mon DIR 0.00 14.97 82.52 2.47 0.02 0.01 0.00 0.00

Mon INDIR 0.01 22.83 76.88 0.26 0.03 0.00 0.00 0.00

19 Jan DIR 3.87 16.28 46.21 14.98 8.59 8.43 1.40 0.25

19 Jan INDIR 5.26 16.91 40.43 12.88 9.13 12.12 2.80 0.49

29 Jan DIR 2.04 30.73 66.44 0.52 0.11 0.08 0.01 0.07

29 Jan INDIR 1.97 30.74 66.46 0.54 0.12 0.09 0.01 0.06

T2 [C] (monthly mean = -3.3)

Range B-1.5 (-1.5, -1.0[ (-1.0, -0.5[ (-0.5, 0[ (0, 0.5[ (0.5, 1.0[ (1.0, 1.5[ [1.5

Mon DIR 0.00 0.00 0.06 95.70 4.24 0.00 0.00 0.00

Mon INDIR 0.00 0.00 0.57 94.71 4.71 0.00 0.00 0.00

19 Jan DIR 0.13 0.24 1.27 73.53 24.18 0.53 0.09 0.03

19 Jan INDIR 0.17 0.38 1.92 64.32 32.15 0.90 0.13 0.04

29 Jan DIR 0.81 10.30 40.89 46.21 1.77 0.01 0.01 0.00

29 Jan INDIR 1.75 10.49 39.77 36.30 1.68 0.02 0.00 0.00

PBLH [m] (monthly mean = 243.3)

Range \-20.0 (-20, 10[ (-10, -5[ (-5, 0[ (0, 5[ (5, 10[ (10, 20[ [20

Mon DIR 0.04 7.11 33.62 45.99 12.63 0.59 0.02 0.00

Mon INDIR 0.07 7.07 31.08 44.33 16.34 1.08 0.05 0.00

19 Jan DIR 18.00 15.68 12.17 18.05 11.24 6.93 8.15 9.77

19 Jan INDIR 21.05 14.98 10.09 14.56 10.81 7.06 9.16 12.29

29 Jan DIR 8.97 23.89 32.72 27.26 4.78 1.56 0.62 0.20

29 Jan INDIR 9.63 23.95 31.01 28.41 4.40 1.57 0.74 0.29

Mon DIR—mean monthly differences between DIR and BASE, Mon INDIR mean monthly differences between INDIR and BASE, and the

same for daily differences for the 19th and 29th of January

cFigure 4
Monthly mean spatial differences in SWDOWN, T2 and PBLH

between DIR and BASE (left column) and INDIR and BASE (right

column)
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R between 0.67 and 0.69. However, the largest error

statistics are for the simulation with no feedback

effects (BASE), and inclusion of the direct and

indirect effects leads to improvements in the model

performance.

For three selected sites, located in the large Polish

cities (Warszawa, Poznań, Łódź), time series of

modelled (BASE, DIR, INDIR) and observed con-

centrations and scatter plots for INDIR are presented

in Fig. 7. The model generally captures the variabil-

ity induced by some pollution episodes (e.g. 4–7,

28–30 of January), but in some cases underestimates

their magnitude. The main reason for this is the flat

annual emission profile applied for anthropogenic

sources. In Poland, anthropogenic emission changes

seasonally for both primary PM10 and their gaseous

precursors, especially for SNAP sector 2 emission

(residential combustion) which is largely responsible

for emission of PM10. For INDIR the spatial distri-

bution of MB is presented in Fig. 8. There is a

tendency towards overestimation of observed values

at the stations located at the sea coast, whereas for the

stations located in the central and southern Poland the

model has a tendency to underestimate of PM10

concentration.

Mean temporal changes of PM10 concentrations

for the total domain are presented in Fig. 9. Signif-

icantly higher concentrations for DIR and INDIR in

comparison to BASE are for 27th–29th of January.

This episode is also quite well reproduced in Fig. 7

which presents PM10 concentrations for Warszawa,

Poznań and Łódź.

Taylor diagrams plotted according to station

location (Fig. 10) show small differences with respect

to the type of station. The results for background,

industrial and traffic stations show very small differ-

ences. Nevertheless, the WRF-Chem results showed

slightly worse results for urban stations when com-

pared to suburban and rural. The correlation

coefficients and centred RMSE for the background

stations are slightly better for rural stations in

comparison to suburban and urban stations.

The mean monthly modelled PM10 concentration

for the domain of Poland (BASE simulation) in

January 2011 is 26.0 lg m-3. The highest concen-

trations concern the central part of the country and

locally exceed 45.0 lg m-3.

The monthly mean differences between DIR and

BASE simulations range between -0.4 and

1.9 lg m-3 (Fig. 11). For 84 % of the area PM10

concentration is higher when indirect effects are

present. The differences between INDIR and BASE

simulations range between -0.5 and 2.0 lg m-3 with

the spatial distribution similar to DIR.

When the direct feedback effect is included, daily

differences in PM10 concentrations for the episodes

of the 19th and 29th of January are between -5.0 and

13.0 lg m-3. The PM10 concentrations are higher

than for the BASE simulation for about 55 and 32 %

Figure 5
Daily mean spatial differences in SWDOWN, T2 and PBLH

between DIR and BASE (left column) and INDIR and BASE (right

column) for the 19nd of January 2011

Table 5

Domain-wide error statistics (55 stations, January 2011) for PM10

concentrations for the BASE, DIR and INDIR simulations (N total

number of measurements)

BASE DIR INDIR

N 720 720 720

FAC2 0.89 0.89 0.89

R 0.67 0.68 0.69

MB -9.70 -9.56 -9.54

RMSE 17.84 17.58 17.55

Figure 6
Scatter plot between modelled and observed PM10 concentrations

for 55 stations for January 2011 (unit: lg m-3). Different colours

applied for BASE, DIR and INDIR. P values of fitted slopes are

below 0.05

b
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of the domain, respectively, for the 19th and 29th of

January. The highest differences are for central

Poland for both 19th and 29th. In the case of the

INDIR simulation the PM10 concentrations change in

the range of -7.0 to 8.0 in comparison to DIR. The

hourly variability between the DIR or INDIR and

BASE simulation is higher than the daily variability.

For the 19th of January at 12.00, the direct effect

changes the PM10 concentration in the range of -13.0

and 20.0 lg m-3 and inclusion of the indirect effect

changes the concentration from -33.0 to

28.0 lg m-3, in comparison to the BASE simulation.

Figure 7
Time series of modelled (BASE, DIR, INDIR) and observed PM10 concentrations for selected stations for January 2011. Scatter plots of PM10

concentrations for the stations for INDIR simulation. P values of fitted slopes are below 0.05
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4. Discussion and Conclusion

The online meteorology-chemistry model WRF-

Chem has been implemented to investigate the direct

and indirect feedback effects of aerosols on both

meteorology and PM10 concentrations with the focus

on the difference between specific episodes and

monthly means. The simulations with high spatial

resolution of 5 km 9 5 km were run for Poland, for

January 2011. The modelled meteorological param-

eters and PM10 concentrations have been evaluated

against observations.

Aerosols affect radiation and temperature in sev-

eral ways due to different radiative effects of

different aerosol components (JACOBSON et al. 1996).

They can reduce incoming solar radiation via

backscattering, therefore increasing the surface

albedo and decreasing surface temperature. In our

study a decrease in monthly mean incoming solar

radiation appears for the entire area, whereas a

decrease in surface air temperature is observed for

about 96 % of the domain. The direct effect of

aerosols on solar radiation is clearly noticeable for

days with relatively high solar radiation. For these

days the difference between DIR and BASE often

reaches 50 W m-2 (e.g. between 20th and 30th Jan-

uary at Łódź, Fig. 3).

A higher cooling effect corresponds to the higher

decrease in solar radiation. Absorption of solar radi-

ation by black carbon and other absorbing aerosol

Figure 8
Monthly average PM10 concentrations (INDIR) and MB statistics marked by dots (MB = INDIR-observation)
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compounds can result in regional heating of the

atmosphere. Aerosols can also absorb and emit

infrared radiation, also offsetting the cooling effect of

backscattering during daytime. An increase in

monthly mean temperature is noticed over about

4.5 % of the domain. For daily episodes on 19th and

29th January a local increase in solar radiation

appears of up to 10.0 W m-2. A similar effect of

atmospheric heating by up to 26.0 W m-2 was

noticed by Zhang et al. (2010) over the ocean and

western US

Changes in air temperature in the atmosphere

cause changes in monthly mean PBLH. Monthly

mean PBLH changes in the range of ±5 m for 58 %

of the study area. Locally the differences between

DIR and BASE were higher than ±20 m. An increase

appears in the northern and a decrease in the southern

part of the domain. PBLH reduces because of

enhanced stability as a result of the warming caused

by black carbon in the PBL and the cooling at surface

resulting from reduced solar radiation. Lack of this

effect in the northern part of the study domain may be

related to the relatively warm sea surface and local

increase in air temperature. In the case of daily values

the differences in PBLH for some regions

reach ± 100 m. These changes may have a great

impact on air pollution behaviour in the air. Reduced

PBLH indicates a more stable planetary boundary

layer and can thus further increase air pollution over

areas where air pollution is already severe (ZHANG

et al. 2010).

Inclusion of direct feedback increases specific

humidity for the western and north-western part of

the domain (Fig. 3, supplementary materials).

Inclusion of indirect feedback intensifies this effect

for some parts of these regions. There is a strong

impact of the indirect effect on specific cloud water

content (QCLOUD) over the Baltic Sea and north-

western and southern regions of the domain.

Specific cloud water content increases notably for

INDIR in comparison to the BASE and also DIR

simulations and these changes are opposed to

changes in Q2 (Fig. 3, supplementary material). For

the region with the highest difference in QCLOUD

between INDIR and BASE and relatively small

difference between them, the vertical profile of

QCLOUD was plotted (LOC1: 49.0�N, 20.0�E,

LOC2: 52.0�N, 20.0�E, Fig. 4 in supplementary

material). For the first location the vertical profile

shows higher QCLOUD values for the INDIR sim-

ulation in comparison to BASE and DIR between

the 1st and 5th model layers, but above these layers

the results for the three simulations are the same.

The highest difference between INDIR and BASE is

for the 1st and 4th model layer. For the second

location the QCLOUD profile is more diverse and

differences appear both between the DIR and BASE

and INDIR and BASE simulation. Generally, the

Figure 9
Time series of average differences in modelled PM10 concentrations between the DIR and BASE and INDIR and BASE simulations

M. Werner et al. Pure Appl. Geophys.
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highest values are for INDIR but for some areas

(model layer 5) QCLOUD is the highest for BASE.

For the episodes of the 19th and 29th January, for

some areas the decrease in QCLOUD is higher than

0.02 g kg-1 (Table 1 and Fig. 5, supplementary

material). In the case of the INDIR simulation the

spatial distribution of mean monthly changes is

similar to DIR and ranges mainly between 0.001 and

0.300 g kg-1. Considerable changes in monthly sum

of rainfall for DIR simulation were found in contrast

to the comparatively small changes in solar radiation

for these regions. The pattern of the precipitation is

not related to SWDOWN or QCLOUD.

Due to the direct effect, for 85 % of the domain,

the mean monthly PM10 concentrations increase by

up to 1.9 lg m-3. A decrease of up to -0.4 lg m-3

was noticed over Baltic sea as well as in the western

and partially also southern parts of Poland. For the

INDIR simulation, generally a decrease is observed

by -0.17 -1.0 lg m-3 in comparison to DIR but

locally in central Poland an increase appears. Par-

tially, it could be explained by liquid phase aerosols

formation, as suggested in FORKEL et al. (2012). In the

case of daily values, differences in PM10 concentra-

tion between DIR and BASE reach 14.0 lg m-3 and

are positive for about 80 % of the domain. Compar-

ison of hourly PM10 concentrations between INDIR

and BASE for the 19th and 29th of January at 12.00

gives differences of -33.0 7 28.0 lg m-3 and

-12724 lg m-3, respectively.

The meteorological WRF model results for T2,

RH2, PSFC and W10 perform well when compared

with observations, with a high IOA for all parameters.

Inclusion of feedback effects slightly decreases the

error statistics for air temperature and relative

humidity. Modelled solar radiation (SWDOWN) is in

good correlation with observations, but observed

values are overestimated by the model. Inclusion of

feedback effects improves MB and MGE statistics.

There are no large differences in mean model per-

formance for PM10 concentration among the

simulations. However, the worst results are obtained

for the BASE simulation. The model has a tendency

towards overestimation of observed PM10 concen-

trations at the sea coast station. This may be related to

overestimation of sea salt aerosol emission as mod-

elled wind speed is higher than observed values from

meteorological stations in this region.

The results illustrate the potential importance of

the aerosol feedback effects on modelled meteorol-

ogy and PM10 concentrations. This influence is

noticeable for mean monthly values but is evidently

higher for daily and hourly episodes. This agrees well

with previous studies with the COSMO-ART model

on Saharan dust (STANELLE et al. 2010) and experi-

ments from the EUCAARI campaign

Figure 10
Taylor diagrams for PM10 concentrations for the INDIR simula-

tion: according to type of station (background, industrial and

traffic, the upper figure), according to station type of area (rural,

suburban and rural, the middle figure) and using only background

stations and plotted according to station area type (the lower figure)
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(ATHANASOPOULOU et al. 2013). We made our simu-

lations for a winter month which due to low

temperatures and limited sun-shine has limited

emissions from nature. A summer simulation should,

therefore, provide a much higher impact from feed-

back effects. This suggests that for studies in high

temporal resolution the online models are necessary

to describe the processes and feedback effects cor-

rectly to obtain the most reliable results. For long-

term studies the offline models in most cases meet the

requirements as the overall feedback effect is reduced

over longer periods. This study has been based on the

winter period, which is characterised in Poland by

high anthropogenic emissions of particulate matter

Figure 11
Mean monthly (upper line) and mean daily for the 29th of January spatial differences in PM10 concentrations between DIR and BASE (left)

and INDIR and BASE (right) (different scales for monthly and daily maps)
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and severe meteorological conditions. However, it

was noticed that the highest feedback effects are not

strictly related with the highest particulate matter

concentrations. We suggest to carry out a similar

study for this region for the summer period, which is

characterised by higher solar radiation, high BVOC

emissions from nature and more dynamic PBL, or

during episodes with substantial transport of particles

due to Saharan dust.
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The Relevance of Surface Roughness Data Qualities in Diagnostic Modeling of Wind Velocity

in Complex Terrain: A Case Study from the Śnie _znik Massif (SW Poland)
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Abstract—Numerical modeling of wind velocity above com-

plex terrain has become a subject of numerous contemporary

studies. Regardless of the methodical approach (dynamic or diag-

nostic), it can be observed that information about surface roughness

is indispensable to achieve realistic results. In this context, the

current state of GIS and remote sensing development allows access

to a number of datasets providing information about various

properties of land coverage in a broad spectrum of spatial resolu-

tion. Hence, the quality of roughness information may vary

depending on the properties of primary land coverage data. As a

consequence, the results of the wind velocity modeling are affected

by the accuracy and spatial resolution of roughness data. This paper

describes further attempts to model wind velocity using the fol-

lowing sources of roughness information: LiDAR data (Digital

Surface Model and Digital Terrain Model), database of topo-

graphical objects (BDOT10k) and both raster and vector versions

of Corine Land Cover 2006 (CLC). The modeling was conducted

in WindStation 4.0.2 software which is based on the computational

fluid dynamics (CFD) diagnostic solver Canyon. Presented exper-

iment concerns three episodes of relatively strong and constant

synoptic forcing: 26 November 2011, 25 May 2012 and 26 May

2012. The modeling was performed in the spatial resolution of 50

and 100 m. Input anemological data were collected during field

measurements while the atmosphere boundary layer parameters

were derived from the meteorological stations closest to the study

area. The model’s performance was verified using leave-one-out

cross-validation and calculation of error indices such as bias error,

root mean square error and index of wind speed. Thus, it was

possible to compare results of using roughness datasets of different

type and resolution. The study demonstrates that the use of LiDAR-

based roughness data may result in an improvement of the model’s

performance in 100 and 50 m resolution, comparing to CLC and

BDOT10k. Furthermore, a slight improvement of these results can

be accomplished if the LiDAR-based roughness calculation process

includes the variable of prevailing wind direction. Qualities of both

CLC and BDOT10k raw datasets (imposed land coverage classes,

necessity of the roughness classes assignment) induce relatively

high values of the modeled velocity error indices. Hence, these and

other similar datasets need to be carefully analyzed (e.g. compared

with aerial or satellite imagery) before they are used in the process

of roughness length parameterization.

Key words: Roughness length, LiDAR, diagnostic wind

velocity modeling, computational fluid dynamics, sudetes.

1. Introduction

Proper surface roughness estimation is consid-

ered as one of the most important aspects of

microscale and mesoscale meteorological modeling

(HANSEN 1993; EMEIS and KNOCHE 2007). Regardless

of the methodical approach (dynamic or diagnostic) it

can be assumed that roughness input data signifi-

cantly affects results of the near-ground wind velocity

modeling; only proper roughness parameterization

may result in a realistic spatial distribution of mod-

eled wind velocity. Hence, preparation of the input

roughness dataset involves consideration of two

issues: a method of roughness estimation and prop-

erties of the source of information.

The aerodynamic surface roughness z0 value is the

height above a surface at which the logarithmic

profile of wind speed versus altitude extrapolates to

zero wind speed (JACOBSON 2005). Under neutral

conditions, the idealized near-surface wind velocity

profile can be expressed as:

uðzÞ ¼ u�
j

ln
z

z0

� �
ð1Þ

where u* denotes friction velocity, j von Karman’s

constant (j = 0.4), z height above reference plane

and z0 aerodynamic surface roughness length (EMEIS

and KNOCHE 2007). The z0 value can be treated as a

fixed property of the surface; it is usually derived

from measured wind profiles. The empirical estima-

tion of roughness length has been considered by

many authors since 1950s for both natural and
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anthropogenic surfaces. Hence, some analyses consist

of exhaustive lists of z0 values assigned to specific

forms of land coverage (e.g. HANSEN 1993; CHO et al.

2012). A detailed review of roughness data from

boundary-layer experiments was provided by WIER-

INGA (1993), who stated that the classification created

by DAVENPORT (1960) describes roughness of land-

scape types in the most reliable way. After several

updates (WIERINGA et al. 2001), it has become prob-

ably the best field-validated roughness classification

to date (HAMMOND et al. 2012) (Appendix 1).

On the other hand, numerous authors have

focused on the relation between z0 value and

parameters of surface obstacles. This approach

resulted in a broad range of roughness definitions. For

instance, roughness length can be described simply as

a function of surface objects height (e.g. PLATE 1982;

GARRATT 1994; LOPES 2013):

z0 ¼ fhc ð2Þ

where hc denotes height of the roughness element.

The f value of 0.15 is recommended for most natural

surfaces (PLATE 1982). In fact, it depends on the

layout and shape of roughness elements. Hence, the

f range is variously specified, depending on the

author, e.g. 0.03–0.25 (LOPES 2013) or 0.07–0.14

(GARRATT 1994). Subsequently, the exploration of

properties of roughness elements (and their relation to

z0) resulted in the inclusion of much more sophisti-

cated morphometric analyses in the process of surface

roughness estimation. These methods are usually

applied in order to determine aerodynamic parame-

ters of dense urban areas, where empirical

anemometric estimation of z0 may not give sufficient

results or is impossible to perform (GRIMMOND and

OKE 1999; SUDER and SZYMANOWSKI 2014).

Direct application of the logarithmic law (Eq. 1)

encounters difficulties in the areas which are densely

built-up or covered by high vegetation. Thus, an

additional parameter, a zero-plane displacement

height (d), was added to roughness description (THOM

1971; JACKSON 1981), resulting in:

uðzÞ ¼ u�
j

ln
z � d

z0

� �
ð3Þ

where d value can be regarded as a datum height

above which normal turbulent exchange takes place

(HANSEN 1993). It is comparable to the depth of an air

layer trapped in vegetation (or in urban structure) and

depends on the density of the obstacles—the d be-

comes negligible when they are sparsely distributed

(WIERINGA 1993). However, some authors raise the

controversial aspect of the zero-plane displacement,

stating that much information concerned with d can

be included in z0 by increasing its value (DONG et al.

2001).

Aforementioned roughness parameters refer only

to homogenous surfaces. In practice, the single grid

cell of the numerical flow model usually represents

heterogeneous land use, which should be parameter-

ized by the effective roughness length z0eff (EMEIS and

KNOCHE 2007). According to TAYLOR (1987), the z0eff

can be approximated by an ensemble average of local

z0 values inside the grid cell. A different approach

was proposed by YAMAZAWA and KONDO (1989) who

considered that z0eff should be calculated for the

windward fetch areas which was a wedge with 458
angle and a radius R = 100 ha (where ha denotes

height of the anemometer placement). Similarly,

HAMMOND et al. (2012) calculated z0eff as an arith-

metic average of z0 values within fans of various

radius lengths (from 100 to 500 m).

An utterly different concept of surface drag

parameterization concerns sub-grid scale orographic

effects (WOOD et al. 2001, JIMENEZ and DUDHIA 2012).

In reality, orography is not uniform—there are con-

cave and convex terrain forms which are too small to

be represented explicitly within a single grid of

assumed resolution. Hence, additional parameteriza-

tion (of momentum equation) should be made in

order to include terrain characteristics inside every

grid. This problem applies mainly to mesoscale

meteorological models—a fine example is provided

by JIMENEZ and DUDHIA (2012), who demonstrate

improvements of WRF model’s performance (reso-

lution—2 km) by use of the standard deviation of the

subgrid-scale orography as well as the Laplacian of

the topographic field.

In reference to the aforementioned methodical

background, it is possible to focus on potential

sources of information about roughness. The current

state of remote-sensing techniques and GIS systems

development allows one to access a number of

datasets from which roughness length z0 can be

K. Jancewicz, M. Szymanowski Pure Appl. Geophys.
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derived. They can be, in general, classified into four

categories—three of which are remote-sensing-based

(Table 1).

The first two groups of datasets provide infor-

mation about distribution of land-coverage types

inside the selected area. Thus, the values of surface

roughness length (z0) can be assigned to the consec-

utive land-coverage classes. Therefore, the quality of

roughness information depends on the initial data

resolution, the number of included land-use types and

the accuracy of assignment of roughness length val-

ues. The last issue is considerably dependent upon the

choice of appropriate roughness values from those

proposed by various authors (e.g. Corine Land Cover

roughness length values—SILVA et al. 2007).

Regardless of the processing issues, an unquestion-

able advantage of these datasets is their accessibility.

The third group of datasets—the multi-spectral

satellite images—allows to parameterize roughness

as a derivative of vegetation indices, calculated from

the bands of particular spectrum. For instance, the use

of the normalised difference vegetation index (NDVI)

(RAMLI et al. 2009) and the leaf area index (LAI)

(SCHAUDT and DICKINSON 2000) to calculate z0 should

be mentioned in this context.

The last group contains high-resolution digital

surface models (DSMs) and digital terrain models

(DTMs). They are usually derived from data gathered

by the airborne light detection and ranging (LiDAR)

devices. Subtracting DTM from DSM results in a

dataset containing a height of surface objects (hc from

the Eq. 2) (HAMMOND et al. 2012). In consequence it

is possible to estimate z0 values within very high (2 m

or less) resolution and then recalculate it into z0eff

which represents a surface appropriate to model grid

size. Another advantage of LiDAR-based data is the

fact that obtained z0 has a continuous form. Thus, it

should give much better approximation of real sur-

face properties than pre-classified land-cover data.

In consequence, the present authors intend to

consider how the properties and the quality of

roughness data affect the results of the wind velocity

modeling. The starting point is a recent research on

using the CLC data in a case study of near ground

wind field diagnostic modeling (solver: Canyon,

LOPES 2003) in mountainous terrain. JANCEWICZ

(2014) demonstrated that including CLC-derived

input roughness information generally adjusts mod-

el’s performance, comparing to the results achieved

with spatially-uniform roughness (root mean squared

error of velocity = 1.0 m/s instead of 1.6 m/s).

However, he also concluded that raw CLC data may

generate incorrect spatial distribution of roughness

values due to the terrain complexity. Therefore, one

could cautiously suppose that the use of a more

detailed (or higher-quality) source of roughness

information may further improve the performance of

the model. An opportunity of using airborne LiDAR-

derived data and a detailed topographical database is,

in that case, especially promising.

This study concerns continued attempts of wind-

field modeling in a part of the Śnie _znik Massif, which

Table 1

Main sources of data used in the roughness length estimation

Data type Examples of studies concerning roughness determination or wind

velocity modelling

Land-use components of vector topographic databases Top10DK: HASAGER et al. (2003)

Remote-sensing-based land coverage qualitative datasets Corine Land Cover

HASAGER et al. (2003), SILVA et al. (2007), TRUHETZ (2010), JANCEWICZ

(2014) and DE MEIJ and VINUESA (2014)

Global land cover characterization

MORALES et al. (2012)

Multi-spectral satellite images Landsat TM: JASINSKI and CRAGO (1999) and RAMLI et al. (2009)

SPOT-5 TIAN et al. (2011)

NOAA-AVHRR: SCHAUDT and DICKINSON (2000)

Remote-sensing-based high-resolution digital surface models

(DSMs) and digital terrain models (DTMs)

Airborne LiDAR-based DSM and DTM COLIN and FAIVRE (2010), TIAN

et al. (2011) and HAMMOND et al. (2012)
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were undertaken in order to settle an issue of the

potential impact of roughness data properties (reso-

lution, data type) on the results of near-ground wind

velocity diagnostic modeling.

2. Study Area

The Śnie _znik Massif, divided by the border of

Poland and the Czech Republic (known there as

Králický Sněžnı́k) (Fig. 1), is the second highest

mountain terrain in the Eastern Sudetes. The highest

peak of the massif is Śnie _znik (1425 m a.s.l.). The

massif itself represents a prominent orographic bar-

rier, as it is surrounded by valleys and basins.

Therefore, its morphology, containing deep valleys

and long ridges (altitude range 1100–1300 m a.s.l.),

causes local deformations of air flow. Prevailing wind

directions are W, SW, S. If they are combined with

strong synoptic forcing, then air-flows follow valley

axes in the windward part of the massif. If conditions

are favourable, foehn winds occur and the adaptation

of flow direction may be also observed in leeward

valleys (PIASECKI 1996; PIASECKI and SAWIŃSKI 2009).

Since 2011, the Śnie _znik Massif has been an area

of studies focused on diagnostic modeling of near-

ground air-flow using GIS techniques and remote-

sensing data (JANCEWICZ 2014). The research polygon

covers an area of 120 sq km in the north-western part

of the massif (Fig. 1); within this area the altitude

varies from 421 to 1425 m a.s.l. A detailed map of

this area is presented on Fig. 2.

3. Methods

The modeling process was carried out using

WindStation 4.0.2 software. It is based on the CFD

Figure 1
Position of the study area (marked by the red rectangle)
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solver Canyon, which solves for mass conservation,

momentum conservation (Navier–Stokes equations),

energy conservation and turbulence quantities (k–e
model) (LOPES 2003, 2013). The first version of

WindStation was presented in 2003—its performance

was validated using data obtained from the Askervein

Hill site and two test areas in Portugal (LOPES 2003).

Later versions were used in several studies. COLIN and

FAIVRE (2010) applied Canyon in the process of

aerodynamic roughness length estimation in Heihe

basin (China), using high-resolution LiDAR elevation

data. ABBES and BELHADJ (2012) used it to estimate

resources of wind energy in the El-Kef region

(Tunisia). Eventually, Canyon solver was used by

JANCEWICZ (2014) in an experiment concerning the

modeling of near-ground wind velocity and direction

at the test-site in the Śnie _znik Massif (SW Poland).

The input anemological data were obtained during

short periods (6 h a day—from 9:00 to 15:00 CET/

CEST)—velocity measurements were taken at a

height of 2 m above ground at 5 min intervals, using

Kaindl Windmaster 2 anemometers. Wind direction

was estimated to the nearest of the 16 points of the

compass as a result of observation of banners

mounted on poles—in accordance with official

guidelines (WMO 2008). Spatial distribution and the

Figure 2
Distribution of wind measurement points inside the study area (after JANCEWICZ 2014)
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list of measurement points are presented respectively

in Fig. 2 and Table 2. This distribution pattern of

anemometers was premeditated—the velocity was

recorded within a broad range of altitude, relative

exposure to mean wind direction, yet in the locations

of minimized screening by topographic objects or

vegetation (except Czarna Góra and Międzygórze 2

sites—JANCEWICZ 2014).

Similarly to the previous study, the experiment

presented here concerns three episodes of relatively

strong and constant synoptic forcing: 26 November

2011, 25 May 2012 and 26 May 2012 (Fig. 3). Dif-

ferences between the velocity ratio at Kłodzko and

Mt Šerak synoptic stations (Fig. 1) (JANCEWICZ 2014)

can be partly explained by prevailing wind direction

(November—WNW, both May days—NE/NNE),

also diurnal local convection should be considered

during May episode. A slow decrement of wind

velocity on Mt Šerak (May 26, Fig. 3c) may also be a

consequence of gradual weakening of horizontal

pressure gradient. However, field measurements did

not indicate such changes of velocity ratio between

points placed at high and low altitudes during mea-

surement periods. In consequence, these 3 days were

recognized as the most suitable for further modeling

regarding vices and virtues of the diagnostic solver.

Further anemological data preparation involved

calculation of hourly mean velocity values and pre-

vailing directions in order to create an input dataset

for the model. Wind conditions from the upper parts

of the atmospheric boundary layer were obtained

from upper air soundings performed in stations

nearest to the study area: Prague-Libus, Prostějov and

Wrocław. Those stations are relatively far from the

study area, nevertheless the mean values of upper

wind velocity and direction had to be introduced as

the only available approximation. The results of the

soundings were provided by the Department of

Atmospheric Science at the University of Wyoming

(http://www.weather.uwyo.edu/upperair/sounding.

html, access date: June 10, 2012).

The second component of the input data was a

LiDAR-based high resolution (1 m) Digital Terrain

Model (DTM)—a product of IT System of the

Table 2

Measurement points used in the wind velocity modeling case study (after JANCEWICZ 2014)

ID Measurement

point

k u Altitude

(m)

Measurements

26-11-2011 25-05-2012 26-05-2012

Mean V

(m/s)

Mean

direction

Mean V

(m/s)

Mean

direction

Mean V

(m/s)

Mean

direction

1 Czarna Góra 16�48006.30 0E 50�15021.90 0N 1122 – – – – 2.6 45

2 Hala p.

Śnie _znikiem

16�49059.60 0E 50�12024.90 0N 1229 3.6 270 3.5 0 – –

3 Idzików 16�45003.20 0E 50�16026.90 0N 567 – – – – 4.1 0

6 Jaworek 16�43052.30 0E 50�13014.30 0N 494 – – 4.3 7.5 – –

4 Jaworek Górny 16�45042.70 0E 50�13007.50 0N 759 – – – – 3.6 7.5

5 Kletno 16�52026.80 0E 50�16001.70 0N 611 – – 4.7 348.8 – –

7 Łąki

Myśliwskie

16�46037.60 0E 50�14014.00 0N 795 1.3 247.5 – – 2.8 45

8 Mariańskie

Skały

16�49012.40 0E 50�14000.10 0N 1133 3.9 225 – – 4.8 22.5

9 Międzygórze 1 16�44020.80 0E 50�13042.60 0N 520 2.8 202.5 2.2 0 – –

10 Międzygórze 2 16�46023.10 0E 50�13051.80 0N 636 – – – – 1.7 191.3

11 Puchaczówka 16�48046.40 0E 50�15050.30 0N 868 – – 3.3 45 – –

12 Śnie _znik 1 16�50049.50 0E 50�12025.50 0N 1424 3.5 213.8 – – – –

13 Śnie _znik 2 16�50049.60 0E 50�12028.10 0N 1423 – – 9.0 22.5 – –

14 Średniak 16�49016.70 0E 50�12043.90 0N 1199 5.5 247.5 4.2 22.5 – –

15 _Zmijowa

Polana

16�48051.40 0E 50�14053.10 0N 1047 2.8 202.5 – – 3.2 22.5
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Figure 3
Atmospheric pressure field over Europe (left) and wind velocity observed within study area and in Serak and Kłodzko synoptic stations (right)

during measurement time-periods : a 26 November 2011; b 25 May 2012; c 26 May 2012 (after JANCEWICZ 2014)
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Country’s protection against extreme hazards (ISOK)

Project (http://www.isok.gov.pl/en/products-of-isok-

project, access date: May 30th, 2015). The model

was resampled using cubic convolution method to

100 and 50 m in order to fit the settings of calculation

domain.

The third input data component contained

roughness information derived from four different

datasets:

1. Corine Land Cover 2006 raster dataset (CLCR)

(version 15) (2011)—100 m resolution, provided

by the European Environmental Agency (EEA);

2. Corine Land Cover 2006 vector dataset (CLCV)

(version 17) (2013)—provided by EEA;

3. Database of topographical objects (BDOT10k)—

vector database, corresponding to topographic

map scale 1:10,000—provided by the Polish Head

Office of Geodesy and Cartography.

4. LiDAR-based DSM and DTM, spatial resolution:

1 m, provided by the Polish Head Office of

Geodesy and Cartography.

Due to different properties, each dataset had to be

individually pre-processed in order to fit the domain’s

resolution and to provide input roughness information

required by WindStation—the height of surface

objects (hc). Thus, the CLCR data were resampled to

50 m with use of the majority technique, while CLCV

and BDOT10k were converted to raster format in the

appropriate resolutions using maximum combined

area approach (in consequence, the raster values

reflected a dominant type of land coverage inside

every cell). The next step was assignment of rough-

ness length, which was based on the Finnish Wind

Atlas (http://www.tuuliatlas.fi/modeling/mallinnus_3.

html, access date: March 20th, 2014) and SILVA et al.

(2007). In the case of BDOT10k, original land use

classes had to be matched with CLC classification.

Finally, the assigned z0 values allowed calculating the

hc values according to the transformed Eq. 2 (PLATE

1982; LOPES 2013):

hc ¼
z0

0:15
ð4Þ

The results of the roughness classes’ assignment

are presented in Table 3.

A different approach was required in case of

LiDAR data. Firstly, the hc was calculated, with

reference to HAMMOND et al. (2012):

hc ¼ 0:6ðDSM � DTMÞ ð5Þ

where 0.6 is the value of porosity factor P (HEISLER

and DEWALLE 1988) and approximates the porosity of

forest canopy. Secondly, the initial hc raster was

recalculated to obtain mean values of hc for every 50

and 100 m grid.

Table 3

Roughness classes assigned to CLC and BDOT10k datasets

Land-use class names z0

(m)

hc

(m)

% of total area

CLC (raster) CLC (vector) BDOT

10k

Inland water 0.0 0.0 0.0 0.0 0.1

Bare rock; dump sites; mineral extraction sites 0.01 0.07 0.0 0.0 0.2

Natural grasslands; non-irrigated arable land; pastures 0.03 0.2 17.4 17.2 24.3

Roads and associated land 0.04 0.3 0.0 0.0 0.2

Complex cultivation patterns; land principally occupied by agriculture with

significant areas of natural vegetation

0.1 0.7 9.9 10.0 0.0

Sparsely vegetated areas 0.2 1.3 0.0 0.0 0.2

Agro-forestry areas; construction sites; fruit trees and berry plantations; green

urban areas

0.3 2.0 0.0 0.0 1.3

Transitional woodland-shrub 0.4 2.7 7.2 7.2 1.1

Discontinuous urban fabric 0.6 4.0 1.4 1.4 1.0

Broad leaved forest; coniferous forest; mixed forest 1.4 9.3 64.0 64.2 71.5

Continuous urban fabric 1.5 10.0 0.0 0.0 0.1
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Figure 4
Distribution of the height of surface objects (hc) inside the study area, according to the: a CLC raster version, b CLC vector version. Yellow

dots indicate measurement/validation points
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Figure 5
Distribution of the height of surface objects (hc) inside the study area, according to the: a BDOT10k vector database, b LiDAR-based DEM

and DSM. Yellow dots indicate measurement/validation points
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The results of the foregoing procedure are pre-

sented on roughness maps (Figs. 4, 5), which clearly

demonstrate how the spatial distribution of roughness

can differ according to the source’s properties.

Unsurprisingly, the LiDAR data provided the most

detailed and realistic spatial distribution of hc

(Fig. 5), reflecting gradual decrease of forest vege-

tation height towards higher altitudes. This

phenomenon is shown by neither CLCR, CLCV nor

BDOT10k, which rely on an average roughness value

for ‘‘forest’’ class. However, both CLC datasets

include class of ‘‘transitional woodland-shrub’’,

which gives lower roughness values on the ridges

(Table 3; Fig. 4), while BDOT10k presents forest as

completely uniform. On the other hand, this dataset

provides (comparing to both CLCs) a much more

detailed spatial distribution of roughness elements in

the areas dominated by agricultural or post-agricul-

tural land-use forms (Fig. 5). Overall, the different

ways of representing roughness of forested areas by

particular datasets cause significant differences

among the range of high roughness values (Fig. 6).

The aforesaid roughness data were calculated

according to the TAYLOR’S (1987) concept of effective

roughness length, which is insensitive to the variable

of wind direction. However, the authors also recal-

culated hc values of LiDAR data basing on the

upwind fetch approach (YAMAZAWA and KONDO 1989;

HAMMOND et al. 2012). This resulted in ‘‘windward

effective hc’’ (hceff) which is a mean value for fans of

45� angle, 200 m radius from the initial cell and the

azimuth value matched to the wind direction which

was prevailing during the modeled episode.

Eventually, modeling was conducted, using con-

secutively four prepared roughness datasets. The

computational grid had 292 9 252 9 20 nodes, with

the first node placed at 4 m. Similarly to the previous

studies (LOPES 2003; JANCEWICZ 2014), a neutral

atmospheric stability was assumed. This decision was

supported by analyses of aerological soundings con-

ducted at stations in Wrocław, Prague and Prostějov.

Again, it should be emphasized that those are the

nearest stations, yet they are still very far from the

study area (ca. 100 km). Hence, the results of

Figure 6
Percentage share of roughness parameter hc classes inside the study area, depending on the initial source of roughness information
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soundings cannot be uncritically considered as a

source of detailed information on vertical changes of

atmospheric stability within the calculation domain.

Furthermore, the model setup requires choosing

between stable, neutral or unstable conditions for an

entire altitude range of the domain. In these circum-

stances, an assumption of neutral conditions seems to

be a justified simplification. Nonetheless, while

interpreting the results of modeling, one should

consider possible occurrence of shallow layers char-

acterized by low values of temperature gradient (or

even thermal inversion), especially on 26 November

2011, though it is not explicitly indicated by wind

velocity field measurements nor background data

from stations at Kłodzko and Mt Šerak. Conse-

quently, the results and the following conclusions

apply only to the aforesaid assumptions.

Raw output data were converted to a point vector

layer and, subsequently, to a raster format using the

spline interpolation method. Additionally, the mean

velocity was calculated for selected hours and dif-

ferent roughness data setups; this calculation based

on the raster representations of wind velocity at 2 m

above ground, which were a result of the model’s

consecutive runs. Finally, it was possible to present

examples of spatial variability of modeled velocity

and to compare the effects of using different rough-

ness datasets.

The model’s performance was evaluated through

the execution of a modified leave-one-out cross-val-

idation. The measured wind velocity data served as a

base to create two subsets (‘‘training’’ data and vali-

dation data). Per every observational hour, 20

different training datasets were randomly chosen with

the stipulation that all of them had to contain at least

two measurement points. In consequence, 120 runs of

the model were performed per every day and

roughness setup (JANCEWICZ 2014). As a result, the

following indices were calculated: velocity Bias (Bv),

root mean square error of velocity (RMSEv), index of

wind speed (Iv); the equations are presented in

Table 4.

4. Results and Discussion

The procedure applied created possibility to

compare spatial differences between near-ground

wind-velocity fields, which were calculated on the

basis of different roughness input data. Examples of

velocity maps are presented on Figs. 7, 8 and 9, while

maps presenting the spatial distribution of mean

velocity differences are displayed on Figs. 10 and 11.

It becomes clear that the spatial variability of velocity

strongly reflects the distribution of hc parameter (see

roughness maps in Figs. 4, 5). Therefore, it is not

surprising that the use of CLCR and CLCV roughness

data yielded very similar wind-fields (Fig. 7)—some

slight differences may be noticed only if the bound-

aries of land-use classes differ in location due to the

properties (raster/vector) of the initial datasets. Fine

examples of these differences can be observed on the

northern slopes of Jawor peak (SW part of the study

area) or on the slopes of Średniak and _Zmijowiec

(Fig. 10a).

The use of BDOT10k roughness resulted in a

wind-field characterized by relatively low velocities

above ridges and peaks at altitude of 1000–1300 m

a.s.l. (e.g. _Zmijowiec, Czarna Góra and southern

slopes of Śnie _znik) (Fig. 10b). This is because

Table 4

Error measures used in evaluation of overall wind velocity modeling results

Variable Error measure Equation Remarks

Wind

velocity

Bias error (EMERY et al. 2001) Bv ¼ 1
N

PN
i¼1 ðvm � voÞ vm—Modelled wind velocity

vo—Observed wind velocity

Root mean square error (EMERY

et al. 2001)

RMSEv ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
N

PN
i¼1 ðvm � voÞ2

q
vm—Modelled wind velocity

vo—Observed wind velocity

Index of wind speed LOPES (2003) Iv ¼ 1
N

PN
i¼1 100e

�0:692
v1
v2
�1

� �h i
v1, v2—Observed and simulated velocities or vice versa,

with v1[ v2
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Figure 7
Spatial distribution of mean modeled wind velocity at height of 2 m above ground (26 May 2012; 13:00); roughness length information

derived from: a CLC raster version, b CLC vector version. The velocity values were calculated from the results of 20 simulations based on

various combinations of the input measurement points (containing at least two points). Yellow dots indicate measurement/validation points,

numbers indicate point ID—see Tables 2 and 5
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Figure 8
Spatial distribution of mean modeled wind velocity at height of 2 m above ground (26 May 2012; 13:00); roughness length information

derived from: a BDOT10k vector database, b LiDAR-based DEM and DSM. The velocity values were calculated from the results of 20

simulations based on various combinations of the input measurement points (containing at least two points). Yellow dots indicate

measurement/validation points, numbers indicate point ID—see Tables 2 and 5
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Figure 9
Spatial distribution of mean modeled wind velocity at height of 2 m above ground (26 November 2011; 13:00); roughness length information

derived from: a BDOT10k vector database, b LiDAR-based DEM and DSM. The velocity values were calculated from the results of 20

simulations based on various combinations of the input measurement points (containing at least two points). Yellow dots indicate

measurement/validation points, numbers indicate point ID—see Tables 2 and 5
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Figure 10
Spatial distribution of mean modeled wind velocity differences (DV) at height of 2 m above ground (26 May 2012; 13:00). The comparison

concerns the following input roughness datasets: a CLC raster and CLC vector (DV = VCLCr - VCLCv); b CLC raster and BDOT10k vector

database (DV = VCLCr - VBDOT10k). Yellow dots indicate measurement/validation points, numbers indicate point ID—see Tables 2 and 5
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Figure 11
Spatial distribution of mean modeled wind velocity differences (DV) at height of 2 m above ground (26 May 2012; 13:00). The comparison

concerns the following input roughness datasets: a CLC raster and LiDAR-based DEM and DSM (DV = VCLCr - VLiDAR); b BDOT10k

vector database and LiDAR-based DEM and DSM (DV = VBDOT10k - VLiDAR). Yellow dots indicate measurement/validation points, numbers

indicate point ID—see Tables 2 and 5
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original BDOT10k land-use classes neglect ‘‘transi-

tional woodland-shrub’’ CLC category, thus sparse

coniferous forests (typical land coverage for these

altitudes in the Śnie _znik Massif and the whole

Sudetes range) are not represented properly. On the

other hand, BDOT10k data were accurate enough to

reflect the effects of linear obstacles such as trees and

bushes along the roads (e.g. a road leading westwards

from Międzygórze—Fig. 10b; see also Fig. 2) and

small vegetation canopies in foothill areas (e.g. NW

part of the area, near Idzików) (Fig. 10b). Moreover,

the distribution of velocity above the Śnie _znik dome

is completely different, comparing to CLC-based

results. This is caused by more realistic roughness

approximation due to avoidance of relief-induced

errors, as mentioned by JANCEWICZ (2014).

The wind-field modeled with use of LiDAR data

distinguishes itself by much higher velocity values at

high altitudes and relatively low velocities in densely

forested valleys (Figs. 8, 9, 11). This is an effect of

roughness data continuity which reflect details of

spatial variability of vegetation height inside the

canopies (Fig. 6).

The analysis of model performance indices

enables a more detailed insight into model’s perfor-

mance with an application of the aforementioned

roughness data. It is conspicuous that CLCR, CLCV

and BDOT10k datasets result in overall underesti-

mation of the wind velocity (Fig. 12) (Table 5),

though 100 m resolution induces greater underesti-

mation than 50 m, especially in case of CLCV and

BDOT10k. This is mostly caused by improper land

cover classification nearby measurement/validation

points (e.g. Śnie _znik 2; Mariańskie Skały, _Zmijowa

Polana). To the contrary, the LiDAR data result in

overall overestimation of the velocity (Bv = 0.11 m/s

within 100 m and 0.26 m/s within 50 m resolution).

In respect of RMSEv, Canyon model performed

best while using the LiDAR-based roughness

(RMSEv = 0.87 and 0.80 m/s for 100 and 50 m

resolution). BDOT10k and CLCV induced relatively

similar results (respectively: 1.41 and 1.42 m/s for

100 m grid; 1.09 and 1.15 m/s for 50 m grid), while

the highest error value characterized the CLCR output

(1.47 for 100 m and 1.33 for 50 m grid) (Table 5;

Fig. 12). These changes of mean error values might

be caused by emergence of some roughness details,

which were ‘‘sub-grid’’ in lower resolution—land-use

data are especially fragile to this type of effects due to

the their qualitative character. However, this cannot

be univocally stated within the presented experi-

mental setup and should be a subject of further

investigation. The detailed review of Bv and RMSEv

for particular validation points (Table 5) reveals that

the biggest differences between the results obtained

with different roughness datasets appear at Śnie _znik 2

and Mariańskie Skały locations. In the first case CLC

data lead to considerable underestimation of velocity

(up to -5.6 m/s in 50 m grid), BDOT10k results fitted

better (-1.2 m/s), while LiDAR-based results tend to

slightly overestimate it (0.4 m/s). The case of Mar-

iańskie Skały was similar—only LiDAR dataset

provided roughness information which could make

Canyon solve properly for this station. In this case,

the pre-classified land-use data do not give a proper

approximation of the pattern of roughness elements

nearby the measurement point. The big improvement

of model’s performance due to the growing number

of roughness details could be also observed at _Zmi-

jowa Polana, Jaworek, and Idzików. On the other

hand, at Czarna Góra site, the use of LiDAR data

caused a noticeable overestimation of velocity. This

single case implies conjecture of roughness under-

estimation—it can be caused by the value of porosity

factor which might be unfitting for the predominant

shapes of trees’ crowns at this altitude. Finally, the

most disturbing case is Śnie _znik 1 point, which is

characterized by high velocity overestimation

regardless of the input roughness data. This may be

caused by a local change of atmospheric stability

(shallow stable layer), which might have led to

decrement of wind velocity—if so, this problem

cannot be solved using mean parameterization for

atmospheric stability inside the whole calculation

domain. Unfortunately, there is no undeniable proof

that the aforementioned meteorological conditions

actually appeared, thus this explanation should only

be treated as a possibility.

According to the aforesaid observations, the

LiDAR data appeared to induce the best Canyon

performance. An additional application of the direc-

tion-dependent roughness parameter (hceff), applied

only for 50 m grid, resulted in further minor decre-

ment of the error values (Table 6). For instance, the
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mean RMSEV decreased by 0.04 m/s comparing to

the ‘‘standard’’ hc. This error measure also did not

change more than ±0.2 m/s in any measurement

point. Figure 13 provides the best illustration of the

subtlety of changes in the modeled velocity field.

Nonetheless, hceff-based results are characterized by

the mean Bv value of 0.17 m/s, which indicates that

the overall tendency to overestimate wind velocity is

slightly lower.

Comparing to the previous study at the Śnie _znik

Massif test site, the overall performance of the model

was improved. The mean RMSEV value was reduced

from 1.0 m/s (JANCEWICZ 2014) to little less than

0.8 m/s, while the mean Iv value increased from 82 to

85 (Table 7). However, in this study a different ele-

vation model was used than in the previous study.

