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Preface

Cooperative networking has been widely recognized as a promising paradigm for a
variety of wireless networking applications. However, little attention has been paid
to exploiting the social network structure among wireless users to stimulate user
cooperation in a systematic way. In this brief, we present a general social group
utility maximization (SGUM) framework, which leverages the existing human so-
cial ties among wireless users to stimulate their cooperative behaviors in wireless
networks. The SGUM framework advocates the notion of social group utility, which
captures the diverse social ties among wireless users and the diverse physical re-
lationships among their wireless devices in a unified manner. A notable merit of
the SGUM framework is that it provides rich modeling flexibility and spans the
continuum between non-cooperative game and network utility maximization—two
traditionally disjoint paradigms for network optimization. To illustrate how to apply
the SGUM framework for wireless networking, we study its application in several
specific contexts.

In Chap. 1, we give an overview of mobile social networks and cooperative wire-
less networking. In Chap. 2, we formulate the SGUM framework, which comprises
a social network graph model, a physical network graph model, and a SGUM game.
In Chap. 3, we study the SGUM-based random access control and power control.
For the SGUM-based random access control game and the SGUM-based power con-
trol game, we show that there exists a socially-aware Nash equilibrium (SNE). We
also investigate the impact of social ties on users’ strategies and social welfare. In
Chap. 4, we study the SGUM-based database assisted spectrum access. We show
that the SGUM-based spectrum access game is a potential game and thus always
admits an SNE. Then we design a distributed spectrum access algorithm that can
achieve an SNE with desirable social welfare. In Chap. 5, we study the SGUM-
based pseudonym change for personalized location privacy. For the SGUM-based
pseudonym change game, we show that there exists a SNE. Then we develop an
algorithm that can efficiently find a Pareto-optimal SNE with desirable social wel-
fare. In Chap. 5, we summarize the brief and discuss a generalization of the SGUM
framework for future work.
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Chapter 1
Introduction

1.1 Mobile Social Networks

Mobile networks have been growing rapidly in the past few years and this trend will
continue in the foreseeable future. Indeed, mobile phone shipments are projected to
reach 1.9 billion units in 2014, which is about 7 times that of desktop and laptop com-
bined [1]. Mobile data traffic is predicted to increase by over 100 times in the next
ten years [2]. The widespread popularity of mobile networks has been driven by con-
tinuing advances of technologies. On one hand, advanced wireless communication
technologies (e.g., MIMO, OFDM) have drastically improved the communication
efficiency in existing wireless networks (e.g., cellular networks, WLANs). On the
other hand, advanced mobile devices (e.g. smartphones) equipped with powerful
sensors (e.g., cameras) and high computing capability have enabled a wide range
of applications on mobile platforms. As a result, mobile networks have nowadays
become an indispensable infrastructure in people’s everyday life.

Different from other networks (e.g., sensor networks), a distinctive characteristic
of mobile networks is that mobile devices are carried and operated by human beings.
As a result, mobile users’ interactions hinge heavily on human behavior. It is then
natural to ask “How would mobile users’ social ties influence their behaviors in
mobile networks?” Social ties are built upon human social relationships (e.g., kinship,
friendship, colleague relationship). Indeed, social ties play an unprecedented role in
people’s interactions with each other, mainly due to the explosive growth of online
social networking services (e.g., Facebook, Twitter) in the past few years. In 2013,
the number of online social network users worldwide has crossed 1.73 billion, nearly
one quarter of the world’s population [3]. With pervasive connectivity to the Internet
via mobile devices, mobile users can interact with each other much more readily
than ever before via online social networking services.

The social aspect of mobile networking is an emerging paradigm for network
design and optimization. A survey of mobile social networking can be found in [5].
There has been some work using the social aspect of mobile users to enable user
cooperation (e.g. cooperative forwarding [4, 6], cooperative relaying [7]). However,
most of them do not consider that a user’s cooperative behavior can affect multiple
users, and affect different users to different extents. Furthermore, as a user’s social
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2 1 Introduction

relationships with other users are generally heterogeneous, it would take into account
the effect of its behavior on different users to different extents, which is not captured
in the existing studies.

1.2 Cooperative Wireless Networking

Node cooperation has been widely recognized as a promising strategy for a variety
of wireless networks. Indeed, individual nodes can achieve significant performance
gain by cooperating in a coordinated way. For example, cooperative communica-
tion is an effective approach for improving the transmission rates among nodes in
a communication network. In a cognitive radio network, cooperative sensing can
enable cognitive radio (CR) users to efficiently detect spectrum opportunities that
are not used by primary users (PUs). Although the benefit of node cooperation is
pronounced, cooperative behaviors come at the cost of the cooperative nodes (e.g.,
in terms of the resource consumption devoted to cooperation). Therefore, for a net-
work consisting of autonomous users, users may not be willing to cooperate without
adequate incentives.

There exist numerous studies on incentive design for stimulating user coopera-
tion for networking. Existing work on this subject can be broadly classified into three
categories. One category of work makes use of reciprocity (also known as barter)
[8–11]. Although a reciprocity-based approach is simple to implement, it is inefficient
in general since it is rare to have synchronously matched requests for cooperation.
Another category is based on (virtual) currency [12–15], in which a user earns cur-
rency by providing service to others and spends currency to receive service from
others. The use of currency as a medium of exchange overcomes the shortcoming
of reciprocity-based approaches by enabling users to “asynchronously trade” coop-
eration. However, a major drawback of using currency is that it incurs a significant
implementation overhead, mainly due to the need to inhibit malicious manipulation
among users without mutual trust. Consider, for example, the Bitcoin [16] that has
recently drawn widespread attention as a digital currency. The creation and transfer
of bitcoins need to consume considerable computing resources so that they can be
secured against potential cheating using cryptographic tools. Reputation-based ap-
proaches [17–19] constitute the third category. Since reputation score can be viewed
as a form of currency, these approaches share the same advantages and disadvantages
as the currency-based ones.

For a network consisting of autonomous users (nodes) (e.g., ad hoc networks),
each user may act in a selfish manner, in the sense that it only cares about its own
benefit (e.g., utility) and does not care about the effect of its behavior on other
users. In this case, the strategic interactions among users can be modeled by a
non-cooperative game (NCG), where each user aims to maximize its payoff. NCG
has been extensively studied for wireless networking applications [20]. Due to the
selfish nature of users, the stable outcome of a non-cooperative game (e.g., a Nash
equilibrium) may achieve a low social welfare (i.e., the total benefit of all users).
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In contrast to selfish users, for a network where nodes are controlled by a central
authority (e.g., sensor networks), all nodes are fully cooperative and aim to achieve
the same system-wide goal. In this case, a widely used objective is network utility
maximization (NUM), which is to maximize the total utility of all nodes. NUM has
been widely studied for resource allocation in wireless networks [21].

Although there exists a significant body of work on NCG and NUM, very little
attention has been paid to the continuum between these two extreme paradigms, espe-
cially in the context of mobile social networking. Recent work [22, 23] have studied
the impact of altruistic behavior in a routing game. [24] has recently investigated a
random access game between two symmetrically altruistic players.
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Chapter 2
Social Group Utility Maximization Framework

2.1 Motivation

As discussed in Chap. 1, the social ties among wireless users significantly influence
their interactions with each other in wireless networks. One fundamental aspect of
the positive social tie between two users is that they are altruistic to each other
such that one cares about the other’s welfare. As a result, a user would take into
account the effect of its behavior on those having social ties1 with it. It is then
natural to ask “Is it possible to exploit users’ social ties to stimulate their cooperative
behaviors?” Indeed, altruistic behaviors are often observed among people with social
ties. With this motivation, we view a wireless network as an overlay/underlay system
(as illustrated in Fig. 2.1), where a “virtual social network” (social domain) overlays
a physical communication network (physical domain). Wireless users are connected
by social ties in the social domain, while their wireless devices are subject to physical
relationships in the physical domain. It is important to observe that users generally
have diverse social ties such that a user cares about others at different levels. For
example, a user may care about her family members more than her friends, and
cares about her friends more than an acquaintance of her. Similarly, it is clear that
wireless devices also generally have diverse physical relationships. For example,
depending on their physical locations, wireless devices can cause different levels of
interference to each other. A primary goal here is to leverage the intrinsic diverse
social tie structure among wireless users, which can be viewed as “hidden incentives”
based on existing human relationships, to facilitate cooperative networking among
their wireless devices subject to diverse physical relationships.

To this end, we advocate a social group utility maximization (SGUM) framework
that takes into account both the diverse social coupling and diverse physical coupling
among users. Specifically, we model the social coupling and physical coupling by
a social graph and physical graph, respectively, and then we cast the distributed
decision making problem among users as a SGUM game.

1 In this brief, we use “social tie” to refer to “positive social tie” for brevity, and we will discuss
“negative social tie” in Chap. 6.
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6 2 Social Group Utility Maximization Framework

Fig. 2.1 Illustration of the social group utility maximization (SGUM) framework

2.2 Physical Network Graph Model

We consider a set of wireless users N = {1, 2, . . ., N} where N is the total number
of users. We denote the set of feasible strategies for each user n ∈ N as Xn. For
instance, a strategy x ∈ Xn can be choosing either a channel or a power level for
wireless transmission. Subject to heterogeneous physical constraints, the strategy
set Xn can be user-specific. For example, the strategy set Xn can be a set of feasible
relay users that are in vicinity of user n for cooperative communication.

To capture the diverse physical coupling among the users in the physical domain,
we introduce a physical graph Gp = {N , Ep} (see Fig. 2.1 for an example). Here
the set of users N is the vertex set, and Ep ≡ {(n, m) : e

p
nm = 1, ∀n, m ∈ N } is the

edge set where e
p
nm = 1 if and only if users n and m have physical coupling (e.g.,

cause interference to each other). We also denote the set of users that have physical
coupling with user n as N p

n ≡ {m ∈ N : e
p
nm = 1}.

Let x = (x1, . . ., xN ) ∈ ∏N
n=1 Xn be the strategy profile of all users. Given the

strategy profile x, the individual utility function of user n is denoted as un(x), which
represents the payoff of user n, accounting for the physical coupling among users. For
example, un(x) can be the achieved data rate or the satisfaction of quality of service
(QoS) requirement of user n under the strategy profile x. Note that in general the
underlying physical graph plays a critical role in determining the individual utility
un(x). For example, users’ achieved data rates are determined by the interference
graph and channel quality.

2.3 Social Network Graph Model

To capture the diverse social coupling among the users in the social domain, we
introduce a social graph Gs = {N , E s} to model their social ties. Here the edge set
is given by E s = {(n, m) : es

nm = 1, ∀n, m ∈ N } where es
nm = 1 if and only if users
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n has a social tie with user m, which can be built on, e.g., the kinship, friendship, or
colleague relationship between them. We denote the social tie level from user n to
user m as snm. We assume that each user n’s social tie level to itself is snn = 1, and
we normalize user n’s social tie level to user m �= i as snm ∈ (0, 1], which represents
the extent to which user n cares about user m relative to user n cares about itself, with
a greater value of snm indicating a stronger social tie. We also assume that snm = 0
if no social tie exists from user n to user m. We define user n’s social group N s

n as
the set of users that have social ties with user n, i.e., N s

n = {m : es
nm = 1, ∀m ∈ N }.

Based on the physical and social graph models described above, users are coupled
in the physical domain due to the physical relationships, and are also coupled in the
social domain due to their social ties. With this insight, we define the social group
utility of each user n as

fn(x) = un(x) +
∑

m∈N s
n

snmum(x). (2.1)

It follows that the social group utility of each user consists of two parts: (1) its own
individual utility and (2) the weighted sum of the individual utilities of other users
having social tie with it. In a nutshell, the social group utility function captures that
each user is socially-aware and cares about the users having social tie with it.

2.4 Social Group Utility Maximization Game

We consider the distributed decision making problem among the users for maximiz-
ing their social group utilities. Let x−n = (x1, . . ., xn−1, xn+1, . . ., xN ) be the set of
strategies chosen by all other users except usern. Given the other users’strategiesx−n,
user n aims to choose a strategy xn ∈ Xn thatmaximizes its social group utility, i.e.,

max
xn∈Xn

fn(xn, x−n), ∀n ∈ N .

The distributed nature of the problem above naturally leads to a formulation based
on game theory such that each user aims to maximize its social group utility. We
thus formulate the decision making problem among the users as a strategic game
Γ = (N , {Xn}n∈N , {fn}n∈N ), where the set of users N is the set of players, Xn is the
set of strategies for each user n, and the social group utility function fn of each user
n is the payoff function of player n. In the sequel, we call the game Γ as the SGUM
game. We next introduce the concept of socially-aware Nash equilibrium (SNE).

