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Preface

Science is a process of asking questions, in most cases precise, quantitative 
questions that allow distinctions to be drawn between alternative explanations 
of events. Asking the right questions in the right way is a fundamental skill in 
scientific enquiry, yet in itself  it receives surprisingly little explicit attention in 
scientific training. Students being trained in scientific subjects, for instance in sixth 
forms, colleges and universities, learn the factual science and some of the tools of 
enquiry such as laboratory techniques, mathematics, statistics and computing, but 
they are taught little about the process of question-asking itself.

The first edition of this book had its origins in a first-year undergraduate 
practical course that we, and others since, ran at the University of Nottingham 
for many years. The approach adopted there now also forms the basis for a more 
advanced second-year course. It is also the approach for FdSc- and BSc-level 
research methods courses at Cornwall College Newquay. The aim of all these 
courses is to introduce students in the biological sciences to the skills of observation 
and enquiry, but focusing on the process of enquiry – how to formulate hypotheses 
and predictions from raw information, how to design critical observations and 
experiments, and how to choose appropriate analyses – rather than on laboratory, 
field and analytical techniques per se. This focus is maintained in the fifth edition. 
However, as in previous editions, we have responded to a number of positive 
suggestions from people who have used the book, either as teachers or as students, 
which we think enhance further its usefulness in teaching practical biology generally.

Again, the largest change has been with respect to the presentation of statistical 
tests. In the fourth edition we replaced the previous boxes based on the procedures 
and output of the Statistical Package for the Social Sciences (SPSS®) with the 
freeware package ‘R®’, obtainable from www.r-project.org. This collaborative 
project of biologists and statisticians worldwide is now pretty much the industry 
standard in biology. It also has the enormous benefit of an extensive user base who 
can provide advice rapidly when you hit a snag.

Thus in the fifth edition we have decided to base the analyses on R® alone, 
to encourage undergraduates to use it. Unlike most modern programs, R® is not 
a ‘point-and-click’ process, but you have to write the commands in yourself. This 
means you need to know what you are doing, otherwise you will not get any 
meaningful results. Several colleagues have suggested that this will be a barrier to 
modern undergraduates who have become used to simpler ways of obtaining output 
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viii Preface

from such programs. However, our experience teaching it to undergraduates shows 
that they learn it almost as quickly as any other package, and so the ‘barrier’ is not 
as large as many think. And using R® will be much more useful to students in the 
longer term.

The book website (www.pearsoned.co.uk/barnard) contains instructions for 
using SPSS®, Minitab®, Genstat® and the Excel®-based AQB package from the 
fourth edition, as well as data files. The formulae and hand calculations remain 
because, as previously, we consider it important that the underlying arithmetic of 
the tests is understood.

The range of tests remains as in the fourth edition, i.e. it includes, among other 
things, repeated-measures designs, analysis of covariance, multiple regression and 
principal components analysis. This is a wider spectrum of designs than is likely to 
be encountered in a first course in experimental design, but caters for many kinds 
of data collected in field-course and final-year projects. The Test Finder, Quick 
Test Finder and Help sections should enable students to find what test they need 
to carry out, while simultaneously underlining the principles involved.

With increasing emphasis on the wider communication and public understanding 
of science, we have retained the sections on presenting information. We include 
giving talks or presenting posters at scientific meetings, and writing for broader 
non-specialist readers such as newspapers and magazines. To the sections on using 
online literature databases such as the World of Knowledge, we have added some 
practical tips on how to extract the information you require from the literature 
such searches throw up. We have retained sections on the ethical implications of 
working with biological material, now an essential consideration in any study as 
legal regulation of biological experiments in both teaching and research becomes 
ever more stringent.

The book looks at the process of enquiry during its various stages, starting with 
unstructured observations and working through to the production of a complete 
written report. In each section, different skills are emphasised and a series of main 
examples runs through the book to illustrate their application at each stage.

The book begins with a look at scientific question-asking in general. How 
do we arrive at the right questions to ask? What do we have to know before 
we can ask sensible questions? How should questions be formulated to be 
answered most usefully? Chapter  1 addresses these points by looking at the 
development of  testable hypotheses and predictions and the sources from 
which they might arise.

Chapter  2 looks at how hypotheses and predictions can be derived from 
unstructured observational notes. Exploratory analysis is an important first 
step in deriving hypotheses from raw data, and the chapter introduces plots and 
summary statistics as useful ways of identifying interesting patterns on which to 
base hypotheses. The chapter concludes by pointing out that although hypotheses 
and their predictions are naturally specific to the investigation in hand, testable 
predictions in general fall into two distinct groups: those dealing with some kind of 
difference between groups of data, and those dealing with a trend in the quantitative 
relationship between groups of data.
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Preface ix

The distinction between difference and trend predictions is developed further 
in Chapter 3, which discusses the use of confirmatory analyses. The concept of 
statistical significance is introduced as an arbitrary but generally agreed yardstick as 
to whether observed differences or trends are interesting, and a number of broadly 
applicable significance tests are explained. Throughout, however, the emphasis is 
on the use of such tests as tools of enquiry rather than on the statistical theory 
underlying them. Having introduced significance tests and some potential pitfalls 
in their use, the book uses the main worked examples to show how some of their 
predictions can be tested and hypotheses refined in the light of testing.

In Chapter  4, the book considers the presentation of information. Once 
hypotheses have been tested, how should the outcome be conveyed for greatest 
effect? The chapter discusses the use of tables, figures and other modes of 
presentation, and shows how a written report should be structured. The chapter 
then moves on to consider the presentation of material in spoken and poster paper 
formats, and how to recast written reports of results for a general, rather than 
specialist, readership.

At the end of the book are a number of appendices. These provide expanded 
self-test questions and answers sections based on the material in the previous 
chapters and some statistical tables for use in significance testing.

We said that the book had its inception in our introductory practical course. 
This course was developed in response to an increasingly voiced need on the part 
of students to be taught how to formulate hypotheses and predictions clearly and 
thus design properly discriminating experiments and observations. As we descend 
into ever more neurotically prescribed teaching and assessment procedures, the 
need for students to be given clear guidance on such aspects of their work becomes 
correspondingly greater. As always, both our practical teaching and the book have 
continued to benefit enormously from our ongoing and enjoyable interaction with 
our undergraduates. Their insights and enquiries continue to hone the way we 
teach, and have been the guiding force behind all the discussions in the book.

Finally, we should like to thank all the people who have commented on the 
book since its first appearance, and encouraged us to think about the further 
amendments we have made in this present edition. We particularly thank Kelly 
Haynes and Angus Jackson and the 2013 and 2014 cohorts of BSc Applied 
Zoology students at Newquay for input to the ‘Getting key information from 
papers quickly’ section. In particular, we thank Tom Reader for the generous 
amount of time he has spent discussing the book with us, commenting on drafts 
of many of the amendments and giving freely of his experience in and enthusiasm 
for the business of communicating science. Rufus Curnow at Pearson Education 
encouraged us to produce a fifth edition, and guided us as to how it should be 
modified. James Gilbert and Lucy Browning made useful changes to the R® 
descriptions.

Francis Gilbert
Peter McGregor
January 2016
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1

You’re out for a walk one autumn afternoon when you notice a squirrel picking up 
acorns under some trees. Several things strike you about the squirrel’s behaviour. 
For one thing it doesn’t seem to pick up all the acorns it comes across; a sizeable 
proportion is ignored. Of those it does pick up, only some are eaten. Others are 
carried up into a tree, where the squirrel disappears from view for a few minutes 
before returning to the supply for more. Something else strikes you: the squirrel 
doesn’t carry its acorns up the nearest tree but instead runs to one several metres 
away. You begin to wonder why the squirrel behaves in this way. Several possibilities 
occur to you. Although the acorns on the ground all look very similar to you, you 
speculate that some might contain more food than others, or perhaps they are 
easier to crack. By selecting these, the squirrel might obtain food more quickly 
than by taking indiscriminately any acorn it encountered. Similarly, the fact that 
it appears to carry acorns into a particular tree suggests this tree might provide a 
more secure site for storing them.

While all these might be purely casual reflections, they are revealing of the way 
we analyse and interpret events around us. The speculations about the squirrel’s 
behaviour may seem clutched out of  the air on a whim, but they are in fact 
structured around some clearly identifiable assumptions, for instance that achieving 
a high rate of food intake matters in some way to the squirrel and influences its 
preferences, and that using the most secure storage site is more important to it than 
using the most convenient site. If you wanted to pursue your curiosity further, these 
assumptions would be critical to the questions you asked and the investigations 
you undertook. If  all this sounds very familiar to you as a science student, it 
should, because, whether you intended it or not, your speculations are essentially 
scientific. Science is simply formalised speculation backed up (or otherwise) by 
equally formalised observation and experimentation. In its broadest sense most of 
us ‘do science’ all the time.

Doing science
Where do questions come from?
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2 Chapter 1 Doing Science

 1.1 Science as asking questions

Science is often regarded by those outside it as an open-ended quest for objective 
understanding of the universe and all that is in it. But this is so only in a rather trivial 
sense. The issue of objectivity is a thorny one and, happily, well beyond the scope 
of this book. Nevertheless, the very real constraints that limit human objectivity 
mean that use of the term must at least be hedged about with serious qualifications. 
The issue of open-endedness is really the one that concerns us here. Science is open-
ended only in that its directions of enquiry are, in principle, limitless. Along each 
path of enquiry, however, science is far from open-ended. Each step on the way is, 
or should be, the result of refined question-asking, a narrowing down of questions 
and methods of answering them to provide the clearest possible distinction between 
alternative explanations for the phenomenon in hand. This is a skill, or series of 
skills really, that has to be acquired, and acquiring it is one of the chief  objectives 
of any scientific training.

While few scientists would disagree with this, identifying the different skills and 
understanding how training techniques develop them are a lot less straightforward. 
With increasing pressure on science courses in universities and colleges to teach 
more material to more people and to draw on an expanding and increasingly 
sophisticated body of  knowledge, it is more important than ever to understand 
how to marshal information and direct enquiry. This book is the result of  our 
experiences in teaching investigative skills to university undergraduates in the 
life sciences. It deals with all aspects of  scientific investigation, from thinking 
up ideas and making initial exploratory observations, through developing 
and testing hypotheses, to interpreting results and preparing written reports. 
It is not an introduction to data-handling techniques or statistics, although it 
includes a substantial element of both; it simply introduces these as tools to aid 
investigation. The theory and mechanics of  statistical analysis can be dealt with 
more appropriately elsewhere.

The principles covered in the book are extraordinarily simple, yet, 
paradoxically, students find them very difficult to put into practice when taught 
in a piecemeal way across a number of  different courses. The book has evolved 
out of  our attempts to get over this problem by using open-ended, self-driven 
practical exercises in which the stages of  enquiry develop logically through the 
desire of  students to satisfy their own curiosity. However, the skills it emphasises 
are just as appropriate to more limited set-piece practicals. Perhaps a distinction 
– admittedly over-generalised – that could be made here, and which to some 
extent underpins our preference for a self-driven approach, is that with many 
set-piece practicals it is obvious what one is supposed to do but often not why 
one is supposed to do it. Almost the opposite is true of  the self-driven approach; 
here it is clear why any investigation needs to be undertaken, but usually less clear 
what should be done to see it through successfully. In our experience, developing 
the ‘what’ in the context of  a clear ‘why’ is considerably more instructive than 
attempting to reconstruct the ‘why’ from the ‘what’ or, worse, ignoring it 
altogether.
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1.2 Basic Considerations 3

 1.2 Basic considerations

Scientific enquiry is not just a matter of asking questions; it is a matter of asking 
the right questions in the right way. This is more demanding than it sounds. For a 
start, it requires that something is known about the system or material in which 
an investigator is interested. A study of mating behaviour in guppies, for instance, 
demands that you can at least tell males from females and recognise courtship and 
copulation. Similarly, it is difficult to make a constructive assessment of parasitic 
worm burdens in host organisms if  you are ignorant of likely sites of infection and 
can’t tell worm eggs from faecal material.

Of course, there are several ways in which such knowledge can be acquired: e.g. 
the Internet/World Wide Web, textbooks, specialist academic journals (mostly now 
available electronically through licensed subscribers like universities and colleges, or 
free on the Internet), asking an expert, or simply finding out for yourself  through 
observation and exploration.

These days, the first choice for browsing information is often the Internet/
World Wide Web. The advantages of such ‘online’ searching in terms of speed and 
convenience hardly need detailing here, but there are dangers, as we indicate later. A 
good way of accessing reliable scientific information like this is to use one or more 
of the professional Web-based literature databases, such as the Web of Knowledge 
(http://wok.mimas.ac.uk), PubMed (www.ncbi.nlm.nih.gov/pmc/), Google Scholar 
(http://scholar.google.co.uk) or BIOSIS. These search the peer-reviewed (and 
therefore quality-controlled) academic journals for articles containing information 
relevant to your request. Each of these provides tips on how best to use them, but a 
handful of basic ones is given in Box 1.1.

Whichever mode of  acquiring information is preferred, however, a certain 
amount of  background preparation is usually essential, even for the simplest 
investigations. In practical classes, some background is usually provided for you 
in the form of  handouts or accompanying lectures, but the very variability of 
biological material means that generalised and often highly stylised summaries are 
poor substitutes for hard personal experience. Nevertheless, given the inevitable 
constraints of time, materials and available expertise, they are usually a necessary 
second best. There is also a second, more important, reason why there is really no 
substitute for personal experience: the information you require may not exist or, if  it 
does exist, it may not be correct. The Internet/World Wide Web is a particular hazard 
here because of the vast amount of unregulated information it makes available, 
often dressed up to appear professional and authoritative. Such material should 
always be treated with caution and verified before being trusted. Where academic 
information is concerned, a first step might be to check the host site to see whether 
it is a recognised institution, like a university or an academic publisher; another 
might be to look for other research cited in the information, for instance in the form 
of journal citations (see section 4.3.1), which can be cross-checked. Entering the 
author’s name into the search field of one of the web-based professional literature 
databases (Box 1.1) to see whether this person has a published research track record 
can be another approach. Using general-purpose search engines, like Yahoo! or 
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4 Chapter 1 Doing Science

BOX 1.1   Searching online literature databases

Figure (i) A screen capture from the Web of Knowledge as it appeared in 2016. Like other similar sites, it is 
regularly updated, so the exact appearance of the search field screen may change.

Searchable online literature databases, like the 
Web of  Knowledge, Google Scholar, BIOSIS 
or PubMed, allow you to search for articles 
by particular authors, or on particular topics, 
or according to some other category, such as 
a journal title or research organisation. An 
example of the kind of search fields on offer, 
in this case for the Web of Knowledge, is shown 
in Fig. (i).

The key to using the search fields effectively 
lies in the precision with which you specify 
your terms: too general and you will be 
swamped with articles that are of  little or no 
interest; too narrow and you will wind up with 
only one or two and miss many important 
ones. To help with this, the search fields 
provide various means of  linking terms so 
that searches can be focused (the AND, OR, 
NOT options – called ‘operators’ – in Fig. (i)). 

However, the process inevitably involves some 
compromises.

For example, suppose you were interested 
in steroid hormone secretion as a cause of 
immune depression in laboratory mice. You 
might start, seemingly reasonably, by typing 
‘steroid hormone AND immune depression 
AND laboratory mice’ into the ‘Topic’ search 
field in Fig. (i) and hitting the ‘Search’ button. 
Disappointingly, and rather to your surprise, 
this yields nothing at all – apparently nobody 
has published anything on steroid hormones 
and immune depression in mice. At the 
other extreme, a search for ‘immune AND 
mice’ yields over 45,000 articles, a wholly 
unmanageable number, of  which many can 
be seen at a glance to be irrelevant to your 
needs. Clearly, something between the two is 
what is required.
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1.2 Basic Considerations 5

Google, can often turn up information from the professional literature too, but 
just as often you’re likely to get information from unregulated personal websites, 
or other sources of uncertain provenance. Taking received wisdom at face value 
can be a dangerous business – something even seasoned researchers can continue 
to discover, the famous geneticist and biostatistician R®. A. Fisher among them.

In the early 1960s, Fisher and other leading authorities at the time were 
greatly impressed by an apparent relationship between duodenal ulcer and certain 
rhesus and MN blood groups. Much intellectual energy was expended trying to 
explain the relationship. A sceptic, however, mentioned the debate to one of his 
blood-group technicians. The technician, for years at the sharp end of  blood-
group analysis, resolved the issue on the spot. The relationship was an artefact 
of  blood transfusion! Patients with ulcers had received transfusions because of 
haemorrhage. As a result, they had temporarily picked up rhesus and MN antigens 
from their donors. When patients who had not been given transfusions were tested, 
the relationship disappeared (Clarke, 1990).

Where at all feasible, therefore, testing assumptions yourself  and making up 
your own mind about the facts available to you is a good idea. Indeed, science 
is often characterised as systematic scepticism – a demand for evidence for every 
assertion. It is impossible to draw up a definitive list of what it is an investigator 
needs to know as essential background; biology is too diverse a subject, and every 
investigation is to some extent unique in its factual requirements. Nevertheless, it 

The reason the first search turned up 
nothing is not, of  course, because nobody 
has published anything on the topic, but 
because the search term was restricted to 
a very specific combination of  phrases. It 
could well be that people have published on 
the effects of  steroid hormones on immune 
depression in mice but didn’t use the precise 
phrases selected. For instance, they may have 
reported ‘depressed immune responsiveness’ 
or ‘depressed immunity’, rather than ‘immune 
depression’, and referred to specific hormones, 
such as testosterone or cortisol, rather than the 
generic term ‘steroid’. There are various ways 
of catering for this. In the Web of Knowledge, 
the form ‘immun* SAME depress* AND mice’ 
in the ‘Topic’ search field allows the system to 
search for any term beginning with ‘immun’ 
or ‘depress’, such as ‘immune’, ‘immunity’, 
‘immunocompetence’, ‘depression’, ‘depressed’ 
and so on, thus picking up all the variants. The 
term ‘SAME’ ensures similar combinations of 

phrase are recognised, in this case, say, ‘immune 
depression’, ‘depressed immunity’ or ‘depressed 
immune response’. Running the search again 
in this form yields around 450 articles, much 
better than zero or 45,000, but with quite 
a lot of  them still redundant. If  the search 
is specified a little more tightly as ‘immun* 
SAME depress* AND mice AND hormone’, 
however, it turns up around 40 articles, and all 
much more on target.

All the searchable databases use these kinds 
of  approaches for refining searches, some 
very intuitive, some less so. One thing you 
will quickly notice, though, is that exactly the 
same search can turn up a different number 
and selection of  articles depending on which 
database you are using – BIOSIS, for example, 
manages to find something under the initial 
over-specific search that drew a blank on 
the Web of  Knowledge. For this reason, it is 
good practice to run searches on a selection 
of databases.
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6 Chapter 1 Doing Science

is useful to indicate the kinds of information that are likely to be important. Some 
examples might be as follows:

For instance, can mating preferences in guppies usefully be studied in a small plastic 
aquarium, or will the inevitable restriction on movement and the impoverished 
environment compromise normal courtship activity?

Or, if  nutrient transfer within a plant can be monitored only with the aid of 
a vital dye, will normal function be maintained in the dyed state or will the dye 
interfere subtly with the processes of interest?

There would, for instance, be little point in carrying out vaginal smears on female 
mice to establish stages of the oestrous cycle if  some females were less than 28 days 
of age. Such mice may well not have begun cycling.

Likewise, it would be fruitless to monitor the faeces of infected mice for the eggs 
of a nematode worm until a sufficient number of days have passed after infection 
for the worms to have matured.

For example, removing a spermatophore (package of sperm donated by the male) 
from a recently mated female cricket in order to assay its sperm content may 
 adversely affect the female’s response to males in the future.

Or, the introduction of an intracellular probe might disrupt the aspect of cell 
physiology it was intended to record.

If  the problem to be investigated involves a foraging task (e.g. learning to find 
cryptic prey), has the subject been trained to perform in the apparatus and has it 
been deprived of food for a short while to make it hungry?

Similarly, if  a mouse of  strain X is to be infected with a particular blood 
 parasite so that the course of  infection can be monitored, has the parasite been 
passaged in the strain long enough to ensure its establishment and survival in the 
experiment?

Testing for the effects of acclimation on some measure of coping in a new 
environment might be compromised if  conditions in the new environment are 
beyond those the organism’s physiology or behaviour have evolved to meet.

Question Is the material at the appropriate stage of life history or development for the desired 
investigation?

Question Can the material of interest be studied usefully under laboratory conditions or will 
unavoidable constraints or manipulations so affect it that any conclusions will have 
only dubious relevance to its normal state or functions?

Question Will the act of recording from the material affect its performance?

Question Has the material been prepared properly?

Question Does the investigation make demands on the material that it is not capable of meeting?
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1.2 Basic Considerations 7

Likewise, testing a compound from an animal’s environment for carcinogenic 
properties in order to assess risk might not mean much if the compound is administered 
in concentrations or via routes that the animal could never experience naturally.

In an investigation of mating behaviour in dragonflies, we might consider using 
the length of time a male and female remain coupled as an index of the amount of 
sperm transferred by the male. Before accepting this, however, it would be wise to 
conduct some pilot studies to make sure it was valid; it might be, for instance, that 
some of the time spent coupled reflected mate-guarding rather than insemination.

Question Are assumptions about the material justified?

By the same token, assumptions about the relationship between the staining 
characteristics of  cells in histological sections and their physiological properties 
might need verifying before concluding anything about the distribution of 
physiological processes within an organ.

The list could go on for a long time, but these examples are basic questions of 
practicality. They are not very interesting in themselves but they, and others like 
them, need to be addressed before interesting questions can be asked. Failure to 
consider them will almost inevitably result in wasted time and materials.

Of course, even at this level, the investigator will usually have the questions 
ultimately to be addressed – the whole point of the investigation – in mind, and 
these will naturally influence initial considerations. Before we develop this further, 
however, there is one further, and increasingly prominent, issue we must address, 
and that is the ethics of  working with biological material.
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8 Chapter 1 Doing Science

1.2.1 Ethical considerations

Because biological material is either living, or was once living, or is derived from 
something that is or was living, we are sensitive to the possibility that another 
living organism may be harmed in some way as a result of what we are doing. Of 
particular concern is the possibility that our activity might cause such an organism 
to suffer, physically or psychologically. We try very hard to avoid suffering ourselves 
because, by definition, it is extremely unpleasant, so the question arises as to 
whether we should risk inflicting it on another living being simply because we are 
interested in finding something out about it. This is not an easy question to answer, 
not least because of the difficulty of knowing whether species very different from 
ourselves, such as invertebrates, are capable of experiencing anything that might 
reasonably be called suffering in the first place. However, good science is mindful 
of  the possibility, and works to various guidelines and codes of  practice, some 
enforced by law, to give organisms the benefit of  the doubt. While minimising 
the risk of suffering is important in itself, there is also a straightforward practical 
reason why we should take care of the organisms we use, whatever they may be, 
since any results we obtain from them could be affected if  the organism is damaged 
or in some way below par.

Suffering may not be the only potential ethical concern. If  material is coming 
from the field, for example, there could be conservation issues. Is the species 
concerned endangered? Is the habitat it occupies fragile? Are there unwelcome 
consequences for populations or habitats of removing material and/or returning 
it afterwards? Questions like this can lead to acute dilemmas. For instance, the 
fact that a species is becoming endangered may mean there is a desperate need for 
more information about it, but the very means of acquiring the information risks 
further harm.

As awareness of  these issues increases, ethical considerations are beginning 
to play a more explicit role in the way biologists approach their work, not 
just in terms of  taking greater care of  the organisms they use, and being better 
informed about their needs, but at the level of  how investigations are designed 
in the first place. Take sample size, for instance. Deciding on a suitable sample 
size is a basic problem in any quantitative study. It might involve an informal 
judgement on the basis of  past experience or the outcome of  other studies, or 
it might depend on power tests (see section 3.4.1) to calculate a sample size 
statistically. Where there are ethical concerns, a power test would arguably be 
better than ‘guesstimation’ because it would provide an objective means of 
maximising the likelihood of  a meaningful result while minimising the amount 
of  material needed (a smaller sample would risk the outcome being swamped by 
random noise, while a larger one would use more material than necessary). But, 
of  course, the ideal sample size indicated by the power test might demand more 
material than can be sustained by the source, or involve a very large number of 
animals in a traumatic experimental procedure. The value of  proceeding then 
has to be judged against the likely cost from an ethical perspective, a task with 
considerable room for debate. Detailed discussion of  these issues is beyond the 
scope of  this book, but a good idea of  what is involved can be found in Bateson 
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1.3 The Skill of Asking Questions 9

(1986, 2005), who provides a digestible introduction to trading off  scientific 
value and ethical concerns, and the extensive ethical guidelines for teachers and 
researchers in animal behaviour published by the Association for the Study 
of  Animal Behaviour (ASAB) and its North American partner, the Animal 
Behavior Society (ABS) (see www.asab.org or www.animalbehaviorsociety.org 
.uk or each January issue of  the academic journal Animal Behaviour). It is also 
well worth looking at the website of  the UK National Centre for the 3Rs (www 
.nc3rs.org; the three Rs stand for the Replacement, Refinement and Reduction in 
the use of  animals in research), a government-funded organisation dedicated to 
progressing ethical approaches to the use of  animals in biology. For discussion of 
more philosophical issues, see, for example, Dawkins (1980, 1993) and Barnard 
& Hurst (1996). It is important to stress that, tricky as these kinds of  decision 
can be, ethical considerations should always be part of  the picture when you are 
working with biological material.

 1.3 The skill of asking questions

1.3.1 Testing hypotheses

Charles Darwin once remarked that without a hypothesis a geologist might as 
well go into a gravel pit and count the stones. He meant, of  course, that simply 
gathering facts for their own sake was likely to be a waste of time. A geologist is 
unlikely to profit much from knowing the number of stones in a gravel pit. This 
seems self-evident, but such undirected fact-gathering (not to be confused with the 
often essential descriptive phase of hypothesis development) is a common problem 
among students in practical and project work. There can’t be many science teachers 
who have not been confronted by a puzzled student with the plea: ‘I’ve collected 
all these data, now what do I do with them?’ The answer, obviously, is that the 
investigator should know what is to be done with the data before they are collected. 
As Darwin well knew, what gives data collection direction is a working hypothesis. 
Theories and hypotheses are absolutely vital to science, otherwise ‘we shall all be 
washed out to sea in an immense tide of unrelated information’ (Watt, 1971). With 
them, ‘the enormous ballast of factual information, so far from being about to sink 
us, is used to reveal patterns and processes so that we need no longer to record the 
fall of every apple’ (Dixon, 2000).

The word ‘hypothesis’ sounds rather formal and, indeed, in some cases 
hypotheses may be set out in a tightly constructed, formal way. In more general 
usage, however, its meaning is a good deal looser. Verma & Beard (1981), for 
example, define it as simply:

a tentative proposition which is subject to verification through subsequent 
investigation. In many cases hypotheses are hunches that the researcher has 
about the existence of relationships between variables.
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10 Chapter 1 Doing Science

A hypothesis, then, can be little more than an intuitive feeling about how 
 something works, or how changes in one factor will relate to changes in another, 
or about any aspect of the material of interest. However vague it may be, though, 
it is formative in the purpose and design of investigations because these set out 
to test it. If  at the end of the day the results of the investigation are at odds with 
the hypothesis, the hypothesis may be rejected and a new one put in its place. As 
we shall see later, hypotheses are never proven, merely rejected if data from tests so 
dictate, or retained for the time being for possible rejection after further tests.

1.3.2 How is a hypothesis tested?

If  a hypothesis is correct, certain things will follow. Thus if  our hypothesis is that 
a particular visual display by a male chaffinch is sexual in motivation, we might 
expect the male to be more likely to perform the display when a female is present. 
Hypotheses thus generate predictions, the testing of which increases or decreases 
our faith in them. If  our male chaffinch turned out to display mainly when other 
males were around and almost never with females, we might want to think again 
about our sexual motivation hypothesis. However, we should be wrong to dismiss 
it solely on these grounds. It could be that such displays are important in defending 
a good-quality breeding territory that eventually will attract a female. The context 
of  the display could thus still be sexual, but in a less direct sense than we had 
first considered. In this way, hypotheses can produce tiers of  more and more 
refined predictions before they are rejected or tentatively accepted. Making such 
predictions is a skilled business because each must be phrased so that testing it 
allows the investigator to discriminate in favour of or against the hypothesis. While 
it is best to phrase predictions as just that (thus: males will perform more of display 
y in the presence of females), they sometimes take the form of questions (do males 
perform more of display y when females are present?). The danger with the question 
format, however, is that it can easily become too woolly and vague to provide a 
rigorous test of  the hypothesis (e.g. do males behave differently when females are 
present?). Having to phrase a precise prediction helps counteract the temptation 
to drift into vagueness.
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Hypotheses, too, can be so broad or imprecise that they are difficult to reject. 
In general the more specific, mutually exclusive hypotheses that can be formulated 
to account for an observation the better. In our chaffinch example, the first 
hypothesis was that the display was sexual. Another might be that it reflected 
aggressive defence of food. Yet another that it was an anti-predator display. These 
three hypotheses give rise to very different predictions about the behaviour and it 
is thus, in principle, easy to distinguish between them. As we have already seen, 
however, distinguishing between the ‘sexual’ and ‘aggressive’ hypotheses may need 
more careful consideration than we first expect. Straw man hypotheses are another 
common problem. Unless some effort has gone into understanding the material, 
there is a risk of setting up hypotheses that are completely inappropriate. Thus, 
suggesting that our displaying chaffinch was demonstrating its freedom from avian 
malaria would make little sense in an area where malaria was not endemic. We shall 
look at the development of hypotheses and their predictions in more detail later on.

 1.4 Where do questions come from?

As we have already intimated, questions do not spring out of a vacuum. They are 
triggered by something. They may arise from a number of sources.

1.4.1 Curiosity

Questions arise naturally when thinking about any kind of  problem. Simple 
curiosity about how something works or why one group of organisms differs in 
some way from another group can give rise to useful questions from which testable 
hypotheses and their predictions can be derived. There is nothing wrong with 
‘armchair theorising’ and ‘thought experiments’ as long as, where possible, they 
are put to the test. Sitting in the bath and wondering about how migratory birds 
manage to navigate, for example, could suggest roles for various environmental cues 
like the sun, stars and topographical features. This in turn could lead to hypotheses 
about how they are used and predictions about the effects of removing or altering 
them. By the time the water was cold, some useful preliminary experiments might 
even have been devised.

1.4.2 Casual observation

Instead of  dreaming in the bath, you might be watching a tank full of  fish, or 
sifting through some histological preparations under a microscope. Various things 
might strike you. Some fish in the tank might seem very aggressive, especially 
towards others of  their own species, but this aggressiveness might occur only 
around certain objects in the tank, perhaps an overturned flowerpot or a clump of 
weed. Similarly, certain cells in the histological preparations may show unexpected 
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12 Chapter 1 Doing Science

differences in staining or structure. Even though these aspects of fish behaviour 
and cell appearance were not the original reason for watching the fish or looking 
at the slides, they might suggest interesting hypotheses for testing later. A plausible 
hypothesis to account for the behaviour of the fish, for instance, is that the localised 
aggression reflects territorial defence. Two predictions might then be: (a) on average, 
territory defenders will be bigger than intruders (because bigger fish are more likely 
to win in disputes and thus obtain a territory in the first place) and (b) removing 
defendable resources like upturned flowerpots will lead to a reduction in aggressive 
interactions. Similarly, a hypothesis for differences in cell staining and structure is 
that they are due to differences in the age and development of the cells in question. 
A prediction might then be: younger tissue will contain a greater proportion of (what 
are conjectured to be the) immature cell types.

1.4.3 Exploratory observations

It may be that you already have a hypothesis in mind, say that a particular species 
of fish will be territorial when placed in an appropriate aquarium environment. 
What is needed is to decide what an appropriate aquarium environment might be 
so that suitable predictions can be made to test the hypothesis. Obvious things to 
do would be to play around with the size and number of shelters, the position and 
quality of feeding sites, the number and sex ratio of fish introduced into the tank, 
and so on. While the effects of these and other factors on territorial aggressiveness 
among the fish might not have been guessed at beforehand, such manipulations 
are likely to suggest relationships with aggressiveness that can then be used to 
predict the outcome of  further, independent investigations. Thus if  exploratory 
results suggested aggressiveness among defending fish was greater when there were 
ten fish in the tank compared with when there were five, it would be reasonable 
to predict that aggressiveness would increase as the number of fish increased, all 
other things being equal. An experiment could then be designed in which shelters 
and feeding sites were kept constant but different numbers of fish, say 2, 4, 6, 8, 10 
or 15, were placed in the tank. Measuring the amount of aggression by a defender 
with each number of fish would provide a test of the prediction.

1.4.4 Previous studies

One of the richest sources of questions is, of course, past and ongoing research. 
This might be encountered either as published literature (see Box 1.1) or ‘live’ as 
research talks at conferences or seminars. A careful reading of  most published 
papers, articles or books will turn up ideas for further work, whether at the level 
of alternative hypotheses to explain the problem in hand or at the level of further 
or more discriminating predictions to test the current hypothesis. Indeed, this is 
the way most of the scientific literature develops. Some papers, often in the form 
of mathematical models or speculative reviews, are specifically intended to generate 
hypotheses and predictions and may make no attempt to test them themselves. 
At times, certain research areas can become overburdened with hypotheses and 
predictions, generating more than people are able or have the inclination to test. 
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If  this happens, it can have a paralysing effect on the development of  research. 
It is thus important that hypotheses, predictions and tests proceed as nearly as is 
feasible hand in hand.

Reading scientific literature, especially journal articles (‘papers’), is a bit of a 
misnomer. Rather than reading from beginning to end as you would a novel or 
text book chapter, reading a paper involves dipping into, probably skim-reading, 
particular sections (Introduction, Methods, Results, Discussion – see section 4.3.1) 
of the paper and deciding after each dip whether it is sufficiently relevant to the 
information you are seeking to continue to the next step or whether you will move 
on to another paper. Perhaps you will end up reading the whole of a particularly 
relevant paper, but never in the order in which it is presented. The scientific 
literature is so vast that you will need to acquire the skill of getting information 
from a paper quickly – there is a real risk of being overwhelmed by material that 
turns out not to be pertinent to your question. A series of approaches that we, and 
our students, have found to be useful are detailed below.

Getting key information from papers quickly
We will illustrate the process of quickly getting key information from a paper by 
referring to the example report in Box 4.2 which follows the format of a paper in a 
journal such as Animal Behaviour. Imagine that this paper is one that seems relevant 
to your question; perhaps it was turned up by a search (see Box 1.1), or perhaps it 
has been cited in another paper.

First step: information – general or detailed
Decide whether you need general information on a topic or whether you need 
information that is more detailed. (It is also worth keeping a note on the information 
you require to hand, to cross check with information you come across.)
• General information. If  you have just started researching a topic in the literature, 

then you are most likely to require general information. For example, if  the topic 
of interest is aggressive behaviour, you could be seeking general information on 
fighting behaviour including definitions, characteristics, experimental approaches 
and why fighting is particularly interesting to the broader field of  animal 
behaviour.

• Detailed information. If  you have acquired enough general information to be 
planning a series of experiments to investigate fighting between males, then you 
require detailed information. For example, you may be looking for information 
on suitable study species for laboratory use (crickets?); or, having decided on 
crickets, you need information on how to distinguish individual males (e.g. mark 
them with dot of paint).

Second step: is the paper likely to contain the information needed?
If it is not clear from the title whether the paper will contain the information you 
need, read the ‘Keywords’ (common in journal papers but not present in our example 
paper) and/or skim-read the Abstract. This will allow you to decide whether to 
continue or move on to the next paper. For example, if  the Abstract makes it clear 
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14 Chapter 1 Doing Science

that the paper is a review, then it should be a good source of general information, 
but it is unlikely to contain detailed information on experimental details.

Third step: assess the likely quality and relevance of information.
This usually means skim-reading parts of the Methods and/or Results to establish 
two key aspects of the paper:

1. Do the variables measured relate to the title and topic addressed?
Skim-read the Methods to find details of  the variables measured. This step is 
necessary because in biology it is often difficult to measure directly the feature 
of  interest. Instead we have to measure a variable we think is related to the real 
variable of  interest; the less closely linked the measured variable is to the real 
variable of  interest, the more likely that other factors will contribute to the 
reported results.