Probably, there is a possibility to achieve further

improvements of model’s performance, as the

LiDAR data offer such a high level of details that

could be used in the process of roughness parame-

terization. However, a certain part of generated errors

may be a consequence of solver’s limitations.

5. Summary

This study demonstrates that the near-ground

diagnostic wind velocity modeling in mountainous

terrain (with an assumption of atmospheric neutral

stability and relatively constant wind conditions)

needs to be supported by apt roughness information.

The use of LiDAR-based input roughness dataset

improves performance of the diagnostic model,

comparing to the qualitative datasets. It is distinctly

expressed by calculated error indices. Moreover, the

change of grid resolution from 100 m up to 50 m

adjusts further model’s performance. A slight

improvement can be accomplished while modeling

with use of re-calculated ‘‘windward’’ roughness

values. One can observe that, while using various

input qualitative data, the differences between cal-

culated wind-velocity fields are caused by

interference of following key factors: data properties

(format and spatial resolution) and land-use

classification.

These observations lead to a major conclusion

that roughness information pre-processing should be

inevitably considered in relation to the qualities of the

available datasets.

On one hand there are pre-classified land coverage

sets which provide categorical information, hence the

estimated roughness is discrete. In consequence,

roughness information may contain errors due to.

(a) Insufficient number of land cover classes.

(b) Inappropriate roughness values assignment.

Figure 12
Impact of the particular roughness datasets on the overall values of

wind velocity modeling performance indices: a mean Bv, b mean

RMSEv, c mean Iv
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ó
rz

e

1

M
ię
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(c) Method of data collecting.

Accordingly, qualitative data have to be thor-

oughly analyzed (and corrected if necessary) before

being used as a source of an input roughness infor-

mation. Then, these datasets can provide a valuable

improvement of model’s performance, to be used

consistently with previous experience with empirical

roughness length estimation and classification.

On the other hand, high-resolution LiDAR-based

continuous elevation data offer plenty of possibilities

during the pre-processing stage. It is possible to

prepare a roughness dataset which is suitable for any

grid resolution. Furthermore, the continuous quanti-

tative datasets seem to be exceptionally interesting

within the scope of the optimization of ‘‘effective

roughness length’’ calculation process. Accordingly,

there are numerous issues which should be examined

in an experimental way:

(a) Calculation of roughness inside the windward

fan.

(b) Spatially variable canopy porosity.

(c) Application of solutions used in the modeling of

wind fields in urban areas.

(d) Sub-grid effects induced by micro relief.

Thus, it seems that it is still possible to refine the

roughness estimation process which may lead to

further improvements of diagnostic wind-velocity

modeling.

Table 6

Mean error measures calculated for particular validation points, considering results of modeling with use of standard LiDAR-based

roughness and its ‘‘windward’’ modification

Station name Czarna Góra Hala pod Śnie _znikiem Idzików Jaworek Jaworek

Górny

Kletno Łąki

Myśliwskie

Mariańskie

Skały

Bv

LiDAR 1.3 20.1 20.6 -0.6 0.1 0.1 -0.4 20.3

LiDAR

(windward)

1.2 -0.2 -0.7 -0.6 0.0 0.0 20.3 -0.4

RMSEv

LiDAR 1.3 0.3 0.7 0.8 0.4 0.3 0.8 0.4

LiDAR

(windward)

1.2 0.3 0.8 0.8 0.3 0.2 0.8 0.5

Iv

LiDAR 71 96 89 89 92 96 71 94

LiDAR

(windward)

73 96 87 89 94 97 73 93

Station name Międzygórze 1 Międzygórze 2 Puchaczówka Śnie _znik 1 Śnie _znik 2 Średniak _Zmijowa Polana Mean value

Bv

LiDAR 0.2 -0.6 0.2 3.4 0.4 0.9 0.1 0.26

LiDAR (windward) 20.1 -0.6 20.1 3.4 0.0 0.7 0.1 0.17

RMSEv

LiDAR 0.2 0.6 0.7 3.4 0.4 1.4 0.4 0.80

LiDAR (windward) 0.2 0.6 0.7 3.5 0.0 1.2 0.3 0.76

Iv

LiDAR 96 72 86 49 97 84 92 84.9

LiDAR (windward) 94 72 86 49 100 86 93 85.4

Bold font indicates the lowest error values
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Table 7

Comparison of Canyon CFD solver performance indices calculated for various test sites

Test

site

Poiares Region

(LOPES 2003)

Trevim Region

(LOPES 2003)

Śnie _znik Massif (constant

roughness) (JANCEWICZ 2014)

Śnie _znik Massif [CLC 2006 (2011)

roughness] (JANCEWICZ 2014)

Śnie _znik Massif

(LiDAR-based

roughness)

Mean

Iv

56 41 71 80 85

Figure 13
Spatial distribution of mean modeled wind velocity differences (DV) at height of 2 m above ground (26 May 2012; 13:00). The comparison

concerns two methods of LiDAR-based roughness parameterization: mean height inside grid cell (hc) and mean height inside windward-

placed fan of 200 m radius (hc eff) - (DV = Vhc - Vhceff). Yellow dots indicate measurement/validation points, numbers indicate point ID—

see Tables 2 and 5
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Appendix

See Table 8.

Table 8

Davenport classification of terrain roughness (WIERINGA et al. 2001)

z0 (m) Landscape description

0.0002

‘‘Sea’’

Open sea or lake (irrespective of wave size), tidal flat, snow-covered flat plain, featureless desert, tarmac and concrete, with a

free fetch of several kilometres

0.005

‘‘Smooth’’

Featureless land surface without any noticeable obstacles and with negligible vegetation; e.g. beaches, pack ice without large

ridges, marsh and snow-covered or fallow open country

0.03

‘‘Open’’

Level country with low vegetation (e.g. grass) and isolated obstacles with separations of at least 50 obstacle heights; e.g.

grazing land without wind breaks, heather, moor and tundra, runway area of airports. Ice with ridges across-wind

0.10

‘‘Roughly

open’’

Cultivated or natural area with low crops or plant covers, or moderately open country with occasional obstacles (e.g. low

hedges, isolated low buildings or trees) at relative horizontal distances of at least 20 obstacle heights

0.25

‘‘Rough’’

Cultivated or natural area with high crops or crops of varying height, and scattered obstacles at relative distances of 12–15

obstacle heights for porous objects (e.g. shelterbelts) or 8–12 obstacle heights for low solid objects (e.g. buildings)

0.5

‘‘Very rough’’

Intensively cultivated landscape with many rather large obstacle groups (large farms, clumps of forest) separated by open

spaces of about eight obstacle heights. Low densely-planted major vegetation like bush land, orchards, young forest. Also,

area moderately covered by low buildings with interspaces of 3–7 building heights and no high trees

1.0

‘‘Skimming’’

Landscape regularly covered with similar-size large obstacles, with open spaces of the same order of magnitude as obstacle

heights; e.g. mature regular forests, densely built-up area without much building height variation

C2.0

‘‘Chaotic’’

City centres with mixture of low-rise and high-rise buildings, or large forests of irregular height with many clearings
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The Role of Auxiliary Variables in Deterministic and Deterministic-Stochastic Spatial Models

of Air Temperature in Poland

MARIUSZ SZYMANOWSKI
1 and MACIEJ KRYZA

2

Abstract—Our study examines the role of auxiliary variables in

the process of spatial modelling and mapping of climatological

elements, with air temperature in Poland used as an example. The

multivariable algorithms are the most frequently applied for spa-

tialization of air temperature, and their results in many studies are

proved to be better in comparison to those obtained by various one-

dimensional techniques. In most of the previous studies, two main

strategies were used to perform multidimensional spatial interpo-

lation of air temperature. First, it was accepted that all variables

significantly correlated with air temperature should be incorporated

into the model. Second, it was assumed that the more spatial

variation of air temperature was deterministically explained, the

better was the quality of spatial interpolation. The main goal of the

paper was to examine both above-mentioned assumptions. The

analysis was performed using data from 250 meteorological sta-

tions and for 69 air temperature cases aggregated on different

levels: from daily means to 10-year annual mean. Two cases were

considered for detailed analysis. The set of potential auxiliary

variables covered 11 environmental predictors of air temperature.

Another purpose of the study was to compare the results of inter-

polation given by various multivariable methods using the same set

of explanatory variables. Two regression models: multiple linear

(MLR) and geographically weighted (GWR) method, as well as

their extensions to the regression-kriging form, MLRK and

GWRK, respectively, were examined. Stepwise regression was

used to select variables for the individual models and the cross-

validation method was used to validate the results with a special

attention paid to statistically significant improvement of the model

using the mean absolute error (MAE) criterion. The main results of

this study led to rejection of both assumptions considered. Usually,

including more than two or three of the most significantly corre-

lated auxiliary variables does not improve the quality of the spatial

model. The effects of introduction of certain variables into the

model were not climatologically justified and were seen on maps as

unexpected and undesired artefacts. The results confirm, in accor-

dance with previous studies, that in the case of air temperature

distribution, the spatial process is non-stationary; thus, the local

GWR model performs better than the global MLR if they are

specified using the same set of auxiliary variables. If only GWR

residuals are autocorrelated, the geographically weighted regres-

sion-kriging (GWRK) model seems to be optimal for air

temperature spatial interpolation.

Key words: Air temperature, spatial interpolation, auxiliary

variables, geographically weighted regression-kriging.

1. Introduction

Providing accurate, high-resolution spatial infor-

mation is one of the most challenging tasks of

contemporary environmental sciences. However, this

particularly concerns climatological and meteoro-

logical data as they are used not only for

climatological analysis itself, but they are frequently

applied as the significant input for modelling and

studies in many other scientific disciplines or appli-

cations, for example, in bioclimatology, dispersion of

atmospheric pollutants, or for planning and support-

ing location decisions. There are two general

approaches to the development of continuous spatial

climatological information: physically based and data

based. The first is performed by means of the cli-

matological models in either global [General Climate

Models (GCMs)] or regional/mesoscale models [Re-

gional Climate Models (RCMs)]. To the RCMs class

belong such models as, e.g. Weather Research and

Forecasting (WRF; SKAMAROCK et al. 2008) or

Regional Atmospheric Modeling System (RAMS;

PIELKE et al. 1992). The GCMs are typically run at

coarse spatial resolution (max. *50 km) and do not

account for local scale features and phenomena

caused, e.g. by topography, local land use/land cover

or clouds. To overcome these problems, various
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dynamical or statistical downscaling techniques can

be applied to process GCMs’ outputs (WILBY and

WIGLEY 1997). For example, the WRF model can be

used to dynamically downscale GCM simulations

even up to a few kilometres spatial grid (KRYZA et al.

2012; BOWDEN et al. 2012). But still, even if RCMs

are continuously developing and their accuracy and

spatial resolution are increasing, spatial interpolation

allowing for transformation from discretely dis-

tributed point data into continuous high-resolution

spatial information is the most frequently used for

mapping climatological/meteorological elements.

However, the final choice between physically based

or data-based spatialization procedures is strongly

dependent on many factors, including, e.g. the

specific user’s needs and skills, and the access to

required datasets, specialized software or computa-

tional resources.

There are dozens of methods available to perform

the spatial interpolation of various elements of the

natural environment. For example, LI and HEAP

(2008) reviewed 62 methods and their variations

applied and described in 51 publication. These

methods can be considered as universal which means

that they can be used for various environmental fea-

tures. The choice of the optimal algorithm in a given

case is a difficult task as it depends on characteristics

of the spatial process, properties of the modelled

variable, the expectations of the modeller, e.g.

assumed accuracy and resolution, the number and

spatial distribution of input data and many others. In

the selection of interpolation procedure, the classifi-

cations of the algorithms, presented, e.g. by HENGL

(2007), LI and HEAP (2008) or in COST ACTION 719

FINAL REPORT (2008), or the decision trees (HENGL

2007; SZYMANOWSKI et al. 2013) allowing for selec-

tion and grouping methods accordingly to their

theoretical basis and properties, might become useful.

Most of the ‘‘universal’’ spatialization methods have

been used for the interpolation of climatological

elements, like air temperature and atmospheric pre-

cipitation. There are also some methods that have

been intentionally developed or modified for the use

in climatology, e.g. lapse rate method (LR; LENNON

and TURNER 1995; WILLMOTT and MATSUURA 1995),

thin-plate splines (TPS; HUTCHINSON 1995), AUR-

ELHY (BENICHOU and LE BRETON 1987), PRISM

(DALY et al. 1994, 2008) and MISH (SZENTIMREY and

BIHARI 2004). There are also significant advances in

hierarchical Bayesian and non-stationary process

modelling techniques (HUERTA et al. 2004; AL-

AWADHI and AL-AWADHI 2006; CRESSIE and JOHAN-

NESSON 2008; YUE and SPECKMAN 2010; WILSON and

SILANDER 2014).

In the case of the air temperature spatialization,

where the physical processes and environmental co-

variables determining spatial distribution are quite

well known, the multivariable techniques based on

deterministic or geostatistical (or both) assumptions

are the most frequently used. The reviews of papers

and applications show that the most proper and fre-

quently applied for air temperature spatial

interpolation are residual kriging (regression-kriging,

RK), regression methods—mostly multiple linear

(MLR), and TPS (COST ACTION 719 FINAL REPORT

2008; SZYMANOWSKI et al. 2012). Less frequently,

other techniques, such as LR, PRISM, co-kriging

(CK), kriging with external drift (KED) or combi-

nation MLR ? IDW [inverse distance weighting

(IDW)], are also applied. All of them are multivari-

able approaches, performed with the use of one or

more environmental auxiliary variables.

In multivariate climatological interpolation, the

role of an explanatory variable is to replicate the

impact of environmental factor on the magnitude and

the distribution of the interpolated climate element. A

review of previous works, taking into account the

multidimensional techniques in air temperature spa-

tialization, indicates that there are variables that can

be considered as universal and almost always inclu-

ded in the analysis (e.g. elevation for air

temperature), and those that are used depending on

the climate (geographical) characteristic of a study

area and the scale of impacts (usually macro- to local

scale) taken into account. Altitude is the major factor

determining the spatial pattern of air temperature at

global/regional scales and when the longer averaging

periods are considered. Its level of influence on

temperature is usually many times greater than that of

other environmental factors (SZYMANOWSKI et al.

2012). In practice, one can be assured that if the

multivariate technique is used for air temperature

interpolation, the altitude is included in the set of

explanatory variables. However, there can be some

S. Mariusz, K. Maciej Pure Appl. Geophys.
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exceptions, as, for example, in the case of the urban

heat island interpolation for a city located in a flat

terrain (SZYMANOWSKI and KRYZA 2012).

The same, general group of auxiliary variables is

represented by coordinates, even if they are used less

frequently than altitude. Latitude and longitude (or

their counterparts in local coordinate systems) are

used to reflect an overall spatial trend. This trend can

be, for instance, a consequence of systematic changes

in insolation, the impact of the oceans, lands, or

mountain ranges and, in some cases, circulation-dri-

ven regularities with the advection of air masses (e.g.

NALDER and WEIN 1998; NINYEROLA et al. 2000;

USTRNUL and CZEKIERDA 2005; PERRY AND HOLLIS

2005a, b; SZYMANOWSKI et al. 2012, 2013). As the

coordinates are used to characterize general tenden-

cies over a study area, they are usually less applicable

for small areas with strong locally determined air

temperature fields (SZYMANOWSKI and KRYZA 2009,

2012). In some papers, in addition to coordinates, the

index of continentality has also been used (ATTORRE

et al. 2007; HOGEWIND and BISSOLLI 2011; KRAHEN-

MANN et al. 2011).

Another, very frequently used variable is a dis-

tance from the sea (WHITE 1979; BJORNSSON et al.

2007; BOI et al. 2011; JOLY et al. 2011) or distance

from other major bodies of water (HOLDAWAY 1996;

HIEBL et al. 2009; TIETAVAINEN et al. 2010). Distance

from water bodies, like most of the variables cap-

turing the impact of land use/land cover, is typical of

regional or local scale. Their impact, decreasing with

distance, is clearly marked up to 10 km and negli-

gible in practice for distances exceeding 100 km

from the sea (DALY 2006). The influence of other land

cover classes can also be observed locally (JARVIS AND

STUART 2001a, b; PERCEC TADIC 2010). Here, the

specific role is played by the impact of urban areas,

especially due to well-known phenomena of air

temperature rise in cities—the urban heat island

(CHOI et al. 2003; HIEBL et al. 2009; SZYMANOWSKI

et al. 2013).

Terrain relief usually also has a local influence on

the air temperature field. Various terrain derivatives

can be used to reflect the relief-controlled effects.

One of the most frequently applied is slope inclina-

tion (LENNON and TURNER 1995; SZYMANOWSKI et al.

2013); however, its role in physical processes

determining air temperature is ambiguous. This

variable probably should not stand alone but rather in

conjunction with terrain aspect (AGNEW and PALU-

TIKOF 2000; ATTORRE et al. 2007; HIEBL et al. 2009;

APAYDIN et al. 2011). The role of the relief, particu-

larly associated with the disposal of cooler air from

the slopes and a tendency to the accumulation of cold

air in concave terrain forms, is expressed in such

variables as concavity/convexity, relative height and

terrain curvature (NINYEROLA et al. 2007; ESTEBAN

et al. 2009; HIEBL et al. 2009; SZYMANOWSKI et al.

2013).

Relatively rarely used explanatory variable of air

temperature is solar irradiation (VICENTE-SERRANO

et al. 2003; ATTORRE et al. 2007; BENAVIDES et al.

2007; ESTEBAN et al. 2009; JOLY et al. 2011), even if

this variable is complex, representing general geo-

graphic, atmospheric and astronomic energetic

conditions, as well as local influence of terrain height

and relief (slope, aspect, and hillshades).

The above-mentioned variables can be used in

various shapes, for example, taking into account the

feature in certain directions only (VICENTE-SERRANO

et al. 2003; PERRY AND HOLLIS 2005a, b). Explanatory

variables can also be further modified by application

of various moving window filters (focal functions) to

simulate the effect of the so-called source area (de-

fined by the window size) on the air temperature

distribution (AGNEW and PALUTIKOF 2000; JARVIS and

STUART 2001a, b; SZYMANOWSKI et al. 2013). Auxiliary

variables can also be created as combinations of

environmental factors using map algebra or grouping

in principal components to reduce the dimension of

the model (WHITE 1979; LENNON and TURNER 1995;

BJORNSSON et al. 2007; PERCEC TADIC 2010).

In previous studies focused on multivariate

interpolation of air temperature, two main strategies

of appointing the set of explanatory variables were

used to specify the regression model. These were the

stepwise regression selection (KURTZMAN and KAD-

MON 1999; BROWN and COMRIE 2002; APAYDIN et al.

2011; BOI et al. 2011) or mandatory appointment of

auxiliary variables accordingly only to known phys-

ical processes but without in-depth analysis of

statistical interrelations (CHUANYAN et al. 2005; HO-

GEWIND and BISSOLLI 2011). However, in all these

attempts, it was assumed that the more spatial
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variation of air temperature is deterministically

explained, the better is the quality of spatial inter-

polation. The correctness of this assumption,

although intuitively justified, has not been thoroughly

verified. Thus, one of the purposes of this paper is to

review the above thesis—does the incorporation of

additional explanatory variables lead to the statisti-

cally significant improvement of the model

performance, compared with simpler models?

In the above-mentioned research, significantly

correlated variables were usually also introduced to

the model by the fact that their spatial patterns were

‘‘reproduced’’ on the maps of air temperature. How-

ever, there are some reports claiming that the

introduction of certain auxiliary variables to the

spatial models, even if they are significantly corre-

lated with air temperature, may lead to the

unexpected artefacts seen on the maps, if the expert

judgment is applied (SZYMANOWSKI et al. 2012).

This work addresses the role of the explanatory

variable selection for spatial interpolation of clima-

tological elements with air temperature used as an

example. We evaluate the role of auxiliary variables

in the spatial air temperature models, and present how

the environmental co-variables affect the quality of

spatial interpolation and how they affect the final

maps. This is the novelty of this paper both for cli-

matologists and for the researchers that perform

spatial interpolation of climate data with multivariate

geostatistical methods and use these data for their

own studies at various fields. We demonstrate the

importance of proper, conscious application of spatial

statistical approaches, and we quantitatively show

that over-reliance on physical deterministic relation-

ships may lead to less reliable results than finding a

balance between deterministic and stochastic model

components. Spatialization in this study is performed

with two spatial models frequently used for air tem-

perature interpolation: deterministically applied

regression and deterministic-stochastic combined

model—the residual kriging. Regression techniques

are represented here by two models: global—MLR,

and local—geographically weighted regression

(GWR), which are also extended to a deterministic-

stochastic form. These are relatively frequently used

multiple linear regression-kriging (MLRK) and

recently developed geographically weighted

regression-kriging (GWRK), respectively. All four

methods are included in the decision scheme for

selection an optimal interpolation method and have

been used for spatial modelling of air temperature

in Poland (SZYMANOWSKI et al. 2012, 2013). Two

main aspects of the models’ quality are considered.

First, how introducing the additional co-variables

affects the goodness-of-fit and the model errors in

the points of measurements. Second, how the

auxiliary variables visually modify the air temper-

ature maps.

2. Study Area

The study area is the territory of Poland, located

in Central Europe, between 49�000N and 54�500N,

and 14�070E and 24�090E. The overall area of Poland

is 312 679 km2 (with 791 km2 of marine internal

waters included). The altitude in the country varies

from 1.8 m below (N Poland) to 2499 m above sea

level (S Poland). The average height of Poland

(173 m a.s.l) is about 100 m less than that for Europe.

The areas located in zones: 100–200 m a.s.l. (49.7 %)

and 0–100 m a.s.l. (25.2 %) cover the majority of the

country area, and the areas located over 1000 m a.s.l.

cover only about 0.2 % (Fig. 1). Poland is charac-

terized by transitional climate with strong, varying

maritime and continental influences and prevailing

western flow.

The annual mean temperature in Poland changes

from below 0 �C in the upmost parts of the highest

mountains (Tatra Mts.) to [8.5 �C in W and SW

Poland (Słubice, Legnica, Wrocław; Fig. 1). How-

ever, in the lowland areas, mean values \7 �C are

observed only in the NE part of the country. Differ-

ences of mean air temperature in the coldest and

warmest years in relation to the long-term annual

average do not exceed 3 �C (WOŚ 2010), except for

the mountains. The spatial distribution of long-term

annual mean temperature, with general increasing

tendency to the south-west, indicates a general impact

of latitude and oceanic influences, strongly affected

by altitude. The highest values are observed in low-

lands and in the valleys of large rivers, and the lowest

annual means are noticed on the mountain tops

(KO _zUCHOWSKI 2011).
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There are large annual changes in the spatial

distribution of air temperature due to large scale cli-

matological factors. The W–E-oriented isotherms are

shaped by the insolation energy and compounded by

the impact of the Baltic Sea in the north and latitu-

dinally stacked mountain ranges in the south. The

effect of altitude, regardless of the season, is constant

(decrease in temperature with height), while the role

of the Baltic Sea changes seasonally from warming in

autumn and winter, to cooling in spring and summer.

Zonal arrangement of isotherms is most clearly visi-

ble in summer. Azonal factors, such as circulation-

driven impact of the Atlantic Ocean, are apparently

showed up in winter, forming a N–S course of

isotherms.

Regardless of the season, the coldest areas are the

uppermost parts of the mountains and the lowland

parts in NE Poland. In winter, except for the coldest

mountain areas, the temperature decreases from west

to east, where it reaches an average below -3 �C. In

the west of the country, especially in the coastal zone,

where warming effects of the Baltic Sea are clearly

marked, the average winter air temperature is above

0 �C. The temperature field in spring is transitional

between winter and summer conditions—isotherms

are NW–SE oriented, with the highest temperatures

([8 �C) in the SW part of the country. In summer,

most of the area of Poland is characterized by sea-

sonal average temperatures exceeding 18 �C, with the

exception of lakeland areas in the north of the country

and uplands and mountains in the south. In autumn,

the warming influence of the Baltic Sea is already

seen; however, a general decrease in temperature into

the north-east is also clearly visible. The average

seasonal air temperature in NE Poland is below 7 �C.

On average, the coldest and warmest months in

Poland are January and July, respectively, and the

characteristics of the spatial distribution of tempera-

ture in these months are analogous to those seen in

winter and summer. Changing effects of various

Figure 1
Study area and location of meteorological stations
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climate factors result in significantly different spatial

distribution and values of the air temperature from

the long-term averages (USTRNUL 2006).

The highest temperature, 39.5 �C, was observed

in Słubice (W Poland) on 30 Jul 1956, and the lowest

one, -36.9 �C, in Jelenia Góra (SW Poland) on 10

Feb 1956 (USTRNUL and CZEKIERDA 2009). The highest

maximum temperatures can be observed in Poland in

various circulation types, but mainly in anticyclonic

situations. In the case of the lowest minimum tem-

peratures, the coldest, below -35 �C, are observed in

areas in the east of the country (Białystok, Rzeszów).

The only exception is station Jelenia Góra, located in

a valley where a tendency to accumulate cold air

masses is typical. As in the case of the maximum

temperature, minimum temperatures are also

observed mainly in anticyclonic circulation types,

especially in winter, during the continental cold air

advections from Eastern Europe and Asia, and also

under a cloudless weather conditions in nighttime

(strong radiation loss).

Maps of the mean daily temperature usually show

a significant variability of the air temperature field

and rather slight similarity of thermal field pattern, in

comparison with climatologic, highly aggregated

maps for the corresponding months or seasons. This

reflects the greater role of dynamic, circulation fac-

tors influencing the daily temperature field in

comparison to the impact factors of more static geo-

environmental features such as altitude or distance

from the sea (USTRNUL and CZEKIERDA 2009).

3. Data

3.1. Air Temperature Data

Air temperature measurements for this study were

gathered mostly in the meteorological network oper-

ated by the Institute of Meteorology and Water

Management (IMGW) in Poland. Data were available

from 197 stations and were next complemented by

data from 53 meteorological stations located in the

closest neighbourhood of Poland (up to about 100 km

from the country boundaries; Fig. 1). The inclusion

of these additional stations was done to avoid

extrapolation for grids located outside the convex

hull of Polish stations. Second, this additional set has

increased the number of stations located in the higher

elevated area, which allows for a more precise

modelling of relation between temperature and alti-

tude—one of the most significant environmental

correlations of air temperature. And third, the

enlarged set of stations, allowed improving the

relevance of statistical inference accordingly to the

increased number of observations in statistical mod-

els and, as a result, enhanced the quality of air

temperature estimation.

Meteorological stations used in the study are

rather evenly distributed over the study area. The

spatial distribution is dispersed, according to the

nearest neighbour analysis (MITCHELL 2005), although

there are clear regional differences in network

density. 83 % of the study area is located no further

than 30 km from the nearest station, and less than

0.3 % of the area is located further than 50 km,

mainly in the central and north-eastern parts of the

country. On average, for the whole country, station

density is about 6.3 stations/10,000 km2, with the

highest density, reaching 16 stations/10,000 km2 in

the western part of the Polish Carpathians (Fig. 1).

The representativeness of the stations in relation to

one of the most dominant climate factors, which is

the altitude, is of particular importance for the quality

of modelling the air temperature using multivariate

spatialization techniques. In the case of the Polish

meteorological network, low-elevated areas are char-

acterized by relatively large number of stations,

mainly due to numerous stations located close to the

seashore. Areas located up to 50 m a.s.l., covering

6.4 % of the country are represented by ca 9 % of the

stations. Only 33 % of the stations are located in the

zone of 100–200 m a.s.l., which covers 49.7 % of the

area of Poland, so this zone is slightly underrepre-

sented. Above 200 m a.s.l., there is some over-

representation of the number of stations in relation

to altitude. The areas elevated above 500 m a.s.l.

(*3.5 % of the country area) are covered by 13.2 %

of stations. However, a problem is that stations are

not evenly distributed over the highest altitude zones.

For example, there are no Polish stations between

900 m (Bukowina Tatrzańska) and 1520 m a.s.l.

(Hala Gąsienicowa). The extension of a dataset by

foreign stations allowed for getting additional 4
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stations located in the zone above 900 m a.s.l.: Lysa

Hora, Štrbské Pleso, Chopok and Lomnický Štı́t

(Fig. 1). The last two are situated higher than the

highest Polish station at Kasprowy Wierch

(1991 m a.s.l.).

Data from the Polish stations were provided by

the Institute of Meteorology and Water Management.

Daily temperatures for Polish and foreign stations

were calculated using the same formula:

(T06 ? T18 ? TMAX ? TMIN)/4. The measure-

ments for the foreign stations were taken from the

Global Summary of the Day, and the Deutscher

Wetterdienst (http://www.dwd.de) databases. Sixty-

nine cases on five levels of data aggregation from the

decade 1996–2005 were prepared for spatial

interpolation:

• Level 1: 1996–2005 annual mean air temperature

(one case),

• Level 2: annual means of the warmest (2000) and

coldest (1996) years of the decade 1996–2005 (two

cases),

• Level 3: 1996–2005 monthly mean air tempera-

tures (12 cases),

• Level 4: monthly means of the warmest and coldest

months of the 1996–2005 decade (24 cases),

• Level 5: daily means, selected to represent varying

synoptic conditions, seasons and ranges of vari-

ability (30 cases).

The study encompasses all cases of annual and

monthly air temperature means from the period

1996–2005 (levels 1 and 3). The selection of cases

of individual years and months (levels 2 and 4) was

performed based on the highest and lowest areal air

temperature mean, calculated with the measurements

from the Polish meteorological stations. This made it

possible to select the coolest and the warmest year

(month) in the analysed decade. Daily cases (level 5)

were selected considering thermal and circulation

criteria. Cases of high and low spatial variability of

air temperature, occurring at different temperature

ranges and in different seasons, were included. In

addition, selected cases covered a variety of situa-

tions in terms of synoptic circulation types, air

masses advections and the occurrence of atmospheric

fronts. This allowed for spatial modelling of cases

characterized by diversified overall level of

environmental correlations, as well as by different

proportions of deterministic impacts of particular

environmental features.

All the cases are summarized in this work. Two

cases of air temperature were selected for a detailed

analysis. These were the level 1—1996–2005 annual

mean (TY) air temperature and one case from the

level 5—daily mean of 8 Jan 2003 (TD). The first was

characterized by a very high degree of the variance

explained by regression model, and the latter was

characterized by the lowest determination coefficient

of all cases.

3.2. Environmental Variables

Taking into account the causes of climate deter-

mining air temperature distribution in Poland

(Sect. 2) and former attempts to multidimensional

spatial interpolation of air temperature (Sect. 1), a set

of potential environmental predictors for the study

was prepared, including (Fig. 2):

• Variables describing general spatial tendency (e.g.

continentality of climate): coordinates (X, Y) and

the sea distance index (SDI),

• Digital elevation model (DEM) and its derivatives:

slope inclination (SLP), concavity/convexity index

(CCI), foehn index (FI) and potential total insola-

tion (IT),

• Land use/land cover derivatives: percentage share

of natural (NS) and artificial (AS) surfaces in the

vicinity of a given location and the normalized

difference vegetation index (NDVI).

All variables were prepared as raster layers of

250 m resolution, projected to the Polish local

coordinate system PUWG1992. X and Y coordinates

of each cell’s centre were assigned to the corre-

sponding raster cells. Coordinate X was assumed to

represent changes in longitude, reflecting the macro-

scale impact of lands and oceans in central Europe,

while coordinate Y—corresponding to the latitude

and general solar energy distribution. Both variables,

together or separately, may also express the impact of

air masses advections and atmospheric circulation

(Fig. 2a, b).

The influence of the Baltic Sea on air temperature

is described by SDI. Former studies (SZYMANOWSKI
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et al. 2012, 2013) showed that this impact decreases

non-linearly with distance; therefore, the index was

constructed as the square root of the shortest

Euclidean distance (expressed in number of 250 m

raster cells) from the coastline (Fig. 2c).

Altitude (DEM) was taken from the SRTM-3

digital elevation model (http://www2.jpl.nasa.gov/

srtm), which was projected to PUWG1992 and

resampled to 250 m resolution (Fig. 2d). DEM was

then used to calculate derivatives: IT, FI, CCI and SLP.

Potential insolation for a given period/day, IT,

expressed spatial distribution of potential incoming

solar energy (Fig. 2e). Insolation was calculated on

the real, inclined surface by the r.sun model, imple-

mented in GIS-GRASS software (GRASS

DEVELOPMENT TEAM 2011).

Figure 2
Sample layers of potential predictors of air temperature in Poland used in this study: a X, b Y, c SDI, d DEM, e IT, f FI, g CCI, h SLP, i AS

(explanation of acronyms in the text)
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The thermal effect of the foehn wind is well-

known in the forelands of various mountain ranges,

which can also be found in Poland. So far, however,

attempts to simulate the effect of foehn wind were

limited to the variables based only on distance from

the mountain barrier (CARREGA 1995). Because it is

not only the distance alone, but, first of all, the

combination of distance and height difference that

determines the temperature rise on the leeward side

of the mountain, a new foehn index (FI) was

introduced and tested in the interpolation of selected

thermal parameters for the south-western Poland

(SZYMANOWSKI et al. 2007). The index combines the

distance to the mountain barrier with the maximum

difference in elevation between the given raster cell

and the highest raster in the foehn-favourable direc-

tion of advection (Fig. 2f).

The CCI, describing the cold air accumulation in

concave landforms, was defined as the difference

between the altitude in a given location and DEM

averaged in a moving window (circular shape; radii:

1250, 2500 or 5000 m). CCI values close to zero

mean that the area is flat, positive values indicate a

convex landform, and negative—concave landform.

Local, land use/land cover impact on tempera-

ture was described by AS, NS and NDVI variables.

The first two were calculated for the surrounding of

each grid cell using the same radii of moving

window filter as in the case of CCI. The percentage

share was calculated using the CORINE Land

Cover 2000 (2004) and, for the areas of Ukraine,

Belarus and Russia, USGS Land Cover (2011)

databases (Fig. 2i). Additionally, the vegetation

index NDVI (TUCKER 1979) was used to character-

ize local land cover features. The relationship

between NDVI and air temperature is known and

proven, both at the country (KO _zUCHOWSKI and
_ZMUDZKA 2001) and local scales (SZYMANOWSKI and

KRYZA 2012). NDVI values were prepared based on

MODIS and AVHRR data processed by Clark

Labs, Clark University, USA (http://www.clarklabs.

org/products/global-gis-image-processing-data.cfm).

NDVI was used as a potential predictor of air

temperature only for the cases of levels 4 and 5 of

data aggregation (Fig. 2j).

4. Methods

Extensive set of statistical methods were used in

this study, with the most important

• regression methods: MLR and GWR, as well as

their extensions to the regression-kriging form:

MLRK and GWRK were used to spatialize the air

temperature,

• stepwise regression (SWR) was applied to select

sets of significant auxiliary variables, to specify

and calibrate regression models and to evaluate a

goodness-of-fit of these models in each step of

SWR forward selection,

• cross-validation (CV) results were applied to

evaluate the quality of interpolation and to com-

pare spatial models, based mostly on CV mean

absolute error (MAE) as a main diagnostic measure

used together with MAE error bars as the method

to assess the statistical significance of differences

between models.

4.1. Spatial Interpolation Methods

The basic assumption of this study is that the air

temperature can be treated as a regionalized variable

(MATHERON 1963), which suggests that spatial vari-

ation can be modelled as the sum of deterministic and

stochastic components. Such a model was termed the

‘universal model of spatial variation’ (MATHERON

1969) and its mathematical representation is the

regression-kriging (residual kriging; RK) model,

which is the implementation of the best linear

unbiased predictor (BLUP) for spatial data (HENGL

2007). Until recently, residual kriging for spatial

interpolation of the air temperature was used in the

conventional way: the deterministic part was mod-

elled using MLR, and then regression residuals were

spatialized using the kriging technique (e.g. HOLD-

AWAY 1996; COURAULT and MONESTIEZ 1999; BROWN

and COMRIE 2002; SZYMANOWSKI and KRYZA 2009).

However, recent studies on spatial variation of the air

temperature (SZYMANOWSKI and KRYZA 2012; SZY-

MANOWSKI et al. 2012, 2013) draw attention to two

issues:
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1. The spatial process determining the air tempera-

ture can be expected to be non-stationary. This

was shown both for the local and regional scales,

with the examples of the urban heat island in

Wrocław (SZYMANOWSKI and KRYZA 2011) and air

temperature in Poland (SZYMANOWSKI et al. 2012,

2013). The non-stationary spatial process has

different spatial correlation in different regions.

In such a case, the local, dedicated for non-

stationary conditions GWR model, is better fitted

to the observations than global MLR (FOTHERING-

HAM et al. 2002). Consequently, it is a prerequisite

to use GWR instead of MLR to perform modelling

of the deterministic part of air temperature spatial

variation. Such solution was suggested and

applied in the selection scheme of the optimal

interpolation method by SZYMANOWSKI et al. (2012,

2013). The goodness-of-fit of the regression

models and, indirectly, non-stationarity of the

spatial process, can be assessed by various mea-

sures as, e.g. determination coefficient (R2) or

standard error of estimation (STE), which were

used in the study.

2. The full applicability of the RK scheme may be

limited in some cases. The reason is the lack of

spatial autocorrelation of regression residuals. In

the absence of autocorrelation, the variogram

takes the form of a pure nugget effect, and hence,

prediction at each point in the study area is equal

to the average of the regression residuals, which,

by the assumption, is in the MLR model equal to

zero. In the GWR model, an unbiased estimate of

the local coefficients is not possible because the

bias results from inferring the outcome of a non-

stationary process at given location from data

collected at other locations. This means that the

average regression residual is likely to be different

but sufficiently close to zero (FOTHERINGHAM et al.

2002). Thus, when GWR residuals are not auto-

correlated (pure nugget variogram), we are

allowed to assume that the modification of the

GWR prediction contributed by kriging of the

GWR residuals is negligible in the RK model.

Therefore, when a stochastic component can be

omitted, the entire variation in the spatial model is

explained deterministically only by either MLR or

GWR. The decision on the existence of positive

spatial autocorrelation was taken in the study

based on the Moran’s I statistics (MORAN 1950),

assuming its statistical significance at p\ 0.05. In

GWRK, similarly to the general RK scheme, the

deterministic component is modelled using GWR

and after that regression residuals are modelled

with the kriging technique.

The spatialization models for predicting variable ẑ

in location s0 can be mathematically expressed as

MLR:

ẑðs0Þ ¼
Xp

k¼0

b̂kqkðs0Þ

GWR:

ẑðs0Þ ¼
Xp

k¼0

b̂kðs0Þqkðs0Þ

MLRK:

ẑðs0Þ ¼
Xp

k¼0

b̂kqkðs0Þ þ
Xn

i¼1

kie sið Þ

GWRK:

ẑðs0Þ ¼
Xp

k¼0

b̂kðs0Þqkðs0Þ þ
Xn

i¼1

kieðsiÞ;

where b̂k are estimated deterministic model coeffi-

cients (b̂0—estimated intercept), qk are explanatory

variables, ki are kriging weights determined by the

spatial dependence structure of the residual and eðsiÞ
is the residual at location si.

All four types of models (or only two types if the

regression residuals’ autocorrelation was not statisti-

cally significant) were used to evaluate the impact of

auxiliary variables on the quality of air temperature

spatial interpolation.

4.2. Stepwise Selection of Auxiliary Variables

The basic question in the initial phase of the

analysis was which variables from the entire set of

potential predictors should be included in the model

for a given case. Generally, it is probably the most

subjective part of modelling and it is likely that each

modeller may consider various determinant factors of

the spatial process, prepare different sets of potential
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predictors, establish different criteria to include

variables to the model, etc. Nevertheless, if the set

of potential predictors is prepared, the selection of

statistically significant auxiliary variables could be

done in an objective way using, for example, a

stepwise regression approach (DRAPER and SMITH

1998). SWR is an automatic procedure for statistical

model selection in cases where there are a large

number of potential explanatory variables. The goal

is to choose a small subset from the larger set so that

the resulting regression model is simple, in the sense

that it only includes the significant predictors. Here,

the SWR forward selection based on partial F tests

(with F to include [1.0, slightly less than F critical

for 250 observations at p = 0.05) was applied in the

initial phase of variable selection and model calibra-

tion. The partial F test performs fitting of two models:

full and reduced, and assesses whether the improve-

ment in model fit is too large to be ascribed to chance

alone (JAMSHIDIAN et al. 2007). The model is accepted

for final analysis based on two conditions: F test

result (model is significant at p\ 0.05) and statistical

significance of all the predictors included, which is

described by the t test (all the model parameters are

significant at p\ 0.05). The SWR technique starts

with no variables in the model, tests the addition of

each variable based on assumed criterion, adds the

variable that improves the model the most, and then

repeats this process until adding any of the omitted

variables does not improve the model.

Stepwise regression forward selection is subject to

various imperfections (e.g. WILKINSON and DALLAL

1981; HURVICH and TSAI 1990); however, for this

study it was found a good mechanism for tracking the

quality of the interpolation model when entering step

by step the significant explanatory variables. Despite

the fact that properties of the selection scheme are

known, the form of the regression model is still

dependent on the set of potential predictors that can

be prepared in different ways by different research-

ers. In such situations, the initial selection of

explanatory variables can have a decisive influence

on the final result of interpolation. Checking whether

this claim is true is one of the primary objectives of

this study. The best way to assess this would be a

comparison of the results of interpolation performed,

based on the models selected by the stepwise

procedure from all possible subsets of the initial

(full) set of predictors. However, taking into account

11 variables in the initial set of predictors (Sect. 3.2)

would require analysing thousands of possible com-

binations for each of the 69 cases of air temperature,

which was beyond the computational capabilities of

this project. Instead, the evaluation of models in each

step of the SWR (with additional criteria described

below), based on the full initial set of predictors, was

performed. For each air temperature case, the aim

was to specify and calibrate the regression model

including all the statistically significant variables

indicated by stepwise selection. These kinds of

models are referred to as the MP models in this

paper, as they include the maximum (for each case)

possible number of significant predictors (n). This

purpose has been achieved by specification of the

series of models that include a limited number of not

more than n - 1, significant predictors (LP models).

The comparison between MP and LP models in each

step allows assessing the effect of introducing

additional explanatory variables on the air tempera-

ture spatialization process.

Some additional criteria were also incorporated to

complete each model specification. Multicollinearity

was checked using the value inflation factor

(VIF\ 10), statistical significance was assumed

when p\ 0.05 and the maximum number of vari-

ables in the model should not exceed seven with the

number of observations n = 250 (SZYMANOWSKI et al.

2012, 2013). The same variables at each step were

then used in MLR and GWR models. Given the

irregular spatial distribution of meteorological sta-

tions, the GWR model was calibrated using adaptive

kernels with bi-square weighting scheme. The size of

the adaptive kernel, called a bandwidth, was defined

as the number of data points used to calibrate the

local linear regression function. Due to a known

property of GWR, termed a ‘bias-variance trade-off’

(FOTHERINGHAM et al. 2002), the bandwidth size was

chosen to be the smallest possible, but with respect to

two limitations. First, the bandwidth size should be

large enough to include at least 25 measuring sites to

assure sufficient number of data for proper specifica-

tion of the local regression model (using up to seven

explanatory variables). Second, the sign of the

regression coefficient should be in agreement with

Vol. 174, (2017) Auxiliary Variables in Air Temperature Models

147



Reprinted from the journal

the assumed physical process to allow for the

possibility of deterministic explanation of spatial

process in each part of the study area (SZYMANOWSKI

and KRYZA 2012; SZYMANOWSKI et al. 2012). Once the

Moran’s I statistic confirmed significant spatial

autocorrelation, the variogram of regression residuals

was modelled automatically with the use of a

spherical function (best fit) with a nugget effect

included.

4.3. Validation of Model Errors

The model errors were evaluated using the leave-

one-out cross-validation approach (CV). The mean

absolute error (MAE) was applied as the basic

diagnostic statistics of the model quality. MAE is

considered as one of the most natural summary

measures for the model performance (WILLMOTT and

MATSUURA 1995) and it can also be used to determine

statistical difference between models’ performance

(SZYMANOWSKI et al. this issue). This can be done by

compering severability of MAE error bars. The

model with the smallest MAE can be considered as

performing best only if its MAE error bar does not

overly the MAE error bar of any other model for the

same case. The error bar was determined as

MAE ± r̂MAE, where r̂MAE was the error of MAE

calculation. For the n-element set with standard

deviation rCV, it can be calculated as (KALARUS et al.

2010):

r̂MAE ¼ rCVffiffiffiffiffi
nc

p ; c ¼ p
p� 2

:

Cross-validation approach results allow for the

assessment of the model quality with respect to the

data measured in meteorological stations. The model

performance in other locations was based on visual

inspection of the maps, paying special attention to the

artefacts and the incredible values of the modelled air

temperature (SZYMANOWSKI et al. 2012). The maps of

air temperature for the case analysis were prepared in

two ways. The overall changes in air temperature for

a given case, depending on the set of variables in the

model and the type of interpolation model, were

presented as classified (every 0.5�) colour ramp.

These maps were complemented by spatial distribu-

tion of CV errors in data points shown using point

symbols. To introduce the local effect and very

detailed changes in the air temperature field caused

by some explanatory variables, maps were drawn

with the use of stretched colour scale.

5. Results and Discussion

5.1. Deterministic Component of Spatial Model

The frequency of occurrence of individual auxil-

iary variables in MP models for all 69 air temperature

cases in Poland shows that each of the considered

potential predictors (Sect. 3.2) is included in at least a

few models (Fig. 3). Some of variables are intro-

duced to almost all models, e.g. DEM (in 66 of 69

models) and X coordinate (65). Some are included

very frequently: SDI (52), coordinate Y (40), SLP

(34) and land use/land cover surfaces AS and NS (43

times in total). Variables AS and NS should be

treated as complementary because they are strongly

collinear and, accordingly to the assumptions

(Sect. 4), only one of them is included in a model

specified for a given case. Less often such variables

as NDVI (24 out of 54 models—analysed only at

levels 4 and 5), IT (21) and FI (17) are included in

MP models. CCI is the least frequent (only six times)

variable introduced into the regression models. This

may be the consequence of the features of input air

temperature dataset because meteorological stations

are located in open, flat terrain, usually free from the

local impact of relief.

Figure 3
Number of MP models including individual explanatory variables

for each level of data aggregation
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Digital elevation model is most frequently intro-

duced as the first variable to the regression model

which means that, due to assumptions of SWR

forward selection, it is most significantly correlated

with air temperature, taking into account the F statis-

tics. DEM is selected as the first in all the models at

levels 1–3, and in 21 out of 24 models at level 4.

However, it is included only in 12 out of 30 cases at

level 5. This shows that the lower the levels of data

aggregation, the less significant is the impact of

terrain height and more significant are, e.g. synoptic

factors. However, it is strongly case dependent and

this statement cannot be generalized with the set of

30 cases presented here. In some level 5 cases, the air

temperature can be strongly correlated with elevation,

whereas in other cases the correlation may be

relatively weak or even statistically insignificant.

In situations where the DEM is not the first variable

introduced to the MP model, it is usually substituted

by coordinate X, which is selected as first in 3 of 24

models at level 4 and in 11 of 30 models at level 5.

Only in 6 models, different variables are introduced

as the most significant (all only at level 5): SDI—4

times, NDVI—2 times and IT—once. Both coordi-

nates (X—18 times, Y—17 times) and DEM (12

times) are introduced most frequently as a second

significant explanatory variable. The role (expressed

in terms of statistical significance) of locally deter-

mined factors expressed by such variables as AS/NS,

SLP or CCI is relatively low. Even if some of them

are frequently introduced into the regression models,

they are never added as the first and very rarely as the

second most important variable (AS/NS—1 time,

SLP—2 times, CCI—none).

Each MP model includes from 3 to 7 statistically

significant explanatory variables. Most frequently,

the models are specified based on six auxiliary

variables (21 cases), and less frequently based on 4, 5

or 7 variables (15, 15 and 13 cases, respectively). The

least frequent are models including only three

additional variables (five cases). There is also no

clear dependence of the number of predictors

included in the model on the aggregation level, but

3- or 4-variable models are more typical of lower

level of data aggregation (levels 4 and 5).

According to the assumptions, all MP models are

statistically significant (in terms of the F test, detailed

description in Sect. 4.2), even if they differ signifi-

cantly in terms of goodness-of-fit. In individual cases,

these models explain over 90 % (max. 96 %) of the

air temperature variance at aggregation levels 1–3

but, in some cases, it falls to 70 % on level 4, and can

be as low as 31 % for daily means cases (level 5).