Definition 2.1 A strategy profile x∗ = (x∗
1 , . . ., x∗

N ) is a socially-aware Nash equi-
librium of the SGUM game if no player can improve its social group utility by
unilaterally changing its strategy, i.e.,

x∗
n = arg max

xn∈Xn

fn(xn, x−n), ∀n ∈ N .
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Fig. 2.2 The social group
utility maximization (SGUM)
game captures
non-cooperative game (NCG)
and network utility
maximization (NUM) as
special cases

It is worth noting that under different social graphs, the proposed SGUM game
formulation can provide rich flexibility for modeling network optimization problems
(as illustrated in Fig. 2.2). When the social graph consists of isolated nodes with
snm = 0 for any n, m ∈ N (i.e., all users are socially-oblivious), the SGUM game
degenerates to a standard non-cooperative game. When the social graph is fully
meshed with edge weight snm = 1 for any n, m ∈ N (i.e., all users are fully altruistic),
the SGUM game becomes a network utility maximization problem, which aims
to maximize the system-wide utility. The SGUM framework can be applied with
general social graphs and thus can bridge the gap between non-cooperative game
and network utility maximization—two traditionally disjoint paradigms for network
optimization (as illustrated in Fig. 2.3). These two paradigms are captured under the
SGUM framework as two special cases where no social tie exists among users, and
all users are connected by strongest social ties, respectively.

We emphasize that the SGUM game is quite different from a coalitional game [1],
since each user in the latter aims to maximize its individual benefit (although it
is achieved by cooperating with other users). Furthermore, while each user in a
coalitional game can only participate in one coalition, a user in the SGUM game can
be in multiple social groups of different users.

Fig. 2.3 The social group utility maximization (SGUM) framework spans the continuum between
non-cooperative game (NCG) and network utility maximization (NUM)
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The SGUM is a general framework that can be applied for a wide range of wireless
networking applications. To get a more concrete sense of the framework, in the rest
of this brief, we will study its application in a number of specific contexts.
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Chapter 3
SGUM-based Random Access Control
and Power Control

In this chapter, we study the application of the SGUM framework to two classical
problems for wireless networks: random access control and power control.

3.1 Introduction

Wireless spectrum is a limited resource shared by wireless users. Due to the broadcast
nature of wireless communication, wireless nodes in physical proximity are subject
to interference to each other if they transmit concurrently on the shared wireless
spectrum. Multiple access methods have been developed to allow wireless nodes
to share the use of wireless resources in an interference-free manner. In contrast to
contention-free multiple access (e.g., TDMA, FDMA) which relies on centralized
coordination, contention-based random access allows contending wireless nodes to
share wireless spectrum in a distributed manner. On the other hand, interference-free
environment may not be available in some wireless networks. For example, in
CDMA systems, perfect orthogonality among users’ transmit signals is difficult to
achieve, and thus a user’s transmission is affected by the interference power received
from other users. In interference-limited wireless networks, power control represents
a key degree of freedom for network design and optimization. Game theory has been
extensively applied to study the strategic decision making among autonomous and
rational users for both random access control and power control. A survey of random
access control games and power control games can be found in [1] and [2], respec-
tively. To stimulate user cooperation for efficient spectrum sharing, we cast random
access control and power control among userswith social ties as SGUM games.

3.2 SGUM-based Random Access Control

3.2.1 System Model

We consider a set of users under the protocol interference model, where each user
i is a link consisting of transmitter Ti and receiver Ri . For example, in Fig. 3.1, T1

interferes with R2, T2 interferes with R1, T3 interferes with R1, where dashed circles

© The Author(s) 2014 11
X. Gong et al., Social Group Utility Maximization, SpringerBriefs in Electrical
and Computer Engineering, DOI 10.1007/978-3-319-12322-6_3



12 3 SGUM-based Random Access Control and Power Control

Fig. 3.1 An example of three
links under the protocol
interference model

T3R3

R1 T1

T2 R2

define the interference ranges of transmitters. Let I+
i denote the set of receivers

that transmitter Ti causes interference to, and I−
i denote the set of transmitters that

causes interference to receiver Ri . In a time-slotted system, each user i contends for
the opportunity of data transmission with probability qi ∈ [0, 1] in a time slot. If
multiple interfering links contend in the same time slot, a collision occurs and no
link can grab the transmission opportunity. Then the probability bi that user i can
grab the transmission opportunity is given by

bi(qi , q−i) = qi

∏

j∈I−
i

(1 − qj ). (3.1)

We assume that the individual utility of user i is given by

ui(qi , q−i) = log (θibi) − ciqi (3.2)

where θi > 0 represents user i’s efficiency of utilizing the transmission opportunity
(e.g., transmission rate), and ci > 0 represents user i’s cost of contention. Note that
the logarithmic function is widely used for modeling the utility of wireless users
[3, 4]. Then, under the SGUM framework, we define the SGUM-based random
access control game as G � (N , {qi}, {fi}), where

fi(qi , q−i) = log

⎛

⎝θiqi

∏

j∈I−
i

(1 − qj )

⎞

⎠ − ciqi

∑

j �=i

sij

⎡

⎢
⎣log

⎛

⎜
⎝θjqj

∏

k∈I−
j

(1 − pk)

⎞

⎟
⎠ − cjqj

⎤

⎥
⎦ . (3.3)
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3.2.2 Game Analysis

We first have the following result.

Theorem 3.1 For the SGUM-based random access control game, there exists a
unique SNE, which is

qSNE
i =

∑
j∈I+

i
sij + 1 + ci −

√
(
∑

j∈I+
i

sij + 1 + ci)2 − 4ci

2ci

, ∀i ∈ N . (3.4)

Proof . Using (3.3), setting the first-order derivative of fi(qi , q−i) to 0, we have

∂fi(qi , q−i)

∂qi

= 1

qi

−
∑

j∈I+
i

sij

1 − qi

− ci

=
ciq

2
i −

(∑
j∈I+

i
sij + 1 + ci

)
qi + 1

qi(1 − qi)
= 0. (3.5)

Then we obtain the smaller root of Eq. (3.5) as

∑
j∈I+

i
sij + 1 + ci −

√(∑
j∈I+

i
sij + 1 + ci

)2 − 4ci

2ci

≤ 1 + ci − √
(1 + ci)2 − 4ci

2ci

≤ 1 (3.6)

where the first inequality follows from that the first-order derivative of the small root
with respect to sij is

1

2ci

⎛

⎜
⎝1 −

∑
j∈I+

i
sij + 1 + ci

√
(
∑

j∈I+
i

sij + 1 + ci)2 − 4ci

⎞

⎟
⎠ < 0. (3.7)

We also obtain the larger root of Eq. (3.5) as

∑
j∈I+

i
sij + 1 + ci +

√(∑
j∈I+

i
sij + 1 + ci

)2 − 4ci

2ci

≥ 1 + ci + √
(1 + ci)2 − 4ci

2ci

≥ 1.

Therefore, the SNE strategy qSNE
i is unique and is the smaller root of Eq. (3.5). �

The result below directly follows from Theorem 3.1 and (3.7).
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1 1 

Fig. 3.2 For a two-user SGUM game for random access control, as the social tie level s � s12 = s21

increases from 0 to 1, each user’s SNE strategy qSNE migrates from its NE strategy qNC,NE for a
standard NCG to its social optimal strategy qSO for NUM, and the social welfare vSNE of the SNE
also migrates correspondingly

Corollary 3.1 Each user’s access probability at the SNE is decreasing as its social
tie levels with others increase.

Remark 3.1 . We observe that each user’s SNE strategy does not depend on other
users’ strategies (also known as a dominant strategy), but depends on the user’s
social ties with others. Clearly, when a user increases its access probability, it also
increases the collision probabilities of the users within its interference range, and
thus reduces their individual utilities. Therefore, a user would decrease its access
probability when its social ties with those within its interferencerange get stronger
(as illustrated in Fig. 3.2).

Let V (q) denote the social welfare of all users, i.e., the total individual utility of
all users:

V (q) �
N∑

i=1

⎡

⎣log

⎛

⎝θiqi

∏

j∈I−
i

(1 − qj )

⎞

⎠ − ciqi

⎤

⎦ . (3.8)

Proposition 3.1 The social welfare of the SNE is increasing as social tie levels
increase, and reaches the social optimal point when all socialtie levels are equal to 1.

Proof . Using (3.8), setting the first-order derivative of V (q) to 0, we have

∂V (q)

∂qi

= ciq
2
i − (|I+

i | + 1 + ci)qi + 1

qi(1 − qi)
= 0. (3.9)

Similar to the proof of Theorem 3.1, we obtain the social optimal strategy qSO
i that

maximizes V (q) as the smaller root of Eq. (3.9), which is

qSO
i = |I+

i | + 1 + ci −
√(|I+

i | + 1 + ci

)2 − 4ci

2ci

.

Since the larger root of Eq. (3.9) is

|I+
i | + 1 + ci +

√
(|I+

i | + 1 + ci)2 − 4ci

2ci
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Fig. 3.3 Impact of number of
users
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≥ 1 + ci + √
(1 + ci)2 − 4ci

2ci

≥ 1,

we have ∂V (q)
∂qi

< 0 for qi ∈ [qSO
i , 1], and thus V (q) is decreasing in qi when

qi ∈ [qSO
i , 1]. Using Corollary 3.1, qSNE

i is decreasing in sij , ∀j ∈ I+
i , ∀i ∈ N , and

hence V (qSNE) is increasing in sij , ∀j ∈ I+
i , ∀i ∈ N . �

Remark 3.2 . Intuitively, since the social welfare is equal to users’ individual utilities
summed up with the same weight 1, a user’s SNE strategy is closer to the social
optimal strategy when other users weigh more in that user’s social group utility
(i.e., the social tie levels to them increase), and the social welfare increases. As
social tie levels increase, a user’s SNE strategy migrates from its NE strategy for a
standard NCG to its social optimal strategy for NUM (as illustrated in Fig. 3.2). This
demonstrates that the SGUM game framework spans the continuum between these
traditionally disjoint paradigms.

3.2.3 Numerical Results

We consider N users each of which is a link consisting of a transmitter and a re-
ceiver. Each transmitter or receiver is randomly located in a square area with side
length 500 m. Under the protocol interference model, we assume that a link causes
interference to another link if the former link’s transmitter is within 100 m of the
latter link’s receiver. We simulate the social graph based on both the Erdos-Renyi
(ER) model with link probability 0.5 and the real data trace of the friendship network
Brightkite. We assume that the strength of a social tie is 1 if the social tie exists.

To illustrate the system efficiency of the SGUM solution, we compare it with
the NCG solution where each user aims to maximize its individual utility, and the
NUM solution where the total individual utility of all users is maximized. Figure 3.3
depicts the social welfare of the SNE for SGUM and the social optimal solution for
NUM normalized with respect to the NE for NCG, as the number of users increases.
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Fig. 3.4 Illustration of the
physical interference model T1

h1

g12

g21

h2
T2

R1

R2

We can see that the SGUM solution for the ER model based social graph always
dominates that of the NCG, with a substantial performance gain up to 22 %. On the
other hand, it performs almost as well as the NUM solution. This demonstrates that
system efficiency can be significantly improved by exploiting social ties. We observe
that the SGUM solution for the real data based social graph is worse than that for the
ER model based social graph due to that social ties are weaker in the real data than in
the ER graph with link probability 0.5. However, it still can achieve a performance
gain up to 13 % over that of the NCG solution.

3.3 SGUM-based Power Control

3.3.1 System Model

We consider a set of users under the physical interference model, where each user
i is a link consisting of a transmitter Ti and a receiver Ri . The channel gain of
communication link i is hi , and the channel gain of the interference link between
transmitter Ti and receiver Rj is gij (as illustrated in Fig. 3.4). The noise at receiver
Ri is ni . Then the signal tointerference and noise ratio (SINR) γi of link i is given by

γi(pi , p−i) = hipi

ni + ∑N
j=1 gjipj

where pi denotes the transmit power of Ti . We assume that the individual utility ui

of player i is given by

ui(pi , p−i) = log (γj ) − cipi

where ci denotes the cost of per unit power consumption. Similar to Sect. 3.2, we
also use the logarithmic function to model the utility of a user. For example, log (γi)
can be a good approximation for the channel capacity log (1 + γi) under the high
SINR regime. Also, log (γi) can be used to quantify the satisfaction of wireless
users’ requirements in terms of SINR. Then, under the SGUM framework, we define
the SGUM game for power control as G � (N , {pi}, {fi}), where

fi(pi , p−i) = log

(
hipi

ni + ∑
j �=i gjipj

)

− cipi +
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∑

k �=i

sik

(

log

(
hkpk

nk + ∑
j �=k gjkpj

)

− ckpk

)

. (3.10)

3.3.2 Game Analysis

We first have the following result.