The title of  our example paper, ‘The effect of  body size on the escalation of 
aggressive encounters between male field crickets (Gryllus bimaculatus)’, includes 
one variable of interest (body size) and hints at another (fight success). This makes 
the topic of study clear and it is easy to decide that there is a close link between the 
topic and the measured variables. If  the paper had been called something catchier 
but less specific, perhaps the poster title (p.188) ‘Know thine enemy: assessment 
and fighting in male crickets’, we would have to dip into the Methods and Results 
to discover the variables measured and to decide how closely linked they are to 
assessment.

2. Do the results bear out the title and detail in the Abstract?
Skim-read the Results, particularly looking at the figures or tables because only 
the main results are shown in these formats; look for p-values and details of the 
statistical tests that produced them.

In our example paper, the three figures show the key results (large males 
more likely to win, and to initiate fights; escalated encounters more likely when 
opponents are of similar size) and the figure captions include p-values and details 
of the statistical tests that produced them.

If the paper has passed the two assessments of quality/relevance in Step 3 (as 
our example paper does), the next step depends on whether you are looking for 
general or detailed information.

General info step: work through the paper.
This step involves reading and skim-reading sections of the paper. The more papers 
you read, the more you will skim-read successive papers as most will have a lot of 
general information in common and you will quickly recognise that you already 
have the information. The best order to tackle the sections of a paper reporting 
research (rather than a review) is generally as follows:

1. Introduction – to get the background to the study, the specific hypotheses/ 
questions being addressed and citations to related information.

2. Discussion – the first paragraph often summarises the key results and the rest 
interprets the results and often includes suggestions for further study.
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3. Results – to get information on the details of  the results, pay particular 
attention to the figures, tables and information on the statistical tests used.

4. Methods – for the details that underpin the relationships reported in the 
Results.

Detailed info step 1: identify section of paper.
Detailed information is usually restricted to one section of  the paper. Some 
common examples are listed in the table below. Go to that section. (If  you want 
information on several of  the items listed below, you are probably looking for 
general information – follow the General info step.)

Detailed info step 2: skim-read section.
Skim-read to identify where the relevant information is within the section. For 
example, the information on marking male crickets is in the final sentence of the 
first paragraph of the Methods of the example paper (p.174).

As you read more papers, each with some relevant information, the faster and 
more extensive your skim-reading becomes as you will quickly recognise that you 
already have that information. For example, you may have read several papers on 
laboratory studies of male–male aggression in crickets, so you will have information 
on housing conditions from all of  these papers. However, if  you are looking for 
very detailed information, perhaps information on how experimenters manipulated 
male confidence before encounters, this will only be found in a few papers that used 
this experimental approach (e.g. Barnard & Burk, 1979).

Final step for general or detailed info: make notes!
Make a note of  the information you found and its location – not just the citation 
(we recommend using reference manager software for this), but the location 
of  the key sentence or paragraph in the paper. Some people write notes, some 
prefer to highlight hard copies or pdfs. However you choose to do it, making a 
note means you don’t have to repeat the process when you come to writing up 
your study.

Specific information Section of  paper

Detail of protocol and techniques
Experimental design
Study site

Methods

Background on topic
Specific hypotheses/questions addressed
Related literature

Introduction

Interpretation and context of results
Suggestions for further study

Discussion

Key results in brief Discussion (first paragraph)

Detail of the results of the study Results (especially Figures & Tables)
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 1.5 What this book is about

We’ve said a little about how science works and how the kind of question-asking on 
which it is based can arise. We now need to look at each part of the process in detail, 
because while each may seem straightforward in principle, some knotty problems 
can arise when science is put into practice. In what follows, we shall see how to:
• frame hypotheses and predictions from preliminary source material;
• design experiments and observations to test predictions;
• analyse the results of tests to see whether they are consistent with our original 

hypothesis; and
• present the results and conclusions of tests so that they are clear and informative.

The discussion deals with these aspects in order so that the book can be read 
straight through or dipped into for particular points. A summary at the end of each 
chapter highlights the important take-home messages, and the self-test questions at 
the end show what you should be able to tackle after reading the book.

Remember, the book is about asking and answering questions in biology – it is 
not a biology textbook or a statistics manual, and none of the points it makes are 
restricted to the examples that illustrate them. At every stage you should be asking 
yourself  how what it says might apply in other biological contexts, especially if  you 
have an interest in investigating them!

We suggest you get hold of a statistical package in order to follow the analyses. 
The one we use in detail in the book is R®. You can download the installation file 
of R® free from www.r-project.org, and follow the simple instructions to install it 
on your computer. This book will enable you to run analyses in R®; a simple and 
very clear guide to learning more about R® is available in Zuur et al. (2009).
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So far, we’ve discussed asking questions in a very general way. Simply being told 
that science proceeds like this, however, is not particularly helpful unless it is clear 
how the principles can be applied to the situation in hand. The idea of this chapter 
is thus to look at the development of  the procedure in the context of  various 
investigations that you might undertake in practical and project work. We shall 
assume for the moment that the material of  interest is derived from your own 
observations. We shall start, therefore, with the problem of making observations 
and directing them in order to produce useful information.

 2.1 Observation

2.1.1 Observational notes and measurements

When first confronted with an unfamiliar system, it is often difficult to discern anything 
of interest straight away. This seems to be true regardless of the complexity of the 
system. For instance, a common cause of early despair among students watching 
animals in a tank or arena for the first time is the mêlée of ceaselessly changing activities, 
many of which seem directionless and without an obvious goal. An equally common 
complaint is that the animals seem to be doing nothing at all worth mentioning. It is 
not unusual for both extremes to be generated by the same animals.

In both of the earlier mentioned cases, the problem almost always turns out 
to be not what the animals are or are not doing, but the ability of  the observer 
to observe. This is because observation involves more than just staring passively 
at material on the assumption that if  anything about it is interesting then it will 

Asking questions
The art of framing hypotheses and predictions
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2.1 Observation 19

also be obvious. On the contrary, good observation is a skill that needs practice to 
develop, and experience to hone to a high level. To be revealing, observations may 
need to be very systematic, perhaps involving manipulations of the material to see 
what happens. They may involve measurements of some kind since some things 
may be apparent quantitatively rather than qualitatively. In themselves, therefore, 
observations are likely to involve a certain amount of question-asking. Their ultimate 
purpose, however, is to provide the wherewithal to frame testable hypotheses and the 
discriminating predictions that will distinguish between the hypotheses.

To see how the process works, we shall first give some examples of observational 
notes and then look at the way these can be used to derive hypotheses and 
predictions. These examples, therefore, develop through the book from initial 
observational notes, through framing and testing hypotheses, to producing a 
finished written report. The examples are based on the kinds of preliminary notes 
made during practical, field course and research project exercises by our own 
students at various stages of their undergraduate training. They come from four 
different fields of study, but their common feature is that they provide scope for 
open-ended investigation and hypothesis testing. Of course, the fact that we happen 
to have selected these particular examples to illustrate the process is irrelevant to 
the aim of  the book, as the range of  other examples running through it amply 
demonstrates. What emerges from the examples applies with equal weight in all 
branches of biology, from molecular genetics and cell biology to psychology and 
comparative anatomy.

Example 1 Material: Samples of leaves collected in the field from early-successional 
(dandelion, Taraxacum officinale; plantain, Plantago lanceolata; poppy, 
Papaver rhoeas), mid-successional (clover, Trifolium repens; ox-eye daisy, 
Leucanthemum vulgare) and late-successional (dogrose, Rosa canina; ragwort, 
Senecio jacobaea; blackthorn, Prunus spinosa; goldenrod, Solidago canadensis) 
plant species; graph paper; binocular microscope.

Notes: Collected leaf samples show a lot of variation in damage. Some 
leaves have several semicircles eaten in from the edges; some have numerous 
holes through the tissue, many brown round the edges; others show extensive 
damage with most of the leaf missing in many cases and damage to the stems 
and twigs they are on. There is considerable size variation in the leaves. Look at 
the size range in undamaged leaves and divide into three size classes. Measure 
size by drawing round whole leaves on graph paper and counting the squares 
within the boundary. Count number of leaves with different kinds of damage 
in each size class: ‘small’ leaves – 41 with small hole damage, four with marginal 
damage, 17 with severe damage; ‘medium-sized’ leaves – 12 with small holes, 
29 with marginal damage, 34 with severe damage; ‘large’ leaves – two with small 
holes, 22 with marginal damage, 40 with severe damage. One obvious possibility 
is that size reflects height off the ground and the effects of different kinds of 
herbivore, perhaps mainly slugs and snails on the smaller leaves, caterpillars 
and other insects on the medium-sized (shrubs, bushes?) leaves and maybe  
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cattle or deer on the largest. It also looks as if  the smaller (low-growing?) leaves 
have much more damage than the larger ones (84 per cent showing some damage, 
compared with 47 and 23 per cent in the other two categories). Maybe this is 
just because bigger plants have more leaves, so more escape damage. While 
examining the samples, notice several other things. Some leaves have tough 
‘skins’, often with hairs on the surface; these are mainly from the medium-
sized category (per cent with hairs visible to naked eye: small, 0; medium, 
21; large, 9). Some of the bigger leaves smell strongly or have sticky or latexy 
sap when squeezed, but the last is also the case with what look like dandelion 
leaves. The stems of some of the medium-sized and bigger ones have thorns or 
sticky hairs. There’s also more colour variation in these two categories, some 
leaves being reddish rather than green. It looks like the tougher, more strongly 
smelling samples generally have less damage than the others.

Example 2 Material: Stained blood smears, vials of preserved ectoparasites, gut  nematodes 
and faecal samples from live-trapped bank voles (Myodes glareolus), microscope 
with eyepiece graticule, clean microscope slides and coverslips, pipettes.

Notes: Looking at blood smears under a microscope, notice range of red and 
white blood cells. Some red cells in some of the smears have small stained bodies 
in them. These turn out to be a stage in the life cycle of a protozoan parasite, 
Babesia microti, which infects voles. Some slides seem to have much higher 
densities of red cells than others. The number of fleas and ticks in each vial 
varies a lot. Several voles didn’t seem to have any, while some had a large number. 
Divide samples by age and sex, and do some counts of infected red cells; scan 
a roughly standard-width field along the graticule scale for each vole and count 
number of infected cells (adult males: 21, 45, 3, 0, 64; adult females: 16, 1, 13, 0, 0; 
juvenile males: 0, 5, 34, 0, 0; juvenile females: 0, 0, 0, 16, 0). Count ticks recovered 
from same groups (adult males: 0, 8, 3, 0, 7; adult females: 0, 1, 0, 0, 2; juvenile 
males: 2, 2, 0, 5, 3; juvenile females: 0, 0, 0, 2, 0). Smear some faecal samples onto 
slides and inspect under microscope. Lots of fragments of plant material and 
detritus. Some samples have clear oval objects which, on asking, turn out to be 
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2.1 Observation 21

Example 3 Material: Vials of water containing suspensions of soil-dwelling nematodes 
from three sites differing in heavy metal and organophosphate pollution, 
 microscope with eyepiece graticule, clean microscope slides and coverslips, 
 pipettes, diagnostic key to common species morphologies.

Notes: Pipette 2 * 0.2@ml droplets of each sample onto a clean slide and 
 examine under microscope. Count adult worms of identifiable species on each 
slide. Sample 1 (heavy metal polluted site) six apparent species, call A–F for the 
moment: numbers – A 27, B 5, C 17, D 3, E 32, F 2; Sample 2 (unpolluted) – B 
43, C 4, D 15, F 18, plus four different species G 20, H 31, I 4, J 12; Sample 3 
(organophosphate polluted site) – A 5, C 48, E 19, H 11. Juvenile worms also 
present but not readily identifiable to adult species. Nevertheless, numbers in 
each sample are 23 (Sample 1), 31 (Sample 2), 0 (Sample 3). Can also detect 
adult females with eggs. Number of females with eggs of each species in 
samples: Sample 1 – A 6, B 0, C 4, D 0, E 5, F 0; Sample 2 – B 13, C 0, D 2, F 
6, G 5, H 11, I 0, J 1; Sample 3 – A 0, C 12, E 7, H 5. Samples contain quite 
a lot of detritus, some of which can be identified as decomposing nematode 
material but not related to species. Take ten arbitrarily chosen fields per slide 
and see how many contain at least one piece of decomposing material: Sample 
1 – 5, Sample 2 – 3, Sample 3 – 7. Repeat for a further two droplets per sample. 
Number of adults in second set: Sample 1 – A 15, C 21, D 9, F 4; Sample 2 – 
B 31, C 6, D 21, F 11, G 16, H 24, J 3; Sample 3 – A 8, C 35, D 3, E 14, H 6. 

nematode eggs. Sometimes there are very large numbers of eggs, sometimes none. 
Too difficult to count all the eggs in each sample, so designate a rank score from 0 
(no eggs) to 5 (more than 100 eggs). Scores for adult males: 3, 5, 5, 0, 3; for adult 
females: 2, 5, 0, 2, 2; for juvenile males: 2, 2, 4, 2, 1; for juvenile females: 0, 1, 0, 
2, 1. On looking at the tubes of preserved worms from the same animals, notice 
that those with high egg scores do not  always have more worms, but some have 
a greater range of worm sizes.  Measure small samples of worms against scale on 
graticule (ranges for five males: 12–25 units, 9–18 units, 13–28 units, 17–22 units, 
11–14 units; ranges for five females: 14–23, 13–19, 12–20, 13–30, 15–29 units).
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22 Chapter 2 Asking Questions

Juveniles per sample – 17 (Sample 1), 19 (Sample 2), 5 (Sample 3). Females 
with eggs: Sample 1 – A 3, C 4, D 0, F 0; Sample 2 – B 10, C 0, D 8, F 4, G 4, 
H 7, J 0; Sample 3 – A 0, C 11, D 0, E 5, H 0. Number of fields per slide with 
decomposing material: Sample 1 – 3, Sample 2 – 3, Sample 3 – 9.

Example 4 Material: Stock cage of virgin female and stock cage of virgin male field 
crickets (Gryllus bimaculatus), two or three 30 * 30@cm glass/Perspex arenas 
with silver sand substrate, dish of water-soaked cotton wool and rodent pellets, 
empty egg boxes, assorted colours of enamel paint, fine paintbrush, paint 
thinners, rule, bench lamps.

Notes: Females are distinguished from males by possession of long, thin 
ovipositor at the back. Put four males into an arena. After rushing about, 
males move more slowly around the arena. When they meet, various kinds of 
interaction occur. Interactions involve a variety of behaviours: loud chirping, 
tapping each other with antennae, wrestling and biting. Interactions tend to 
start with chirping and antenna tapping, and only later progress to fighting. 
Count number of encounters that result in fighting (15 out of 21). Put in three 
more males so seven in total and count fights again (8 out of 25). Take out males 
and choose another five. Take various measurements from each male (length 
from jaws to tip of abdomen, width of thorax, weight) and mark each one with 
a small, different-coloured dot of paint. Introduce individually marked males 
into arena. Count number of fights initiated by each male per encounter (red, 
thorax width 6.5 mm – 4/10; blue, width 7.5 mm – 8/11; yellow, width 7.0 mm – 
8/10; silver, 6.0 mm – 3/12; green, 6.5 mm – 3/9). Continue observations and 
count number of encounters won by each male (win decided if  opponent backs 
off) (red, 3 wins/6 encounters; blue, 4/5; yellow, 7/7; silver, 1/4; green, 4/8).

Introduce three sections of egg box to arena and leave males for 10 minutes. 
After 10 minutes, some males (blue, yellow, red) hiding under egg box shelters 
or sitting close to them. Males in or near boxes chirping frequently. Count 
number of encounters resulting in fight (12 out of 16). Count fights/encounter 
at different distances from burrows for each of the four males in turn – within 
5 cm: 4 attempts in 6 encounters for yellow, 2/2 for red, 0/3 for silver, 4/5 for blue; 
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 2.2 Exploratory analysis

Observational notes are, in most cases, an essential first step in attempting to 
investigate material for the first time. However, as the examples amply demonstrate, 
they are a tedious read and, as they stand, do not make it easy to formulate 
hypotheses and design more informative investigations. What we need is some way 
of distilling the useful information so that points of interest become more apparent. 
If we have some numbers to play with – and this underlines the usefulness of making 
a few measurements at the outset – we can perform some exploratory analyses.

Exploratory analysis may involve drawing some simple diagrams or plotting 
a few numbers on a scatterplot, or it might involve calculating some summary or 
descriptive statistics. We shall look at both approaches shortly, using information 
from the various sets of observational notes. These sorts of analyses almost always 
repay the small effort demanded but, like much basic good practice in any field, they 
are often the first casualty of impatience or prejudgement of what is interesting or 
to be expected. It is always difficult to discern pattern simply by ‘eyeballing’ raw 
numbers, and the more numbers we have the more difficult it becomes. A simple 
visual representation like a scatterplot or a bar chart, however, can turn the obscure 
into the obvious.

2.2.1 Visual exploratory analysis

There are several instances in the examples of observational notes where similar 
measurements were made from different kinds of  material or under different 
conditions. For instance, infected blood cell counts were taken from adult and 
juvenile voles of both sexes, while fighting in male crickets was observed at different 
distances from artificial burrows. In both cases there seem to be some differences in 
the numbers recorded from different kinds of material (age and sex of host) or under 
different conditions (distance from a burrow). What do the differences suggest?

Eyeballing the blood cell data suggests some differences both between males and 
females and between adults and juveniles. A simple way to visualise this might be to 
total up the number of infected cells scored for each category of animal and present 
them in a bar chart (Fig. 2.1). If  we do this, it looks as though males generally 

between 5 and 10 cm: 5/11 (yellow), 2/3 (red), 1/5 (silver), 2/2 (blue); 10–15 cm: 
3/7 (yellow), 4/8 (red), 0/2 (silver), 3/6 (blue); 15–20 cm: 2/9 (yellow), 1/6 (red), 
1/5 (silver), 2/4 (blue); 20–25 cm: 1/8 (yellow), 1/12 (red), 0/2 (silver), 2/8 (blue). 
Introduce two females. Females move around the arena but end up mainly 
around the box sections. Show interest in males and occasionally mount. Other 
males sometimes interfere when female mounting particular male. Number of 
approaches to, and number of mounts with, different males: red, two approaches, 
no mounts; blue, two approaches, two mounts; yellow, three approaches, two 
mounts; silver, no approaches; green, one approach, one mount.
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have higher infection levels than females, regardless of age, and that adults have 
more infection than juveniles, regardless of sex. From this, we might be tempted 
to suggest that adult males are particularly prone to infection compared with other 
classes of individual. As we shall see later, however, we might want to be cautious 
in our speculation.

In the cricket example, we can see that the number of fights per encounter seems 
to vary with distance away from an artificial burrow. An obvious way to see how is 
to plot a scatterplot of number of fights per encounter against distance. The result 
(Fig. 2.2) suggests that, while there is a fair spread of values at each distance, there 
is a tendency for more encounters to result in a fight when crickets are close to a 
burrow. It is important to bear in mind that, as each cricket was observed in turn, 
results for the different animals are independent of each other, and the trend is not 
a trivial outcome of a fight scored for one cricket also counting as a fight for his 
opponent. As we shall see later, this and other kinds of non-independence can be 
troublesome in drawing inferences from data.

Figure 2.2 The number of fights per encounter between crickets at different distances from 
the nearest burrow; symbols represent individuals (see Example 4, Notes).

Figure 2.1 The total number of infected red blood cells in voles of different age and sex (see 
Example 2, Notes).
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These are just two examples. We could do similar things with various other 
measurements in the observational notes. Figure 2.3, for instance, suggests that the 
number of Babesia-infected cells in different classes of host might have something 
to do with tick burden since both show the same broad association with class (see 
Fig. 2.1). Figure 2.4 hints at an association between the size of a leaf and the kind 
of  damage it sustains. The Notes provide scope for other exploratory plots; try 
some for yourself.

Casting data in the form of figures like this is helpful not just because visual 
images are generally easier for most people to assimilate than raw numbers, but 
because they can expose subtleties in the data that are less apparent in numerical 
form. The plot of number of fights per encounter against distance from a burrow 
in Fig. 2.2, for instance, suggests that while the likelihood of fighting decreases 
further away from a burrow, there is considerable individual variation (the different 

Figure 2.4 The number of small, medium and large leaves showing different kinds of damage 
by herbivores (see Example 1, Notes).

Figure 2.3 The number of ticks recovered from voles of different age and sex (see Example 2, 
Notes).
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symbols) within the trend. We shall see later that this variation leads to some 
interesting insights into the role of  burrows in the behaviour of  both male and 
female crickets.

The sorts of plots we have used so far are helpful in seeing at a glance whether 
something interesting might be going on. However, the data could be presented in 
a different way to make the figures more informative. It is clear from the scatterplot 
in Fig. 2.2 and the raw data in the notes relating to Figs 2.1, 2.3 and 2.4 that 
there is a lot of variation in the numbers recorded in each case. Adult male voles, 
for example, did not all have high Babesia burdens; indeed one male didn’t have 
any infected cells at all in the sample examined. This variability has at least two 
important consequences as far as exploratory plots are concerned. First, it suggests 
that simply plotting totals in Figs 2.1 and 2.3 is likely to be misleading, because 
the totals are made up from a wide range of numbers. A large total could be due 
to a single large result, with all the rest actually being smaller than the results 
contributing to the other, lesser, totals, in which case our interest in the apparent 
differences between the bars in the figures might diminish somewhat. Second, 
variability in the data might obscure some potentially interesting tendencies in 
scatterplots. What we need, therefore, is a way of summarising data so that: (a) the 
interesting features are still made clear, but (b) the all-important variability is also 
presented, though in a way that clarifies rather than obscures patterns in the data. 
In short, we need some summary statistics.

2.2.2 Summary statistics

The usual way of summarising a set of data so as to achieve (a) and (b) above is 
to calculate a mean (average) or median value and then to provide as a measure of 
the variability the associated standard error (for a mean) or confidence limits (for 
a median).

Means and standard errors
The mean (often represented by x (‘x-bar’)) is simply the sum of all the individual 
values in the data set divided by the number of values (usually referred to as n, the 
sample size). Formally, the mean is expressed as:

x = (1/n)ai= n

i= 1
xi

The expression g i = n
i = 1xi indicates that the first (i = 1) to the nth (i = n) data values 

(x) are summed (g  is the summation sign) and can be expressed more simply as gx. This summed value is then multiplied by 1/n (equivalent to dividing by the 
sample size n).

Since the mean is calculated from a number of values, we need to know how 
much confidence we can have in it. By ‘confidence’ we mean the reliability with 
which we could take any such set of values from the material and still end up with 
the same mean. A statistician would phrase this in terms of  our sample mean 
(x, the one we have calculated) reflecting the true mean (usually denoted m) of 
the population from which the data values were taken. Suppose, for instance, 
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2.2 Exploratory Analysis 27

we measured the body lengths of  ten locusts caught in each of  two different 
geographical areas and obtained the following results:

Length (cm)
Area 1 Area 2

6.3 6.0
7.1 6.4
6.2 6.3
6.5 6.0
7.0 5.9
6.7 6.5
6.5 6.1
7.0 6.2
6.8 6.2
7.1 6.4
6.7 6.2

Length (cm)
Area 1 Area 2

8.3 8.0
5.1 5.4
7.2 5.3
5.5 6.5
8.0 8.4
5.7 5.5
5.5 7.1
8.0 5.2
8.8 5.2
5.1 5.4
6.7 6.2

Then suppose that we had obtained the following instead:

In both cases, the mean body lengths from each area are the same, and we might 
want to infer that there is some difference in body size between areas. In the first 
case, the range of  values from which each mean is derived is fairly narrow but 
different between areas. We might thus be reasonably happy with our inference. 
In the second case, however, the values vary widely within areas and there is 
considerable overlap between them. Now we might want to be more cautious about 
accepting the means as representative of the different areas. We can see that this 
is the case from the columns of numbers but we need some way of summarising it 
without having to present raw numbers all the time. We can do this in several ways. 
The most usual is to calculate the standard error, a quantitative estimate of  the 
confidence that can be placed in the mean and which can be presented with it as a 
single number. The calculation is simple and is shown in Box 2.1.
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Most scientific calculators will give you the mean of a set of numbers, and most 
will also give you the standard deviation (Box 2.1), usually represented as s or s. 
If  your calculator has both s and s n - 1 buttons, it is the s n - 1 one that you want. 
The standard deviation will become important later, but for the moment we can 
simply use it to obtain the standard error. All we need to do is call up the standard 
deviation, square it, divide it by n and take the square root.

Whichever way you calculate the standard error (by hand or by calculator), it 
should be presented with the mean as follows:

x { s.e.

The { sign indicates that the standard error extends to its value on either side of 
the mean. The bigger the standard error, therefore, the more chance there is that the 

The standard deviation (usually abbreviated to s.d. or SD) measures the spread of actual data values 
around the mean, on the assumption that these data follow the normal distribution (see p.61–62); it 
is a measure of the confidence you have that any particular data value will fall within a particular 
range (the mean + 1 s.d. and the mean - 1 s.d., hence the mean { s.d.). The standard error of 
the mean, usually just called the standard error (abbreviated to s.e. or SE) measures the spread of 
multiple sample means around the true population mean. Normally you will only be taking a single 
sample, and hence the SE is an expression of the confidence you have that your sample mean falls 
within a particular range (mean { s.e.) of the true population mean. Since sample means are almost 
always normally distributed, almost whatever the distribution of the raw data, it is always OK to cite 
a standard error with your sample mean. The calculations are as follows:

The standard deviation:

1. Calculate the sum of all the data values in your group (gx).
2. Square the individual data values and sum them, giving (gx2).
3. Calculate gx2 - (gx)2/n (remember that n is the sample size, the number of values in your 

set of data). This is actually a quick way of calculating the sum of squared deviations from 
the mean: g (x - x)2. The deviations are squared so that positive and negative values do not 
simply cancel each other out.

4. Dividing by n-1 gives the variance of  the sample, an important intermediate quantity in 
many statistical tests.

5. Taking the square root of the variance gives the standard deviation.

The standard error:

6. Steps 1–4 as for the standard deviation, to obtain the variance.
7. Divide the variance by n.
8. Taking the square root gives the standard error.

BOX 2.1   Standard deviations and standard errors
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The steps are then:

1. gx = 67.2
2. gx2 = 452.58
3. gx2 - (gx)2/n = 452.58 - (67.20)2/10 = 452.58 - 451.58 = 1
4. Divide by n - 1 = 1/9 = 0.11
5. Divide by n = 0.11/10 = 0.01
6. Take the square root = U0.01 = 0.11

Thus the mean length of locusts in the first example for Area 1 is:

6.72 { 0.11 cm

If we repeat the exercise for the second example, however:

1. gx = 67.2
2. gx2 = 471.18
3. gx2 - (gx)2/n = 471.18 - 451.58 = 19.6
4. Divide by n - 1 = 19.6/9 = 2.2
5. Divide by n = 2.2/10 = 0.22
6. Square root = U0.22 = 0.47

The mean is now expressed as:

6.72 { 0.47 cm

We could leave the mean and standard error expressed numerically like this, or we 
could present them visually in a bar chart. If we opt for the bar chart, then the mean 
can be plotted as a bar and the standard error as a line through the top centre of 
the bar extending the appropriate distance (the value of the standard error) above 

Locust Body length (x) x2

1 6.3 39.69
2 7.1 50.41
3 6.2 38.44
4 6.5 42.25
5 7.0 49.00
6 6.7 44.89
7 6.5 42.25
8 7.0 49.00
9 6.8 46.24

10 7.1 50.41
n = 10 gx = 67.2 gx2 = 452.58

true mean is actually greater or smaller than the mean we’ve calculated. We can see 
how this works with our locust data. Let’s look at the two sets of values for Area 1, 
first calculating the x2 value of the first example:
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and below the mean. Figure 2.5a, b shows such a plot for the two sets of example 
locust data. You always need to specify whether the value is a standard deviation 
or a standard error, otherwise the reader does not know.

Medians and confidence limits
An alternative summary statistic we could have used is the median. There are good 
statistical reasons, to do with the distribution of data values (see Chapter 3), why 
we may need to be cautious about using means and standard deviations (but not 
standard errors – see Box 2.1 – unless sample sizes are very low). The use of standard 
deviations in particular makes important assumptions about the distribution of the 
data from which they are calculated that may not hold in many cases. Using medians 
and confidence limits avoids these assumptions. Later, we shall see that statistical tests 
of significance can also avoid them. Finding the median is simple. All we do is look 
for the central value in our data. Thus, if our data comprised the following values:

5 7 11 21 8 12 14

we first rank them in order of increasing size:

5 7 8 11 12 14 21

and take the value that ends up in the middle, in this case 11. If  we have an even 
number of  values so there isn’t a single central value, we take the halfway point 
between the two central values. Thus in the following:

2 6 8 20 23 38 40 85

the median is 21.5 (halfway between 20 and 23). Note that the median may yield a 
value close to or very different from the mean. In the first sample, the mean is 11.1 and 
thus similar to the median. In the second sample, however, it is much greater at 27.58.

Figure 2.5 Mean ({  s.e.) body lengths of locusts (using data from p. 27).
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Again, we want some way of indicating how much confidence to place in the 
median. By far the simplest way is to find the confidence limits to the median using 
a standard table, part of which is shown in Appendix I. All we need to do is rank 
order our data values as before, count the number of values in the sample (n), then 
use n to read off a value r from the table. Normally, we would be interested in the 
r-value appropriate to confidence limits of approximately 95 per cent (‘approximately’ 
because, of course, the limits always have to be two of the values in the data set, one 
above the median and one below – if n is less than 6, 95 per cent confidence limits 
cannot be found). This r-value then dictates the number of values in from the two 
extremes of the data set that denote the confidence limits. Thus in our first sample 
data set, there are seven values. Reference to Appendix I shows that for n = 7, r = 1; 
the confidence limits to the median of 11 are therefore 5 and 21. However, if we had 
a sample of nine values (say 7, 11, 15, 22, 46, 67, 71, 82, 100) r for approximately  
95 per cent confidence limits is 2, so for a median of 46, the limits would be 11 and 82.

As with the mean and standard error, we can represent medians and their 
associated confidence limits visually in a bar chart.

Another common way of expressing the distribution of values about the median 
is the interquartile range, which is the difference in values between the data point 
one-quarter of the way down the rank order of values in the sample and the point 
three-quarters of the way down. This is often presented in the form of a so-called 
‘box-and-whisker’ plot (Fig. 2.6). This shows the median value as a bold bar within 
a box that represents the interquartile range. The ‘whiskers’ are not error bars in 
this case, but extend to the largest value in the sample that is within 1.5 interquartile 

Figure 2.6 A box-and-whisker plot summarising the effect of a drug treatment and control 
on patient response. See text for details. Note the outlier indicated for the eleventh data 
point in Treatment 1.
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ranges of the top or bottom of the box. Some computer statistical packages also 
present ‘outlier’ values as additional points on box-and-whisker plots; these can 
provide useful alerts to typographical errors in data entry.

Frequency distributions
Means and standard errors, medians and confidence limits, then, are two 
conventional ways of summarising central tendency and spread of values within 
data. As we have seen, they are particularly useful in making quick ‘eyeball’ 
comparisons between two or more data sets. Such ‘eyeball’ comparisons, however, 
are only one reason why visual summaries of  data sets can be worth plotting. 
Another is to allow the features of a single set of data to be explored fully, perhaps 
to examine the distribution of  values and decide on an appropriate method of 
confirmatory analysis (see later). The usual way of doing this is to plot a frequency 
distribution of the values (the number of times each occurs in the data set), either 
as a bar chart, like the means in Fig. 2.7, or as a histogram. Bar charts, in which the 
bars in the figure are separated by a small gap along the horizontal (x) axis, are used 
to plot the distribution of discrete values where there are sufficiently few of these to 
make such a plot feasible. Histograms, in which the bars are contiguous, are used 
to plot the distribution of classes of values (e.g. 1–10, 11–20, 21–30, etc.), usually 
where there is a wide and continuous spread of individual values. Figure 2.8 shows a 
range of frequency distribution histograms. It is obvious almost at a glance why we 
urged caution in using the mean as a general measure of central tendency, and why 
frequency distributions can be a crucial first step in deciding how to analyse and 
present data. In Fig. 2.8a the distribution is more or less symmetrical, with a peak 
close to the centre. Formally the peak is referred to as the mode and, in symmetrical, 
unimodal distributions like Fig. 2.8a, the mode and the arithmetic mean amount 
to the same thing. In these cases, therefore, the mean is an adequate measure of 

Figure 2.7 A bar chart frequency distribution of different numbers of earthworms recovered 
from core samples of soil (modified from Dytham, 2010).
Source: Modified from Choosing and using statistics: A biologist’s guide, 3 ed., Blackwell 
(Dytham, C. 2010) p.54. Reproduced with permission of Wiley-Blackwell in the format 
 Educational/Instructional Program via Copyright Clearance Center.
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central tendency. In Fig. 2.8b, c, however, it is clear that the mean and mode are far 
from the same thing (in fact Fig. 2.8c has two modes and the distribution is said to 
be bimodal). Here, it makes little quantitative sense to use the arithmetic mean as a 
measure of central tendency. The shape of these distributions becomes extremely 
important when deciding on further analysis of the data, as we shall see shortly.

Of course, when plotting such distributions, one has first to decide on the 
number of  categories into which to cast the data along the x-axis. Perhaps not 
surprisingly, there is no hard and fast rule about this. Dytham (2010), in his 
excellent book, advocates 12–20 categories as a rough rule of  thumb, or, as an 
alternative, Un, where n is the number of data points in the sample. But, in the end, 
it’s a matter of judgement and common sense.

Figure 2.8 Histogram frequency distributions of: (a) the length of the right forelimb of 
field cricket (Gryllus bimaculatus) nymphs, (b) the number of aggressive encounters per day 
between male mice (Mus musculus) in an enclosure and (c) the duration of the aggressive 
displays of male Siamese fighting fish (Betta splendens) in pairwise encounters.
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Exploratory analysis, then, is a way of summarising data, visually or numerically, 
to make it easier to pick out interesting features. The calculations and plots we’ve 
suggested here can, of course, be produced by various computer packages rather 
than by hand. All the main statistical packages, like SPSS', Minitab', Statistica', 
GenStat', Statgraphics', GLIM', S-Plus' and R®, can do this, but many people 
prefer to enter their data into a general spreadsheet for organising and checking 
before transferring them into a statistical package. Microsoft’s Excel' is by far the 
most widely used of these spreadsheets, partly because it allows a range of exploratory 
analyses via simple programmable formulae, and easily produces data tables and 
plots (though see Box 2.3) that can be ‘cut and pasted’ into other documents or 
PowerPoint' slides. Data in Excel' can also be read directly into several different 
statistical packages, and so provide a convenient basis for further, more sophisticated 
analysis. We shall use Excel' as our example spreadsheet package throughout the 
book; our example output uses the Microsoft Office 2003' and 2007 versions of the 
package. As our example statistical package, we have chosen to use R' (see www.r-
project.org), again because it is free to download, is used widely in higher education 
and research and offers an unparalleled range of tests including the ones used here. 
The version we present in the screen captures is R' 2.10.0. Box 2.3 summarises how 
to do the main kinds of exploratory analyses in Excel' and R®, but before looking 
at that, it is worth considering some general “do’s and don’ts” in preparing data for 
analysis using computer packages. These are summarised in Box 2.2.

Although the modest data sets acquired during 
practical classes and projects can often be explored 
and analysed by hand without difficulty, it is now 
almost unheard of to do so. Instead, data are 
usually entered into one of the array of computer 
spreadsheet, database or statistical packages 
available commercially or via the Internet/World 
Wide Web, and analysed using these. Needless 
to say, these provide a quick and convenient 
means of dealing with data and are the virtually 
universal instruments of  choice these days. 
However, as anyone who has ever used computer 
programs will know, it is important to maintain 
a healthy level of wariness when using them. The 
all-too-human potential for programmer and/or 
user error can lay serious traps for the unwary. 
On top of that, the immediacy of the results – 
click a button and there they are – does away with 
any need to understand what is actually going on. 
When it comes to statistics, therefore, computer 

packages should be seen as a convenient adjunct 
to a proper formal training in the subject, not as 
a quick-fix substitute for it. It is thus impossible 
to over-emphasise the need to check and double-
check that a package has done what you think it 
has when you carry out an operation – utterly 
meaningless rubbish can look perfectly plausible 
on superficial inspection.