Generally, it can be stated that the higher the level of

data aggregation, the higher the determination coef-

ficients. The level of air temperature variance

explained by the MP model is shown in Fig. 3—the

value corresponding to the last step of the SWR

procedure. The lower the level of data aggregation,

the larger the observed variability of R2. This

suggests that for short-time averaged air temperature

(e.g. daily means), some models can fit the data as

well as for the long-term means, but there are also

cases for which the overall fitting of the regression

model is relatively poor (R2\ 0.6; Fig. 4).

The next questions are, however, what the level of

determination is when only the most significant

variable is introduced to the model and how does

the goodness-of-fit of the model change when adding

subsequent variables. One-variable LP models are

characterized by very different values of determina-

tion coefficients depending also on the level of data

aggregation (Fig. 4). The R2 of such models at level 1

is 0.82; at levels 2–4, they change in the range of

0.78–0.81 (level 2), 0.61–0.86 (level 3) and 0.31–0.92

(level 4). At level 5, there is one case for which the

one-variable model explains only about 3 % of the air

temperature variance. This is the case of 8 Jan 2003

Figure 4
Determination coefficients depending on the level of the air

temperature aggregation and the number of explanatory variables

in the SWR model
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that will be analysed in detail below. However, it is

very surprising that the model with such a low

determination coefficient meets the criterion of

statistical significance (in terms of the F test, detailed

description in Sect. 4.2). Nevertheless, the lower the

level of data aggregation, the more one-variable

models explain smaller amount of variance, even if

well-explaining one-variable models can be found at

each level of aggregation as well. At levels 1–3, all

one-variable models explain [60 % of air tempera-

ture variance, while at levels 4 and 5, it is only 16 out

of 24 and 10 out of 30, respectively (Fig. 4). At level

4, lower values of the determination coefficients are

observed for the winter months, which may indicate a

declining role of environmental factors with respect

to synoptic conditions that are not directly included in

the regression model. This is also the case at level 5,

where atmospheric circulation with passing fronts

and air masses advections deteriorate the statistical

relation of air temperature with static environmental

factors represented by the set of potential predictors

prepared for this study.

The most significant changes in the determination

coefficient are observed mostly when adding second

and third variables to the model. The second variable

in the model increases the explained variance by

more than 10 %, mostly at lower aggregated levels

(3–5). This happens in 8 out of 12 models at level 3,

17 out of 24 models at level 4 and 16 out of 30

models at level 5. The third variable added to the

model rarely increases the variance explained by

more than 10 %. This is the case in 4 out of 24

models at level 4 and 6 out of 30 at level 5 (Fig. 4).

In some cases, the introduction of subsequent

variables to the model does not make significant

changes in the coefficient of determination in com-

parison to the one-variable model. In such cases, the

curves of the determination coefficient are flattened

and the LP and MP models do not differ significantly.

This can be observed not only in cases when the first

auxiliary variable explains 80 % or more of air

temperature variance, but also in cases in which the

determination coefficient of one-variable model is

quite low (Fig. 4).

As it was indicated in earlier studies (SZY-

MANOWSKI et al. 2012, 2013), in each of the

analysed cases for Poland, the local GWR model,

with the same explanatory variables, provides a better

fit to the data compared to the MLR. While compar-

ing the MP models, GWR is characterized by the

same or greater determination coefficients (up to

15 % of variance explained) and lower standard

errors of estimation, residual sums of squares and

Akaike Information Criterion in comparison to MLR

(SZYMANOWSKI et al. 2013). This means that the

process can be considered as non-stationary, and the

change of the global to local model with the same

explanatory variable leads to an increase in the

explained variance.

5.2. Deterministic-Stochastic Interpolation—a Case

Study

Due to significant computational load, GWR

models as well as all RK models are not analysed

in this study for all 69 cases in each step of SWR, as

it would again require calibrating and validating more

than a thousand additional models. Here, two cases

representing different levels of air temperature

aggregation: level 1—decadal annual mean (TY)

and level 5—daily mean on 8 Jan 2003 (TD) are

analysed in details, comparing all four types of

spatialization algorithms for all LP and MP models.

These two cases are characterized also by one of the

highest (TY) and lowest (TD) determination coeffi-

cients independently on the subset of explanatory

variables included in the regression model.

The air temperature in the TY case is strongly

determined by static environmental explanatory vari-

ables (Table 1). The most significant variable is

elevation and it explains 83 % of the variance while

using the MLR model and even 96 % using the GWR

approach. Other statistically significant variables are

coordinates, artificial surfaces and slope, and they

increase the determination coefficient to 0.95 for

MLR and 0.97 for GWR. A significant change of R2

and decrease of standard error (STE) are especially

pronounced for the first three LP-MLR models. In the

LP-GWR approach, introducing additional variables

does not produce any significant change in neither R2

nor STE (Table 1).

Additional analysis of regression residuals’ spatial

autocorrelation shows that residuals are not autocor-

related for all 3-, 4- and 5-variable MLR and GWR
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models. This means that regression and regression-

kriging models are considered as identical in these

cases (Table 1). Changes in CV MAE are analogous

to changes in the goodness-of-fit for both regression

models. The MAE decreases significantly for the first

three LP models, and the decrease is larger for the

MLR and smaller for the GWR (Fig. 5). The

extension of the spatial model to the RK form

produces a significant decrease in MAE for both

MLRK and GWRK models, starting already from the

one-variable model. It can be summarized that for 1-

and 2-variable models, GWR performs significantly

better than the MLR, both RK models perform

significantly better than the corresponding regression

models, and that MLRK and GWRK perform simi-

larly. Adding the third (X) and next (AS, SLP)

variables does not improve the MAE significantly, as

the error bars overlap for MLR and GWR models and

their extensions by residual kriging (Fig. 5).

Tendencies discussed above are also seen in the

maps of air temperature and CV errors distribution

(Figs. 6, 7, 8, 9, 10). The most significant changes are

observed for maps prepared using 1-, 2- and 3-vari-

able MLR models. The least accurate, in terms of CV

errors, is the map prepared using only elevation as

predictor in a global regression approach (Fig. 6a).

Distinct spatial pattern in CV error is observed

showing the tendencies to overestimate the air

temperature over NE Poland and to underestimate

the air temperature over SW Poland. Similar features

are noticed on the corresponding GWR map

(Fig. 6b), but the CV errors are smaller. Visually,

both MLR and GWR regression-kriging maps are

very similar, starting already from the one-variable

models. Introduction of additional explanatory vari-

ables does not change the modelled air temperature

field, but involve local adjustments (Figs. 6, 7, 8, 9,

Table 1

Selected statistics of regression models and autocorrelation of regression residuals for 1996–2005 annual mean air temperature in Poland

(TY)

Regression model Spatial autocorrelation

of residuals

No of variables Explanatory variables

(in the order of stepwise

selection)

Model Determination

coefficient (R2)

Standard error of

estimation (STE)

Moran’s

I statistics

E(I) = -0.004

p value

1 DEM MLR 0.83 0.67 0.597 0.000

GWR 0.96 0.33 0.222 0.000

2 DEM, Y MLR 0.90 0.50 0.494 0.000

GWR 0.96 0.33 0.135 0.000

3 DEM, Y, X MLR 0.95 0.36 0.045a 0.079

GWR 0.96 0.32 -0.025a 0.456

4 DEM, Y, X, AS MLR 0.95 0.34 0.008a 0.666

GWR 0.96 0.31 -0.048a 0.116

5 DEM, Y, X, AS, SLP MLR 0.96 0.33 0.028a 0.245

GWR 0.97 0.28 -0.029a 0.361

a No spatial autocorrelation (random distribution of residuals)

Figure 5
Cross-validation mean absolute errors (MAE) together with error

bars depending on model type and number of explanatory variables

included in the model for the 1996–2005 annual mean air

temperature in Poland (TY)
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10). This issue will be discussed in details later in this

section.

The TD case differs significantly from TY. First

of all, globally the air temperature is only determined

to a small extent by static environmental factors,

described by explanatory variables. The MP-MLR

model, with six predictors included, explains only

38 % of the observed variance (Table 2). The spatial

process is significantly non-stationary; therefore, the

MP-GWR model is much better fitted to observation

than MLR, with 67 % of the variance explained. The

LP-GWR with four predictors included explains

71 % of the variance and its STE is significantly

lower than STE of the corresponding MP model

(Table 2).

Regression residuals are autocorrelated for all the

global and local models for the TD case, and all the

models can be extended to the deterministic-stochas-

tic form. Low determination causes the stochastic

component to play a dominating role in the regres-

sion-kriging algorithm, and significantly affects the

modelled air temperature field (Fig. 11).

It is surprising that the first variable introduced to

the model by stepwise procedure is NDVI, of which

the correlation with air temperature in this winter

case is rather ambiguous. This time most of the

Figure 6
1996–2005 annual mean air temperature in Poland (TY) mapped using a MLR, b GWR, c MLRK and d GWRK algorithms with the use of

DEM as the only explanatory variable in the regression model
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territory of Poland was covered by snow that resulted

in very small differences in NDVI values between

vegetated and non-vegetated areas. There is probably

no clear physical explanation of air temperature—

NDVI dependence in this case. The relation was

detected ‘‘by chance’’, and even though it is statis-

tically significant, NDVI explains only 2 % of air

temperature variance in the MLR model (Table 2).

The air temperature field determined by NDVI is very

‘‘rough’’ (Fig. 12). The changes in the CV MAE

show that the introduction of second (X) and third

(DEM) variables does not improve the quality of

spatial interpolation (Fig. 11). What is more, in this

case the temperature is also very slightly determined

by elevation. The last three variables (IT, SDI, Y)

improve the interpolation done by the MLR model

and, to a smaller extent, by GWR (Fig. 11). More

interesting are the changes in quality of both RK

models while introducing subsequent auxiliary vari-

ables. For the predictors’ subsets, GWRK performs

better than MLRK, but not significantly better. Both

MP-RK models perform best; however, they do not

differ significantly (according to MAE error bars)

from the results achieved by the corresponding one-

variable LP models (Fig. 11). As the geostatistical

component brings large information on modelled air

Figure 7
1996–2005 annual mean air temperature in Poland (TY) mapped using a MLR, b GWR, c MLRK and d GWRK algorithms with the use of

DEM and Y as the explanatory variables in the regression model
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temperature in the TD case, the maps prepared by

both regression models differ significantly from those

done using RK algorithms (Figs. 12, 13). Some

interesting features of air temperature distribution

are different to the to ‘‘expected’’ characteristics of

averaged field (as for examples in the TY case). Due

to the cold eastern air mass advection, a belt of low

temperatures in central Poland is noticeable. Apart

from that, a zone of relatively high temperature,

caused by the impact of the Baltic Sea, is observed

along the coast. Quite interesting and unexpected is

also the area of high temperature in the part of

mountains in SE Poland (the Bieszczady Mts.), which

might be explained by the air mass subsidence in

anticyclonic pressure system (Fig. 13). Except for the

warming influence of the sea, the remaining features

Figure 8
1996–2005 annual mean air temperature in Poland (TY) mapped using a MLR and b GWR algorithms with the use of DEM, Y and X as the

explanatory variables in the regression model

Figure 9
1996–2005 annual mean air temperature in Poland (TY) mapped using a MLR and b GWR algorithms with the use of DEM, Y, X and AS as

the explanatory variables in the regression model
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of dynamic/synoptic origin are not explained deter-

ministically and are modelled by the geostatistical

component of the RK model.

5.3. The Signal of Explanatory Variables in Air

Temperature Maps—a Case Study

Concerning the large added value introduced by

interpolation of regression residuals in RK

algorithms, one could conclude that the large vari-

ance explained by the deterministic component is not

crucial for the quality of interpolation. If the 3 or 4

most significant explanatory variables are included in

the regression model, the remaining variance is well

explained by the stochastic component of the RK

model. It was shown that introducing additional

auxiliary variables does not necessarily lead to the

improvement of the CV MAE. However, in some

Figure 10
1996–2005 annual mean air temperature in Poland (TY) mapped using a MLR and b GWR algorithms with the use of DEM, Y, X, AS and SLP

as the explanatory variables in the regression model

Table 2

Selected statistics of regression models and autocorrelation of regression residuals for the air temperature on 8 Jan 2003 in Poland (TD)

Regression model Spatial autocorrelation

of residuals

No of

variables

Variables (in the order

of stepwise selection)

Model Determination

coefficient (R2)

Standard error of

estimation (STE)

Moran’s I

statistics

E(I) = -0.004

p value

1 NDVI MLR 0.02 3.07 0.606 0.000

GWR 0.42 2.35 0.592 0.000

2 NDVI, X MLR 0.07 2.99 0.570 0.000

GWR 0.40 2.41 0.553 0.000

3 NDVI, X, DEM MLR 0.11 2.93 0.595 0.000

GWR 0.51 2.17 0.571 0.000

4 NDVI, X, DEM, IT MLR 0.16 2.84 0.563 0.000

GWR 0.71 1.68 0.504 0.000

5 NDVI, X, DEM, IT, SDI MLR 0.32 2.56 0.451 0.000

GWR 0.58 2.02 0.434 0.000

6 NDVI, X, DEM, IT, SDI, Y MLR 0.38 2.44 0.495 0.000

GWR 0.67 1.80 0.474 0.000
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cases, additional explanatory variables may signifi-

cantly change the spatial distribution of the CV errors

because of the reduction of regional/local tendencies

leading to over or under-estimation. This is of large

importance for the final distribution of air tempera-

ture, but it is missed if only the CV MAE is analysed.

More importantly, the additional variables may lead

to formation of effects in the modelled field that are

‘‘imprinted’’ by these variables, like the effects of

urban heat island or warm slopes. Such effects, even

if statistically justified, may also lead to undesired

artefacts in the maps. This problem will be discussed

based on TY case again, but this time the attention is

put on not only to the statistical evaluation of the

model, which significance has been confirmed above,

but also on the global (Poland) and local (surrounding

of the city of Cracow) changes in the modelled air

temperature field induced by introduction of addi-

tional, to DEM, Y and X, explanatory variables.

According to the changes in MAE, the 3-variable

TY regression model (including DEM, Y and X) that

explains 95 % (MLR) or 96 % (GWR) of variance is

not significantly different from the 4- and 5-variable

models (Fig. 5). In both cases, the regression resid-

uals are not autocorrelated and the stochastic

components of the RK models can be omitted

(Sect. 4.1). Therefore, the question is whether it

makes sense to introduce additional variables and if

so, what changes in modelled air temperature field

will be observed? This will be considered starting

from the 3-variable model, where temperature is

determined by elevation and both coordinates

(Fig. 14a). In the next two steps, AS and SLP will

be added. It will show how these variables influence

the spatial pattern of the modelled air temperature,

with no statistically significant effects on statistical

model performance.

The incorporation of AS, as the fourth explana-

tory variable, increases the modelled air temperature

over the urban areas (Fig. 14b). This warming effect

might be considered as realistic, both when it comes

to the location and magnitude of change, which was

confirmed with measurements of the urban heat

island for Wrocław (SZYMANOWSKI and KRYZA 2012).

The incorporation of the SLP variable leads to lower

MAE but the change is not statistically significant

(Fig. 5). However, SLP results in noticeable local

changes in the modelled air temperature field. Steep

slopes are now relatively warmer, regardless to the

slope aspect, comparing to surrounding flat areas

(Fig. 14c). This does not look realistic, even if there

are no measurements to verify this effect quantita-

tively. It is very likely that the temperature over most

of steep slopes, especially in the highest parts of the

highest mountain ranges (the Tatra Mts.), will be

significantly overestimated. This effect is caused in

fact by the extrapolation process that ‘‘exports’’ the

relation between temperature and inclination to the

slopes inclined more than the range of SLP observed

for available meteorological stations. Meteorological

stations are located mostly on flat terrains—248 of

250 stations in this study are characterized by slope

inclination less than 10�, and the most inclined station

has inclination of about 15�. The regression model is

linear, so the relation estimated for the 0–15� range is

then extrapolated for the slopes inclined by[15� with

the same assumption of linearity, which is barely

realistic. The only solution would be to fit non-linear

function; however, the lack of stations located on

steep slopes prevents to confirm any considered

theoretical model. The conclusion is that in this case

(given set of meteorological stations for Poland), the

SLP should be probably removed from the set of

potential predictors, because its introduction to linear

regression models may lead to unrealistic results,

seen as artefacts in the air temperature maps. The

SLP should be excluded even if it is so frequently

Figure 11
Cross-validation mean absolute errors (MAE) together with error

bars depending on the model type and number of explanatory

variables included in the model for air temperature on 8 Jan 2003 in

Poland (TD)
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introduced to the regression models by stepwise

selection (Fig. 3).

6. Summary and Conclusions

Taking into account the results of analysis carried

out on 69 cases of air temperature in Poland, aggre-

gated on five different levels (from long-term annual

mean to daily means), the following main conclu-

sions can be formulated:

1. The environmental factors, most significantly

determining spatial distribution of air temperature

in Poland, are elevation, geographical location and

the distance from the sea, expressed in this study

by variables: DEM, X, Y and SDI, respectively.

The leading role is played by DEM and X (corre-

sponding to longitude), which were introduced to

almost all MP regression models. Using the

stepwise method, these factors were usually

introduced as the first (mainly DEM) or second

most significant explanatory variable. DEM and

X were most frequently followed in the model

structure by SDI and Y (corresponding to latitude).

The role of regional [e.g. foehn impact (FI)] and

local—land use and relief factors (e.g. AS/NS,

Figure 12
Air temperature on 8 Jan 2003 in Poland (TD) mapped using a MLR, b GWR, c MLRK and d GWRK algorithms with the use of NDVI as the

only explanatory variable in the regression model
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NDVI, SLP, CCI) should be considered as com-

plementary, and, as was shown for SLP, these

variables should be very carefully introduced to

the regression models. Even if some of them were

very often introduced into the regression models

(e.g. AS/NS), they have never been added as the

first and very rarely as the second variable.

2. The fully specified MP models included from 3 to

7 explanatory variables. In individual cases, these

models explained over 90 % (maximum 96 %) of

the air temperature variance, but only at data

aggregation levels 1–3. In some cases, the

explained variance was as low as 70 % at level

4, and dropped to 31 % at aggregation level 5.

Generally, it can be stated that the higher the level

of data aggregation, the higher determination

coefficients are observed.

3. The first variable introduced to the model,

accordingly to stepwise selection’s assumptions,

usually explained the majority of the air

cFigure 14
1996–2005 annual mean air temperature in Poland (TY) mapped

using GWRK algorithm with the use of a DEM, Y and X, b DEM,

Y, X and AS and c DEM, Y, X, AS and SLP as the explanatory

variables in the regression model

Figure 13
Air temperature on 8 Jan 2003 in Poland (TD) mapped using a MLR, b GWR, c MLRK and d GWRK algorithms with the use of NDVI, X,

DEM, IT, SDI and Y as the explanatory variables in the regression model
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temperature variance, but it is not a general rule.

For the lower levels of data aggregation, there are

more one-variable models that explain only a

small part of variance, even if well-explaining

one-variable models can be found at each level of

aggregation as well. The reason might be a

declining significance of static environmental

factors and increasing role of atmospheric dynam-

ics and weather conditions on spatial pattern of air

temperature, which are not directly represented in

the regression models.

4. The most significant changes in determination

coefficients are observed mostly when adding the

second and third variables to the regression model.

However, there are also cases in which the first,

most significant variable explains the majority of

air temperature variance and the incorporation of

additional variables does not lead to further

improvement of the deterministic model.

5. For all the MP models and for all analysed cases,

local GWR models are better fitted to the obser-

vations than global MLR models. This means that

the spatial process determining the air temperature

distribution over Poland can be considered as non-

stationary.

A detailed study of two selected cases from levels

1 and 5 additionally revealed that

6. Introducing significantly correlated explanatory

variables improves the goodness-of-fit of the

regression model (MLR or GWR), but it does not

necessarily mean a significant improvement of the

quality of spatial interpolation expressed by CV

errors. Thus, the thesis from many previous inter-

polation attempts, claiming that the more spatial

variation is explained by the deterministic part of

the model, the better is the quality of spatial

interpolation, cannot be indisputably accepted.

7. Regression-kriging models (MLRK, GWRK) as

spatial interpolators usually perform better than

their corresponding regression models (MLR,

GWR), but the improvement strongly depends

on the particular case.

8. If the GWR or MLR residuals are autocorrelated,

the model should be expanded to residual kriging.

GWRK usually gives better results of spatial

interpolation than MLRK; however, the difference

in performance quality is very rarely statistically

significant.

9. The signal of each explanatory variable, even if it

explains relatively small part of the air tempera-

ture variance, might introduce large and

noticeable effects in the final map prepared by

using either regression alone or regression-kriging

interpolation algorithm. However, despite a sta-

tistically significant correlation, the effect of the

introduction of certain variables into the model

may not be climatologically justified. This is due

to the extrapolation of air temperature—variable

relation in the case of not representative distribu-

tion of measuring points with respect to the

environmental feature (variable) determining the

air temperature distribution. In the analysed TY

case, it was seen, while introducing SLP as a 5th

variable in the model, that it led to significant

changes in air temperature over steep slopes.

Although the analysis was performed on only a

limited number of cases for Poland, some general

conclusions can also be drawn. The Matheron’s uni-

versal model of spatial variation and its mathematical

representation—the regression-kriging, are very

effective models for spatial interpolation and map-

ping the air temperature. The air temperature spatial

variation can be assumed non-stationary, so it is

justified to model deterministic part using local GWR

model instead of global MLR. If regression residuals

are spatially autocorrelated, it is recommended to

extend the spatialization model to the regression-

kriging form: GWRK. It should be emphasized that

some of the processes that are deterministic in nature,

for example, caused by atmospheric circulation,

cannot be modelled in the deterministic part of the

model. This is because it is hardly possible to prepare

proper layers of variables expressing such dynamic

features. Thus, this part of spatial variation is

explained by the stochastic part of the model.

Although the leading explaining role is played by

such environmental variables as elevation, location

and the distance from the sea, and usually most of air

temperature variance is explained by the first 1–3

auxiliary variables, the set of potential predictors for

deterministic part specification should be as wide as

possible. This is because each statistically significant
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predictor is reflected in the final map regardless

whether regression or regression-kriging method is

used for spatialization. It is up to the modeller to

decide which statistically justified effects are desired

and climatologically realistic, and should be expres-

sed on the air temperature map, depending for

example on the map purpose. The expert judgment is,

therefore, necessary to compliment the cross-valida-

tion statistics of the models performance.
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Spatial Interpolation of Ewert’s Index of Continentality in Poland

MARIUSZ SZYMANOWSKI,1 PIOTR BEDNARCZYK,2 MACIEJ KRYZA,3 and MAREK NOWOSAD
4

Abstract—The article presents methodological considerations

on the spatial interpolation of Ewert’s index of continentality for

Poland. The primary objective was to perform spatial interpolation

and generate maps of the index combined with selection of an optimal

interpolation method and validation of the use of the decision tree

proposed by Szymanowski et al. (Meteorol Z 22:577–585, 2013).

The analysis involved four selected years and a multi-year average of

the period 1981–2010 and was based on data from 111 meteoro-

logical stations. Three regression models: multiple linear regression

(MLR), geographically weighted regression (GWR), and mixed

geographically weighted regression were used in the analysis as well

as extensions of two of them to the residual kriging form. The

regression models were compared demonstrating a better fit of the

local model and, hence, the non-stationarity of the spatial process.

However, the decisive role in the selection of the interpolator was

assigned to the possibility of extension of the regression model to

residual kriging. A key element here is the autocorrelation of the

regression residuals, which proved to be significant for MLR and

irrelevant for GWR. This resulted in exclusion of geographically

weighted regression kriging from further analysis. The multiple

linear regression kriging was found as the optimal interpolator. This

was confirmed by cross validation combined with an analysis of

improvement of the model in accordance with the criterion of the

mean absolute error (MAE). The results obtained facilitate modifi-

cation of the scheme of selection of an optimal interpolator and

development of guidelines for automation of interpolation of Ewert’s

index of continentality for Poland.

Key words: Ewert’s index of continentality, spatial interpo-

lation, regression kriging, geographically weighted regression,

Poland.

1. Introduction

The concept of continentality in climatology refers

to all characteristics of climate influenced by conti-

nents and is regarded as a notion opposed to climate

oceanity. The continental impact is most frequently

considered in the context of its effect on air temper-

ature (thermal continentality) and precipitation

(pluvial or hygric continentality). The continental

climate is characterised by higher diurnal and annual

amplitude of air temperature, hot summers, and cold

winters. As the distance from the ocean increases, the

cloudiness and precipitation rates decline and the

annual distribution of precipitation changes and

exhibits a distinct summer maximum. The oceanic

climate is characterised by high air humidity and high

rates of precipitation distributed evenly throughout

the year, with low annual air temperature amplitudes,

cool summers, and mild winters.

In a macroscale, it can be assumed that climate

features of any place on the globe comprise a signal

coming from the continents and a supposedly oppo-

site signal from the oceans. To quantify these

interactions, a number of indices, primarily describ-

ing the ‘‘strength’’ of land impacts, have been

developed. Given the disproportion between the land

and ocean cover (ca. 30 %—lands and 70 %—

oceans), they can be regarded as a specific modifi-

cation of the prevailing oceanic climate on the planet.

As a rule, indicators of continentality express the

relation between continental and oceanic features of

climate and, hence, underline the relative nature of

continentality. The continentality has been assigned

particular importance in characterisation of areas

with the so-called transitional climate combining

continental and oceanic impacts, which exhibit high

year-to-year variability depending on macro-circula-

tion features. For Poland, such analyses have been
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performed by Ko _zuchowski and Marciniak

(1986, 1992), Ko _zuchowski and Wibig (1988), and

Ko _zuchowski (2003). Recently, continentality indices

have been applied in environmental analyses, par-

ticularly as a variable supporting the analysis of

variability and spatial distribution of, e.g., air tem-

perature (Hogewind and Bissolli 2011),

evapotranspiration (Marti and Gasque 2010) and

bioclimatic changes (Torregrosa et al. 2013). The

analytical usefulness of continentality indices has

also been corroborated in the investigations of glacier

mass balance (Holmlund and Schneider 1997), plant

species range and the treeline (Caccianiga et al.

2008), and plant pollen in northern Europe (Salonen

et al. 2012).

Given the recent climate changes, it is expected

that continentality indices bring important signs of

these changes, particularly when research-based

thereon will address the dynamic year-to-year chan-

ges, multi-year trends, and predictions supplemented

with detailed analysis of extreme values and circu-

lation relationships. On the one hand, maps of

continentality indices can provide data concerning a

number of environmental elements, thereby being an

important variable in multi-dimensional spatial

modelling of these elements, as mentioned above.

Methodology for accurate spatialization of continen-

tality indices based on discrete point observations is a

prerequisite for generation of such maps. This paper

is focused on spatial interpolation of the thermal

continentality index for Poland. It has a method-

ological character allowing indication of a preferable

spatialization algorithm in accordance with the

environmental characteristics of the study area and

the nature of the input data set.

The annual temperature amplitude, i.e., the dif-

ference between the mean temperature of the

warmest and coldest month, is the simplest absolute

measure of thermal continentality. The drawback of

this indicator lies in its dependence on seasonal

changes in the quantity of incoming solar energy,

which results in an increase in the annual amplitude

with latitude. The effect is compensated for in the

thermal continentality indices by dividing the tem-

perature amplitude by the sine of latitude with

concurrent introduction of empirical parameters

facilitating rescaling of the index into the assumed

interval in accordance with theoretical assumptions

(Conrad 1946).

Various continentality indices used in climatol-

ogy are based on the average annual temperature

amplitude scaled with the sine of latitude. However,

Driscoll and Yee Fong (1992) suggest that there is

no conclusive evidence for the validity of the use of

this divisor with respect to amplitude changes

determined by the incoming solar energy. This

group comprises indicators specified by Gorczyński

(1920), Johansson (1926), Raunio (1948), Conrad

(Conrad and Pollak 1950), Hela (1953), Ivanov

(1953), Khromov (1957), Ewert (1963), and Hoge-

wind and Bissolli (2011). Formulas extending this

type of thermal continentality indices with other

environmental parameters include indicators devel-

oped by Spitaler (1922), Ringleb and Johansson

(after Szreffel 1961), and Ivanov (1959). Berg

(1944), Bailey (1968), and Oliver (1970) proposed

formulas based on other assumptions than annual

temperature amplitude. These ideas have been put

forward by Driscoll and Yee Fong (1992) and

Mikolášková (2009).

Classic approach to present continentality indices

uses hand-drawn isolines (Swoboda 1922;

Ko _zuchowski and Marciniak 1992), with generalisa-

tion typical of this technique, especially in small

scales. In recent studies, index maps are generated in

the GIS environment, taking advantage of raster maps

and showing more details (Mikolášková 2009; Tor-

regrosa et al. 2013). The spatialization approaches

applied are relatively simple, one-dimensional, and

disregard selection of an optimal interpolation

method and accuracy of the results.

Currently, environmental research, including cli-

matology, employs various interpolation techniques

(Hengl 2007; Li and Heap 2008; Szymanowski et al.

2012), which often leads to difficulties in choosing a

method that is appropriate in a given case. This

problem has been addressed, e.g., in the COST 719

research project ‘‘The Use of GIS in Climatology and

Meteorology’’ (Dobesch et al. 2007; COST Action

719 Final Report 2008), but the investigations did not

yield a conclusive solution. The spectrum of methods

employed for spatial interpolation of climate ele-

ments is very wide and comprises deterministic and

geostatistical techniques and their combinations. The
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best results are usually obtained with multivariate

methods considering the role of environmental fac-

tors, in particular the elevation and coordinates

(Szymanowski et al. 2012). This group includes,

among others, the multiple linear regression (MLR)

and residual kriging (MLRK, regression kriging)

methods. Analyses of the spatial properties of climate

elements, particularly non-stationarity, indicate that

the local geographically weighted regression (GWR)

model with residual kriging (geographically weighted

regression kriging, GWRK) is more suitable for

modelling the spatial variability of these elements

(Szymanowski and Kryza 2011, 2012). Methodolog-

ical research aiming at interpolation of the

temperature field for Poland resulted in construction

of a decision tree for selection of an optimal multi-

variate interpolation method considering the potential

non-stationarity of the spatial process (Szymanowski

et al. 2012, 2013).

The main objective of this study is to perform

spatial interpolation and generate maps of Ewert’s

index of continentality (1972) for selected cases in

Poland representing long-term annual mean values

and years with extreme values or characteristics of

the spatial distribution of this indicator. This

methodological paper emphasises the choice of an

optimal interpolation method and indication of

guidelines for automated or semi-automated inter-

polation of the indicator for a large data set (multi-

year series) to identify the trend in climate change.

Second aim is to validate the usefulness of the

scheme of selection of the optimal interpolation

method developed by Szymanowski et al.

(2012, 2013) for interpolation of the continentality

indices.

2. Study Area

Poland (312,679 km2) is situated in the central

part of Europe. The terrain elevation in the country

ranges from -1.8 m in the north to 2499 m above sea

level in the highest, mountainous area in the south of

the country. The north-western border of Poland is

delimited by the Baltic Sea, and in the south, the

border extends along the main ridge of the Sudetes

and Carpathians (Fig. 1).

Poland is located in the temperate transitional

climate zone with clear continental and oceanic

impacts. Westerly winds and polar air masses are

predominant. The spatial distribution of the lowest

values of the mean annual air temperature is deter-

mined by elevation, with the top parts of the

mountains (-0.7 �C), and continentality, with the

north-eastern part of the country being the second

coolest region (\7 �C). The mean annual temperature

increases from the north-east to the south-west, where

it exceeds 8.5 �C (Woś 2010). July, with tempera-

tures ranging from 17.3 to 18.8 �C (except for the

mountains), is the warmest month, and January, with

temperatures in the range between -3.4 and -1.3 �C,

is the coldest (Ko _zuchowski 2011). In January, lon-

gitudinal distribution of isotherms dominates, with

temperatures decreasing eastwards. In July, the

course of isotherms exhibits latitudinal distribution

with temperatures decreasing from the central regions

northwards, towards the Baltic Sea, and southwards

along the increasing elevation in the mountains. The

mean annual temperature amplitude varies between

ca. 15 �C in high mountain areas and 22 �C in the

eastern part of the country. The longitudinal course of

isoamplitudes typical for the east of the country is

deformed in the west. The longitudinal distribution is

only observed there in the central part, whereas in the

north and south, the arrangement has a latitudinal

direction similar to the course of the coast and

mountain ranges (Woś 2010). A similar distribution

is characteristic for the multi-year continentality

indices. The areal average value of Ewert’s index of

continentality is 44.3 % (Ko _zuchowski 2011). In

decades dominated by oceanic influences, it ranges

from below 38 % at the Baltic Sea to over 48 % in

the east of the country. In decades dominated by

continental influences, the values of Ewert’s index

range from below 44 % and over 56 %, respectively

(Ko _zuchowski and Marciniak 1992).

3. Data and Methods

3.1. Ewert’s Index of Continentality

One of the thermal continentality indices pre-

sented in the Introduction section, i.e., Ewert’s index
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(1972), was selected for the analysis. Compared with

other indicators involving compensation of the influ-

ence of latitude, Ewert’s index includes additional

parameterization considering the impact of land

cover on the value of the annual air temperature

amplitude in the individual latitude zones. These

relationships were estimated particularly carefully for

Central Europe, where the best results are achieved

(Ewert 1972). Additional important assumptions for

the development of the index include the possibility

of applying it to all latitudes and any—annual or

multi-year—period. Ewert’s index of continentality K

[%] is expressed by the formula:

K ¼ A � ð3:81 sinuþ 0:1Þ
38:39 sinuþ 7:47

� 100; ð1Þ

where A is the annual temperature amplitude and u is

latitude. The index is not limited to the range of

0–100 %, but it has the values from -1.5 % for Turk

Island to 141.5 % for Yakutsk. Areas with negative

index values are characterised by ‘‘hyperoceanity’’ and

those with the values[100 % by ‘‘hypercontentality’’

(Ewert 1972). Minimal ‘‘hyperoceanity’’ has been

identified at several Pacific stations and ‘‘hypercon-

tentality’’ in a large part of eastern Siberia (Ewert 1972).

To achieve one of the objectives of this study, i.e.,

development of a method and general guidelines for

spatial interpolation of Ewert’s index of continental-

ity for Poland, the analyses were based on five data

sets representing mean and extreme values of the

index from 1981 to 2010 (Table 1):

• the mean value of the index (K1981–2010);

• the years 1989 and 2006 with the lowest and

highest areal means for Poland, respectively (K1989,

K2006); and

• the years 1990 and 2002 with the smallest and

largest index ranges, respectively (K1990, K2002).

The study was based on measurement data

provided by 111 synoptic meteorological stations,

Figure 1
Study area and location of meteorological stations used in the study
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including 53 Polish stations and 58 stations located

outside Polish borders (Fig. 1). The localization of

each station was carefully verified by comparing

station metadata with ortophotomaps and digital

elevation model. The values of the annual amplitude

of air temperature were calculated based on informa-

tion contained in global summary of the day (GSOD)

database and provided by German weather service—

Deutscher Wetterdienst (Klimadaten für Deutsch-

land—online—frei; http://www.dwd.de).

3.2. Environmental Variables

The findings of the COST 719 project (COST

Action 719 Final Report 2008) and the previous

experience related to interpolation of meteorolog-

ical elements for Poland (Ustrnul and Czekierda

2005, 2009; Szymanowski et al. 2012) indicate a

significant value of multivariate interpolation algo-

rithms constituted for large range of climatological

applications. The methods consider the determinis-

tic relationships between the modelled element and

environmental variables—predictors. The spatial

distribution of the predictors is represented in the

interpolation procedure by raster layers with a fixed

spatial resolution. Variables prepared previously

for interpolation of temperature (Szymanowski

et al. 2012, 2013), which could have a significant

impact on the distribution of the continentality

index, were used in the study. Three groups of

variables were included in the set of potential

predictors:

• variables of the overall spatial trend comprising

layers of raster cell coordinates (X, Y) and the sea

distance index (SDI);

• terrain elevation represented by the digital eleva-

tion model (DEM) and derivative layers: the

concavity/convexity index (CCI), the foehn index

(FI), and insolation (IT); and

• land cover and its derivatives: the percentage of

natural surfaces (NS) and artificial surfaces (AS) in

the neighbourhood of the data point.

Variables X and Y denote coordinate values in the

local coordinate system PUWG-92. The influence of

the Baltic Sea is illustrated by the SDI index. To

consider the decreasing impact of the Baltic Sea

along with distance, the index was constructed as a

square root of the smallest Euclidean distance

(expressed by the number of cells) of a raster cell

from the coastline. SRTM-3 elevation data (http://

www2.jpl.nasa.gov/srtm) were used as a digital ele-

vation model (DEM). To achieve the goal of this

study, the data were transformed into the PUWG-92

system and resampled into 250-m resolution. This

resolution is a compromise between the computa-

tional costs and details of information introduced to

the models and expressed on the maps. High resolu-

tion is of special importance when the interpolated

variable is potentially strongly dependant on local

factors (including changes in altitude). The choice of

spatial resolution applied is supported by earlier

studies of Szymanowski et al. (2012, 2013) and

Szymanowski and Kryza (2015). Based on the 250-m

DEM, the concavity/convexity index (CCI) express-

ing the cool air accumulation effects of concave

terrain forms and the foehn index (FI) illustrating the

thermal impact of the foehn wind were calculated

(Szymanowski et al. 2007). Insolation (IT), expressed

by sums of energy of potential total radiation

incoming to the terrain surface, is a variable

Table 1

Summary of statistics of Ewert’s index of continentality (K) in Poland for the four selected years and the 1981–2010 average

Statistics K1989 K1990 K2002 K2006 K1981–2010

Mean 36.19 38.52 58.71 67.52 50.26

Minimum 22.79 31.26 35.36 49.25 39.54

Maximum 40.88 42.78 70.10 75.92 55.52

Range 18.09 11.51 34.74 26.67 15.97

Standard deviation 3.43 2.72 7.01 6.03 4.18
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illustrating the role of energy factors. The calcula-

tions were performed with the use of the r.sun

program implemented in the GIS—GRASS software

(GRASS Development Team 2011). The r.sun pro-

gram is a functionally best-developed module for

calculation of radiation in GIS, which can be suc-

cessfully applied to large areas (Šuri and Hofierka

2004) and works with high-resolution terrain models

(Kryza et al. 2010). Variables describing the per-

centage of the surface area arbitrarily called

‘‘artificial’’ (AS) and ‘‘natural’’ (NS) in the sur-

roundings with a radius of 2500 m around each point

were prepared on the basis of CLC2000—CORINE

Land Cover 2000 database (2004) for European

Union countries and the USGS Land Cover database

(2011) for Ukraine, Belarus, and Russia. The values

of all environmental variables were extracted from

raster layers at the coordinates of localization of each

meteorological station and were used to specify

regression models as described below.

3.3. Statistical and Spatial Analysis Methods

In this study, a scheme of selection of an optimal

interpolation method developed with an example of

air temperature is employed (Szymanowski et al.

2012, 2013). The scheme is based on Hengl’s

decision tree (2007), and was extended with methods

dedicated to non-stationary spatial processes. It is

generally assumed that the analysed continentality

index is characterised by a statistically significant

correlation with at least one environmental variable;

therefore, the deterministic component can be mod-

elled with the regression method. In the absence of

the correlation, spatial interpolation would have to be

performed using one of the one-dimensional meth-

ods, e.g., ordinary kriging (OK) or inverse distance

weighting (IDW), depending on the degree of spatial

autocorrelation of the analysed variable (Hengl

2007). In the scheme discussed, the modelled indi-

cator is regarded as a regionalised variable (Matheron

1971), i.e., a random variable comprising structural,

local, and random components. This cumulative

model was termed a universal model of spatial

variability by Matheron. The structural—determinis-

tic (m̂ðs0Þ) and local—stochastic (deterministic model

residuals—êðs0Þ) components of variability can be

modelled separately and the estimated value of

variable z in position s0—ẑðs0Þ is a sum of these

components (Eq. 2):

ẑðs0Þ ¼ m̂ðs0Þ þ êðs0Þ: ð2Þ

If the deterministic component is modelled with the

regression method, and kriging is used for modelling

regression residuals, such a model is called residual

kriging (Hengl 2007). The decision scheme is based

on Matheron’s model and offers a possibility of

application of one of the four interpolation methods

at a general assumption of existence of a correlation

between the modelled variable and environmental

variables. The choice of an optimal method follows

decisions that are taken in two steps. Initially, based

on the goodness-of-fit of the model to the observa-

tions, the stationarity of the spatial process is

assessed. The choice is made between the global,

multiple linear regression (MLR) model dedicated to

stationary processes, and the local, geographically

weighted regression (GWR) model employed for

non-stationary processes.

The global multiple linear regression MLR model

can be expressed as the following equation:

m̂ ðs0Þ ¼
Xp

k¼0

b̂kqkðs0Þ; ð3Þ

where b̂k are estimated regression coefficients (b̂0—

estimated intercept and qkðs0Þ—explanatory vari-

ables). The explanatory variables were selected for

the model with the stepwise regression method. The

prerequisite for inclusion of a variable was its sta-

tistically significant (p\ 0.05) correlation with the

continentality index and the absence of collinearity

with other explanatory variables determined by the

variance inflation factor, VIF (VIF\10).

The strongest reservations concerning the MLR

model in the context of spatial interpolation are that

the possible local variations and non-constant spatial

relation between the predictor and the estimated

variable are ignored both during model calibration

and in the prediction stage. These factors are

considered in the geographically weighted regression

model (Fotheringham et al. 2002). The validity of the

application of this model for air temperature in

Poland has been demonstrated by Szymanowski et al.

(2012). When the GWR model is employed, the
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deterministic component of the spatial variability

model will be expressed as the following equation:

m̂ðs0Þ ¼
Xp

k¼0

b̂kðs0Þqkðs0Þ; ð4Þ

where b̂kðs0Þ are estimated regression coefficients in

location s0 and qkðs0Þ—explanatory variables. Esti-

mation of regression parameters is performed locally

using the weighted least-squares method. The

schemes of weighing in GWR moving windows are

developed in such a way that the weight would

decrease with the distance between the estimation

point and the data point. In this study, we used the bi-

square function in adaptive kernels, whose value was

selected on the basis of minimisation of the Akaike

information criterion (AIC; Fotheringham et al.

2002). Exactly, the same auxiliary variables as in the

MLR were used in the GWR model.

In practice, the decision concerning the choice of

the regression model for approximation of the

deterministic component of the universal model can

be taken only on the basis of the degree of the

goodness-of-fit of the model to the observation data.

It was based on such measures of the fit as the

adjusted coefficient of determination (Radj.
2 ), standard

error of estimation (STE), corrected Akaike informa-

tion criterion (AICc), and analysis of variance

(ANOVA) for regression model residuals. ANOVA

was used to check whether the improvement of the

model fit, expressed as a decrease in the sum of

squared residuals of the model, was statistically

significant (Szymanowski and Kryza 2012).

The justification for the use of the GWR model

instead of MLR was tested using two tests of the

spatial variability of local geographically weighted

regression coefficients, i.e., Monte Carlo imple-

mented in the GWR3.0 software (Fotheringham

et al. 2002) and the geographical variability (GV)

test from the GWR4.0 software (Nakaya 2016). In the

case of stationarity of any of the explanatory

variables, it would be justified to apply a mixed

GWR (MGWR) model instead of a fully local

approach (Nakaya et al. 2005). The mixed models

allow to mix in one model the explanatory variables

which are spatially non-stationary (like for ordinary

GWR) and the stationary predictors (like used in

MLR). Calibration of the semiparametric GWR

model was performed for comparison using the

GWR4.0 software.

The other decision in the presented scheme of

selection of an optimal interpolation method concerns

the possibility of extending the model with a

stochastic component, i.e., interpolation of regression

model residuals with ordinary kriging. This proce-

dure is employed when there is a significant spatial

autocorrelation of regression residuals, which is a

basis for modelling a variogram that is different from

the pure nugget effect. If the pure nugget effect was

the only variogram possible to fit to the experimental

variogram of regression residuals, the deterministic

model would be corrected at each studied point by an

average of the residuals, which equals zero, in

accordance with the assumptions of MLR as a best

linear unbiased predictor (BLUP) model. In the GWR

model, which does not meet the criterion of unbi-

asedness, the average of the residuals varies, although

it is sufficiently close to zero (Fotheringham et al.

2002) to assume that the modification of prediction

by residual kriging is negligible in the absence of

autocorrelation (Fotheringham et al. 2002). There-

fore, the absence of autocorrelation of the residuals

excludes the extension of the MLR or GWR models

into MLRK or GWRK, respectively (Szymanowski

et al. 2012).

Spatial autocorrelation is a mathematical expres-

sion of spatial relationships described by Tobler’s

first law of geography (Tobler 1970), i.e., decreasing

similarity of features of geographical objects along

the increasing distance between them. It describes

the degree of correlation of the variable value in one

location with the value of the same variable in a

different location, which implies that the values of

the analysed variable determine and, concurrently,

are determined by realisation of the variable in

different locations. These relationships result in

spatial clustering of similar values, which is referred

to as positive autocorrelation. The value of the

autocorrelation and its statistical significance was

determined by calculating Moran’s I statistics (Mo-

ran 1950).

The deterministic component residuals were mod-

elled with ordinary kriging (Eq. 5):
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êðs0Þ ¼
Xn

i¼1

kieðsiÞ; ð5Þ

where ki are kriging weights determined from the

spatial dependence of the deterministic component

residuals and eðsiÞ—residual in position si. Hence,

the full model of residual kriging based on the global

regression MLRK model (Eqs. 2, 3, 5) can be

expressed as the following equation:

ẑðs0Þ ¼ m̂ s0ð Þ þ êðs0Þ ¼
Xp

k¼0

b̂kqkðs0Þ þ
Xn

i¼1

kieðsiÞ;

ð6Þ

whereas residual kriging based on the geographically

weighted regression (GWR) model (Eqs. 2, 4, 5) can

be expressed as the following equation:

ẑðs0Þ ¼ m̂ s0ð Þ þ êðs0Þ

¼
Xp

k¼0

b̂kðs0Þqkðs0Þ þ
Xn

i¼1

kieðsiÞ: ð7Þ

Modelling of variograms of the regression residuals

was carried out using automated fitting procedure in

ArcGIS Geostatistical Analyst. This approach is

based on the Levenberg–Marquardt method (Press

et al. 1988) of non-linear least-squares approxima-

tion. The choice between candidate variogram

models (spherical, circular, and exponential) was

done basing on the fit quality, using the criterion of

the lowest root-mean-squared error (RMSE). To

avoid inconsistencies on the edges of local neigh-

bours’ search area and subsequent artificial tearing of

continuity of interpolated variable, global settings

were used to specify kriging models, i.e., all data

points were considered in determination of the

weights at any interpolation point.

Due to the limited 111-element input data set, the

quantification of the modelling results was performed

using the leave-one-out cross-validation (CV) tech-

nique. It yielded a 111-element set of CV errors,

which were used in the validation of the model in two

ways. The values of the summary diagnostic mea-

sures were calculated and analysis of the spatial

distribution of the CV errors was carried out,

particularly in terms of systematic local and regional

trends.

Three synthetic measures, i.e., mean error (ME),

mean absolute error (MAE), and RMSE, were used in

the analysis of the CV errors. The relationship

between the sizes of the aforementioned errors can

be defined as ME B MAE B RMSE, with the two

latter measures having only non-negative values with

the predicted zero value. The use of the square of the

CV errors in the RMSE index makes the measure

substantially biased even by an inconsiderable num-

ber of large errors, although the other errors may be

small and acceptable. According to some researchers,

MAE is regarded as the most natural diagnostic

measure (Willmott and Matsuura 1995).

Since the differences in the MAE of CV errors

may be negligible in the compared methods, the

decision as to whether any of the methods yielded

significant improvement, i.e., has a significantly

lower MAE, was made by comparison of

MAE ± r̂MAE intervals, where r̂MAE was a MAE

calculation error. Assuming that the mean l of CV

errors is lCV ffi 0, and r̂MAE for an n element set with

standard deviation rCV can be calculated with the

formula (Kalarus et al. 2010; Eq. 8):

r̂MAE ¼ rCVffiffiffiffiffi
nc

p ; c ¼ p
p� 2

: ð8Þ

Therefore, if the MAE ± r̂MAE intervals for the two

methods are disjoint, the method with a smaller MAE

can be considered better. If, however, the analysed

intervals have a certain common range, this statement

is not justified.