Theorem 3.2 The SGUM-based power control game is a supermodular game, and
thus there exists at least one SNE.

Proof . Using (3.10), we have

∂fi(pi , p−i)

∂pi

= 1

pi

−
∑

k �=i

sikgik

nk + ∑
j �=k gjkpj

− ci .

Since each term in theabove summation term is decreasing in pj , ∀j ∈ N \ i, it
follows that

∂2fi(pi , p−i)

∂pi∂pj

> 0, ∀j ∈ N \ i

which implies that the social group utility function fi(pi , p−i) is supermodular. It
follows from [5] that there exists at least one NE. �

Since the SGUM-based power control game is a supermodular game, it follows
from [6] that users can start from any strategies (e.g., p = (0, · · · , 0)) and use
asynchronous best response updates such that their strategies will monotonically
converge to a SNE.

For ease of exposition, in the rest of this section we will focus on the SGUM-based
power control game with two users, because the two-user case can shed light on the
impact of social ties on users’ strategies and social welfare. Furthermore, in general,
the game with more than two users does not yield closed-form SNE strategies, and
hence is much more difficult to quantify the impact.

Theorem 3.3. For the two-user SGUM-based power control game, there exists a
unique SNE, which is

pSNE
1 =

√
α2

1 + β1 − α1, pSNE
2 =

√
α2

2 + β2 − α2

where

α1 ≡ s12g12 + c1n2 − g12

2c1g12
, β1 ≡ n2

c1g12

and

α2 ≡ s21g21 + c2n1 − g21

2c2g21
, β2 ≡ n1

c2g21
.
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Proof .

u1(p1, p2) = log

(
h1p1

n1 + g21p2

)

− c1p1 +

s12 log

(
h2p2

n2 + g12p1

)

− s12c2p2,

we have

∂u1(p1, p2)

∂p1
= 1

p1
− s12g12

n2 + g12p1
− c1.

Since

lim
p1→0

(
1

p1
− s12g12

n2 + g12p1

)

≥ lim
p1→0

(
1

p1
− s12

p1

)

= ∞

and

lim
p1→∞

(
1

p1
− s12g12

n2 + g12p1

)

= 0

and

∂
(

1
p1

− s12g12
n2+g12p1

)

∂p1
= − 1

p2
1

+ s12g
2
12

(n2 + g12p1)2

= (s12 − 1)g2
12p

2
1 − 2n2g12p1 − n2

2

p2
1(n2 + g12p1)2

< 0,

there exists a unique value of p1 such that

1

p1
− s12g12

n2 + g12p1
− c1 = 0, (3.11)

which is also the value of pSNE
1 . Solving (3.11), we obtain the desired result. Similarly,

we can obtain pSNE
2 . �

Next we have the following result.

Corollary 3.2. For the two-user SGUM-based power control game, each user’s
transmit power at the SNE is decreasing as its social tie level with the other increases.

Proof .

pSNE
1 =

√
α2

1 + β1 − α1

and

α1 ≡ s12g12 + c1n2 − g12

2c1g12
, β1 ≡ n2

c1g12
> 0,
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Fig. 3.5 For the two-user SGUM-based power control game, as the social tie level s � s12 = s21

increases from 0 to 1, each user’s SNE strategy pSNE migrates from its NE strategy pNC,NE for a
standard NCG to its social optimal strategy pSO for NUM, and the social welfare vSNE of the SNE
also migrates correspondingly

we have

∂pSNE
1

∂s12
=

∂

(√
α2

1 + β1 − α1

)

∂α1

∂α1

∂s12

=
⎛

⎜
⎝

α1
√

α2
1 + β1

− 1

⎞

⎟
⎠

1

2c1
< 0.

So pSNE
1 is decreasing in s12. Similarly, we can show that pSNE

2 is decreasing in s21.
�

Proposition 3.2 For the two-user SGUM-based power control game, the social
welfare of the SNE is increasing as social tie levels increase, and reaches the social
optimal point when all social tie levels are equal to 1.

Proof . Since

V (p1, p2) = log

(
h1p1

n1 + g21p2

)

− c1p1

+ log

(
h2p2

n2 + g12p1

)

− c2p2

we have
∂V (p1, p2)

∂p1
= 1

p1
− g12

n2 + g12p1
− c1.

Using the same argument as in the proof of Theorem 3.3., the optimal value pSO
1 of

p1 for V (p1, p2) is the unique solution of

1

p1
− g12

n2 + g12p1
− c1 = 0.
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Fig. 3.6 Impact of number of
users
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In particular, we have pSNE
1 ≥ pSO

1 . Since ∂V (p1,p2)
∂p1

< 0 when p1 ≥ pSO
1 , V (p1, p2) is

decreasing in p1 when p1 ≥ pSO
1 . Using Lemma 3.2., pSNE

1 is decreasing in s12, and
hence V (pSNE

1 , pSNE
2 ) is increasing in s12 since pSNE

2 is independent of s12. Similarly,
we can show that V (pSNE

1 , pSNE
2 ) is increasing in s21. �

Remark 3.3. Similar to the SGUM-based random access control game, for the two-
user SGUM-based power control game, each user’s strategy at the SNE is also a
dominant strategy. As a user’s social tie level with the other increases, the user’s
transmit power at the SNE decreases, and the social welfare increases. Therefore, as
the social tie level increases, a user’s SNE strategy migrates from its NE strategy for
a standard NCG to its social optimal strategy for NUM (as illustrated in Fig. 3.5).

3.3.3 Numerical Results

We consider N users each of which is a link consisting of a transmitter and a receiver.
Each transmitter or receiver is randomly located in a square area with side length
500 m. Under the physical interference model, we assume that the channel condition
of a link (communication or interference link) only depends on the path loss effect
with path loss factor 3. We assume that the transmit power of each link is 1 W and
the noise power at each receiver is 0.1 W.

Figure 3.6 shows the normalized social welfare for a varying number of users. We
can see that the SGUM solution for the ER model based social graph can achieve a
performance gain up to 23 % over the NCG solution, and its performance loss from
the NUM solution is at most 10 %. The SGUM solution for the real data based social
graph can achieve a performance gain up to 15 %.

3.4 Summary

In this chapter, we study the SGUM-based random access control and power control.
For the SGUM-based random access control game, we derive the unique SNE. For
the SGUM-based power control game, we show that it is a supermodular game and
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thus there exists an SNE. We also derive the unique SNE for the two-user case of the
SGUM-based power control game. For both games, we show that as social tie levels
increase, each user’s SNE strategy is decreasing and the social welfare of the SNE
is increasing. Our findings provide useful insights into the impact of social ties on
users’ strategies and social welfare.
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Chapter 4
SGUM-based Database Assisted Spectrum
Access

In this chapter, we study the application of the SGUM framework to database assisted
spectrum access.

4.1 Introduction

The very recent FCC ruling requires that white-space users (i.e., secondary TV
spectrum users) must rely on a geo-location database to determine the spectrum
availability [1]. Although the database-assisted approach obviates the need of spec-
trum sensing by individual users, it remains challenging to achieve reliable shared
spectrum access, because different white-space users may choose to access the same
vacant channel and thus incur severe interference to each other. To stimulate effective
cooperation for channel allocation among white-space users, we cast the database
assisted distributed spectrum access problem among white-space users with social
ties as a SGUM game.

4.2 System Model

We consider a set of white-space users N = {1, 2, . . ., N} where N is the total num-
ber of users. We denote the set of TV channels as M = {1, 2, . . ., M}. According
to the recent ruling by FCC [1], to protect the incumbent primary TV users, each
white-space user n ∈ N will first send a spectrum access request message containing
its geo-location information to a Geo-location database (see Fig. 4.1 for an illustra-
tion). The database then feeds back the set of vacant channels Mn ∈ M and the
allowable transmission power level Pn to user n. The ruling by FCC indicates that the
allowable transmission power limit for personal/portable white-space devices (e.g.,
mobile phones) is 100 mW [1]. For ease of exposition, we hence assume that each
user n accesses the white-space spectrum with the same power level. Each user n then
chooses a feasible channel an from the vacant channel set Mn for data transmission.

© The Author(s) 2014 23
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Fig. 4.1 An illustration of database assisted spectrum access

Although the database-assisted approach obviates the need of spectrum sensing by
individual users, it remains challenging to achieve reliable distributed spectrum ac-
cess, because many different white-space users may choose to access the same vacant
channel and thus incur severe interference to each other [2, 3].

To stimulate effective cooperation among users for interference mitigation, we
leverage the social ties among users and apply the SGUM approach. To capture the
physical coupling, we construct the interference graph Gp = {N , Ep} based on the
interference relationships among users. Here the set of white-space users N is the
vertex set, and Ep ≡ {(n, m) : e

p
nm = 1, ∀n, m ∈ N } is the edge set where e

p
nm = 1

if and only if users n and m can generate significant interference and affect the data
transmissions of each other. For example, we can construct the interference graph Gp

based on spatial relationships of the users [4]. Let δ denote the transmission range
of each user. We then have e

p
nm = 1 if and only if the distance dnm between user n

and m is not greater than the threshold δ, i.e., dnm ≤ δ.
Let a = (a1, . . ., aN ) ∈ ∏N

n=1 Mn be the channel selection profile of all users.
Given the channel selection profile a, the interference received by user n can be
computed as

γn(a) =
∑

m∈N p
n

Pmd−α
mn I{an = am} + ωn

an
. (4.1)

Here α is the path loss factor and I{A} is an indicator function with I{A} = 1 if the
event A is true and I{A} = 0 otherwise. Furthermore, ωn

an
denotes the noisy power

including the interference from primary TV users on the channel an. We then define
the individual utility function un(a) as

un(a) = −γn(a) = −
∑

m∈N p
n

Pmd−α
mn I{an = am} − ωn

an
. (4.2)

Here the negative sign comes from the convention that utility functions are typically
the ones to be maximized. The individual utility of user n reflects the fact that each
user n has interest to reduce its own received interference. To capture the social
coupling in the social graph Gs , we further introduce the social group utility of each
white-space user n according to (2.1) as

fn(a) = un(a) +
∑

m∈N s
n

snmum(a). (4.3)
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We then formulate the database assisted spectrum access problem as a SGUM
game Γ = (N , {Mn}n∈N , {fn}n∈N ), where the set of white-space users N is the set
of players, the set of vacant channels Mn is the set of strategies for each player n, and
the social group utility function fn of each user n is the payoff function of player n.

4.3 Existence of Social-Aware Nash Equilibrium

We next study the existence of SNE of the SGUM game for database assisted spectrum
access. Here we resort to a useful tool of potential game [5].

Definition 4.1 A game is called a potential game if it admits a potential function
Φ(a) such that for every n ∈ N and a−n ∈ ∏

i �=n Mi , for any an, a
′
n ∈ Mn,

fn(a
′
n, a−n) − fn(an, a−n) = Φ(a

′
n, a−n) − Φ(an, a−n). (4.4)

An appealing property of the potential game is that it always admits a Nash equilib-
rium, and any strategy profile that maximizes the potential function Φ(a) is a Nash
equilibrium [5].

For the SGUM game Γ for database assisted spectrum access, we can show
that it is a potential game. For ease of exposition, we first introduce the physical-
social graph Gsp = {N , E sp} to capture both physical coupling and social coupling
simultaneously. Here the vertex set is the same as the user set N and the edge set
is given as E sp = {(n, m) : e

sp
nm ≡ es

nm · e
p
nm = 1, ∀n, m ∈ N } where e

sp
nm = 1

if and only if users n and m have social tie between each other (i.e., es
nm = 1)

and can also generate interference to each other (i.e., e
p
nm = 1). We denote the

set of users that have social ties and can also generate interference to user n as
N sp

n = {m : e
sp
nm = 1, ∀m ∈ N }.

Based on the physical-social graph Gsp, we show in Theorem 4.1 that the SGUM
game Γ is a potential game with the following potential function

Φ(a) = −1

2

N∑

n = 1

∑

m∈N p
n

Pmd−α
mn I{an = am} −

N∑

n = 1

ωn
an

︸ ︷︷ ︸
Φ1(a): due to physical coupling

−1

2

N∑

n = 1

∑

m∈N sp
n

snmPmd−α
mn I{an = am}

︸ ︷︷ ︸
Φ2(a): due to social coupling

. (4.5)

The potential function in (4.5) can be decomposed into two parts: Φ1(a) and Φ2(a).
The first part Φ1(a) reflects the weighted system-wide interference level (including
background noise) due to physical coupling in the physical domain and the second
part Φ2(a) captures the interdependence of user utilities due to social coupling in the
social domain.
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Theorem 4.1 The SGUM game Γ for database assisted spectrum access is a po-
tential game with the potential function Φ(a) given in (4.5), and hence has a
SNE.