While data can be entered into any program 
of your choice, we strongly recommend using 
Microsoft’s spreadsheet package Excel', rather 
than a statistical package per se, for entering and 
organising your data ahead of analysis. Excel' is a 
powerful program that allows data to be explored, 
prepared and analysed in many different ways. 
It comes as part of the standard installation of 
packages on many computers when they are 
purchased, so is widely used and supported. Data 
in Excel' can also be imported easily into most 
statistical packages, so Excel' is a convenient 

BOX 2.2   Preparing data for analysis using computer packages
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‘universal donor’ when it comes to switching 
between different packages. The same is not true 
for many of the statistical packages themselves, 
where data often have to be converted into other 
formats (often Excel') before being exportable 
elsewhere, sometimes risking corruption on the way. 
It is a good idea, however, to save the finalised data 
set as a text file, with commas or tabs separating 
the values of the columns along each row, and 
with a header section explaining any codes in the 
data. This is valuable, because the formats used by 
commercial packages including 
Excel' are always changing, but 
a simple text file will never be 
unreadable.

Excel ’s  power and 
flexibility, however, is a two-
edged sword. On the one 
hand it allows large data sets 
to be organised and explored 
easily; on the other, it provides 
a wealth of opportunities for 
error and confusion. Two of 
the commonest user problems 
are mistakes in using formulae 
to calculate new variables 
from existing ones (see below), 
and mistakes in using menu 
commands to reorganise data 
within a worksheet (most often 
inadvertently selecting only 
data visible on-screen, instead 
of the whole data set, when 
using the ‘Sort’ command, 
thus shifting some data out of 
line with the rest). The key to 
using Excel' to prepare data 
for use in statistical packages 
is ‘keep it simple’.

Formatting data worksheets

When you boot up Excel', you 
are presented with the empty 
rows and columns screen in 

Fig. (i). This simple layout is all you need. Excel' 
allows a vast range of  row/column formats 
within its worksheets, and the tendency among 
students is to make liberal use of this capability, 
with header rows spanning several columns, 
worksheets subdivided into sections, textual notes 
and keys interspersed with data, data split across 
different worksheets and so on (e.g. Fig.  (ii)). 
While all this is fine if the file is simply being used 
as a spreadsheet in its own right, it is completely 
unworkable if you want to import the data into 

Figure (i) A newly opened Excel' screen awaiting data entry.

Figure (ii)  An example of an Excel' worksheet format that would not be 
suitable for reading into a statistical package. Problems include: multiple 
data within cells, combinations of numerical data and textual comment 
within columns, and unsuitable column headings.
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a statistical package. As a general rule, statistical 
packages expect data in simple column format, 
with each variable occupying a separate column 
and the first cell of the column containing the 
name of the variable. Each row then represents 
one study sample to which the data in each column 
cell along that row relate. Thus, suppose we had 
conducted an experiment looking at associations 
between anogenital sniffing (often a prelude to 
aggression) and circulating levels of the hormones 
testosterone (as a measure of  sex hormone 
activity) and corticosterone (as a measure of stress 
levels) in male mice. Let’s also suppose we had 
allocated the mice to four different experimental 
treatments, say different degrees of complexity of 
their group’s home cage environment (e.g. (1) bare  
cage, (2) cage + nest material, (3) cage +nest 
material + nest boxes, (4) cage + nest material  
+  nest boxes + shelves ).  The experiment 
consisted of introducing randomly chosen mice 
from eight different cages within each treatment 
into a clean empty cage and allowing them to 
interact one at a time with another randomly 
chosen mouse (different in each case) that 
had been kept on its own in an empty cage to 
standardise the social experience of the opponent 
across experimental subjects. Each pair of mice 
was allowed to interact for five minutes during 
which the number of anogenital sniffs initiated by 
the subject towards the opponent was recorded.

To set up our Excel' data file for the 
experiment, we allocate one column to each of 
the variables in which we are interested. Thus 
our first column might be Mouse and consists 
simply of  numbers 1–32 so we know which 
mouse each row refers to. So we type ‘Mouse’ 
into the first cell in Column A and enter 1–32 in 
the successive cells below. Next, we want to note 
the experimental treatment for each mouse, so 
we head another column Treatment. Here, the 
best thing is to use a simple alphanumeric code 
for each treatment, in this case ‘1’ for bare cages, 
‘2’ for cage + nest material, and ‘3’ and ‘4’ for 
the other two cage types. You can use letters 
(e.g. A, B, C, D) or combinations of letters and 
numbers (e.g. T1, T2, T3, T4), because R® then 
automatically knows that the column represents 
a grouping variable, a factor. However, some 
statistical packages sometimes treat these as 
text variables and won’t allow them to be used 
in analyses. Luckily, R® is not one of these. We 
can then complete three further columns for the 
number of sniffs initiated and the testosterone 
and corticosterone concentrations for each 
mouse, so the basic data set will appear as in 
Fig. (iii). Notice how the header row of variable 
names only occupies a single row, and each 
variable name is a single short word. If  you 
have to use more than one word, use the dot 
(.) or an under-score (_) rather than a space or 

anything else in between the 
words; doing this avoids all 
sorts of  potential problems 
when transferring the data 
to a statistical package, so 
we strongly recommend that 
you do this.

We could, of course, add 
other measures if  we wished, 
such as the body weight 
of  each subject mouse, the 
time of  day of  each test, 
and so on, each in its own 

Figure (iii) Part of an Excel' worksheet in a suitable format for reading into 
a statistical package.

M02_BARN5999_05_SE_C02.indd   36 19/10/2016   15:08



2.2 Exploratory Analysis 37

headed column. Depending on the nature of the 
variables, we could also calculate new ones within 
the file itself using Excel’s formula capability (see 
also Boxes 2.3 and 2.4). Suppose, for instance, 
we wished to express anogenital sniffing in terms 
of the rate of sniffing rather than total number. 
Since all mice were observed for five minutes, 
this is simply a matter of dividing the number 
of sniffs by five to get the rate per minute. To 
do this, go to the first blank column after the 
existing data (here Column F), head it Sniffrate 
(or similar) and click on the first empty cell below 
the heading (Cell F2). Now type an ‘= ’ sign, 
followed by C2/5 (so ‘=C2/5’) and hit ‘Return’. 
This produces the number 0.8 in the cell, which 
is the number of sniffs (from cell C2) divided by 
5. There’s no need to repeat this for every cell of 
the Sniffrate column; all we need to do is click on 
cell F2 again, then click on ‘Edit’ at the top of the 
screen, followed by ‘Copy’ (or just click on the 
‘Copy’ symbol itself at the top of the screen). The 
cell is now highlighted by a shimmering dashed 
border, which indicates its contents have been 
copied to the clipboard. To complete the column, 
click on the cell below F2 and, holding down the 
‘Shift’ key as you do it, the last cell in the column 
(here F25). The remainder of the column is now 
highlighted. Click ‘Edit’ and, this time, ‘Paste’ 
(or just click the ‘Paste’ symbol directly) to fill 
in the rates for each remaining cell. What Excel' 
does here is to copy the actions of the formula 
you typed in (rather than the numerical content 
of Cell F2 itself) to each of the other cells you 
highlighted. An alternative method is to go to 
the bottom right-hand corner of  the cell with 
the formula, and then either drag it down the 
column, or double-click the corner. The latter 
method is especially quick, but beware! Excel' 
fills all cells in the column which has filled cells 
in the adjacent column. Thus if  there are any 
missing values, the process will stop before it has 
filled the entire column. Always check that the 
column has been filled.

While calculating new variables like this in 
Excel' is easy, we recommend that you keep it 
to a minimum. This is because worksheets with 
variables calculated using formulae may not 
be read properly by some statistical packages, 
or require special steps to ensure they are read 
properly. Since all these calculations can be 
done just as easily within statistical packages 
themselves, using menus rather than embedded 
formulae, our advice is to do them there rather 
than in Excel'. If  you have formulae in some 
Excel' cells, when you have finalised the data 
you should highlight the entire data set (by 
clicking on the top left grey square), copy it and 
then right-click, choose ‘Paste Special’ and select 
‘Values’ and ‘Ok’. This will replace the formulae 
with the calculated values, which can be read 
properly by statistical packages.

Reading Excel' data into R'

To read the data in Fig. (iii) into R®, you must 
save it into a text file first, because R® may not 
read Excel' files directly. As mentioned above, 
it is actually a good idea to keep your data in a 
simple text file so that you can never be caught 
out by changing data formats.

Make sure that all the columns have a 
variable name in the first row, with each name 
consisting of  a single short word, or if  more 
than one word, separated with an underscore 
or a dot. Make sure that all the values of  a 
given variable are in a single column, and all 
the variables measured on a single sample/case/
individual are on a single row. The variables 
can be true measurements, or codes for group 
membership (factors), either integer numbers 
or alphanumeric names. Use the powerful ‘sort’ 
functions in Excel' to make sure that all the cells 
with an alphanumeric name for the same group 
contain identically spelled codes (e.g. ‘green’), 
because R® will treat variants as different groups 
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(e.g. ‘Green’ and ‘green’): R® is case-sensitive 
in everything – you have been warned!

It is essential that somewhere (in the Excel' 
file on a different sheet, or in a separate text 
file) you annotate or otherwise keep a detailed 
description of what your variable names mean, 
and what units they are in. This is the source 
of more grief  than anything else – you will not 
remember what your variable names mean in six 
months’ time!

Make sure that there are no empty cells in 
the data file; cells with missing values should all 
contain ‘NA’ (the signal to R® that this value is 
missing).

With the data file open in Excel', choose 
‘File’ and ‘Save As...’, and then select 
‘Text(Tab delimited)(*.txt)’ from the 
drop-down list in the ‘Save As Type’ box. 
Give the file a simple single-word name, and 
click ‘Save’, ‘OK’ and ‘Yes’, noting where the file 
is being saved, i.e. to which folder.

CLOSE Excel! R® may not be able to read the 
file while it is still open in Excel': when you exit 
Excel', reply ‘No’ to the question about saving 
changes.

Then start up R', which will open in a window 
and present you with a prompt ‘>’. We strongly 
recommend you keep sets of  R® commands in 
text files, which can be cut-and-pasted into R®. 
Use a text editor such as NoteTab' Light or 
Vim' (www.vim.org), or R®-specific text editors 
such as Tinn-R' (see https://sourceforge.net/
projects/tinn-r/) or RWinEdt' (an R® package). 
All these are free to download from the Internet. 
The advantage of  an R®-specific text editor is 
that it will help you with a number of  things 
about which R® is very fussy, such as closing 
brackets correctly, or case sensitivity.

Type or paste the command that tells R® 
to read in a data file (‘read.table’) chosen 
from a Windows Explorer window (‘file.
choose()’), into an object called a dataframe 
(which is a matrix of  cases by variables). You 

can give it any name you like, but the shorter 
the better, since you may have to type it many 
times. The ‘<-’ sequence means ‘gets’, i.e. the 
new dataframe is filled with values from the file. 
The ‘header=T’ bit makes sure the names of the 
variables are read from the first line of the file:
>  -dtfr1 <- read.table(file.choose(), 

header = T

check it has been read in properly by typing/
pasting:
> dtfr1

and all the data should be listed in columns. If  
there is an error, the most likely source is in the 
variable names – keep them simple
> names(dtfr1)

will display all the variables R® has read.
> str(dtfr1)

will tell you what R® considers each column to 
be called, its nature (integer, number, factor), 
and the first few values of each column.

Then type/paste:
> attach(dtfr1)

This makes all the variable names available for 
use in commands. If  you don’t do this you will 
need to refer to the variables within a dataframe 
using the ‘$’ operator:
> dtfr1$left

will list the values of  the variable left in the 
dataframe dtfr1.

You can read in many data files and make 
many attach commands, but this confuses R® if  
variables have the same name in different data 
sets – a common cause of errors for R® users. The 
alternative is, whenever you issue a command, to 
start by telling R® which dataframe you want it 
to use:
> with(dtfr1,{...})

where ‘. . . ’ is a command (see later); or to use 
the option in some (but not all) commands that 
specifies where the data are, e.g.:
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>  glm(tail factor(colour), data = 

dtfr1)

You can always find out the syntax of  any 
particular command by typing the command 
name preceded by ‘?’:
> ?glm

and a window will open with all the details 
of  this command; you will see straight away 
whether there is a ‘data =’ option.

If  you make a mistake, then use the ^ (up 
button) on the number pad; this will scroll up 
through the commands, and you can modify 
one, press Return, and the new command will 
be enacted.

To calculate a new variable in R', you simply 
type in the formula, e.g.:
> new.variable <- left - right

R assumes that you want the same number 
of  values in your new variable (its length) as 
there are in the variables ‘left’ and ‘right’. 
If  ‘left’ and ‘right’ differ in length, then new.
variable will be as long as the longest one, 
with the values of  the shorter one recycled so 
as to match.

Logical operators are also very useful:
> new.variable <- x < 5

will result in a list of TRUE and FALSE values 
of the same length as x, evaluating each element 
of x as to whether it is less than 5.

R is hugely flexible in its ability to calculate, 
modify, summarise, select, code and recode 
variables. The commonest operators and 
functions that you might need are the following:

Operators

■	+ - * / ^ for plus, minus, multiply, divide, 
raise to the power

■	> >= < <= == != for greater than, greater 
or equal to, less than, less or equal to, equal 
to, not equal to

■	ifelse(test,action if true,action 
if false)

Be careful with the difference between ‘<-’, 
‘=’ and ‘==’:

■	> x <- 5 sets a variable of length 1 (i.e. a 
scalar) to be 5

■	> x = 5 does the same thing
■	> x <- tail=5 generates an error
■	> x <- (tail=6)sets tail and x to 6 and 

of length 1 (scalars)
■	> x <- (tail==6) sets x to be a vector 

of the same length as tail, and containing 
TRUE or FALSE according to whether the 
equivalent values in tail = 6

Brackets have particular meanings in R®:
■	> x[2] the second value of the vector x
■	> x(2)   perform   the   function   x   with   its 

argument = 2
■	> mean(x) perform the function ‘mean’ on 

the vector x
■	> x[2,] all the columns of the 2nd row of 

dataframe/matrix x
■	> x[,2] all the rows of the 2nd column of 

dataframe/matrix x
■	> x[14:19,2:3] rows 14–19 of columns 

2–3 of dataframe/matrix x

Functions

There are many functions in R', but the most 
useful are:
log(x), log10(x), exp(x), sqrt(x)

One element of  R® that you will need to 
understand is creating vectors from numbers, 
using ‘c’ (for ‘combine’):
> xlim=c(1,100)

creates a vector called xlim containing the 
numbers 1 and 100.

The rep function is also very useful:
> treatments <- rep(c(1:100),times=3)

gives a vector with the numbers 1 to 100 repeated 
three times.

Chapter 2 (‘Essentials of the R® language’) of 
Crawley (2007) is a very useful summary of the 
flexibility and power of the R® language.
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Various spreadsheet and database, and pretty 
well all statistical, packages written for computers 
will enable you to explore data sets and calculate 
standard summary statistics. The means of 
doing so are usually simplest, and the range of 
options greatest, in statistical packages, because 
calculating statistics is their stock-in-trade. 
In spreadsheets and databases they’re often 
something of a frill, and can be tricky to get at.

Exploratory analysis using Excel'

Excel' allows various kinds of  exploratory 
analysis, some very straightforward, others 
requiring more complicated procedures that 
highlight Excel’s limitations on the statistical 
side. Again, our advice would be to use Excel' 
as a simple spreadsheet for preparing raw 
data and reserve statistical treatment, even of 
an exploratory kind, for a proper statistical 
package. Some basic analyses that can be done in 
Excel', however, can be summarised as follows:

Calculating summary statistics in Excel'

Most useful summary statistics can be calculated 
by using one or other of the menu functions at 
the top of the screen (see Box 2.2, Figs (i) and 
(iii)), or directly by typing in a simple formula. 
For example, using the sample data in Box 2.2, 
Fig.  (iii), we could calculate a range of  basic 
summary statistics for the columns or rows by 
clicking on ‘Tools’ (2003)/‘Data’ (2007) followed 
by ‘Data Analysis’† and ‘Descriptive Statistics’. 
This generates the dialogue box in Fig. (i) If we 
wish to obtain summary statistics for each of 
our columns of data in Box 2.2, Fig. (iii), we can 
tick the ‘Summary statistics’ and ‘Grouped by: 
Columns’ options in the box in Fig. (i), and enter 

the first and last data cells of the data we wish 
to include in the ‘Input range:’ box. For the data 
in Box 2.2, Fig. (iii), this would be cell C2 (the 
first data value in column C [the first cell is taken 
up with the name of the variable]), and cell F41 
(we’re not interested in summary statistics for the 
first two columns, because these are just coding 
variables). In Excel' format, the range is entered 
as C2:F41. Clicking the ‘OK’ button now results 
in a list of summary statistics for each column 
of data. These include some statistics relating 
to the shape of  the frequency distribution of 
values in the column, such as kurtosis and 
skewness, which we shall deal with in the next 
chapter. Also included are all the ‘standard’ 
statistics commonly used to summarise data: 
the mean and standard error, the median and 
mode, the standard deviation and variance, and 
the range, sum and number of values. Selecting 
the ‘Confidence’ option in Fig. (i) will add the  
95 per cent confidence limits to the mean to the list. 
Unless otherwise instructed, Excel' will present 
the summary statistics in a new sheet of the active 
data workbook. Clicking on the ‘Output Range’ 

BOX 2.3   Exploratory analysis using computer packages

†You may need to install the ‘Analysis ToolPak’ before ‘Data 
Analysis’ appears under the ‘Tools’/’Data’ menu. It is an 
Add-in – use the Help to enable you to install it.

Figure (i) The ‘Descriptive Statistics’ dialogue box in 
Excel'.
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button and specifying a new cell in the current 
worksheet, however, will result in the summary 
being presented next to the data themselves.

Alternatively, summary statistics can be 
obtained individually by selecting an empty cell 
in the data sheet, clicking the ‘Paste function’ 
(fx) button at the top of the screen and selecting 
from the ‘Statistical’ menu (note that Excel' uses 
‘AVERAGE’ for the mean). Irritatingly, this menu 
does not offer the standard error to the mean, but 
this can be calculated easily from the standard 
deviation using a simple formula (see Box 2.4). 
Indeed, such formulae are what the ‘Paste’ 
function itself uses; these can be seen by clicking 
on the cell containing the calculated summary 
statistic and looking in the ‘=’ row above the data 
columns. Once people are familiar with them, 
the direct use of formulae usually becomes the 
preferred method, since it avoids having to click 
through the succession of options in the dialogue 
boxes. Box 2.4 shows some examples.

Using pivot tables to summarise by category

Often, we want to summarise according to 
categories (i.e. levels of factor) within a data set, 
such as, for example, the different cage treatments 
in the mouse data in Box 2.2, Fig. (iii). This can 
be done very simply for total values using the 
so-called ‘pivot table’ facility. Click on ‘Data’ 
at the top of the screen (Box 2.2, Fig. (iii)) and 
select ‘Pivot Table and Pivot Chart Report ...’. 
Let’s assume we’re interested in knowing how the 
total  number of sniffs varies with treatment in the 
data set in Box 2.2, Fig. (iii). Select ‘Microsoft 
Excel' list or database’ as the source of data in 
the first pivot table dialogue box and click ‘Next’. 
In the ‘Range box’ of  the new dialogue box, 
enter the inclusive cells of the data set; here we 
enter B1:F41 including the variable names, note, 
because the pivot table will use these to label the 
output. Clicking ‘Next’ produces the outline of 
the output table and a request to drag the ‘field 
buttons’ (corresponding to our selectable columns 

of data) on the right into the ‘Row’ or ‘Data’ 
compartments of  the table (Fig.  (ii)a). In this 
case, therefore, Sniffs is dragged into the ‘Data’ 
compartment (where it now says ‘Sum of Sniffs’), 
since we’re  interested in variation in this with 
respect to treatment, and Treatment is dragged 
into the ‘Row’ compartment. Click ‘Next’ again, 
and select a  target cell in the  worksheet to receive 
the table, or select ‘New worksheet’ if  you want 
it in a separate sheet, then click ‘Finish’ and the 
table will appear (Fig. (ii)b).

Sometimes, we might want to summarise by 
more than one category within our data (for 
instance, if  we had recorded the number of sniffs 
by mice with respect to both their cage treatment 
and their social rank [dominant or subordinate] 
in their home cage). Where totals are concerned, 
this can be done easily once again using ‘pivot 
tables’. Follow the procedure above, except this 
time specify three columns (the two categories 
and the variable of interest) in the ‘Range box’, 
and drag both category columns into the ‘Row’ 
compartment of Fig. (ii)a. Select a target cell for 
the table and click ‘Finish’, and a table of totals 
by one category within the other will appear.

Of course, it would be useful to be able to 
produce mean or median values along with their 
respective errors by category. Unfortunately, 
Excel' provides no simple way of  doing this, 
again underlining its limitations as a statistical 
package. While there are circuitous routes 
through which it can be done, it is really not 
worth the effort when the whole operation can 
be accomplished with a couple of commands in 
a statistical package like R'.

Exploratory data plots in Excel'

Using Excel' to produce exploratory data plots 
like those in Figs  2.1–2.6 is straightforward, 
with the important exception of producing plots 
of  mean/median values with their individual 
error bars. The figure-plotting menu does 
offer standard errors to means, but calculates a 
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single standard error for the mean of the entire 
data set, not a separate error for the mean of 
each category within it, which is usually what 

is wanted. Again, there are 
long-winded ways around 
this, but it is far simpler 
to do the whole thing in a 
statistical package, which is 
what we recommend.

Plots of totals.  Summary 
plots of  totals by category, 
like Fig.  2.1, however, 
are easy to produce via 
the ‘pivot table’ function. 
The pivot table in Fig.  (ii)
b presents the kind of 
information we need. To 
produce a graph, all we need 
to do is click on the ‘Chart 
wizard’ option (the vertical 
coloured bars button) at 
the top of  the screen, select 

‘Column’, and the first chart subtype within 
that, and click ‘Next’. Selecting the four 
treatment totals in the pivot table will enter 
their cell numbers in the ‘Data range’ box 
and produce a bar chart of  them. Note that 
Excel' defaults to scaling the x-axis as 1-n 
(here 1–4); if  you wish to change this so the 
axis says, for example, ‘2, 4, 6, 8’ or anything 
else, you need to enter your new labels into 
an empty column in your data set (so, here, 
just four cells of  the column), right-click on 
the figure, select ‘Source Data’, then ‘Series’. 
Put the cursor in the ‘Category (X) axis labels’ 
box and highlight the cells containing your 
desired labels; their specification will appear 
in the box. Clicking ‘OK’ will take you back 
to the now amended figure. Click ‘Next’ to 
edit as desired, or ‘Finish’ for the figure as it 
is. However you choose to edit the figure, we 
suggest you get rid of  the default grid lines 
by right-clicking on the plotting area, clicking 
the ‘Gridlines’ option, and unchecking the 
relevant checkbox.

Figure (ii) (a) Setting up a ‘pivot table’ in Excel' 
by dragging variable headings into the Rows and 
Columns box; (b) the resulting ‘pivot table’ in the 
worksheet.

(b)

(a)
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Scatterplots.  To produce a scatterplot, like 
Fig.  2.2, highlight the two columns of data 
containing the X and Y data you want to plot, 
and click again on the ‘Chart wizard’ button 
and select ‘XY (Scatter)’. Clicking on ‘Finish’ 
will then produce the scatterplot you want. If  
the X and the Y data are in columns that are 
not adjacent, then highlight the data in the first 
column, and press and keep down the Ctrl key 
while you highlight the matching data in the 
other column. Then press the ‘Chart wizard’ 
button and follow the procedure above.

Frequency distributions. Unfortunately, Excel' 
does not provide a ready means of plotting 
frequency distributions. You will need to use a 
statistical package to do this (see below).

Exploratory analysis using R'

R is a fully comprehensive statistical package, as 
opposed to a spreadsheet with some statistical 
facilities added on, like Excel'. Consequently 
life is usually more straightforward when it 
comes to performing analyses, at least when they 
are fairly simple. It is far easier to import data 
into R® from Excel' (see Box 2.2) than to enter 
the data directly in R'.

Calculating summary statistics in R'

Nothing could be easier. To obtain summary 
statistics for any of the variables in your data set, 
simply issue the relevant command. The following 
functions return a single value (a scalar):
max(y), min(y), mean(y), median(y), 

var(y)

or for dataframes you could type/paste:
colMeans(dtfr), colSums(dtfr), row-

Means(dtfr), rowSums(dtfr)

but the easiest way to get these plus the 
interquartile range is:
> summary(y)

If  ‘y’ is a dataframe, then we get the summary 
of  all the variables in the dataframe. Variables 
with alphanumeric codes (factors) are 
counted.

If  we want the same information for all the 
variables in the dataframe split into the different 
factor levels (codes) of a factor in the dataframe, 
then we just type/paste:
> tapply(dtfr, dtfr$factorname, mean)

The word ‘mean’ can be any function. We can 
use individual variables in tapply as well as 
dataframes.

The non-parametric equivalents are the 
minimum, the lower-hinge, the median, the 
upper-hinge and the maximum. These are 
obtained from:
> fivenum(y)

There are no built-in functions in R® for standard 
deviation or standard error (for the difference, 
see Box 2.1), so they must be calculated:
> sqrt(var(x))

is the standard deviation
For standard error, we could write a function 

for use on many variables. This takes a generic 
form using ‘x’ to represent any variable given to 
the function as an argument:
>  se <- function(x) sqrt(var(x)/

length(x))

and then invoked by writing: > se(y), where 
‘y’ is the variable of interest.

To find out the sample size for different 
levels of  a factor (or different integers of  an 
integer variable such as ‘year’, use the ‘table’ 
command:
> table(Treatment)

> table(Treatment, year)

Exploratory data plots in R'

Producing exploratory plots of  data in R® is 
fairly straightforward. However, we will want to 
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use a text editor so that we save what we write, 
because we would not want to compose the 
commands from scratch every time.

Plots of totals. To plot total sniffs by treatment 
as we did above, for example, we need to save 
the totals in a vector and then plot it:
>  sums <- tapply(Sniffs, Treatment, 

sum)

>  barplot(sums, xlab=”Treatment”, 

ylab=”Total sniffs”)

Plots of means or medians. There is no built-
in function in R® for plotting means {  SE, 
and so we will have to create one (taken from 
Crawley, 2007: 462). Once it works, save it! We 
certainly don’t want to have to redo this from 
scratch :
>  plot.error.bars <- function(ymeans, 

yse, nn) {

xv<-barplot(ymeans,ylim=c(0,(max-

(ymeans)+max(yse))),names=nn,

ylab=deparse(substitute(ymeans)))

g=(max(xv)-min(xv))/50

for (i in 1:length(xv)) {

lines(c(xv[i],xv[i]),c(ymeans[i]+y

se[i],ymeans[i]-yse[i]))

lines(c(xv[i]-g,xv[i]+g),c(ymeans[

i]+yse[i],ymeans[i]+yse[i]))

l i n e s ( c ( x v [ i ] - g , x -

v [ i ] + g ) , c ( y m e a n s [ i ] -

yse[i],ymeans[i]-yse[i]))

}}

>

The first line sets up the function itself, which 
takes the means, standard errors and labels 
as its arguments. Note that until we close 
all the brackets, continuation lines will be 
indicated by the ‘+’ rather than the prompt 
‘>’. The second line sets up the object xv, the 
plot itself, which is careful to allow room for 
the error bars in its scaling of  the y-axis: the 
phrase ‘deparse(substitute(ymeans))’ 

turns the name of  the variable into a label for 
the y-axis.

Then we just save the mean values, standard 
errors (using the routine developed above) and 
labels in appropriate variables, and plot using 
our new function:
>  msniffs <- tapply(Sniffs, Treatment, 

mean)

>  sesniffs <- tapply(Sniffs, Treatment, 

se)

>  labels <- as.character(levels 

(Treatment))

>  plot.error.bars(msniffs,sesniffs, 

 labels)

We can plot the medians as boxplots, 
accomplished via declaring the values in 
Treatment to be factor levels first, and then 
issuing the plot command:
> Treatment <- factor(Treatment)

> plot(Treatment, Sniffs, xlab= 

”Treatment”,ylab=”Total sniffs”)

Scatterplots

To generate a scatterplot of  the relationship 
between two variables, we type:
>  plot(Testosterone, Sniffs, xlab= 

”Testosterone”, ylab=”Sniffs”)

We can control the axes scales using e.g. 
xlim=c(lower,upper), so if  we wanted to 
extend the x-axis from 0 to 8, and the y-axis 
from 0 to 25, then we would type:
>  plot(Testosterone, Sniffs, 

xlab=”Testosterone”, ylab=”Sniffs”, 

xlim=c(0,8), ylim=c(0,25))

Symbols and colours can be manipulated at 
will. Suppose we wanted to use the default open 
circles for treatment=1, and closed circles 
for all other treatments, but colour-coding the 
closed symbols for each treatment. The various 
symbols and colours and their numerical 
codes are listed in Appendix IV. You do this 
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by creating a numerical variable for the plot 
symbols (open circle = 1, closed circle = 16). 
We already have a variable with different integers 
for the treatments – Treatment itself  – and we 
can use this for indicating the colours. We can 
also state the colours in words: ‘col=”red”’, 
for instance. We manipulate the sizes of symbols 
using the ‘cex =’ option; a value of 1.2 would 
increase symbol size by 20%:
> plotchr <- ifelse(Treatment==1,1,16)

>  plot(Testosterone, Sniffs, pch = 

plotchr, col = Treatment)

Frequency distributions

To produce plots of the frequency distributions 
for variables, if  the data are integers, we could 

first count their frequencies using the table 
(var) function; hence we type:
>  freqs <- table(Sniffs)

>  barplot(freqs,ylab=”frequency”, 

xlab=”sniffs”,col=”red”)

and this produces a red-coloured bar chart of 
the frequencies.

Alternatively, for continuous or integer 
variables, we could use the command:
> hist(sniffs)

If  we wanted to suppress the irritating main 
heading, and control the break-points of  the 
x-axis, then we could use:
>  hist(Testosterone, main=””, breaks=seq 

(-0.5,59.5,5))

The following are some of the formulae commonly used to calculate summary statistics in Excel'. 
The cell numbers in parentheses are, of course, arbitrary for the purposes of illustration:

BOX 2.4   Some basic formulae for summary statistics in Excel'

Number of items in sample ‘=COUNT(A2:A51)’

Arithmetic mean ‘=AVERAGE(A2:A51)’

Mode ‘=MODE(A2:A51)’

Median ‘=MEDIAN(A2:A51)’

Variance ‘=VAR(A2:A51)’

Standard deviation ‘=STDEV(A2:A51)’

Standard error ‘= (STDEV(A2:A51))/(SQRT(COUNT(A2:A51)))’

Interquartile range ‘=QUARTILE(A2:A51,1)’ for the first quartile

(the value 25% up the data set when rank ordered),

and ‘=QUARTILE(A2:A51,3)’ for the third quartile

(the value 75% up the data set)
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As we emphasise in Box 2.2, using statistical packages on a computer will teach 
you nothing about the underlying assumptions and mechanics of particular tests. 
As far as the user is concerned, the package simply offers a magic box of tricks 
that throws up results when data are put into it. While we use R' as the main 
presentational vehicle for statistical tests in the text – because, for better or worse, 
packages like these are what students will be recommended to use – we also include 
worked examples of the main kinds of test in Appendix II so the reader can have 
some idea of what they actually do.

Of course, while interesting to do in their own right, exploratory analyses are 
useful only to the extent that they promote further investigation to confirm that what 
looks interesting at an exploratory level is still interesting when data are collected 
more rigorously and subjected to more thorough analysis. This brings us back to 
hypotheses and predictions, and leads to a consideration of confirmatory statistics.

 2.3 Forming hypotheses

2.3.1 Turning exploratory analyses into hypotheses and predictions

Exploratory analyses are generally open-ended in that they are not guided 
by preconceived ideas about what might be going on. However, they are the 
first important step on the way to formulating hypotheses that do then guide 
investigation. As we have seen already, hypotheses can be very general or they can 
be specific. Both kinds can be generated from our observational notes.

Example 1

Plants and 
herbivores

The observations of leaf damage in the samples of plant species suggest that 
several factors are influencing the type and amount of damage. A possibility 
emerging from the Notes is that damage decreases with height off the ground and 
thus vulnerability to slugs. This can be framed as a readily testable hypothesis:

Hypothesis 1A The type and extent of leaf damage reflects availability to slugs.
from which some predictions for testing might be:

Prediction 1A(i) Taller plant species will have less leaf damage by slugs than shorter 
species.

Prediction 1A(ii) Leaf damage will decrease the further up a plant that samples are 
taken.

Of course, this is a very broad hypothesis, and many features of a leaf affecting its 
likelihood of predation are going to change along with its height off the ground. 
Some of these are suggested by other observations. For example:

Observation Larger leaves are often tougher or smell strongly.

Hypothesis 1B The decrease in damage among larger leaves is due to their reduced 
palatability.
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Example 2

Hosts and 
parasites

The notes on the samples of material and parasites taken from voles suggest a 
number of interesting possibilities, some to do with the age and sex of the voles, 
others to do with relationships between the different parasites.

Observation The number of Babesia-infected red cells and faecal egg scores 
 appeared to be higher in male voles than in females, and higher in adults than in 
juveniles.

Hypothesis 2A Parasite burdens are affected by differences in the levels of 
reproductive hormones between age and sex classes.

Prediction 2A Parasite burdens will increase with host testosterone levels.

Hypothesis 2B Parasite burdens are affected by differences in aggressive behaviour 
and stress between age and sex classes.

Prediction 2B(i) Parasite burdens will be greater among dominant territorial males.

Prediction 2B(ii) Parasite burdens will increase in any individual with the amount 
of aggressive behaviour shown.

Prediction 2B(iii) Parasite burdens will increase with host corticosterone (stress 
hormone) levels.

Observation Sex and age differences in Babesia levels appear to be associated with 
the number of ticks on the host.

Hypothesis 2C The intensity of infection with Babesia depends on the degree of 
exposure to infected ticks.

Prediction 2C Babesia burden will increase with the number of infected ticks 
 establishing on the host.

Hypothesis 2D The intensity of infection with Babesia depends on the degree of 
resistance to tick infection.

Prediction 2D The intensity of infection with Babesia will decrease with the host’s 
ability to mount an antibody response to ticks.

Prediction 1B For any given size of leaf, damage will decrease the tougher the 
 cuticle or the stronger the odour on crushing.

Observation Larger leaves are sometimes associated with thorns or sticky hairs on 
the stems.

Hypothesis 1C Reduced damage among larger leaves is due to grazing deterrents 
on the stems.

Prediction 1C(i) The incidence of severe damage (suggestive of large herbivores) 
will be lower on thorny species.

Prediction 1C(ii) The incidence of less severe damage (suggestive of invertebrate 
herbivores) will be lower on species with sticky, hairy stems.
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Example 3

Nematodes and 
pollutants

Observations on the samples of soil-dwelling nematodes suggest a number of 
things vary with the pollution status of the site of origin – species diversity and 
fecundity among them.

Observation Fewer species were identified in the samples from the two polluted 
sites compared with the unpolluted site.

Hypothesis 3A Pollution reduces species diversity.

Prediction 3A The addition of pollutants to identical multi-species nematode 
 cultures will result in a reduction in the number of species supported over time.

Hypothesis 3A is another very broad hypothesis and could give rise to several more 
specific hypotheses, each generating its own predictions. For example:

Hypothesis 3B Pollutants are toxic to those species missing from polluted sites.

Prediction 3B Species present at unpolluted sites but missing from polluted sites 
will show greater mortality when exposed to pollutants.