The quantitative analysis of the model was also

accompanied by visual evaluation, which by defini-

tion serves identification of features of the model

that cannot be shown by methods based on the

actual values of the interpolated variable. In partic-

ular, it facilitates detection of such little realistic

effects as spatial discontinuity, unusually large or

small values of the modelled variable, strong

directional or regional trends, and various artefacts

illustrating the characteristics of the interpolation

algorithm rather than those of the interpolated

variable. Although it is based on the expert knowl-

edge of the modelled element, such validation is

subjective and only complementary to quantitative

evaluation.
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A number of various computer programs were

used in the study, both commercial packages and free

software. The spatial analyses primarily concerning

the structure of the layers of the explanatory variables

and spatial interpolation as well as the final maps

were generated in the ArcGIS and GIS GRASS

software. The analysis of stepwise regression and the

global model was carried out in the STATISTICA

program, and the complementary analyses of geo-

graphically weighted regression (ANOVA, non-

stationarity tests, calibration o semiparametric GWR

model) were performed using the GWR3.0 (Fother-

ingham et al. 2002) and GWR4.0 (Nakaya 2016)

packages. For cross validation, the R scripts were

developed, using gstat and spgwr packages.

4. Results and Discussion

4.1. Ewert’s Index Spatial Predictors

The specification of the multiple linear regression

(MLR) model using the stepwise method showed that

only four environmental variables in the five analysed

cases significantly determined the value of Ewert’s

index: coordinates (X and Y), elevation (DEM), and

the distance from the sea (SDI; Table 2). These

variables indicate the global nature of the determi-

nants of the continentality index distribution. It

should be stressed that variables combining global

and local factors, such as insolation (IT), regional

factors, such as the foehn index (FI), or local factors

reflecting the effect of the terrain relief (CCI) or land

cover (AS, NS), were not introduced into the model

in any of the analysed cases. These variables were,

therefore, not correlated significantly with the conti-

nentality index based on air temperature amplitude,

although they often proved to be significantly corre-

lated with air temperature alone (Szymanowski et al.

2012, 2013). This may have been caused by the fact

that the input data for the analysis presented in this

paper were only obtained from synoptic stations that,

in accordance with the WMO guidelines, had been

located in a way to minimise local impacts; no data

from climatological stations were available in the

study.

Each time, a maximum of three variables was

introduced into one model, and only elevation was

included in all the five models. This is related to the

expected decline in the temperature amplitude

together with elevation. Variable X describing the

rate of change in the east–west orientation was

introduced four times, except for the index calculated

for 1990 (Table 2). Similarly, one of the variables

characterising the zonal distribution of Ewert’s index,

Y, or SDI was introduced in four cases. Importantly,

in none of the models, do these variables appear

simultaneously. In the geographical conditions of

Poland with the Baltic Sea in the north of the country,

and given arrangement of meteorological stations,

variable Y (northing) and the sea distance index SDI

are correlated, and hence, only one of them was

introduced into the regression model even if both

were significantly correlated with the continentality

index (SDI—3 times, Y—1 time; Table 2). There was

no significant correlation with one of the zonal

variables Y or SDI only in 2006.

Table 2

Explanatory variables and standardized regression coefficients in

multiple linear regression (MLR) models of Ewert’s index of

continentality (K) for the four selected years and the 1981–2010

average (descriptions of variables in the text)

Model parameter (in the

order of significance)

Standardized coefficients P value

K1989

SDI 0.753 0.000

DEM -0.612 0.000

X 0.121 0.050

K1990

Y -0.956 0.000

DEM -0.359 0.000

K2002

X 0.725 0.000

DEM -0.569 0.000

SDI 0.101 0.014

K2006

DEM -0.525 0.000

X 0.323 0.000

K1981–2010

SDI 0.754 0.000

DEM -0.576 0.000

X 0.363 0.000

DEM elevation, SDI sea distance index, X easting coordinate,

Y northing coordinate
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The values of standardized regression coefficients

indicate a varying impact of the environmental

variables on the individual cases, which concurrently

imply significant differences in the distribution of the

continentality index. The sign of the coefficients

identifies the direction of the relationships: in general,

Ewert’s index of continentality decreases together

with the terrain elevation and northwards and

increases along the distance from the sea and

eastwards (Table 2).

4.2. Regression Models

Global regression model (MLR) explains over

66 % of the Ewert’s index variability in four analysed

cases (Table 3). The coefficient of determination was

as low as 0.37 only for 2006. The model for the

1981–2010 average was the best fitted one

(Radj.
2 = 0.90) with a 1.63 % standard error of

estimation. In the poorest fitted model for 2006,

STE was found to be 5.20 %.

Local geographically weighted regression models

(GWR) for all the cases were characterised by a

better fit to the observations. The highest increase in

the coefficient of determination was found for 2006:

from 0.37 for MLR to 0.75 for GWR. In the other

cases, there was an increase in the explanation of the

variance of Ewert’s index from ?2 % for the multi-

year average to ?11 % for 1989. Increase in

explained variance was accompanied by a simulta-

neous decrease in the STE value and a significant

([3) reduction in the Akaike information criterion

(AICc, Table 3). The ANOVA analysis indicated a

statistically significant decrease in the residual sum of

squares of the GWR models, compared with MLR

(Table 4).

The Monte Carlo and geographical variability

(GV) tests for spatial non-stationarity indicated

possible spatial stationarity of the DEM variable

GWR coefficients in two cases: for 1989 (GV test

only) and 2002 (both tests, but the result of the GV

test was not significant at 0.05; Table 5).

The mixed MGWR models for the two cases

considered were characterised by a slightly lower

residual sum of squares than the GWR models

(Table 4). However, the coefficients of determina-

tion and estimation errors were similar to the GWR

model, and AICc did not indicate a significant

improvement in the fit to the observations

(Table 3).

Table 3

Selected statistics of multiple linear regression (MLR), geographically weighted regression (GWR), and mixed geographically weighted

regression (MGWR) models of Ewert’s index of continentality (K) for the four selected years and the 1981–2010 average

Regression

model

Auxiliary variables (in the

order of significance)

Bandwidth

size

Adjusted

R2

Corrected Akaike information

criterion (AICc)

Standard error of

estimation (STE)

K1989

MLR SDI, DEM, X – 0.66 586.36 3.33

GWR 65 0.77 550.19 2.74

MGWR 65 0.77 549.32 2.74

K1990

MLR Y, DEM – 0.76 510.86 2.38

GWR 48 0.84 472.13 1.92

K2002

MLR X, DEM, SDI – 0.87 566.53 3.05

GWR 65 0.91 538.4 2.59

MGWR 65 0.91 537.07 2.59

K2006

MLR DEM, X – 0.37 684.13 5.20

GWR 32 0.75 596.74 3.27

K1981–2010

MLR SDI, DEM, X – 0.90 427.45 1.63

GWR 65 0.91 538.4 2.59

DEM elevation, SDI sea distance index, X easting coordinate, Y northing coordinate
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The analysis presented in this section shows a

better fit of the local GWR regression model than that

of the global MLR model. This suggests the non-

stationarity of the spatial process in each analysed

case of the spatial distribution of Ewert’s index of

continentality. No significant difference between the

GWR and mixed MGWR models was found either.

Thus, accordingly to Occam’s razor principle, where

simpler models are preferable to more complex ones,

because they are better testable and falsifiable,

simpler GWR model was used for further analysis.

4.3. Residual Kriging Models

Extension of the regression models to the form of

residual kriging was preceded by an analysis of the

spatial autocorrelation of the regression residuals.

Moran’s I statistics showed a statistically significant

positive autocorrelation, i.e., clustering of similar

values of residuals, for all the MLR models (Table 6).

For the GWR residuals, a tendency towards cluster-

ing of similar values was observed in four cases, but

the autocorrelation was not significant at the 0.05

level. In the case of year 2002, a random distribution

of the GWR residuals, i.e., the absence of autocor-

relation, was observed (Table 6).

Here, as in the previous studies (Szymanowski

et al. 2012, 2013), an exclusion criterion was used,

i.e., the absence of a significant (\0.05) positive

autocorrelation prevented correct fitting of the theo-

retical variogram different from the pure nugget

effect. Thus, according to none significant autocor-

relation of all GWR residuals (Table 6), variogram

modelling was performed only for MLR residuals

(Table 7). In all the cases, the spherical model was

the best fitted (lowest or at least the same RMSE)

while comparing to exponential and circular ones

(Table 7).

4.4. Cross-Validation Results

The diagnostic measures of CV errors of the

continentality index for Polish synoptic stations are

presented in Table 8. Summary statistics were calcu-

lated for the two regression models (MLR and GWR)

and one residual kriging model (MLRK). The choice

of the model that would be optimal considering cross-

validation results was made based on ME, MAE, and

RMSE measures and extreme errors (Table 8). MAE

was regarded as the main measure in this case, since

it facilitated assessment of the statistically significant

difference between the error sizes and, consequently,

identification of significant improvement provided by

the model with lower MAE values. This is particu-

larly important, as the differences in the diagnostic

measures, including MAE, are often inconsiderable,

particularly when similar categories of models, e.g.,

regression or residual kriging, are compared

(Table 8).

The better fit of the GWR models, comparing with

MLR, was also confirmed by cross validation. In

general, the GWR model was characterised by better

CV summary statistics in each analysed case. This

did not imply that the model was better in terms of all

the five measures employed. Sometimes, the ME or

one of the extreme errors was closer to zero in MLR

than in GWR. However, the MAE and RMSE for

GWR were always lower than for MLR. Importantly,

GWR was characterised by a significantly lower

MAE only in 2006 (Table 8).

Table 4

ANOVA of multiple linear regression (MLR), geographically weighted regression (GWR), and mixed geographically weighted regression

(MGWR) models of Ewert’s index of continentality (K) for the four selected years and the 1981–2010 average

Source K1989 K1990 K2002 K2006 K1981–2010

Sum of squares

MLR residuals 1186.5 612.8 992.3 2918.9 283.5

GWR residuals 733.3 353.1 659.6 945.9 195.0

GWR improvement 453.2 259.7 332.7 1972.9 88.5

MGWR residuals 748.4 – 670.2 – –

MGWR improvement 438.1 – 322.1 – –
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The absence of autocorrelation of GWR residuals

limits the model of spatial variation only to

explanation of the deterministic component. Thus,

even if the fit of the GWR model is significantly

better than that of MLR (as in the case of 2006;

Table 3), GWRK is not effective when regression

residuals are randomly distributed. Paradoxically,

this may imply that a better fitted deterministic

model does not necessarily guarantee better spatial

interpolation. Consequently, the scheme of the

optimal interpolator selection applied so far (Szy-

manowski et al. 2012, 2013) requires revision, so

that it will consider the above-mentioned possibility

of the absence of autocorrelation of GWR residuals

accompanied by a significant positive autocorrela-

tion of MLR residuals (Fig. 2). Therefore, a

question arises whether a reverse situation, i.e., the

absence of autocorrelation of MLR residuals

accompanied by a significant positive autocorrela-

tion of GWR residuals, should be considered in such

scheme. Such situation is highly unlikely, since it

would have to result from a better fit of the MLR

than the GWR model. In fact, MLR can be regarded

as a special case of GWR with the constant weight

along the distance and all observation data points

used for model calibration. This implies that the

GWR model may work better or be comparable to

MLR, but the reverse situation should be rather

excluded. Thus, such option is not included in the

proposed selection tree (Fig. 2).

In all the analysed cases, the MLRK models have

smaller errors than both the regression models.

Moreover, due to MAE criterion, MLRK was signif-

icantly different from MLR and GWR, so it can be

assumed the optimal spatial interpolation algorithm.

To confirm the choice, an additional visual assessment

of maps of the continentality index was carried out.

4.5. Maps of Ewert’s Index of Continentality

To present the characteristics and differences

between the maps generated with the three spatial

models analysed, two cases were selected, i.e., the

Table 5

Local parameter variability tests for geographically weighted

regression (GWR) models of Ewert’s index of continentality (K) for

the four selected years and the 1981–2010 average

GWR

model

parameter

Monte Carlo test

(GWR3.0 software)

p value

Geographical variability test

(GWR4 software) difference

of criterion

K1989

Intercept 0.000 -6.234

DEM 0.020 0.874

SDI 0.000 -29.289

X 0.000 -10.570

K1990

Intercept 0.000 -15.714

DEM 0.000 -0.843

Y 0.000 -24.766

K2002

Intercept 0.000 -6.920

DEM 0.140* 1.363*

SDI 0.000 -28.086

X 0.000 -16.900

K2006

Intercept 0.000 -0.305

DEM 0.000 -5.312

X 0.000 -22.551

K1981–2010

Intercept 0.000 -12.387

DEM 0.000 -0.286

SDI 0.000 -14.413

X 0.000 -11.086

* Not significant at 0.05; bold numbers suggest no spatial

variability

Table 6

Spatial autocorrelation of multiple linear regression (MLR) and

geographically weighted regression (GWR) residuals of Ewert’s

index of continentality (K) for the four selected years and the

1981–2010 average

Model Moran’s I statistics

E(I) = -0.009

p value

K1989

MLR 0.380 0.000

GWR 0.083 0.145*

K1990

MLR 0.357 0.000

GWR 0.049 0.357*

K2002

MLR 0.244 0.000

GWR -0.019 0.870*

K2006

MLR 0.585 0.000

GWR 0.098 0.095*

K1981–2010

MLR 0.313 0.000

GWR 0.078 0.165*

* Not significant at 0.05
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years 2002 and 2006. Due to the large range and

considerable variability of the index (Table 1), these

were the most demanding cases in terms of spatial

interpolation of the analysed data set. This was also

reflected in the largest cross-validation errors

(Table 8).

The largest differences between the fit of the

MLR and GWR models were found for 2006

(Table 3). This was clearly reflected on maps

generated with these two methods (Fig. 3a, b). The

DEM and X variables included in the MLR model

are responsible for the overall decrease in the index

with elevation and an increase eastwards. The

process, however, is highly non-stationary (Table 5)

and the model significantly overestimates the values

obtained on the Baltic Sea coast and underestimates

the values from the rest of the country (Fig. 3a). The

considerably better fitted GWR model substantially

increases the value of the index in the central part of

the country and slightly decreases it on the coast,

contributing to the reduction of the CV errors size.

The general tendency towards overestimation is still

visible in the northern part of Poland (Fig. 3b). The

map generated using the GWR method clearly

emphasises the role of terrain relief, particularly in

the northern part of the country. This is related to

the small kernel bandwidth (32 points), i.e., the

smallest of all the analysed cases (Table 3), which

can locally emphasise the effect of the explanatory

variable. The correction introduced by the geosta-

tistical component is significant in the MLRK model

(Fig. 3c) which can be regarded as optimal in this

case.

In the case of 2002, although the improvement

of the fit introduced by the GWR model compared

with MLR is statistically significant (Table 4), the

maps of Ewert’s index do not show significant

differences, the spatial distribution and size of the

CV errors are similar (Fig. 4a, b), and the MAE

criterion does not indicate a significant difference

between the methods. All three models for 2002

exhibit a poor local fit to the observations in the

central-northern part of the country (Fig. 4). Despite

this limitation, MLRK, which is statistically signif-

icantly better than MLR and GWR in terms of the

MAE criterion, can be regarded as an optimal model

for 2002 (Table 8).

In the other analysed cases, MLRK were also

regarded as optimal models. This supported the

conclusions drawn from the analysis of the cross-

validation errors also confirming the necessity of

introduction of a modified scheme of selection of an

optimal predictor (Fig. 2).

The differences in the size, range, and variation

of Ewert’s index indicated in the observations

(Table 1) were also reflected on the maps (Fig. 5).

The spatial distribution of the 1981–2010 multi-

year average is characterised by a distinct upward

trend from NW to SE with a clearly decreased

value of the index in the top parts of the highest

mountains. This is particularly visible in the

western part of the Sudetes, SW Poland (Fig. 5a).

Table 7

Variogram fitting evaluation and parameters of spherical variograms of multiple linear regression (MLR) residuals of Ewert’s index of

continentality (K) for the four selected years and the 1981–2010 average

Variogram model fitting—RMSE Spherical model parameters

Spherical Circular Exponential Partial sill Range Nugget

K1989

2.61 2.62 2.66 5.3279 382,579 5.9659

K1990

2.34 2.34 2.34 2.3679 870,121 4.0273

K2002

2.69 2.70 2.72 3.0954 709,466 6.7452

K2006

2.83 2.83 2.96 23.618 380,159 5.1770

K1981–2010

1.43 1.44 1.44 0.29,026 500,120 2.3367
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Although discussion of the reasons for this situa-

tion lies beyond the scope of this paper, it should

be noted that the differences in the distribution

between the individual years in relation to the

averaged field are significant. In 1990, there was a

pronounced zonal trend in the distribution of the

continentality index; in 2002, the distribution was

longitudinal, and in 2006, high values of the

continentality index covered large areas of the

central Poland (Fig. 5). Such strong variability of

the index distribution may indicate its analytical

usefulness as a complementary indicator of macro-

and mesoscale atmospheric processes.

5. Summary and Conclusions

The primary aim of the paper was to perform

spatial interpolation and to generate maps of Ewert’s

index of continentality in Poland for the selected

years and an average from the period 1981–2010. The

main emphasis was placed on the methodological

side of spatial interpolation to develop guidelines for

automation of the interpolation process.

Additional objective was to test, on the example

of Ewert’s index, the validity of the scheme of

selection of an optimal interpolation method devel-

oped by Szymanowski et al. (2012, 2013) for

Table 8

Summary statistics of cross-validation (CV) errors for multiple linear regression (MLR), geographically weighted regression (GWR), and

multiple linear regression—kriging (MLRK) models of Ewert’s index of continentality (K) for the four selected years and the 1981–2010

average

Statistics MLR GWR MLRK

K1989

ME 1.080 1.068 0.408

MAE 2.180 (1.99172.369) 2.065 (1.89372.237) 1.109 (1.00071.218)

RMSE 2.526 2.385 1.400

MIN -4.054 -3.254 -2.520

MAX 5.504 5.117 3.690

K1990

ME 1.010 0.862 0.434

MAE 1.797 (1.65271.942) 1.739 (1.59971.879) 1.399 (1.27571.523)

RMSE 2.111 2.018 1.660

MIN -3.452 -2.977 -2.631

MAX 4.341 4.135 3.649

K2002

ME -0.479 -0.518 -0.111

MAE 2.158 (1.93872.378) 2.071 (1.86672.276) 1.819 (1.62172.017)

RMSE 2.982 2.848 2.690

MIN -5.582 -6.134 -7.992

MAX 9.654 8.956 8.496

K2006

ME -2.989 -2.171 -0.442

MAE 5.078 (4.72775.429) 4.317 (3.99874.636) 1.645 (1.50071.790)

RMSE 5.748 5.044 2.107

MIN -9.414 -7.551 -5.536

MAX 10.631 11.024 6.357

K1981-2010

ME 0.341 0.323 0.243

MAE 1.331 (1.22371.439) 1.285 (1.18271.388) 1.118 (1.02571.211)

RMSE 1.608 1.565 1.398

MIN -3.233 -2.975 -2.557

MAX 3.353 3.598 3.664

ME mean error, MAE mean absolute error, RMSE root-mean-square error, MIN minimum, MAX maximum; in brackets—MAE error range

(description in the text)
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spatialization of air temperature. An optimal method

was yielding the smallest errors and simultaneously

allowing generation of an acceptable map on the

basis of expert knowledge about the spatial charac-

teristics of the interpolated variable.

The continentality index for the period 1981–2010

was calculated based on the daily data from 111

meteorological stations. Four years (1989, 1990,

2002, and 2006) characterised by extreme values of

the areal average and index range were selected for

the analysis. The set of analysed cases was comple-

mented with the mean value of Ewert’s index for the

multi-year period 1981–2010.

The set of potential predictors of the continen-

tality index comprised nine environmental variables

previously used for spatial interpolation of air tem-

perature in Poland (Szymanowski et al. 2012, 2013).

However, the stepwise regression analysis

demonstrated that only four variables in the analysed

cases exhibited a significant correlation with Ewert’s

index, i.e., coordinates X and Y, elevation, and the

distance from the sea. Regional or local variables

were not significantly correlated with the index,

which implies that the features of the continentality

index field are mainly determined by macroscale and

regional factors (distance from the Baltic Sea) with

modification depending on terrain elevation. Note-

worthy, the analysis was performed on the basis of

the index calculated for the synoptic stations; the

location of which, by definition, minimises the local

impacts on climate elements. Data from lower-rank,

climatological stations, where the impact may be

more significant, were not included.

The correlation analysis performed to eliminate

collinearity in the regression model additionally

showed that variables Y (northing) and SDI were

Figure 2
Decision tree for selecting a suitable spatial prediction model under the assumption of existing environmental correlations (after Szymanowski

et al. 2012, 2013, extended)
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correlated in the geographical conditions of Poland

and considering given set of meteorological station.

Therefore, only one of them was included in the

multiple linear regression MLR model (SDI—3

times, Y—1 time). The elevation variable was

included in the models of each of the five cases,

although this does not mean that its role was dom-

inant. In fact, the role of the explanatory variables in

the regression models varied between the cases,

which indicates significant changes in the determi-

nants and, hence, variable features of the Ewert’s

index distribution. The general regularities of the

distribution allow a conclusion that the continen-

tality index for Poland decreases with elevation and

northwards and increases along the distance from

the sea and eastwards, which is also supported by

Figure 3
Ewert’s index of continentality (K) in Poland in 2006 spatialized

using selected interpolation methods

Figure 4
Ewert’s index of continentality (K) in Poland in 2002 spatialized

using selected interpolation methods
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the previous studies (Ko _zuchowski and Marciniak

1992).

The environmental correlation for each of the

analysed cases was statistically significant,

although for 2006, the MLR model explained

solely 37 % of the Ewert’s index variation. In each

case, the local GWR model was better fitted to the

observations and it significantly improved the MLR

regression results. The tests of the spatial vari-

ability of the GWR regression coefficients

indicated their stationarity. However, compared

with the GWR, the use of mixed local–global

regression models (MGWR) did not significantly

improve the fit.

Figure 5
Maps of Ewert’s index of continentality in Poland for the four selected years and the 1981–2010 average
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The residuals of the MLR models were charac-

terised by a positive spatial autocorrelation, which

clearly justified extension of the model to the form of

residual kriging, MLRK. In contrast, no statistically

significant autocorrelation was found in any case of

GWR, so the GWRK model was excluded from fur-

ther considerations.

The cross validation was carried out for three

models of each case of Ewert’s index. The local

GWR model was characterised by smaller errors. In

terms of the MAE criterion, MLR was found to be

statistically significantly worse than GWR only for

2006. CV carried out for residual kriging models

clearly indicated that the MLRK models produced

smaller errors than both regression models. However,

the specification of GWRK was not justified and gave

grounds for modification of the scheme of optimal

interpolator selection in the presence of the environ-

mental correlation. The modified scheme of

Szymanowski et al. (2013) now allows a situation

where the absence of an autocorrelation of GWR

residuals is accompanied by an autocorrelation of

MLR residuals, which indicates that MLRK is an

optimal method, even if GWR is better fitted to

observations than MLR.

The visual assessment of the maps confirmed the

results of the cross validation and the MAE criterion.

The MLRK model is recommended to spatialize the

Ewert’s index for Poland.

Based on the results obtained, it can be postulated

that the following elements should be considered in

the procedure of automation of the interpolation of

the continentality index for Poland:

• Regression models should be specified using four

potential predictors: coordinates (X, Y), elevation

(DEM), and distance from the sea (SDI).

• The decision concerning selection of the interpo-

lator should in each case be based on the proposed

scheme (Fig. 2), including comparison of the fit of

the regression models to observations by, e.g.,

comparing the coefficient of determination and

autocorrelation regression residuals using Moran’s

I statistics.

• For autocorrelated residuals, the automatic fitting

of the variogram can be done using the spherical

model.

In the previous papers (Szymanowski and Kryza

2012; Szymanowski et al. 2012, 2013), it was

assumed that the choice of an optimal interpolation

method was determined by the stationarity or non-

stationarity of the spatial process, which could be

inferred from the better fit of one of the regression

models, i.e., global or local. The results obtained in

this study demonstrated greater importance of the

geostatistical component in the universal model of

spatial variation (Hengl 2007). Residual kriging is

highly efficient if regression residues exhibit a strong

positive autocorrelation contributing to the well fit of

the theoretical variogram to the experimental one.

This does not imply, however, a possibility of

exclusion of the deterministic component if the

environmental correlation is significant. Although

this would lead to maintenance of the good fit of the

model to observation in measurement points, the

spatial distribution of the index would simultaneously

‘‘diverge’’ from environmental features beyond these

points.
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191–199.

Szymanowski, M., & Kryza, M. (2011). Application of geograph-

ically weighted regression for modelling the spatial structure of

urban heat island in the city of Wroclaw (SW Poland). Procedia

Environmental Sciences, 3, 87–92.

Szymanowski, M., & Kryza, M. (2012). Local regression models

for spatial interpolation of urban heat island—an example from

Wrocław, SW Poland. Theoretical and Applied Climatology,

108, 53–71.

Szymanowski, M., & Kryza, M. (2015). The role of auxiliary

variables in deterministic and deterministic-stochastic spatial

models of air temperature in Poland. Pure and Applied Geo-

physics,. doi:10.1007/s00024-015-1199-2.

Vol. 174, (2017) Spatial Interpolation of Ewert’s Index of Continentality in Poland

183

http://landcover.usgs.gov/usgslandcover.php
http://landcover.usgs.gov/usgslandcover.php
http://grass.osgeo.org
https://raw.githubusercontent.com/gwrtools/gwr4/master/GWR4manual_409.pdf
https://raw.githubusercontent.com/gwrtools/gwr4/master/GWR4manual_409.pdf
http://dx.doi.org/10.1007/s00024-015-1199-2


Reprinted from the journal

Szymanowski, M., Kryza, M., Smaza, M. (2007). A GIS approach

to spatialize selected climatological parameters for wine-growing

in Lower Silesia, Poland. In: Střelcová, K., Škvarenina, J., Bla-
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Geospatial Predictive Modelling for Climate Mapping of Selected Severe Weather Phenomena

Over Poland: A Methodological Approach

EWELINA WALAWENDER,1,2 JAKUB P. WALAWENDER,2,1 and ZBIGNIEW USTRNUL
2,1

Abstract—The main purpose of the study is to introduce

methods for mapping the spatial distribution of the occurrence of

selected atmospheric phenomena (thunderstorms, fog, glaze and

rime) over Poland from 1966 to 2010 (45 years). Limited in situ

observations as well the discontinuous and location-dependent

nature of these phenomena make traditional interpolation inap-

propriate. Spatially continuous maps were created with the use of

geospatial predictive modelling techniques. For each given phe-

nomenon, an algorithm identifying its favourable meteorological

and environmental conditions was created on the basis of obser-

vations recorded at 61 weather stations in Poland. Annual

frequency maps presenting the probability of a day with a thun-

derstorm, fog, glaze or rime were created with the use of a

modelled, gridded dataset by implementing predefined algorithms.

Relevant explanatory variables were derived from NCEP/NCAR

reanalysis and downscaled with the use of a Regional Climate

Model. The resulting maps of favourable meteorological conditions

were found to be valuable and representative on the country scale

but at different correlation (r) strength against in situ data (from

r = 0.84 for thunderstorms to r = 0.15 for fog). A weak correla-

tion between gridded estimates of fog occurrence and observations

data indicated the very local nature of this phenomenon. For this

reason, additional environmental predictors of fog occurrence were

also examined. Topographic parameters derived from the SRTM

elevation model and reclassified CORINE Land Cover data were

used as the external, explanatory variables for the multiple linear

regression kriging used to obtain the final map. The regression

model explained 89 % of annual frequency of fog variability in the

study area. Regression residuals were interpolated via simple

kriging.

Key words: Geospatial modelling, severe weather phenom-

ena, regression kriging, climate mapping, Poland.

1. Introduction

Severe weather is an extreme meteorological

event or phenomenon, which represents a real threat

to human life and property (World Meteorological

Organization 2004). Weather hazards may occur

suddenly and not leave much time for reaction. Fur-

thermore, these occurrences are spatially varied and

should be identified by an area. Hence, knowledge

about the spatial distribution and strength of dan-

gerous atmospheric phenomena is crucial for reliable

local risk assessment as well as effectiveness in

preventing and mitigating weather disasters. Some of

the most common dangerous weather phenomena that

occur over Poland are fog, thunderstorms (lightning

and hail) and icing (rime and glaze).

Understanding the spatial variability and intensity

of severe weather phenomena makes it possible to

determine regional sensitivity to extreme atmospheric

hazards at different risk levels. Spatial prediction

methods for several weather elements are relatively

well recognized and widely described (e.g. HARTKAMP

et al. 1999; CHAPMAN and THORNES 2003; DOBESCH

et al. 2007; LI and HEAP 2008; TVEITO et al. 2008;

SLUITER 2009). The most frequently studied were: air

temperature (e.g. NINYEROLA et al. 2000, 2007b;

BROWN and COMRIE 2002; VICENTE-SERRANO et al.

2003; USTRNUL and CZEKIERDA 2005, BENAVIDES et al.

2007; SZYMANOWSKI and KRYZA 2013), solar radiation

(e.g. HEUVELINK and GRIFFITH 2010; KRYZA et al.

2010; RUIZ-ARIAS et al. 2011; WANG et al. 2014),

precipitation (e.g. NINYEROLA et al. 2000, 2007a;

MARTÍNEZ-COB 1996; BROWN and COMRIE 2002;

VICENTE-SERRANO et al. 2003; WAGNER et al. 2012;

DI PIAZZA et al. 2011), evapotranspiration (e.g.

MARTÍNEZ-COB 1996; VICENTE-SERRANO et al. 2007;
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SHIRIN MANESH et al. 2013) and snow cover (e.g.

LÓPEZ-MORENO and NOGUÉS-BRAVO 2005, 2006; LÓPEZ

MORENO and VICENTE-SERRANO 2007; BLANCHET and

LEHNING 2010). Thus far, not much attention has been

paid so far to techniques for mapping some visually

observed atmospheric phenomena (e.g. fog, dew,

hoarfrost, icing, rime, glaze, thunderstorms), which

are usually small-scale, often spatially discontinuous,

inherently complicated and difficult to predict and/or

measure. The volume of source data is also usually

too small for interpolation because phenomena are

visually observed only at synoptic and research

weather stations where a human observer records

observations. For spatially continuous mapping of

atmospheric phenomena characteristics, estimation

based on selected physical relationships is recom-

mended (World Meteorological Organization 2011).

This often requires application of predictive mod-

elling and mapping techniques also known as

geospatial data mining (YUAN et al. 2005; SHEKHAR

et al. 2005) instead of traditional spatial interpolation

methods (BERRY 2005; DIEM and COMRIE 2002). In

this case, geospatial predictive modelling and map-

ping techniques were used for estimating the spatial

distribution of selected atmospheric phenomena over

the area of Poland on the basis of rasterised envi-

ronmental variables (FRANKLIN 1995).

The main purpose of the study is to present an

improved climate mapping method for evaluating the

spatial distribution of selected small-scale atmo-

spheric phenomena based on limited input data.

Geospatial predictive models of thunderstorms, fog,

glaze, and rime were developed to obtain spatially

continuous maps. Cartographic versions of similar

maps have already been published in the Meteoro-

logical hazard atlas of Poland (USTRNUL et al. 2014)

where the spatial and temporal variability of each

given phenomenon is discussed. In this study, the

methodological approach is presented.

2. Study Area and Data

2.1. Weather Observation Data (in Situ Data)

The study area is Poland, a central European

country (313,000 km2) characterized by a transitional

climate with both oceanic and continental influences.

Elevation varies from almost 2500 m above sea level

in the Tatra Mountains in the south to 2 m below sea

level in the north. Changing oceanic and continental

influences together with complex physiography make

weather phenomena in Poland difficult to predict.

Even though advanced measurement methods of

weather parameters do exist, there is still an evident

shortage of objective and quantitative observational

data on atmospheric phenomena. Taking into account

weather phenomena such as fog, thunderstorms,

glaze, and rime, visual observations performed at

weather stations serve as the only available data

source for Poland.

However, there are several limitations of in situ

observations, which have to be considered:

• Subjectivity of the observations, which depend on

the knowledge and experience of the observer,

• The way observations are coded in the SYNOP

dispatch; current weather code makes it impossible

to obtain information on the intensity of each given

phenomenon (no quantifiers available),

• The local nature of atmospheric phenomena

strongly depends on the variability of key local

environmental conditions, such as topography and

land cover.

All such limitations seriously complicate the use

of interpolations method for the purpose of creating

spatially continuous maps of hazardous atmospheric

phenomena. Nevertheless, visual observation data

were presented directly in form of graduated symbol

maps (Fig. 1) to gain general view on variability of a

given phenomenon over the Poland territory and

gather an input data to modelling results validation.

Daily observational data for a period of 45 years

(1966–2010) were used. Careful verification and

homogenisation of the time series was done in

accordance with WMO recommendations (World

Meteorological Organization 2011) in order to com-

plete the missing values. Finally, daily data on

observed thunderstorms, fog, glaze, and rime

obtained from 61 weather stations spread across

Poland were included in the analysis (Fig. 2a).

For favourable meteorological conditions algo-

rithms construction (see Sect. 3.1) and RegCM

modelling validation, data from every 3 h observations

were also used. Additionally, aerological data

E. Walawender et al. Pure Appl. Geophys.
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(soundings from 00 UTC and 12 UTC) from three Polish

upper-air stations (Łeba, Wrocław, and Legionowo)

were derived and used in glaze and thunderstorms

algorithm construction and modelling results validation.

All observation data were derived from meteoro-

logical stations which work within the national

network and were provided by the Institute of

Meteorology and Water Management—National

Research Institute.

2.2. Reanalysis and Regional Climate Model Data

Due to the lack of objective quantitative data

derived from an adequate number of observations,

Figure 1
Average annual number of days with thunderstorms (a), glaze (b), rime (c), and fog (d) observed at weather stations

Vol. 174, (2017) Geospatial predictive modelling for climate mapping of selected severe
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additional environmental data were tested for statis-

tical dependence (predictor testing). To obtain

regularly-gridded coverage, a 45-year study period

(1966–2010) was used with NCEP/NCAR reanalysis

data (KALNAY et al. 1996; KISTLER et al. 2001) with

6-h temporal resolution ([1] NCEP 2015). A

2.5 9 2.5 decimal degree gridded dataset contained

information at the surface level (2 m above the

ground) and 17 different pressure levels in the

atmosphere. It was used as an input for dynamical

downscaling (WILBY and WIGLEY 1997) carried out

with the use of the RegCM model, version 4.1.1.

(ELGUINDI et al. 2011). Thanks to its improved

parameters associated with atmospheric physics and

land cover patterns, the RegCM regional climate

model is suitable for modelling weather conditions on

a regional scale (GIORGI and ANYAH 2012). As a

result, homogenous gridded datasets for the surface

layer (2 m) and 23 upper atmospheric levels were

obtained with a spatial resolution of 20 km and a

temporal resolution of 3 h (Fig. 2b).

2.3. Environmental Variables

Some atmospheric phenomena vary considerably

even over a relatively small area. Because of this,

valuable data on local meteorological conditions as

well as information on several key environmental

variables need to be included for proper climate

mapping. In this study, fog was the variable most

dependent on local environmental characteristics.

According to COST Action 722 (Short range fore-

casting methods of fog, visibility and low clouds,

JACOBS et al. 2007), topography and land use (con-

nected also with soil moisture and vegetation) were

concerned as the most important predictors. Several

auxiliary parameters were extracted from an SRTM

Digital Elevation Model v.4.1 (JARVIS et al. 2008)

with spatial resolution at 90 m and from the CORINE

Land Cover 2000 vector database (BOSSARD et al.

2000; [2] EEA Data and Maps 2015) with the

smallest mapping unit at 25 hectares. Final maps

were generated with a spatial resolution of 250 m,

Figure 2
Location of the weather stations used in the study (a) in comparison to NCEP/NCAR reanalysis and RegCM model gridded data (b)
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which seems to be adequate for climate mapping on

the scale of Poland.

3. Methodology

Section 3 outlines the methods used for the map

generation process, including a proposed approach to

discontinuous phenomena mapping.

The whole workflow (Fig. 3) consisted of three

steps which were finalised by three different types of

climate maps:

1. Direct presentation of in situ observation (gradu-

ated symbols maps) (Sect. 2.1).

2. Conditional probability mapping based on favour-

able meteorological conditions algorithms (FMC

maps) (Sects. 3.1 and 4.1).

3. Extending FMC map with environmental predic-

tors employed in multiple linear regression kriging

(FMEC map) (Sects. 3.2 and 4.2).

3.1. Predictive modelling based on favourable

meteorological conditions (fmc) algorithms

and gridded data

In order to obtain spatially continuous climate maps

of the probability of occurrence of fog, thunderstorms,

glaze, and rime an approach based on conditional

probability algorithms and predictive modelling was

employed. These methods are widely used in weather

forecasting (LORENC 1986; KELLER and KUCHERA 2004),

but since they are based on the detailed analysis of real

data, they can also be successfully applied in climate

research (THORNE et al. 2012). The first step consisted

of an extended analysis of long-term data from daily

and 3 h weather observations. Favourable meteoro-

logical conditions for each phenomenon were

determined through an analysis of all measured and

observed weather parameters during the occurrence of

each studied phenomenon. In the case of thunderstorms

and glaze, upper-air soundings were additionally

analysed for characteristic patterns. Finally, empirical

Figure 3
General workflow scheme

Vol. 174, (2017) Geospatial predictive modelling for climate mapping of selected severe

189



Reprinted from the journal

formulas and thresholds were defined for all the

selected phenomena. The entire process of algorithm

definition was undertaken as a part of a task called

‘‘Maps of Meteorological Hazards’’ which was done

within the framework of the EU co-financed project

‘‘IT system of the country’s protection against extreme

hazards’’ (Polish acronym: ISOK) (WYPYCH et al.

2014; USTRNUL et al. 2015). The detailed procedure for

the construction and validation of each algorithm is

beyond the scope of this paper (an example for

thunderstorms can be found in WALAWENDER et al.

2015), which focuses mainly on mapping methods.

Simplified versions of favourable weather conditions

algorithm for each given phenomenon are shown in

Table 1.

Subsequently, algorithms were implemented with

the use of RegCM modelled data (1966–2010) (see

Sect. 2.2). Finally, the mean annual frequency of

favourable conditions was calculated for each of the

four studied phenomena. Gridded values were inter-

polated via an exact method (radial basis function—

completely regularized spline) to keep the grid point

values in the output geostatistical surface.

Validation of obtained RegCM modelling results

was performed through implementation of FMC

algorithms into available in situ data. Every 3 h data

from weather stations without any missing values

were used in the process. Finally, 1966–2010 data

from 42 weather station were used for rime and fog

FMC modelling validation. Validation of thunder-

storms and glaze FMC map (RegCM results) was

performed only for three weather-stations (Leba,

Legionowo, Wroclaw—as FMC algorithms

demanded data from upper-air soundings) using the

data from 2003–2010 period because of the very poor

upper weather data availability (described in

WALAWENDER et al. 2015).

3.2. Environmental Predictors and Regression

Kriging: Fog Map Example

As the occurrence of fog is usually highly

dependent on local environmental conditions, more

predictors (apart from certain weather parameters)

are needed to explain its spatial variability. The

distribution of fog is first of all determined by relief

Table 1

Components of favourable weather conditions algorithms (simplified version)

Favorable meteorological conditions

Fog Visibility as a function of relative humidity

VIS = 800 9 (101 - RH)/RH1.75 ? VIS\1.3

P\ 0.1

Thunderstorms Convective available potential energy (CAPE) together with convective precipitation

MUCAPE[200 (calculated from 23 isobaric (sigma) levels)

Type of precipitation

Glaze Precipitation, air temperature at 700, 850 and 925 hPa isobaric levels (�C) and near the

surface (2 m and 5 cm above the ground)

T 700 hPa\-2

T 850 hPa:[-4

T 925 hPa:[-6

T 2 m[-6 �C and T 2 m\?2

T 5 cm\ 0

P[ 0.1

Rime Probability of rime as a function of relative humidity and air temperature 2 m a.g.l.

Lack of precipitation (different functions depending on T value)

T 2 m\ 0.1

P\ 0.1

RH[ 0.715 9 T 2 m ? 94

VIS visibility (km), RH relative humidity (%), P precipitation (mm), MUCAPE Most Unstable CAPE (J/kg), T5cm air temperature 5 cm above

the ground (�C), T2m air temperature 2 m above the ground (�C)
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and its interactions with the air. There exists a strong

and complex relationship between fog occurrence and

local topography (elevation and landform) and land

cover patterns (e.g. amount of water bodies or green

areas). These parameters are crucial for spatial

prediction of fog (JACOBS et al. 2007). Predictive

mapping makes it possible to integrate both meteo-

rological and geographic data (VICENTE-SERRANO

et al. 2010) to estimate the spatial distribution of a

given variable.

In this study multiple linear regression (MLR,

also known as environmental correlation) with addi-

tional residual interpolation (so called Multiple

Linear Regression Kriging—MLRK, HENGL et al.

2004; HENGL 2007, 2009) was tested for mapping fog

occurrences over the territory of Poland.

Exploratory analysis was carried out first to select

an appropriate set of key environmental variables.

The locations of all available weather stations were

verified with the use of high resolution aerial

photographs and orthophotomaps. All improperly

assigned XY coordinates were adjusted by geocoding

postal addresses. Finally, a location accuracy of 90 m

(consistent with nominal SRTM pixel size) was

achieved and made it possible to check relationships

between predictors and input data with greater

precision and reliability. Selected environmental

predictors were converted into raster format. The

diagram in Fig. 4 illustrates the process.

Topographic predictors were obtained from

SRTM data. Elevation (meters above sea level) (P1)

was extracted directly from SRTM data and further

used as an input raster to calculate the Topographic

Position Index (TPI) (GALLANT and WILSON 2000). A

dedicated ArcGIS extension developed by JENNESS

(2006) was used to calculate TPI on the basis of

elevation data. TPI (P2) is an objective semi-

automated landform classifier based on neighbour-

hood analyses. It shows the difference between the

elevation in each pixel and the average elevation in

its neighbourhood defined by a circle of arbitrary

radius which depends on the level of detail assumed

in the analysis. In this study, for the resampled 250 m

DEM raster dataset, the radius of 200 cells was

defined in order to extract large terrain features that

differentiate key regional climate conditions. To

obtain the final raster predictor (P2), TPI was

recalculated into absolute values as both uplands

(TPI � 0) and valleys (TPI � 0) favour the occur-

rence of fog.

Corine Land Cover (CLC), which was originally

created as a vector dataset was transformed to a raster

with 250 m resolution. Urban areas, green (vege-

tated) areas, as well as wetlands and water bodies

were extracted from reclassified CLC data (Table 2).

Regarding conditions of fog occurrence, buffer

and focal analyses were applied to obtain the

percentage of urban/green/water areas within a

2.5 km buffer zone around each available weather

station and similarly around each CLC raster cell.

The analysis was repeated three times in order to

compute three raster datasets (three predictors):

percentage share of urban areas (P3), percentage

share of green areas (P4), and percentage share of

wetlands and water bodies (P5). The entire set of

predictors (including P6—fog favourable meteoro-

logical conditions described in Sect. 2.2) are shown

in Table 3.

The selected predictors were examined with

stepwise regression analysis to check the spatial

relationships between the occurrence of key phenom-

ena and corresponding predictors. The following

statistical criteria were taken into account to identify

the best fitted Multiple Linear Regression (MLR)

model based on the ordinary least squares (OLS)

method: adjusted R-squared (AdjR2), corrected

Akaike Information Criterion (AICc), Koenker Statis-

tic p value (K(BP)) and the Maximum Variance

Inflation Factor (MaxVIF). Jarque–Bera (JB) test was

performed on model residuals to indicate whether

they are normally distributed. Global Moran’s I

statistic p values (SA) were calculated to decide

whether the regression residuals are spatially auto-

correlated and further interpolation is required.

The probability of fog favourable meteorological

and environmental conditions (FMEC) was calcu-

lated using map algebra on predictor raster datasets,

applying selected MLR model—MLR output raster

dataset. Regression residuals were then interpolated

via simple kriging (recommended by HENGL et al.
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2004; HENGL 2007, 2009)—SK output raster dataset.

The final result (MLRK output raster dataset) was

achieved by adding both the MLR raster dataset and

the interpolated residuals raster dataset:

MLRK raster ¼ MLR raster þ SK raster

An appropriate FMEC map was then created. The

prediction results of both the MLR and the MLRK

procedures were cross-validated via a classic leave-

one-out approach (GEISSER 1975; ISAAKS and SRIVAS-

TAVA 1989). Error statistics including: mean error

(ME), mean absolute error (MAE) and root mean

square error (RMSE) were calculated to evaluate the

obtained results (summarized in Table 4 after LI and

HEAP 2008). Their use in spatial interpolation and

interpretation is widely known and well described

(e.g. WILLMOTT and MATSUURA 2006; SZYMANOWSKI

et al. 2012).

4. Results

4.1. Favourable meteorological conditions (fmc)

maps

Predictive modelling based on FMC algorithms

applied to RegCM gridded data was used to identify

favourable conditions for selected weather phenomena

(see Sect. 3.1 for details). FMC maps (Fig. 5) show

spatially continuous probability of a day with favour-

able conditions for the occurrence of certain weather

phenomena during the whole year. In other words,

FMC maps show regional variability of weather

conditions favouring the occurrence of phenomena

such as thunderstorms, glaze, rime, and fog.

Validation of RegCM modelling itself was done

through the calculation of FMC algorithms using

available in situ data (Table 5). For thundersotrms,

glaze and rime RegCM FMC calculation resulted as

very similar to in situ FMC calculation with mean

bias smaller than 1.5 %. In case of the fog FMC map

RegCM results were strongly underestimated.

FMC maps do not correspond exactly with obser-

vational data, as they present the probability of the

occurrence of favourable conditions, which is not the

same as the observed frequency of weather phenom-

ena. Local variability of atmospheric phenomena

makes FMC maps quite difficult to subject to any

form of objective verification and validation of

modelling results against actual observations. One

weather station is often not representative of a

particular climate region at mesoscale level

(3–100 km). Standardized WMO instructions indicate

typical location characteristics but it is not easy to

confirm them, especially due to weather station

Table 4

Error metrics used in FMEC model validation

Symbol Error metrics Mathematical Expression

ME Mean error 1
N

P

i

ðMi � OiÞ

MAE Mean absolute error 1
N

P

i

jMi � Oij

RMSE Root mean square error
ffiffiffi
1
N

q P

i

ðMi � OiÞ2

N total number of pairs, Mi modelled fog frequency (days with fog

favourable conditions), Oi observed fog day frequency

Table 2

Reclassified and aggregated CLC Classes

New aggregated class Original CLC class

Urban areas 1.1 Urban fabric

1.2 Industrial, commercial and transport

units

1.3 Mine, dump and construction sites

Green areas 1.4 Artificial, non-agricultural vegetated

areas

2.2 Permanent crops

2.3 Pastures

2.4 Heterogeneous agricultural areas

3.1 Forests

3.2 Scrub and/or herbaceous vegetation

Wetlands and water

bodies

4.1 Inland wetlands

5.1 Inland waters

Table 3

Fog environmental predictors chosen for testing

Code Predictor

P1 Elevation (DEM)

P2 Landform (TPI)

P3 Percentage of urban areas in 2.5 km radius circle buffer

(CLC)

P4 Percentage of green areas in 2.5 km radius circle buffer

(CLC)

P5 Percentage of wetlands and water in 2.5 km radius circle

buffer (CLC)

P6 Favourable meteorological conditions (FMC)
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exposure (World Meteorological Organization 2008).

Of the created maps, only the thunderstorms frequency

map can be interpreted as highly representative on a

regional scale, which can be clearly seen from the

results of correlation analysis between FMC maps and

weather station data (Table 6). Thunderstorms FMC

probability was found to be very strongly correlated

(Pearson’s coefficient r[0.8, at significance level

p\ 0.001) with the frequency of thunderstorm obser-

vations calculated via in situ data. Despite the

occurrence of thunderstorms over a rather limited

geographic area at a particular time of day, they

usually are associated with convective processes

arising within unstable air masses or frontal systems.

Figure 5
Average annual probability (%) of a day with thunderstorms (a), glaze (b), rime (c) and fog (d) favourable conditions occurrence. FMC maps

E. Walawender et al. Pure Appl. Geophys.
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In such situations the overall annual frequency of

observations may be related to the whole region. In

addition, the probability of glaze FMC is relatively

strongly (r[ 0.6, p\ 0.001) correlated with observa-

tions. The occurrence of glaze is induced by freezing

precipitation: hence it can be considered regionally

dependent as well. Nevertheless, detailed regional

variability remains beyond the spatial resolution of

modelled maps.