The proof is given in Appendix. Note that when snm = 0 for any user n, m ∈ N
(i.e., all users are selfish), the potential function Φ(a) = Φ1(a), which does not
involve the social coupling part Φ2(a). In this case, the SGUM game Γ for database
assisted spectrum access degenerates to the non-cooperative spectrum access game.
When snm = 1 for any user n, m ∈ N (i.e., all users are fully altruistic), the potential
function Φ(a) = ∑N

n=1 un(a), which is the system-wide utility. In this case, the
SGUM becomes the network utility maximization.

We next design a distributed spectrum access algorithm that can achieve the SNE
of the SGUM game Γ for database assisted spectrum access.

4.4 Distributed Spectrum Access Algorithm

In this section we study the distributed spectrum access algorithm design.

4.4.1 Algorithm Design Principles

According to the property of potential game, any channel selection profile a that
maximizes the potential function Φ(a) is a Nash equilibrium [5]. We hence design
a distributed spectrum access algorithm that achieves the SNE of the SGUM Γ by
maximizing the potential function Φ(a).

To proceed, first consider the problem that the users collectively compute the
optimal channel selection profile such that the potential function is maximized, i.e.,

max
a∈Ω≡∏N

n=1 Mn

Φ(a). (4.6)

The problem (4.6) involves a combinatorial optimization over the discrete solution
space Ω . In general, it is very challenging to solve such a problem exactly especially
when the system size is large (i.e., the solution space Ω is large).

With this observation, it is plausible to search for approximate solutions to the
potential function maximization problem. To this end, rewrite

We then consider to approach the potential function maximization solution ap-
proximately. To proceed, we first write the problem (4.6) as the following equivalent
randomized problem:

max
(qa≥0:a∈Ω)

∑

a∈Ω

qaΦ(a)

s.t.
∑

a∈Ω

qa = 1, (4.7)
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where qa is the probability that channel selection profile a is adopted. Obviously, the
optimal solution to problem (4.7) is to choose the optimal channel selection profiles
with probability one. It is known from the Markov approximation approach in [6] that
problem (4.7) can be approximated by the following convex optimization problem:

max
(qa≥0:a∈Ω)

∑

a∈Ω

qaΦ(a) − 1

θ

∑

a∈Ω

qa ln qa

s.t.
∑

a∈Ω

qa = 1, (4.8)

where θ is the parameter that controls the approximation ratio. Note that the approx-
imation in (4.8) can guarantee the asymptotic optimality. This is because that when
θ → ∞, the problem (4.8) boils down to exactly the same as problem (4.7). That is,
when θ → ∞, the optimal solutions that maximize the potential function Φ(a) will
be selected with probability one. Moreover, the approximation in (4.8) enables us
to obtain the close-form solution, which facilitates the distributed algorithm design
later. More specifically, by the KKT conditions [7], the optimal solution to problem
(4.8) is given as

q∗
a = exp (θΦ(a))

∑
â∈Ω exp (θΦ(â))

. (4.9)

Based on (4.9), we then design a self-organizing algorithm such that the asyn-
chronous channel selection updates of the users form a Markov chain (with the
system state as the channel selection profile a of all users). As long as the Markov
chain converges to the stationary distribution as given in (4.9), we can approach the
Nash equilibrium channel selection profile that maximizes the potential function by
setting a large enough parameter θ .

4.4.2 Markov Chain Design for Distributed Spectrum Access

Motivated by the seminal work on the adaptive CSMA mechanism [8], we propose a
distributed spectrum access algorithm in Algorithm 1 such that each user n updates
its channel selection according to a timer value that follows the exponential distri-
bution with a rate of τn. Note that the study in [8] focuses on the network utility
maximization, while in this paper we consider the social group utility maximization,
which results in significant differences in analysis.

Appealing to the property of exponential distributions, we have that the probability
that more than one users generate the same timer value and update their channels
simultaneously equals zero. Since one user will activate for the channel selection
update at a time, the direct transitions between two system states a and a

′
are feasible

if these two system states differ by one and only one user’s channel selection. We
also denote the set of system states that can be transited directly from the state a



28 4 SGUM-based Database Assisted Spectrum Access

Algorithm 1 Distributed Spectrum Access Algorithm For Social Group Utility
Maximization
1: initialization:
2: set the parameter θ and the channel update rate τn.
3: choose a channel an ∈ Mn randomly for each user n ∈ N .
4: end initialization

5: loop for each user n ∈ N in parallel:
6: compute the social group utility fn(an,a−n) on the chosen channel an.
7: generate a timer value following the exponential distribution with the mean equal to 1

τn .
8: count down until the timer expires.
9: if the timer expires then
10: choose a new channel an ∈ Mn randomly.
11: compute the social group utility fn(an,a−n) on the new channel an.

12: stay in the new channel an with probability
exp θ fn(an,a−n)

max{exp(θ fn(an,a−n)),exp(θ fn(an,a−n))}
, Or

move back to the original channel an with probability 1−
exp θ fn(an,a−n)

max{exp(θ fn(an,a−n)),exp(θ fn(an,a−n))}
.

13: end if
14: end loop

as Δa = {a ′ ∈ Ω : |{a ′ ∪ a}\{a ′ ∩ a}| = 2}, where | · | denotes the size of a set.
According to (4.3), a user n can compute the social group utility fn(a) by locally
enquiring the users having social ties with it about their received interferences. Then
user n will randomly choose a new channel a

′
n ∈ Mn and stay in this channel with

a probability of

exp
(
θfn(a

′
n, a−n)

)

max{exp
(
θfn(a ′

n, a−n)
)

, exp (θfn(an, a−n))} . (4.10)

The underlying intuition behind (4.10) is as follows. When fn(a
′
n, a−n) ≥

fn(an, a−n) (i.e., the new channel a
′
n offers the better performance), user n will

stay in the new channel a
′
n with probability one. According to the property of poten-

tial game in (4.4), we know that choosing the new channel a
′
n can help to increase

both user n’s social group utility fn(a) and the potential function Φ(a) of the SGUM
game. When fn(a

′
n, a−n) < fn(an, a−n) (i.e., the original channel an offers the better

performance), user n will switch back to the original channel an with a probability of

1− exp
(
θfn(a

′
n,a−n)

)

exp(θfn(an,a−n)) . That is, the probability that user n will switch back to the original

channel an increases with the performance gap fn(an, a−n) −fn(a
′
n, a−n). We would

like to emphasize that such probabilistic channel selections are necessary such that
all the users can explore the feasible channel selection space to prevent the algorithm
from getting stuck at a local optimum.

Then from a system-wide perspective, the probability of transition from state
(an, a−n) to (a

′
n, a−n) due to user n’s channel selection update is given as

1

|Mn|
exp

(
θfn(a

′
n, a−n)

)

max{exp
(
θfn(a ′

n, a−n)
)

, exp (θfn(an, a−n))} . (4.11)
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Since each user n activates its channel selection update according to the countdown
timer mechanism with a rate of τn, hence if a

′ ∈ Δa , the transition rate from state a

to state a
′
is given as

qa,a′ = τn

|Mn|
exp

(
θfn(a

′
n, a−n)

)

max{exp
(
θfn(a ′

n, a−n)
)

, exp (θfn(an, a−n))} . (4.12)

Otherwise, we have qa,a′ = 0. We show in Theorem 4.2 that the spectrum access
Markov chain is time reversible. Time reversibility means that when tracing the
Markov chain backwards, the stochastic behavior of the reverse Markov chain re-
mains the same. A nice property of a time reversible Markov chain is that it always
admits a unique stationary distribution, which is independent of the initial system
state. This implies that given any initial channel selections the distributed spectrum
access algorithm can drive the system converging to the stationary distribution given
in (4.9).

Theorem 4.2 The distributed spectrum access algorithm induces a time-reversible
Markov chain with the unique stationary distribution as given in (4.9).

The proof is given in Appendix. One key idea of the proof is to show that the
distribution in (4.9) satisfies the following detailed balance equations: q∗

aqa,a′ =
q∗

a
′ qa

′ ,a , ∀a, a
′ ∈ Ω.

4.4.3 Performance Analysis

According to Theorem 4.2, we can achieve the SNE that maximizes the potential
function Φ(a) of the SGUM game Γ by setting θ → ∞. However, in practice
one has to choose only implement a finite value of θ . Let Φ̄ = ∑

a∈Ω q∗
aΦ(a)

be the expected potential by Algorithm 1 and Φ∗ = maxa∈ΩΦ(a) be the maximum
potential. We show in Theorem 4.3 that, when a large enough θ is adopted in practice,
the gap between Φ̄ and Φ∗ is very small.

Theorem 4.3 For the distributed spectrum access algorithm, we have that 0 ≤
Φ∗ − Φ̄ ≤ 1

θ

∑N
n=1 ln |Mn|, where |Mn| denotes the number of vacant channels of

user n.

Proof First of all, we must have that Φ∗ ≥ Φ̄. According to (4.7) and (4.8), we then
have that

max
(qa :a∈Ω)

∑

a∈Ω

qaΦ(a) ≤ max
(qa :a∈Ω)

∑

a∈Ω

qaΦ(a) − 1

θ

∑

a∈Ω

qa ln qa , (4.13)

which is due to the fact that 0 ≤ − 1
θ

∑
a∈Ω qa ln qa ≤ 1

θ
ln |Ω|. Since q∗

a is the
optimal solution to (4.8) and Φ∗ = max(qa :a∈Ω)

∑
a∈Ω qaΦ(a), according to (4.13),

we know that

Φ∗ ≤
∑

a∈Ω

q∗
aΦ(a) − 1

θ

∑

a∈Ω

q∗
a ln q∗

a
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≤
∑

a∈Ω

q∗
aΦ(a) + 1

θ
ln |Ω| ≤ Φ̄ + 1

θ
ln |Ω|,

which completes the proof. �

We next discuss the efficiency of the SNE by the distributed spectrum access
algorithm when θ is sufficiently large (i.e., θ → ∞). Let V (a) be the total individual
utility received by all the users under the channel selection profile a, i.e., V (a) =∑N

n=1 un(a). We denotea as the NUM solution that maximizes the system-wide utility
(i.e., a = arg maxa∈ΩV (a)) and â as the convergent SNE by the distributed spectrum
access algorithm (i.e., â = arg maxa∈ΩΦ(a)). We then define the performance gap
ρ as the difference between the total utility received at the NUM solution a and that
of the SNE â, i.e., ρ = V (a) − V (â). We can show the following result.

Theorem 4.4 The performance gap ρ of the SNE by the distributed spectrum access
algorithm is at most

1

2

N∑

n=1

∑

m∈N sp
n

(1 − snm)Pmd−α
mn + 1

2

N∑

n=1

∑

m∈N p
n \N sp

n

Pmd−α
mn .

Proof According to (4.1) and (4.5), we have that

V (a) =
N∑

n=1

un(a) = −
N∑

n = 1

∑

m∈N p
n

Pmd−α
mn I{an = am} −

N∑

n = 1

ωn
an

= Φ(a) − 1

2

N∑

n = 1

∑

m∈N sp
n

(1 − snm)Pmd−α
mn I{an = am}

− 1

2

N∑

n = 1

∑

m∈N p
n \N sp

n

Pmd−α
mn I{an = am}.

We then have that

ρ = V (a) − V (â) = Φ(a) − Φ(â)

− 1

2

N∑

n = 1

∑

m∈N sp
n

(1 − snm)Pmd−α
mn

(
I{an = am} − I{ân = âm}

)

− 1

2

N∑

n = 1

∑

m∈N p
n \N sp

n

Pmd−α
mn

(
I{an = am} − I{ân = âm}

)
. (4.14)

Since Φ(â) = maxa∈ΩΦ(a) ≥ Φ(a) and V (a) = maxa∈ΩV (a) ≥ V (â), we know
from (4.14) that

ρ ≤1

2

N∑

n = 1

∑

m∈N sp
n

(1 − snm)Pmd−α
mn

(
I{ân = âm} − I{an = am}

)
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+ 1

2

N∑

n = 1

∑

m∈N p
n \N sp

n

Pmd−α
mn

(
I{ân = âm} − I{an = am}

)

≤1

2

N∑

n = 1

∑

m∈N sp
n

(1 − snm)Pmd−α
mn + 1

2

N∑

n = 1

∑

m∈N p
n \N sp

n

Pmd−α
mn . �

Theorem 4.4 indicates that the upper-bound of the performance gap ρ decreases as the
strength of social tie snm among users increases. When snm = 0 for any user n, m ∈ N
(i.e., all users are selfish), the social group utility maximization game Γ degenerates
to the non-cooperative spectrum access game and the upper-bound of the performance
gap ρ reaches the maximum of 1

2

∑N
n=1

∑
m∈N p

n
Pmd−α

mn . When snm = 1 for any user
n, m ∈ N (i.e., all users are fully altruistic), the SGUM becomes the NUM and
the performance gap ρ = 0. In Sect. 4.5, we also evaluate the performance of the
SGUM solution by real social data traces. Numerical results demonstrate that the
performance gap between the SGUM solution and the NUM solution is at most 15 %.