Hypothesis 3C Pollutants affect resource availability for certain groups of 
 nematodes.

Prediction 3C Species missing from polluted sites will tend to come from certain 
trophic or microhabitat groups.

Observation Some species are present only in polluted sites.

Hypothesis 3D(i) Such species benefit from relaxed interspecific competition in 
 polluted sites.

Prediction 3D(i) Increasing the number of species in the culture in an otherwise 
constant and pollutant-free environment will tend to result in the loss of such 
species from the community.

Hypothesis 3D(ii) Pollutants create niche opportunities not available in unpolluted 
sites.

Prediction 3D(ii) For any given number of species in the culture in an otherwise 
constant environment, such species will do better when pollutant is added 
compared with an unpolluted control.

Observation Fewer juvenile stages were recorded from the organophosphate- 
polluted site than from the other two sites, but there was no consistent difference 
in the number of females with eggs.

Hypothesis 3E(i) Organophosphate pollution affects recruitment to nematode 
 populations through reduced egg viability.

Prediction 3E(i) Females reared in organophosphate-treated, single-species culture 
will show reduced hatching success per egg compared with those reared in heavy 
metal or untreated control cultures.

Hypothesis 3E(ii) Organophosphate pollution affects recruitment to nematode 
populations through increased juvenile mortality.
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Example 4

Crickets

Male field crickets seemed to be aggressive to one another when put together in an 
arena. Whether or not an encounter resulted in fighting varied with the number of 
crickets, and individuals differed in their tendency to initiate and win fights. The 
apparent effects of providing egg box shelters and introducing females suggest 
that interactions between males are concerned ultimately with gaining access to 
females.

Observation The number of encounters leading to a fight was lower when more 
crickets were present.

Hypothesis 4A The cost of fighting on encounter increases with population size 
and the chance of encountering another male.

Prediction 4A The probability of an encounter resulting in a fight will decrease 
with increasing numbers of males and in the same number of males maintained at 
a higher density.

Observation Larger males initiated more fights per encounter and won in a greater 
proportion of encounters.

Hypothesis 4B Large size confers an advantage in fights between males.

Prediction 4B Males will be less likely to initiate a fight when their opponent is 
larger.

Observation Interactions tended to escalate from chirping and antenna-tapping to 
overt fighting.

Hypothesis 4C The escalating sequence reflects information-gathering regarding 
the size of the opponent and the likelihood of winning.

Prediction 4C Encounters will progress further when opponents are more similar 
in size and it is more difficult to judge which will win.

Observation Larger males ended up in or near egg box shelters and females tended 
to spend more time with these males.

Hypothesis 4D(i) Females prefer to mate with males in shelters for protection from 
predators.

Prediction 4D(i) Giving a male a shelter will increase the attention paid to him by 
females and his chances of copulating.

Hypothesis 4D(ii) Females prefer large males.

Prediction 4D(ii) Given a choice of males, all with or without shelters, females will 
spend more time and be more likely to copulate with larger males.

Prediction 3E(ii) Females reared in organophosphate-treated, single-species 
 culture will show comparable hatching success per egg but reduced survival 
of  resultant juvenile stages relative to those reared in heavy metal or untreated  
control cultures.
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2.3.2 Null hypotheses

In the examples above, we have phrased predictions in terms of  the outcomes 
they lead us to expect. Prediction 1B, for example, leads us to expect that the 
amount of damage sustained by a leaf will decrease the tougher its cuticle or the 
more volatiles it contains. We can test this prediction by carrying out a suitable 
investigation and associated confirmatory analysis. Formally, however, we do not 
test predictions in this form. Rather, we test them in a null form that is expressed as 
a hypothesis against the prediction. This is known as a null hypothesis and is often 
expressed in shorthand as H0 (the prediction made by the study is then referred to 
conventionally as H1). Predictions are tested in the form of a null hypothesis because 
science proceeds conservatively, always assuming that something interesting is not 
happening unless convincing evidence suggests, for the moment, that it might be. 
In the case of Prediction 1B, therefore, the null hypothesis would be that tougher 
cuticles or more volatiles would make no difference to the amount of  damage 
sustained by a leaf. We shall see later what burden of proof is necessary to enable 
us to reject the null hypothesis in any particular case.

There is a second, and from a practical point of view more crucial, point to make 
about the predictions. Skimming down them gives the impression of specificity and 
diversity; each prediction is tailored to particular organisms and circumstances, 
and those from one example seem to have little to do with those from others. At 
the trivial level of detail, this is obviously true. However, in terms of the kinds of 
question they reflect, predictions from the different examples in fact have a great 
deal in common. Before we can proceed with the problem of testing hypotheses 
and choosing confirmatory analyses, we need to be aware of what these common 
features are.
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2.3.3 Differences and trends

Although we derived some 23 different predictions from our notes, and could 
have derived many more, all fall (and any others would have fallen) into one of 
two classes. Regardless of whether they are concerned with nematodes or crickets 
or with surviving pollutants or fighting rivals, they either predict some kind of 
difference or they predict some kind of trend. Recognising this distinction is vitally 
important, because it determines the kind of confirmatory test we shall be looking 
to perform and therefore the design of  our experiments. Surprisingly, however, 
it proves a stubborn problem for many students throughout their course, with 
the result that confirmatory analyses often fall at the first fence. Let’s look at the 
distinction more closely.

A difference prediction is concerned with some kind of difference between two 
or more groups of measurements. The groups could be based on any characteristics 
that can be used to make a clear-cut distinction; obvious examples could be sex 
(e.g. a difference in body size between males (Group 1) and females (Group 2)), 
functional anatomy (e.g. a difference in enzyme activity between xylem (Group 1),  
phloem (Group 2) and parenchyma (Group 3) cells in the stem of  a flowering 
plant), or experimental treatment (e.g. a difference in the number of chromosomal 
abnormalities following exposure to a mutagen (Group 1) or exposure to a harmless 
control (Group 2)). Which of  the predictions we derived earlier are difference 
predictions?

Example 1

Plants and 
herbivores

In the leaf sample study there are two difference predictions:

■	 Prediction 1C(i) leads us to expect that the incidence of severe damage will be 
lower on thorny species (Group 1) than on non-thorny species (Group 2).

■	 Prediction 1C(ii) leads us to expect a reduction in less severe damage on species 
with sticky, hairy stems (Group 1) compared with species without (Group 2).

Example 2

Hosts and 
parasites

One prediction from the example of host/parasite relationships involves a 
 difference:

■	 Prediction 2B(i) suggests a difference in parasite burden between dominant 
territorial males (Group 1) and other age and sex categories of host (Group 2).

Example 3

Nematodes and 
pollutants

Almost all the predictions arising from the soil-dwelling nematode samples turn 
out to be difference predictions:

■	 Prediction 3A suggests a difference in the number of species between cultures 
to which pollutant has been added (Group 1) and those that are pollutant-free 
(Group 2).

■	 Prediction 3B predicts a difference in sensitivity to pollutants between species 
absent from polluted sites (Group 1) and those present at such sites (Group 2).
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■	 Prediction 3C suggests a difference between trophic groups (e.g. bacterial 
feeders (Group 1), fungal feeders (Group 2), plant feeders (Group 3)) in the 
tendency to be present at polluted sites.

■	 Prediction 3D(ii) leads us to expect a difference between cultures to which 
pollutant has been added (Group 1) and pollutant-free controls (Group 2) in 
the tendency to support nematode species found only in polluted sites in the 
field.

■	 Prediction 3E(i) suggests a difference in egg hatching success between female 
worms exposed to organophosphate pollutant (Group 1) and those not (Group 2).

■	 Prediction 3E(ii) is similar to the last prediction except that it suggests a 
difference in larval mortality instead.

Example 4

Crickets

Two predictions from the crickets involve differences:

■	 Prediction 4B suggests that males will be less likely to intitiate a fight when their 
opponent is larger than them (Group 1) than when it is smaller (Group 2).

■	 Prediction 4D(i) predicts that females will pay more attention to males with a 
shelter (Group 1) than to males without a shelter (Group 2).

Trend predictions are concerned not with differences between hard and fast 
 groupings but with the relationship between two more or less continuously 
distributed measures. Thus, for example, a relationship might be predicted between 
the amount of an anthelminthic drug administered to a rat infected with nematodes 
and the number of worm eggs subsequently counted in the animal’s faeces. In this 
case, we should expect the relationship to be negative with egg counts decreasing 
the more drug the rat has received. On the other hand, a positive relationship might 
be predicted between the number of hours of sunlight received and the standing 
crop of  a particular plant. With trends we can therefore envisage two measures 
as the axes of a graph. One measure extends along the bottom (x) axis, the other 
up the vertical (y) axis. Sometimes it doesn’t matter which measure goes along the 
x-axis and which up the y-axis because there is no basis for implying cause and 
effect, and we are interested only in whether there is some kind of  association. 
Thus, we might expect a strong association between the amount of ice cream eaten 
and the amount of time spent in the sea on a visit to the seaside because both would 
go up with temperature. Since neither could reasonably be thought of as a cause 
of  the other, it is of  no consequence which goes on the x- or y-axis. In the two 
examples above, however, there are reasonable grounds for supposing cause and 
effect. While it is plausible for the anthelminthic drug to affect faecal egg counts, it 
is not plausible for the egg counts to have influenced the amount of drug. Similarly, 
hours of sunlight could influence a standing crop but not vice versa. In these cases, 
the drug dose and hours of sunlight measures should go on the x-axis and the egg 
counts and standing crops on the y-axis. It is important to stress, however, that 
by doing this we are not asserting that the x-axis measure really is a cause of the 
y-axis measure – as we shall see later, inferring cause and effect from relationships 
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Example 2

Hosts and 
parasites

All except one of the predictions from the vole parasites example are trend 
predictions:

■	 Prediction 2A predicts an increase in parasite burdens (y measure) with 
increasing testosterone levels (x measure).

■	 Predictions 2B(ii) and (iii) predict similar increases in parasite burdens 
(y  measure) but this time as a function of  increasing aggression and 
corticosterone levels (x measures), respectively.

■	 Prediction 2C suggests an increase in Babesia levels (y measure) with the 
number of ticks recovered from the host (x measure).

■	 Prediction 2D suggests a reduction in Babesia levels (y measure) with host 
immune responsiveness (x measure).

Example 1

Plants and 
herbivores

In Prediction 1A(i), leaf damage is expected to decrease as the height of plant 
species increases. Plant height should thus be the x measure and leaf damage the 
y measure:

■	 Prediction 1A(ii) makes a similar prediction except that the expected 
relationship is within plants. Height up the plant is the x measure and leaf 
damage once again the y measure.

■	 Prediction 1B suggests a negative relationship between toughness of the cuticle 
(x measure) and leaf damage (y measure).

requires extreme caution – merely that if  there was a cause-and-effect relationship 
it would most likely be that way round. This is also clear in the remainder of our 
example predictions, all of which involve trends.

Example 3

Nematodes and 
pollutants

Only one of the predictions arising from the nematode example suggests a trend:

■	 Prediction 3D(i) predicts a loss of  species found only at polluted sites 
(y measure) as the number of species in a culture increases (x measure).

Example 4

Crickets

Three predictions from the crickets involve trends:

■	 Prediction 4A first of all predicts that the number of encounters ending up in 
a fight (y) will increase with the number of crickets (x), then predicts a similar 
increase when the same number of crickets are maintained at higher densities 
(density = x).

■	 Prediction 4C involves a predicted trend in the tendency to escalate an 
interaction (y) with decreasing difference in size between opponents (x).

■	 Prediction 4D(ii) suggests that the time females spend with a male (y) and their 
tendency to copulate (y) will increase with male size (x).

M02_BARN5999_05_SE_C02.indd   53 19/10/2016   15:08



54 Chapter 2 Asking Questions

There is thus a clear distinction between difference and trend predictions. Of course, 
it is possible to recast some trend predictions as difference predictions (for instance, 
a continuous measure of  group size for use in a trend could always be recast in 
terms of small groups (groups below size w) and large groups (groups above size w) 
and thus be used in a difference prediction). What makes the distinction, therefore, 
is not the data per se but the way data are to be collected or classified for analysis. 
Thus, while measures such as group size or time intuitively suggest trends, there 
is nothing to stop their being used in difference predictions. It all depends on 
what is being asked. This is often a source of serious confusion among students 
encountering open-ended data handling for the first time.

 2.4 Summary

1. Open-ended observation is a good way to develop the basis for forming 
hypotheses and predictions about material. It pays to make observations 
quantitative where possible so that exploratory analyses can highlight points 
of interest.

2. Exploratory analysis is a useful (often essential) first step in extracting interesting 
information from observational notes or other sources of exploratory 
information. It can take a wide variety of forms, such as bar charts, scatterplot, 
or tables of summary statistics.

3. Exploratory analyses, or raw exploratory information itself, can lead to a 
number of hypotheses about the material. In turn, each hypothesis can give 
rise to several predictions that test it. Formally, predictions are tested in the 
form of null hypotheses.

4. While predictions derived from hypotheses may be diverse and specific in 
detail to the material of interest, they fall into two clearly distinguishable 
categories: predictions about differences and predictions about trends. Which 
of these categories a prediction belongs to is determined by the way data are 
to be collected or classified for analysis.
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In the last chapter, we looked at the way hypotheses can be derived from exploratory 
information. We turn now to the problem of how to test our hypotheses. As we 
have seen, we begin by making predictions about what should be the case if  our 
hypotheses are true. These predictions then dictate the experiments or observations 
that are required. However, this may not be as straightforward as it sounds; decisions 
have to be made about what is to be measured and how, and how the resulting data 
are to be analysed. The questions of  measurement and analysis are, of  course, 
interdependent. This is obvious both at the level of choosing between difference 
and trend analyses – there is little point collecting data suitable for a difference 
analysis if  what we’re looking for is a trend – and at the choice of analyses within 
differences and trends. While at first sight it might seem like putting the cart before 
the horse, therefore, we shall introduce confirmatory analysis before dealing with 
the collection of data so that the important influence of choice of analysis on data 
collection can be made clear.

 3.1 Confirmatory analysis

3.1.1  The need for a yardstick in confirmatory analysis:  
statistical significance

Take a look at the scatterplot in Fig. 3.1. It shows a relationship between the 
 concentration of a fungicide sprayed on a potato crop and the percentage of leaves 
sampled subsequently that showed evidence of fungal infection. A plot like this was 
presented to a class of undergraduates. Students in the class were asked whether 

Answering questions
What do the results say?
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they thought it suggested any effect of fungicide concentration on infection. The 
following are some of their replies:

Yes, fungicide concentration obviously has an effect because infection goes 
down with increasing concentration.

It’s hard to say. It looks as though there is some effect, but it’s pretty weak. 
More data are needed.

Fungicide concentration is reducing infection but there must be other 
things affecting it as well because there’s so much scatter.

I don’t think you can say anything from this. Yes, there is some downward 
trend with increasing concentration but several points for high concentrations 
are higher than some of those for low concentrations. Totally inconclusive.

Yes, there is a clear negative effect.

Figure 3.1 A scatterplot of the relationship between concentration of a fungicide applied to 
a potato crop and the percentage of leaves subsequently found to be infected.
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Clearly there are different, subjective, reactions to the plot. To some it is 
unequivocal evidence for an effect of fungicide concentration; to others it doesn’t 
suggest much at all. Left to ‘eyeball’ impressions, therefore, the conclusion that 
emerged would be highly dependent on who happened to be doing the eyeballing. 
What is required, quite clearly, is some independent yardstick for deciding whether 
or not we can conclude anything from the relationship. Since the scenario above 
could be repeated with any set of data – difference or trend – the need for such a 
yardstick arises in all cases. One or two idiosyncratic departures notwithstanding 
(one well-known ornithologist used to advocate the yardsticks ‘not obvious’, 
‘obvious’ and ‘bloody obvious’), the yardstick used conventionally in science is 
statistical significance. There is nothing magical or complicated about statistical 
significance. It is simply an arbitrary criterion accepted by the international 
scientific community as the basis for rejecting or not rejecting the null hypothesis 
in any given instance and thus deciding whether predictions, and the hypotheses 
from which they are derived, hold. If the criterion is reached, the difference or trend 
in question is said to be significant; if  it is not, the result is non-significant. The term 
‘significant’ thus has an important, formal meaning in the context of data analysis 
and its use in a casual, everyday sense should be avoided in discussions relating 
to scientific interpretation. How do we decide whether differences or trends are 
significant? By using the most appropriate of the vast range of significance tests 
at our disposal. Before we introduce some of these tests, however, we must say a 
little more about significance itself.

 3.2 What is statistical significance?

A statistic is a measure, such as a mean or a correlation, derived from samples of data 
that we have collected. Our expectation is that it relates closely to an equivalent real 
value (parameter) in the population from which the samples were drawn. Of course it 
might or it might not. Our sampling technique (see later) may have been impeccable 
and produced a very accurate reflection of the real world. More than likely, however, 
and for all kinds of forgivable reasons, it will have produced a somewhat biased 
sample and our calculated statistics will differ from their population parameters. 
This is what makes statistical inference tricky. If we detect an apparent difference 
between two sets of data, or an apparent trend in the relationship between them, is 
the difference or trend real or is it just an artefact of the chance bias in our sampling? 
Or, to put it another way, is it statistically significant?

The criterion that determines significance is the probability (usually denoted as p) 
that a difference or trend as extreme as the one observed would have occurred if  
the null hypothesis – that there is really no difference or trend in the population 
from which the sample came – was true. Confused? An example makes it clear. Let’s 
take one of our earlier predictions, say Prediction 2C. This predicts an increase in 
Babesia burden in voles with increasing degree of tick infestation. Suppose we had 
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tested this by infesting each of ten sets of five parasite-free voles with a different 
number of  Babesia-infected ticks, measured the subsequent number of  infected 
blood cells in each vole and found what looked like a convincing positive trend: 
Babesia burden goes up with increasing numbers of ticks. The null hypothesis in 
this case, of  course, is that Babesia burden will not increase with the number of 
ticks. What, then, is the probability of obtaining a positive relationship as extreme 
as the one we got if  this null hypothesis is really true and the apparent trend a 
chance effect? A helpful analogy here might be the probability of  obtaining the 
apparent trend by haphazardly throwing darts at the scattergram. An appropriate 
significance test will tell us (we shall see how later). By convention in biology, a 
probability of 5 per cent (=  0.05 when expressed as a proportion) is accepted as the 
threshold of significance. If  the probability of obtaining a relationship as extreme 
as ours by chance turns out to be 5 per cent or less, we can regard the relationship 
as ‘significant’ and reject the null hypothesis. If  the probability is greater than 5 per 
cent we do not reject the null hypothesis, and the relationship is regarded as non-
significant. If  the null hypothesis is not rejected, we effectively assume that our 
apparent relationship was due to a chance sampling effect. As a matter of interest, 
the negative trend in Fig. 3.1 is significant at the 5 per cent level, so the optimists 
have it in this case!

The 5 per cent threshold is, of course, arbitrary and still leaves us with a one-
in-twenty chance of rejecting the null hypothesis incorrectly (falsely accepting there 
is a difference or a trend when there isn’t). Under some circumstances, for instance 
when testing the effectiveness of a drug, a one-in-twenty risk of incorrect rejection 
might be considered too high. In certain areas of  research such as medicine, 
therefore, the arbitrary threshold of significance is set at 1 per cent (=  0.01). In 
other disciplines it is sometimes relaxed to 10 per cent (=  0.1). Although we have 
talked of threshold probability (p) values (p 6 0.05, p 6 0.01, etc.), most computer 
statistical packages now quote exact probabilities (p = 0.0425, p = 0.1024, etc.) 
for the outcome of significance tests. If  the package doesn’t tell you whether the 
exact probability it quotes is significant, simply apply the threshold value rule as 
before. Thus, on the 5 per cent criterion, p = 0.0425 is significant, because it is less 
than 0.05, but p = 0.1024 is not, because it is greater than 0.05.† Many students 
are thrown by the appearance of a probability of 0.000 from a statistical package. 
Don’t be! It merely means a probability too low to display within three decimal 
figures; it therefore means p V 0.001 (p is very much less than 0.001).

† There are differing opinions about the form in which the p-value from a statistical test should be 
reported. Some take the view that, since most packages give the exact probability, this should be 
reported as the result. However, some statisticians think that these probabilities are really correct only 
if  the assumptions of the test are absolutely fulfilled by the data, which is rarely true, and hence it is 
misleading to give the appearance of accuracy by citing the exact probability. For many scientists the 
threshold is the important thing, and they report only whether (a) it has not been equalled or crossed 
(in which case the outcome is reported as ‘non-significant’ or ‘ns’), or (b) if  it has been crossed, at what 
level of probability, either by quoting the thresholds themselves (p 6 0.05, p 6 0.01 or p 6 0.001) or 
using a conventional indicator such as asterisks (‘*’, ‘**’ or ‘***’) to denote the same thing (see also 
p.153). However, see the interesting paper by Ridley et al. (2007), which suggests scientists sometimes 
pursue these critical thresholds rather too zealously.
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An important point must be made here regarding the inference to be drawn 
from achieving different levels (10, 5, 1 per cent, etc.) of significance. A high level 
of significance is not the same as a large effect in the sense of a large difference or 
a steep trend. The magnitude of an effect – difference or trend – is usually known 
as an effect size.† This is quite different from the level of significance. The limitations 
of significance in this sense are made clear in Fig. 3.2. The figure shows two trends. 
In Fig. 3.2a, the y measure increases in close relationship with the x measure, 
yielding what looks like a clear positive trend. Figure 3.2b, on the other hand, 
shows a scatter of points in which it is more difficult to discern a trend. However, 
if  we perform a suitable significance test for a trend on the two sets of data, the 
trend in Fig. 3.2b turns out to be significant at the 1 per cent level while that in 
Fig. 3.2a isn’t even significant at the 10 per cent level. The crucial difference between 
the two trends, of course, is the sample size. The number of data points in Fig. 3.2a 
is low, so a few inconsistencies in the trend are enough to push it below significance. 
Figure 3.2b, however, has a large number of points, so even though there is a wide 
scatter, the trend is still significant. Exactly the same sample-size effect would 
operate in the case of difference analyses.

Because the level of significance by itself  gives little indication of the magnitude 
of a difference or trend, it is always important to provide such an indication, usually 
in the form of summary statistics and their associated sample sizes. We shall return 
to this point later.

† ‘Effect size’ is a name given to a family of indices that measure the magnitude of a difference or trend. 
Unlike significance tests, effect sizes are independent of sample size. They are usually measured in two 
ways: (a) as the standardised difference between means (difference analyses) or (b) as the correlation 
between the predictor variable and the response variable (trend analysis) (see also Box 3.14).

Figure 3.2 Scatterplots showing the effect of sample size on apparent trends (see text).

3.2 What is Statistical Significance? 59
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 3.3 Significance tests

So far, we have seen how to get round the problem of  subjective impression in 
interpreting data by using the criterion of  statistical significance, and we have 
looked at some caveats on the interpretation of significance. We can now turn to 
the statistical tests that enable us to decide significance.

Right at the beginning we said that this book was not about statistics. It isn’t. At 
the same time, statistical significance tests are an essential tool in scientific analysis, 
and the rules for using them must be clearly understood. This does not necessarily 
require a knowledge of statistical theory and the mathematical mechanics of tests 
any more than using a computer program requires an appreciation of electronics 
and microcircuitry. As with most tools, it is competent use that counts rather than 
theoretical understanding. But while our aim here is simply to introduce the use 
of significance tests as a basic tool of enquiry, we stress again (see Box 2.2) that 
acquaintance with statistical theory is strongly recommended, and it is envisaged 
that many users of this book will also be pursuing courses in statistics and have 
at their disposal some of the many introductory and higher-level textbooks now 
available (e.g. Siegel & Castellan, 1988; Sokal & Rohlf, 1995; Grafen & Hails, 
2002; Hawkins, 2005; Ruxton & Colegrave, 2006; Crawley, 2007; Zuur et al., 2009; 
Dytham, 2010).

3.3.1 Types of measurement and types of test

The test we choose in a particular case may depend on a number of things. The 
following are three important ones. Throughout we need to keep very clear the 
distinction between the response variable (i.e. the variable being analysed) and the 
predictor variable(s), whose values are tested for their influence on the response 
variable. For difference questions, the predictor is a group-membership variable. 
For trend questions, the predictor is a continuous variable.

1 Types of measurement
The first is the kind of measurement we employ. Without getting too bogged down 
in jargon, we can recognise three kinds.

Nominal or classificatory measurement.
Here, independent observations or recordings are allocated to one of a number of 
discrete, mutually exclusive categories such as male/female, mature/immature, red/
yellow/green/blue, etc. Thus if  we were to watch chicks pecking at red (R), green 
(G) and orange (O) grains of rice and recorded the sequence of pecks with respect 
to the colour targeted, we might end up with a string of data as follows:

R O R R G G O R G G G G O O G R O

Such data are measured purely at the level of the category to which they belong, 
and measurement is thus nominal or classificatory.
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Ordinal or ranking measurement.
In some cases, it may be desirable (or necessary) to make measurements that can be 
ranked along some kind of scale. For instance, the intensity of the colour of a turkey’s 
wattles might be used as a guide to its state of health. The degree of redness of the 
wattles of different birds could be scored on a scale of 1 (pale pink) to 10 (deep red). 
The allocation of scores to wattles is arbitrary and there is no reason to suppose that 
the degree of redness increases by the same amount with each increase in score. Thus 
the difference in redness between scores of 8 and 9 might be greater than the difference 
between scores of 2 and 3. All that matters is that 9 is redder than 8 and 3 is redder 
than 2; the absolute difference between them cannot be quantified meaningfully.

Constant-interval measurements.
In other scale measurements, the difference between scores can be quantified so 
that the difference between scores of 2 and 3 is the same as that between scores of 
8 and 9. Such measurements may have arbitrarily set (e.g. scales of temperature) 
or true (e.g. scales of  time, weight, length) zero points. Such constant-interval 
measurements can in fact be split into two categories on the basis of  arbitrary 
versus true zero points and their scaling properties (e.g. Martin & Bateson, 1993), 
but this is not important here.

While defining measurements seems rather dry and theoretical, we need to be 
aware of the kind of measurement we use because, as we shall see, some significance 
tests are very restrictive about the form of response data they can accept. Another 
reason for highlighting it is that we should always seek the measures that give us the 
maximum amount of information for the cost required (usually in time) to obtain 
them. Usually this means constant-interval measurements, because they are on a 
continuous, non-arbitrary scale. However, nominal or ordinal data are sometimes 
more appropriate and not infrequently the best that can be achieved.

2 Parametric and non-parametric significance tests
The second thing we must keep an eye on is the nature of the data set itself, in 
particular the sample size and the distribution of response values within the sample. 
Again, detailed consideration of this is unnecessary, but it is a factor that determines 
the range of tests we shall be introducing, so a brief discussion is warranted.

Parametric tests.
These make a number of important assumptions that are frequently violated by the 
kinds of data sets collected during practical exercises. The most critical concerns the 
distribution of response values within samples. Parametric tests generally assume 
that the data (really, the residuals – see below) conform (reasonably closely at least) 
to what is known as a normal distribution.

As Dytham (2010) puts it, the normal distribution is the most important 
distribution in statistics (but see below) and it is often assumed (all too frequently 
without checking) that the data of the response variable are distributed in this way. 
We’ve already encountered it in our discussion of frequency distributions and it is 
illustrated again in Fig. 3.3. Essentially a normal distribution demands that most of 
the data values fall in the middle of the range (cluster about the mean) with the number 
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tapering off symmetrically either side of the mean to a few extreme values in each of 
the two tails. The height of the adult male or female population in a city would look 
something like this: most people would be around the average height for their sex, some 
would be quite tall or quite short and a few would be extremely tall or extremely short. 
While normality of residuals is not the only assumption underlying parametric tests, 
the arithmetic of such tests is based on the parameters describing this symmetrical, 
bell-shaped curve (hence the term parametric). Therefore, if you are testing for group 
differences, parametric tests assume that each group has the same normal distribution 
of response values around its mean; if for trends, that there is a normal distribution of 
y-values at each x-value (for regression), or a normal distribution along both x- and 
y-axes (for correlation). The more distorted (less normal) the distribution becomes, 
therefore, the less meaning the calculations of parametric tests have. We can convince 
ourselves of this by briefly considering some basic features of the distribution. We 
shall then consider what to do if the data are not normal.

The standard deviation and probability.
We’ve talked about the arithmetic mean as a measure of central tendency. This is 
a useful parameter that tells us one thing about the nature of the data set. What it 
doesn’t tell us, of course, is anything about the variation in the data. This is where we 
come back to the standard deviation, first encountered in calculating the standard 
error to the mean in Box 2.1. The standard deviation (see calculation in Box 2.1) is 
a measure of the spread of data values about the mean, but instead of simply being 
the full range of actual values from smallest to largest (which will vary with sample 
size), it reflects the theoretical spread of the majority of values (68.25 per cent of 
them in a perfectly normal distribution) in the true population. We can represent 
this as two vertical lines (one either side of the mean) in Fig. 3.3, which is actually 
a standardised normal distribution (where the mean is subtracted from each data 

Figure 3.3 A standardised normal distribution (with a mean of 0) and showing one standard 
deviation (vertical lines) either side of the mean (modified from Dytham, 2010).
Source: Modified from Choosing and using statistics: a biologist’s guide, 3 ed., Blackwell 
(Dytham, C. 2010) p.41. Reproduced with permission of Wiley-Blackwell in the format 
Educational/Instructional Program via Copyright Clearance Center.
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value and the result divided by the standard deviation, thus giving a mean of zero 
and a variance of 1). An easy way to visualise the standard deviation is as the point 
of inflection either side of the mean (where the curve of the normal distribution 
changes from convex to concave). Taking the majority spread like this avoids the 
distortion that might be inflicted by odd outlier values at the extremes, and provides 
a convenient standard yardstick of variability within data sets. Moving two or three 
standard deviations away from the mean includes predictably greater percentages 
of the data set: 94.45 per cent in the case of two standard deviations and 99.97 per 
cent in the case of three. The important point here is that we can use this property 
when it comes to significance testing. Since we know what percentage of the data 
points is included within different multiples of the standard deviation, we can easily 
work out how many standard deviations would include 95 per cent of  the data 
or, more to the point, exclude the 5 per cent at the extremes (2.5 per cent at each 
extreme). The answer is 1.96, represented by the horizontal bar in Fig. 3.3. Thus 
95 per cent of data values lie within the range ‘mean { 1.96 standard deviations 
(x { 1.96 s.d.)’, which means that the probability of encountering a value larger 
or smaller than this range is 5 per cent or less – the conventional threshold of 
statistical significance! If  we found a value with a probability of  occurrence as 
low as this we’d be justified in concluding that it was unlikely to have come from 
the population that generated the curve. Of course, as the fact that the calculation 
of the standard deviation in Box 2.1 is based on squared deviations makes clear, 
all this works only as long as the curve is symmetrical and conforms respectably 
to a normal distribution. Since the calculation of  parametric significance tests 
generally employs the same squared deviations procedure, as we shall see shortly, 
the restrictions apply to all these tests.

One additional point. Quite a number of  significance tests are based on 
calculating the deviation of  an observed mean from the null expectation of  a 
standardised normal distribution (Fig. 3.3). Conventionally this is called a z-value 
and, from the above, we can see that if  z exceeds 1.96 the result is significant at the 
5 per cent level. (The value 1.96 is actually the threshold value when both sides – 
‘tails’ in the jargon – of the distribution are taken into account, a so-called two-
tailed test; when only one tail is considered (a one-tailed test), the threshold value 
is 1.64. We shall discuss one- and two-tailed tests in detail later.)

Departures from normality.
Frequency distributions can depart from normality in a number of ways. Two broad 
kinds of departure, however, are skewness and kurtosis. Skewness is a synonym for 
asymmetry, i.e. one or other tail of the distribution is more drawn out than the other. 
The distribution in Fig. 2.8b is said to be skewed to the right (towards the y-axis), 
while the opposite bias would be skewed to the left. Kurtosis refers to the flatness of 
the distribution, which can be leptokurtic (more values are concentrated around the 
mean and in the tails and fewer in the ‘shoulders’ of the distribution), or platykurtic 
(where the reverse is true). Bimodal distributions (like that in Fig. 2.8c) are thus 
extremely platykurtic.

Percentages and proportions present their own problems for normality. Because 
they range between 0 and 100, or 0 and 1, the distribution of values is artificially 
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truncated at either end. This may not present a serious problem if  most of  the 
values in the data set occur in the middle two-thirds or so of the distribution, but 
if  they approach 0 or 100/1 there is cause for concern.

The normal (or Gaussian) distribution is a form of  continuous distribution, 
where, in principle, response data can take any value from a continuum of 
values from minus infinity to plus infinity. There are other forms of continuous 
distribution, but the normal is by far the most relevant to biological situations. 
However, there is another family of distributions which is important in biology. 
These are discontinuous or discrete distributions, concerned with response data that 
come in the form of integers – three are particularly relevant in biology:

1. The Poisson distribution describes occurrence in units of  time or space, 
for instance the number of  solitary bee burrows scored in a quadrat or 
the number of  hedgehogs dropping into a cattlegrid overnight. The key 
assumptions are: (a) the mean number of  occurrences per unit is small in 
relation to the maximum number possible – i.e. occurrences are rare; (b) 
occurrences are independent of each other – i.e. there is no influence of one 
on the likelihood of another; and (c) occurrences are random. Indeed, one 
reason a Poisson distribution is fitted to data is to test for independence or 
randomness in time or space. Poisson data are characterised by the mean 
being equal to the square of the standard deviation (known as the variance). 
If  the variance is bigger than the mean, the data are more clustered than 
random; if  it is smaller, they tend towards uniformity. A glance at these two 
summary statistics thus gives a good indication of the kind of distribution 
we’re dealing with. When analysing count data with small numbers close 
to zero, the Poisson distribution also makes the crucial assumption that no 
values can be below zero. It can be very misleading to use statistical tests 
based on the normal distribution here, because this assumes the data can take 
any value, including negative ones. It is only relatively recently that statistical 
methods have been available that can make the assumption that the data are 
Poisson-distributed. The ability to use these and the other distributions on 
this page in Generalised Linear Models is a great step forward, reducing the 
need for non-parametric methods in many instances.

2. The binomial distribution is a discrete distribution of occurrences where there 
are two possible outcomes for each so that the probability of one outcome 
determines the probability of the other. Thus if  the probability of an egg’s 
hatching is 0.75, the probability that it won’t hatch is 1 - 0.75, i.e. 0.25. This 
logic can be extended to calculate the probability of various combinations of 
hatching (H) and failed (F) eggs in clutches of different size. Thus if  two eggs 
are laid, there are four possible outcomes: HH, HF, FH, FF. Applying the 
values above gives a probability of 0.56 (0.75 * 0.75) for both eggs hatching 
successfully, 0.19 (0.75 * 0.25) for each of  the two mixed outcomes (HF 
and FH) and 0.06 for two failures. The same could be done for clutches of 
three, four or however many eggs. The binomial distribution thus gives a 
baseline chance probability against which outcomes in various situations can 
be judged. So, if  we found a population in which the proportion of two-egg 
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clutches failing completely was 30 per cent instead of 6 per cent, we might 
become suspicious about the health of  the birds or their environment. As 
with the Poisson distribution, it makes little sense to analyse probabilities 
assuming an underlying normal distribution if  the data are distributed in a 
binomial fashion, since values cannot go below zero or above 1. Two kinds of 
response variables can be analysed in this way: 0/1 data, or proportions where 
replicates consist of a set of trials in each of which there were N successes 
(however defined) and M failures.

3. The negative binomial distribution is used where the discrete data are highly 
aggregated, which is quite a common situation in biology. For example, if  
we count the number of  gut parasites in each individual of  a set of  male 
and female voles trapped from the wild, some individuals will contain large 
numbers while most will have few or none. This is the typical situation where 
a negative binomial distribution is needed.

All of these distributions are, like the normal, described by particular parameters, 
and hence tests based on them count as parametric tests.

Testing whether data conform to the normal distribution.
Given the importance of the normal distribution to parametric statistical analyses, 
you might be forgiven for imagining that testing whether your data conform to it 
would be made easy. Actually it isn’t straightforward or automatic in any package: 
you have to understand what it is you are trying to test, and hence how to go about it.