Statistical relationship between probabilities of

rime and fog FMC and observations are low

(r = 0.39 for rime) and weak (r = 0.15 for fog),

correspondingly. Rime is in fact, a form of frozen fog

caused mostly by the same environmental factors that

affect the occurrence of fog. However, the meteoro-

logical conditions favouring the deposition of rime

are slightly easier to recognize (AHTI and MAKKONEN

1982) and are also easier to predict. Rime occurrence

is also limited to the cold season (in Poland from

October to April), whereas fog may appear year-

round in Poland and is strongly affected by local

environmental conditions. This means some of the

very local fog occurrences might not be identified due

to the relatively coarse spatial resolution of RegCM

data. The fog FMC map was found to be in agreement

with the satellite-based map of fog and low stratus

frequency created by CERMAK et al. (2009) at

comparable spatial resolution to that of the RegCM

data but FMC frequency values were underestimated.

4.2. Favourable Meteorological and Environmental

Conditions (FMEC) MAP: Fog Example

Statistical significance of additional fog predictors

was examined through the stepwise regression anal-

ysis. The results were summarized in Table 7. Five

out of six explanatory variables turned out to be

statistically significant for most of the iterations and

showed a consistent and stable relationship with the

dependent variable. Predictors P1 (elevation), P2

(landform), P4 (% of green areas), and P6 (favourable

meteorological conditions) were positively correlated

with the dependent variable in 100 % of iterations

and P3 (% of urban areas) was negatively correlated,

which came into agreement with the initial assump-

tions made for this study. The predictor P5 (% of

Table 5

Validation of RegCM FMC results against FMC calculated from available in situ data

Modelled phenomenon Number of

stations/grid points

Validation period RegCM

FMC

Mean

Observations FMC

Mean

RegCM

Mean Bias

RegCM

Bias Std

Thunderstorms 3 2003–2010 5.0 5.1 -0.1 1.4

Glaze 3 2003–2010 1.3 1.5 -0.2 0.2

Rime 42 1966–2010 20.8 19.4 1.4 5.7

Fog 42 1966–010 6.2 19.8 -13.7 8.2

Explanations: FMC MEAN, mean annual probability (%) of a day with a given phenomenon favourable conditions occurrence averaged for all

stations/grid points used in the validation process (RegCm FMC MEAN—calculated from RegCM data, Observations FMC MEAN—

calculated from in situ data); RegCM MEAN BIAS, average difference between RegCM FMC result and observation FMC result; RegCM

BIAS STD, standard deviation of calculated biases among all stations/grid points

Table 6

Correlation analysis between FMC results and phenomena obser-

vations (n = 61)

Modelled

phenomenon

Pearson’s

coefficient

(r)

Coefficient of

determination

(R2)

Correlation

significance

(p)

Thunderstorms 0.84 0.71 \0.001

Glaze 0.60 0.36 \0.001

Rime 0.39 0.15 0.002

Fog 0.15 0.02 0.253

Table 7

Summary of variables significance

Variable Significant (%) Negative (%) Positive (%)

P1 71.9 0.0 100.0

P2 100.0 0.0 100.0

P3 75.0 100.0 0.0

P4 65.6 0.0 100.0

P5 6.3 62.5 37.5

P6 75.0 0.0 100.0
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water/wetlands) resulted as insignificant and was

excluded from the analysis—it seems that the water

and wetlands identified within the buffer zones

around weather stations seemed not to be sufficiently

representative for the purpose of analysis.

The final MLR model was determined taking into

account both the stepwise regression results (Table 8)

and knowledge-based experience. The most complex

model with five covariates (P1, P2, P3, P4 and P6) was

selected. The model explained 89 % of variation in

annual foggy day frequency (adj R2 = 0.89). The

corrected Akaike information criterion (AICc) was

found to be the smallest for the selected model, which

also show that it is relatively well-fitted. Maximum

(from all VIF values checked for every environmental

variable) VIF factor was also acceptable (\7.5); in

effect, there is no redundancy (multicollinearity)

among the model’s explanatory variables. The Koen-

ker Statistic p-value test resulted in a not statistically

significant value [K(BP)[ 0.05], hence, the relation-

ships modelled are consistent. Although covariates P3

and P4 in the selected regression model were not

statistically significant at p\ 0.1, it was decided to use

them anyway because of their proven influence on fog

occurrence (e.g. SACHWEH and KOEPKE 1997; JACOBS

et al. 2007), and overall high significance in the

stepwise regression analysis (Table 8).

While geographically weighted regression (GWR)

(BRUNSDON et al. 1996; FOTHERINGHAM et al. 1998,

2002) may seem to be more suitable for capturing

local variability, it could not be used with reliable

results in this study. First of all, the performed

Koenker Test did not indicate a spatial nonstationar-

ity which should characterised the GWR input data

(BRUNSDON et al. 1996; GAO and LI 2011). Moreover,

number of observation points is regarded as insuffi-

cient for sensible GWR calibration. It is suggested

that at least 150 data points should be employed in

the analysis to build reliable local regressions models

and capture local (not regional or global) trends

(FOTHERINGHAM 2010). There are also a few weather

stations in the East Poland which are spatially

isolated by large areas over which no data are

recorded. It could produce excessive bias in local

estimation.

JB test indicated that regression residuals are not

normally distributed and the model may need addi-

tional geostatistical modelling performed on its

residals. Global Moran’s I test was performed

(Table 9), as SA statistics (SA = 0.01) had shown

spatial autocorrelation among regression residuals.

Given a z-score of 2.02, there is a less than 5 %

likelihood (p = 0.043) that the clustered pattern

could be the result of random events and spatial

autocorrelation is statistically significant.

Due to the positive result of the spatial autocor-

relation test performed on regression residuals,

Simple Kriging with normal score transformation

Table 8

Stepwise regression analysis results

Step AdjR2 AICc JB K (BP) MaxVIF SA Cov1 Cov2 Cov3 Cov4 Cov5

1 0.84 369.99 0.30 0.16 1.00 0.10 ?P2***

1 0.76 394.51 0.00 0.00 1.00 0.00 ?P1***

2 0.87 359.87 0.46 0.26 1.00 0.07 ?P2*** ?P6***

2 0.85 366.44 0.23 0.39 1.02 0.13 ?P4** ?P2***

3 0.89 351.43 0.00 0.01 5.10 0.01 ?P2*** ?P6*** ?P1

3 0.88 357.37 0.57 0.69 1.03 0.11 ?P4** ?P2*** ?P6***

3 0.87 360.44 0.46 0.54 1.15 0.04 -P3 ?P2*** ?P6***

3 0.88 357.37 0.57 0.69 1.03 0.11 ?P4** ?P2*** ?P6***

3 0.86 363.21 0.57 0.45 1.07 0.12 ?P4** -P3** ?P2***

4 0.89 351.44 0.00 0.03 5.44 0.02 ?P4* ?P2*** ?P6*** ?P1

4 0.89 351.77 0.00 0.06 5.12 0.01 -P3 ?P2*** ?P6*** ?P1

4 0.88 357.38 0.45 0.97 1.16 0.07 ?P4** -P3 ?P2*** ?P6***

5 0.89 351.40 0.00 0.11 5.45 0.01 ?P4 -P3 ?P2*** ?P6*** ?P1***

Explanations: AdjR2, AICc, JB, K(BP), MaxVIF and SA—abbreviations explained in part 3.2

Cov1, Cov2, Cov3, Cov4, Cov5—regression model covariates

* 0.10, ** 0.05, *** 0.01—model variable significance
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was employed for their interpolation. Figure 6 shows

the output fog FMEC probability map generated

through a combination of a deterministic regression

part and residual interpolation (MLRK method).

Cross-validation resulted in satisfying values of

error statistics which were improved for the MLRK

model (Table 10) compared to results achieved with

the deterministic part (MLR) alone. Both the validation

results and visual evaluation make it possible to regard

the final FMEC map as valuable and representative on

the scale of Poland. It reflects both the general trends

presented in the Climatic atlas of Poland (LORENC

2005) and detailed information on environmental

variability. Moreover, the FMEC map was found to

be in substantial accordance with some high resolution

(1 km) remote sensing derivative products presenting

the fog frequency (MUSIAL et al. 2014).

Table 9

Global Moran’s I test summary

Moran’s I statistic parameter Value

Moran’s index 0.194

Expected index -0.017

Variance 0.011

z-score 2.018

p value 0.043

Figure 6
Average annual probability (%) of day with fog occurrence. FMEC map
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5. Conclusions

This study describes climate mapping tech-

niques used for spatially discontinuous atmospheric

phenomena. Thunderstorms, glaze, rime and fog

were selected to test some of the existing methods

and develop a predictive modelling approach for

mapping location-dependent phenomena. Climato-

logical maps based on a 45-year analysis

(1966–2010) were created for Poland in order to

identify distinct regions with a higher frequency

and intensity of selected weather hazards. In case

of hugely location dependent phenomena, obser-

vational data obtained from only 61 weather

stations are definitely not sufficient for spatial

interpolation over the entire territory of Poland.

The number of data points is extremely important

for spatial interpolation—the more data available,

the better—but the complex nature of atmospheric

phenomena makes interpolation even more difficult

unless additional, environmental factors are also

taken into account.

This study introduces quite an innovative method

of using predictive modelling for climatological

analysis of atmospheric phenomena over Poland. The

presented approach remains valid for every relatively

large area where orography and land cover are not

homogeneous. The method proposed in this study

uses a Regional Climate Model to yield regularly

distributed gridded data and to assimilate them into

algorithms describing favourable meteorological

conditions for each given weather phenomenon. The

algorithms have been previously validated on both

observational and modelled weather data (WYPYCH

et al. 2014; USTRNUL et al. 2015). The resulting FMC

maps exhibit an adequate quality of prediction. Both

quantitative validation and visual knowledge-based

interpretation have confirmed a good estimation of

the spatial distribution of selected phenomena over

the entire territory of Poland. The maps show general

patterns and relationships (LORENC 2005) and allow to

avoid wrong estimation which can occur during tra-

ditional interpolation of strongly local data from

observations. As FMC maps were designed as

regional, they are determined by the resolution of the

input data (RegCM grid—20 km). For this reason, it

is not possible to identify local differences in the

maps, which should rather be considered as moder-

ately generalized—but still valuable for regional

analysis. The thunderstorm frequency FMC map is

considered to be the most accurate map with very

strong correlation with observational data (r = 0.84).

The annual glaze and rime frequency FMC maps are

also representative for the country area—considering

the complexity of factors affecting these phenomena.

Only the fog frequency FCM map proved to be

strongly underestimated for southern Poland, as it

does favour less heterogeneous areas in terms of

orography and land cover.

Consequently, an additional fog frequency FMEC

map was created with the use of multiple linear

regression kriging (MLRK). Environmental correla-

tion was based on several relevant predictors derived

from elevation model and land-cover data—together

with a previously obtained FMC map. The final map

was found to be more accurate for analyzing the

spatial patterns on a regional scale.

Although the generated maps cover just the area

of Poland, the methodological background presented

in this paper may be considered broadly applicable.

An appropriate approach to geospatial predictive

modelling should be preceded by detailed analysis of

physical processes behind the analysed atmospheric

phenomena. An extended exploration of key envi-

ronmental factors affecting the modelled variable

should be performed in order to recognise predictors,

which may help to explain properly its spatial vari-

ability. The proper selection of predictors must avoid

underestimation of the model, but also redundancy

among proposed variables.

The modelling approach is characterised by some

uncertainties, which one should be aware of in the

analytical process. Some of these uncertainties can be

at least partially eliminated. First, algorithms

designed for favourable meteorological conditions

may be improved by employing additional parame-

ters or changing coefficients. Second, modelled data

Table 10

Cross-validation results

ME MAE RMSE

MLR 0.000 2.839 3.954

MLRK 0.100 1.168 1.604
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(RegCM in this study) are often biased because of

certain model assumptions, so an improvement can

be made in the model’s physical and topographical

parameters’ configuration and downscaling

techniques.

In this study, linear regression was used as a

deterministic element of a spatial interpolation

procedure which may cause some simplification in

the final outcome. Although the results were found

to be satisfactory, additional methods including

nonlinear models (VICENTE-SERRANO et al. 2010) or

artificial neural networks should be tested in the

future to verify the possibility of further improve-

ments. Among new and very powerful, spatially

continuous environmental datasets which may be

used as predictors for this type of analysis, satellite

data seem to be invaluable and are increasingly

being used for climatological analysis of fog (e.g.

BENDIX 2002; CERMAK et al. 2009; MUSIAL et al.

2014; AVOTNIECE et al. 2015). The importance of

climate maps based on remotely sensed data is

even greater because of potential use for validation

of modelling results in case of limited data from

weather observations. Lightning detection and

weather radar imagery complemented by conven-

tional meteorological measurements offer

opportunities for the validation of predictions of

thunderstorms as well as freezing rain.

In addition to the limitations already mentioned,

geospatial predictive modelling based on physical

relationships between meteorological and environ-

mental parameters favouring the occurrence of a

particular atmospheric phenomenon possesses great

potential for climate mapping and weather forecast-

ing. Algorithms used to create maps in this study will

be also incorporated into an operational numerical

weather model.
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VICENTE-SERRANO, S.M., LÓPEZ-MORENO, J.I., VEGA-RODRIGUEZ,
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Geocomputation and Spatial Modelling for Geographical Drought Risk Assessment: A Case

Study of the Hustopeče Area, Czech Republic

ALEŠ RUDA,1 JAROMÍR KOLEJKA,2 and KATEŘINA BATELKOVÁ
3

Abstract—The phenomenon of drought is serious in many

landscapes with continental patterns of climate. In fact, drought

risk is usually assessed in terms of prevailing issue (meteorological,

hydrological, agronomical, etc.) and not in terms of complex

landscape features. A procedure for detailed geographical drought

risk modelling has been developed using recent meteorological

data of dry period and prior precipitations, as well as a digital

elevation model and geographic data layers of natural landscape

features and land cover. The current version of the procedure starts

with meteorological data (temperature and precipitation) process-

ing followed by the use of soil and geological data and land cover,

the national CORINE LC 2006 CZ database, for assessing the

impact of the local natural features on drought risk. The method-

ology is based on GIS tools, geodata of the geological structure of

the area (water holding capacity of the substrate, the horizontal and

vertical water conductivity), soil cover (in agricultural and forested

areas, soil types and kinds), landscape cover (land use), relief

(digital elevation model and its derivatives), temperature and pre-

cipitation data from neighbouring representative meteorological

and climate stations. The procedure uses regression equation for

temperature and precipitation risk modelling, fuzzy standardization

for estimation of different water retention within land cover cate-

gories and expert estimation for risk categories within rocks and

soils. The final calculation is based on spatial decision-making

techniques, especially the weighted sum method with a natural

breaks reclassification algorithm. Combining geodata of soils, the

geological environment and the active surface with their computed

humidity conditions, it is possible to identify areas with a graded

risk of geographic drought. The final results do not represent partial

values, but identify five risk classes in the study area illustrating a

possible level of geographical drought risk.

Key words: Geographical drought, aridity, spatial decision

making, geocomputation, risk levels, environmental modelling.

1. Introduction

Geographic drought is a perceived drought, based

on a geographic model of susceptibility to drought

that includes interacting factors in a given area. Cli-

mate and meteorological factors of drought are

assumed to control subsequent events with a lack of

moisture in the area (WILHITE et al. 2000a, b). The

deficit of groundwater or surface water can be

amplified or attenuated by other factors of the geo-

graphical environment—both natural and

anthropogenic. The aim of this article is to develop an

area evaluation methodology based on geodata,

which are publicly available for the Czech Republic.

This approach will be such that the method can be

applied anywhere in the Czech Republic or neigh-

bouring countries to improve national or European

regional policy (HÁJEK et al. 2014) dealing with the

drought issue. The procedure is assumed to start to

operate after the maximum daily temperature exceeds

30 �C and the period of tropical days begins regard-

less of the length of the consequent real ‘‘hot and

dry’’ period. The method will address the response to

drought of precisely selected areas.

In addition to established ideas of long-term

(climatic) and seasonal (meteorological) drought, it is

necessary to distinguish drought which is also the

product of variously combined effects of all compo-

nents of the landscape (DRACUP et al. 1980). This

means that the actual deficiency of water in the area

may be locally and specifically increased or

decreased by such effects. The Czech Republic is

located in the temperate climatic zone in a transi-

tional position on the border between the oceanic and

continental climates (MUNZAR 2004). Its position in

the centre of Europe leads to differences of available
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water, which should correspond to the potential cli-

max vegetation. However, local effects can lead to

drought conditions (CRUTCHFIELD 1983).

2. Drought Phenomena Within Drought Indices

Many parts of the world experience growing

intensity, duration and frequency of water deficit in

the landscape (HAYES 2003). In this context, the most

frequently used terms are drought and aridity. This

increasing trend in water deficit has resulted in a

decrease in biomass production during the year

(POTTS 2003). Because of serious social, economic

and environmental consequences of drought, moni-

toring has become an integral part of science and

research. The drought is counted as one of the most

damaging natural hazards (BRYANT 1991). Arid areas

are complex adaptive systems, which in fact are one

of the least environmentally resilient ecosystems (see

NORTH AMERICAN DROUGHT 1996). This point is

illustrated in reference to soil erosion, salinization

and desertification. FRAISSE et al. (2006) defines

drought as a temporary condition in which the

amount of water is due to lack of precipitation. In

general, drought indicates a lack of water (ROŽNOVSKÝ

1998) or might be defined as a moisture deficit,

compared to normal conditions that is generally

caused by precipitation deficit, although other cli-

matic factors cannot be excluded (DRACUP et al. 1980;

OLADIPO 1985; WILHITE and GLANTZ 1985). It is also

an integral part of climatic conditions (in Europe,

especially in the continental moderate zone in south-

eastern Europe and Mediterranean region; see

HAWKES 2004) and has always affected human society

with agriculture undoubtedly most clearly and most

severely affected as a consequence of insufficient

precipitation and soil moisture reserve (SIMA et al.

2015). BRÁZDIL and KIRCHNER (2007) state for dry

periods that droughts represent a relatively short-term

negative deviation from the normal water balance. In

practice, this means that the water output in the

landscape outweighs the water intake. It is not a

random or rare phenomenon, but a normal, recurring

situation of climate. Such transient climate anomalies

are seen in all rainfall regimes of different climatic

zones (CRUTCHFIELD 1983). This distinguishes it from

aridity, which we consider as a permanent charac-

teristic of climate (MUNZAR 2004). The effects of

drought are cumulative in nature, because the inten-

sity of the drought increases with time. The losses

caused by drought can be considerable and we

encounter its impacts years after a return to a normal

precipitation regime.

CRUTCHFIELD (1983) further considers that drought

is a deficiency that occurs when soil moisture is

insufficient to meet the requirements of potential

evapotranspiration. In contrast to the above-men-

tioned difference between drought and aridity, he

divides drought into three categories: permanent

drought associated with arid climates, seasonal

drought, which represents annually recurring distinct

periods of dry weather, and drought caused by con-

siderable variability in precipitation. For these

reasons, a universally valid definition of drought

cannot be given (BLINKA 2002). Many authors have

distinguished the types of drought according to its

dominant manifestations: meteorological drought,

agricultural drought, hydrological drought and

socioeconomic drought. It is clear that between these

four types, there is a certain time sequence and the

various manifestations can occur simultaneously

(BRÁZDIL and KIRCHNER 2007). The occurrence of

agricultural, hydrological and socioeconomic drought

may also be conditioned by meteorological drought.

Agronomical (agricultural) drought, when the amount

of soil moisture does not meet the needs of the plants,

occurs after meteorological drought, but always

before hydrological drought. It is primarily related to

a water deficit in soil; agriculture constitutes more-

over the first sector of the economy which is affected

by this natural hazard (BRÁZDIL and KIRCHNER 2007).

Factors such as above-average temperatures, lower

relative humidity, reduced cloudiness and longer

duration of sunshine result in greater evapotranspi-

ration. Drought is an issue not only for the livelihood

of the population, but also for the protection of bio-

diversity (POTTS 2003). However, not all the causes of

reduced biodiversity are connected with drought.

Identification of factors causing drought is the

subject of much research (MO 2011; VITAS and ER-

LICKYTË 2007; HAYES 2003). Drought-related

reduction of the efficiency of photosynthetically

active radiation has also a great impact on crops

A. Ruda et al. Pure Appl. Geophys.
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which is very important for farmers and landscape

planners (EARL and DAVIS 2003) and animal produc-

tion (PALÁT et al. 2012). The effect of drought on

plants has been investigated predominantly as a

response to water deficit. Drought has an effect on the

physiological and anatomical characteristics of stems,

roots and leaves of plants (MAKBUL et al. 2011).

TRNKA et al. (2009) identify two main processes

associated with drought–desertification and aridiza-

tion. Desertification means land degradation in arid,

semiarid and sub-humid areas resulting from a cli-

mate change and direct human activities (REYNOLDS

and STAFFORD SMITH 2002). The most affected zone is

the Sahel, which is found south of the Sahara desert

as a comprehensive and continuous belt. Desertifi-

cation is an extreme form of aridization describing

the effects of a process of long-term desiccation.

Drought can be defined both from spatial and

temporal as well as from intensity points of view.

Spatially, the areal extent of drought is monitored

ranging from several hundred square kilometres to

areas of hundreds of thousands of square kilometres

or in extreme cases up to millions of square kilo-

metres. In terms of time, drought is usually defined as

duration, based on the beginning and end of a dry

period. Other factors for assessing drought are used

including air temperature, wind speed and humidity,

which can significantly increase the intensity of

drought (MCKEE et al. 1993; HEATHCOTE 1999).

Indices of drought based on monthly mean values

are not always wholly meaningful. They do not

consider water supply decreases in time as a function

of runoff and evapotranspiration, and do not reflect

the impact of drought, which will take effect with a

certain delay (BLINKA 2002). Probably, the most

commonly used indices are the Palmer Drought

Severity Index (PDSI)—whose calculation takes into

account the value of precipitation, evapotranspiration,

runoff and soil and depth infiltration (PALMER 1965)

and the standardized precipitation index (SPI)

(MCKEE et al. 1993; DRAGOTA et al. 2012). The

original PDSI has undergone a series of modifications

(RHEE 2007). The agronomical drought index and the

index of moisture crops have been developed to

measure short-term moisture conditions with regard

to crop yields (PALMER 1968). The standardized run-

off index (SRI, SHUKLA and WOOD 2008) and the

surface water supply index (DEZMAN et al. 1982) are

hydrological drought indexes using data of flowing

water in rivers for calculation, which represent

hydrometeorological processes in a particular basin.

Recently, due to the development of remote sensing

techniques, a satellite-based index of drought has

been developed. The vegetation condition index

(VCI) is used to detect drought and also measures the

intensity, duration and impact of drought on the

landscape in different regions. Furthermore, daily

climate data are being used to build a hydrological

simulation model—precipitation runoff modelling

system (PRMS) (TSAKIRIS and VANGELIS 2005). PRMS

also simulates water balance and energy balance of

the water and is also used to determine the water

quality, to estimate the impact of climate change and

so on. For some indices, a large number of parame-

ters for their calculation are only estimated, which

noticeably reduces their quality. Therefore, there is

also an argument that using only precipitation for

meteorological drought determination is better than

working with complex indexes for this reason (WIL-

HITE et al. 2000a, b; TSAKIRIS and VANGELIS 2005).

WILHITE et al. (2000a, b) also mention another

approach used for the drought monitor system, which

is intended to avoid the shortcomings associated with

the current methods of drought assessment. They

developed a composite index using seven key

parameters (Palmer Drought Index, crop moisture

index, CPC soil moisture model (percentiles), USGS

daily streamflow (percentiles), percent of normal

precipitation, USDA/NASS topsoil moisture (percent

short and very short) and a remotely sensed satellite

vegetation health index). The daily loss of water in

their calculations is represented by effective rainfall

for which determination it is sufficient to have only

daily totals of precipitation of a station. At least ten

consecutive days with no measurable precipitation, or

a very small amount, or where a total precipitation

reached a maximum of 5 mm within 1–5 days are

considered periods without precipitation.

3. Study Area: Hustopeče Area

The Hustopeče research area (425 km2) is a typ-

ical example of the Carpathian region of South
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Moravia (Fig. 1). It includes both lowlands and

highlands. The drainage axis of the valley and

floodplain of the Thaya River is from NW to SE. It is

followed by the river network of the Svratka River

and the Trkmanka River north of the Thaya River

plains. These streams drain the southern foothills of

the Ždánický les Mountains, which is a part of the

Central Moravian Carpathians region. The highest

elevation in this area reaches Přednı́ kout peak

(410 m a.s.l.) and lies approximately in the middle of

the test area. The geology of this part of the Ždánický

les Mountains consists of flysch layers alternating

with thin layers of sandstone, claystone and marl. The

highest parts are underlain by massive layers of

sandstone. The lower parts are covered by loess. Foot

slopes are mostly covered with loamy slope foot

deposits that in dry valleys pass into deluvial sandy–

loamy deposits, and in valleys drained by rivers into

fluvial floodplains. The area east of the river Trk-

manka belongs to the rolling plains of the

Dolnomoravský úval Graben, which is covered with

Neogene deposits, mainly clayey marine sediments

and locally covered with loess. Neogene sediments

form the bedrock of the Thaya River plain. The

southwest corner of the area extends to the South

Moravian Carpathians, represented by Pavlovské

vrchy Mountains, and is also covered with flysch

sediments. The lowest parts of the study area, in the

oak vegetation zone, have a very warm climate with

average annual temperatures around 10 �C, and the

highest positions reach the oak and beech vegetation

zone with average annual temperatures around 8 �C.
Higher cool shady slopes belong to the beech vege-

tation zone with temperature around 7 �C. The area is
fairly dry, and rainfall varies from 400 mm per year

in the lowlands to about 600 mm per year in the

highest positions. Gleysols and fluvisols cover

floodplains, while loess and weathered flysch are

covered with Chernozem of different subtypes,

switching at higher levels to Luvisols. Areas of

Rendzic Leptosols are found on limestones and

Haplic Arenosols on aeolian sands.

Figure 1
Study area localization (red polygon) in the South Moravian Region
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4. Methodology Background

The concept of geographical drought is based on

the assumption that the development of water deficit

in each locality is jointly conditioned by factors

representing all natural components of the geo-

graphical environment [atmosphere, hydrosphere,

relief, geological environment, soil and vegetation

(land) cover] and that generating the final level of risk

can bring decision makers more evident results then

strict value representation (HEATHCOTE 1999; BLINKA

2002). These components determine the water regime

through their indicators (WILHITE and GLANTZ 1985):

• Atmosphere—incidence of periods with extremely

high temperatures above 30 �C (tropical days)

causing high evaporation.

• Hydrosphere—significant amount of available

water moisture (precipitation, snowmelt) in the

upper layer of the soil and weathered rock.

• Relief—elevation, slope and exposure conditions

and the height above the local source of surface

water and groundwater in alluvium, which define

the moisture regime.

• Geological environment—different rocks affect the

infiltration speed of surface water away from plant

roots and capillary rise affects the movement of

groundwater to the surface.

• Soil—soil type and texture define the moisture

regime in the soil; the soil then has different water

regimes forming the amount of moisture in the soil.

• Vegetation (land) cover—is affected by influences

on the basis of retention susceptibility to evapora-

tion from the surface, infiltration intensity and the

speed of surface runoff.

Mentioned indicators have different relative

weights in their impact on the water regime (LOUCKS

and GLADWELL 1999). To ensure the compliance of

indicators for evaluating geographical drought, it

showed up not to work only with measured values,

but especially with their categories graded according

to their impact on the formation and continuance of

geographical drought.

The objective is to determine the site and, there-

fore on the basis of this, the landscape sensitivity to

drought. The minimum size of the site is essentially

determined by the resolution of the research data, in

this case at the approximate lower chorological level

(generally up to n. 103 km2). Susceptibility to the

drought means that any component of the natural

environment is susceptible to water deficit. The more

the elements of the landscape show this tendency, the

higher is the risk of drought. A semiarid state of

landscape unit is when at least one component shows

lack of moisture, while an arid state is when all

components show a moisture deficit (in biota, soil,

geological environment, surface and underground

water bodies, atmosphere). All the natural landscape

components and a wide range of human activities in

the region are involved, albeit to varying degrees in

the determination of the water deficit.

The assessment of the drought risk in this way

will reflect local natural conditions and land use,

which potentially will be beneficial for long-term

operational solutions for its mitigation. With respect

to the known level of risk and to the contribution of

the main factors to this risk, it will be possible to

formulate, select and locate the necessary measures

automatically using a procedure based on GIS, pos-

sibly tightening it up to the ‘‘step-by-step’’

automation and develop a DSS (decision support

system). This will be able to design these measures

for any area possessing similar geodata abundance

and tentatively for long and short events of the

rainfall deficit. Using available geodata, it is possible,

based on terrain, to model the available precipitation

amounts contributing to site moisture with respect to

the prevailing wind directions as well as temperature

and evapotranspiration conditions and the suscepti-

bility to the formation of atmospheric inversions. By

combining the calculated values of redistributed

rainfall amounts, the intensity of evaporation, water

runoff and infiltration values with regard to the nature

of the geological environment, soils and the active

surface (land cover), we can identify areas where on

the one hand, despite the occurrence of climatic or

meteorological drought, there is no geographic

drought, and on the other hand locate dry areas

although no rain deficit is indicated.

Direct values are calculated using various equa-

tions (mainly regression) to cover the study area, but

there is no way to verify computed values in the field.

When qualitative data are being used (geology, soils,

land cover), only risk categories of these factors can
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be applied in further data processing (RUDA 2010).

That is why the variables and their numerical or

qualitative values were reclassified according to

expert estimation into risk categories. The final value

is calculated as a weighted sum of partial risk cate-

gories. Following reclassification into five risk values

with respect to all variables applied in the data pro-

cessing provides decision makers quite realistic

outputs. The five classes represent risk categories:

very low, low, average, high and very high (risk of

drought). Finer classes cannot be justified. Anyway, a

classification of the importance of everyone (weight

of factor) of them is possible.

4.1. Air Temperature

Four key stations (Kobylı́, Nemochovice, Staré

město and Luhačovice) were taken as representative

of the area and were used for temperature data. Their

maximum daily air temperatures were analysed and

from the time series (Fig. 2) a period from 18 July to

9 August 2013, with prevailing daytime temperatures

(above 30 �C) and minimal rainfall, was identified as

arid. This period served as a basis from which an

arithmetic mean was calculated for each station and

subsequently used for the calculation of temperature

changes related to elevation. Meteorological data (not

climate data) provide an operational drought risk

assessment in each area. The results of such type of

modelling support the immediate decision making

and are suitable for identifying areas at risk of

drought. The procedure described below represents

an example from a real territory using real temper-

ature and precipitation conditions (and other local

natural conditions) for the total ‘‘hot and dry’’ period.

In fact, in practical applications the modelling starts

after the first day of high temperatures.

For this purpose, an environmental model (Fig. 3)

reflecting the change in air temperature with altitude,

slope and aspect was created. The means of the

maximum daily temperatures were calculated with

regard to their altitude by regression analysis. A

calculated regression equation, �0:0122x þ y ¼
34:376, was used for further processing. Using map

algebra, a raster image of vertical temperature

gradient in relation to digital model elevation (T1

grid) was created. The equation for T1 grid enables

regression estimation of temperatures related to

elevation, but does not reflect the local (zonal)

temperature trend. For this, temperature normality

(a proportion between the actually measured temper-

ature and the temperature detected by calculating a

regression equation) can be used as input data.

Interpolating the values of individual temperature

normality, followed by multiplying with the T1 raster

results, in the zonal correction for the applied

regression relationship. Using the experimental equa-

tion T2 (VAŠKŮ 1971) to refine the calculated

temperature (T1 grid), the resulting potential temper-

ature is given by the sum of the calculated values for

the equation of T1 and T2 grid (Fig. 4). For this

purpose, a raster layer combining reclassified values

of the mentioned elevation characteristics was cre-

ated and used to derive information of the coefficient

of relative insolation (Table 1).

Because spatial decision-making process works

with standardized values, the values of the air

temperature model were reclassified using the algo-

rithm of natural breaks into five classes. Class value 1

represents the coldest areas and therefore the areas of

least risk for drought occurrence. Class value 5

represents the areas with the highest risk of drought.

4.2. Precipitation

The distribution of precipitation is similarly

influenced by the characteristics of the relief. In

addition to the current precipitation regime, the

current rainfall totals reflect variable elevation, slope

and aspect (BASIST et al. 1994). Particularly strong

rainfall comes to the Czech Republic from the

northwest. It has been shown that the raindrops fall

on average at a 5� angle to the vertical (KOLEJKA and

KRETEK 1997, 2001). On this basis, the distribution of

precipitation was derived taking into account the

slope and aspect (Table 2).

Recalculation of total rainfall from the previous

period of precipitation is based on several simplifying

assumptions. The recalculation is based on data

available from precipitation stations mentioned above

and located in the area of interest or in its neighbour.

Although we cannot prove particular precipitation

values, in the lowland areas at a particular altitude

(summer precipitation may have a patchy pattern

A. Ruda et al. Pure Appl. Geophys.

208



Reprinted from the journal

Figure 2
Identification of an arid period based on actual data from 2013

Figure 3
Flowchart of air temperature model
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reflecting convective precipitation) we used simpli-

fying assumptions that the theoretically homogeneous

precipitation field is interrupted by the relief with

respect to altitude, slope and aspect during the

expected northwest direction of rain-bearing winds.

Linear regression was used to determine the depen-

dence of total rainfall on altitude. Recalculation using

slope and aspect characteristics required further

simplification, namely that rainfall-bearing wind

changes the direction of rain drops from the vertical

axis by up to 5�. Using descriptive geometry calcu-

lations, precipitation falling on a horizontal surface

(100 % at an angle of 85�) was recalculated to

combinations of eight aspect categories and four

slope categories (0�–3�—plain; 3.1�–8�—flat slope;

8.1�–15�—low slope; above 15�—steep slope). Pre-

cipitation values were the total rainfall recorded

before the expected drought period as mentioned

during air temperature model calculation data from

the Kobylı́ station. Precipitation values were

Figure 4
Air temperature results visualization of the Hustopeče area

Table 1

Derivation of coefficient of relative insolation for aspect and slope. Source: Vašku (1971)

K Slope

Aspect (1) 0�–5� (2) 5�–10� (3) 10o–15� (4) 15�–20� (5) 20�–25� (6) 25�–30� (7) 30�–40� (8) 40�–50�

(1) S 1.05 (04) 1.33 (03) 1.17 (06) 1.22 (08) 1.26 (31) 1.31 (34) 1.34 (35) 1.37 (40)

(2) SE, SW 1.04 (05) 1.10 (02) 1.16 (01) 1.20 (07) 1.24 (30) 1.26 (33) 1.28 (32) 1.30 (39)

(3) E, W 1.02 (09) 1.06 (20} 1.09 (21) 1.11 (14) 1.12 (27) 1.12 (26) 1.10 (29) 1.07 (38)

(4) SW, NW 1.00 (10) 1.02 (11) 1.01 (15) 1.00 (17) 0.99 (22) 0.97 (24) 0.92 (28) 0.84 (36)

(5) N 0.99 (13) 1.00 (12) 0 98 (16) 0 96 (18) 0.93 (19) 0.87 (23) 0.81 (25) 0.75 (37)
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calculated based on rainfall and elevation of stations

located inside or near the area of interest (Hustopeče,

Kobylı́, Klobouky, Ždánice, Prušánky, Těšany a

Dolnı́ Věstonice). The resulting image of computed

precipitation is shown in Fig. 5. The data were

reclassified by natural breaks algorithm grouping

close values where the lowest point value is given to

areas with the highest precipitation.

4.3. Geology and Soils

Soils data were derived from recent soil map

(TOMÁŠEK 1994) and geologic data from geology

maps (STRÁNÍK 1978, 1982; MATEJKA and STRÁNÍK

1960a, b; PALUSKOVÁ 1967). These represent local

factors that can change the water situation-deter-

mined precipitation and air temperature. Soils and

rocks (Fig. 6) with high water permeability (sandy

Table 2

Percent correction for supposed distribution of rainfall. Source: Kolejka and Kretek (1997, 2001)

0�–3� 3.1�–8� 8.1�–15� More than 15�

N 100 100.5 100.5 99

NE 100 100 100 100

E 100 99.5 98 94.5

SE 100 99 97.5 91.3

S 100 99.5 98 94.5

SW 100 100 100 100

W 100 100.5 100.5 99

NW 100 101 100 97.5

Figure 5
Precipitation results visualization of the Hustopeče area before the drought period
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soil: regosols, aeolian sands, gravel terraces, sand-

stones and fractured limestones) take water away

from the reach of crop roots. Therefore, they are

associated with water deficit of the surface, soil and

upper parts of the geological environment shortly

after rainfall. Soils with high content of clay and the

clay-like particles (many soils on Neogene clays,

flysch formations and loess) have high retention, but

low infiltration and low permeability and promote

surface water runoff.

Soils (Fig. 7) with strong vapour water regime

and increased salinity strengthen the loss of water

(i.e., Chernozems and partly Gleysols). Such regime

can be found at the foot slope deposits where water

lost by evaporation can be replaced with subsurface

drainage from the upper part of the slope or capillary

Figure 6
Geological composition of the Hustopeče area
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adhesion. Soils and rocks with groundwater resources

(Fluvisols) have low risk of drought. Wet soils in the

lowest parts of alluvial plains represented by Gleysols

and Gleyic Fluvisols of all subtypes close to perma-

nent water flow, which is hydraulically connected

with groundwater resources, experience practically

no drought conditions.

Moisture conditions and their relationship to the

formation of surface dryness are determined by the

presence or absence of groundwater in a geological

environment (aquifer), in other words, by the hori-

zontal movement of the water with vertical variations

and vertical movement of water in the pores under

gravity and capillary action. Individual types of

Figure 7
Soil type of the Hustopeče area
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geological environments, occurring in the studied

area, therefore produce different responses to natural

rainfall conditions. The speed of water movement is

related to the geological material which determines

permeability (BENETIN 1958). Water permeability in

soils is directly related to the risk of drought. The

higher the permeability, the faster is the drying that

takes place from the surface to the depth of the soil

and increases the risk of drought. The speed of

permeability was determined by the Research Insti-

tute for Soil and Water Conservation—RISWC

(2011) for each major unit of soil defined by genetic

Table 3

Classification of risk level of drought for soils according to Benetin (1958)

No. Soil sub-type Risk level of drought Permeability velocity

1 Haplic Gleysol 1 Less than 0.05 mm/min

2 Gleyic Fluvisol 1 Less than 0.05 mm/min

3 Haplic Fluvisol 2 0.05–0.10

4 Gleyic Fluvisol 1 Less than 0.05

5 Calcaric Fluvisol 2 0.05–0.10

6 Gleyic–Calcaric Fluvisol 1 Less than 0.05

7 Haplic Gleyosol 3 0.10–0.15

8 Mollic Gleysol 1 Less than 0.05

9 Saline Mollic Gleysol 1 Less than 0.05

10 Calcaric Mollic Gleysol 3 0.10–0.15

11 Calcaric Mollic Gleysol (Gleyic) 1 Less than 0.05

12 Luvic Chernozem 3 0.10–0.15

13 Gleyic Chernozem 2 0.05–0.10

14 Haplic Luvisol 3 0.10–0.15

15 Saline Gleyic Chernozem 1 Less than 0.05

16 Haplic Chernozem 4 0.15–0.20

17 Calcaric Chernozem 4 0.15–0.20

18 Haplic Cambisol 4 0.15–0.20

19 Saline Chernozem 1 Less than 0.05

20 Eroded Chernozem 4 0.15–0.20

21 Arenic Chernozem 5 More than 0.20 mm/min

22 Haplic Arenosol 5 More than 0.20 mm/min

23 Rendzic Leptosol 5 More than 0.20 mm/min

Table 4

Classification of risk level of drought for rocks according to RISWC (2011)

No. Parent material Risk level of

drought

Humidity condition

1 Aluvial sandy–loamy deposits 1 Permanently saturated

2 Deluvial sandy–loamy deposits 2 Seasonally saturated

3 Aluvial sandy–loamy fans 2 Seasonally saturated

4 Loamy slope foot deposits 3 Long-term moist

5 Loess 4 Medium water movement—surface drying fast, water kept at great

depth

6 Flysh rocks (claystones, marlstones,

shales)

3 Limited water movement—surface drying fast, water kept at a depth

7 Neogenic clays 3 Limited water movement—surface drying fast, water kept at a depth

8 Aeolian sands 5 Extremely quick drying surface

9 Sandstones 4 Surface drying fast

10 Upper sandy–gravel terraces 5 Extremely quick drying surface

11 Limestones 5 Extremely quick drying surface
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soil taxon and soil type (soil texture). Based on these

values, the risk levels of drought were proposed

(Tables 3, 4).

4.4. Land Use/Land Cover

Land use susceptibility to desiccation was based

on data from the CORINE land cover (LC) 2006

dataset (EEA 2014) at 100 m resolution (Fig. 8). In

determining the evapotranspiration characteristics of

the vegetation and anthropogenic land covers

(Table 5), a value indicating the ability of the cover

to retain water in the landscape was assigned to each

area (discontinuous urban area—20, industrial and

commercial facilities—1, sports and recreation

areas—50, non-irrigated arable land—40, vine-

yards—60, orchards, gardens and plantations—80,

meadows and pastures—150, a mixture of fields and

Figure 8
Land cover of the Hustopeče area
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meadows of long lasting crops—150, agricultural

areas with natural vegetation—100, deciduous for-

ests—210, mixed forests—190, natural meadows—

150, low vegetation in the forest—170, wetlands and

marshes—230, water surface—255) (KOLDOVSKÝ

1970; VAŠKŮ 1971; BLAZEJCZYK 1975; CHAPMAN

2000; KRÁSNÝ 2012). The quantitative scale (0 is no

evapotranspiration and 255 is the highest possible

evapotranspiration) was chosen on the basis of the

recommended numerical variance for fuzzy data

standardization. Data were reclassified using a stan-

dardized fuzzy method Large in ArcGIS 10.1 and, as

in previous factors, reclassified into five risk classes

of drought (Fig. 9).

4.5. Spatial Decision Making in GIS for Drought

Risk Level Identification

So far, the layers of raster images of individual

factors have been described for the entire area of

interest. Spatial decision making, however, works

with factors and also with constraints that prevent the

occurrence of drought (Fig. 6). For our purpose, we

considered as constraints features which stop the

occurrence of drought (water bodies, areas close to

watercourses or affected by hydraulic water connec-

tion). In the first case, both natural and anthropogenic

water bodies were identified as a constraint raster

image. In the second case, a band indicating the

extent of the territory from the watercourses within

an altitude of 10 m was delineated around water-

courses. 10 m elevation difference between water

level in the closest water body and neighbouring

territory is assumed to represent the maximum

vertical water access by plant roots. Both constraint

layers were combined and used as a mask to remove

pixels from layers representing individual factors.

This solution refined the application of a natural

breaks method necessary for reclassification. For the

final model output, a weighted sum method was

applied. WSM sums given point values of factors

distinguished by preferential weights. These weights

were calculated based on the matrix of SAATÝS (1980)

pairwise comparisons (Table 6). The resulting image

(Fig. 7) was created by the Weighted Sum tool of

ArcGIS for Desktop 10.1 software.

5. Results

The procedure for assessing the susceptibility of

landscape areas to drought combined aspects of

hydrologic regime, based on temperature and pre-

cipitation, together with the effects of terrain, soil and

geological conditions and of land use. The resulting

image (Fig. 10) shows the distribution of areas with

different sensitivities to water deficit in the landscape.

Both shades of warm colour indicate particularly

risky areas. These are especially slopes with south,

southeast and southwest orientations, which have

lower total precipitation and above-average daily

maximum air temperatures. These areas are only

partly under drought-resistant agricultural crops

(vineyards, orchards, gardens). Vineyards are espe-

cially involved in the increased risk of geographic

drought during hot, dry periods. High-risk areas

include flat areas along the main rivers planted with

other annual agricultural crops.

Due to the unfavourable combination of natural

conditions and of economic options, these areas

Table 5

Evaporation, transpiration and interception of main land cover categories based on KOLDOVSKÝ (1970), VAŠKŮ (1971), BLAZEJCZYK (1975),

CHAPMAN (2000) and KRÁSNÝ (2012)

Land cover category Evaporation (%) Transpiration (%) Interception (%)

Forest 10 60 30

Alluvial forest 10 70 20

Spruce forest 10 40 50

Poor pine forest 20 20 60

Meadow 25 50 25

Arable land 45 40 15

Built-up areas 100 – –

A. Ruda et al. Pure Appl. Geophys.

216



Reprinted from the journal

require intensive irrigation and more intensive

attention on the level of regional offices (RUDA AND

MUSIL 2013). Conversely, forests and equivalent

cover types in the form of orchards (usually apples,

apricots, peaches and cherries) reduce the risk of

drought, caused by natural factors. Areas covered

with permanent tree cultures (forests and orchards)

and elevated areas that are cooler even during

Figure 9
Input data layers (drought risk level layers, constraint layer—white colour represents constraint)
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Table 6

Factors’ weight according to Saatýs matrix of pairwise comparisons

Corine LC Geology Precipitation Soil Temperature Weight

Corine LC – 3 1/5 3 1/3 0.1227

Geology 1/3 – 1/7 3 1/5 0.0691

Precipitation 5 7 – 7 3 0.5074

Soil 1/3 1/3 1/7 – 1/5 0.0438

Temperature 3 5 1/3 5 – 0.257

Figure 10
Geographical drought risk categories
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extreme heat, and have higher precipitation, have

lower drought risk (shades of green colour).

Favourable sites are associated with moderate and

steep north-facing slopes with lower maximum of

daily air temperature and higher precipitation. Yellow

areas indicate areas where there is a geographic

drought risk, but only at high air temperatures and

with long periods without rainfall.

6. Conclusion

The results provide the distribution of drought risk

in a landscape, as well as knowledge about the rela-

tive risks of combinations of territorial components.

This modelling, based on controlling factors of

drought (high temperatures and prior precipitation),

provides one among many possible options of other

situations in the same area. The reason for this lim-

itation is the absence of standards that would describe

this situation in temperature and precipitation condi-

tions delineating the boundary between ‘‘drought’’

and ‘‘drought-free’’. Pending the establishment of

such a standard, a combination of high temperatures

(like in the example used above 30 �C) lasting for a

minimum period (e.g., 10 days) with a specified

minimum of precipitation is assumed to be a valid

approach. Attempts to establish standards are being

undertaken in many countries and are based on cal-

culations of water deficits in the soil environment

(WILHITE et al. 2000a, b; RISWC 2011; EEA 2014).

The problem is that every land parcel, every rock

and every plant cover have different values of such a

critical factor as water deficit. Physical calculations

based on measured values are difficult to extrapolate

across surrounding heterogeneous environments.

Determining the geographical risk of drought bypasses

the problem of precise physical calculations and

unreliable extrapolation by working with categories of

values. But here, it turns out that the critical categories

of temperatures, their duration and categories of rain-

fall are needed for comparison purposes. Any such

standard, however, will be always tied to a specific

region with the given regional combination of high

temperatures and prior precipitation that will represent

a required threshold below which the safety level

against drought can be graded and above which the

degree of ‘‘geographic risk of drought’’ can be deter-

mined. This study is an inspiration for further research.
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The Use of Geospatial Technologies in Flood Hazard Mapping and Assessment: Case Study

from River Evros

ANGELIKI MENTZAFOU,1 VASILIKI MARKOGIANNI,1 and ELIAS DIMITRIOU
1

Abstract—Many scientists link climate change to the increase

of the extreme weather phenomena frequency, which combined

with land use changes often lead to disasters with severe social and

economic effects. Especially floods as a consequence of heavy

rainfall can put vulnerable human and natural systems such as

transboundary wetlands at risk. In order to meet the European

Directive 2007/60/EC requirements for the development of flood

risk management plans, the flood hazard map of Evros trans-

boundary watershed was produced after a grid-based GIS

modelling method that aggregates the main factors related to the

development of floods: topography, land use, geology, slope, flow

accumulation and rainfall intensity. The verification of this tool

was achieved through the comparison between the produced hazard

map and the inundation maps derived from the supervised classi-

fication of Landsat 5 and 7 satellite imageries of four flood events

that took place at Evros delta proximity, a wetland of international

importance. The comparison of the modelled output (high and very

high flood hazard areas) with the extent of the inundated areas as

mapped from the satellite data indicated the satisfactory perfor-

mance of the model. Furthermore, the vulnerability of each land

use against the flood events was examined. Geographically

Weighted Regression has also been applied between the final flood

hazard map and the major factors in order to ascertain their con-

tribution to flood events. The results accredited the existence of a

strong relationship between land uses and flood hazard indicating

the flood susceptibility of the lowlands and agricultural land. A

dynamic transboundary flood hazard management plan should be

developed in order to meet the Flood Directive requirements for

adequate and coordinated mitigation practices to reduce flood risk.