4.5 Numerical Results

In this section, we evaluate the SGUM solution for database assisted spectrum access
by numerical studies based on both Erdos-Renyi social graphs and real trace based
social graphs.

4.5.1 Social Graph with 8 White-Space Users

We first consider a database assisted spectrum access network consisting of M = 5
channels and N = 8 white-space users, which are scattered across a square area of
a length of 500 m (see Fig. 4.2). The transmission power of each user is Pn = 100
mW [1], the path loss factor α = 4, and the background interference power ωn

m for
each channel m and user n is randomly assigned in the interval of [ − 100, −90]
dBm. Each user n has a different set of vacant channels by consulting the geo-
location database. For example, the vacant channels for user 1 are {2, 3, 4}. For the
interference graph Gp, we define that the user’s transmission range δ = 1000 m and
two users can generate inference to each other if their distance is not greater than δ.
The social graph Gs is given in Fig. 4.2 where two users have social tie if there is
an edge between them and the numerical value associated with each edge represents
the strength of social tie.

We implement the proposed distributed spectrum access algorithm for the SGUM
game with different parameters θ in Fig. 4.3. We see that the convergent potential
function value Φ of the SGUM game increases as the parameter θ increases. When the
parameter θ is large enough (e.g., θ ≥ 106), the algorithm can approach the maximum
potential function value Φ∗ = maxaΦ(a). Figure 4.4 shows the dynamics of user’s
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Fig. 4.2 A square area of a
length of 500 m with 8
scattered white-space users
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Fig. 4.3 The convergent
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Fig. 4.4 Dynamics of users’
time average interference
when θ = 106
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Fig. 4.5 Dynamics of
potential value Φ when
θ = 106
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time average interference γn(a). It demonstrates that the distributed spectrum access
algorithm can drive users’ time average interference decreasing and converging to
an equilibrium such that each user only receives a small interference level. To verify
that the algorithm can approach the SNE of the SGUM game, we show the dynamics
of the potential value Φ(a) in Fig. 4.5. We see that the distributed spectrum access
algorithm can drive the potential value Φ increasing and approach the maximum
potential value Φ∗. According to the property of potential game, the algorithm hence
can approach the SNE of the SGUM game.

4.5.2 Erdos-Renyi Social Graph

We then consider N = 100 users that randomly scattered across a square area of a
length of 2000 m. We evaluate the SGUM game solution by the distributed spectrum
access algorithm with the social graph represented by the Erdos-Renyi (ER) graph
model [9], where a social link exists between any two users with a probability of PL.
We set the strength of social tie snm = 1 for each social link. To evaluate the impact of
social link density of the social graph, we implement the simulations with different
social link probabilities PL = 0, 0.1, . . ., 1.0, respectively. For each given PL, we
average over 100 runs. To benchmark the SGUM solution, we also implement the
the following two solutions:

(1) Non-cooperative spectrum access: we implement the non-cooperative game
based solution such that each user aims to maximize its individual utility, i.e.,
we set fn(a) = un(a) in the distributed spectrum access algorithm.

(2) Network utility maximization: we implement the social optimal solution such
that the system-wide utility is maximized, i.e., we set fn(a) = ∑N

n=1 un(a) in
the distributed spectrum access algorithm.
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Fig. 4.6 Normalized
system-wide interference
with number of nodes
N = 100 and different social
network density
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Similar to the price of anarchy in non-cooperative game [10], we normalize the
system-wide interference of these solutions with respect to that of the social optimal
solution (i.e., network utility maximum solution). The results are given in Fig. 4.6.
We see that the performance of the SGUM solution always dominates that of the
non-cooperative spectrum access. This is non-trivial since non-cooperative game
promotes the competition among users to increase the system-wide utility and has
been widely adopted to devise efficient distributed resource allocation mechanisms
in wireless networks [11]. Moreover, we observe that the performance gain of the
SGUM solution increases as the social link probability PL increases. When the
social link probability PL = 1, the SGUM solution achieves the same performance
of the network utility maximization and can reduce 23 % system-wide interference
over the non-cooperative spectrum access. This also demonstrates that the proposed
SGUM framework spans the continuum space between non-cooperative game and
network utility maximization—two extreme paradigms based on drastically different
assumptions that users are selfish and altruistic, respectively.

4.5.3 Real Trace Based Social Graph

We next evaluate the SGUM solution by the distributed spectrum access algorithm
based on the social graph represented by the friendship network of the real data
trace Brightkite [12]. We implement experiments with the number of users N =
200, 300, . . ., 600, respectively. As the benchmark, we also implement the solutions
of non-cooperative spectrum access and network utility maximization.

The results are shown in Fig. 4.7. We see that the non-cooperative spectrum access
solution will increase the system-wide interference up-to 29 % over the network util-
ity maximization solution. Upon comparison, the system-wide interference by the the
SGUM solution will increase at most 15 %, compared with the network utility maxi-
mization solution. This verifies the effectiveness of leveraging social tie to stimulate
user cooperation for achieving efficient distributed spectrum access in practices.
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Fig. 4.7 Normalized system-wide interference with different number of users

4.6 Summary

In this chapter, we study the SGUM-based database assisted spectrum access. We
show that the SGUM-based spectrum access game is a potential game and thus
always admits a SNE. Then we design a distributed spectrum access algorithm that
can achieve an SNE. We also derive the upper-bound of the performance gap of the
SNE from the NUM solution. Numerical results demonstrate that the performance
gap between the SGUM solution and the NUM solution is at most 15 %.

Appendix

Proof of Theorem 4.1

Suppose that a user k changes its channel ak to a
′
k such that the channel selection

profile changes from a to a
′
. We have that

Φ(a
′
) − Φ(a) = Φ1(a

′
) − Φ1(a) + Φ2(a

′
) − Φ2(a). (4.15)

For the part Φ1, we have that

Φ1(a
′
) − Φ1(a) = − 1

2

∑

m∈N p
k

Pmd−α
mk I{a′

k = am} − 1

2

∑

n�=k

∑

k∈N p
n

Pkd
−α
kn I{an = a

′
k}

− ωk

a
′
k

+ 1

2

∑

m∈N p
k

Pmd−α
mk I{ak = am}

+ 1

2

∑

n�=k

∑

k∈N p
n

Pkd
−α
kn I{an = ak} + ωk

ak
. (4.16)
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Since users access the spectrum with the same power level and the interference
relationship and distance measurement are symmetry, we know that

∑

n�=k

∑

k∈N p
n

Pkd
−α
kn =

∑

n∈N p
k

Pkd
−α
kn =

∑

n∈N p
k

Pnd
−α
nk . (4.17)

Combining (4.16) and (4.17), we have that

Φ1(a
′
) − Φ1(a) = − 1

2

∑

m∈N p
k

Pmd−α
mk I{a′

k = am} − 1

2

∑

n∈N p
k

Pnd
−α
nk I{an = a

′
k} − ωk

a
′
k

+ 1

2

∑

m∈N p
k

Pmd−α
mk I{ak = am} + 1

2

∑

n∈N p
k

Pnd
−α
nk I{an = ak} + ωk

ak

= −
∑

m∈N p
k

Pmd−α
mk I{a′

k = am} − ωk

a
′
k

+
∑

m∈N p
k

Pmd−α
mk I{ak = am} + ωk

ak

= − γk(a
′
) + γk(a) = Uk(a

′
) − Uk(a). (4.18)

Similarly, for the part Φ2, we have that

Φ2(a
′
) − Φ2(a) =

∑

n∈N sp
k

wkn

(
−Pkd

−α
kn I{an = a

′
k} + Pkd

−α
kn I{an=ak}

)

=
∑

n∈N sp
k

wkn ×

⎛

⎝−Pkd
−α
kn I{an = a

′
k} −

∑

m�=k

∑

m∈N p
n

Pmd−α
mn I{an = am} − ωk

an

+Pkd
−α
kn I{an = ak} +

∑

m�=k

∑

m∈N p
n

Pmd−α
mn I{an = am} + ωk

an

⎞

⎠

=
∑

n∈N sp
k

wkn

(
−γn(a

′
) + γn(a)

)

=
∑

n∈N sp
k

wkn

(
Un(a

′
) − Un(a)

)
. (4.19)

Finally, substituting (4.18) and (4.19) into (4.15), we obtain that

Φ(a
′
) − Φ(a) = Uk(a

′
) − Uk(a) +

∑

n∈N sp
k

wkn

(
Un(a

′
) − Un(a)

)
. (4.20)

Since user k can not generate interference to any user n ∈ N s
k \N sp

k , we have that

Un(a
′
) = Un(a), ∀n ∈ N s

k \N sp

k .
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This implies that

Φ(a
′
) − Φ(a) = Uk(a

′
) − Uk(a) +

∑

n∈N sp
k

wkn

(
Un(a

′
) − Un(a)

)

+
∑

n∈N s
k \N sp

k

wkn

(
Un(a

′
) − Un(a)

)

= Uk(a
′
) − Uk(a) +

∑

n∈N s
k

wkn

(
Un(a

′
) − Un(a)

)
,

which completes the proof. �

Proof of Theorem 4.2

As mentioned, the system state of the spectrum access Markov chain is defined as
the channel selection profile a ∈ Θ of all users. Since it is possible to get from any
state to any other state within finite steps of transition, the spectrum access Markov
chain is hence irreducible and has a stationary distribution.

We then show that the Markov chain is time reversible by showing that the
distribution in (4.9) satisfies the following detailed balance equations:

q∗
aqa,a′ = q∗

a
′ qa

′ ,a , ∀a, a
′ ∈ Θ. (4.21)

To see this, we consider the following two cases:

1) If a
′
/∈ Δa , we have qa,a′ = qa

′ ,a = 0 and the Eq. (4.21) holds.

2) If a
′ ∈ Δa , according to (4.9) and (4.12), we have

q∗
aqa,a′ = τn

|Mn|
exp (θΦ(a))

∑
â∈Θ exp (θΦ(â))

× exp
(
θSn(a

′
n, a−n)

)

max{exp
(
θSn(a ′

n, a−n)
)

, exp (θSn(an, a−n))}

= τn

|Mn|
exp

(
θ
(
Φ(a) + Sn(a

′
n, a−n)

))

∑
â∈Θ exp (θΦ(â))

× 1

max{exp
(
θSn(a ′

n, a−n)
)

, exp (θSn(an, a−n))} ,

and similarly,

q∗
a

′ qa
′ ,a = τn

|Mn|
exp

(
θ
(
Φ(a

′
) + Sn(an, a−n)

))

∑
â∈Θ exp (θΦ(â))

× 1

max{exp
(
θSn(a ′

n, a−n)
)

, exp (θSn(an, a−n))} .
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Thus, according to (4.4), we must have

q∗
aqa,a′ = q∗

a
′ qa

′ ,a.

The spectrum access Markov chain is hence time-reversible and has the unique
stationary distribution as given in (4.9). �
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Chapter 5
SGUM-based Pseudonym Change
for Personalized Location Privacy

In this chapter, we study the application of the SGUM framework to pseudonym
change for personalized location privacy.

5.1 Introduction

With the rapid growth of mobile networks, location-based services (LBS) have
become increasingly popular recently (e.g., location-based navigation and recom-
mendation). However, the providers of LBSs are often considered not trustworthy,
due to the risk of leaking users’ location information to other parties (e.g., sell users’
location data). As a result, mobile users are exposed to potential privacy threats when
using a LBS. Although a user can use a pseudonym for the LBS, an adversary can
infer the user’s real identity from its location traces (e.g., from the user’s home and
work addresses). To protect location privacy, an effective approach is to “confuse”
the adversary using the notion of anonymity [1]: mobile users in physical proximity
can change their pseudonyms simultaneously to form an anonymity set, so that the
adversary cannot distinguish any of them from the others.