The key point to understand is that all statistical tests involve fitting a model that 
tries to explain the variation in the response variable in terms of the predictor(s). 
If  you are testing for differences (i.e. the predictor is a nominal (=  categorical) 
variable, conventionally known as a ‘factor’), this model usually involves the fitting 
of mean values to each group, and testing whether these mean values are different 
among the groups. If  you are testing for a trend (i.e. the predictor is usually a 
continuous constant-interval variable), then the model usually involves fitting a 
straight line to the data, and then testing whether the slope of the line is different 
from zero.

The assumption of normality in all statistical tests is about the residuals, after you 
have fitted the model (see discussion in Sokal & Rohlf, 1995), and not about the raw 
data. A residual is the difference between an individual measurement and the mean 
value for its group (for analyses of differences between groups), or from the value 
predicted by a regression line (for analyses of trends). Thus usually you are not testing 
whether the raw data are normally distributed, but whether the residuals are.† The 
process therefore usually involves (a) fitting the model, (b) saving the residuals, and 
(c) carrying out one single test to see whether the residuals are normally distributed.

†We can understand intuitively why testing the raw data for normality would be a mistake. Suppose, 
for example, that the raw data reflect two widely separated groups of values, perhaps body height from 
males and females where males are much taller than females. Since the two groups differ significantly in 
mean value, the distribution of the overall raw data will be bimodal, i.e. having two peaks of value with 
a trough in between. This will fail any test for normality, even though the assumption of normality is 
almost certainly correct (height is the classic case of the normal distribution).
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Transformations.
So what do we do if  we suspect our residuals may not be normally distributed? 
Happily, and as long as our sample size is big enough (7  50 as a rough guide) 
to make a comparison meaningful, the wide range of  statistical packages now 
available for personal computers makes the answer simple. Test it! There are some 
well-established significance tests that allow comparisons between frequency 
distributions of  data and various theoretical distributions, of  which the normal 
is the commonest. Those used most commonly are the one-sample Kolmogorov–
Smirnov test (for large samples, where n 7 2000), chi-squared and, for small- to 
medium-sized samples where n lies between 3 and 2000, the Shapiro–Wilk test. 
R® makes the process of  checking for normality particularly easy (see Box 3.1). 
If  we test our distribution and find it does not differ significantly from normal, 
then we’re at liberty to use any appropriate parametric test at our disposal. If  
it does differ, we can do one of  two things. We can abandon the idea of  using 
parametric statistics and choose an appropriate non-parametric test instead (see 
below), or we can transform the data to see whether they can be normalised. Several 
transformations are available but the most widely used are probably logarithmic 
[log(x) or, where there are zeros in the untransformed data, log(x + 1)] or square-
root transformations. Simply log or take the square root of each data value, and 
test for normality again. Where percentages or proportions stray below about 30 
per cent (or 0.3) or above 70 per cent (or 0.7), an arcsine square-root transformation 
(calculated by taking the square root of the proportion – so divide percentages by 
100 first – then the inverse sine (sin-1 on many calculators) of the result) will stretch 
out the truncated tails and prevent undue violation of the normality assumption 
of parametric tests (Box 3.1 shows how to transform data in R®).

Testing for normality as part of a test for 
differences

Assume that we are interested in whether the 
mean sizes (response variable) of seven groups 
(the predictor, a grouping variable called a 
factor) of  grasshoppers are different, and that 
we have 100 measurements for each group. 
One of  the assumptions of  the test is that the 
residuals of the response variable, the differences 
of each value from the mean for its group, are 
normally distributed. Another assumption is 
that the residuals of  each group all have the 
same normal distribution (i.e. the variances of 

the groups all have the same value – referred to 
as the ‘homogeneity of variances’ assumption): 
we shall repeat the test for this assumption in 
the context of exactly how to carry out tests of 
difference, later on (see Box 3.3a on p.77). For 
now we are concerned simply with testing the 
assumptions.

In R®, as with nearly all statistical packages, 
the data for the response variable (‘size’) 
are in a single column, and a second column 
(‘grassh’) indexes the group to which each 
value belongs (here running from ‘A’ to ‘G’). Such 
group-membership variables are called factors 

BOX 3.1   Testing whether data conform to a normal distribution
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or, more generally, predictors. Notice that 
factors are nominal variables. Here the values 
are alphanumeric so R® assumes automatically 
that the variable is a nominal factor: hence we 
do not need to declare it as such before running 
the model.

We now ‘fit the model’, here by running a 
General Linear Model, or glm, saving it in the 
object ‘m1’:
> m1 <- glm(size ~ grassh)

We will see standard tests for a difference among 
groups later in detail (Box 3.3a). If  not asked, 
R® produces no output, so we are not bothered 
by details of results from the test of differences. 
However, R® holds all the required details in 
memory (in m1) that we need for testing for 
normality. In particular, the residuals from the 
fitted model are held in resid(m1). To test 
for normality, we should do three checks: (i) a 
statistical test of normality; (ii) visually plot the 
residuals together with a normal distribution; 
and (iii) look at the quantile–quantile plot (or 
q–q plot), which plots the ranked residuals 
against a similar number of  ranks produced 
from a normal distribution – the result should 
be a straight line, with systematic deviations 
from this interpretable as various kinds of non-
normality. If  there is evidence of skew, then we 
can test for that as well.

For (i), the first check, we simply type/paste:
> shapiro.test(resid(m1))

and R® gives us the result:
Shapiro-Wilk normality test

data: resid(m1)

W = 0.9974, p-value = 0.3316

Here the null hypothesis is that the distribution 
is normal, and since the probability is not less 
than 0.05, we cannot reject this on the basis of 
these data. This looks fine.

We can also easily do (ii), visualising the 
distribution of  the residuals together with the 

expected normal distribution. First we plot the 
histogram of residuals, here running from -6 to 
+6 with a bar width of 0.5:
> hist(resid(m1), breaks=seq(-6,6,0.5))

Then we construct a set of  x-values running 
from -6 to +6.
> xv <– seq(–6,6,0.1)

and then generate the normal curve for a mean 
of  zero and the observed standard deviation 
of  our residual, using the probability density 
function dnorm. The height of  our frequency 
distribution depends on how many data points 
there are, so we have to add a scaling factor. A 
rough guide to the correct scaling factor is the 
number of data points multiplied by the chosen 
bar width:
> hist.ht <– length(resid(m1))*0.5

>  yv <– dnorm(xv,mean=0.0,sd=sqrt 

(var(resid(m1))))*hist.ht

and add this to the plot:
> lines(xv,yv)

From Fig. (i) we see that the fit is really pretty 
good.

Obtaining (iii), the q–q plot, involves plotting 
the data (qqnorm) and then the line (qqline), 
which is a dashed (lty=2) rather than a solid 
line (lty=1). Thus we type:
> qqnorm(resid(m1))

> qqline(resid(m1),lty=2)

In Fig. (ii) we can see a very good straight line 
apart from some minor deviations right at the 
ends. Thus all seems well: our data are not 
significantly different from a normal distribution.

Testing whether the normal distribution is 
the same in every group

A very important assumption of  parametric 
tests (i.e. those based on a particular 
distribution of residuals, usually the normal) is 
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that of constant variance, i.e. that the normal 
distribution is the same in every group. There 
are two possible tests for this, Bartlett’s and 
the Fligner–Killeen:
> bartlett.test(size ~ grassh)

Bartlett test of homogeneity of 

variances

data: size and grassh

Bartlett’s K-squared = 4.7749,

df = 6, p-value = 0.573

or
> fligner.test(size~grassh)

Fligner-Killeen test of homogeneity of 

variances

data: size by grassh

Fligner-Killeen:med chi-squared = 

4.4846,

df = 6, p-value = 0.6114

Either way we get the same 
result, which is that there is 
no evidence to reject the null 
hypothesis of  homogeneity 
of  variances among these 
groups.

A quick way of producing 
a set of  four diagnostic 
graphs to help in assessing 
the assumptions of  our 
test (or ‘model’) is to fit 
the model and then use 
‘plot(model)’:

>  m1 <- glm(size ~ 

grassh)

> plot(m1)

and R® produces a set of 
four diagnostic graphs, 
obtainable in sequence 
by pressing the <Enter> 
button. One is the q–q plot. 
Others help us to assess 
outliers and the assumption 

of  homogeneity of  variance, and the row 
numbers of the outliers are helpfully identified 
on the plots. It is a good idea to use this 
routinely whenever we fit any kind of model (see 
Box 3.14). In fact, R® standardises the residuals 
automatically in different ways according to the 
assumed distribution of the residuals (normal, 
Poisson, binomial, etc.), and hence the linearity 
of the q–q plot is always an important part of 
checking your model assumptions.

If  this routine identifies some outliers (e.g. 
rows 33 and 54 of 99 data points), then it is easy 
to remove them by weighting them out of  the 
analysis. Thus we set up a weighting variable of 
1s and 0s to identify the values we want removed 
(the 0s). First make a variable containing the 
outlier rows:

> sel <- c(33,54)

Figure (i) Distribution of the residuals from the model: clearly they are 
close to normal.
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then a variable of  all the row numbers of  the 
data:
> num <- c(1:99)

and then a weighting variable that has 0 for the 
rows that match the numbers in ‘sel’, and 1 for 
all other rows:
>  wt <- ifelse(is.na(match 

(num,sel)),1,0)

Then re-run the analysis weighting out those 
rows, and check for normality again:
> m2 <- glm(size ~ grassh, weights = wt)

If  you want permanently to 
exclude these rows from all 
subsequent analyses, then copy 
all but the excluded rows into a 
new dataframe, remove the old 
one, and attach the new:
>  dtfr2 <- dtfr 

[dtfr$wt==1,]

> remove (dtfr)

> attach (dtfr2)

Transforming the response 
variable is very easy in R®:
>  Lsize <- log10(size) 

transforms to base10 

logarithms

>  Rsize <- sqrt(size) 

transforms using 

square root

>  asn_trans(var) trans-

forms a percentage 

variable using the 

arc-sine square-root 

transformation

Testing for normality as part of a test for 
a trend

In R®, the way you test for a trend is very 
similar to the way you test for a difference. The 
only distinction lies in the predictor, which is a 
continuous or constant-interval variable, rather 
than a factor. The same set of  residuals are 
produced, which you can test for normality in 
an exactly similar manner. You can also test for 
homogeneity of variances in exactly the same way.

Figure (ii) The q–q plot for the model, showing the straight line expected 
for the normal distribution.

Of course, even transformation may not succeed in normalising our data, in 
which case we must seriously consider using non-parametric statistics. Indeed, 
we may not even get as far as worrying about the normality of  our response 
variable before opting for a non-parametric approach. Among their various other 
requirements, parametric tests based on the normal distribution demand that 
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measurements are of the constant-interval kind, so in principle cannot deal with 
the other types of measurement we might be forced to use (although in practice 
they often can). Non-parametric tests are much less restrictive here.

Non-parametric tests.
Non-parametric tests are sometimes referred to as distribution-free, ranked or 
ranking tests because they do not rely on residuals being distributed normally, and 
generally work on the ranks of the data values rather than the data values themselves. 
While they may be distribution-free, however, they are not entirely assumption-free. 
They assume the response data have some basic properties, such as independence 
of measurement (see later) and a degree of underlying continuity (see Martin & 
Bateson, 1993): crucially, they also make the same assumption of equal dispersion 
among groups as do parametric tests (which assume equal variances among 
groups). In most cases, however, these assumptions are easily met. In the jargon of 
statisticians, non-parametric tests are thus more robust because they are capable 
of dealing with a much wider range of data sets than their parametric equivalents. 
While they can deal with the same constant-interval measurements as parametric 
tests, they can also cope with ordinal (ranking) and nominal (classificatory) 
measurements. Non-parametric tests are especially useful when sample sizes are 
small and assumptions about underlying normality particularly troublesome. There 
are a couple of  drawbacks, however. The first, arguably overstated (see Martin 
& Bateson, 1993), weakness is that non-parametric tests are generally slightly 
less powerful (power here meaning the probability of  properly rejecting the null 
hypothesis – we shall return to this shortly) than their parametric equivalents. The 
second, which is slowly being addressed (see for example Meddis, 1984), is that 
the range of  tests for more complex analyses involving several variables at the 
same time is very limited. Sophisticated multivariate analysis is still the undisputed 
province of parametric statistics. Nevertheless, for our purposes, and with a few 
exceptions, there are perfectly good parametric and non-parametric equivalents, 
and we shall introduce them both in our discussion of significance testing.

3 One-tailed versus two-tailed, and general versus specific tests
The third important issue we must consider relates to the prediction we are trying 
to test. Suppose we are predicting a difference between two sets of  data for a 
particular response variable, say a difference in the rate of growth of a bacterial 
culture on agar medium containing two different nutrients (the predictor, a factor). 
We could make two kinds of  prediction. On the one hand, we could predict a 
difference without implying anything about which culture should grow faster. 
In this case, we wouldn’t care whether culture A grew faster than culture B or 
vice versa. This is a general prediction. On the other hand, based on some prior 
knowledge or theory we might predict that one particular culture would grow faster 
than the other, e.g. A would grow faster than B; this is a specific prediction. Which 
of these kinds of prediction we make affects the way we test the predictions.

The same distinction arises with trend predictions. Imagine we want to know 
whether there is a trend between the size of a male cricket and the number of fights 
he wins over the course of a day. We can make a general prediction (there will be 
a trend, positive or negative), or we can make a specific prediction (larger males 
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will win more fights; i.e. the trend will be positive). We can think of the general 
prediction as incorporating both positive and negative trends; either would be 
interesting. The specific prediction is concerned with only one of these.

In cases like those above, where there are only two possible specific predictions 
within the general one, we can use the same significance test for either general or 
specific predictions, but with different threshold probability levels for the test 
statistic (see below) to be significant. Because here the specific and general 
predictions are concerned with one and two directions of effect respectively, the 
threshold value of the test statistic at the 5 per cent level in the general test becomes 
the threshold value at the 10 per cent level in the specific test. In statisticians’ 
jargon, we thus do either a one-tailed (specific) or a two-tailed (general) version of 
the same test. There is, of course, an obvious, and dangerous, trap for the unwary 
here. The trap is this: if  the value of a test statistic just fails to meet the 5 per cent 
threshold in a two-tailed test, there is a sore temptation to pretend the test is really 
one-tailed so that the test statistic becomes significant. It must be stressed that this 
is tantamount to cheating. A one-tailed test is legitimate only when the prediction is 
made in advance of obtaining the result and when results in the opposite direction can 
reasonably be regarded as equivalent to no difference or trend at all.† It is completely 
inadmissible as a fallback when a two-tailed test fails to yield a significant outcome. 
A one-tailed test should thus be used only when there are genuine reasons for 
predicting the direction of a difference or trend in advance.

†If  you predict from theory that A will have a greater mean value than B (i.e. H1 is A 7 B), you are also 
assuming that both of the alternative results (A 6 B and A = B) are equivalent and together form the 
null hypothesis, H0. Thus if  you find that, contrary to your prediction, the mean value of B is much 
greater than that of A, and would have been significant had you framed your hypothesis as a general 
one (i.e. H1 is A ∙ B), you are not allowed to conclude anything other than that the null hypothesis 
has not been rejected.
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However, the distinction between general and specific is not simply that between 
two-tailed and one-tailed tests. The latter distinction is normally used for two-
group tests such as t-tests, where there are clearly only two possibilities for a one-
tailed test (A 7 B or B 7 A) that together make up the two-tailed case. But the 
world of specific testing is much richer than this!

There are in fact two different ways of  making specific hypotheses, and the 
distinction is important. You can either predict the rank order of the means (values 
or ranks) of all the groups in your experiment, or you can pick out particular sets 
of groups to make a contrast between two sets. The testing of these two kinds of 
specific hypothesis differs.

Imagine, for instance, that we are predicting a difference between three (or 
more) groups – say the weight of fruits produced in a season from trees given three 
different maintenance treatments: A, B and C. The general prediction is that there 
will be differences between the three treatments, i.e. that A ∙ B ∙ C. Unlike in 
the two-group case, this general prediction is ‘made up of’ six potential specific 
predictions about the rank order of  the treatment means:

A 7  B 7  C, B 7  C 7  A, C 7  A 7  B, A 7  C 7  B, B 7  A 7  C and C 7  B 7  A

As long as we make the specific prediction before we collect the data, we can test 
any one of  these in our experiment. Thus, as generally understood, the one-tailed/
two-tailed distinction is only a special, and limited, case of the difference between 
general and specific tests.

There is an alternative way of making specific predictions that uses contrasts. 
These are ways of dividing up (‘decomposing’ in statistical parlance) the differences 
between groups into particular patterns. Each contrast consists of one subset of the 
groups (a) contrasted against a different subset of groups (b), effectively creating 
two groups out of the data and comparing them using a two-group test such as a 
t-test (see below). A contrast can be general (a ∙ b) or specific (e.g. a 7 b), but 
must be made a priori, i.e. in advance of collecting the data. However, each contrast 
should be independent of the others, so the general rule is a maximum of one fewer 
contrasts than the number of groups that could potentially be compared. In the 
example of the effect of three treatments on fruit production, for example, we could 
make two independent contrasts (because there are three groups): one of A versus 
B + C, and the other of B versus C. We shall make use of this approach later (see, 
for example, Boxes 3.9b,  d).

3.3.2 Simple significance tests for differences and trends

Having discussed the general principle of  statistical significance, we come 
now to some actual tests that allow us to see whether differences or trends are 
significant at an appropriate level of  probability. A glance at any comprehensive 
statistics textbook will reveal a plethora of  significance tests for both kinds of 
analysis. These cater for the various subtleties of  assumption and requirement for 
statistical power under different circumstances. Many of  these tests, however, are 
sophistications of  more basic tests that are suitable for a wide range of  analyses. 
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Here, we introduce a selection of  such tests that can be used with most kinds 
of  data that are likely to be collected in practical exercises. Where appropriate, 
parametric and non-parametric equivalents are presented. There are some 
extremely useful non-parametric tests of  differences (developed by Meddis, 1984) 
not easily available in any existing statistical package as far as we are aware. We 
have therefore produced routines for these in R®, detailed in the boxes here and 
also available free on the book’s website (www.pearsoned.co.uk/barnard), and 
for which we include examples of  input and output for the relevant tests in the 
present chapter. As in previous editions of  the book, we also include calculations 
for most of  the simpler tests (Appendix II) so their mechanics are clear and they 
can be done by hand if  required.

The test statistic
Significance tests calculate a test statistic that is usually denoted by a letter or 
symbol: t, H, F, x2, r, rs  and U are a few familiar examples from various parametric 
and non-parametric tests. The value of  a test statistic has a known probability 
of  occurring by chance (i.e. with random data values) for any given sample size 
(or, rather, what are known as degrees of freedom – see later). A calculated value 
can thus be checked to see whether it exceeds (positively or negatively, depending 
on the test) the threshold value appropriate to the level of probability chosen for 
significance. This used to mean comparing the value with a table of  threshold 
values, but such comparisons are now made automatically for the tests in many 
statistical computer packages.

3.3.3 Tests for a difference

Tests of differences between groups involve asking whether there are differences 
in overall counts, or in mean (parametric tests) or median (non-parametric tests) 
values of the response variable. Since non-parametric tests replace the data with 
their ranked values, these tests actually test for differences in the mean ranks, which, 
when decoded back to the original data, represent the medians. Apart from tests 
of counts, all these tests involve comparing the variation in values within groups 
with the differences in the central values (mean or median) between groups: they 
are therefore all forms of ‘analysis of variance’. We shall introduce three types of 
difference test, with parametric and non-parametric equivalents as appropriate: 
first x2 (chi-squared, pronounced ‘ky-squared’), then the t-test and Mann–Whitney 
U-test as parametric and non-parametric (respectively) tests for differences between 
two groups, and finally other analyses of variance (parametric and non-parametric) 
dealing with differences between two or more groups.

Tests for a difference between two groups
We shall start with the relatively simple situation of comparing two groups. Here, 
two mutually exclusive groups (e.g. male/female, small/large, with property a/without 
property a, etc.) are identified (group membership is the predictor, a factor) and 
measurements made on individuals belonging to each (the response variable, e.g. 
the body length of males versus the body length of females, the number of seeds set 
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by small plants versus the number set by large plants, the survival rate of mice on 
drug A versus the survival rate on drug B). Depending on the kind of measurement 
made, we can use one of  a number of  tests to see whether any differences are 
significant. Notice that two things (a response and a predictor) are measured on 
each individual replicate: the predictor is a nominal variable (which group it belongs 
to), but the response can be a nominal, ordinal or constant-interval variable.

Chi-squared (x2).
A chi-squared test can be used if  data are in the form of counts, i.e. if  two groups 
have been identified and each independent observation classified into one of the 
two groups (the predictor), and then the total number of  observations in each 
group counted up (the response). Chi-squared can be used only on raw counts; it 
cannot be used on measurements (e.g. length, time, weight, volume) or proportions, 
percentages, or any other derived values. There are no replicate counts, just the 
total for each group. The test works by comparing observed counts with those 
expected by chance or on some prior basis. As an example, we can consider a simple 
experiment in Mendelian inheritance. Suppose we crossed two pea plants that are 
heterozygous for yellow and green seed colour, with yellow being dominant. Our 
expectation from the principles of simple Mendelian inheritance, of course, is that 
the progeny will exhibit a seed colour ratio of 3 yellow : 1 green. We can use the 
chi-squared test to see whether our observed numbers of yellow and green seeds 
differ from those expected on a 3 : 1 ratio. The expected numbers are simply the 
total observed number of progeny divided into a 3 : 1 ratio. Thus:

Seed colour

Yellow Green Total

Number observed 130 46 176

Number expected 132 44 176

To find our x2 test statistic using R®, we can follow the procedure in Box 3.2.

In our example of  Mendelian ratios in seed 
colour (see text), the data are nominal, in that 
each seed is classified into one of  two colour 
groups (yellow or green). The nominal factor 
colour forms the groups (predictor), with two 
levels, yellow and green. We then arrive at the 
total numbers for the groups (the response, the 
frequencies of  each colour) and analyse them 

using x2. In this case, the null hypothesis H0 is 
that the totals will be no different from those 
expected under a Mendelian ratio of 3 : 1.

The data will be in one of two formats: either 
raw data in the form of a list of the colours of 
each individual seed, or the total numbers of 
seeds calculated for each colour (as in the table 
in the text).

BOX 3.2   A test comparing counts classified into two groups (1 : 2 x2 test) using R® 
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Calculating a 1 * 2 x2 using R'

If  we have the data as a vector called colour, 
a sequence of  individuals each scored for the 
group (yellow or green) to which it belongs, 
then the totals have to be calculated first, before 
applying them to the test under the 3 : 1 expected 
ratio. We type:
> z <- table(colour)

to get the two totals (check that R® is ordering 
the two colours in the way you are expecting), 
and then (using p=c(..) to provide the 
expected ratios) we type:

> chisq.test(z, p=c(0.75,0.25))

which gives:
Chi-squared test for given 

probabilities

data: c(130, 46)

X-squared = 0.1212,

df = 1, p-value = 0.7277

If  we know the totals already, then we can type:
> chisq.test(c(130,46),

p=c(0.75,0.25))

In the pea example, the expected numbers were dictated by the Mendelian theory 
of inheritance; we have good reason to expect a 3 : 1 ratio of yellow : green seeds and 
thus a particular difference between the groups. In many cases, of course, we should 
have no particular reason for expecting a difference, and our expected numbers for 
the two groups would be the same (half  the total number of observations each). 
Thus if  our yellow and green groups had referred to pecks by chicks at one of 
two different coloured grains of  rice on a standard background instead of  the 
inheritance of seed colour, our chi-squared table would have looked very different:

Grain colour

Yellow Green

Number of pecks observed 130 46

Number of pecks expected 88 88

and the result would have been a x2 value of 40.09, which exceeds even the threshold 
value (10.83) for a significance level of 0.1 per cent (0.001) (see Appendix III, Table 
A). In this case we could safely reject the null hypothesis of no difference in the 
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number of pecks to different coloured grains and infer a bias towards yellow on 
the part of the chicks.

An important point to bear in mind with x2 is that it is not very reliable when 
very small samples are being tested. While a correction can be brought into play 
here, it is a good idea not to use x2 when the sample size is smaller than 20 data 
values or when any expected value is less than 5.

t-tests and Mann–Whitney U-tests.
t-tests and Mann–Whitney U-tests can both be performed on raw counts like chi-
squared, except that they deal with replicated data values for the response variable 
in the two groups instead of the totals. Thus if  the pecking data in our last example 
of chi-squared were derived from ten chicks given the opportunity to peck at yellow 
grains and ten more given the opportunity to peck at green grains on a standard 
background, the values that would be used in the chi-squared and the t- or U-tests 
can be indicated as follows:

Chick
Pecks to 
yellow Chick

Pecks to 
green

a 12 k 2

A t- or U-test uses these values

b 14 l 3
c 13 m 10
d 3 n 6
e 23 o 4
f 13 p 5
g 11 q 3
h 15 r 1
i 9 s 7
j 17 t 5

Total 130 46
A chi-squared test uses these values (or, 
in principle, any subtotal of data values)

f

=

;

Although technically possible to use the totals and a x2 test, it would not 
make sense to do so because we would be ‘throwing away’ the information of the 
replicates. It is always better to use the replicates. Furthermore, x2 is designed for 
the situation where yellow and green grains are offered simultaneously, and we 
count the number of pecks out of the total that are directed at yellow rather than 
green. Difference tests such as t or U are designed for situations where each peck 
is an independent event (e.g. where yellow and green grains are offered in separate 
replicates). In simultaneous presentations, if  a chick is pecking a lot at yellow, 
then it does not have the time to peck at green, and hence the peck counts are not 
independent and it would not be appropriate to carry out a t- or U-test.

In addition, however, t- and U-tests can deal with data other than counts. We 
can use them to compare two groups for constant-interval response-variable data 
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such as body size, time spent performing a particular behaviour, percentage of 
patients responding to different drug treatments, or a host of other kinds of data. 
The non-parametric U-test can also cope with ordinal (rank) data. Unlike some 
kinds of two-group tests working on individual data values, the U-test and most 
forms of the t-test do not require equal sample sizes in the two groups. However, 
and we stress this again, these tests can be used only for comparing two groups and 
only if  each data value is independent of  all other data values. Furthermore, the 
U-test can only test a general (or two-tailed) prediction (i.e. there is a difference, but 
not in any one predicted direction). Analyses for differences between two groups 
using R® are shown in Boxes 3.3a–d.

We shall use data for chicks pecking at yellow 
and green grains of  rice, each colour being 
offered separately in different replicates, and no 
chick being used more than once. The response 
variable being analysed is thus measured on a 
constant-interval scale – the number of  pecks 
– and each value is independent of  all others. 
Although these are integers that cannot go 
below zero, let us assume that each chick 
pecks a reasonable number of  times so that 
the mean values and each data point are well 
above zero, making the normal distribution 
a real possibility. Testing the residuals for 
normality (see Box 3.1) shows that they do not 
depart significantly from a normal distribution 
(Shapiro9Wilk = 0.98, d.f. = 80, ns), so we 
can analyse them perfectly reasonably using 
a parametric test. The nominal factor (the 
predictor) seed colour constitutes the grouping, 
with two categories, yellow and green.

First we frame our prediction, in this case the 
general prediction H1 that chicks will peck at 
different rates towards the two colours of grain; 
i.e. that the two groups yellow (A) and green (B) 
will have different mean values (A ∙ B). Thus 
the null hypothesis H0 is that the two mean 
values will not differ (A = B).

We enter the data in the standard format, with 
the data values in a single column (pecks), and 

the group to which each value belongs coded in 
another column (colour), and import them into 
R® (see p.37). First plot the data (Fig. (i)), using 
the routines we wrote for standard errors and 
plotting (see p. 44):
>  labels <- as.character(levels(colour))

>  mpecks <- tapply(pecks, colour, 

mean)

>  sepecks <- tapply(pecks, colour, se)

>  plot.error.bars(mpecks, sepecks, 

labels)

The difference seems very large. The function 
in R® that tests this difference automatically 

BOX 3.3a     Mean values: a general parametric test for two groups  
(two-tailed t -test) using R®

Figure (i) Mean ({  s.e.) number of pecks made by 
chicks to green and to yellow rice.
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assumes that the variances of  the two groups 
are not equal (a Welch t-test), and so we test 
whether that is true first, to tell us whether we 
should suppress this assumption or not. We have 
a look at the variances first:
> tapply(pecks, colour, var)

green  yellow

4.794231 1.983974

The variance in pecks for the green group is 
more than twice that of  the yellow group. We 
use the Bartlett test again (see Box 3.1) to see 
whether this is a significant difference in the 
variances:
> bartlett.test(pecks ~ colour)

Bartlett test of homogeneity of 

variances

data: pecks by colour

Bartlett’s K-squared = 7.2629,

df = 1, p-value = 0.00704

The p-value is significant, indicating we should 
reject the null hypothesis of  equal variances; 
the variances are clearly significantly different. 

We therefore either specify, or do not alter, the 
default option (var.equal=FALSE) for the 
t-test:
> t.test(pecks ~ colour, var.equal = 

FALSE)

Welch Two Sample t-test

data: pecks by colour

t = 13.118, df = 66.559, p-value < 

2.2e-16

alternative hypothesis: true differ-

ence in means is not equal to 0

95 percent confidence interval:

4.578244 6.221756

sample estimates:

mean in group green mean in group 

yellow

10.775     5.375

Notice that the value for the degrees of 
freedom is no longer an integer, but is adjusted 
for the unequal variances. This affects the 
actual value of  p, but here does not affect our 
conclusion.

We will use here the same data as in Box 3.3a, 
chicks pecking at yellow and green grains. The 
number of  pecks is the response variable, while 
seed colour is the predictor (a factor with two 
levels). Once more, we frame our prediction; 
this time, though, we are going to predict that 
one particular group will have a larger mean 
than the other – i.e. we shall decide in advance 
of collecting the data which of  the two groups 
(A and B) is predicted to have the greater mean 

value. There needs to be some a priori reason 
(theory, or previously published or gathered 
data) for this prediction; it can’t just be made 
on a whim, or worse still, after you have seen 
the way the data lie. Suppose that, on the basis 
of  your knowledge, you predict that chicks 
should peck more at yellow than at green seeds, 
i.e. that A 7 B (H1). The null hypothesis (H0) 
is that the mean value of  A is not greater than 
that of  B.

BOX 3.3b     Mean values: a specific parametric test for two groups  
(one-tailed t -test) using R®

M03_BARN5999_05_SE_C03.indd   78 19/10/2016   16:48



3.3 Significance Tests 79

In R®, we can only do a one-tailed test if  the 
data for the two groups are in separate columns. 
So we will learn how to extract them from our 
single column of data (pecks) using the group 
names (colour). We first extract into the 
vector ‘yellow’ all the values of pecks for which 
colour = yellow is TRUE, and then the same 
for green. Notice the square brackets, indicating 
the rows of the vector, and the use of the double-
equals sign, meaning ‘is equal to’:

> yellow <- pecks[colour==”yellow”]

> green <- pecks[colour==”green”]

Now we have them in two separate vectors and 
can do the one-tailed t-test. The vectors you 
provide x, y are followed by what the hypothesis 
is: alternative = c(“greater”) means 
that the alternative to the null hypothesis is that 
x 7 y. Other possibilities are alternative = 
c(“less”), and alternative=c(“two.

sided”) – the default. Our hypothesis is that 
yellow > green:

>  t . t e s t ( y e l l o w ,  g r e e n , 

alternative=c(“greater”))

which gives:
Welch Two Sample t-test

data: yellow and green

t = -13.118, df = 66.559, p-value = 1

alternative hypothesis: true 

 difference in means is greater than 0

95 percent confidence interval:

 -6.08666 Inf

sample estimates:

mean of x mean of y

  5.375    10.775

Notice that the value of t is large (-13.118) but 
negative, indicating that, contrary to prediction, 
the mean of B is larger than that of A. Because 
of this, the p-value (1) is not significant. Had you 
predicted the order the other way round (B 7 A), 
then you would have obtained a significant 
result, but as it is, the result is not significant, and 
you most certainly cannot change the prediction 
retrospectively to make it significant.

This test is sometimes known as the Mann–
Whitney, and sometimes as the Wilcoxon 
rank sum test. The calculations differ for 
each, but it is essentially the same test. 
Suppose an ecologist was interested in the 
effect of  microhabitat on the distribution of 
periwinkles (Littorina spp.) on a rocky shore. 
Two habitats – a boulder/shingle beach and 
crevices in a rocky stack – were compared for 
the prevalence of  the commonest periwinkle 
species measured as the percentage of  the total 

number of  all invertebrate individuals recorded 
within quadrat samples.

The response variable, prevalence, is 
measured on a constant-interval scale – 
percentage – but these are bounded by zero 
and 100, and are therefore unlikely to be 
normally distributed unless all values are 
well away from the boundaries. Testing the 
residuals for normality (as in Box 3.1) shows 
that the distribution is indeed far from normal 
(Shapiro9Wilk = 0.94, d.f. = 80, p 6 0.001), 

BOX 3.3c     Mean ranks (medians): a general non-parametric test for two groups 
(Mann–Whitney U, Wilcoxon rank sum test) using R®
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which remains so even when the data have been 
arcsine-square-root transformed (see p. 66) to 
‘stretch out’ the tails: hence a non-parametric 
test is required. The nominal factor habitat 
forms groups (the predictor), with two levels: 
shingle beach and rock crevices.

Frame the prediction, in this case the 
general prediction H1 that the prevalence of 
periwinkles will differ between the two kinds 
of habitat. In terms of our non-parametric test, 
we are predicting that the two groups beach 
(A) and rock (B) will have different mean ranks 
(A ∙ B). Thus the null hypothesis H0 is that the 
two mean ranks will not differ.

In R®, the data (periwinkle) are in a single 
column, and the group to which each value 
belongs is in another column (habitat). Of 
the two names for this test, the Mann–Whitney 
and Wilcoxon rank sum test, R® uses the latter. 
We first plot the data (Fig. (i)), checking first to 
see that habitat is recognised by R® as a factor:
> is.factor(habitat)

[1] TRUE

> plot(habitat, periwinkle)

The medians seem very different, which is 
encouraging. Then we invoke the test:
> wilcox.test(periwinkle ~ habitat)

which gives:

Wilcoxon rank sum test with continuity 

correction

data: periwinkle by habitat

W = 488, p-value = 1.047e-07

alternative hypothesis:

true location shift is not equal to 0

Since the p-value is much less than 0.001, 
then the difference in mean ranks is highly 
significant. We conclude that the data 
show good evidence for differences in the 
prevalence of  periwinkles in the two habitats 
(W = 488, d.f. = 1, p 6 0.001).

Figure (i) Boxplot of the medians (with interquartile 
ranges and extremes) of the prevalence (% of number 
of individuals in a sample) of periwinkles (Littorina 
spp.) in two shore habitats (shingle beach or rocky 
stack).

We shall analyse the same data as in Box 3.3c 
for this test. Again the prevalence of periwinkles 
is the response variable, and habitat is the 
predictor, a factor with two levels (groups). 
Assume that from the literature the ecologist is 
aware that periwinkles are said to form a greater 

proportion of  the invertebrate community in 
rocky habitats. The prediction is therefore that 
periwinkles will show a higher prevalence in the 
rock habitats than in the beach habitats, i.e. H1 
is that B 7 A. Thus the null hypothesis is that 
B is not greater than A, i.e. H0 is that B … A. 

BOX 3.3d     Mean ranks (medians): a specific non-parametric test for two  
groups in R®
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To perform a specific test in R®, we again need 
the data in two separate vectors rather than 
in a single one indexed by a factor. Thus as in 
Box 3.3b, we convert from one column into two 
new vectors:
> rock <- periwinkle[habitat==”rock”]

> beach <- periwinkle[habitat==”beach”]

and then
>  w i l c o x . t e s t ( r o c k ,  b e a c h , 

alternative=c(“greater”))

Wilcoxon rank sum test with continuity 

correction

data: rock and beach

W = 2012, p-value = 5.237e-08

alternative hypothesis: true location 

shift is greater than 0

Thus the conclusion here is that there is 
good evidence from the data that periwinkle 
prevalence is higher in rocky habitats 
(W = 2012, d.f. = 1, p 6 0.001).