Key words: Flood hazard mapping, land use, GIS techniques,

satellite imageries, transboundary river Evros, flood directive.

1. Introduction

During the last decades a debate has risen on the

link between climate change and global warming and

the increase of extreme weather events frequency

(e.g. heat or cold waves, high winds, heavy rainfall).

Although extreme weather events are integral part of

the earth’s climate system as a result of large scale

atmosphere–ocean circulation patterns and their

complex interaction with local weather and climate

elements (Khandekar 2013), based on the latest IPCC

(2013) ‘‘Summary for Policymakers’’ (SPM), the

frequency or intensity of heavy precipitation events

has likely increased in North America and Europe.

Even though the conclusion of climate change con-

tribution in worldwide extreme weather events is

premature (Khandekar 2005), based on recent climate

models the global warming will affect the hydrolog-

ical cycle and increase the magnitude and frequency

of intense precipitation events in most parts of Eur-

ope and especially in Mediterranean area (e.g.

Semmler and Jacob 2004). This phenomena is

expected to be intensified due to land use changes

such as deforestation and urbanization, because

although land use types are not directly involved in

flood creation, they affect the water holding and

infiltration capacities of the soil and therefore influ-

ence the flood intensity and propagation. As a result

and also due to poor management practices con-

cerning mainly dams operation, the flood risk and

vulnerability tend to increase over many areas

(Kundzewicz et al. 2010; Feyen et al. 2009). Wet-

lands are especially vulnerable to such pressures, due

to their susceptibility to hydrological changes (Erwin

2009). The European Directive 2007/60/EC aims to

the reduction and management of the risks that floods

pose to human health, the environment, cultural

heritage and economic activity and requires the

assessment and management of flood risks. The flood

risk management of transboundary water courses

raises many challenges due to different approaches to

strategic decision making, capacity and resources and

1 Hellenic Centre for Marine Research, Institute of Marine

Biological Resources and Inland Waters, 46.7 km Athens-Sounio

Ave., 19013 Anavissos Attikis, Greece. E-mail: angment@hcmr.gr

Pure Appl. Geophys. 174 (2017), 679–700

� 2016 Springer International Publishing

DOI 10.1007/s00024-016-1433-6 Pure and Applied Geophysics

221

http://crossmark.crossref.org/dialog/?doi=10.1007/s00024-016-1433-6&amp;domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/s00024-016-1433-6&amp;domain=pdf


Reprinted from the journal

due to the lack of a legal framework for cooperation

and the public participation and awareness (UNECE

2009).

Natural hazards, such as floods, are multi-dimen-

sional phenomena which have a spatial component

(Meyer et al. 2009; Zerger 2002), and therefor GIS

based multi-criteria decision analysis is an appropriate

tool for processing spatial data on flood risk (Mal-

czewski 2006; Papaioannou et al. 2015). Under this

scope the flood hazard map of Evros transboundary

river basin was produced after a grid-based GIS

modelling method that aggregates the main factors

related to the development of floods: topography, land

use, geology, slope, flow accumulation and rainfall

intensity (Kourgialas and Karatzas 2011). The verifi-

cation of this tool was achieved through the

comparison between the produced hazard map and the

inundation maps derived from the supervised classi-

fication of Landsat 5 and 7 satellite imageries of four

flood events that took place at Evros delta proximity, a

wetland of international importance. Furthermore, the

vulnerability of each land use against the flood events

was examined. Geographically Weighted Regression

has also been applied between the final flood hazard

map and the major factors (geological structure, land

uses, rainfall intensity, topography) in order to

ascertain their contribution to flood events. Scope of

this effort was to identify the flood prone areas of

Evros transboundary watershed, to examine the

effectiveness of the flood hazard mapping methodol-

ogy proposed by Kourgialas and Karatzas (2011) at

the specific case study and to assess the performance

and the universality of this approach. Finally, the

challenge of flood risk management in the trans-

boundary catchment of Evros river is discussed.

2. Study Area

Evros river is the second largest river in Eastern

Europe, flowing through Bulgaria, Greece and Turkey

and discharging significant quantities of water and

sediment in the Aegean Sea (Fig. 1). It emerges at the

Rilamountain near the summit ofMusala and flows first

through a steep glacier valley and then east and south-

east fringed by the Balkan and Rhodope mountains

before crossing the Thracian plain (Skoulikidis et al.

2009). The total length of the river is about 528 km,

310 kmofwhich belongs to Bulgaria and the remaining

218 km comprise the boundary between Greece and

Turkey. The catchment area is about 53,000 km2 while

its annual average discharge fluctuates from 50 to

200 m3/s. The most important tributaries of Evros river

are Tundzha and Ardas in Erdine, Ergene in Ipsala and

Erythropotamos near Didimoteicho (Dimitriou et al.

2010). Evros river basin is one of the most intensively

cultivated areas in the Balkans and supports a popula-

tion of 3.6 million people. Major pollution pressures

comprise mining activities and untreated effluents from

heavy and light industry at the Bulgarian part of the

basin, industrial activities at the Turkish part, whilst in

Greek part the cultivation activities make it one of the

most import agricultural regions of Northern Greece

(Dimitriou et al. 2011).

Evros delta, shared by Greece and Turkey, is one

of the most important wetland on a national and

European level. A major part of the delta in Greece is

included in the list of wetlands designated as inter-

nationally important under the Ramsar Convention

(1971), due to the numerous flora and fauna species

hosted. Furthermore, Evros delta is designated as

Special Protection Area (SPA) and as Site of Com-

munity Importance (SCI) in the Natura 2000 network

(Dimitriou et al. 2010). Evros delta is also included in

the list of wetlands of international importance of

Turkey, while lake Gala in close proximity has been

declared a National Park area (Ministry of Forest and

Water Management of Turkey 2011).

Many dams and reservoirs are located along Evros

river and its tributaries. In the Bulgarian part the total

number of large dams and reservoirs is up to 722,

mainly for hydropower production and secondarily

for irrigation purposes and fish-breeding. In Turkey,

seven dams and one regulator are under operation on

the Ergene river and its tributaries, serving irrigation,

flood control and some drinking water supply pur-

poses, while also 53 small irrigation dams are located

on several tributaries (UNECE 2011). In Greece the

total number of small dams for irrigation purposes are

five (Dimitriou et al. 2010).

The climatic and geomorphological conditions of

Evros river basin lead to specific run-off conditions,

characterized among others by high inter-annual flow

variability (UNECE 2011). During the last decade

A. Mentzafou et al. Pure Appl. Geophys.

222



Reprinted from the journal

and especially after 1994, the flood frequency and the

dikes overtopping especially downstream of Evros

river has increased dramatically (Angelidis et al.

2010), sometimes with severe social and economic

impacts (Table 1). Among the most disastrous floods

were in 2005 (returning period: 1000 years), in 2006

and in 2007 (UNECE 2011). It must be noted that it is

not clear if this increase in the appearance of floods

(six times greater frequency) is due to extreme cli-

matic changes or a result of the management of the

Bulgarian dams (Angelidis et al. 2010).

3. Methodology

3.1. Flood Hazard Mapping

The estimation of the flood-hazard areas of Evros

river basin was accomplished after the methodology

developed by Kourgialas and Karatzas (2011). The

particular approach incorporates both dynamic and

physical spatial properties to describe which areas of

a catchment are more prone to floods than others. In

this sense, lowland areas with impermeable lithology

and high potential flow accumulation have higher

flood risk than upstream areas, with higher slopes and

permeable geological formations. Therefore, this GIS

based multi-criteria decision analysis approach that is

widely used, does not aim to present or predict a

single flood event but to characterize the flood hazard

of the entire catchment based on the protective

functions provided by its physical and manmade

characteristics.

Based on this approach, the flood-hazard map is

produced after the integration of multi-criteria anal-

ysis at catchment scale with a grid-based GIS

(Table 2). More specifically, six individual maps

Figure 1
Evros river basin
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were produced for each of the main factors that

contribute to the development of floods. These factors

are: topography, land use, geology, slope, flow

accumulation and rainfall intensity of the river basin.

The effect of each factor is rated in five different

hazard classes: very high, high, moderate, low and

very low. In the case of numeric-valued factors

(topography, slope, flow accumulation and rainfall

intensity) the hazard classes were defined after Jenk’s

Natural Breaks method. This is dictated by the

particular flood hazard methodology (Kourgialas

and Karatzas 2011) but is also widely used in other

similar modelling techniques for the estimation of

flood and other natural disasters prone areas or during

risk, hazard or vulnerability mapping (e.g. Mallick

et al. 2015; Pasqualini et al. 2011; Stefanidis and

Table 1

Major flood event of Evros river during the last decade

a/a Begin date End date Areas affected Main cause Magnitude* References

1 17/01/2003 03/03/2003 Northeastern Greece. Evros Prefecture. Tichero,

Ampelakia, Chandra, Megali Doxipara,

Mavrokklisi, Mandra, Thourio

Southeastern Bulgaria

Northwestern Turkey—Ergene River

Heavy rain 6.0 1, 2

2 17/02/2005 24/03/2005 Northeastern Greece—Thrace region. Evros

Prefecture, Pytheio area, Sofiko district near

Didymotichos. Lavra, Pitia and Poros

Bulgaria—Maritsa river

Northwestern Turkey—Odrin Tharace region.

Rain and snowmelt 5.6 1, 2, 3

3 02/01/2006 20/01/2006 Greece—Lavara, Kissario, Amorio, Tichero,

Thymaria, Psathades in Didymotichos,

Pythio, Trigono

Snowmelt 5.5 1, 2, 3

4 09/03/2006 25/03/2006 Northeastern Greece—Evros region. Thrace.

Soufli

Northwest Turkey—Edirne region. Tychero

Southern Bulgaria—Kardzhali region, Haskovo,

Plovdiv and Smolyan, Saedinenie

Rain and snowmelt 5.5 1, 2, 3

5 06/08/2007 – Greece-Alexandroupoli—Makri Heavy rain – 3

6 16/11/2007 02/12/2007 Greece—Evros region, Eastern Macedonia and

Thrace—Ghodopi, Rodopi, Komotini, Kavala

and Drama.

Turkey—Thracian and Aegean regions—

Tekirdag. Edirne. Marmaris, Bodrum. Muğla

province.

Bulgaria—Stara Zagora—Radnevo, Galabovo,

Tsarevo, Opan and Saedinenie. Sofia,

Plovdiv, Burgas, Haskovo.

Heavy rain 6.0 1, 2

7 13/02/2010 20/02/2010 Greece—Evros rivers overflew. Traianoupoli,

Ferres, Tichero, Soufli, Orfea, Didimoticho,

Orestiada, Kiprinos, Vissa, Metaxades,

Trigono

Bulgaria—Tundzha River overflew its banks.

Elhovo and its surrounding villages

Heavy rain 5.1 1, 2, 3

8 06/02/2012 11/02/2012 Greece—Dikaia, Ormenio, Ptelea, Orestiada—

Trigono

Heavy rain – 3

9 24/01/2013 04/02/2013 Greece—Alexandroupoli, Ferres, Doriskos,

Loutro, Didimoticho, Sofiko

Heavy rain – 3

* Flood magnitude = LOG (duration 9 severity 9 affected area)

1. Darmouth Flood Observatory (2014)

2. Ministry of Environment Energy and Climate Change (2012)

3. Ministry of Infrastructure, Transport and Networks—General Secretariat of Public Works—Earthquake Recovery Service (2014)
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Stathis 2013). In cases of non-numeric valued factors

(geology and land use) the hazard classes were

defined according to the water infiltration capacity of

the geological formations and land use types, after

Kourgialas and Karatzas (2011) suggestions. The

highly permeable geological formations and land use

types were classified as of low and very low flood

hazard while the low permeability formations and

land use types were characterized as of high and very

high flood hazard (Table 2). Afterward, for each

factor a weight factor was attributed, depending again

on their influence on flood processes. Finally, the

flood-hazard map was produced after the aggregation

of each weighted factor (Gemitzi et al. 2006)

(Formula 1), while again the five flood hazard classes

were defined after Jenk’s Natural Breaks method.

S ¼ R
i

1
wixi ð1Þ

where S: the hazard index, wi: the weight of factor

i, and xi: the rate of factor i.

The flood hazard map concerning the elevation

factor was developed in GIS environment using the

digital elevation model (DEM) of the river basin of

Evros (cell size 150 m). Likewise, the slope map was

produced in GIS environment from the digital

elevation model (DEM) of the study area. The

drainage areas of a river basin can be indirectly

determined by flow accumulation (Schäuble et al.

2008). The flow accumulation map was produced

using the flow direction map, which was produced

from the digital elevation model (DEM) of the river

Evros river basin, in the ArcGIS 10.1 software.

The flood hazard map concerning land uses was

developed based on CORINE 2000 database (Euro-

pean Environmental Agency 2012). The land uses

proposed by European Environmental Agency were

Table 2

Weight evaluation of the factors affecting flood-hazard areas proposed by Kourgialas and Karatzas (2011)

a/

a

Factor Domain of effect Flood

hazard

Weight of

effect (w)

Rate

(x)

Weighted

rating (w 9 x)

Total

weight

Total

weight (%)

1 Topography (m) 0–261.7 Very high 10 4.5 45 117 31.5

261.7–557.4 High 8 36

557.4–944.2 Moderate 5 22.5

944.2–1,399.3 Low 2 9

1,399.3–2,901 Very low 1 4.5

2 Land use Zones seaward and artificial surfaces Very high–high 10 3 30 78 21.0

Shrub-brush-rangeland High 8 24

Cropland and pasture Moderate 5 15

Other agricultural land Low 2 6

Mixed forest land Very low 1 3

3 Geology Loose, silty porous formations Very high-High 9 3 27 46.5 12.5

Cohesive, sandy porous formations Moderate 5 15

Fractured or karstic formations Low-very low 1.5 4.5

4 Slope (degrees) 0–3.0 Very high 10 2 20 52 14.0

3.0–7.6 High 8 16

7.6–13.6 Moderate 5 10

13.6–21.2 Low 2 4

21.2–55.2 Very low 1 2

5 Flow accumulation 1,198,798–2,333,539 Very high 10 1.5 15 39 10.5

668,033–1,198,798 High 8 12

356,894–668,033 Moderate 5 7.5

100,662–356,894 Low 2 3

0–100,662 Very low 1 1.5

6 Rainfall intensity (MFI) 75.3–98.9 Very high 10 1.5 15 39 10.5

66.2–75.3 High 8 12

58.9–66.2 Moderate 5 7.5

52.8–58.9 Low 2 3

46.1–52.8 Very low 1 1.5

Total 371.5 100.0
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categorized in the following five classes based on

their sensitivity to flooding: seaward zones and

artificial surfaces (very high), shrub-brush-rangeland

(high), cropland and pasture (moderate), other agri-

cultural land (low) and mixed forest land (very low),

based on the assumption that limited vegetation cover

indicates a very high flood hazard (Kourgialas and

Karatzas 2011; Table 3; Fig. 2), since there is a

nontrivial correlation between natural forest cover/-

forest loss and flood frequency (Bradshaw et al.

2007).

The geological map of the study area was

retrieved from the Geological Map of Greece,

1:500,000 (Institute of Geology and Mineral

Exploration of Greece 1983), the Geological map of

Turkey, 1:500,000 (General Directorate of Mineral

Research and Exploration of Turkey 1961), and the

Generalized Geology of Europe including Turkey

(U.S. Geological Survey 2003). Likewise, the flood

hazard map concerning the geological structure of

Evros basin was developed based on the influence of

each lithological formation at the flood processes, e.g.

an area dominated by karstic formations is charac-

terized by very low flood hazard potential

(Kourgialas and Karatzas 2011). Different

approaches for estimating rainfall intensity have been

proposed, such as Fournier Index (Fournier 1960),

Modified Fournier Index (Arnoldus 1980) and

Table 3

Assignment between Corine land use classes and land use classes used in Flood hazard mapping

Corine code Corine description (level 3) Land use classes (based on their

sensitivity to flooding)

Flood hazard

111 Continuous urban fabric Zones seaward and artificial surfaces Very high

112 Discontinuous urban fabric Zones seaward and artificial surfaces Very high

121 Industrial or commercial units Zones seaward and artificial surfaces Very high

122 Road and rail networks and associated land Zones seaward and artificial surfaces Very high

124 Airports Zones seaward and artificial surfaces Very high

131 Mineral extraction sites Zones seaward and artificial surfaces Very high

132 Dump sites Zones seaward and artificial surfaces Very high

133 Construction sites Zones seaward and artificial surfaces Very high

141 Green urban areas Shrub-brush-rangeland High

142 Sport and leisure facilities Shrub-brush-rangeland High

211 Non-irrigated arable land Cropland and pasture Moderate

212 Permanently irrigated land Cropland and pasture Moderate

213 Rice fields Cropland and pasture Moderate

221 Vineyards Other agricultural land Low

222 Fruit trees and berry plantations Other agricultural land Low

231 Pastures Cropland and pasture Moderate

242 Complex cultivation patterns Cropland and pasture Moderate

243 Land principally occupied by agriculture, with

significant areas of natural vegetation

Cropland and pasture Moderate

311 Broad-leaved forest Mixed forest land Very low

312 Coniferous forest Mixed forest land Very low

313 Mixed forest Mixed forest land Very low

321 Natural grasslands Shrub-brush-rangeland High

322 Moors and heathland Shrub-brush-rangeland High

323 Sclerophyllous vegetation Other agricultural land Low

324 Transitional woodland-shrub Other agricultural land Low

331 Beaches. dunes. sands Zones seaward and artificial surfaces Very high

332 Bare rocks Zones seaward and artificial surfaces Very high

333 Sparsely vegetated areas Other agricultural land Low

411 Inland marshes Zones seaward and artificial surfaces Very high

421 Salt marshes Zones seaward and artificial surfaces Very high

511 Water courses Zones seaward and artificial surfaces Very high

512 Water bodies Zones seaward and artificial surfaces Very high

521 Coastal lagoons Zones seaward and artificial surfaces Very high

523 Sea and ocean Zones seaward and artificial surfaces Very high
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Precipitation Concentration Index (PCI) (Oliver

1980). In this study, the rainfall intensity was

estimated by using the Modified Fournier Index

methodology (Arnoldus 1980), which together with

Fournier Index, is the most commonly used index of

rainfall aggressiveness (Morgan 2005; Formula 2). In

order to determine the rainfall intensity, the meteo-

rological data of 32 meteorological stations in Evros

river basin were acquired (Table 4).

MFI ¼
X12

1

p2

p
ð2Þ

where MFI: the modified Fournier index, p: the

average monthly rainfall, and P: the average annual

rainfall

The distribution of the rainfall stations covered

quite satisfactorily the entire study catchment with

the exception of the high altitudes since only 4

rainfall stations (12.5% of the total) were located

above 800 m.a.s.l. In the present study, the spatial

distribution of rainfall intensity was estimated based

on spline interpolation method, which, comparing to

other approaches (e.g. ordinary kriging, co-kriging

and IDW—Inverse Distance Weighting), is consid-

ered to be the most appropriate for cases with a small

number of data points (Kourgialas and Karatzas

2011). The location and altitude of the available

stations represented quite well the topography and

geographical coverage of the particular catchment

(Tables 4, 5; Fig. 3) which therefore is reflected to

the interpolated maps. The density of raingauges

network is about 1660 km2/station and can be

considered as sufficient, based on WHO (2008)

recommended minimum densities of recording pre-

cipitation stations. Another limitation is the lack of

snowmelt measurements which is a significant source

Figure 2
Land uses of Evros river basin
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of water for the hydrographic network during spring

and early summer. In most cases, for the flood hazard

estimation, snowmelt is not the crucial factor since

the methodology focuses on flash floods which are

mostly caused by short in duration, high rainfall

intensity events. Therefore, the importance of rainfall

and rainfall intensity is apparent in the methodology

since it comprises one of the 6 dominant factors for

assessing flood risk and affects the output risk map by

approximately 11% (total weight of this parameter,

Table 4

Meteorological stations at Evros river basin

a/a Meteorological Station X (EGSA) Y (EGSA) X (�) Y (�) z (m) Country MFI

1 Borovets 468,502.94 4,677,319.18 23.62 42.25 1346 BG 80.97

2 Botev 575,178.64 4,729,848.01 24.92 42.72 2376 BG 98.99

3 Cerkezkoy 834,815.86 4,578,386.89 28 41.29 170 TR 55.29

4 Chirpan 609,654.18 4,672,553.68 25.33 42.20 173 BG 52.52

5 Corlu 818,667.05 4,563,863.50 27.80 41.17 183 TR 54.44

6 Didimoteicho 708,998.27 4,580,341.39 26.50 41.35 25 GR 48.90

7 Edirne 712,998.46 4,614,908.40 26.56 41.66 48 TR 53.10

8 Elhovo 712,099.72 4,672,674.19 26.57 42.18 138 BG 47.31

9 Ferres 682,297.01 4,529,628.68 26.17 40.90 26 GR 58.31

10 Haskovo 629,978.66 4,645,131.69 25.57 41.95 230 BG 57.12

11 Hayrabolu 760,328.30 4,566,816.91 27.11 41.21 – TR 58.34

12 Ihtiman 485,043.92 4,697,251.53 23.82 42.43 636 BG 52.39

13 Kardjali 611,381.40 4,609,534.60 25.34 41.63 – BG 62.02

14 Karnobat 744,130.74 4,725,970.54 26.98 42.65 198 BG 49.84

15 Kazanluk 614,664.77 4,719,283.32 25.40 42.62 380 BG 53.79

16 Kiprinos 685,741.71 4,605,595.02 26.23 41.58 70 GR 55.44

17 Kırklareli 768,497.76 4,624,556.84 27.23 41.73 232 TR 51.60

18 Koprivshtitsa 529,364.44 4,720,617.09 24.36 42.64 945 BG 68.40

19 Lefkimi 684,797.62 4,544,132.92 26.20 41.03 150 GR 76.52

20 Luleburgaz 779,902.83 4,588,294.16 27.35 41.40 46 TR 56.42

21 Orestiada 711,021.38 4,597,069.06 26.53 41.50 43.5 GR 48.50

22 Panagyurishte 513,807.67 4,710,574.56 24.17 42.55 562 BG 57.83

23 Pazardjik 526,364.29 4,668,406.07 24.32 42.17 205 BG 48.23

24 Peshtera 525,179.76 4,653,197.65 24.31 42.03 436 BG 53.79

25 Plovdiv 561,818.26 4,666,418.09 24.75 42.15 160 BG 46.20

26 Sadovo 578,343.15 4,666,582.61 24.95 42.15 158 BG 48.31

27 Sliven 689,718.75 4,726,488.20 26.32 42.67 226 BG 51.90

28 Smolyan 556,532.94 4,603,450.07 24.68 41.58 1180 BG 79.45

29 Soufli 692,706.47 4,563,223.97 26.30 41.20 15 GR 69.01

30 Stara Zagora 633,954.63 4,697,412.34 25.63 42.42 166 BG 52.43

31 Svilengrad 682,710.43 4,626,294.00 26.20 41.77 54 BG 53.00

32 Yambol 706,982.82 4,705,864.86 26.52 42.48 143 BG 46.95

Table 5

Main statistical values of the study area Rainfall stations

Bulgaria Greece Turkey Annual Rainfall (mm) MFI

No of stations 20 6 6 Min 515 46

Mean altitude (m) 512 55 136 Max 1085 99

Min altitude (m) 54 15 46 Range 570 53

Max altitude (m) 2376 150 132 Mean 656 60

Mean Rainfall (mm) 672 665 600 Median 598 55

Max Rainfall (mm) 1085 942 713 StDev 136 13

25th perc. 564 52

75th perc. 710 68
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Table 2). However, there are many other factors that

are taken into account such as slope, land use and

topography that also affect the flood risk estimation

and amend the effect of high rainfall intensity in areas

of relatively low risk (e.g. steep hillslopes, top of

mountains, etc.).

3.2. Validation of Flood Hazard Mapping

Methodology—Satellite Images

The verification of the specific flood hazard

mapping methodology was achieved through the

comparison between the produced hazard map and

the inundation maps derived from the supervised

classification of Landsat 5 and 7 satellite imageries of

four flood events. The area examined was the riparian

zone of the downstream part of the catchment, a

10,000 m buffer zone along the main Evros river

thalweg, from Evros delta to the triple point border

between Greece, Turkey and Bulgaria. The floods

events examined were selected based on their mag-

nitude (Table 1), but also based of the availability of

satellite images to cover the specific flood events

sufficiently. The flooded event chosen were: a) 17/01-

03/03/2003 (date of satellite image retrieved: 03/03/

2003), b) 17/02-24/03/2005 (date of satellite image

retrieved: 25/03/2005), c) 09-25/03/2006 (date of

satellite image retrieved: 13/04/2006), and d) 13-20/

02/2010 (date of satellite image retrieved: 19/02/

2010).

Six Landsat 5 imageries (two for each date) of

25/03/2005, 13/04/2006 and 19/02/2010 and two

Landsat 7-SLC-on of 03/03/2003 with cellsize of

30 m were acquired from the United States Geolog-

ical Survey (USGS) under a clear sky and windy

conditions. The data elaboration and analysis was

conducted in ESRI’s ArcGIS 10.1 software while for

the analysis of the satellite imagery ENVI 4.7

software was used. After selecting the study area

scenes and the appropriate dates the digital data were

submitted to the following procedures:

1. Georeferencing of the imagery and geographical

conversion from WGS’84 to EGSA’87 coordinate

system (National Datum) were performed using

Beam 4.7 software.

2. Radiometric correction for the conversion of

actual radiance values, based on the formula [3]

(YCEO 2010).

Lk ¼ ðLMaxk � LMinkÞ = QCALMAX � QCALMINð Þf g
� QCAL�QCALMINð Þ þ LMink ð3Þ

Figure 3
Relationship between Mean Annual Rainfall and Altitude in the study area
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where Lk is the cell value as radiance, QCAL is the

digital number, LMINk is spectral radiance scales to

QCALMIN, LMAXk is spectral radiance scales to

QCALMAX,QCALMIN is the minimum quantized

calibrated pixel value (typically = 1), QCALMAX is

the maximum quantized calibrated pixel value

(typically = 255)

3. Atmospheric correction, through the darkest-pixel

subtraction technique (Keiner and Yan 1998;

Lathrop et al. 1991) via the relevant ENVI 4.7

software tool.

4. Satellite bands of each imagery with the same

resolution (m) were joined in a single layer (layer

stacking) and stored in image format (Tiff,

Geotiff).

Supervised and unsupervised classifications were

used to detect the flooded areas. As far as the

unsupervised classification is concerned, K-MEANS

classification algorithm was used to classify the

water-covered from the dry riparian areas for the

imageries on 25/03/2005, 13/04/2006 and 19/02/

2010. Respectively, supervised classification and

particularly Spectral Angle Mapper (SAM) (Becker

et al. 2007; Castillejo-González et al. 2009; Debba

et al. 2005) was used to detect the aforementioned

differentiation of 03/03/2003. K-MEANS classifica-

tion algorithm has been selected after several test

runs and comparison with the results provided by

other commonly used algorithms such as Iterative

Self-Organizing Data Analysis (ISODATA). With

regards to the supervised classification, groups of

pixels (ROIs) or individual spectra should be selected

as representative areas or materials to be mapped in

the output. In this paper the selection of ROIs was

selected with great attention even for the different

shades of water. Also, SAM has been selected after

comparison with the results of other supervised

classification techniques, including parallelepiped,

minimum distance and maximum likelihood. The

classification result was four maps with the inundated

areas that were superimposed for comparison pur-

poses to the flood hazard map.

Flooded areas classification was carried out in the

riparian zone with medium analysis (spatial resolu-

tion 30 m) in order for the wet in the riparian zone to

be accurately quantified. Moreover, in order to

quantify each classification errors, random points

were created inside the inundated areas of each

imagery. Creating random points is widely used

concerning the classification accuracy assessment

(Gass et al. 2013; Turner et al. 2013). The random-

ness of the selection is achieved by the ArcGIS

relevant algorithm (Michigan Technological Univer-

sity 2011) where the user declares the number of

points, the minimum distance between them as well

as the reference zone (constraining feature class)

within which the points will be contained (inundation

areas in this case). Taking into consideration the

spatial resolution of the satellite imageries (30 m)

and the extent of the buffer zone along the main

Evros river, it was estimated that 400 points needed

to be created in order to have a 30-m minimum

distance among them and cover spatially the whole

area. This procedure resulted in a satisfactory density

of check points (5 points/km2) and subsequently

followed the estimation of the percentage agreement

with the actual flooded areas.

3.3. Geographically Weighted Regression

There are a number of assumptions underlying the

basic regression model, one of which is that the

observations should be independent of one another.

This is not always the case with data for spatial units

and not only might the variables in the model exhibit

spatial dependence (that is, nearby locations will have

similar values) but also the model’s residuals might

exhibit spatial dependence. The latter characteristic

can be observed if the residuals from the basic

regression are plotted on a map where commonly the

residuals in neighboring spatial units will have a

similar magnitude and sign (Charlton and Fothering-

ham 2009). The difference between Geographically

Weighted (GWR) and multiple linear regression is

that GWR incorporates the spatial aspect of the

elaborated parameters and thus the produced regres-

sion is weighted according to their geographical

location. Geographically weighted regression (GWR)

is a recent refinement of ordinary regression model,

describes relationships among variables that are

different concerning their location (Fotheringham

et al. 2002) and is used to model spatially varying

relationships.
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Geographically Weighted Regression (GWR) is a

fairly recent contribution to modelling spatially

heterogeneous processes (Brunsdon et al. 1996;

Fotheringham et al. 1996, 1997, 2002). The under-

lying idea of GWR is that parameters may be

estimated anywhere in the study area given a

dependent variable and a set of one or more

independent variables which have been measured at

places whose location is known. Parameters that were

analyzed and correlated in the GWR model with the

flood hazard map were the topography, land uses,

geology, flow accumulation and rainfall intensity

(MFI index) of the Evros river basin. Concerning the

geology and the land use parameters, reference

numbers have been attributed to each geological

and land use type, respectively. Thus, the reference

number of each land use or geological formation was

correlated with the respective flood hazard index. As

far as the input parameters are concerned, the Kernal

type (Gaussian) that was selected is the fixed one and

it has been determined using the Akaike Information

Criterion (AICc; Bandwidth method). AIC serves as

an approximately unbiased estimator in instances

where the sample size is large and the dimension of

the candidate model is relatively small (Davies et al.

2005a). Davies (2002) and Davies et al. (2005b) show

that AICc is the minimum variance unbiased estima-

tor of its target discrepancy in a linear regression

framework. All the aforementioned parameters were

correlated via the relevant ArcGis 10.1 tool, the local

coefficient of determination (R2) was mapped for

each one at a catchment scale and the global R2 was

also computed. Statistical report with diagnostic

parameters was also generated and a comparative

assessment followed to identify the dominant factors

that are mostly correlated with the flood hazard map

of Evros river basin.

4. Results

4.1. Meteorological Data

The mean annual rainfall of the study area reaches

656 mm while the maximum annual rain (1,085 mm)

is observed in a Bulgarian station at an altitude of

2,376 m (Table 5). The minimum rainfall value

(515 mm) is observed in a Greek station located at

an altitude of 25 m while the correlation between the

annual mean rainfall and the stations altitude is well

described with a 2nd order polynomial with a R2 of

0.72 (Fig. 3). The effect of the annual and monthly

rainfall values on the MFI index is direct due to the

algebraic dependence between these parameters and

therefore MFI values illustrate almost identical

distribution with the rainfall. Thus, 50% of the

stations illustrate a MFI index of up to 55 with a

maximum of 99, while 25% of the stations reach a

value of 52 (Table 5). The distribution of MFI

illustrates a positive skewness and more than 40%

of the stations illustrate elevated MFI values that

fluctuate above 60. Practically, this means that the

study area presents favorable conditions for flood

occurrences since it illustrates relatively high rainfall

intensities which are counterbalanced though from

the relatively low rainfall heights.

4.2. Flood Hazard Mapping

Based on the methodology mentioned above, the

following six maps (one for each factor, Fig. 4a–f),

which are directly related to flood events, and the

final flood hazard map were developed (Fig. 4g).

Although low and very low are the dominant flood

hazard classes of Evros river basin, the areas

characterized by high and very high flood hazard

are significant (19.1 and 6.1%, respectively). Based

on the flood hazard map produced, the areas with

very high flood hazard potential are (Fig. 4g): (1) the

wider Evros delta region, (2) the area located within a

zone of few kilometers along the riparian zone of

Evros river from delta until Soufli village in Greece,

(3) locally along Ardas river in Greece and Bulgaria,

(4) the wider area around Edirne city, after the

junction of Evros river (Maritsa) from Bulgaria,

Ardas river from Greece and Tundzha from Turkey,

(5) the wider riparian zone along Ergene river in

Turkey, (6) the area around the city Keşan, east of

Evros delta at Turkey, where rice field and wetlands

are located, (7) along Hayrabolu stream in Turkey,

(8) the regions around the cities Plovdiv, Saedinenie

and Pazardjik in Bulgaria, and (9) at the coal mines

Maritsa Iztok in Bulgaria. Thus, the dominant land

uses in the very high flood hazard areas are urban
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Figure 4
Flood hazard maps of each factor (a: topography, b: slope, c: flow accumulation, d: land use, e: geology, f: rain intensity MFI) and final flood-

hazard map for Evros river basin (g)
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areas followed by agricultural areas and wetlands

(Table 8).

4.3. Validation of Flooded Areas Classification

Flooded areas classification was carried out in the

riparian zone with medium analysis (spatial resolu-

tion 30 m) in order water -covered areas in the

riparian zone to be accurately quantified. The elab-

oration result was quite good and the derived flood

maps of each date showed that there were relatively

few errors after they were compared carefully with

the background of the satellite images. Moreover, in

order to quantify the exact estimation errors of each

classification, 400 random points were created for

each flood map. As far as the flood of 03/03/2003 is

concerned, only 19 points from the 400 were located

outside flooded areas. Similarly, floods of 13/04/

2006, 19/02/2010 and 25/03/2005 presented only 10,

6 and 8 points, respectively that were located away

from flooded areas. The percentage estimation errors

are 4.75, 2.5, 1.5 and 2% for the classification of

flooded areas of March 2003, April 2006, February

2010 and March 2005.

It must be noted that even though the period

between the flood’s and the satellite image acquisi-

tion’s date is in some cases fairly long, the remaining

remote sensed flooded areas coincide with the flood

endangered areas, thus the good performance of the

model is verified.

4.4. Geographically Weighted Regression (GWR)

Between Flood Hazard Map and Environmental

Parameters

The GWR between overall flood hazard map and

the numerically transformed, geological map of Evros

river basin is positive with local R2 ranging from 0 to

0.14. Values of R2 are low, indicating the absence of a

strong relationship between the aforementioned

parameters (Table 6, Fig. 5a). The highest values

though (0.14) are presented at the same areas where

porous formations (quaternary, neogene and paleo-

gene sediments) are dominant (western part of Evros

river basin) while the lowest ones coincide with

Triassic, Paleozoic and metamorphic formations and

cretaceous sediments (at northern and central part).

Concerning the global regression that GWR tool

Table 6

GWR indices between flood hazard map and environmental parameters

Variable Geology Land uses Rainfall intensity—MFI Topography Flow accumulation

Bandwidth 28,701.55 24,969.11 23,115.7 24,131.6 43,358.58

Residual Squares 1,380,538.54 149,422.21 118,783.9 5,454,713,883.3 67,806.18

Effective Number 53.51 73.1 82.1 240.97 11.86

Sigma 16.75 9.31 5.2 240.64 17.24

AICc 42,199.9 13,145.031 27,676.2 1,303,897.98 2055.7

R2 0.23 0.26 0.79 0.85 0.47

R2Adjusted 0.22 0.23 0.79 0.85 0.45

Explanation of GWR diagnostics

Bandwidth: is the bandwidth of neighbors used for each local estimation and controls the degree of smoothing in the model

Residual Squares: this is the sum of the squared residuals in the model and the smaller this measure, the closer the fit of the GWR model to the

observed data

Effective number: this value reflects a tradoff between the variance of the fitted values and the bias in the coefficient estimates and is related to

the choice of bandwidth

Sigma: this value is the square root of the normalized residual sum of squares where the residual sum of squares is divided by the effective

degrees of freedom of the residual

AICc: this is a measure of model performance and is helpful for comparing different regression models

R2: R-squared is a measure of goodness of fit. It may be interpreted as the proportion of dependent variable variance accounted for by the

regression model

R2 Adjusted: calculations for the adjusted R-squared value normalize the numerator and denominator by their degrees of freedom
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simultaneously executes, global R2 is equal to 0.23,

value slightly greater than the local one. By means of

GWR, having transformed the data in this way it is

now possible to investigate local trends in non-

stationarity in regression models, something that

would not have been obvious from the raw data.

Thus, like the Fourier Transform, it is a data transform

that may be used to look at a data set from a different

viewpoint (Brundson et al. 1996). The technique can

also be seen as a response to calls such as Fothering-

ham (1992), Fotheringham and Rogerson (1993), and

Openshaw (1993) for a move away from whole-map

statistics to localized statistics which are more infor-

mative and which can be mapped.

Figure 5
Cartographical representation of determination coefficient (R2) between flood hazard map of Evros river basin and a geological formations,

b land uses, c MFI index, d topography and e flow accumulation
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Regarding GWR between the overall flood hazard

map and the numerically transformed land use map of

Evros river basin, local R2 range from 0 to 1,

presenting obviously a stronger relationship than the

geology parameter (Table 6; Fig. 5b). Areas with the

highest correlation (0.59–1) are mainly located where

industrial, commercial units and sparsely vegetated

areas are detected (eastern part of catchment).

Moderate correlation was observed at those areas

where permanently irrigated land exists (western

part). The global coefficient differs from the local and

equals to 0.26, indicating a low-moderate relation-

ship. This difference in local–global R2 (also

regarding the GWR of flow accumulation), exists

because GWR expands traditional regression by

allowing the assessment of local and not global

parameters (Fotheringham and Brunsdon 1999). This

regression type controls the existence of spatial

nonstationarity in the relationship between indepen-

dent and dependent variable, enabling spatial change

of independent variables’ parameters (De Smith et al.

2007).

GWR between the flood hazard map and the

rainfall intensity index generated R2 values ranging

from 0 to 0.37, indicating a moderate spatial

relationship (Table 6; Fig. 5c). The highest R2 values

(0.22–0.37) are detected at those areas with a

moderate rainfall intensity, mainly in the northern

and southwestern part of the catchment. The lowest

values of coefficient of determination, coincide with

the areas that are characterized by the smallest

rainfall intensity in the northeastern part of Evros

river basin. On the contrary, global regression for the

above parameters is higher than the local and equals

to 0.79, value revealing a strong interrelationship

between the above parameters. GWR focuses on

exploring local differentiations and not on the

ascertainment of any spatial uniformity. Accepting

the fact that each location is characterized by

different spatial features, the transition analysis from

the global to local scale is enhanced by introducing

the spatial parameter (location), hence local regres-

sion takes into consideration the location in contrast

to the global. Thereby can this difference between

local and global R2 be explained and moreover in this

case it indicates that the flooded areas are mostly

affected by the cumulative rain of their upstream part

of catchment rather than the local rainfall intensity

patterns.

The coefficient of determination yielded from the

GWR between the flood hazard map and topography

ranges from 0 to 0.67, and the areas with the highest

values coincident with those of the greatest elevation

(2000–2900 m), in the western part of Evros river

basin (Table 6; Fig. 5d). The parameter of topography

is very important in the assessment process, accom-

panied by the highest weight, for the generation of the

flood hazard map, accredited also by the aforemen-

tioned high value of the coefficient of determination.

Similar interrelationship is also revealed through the

global R2 which equals to 0.85 and confirms the flood

hazard dependence on the topography of the area.

Similar R2 values (0–0.15) were resulted from the

GWR analysis between the flow accumulation and

the flood hazard map, indicating a weak relationship

in contrast with the global R2 value (0.47), which

reveals a moderate one. The highest values of the

correlation coefficient (0.15) appear, as it was

expected, at those areas characterized by the greatest

flow accumulation values and denser hydrographic

network (Fig. 5f).

4.5. Validation of Flood Hazard Mapping

Methodology

Based on the inundated areas produced from the

satellite images, the flood events with the greatest

extent was observed on 19/02/2010 and on 13/04/

2006 (area covered 664.6 and 397.8 km2 respec-

tively), while on 03/03/2003 and on 25/03/2005 the

floods were smaller (191.4 and 142.5 km2 respec-

tively) (Fig. 6). It must be noted that the inundated

areas produced from the satellite images do not

necessarily coincide with the maximum extent of

each flood event, especially in case of the flood event

during the period 09-25/03/2006.

The comparison between the flood hazard map

produced and the inundated areas indicate the satis-

factory performance of the model. More specifically,

for each flood event the majority of the inundated

area was characterized as areas of high or very high

flood hazard (03/03/2003: 98.8%, 5/03/2005: 92.7%,

13/04/2006: 98.9%, 19/02/2010: 98.5%; Table 7),

while in the not inundated areas of the riparian zone,
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Figure 6
Evros river inundation map for the flood events on a 03/03/2003, b 25/03/2005, c 13/04/2006, d 19/02/2010
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the flood hazard potential is lower (area characterized

of high or very high flood hazard: 03/03/2003: 62.7%,

5/03/2005: 63.5%, 13/04/2006: 60.0%, 19/02/2010:

56.1%; Table 7). The inundated areas were mainly

occupied by agricultural activities and wetlands and

the not inundated areas by agricultural activities and

at much smaller extent forest and natural vegetation

(Table 7). For all flood events examined, the agri-

cultural lands, artificial surfaces and wetlands

inundated were characterized as areas of very high

or high flood hazard (Table 8).

5. Conclusion

During the last decade the flood frequency espe-

cially downstream of Evros river has increased

dramatically (Angelidis et al. 2010). The climatic and

geomorphological conditions of Evros river basin

combined with land use changes and poor manage-

ment practices concerning mainly dams operation

and irregular release of river flow, have increased

flood risk (Papathanasiou et al. 2013). Especially

Evros delta is an extremely vulnerable area

Table 7

Flood hazard classes and land uses of inundated and not inundated areas of each flood event examined

Flood event 03/03/2003 25/03/2005 13/04/2006 19/02/2010

Inundated

(%)

Not inundated

(%)

Inundated

(%)

Not inundated

(%)

Inundated

(%)

Not inundated

(%)

Inundated

(%)

Not inundated

(%)

Flood hazard classes

Very low 0.00 1.50 0.10 1.50 0.00 1.60 0.00 1.80

Low 0.20 6.00 0.40 5.90 0.10 6.40 0.10 7.10

Moderate 1.00 29.90 6.80 29.10 1.00 31.90 1.40 35.10

High 9.80 29.40 21.00 28.50 16.00 29.90 22.60 29.60

Very high 89.00 33.30 71.80 35.00 82.90 30.10 75.90 26.50

Land uses

Agricultural 57.80 80.50 72.30 79.50 76.60 79.50 79.80 79.00

Artificial surfaces 0.00 3.20 0.60 3.10 0.10 3.40 0.30 3.80

Forest and natural

vegetation

1.60 13.00 4.50 12.70 1.00 13.90 1.70 15.00

Wetlands 40.50 3.40 22.60 4.70 22.30 3.20 18.30 2.20

Table 8

Flood hazard classes for each land use of the inundated areas of each flood event examined

Flood event Land use Flood hazard classes

Very low (%) Low (%) Moderate (%) High (%) Very high (%)

03/03/2003 Agricultural 0.0 0.0 0.7 8.5 90.8

Artificial surfaces 0.0 0.0 0.0 0.0 100.0

Forest and natural vegetation 0.0 9.9 16.8 22.1 51.1

Wetlands 0.0 0.0 0.0 9.4 90.6

25/03/2005 Agricultural 0.0 0.1 7.1 21.8 71.0

Artificial surfaces 0.0 0.0 2.4 41.5 56.1

Forest and natural vegetation 1.7 8.7 36.0 12.2 41.3

Wetlands 0.0 0.0 0.0 19.9 80.1

13/04/2006 Agricultural 0.0 0.0 0.8 17.2 82.0

Artificial surfaces 0.0 0.0 0.0 0.0 100.0

Forest and natural vegetation 0.0 5.0 26.5 13.3 55.2

Wetlands 0.0 0.0 0.1 11.2 88.8

19/02/2010 Agricultural 0.0 0.1 1.1 26.2 72.6

Artificial surfaces 0.0 0.0 0.0 12.9 87.1

Forest and natural vegetation 0.4 3.2 28.0 20.8 47.6

Wetlands 0.0 0.0 0.2 6.6 93.1
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concerning flood hazard potential. In order to meet

the European Directive 2007/60/EC requirements for

the development of flood risk management plans, a

GIS based, multi-criteria methodology for flood

hazard mapping (Kourgialas and Karatzas 2011) was

applied by adapting the method’s hazard classes to

the examined catchment’s environmental conditions

while maintaining the hazard weights and weighing

rates of the original methodology. The latter have

been estimated by a combination of expert judgement

and a relevant weighting estimation method (Shaban

et al. 2001). The satisfactory performance of this tool

was verified, although some adjustments may

improve further the model in Evros river basin

specifically. The most vulnerable land uses against

flood are agricultural lands, artificial surfaces and

wetland.

GIS based multi-criteria decision analysis is lately

widely used in complex decision problems (Pa-

paioannou et al. 2015) and is quite popular because of

its capacity to integrate a large amount of heteroge-

neous data and the ease in obtaining the weights of a

large number of criteria (Chen et al. 2010). Never-

theless, some uncertainties arise due to subjective

estimates, such as criteria selection and their thresh-

olds and criteria weights (Chen et al. 2010;

Raaijmakers et al. 2008). Based on the GWR results,

the primary factors affecting mostly the flood hazard

in Evros catchment is topography and land uses,

followed by rainfall intensity, geology and flow

accumulation. This is not completely in agreement

with the weight of factors proposed by Kourgialas

and Karatzas (2011), who considered the factor

rainfall intensity less important than geology in flood

producing. This methodology weakness could be

attributed to the different flood producing mecha-

nisms at Evros river basin comparing to the ones in

the catchment the methodology was initially devel-

oped. More specifically, Evros river basin can be

characterized as large-sized limiting the occurrence

of flash flood events (Fotopoulos et al. 2010), while

the hydrographic network is extensive.

Another important uncertainty issue arises on the

choice of the optimal clustering technique, despite the

fact that a respective number of GIS based multi-

criteria decision analysis applications are using the

Jenk’s Natural Breaks method for classification of

numeric-valued factors (e.g. Mallick et al. 2015;

Pasqualini et al. 2011; Stefanidis and Stathis 2013).

In order to produce hazard classes that contain data

value groups with relatively large differences and to

maximize ‘‘classing accuracy’’ (Smith 1986), the use

of multiple clustering techniques is often necessary in

preliminary analysis of flood hazard mapping (Pa-

paioannou et al. 2015).

GIS based multi-criteria decision analysis lack the

ability to comprise the temporal dimension of spatial

distributed information and examine phenomena that

change over time (Ratsiatou and Stefanakis 2001)

comparing to other approaches, such as hydrological

and hydraulic modelling. Nevertheless, GIS-based

multi-criteria decision analysis can be applied in

initial low-cost detection surveys of flood-prone areas

(Papaioannou et al. 2015), to support decision-mak-

ing and help stakeholders develop flood management

plans.

The particular approach for estimating the flood-

hazard areas of Evros river basin, combines the cli-

matic, geomorphological and land use properties of

the catchment to illustrate areas that are more prone

to flooding in relation to others. It is a physically

based approach and measures the protective function

of each part of the basin based on its natural and

anthropogenic characteristics. It has certain advan-

tages and disadvantages compared to hydrologic

modelling techniques as mentioned above. However,

it is very useful in areas where hydrological data are

completely absent, inefficient or have low credibility

as well as where the hydrological systems are too

complex to describe efficiently in a model (large

catchments with many different water uses and

stakeholders). This is particularly the case in trans-

boundary catchments where all of the aforementioned

problems are usually significantly enhanced and the

cooperation between the catchment sharing countries

is not always ideal.