A basic assumption commonly used in existing studies [2, 3, 4] is that all users
participating in pseudonym change have the same anonymity set. However, from an
individual user’s perspective, the set of users that can obfuscate its pseudonym (i.e.,
its anonymity set) can be different from that of another user, depending on users’
physical locations. For example, a user with a higher level of privacy sensitivity can
have a smaller anonymity set than others. It is thus desirable to meet users’ needs for
personalized location privacy. To this end, we consider a general anonymity model
where a user can define its specific anonymity set different from others’(as illustrated
in Fig. 5.1).

In this chapter, we leverage the social tie structure among mobile users to incen-
tivize them to participate in pseudonym change. To this end, we cast users’ decision
making of whether to participate in pseudonym change as a SGUM game, based on
a general anonymity model that allows each user to have its specific anonymity set.

© The Author(s) 2014 39
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Fig. 5.1 Illustration of a general anonymity model: each user specifies its anonymity set for person-
alized location privacy by defining an anonymity range, e.g., a disk centered at the user’s location.
User 1 and 2 are out of user 3’s anonymity range and thus are not in user 3’s anonymity set (rep-
resented by no direct edge from user 1 or 2 to user 3); user 1 and 3 are within user 2’s anonymity
range and thus are in user 2’s anonymity set (represented by directed edges from user 1 and 3 to
user 2)

5.2 System Model

We consider a mobile network where users obtain their locations via mobile de-
vicesthat are capable of localization (e.g., by GPS or wireless access points based
localization). Users send their locations to a LBS provider for a certain LBS (e.g.,
location-based navigation or recommendation), and the LBS provider feedbacks the
desired results to the users based on their reported locations. To protect privacy, each
user uses a pseudonym as its identity for the LBS.

As in [1, 4, 5], we assume that the LBS provider is untrusted, i.e., it may leak users’
location traces to an adversary. For example, the adversary may steal the location
data by hacking into the LBS system. The adversary aims to learn the real identity
of a user by linking and analyzing the locations visited by the user’s pseudonym. We
also assume that users are honest-but-curious such that each user honestly follows
the protocols with others (which will be discussed in Sect. 5.5.3), but is curious about
others’ private information. We further assume that the adversary may collude with a
limited number of users to gain useful information for inferring a user’s real identity.

The use of pseudonym allows short-term reference to a user (e.g., one pseudonym
can be used for the navigation of an entire trip between two locations), which is
useful for many LBSs and does not disclose private information. However, long-
term linking among a user’s locations should be prevented, as it may reveal sufficient
information for inferring the user’s real identity [6, 7, 8]. Although a user may hide
explicit linking among its locations by changing its pseudonym, the adversary can
still link different pseudonyms of the user by exploiting spatial-temporal correlation
in its locations. For example, consider a user that visits location l1 with pseudonym
Alice at time t1, and then visits location l2 that is close to location l1 with pseudonym
Bob at time t2. If the adversary observes from the location traces that no other user
changes its pseudonym between time t1 and t2, or there exists such a user but it
does not visit any location close to location l1 or l2, then the adversary can infer that
pseudonym Alice and Bob must refer to the same user, since only the same user can
visit both location l1 and l2 within the limited period between time t1 and t2.
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To protect location privacy from inference attacks, an effective approach is
based on the notion of anonymity: users in physical proximity can coordinate their
pseudonym changes to happen simultaneously [1], so that the adversary cannot
link their pseudonyms before the changes to their respective pseudonyms after the
changes. Existing studies [2, 3, 4] assume that all users participating in pseudonym
change have the same anonymity set. However, based on an individual user’s belief
of the adversary’s power against its location privacy (e.g., the adversary’s side infor-
mation about that user), the set of users that it believes can obfuscate its pseudonym
(i.e., its anonymity set) can be different from that of another user. Thus motivated,
we consider a general anonymity model that can meet users’ needs for personalized
location privacy, depending on users’ physical locations. In particular, each user
specifies an anonymity range (a physical area) such that the set of users within the
anonymity range constitute that user’s potential anonymity set. For example, a user’s
anonymity range can be a disk centered at the user’s location, with a large radius
indicating a low level of privacy sensitivity (as illustrated in Fig. 5.1). Note that for
two users at different locations, their anonymity ranges are different even when they
have the same shape (e.g., two disks with the same radius but different centers), and
thus their potential anonymity sets can be different.

Formally, consider a set of users N � {1, · · · , N} where each user i makes
a decision ai on whether or not to participate in pseudonym change, denoted by
ai = 1 and ai = 0, respectively. Based on users’ physical locations, the privacy gain
perceived by a user participating in pseudonym change depends on which users also
participate. Each user i incurs a cost of ci > 0 to participate in pseudonym change.
This cost is due to a number of factors, e.g., the participating users should stop using
the LBS for a period of time. Based on the general anonymity model, the physical
coupling among users can be captured by a physical graph (N , EP ), where user j

is connected by a directed edge eP
ji ∈ EP to user i if user j is in user i’s potential

anonymity set, denoted by N P
i− (i.e., j ∈ N P

i−). Note that the physical coupling
between two users can be asymmetric. The privacy gain perceived by a participating
user i is defined as its anonymity set size, i.e., the number of participating users in N P

i−.
Note that the anonymity set size is a widely adopted privacy metric1 for anonymity-
based approaches. For example, k-anonymity is used as the privacy metric in [4, 5],
where a user achieves location privacy if its pseudonym cannot be distinguished
among k users. Then the individual utility of user i, denoted by ui , is given by

ui(ai , a−i) � ai

⎛

⎜
⎝

∑

j∈N P
i−

aj − ci

⎞

⎟
⎠ (5.1)

1 Another privacy metric is the entropy of the adversary’s uncertainty of a user’s pseudonym.
However, it is usually difficult to compute since it requires probability distribution which is difficult
to attain.
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where a−i denotes the vector of the strategies of all users except user i. If a user
participates, its individual utility is its privacy gain minus its participation cost;
otherwise, it is zero. Note that ci is a relative cost compared to privacy gain.

To take into account the social ties among users, each user i aims to maximize its
social group utility, defined as

fi(ai , a−i) � ui(ai , a−i) +
∑

j∈N S
i+

sij uj (aj , a−j ). (5.2)

Note that a user does not need to know the individual utilities of its social neighbors
(which may be their private information) to make the decision (as will be shown in
Eq. (5.3)). In Sect. 5.5.3, we will discuss how social information can be used while
preserving the privacy of users’ real identities with each other.

Under the SGUM framework, users’ socially-aware decision making for
pseudonym change boils down to a social group utility maximization game. Specifi-
cally, each user i ∈ N is a player and its strategy2 is ai ∈ {0, 1}. Let a = (a1, · · · , an)
denote the strategy profile consisting of all users’ strategies. The payoff function of a
user is defined as its social group utility function. Given the strategies of other users,
each user i aims to choose the best response strategy that maximizes its social group
utility:

maximize
ai

fi(ai , a−i), ∀i ∈ N .

For the sake of system efficiency, a natural objective is to maximize the social
welfare of the system, which is the total individual utility of all users denoted by
v(a) �

∑
i∈N ui(a). A strategy profile a∗ = (a∗

1 , · · · , a∗
n) is social optimal [9] if

it achieves the maximum social welfare among all profiles, i.e., v(a∗) ≥ v(a), ∀a.
Although the social optimal profile is the best outcome in terms of system efficiency,
it is often not acceptable by all users. Then, it is desirable to achieve the “best” SNE,
i.e., the SNE that achieves the maximum social welfare among all SNEs. For brevity,
we will refer to this SNE as the best SNE.

Another desirable notion for system efficiency is Pareto-optimality. A strategy
profile apo = (apo

1 , · · · , apo
n ) is Pareto-optimal [9] if there does not exist a Pareto-

superior profile a′ = (a′
1, · · · , a′

n) such that no user achieves a worse individual
utility while at least one user achieves a better individual utility, i.e.,

ui(a
′
i , a

′
−i) ≥ ui(a

po

i , apo

−i), ∀i ∈ N

with at least one strict inequality.
For the SGUM-based PCG, we are interested in answering the following important

questions: Does the game admit a SNE? How can we efficiently find a SNE with
desirable system efficiency?

2 As we focus on pure strategies in this work, we use “strategy” and “action” interchangeably.
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Fig. 5.2 Example of SO-PCG. The number beside a user is its cost. Using best response dynamics,
we have u6 = 2 − 2.2 < 0 → a6 = 0 → u3 = 0 − 0.5 < 0 → a3 = 0 → N1 = {1, 2, 4, 5}, which
is a SNE. It is also Pareto-superior to the other two SNEs: N1 = {4, 5} and N1 = ∅, and hence is
the best SNE

5.3 Benchmark: Socially-Oblivious Pseudonym Change Game

As the benchmark, we start with a basic case of the PCG: the PCG for socially-
oblivious users (SO-PCG), i.e., sij = 0, ∀eS

ij ∈ N S . In this case, each user is selfish
and the social group utility degenerates to the individual utility.

For SO-PCG, there can exist multiple SNEs3 with different values of social welfare
(as illustrated in Fig. 5.2). For system efficiency, it is desirable to achieve the “best”
SNE, which is the SNE that achieves the maximum social welfare among all SNEs. To
find this SNE, we can use best response dynamics as follows: with all users’ actions
initially set to 1, each user asynchronously updates its action as its best response
action based on other users’ actions (no two users update at the same time). We
illustrate how it works by an example in Fig. 5.2. We use N1(a) � {i ∈ N |ai = 1} to
denote the set of participating users. The next result formally states that best response
dynamics can find the best SNE.

Proposition 5.1 For SO-PCG, best response dynamics can converge to a SNE that
achieves the maximum social welfare among all SNEs.

The proof is given in Appendix. As the best SNE achieves the maximum system
efficiency among all SNEs, we will use the best SNE for SO-PCG as a benchmark
for the general case of the PCG: the PCG for socially-aware users (SA-PCG).

5.4 Existence of SNE

We first establish the existence of SNE. Using (5.1) and (5.2), we have

fi(1, a−i) − fi(0, a−i)

3 For SO-PCG, an SNE is equivalent to a NE for a standard non-cooperative game. For consistency
of terminology, we still call it “SNE” in this case.
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= ui(1, a−i) − ui(0, a−i) +
∑

j∈N S
i+

sij

(
uj (1, a−i)−uj (0, a−i)

)

=
∑

j∈N P
i−

aj − ci +
∑

j∈N S
i+

sij aj . (5.3)

It is clear from (5.3) that no user participating is always a SNE. We therefore conclude
that at least one SNE exists.

Then we show an important property of the social group utility function. It follows
from (5.3) that

fi(1, a−i) − fi(0, a−i) − (
fi(1, a′

−i) − fi(0, a′
−i)

)

=
∑

j∈N P
i−

aj − ci +
∑

j∈N S
i+

sij aj −
⎛

⎜
⎝

∑

j∈N P
i−

a′
j − ci +

∑

j∈N S
i+

sij a
′
j

⎞

⎟
⎠

=
∑

j∈N P
i−

(aj − a′
j ) +

∑

j∈N S
i+

sij (aj − a′
j ) (5.4)

Let a ≤ a′ denote element-wise inequality (i.e., ai ≤ a′
i , ∀i ∈ N ). The property

below follows from (5.4).

Property 5.1 (Supermodularity) If a−i ≤ a′
−i , then fi(1, a−i) − fi(0, a−i) ≤

fi(1, a′
−i) − fi(0, a′

−i).
Property 5.1 implies that if a user’s best response strategy is to participate, then it

remains the best response strategy if more users participate; if a user’s best response
strategy is to not participate, then it remains the best response strategy if less users
participate.

5.5 Computing Pareto-Optimal SNE

Next we turn our attention to finding a SNE with desirable system efficiency.
For the PCG for fully altruistic users (i.e., sij = 1, ∀eS

ij ∈ N S), it is clear that the
social optimal profile a∗ is a SNE, which is the solution to the following problem:

maximize
a

∑

i∈N
ai

⎛

⎜
⎝

∑

j∈N P
i−

aj − ci

⎞

⎟
⎠

subject to ai ∈ {0, 1}, ∀i ∈ N . (5.5)
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Fig. 5.3 Using best response dynamics, we have f1(1, 1)−f1(0, 1) = 1−1.5+0.8 > 0, f2(1, 1)−
f2(1, 0) = 1 − 1.5 + 0.8 > 0, and hence N1 = {1, 2} is a SNE. However, it is not Pareto-optimal,
since it is Pareto inferior to N1 = ∅ as u1(0, 0) = u2(0, 0) = 0 > 1 − 1.5 = u1(1, 1) = u2(1, 1).
Furthermore, its social welfare is less than that of N1 = ∅ as v(1, 1) = −1 < 0 = v(0, 0), where
N1 = ∅ is also a SNE for SO-PCG

Observe that problem (5.5) is an integer quadratic programming, which is difficult to
solve in general4. Since the PCG for fully altruistic users is a special case of SA-PCG,
it is also difficult to compute the best SNE for SA-PCG. Based on this observation,
our objective below is to efficiently compute a SNE with desirable system efficiency.