Just for interest, if  the prediction had been 
the other way (rock 6 beach), then:
>  w i l c o x . t e s t ( r o c k ,  b e a c h , 

alternative=c(“less”))

Wilcoxon rank sum test with continuity 

correction

data: rock and beach

W = 2012, p-value = 1

alternative hypothesis: true location 

shift is less than 0

Definitely not significant!

Tests for two related samples
The tests for two groups introduced so far assume that data in the different groups 
are independent of each other. In many cases, the values of the data in each group 
are not independent because they are related in some way. For example, we might 
have tested one leaf of a plant with one treatment, and another leaf of the same 
plant with a different treatment. Or we might have provided a sample of ten female 
Siamese fighting fish (Betta splendens) with a red male as a potential mate on one 
occasion, and a blue male on another occasion, and measured their reactions to 
each of them. In order to test for the effect of different treatments with these kinds 
of data, we need a method that takes this kind of non-independence of  the data 
into account. In these kinds of experiments, the data usually come in replicated 
pairs (as in the ‘pair’ of males presented to each female above), and the appropriate 
statistical tests are known as ‘paired-sample’ tests. The sample sizes of  the two 
groups are therefore necessarily the same.

The methods that deal with this design work by taking the differences between 
the measurements of each pair (the response variable), and then analysing these 
differences. In the parametric case, the paired t-test asks whether the mean of 
these differences is significantly different from zero. In the non-parametric case, 
the Wilcoxon matched-pairs signed ranks test ranks all the differences, ignoring 
whether they are positive or negative, and then tests whether the mean rank of the 
positive differences is the same as that of the negative ones. A further test is also 
possible here, since the null hypothesis is that there are equal numbers of positive 
and negative differences: the binomial test tests for a departure from this equality. 
Box 3.4a–d show how to do some of these tests in R®.
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A botanist wanted to assess whether leaves 
treated with nitrogen differed in length from 
untreated leaves. She therefore treated one leaf 
with water and another leaf of the same plant 
with a solution of  nitrogen, replicating this 
across 40 plants. After a suitable length of time, 
she measured the length of each leaf.

The data being analysed (the response 
variable) are measured on a constant-interval 
scale, i.e. length. The predictor, the nominal factor 
‘treatment’, forms the groups, with two levels: 
water-treated (control) and nitrogen-treated (N). A 
second predictor is the (nominal) blocking factor 
(see text) that relates values in the two groups, 
plant individual, with 40 levels. A related-samples 
test looks at the differences between each pair of 
values, and it is these differences that should be 
normally distributed for a parametric test. The 
differences need to be calculated in R® into a 
new variable, and then this tested in the usual 
manner using shapiro.test(differences). 
When we do this, we find that the differences can 
indeed be assumed to be normally distributed 
(Shapiro9Wilk = 0.98, n = 40, ns).

Frame the prediction. Here it is a general 
prediction that the treatment will change the 
length of the leaf within plants, so that water-
treated controls (A) and nitrogen-treated 
(B) leaves will differ in length, i.e. H1 is that 
A ∙ B. H0 is therefore that A = B.

For paired samples we need the data in two 
separate vectors because R® will pair them by 
row, and hence we do not need to specify the 
factor plant individual explicitly. The columns 
are called ‘control’ and ‘nitrogen’. First we 
obtain the means and standard errors of  the 
two groups using the routine for standard errors 
we wrote before (p. 43), and then plot them 
(Fig. (i)) – note these values take no account of 
the pairing of the data:

> m1 <- mean(control)

> m2 <- mean(nitrogen)

> tmeans <- c(m1, m2)

> se1 <- se(control)

> se2 <- se(nitrogen)

> ses <- c(se1, se2)

> labels <- c(“control”, “nitrogen”)

>  plot.error.bars(tmeans, ses, labels)

If  we wanted to have a look at the impact of 
the pairing, then we would take the differences 
between every pair, and plot the mean and SE 
of the differences, again using the plot routine 
we wrote before (p. 44).
> diffs <- nitrogen - control

>  plot.error.bars(mean(diffs), se(-

diffs), c(“differences”))

The result (Fig. (ii)) is encouraging because the 
difference looks large compared to its SE. Then 
to run the test we type:
t.test(control,nitrogen,paired=TRUE)

Paired t-test

data: control and nitrogen

t = -11.1139, df = 39, p-value = 

1.183e-13

BOX 3.4a     Mean values: a general parametric test for related samples  
in two groups in R®

Figure (i) Mean ({  s.e.) leaf length (mm) for control 
and nitrogen-treated leaves.
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alternative hypothesis: true difference 

in means is not equal to 0

95 percent confidence interval:

-5.490376 -3.799624

sample estimates:

mean of the differences

-4.645

Thus there is a highly significant effect. The 
value is negative because the ‘nitrogen’ values 
are larger. Had we put the vectors the other 
way round, then t would have been positive. 
The conclusion therefore is that treating leaves 
with nitrogen significantly changes the length of 
leaves (paired t39 = 11.1, p V 0.001).

Figure (ii) Mean ({  s.e.) difference in length (mm) 
between paired control and nitrogen-treated leaves.

Using the same example of  leaf  length as 
Box 3.4a, decide in advance of collecting the data 
which of  the two groups (A or B) is predicted 
to have the greater mean value of the response 
variable (leaf  length). As always, there needs 
to be some a priori reason (theory, or previous 
published or gathered data) for this prediction. 
Suppose that, on the basis of her knowledge, the 
botanist in Box 3.4a predicted that a leaf treated 
with nitrogen would be longer than the control 
leaf on the same plant, i.e. that B 7 A (H1). The 
null hypothesis (H0) is that the mean value of B 
would not be greater than that of A.

This is very simple to do in R®. It is almost 
exactly the same as doing a two-tailed test, with 
an extra argument:
>  t.test(control,nitrogen,paired=TRUE, 

alternative=c(“less”))

Paired t-test

data: control and nitrogen

t = 11.1139, df = 39, p-value = 

5.916e-14

alternative hypothesis: true difference 

in means is less than 0

95 percent confidence interval:

-Inf 3.940813

sample estimates:

mean of the differences

4.645

The output is very similar except the p-value is 
even lower than the two-tailed version (because 
a one-tailed test is more powerful).

The conclusion from the test is that the data 
support the idea that nitrogen-treated leaves 
grow to be longer than control leaves on the 
same plant (paired t39 = 11.1, p 6 0.001), and 
the null hypothesis can be rejected.

BOX 3.4b     Mean values: a specific parametric test for related samples  
in two groups in R®
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In an experiment on two mouse strains, the 
average number of offspring was compared over 
50 years. The response variable is measured on 
a constant-interval scale – the average number 
of offspring. The predictor, a nominal variable 
strain, forms the grouping factor, with two levels: 
strainA and strainB. The second predictor, a 
(nominal) blocking factor that relates values 
in the two groups, is year, with 50 levels. As 
mentioned before (Box  3.4b), the normality 
assumption in related-samples tests concerns 
the differences between the related values. 
When the differences are tested here, there is 
strong evidence of  a non-normal distribution 
(Shapiro9Wilk = 0.88, n = 50, p 6 0.001). 
Thus a non-parametric test is appropriate.

Frame the prediction. The general prediction 
is that there will be a difference in the number of 
offspring between the two strains across years. 
Thus, allowing for the related samples (i.e. the 
differences among years), the prediction (H1) is 
that A ∙ B.

As before, the data are in two separate 
columns (‘strainA’ and ‘strainB’) so that 
they can be paired by row, with each row 
representing a block (year); this means that 
year does not have to be declared as an explicit 
factor in the analysis. We first plot the median 
of the differences (Fig. (i)), to see whether it is 
plausible that they differ:
> diff <- strainA - strainB

>  fac <- factor(rep(c(“diff”),-

times=length(diff)))

> plot(fac,diff,ylab=c(“difference”))

The median is close to zero, and the range 
clearly encloses zero: this is not promising. Then 
invoke the test:
>  wilcox.test(strainA, strainB, 

paired=TRUE)

Wilcoxon signed rank test with conti-

nuity correction

data: strainA and strainB

V = 675.5, p-value = 0.7173

alternative hypothesis: true location 

shift is not equal to 0

There is no evidence here for a difference 
between these two strains, allowing for year 
effects (V = 675.5, p = 0.72).

BOX 3.4c     Mean ranks: a general non-parametric test for related samples in two 
groups (Wilcoxon matched-pairs signed ranks test) in R®

Figure (i) Median (with interquartile ranges and 
extremes) difference in the number of offspring 
between mouse strains in any one year.
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In R®, we simply modify the command, as before. Here we test whether 
strainA > strainB:
>  wilcox.test(strainA, strainB, paired=TRUE, 

alternative=c(“larger”))

BOX 3.4d     Mean ranks (medians): a specific non-parametric  
test for related samples in two groups in R®

In fact, having data values in pairs like this is only a particular case of  data 
occurring as related samples, where data values for the response variable are not 
independent of  each other for a wide range of  reasons, for instance because 
subjects have been kept in the same cage and have been exposed to the same social 
experience that is different from the social experience in any other cage. Such 
sources of non-independence lead to data being treated in so-called blocks, where 
the blocking designation allows the non-independence to be taken into account in 
subsequent analyses by constituting an extra predictor (a factor). The experimenter 
may be completely uninterested in whether or not there is a significant block 
effect, but it must be allowed for in the analysis in order to see the true impact of 
the treatment. Box 3.5e shows an example of a more general related-samples (or 
‘repeated-measures’) analysis.

Tests for a difference between two or more groups
So far, we have introduced significance tests that can test for a difference between 
two groups. In many cases, of  course, we shall be faced with more than two 
groups. For instance, Fig. 2.4 suggests that the amount of  damage around the 
edges of leaves (the response) increases with leaf size class (the predictor), perhaps 
indicating a predilection for big leaves by particular kinds of pest. If  we wanted 
to know whether the difference between the size classes was significant, we should 
have to deal with three groups of data. How do we do it? The temptation to which 
many succumb is to do a round robin comparison of pairs of groups using a t- or 
U-test. In our Fig. 2.4 example, this would mean testing for a difference between 
small and medium leaves, then for a difference between medium and large leaves, 
and finally for a difference between small and large leaves. The error of this cannot 
be emphasised too strongly.

The most serious problem arising from such a practice is that it increases the 
likelihood of obtaining a significant difference by chance when really none exists. 
To take an extreme example: if  we carried out 100 two-group comparisons, then, 
just by chance, five of them stand to be significant at the 5 per cent level. Even if  we 
made only 20 comparisons, one is likely to be significant by chance. While this may 
not seem a serious difficulty when we are dealing with only three or four groups, 
these examples illustrate the error in principle. To get round the problem, we need 
tests that can cope with comparisons between several groups at the same time.
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One-way analysis of variance.
Where we have series of data values falling into several groups (in a similar fashion 
to data values in the two groups of a t- or U-test), a one-way analysis of variance 
(often expressed as the acronym one-way ANOVA) is a suitable significance test. 
There are both parametric analyses of variance and non-parametric tests that have 
an equivalent function. We shall introduce both kinds here.

While parametric analyses of variance are by far the more widely used, the non-
parametric version we shall describe has the advantage not only of being robust to 
a wider range of data but also of allowing two kinds of specific predictions about 
the direction of  differences between groups to be tested. This test can thus be used 
to test general or specific predictions for two or more groups. For two groups it is 
therefore more flexible than the U-test and, as a result, we recommend it even in 
these cases.

Procedures for analysis of variance in R® of independent response-variable data 
are outlined in Boxes 3.5a–d, and for non-independent related-samples designs in 
Boxes 3.5e and f.

Suppose we are interested in developing artificial techniques for rearing bumblebees (Bombus spp.) 
for pollinating greenhouse plants. We measure the weights of  bumblebee queens that have been 
overwintered in the soil under four different conditions. The first condition is the normal rearing 
environment (soil), while different components (stones, leaves or cotton wool) are added to the 
rearing environment of the other groups. We think that any of these additional components might 
increase the weight of the resulting queens, and heavier queens in spring have a better chance of 
producing successful colonies.

The response variable is the weights of queens. The predictor is a nominal factor treatment forming the 
groups, with four levels (1 = normal soil, 2 = plus stones, 3 = plus leaves, 4 = plus cotton wool). 
A test of the residuals (see Box 3.1) shows that we can assume that they are normally distributed 
(Shapiro9Wilk = 0.996, d.f. = 160, ns).

Frame the prediction, in this case the general one that there are differences among the mean values 
of the treatment groups (H1). The null hypothesis (H0) is therefore that there are no differences 
among the groups.

The data should be in the usual format for independent samples, i.e. all the data values in one 
column, and group codes in another. If  the data for each group are in a separate column, don’t 
despair, because you can join them all together like this:
> bbee <- c(control, stones, leaves, cotton)

BOX 3.5a     Mean values: a general parametric one-way ANOVA for differences 
between two or more groups in R®
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and then generate a factor with the group codes 
from the names of the variables in the dataframe 
(as long as these are the only variables there!):
> treatment <- as.factor(rep(c(names-

(dtfr)),each=40))

Check by printing them to see that the codes 
are in the right order for the data.

We first plot the data, using the routines we 
wrote (Box 2.3), and getting the labels from the 
variable names in the dataframe:
>  tmeans <- tapply(bbee, treatment, 

mean)

> ses <- tapply(bbee, treatment, se)

> labels <- names(dtfr)

>  plot.error.bars(tmeans, ses, labels)

The plot (Fig. (i)) seems to show large differences 
among groups, especially for the ‘leaves’ treatment.

Now we have everything we need, but we should check for equal variances first:
> fligner.test(bbee~treatment)

Fligner-Killeen test of homogeneity of variances

data: bbee by treatment

Fligner-Killeen:med chi-squared = 4.0447, df = 3, p-value = 0.2567

This is not significant, and hence there is no evidence to reject the assumption of homogeneity of 
variances: we already know that the residuals are normal. The ANOVA is then very straightforward. 
The command ‘aov’ does the ANOVA, with the response variable (bbee) being predicted (the ‘ ∙ ’ 
symbol) by a categorical predictor, i.e. the factor treatment. The command ‘summary’ puts it in 
a convenient format:
> summary(aov(bbee ~ treatment)) ---

Figure (i) Mean ({  s.e.) weights (g) of queen 
bumblebees overwintered in the soil under four 
treatments.

Df Sum Sq Mean Sq F value Pr(>F)

treatment 3 80.28 26.7586 3.3131 0.02163 *

Residuals 156 1259.95 8.0766

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

This table is actually the standard format for ANOVA: when reporting an ANOVA, therefore, it is 
often a good idea to reproduce this table because it says everything you need to know.

The conclusion is that there is good evidence that the treatments affect the weight of overwintering 
queen bumblebees (F = 3.31, d.f. = 3,156, p 6 0.05). Note that F-tests require both sets of d.f. to 
be reported, the among-groups (here, 3) and within-groups/error/residual (here, 156) d.f.s. Usually 
the result is expressed like this: F3,156 = 3.31, p 6 0.05.
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Post hoc comparisons

As described in the text, we would like to know which treatments are significant, not just their 
overall effect, but without setting up a priori contrasts before we see the data, this can only be done 
approximately. We will use the Tukey Honestly Significant Difference method:
> TukeyHSD(aov(bbee ~ treatment))

Tukey multiple comparisons of means

95% family-wise confidence level

Fit: aov(formula = bbee ~ treatment)

$treatment

diff lwr upr p adj

leaves-cotton -1.34250 -2.99279 0.3077902 0.1536172

normal-cotton -1.24175 -2.89204 0.4085402 0.2100944

stones-cotton -1.95000 -3.60029 -0.2997098 0.0133976

normal-leaves 0.10075 -1.54954 1.7510402 0.9985755

stones-leaves -0.60750 -2.25779 1.0427902 0.7745384

stones-normal -0.70825 -2.35854 0.9420402 0.6811499

Notice that the difference between all pairs of  groups is calculated, and only one of  them is 
significant – the stones treatment is significantly worse than the cotton treatment. Notice also that 
the p-values have been adjusted to take account of the multiple tests.

Suppose we have measured the light absorbance of  an indicator of  a particular biochemical 
reaction under each of four temperature conditions. We were unable to arrange the experiment 
so as to have equal numbers of  replicates (which is always desirable), but we do have several 
replicates for each group. The response variable – light absorbance – is on a constant- 
interval scale. The predictor, a nominal factor temperature, forms the groups, with four levels 
(A = 10 °C, B = 15 °C, C = 20 °C and D = 25 °C). Note that although the temperature categories 
would be treated as nominal groups in a general ANOVA, here they not only form a rankable series, 
but they actually consist of constant-interval measurements that are equally spaced (by 5 degrees). 
This will become important in a moment. Testing the residuals for normality (Box 3.1) shows that 
we can assume normality (Shapiro9Wilk = 0.97, d.f. = 35, ns), and the variances appear to be 
homogeneous (Fligner x2 = 0.88, d.f. = 3, ns).

When it comes to framing our predictions, theory (and past practice) tells us that temperature 
speeds up biochemical reactions, and, furthermore, that a 10 °C rise in temperature should double 

BOX 3.5b    Mean values: a specific parametric one-way ANOVA in R®
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the rate of reaction. We therefore predict that the 
rank order of the mean values of light absorbance 
should be A 6 B 6 C 6 D.

Theory says there should be a particular 
relationship between temperature and the rate of 
reaction. In this experiment with light absorbance 
measured on a logarithmic scale as our response 
variable, this translates into a prediction of  a 
linear positive relationship between temperature 
and light absorbance. We could of course do this 
using regression (see later, Box 3.11), but because 
(and only because) the temperature groups are 
evenly spaced, we can test this prediction here 
using so-called polynomial coefficients (which 
require even spacing between the levels), using R®.

We will first use a priori contrasts to test 
almost the same prediction. If  the linear positive 
relationship between temperature and light 
absorbance is correct, then the mean light absorbance of  the 10 °C group will be less than the 
average of the other groups. This can be tested using the first contrast. This can be repeated for 
the other groups to create the desired prediction of the ordered set of mean values. We therefore 
predict that:

 A 6 (B + C + D)/3
and B 6 (C + D)/2
and C 6 D

The contrast coefficients can then be calculated for the first (-3, 1, 1, 1), second (0, -2,1,1) and 
third (0, 0, -1, 1) contrasts.

The data are read in in the usual manner, as a column of the response variable (light) and the 
predictor group codes (temperature). We declare temperature to be a factor first to stop R® treating 
these as numbers from a continuous variable rather than group labels.

> temperature <- factor(temperature)

First we plot the data, using the routines we wrote (Box 2.3). See how we can do this all in one 
command, rather than build the elements separately (as in Box 3.5a). The only thing to be careful 
about are the labels, because R® orders these alphabetically, which might not be the same order 
as they occur in the data – it will then mismatch labels to bars. Here the levels are numbers, which 
order correctly:

>  plot.error.bars(tapply(light,temperature,mean),

tapply(light,temperature,se),levels(temperature))

Figure (i) Mean ({  s.e.) light absorbance (lumens) of 
the biochemical reaction at four temperatures (°C)
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The result (Fig.  (i)) appears to show a gradually increasing mean with temperature. Then we 
carry out an ANOVA and ask just for a summary, to see whether there are in fact any significant 
differences among our groups to explore using specific predictions:
> summary(aov(light ~ temperature))

and we get the result:

Df Sum Sq Mean Sq F value Pr(>F)

temperature 3 3232.4 1077.46 33.215 8.314e-10 ***

Residuals 31 1005.6 32.44

So there clearly are real differences to explore among these groups.
Our contrast coefficients are entered as a matrix using cbind (bind by columns); the c() 

function combines numbers into a vector:
> contrasts(temperature) <- cbind(c(-3,1,1,1),c(0,-2,1,1),c(0,0,-1,1))

We can check that we have done this correctly by typing:
> contrasts(temperature)

[,1] [,2] [,3]

10 -3 0 0

15 1 -2 0

20 1 1 -1

25 1 1 1

and we see that R® knows what the factor levels are called, and has the correct pattern of coefficients 
(the columns). The product of any two columns sum to zero, and hence they are indeed independent 
of one another: they are ‘orthogonal’, in the jargon.

Then we ask R® to carry out and summarise the same ANOVA, but it now uses the contrasts 
we have provided:
> summary.lm(aov(light ~ temperature))

aov(formula = light ~ temperature)

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 160.1679 0.9996 160.229 < 2e-16 ***

temperature1 4.8655 0.6070 8.015 4.74e-09 ***

temperature2 4.7167 0.7653 6.163 7.72e-07 ***

temperature3 5.0833 1.4239 3.570 0.00119 **

Residual standard error: 5.696 on 31 degrees of freedom

Multiple R-squared: 0.7627, Adjusted R-squared: 0.7398

F-statistic: 33.21 on 3 and 31 df, p-value: 8.314e-10

Again, for clarity, we have omitted some output.
In the table, the ‘Intercept’ estimate is the overall mean of the data, and the associated t-test just 

tests whether it is significantly different from zero – not of much interest. The estimated value of 
each contrast is complicated (see Crawley, 2007: 372–374 for details), made even more so here by 
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the unequal sample sizes, but we can ignore this to concentrate on the statistical inference: each of 
our contrasts is significant.

To use polynomial coefficients (also called polynomial regression), first we have to tell R® that 
our predictor is a set of ordered levels:
> t2 <- ordered(temperature)

We can check that it really is ordered:
> is.ordered(t2)

[1] TRUE

Then we can ask R® to do the ANOVA using these ordered levels, and get the summary of the linear 
model to see the contrasts:
> summary.lm(aov(light ~ t2))

aov(formula = light ~ t2)

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 160.16786 0.99962 160.229 <2e-16 ***

t2.L 21.65685 2.19446 9.869 4.39e-11 ***

t2.Q 0.06905 1.99924 0.035 0.973

t2.C 0.46106 1.78277 0.259 0.798

Residual standard error: 5.696 on 31 degrees of freedom

Multiple R-squared: 0.7627, Adjusted R-squared: 0.7398

F-statistic: 33.21 on 3 and 31 df, p-value: 8.314e-10

For clarity, we have omitted the output about unusually large residuals, or the significance codes. 
Polynomial contrasts test for linear (L), quadratic (Q) and cubic (C) shapes of  the relationship 
between the factor levels and the means for the groups. Here it is obvious that the relationship is 
linear, as we suspected: there is no evidence of any curvature (quadratic or cubic) to the relationship.

Notice that all these ANOVAs get the same value for F. They divide the variance in different ways, 
but the same four group means are always involved.

The conclusion is that there is good evidence that temperature increases light absorbance, and 
hence also the rate of reaction. The effect is linear, at least within the range of temperatures studied 
here (t31 = 9.87, p V 0.001).

An experimenter measured how much alcohol 
students in all-female (F), mixed (MF), 
and all-male (M) halls of  residence drank 
in one month. The data for the response 

variable (alcohol, the units of  alcohol 
consumed in one month by a student) depart 
significantly from a normal distribution 
(Shapiro9Wilk = 0.96, d.f. = 300, p 6 0.001), 

BOX 3.5c     Mean ranks (medians): a general non-parametric one-way ANOVA for 
two or more groups (Kruskal–Wallis test) in R®
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so we can opt to use a non-parametric test. 
The predictor, a grouping factor, hall type, 
has three levels. The experimenter’s prediction 
was a general one; she merely asked whether 
these types of hall of residence differed in their 
alcohol consumption per student, so that the 
expectation was that F ∙ MF ∙ M.

As usual, in R® the data for the response 
variable (alcohol) form one column, and 
the predictor, the type of hall (hall), another 
column. After reading this into R®, check 
whether R® knows hall is a factor:
> is.factor(hall)

[1] TRUE

so that’s fine. Now we plot the medians in a box 
plot (Fig. (i)):
>  plot(hall, alcohol, ylab=c(“units of 

alcohol”))

Notice how R® orders the levels alphabetically 
rather than in the order of input. It looks from 
the plot that male halls drink quite a bit more. 
To perform the test, we merely type:
> kruskal.test(alcohol, hall)

or alternatively
> kruskal.test(alcohol ~ hall)

Kruskal-Wallis rank sum test

data: alcohol and hall

Kruskal-Wallis chi-squared = 104.6252, 

df = 2, p-value < 2.2e-16

H is the Kruskal–Wallis test statistic, which 
here has two degrees of  freedom (the number 
of groups minus one). Notice that R® calls the 

test statistic a x2 instead of  H; this is because 
as sample size increases, the distribution of  H 
comes to approximate that of  x2 – they thus 
refer to the same thing here.

The conclusion is therefore that there is good 
evidence of differences in alcohol consumption 
among halls (H (or x2) = 104.6, d.f. = 2, p =
0.001).

Post hoc multiple comparisons

There is no generally accepted post hoc multiple 
comparisons test for non-parametric analyses of 
variance, and few if  any are implemented in the 
standard statistical packages. However, they do 
exist. The R® package npmc has been written 
specifically to do them. If  you want to try them, 
you should download and install the package 
from the R® website.

Figure (i) Median (with interquartile ranges and 
extremes) number of units of alcohol drunk in one 
month by students living in three types of halls of 
residence (all-female, all-male or mixed).

As before, we can use non-parametric analysis 
of  variance to test specific as well as general 
predictions of  difference. To illustrate this, we 
shall use a similar data set to that of Box 3.5c, 

on the amount of alcohol drunk by students at 
all-female, mixed or all-male halls of  residence 
during the course of  one week. The response 
variable is the quantity of alcohol drunk, and the 

BOX 3.5d    Mean ranks (medians): a specific non-parametric one-way ANOVA in R®
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predictor is hall type, a factor with three levels. 
Once again, the residuals are highly non-normal 
(Shapiro9Wilk = 0.96, d.f. = 300, p 6 0.001), 
and so a non-parametric test is again appropriate.

Since it is well known that young men are 
more likely than women to be heavy drinkers, and 
to egg one another on in a drinking environment, 
an obvious specific prediction is that all-female 
halls (A) will have lower alcohol consumption 
than mixed-sex halls (B), which, in turn, will have 
lower consumption than all-male halls (C).

We input the data as usual, with all the alcohol 
values in one column, and the hall names in another.

Since we will be predicting an order of 
expected treatment mean ranks, we need to be 
careful about how R® orders the treatments. It 
does so alphabetically, whatever order you have 
put them in. You can find out what R® thinks 
the order is by typing:
> levels(hall)

[1] “female” “male” “mixed”

You can see this is not the order we want them 
in.

We can either use this order for our predicted 
mean ranks, or we can make R® use a sensible 
order by typing:
>  hall <- ordered(hall,levels=c(“fe-

male”,”mixed”,”male”))

Once again we plot the medians in a boxplot (or 
the means { s.e.):
>  plot(hall,alcohol,ylab=c(“units of 

alcohol”))

The medians certainly fall into the predicted 
pattern in this data set (Fig. (i)).

Testing the rank order of all groups 
simultaneously 

There is no built-in routine for this test (which 
comes from Meddis (1984), also known as the 
Jonckheere–Terpstra test), so we will have to 
write one (here called mds). It should be fairly 
obvious how the commands relate to the formula 
(given in Appendix II, Box A3b(ii)). The first 
nine lines are the calculation, and then the rest is 
the correction for tied scores that have the same 
rank. The final ‘Z’ prints the result to the screen:
> mds <- function(data,grps,coeff) {

r1<-rank(data)

rsum<-tapply(r1,grps,sum)

nsum<-tapply(r1,grps,length)

L<-sum(coeff*rsum)

N<-length(data)

E<-(N+1)*sum(nsum*coeff)/2

V<-(N+1)*(N*sum(nsum*coeff[[power]]2) 

- sum(nsum*coeff)[[power]]2)/12

Z<-(L-E)/sqrt(V)

r2 <- sort(data)

TC = 0

ii <- N-1

for (i in 1:ii) {

jj = i+1

tie = 1

for (j in jj:N) {

if (r2[i]==r2[j]) tie=tie+1 else j=N

}

TC = TC + ((tie[[power]]3)-tie)

}

TC = 1 - (TC/((N[[power]]3)-N))

Z = Z/sqrt(TC)

Z

}

Figure (i) Median (with interquartile ranges and 
extremes) number of units of alcohol drunk in one 
week by students living in three types of halls of 
residence (all-female, all-male or mixed).
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We then type in the expected order of  the 
rank means. Here we have reordered the levels 
as outlined above, so the expected order is 1,2,3:
> c1 <- c(1,2,3)

and then we invoke our new function:
> mds(alc, hall, c1)

[1] 2.517768

The data here are very extreme in the occurrence 
of  ties, with all values having between 10 and 
20 repeats. The large difference in the value of 
the test statistic, Z, with and without the tie 
correction (2.985447) is very unusual. Since 
this value is a standardised normal deviate 
(see p.63), we can obtain its probability due to 
chance by typing:
> 1-pnorm(2.517768)

[1] 0.005905054

We conclude that the mean ranks of  the 
data on alcohol consumption among halls 
of   residence are consistent with the pattern 
of   female 6 mixed 6 male halls (z = 2.52, 
p = 0.006).

Using contrasts

There is no built-in routine for this test either 
in R®, so again we will have to write one (here 
called npc). This is very straightforward once we 
have given the vector of contrasts to R®. First 
we create a vector the same length as the data 
with the appropriate contrast coefficients filling 
the vector elements. Then we create two vectors 
from the data, selecting first for negative and 
then for positive coefficients. This lumps all the 
groups on one side of the contrast together, and 
similarly for the other side. Then we simply carry 
out a Wilcoxon (Mann–Whitney) one-tailed test:

npc<- function(data,grps,contrasts) {

contr<-rep(contrasts,table(grps))

dneg<-data[contr<0]

dpos<-data[contr>0]

wilcox.test(dneg,dpos,alterna-

tive=c(“less”))

}

The specific prediction is that (all-women) 
A 6 (mixed)B 6 (all@male) C. Using contrasts, 
with our two degrees of  freedom, we can 
therefore predict that:

A 6 (B + C)/2, i.e. 2 A 6 (B + C),
or  0 6 92(A) + 1(B) + 1(C)
and  B 6 C, i.e. 0 6 0(A) - 1(B) + 1(C)

We now specify the first contrast, and invoke 
the function:
> c1 <- c(-2,1,1)

> npc(alc,hall,c1)

Wilcoxon rank sum test with continuity 

correction

data: dneg and dpos

W = 7757.5, p-value = 0.0007616

alternative hypothesis: true location 

shift is less than 0

and then the second contrast:
> c1 <- c(0,-1,1)

> npc(alc,hall,c1)

Wilcoxon rank sum test with continuity 

correction

data: dneg and dpos

W = 4746, p-value = 0.2675

alternative hypothesis: true location 

shift is less than 0

The predictions are in the correct order, but only the 
first one (female vs mixed + male) is significant.
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A molecular biologist wanted to study the impact of  two different selection regimes on the 
production of oxygen-free radicals. He therefore distributed one culture of  liver cells (which he 
obtained from various sources) to 100 of his colleagues – a different culture going to each – and 
asked them to divide each into three selection treatments (randomly selected control, selected for 
high growth rate, and selected for low growth rate). After 10 rounds of cell division under these 
conditions, his colleagues sent back their cultures and the molecular biologist measured the average 
production of  free radicals of  one batch of  500 cells (a measure of  metabolic activity) of  each 
treatment from each culture.

This is a one-way repeated-measures design because cells from each culture are exposed to all 
treatments, and there is only one sort of treatment (selection type). Cultures may differ in lots of 
ways from each other, including their natural level of  free radicals; ‘culture’ is therefore a block 
effect that needs to be allowed for in the analysis in order to see the impact of the treatments. The 
researcher only obtained a single measurement of the dependent variable (level of free radicals) from 
each culture and each treatment. The response variable is the level of free radicals; the predictors 
are both factors – selection regime (a factor with three levels) and culture (a factor with 100 levels).

First we frame the prediction: that the selection regimes change the level of free radicals from 
the randomly selected control condition (H1), without specifying the direction of change (this is 
therefore a general hypothesis). As with the usual parametric one-way ANOVA (see Box 3.5b), it 
is not possible to test a specific version of this hypothesis, although, as before, one can approach 
it using a priori contrasts. The null hypothesis is that selection does not change the level of free 
radicals (H0).

In R® the data are in the usual format of a single column of the data (the free radicals, the reactive 
oxygen species measurements, called ros), a single column (treat) indexing the three treatments 
as names (‘random’, ‘high’ and ‘low’), and a single column (cult) indicating which culture each 
measurement came from. Check that cult is a factor:
> is.factor(cult)

[1] FALSE

If  it says ‘FALSE’ then make it a factor:
> cult <- factor(cult)

We cannot plot mean values that take account of 
the repeated measures, but we can just plot the 
groups means to see what they look like. Obtain 
the means (tmeans) and the SEs (tses) in the 
usual way, and plot them using the routine of 
Box 2.3 (Fig. (ii)). There do not seem to be any 
differences worth speaking about.
Then we run an ANOVA using treat and cult 
as factors: cult will take out the variation due 
to differences in cultures (i.e. allowing for inter-
culture variation) from the residual error, leaving 
the variation due to the treatment to be evaluated 

BOX 3.5e    A parametric repeated-measures ANOVA in R®

Figure (i) Mean ({  s.e.) production of free radicals 
(mol s-1) of 500 cultured liver cells under three 
selection regimes (control, selected for high growth 
rate, and selected for low growth rate).
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against the remaining error variation. As we shall see in Box 3.6, having two factors as predictors 
potentially allows an interaction term: here there is no interaction, just the main effects:
> m1 <- aov(ros ~ treat + cult)

> summary(m1)

Df Sum Sq Mean Sq F value Pr(>F)

treat 2 165 82.75 83.293 < 2.2e-16 ***

cult 99 191113 1930.44 1943.166 < 2.2e-16 ***

Residuals 198 197 0.99

The treatment effect is highly significant. A test shows that the residuals are not significantly 
different from a normal distribution:
> shapiro.test(resid(m1))

Shapiro-Wilk normality test

data: resid(m1)

W = 0.9923, p-value = 0.1212

What happens if  we do not allow for the inter-culture variation, and just do a simple one-way 
ANOVA for the treatment effect?
> m1<-aov(ros ~ treat)

> summary(m1)

Df Sum Sq Mean Sq F value Pr(>F)

treat 2 165 82.7 0.128 0.879

Residuals 297 191310 644.1

The result is not significant: the large variation between cultures obscures the effect of the treatment. 
Thus notice here the much greater power of the repeated-measures design in cases like this where there 
is large variation among ‘individuals’, however defined. By removing the large inter-culture variation, 
the impact of the treatments becomes evident over and above variation among individual cultures. 
There are no obvious differences among treatments just by looking at the means { s.e., yet the effects 
are highly significant.

Thus the conclusion from this analysis is that there are significant effects of selection regime, once 
the differences among cultures have been allowed for (F2,198 = 83.3, p 6 0.001).

Suppose a microbiologist was interested in the 
impact of  three amino acids (leucine, alanine 
and lysine) on cultures of  Aspergillus fungi. 
She knew from the literature that alanine and 
especially lysine should stimulate the production 
of colonies. However, she had only a very small 

incubator so that she could experiment with 
only three Petri dishes at a time. This was a 
problem, because each time she performed the 
experiment there was uncontrollable variation 
in culture ages, temperatures, concentrations, 
etc. She therefore added each amino acid to 

BOX 3.5f    A non-parametric repeated-measures ANOVA in R®
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one dish and incubated the three dishes, but 
repeated this 50 times to obtain 50 replicates. 
She then counted the number of  colonies on 
each plate (the response variable). The predictor 
is a factor, the amino-acid treatments, with three 
levels. Each set of three constitutes the repeated 
measures, or block, a second predictor.

Because of  prior knowledge, we make the 
specific prediction that the rank order will be 
leucine 6 alanine 6 lysine (H1).  The null 
hypothesis (H0) is that the mean ranks will not 
follow this pattern.