6. Discussion

The flood risk management of transboundary

water courses raises many challenges due to different

approaches in strategic decision making, capacity and

resources and due to the lack of a legal framework for

A. Mentzafou et al. Pure Appl. Geophys.
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cooperation and the public participation and aware-

ness (UNECE 2009). The European Directive

2007/60/EC, in line with Directive 2000/60/EC and

international principles of flood risk management as

developed notably under the United Nations Con-

vention on the protection and use of transboundary

water courses and international lakes, aims at effec-

tive flood prevention and mitigation practices.

Especially at Evros river basin, where the countries

involved are not all member states of the European

Union, the challenges are even more complex. Only

bilateral efforts have been made in the past and

agreements have been signed related to water envi-

ronmental cooperation including conservation of

protected areas and management issues concerning

flood protection at Evros transboundary river basin

(Table 9). Important efforts have also be made in

scientific level concerning flood risk management

Table 9

Existing agreements related to the management of Evros transboundary river basin

Country Date Basins concerned Comments References

GR, TR 1934 Maritsa/Evros/Meriç River Agreement concerning the Control of Hydraulic Works on Both Banks of

the Evros/Meriç River

1

GR, TR 1955 Maritsa/Evros/Meriç River Agreement related to the construction of flood control measures 1

GR, TR 1963 Maritsa/Evros/Meriç River Protocol on the Rehabilitation of the Meriç River Basin Forming the

Significant Part of Turkish-Greek Border in Thrace

1

BG, GR 1964 Maritsa/Evros/Meriç River Agreement on Cooperation between the People’s Republic of Bulgaria

and the Kingdom of Greece concerning the utilization of the waters of

the rivers crossing the two countries

2

BG, TR 1968 Maritsa/Evros/Meriç, Arda/Ardas

and Tundzha/Tundja/Tunca

Rivers

The Agreement between the Republic of Turkey and the People’s

Republic of Bulgaria concerning Cooperation in the Use of the Waters

of Rivers Flowing through the Territory of Both Countries established a

Joint Commission authorized to settle any disputes which might have

arisen

1

BG, GR 1971 Arda/Ardas, Maritsa/Evros/Meriç

Rivers

FRESHWATERS AGREEMENTS Title and related joint body

Agreement for the Establishment of the Greek-Bulgarian Committee for

Cooperation in the Fields of Electric Energy and the Utilization of the

Waters of the Rivers Crossing the Two Countries that was assigned to

follow up the application of the 1964 agreement

1

GR, TR 1971 Maritsa/Evros/Meriç River Prevention and means of peaceful settlement of disoute incintents in the

cross border land and sea areas of River Evros/Meric

3

BG, TR 1975 Maritsa/Evros/Meriç, Arda/Ardas

and Tundzha/Tundja/Tunca

Rivers

Agreement between the Government of the Republic of Turkey and the

Government of the People’s Republic of Bulgaria on Long Term

Economic, Technical, Industrial and Scientific Cooperation

1

BG, TR 1993 Tundzha/Tundja/Tunca River Agreement on Assistance and Cooperation in the Field of Water for

Reducing the Negative Effects of the Drought of 1993

1

BG, TR 1998 Maritsa/Evros/Meriç River Agreement on Cooperation in the Fields of Energy and Infrastructure

Between the Government of the Republic of Turkey and the

Government of the Republic of Bulgaria

1

GR, TR 2001 Maritsa/Evros/Meriç and Arda/

Ardas Rivers

Memorandum of Understanding Concerning Cooperation on

Environmental Protection

1

BG, TR 2002 Maritsa/Evros/Meriç River Protocol signed between the General Directorate of State Hydraulic

Works of Turkey and the National Institute of Meteorology and

Hydrology of Bulgaria for the installation, operation and maintenance

of a flow observation telemetry station on the Maritsa River in

Svilengrad, Bulgaria

1

BG, TR 2002 Maritsa/Evros/Meriç River Agreement between the Ministry for the Environment, Physical Planning

and Public Works of the Hellenic Republic and the Ministry of

Environment and Water of the Republic of Bulgaria on cooperation in

the field of environmental protection

2

GR, TR 2006 Maritsa/Evros/Meriç River CBC for the prevention and control of floods in the riparian region of

Evros/Meric

3

UNECE (2009), Mousmouti (2003), Skias and Kallioras (2007)
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projects (e.g. INTERREG III A—PHARE CBC

program between Bulgaria and Greece that focused

on early warning in case of floods and accidental

pollution and EC PHARE Cross-Border Cooperation

between Turkey and Bulgaria which involved the

creation of a hydrometeorological database and the

installation of flood warning and water information

systems), although none includes all three countries

involved. In addition, no agreement exists that would

provide a minimum inflow of freshwater into the

delta, satisfying the water needs of the ecosystem as

well as preventing salt water intrusion and siltation

(Kramer and Schellig 2011).

On the other hand, many incidents underline the

fact that most agreements, declarations or protocols

between the riparian countries have not been fully

implemented. Especially during the severe flood

events in 2005, recriminations between Turkey,

Greece and Bulgaria indicated the lack of a coor-

dinated water management framework and a

common flood prevention strategy. Although experts

from the three countries agree that the primary

cause of major flood events are specific flow pat-

terns and extreme meteorological conditions

(Kramer and Schellig 2011), the main argument

raised on whether the poor water practices mainly of

large Bulgarian reservoirs or whether the inappro-

priate floodplain management in Greece and Turkey

intensify the phenomena and increase flood risk and

vulnerability downstream.

The EU legislative framework provides the nec-

essary means for efficient cooperation between the

EU member states Greece and Bulgaria. The chal-

lenge rises in the cooperation between all the three

countries involved. Accession Partnership between

the EU and Turkey further provides opportunities for

cooperation between Turkey and its European

neighbors (Skias and Kallioras 2007). The first step

for integrated water management of Evros river basin

is the exchange of scientific knowledge and hydro-

logical and water use data in order to develop a

common database and the establishment of a com-

mon rather than a national flood forecasting and early

warning system. These initiatives prerequisite also a

common infrastructure establishment and an inte-

grated water management plan for the entire river

basin that will also focus on the environmental

protection and conservation of natural resources. The

political support for this effort and common legisla-

tion are preconditions.
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du sol par l’eau et les précipitations atmosphériques. Paris:

Presses Universitaires de France.

Gass, L., Norman, L.M., Villarreal, M.L., Tolle, C., Coe, M. and

Jamwal, P. (2013), A Test of Methods to Measure Vegetation

Change Adjacent to Gabions in Sonora, Mexico using Landsat

imagery, Presented at the Santa Cruz River Researcher’s Day,

Tucson Arizona.

Gemitzi, A., Petalas, C., Tsihrintzis, V. A., & Pisinaras, V. (2006).

Assessment of groundwater vulnerability to pollution: a combi-

nation of GIS, fuzzy logic and decision making techniques.

Environmental Geology, 49, 653–673.

General Directorate of Mineral Research and Exploration. (1961).

Geological Map of Turkey, sheet Istanbul, 1:500,000, Ankara,

Turkey.

Institute of Geology and Mineral Exploration—Division of General

Geology and Economic Geology (1983), Geological Map of

Greece, 1:500,000. Athens, Greece.

IPCC, Climate Change 2013—The Physical Science Basis—

Working Group I Contribution to the Fifth Assessment Report of

the Intergovernmental Panel on Climate Change - Summary for

Policymakers. (Cambridge University Press, United Kingdom

and New York 2013).

Keiner, L. E., & Yan, X.-H. (1998). A neural network model for

estimating sea surface chlorophyll and sediments from the-

matic mapper imagery. Remote Sensing of Environment, 66,

153–165.

Khandekar, M. L. (2013). The global warming—extreme weather

link: a review of the state of science. London: The Global

Warming Policy Foundation.

Khandekar, M. L., Murty, T. S., & Chittibabu, P. (2005). The

global warming debate: a review of the state of science. Pure and

Applied Geophysics, 162, 1557–1586.

Kourgialas, N. N., & Karatzas, G. P. (2011). Flood management

and a GIS modelling method to assess flood-hazard areas—a case

study. Hydrological Sciences Journal, 56, 212–225.

Kramer, A. and Schellig, A. (2011). Meric River Basin: Trans-

boundary Water Cooperation at the Border between the EU and

Turkey, In Turkey’s Water Policy National: National Frame-

works and International Cooperation (ed. Kramer, A., Kibaroglu,

A., and Scheumann, W.) (Springer Berlin Heidelberg, New

York) pp. 229–249.

Kundzewicz, Z. W., Lugeri, N., Dankers, R., Hirabayashi, Y., Döll,
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Regional L-Moment-Based Flood Frequency Analysis in the Upper Vistula River Basin,

Poland

A. RUTKOWSKA,1 M. _ZELAZNY,2 S. KOHNOVÁ,3 M. ŁYP,4 and K. BANASIK
5

Abstract—The Upper Vistula River basin was divided into

pooling groups with similar dimensionless frequency distributions

of annual maximum river discharge. The cluster analysis and the

Hosking and Wallis (HW) L-moment-based method were used to

divide the set of 52 mid-sized catchments into disjoint clusters with

similar morphometric, land use, and rainfall variables, and to test

the homogeneity within clusters. Finally, three and four pooling

groups were obtained alternatively. Two methods for identification

of the regional distribution function were used, the HW method and

the method of Kjeldsen and Prosdocimi based on a bivariate

extension of the HW measure. Subsequently, the flood quantile

estimates were calculated using the index flood method. The

ordinary least squares (OLS) and the generalised least squares

(GLS) regression techniques were used to relate the index flood to

catchment characteristics. Predictive performance of the regression

scheme for the southern part of the Upper Vistula River basin was

improved by using GLS instead of OLS. The results of the study

can be recommended for the estimation of flood quantiles at

ungauged sites, in flood risk mapping applications, and in engi-

neering hydrology to help design flood protection structures.

Key words: Catchment characteristics, clustering, regional

flood frequency, L-moments, multivariate regression, diagnostic

measures.

1. Introduction

The main objective of regional flood frequency

analysis (RFFA) is to provide design flood estimates,

which are less uncertain than using local (at-site) flood

frequency analysis (FFA), and which can be applied for

estimation of design floods at places without observa-

tions. The next benefit is the opportunity to introduce

series that are shorter than those required by the local

approach. The design flood estimates can be applied in

designing hydrotechnical constructions: levees, dams,

barrages, canals, floodgates, polders and other structures

such as bridges.

The RFFA method has been widely tested and

applied (CUNNANE 1988; OUARDA et al. 2001; MERZ and

BLÖSCHL 2005). Several types of RFFA are discussed in

the literature (TAYLOR et al. 2011; ISHAK et al. 2011;

AZIZ et al. 2014). In the index flood method (IFM), a

region is interpreted as a class of catchments for which

the quantile functions of design discharge are the same,

apart from a site-specific scaling factor, the index flood

(DALRYMPLE 1960; STEDINGER et al. 1993). The

dimensionless factor, a so-called growth curve, is

common for an entire homogenous region. The index

flood can be estimated, using regression-based tech-

niques with catchment characteristics (CCH) as

explanatory variables, and also extrapolated to

ungauged catchments. Multivariate regression,

rational models, and geomorphoclimatic models are

usually applied in the estimation of an index flood

(KOHNOVÁ et al. 2006; MERZ and BLÖSCHL 2005; NOTO

and LA LOGGIA 2009; BRATH et al. 2001).

Specific geophysical, geomorphological and rainfall

conditions, as well as high population density cause

higher flood risk of the Upper Vistula River basin

(UVB) than of the entire Vistula River basin. The con-

tribution of the surface runoff of the UVB to the total

surface runoff of Poland is very high. The diverse

hydrological conditions cause exceptionally high vari-

ability of maximum discharges in comparison to the rest

of Poland (PUNZET 1978). A number of researchers have

attempted to create hydrological classification systems
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for the UVB. In most cases, boundaries of hydrological

regions match those of physical geographic regions

(DȨBSKI 1961; STACHÝ 1966; SOCZYŃSKA 1977; DOBIJA

1981). DOBIJA (1981), POCIASK-KARTECZKA (1995), also

considered to be the influence of climate factors.

A division of Poland into regions using the IFM

method with the median as the index flood was com-

pleted by STACHÝ and FAL (1986). All regions were

assumed to have Pearson III as the parent distribution

function with parameters estimated using the quantile

method (KACZMAREK and TRYKOZKO 1964). Regions

were defined as sets of catchments with similar quo-

tients
Qp%

Q50%
(p ¼ 1; p ¼ 10). Empirical dimensionless

quantiles were calculated for every region as arithmetic

means of local quantiles. PUNZET (1978), in turn,

introduced several regression formulas for the esti-

mation of design floods for three sub-areas of the UVB:

Carpathian, upland, and plain non-carpathian.

The purpose of this paper is the estimation of design

flood discharge using the regional approach and the IFM.

The first step consisted of the division of the UVB into

pooling groups based on local hydrological characteris-

tics. This delineation was implemented with the use of

cluster analysis, in which similarity is understood as

proximity in a multidimensional space, with morpho-

metric, land use, and meteorological at-site characteristics

as coordinates. In the second step, the previously identi-

fied groups were verified and adjusted; homogeneity

within them was tested using statistical methods, and a

common regional distribution function (RDF) was esti-

mated for each homogenous region. Two measures of

goodness of fit were used to identify the RDF—the HW

measure and a bivariate measure introduced by KJELDSEN

and PROSDOCIMI (2015). Next, design discharges were

estimated using IFM. In the third step, the multivariate

regression function was applied to describe the depen-

dence between the characteristics and the index flood in

each region using the ordinary least squares (OLS) and

generalised least squares (GLS) methods.

2. Study Area and Data

2.1. Study Area

The UVB is located in southern Poland and covers

an area of 50,732 km2, which is 25 % of the total area

of the Vistula basin. The map of physical geograph-

ical regions is shown in Fig. 1. The UVB has a very

diverse hydrological regime (DYNOWSKA and POCIASK-

KARTECZKA 1999) with frequent high-intensity pre-

cipitation, poor permeability, limited water-bearing

capacity of the area parent material in the northern

and southern part, and fairly balanced stream

recharge, decent permeability, good water-bearing

capacity of the parent material, small differences in

relief, few streams in the region, and deep ground-

water in the middle part. Such large differences are

not found in any other region of Poland. PUNZET

(1991) states that the Vistula River in the UVB boasts

the largest water resources of any river in Poland, but

they are unevenly distributed spatially and vary

substantially over time.

2.2. Data

52 catchments located in the UVB are shown on

the map in Fig. 1. Catchment characteristics with the

greatest influence on flood formation in the UVB

were used (BRYNDAL 2011; DOBIJA 1981; WAłȨGA

2009; POCIASK-KARTECZKA 1995). They are displayed

in Table 1. The morphometric characteristics were

analysed using ESRI ArcGIS 10 software. A digital

elevation model (triangulated irregular network) was

the source of maximum and minimum elevation,

mean slope (standard GIS procedure), and the

longitude and latitude of the catchment centroids.

Data were obtained from the Main Geodesy and

Cartographic Documentation Center in Warsaw,

Poland, as part of the Land Parcel Identification

System (LPIS) project. The data were then converted

to raster format with a spatial resolution of 10 m 9 10

m. Catchment area, maximum length, and the total

length of all rivers were obtained from the Map of

Hydrological Division of Poland, scale 1:10,000

(KZGW 2010). Land use data were specified using

the Topographic Objects Database (ISOK 2014) at

the resolution of 1:10,000. Infiltration parameter IN

was obtained from the Institute of Meteorology and

Water Management, National Research Institute,

Poland (Polish acronym: IMGW-PIB). It was calcu-

lated from infiltration characteristics of soils (based

on the soil map of Poland), with correction factors

due to the surface of the bedrock beneath soil cover,
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Figure 1
a Physical geographic regions in the Upper Vistula River basin (KONDRACKI 2014); b studied catchments
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Table 1

Catchment characteristics and discharge data

No River/gauging st. A

(km2)

NL

(km)

EL

(m asl)

SL

(�)
DN

(m)

SHa

(–)

RD

(km-1)

FRb

(%)

U/N

(–)

F/A

(–)

IN

(–)

AMrl

(years)

l̂AM

(m3 s-1)

1 Mała Wisła/Ustroń-Obłaziec 107.3 73.3 708.9 13.1 815 0.48 0.68 73.3 0.08 3.69 0.22 62 52.0

2 Brennica/Górki Wielkie 81.5 63.2 605.3 13.3 743 0.38 0.78 70.8 0.10 3.48 0.21 57 48.1

3 Wapienica/Podkȩpie 50.1 45.1 440.2 6.9 870 0.16 0.9 36.2 0.38 1.00 0.16 58 50.6

4 Korzenica/Miȩdzyrzecze 77.5 43.7 259.9 1.5 68 0.19 0.56 78.1 0.05 4.49 0.57 47 7.0

5 Mleczna/Bieruń Stary 125.2 82.1 268.9 1.7 117 0.46 0.65 47.4 0.22 1.42 0.53 57 10.2

6 Czarna Przemsza/Piwoń 155.0 78.2 351.7 1.7 184 0.23 0.50 43.7 0.11 0.94 0.42 63 18.0

7 Biała Przemsza/Golczowice 216.0 55.7 394.4 3.1 169 0.85 0.26 36.1 0.07 0.63 0.57 57 6.6

8 Ujsoła/Ujsoły 105.6 83.9 828.8 12.9 811 0.69 0.79 72.3 0.03 2.98 0.25 42 33.7

9 Bystra/Kamesznica 49.3 41.4 721.4 11.6 771 0.65 0.84 50.8 0.05 1.14 0.16 41 12.3

10 _Zabniczanka/ _Zabnica 23.3 20.4 879.8 14.5 775 1.24 0.88 73.0 0.02 2.91 0.28 43 15.9

11 _Zylica/Łodygowice 52.5 47.5 700.1 13.0 879 0.24 0.91 57.2 0.17 2.02 0.24 42 16.5

12 Łȩkawka/Łȩkawica 94.6 81.4 569.5 9.9 555 0.77 0.86 58.8 0.07 1.71 0.19 27 31.7

13 Skawica/Skawica Dolna 135.4 117.8 794.7 13.4 1293 0.48 0.87 71.3 0.04 2.88 0.21 53 58.3

14 Stryszawka/Sucha 140.4 120.2 570.4 10.4 783 0.53 0.86 56.7 0.08 1.58 0.19 43 59.0

15 Wieprzówka/Rudze 152.6 135.6 409.5 6.3 687 0.28 0.89 32.4 0.14 0.59 0.22 51 66.0

16 Skawinka/Radziszów 317.7 266.8 330.3 5.8 512 1.04 0.84 34.3 0.12 0.63 0.18 43 92.0

17 Rudawa/Balice 294.4 147.1 347.3 4.2 287 0.40 0.50 28.8 0.13 0.49 0.37 43 16.8

18 Raba/Rabka 2 91.6 76.8 657.0 8.1 510 0.62 0.84 43.4 0.10 0.92 0.22 29 31.0

19 Mszanka/Mszana Dolna 156.3 119.9 685.8 11.7 875 0.75 0.77 49.2 0.05 1.08 0.19 49 76.9

20 Krzczonówka/Krzczonów 93.2 70.9 576.2 10.4 527 0.45 0.76 49.8 0.06 1.12 0.25 43 50.1

21 Stradomka/Stradomka 363.0 299.5 358.4 6.5 798 0.57 0.82 33.4 0.07 0.56 0.15 52 121.4

22 Uszwica/Borzȩcin 260.6 194.5 291.8 4.6 411 0.23 0.75 34.2 0.09 0.59 0.21 58 102.3

23 Nidzica/Dobiesławice 642.4 262.0 262.4 2.9 248 0.23 0.41 10.1 0.05 0.12 0.33 57 9.4

24 Czarny Dunajec/Koniówka 133.0 77.9 1187.2 15.8 1386 0.26 0.58 55.9 0.03 1.52 0.20 43 64.4

25 Wlk. Rogoźnik/Ludźmierz 125.3 78.0 771.5 5.9 576 0.36 0.62 18.4 0.07 0.25 0.14 44 50.4

26 Biały Dunajec/Harenda 58.6 35.6 1160.0 15.8 1301 0.61 0.61 56.1 0.15 2.26 0.23 44 42.5

27 Poroniec/Poronin 78.0 52.2 1140.7 11.6 1514 0.43 0.67 63.4 0.05 2.68 0.16 47 26.7

28 Białka/Trybsz 202.9 85.7 1263.5 17.4 1996 0.26 0.42 20.1 0.06 1.00 0.56 18 94.2

29 Niedziczanka/Niedzica 139.7 61.0 795.6 10.9 756 0.50 0.44 24.4 0.03 0.84 0.50 43 44.7

30 Grajcarek/Szczawnica 73.0 51.1 803.8 14.2 777 0.94 0.70 75.8 0.02 3.34 0.22 48 21.7

31 Ochotnica/Tylmanowa 108.7 74.9 795.6 14.6 901 0.32 0.69 67.5 0.03 2.25 0.21 43 25.4

32 Kamienica/Nowy Sącz 237.6 170.5 594.9 10.6 813 0.32 0.72 58.0 0.09 1.72 0.18 53 137.1

33 Łososina/Jakubkowice 347.0 217.6 538.2 9.6 916 0.30 0.63 42.4 0.09 0.86 0.19 53 157.2

34 Biała Nida/Mniszek 438.0 146.6 257.8 1.3 99 0.36 0.33 36.3 0.05 0.61 0.52 48 13.4

35 Bobrza/Słowik 314.8 149.7 299.4 2.7 237 0.51 0.47 43.8 0.18 1.07 0.48 52 23.9

36 Mierzawa/Michałów 535.7 134.3 268.6 1.8 195 0.30 0.25 17.3 0.09 0.23 0.45 29 6.7

37 Czarna/Raków 307.3 101.3 284.5 2.3 236 0.58 0.46 64.6 0.02 1.96 0.42 44 17.9

38 Wisłoka/Krempna Kotań 165.7 118.0 563.4 8.0 459 0.78 0.71 78.6 0.01 3.80 0.16 11 71.7

39 Sȩkówka/Gorlice 122.6 65.0 516.2 9.3 564 0.33 0.53 70.1 0.04 2.67 0.16 53 72.7

40 Jasiołka/Zboiska 259.7 189.1 524.9 7.6 541 0.28 0.73 67.6 0.02 2.24 0.13 41 74.8

41 Grabinka/Głowaczowa 187.4 93.3 227.6 1.3 76 0.27 0.50 40.8 0.09 0.81 0.47 14 30.6

42 Brzeźnica/Brzenica 484.4 297.5 272.5 3.7 354 0.62 0.61 27.7 0.08 0.43 0.27 63 78.7

43 Koprzywianka/Koprzywnica 519.6 308.5 248.8 2.1 371 0.34 0.59 29.5 0.05 0.45 0.36 63 33.3

44 Wołosaty/Stuposiany 118.9 68.3 858.4 12.7 793 0.37 0.57 85.6 0.01 6.19 0.13 42 72.1

45 Czarna/Polana 89.3 66.8 613.6 7.4 463 0.72 0.75 72.6 0.02 2.86 0.54 42 35.7

46 Solinka/Terka 314.6 256.5 785.7 12.8 878 0.41 0.81 89.4 0.01 9.65 0.12 53 161.9

47 Wiar/Rybotycze 178.5 110.0 461.4 6.7 416 0.57 0.62 74.6 0.01 3.07 0.14 38 70.4

48 Wisłok/Puławy 130.7 102.0 574.8 7.6 456 0.43 0.78 78.7 0.01 3.80 0.13 30 54.9

49 Stobnica/Godowa 336.0 233.1 336.2 5.8 370 0.26 0.69 42.8 0.06 0.83 0.21 33 80.8

50 Mleczka/Gorliczyna 428.7 271.6 253.0 3.3 266 0.51 0.63 16.6 0.07 0.22 0.33 61 62.4

51 Trzebośnica/Sarzyna 254.8 135.6 211.5 1.6 108 0.33 0.53 39.9 0.07 0.75 0.45 53 21.7

52 Biała Łada/Biłgoraj 225.0 80.2 258.3 2.3 148 0.23 0.35 38.6 0.04 0.66 0.37 42 7.7

Nr number of catchment, A area, NL network length, EL mean elevation, SL mean slope, DN height difference, SH shape coefficient, RD river

network density, FR forest ratio, F/A ratio of forested area to arable land area, U/N ratio of urbanised (?waters) to non-urbanised area, IN

infiltration parameter, AMrl annual maxima record length, l̂AM mean of the AM over the whole period of observation
a SH ¼ A

L2
max

where Lmax (km) is the maximum distance from the river mouth
b Bushes were included in the forest areas
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land use, and groundwater table depth (SETMAJER

et al. 1971). The infiltration is pictured in Fig. 2. It

should be noted that for the estimation of design

discharge using the Punzet formulas (PUNZET 1978),

the method developed for the UVB for catchments

A� 50 km2, the parameter of impermeability Np,

which can be obtained from IN using the formula

Np ¼ ð1 � INÞ � 100, is used (PUNZET 1978; SETMA-

JER et al. 1971).

The estimates of the annual maxima of daily

rainfall totals with 50% probability of exceedance,

P50%, were obtained from IMGW-PIB. Data were

derived from maximum daily rainfall totals for

periods of time of at least 50 years using the fit to

the Gumbel distribution, the standard procedure at

IMGW-PIB. The spatial distribution of P50% can be

seen in Fig. 3. Annual maxima (AM) data were also

obtained from IMGW-PIB and were screened prior to

analysis. More than a dozen gaps were noted due to

failures of measuring devices or due to flooding.

When a gap was observed in a flood year, it was

omitted (HOSKING and WALLIS 1997). A total of 2367

station-years’ discharge data were used in the study.

3. Methods

Since the L-moments were introduced by GREEN-

WOOD et al. (1979), they have been considered as a

practical tool in estimating the parameters of proba-

bility distribution functions of the hydrological series

(VOGEL and FENNESSEY 2001; LU and STEDINGER 1992;

WANG 1997; LANDWEHR et al. 1979; STRUPCZEWSKI

et al. 2012; KOCHANEK et al. 2012, 2008). The utility

of the L-moment estimates is expressed through their

higher robustness in terms of outliers and greater

Figure 2
Spatial distribution of the infiltration parameter (SETMAJER et al. 1971 with minor changes)
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effectiveness rather than of conventional moments in

the case of small samples. In the HW methodology,

proposed in the 1990s (HOSKING and WALLIS 1997),

the earlier results were utilised and complemented to

yield a more complex tool, which has been applied to

RFFA ever since and resulted in its wide application

around the world (BURN and GOEL 2000; KOHNOVÁ

et al. 2006; ADAMOWSKI 2000; YANG et al. 2010;

MADSEN et al. 1998; GAÁL et al. 2009; CASTELLARIN

et al. 2012; SALINAS et al. 2014a, b).

In geophysical research, the term region refers

to a group of contiguous areas. However, catch-

ments which are hydrologically similar (in the

sense of the common q) do not have to be

located near each other. To overcome this con-

fusion, the expression pooling group (PG) was

introduced in the FLOOD ESTIMATION HANDBOOK

(1999). This term is used by many researchers

(CASTELLARIN et al. 2001; KOHNOVÁ et al. 2006;

REED et al. 1999).

In the IFM, the quantile function at site i; i ¼
1; . . .;N is given as (STEDINGER et al. 1993):

QiðFÞ ¼ liqðFÞ; ð1Þ

where N is the number of sites in a region, F is a

distribution function, li is the index flood, and q(F) is

the regional, dimensionless quantile of the non-ex-

ceedance probability F. It is common to every site in

a PG and the term hydrological similarity of catch-

ments refers just to q. The index flood is a location

parameter, which is assumed as the mean value of

AM in this paper.

The return period T of a quantile Q is the inverse

of the probability that discharge X will be at least Q

Figure 3
Spatial distribution of rainfall
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in any year, TðQÞ ¼ 1
PðX �QÞ, i.e. when Q has the T-

year return period, then discharge X not less than

Q occurs once per T years, on average. Hence,

average frequencies of flood discharge can be derived

using Eq. (1). The required size of each pooling

group is advised to be at least 5T (JAKOB et al. 1999;

CASTELLARIN et al. 2001; MERZ and BLÖSCHL 2005) or

3T (GAÁL et al. 2013) station-years where T is the

target return period.

3.1. Cluster Analysis

The agglomerative Ward method (WARD 1963)

and the deglomerative k-means method (JAIN and

DUBES 1988; KAUFMAN and ROUSSEEUW 2005) were

used, with Euclidean measure as a distance, wherein

the former supplied the initial grouping of catchments

for the latter. To avoid the multicollinearity of data,

only coordinates with a low value of Pearson

correlation coefficient r̂ were considered. If data

were spatially not autocorrelated then, using t test for

significance of correlation coefficient for two samples

of 52 elements, r̂ not greater than 0.25 would be

insignificant. But, due to the presence of spatial

autocorrelation which reduced the effective sample

size, r̂ was enhanced to 0.5. The coordinates were not

discharge statistics and were not directly related to

each other through a formula, as for example

RD ¼ NL
A

. Cluster analysis helped to identify which

CCH are responsible to the greatest degree for the

demarcation of PG. However, it was merely an initial

form of division. Thus, some adjustments were made

by moving catchments from one group to another or

combining groups to achieve homogeneity (HOSKING

and WALLIS 1997; KOHNOVÁ et al. 2006).

3.2. Determination of Pooling Groups

The HW L-moment-based methodology (HOSKING

and WALLIS 1997) was used to (1) check for homo-

geneity within clusters, (2) adjust catchment grouping

in case of non-homogeneity, (3) select an appropriate

RDF, and (4) estimate flood quantiles. The minimum

number of catchments in every pooling group was

seven. For each group of interest, the regional L-mo-

ment ratios: t, the average coefficient of L-variation

(LCV) and t3; t4, the average L-skewness, and

L-kurtosis were calculated. Then, three measures of

dispersion V1, V2, V3 were derived, namely the

weighted standard deviation of the LCV, the weighted

average distance of both the LCV and L-skewness from

their regional counterparts, and the weighted average

distance of both the LCV and L-kurtosis from their

regional counterparts, respectively (see HOSKING and

WALLIS 1997, formulas (4.4), (4.6), (4.7)).

It should be noted that in the determination of the

final number of pooling groups, expert knowledge as

subjective judgment should also be employed, which

refers to previous results, known from literature, and

local knowledge from the study area. The high

diversity of hydrological conditions in the UVB was

considered. The number of groups is a trade-off

between small groups which provide small bias in

flood quantile estimation and large groups which are

recommended to meet at least the 3T requirement.

3.2.1 Heterogeneity Measures Based on L-Moments

To assess Vj, as they would be expected in a homoge-

nous PG, a kappa distribution was fitted by setting

equally the regional average L-moment ratios 1; t; t3; t4

to the theoretical L-moment ratios for a potentially

homogenous group. Then, using simulations, the

heterogeneity measures Hj; j ¼ 1; 2; 3 were evaluated

(HOSKING and WALLIS 1997, Section 4.3.3, formula

(4.5)). The group was homogenous if Hj\1, possibly

heterogenous if 1�Hj\2, and definitely heteroge-

nous if Hj � 2. Among these three Hjs, the statistic H1

possesses the largest discriminatory power between the

homogenous and heterogenous regions (HOSKING and

WALLIS 1997; KOHNOVÁ et al. 2006).

3.2.2 The Discordancy Measure

The discordancy measure Di is designed to check if

the i-th catchment is discordant from a group as a

whole (HOSKING and WALLIS 1997, formula (3.3)). Di

represents a generalisation of the squared Rosner’s

test statistic for outliers (MIZIŃSKI et al. 2013;

MCCUEN 2003). Critical values for Di increase from

1.33 for N ¼ 5 to 3 for N � 15. If a catchment is

flagged as being discordant, deeper analysis of

discharge data is needed to identify the possible

reason of that fact and to make a decision on whether
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or not the catchment should be removed from further

considerations.

3.3. Choice of a Regional Frequency Distribution

For each candidate distribution, the generalised

logistic (GLO), generalised extreme value (GEV),

lognormal (GNO), generalised Pareto (GPA) and

Pearson III (PE3), the parameters were estimated by

fitting the theoretical ratios 1, LCV, s3 to their regional

counterparts 1; t; t3. Then, the theoretical L-kurtosis

sdist
4 was derived for each candidate distribution. Next,

a four-parameter kappa distribution was fitted to the

regional ratios 1; t; t3; t4, and Nsim ¼ 500 simulations

of N catchments were executed, with this kappa

distribution at each catchment. The bias and standard

deviation of the regional L-moment ratios were equal

to Br ¼ 1
Nsim

PNsim

m¼1ðtrðmÞ � trÞ and rr ¼ ð 1
Nsim�1

ð
PNsim

m¼1

ðtrðmÞ � trÞ2 � NsimB2
r ÞÞ

1
2, where trðmÞ was the regional

L-moment ratio in the m-th simulation (r ¼ 3; 4). The

L-moment ratio diagram was a helpful tool for

identification of the RDF by depicting the location of

regional L-moment ratios among theoretical lines

representing the relationships between s3 and s4.

3.3.1 The HW Method

The final choice of the RDF was based on zdist, the

standard HW measure in which theoretical sdist
4 and

bias-corrected regional kurtosis t4 � B4 are compared

(HOSKING and WALLIS 1997, formula (5.6)). The ac-

ceptable distribution had to fulfill the condition

jzdistj\1:64 for 90% confidence level. The best fit

was showed by the value zdist closest to zero.

3.3.2 The Kjeldsen and Prosdocimi Method

The measure is the minimum value of the Maha-

lanobis distance between the two vectors: bias-

corrected regional L-moment ratios, tB ¼
ðt3 � B3; t4 � B4Þ and their theoretical counterparts

of a possible candidate distribution,

sdist ¼ ðsdist
3 ; sdist

4 Þ. The formula reads

Ddist ¼ ðsdist � tBÞTX�1ðsdist � tBÞ, where X is a

covariance matrix between regional L-skewness and

L-kurtosis (KJELDSEN and PROSDOCIMI 2015). An RDF

is useful if its theoretical line on the L-moment ratio

diagram is intersected by the confidence ellipse.

Assuming a bivariate normality of tB, Ddist should

asymptotically follow a Chi-square distribution with

2 df, if observations are independent and a region is

homogenous. Thus, if Ddist\4:605, then an RDF is

accepted with 90 % confidence level. The lowest

value shows the best fit. KJELDSEN and PROSDOCIMI

(2015) certified a high performance of the Ddist

measure, namely its weak sensitivity to correlation

between the AM series and more frequent selection of

the true distribution by Ddist than by zdist.

3.4. Estimation of Flood Quantiles, Assessment

of Uncertainty, and Comparison Between

the Regional and Local Approach

Assuming that l1ðiÞ and q̂ðFÞ are estimates of li

and of q(F), respectively, the at-site quantile

Q̂iðFÞ; i ¼ 1; :::;N of the given non-exceedance prob-

ability F was estimated from Eq. (1) as:

Q̂iðFÞ ¼ l1ðiÞ � q̂ðFÞ: ð2Þ

The measure of uncertainty of Q̂iðFÞ was the regional

average relative root mean square error, evaluated via

the Monte Carlo simulations (HOSKING and WALLIS

(1997), Section 6.4):

RMSER ¼ 1

N

XN

i¼1

RMSEi; ð3Þ

where RMSEi ¼
�

1
M

PM
m¼1ð

Q̂im�Q̂i

Q̂i

Þ2
�1

2

, and Q̂imðFÞ is

calculated from Eq. (2) in the m-th simulation. The

relative discordancy between Q̂i and Q̂loc
i quantiles,

estimated using the regional and local approach, was

measured using the mean absolute relative error:

MAER ¼ 1

N

X

i¼1::N

jQ̂i � Q̂loc
i j

Q̂loc
i

: ð4Þ

3.5. Relationship Between Index Flood

and Catchment Characteristics

The relation between catchment variation of the

index flood was modelled using a multivariate

regression model (WIESBERG 1985). The power–law

relationship was assumed between the mean

A. Rutkowska et al. Pure Appl. Geophys.

250



Reprinted from the journal

discharge li and catchment characteristics Ai1; :::;AiJ

as li ¼ Ai0 � A
b1

i1 � ::: � A
bJ

iJ � exi for i ¼ 1; ::;N which is

equivalent to:

Y ¼ Xbþ x; ð5Þ

where Y ¼ ðln l1; . . .; ln lNÞ
T
, x ¼ ðx1; :::;xNÞT

,

X ¼

1 ln A11

..

. ..
.

1 ln AN1

2

6
6
4

3

7
7
5, x is the residual of the model

and b ¼ ðb0; :::; bJÞ and b0 ¼ ln Ai0 are parameters to

be estimated.

In practice, the response variable is never fully

explained due to complexity of meteorological,

geomorphological, and land use processes, and due

to multicollinearity that appears among variables

affecting the formation of runoff. Thus, theoretical

assumptions for use of (5) are never ideally fulfilled.

Various regression methods are used to relate CCH to

streamflow characteristics, e.g. ordinary, generalised,

and weighted least squares (STEDINGER and TASKER

1985; STEDINGER et al. 1993; KROLL and STEDINGER

1998; KJELDSEN and JONES 2009; TASKER and STE-

DINGER 1989). The models are useful when estimating

the flow characteristics at ungauged sites. It should be

stressed that the regression formula can be applicable

at ungauged sites if CCH do not fall outside the range

of values used to develop the equations.

3.5.1 OLS

Assumptions for the method are: EðxjXÞ ¼ 0,

rankðXÞ ¼ J, as well as normality, homoscedasticity,

and lack of autocorrelation of x. The backward

stepwise procedure supported by the AIC criterion

(AKAIKE 1974), which favours the smallest value of

the log-likehood function, adjusted for the number of

parameters, was applied. The final parameter and

index flood estimates were b̂0; . . .; b̂J and

l̂i ¼ eb̂0 � A
b̂1

i1 � � � � � A
b̂J

iJ . The procedure enabled the

selection of variables from among the CCH listed in

Table 1 for every PG. It should be stressed that the

final choice of explanatory variables may differ from

the choice of CCH responsible to the greatest degree

for formation of PG.

3.5.2 GLS

The GLS regression method incorporates the lengths

of the data series, differences in the variance

between sites, and cross-correlations between sta-

tions. Heteroscedasticity and cross-correlation of

residuals are assumed. In this model x ¼ dþ g,

where the modeling error d and the sampling error g
are mutually independent. The former represents the

inability of the regression model to fully reflect the

true value of the index flood and the latter is an

index flood estimation error (STEDINGER and TASKER

1985; KJELDSEN and JONES 2009; MEDIERO and

KJELDSEN 2014; GRIFFIS and STEDINGER 2007). The

covariance matrix of the total error is

K ¼ r2
d1N þ R, where r2

d1N is the model error

matrix and R is the sampling error covariance

matrix which may have unequal diagonal elements

and some of the off-diagonal elements may be

nonzero. If K is known, then the solution of (5)

reads:

b̂GLS ¼ ðXTK�1XÞ�1 � XTK�1Y; ð6Þ

which is the unbiased estimator of b with the mini-

mum variance (JOHNSTON 1984). If K is unknown,

then its estimator K̂ ¼ r̂2
d1N þ R̂ is used. The residual

modelling error variance r̂2
d and the solution of (5)

can be derived by solving (6) and the equation

ðY� Xb̂GLSÞT K̂�1ðY� Xb̂GLSÞ ¼ N � J � 1. The

estimator R̂ can be obtained from: R̂ij ¼ rirj
nij

ninj
qij

for i 6¼ j, and R̂ii ¼ r2
i

ni
.

R̂ij ¼
r2

i

ni
; i ¼ j;

rirj
nij

ninj
qij; i 6¼ j

8
<

:
ð7Þ

where r2
i is the variance of the log-transformed dis-

charge data in the ith catchment, nij is the number of

overlapping years between the ith and jth series, and qij

is the inter-site correlation between the sample mean

values, which was assumed to be the correlation

coefficient between the overlapping series. However,

R̂ contains raw estimates; thus it often results in a K̂ that

cannot be inverted. Therefore, to adjust R̂, the fol-

lowing two nonlinear regression models were

considered for the off-diagonal elements:
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qTS
ij ¼ H

dij
adijþ1; qKJ

ij ¼ /1e�/2dij þ ð1 � /1Þe�/3dij ;

ð8Þ

where dij is the distance between the catchment

centroids. The former formula above was proposed

by TASKER and STEDINGER (1989) (TS fit leading to

matrix R̂TS) and the latter by KJELDSEN and JONES

(2009) (KJ fit leading to matrix R̂KJ). The adjusted

diagonal elements of R̂ were calculated as 1
Nni

PN
i¼1 r

2
i

(HADDAD et al. 2010).

3.5.3 Assessment and Comparison of the OLS

and GLS Regression

The normality of residuals, derived as differences

between the logarithms of the observed mean annual

discharge, lnðli;obsÞ and lnðl̂iÞ (Eq. 5) was tested

using the Shapiro–Wilk (SW) test (SHAPIRO and WILK

1965). The variance inflation factor tested if at least

one of the explanatory variables is highly correlated

with others, VIFj ¼ 1
1�R2

j

, where R2
j is the coefficient

of determination obtained from regressing the jth

variable against all others. The model becomes

questionable if VIF[ 5 (MONTGOMERY and PECK

1992) and unreliable if VIF[ 10 (MERZ and BLÖSCHL

2005); otherwise, the model is valid. The significance

for spatial autocorrelation was tested using the Moran

I statistic (MORAN 1950) with weights in the form of

inverses of Euclidean distances between catchment

centroids. The coefficient of determination R2
OLS ¼

1 �
PN

i¼1
ðli;obs�l̂iÞ2

PN

i¼1
ðli;obs�li;obsÞ2

was used to evaluate the perfor-

mance of the OLS model. Additionally, the leave-

one-out jackknife bootstrapping method (EFRON 1993;

SAHINLER and TOPUZ 2011; CASTELLARIN et al. 2004)

was used. To assess the uncertainty, each i-th

catchment, in turn, was dropped from a homogenous

PG, and the parameter estimates b̂ij; j ¼ 1; . . .; J were

derived for smaller samples. The parameter and index

flood estimates were produced, b̂j�k;j ¼ 1
N

PN
i¼1 b̂ij,

l̂j�k ¼ eb̂0 � A
b̂1

1 � . . . � A
b̂J

J , where the subscript ‘‘j � k00

refers to the jackknife method. Finally, the root mean

square error and mean absolute error were calculated,

respectively, as RMSEj�k ¼ ð1
N

PN
i¼1ð

li;obs�l̂i;j�k

li;obs
Þ2Þ

1
2,

MAEj�k ¼ 1
N

PN
i¼1

jli;obs�li;j�k j
li;obs

:

To assess the performance of the GLS regression

model, the pseudo coefficient of determination was

used, R2

GLS ¼ 1 � r2
dðJÞ

r2
dð0Þ

(GRIFFIS and STEDINGER 2007),

where r2
dðJÞ and r2

dð0Þ refer to a model with J and with

0 explanatory variables, respectively. The average

variance of prediction AVP measured how well the

model predicts the logarithm of the mean discharge, on

average, AVP ¼ r2
d þ 1

N

PN
i¼1 xiðXT K̂�1XÞ�1

xT
i . The

mean standard error of prediction SEP (in %) for the

true index flood (rather than for the logarithmised

value) was computed as SEP ¼ 100ðeAVP � 1Þ
1
2 (GRIF-

FIS and STEDINGER 2007).

The question whether a full GLS model is needed

or if OLS is sufficient was addressed using the error

variance ratio EVR, the relative magnitude of the

average sampling variance to the model error vari-

ance, EVR ¼ trR̂
N�r2

d
. GRIFFIS and STEDINGER (2007)

recommend the use of GLS rather than OLS if

EVR[ 0:2.

All calculations were completed in R programme

(R 2013; HOSKING 2013; VIGLIONE 2014; CHASALOW

2012).

4. Results

4.1. Identification of Pooling Groups

Using data from Table 1, several sets of morpho-

metric and land use CCH were created. The sets were

complemented with rainfall P50%, the major factor

affecting the flood generating mechanism, and with

longitude and latitude (LO, LA). The inclusion of LO

and LA was necessary because the index flood is to

be regressed against CCH in an area of large

morphometric diversity, to obtain geographically

contiguous regions (ROSSI and VILLANI 1994). Flood

regionalisation methods which incorporate both

catchment attributes and spatial nearness have high

predictive performance (MERZ and BLÖSCHL 2005).

The following sets of CCH were designed for further

studies: U1 ¼ fA; SH; IN;P50%;LO; LAg, U2 ¼ fSL;

SH;RD;P50%; LO;LAg,U3 ¼ fNL; SH; IN;P50%;

LO;LAg, U4 ¼ fEL; SH;RD;P50%; LO;LAg, U5 ¼
fEL; SH;RD; IN;P50%;LO;LAg, U6 ¼ fEL; SH;

RD; FR; IN;P50%;LO;LAg, U7 ¼ fEL; SH;RD;

F=A; IN;P50%;LO;LAg, U8 ¼ fEL; SH;RD;U=N;

IN;P50%;LO;LAg.

Subsequently, cluster analysis was used. First, the

number of clusters was stated to be 15 and afterwards
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it was decreased by 1–3. For each group of

catchments, the measures H1;H2;H3;Di were calcu-

lated. The smallest homogenous clusters were

identified and their tendency to expand into larger

clusters was observed. Sometimes, a cluster was

observed to be homogenous in itself but would turn

out not to be homogenous following the addition of

another catchment. The number of homogenous

clusters varied when various Ui were considered,

which proved that the power of formation of

homogenous regions by sets of characteristics Ui

was different. The set U2 was observed to provide the

highest number of homogenous clusters among all

Ui; i ¼ 1; . . .; 8. Therefore, the pooling process from

that point on was based on clusters identified by CCH

from U2. It should be stressed that even for U2 only a

few clusters turned out to be homogenous. The

proportion of homogenous clusters varied from 1
4

to 1
3

when the number of clusters changed from 15 to 3.

Thus, U2 could be treated as a set of characteristics

with the greatest effect on q.

The analysis also revealed that, using U2, northern

clusters cover larger areas than southern clusters.

Additionally, one northern cluster was homogenous,

while the others were smaller and rarely homoge-

nous. Therefore, a refinement procedure was

introduced in which homogenous clusters were

combined and/or catchments were attached to

homogenous clusters from adjacent areas. This led

to many different possibilities of dividing the study

area into homogenous PG. Finally, the division that

provided the smallest sum of RMSE values (Eq. 3)

for quantiles of T ¼ 2; 10 and 100 years was selected.

An optimisation algorithm written in R code had a

supporting role in this step, in which many catchment

combinations were considered and their homogeneity

was tested.

Three pooling groups were identified as a first

variant (variant I) of regionalisation: PG1, PG2, and

PG3. It should be stressed that a change of the

optimisation condition may result in yet another

division. This concerns mainly catchments located

along the boundaries, e.g. the inclusion of catchments

20, 21, 22 in PG1 instead of PG2 did not undermine

homogeneity, but did cause a slight increase of the

sum of RMSE of quantiles of T ¼ 2; 10; 100 years.

Six catchments numbered 4, 46, 44, 48, 17, and 25

were not assigned to any group, as they had caused

heterogeneity after joining a pooling group. The

reason for the heterogeneity remains mostly

unknown. The second variant (variant II) was intro-

duced by the division of the PG1 into two subregions.

This step was taken due to very high diversification

of CCH which may reduce the reliability of the

regression models. Catchments with the highest

elevation and rainfall, located in the west of the

study area, were assigned to PG1A, while the eastern

catchments were assigned to PG1B. Figure 4 shows

the division of the study area in the form of variant I

and variant II. The key advantage of introducing of

variant II is the opportunity to reflect the wide array

of runoff formation processes in PG1. The key

disadvantage is the inability to estimate quantiles for

very long T in small PG where the condition 3T may

not be fulfilled.

4.2. Statistical Characterisation of Pooling Groups

The results of the statistical analysis are shown in

Table 2. The test statistics H1;H2;H3 were less than

1, which confirmed homogeneity within all groups in

both variants. The PG3 consisted of far fewer

catchments than PG1 and PG2. The discordancy

measures were less than critical values everywhere,

apart from the catchment 9, both in PG1 and in

PG1A. A possible reason for this is a lack of data

from 2007, when a high AM discharge was observed

in adjacent catchments 1, 8, and 10, positioned

approximately as the quantile of order 0.84 in the

AM sample which may lead to high t3 and t4 values.