To compute a SNE of SA-PCG, a naive approach is to use best response dynamics
in a similar way as with SO-PCG: with all users’ actions initially set to 1, each user
asynchronously updates its action as its best response action based on other users’
actions. Due to Property 5.1, a user who changes its strategy from 1 to 0 will never
change it back to 1, and thus the best response dynamics always converges to a SNE.
However, it has drawbacks as illustrated by an example in Fig. 5.3: the SNE may
not be Pareto-optimal and its social welfare may be worse than that of a SNE for
SO-PCG. Thus motivated, our objective below is to efficiently find a SNE such that
(1) it is Pareto-optimal and (2) its social welfare is no less than that of the best SNE
for SO-PCG, which is the benchmark.

5.5.1 Algorithm Design

To this end, we design an algorithm as described in Algorithm 2. The main idea
of the algorithm is to greedily determine users’ strategies, depending on the social
group utility derived from the users whose strategies have been determined (referred
as “determined users”), denoted by

f ′
i (ai , a−i) � ui(ai , a−i) +

∑

j∈N S
i+\N

sij uj (ai , a−i)

where N denotes the set of users whose strategies have not been determined (referred
as “undetermined users”). An undetermined user’s action is fixed once it becomes
determined.

Specifically, the algorithm proceeds in rounds and each round consists of phase
I and phase II. In phase I, with all undetermined users’ actions initially set to 1, an

4 We conjecture that problem (5.5) is an NP-hard problem.
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Algorithm 2 Compute a Pareto-optimal SNE for SA-PCG
1: N ← N ;
2: repeat
3: // Phase I;
4: a ← (1, · · · ,1),NI ← N ;
5: while ∃i ∈ N such that ui(1,a−i)+∑ j∈N S

i+\N si ja j < 0 do
6: ai ← 0,NI ← NI \{i};
7: end while
8: // Phase II;
9: N ← N \NI ,NII ← ∅;
10: while ∃i ∈ N such that ui(1,a−i)+∑ j∈N S

i+\N si ja j ≥ 0 do
11: ai ← 1,N ← N \{i},NII ← NII ∪{i};
12: end while
13: untilNI ∪NII = ∅;
14: return ae ← a;

Fig. 5.4 Example to illustrate
how Algorithm 2 works: The
number next to a user is its
cost; the number beside a
social edge is its social tie
level
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undetermined user’s action is changed from 1 to 0 if that improves its social group
utility derived from the determined users, i.e.,

f ′
i (1, a−i) − f ′

i (0, a−i) = ui(1, a−i) +
∑

j∈N S
i+\N

sij aj < 0

until no such user exists. Then the undetermined users whose actions remain 1
become determined and their actions are fixed to 1. In phase II, with all undetermined
users’ actions initially set to 0, an undetermined user becomes determined and its
action is fixed to 1 if that improves its social group utility derived from the determined
users, until no such user exists. The algorithm terminates when no undetermined user
becomes determined during either phase I or phase II of a round.

We use the example in Fig. 5.4 to illustrate how to compute a SNE using
Algorithm 2 and outline the steps as follows.
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• Phase I of 1st round: u1 = 1 − 1.2 < 0 → a1 = 0; u5 = 1 − 1.5 < 0 →
a5 = 0; u4 = 0 − 1.2 < 0 → a4 = 0 → u3 = 2 − 2.5 < 0 → a3 = 0;
u7 = 2 − 2.2 < 0 → a7 = 0 → u8 = 0 − 0.8 < 0 → a8 = 0; u2 = 1 − 0.6 > 0;
u6 = 1 − 0.8 > 0; NI = {2, 6}.

• Phase II of 1st round: u5 + s56 = 1 − 1.5 + 0.6 > 0 → a5 = 1 → u1 + s12 = 1 −
1.2+0.5 > 0 → a1 = 1; u3+s32 = 1−2.5+0.8 < 0; u7+s76 = 1−2.2+0.5 < 0;
u4 = 0 − 1.2 < 0; u8 = 0 − 0.8 < 0; NII = {1, 5}.

• Phase I of 2nd round: u4 = 0−1.2 < 0 → a4 = 0 → u3+s32 = 2−2.5+0.8 > 0;
u7 + s76 = 2 − 2.2 + 0.5 > 0; u8 = 1 − 0.8 > 0; NI = {3, 7, 8}.

• Phase II of 2nd round: u4 + s43 + s48 = 0 − 1.2 + 0.6 + 0.8 > 0 → a4 = 1;
NII = {4}.

Since the size of the set of undetermined users N is upper bounded by n, the com-
putational complexity of either phase I or phase II of a round is bounded by O(n2).
Since at least one user is determined during a round, the algorithm must terminate
within n rounds. Therefore, the running time of the algorithm is bounded by O(n3).
In Sect. 5.6, numerical results will demonstrate that the computational complexity of
Algorithm 2 increases almost quadratically with the number of users. In Sect. 5.5.2,
we will discuss a distributed version of Algorithm 2.

Theorem 5.1 For SA-PCG, the strategy profile ae = (ae
1, · · · , ae

n) computed by
Algorithm 2 is a Pareto-optimal SNE.

The proof is given in Appendix. As the SNE computed by Algorithm 2 is Pareto-
optimal, it is desirable for system efficiency. Next we show that its social welfare is
no less than that of the best SNE for SO-PCG. To this end, we first show that the
Pareto-optimal SNE is monotonically “increasing” with respect to social tie levels.

Theorem 5.2 For SA-PCG, when social tie levels increase (i.e., s ′
ij ≥ sij , ∀i, j ∈

N ), the corresponding Pareto-optimal SNE ae′
satisfies that ae′ ≥ ae and v(ae′

) ≥
v(ae).

The proof is given in Appendix. Intuitively, with stronger social ties to other users,
a user is more likely to participate in favor of its social group utility, even at the cost of
reducing its individual utility. Theorem 5.2 confirms this intuition: as social ties get
stronger, more users participate at the Pareto-optimal SNE. Furthermore, the social
welfare achieved at the Pareto-optimal SNE is also increasing.

When Algorithm 2 is used for SO-PCG, we can see that it works exactly the same
as the best response dynamics used to find the best SNE for SO-PCG, and therefore
they find the same profile. Based on this observation, using Theorem 5.2, we have
the following result.

Corollary 5.1 The social welfare of the Pareto-optimal SNE for SA-PCG is no less
than that of the best SNE for SO-PCG.

Corollary 5.1 guarantees that the social welfare of the Pareto-optimal SNE is
no less than the benchmark SNE for SO-PCG. In Sect. 5.6, numerical results will
demonstrate that the Pareto-optimal SNE is efficient, with a performance gain up to
20 % over the benchmark.
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5.5.2 Distributed Computation of Pareto-optimal SNE

The Pareto-optimal SNE computed by Algorithm 2 can be achieved in a distributed
manner. To this end, each user first obtains its potential anonymity set and its social
tie levels with others. Following Algorithm 2, each user checks if it should change
its strategy according to the condition in line 5 or 10 based on other users’ strategies,
and if yes, announces the change to all users. With time divided into slots, a random
backoff mechanism can be used so that at most one user announces a change of
strategy in a time slot. If no user announces a change, it indicates the end of phase
I or phase II in Algorithm 2. Therefore, all users keep aware of the current state of
the algorithm as it proceeds, and thus can act correctly according to the algorithm.
The computational complexity of the distributed version of Algorithm 2 is almost
the same as the centralized version, and is upper bounded by O(n3). Note that each
user only knows the strategies of other users during the execution the algorithm, and
thus users’ privacy is preserved. After reaching the Pareto-optimal SNE, the users
who decide to change their pseudonyms coordinate their pseudonym changes.

5.5.3 Further Discussions

We assume that there is a third party platform where users interact with each other
to make pseudonym change decisions and coordinate their pseudonym changes.
The platform only serves to allow information exchanges among users (e.g., an
online chat service [10, 11]). We assume that the platform is honest-but-curious such
that it honestly delivers messages among users, but is curious about users’ private
information. To protect privacy, each user also uses a pseudonym as its identity on
the platform (which can be different from that used for the LBS). To make a socially-
aware pseudonym change decision, each users needs to know its potential anonymity
set and its social tie levels with others. This can be achieved in a privacy-preserving
manner using secure protocols as discussed below. Note that the platform is not
involved in the computing tasks of these protocols.

A user can learn whether another user is within its anonymity range using a
certain private proximity detection protocol [12, 13]. For example, the protocol
proposed in [12] can be used if the anonymity range is a disk. Specifically, the
protocol involves several message exchanges between the two users, including one
message that contains encrypted values that are functions of a user’ location or
the radius of the anonymity range. The protocol guarantees that both users can
only learn the binary result of whether or not one is in another’s anonymity range,
and neither user can learn the other’s location or anonymity range. In addition,
since location information is encrypted in the messages, the platform cannot learn
any user’s location information. Similarly, the protocol in [13] can be used if the
anonymity range is a convex polygon. Therefore, each user can learn its potential
anonymity set without revealing its location information.
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A user can also learn its social tie level with another user without disclosing one’s
real identity to the other. To this end, each user keeps a social profile consisting of
the social communities that it belongs to (e.g., a community of colleagues at the
same workplace), and sets a single social tie level for each community based on its
social relationships with those in the community. Each community is identified by
a predefined key that is only known to the community’s members. Using a certain
private matching protocol such as [14, 15], two users can learn whether they have
a community in common, and if yes, which community5 it is. In particular, the
protocol involves several message exchanges between the two users, including one
message that contains encrypted values that are functions of the keys of a user’s social
communities. The protocol ensures that both users can only know the community
they have in common (if it exists), and neither user can learn any additional social
information of the other, or pretend to have a community in common with the other.
Since a community typically has many members, neither user can know the other’s
real identity even when they know the community they both belong to. In addition,
since social information is encrypted in the messages, the platform cannot learn any
user’s social information. Therefore, each user can learn its social tie levels with
those in its potential anonymity set while keeping their real identities private. Note
that although the adversary might collude with multiple users, it is almost infeasible
for the adversary to find a significant number of colluding users who have social ties
with a specific user, in order to infer the user’s real identity.

5.6 Numerical Results

In this section, we provide numerical results to illustrate the system efficiency of the
Pareto-optimal SNE computed by Algorithm 2. We compare the social welfare of
the Pareto-optimal SNE with the maximum social welfare of all SNEs for SO-PCG
and the optimal social welfare, which is found by exhaustive search.

We consider N mobile users who are interested in participating in pseudonym
change. They are randomly located in a square area with side length 500 m. We
assume that the anonymity range of each user is a disk centered at the user’s location
with radius randomly chosen from {200 m, 300 m, 400 m}. Based on users’ physical
locations and anonymity ranges, there exists a physical edge from user i to user j if
user i is in the anonymity range of user j . We assume that a user’s cost of changing
pseudonym is uniformly distributed in [0, C]. We simulate the social graph using
two methods as follows.

5 To protect privacy, only one community in common is revealed if they have multiple communities
in common.
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Fig. 5.5 Impact of PS
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5.6.1 Erdos-Renyi Model Based Social Graph

We simulate the social graph based on the Erdos-Renyi (ER) graph model [16], where
a social edge exists between any two users with probability PS . We assume that the
level of a social tie is 1 if it exists. We set the default values of parameters as follows:
N = 10, PS = 0.5, C = 3. For each set of parameter values, we average the results
over 1000 runs.

We illustrate the impact of PS , C, and N on the normalized social welfare in
Figs. 5.5, 5.6, and 5.7, respectively. We observe from these figures that socially-
aware users significantly outperforms socially-oblivious users, especially when PS

or C is large, or N is small. This is due to that more users participate in pseudonym
change when they are socially-aware, which improves the social welfare. On the
other hand, the social welfare of socially-aware users is close to the optimal social
welfare. Figure 5.5 shows that the performance of socially-aware users improves
when PS increases, with a performance gain up to 20 % over socially-oblivious
users and a performance gap about 10 % on average from the optimal social wel-
fare. This is due to that stronger social ties further encourage users to participate.
Figures 5.6 and 5.7 show that the performance gap of socially-oblivious users com-
pared to socially-aware users and the optimal social welfare, respectively, decreases
as C or N increases. This is because that, with a lower participation cost or higher
privacy gain of participation due to the increase of total user number, more users
would participate even when they are socially-oblivious. Therefore, the performance
gap reduces as it depends on the users that participate only when they are socially-
aware. We plot the number of iterations for running Algorithm 2 versus N in Fig. 5.8.
We observe that the computational complexity increases almost quadratically as the
user number increases. This shows that our algorithm is scalable for a large number
of users.
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Fig. 5.6 Impact of C
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Fig. 5.7 Impact of N
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Fig. 5.8 Computational
complexity versus N
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5.6.2 Real Data Trace Based Social Graph

We simulate the social graph according to the social friendship network of the real
data trace from Brightkite [17]. We plot the average number of social edges of a user
versus the number of users in Fig. 5.9. We illustrate the impact of N on the social
welfare in Fig. 5.10, where we set the range of participation cost as C = 3. We can
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Fig. 5.9 Average number of
social edges per user versus
N for the real data trace
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Fig. 5.10 Impact of N for the
real data trace
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see that the performance gain of socially-aware users can achieve up to 15 % over
socially-aware users, while its performance gap from the optimal social welfare is
less than 10 % on average. This verifies the effectiveness of exploiting social ties for
improving location privacy based on real social data.