The data are read in the usual way, response 
data in one column (fungus), and treatments 
in another (aa). We need an index to the blocks 
(i.e. the rows) as well (blk). If  there isn’t one in 
the data set itself, then as long as the data are 
in a known order, we can create one; e.g. if  all 
values for one treatment come first, then (in the 
same order) all those of the second treatment, 
etc., then:
> blk <- rep(c(1:50),times=3)

The medians can be plotted using the usual 
plot function, but as with the parametric case, 
this takes no account of the repeated measures, 
and can be very misleading. As Fig. (i) shows, 
there do not seem to be any differences among 
the treatments here. The test of  the general 
hypothesis of treatment differences of any kind 
goes by the name of the ‘Friedman test’ in R® 
and many packages:
> friedman.test(fungus, aa, blk)

Friedman rank sum test

data: fungus, aa and blk

Friedman chi-squared = 10.4385, df = 2, 

p-value = 0.005411

However, we want to test the specific hypothesis 
of an expected order of the mean ranks. Since 
once more R® has no built-in test of  its own, 
to perform the specific version of this test will 
require us to write the routine ourselves (called 
here nprm.s). The data are better organised as 

a dataframe (dtfr) of  three columns, so that 
the repeated measures lie on a single row  – 
then we can leave the blk term implicit rather 
than explicit in the routine. The routine (from 
Meddis, 1984) is straightforward except for 
the correction for tied ranks as before: ties can 
be common in data sets consisting of  integer 
numbers. The first eight lines rank the data 
within blocks, and then sum these ranks for 
each treatment (rsums); these are then used 
in the basic calculation of the Z-test, involving 
the observed (OL), expected (EL) and variance 
(VARL) of the rank means. The tricky bit is the 
correction for ties (tcorr) within each block:
> nprm.s <- function(dtfr,contrasts) {

cols<-length(dtfr[1,])

rows<-length(dtfr[,1])

len<-rows*cols

ranks<-c(1:len)

ranks<-matrix(ranks,nrow=rows)

for (i in 1:rows)

ranks[i,]<-rank(dtfr[i,])

rsums<-colSums(ranks)

OL <- sum(rsums*contrasts)

EL<-0

VARL<-0

tie<-0

Figure (i) Median (with interquartile ranges and 
extremes) number of colonies produced by Aspergillus 
fungi under three experimental treatments of the 
addition of an amino acid (alanine, leucine or lysine).
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btie<-0

E1 <- sum(contrasts*contrasts)

E2 <- sum(contrasts)

for (i in 1:rows) {

EL = EL + ((cols+1)*E2/2)

btie=tie

jj<-cols-1

for (j in 1:jj) {

kk=j+1

for (k in kk:cols) {

if (dtfr[i,j]==dtfr[i,k]) tie=tie+1 

else tie=tie

}}

if (btie<tie) nt=tie-btie else nt=0

if (nt==1) nt=nt+1

tcorr = (1-(((nt[[power]]3)-nt)/

((cols[[power]]3)-cols)))

VARL = VARL + (cols+1)*((cols*E1) 

- (E2*E2))*tcorr/12

}

Z = (OL - EL)/sqrt(VARL)

Z

}

We then enter the predicted contrasts, and 
invoke the routine:
> c1 <- c(1,2,3)

> nprm.s(d1,c1)

[1] 2.895691

The significance of this z-value is given by:
> 1-pnorm(2.895691)

[1] 0.001891624

As before, this is a very significant effect. Thus 
the conclusion is that the evidence suggests that 
the mean ranks do indeed follow the predicted 
pattern of  treatment effects, leucine 6
alanine 6 lysine (Z = 2.90, p = 0.002)

Post hoc multiple comparisons.
A general one-way ANOVA will tell us whether or not there are significant 
differences in the means of the response variable among our groups, but it does 
not tell us where the differences lie. We cannot conclude which pairs of  mean 
values are significantly different (although we can certainly suggest them from the 
group means), because we did not make any specific prediction beforehand, in 
advance of obtaining the data, about the ordering of the mean values, nor did we 
set up planned contrasts between particular sets of groups. Of course, it is entirely 
natural to want to delve further and find out where the differences lie, and many 
researchers would like to be able to make such post hoc tests (so called because they 
arise after you have seen the data). A plethora of different tests is available that test 
every mean value against every other one. For example, Crawley (2007: 483–485) 
recommends the Tukey Honestly Significant Difference, implemented in R® for the 
example of Box 3.5a by typing

> TukeyHSD(aov(bbee ~ treatment))

The very diversity of methods ought to warn us that any one of them might be 
inadequate. Many biologists use them routinely, but others, and many statisticians, 
avoid them altogether. Detailed study shows that none of  them can be relied 
upon to give accurate p-values for differences (Day & Quinn, 1989): many are 
too conservative, but others are not conservative enough, suggesting significance 
unjustifiably. Thus our view is that, if  they are used at all, they should be taken only 
as a rough guide to where the differences might lie (so are not really much better 
than simply inspecting the group means and SEs). None can be recommended over 
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the others. Many people use the Least Significance Difference (LSD). All this does 
is to take the within-groups (‘error’) mean square from the analysis of variance to 
construct a 95% confidence limit for the mean values. However, the LSD ‘test’ is 
only accurate for a priori contrasts (Day & Quinn, 1989).

Specific predictions within one-way ANOVA.
Suppose we have four groups: A, B, C and D. Biological theory, or previous data 
in the literature, might dictate that we expect a priori that the mean values of the 
response variable should fall into a particular pattern: A 6 B 6 C 6 D. In the 
example of  Box 3.5b, the groups are temperature levels affecting a biochemical 
reaction, forming a series of groups rankable by temperature magnitude, and theory 
tells us that increasing temperature should increase the speed of the reaction. How 
do we test such a prediction in ANOVA?

For non-parametric data, we can test this perfectly well using the predicted order 
of the rank means. For normally distributed data, although simple, the prediction 
is hard to test because it says nothing about the magnitude of  the differences 
among the groups. To test it exactly we need something called ‘isotonic regression’ 
(Gaines & Rice, 1990), but at the time of writing there are no user-friendly ways of 
implementing this method for our purposes in R®. Luckily, there are two alternative 
methods: independent (orthogonal) a priori contrasts, and (sometimes) polynomial 
regression. Contrasts can also be used non-parametrically.

Each independent or orthogonal a priori contrast creates two subsets of  the 
factor levels and tests whether their mean values are different. We can do this a 
number of  times, set by the number of  degrees of  freedom among the groups. 
Each contrast is between two groups and hence is a single degree of freedom, and 
there are only a limited number of such contrasts that can be independent of one 
another – hence the name.

In our example of four groups, we have three degrees of freedom to use, and, 
since each contrast involves one degree of freedom, we can frame three independent 
(so-called orthogonal) contrasts. We can therefore create an hierarchical set of 
contrasts that encapsulates the linear relationship that we would like to test. We 
therefore predict that:

  A 6 (B + C + D)/3
and  B 6 (C + D)/2
and  C 6 D

This is done by developing contrast coefficients for each that encapsulate the 
contrast we are making. These are integers that sum to zero, discovered using 
simple algebra. For the first contrast, the prediction is:

  A 6 (B + C + D)/3
which is  3A 6 B + C + D

which, rearranged to express the inequality as ‘0 6 ’, becomes:

0 6 93A + B + C + D

Therefore for the first contrast, the coefficients are -3,+1, +1 and +1 on the 
groups A, B, C and D, respectively.
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Then we go through each of the remaining contrasts to obtain the coefficients. 
By the same logic as above, the coefficients are 0, -2, 1, 1 (for 2B 6 C + D) and 
0, 0, -1, 1 (for C 6 D). We can tell whether two contrasts are orthogonal if  the 
products of their corresponding values sum to zero. Thus for the first two here, 
(-3 * 0) + (1 * - 2) + (1 * 1) + (1 * 1) = 0.

Box 3.5b (parametric) and Box 3.5d (non-parametric) show how to implement 
these contrasts in R®.

Covariates.
Sometimes it is useful to control for other, nuisance, factors that are measured on a 
constant-interval scale within an analysis of variance. For instance, an analysis of 
differences in mating success between territory-owning and non-territory- owning 
male wood mice (Apodemus sylvaticus) might want to control for body size to 
rule out an effect of  territory ownership arising simply because owners tend to 
be bigger. In a parametric analysis of variance, body size could be incorporated 
as a covariate. The analysis would then reveal the independent effects of territory 
ownership and body size. Most major statistical packages allow covariates to be 
included in analyses of variance. Box 3.6 shows how to do this in R®.

A physiologist was interested in the impact of three foods on the basal metabolic rate (BMR) of 
rats, and conducted an experiment in his laboratory where rats in individual cages were randomly 
assigned to one of the three foods (A, B and C), and were fed this food over one week. He then 
measured the BMR of each rat three times, taking the average as the value for each rat. He suspected, 
however, that body size might also influence BMR, and might obscure the result of the experiment 
unless controlled for. Thus he also recorded the weight of each rat when he measured its BMR.

The response variable is BMR, measured on a constant-interval scale. The question concerns 
differences in the mean value of BMR between the three levels of food type (food), after having 
taken into account the effect of a covariate, body size (size in Fig. (i)). Thus the predictors are the 
factor food (with three levels) and the covariate size (a continuous constant-interval measurement).

Frame the prediction. In this case the physiologist did not have any preconceptions about what 
to expect, and therefore just tested the general prediction that the mean values differed among the 
levels of food.

The analysis is called an analysis of  covariance (ANCOVA), and this example is the simplest 
possible kind – a one-way analysis of variance with a single covariate. ANCOVA can be much more 
complex, involving several factors and covariates.

In R® the data are held in the usual column format, with a column for bmr, one for size and 
one for the factor food. Having read them into R®, check that food is a factor:
> is.factor(food)

[1] TRUE

BOX 3.6   Analysis of covariance – taking a covariate into account
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Plot the data to see what they look like (Fig. (i)). 
The plot command plots the data, using a 
different symbol for each group (by converting 
the group names into numbers with as.
numeric, and adding 16, the default character). 
Then the three lines of best fit are added using 
the abline command and dashed lines (lty=2):
>  p l o t ( s i z e , b m r , p c h = 1 6 + a s .

numeric(group))

>  abline(lm(bmr[food==”A”]~size[-

food==”A”]),lty=2)

>  abline(lm(bmr[food==”B”]~size[-

food==”B”]),lty=2)

>  abline(lm(bmr[food==”C”]~size[-

food==”C”]),lty=2)

It certainly could be that each group is different, 
but there is a lot of  scatter. If  we just ask 
whether there are differences among food types 
in bmr (i.e. without taking size into account), the answer is no:
> summary(aov(bmr~food))

Figure (i) Basal metabolic rate (VO2 g-1s-1) of rats 
fed three different foods (three regression lines, and 
different symbols: circles, food A; triangles, food B; 
diamonds, food C).

Df Sum Sq Mean Sq F value Pr(>F)

food 2 6744 3372.1 2.6746 0.07467 .

Residuals 86 108430 1260.8

Looking at the plot (Fig. (i)), there is little evidence from the plot for lines with different slopes. We 
therefore fit a model of just a single line (covariate) for size, plus the differences among food types, 
using the lm command (meaning ‘linear model’):
> m1 <- lm(bmr ~ size + food)

Be aware that the order matters. The result would be different if  we put ‘food + size’. This is 
because we are first going to allow for the effect of size, and then ask whether residuals from that 
relationship differ among groups. This would be very different from first looking at differences in 
the mean values of groups, and then asking whether the residuals were related to size.

The ANOVA table appears when we type:
> anova(m1)

Analysis of Variance Table

Response: bmr

Df Sum Sq Mean Sq F value Pr(>F)

size 1 23068 23068.1 22.924 7.05e-06 ***

food 2 6573 3286.5 3.266 0.043 *

Residuals 85 85534 1006.3
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We can check whether we were correct in only fitting a single line for the effect of size: perhaps the 
slope of this relationship is different for each of the food groups? This is fitted as an interaction 
between size and food – we will learn more about interactions shortly:
>  anova(lm(bmr~size + food + size:food))

Analysis of Variance Table

Response: bmr

Df Sum Sq Mean Sq F value Pr(>F)

size 1 23068 23068.1 22.5470 8.47e-06 ***

food 2 6573 3286.5 3.2122 0.04532 *

size:food 2 615 307.7 0.3008 0.74106

Residuals 83 84918 1023.1

We see there is no evidence of different slopes among groups since the interaction is not significant.
We conclude that, allowing for body size, there are indeed significant differences among the food 

types (F2,85 = 3.27, p 6 0.05).

1 * n chi-squared.
One-way analysis of variance uses a comparison of mean (or mean rank) values of 
individual data values to arrive at a test statistic. Where data values are counts, however, 
we could, as in the two-group case (see Box 3.2) perform a chi-squared test on the totals 
for each group. We then have what is known as a 1 * n chi-squared analysis, where n is 
the number of groups. The two-group (1 * 2) chi-squared test earlier is just one form 
of this, and the calculation of expected values and the x2 test statistic are exactly the 
same as for the two-group case. Box 3.7 shows how to do these in R®.

A clinical microbiologist was assaying the effect 
of four antibiotics on a bacterial culture. To see 
whether the antibiotics differed in their ability 
to kill the bacterium, he counted the number of 
cultures on which clear plaques appeared after 
drop treatment with each one, and performed a 
x2 test, assuming equal expected values across the 
four antibiotics. The response variable consists 
of the total numbers of cultures. The predictor 
is a nominal grouping factor, treatment, with 
four levels (the different antibiotics).

Frame the prediction, here that antibiotics 
differ in their ability to kill the bacterium, and 
hence there will be differences in the numbers 
of  plaques between antibiotics (H1). The null 
hypothesis is that all the antibiotics are equally 
effective, and hence there will be no differences 
(H0).

To test the total counts, we use the same 
routine as for Box 3.2, but here for four groups 
instead of two. The default null hypothesis is for 
the numbers to be the same:

BOX 3.7    A test comparing counts classified into two or more groups  
(1 : n x2 test) using R®
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> chisq.test(c(21,7,18,30))

Chi-squared test for given 

probabilities

data: c(21, 7, 18, 30)

X-squared = 14.2105, df = 3, p-value 

= 0.002632

In conclusion, there is evidence for significant 
difference between antibiotics in their ability to kill 
the bacterium (x2 = 14.2, d.f. = 3, p 6 0.01).

Tests for differences in relation to two factors
In all the above difference tests, we were concerned with differences among levels 
of a single grouping factor, e.g. between groupings based on seed colour. However 
many groups of seed colour we had (red, yellow, green, orange, blue, etc.), we would 
still be dealing only with seed colour, and thus with one grouping factor. But we 
can easily envisage situations in which we would be interested in more than one 
factor. For example, we might want to know not only whether chicks peck at some 
colours of grain more than others, but also whether pecking in males is different 
from that in females. More interestingly still, we might want to know whether the 
sex of chicks affects the difference in pecking at the various colours of  grain. Is 
the difference greater in one sex? Is it in the same direction in both sexes? Here we 
have two kinds of grouping: seed colour and sex. In the examples that follow, we 
shall look at analyses that cater for two kinds of grouping with two levels in each.

2 * 2 chi-squared.
If  we have data in the form of  counts, we can again use chi-squared, but the 
expected values in a 2 * 2 analysis (and in any other n * n chi-squared analysis) 
are calculated in a different way from those in a 1 * n analysis. Instead of taking 
equal values, or values determined on the basis of  some a priori expectation, 
the rows and columns of  the 2 * 2 (or n * n) table are totalled and the grand 
total calculated, and the respective expected values for each cell of  the table are 
calculated as (row total * column total)/grand total. Box 3.8 shows the procedure 
for performing a 2 * 2 chi-squared analysis in R®. There is a very clear account of 
how the expected values work in Crawley (2007: 301–304).

A count was made of the total number of men 
and women with stomach biopsies showing 
a presence or absence of  cancerous cells. The 
response variable is the number of  people in 
the factor combinations. The predictors are two 
grouping factors, each with two levels: sex (men/

women) and cancer (with/without). Each person 
is classified into one of the four combinations.

The prediction is that the sex of  the person 
affects their chance of showing stomach cancer 
(H1); in a 2 * 2 chi-squared this would be 
reflected as a significant non-independence 

BOX 3.8   A test comparing counts in a (2 : 2) classification (2 : 2 x2 test) using R®

M03_BARN5999_05_SE_C03.indd   103 19/10/2016   16:48



104 Chapter 3 Answering Questions

between the two factors (see below). The null 
hypothesis is that sex has no effect on the 
incidence of stomach cancer (H0).

In R®, we simply declare the numbers to be in 
matrix form, and then R® assumes this is a two-
way chi-squared test. The numbers are read in 
column-wise, so don’t get confused!
>  cancers <- matrix(c(20,0,17,23), 

nrow=2)

> cancers 

Then we invoke the test by typing:
> chisq.test(cancers)

Pearson’s Chi-squared test with Yates’ 

continuity correction

data: cancers

X-squared = 16.2955, df = 1, p-value 

= 5.419e-05

The conclusion is that the two factors 
interact, i.e. the chance of  getting stomach 
cancer differs between men and women 
(x2 = 16.3, d.f. = 1, p 6 0.001).[,1] [,2]

[1,] 20 17

[2,] 0 23

2 * 2 two-way analysis of variance.
As before, if  we want to compare the means of  replicated data values, we can 
use analysis of  variance, but this time it is a two-way rather than a one-way 
analysis. In a 2 * 2 two-way analysis of variance, the data are cast into four cells 
(two * two groups, best envisaged as two rows and two columns of a table). If  we 
wanted to do a 3 * 5 two-way analysis the data would be cast into 15 cells, and so 
on for any combination of levels of two grouping factors. If  you find it difficult to 
distinguish between one- and two-way designs, just consider a single measurement 
of  the response variable: does it belong to just one of  the groups (one-way), or 
does it simultaneously belong to one group of one nominal factor and one group 
of another nominal factor (two-way)?

Once again there are both parametric and non-parametric versions of  the 
analysis, and specific and general hypotheses (Boxes  3.9a–d). As usual, the 
parametric test assumes the residuals of the response variable conform reasonably 
to normality. This assumption is, of  course, relaxed for the non-parametric 
equivalent. However, both parametric and non-parametric tests assume that the 
data have the same variance within each cell (i.e. within each combination of levels 
of grouping) – another example of the distribution-free, but not assumption-free, 
nature of non-parametric tests. Both types of analysis compare the mean values 
of the columns (the levels of one factor) and separately also the mean values of 
the rows (the other factor). Comparisons among the column means or among 
the row means are known as the main effects, and are distinguished from another 
kind of  comparison referred to as an interaction. (Note that an interaction can 
be calculated only if  all cells contain more than one replicate value.) If  there is a 
significant interaction it means the difference between the means of the levels of 
one factor depends on the level of the second factor.
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An experiment aimed to detect the effects of food type and parasitic infection on the activity of an 
enzyme (liver alcohol dehydrogenase) in rats (Rattus norvegicus). The response variable (enzyme) 
is a measure of the enzyme’s rate of reaction, and there are two factors as predictors, each with two 
levels: food (peas, beans) and parasitism treatment (unparasitised, parasitised). The experimental 
design required each rat to be in one food group (peas or beans) and one parasitism treatment group 
(unparasitised or parasitised). Testing the residuals for normality (see Box 3.1) showed that the data 
could be assumed to be normal (Shapiro9Wilk = 0.99, d.f. = 160, ns).

Because of  the two-way design, we have three predictions, one about the effects of  food, one 
about the effects of  parasitism (together called the main effects), and one about the interaction 
between food type and parasitism (e.g. is the effect of food type affected by whether or not the rat 
is also parasitised?)

In R® the data have the usual form, with all the enzyme activity values in a single column, with 
other columns coding the parasitism (parasitised, unparasitised) and food type (peas, beans). 
If  we have them in four separate columns, then we can easily reformat the data in R®:
> enzyme <- c(p.peas,p.beans,u.peas,u.beans)

(or whatever your headings are called), and then the factors:
> parasitism <- factor(rep(c(“parasitized”,”unparasitized”),each=80))

> food <- factor(rep(c(“peas”,”beans”),each=40,times=2))

Check to make sure the indexing of the values is correct!
We can plot the mean values (Fig. (i)) by typing the following, using beside=T to put the bars 
next to one another rather than on top of one another. We could modify the plot.error.bars 
routine to add error bars, if  desired. Thus:
> barplot(tapply(enzyme,list(parasitism,food),mean), beside=T)

The differences that exist look very small! Let’s do the test, first performing the usual tests for 
normality and heterogeneity of variances. The ‘*’ symbol means ‘main effects and interaction’, and 
is short for ‘parasitism + food + parasitism:food’.
> m1 <- aov(enzyme ~ parasitism * food)

> shapiro.test(resid(m1))

Shapiro-Wilk normality test

data: resid(m1)

W = 0.989, p-value = 0.2459

> fligner.test(enzyme ~ parasitism * food)

Fligner-Killeen test of homogeneity of variances

data: enzyme by parasitism by food

Fligner-Killeen:med chi-squared = 0.0562, df = 1, p-value = 0.8126

BOX 3.9a    Mean values – a general parametric two-way ANOVA using R®

M03_BARN5999_05_SE_C03.indd   105 19/10/2016   16:48



106 Chapter 3 Answering Questions

The diagnostics look OK, so we can go ahead and look at the ANOVA summary:
>summary(m1)

summary()

Df Sum Sq
Mean 

Sq
F value Pr(>F)

parasitism 1 1.6504 1.65039 26.4377 8.053e-07 ***

food 1 0.0166 0.01661 0.2660 0.60675

parasitism:food 1 0.3358 0.33581 5.3793 0.02167 *

Residuals 156 9.7384 0.06243

Figure (i) Mean rate of reaction of liver alcohol 
 dehydrogenase (mol s-1) in rats allocated to 
treatments in a two-way design of food (peas or 
beans) and parasitism (unparasitised, parasitised). 
Mid-blue bars indicated parasitised rats; dark blue bars 
indicate unparasitised rats.

The main effect of  the factor parasitism is 
highly significant, whereas that of food is not, 
but there is evidence of a significant interaction.

Note that the relevant degrees of  freedom 
to cite with the F-ratio for each effect are the 
ones on the same line as the name of the effect 
in the table (=  the among@groups d.f.), and in 
each case the residuals/error degrees of freedom 
(=  the within@groups d.f.).

From all this we conclude that:

■	 there is evidence of  overall differences in 
enzyme activity between parasitised and 
unparasitised animals (F1,156 = 26.4, p V
0.001);

■	 there is no evidence of an overall effect of food 
types on enzyme activity (F1,156 = 0.27, ns);

■	 there is evidence of  an interaction between 
food type and parasitism that affects enzyme 
activity (F1,156 = 5.38, p 6 0.05).

We can present these statistical results either 
in the text of  the Results section of our report, or in the legends to the figures that display the 
mean values { s.e.s, or we can reproduce the ANOVA table. They should be given only once, in 
one of these formats. It is good practice to give the table for all but the simplest of designs, because 
to experienced scientists it is very informative. When we are testing specific predictions within the 
ANOVA, the table becomes essential, as we shall see in Box 3.9b.
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3.3 Significance Tests 107

We have deliberately chosen a complex example here to show you how this works, but the principles 
are no different from those of the one-way ANOVA described above.

An experiment was designed to test the effect of temperature and motivation on the mathematical 
performance of students in a standard test. Students were tested one by one in an environmental 
chamber that could be set to one of three conditions of temperature (cold, normal warm room 
temperature or hot). Each student was pretreated in one of three ways to try to alter their motivation: 
(a) in a very off-hand manner and generally given the impression that they were incompetent (low 
motivation), (b) neutrally with respect to their competence (neutral) or (c) in a praising fashion, 
giving every encouragement (high motivation). Each student was randomly allocated to one 
temperature and one motivation treatment. Thus the response variable is mathematical performance, 
measured on a constant-interval scale. There are two predictors that are both factors: motivation, 
with three levels (low, neutral, high) and temperature, with three levels (cold, warm, hot). We shall 
treat these as fixed factors (see p.116). Testing the residuals for normality (see Box 3.1) demonstrated 
that the assumption of normality is acceptable (Shapiro9Wilk = 0.99, d.f. = 225, ns). The specific 
predictions deriving from this were:

■	 Prediction 1 (main effect 1): lower motivation will reduce mathematical performance
■	 Prediction 2 (main effect 2): higher temperatures will reduce mathematical performance
■	 Prediction 3 (interaction): higher temperatures and lower motivation together will reduce 

mathematical performance more than expected from their additive effects.

In order to see how to proceed, it is best to visualise the pattern of the design and label each of the 
combination of treatments (the cells of the design matrix) with letters. As with the one-way ANOVA 
(Box 3.5b), we should, in theory, be able to test for a specified rank order of mean values, but, as 
noted before, the method has not been implemented in most statistical packages. We can easily test 
for a specified rank order in a non-parametric ANOVA (see Box 3.9c). Once again, therefore, we 
shall use contrasts to test hypotheses that are almost the same thing.

Setting up the predictions

Prediction 1: We have three levels of the factor motivation 
(the rows in Fig. (i)), giving us two degrees of freedom, 
and hence two single-degree-of-freedom contrasts that 
we can use (as long as they are independent of  one 
another). The first will contrast low motivation versus 
the other two, and the second will contrast neutral versus 
high. We proceed by casting them in terms of the cells of 
the design matrix (Fig. (i)):

BOX 3.9b    Mean values – a specific parametric two-way ANOVA using R®

Figure (i) The design of the two-way 
ANOVA under consideration.
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(a) high motivation 7 (neutral + low). The average performance for the high motivation cells 
of the design (n = 3) will be greater than those for the other cells (n = 6), i.e.:

(G + H + I)/3 7 ((D + E + F) + (A + B + C))/6

 which rearranges as:

0 6 (-1)A + (-1)B + (-1)C + (-1)D + (-1)E + (-1)F + (2)G + (2)H + (2)I

 where the numbers in the brackets are the coefficients of the first contrast (cf. Box 3.5b).
(b) neutral 7 low motivation. The average performance measured for neutral motivation (n = 3) 

will be higher than that for low motivation (n = 3), i.e.:

(D + E + F) 7 (A + B + C)

 which rearranges as:

0 6 (-1)A + (-1)B + (-1)C + (1)D + (1)E + (1)F + (0)G + (0)H + (0)I

 where the numbers in the brackets are the coefficients of the second contrast.

Prediction 2: This is done in exactly the same way, involving the temperature factor (the columns of 
Fig. (i)) rather than motivation (the rows of Fig. (i)). The relevant coefficients are:

(a) cold temperature versus other. The average performance measured for the cold temperature 
cells of the design (n = 3) will be greater than that for the other cells (n = 6), i.e.:

(A + D + G)/3 7 ((B + E + H) + (C + F + I))/6
which rearranges as:

0 6 (+2)A + (-1)B + (-1)C + (2)D + (-1)E + (-1)F + (2)G + (-1)H + (-1)I

(b) warm versus high temperature.The average performance measured for the normal temperature 
cells of the design (n = 3) will be greater than that for the high temperature cells (n = 3), 
i.e.:

(B + E + H)/3 7 (C + F + I)/3

 which rearranges as:

0 6 (0)A + (1)B + (-1)C + (0)D + (1)E + (-1)F + (0)G + (1)H + (-1)I

Prediction 3: This concerns the interaction between temperature and motivation, and it has four 
degrees of freedom (because the interaction has (a - 1)(b - 1) degrees for the two factors A and 
B which have a - 1 and b - 1 degrees, respectively). We shall only use two of these degrees of 
freedom in casting the prediction into independent contrast sets. An interaction is non-additivity 
of factors, which means that the effect on one factor (say temperature) is different at the different 
levels of the other factor (motivation) (see text). This is complicated to visualise, and it is best to set 
out the interaction prediction as a difference between levels in the following way:
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If the hypothesis is correct, then the motivation differences will increase as temperature decreases because 
both cold temperature and high motivation increase the ability of students to perform. The prediction 
is that this ability will increase more than the additive effect of each factor, thus:
 the motivation difference (high - (neutral + low)) will increase with temperature, so 

cold 7 (warm + hot)
(G - (A + D))/3 7 [(H - (B + E)) + I - (C + F))]/6

 which rearranges as:
0 6 (-2)A + (1)B + (1)C + (-2)D + (1)E + (1)F + (2)G + (-1)H + (-1)I

 and:
(b) the motivation difference will follow the temperature pattern warm 7 hot

H - (B + E) 7 I - (C + F)

 which rearranges as:
0 6 (0)A + (-1)B + (1)C + (0)D + (-1)E + (1)F + (0)G + (1)H + (-1)I

We read in the data in the conventional format of a column for the data (score) and columns 
for each of the two factors (motivation, temperature). Make sure that R® knows they are 
factors, and they have the correct order:
> motivation <- ordered(factor(motivation),levels=c(“low”,”neutral”,”high”))

> temperature <- ordered(factor(temperature),levels=c(“low”,”warm”,”high”))

Plot the mean values (Fig. (ii)), remembering to use ‘beside=T’ to put the bars next to one another 
rather than on top of one another:
> barplot(tapply(score,list(motivation, temperature),mean), beside=T)

There appears to be a strong pattern to the 
mean values. Now declare the contrasts you 
want to make, starting with the main effects (i.e. 
not the interactions):
>  c o n t r a s t s ( m o t i v a t i o n ) 

<- cbind(c(-1,-1,2),c(-1,1,0))

>  c o n t r a s t s ( t e m p e r a t u r e ) 

<- cbind(c(2,-1,-1),c(0,1,-1))

Then run the ANOVA:
> m1 <- aov(score ~ motivation * 

temperature)

Check for normality and homogeneity – they 
seem fine:
> shapiro.test(resid(m1))

Shapiro-Wilk normality test

data: resid(m2)

W = 0.9939, p-value = 0.4987

Figure (ii) Mean mathematical performance (score in 
a standard test) of students allocated to treatments 
in a two-way design of temperature (low, warm, high) 
and motivation (low, mid-blue bars; neutral, dark blue 
bars; high, white bars).
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> fligner.test(score~motivation*temperature)

Fligner-Killeen test of homogeneity of variances

data: score by motivation by temperature

Fligner-Killeen:med chi-squared = 3.087, df = 2, p-value = 0.2136

> summary(m1)

Df Sum Sq Mean Sq F value Pr(>F)

motivation 2 1290.47 645.24 160.6455 < 2.2e-16 ***

temperature 2 235.47 117.74 29.3128 5.457e-12 ***

motivation:temperature 4 40.55 10.14 2.5242 0.04191 *

Residuals 216 867.57 4.02

The main effects of motivation and temperature are highly significant, and the interaction 
is just significant at the 0.05 level. Clearly there are patterns in each component: do they fall into 
the expected forms?

We ask for the summary of the linear model:
> summary.lm(m1)

Call:

aov(formula = score ~ motivation * temperature)

Coefficients:

—-

Estimate Std. Error t value Pr(>|t|)

(Intercept) 13.17693 0.13361 98.624 < 2e-16 ***

motivation1 1.51707 0.09448 16.058 < 2e-16 ***

motivation2 1.30333 0.16364 7.965 9.37e-14 ***

temperature1 0.53020 0.09448 5.612 6.09e-08 ***

temperature2 0.85233 0.16364 5.209 4.43e-07 ***

motivation1:temperature1 0.10333 0.06680 1.547 0.1234

motivation2:temperature1 0.07893 0.11571 0.682 0.4959

motivation1:temperature2 0.10073 0.11571 0.871 0.3850

motivation2:temperature2 0.51020 0.20041 2.546 0.0116 *

Residual standard error:2.004 on 216 degrees of freedom

Multiple R-squared: 0.6436, Adjusted R-squared: 0.6304

F-statistic: 48.75 on 8 and 216 df, p-value: < 2.2e-16

The contrasts we asked for are the first four, all of  which are in the correct direction (t values 
positive) and highly significant. Thus our predictions are supported by these data. The interactions 
that R® reports are automatic, not the ones in which we are interested.

For the interactions we treat all the groups as if  in a one-way ANOVA.
>  treat <- factor(rep(c(“lo.cold”,”lo.warm”,”lo.hot”,”nu.col”,“nu.warm”,”nu.

hot”,”hi.cold”,”hi.warm”,”hi.hot”), each=25))
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>  treat <- ordered(treat,levels=c(“lo.cold”,”lo.warm”,”lo.hot”,“nu.col”,”nu.

warm”,”nu.hot”,”hi.cold”,”hi.warm”,”hi.hot”))

>  contrasts(treat) <- cbind(c(-2,1,1,-2,1,1,2,-1,-1),c(0,-1,1,0,-1,1,0,1,-1))

> m2 <- aov(score ~ treat)

> summary.lm(m2)

Call:

aov(formula = score ~ treat)

Coefficients:

—-

Estimate Std. Error t value Pr(>|t|)

(Intercept) 13.17693 0.13361 98.624 < 2e-16 ***

treat1 -0.03896 0.09448 -0.412 0.68050

treat2 -0.14980 0.16364 -0.915 0.36098

treat3 0.47867 0.40083 1.194 0.23371

treat4 1.22937 0.40083 3.067 0.00244 **

treat5 0.09450 0.40083 0.236 0.81385

treat6 6.45622 0.40083 16.107 < 2e-16 ***

treat7 4.29312 0.40083 10.711 < 2e-16 ***

treat8 0.79679 0.40083 1.988 0.04809 *

Residual standard error: 2.004 on 216 degrees of freedom

Multiple R-squared: 0.6436, Adjusted R-squared: 0.6304

F-statistic: 48.75 on 8 and 216 df, p-value: < 2.2e-16

We only asked for the first two, but R® has filled in the rest automatically up to the limit of the 
degrees of  freedom: we can ignore those. The two we asked for are in the wrong direction, and 
therefore not significant.

In conclusion, therefore:

■	 there is good evidence that higher temperatures reduce mathematical performance;
■	 there is good evidence that lowered motivation reduces mathematical performance;
■	 there is no evidence that higher temperature and lowered motivation combined cause reduced 

mathematical performance more than expected from their additive effects.

General predictions in a two-way non-
parametric ANOVA can be tested only if  the 
sample sizes are equal for all groups. If  they are 
not, then only specific predictions are testable.

Suppose a behavioural experiment measured 
the reaction times of  different-sized insects 
of  two kinds to a threatening stimulus. As 
predictors, the factor size had three levels 

BOX 3.9c    Medians (mean ranks) – a general non-parametric two-way ANOVA using R®
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(small/medium/large), and the factor taxa had 
two levels (flies/beetles). Testing the residuals 
showed that they were far from normal 
(Shapiro9Wilk = 0.87, d.f. = 84, p 6 0.001) 
and hence a non-parametric test is appropriate. 
The predictions were the usual general ones for a 
two-way design, involving the main effects (here, 
size and taxa) and their interaction:

■	 Prediction 1: beetles and flies will differ in 
reaction times,

■	 Prediction 2: large, medium and small insects 
will differ in reaction times,

■	 Prediction 3: there will be an interaction 
between size and insect type that affects 
reaction times.

There is no routine built into R® for this 
test, and so we shall improvise. The response 
variable (react) is in one column, and the 

two predictors (insect, size) in two other 
columns. Remember that you cannot do this test 
unless there are equal numbers of replicates in 
every box of the two-way design.

First we get a boxplot of  the medians and 
ranges to visualise the data. For two-way data 
this is made easier by the lattice package (see 
Zuur et al., 2009: chapter 8):
> library(lattice)

> bwplot(react ~ size|insect)

As Fig. (i) shows, there seem to be some large 
differences, but also large variability in the 
measurements.
Now we need to make a one-way factor from 
all the combinations of the two-way factors (i.e. 
make the two insect levels and the three size 
levels into a factor with six levels representing 
the combinations). This is very easy in R® using 
the ‘:’ interaction operator:
> allgrps <- factor(insect:size)

The two-way analysis then consists of four steps:
1. do a one-way Kruskal–Wallis test 

‘ allgrps’ combination factor;
2. do a one-way Kruskal–Wallis test on the 

row factor;
3. do a one-way Kruskal–Wallis test on the 

column factor;
4. subtract the H values in steps (2 + 3) from 

step 1 to give the interaction H value.
> kruskal.test(react,allgrps)

Kruskal-Wallis rank sum test

data: react and grps

Kruskal-Wallis chi-squared = 4.8034, 

df = 5, p-value = 0.4403

> kruskal.test(react,insect)

Kruskal-Wallis rank sum test

data: react and insect

Kruskal-Wallis chi-squared = 0.6956, 

df = 1, p-value = 0.4043

Figure (i) Median (with interquartile ranges and 
extremes) reaction times (s) of beetles and flies of 
three different size categories
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> kruskal.test(react,size)

Kruskal-Wallis rank sum test

data: react and size

Kruskal-Wallis chi-squared = 3.3186, 

df = 2, p-value = 0.1903

Then the interaction H-value is 4.8034 -
(0.6956 + 3.3186) = 0.7892.