As no other reason was identified, the catchment was

not excluded.

4.3. Identification of RDF

The following zdist values and RDF identified via

this measure were obtained for PG1, PG1A, PG1B,

PG2, PG3: -0.39 (GPA), 0.18 (GNO), -0.03 (PE3),

0.70 (GPA), 0.20 (GNO); however, GNO and PE3

were also accepted for PG1 and PG2, GEV and GPA

were accepted for PG1A, GPA for PG1B, and GEV

and PE3 were also accepted for PG3. The following

Ddist values were obtained for PG1, PG1A, PG1B,

PG2, PG3: 0.016 (GPA), 0.017 (GNO), 0.0046 (PE3),
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0.032 (GPA), 0.010 (GNO). The two sets of results

fully correspond. The final choice is shown in

Table 2. The asymptotic condition Ddist\4:605 was

fulfilled by all distributions in all pooling groups;

therefore, it had a weak discriminatory power. The

possible reason was a sample size that was too small.

Negative values of shape parameters suggest that

RDFs are heavy tailed, which indicates the possible

Figure 4
Pooling groups with regard to similarity in factor q (Eq. 1)

Table 2

Results of regionalisation

PG N t t3 t4 H1 H2 H3 RD RDF Loc. Scale Shape

1 19 0.40 0.39 0.21 0.97 0.73 0.62 0.10–3.49a GPA 0.25 0.66 -0.12

1A 11 0.40 0.40 0.23 0.88 0.93 0.79 0.14–2.63a GNO 0.73 0.52 -0.86

1B 8 0.40 0.36 0.17 0.56 0.04 -0.16 0.49–1.98 PE3 1.00 0.81 2.17

2 19 0.43 0.36 0.20 0.21 0.82 0.53 0.23–2.02 GPA 0.16 0.79 -0.06

3 8 0.36 0.27 0.18 0.47 -0.74 -0.14 0.37–1.29 GNO 0.84 0.52 -0.56

PG pooling group, N number of sites, RD range of D, loc., scale, shape, parameters of RDF
a The discordancy of the Bystra catchment (nr 9) was manifested by D1 ¼ 3:49 for PG1 and D1A ¼ 2:63 for PG1A
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existence of very large discharge. Figure 5 shows an

L-moment ratio diagram where the pairs ðt3; t4Þ are

located in the L-skewness L-kurtosis space. An ideal

fit of the PG1 and PG3 averages to the GPA and

GNO, as well as a close location of PG2 to GPA is

observed. The sample L-moment ratios of PG1 and

PG2 are scattered among each other and no evident

division in disjoint samples is visible, which reflects

the high dispersion and diversity of every group. The

group PG3 is slightly separated from PG1 and PG2

with L-skewness not exceeding 0.32. The catchment

9 from PG1 has coordinates t3 ¼ 0:44; t4 ¼ 0:36 and

is positioned somewhat above the main data point

cloud, which depicts the higher value of its discor-

dancy measure.

4.4. Characterisation of Pooling Groups

The features of each pooling group are shown in

Table 3. Substantial differences in topographic, land

use, and rainfall characteristics between pooling

groups in variant I are observed. Catchments of

PG1 are characterised by the smallest areas and by

the highest EL, DN, SL, FR, P50% among the three

groups, unlike those of PG3. The catchments of PG1

are more elongated than those of PG2, PG3, which is

expressed in larger SH. The RD and IN are similar in

PG1 and PG2, while higher IN and lower RD are

observed in PG3. The highest rainfall P50% is

observed in PG1, moderate in PG2, and the lowest

in PG3. In variant II, the division of PG1 into two

subgroups enabled the distinction of PG1A, the group

with the highest EL, DN, SL, and P50%.

The three groups of catchments differ in terms of

physical geography. The PG1 group consists of high

and middle mountain catchments found in the

southern Carpathians (Tatra Mountains, part of the

Beskidy Zachodnie, Beskidy Środkowe, and part of

the the Bieszczady Mountains). The PG2 consists of

several lower ranges of the northern Carpathians, the

foothills, and the western part of the highlands. The

PG3 consists, generally, of catchments in the middle

and eastern part of the highlands (see Fig. 1).

Figure 5
The L-moment ratio diagram. The continuous lines depict the

theoretical distribution functions, and the graph’s symbols are local

or regional (bold symbols) L-moment ratios

Table 3

Key statistics of CCH for PG1, PG1A, PG1B, PG2, and PG3

PG N A EL DN SL SH RD FR IN P50%

1 19 23.3–259.7 801.9 911.6 12.0 0.56 0.70 60.2 0.25 50.3

0.29/0.14 0.45/0.27 0.25/0.19 0.46/0.37 0.19/0.10 0.28/0.14 0.52/0.17 0.1/0.1

1A 11 23.3–202.9 934.9 1108.6 13.8 0.59 0.68 57.9 0.27 51.4

0.22/0.21 0.38/0.35 0.15/0.11 0.48/0.21 0.23/0.16 0.34/0.15 0.49/0.14 0.11/0.09

1B 8 89.3–259.7 618.9 640.8 9.6 0.51 0.72 63.4 0.22 48.8

0.15/0.09 0.29/0.30 0.26/0.17 0.43/0.43 0.12/0.03 0.19/0.11 0.59/0.14 0.09/0.06

2 19 50.1–484.4 411.3 503.0 6.5 0.46 0.71 43.8 0.27 46.4

0.36/0.34 0.56/0.44 0.57/0.49 0.50/0.33 0.24/0.15 0.33/0.23 0.49/0.26 0.18/0.14

3 8 155.0–642.4 278.9 214.8 2.1 0.35 0.42 35.5 0.42 36.6

0.12/0.06 0.38/0.15 0.25/0.16 0.38/0.26 0.26/0.15 0.48/0.23 0.15/0.11 0.04/0.01

For every characteristic, three values are shown: the mean value and (below) cv/cd where cv is the coefficient of variation and cd ¼ d0:75�d0:25

2d0:5
,

in which dp is the quantile of order p. Abbreviations and units according to Table 1. P50% is the estimate of the annual maxima of daily rainfall

totals with 50 % probability of exceedance
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4.5. Estimation of Flood Quantiles

With the use of the 3T rule, only quantiles of

return periods not longer than T ¼ 250 for PG1, T ¼
300 for PG2, T ¼ 130 for PG3, T ¼ 160 for PG1A,

and T ¼ 100 for PG1B, can be estimated. In Table 4,

the quantiles q̂ of the RDFs are shown that can be

used for calculation of the design discharge from

Eq. (2). In Table 5 the quantiles Q̂ið0:99Þ (Eq. 2) are

presented for both variants. A difference of several

percentage points in discharge is observed between

the estimates for variant I and variant II.

The comparison between the 100-year discharge

obtained for regional and local estimation resulted in

the following errors (Eq. 4): MAEPG1 ¼ 19:7%,

MAEPG2 ¼ 16:3%, MAEPG3 ¼ 11:7%, MAEPG1A ¼
20:4%, and MAEPG1B ¼ 14:0%. Figure 6 shows the

regional and local 100-year flood estimates for PG1

(variant I), and PG1A and PG1B (variant II). A high

compatibility between both estimators is observed.

Note that all red dots are above and all blue dots are

below the green dots. Hence, the division of the PG1

caused an increase in regional estimates for catch-

ments from PG1A and a decrease for catchments

from PG1B.

The quality of the estimation (Eq. 3) of regional

quantiles was high. The RMSE ranged from 2.9 %

(PG3) to 7.1 % (PG1A) for T ¼ 2, from 4.1 % (PG3)

to 7.7 % (PG1A) for T ¼ 10, and from 8.3 % (PG3)

to 14.0 % (PG1A) for T ¼ 100.

4.6. Relationships Between an Index Flood

and Catchment Characteristics

The following CCH were selected for regression

formulas: A;P50% (PG1), A;P50%; IN (PG1A),

A;P50%; IN;EL (PG2). The lack of high collinearity

among variables was reflected in VIF values less than

5 (see Table 6). Very low VIF values were obtained

for PG1 and PG1A, and higher values for PG2.

Table 4

Quantile estimates q̂ of the RDF for various return periods

PG Return period T (years)

2 10 50 100 200

1 0.73 2.00 3.53 4.28 5.09

1A 0.73 1.94 3.65 4.58 5.65a

1B 0.74 2.04 3.40 3.99 4.58a

2 0.72 2.11 3.65 4.36 5.10

3 0.84 1.82 2.85 3.36 3.85a

a The rule 3T not fulfilled

Table 5

Flood quantiles Q̂ (m3 s-1) of return period T ¼ 100 years estimated using Eq. (2)

River PG1 PG1A or PG1B River PG2 River PG3

1 Mała Wisła 222.5 238.2 2 Brennica 210.0 6 Czarna Przemsza 60.1

8 Ujsoła 144.1 154.2 3 Wapienica 220.7 23 Nidzica 31.5

9 Bystra 52.8 56.5 5 Mleczna 44.6 34 Biała Nida 44.7

10 _Zabniczanka 68.2 73.0 7 Biała Przemsza 28.6 35 Bobrza 79.9

13 Skawica 249.3 266.9 11 _Zylica 72.0 36 Mierzawa 22.4

18 Raba 132.8 123.7 12 Łȩkawka 138.1 37 Czarna 1 57.2

19 Mszanka 329.1 306.6 14 Stryszawka 257.2 43 Koprzywianka 111.0

24 Czarny Dunajec 275.4 294.8 15 Wieprzówka 287.8 52 Biała Łada 25.8

26 Biały Dunajec 182.1 194.9 16 Skawinka 401.2

27 Poroniec 114.2 122.2 20 Krzczonówka 218.3

28 Białka 403.3 431.7 21 Stradomka 529.6

29 Niedziczanka 191.2 204.7 22 Uszwica 446.4

30 Grajcarek 92.9 99.4 33 Łososina 685.5

31 Ochotnica 108.7 101.2 41 Grabinka 133.6

32 Kamienica 586.7 546.5 42 Brzeźnica 343.2

38 Wisłoka 307.1 286.0 47 Wiar 307.2

39 Sȩkówka 311.1 289.8 49 Stobnica 352.4

40 Jasiołka 320.3 298.4 50 Mleczka 272.3

45 Czarna 2 152.8 142.3 51 Trzebośnica 94.5
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For OLS, the RMSEj�k (MAEj�k) varied from

22.5 to 45.1 % (18.7–36.3 %), while the lower values

were obtained for PG1 and PG1A, and higher for

PG2. Therefore, higher predictive performance was

represented by the OLS model for PG1 and PG1A,

and slightly lower by the OLS model for PG2.

As many as six variables were selected both for

PG1B and PG3 for the final regression scheme, A, EL,

SL, FR, IN, P50%. Such a large number of covariates in

comparison with the very small sample size caused

immense uncertainty, reaching an RMSEj�k (MAEj�k)

of over 700 % (over 450 %) for PG1B, and of over 250

% (200 %) for PG3. Due to low predictive perfor-

mance, the multivariate regression model is not

applicable for PG1B and PG3.

The GLS model was applied to PG1, PG2, and

PG1A. The spatial structure of the inter-site correla-

tion in PG1, PG2, and the sample estimates (Eq. 8)

are depicted in Fig. 7. A high compatibility between

sample correlations and KJ and TS estimates is

observed for PG2. However, large sample fluctua-

tions and no clear dependence between correlations

and distance is visible in PG1; thus the fit is poorer in

this region. The spatial structure of the inter-site

correlation is also poor in PG1A, which is similar to

PG1.

The diagnostic measures AVP, EVR, SEP were

compared for the GLS models based on matrices R̂,

R̂TS, R̂KJ of raw and adjusted estimates (8). The GLS

model which had the lowest SEP value was finally

Figure 6
Comparison between 100-year flood estimates obtained via the regional and local approach for pooling groups PG1, PG1A, and PG1B. The y-

coordinates of the green, red, and blue dots are regional estimates from PG1, PG1A, and PG1B, respectively, and x-coordinates are local

estimates. The diagonal line represents ideal compatibility. The catchments are numbered according to Fig. 1 and Table 1

Table 6

Results of the validation and assessment of uncertainty of the OLS/GLS regression scheme

PG VIF pSW
OLS=GLS R2

OLS=GLS IOLS=GLS AVPOLS=GLS SEPOLS=GLS EVR

1 1.10 0.50 0.87/0.89 -0.15/-0.13 0.06/0.06 25.64/24.52 0.27

1A 1.25 0.55 0.94/0.95 -0.04/-0.03 0.05/0.04 22.11/20.63 0.43

2 4.20 0.55 0.86/0.87 -0.20/-0.20 0.15/0.15 40.82/40.76 0.14

VIF the highest variance inflation factor in the region, pSW the p value of the SW test, R2 the (pseudo)coefficient of determination, I the Moran

statistic, AVP the average variance of prediction, SEP the standard error of prediction, EVR error variance ratio
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selected. The model based on R̂TS was developed for

PG1 and PG1A, and the model based on R̂KJ was

developed for PG2.

The lowest model error variance was obtained for

PG1A (r2
d ¼ 0:03) and the highest for PG2

(r2
d ¼ 0:12). The final diagnostic measures, both for

OLS and GLS, are shown in Table 6. High pSW and

R2
GLS values confirm the good fit. The I statistics are

insignificant, thus residuals are spatially uncorrelated.

The AVP and SEP values are much lower in PG1 and

PG1A than in PG2; hence, the predictive perfor-

mance of the models is higher in PG1 and PG1A than

in PG2. For PG1 and PG1A, the comparisons

between AVPOLS, SEPOLS and AVPGLS, SEPGLS

indicate a moderate improvement of the model when

GLS is used instead of OLS which is reflected in a

value of EVR higher than 0.2. For PG2, the EVR

value less than 0.2 suggests a lack of necessity of the

use of GLS instead of OLS; thus, the models seem to

be equivalent. Finally, the following GLS regression

models were obtained:

l̂PG1 ¼e�11:02 � A1:07 � P2:50
50%; ð9Þ

l̂PG1A ¼e�10:47 � A0:91 � P2:66
50% � IN0:36; ð10Þ

l̂PG2 ¼e�5:50 � A0:74 � P1:72
50% � IN�1:49 � EL�0:52 :

ð11Þ

The variables selected for use in regression formulas

were different from those most closely associated

with the formation of homogenous regions in this

study.

5. Discussion

The region PG2 is seen from Table 2 to have the

highest t which shows the largest variability of RDF.

The next two characteristics, t3 and t4, were the

highest in PG1A which reflects the largest asymmetry

and peakedness of the RDF. The region PG3 is

observed to have the lowest t and t3 which reflects the

lowest variability and asymmetry of the RFD.

The existing hydrological classifications were

depicted in Fig 8 (see also the Sect. 1). Among them,

only STACHÝ and FAL (1986) considered similarity in

the regional frequency distributions, while the other

authors studied various physical geographic and cli-

matological factors and hydrological regimes. There

is some similarity between the contour of the PG3

region and the contours of the northern regions

classified by DȨBSKI (1961), SOCZYŃSKA (1977), and,

partially, of the northern region of STACHÝ and FAL

(1986). Another similarity is visible between the

contour of the PG1A and the contour of the south-

Figure 7
Inter-site correlation structure a PG1, b PG2
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western macroregion classified by DOBIJA (1981).

However, no similarity was found between classifi-

cations of ZIEMOŃSKA (1973); POCIASK-KARTECZKA

1995) and the division obtained using the L-moment-

based RFFA.

The comparison between the estimates of design

discharges obtained using two regional approaches:

the HW method and the method introduced by STA-

CHÝ and FAL (1986) (SF method) was completed. The

absolute relative differences for eight randomly

selected catchments (9, 12, 24, 34, 38, 39, 40, 51)

were computed as RT ¼ j QSF
T �QHW

T

QHW
T

j � 100%;

T ¼ 10; T ¼ 100. Results show a relatively good

agreement between QSF
T and QHW

T , because RT varied

Figure 8
The hydrological classifications of the Upper Vistula River basin
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from 4.4 % to 40.2 % for T ¼ 10 and from 7.7 % to

31.9 % for T ¼ 100.

Regarding regression formulas (9, 10, 11), the

highest power at P50% is observed in PG1A and the

lowest in PG2; thus, rainfall has been shown to affect

index flood more in PG1A and PG1 than in PG2. The

negative sign of the power at IN in Eq. (11) is easy to

interpret, because higher infiltration causes lower

discharge. The direct physical explanation for why in

Eq. (10) the sign is positive cannot be formulated.

However, some calculations allowed us to notice that

due to high power at P50%, equal to 2.66, and nega-

tive correlation between P50% and IN (r̂ ¼ �0:29),

the increase of the index flood with increasing P50%

is stronger than the decrease of the index flood with

decreasing IN. Thus, finally, only increase of the

index flood is observed with decreasing IN in (11),

similar to (10).

Among the three pooling groups, the best diag-

nostic measures, both for OLS and GLS, were

obtained for PG1A. Thus, the extraction of PG1A

from PG1 was certified.

6. Conclusions

The L-moment-based approach to regional flood

frequency analysis of the UVB is presented in the

paper. The application of the cluster analysis and HW

methodology enabled the division of the study area

into three (variant I) and four (variant II) pooling

groups of catchments with similar frequency distri-

butions. Design discharge was estimated using a

regional growth curve and an index flood method for

every studied catchment and was compared to dis-

charge obtained via a local approach.

The results allowed the formulation of the con-

clusion that the HW method was proved as

suitable for estimating the design discharges in most

of the gauged catchments considered. The size of

every pooling group was a trade-off; small groups

provided design discharge of a not very long return

period and lower uncertainty, and large groups sup-

plied design discharge of a long return period and

higher uncertainty. The division of the UVB into

homogenous pooling groups was not unique, as the

HW method provided many homogenous groups of

various sizes and locations; therefore, an optimisation

condition was introduced for final division into

pooling groups. The slope, shape, river network

density, and rainfall were revealed to have the

greatest effect on the growth factor q, and rainfall,

area, elevation, and infiltration had the greatest effect

on index floods.

The multivariate regression model based on the

OLS method was featured by a good quality for three

major pooling groups. The GLS model improved the

quality of the OLS model for the southern pooling

groups PG1 and PG1A, while for the central group

PG2, no improvement was obtained.

The design discharges obtained both for gauged

and ungauged catchments using this RFFA method

should be compared to design discharges obtained

using other methods such as the SF method and the

Punzet formula. This comparison will require a sep-

arate study.

The results of the study may be treated as a

starting point for the regionalisation of other parts of

the Vistula River Basin. In the future, other methods

of RFFA will also be recommended, to compare the

results produced by various methods of

regionalisation.
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GNSS Vertical Coordinate Time Series Analysis Using Single-Channel Independent

Component Analysis Method

WEI PENG,1 WUJIAO DAI,1 ROCK SANTERRE,2 CHANGSHENG CAI,1 and CUILIN KUANG
1

Abstract—Daily vertical coordinate time series of Global Nav-

igation Satellite System (GNSS) stations usually contains tectonic

and non-tectonic deformation signals, residual atmospheric delay

signals, measurement noise, etc. In geophysical studies, it is very

important to separate various geophysical signals from the GNSS

time series to truthfully reflect the effect of mass loadings on crustal

deformation. Based on the independence of mass loadings, we

combine the Ensemble Empirical Mode Decomposition (EEMD)

with the Phase Space Reconstruction-based Independent Component

Analysis (PSR-ICA) method to analyze the vertical time series of

GNSS reference stations. In the simulation experiment, the seasonal

non-tectonic signal is simulated by the sum of the correction of

atmospheric mass loading and soil moisture mass loading. The

simulated seasonal non-tectonic signal can be separated into two

independent signals using the PSR-ICA method, which strongly

correlated with atmospheric mass loading and soil moisture mass

loading, respectively. Likewise, in the analysis of the vertical time

series of GNSS reference stations of Crustal Movement Observation

Network of China (CMONOC), similar results have been obtained

using the combined EEMD and PSR-ICA method. All these results

indicate that the EEMD and PSR-ICA method can effectively sep-

arate the independent atmospheric and soil moisture mass loading

signals and illustrate the significant cause of the seasonal variation of

GNSS vertical time series in the mainland of China.

Key words: Phase space reconstruction-based independent

component analysis, ensemble empirical mode decomposition,

mass loading, hurst parameter, GNSS vertical coordinate time

series.

1. Introduction

GNSS technology has widely been applied in a

variety of geophysical studies, and thousands of

permanent GNSS stations have been established

around the world for this purpose. Analyzing the time

series of GNSS stations in the International Terres-

trial Reference Frame (ITRF) provides useful

information for the study of the global plate motion,

crustal deformation, and earthquakes. All these

studies are based on the correct interpretation of the

coordinate time series as well as on reliable and

accurate station coordinates and velocities. The

GNSS coordinate time series mainly consists of tec-

tonic deformation (e.g., DRAGERT et al. 2001; JIANG

et al. 2014), non-tectonic deformation (e.g., VANDAM

et al. 1994; TIAMPO et al. 2004), and noise (WILLIAMS

et al. 2004). Analyzing the non-tectonic deformation

signals by geometric and physical models is crucial in

studying the impacts of various geophysical phe-

nomena on GNSS reference stations. NIKOLAIDIS

(2002) applied a weighted least-square algorithm to

solve the geometric model according to linear trend,

annual, and semi-annual variations, and other char-

acteristics of GNSS coordinate time series. DONG

et al. (2002) investigated the effects of atmosphere,

non-tidal ocean, snow, soil moisture, and other

environmental factors on GNSS station displace-

ments, and explained the main causes of the annual

and semi-annual variations of GNSS time series.

However, these geometrical model and physical

model cannot directly extract mass loading signals

(annual and semi-annual periods) from the GNSS

time series. Therefore, a method separating the sea-

sonal non-tectonic deformation signals from the

GNSS vertical time series is in really needed.

The Independent Component Analysis (ICA)

method is a blind source separation method, which can

separate statistically independent source signals from

multi-dimensional mixed observation signals

(HYVÄRINEN and OJA 2000). If the geophysical phe-

nomena are independent; then, the independent
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component signals (ICs) decomposed by the ICA

method will reflect their physical phenomena. The

Phase Space Reconstruction-based Independent

Component Analysis (PSR-ICA) method, a single-

channel ICA method, can effectively separate the

independent source signals, even though they are the

same frequency (DAI et al. 2014). Therefore, in this

study, we use the PSR-ICA method to analyze the

seasonal variation of GNSS vertical coordinate time

series. However, the vertical time series of a GNSS

station is a non-stationary signal, and the PSR-ICA

algorithm can only process stationary signal; therefore,

we use an adaptive time–frequency decomposition

method called Ensemble Empirical Mode Decompo-

sition (EEMD) (WU and HUANG 2009), to process non-

stationary GNSS vertical coordinate time series and

extract the stationary seasonal signal.

2. EEMD and PSR-ICA Methods

The EEMD and PSR-ICA methods are jointly

used to analyze the GNSS vertical time series based

on their respective advantages. First, GNSS vertical

time series is decomposed using the EEMD method,

and then, the noise signal and seasonal signal are

classified and reconstructed based on the Hurst

parameter (RODRIGUEZ et al. 2009). After that, the

PSR-ICA method is used to decompose the recon-

structed one-dimensional seasonal signal into several

ICs that are then compared with non-tectonic crustal

deformations caused by mass loadings. The data

processing flow chart is shown in Fig. 1.

2.1. EEMD Decomposition and Extraction

of the Seasonal Non-Tectonic Signal

The EEMD, as a modified EMD algorithm, which

can be used to decompose a nonlinear and non-

stationary time series xðtÞ into several Intrinsic Mode

Functions (IMFs) and the residual signal (WU and

HUANG 2009; HUANG et al. 1998). Then, the IMFs

with different noise contents are classified and

reconstructed based on the Hurst parameter. The

general equation of the EEMD algorithm is given

below:

GNSS Vertical Time Series

EEMD 
Classification and reconstruction 

based on Hurst Parameter 

PSR-ICA Artificial Signal Recognition and Inverse 

Processing of PSR Reconstruction 

 Noise Signal
Long-term Trend Signal

Time-frequency Analysis 

Independence Analysis 

Mass Loading 1 Mass Loading 2 Mass Loading K

Seasonal Signal

Separation signal 1 Separation signal 2 Separation signal K

Figure 1
Flow chart of single-channel ICA data processing for the GNSS vertical time series analysis
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x tð Þ ¼
XD

j¼1

cj tð Þ þ rDðtÞ; t ¼ 1; 2; . . .; T ð1Þ

where cj tð Þ is the IMF component and rDðtÞ is the

residual signal.

The IMFs of the EEMD algorithm can be divided

into stationary and non-stationary parts. The non-

stationary IMFs can be reconstructed as a long-term

trend signal (QIN et al. 2012), and the stationary IMFs

need to be analyzed by the Hurst parameter. Hurst

parameter has been used to analyze noises in many

studies (MONTILLET et al. 2013; SCHROEDER AND

WIESENFELD 1991). The relation between Hurst

parameter (H) and noise signal is that the white

noise is corresponding to H ¼ 0:5, the flick noise is

corresponding to H ¼ 1 and the random walk is

corresponding to H ¼ 1:5.

The noise in the GNSS time series can be

analyzed usually after removing the linear trend

and seasonal variation. However, the EEMD

method can decompose the noise, without remov-

ing the linear trend and seasonal variation, into a

series of IMFs ordered by frequency, and these

IMFs can be classified using the Hurst parameter.

For example, MONTILLET et al. (2013) used the

EMD method and the Hurst parameter to extract

the white noise (H � 0:6) of the GNSS vertical time

series. Furthermore, several studies suggest that the

best noise model of most GNSS vertical time series

is the white plus flicker noise model (WN ? FN)

(LI et al. 2012; ZHANG et al. 1997; MAO et al. 1999;

AMIRI-SIMKOOEI et al. 2007). Therefore, we define

the IMFs whose H is within 0:6; 1:1½ Þ as colored

noise, which can be best characterized by the

WN ? FN model.

The procedure of the time–frequency analysis can

be described as follows.

1. Decompose time series x tð Þ into IMFs and residual

signal.

2. Extract the non-stationary IMFs and the residual

signal, and reconstruct them to long-term trend

signal.

3. Estimate the Hurst parameter of each stationary

IMFs. Sum over the IMFs whose H are within

½0; 1:1� as noise signal, and sum over the remain-

ing IMFs as one-dimensional seasonal signal x0 tð Þ.

However, the EEMD method cannot decompose

components in the same frequency; therefore, the

one-dimensional seasonal signal should be analyzed

by the single-channel ICA method.

2.2. Seasonal Non-Tectonic Signal Analysis by PSR-

ICA Algorithm

PSR-ICA algorithm is a one-dimensional station-

ary signal processing method (DAI et al. 2014,

PACKARD et al. 1980; TAKENS 1981), which does not

rely on the time–frequency feature of the compo-

nents. Therefore, it can separate ICs from the one-

dimensional seasonal signals to reflect the effect of

the seasonal mass loadings. The procedure of the

PSR-ICA algorithm is shown in Fig. 2.

In this flow chart, x0 is the one-dimensional

seasonal signal; X is the reconstruction phase space;

Y ¼ WX is to obtain the ICs from the reconstruction

phase space; XK is the Kth independent subspace; xK

is the reconstructed one-dimensional seasonal signal.

2.2.1 Channel Extension

Phase Space Reconstruction (PSR) is a method of

obtaining nonlinear dynamics features through delay-

ing and embedding a one-dimensional signal into a

high-dimensional phase space to reflect the charac-

teristics of the signals (KENNEL et al. 1992). The

multi-dimensional phase space contains all signals of

physical sources, affecting the seasonal non-tectonic

deformation of GNSS stations.

))(' (
j j

j Q

KK a y
Channel Extension PSR Signal separation FastICA Reconstructio

X x
YXx nWX ∈

= →
= ⎯⎯⎯⎯⎯→⎯⎯→⎯⎯ → ⎯⎯⎯⎯⎯⎯⎯⎯⎯→

∑

Figure 2
Flow chart of PSR-ICA processing for the seasonal signal analysis
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Xi ¼ x0i; x0i 1þ sð Þ; � � � ; x0i 1þ m � 1ð Þsð Þ
� �

;

i ¼ 1; 2; � � � ;M ð2Þ

where M ¼ T � ðm � 1Þs, m is the embedding

dimension, s is the delay time. m, and s are the main

parameters of the PSR algorithm, whose optimal

solution can be obtained using the False Nearest

Neighbors method and the Mutual Information

method, respectively (DAI et al. 2014; KENNEL et al.

1992; FRASER and SWINNEY 1986).

2.2.2 Independent Component Signal Separation

Assume a set of independent source signals S t0ð Þ :
S t0ð Þ ¼ ½s1ðt0Þ; s2ðt0Þ; � � � ; snðt0Þ�T and their corre-

sponding observation signals X t0ð Þ : X t0ð Þ ¼ ½x1ðt0Þ;
x2ðt0Þ; � � � ; xmðt0Þ�T, the relationship between X t0ð Þ
and S t0ð Þ can be described as follows (HYVÄRINEN and

OJA 2000):

X t0ð Þ ¼ AS t0ð Þ; t0 ¼ 1; 2; . . .;M ð3Þ

where A is m � n -order unknown linear mixed matrix

(n�m).

ICA algorithm is to separate the ICs by solving

the mixed matrix W .

Y t0ð Þ ¼ A�1X t0ð Þ ¼ WX t0ð Þ ð4Þ

ICs Y t0ð Þ can be used to estimate S t0ð Þ effectively.
FastICA algorithm, a widely used ICA algorithm, is

used to separate ICs from WX t0ð Þ in this study.

FastICA algorithm uses the Negentropy, a measure

standard of non-Gaussian distribution, to measure the

non-Gaussian maximum of WX t0ð Þ, and it follows the

fixed-point iteration theory, which makes the conver-

gence faster and more robust (HYVÄRINEN 1999).

2.2.3 Independent Component Signals

Reconstruction

These ICs Y t0ð Þ can reflect the implicit information of

the observation signals. However, sometimes, the

number of ICs are more than the seasonal mass

loadings. Therefore, the ICs should be artificially

classified into several clusters. Then, the ICs of the

same cluster, corresponding to the same mass loading,

are multiplied by their corresponding column of the

mixed matrix to construct independent subspaces XK

for reconstructing the source signal xK (CARDOSO

1998). Therefore, the originalmulti-dimensional phase

space is equal to the sum of independent subspaces.

X ¼ X1 þ X2 þ � � � þ XK ð5Þ

where XK is the Kth independent subspace, and it can

be described as follows:

XK ¼
X

j2Q

ajyj ð6Þ

where Q is the number of ICs in a cluster, and aj is

the corresponding column of the mixed matrix to the

yj, where yj is the j th IC. The independent subspaces

XK can be reconstructed to a one-dimensional source

signal xK based on the inversion of the PSR method,

xK
i ¼

1
A

PA

h¼1

XK
j;i�ðj�1Þs 1� i� 1þ ðm � 1Þs

1
m

Pm

h¼1

XK
j;i�ðj�1Þs 1þ ðm � 1Þs� i� T � ðm � 1Þs

1
B

Pm

h¼mþ1�B

XK
j;i�ðj�1Þs T � ðm � 1Þs� i� T

8
>>>>>>>><

>>>>>>>>:

ð7Þ

where A ¼ ceilði=sÞ, B ¼ ceilððN � i þ 1Þ=sÞ, and

ceilð�Þ denotes the rounding-up function.

3. GNSS Vertical Time Series Analysis

3.1. Analysis of Observation Data and Mass

Loadings

The seasonal non-tectonic deformation of GNSS

reference station mainly includes the mass loading of

atmosphere, soil moisture, non-tidal ocean, snow, etc.

However, in most parts of China, the non-tidal ocean

mass loading and snow mass loading had a little or no

impact on crustal deformation, and they can be

neglected. Thus, the effect of atmosphere and soil

moisture mass loading are the major factors in the

analysis of the seasonal non-tectonic deformation

(WANG et al. 2005).

To explore the single-channel ICA process and its

effect on separating non-tectonic deformation, we use

the daily vertical time series of GNSS reference

stations collected by the CMONOC. These daily

GNSS solutions are generated using the GAMIT/

GLOBK software with the double-difference

W. Peng et al. Pure Appl. Geophys.
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ionosphere-free code and phase observations. Mean-

while, the station receiver antenna phase center,

satellite antenna phase center, ocean tides, solid earth

pole tides, and solid earth tides are corrected with the

absolute phase center model, IGS ANTEX model,

FES2004 ocean tide loading model, and IERS2003

model, respectively. The tropospheric delay and

satellite coordinates are estimated with the station

coordinates during the daily data processing, and

then, each daily solutions are transformed into IGS08

using seven-parameter transformations. The data,

consisting of 13 GNSS reference stations in the area

from 90�E 15�N to 120�E 42�N (see Fig. 3), cover a

time span from January 2001 to December 2013.

The vertical time series of those 13 GNSS stations

with strong noise is manifested as non-stationary

annual variation. To explore the data sets, we

randomly choose three GNSS reference stations

(BJFS, JIXN, and LUZH) as proxies to demonstrate

the process of our methods and its results in detail.

Figure 4 shows the vertical displacement time series

of BJFS, JIXN, and LUZH sites for a time interval of

13 years.

To illustrate the non-tectonic deformation in the

selected area, we calculate the correction values of

atmospheric and soil moisture mass loadings of the 13

sites, using the 6-hour sampling atmosphere surface

pressure data and the daily sampling National Center

for Environmental Prediction (NCEP) reanalysis II soil

moisture data from 2001 to 2013. The corrections of

mass loadings are calculated using the Quasi-Obser-

vation Combination Analysis software (QOCA)

(available at http://qoca.jpl.nasa.gov). Results are

shown in Fig. 5 for the three selected sites.

After removing the linear trend of GNSS vertical

time series using the linear fitting method, the power

Figure 3
Distribution of the selected CMONOC GNSS stations
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spectrum is used to analyze the changes of the

seasonal variation of GNSS vertical time series

before and after removing the correction values of

atmospheric and soil moisture mass loading, as

shown in Fig. 6. After the correction, the annual

variation of residual time series is significantly

weakened, indicating that the correction can effec-

tively reduce the annual variation in the GNSS

vertical time series. However, the mass loading

corrections cannot completely eliminate the annual

variation in the GNSS reference stations. Therefore,

decomposing the GNSS vertical time series into

several sub-signals (relating to the main mass load-

ings) is an important way to illustrate the annual

variation in the GNSS vertical time series.

3.2. EEMD Decomposition and Reconstruction

The EEMD method is used to decompose the

vertical time series into IMF components and residual

signal. The H values of IMFs are calculated by the

Detrended Fluctuation Analysis method (GRECH and

MAZUR 2013). As the calculation error can be up to

0.1, the IMFs whose H values are within [0, 1.1] are

reconstructed as noise signal. The noise, the artificial

reconstructed seasonal signal, and the long-term trend

of BJFS, JIXN, and LUZH sites are shown in Fig. 7.

The EEMD method is also used to de-noise the

sum of atmospheric mass loading and soil moisture

mass loading. The comparison between the recon-

structed seasonal signal and the sum of the de-noised

atmospheric and soil moisture mass loadings of the

13 GNSS sites are shown in Fig. 8.

The correlation coefficients, RMS (Root Mean

Square) between the seasonal signals, and the sum of

the corrections of de-noised seasonal mass loadings

(atmospheric mass loading and de-noised soil mois-

ture mass loading) are calculated, and their values for

the 13 GNSS stations are shown in Table 1.

The correlation coefficients of the seasonal signals

and the de-noised sum of atmospheric mass loading
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and soil moisture mass loading are 0.61–0.86, and

DRMS are 18–48 %. These results are reasonable,

including the low correlation of WUHN, XNIN,

KMIN, and XIAM sites (in bold), because the mass

loading correction cannot completely reflect the

seasonal variation of GNSS vertical time series (see

Fig. 6).

From the comparison in Fig. 8 and correlation

analysis in Table 1, we can say that there is a strong

correlation between the GNSS station annual varia-

tion and the two mass loadings in the selected area.

3.3. Simulation Experiment

We mixed the de-noised correction of the atmo-

sphere and soil moisture mass loading (red line in

Fig. 8) as the simulated non-tectonic deformation

signals. First, the PSR method is applied to obtain the

multi-dimensional embedding matrix, and the time

delay is 8 and the embedding dimension is 2. Then,

the FastICA method is used to analyze the multi-

dimensional embedding matrix, and the two ICs are

obtained. We rename them as Reconstructed signal A

(RS-A) and Reconstructed signal B (RS-B) without

artificial classification and reconstruction. The com-

parison of reconstructed signals and its corresponding

simulated signals (de-noised atmospheric and soil

moisture mass loading) are shown in Figs. 9 and 10,

respectively.
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The correlation coefficients and RMS between

reconstructed signals and their corresponding simu-

lation signals are calculated, respectively, and their

values are shown in Table 2.

The simulation experiment shows that the signals

reconstructed by the PSR-ICA method can effectively

reflect the atmospheric and the soil moisture mass

loading. The correlation coefficients of the RS-A and

the atmospheric mass loading are 0.81–0.96, and the

DRMS are 11–71 %. In addition, the values of the

RS-B and the soil moisture mass loading are

0.71–0.98 and 14–77 %, respectively. These facts

suggest that the atmospheric and the soil moisture

mass loadings can be separated by single-channel

ICA.

3.4. GNSS Vertical Time Series Analysis

The seasonal variation of GNSS vertical time

series (black line in Fig. 8) is also used to verify the

effectiveness of the PSR-ICA method.

First, the time delay and the embedding dimen-

sion are calculated using the mutual information

method and the FNN method, respectively. The

determined time delay is 51, which is quite different

from that of the simulation experiment. A possible

explanation could be the difference between seasonal

signal and mass loading corrections. The embedding

dimension is 2 in most cases, and 3 for the KMIN

site, which indicates that the ICs should be recon-

structed into two main components.

2001 2003 2005 2007 2009 2011 2013

QION      0+20

XIAM      0+40

KMIN      0+60

XIAG      0+80

LUZH    0+100

LHAZ    0+120

WUHN    0+140

XNIN    0+160

TAIN    0+180

DLHA    0+200

JIXN    0+220

BJFS    0+240

BJSH    0+260

Year

Seasonal Signal De-noised Atmospheric+Soil moisture

Figure 8
Comparison between the reconstructed seasonal signals decomposed by EEMD and the sum of the de-noised atmosphere and soil moisture

mass loading for the 13 GNSS sites (20 mm offset per station)
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Table 1

Correlation between seasonal signals and sum of the de-noised atmospheric and soil moisture mass loading

Latitude N (�) Longitude E (�) Correlation coefficients RMS (mm) dRMS (mm) DRMS (%)

BJSH 40.25 116.22 0.72 3.1 2.5 19

BJFS 39.61 115.89 0.86 4.2 2.2 48

JIXN 38.58 117.53 0.85 3.8 2.1 45

DLHA 37.38 97.38 0.77 4.0 2.7 33

TAIN 36.22 117.12 0.75 4.7 3.2 32

XNIN 36.60 101.77 0.61 4.5 3.7 18

WUHN 30.53 114.36 0.71 4.9 3.5 29

LHAZ 29.66 91.10 0.84 6.1 3.7 39

LUZH 28.87 105.41 0.84 5.1 2.8 45

XIAG 25.61 100.26 0.85 7.6 4.2 45

KMIN 25.03 102.80 0.64 8.2 6.2 24

XIAM 24.45 118.08 0.63 4.9 3.9 20

QION 19.03 109.85 0.79 6.3 4.6 27

dRMS RMS after mass loading correction, DRMS reduction in RMS

2001 2003 2005 2007 2009 2011 2013

QION     0+10

XIAM     0+20

KMIN     0+30

XIAG     0+40

LUZH     0+50

LHAZ     0+60

WUHN     0+70

XNIN     0+80

TAIN     0+90

DLHA   0+100

JIXN   0+110

BJFS   0+120

BJSH   0+130

Year

Reconstructed signal A De-noised Atmospheric

Figure 9
Comparison between the reconstructed signal A separated by PSR-ICA and the simulated signal (de-noised atmospheric mass loading) (10-

mm offset per station)
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Then, the FastICA method is used to separate the

multi-dimensional embedding matrix. A number of

ICs are obtained. Three ICs for the KMIN site are

artificially reconstructed into two reconstructed sig-

nals, Reconstructed signal 1 (RS-1) and

Reconstructed signal 2 (RS-2). The comparison of

the two reconstructed signals for the 13 GNSS sites

and their corresponding mass loadings (de-noised

atmospheric and the soil moisture mass loadings) are

shown in Figs. 11 and 12, respectively.

The correlation coefficients and RMS between the

reconstructed signals (RS-1 and RS-2) and their

corresponding mass loading signals (de-noised

atmospheric mass loading and de-noised soil mois-

ture mass loading) are calculated, respectively, the

results are shown in Table 3.

From the correlation analysis of the reconstructed

signals (RS-1 and RS-2) and their corresponding

mass loading signals, we can say that some physical

sources affect the crustal deformation. (1) The

correlation coefficients of the RS-1 and the atmo-

spheric mass loading are between 0.50 and 0.86, and

DRMS are within the range of 5–47 %, which suggest

that the RS-1 can be considered as a seasonal non-

tectonic deformation mainly affected by the atmo-

spheric mass loading; and (2) The correlation

2001 2003 2005 2007 2009 2011 2013

QION     0+10

XIAM     0+20

KMIN     0+30

XIAG     0+40

LUZH     0+50

LHAZ     0+60
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TAIN     0+90

DLHA   0+100

JIXN   0+110

BJFS   0+120
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Year

Reconstructed signal B De-noised Soil moisture

Figure 10
Comparison between the reconstructed signal B separated by PSR-ICA and the simulated signal (de-noised soil moisture mass loading) (10-

mm offset per station)
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coefficients of the RS-2 and the soil moisture mass

loading, except for the WUHN site (in bold), are in

the range of 0.50–0.83, and DRMS are between 8 and

44 %, which means that the RS-2 can be considered

as a seasonal non-tectonic deformation mainly

affected by soil moisture mass loading. The vertical

time series of WUHN station may be affected by the

change of multipath effect and the instability of the

station monumentation. The seasonal variation is not

obvious and covered by noise and irregular trend

variation in some years, which may seriously affect

the seasonal signal extraction and the independent

signal separation.

According to the analysis of experimental results

in Sects. 3.3 and 3.4, the major mass loadings

(atmospheric mass loading and the soil moisture

mass loading) can be separated effectively by the

single-channel ICA.

4. Discussion and Conclusion

We have shown that the PSR-ICA method can

separate the independent source signals from the

mixed mass loading signal in the simulation experi-

ment. However, the correlations are 4–19 % and

2–29 % lower, respectively, between the two sepa-

rated signals using the PSR-ICA method and

atmospheric mass loading and soil moisture mass

loading in the simulation experiment. These facts

may indicate that the surface mass loadings, such as

atmospheric mass loading and soil moisture mass

loading, have a weak joint effect on crustal defor-

mation in mainland China.

The PSR-ICA decomposition of the seasonal

variation of GNSS vertical time series shows lower

correlations with atmospheric and moisture loadings

with respect to the simulation experiment. The cor-

relations are systematically 15–20 % lower, which

are mainly caused by the difference between simu-

lated signals (simulated by the sum of the de-noised

correction of the atmosphere and soil moisture mass

loadings) and GNSS time series. Their correlation

coefficients are 0.61–0.86, and the PSR-ICA

decomposition results of these two experiments are

both compared with the de-noised correction of the

atmosphere and soil moisture mass loading. How-

ever, the mass loading corrections also have errors,

such as for the KMIN site, there is no snow in this

area during 2001 and 2013, and the snow mass

loading corrections have a seasonal variation (up to

1.5 mm). The spatial resolution of mass loading data

is 2.5� 9 2.5� that mass loading corrections cannot

accurately reflect the effect of mass loadings at

specified points. Therefore, with the rapid increase of

GNSS reference stations worldwide, the separation of

mass load signals from GNSS time series is helpful to

study the effect of mass loadings on the crustal

Table 2

Correlation coefficients of reconstructed signals (Reconstruction A and Reconstruction B) and their corresponding mass loading signals

CORR-A RMS-A (mm) dRMS-A (mm) DRMS-A (mm) CORR-B RMS-B (mm) dRMS-B (mm) DRMS-B (mm)

BJSH 0.94 2.7 1.0 63 0.84 1.8 1.0 4344

BJFS 0.95 2.9 0.9 69 0.87 1.8 0.9 50

JIXN 0.96 3.4 1.0 71 0.86 1.8 1.0 44

DLHA 0.81 1.2 0.9 25 0.92 2.0 0.9 55

TAIN 0.93 3.5 1.3 63 0.85 2.4 1.3 46

XNIN 0.89 0.9 0.8 11 0.83 1.4 0.8 43

WUHN 0.92 2.9 1.2 59 0.78 2.1 1.3 38

LHAZ 0.86 1.6 0.8 50 0.95 2.5 0.8 68

LUZH 0.93 2.0 0.8 63 0.98 3.3 0.8 76

XIAG 0.94 2.2 0.8 64 0.98 3.5 0.8 77

KMIN 0.93 2.4 1.0 58 0.97 3.8 1.0 74

XIAM 0.87 1.6 1.2 25 0.71 1.4 1.2 14

QION 0.94 1.3 0.8 39 0.93 2.1 0.8 62

Case A RS-A and the de-noised atmospheric mass loading, Case B RS-B and the de-noised soil moisture mass loading, CORR correlation

coefficient, dRMS RMS after mass loading correction, DRMS reduction in RMS
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deformation and improve the accuracy of the cor-

rection model of mass loadings.

We use the EEMD method to decompose the

GNSS vertical time series into noise signal, seasonal

signal, and long-term trend signal. The PSR-ICA

method is applied to analyze the seasonal signal. We

successfully obtain the seasonal non-tectonic defor-

mation signals. Through the case study of the selected

GNSS reference stations, the following three con-

clusions can be drawn: (1) By obtaining noise signal,

seasonal non-tectonic deformation signal, and long-

term trend signal using the EEMD method, we found

that the seasonal signal is strongly correlated with the

sum of the major mass loading corrections; (2) In the

simulation experiment, the high correlation between

the separated signals and mass loadings (correlation

coefficients are 0.71–0.98 and DRMS are 11–77 %)

has proved that the PSR-ICA algorithm can accu-

rately extract the physical source signals from the

non-tectonic deformation signals; (3) The high cor-

relation between the signals separated from seasonal

signals and mass loadings (correlation coefficients are

0.50–0.86 and DRMS are 5–47 %) can effectively

illustrate the seasonal variation (mainly annual vari-

ation) in the vertical time series of the GNSS

reference station, and the separated signals can more

accurately reflect the effects of various mass loadings

on the crustal deformation.
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Reconstructed signal 1 De-noised Atmospheric

Figure 11
Comparison between the reconstructed signal 1 separated by PSR-ICA and the atmospheric mass loading (20-mm offset per station)
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Figure 12
Comparison between the reconstructed signal 2 separated by PSR-ICA and the soil moisture mass loading (20-mm offset per station)

Table 3

Correlation between the reconstructed signals (RS-1 and RS-2) and its corresponding mass loading signals

CORR RMS-1 (mm) dRMS-1 (mm) DRMS-1 (%) CORR RMS-2 (mm) dRMS-2 (mm) DRMS-2 (%)

BJSH 0.75 1.9 1.8 5 0.71 2.4 1.8 25

BJFS 0.86 3.2 1.7 47 0.57 1.3 1.2 8

JIXN 0.79 3.0 2.0 33 0.72 1.1 0.9 18

DLHA 0.76 1.7 1.1 35 0.81 2.8 1.9 32

TAIN 0.80 2.3 2.0 13 0.75 3.2 2.2 31

XNIN 0.57 2.1 1.7 19 0.75 3.1 2.3 26

WUHN 0.61 3.5 3.2 9 0.35 1.9 2.9 253

LHAZ 0.64 2.2 1.7 23 0.85 4.5 2.5 44

LUZH 0.62 3.4 2.7 21 0.76 2.4 2.0 17

XIAG 0.73 5.1 4.0 22 0.63 5.5 4.3 22

KMIN 0.63 4.1 3.4 17 0.50 7.0 6.3 10

XIAM 0.50 3.0 2.8 7 0.72 2.6 1.8 31

QION 0.63 2.6 2.1 19 0.83 4.4 2.9 34

Case 1 RS-1 and de-noised atmospheric mass loading, Case 2 RS-2 and de-noised soil moisture mass loading, CORR correlation coefficient,

dRMS RMS after mass loading correction, DRMS reduction in RMS
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