5.7 Summary

In this chapter, we study the SGUM-based pseudonym change for personalized
location privacy. The SGUM-based PCG is based on a general anonymity model that
allows each user to have its specific anonymity set. For the SGUM-based PCG, we
show that there exists a SNE. Then we develop an algorithm that greedily determines
users’ strategies, based on the social group utility derived from only the users whose
strategies have been determined. We show that this algorithm can efficiently find
a Pareto-optimal SNE with social welfare higher than that corresponding to the
socially-oblivious PCG. Numerical results demonstrate that social welfare can be
significantly improved by exploiting users’ social ties.
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Appendix

For convenience, let NI ,k and NII ,k denote the set of users that become determined
in phase I and phase II of round k in Algorithm 2, respectively. Let N0(a) � {i ∈
N |ai = 0} denote the set of users with action 0 under profile a.

Proof of Proposition 5.1

Since SO-PCG is a special case of SA-PCG, Property 5.1 also applies to the individual
utility function ui . Therefore, due to Property 5.1, a user who changes its strategy
from 1 to 0 will not change it back to 1. As a result, best response dynamics always
terminates and results in a profile ao that is a SNE.

Next we show that ao achieves the maximum social welfare among all SNEs. It
suffices to show that ao is Pareto-superior to any other SNE. To this end, we first
show that a profile a′ is not a SNE if N1(a′) \ N1(ao) �= ∅. Suppose such a′ is a
SNE. Let i ∈ N1(a′) \ N1(ao) be the first user among N1(a′) \ N1(ao) whose action
is changed to 0, and ā be the profile right before that change. Since a′ ≤ ā, we have
ui(a′) ≤ ui(ā) < 0 = ui(0, a′

i−) due to that 0 is the best response strategy. This shows
that a′ is not a SNE. Therefore, for any SNE a′ other than ao, we must have a′ < ao.
Then for each i ∈ N1(a′), we have ui(a′) ≤ ui(ao). For each i ∈ N0(a′), since ao is
a SNE, we have ui(a′) = 0 = ui(0, ao

−i) ≤ ui(ao). Therefore ao is Pareto-superior
to a′. Thus we show that ao is the best SNE.

Proof of Theorem 5.1

We first show that ae is a SNE. We consider three cases of a user i as follows.
Case 1: i ∈ N1(ae) and i ∈ NI ,k

Let a′ be the profile right after phase I during which i remains in NI . Since
ae ≥ a′, using (5.3) we have

fi(1, ae
−i) − fi(0, ae

−i) ≥ ui(1, a′
−i) +

∑

j∈N S
i+\N

sij a
′
j ≥ 0

where the second inequality is due to the condition in line 5.
Case 2: i ∈ N1(ae) and i ∈ NII ,k

Let a′ be the profile right after i becomes determined in phase II. Since ae ≥ a′,
using (5.3) we have

fi(1, ae
−i) − fi(0, ae

−i) ≥ ui(1, a′
−i) +

∑

j∈N S
i+\N

sij a
′
j ≥ 0

where the second inequality is due to the condition in line 10.
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Case 3: i ∈ N0(ae)
Since i is not included in NII in phase II of the last round, using (5.3) we have

fi(1, ae
−i) − fi(0, ae

−i) = ui(1, a′
−i) +

∑

j∈N S
i+\N

sij a
′
j < 0

where the inequality is due to the condition in line 10.
Next we show that ae is Pareto-optimal. Suppose there exists a′ that is Pareto-

superior to ae. It suffices to show that (i) N1(a′) \ N1(ae) = ∅ and (ii) N1(ae) \
N1(a′) = ∅. We first show part (i). Suppose N1(a′) \ N1(ae) �= ∅. Then for
each i ∈ N1(a′) \ N1(ae), we have ui(a′) ≥ ui(ae) = 0. Let i be the first user
among N1(a′) \ N1(ae) whose action is set to 0 during phase I of the last round,
and ā be the profile right before ai = 0 is performed. Since ā−i ≥ a′

−i , we have
ui(1, ā−i)+∑

j∈N S
i+\N sij āj ≥ ui(1, ā−i) ≥ ui(1, a′

−i) ≥ 0, which contradicts to the
condition in line 5.

Next we show part (ii). Suppose N1(ae) \ N1(a′) �= ∅. Since we have shown
part i), we must have a′ < ae. Then for each i ∈ N1(a′) ⊂ N1(ae), we have
ui(a′) ≤ ui(ae). Since ui(a′) = 0 = ui(ae) for each i ∈ N0(a′) ∩ N0(ae), there must
exist i ∈ N1(ae)\N1(a′) such that ui(ae) < ui(a′) = 0. Suppose i is included in NII

during phase II of some round. Let ā be the profile right before ai = 1 is performed.
Since ā ≤ ae, we have ui(ā) ≤ ui(ae) < 0. Then it follows from 0 ≤ fi(1, ā−i) −
fi(0, ā−i) = ui(1, ā−i) + ∑

j∈N S
i+

sij āj that there must exist j ∈ N S
i+ such that

āj = 1, and therefore ae
j = 1. If j ∈ N1(a′), we have uj (ae) − uj (a′) ≥ ae

i − a′
i =

1 > 0, which is a contradiction. Therefore we must have j ∈ N1(ae) \ N1(a′) and
uj (ae) ≤ uj (a′) = 0. Let â be the profile right before aj = 1 is performed. Since
j is included before i, we have uj (â) < uj (ae) ≤ 0. Then we can use the above
argument sequentially, until we find some k that leads to contradiction.

Proof of Theorem 5.2

Let N ′
I ,k be the set of users in NI ,k during the execution that computes ae′

. For each
i ∈ NI ,1, we have

ui(1, a′
−i) +

∑

j∈N S′
i+\N ′

s ′
ij aj ≥ ui(1, a−i) +

∑

j∈N S
i+\N

sij aj ≥ 0.

Therefore we must have NI ,1 ⊆ N ′
I ,1. Similarly, we can show that for any i ∈

NII ,1 \N ′
I ,1, we must have i ∈ N ′

II ,1. Using this argument sequentially, we can show
that ∪k

i=1

(
NI ,i ∪ NII ,i

) ⊆ ∪k
i=1

(
N ′

I ,i ∪ N ′
II ,i

)
for any k, and therefore ae ≤ ae′

.
When a user becomes determined with action 1, the increment of social welfare of
determined users by changing its action from 0 to 1 is no less than the increment of its
social group utility derived from determined users, which is non-negative. Therefore
we can see that v(ae) ≤ v(ae′

).
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Chapter 6
Conclusion and Future Work

6.1 Conclusion

With continuing technological advances, the past few years have witnessed the per-
vasive penetration of wireless networks in people’s lives. On the other hand, social
relationships play an increasingly important role in people’s interactions with each
other, due to the rapid growth of online social networking services. In this brief, we
advocate to leverage wireless users’ social ties to stimulate their cooperative behav-
iors in order to enhance their interactions in wireless networks. In general, wireless
users have diverse social ties while their wireless devices have diverse physical rela-
tionships. To capture both the social coupling and physical coupling among wireless
users, we develop a social group utility maximization (SGUM) framework. In the
SGUM game, each user aims to maximize its social group utility, which is the sum
of its own utility and the weighted sum of the utilities of the users having social tie
with it. To illustrate how to apply the SGUM framework for cooperative wireless
networking, we study its application in some specific contexts as follows.

• We study the SGUM-based random access control and power control. For the
SGUM-based random access control game, we derive the unique SNE. For the
SGUM-based power control game, we show that it is a supermodular game and
thus there exists an SNE. We also derive the unique SNE for the two-user case of
the SGUM-based power control game. For both games, we show that as social tie
levels increase, each user’s SNE strategy is decreasing and the social welfare of
the SNE is increasing.

• We study the SGUM-based database assisted spectrum access. We show that
the SGUM-based spectrum access game is a potential game and thus always
admits a SNE. Then we design a distributed spectrum access algorithm that can
achieve the socially-aware Nash equilibrium. We also derive the upper-bound
of the performance gap of the socially-aware Nash equilibrium from the NUM
solution. Numerical results demonstrate that the performance gap between the
SGUM solution and the NUM solution is at most 15 %.

• We study the SGUM-based pseudonym change for personalized location privacy.
The SGUM-based pseudonym change game (PCG) is based on a general
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anonymity model that allows each user to have its specific anonymity set. For
the SGUM-based PCG, we show that there exists a SNE. Then we develop an
algorithm that greedily determines users’ strategies, based on the social group
utility derived from only the users whose strategies have been determined.
We show that this algorithm can efficiently find a Pareto-optimal SNE with
social welfare higher than that corresponding to the socially-oblivious PCG.
Numerical results demonstrate that social welfare can be significantlyimproved
by exploiting users’ social ties.

6.2 Future Work

In Chap. 2, we develop the SGUM framework which leverage user’s “positive” social
ties to stimulate their cooperative behaviors. In general, depending on the nature of
social relationship, the social tie between two users can be “negative” (e.g., between
opponents or enemies) such that one user intends to damage the other’s welfare. It is
thus natural to extend the SGUM framework to capture negative social ties. Similar
to positive social ties, negative social ties can also be diverse such that a user intends
to damage others at different levels.

To capture both positive and “negative” social ties, we can extend the SGUM
framework by defining the social group utility fi as

fi(xi , x−i) �
N∑

j=1

sij ui(xi , x−i)

where sij ∈ (−∞, 1]: when sij ∈ (0, 1], it represents the extent to which user i cares
about user j ’s utility, and it reaches the maximum when sij = 1 (i.e., user i cares
about user j ’s utility as much as its own utility); when sij ∈ (−∞, 0), it pinpoints to
how much user i intends to damage user j ’s utility, and reaches the extreme as sij

goes to −∞ (i.e., user i would sacrifice its utility to damage user j ’s utility).
For the extended SGUM game, if the total social tie level to each user is 0, i.e.,

∑

j∈N
sji = 0, ∀i ∈ N ,

then the SGUM game degenerates to a zero-sum game (ZSG), where each user views
the total gain of other users as its loss. Formally, a game is a ZSG if all users’ payoff
functions are summed up to 0. For example, an SGUM game of two users with
f1 = u1 − u2 and f2 = u2 − u1, or f1 = u1 and f2 = −u1, is a zero-sum game.
Note that we obtain an equivalent game when a user’s payoff function is multiplied
by a number or added by a function independent of that user’s strategy. For example,
an SGUM game of two users with f1 = u1 and f2 = u2 − s21u1 where s21 → ∞
is equivalent to that with f1 = u1 and f2 = −u1, and thus is a zero-sum game.
Therefore, the extended SGUM framework encompasses not only NCG and NUM
but also ZSG as special cases (as illustrated in Fig. 6.1). Furthermore, it spans the
continuum from ZSG to NCG to NUM (as illustrated in Fig. 6.2).
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Fig. 6.1 The extended social group utility maximization (SGUM) game captures zero-sum game
(ZSG), non-cooperative game (NCG), and network utility maximization (NUM) as special cases

Fig. 6.2 The social group utility maximization (SGUM) game framework spans the continuum
space from zero-sum game (ZSG) to non-cooperative game (NCG) to network utility maximization
(NUM)

The integration of “negative” social ties under the SGUM framework offers a
social perspective on network security: the “adversary” in the context of network
security can be viewed as a malicious user who has “negative” social ties with other
users.As the malicious user can have diverse “negative” social ties with other users, an
interesting future direction is to investigate how the diverse social tie structure would
impact the malicious user’s behavior. Furthermore, the rich modeling flexibility
provided by the extended SGUM framework allows us to study the tradeoff between
security and utility. As a malicious user’s attack would result in other users’ utility
loss, an important question is how it would depend on the malicious user’s “negative”
social tie levels with other users.
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