Thus the ANOVA table is:
Thus we cannot reject the null hypothesis for 

any of our three hypotheses.

H d.f. p
all groups 4.80 3
rows (insects) 0.70 1 0.40
columns (sizes) 3.32 1 0.19
interaction 0.79 1 0.79

A team of  researchers interested in the 
consequences of  regular exercise for various 
measures of health and well-being investigated 
the joint effects of  dietary fat and exercise 
(running on three or more days per week) on 
levels of  blood cholesterol. They measured 
cholesterol in people who had low and high fat 
intake, and who did or did not run. They then 
carried out a non-parametric two-way ANOVA. 
The response variable is blood cholesterol level. 
There are two predictors, factors each with 
two levels: diet (high-fat/low-fat) and exercise 
treatment (no exercise/exercise). The two-
way design requires that each person being 
investigated has been allocated randomly to 
one diet treatment (low or high fat) and one 
exercise treatment (not running, or running). 
Testing the residuals for normality showed that 
they were normal (Shapiro9Wilk = 0.99, ns) 
but not homogeneous (Fligner x2 = 20.1, 
d.f. = 120, p 6 0.001), and hence a non-
parametric approach is probably justified. Their 
predictions were:

■	 Prediction 1: running will reduce blood 
cholesterol,

■	 Prediction 2: a low-fat diet will reduce blood 
cholesterol,

■	 Prediction 3: the effect of  running will be 
greater when on a low-fat diet.

We can test these predictions in two ways, 
either by predicting the rank order of  the mean 
ranks, or by using single-degree-of-freedom 
contrasts. Since there are only two levels of each 
factor in the design, there is only one degree of 
freedom for each main effect, and one for the 
interaction. We shall see that, in a 2 * 2 design 
like this, both methods produce exactly the same 
result. Any other design (e.g. 3 * 2) will not 
do this.

Using rank order 

The prediction is that exercise should reduce 
cholesterol, and hence the predicted rank order 
has ranks 1 for cells A and C, and 2 for cells B 
and D. The coefficients are therefore (1, 2, 1, 2). 
Similarly, for diet the coefficients are (1, 1, 2, 2). 
There is no way to make a rank-order prediction 
for all four cells, and therefore the interaction 
cannot be tested in this way.

BOX 3.9d    Medians (mean ranks) – a specific non-parametric two-way ANOVA using R®
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Using contrasts 

We set up contrasts for the respective predictions 
as follows:

Prediction 1: This can be cast in the form of 
an inequality, following the design of the study 
(Fig. (i)), i.e.

 B + D 7 A + C

and hence  06 (-1)A+ (+1)B+ (-1)C+ (+1)D

Prediction 2: This can be described as:

 C + D 7 A + B

and hence 06 (-1)A+ (-1)B+ (+1)C+ (+1)D

Prediction 3: This can be described in the form 
of differences:

 B - A 7 D - C

and hence 06 (-1)A+ (+1)B+ (+1)C+ (-1)D

As always we have the response variable in one 
column (cholesterol) and the predictors in two 
other columns (diet, exercise). Plot the mean 
values to see what they look like, using lattice 
from the library to get the panel plots:

> library(lattice)

> bwplot(cholesterol ~ diet|exercise)

The pattern looks interesting (Fig. (ii)).
To use a predicted rank order, our first 

prediction was that exercise will reduce 
cholesterol levels, thus:
> c1 <- c(1,2,1,2)

We can then use the routine mds (developed 
in Box 3.5d). This is applicable to a one-way 
ANOVA design, and so we need to obtain a 
single factor with all the groups, to which the 
coefficients are applied. Thus:
> allgrps <- factor(diet:exercise)

> mds(cholesterol, allgrps, c1)

[1] 4.250945

This is highly significant, and therefore we 
conclude that there is evidence that exercise 
reduces cholesterol levels (z = 4.25, p 6 0.001). 
A similar test for the effect of  diet is also 
significant (z = 3.49, p 6 0.01).

For the approach using contrasts, we use the 
routine npc, also developed in Box 3.5d. Again 
we apply it as if  the design were for one-way 
ANOVA, with a single factor with four groups, 
rather than the separate factors forming the two 
ways of  the data. This performs a Wilcoxon/
Mann–Whitney test on the two groups with 
positive and negative contrasts. For example, 
for Prediction 3:

Figure (i) The two-way 
classification in the study.

Figure (ii) Median (with interquartile ranges and 
extremes) blood cholesterol levels (arbitrary units) 
for runners (‘yes’) and non-runners (‘no’) given two 
different diets, a low-fat or a high-fat regime.
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> c1<-c(-1,1,1,-1)

> npc(ch,allgrps,c1)

Wilcoxon rank sum test with continuity 

correction

data: dneg and dpos

W = 1308, p-value = 0.06551

alternative hypothesis: true location 

shift is less than 0

The conclusions are that there is good 
evidence for the predicted contrast for exercise 
(z = 4.25, p 6 0.001) and for the diet contrast 
(z = 3.49, p 6 0.001), but not for the contrast 
for the interaction (z = -1.51, ns).

An example makes the distinction between main effects and interaction clear. 
Imagine our two grouping factors are water type (freshwater versus marine) and 
sex (male versus female) in fish, and the response variable for comparison is growth 
rate. Water type forms the columns of the classification (see table below) and sex 
the rows. The analysis is concerned with the following: (a) main effect 1: differences 
in column means (is there any difference in growth rate between freshwater and 
marine fish?); (b) main effect 2: differences in row means (is there any difference 
in growth rate between males and females?); and (c) any interaction between the 
levels of grouping (e.g. is the difference in growth rate between males and females 
greater in one water type than in the other?).

Water type

Fresh Marine

Sex
Male a b c d

mean = A
e f g h

mean = B

Female i j k l
mean = C

m n o p
mean = D

As in the one-way analysis of variance, the non-parametric version can be used 
to test either general or specific predictions, but now about both the two main 
effects and any interaction. Making specific predictions is rather more involved 
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in the two-way analysis because we need to be clear as to exactly what we are 
comparing and to calculate different coefficients for each specific comparison so 
that the predictions can be tested. Box 3.9c illustrates the procedure.

Fixed and random factors
We will just flag up here that there is an important difference between two types 
of  factors that it is as well to be aware of. This is the distinction between fixed 
and random factors. All the factors in this book have been treated as fixed. The 
distinction between them is not absolute in many cases: it depends on what they 
represent in the experiment. The same factors can potentially be treated as fixed 
or random in different tests. The distinction really lies in the extent to which any 
significant difference emerging from an ANOVA can be generalised. Thus, for 
example, if  food in Box 3.9a is a fixed factor, and we find a significant difference 
between the means of  the response variable (here, enzyme activity), this implies 
only that there is a difference in the effect of  peas and beans per se. If  they are 
levels of  a random factor, then it implies differences between any two randomly 
selected foods. A random factor therefore represents randomly selected levels of  a 
universe of  possible levels for that factor, and because they are chosen at random, 
then they represent the factor in general. Sometimes a factor is random because 
it is a block factor, where we have no idea what the nature of  the variation might 
be (e.g. differences among individuals, rearing cages, fields used for fertiliser plots, 
or physiological preparations), but it must be allowed for in the analysis. Whether 
a factor is fixed or random makes a big difference to the way the test statistic 
is calculated, and hence to the results, so it is important. Modern statistics uses 
special mixed-effects models where there are both fixed and random factors in 
the same analysis; they are beyond the scope of  this book, but the R® package 
lme4 will analyse such designs.

Although we have confined ourselves to a two-way analysis of variance here, the 
two-way model is only a particular case of multifactor analysis of variance where 
there can be three, four or more grouping factors. The principles underlying more 
complex analyses are the same, but as the number of factors increases it becomes 
more and more difficult to interpret the proliferating two-, three- and multi-way 
interaction terms. Moreover, the more factors that are included, the slimmer the 
chance they are all truly independent. Full discussion of  these analyses can be 
found in Sokal & Rohlf (1995). In parametric analyses, as in the one-way case, it is 
also possible to incorporate covariates to control for factors on a constant-interval 
scale. The way R® implements such complex analyses in General Linear Models 
(see p.143) makes them particularly easy to carry out and control.

3.3.4 Tests for a trend

As with analysis of differences, there are many tests that cater for trends. We shall 
introduce two simple ones here, both looking at the relationship between two sets 
of data. More complex versions of these tests allow multiple relationships to be 
tested at the same time, and we shall also look at how these work.
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Correlation analysis
The first test is one of correlation. Correlation analyses calculate a test statistic 
known as a correlation coefficient, the two most commonly used being the 
parametric Pearson’s product-moment correlation coefficient r, and the non-
parametric Spearman rank correlation coefficient rs (Box 3.10). A correlation 
coefficient quantifies the extent to which there is an association between two sets of 
data values. A large positive coefficient indicates a strong tendency for high values 
in one set to co-occur with high values in the other, and low values in one set to 
co-occur with low values in the other. A large negative coefficient indicates a strong 
tendency for high values in one set to co-occur with low values in the other and vice 
versa. Correlation coefficients take a value between +1.0 and -1.0, with values of 
+1 and -1 indicating, respectively, a perfect positive or negative association. ‘Perfect 
association’ means that every value in one set is predicted perfectly by values in the 
other set. A coefficient of 0 indicates there is no association between the two sets 
of values so that values in one set cannot be predicted by those in the other. If a 
correlation is significant, it implies that the size of the coefficient differs significantly 
(positively or negatively) from zero, the value expected under the null hypothesis.

An experimenter was interested in the 
association between the flight speed of skylarks 
(Alauda arvensis) and their body sizes. To see 
whether size and speed were associated, she 
took a number of  individual birds for which 
she already had some body weight data and 
measured their maximum flying speed in a flight 
chamber. Two points are important about these 
measures. The first is that the experimenter had 
not pre-determined the body weights in any 
way (she hadn’t deliberately chosen birds of  a 
particular weight, or fed any up to make them 
heavier in an experimental manipulation; she 
had simply caught some birds arbitrarily with 
respect to their weight). The second is that, 
should an association between weight and flight 
speed emerge, the cause-and-effect relationship 
between the two could conceivably be in either 
direction: heavier birds may be stronger and 
so be able to fly faster (or have to spend more 
energy getting up speed, so fly more slowly), or 
birds that fly faster may burn up fat reserves 

and so be lighter. In other words, weight might 
affect flight speed, or flight speed might affect 
weight, or both could depend on some other 
(unmeasured) variable: we can’t tell a priori. For 
these reasons, the appropriate trend analysis here 
is a correlation. Depending on the distribution 
of  the data (parametric correlation requires 
both variables to be normally distributed, and 
for both together to show a bivariate-normal 
distribution – a three-dimensional (3D) bell 
shape), we could perform either a parametric 
or a non-parametric correlation.

This analysis is the only case where testing 
the raw data for normality is correct. Body mass 
seems to be normally distributed (Shapiro9
Wilk = 0.98, d.f. = 99, ns), but flight speed  
is not  (Shapiro9Wilk = 0.95, d.f. = 99, p 6
0.001). We cannot test for bivariate-normal 
distributions without extremely large sample 
sizes. We shall therefore do both a parametric 
and a non-parametric correlation with the same 
data to demonstrate their similarity.

BOX 3.10    Analysis of trends – tests of association (correlation) using R®
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Let’s suppose we have good reason for 
thinking heavier birds will fly faster because 
they are more powerful. We thus predict a 
positive correlation between weight and flight 
speed (H1) (the null hypothesis, H0, is that there 
is not a positive correlation). This is an a priori 
prediction, so a specific test is appropriate.

Read in the data as two columns, mass and 
speed. We will first plot the data:
> plot(mass, speed)

It certainly looks as if there is a clear relationship 
(Fig.  (i)), but as we have seen in the text, 
appearances can be deceptive. To do the default 
Pearson correlation test, simply type:
> cor.test(mass,speed)

Here we are making the prediction of a positive 
relationship, and so we have to ask for a one-
tailed test:

>  cor.test(mass,speed,alterna-

tive=c(“greater”))

Pearson’s product-moment correlation

data: mass and speed

t = 9.1899, df = 97, p-value = 3.775e-15

alternative hypothesis: true 

 correlation is greater than 0

95 percent confidence interval:

0.581939 1.000000

sample estimates:

cor

0.6822262

For a non-parametric correlation, the Spearman 
rank correlation, we use the same command but 
switch it to the Spearman:
>  cor.test(mass,speed,method=c(“spear-

man”), alternative=c(“greater”))

Spearman’s rank correlation rho

data: mass and speed

S = 62095.73, p-value = 5.757e-12

alternative hypothesis: true rho is 

greater than 0

sample estimates:

rho

0.6159819

Warning message:In cor.test.

default(mass, speed, method = c(“-

spearman”)) : Cannot compute exact 

p-values with ties

Clearly, the conclusion from these tests is that 
there is indeed strong evidence of  a positive 
correlation between these two variables.

Figure (i) Flight speed (m s-1) and body mass (g) of 
skylarks (Alauda arvensis).

As a parametric test, the Pearson product-moment correlation is subject to a 
number of assumptions about the data being analysed. The two sets of data must be 
normally distributed individually and jointly (a bivariate normal distribution in the 
jargon), both must be measured on a constant-interval scale, and the relationship 
between them must be linear. Satisfying these assumptions can be a tall order and 
the Pearson correlation is probably used more liberally than it should be. Being 
a non-parametric test, the Spearman rank correlation can be used with ordinal 
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(ranking) or constant-interval measurements and, of  course, is not sensitive to 
departures from normality. Importantly, the relationship also need not be linear, 
but merely continuously increasing or decreasing (monotonic); thus rs  will test for 
many sorts of curved patterns of association.

While we can test for trends with correlation analyses, we must interpret them with 
care. Two things in particular should always be borne in mind. First, a correlation 
does not imply cause and effect. While we may have reasons for supposing that one 
measure influences the other rather than vice versa (see earlier discussion of x and 
y measures in trend analysis), a significant correlation cannot be used to confirm 
this. All it can do is demonstrate that two measures are associated. A well-known 
example illustrates the point. Suppose we acquired some data on the number of 
pairs of storks breeding in Denmark each year since 1900, and also the number of 
children born per family in Denmark in the same years. A scatterplot, with breeding 
storks as the x-axis and babies as the y-axis, and calculating a correlation coefficient 
reveals a significant positive correlation at p 6 0.001 between the two measures. 
Do we conclude that storks bring babies? Of course not! All we can conclude is 
that, over the period examined, there is some association between the number of 
breeding storks and the human birth rate; perhaps both species simply reproduce 
more during long, hot summers! Second, as we have said, correlation analyses 
assume that associations between measures are linear (or reasonably so) if  the test 
is parametric, or at least monotonic if  the test is non-parametric. If they are neither, 
a lack of significant correlation cannot be taken to imply a lack of association. 
This is made clear in Fig. 3.4 in which the relationship between two measures is 
U-shaped. A correlation coefficient for this would be close to zero, but this doesn’t 
mean there is no association. The book by Martin & Bateson (1993) contains a 
very useful discussion of these and other problems concerning correlation analyses.

Linear regression
Correlation analyses allow us to judge whether two measures are associated, but 
that’s all. Two important things that they do not allow us to establish are: (a) 
whether changes in the value of one measure cause changes in the value of the other 
and (b) anything quantitative about the association.

Cause and effect. 
In the case of the storks and babies above, it is fairly clear that changes in x (the 
number of  breeding storks) do not cause changes in y (the number of  human 
babies): the association arises either through some indirect cause-and-effect 
relationship (probably that habitat destruction for storks and the demographic 
transition to smaller family sizes in humans both happened over the course of the 
twentieth century) or through trivial coincidence. In many cases, though, it is not 
so clear whether there is or is not a direct cause-and-effect relationship between 
x and y. The best way to decide is to do an experiment where, instead of merely 
measuring x and y as in correlation analysis, we experimentally change x-values 
and measure what subsequently happens to y. If  we see that y changes when x is 
changed, we can be reasonably happy with a cause-and-effect interpretation. This 
is quite different from correlation analysis.
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Quantitative relationships. 
In addition, correlation analysis does not allow us to say much about the quantitative 
relationship between x and y (if x changes by n units, by how much does y change?) 
or allow us to predict values not included in the original trend analysis (e.g. can we 
predict the response of an insect pest to a 40 per cent concentration of pesticide when 
an analysis of the effect of pesticide concentration goes up to only 30 per cent?). With 
certain qualifications, linear regression analysis may allow us to do all the above. 
The qualifications arise mainly from the usual assumptions made by parametric 
tests, though the requirement for normality applies to one of the data sets only (the 
y-axis measure). However, like correlation analysis, and as its name implies, linear 
regression also requires the relationship to be passably linear, though there are ways of 
overcoming some forms of non-linearity, for instance by log-transforming the data.

Regression analysis proceeds as follows: the predictor x-values are decided upon 
in advance by the investigator to cover a range of particular interest, and the response 
y-values are measured in relation to them to see how well they are predicted by x. 
Because x-values are selected by the investigator, they are regarded as fixed, error-free 
values: hence the requirement of normality only on the y measure. Linear regression 
then calculates the position of a line of best fit through the data points and uses the 

Figure 3.4 Associations between two variables need not be linear. Correlation analysis 
would not reveal a significant trend, but an association between the variables appears to 
exist (see text).
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equation for this line (the regression equation) to predict other values for testing. The 
criterion of ‘best fit’ in this case is the line that minimises the sum of the squared 
positive and negative deviations from it in the data – a more precise, mathematical way 
of doing what we attempt to do when drawing a straight line through a scatterplot 
by eye. The significance of a trend can be assessed in one of two ways: the first is 
based on the difference in the slope of the best fit line from zero (a line with zero slope 
would be horizontal) and is indicated by the test statistic t; the second tests whether a 
significant amount of variation in y is accounted for by changes in x, and is indicated 
by the test statistic F. There is no point in quoting both tests, since they are really the 
same thing: F = t2! They are merely alternative formulations. Generally speaking, if  
the trend fails to reach significance, the best fit line should not be drawn through the 
points of the scatterplot. Box 3.11 shows how to perform a linear regression in R®.

A microbiologist was interested in the effect of the concentration of a particular vitamin on the 
growth of the fungus Aspergillus. He therefore did an experiment in which the concentration of 
vitamin solution added to the fungal culture was varied and subsequent growth of  the culture 
measured (as mg dry weight of fungus).

As the vitamin, and its requirement by the fungus, is known, prior information suggests that 
there should be a relationship between concentration and growth and that it should be positive, with 
higher concentrations leading to greater growth. We thus have a specific prediction of a positive 
relationship between the two variables (H1) and a null hypothesis (H0) of  no positive relationship. 
Unlike the correlation analysis in Box 3.10, however, we are here predicting a very definite cause-
and-effect relationship, because we have experimentally fixed (manipulated) vitamin concentrations 
in order to see the impact of  these manipulations on growth. In statistical terminology, therefore, 
vitamin concentration is the predictor 
(sometimes called the independent) 
variable, and growth the response (or 
dependent) variable. Analysis of  the 
residuals (see Box  3.1) shows that they 
can be regarded as normally distributed 
(Shapiro9Wilk = 0.98, d.f. = 25, ns).

The data for regression are in two 
columns, forming X–Y pairs, vitamin and 
growth. Import into R® in the usual way 
(Box 2.2). We plot the data as a scatterplot 
first, and then add the dashed line of best 
fit from the linear model (lm):
> plot(vitamin, growth)

> abline(lm(growth ~ vitamin),lty=2)

The result (Fig. (i)) looks pretty convincing. 
Then we carry out the regression. Because 

BOX 3.11    Analysis of trends – linear regression using R®

Figure (i) Growth (mg day-1) of Aspergillus fungus on 
a diet supplemented with different levels of vitamin B2 
(mg l-1 agar).
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we have not declared either variable as a factor, and both are numeric, R® knows that both are 
continuous constant-interval measurements.
> m1 <- lm(growth ~ vitamin)

Note the standard format of this linear model (‘lm’) where the response (on the left-hand side) is 
predicted by (‘ ∙ ’) the predictor variable of the right-hand side. Now we need the details:
> summary(m1)

Call:

lm(formula = growth ~ vitamin)

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 19.20000 0.46741 41.08 < 2e-16 ***

vitamin 0.18400 0.01409 13.06 4.03e-12 ***

Residual standard error: 0.9965 on 23 degrees of freedom

Multiple R-squared: 0.8811, Adjusted R-squared: 0.8759

F-statistic: 170.5 on 1 and 23 df, p-value: 4.031e-12

The estimate for the ‘intercept’ here really is the intercept in the model y = mx + c. The t-value 
tests whether it is significantly different from zero, and it clearly is. The estimate for ‘vitamin’ 
is the estimated slope of the effect of the predictor, vitamin, and the t-value tests whether it is 
significantly different from zero. Notice that F (170.5) and t (13.06) are the same test, because 
13.062 = 170.5. The Multiple R-squared is the fraction of the variance in the response variable 
(growth) explained by the model (here, just by the single predictor, vitamin). The ‘adjusted 
R-squared’ is a similar calculation but based on variances rather than sums-of-squares: it is better 
to use this value, since it is ‘unbiased’, in the statistical jargon – it adjusts to take account of the fact 
that the data are a sample from a population, rather than the whole population.

The conclusion is that increasing vitamin concentration does indeed increase the growth of 
Aspergillus (F1,23 = 170.5, p V 0.001), and the regression equation (the slope, more particularly) 
quantifies the amount by which growth is increased by any given increase in vitamin concentration, 
within the limits of the experiment.

Multiple regression. 
So far we have just dealt with simple linear regression involving a single predictor x 
and single response y variable. It is not difficult to imagine, however, that we might 
have several candidate predictor (x) variables that could potentially explain variation 
in our response variable. If  so, we need some way of  taking them into account 
simultaneously so we can control for the effects of other variables when seeking 
effects of any particular one. Happily, there is a relatively straightforward set of 
techniques for doing this, which come under the umbrella term multiple regression. 
As ever, there are various “do’s and don’ts” associated with the procedures.

Even though regression is a technique developed for situations where the 
experimenter determines the x-values, it is very common for it to be used in other 
situations too, where the predictor has been merely measured rather than manipulated. 

M03_BARN5999_05_SE_C03.indd   122 19/10/2016   16:48



3.3 Significance Tests 123

The problem we face is to settle on the best model for predicting the response variable, 
i.e. which predictors should we put in, and which should we leave out?

The principle needed here is parsimony, the idea that science seeks the simplest 
explanation consistent with the facts. In statistics, this means obtaining the minimal 
set of  predictors, getting rid of  any that fail to predict significant amounts of 
variation in the data. Thus one way is to start with the full set of predictors and 
gradually reduce them according to a selection criterion until we are left with 
the minimal sufficient model containing just the significant predictors. One such 
selection criterion commonly used is called the AIC, or Akaike Information 
Criterion. We delete predictors from our multiple regression if  this reduces the 
AIC of the subsequent model: this is implemented by the R® command ‘step’ 
(see Box 3.12).

Often we are interested in the predictability of a response variable from a number of predictors. For 
example, suppose we know that the body size of, and the number of eggs laid by, an insect (Cynips 
divisa) that lives inside a plant gall on oak leaves (Quercus robur) are very closely related to the size 
of gall in which it develops. The galls grow on the veins underneath the leaves. What determines 
gall size? We suspect that the availability of resources from the plant might be one influence, and 
also the extent of competition for those resources (how many galls are there per leaf or per vein?). 
Thus we obtain a data set taken from a large number of leaves, where we measure the width of the 
gall (gdiam) as a measure of gall size, the length of the leaf (llen), the width of the leaf (lwid), the 
number of galls on the leaf (ngalls), the number of galls on a vein (vgno), the order in which each 
gall developed on a vein (first gall, second, third, etc.) and the distance of each gall from the midrib 
of the leaf (vdist). Thus we might predict a priori that gall diameter (gdiam) should:

■	 increase with leaf  length (llen) and/or leaf  width (lwid), because bigger leaves will offer more 
resources;

■	 decrease with the extent of competition either on the whole leaf (ngalls) or on an individual vein 
(vgno);

■	 decrease with increasing order on a vein and, for a given order, decrease with distance from the 
midrib (vdist) (presuming that the resources for growth come down the midrib and along the 
veins – something that has been demonstrated in other gall systems).

Here we have one response variable (gall diameter, gdiam), and a set of predictor variables (llen, lwid, 
ngalls, order, vngo, vdist). The predictions can only be tested observationally since no manipulations 
are possible in this system. Even though regression is a technique developed for situations where the 
experimenter determines the x-values, it is very common for it to be used in other situations too, and 
we shall do this here. We shall check for the normality of the residuals when we have settled on the best 
model for predicting the dependent variable. To find the best model, we shall use model simplification 
with an approach known as backwards deletion, a procedure whereby the different available predictors 
are deleted (or not, depending on their individual contribution to the model) successively to the 

BOX 3.12    Multiple regression using R®
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analysis according to the AIC (see p.123). We will delete predictors from our multiple regression if  
this reduces the AIC of the subsequent model, implemented by the R® command ‘step’.

We will try to circumvent the problem of order effects (see p.133) by using biological knowledge 
to help in dictating the order of the predictors in the model. Here we use scale, starting with leaf-
level predictors (leaf length, leaf  width, gall density), and then vein-level predictors (number of 
galls on the vein, distance of a gall along a vein, order of the gall on the vein).

Model simplification in R® 

Import the data into R® in the usual way, with each variable in a separate column:
> d1<-read.table(file.choose(),header=T)

> attach(d1)

> names(d1)

[1] “llen” “lwid” “ngalls” “vgno” “vdist” “order” “Gdiam”

Now we fit the maximal model (i.e. all the predictors). Each of these predictors is a constant-interval 
measurement, either on a continuous scale, or on an integer scale. Thus none are factors: this is a 
multiple regression.
> m1 <- lm(Gdiam ~ llen + lwid + ngalls + vgno + vdist + order)

> summary(m1)

Call:

lm(formula = Gdiam ~ llen + lwid + ngalls + vgno + vdist + order)

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 3.9028865 0.0936013 41.697 < 2e-16 ***

llen 0.0085006 0.0013583 6.258 4.26e-10 ***

lwid -0.0049404 0.0020429 -2.418 0.01563 *

ngalls -0.0405352 0.0045150 -8.978 < 2e-16 ***

vgno 0.0835889 0.0311068 2.687 0.00723 **

vdist 0.0023154 0.0008319 2.783 0.00540 **

order -0.3144411 0.0407203 -7.722 1.41e-14 ***

Residual standard error: 1.284 on 4434 degrees of freedom

(4648 observations deleted due to missingness)

Multiple R-squared: 0.05336, Adjusted R-squared: 0.05208

F-statistic: 41.65 on 6 and 4434 df, p-value: < 2.2e-16

All predictors are significant, but the model accounts for only just over 5 per cent of the variation 
in the data. Like a lot of ecological data sets, there are plenty of sources of variation that were not 
measured. Since there are lots of observations, however, the effects are still apparent.

We can obtain the AIC of this maximal model by asking:
> AIC(m1)

[1] 14831.08
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Now we use the ‘step’ command, which tries to delete predictors based on the AIC:
> step(m1)

Start: AIC=14831.08

Gdiam ~ llen + lwid + ngalls + vgno + vdist + order

Df Deviance AIC

<none> 7308.1 14831

- lwid 1 7317.7 14835

- vgno 1 7320.0 14835

- vdist 1 7320.9 14837

- llen 1 7372.6 14868

- order 1 7406.4 14888

- ngalls 1 7440.9 14909

Call: glm(formula=Gdiam~llen+lwid+ngalls+vgno+vdist+order)

Coefficients:

(Intercept) llen lwid ngalls vgno vdist order

3.902887 0.008501 -0.004940 -0.040535 0.083589 0.002315 -0.314441

Degrees of Freedom: 4440 Total (i.e. Null); 4434 Residual

(4648 observations deleted due to missingness)

Null Deviance: 7720

Residual Deviance: 7308 AIC: 14830

It turns out that the full model is the minimal sufficient model: the step procedure could not find 
any predictor to delete that would decrease the AIC.

The coefficients are the most important part of the output, because they show how the predictor 
affects the response variable. The intercept is the overall mean gall diameter. There are positive 
effects of leaf length (llen, with a slope of 0.0085 { 0.0013), the number of galls per vein (vgno, 
slope 0.084) and distance along the vein (vdist, slope 0.0023); and negative effects of leaf width 
(lwid, slope -0.0049), number of  galls per leaf  (ngalls, slope -0.041) and order on the vein 
(order, slope -0.314). The largest slope is that of gall order on the vein, the largest effect on gall 
diameter. This is interpretable in terms of competition for nutrients.

Since we have the coefficients and the t-values, we can test our a priori predictions about the sign 
of the effects of these predictors. Clearly, as we predicted, there is evidence of the impact of both 
the amount of resource (leaf length) and resource competition (number of galls, order), but some 
coefficients are not in the predicted direction (leaf width, number of galls on a vein). This might 
stimulate new hypotheses to be tested with new data.

The more parameters there are in a model, the better the fit (i.e. the more of 
the variation in the data are accounted for by the model, and the less the variation 
in the residual, or error, variation – the bit unaccounted for by the model). Of 
course, this means that we could predict the data perfectly if  we had one parameter 
for every data point. Clearly this would not be a very good model. So we need a 
criterion where these two things are traded off  against each other – the number of 
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parameters (=  bad) against the proportion of the variation accounted (=  good). 
The AIC does just this: known as penalised log-likelihood, there is a penalty 
added for each parameter in the model. Thus we prefer models with lower AIC 
values, because these have a better trade-off  between the number of parameters 
and the proportion of the variation accounted for: they are a better fit. Thus we 
choose to delete predictors if  this reduces the AIC of the subsequent model. It is 
conventional to claim that a model that has an AIC lower than 2 units than another 
is a ‘significantly’ better model – but this is an arbitrary value.

One of  the things that dispirits students the most, causing them more grief  
almost than anything else, is the fact that the order of  the predictors matters in 
many statistical models. Students are dismayed by the fact that if  they change the 
order of the predictors, then all the significances change. This happens for three 
reasons:
■	 Predictors are correlated with one another (i.e. are non-orthogonal); this is an 

extremely common reason for order effects.
■	 The design of  the experiment is unbalanced (i.e. replication is not the same 

across all groups); many kinds of investigation have no control over replication, 
so this is not something that can be fixed in many cases.

■	 Because of the nature of regression, which assumes no error in the x-values; 
since a second predictor (continuous covariate) is trying to account for the 
residual variation left over from fitting the first, it is obvious that fitting them 
the other way round generates a completely different set of  residuals for the 
second predictor.

Deleting predictors from the maximal model is the safest way to proceed.

Data reduction
We conclude our summary of statistical procedures on a somewhat different note 
from the preceding significance tests. As we have seen in the case of analysis of 
variance and regression, we are often confronted with several predictor variables 
that could individually, or in various combinations and interactions, explain 
variation in one or more response variables. Multifactor and multivariate analysis 
of  variance and multiple regression are one set of  procedures that allows us to 
deal with these kinds of situation. However, there is another situation where we 
have measured many ‘response’ variables on a set of individual units, and we know 
that some of these are correlated with one another. We can use a method which is 
not itself  a significance test of any kind, but is instead a statistical technique for 
collapsing several interrelated variables down to one or two composite variables 
that summarise the main features of the variation, and can then be treated as new 
data (usually as response variables predicted by new variables not included before). 
With the caveat that resulting composite variables can sometimes be complicated 
to interpret, this can be an extremely useful way of  rendering multivariate data 
manageable for analysis. By way of example, we summarise a commonly used such 
procedure, known as principal components analysis, in Box 3.13.
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A common problem in many studies is that data are collected for a large number of  response 
variables that are themselves intercorrelated, so looking for differences or trends in each of them 
separately would result in a high degree of non-independence between tests. However, there are 
statistical techniques that help overcome this by producing single variables that summarise the 
main independent (uncorrelated) axes of the data. One of these techniques is known as principal 
components analysis (PCA).

Unlike the tests we’ve encountered so far, PCA isn’t an hypothesis-testing method at all, but a 
method for reducing the number of variables to something more manageable (the so-called principal 
components). There is no predictor variable in this situation. Thus, for us, its main attraction is that 
we can replace many variables with just two or three that (a) capture the main features of the data, 
and (b) are (by definition) statistically independent of one another. These new variables can then be 
used like any others in statistical tests of hypotheses, usually representing an enormous gain in clarity 
and efficiency. It is best learned through an example, because mathematically it is complicated!

Suppose a biologist was interested in analysing the differences in morphology among the species 
of flies that he worked on, and therefore he measured a set of 17 variables on a large number of 
individuals of many species. He then took the averages of each of the variables for each species, 
but kept males and females separate. This resulted in the data set of Fig. (i). Details of the variables 
are in the figure legend.

We read the data we want to use into a dataframe (d1); they consist of columns of variables in 
the usual way. Then the analysis is done using the command:
> m1<-prcomp(d1, scale=T)

> summary(m1)

Importance of components:

BOX 3.13     Principal components analysis – creating a reduced set of variables 
from a larger set of intercorrelated ones

PC1 PC2 PC3 PC4

Standard deviation 3.566 1.116 0.6170 0.4832

Proportion of Variance 0.848 0.083 0.0254 0.0156

Cumulative Proportion 0.848 0.931 0.9562 0.9717

The columns labelled ‘PC1’, ‘PC2’, etc. are new independent (uncorrelated) axes of variation, in 
order of their importance in accounting for the data. We have omitted PC5 to PC15 because, as is 
clear from the output, the first four already account for more than 97 per cent of the variation in 
the data. The first one in particular contains almost 85 per cent of the variation, and the second 
just over 8 per cent.

We can plot these first two axes in a special kind of plot called a biplot (Fig. (ii)). By default each 
point is plotted as a row number from the data matrix; we have suppressed these in favour of simple 
dots here because otherwise the whole plot is obscured.
> biplot(m1,xlabs=rep(c(“.”),each=452))

We can see the original variables plotted as vectors (the arrows). This allows us to interpret what 
the axes represent. We see that all arrows point to the right and are therefore positively correlated 
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with the x-axis (PC1); most 
of them are pointing directly 
along the x-axis, except for 
variables associated with 
the proboscis (see legend to 
Fig. (i)), which are at an acute 
angle to the x-axis. Thus 
PC1 represents body size, an 
increase in all measurements. 
If  we project the arrows 
along the y-axis, only the 
proboscis variables produce 
any length of  arrow: hence 
PC2 represents the proboscis 
shape. By definition in PCA, 
axes are uncorrelated with 
one another. Thus PC2 
represents variation in the 
proboscis not connected 
with body size – it is an axis 
of proboscis shape. The only 
arrow pointing downwards 
is PS, the number of feeding 
channels in the fleshy pad 

at the end of  the proboscis (hence negatively 
correlated with PC2): all other proboscis 
variables measure the lengths of  its parts, and 
point upwards (positively correlated with PC2). 
Thus species that plot high up on the graph have 
long tongues with few feeding channels, while 
those at the bottom have short tongues with lots 
of feeding channels.

Thus 15 variables here can therefore be 
replaced by just two which represent body size 
and proboscis shape, and which account for 93 
per cent of  the variation in the data. By doing 
so, we replace 15 intercorrelated variables with 
two uncorrelated independent variables that can 
be used separately as response variables with 
confidence to test hypotheses in statistical tests.

We can extract the scores along the PC1 and 
PC2 axes as variables for use in tests by typing:
> PC1 <- predict(m1)[,1]

> PC2 <- predict(m1)[,2]

Figure (i) A data set of the morphology of a set of species of flies. The rows 
are labelled with the genus name only (not shown), followed by M (males), 
or F (females). The variables were: wing length (WL), wing width (WW), 
head width (HW), thorax width (THW), thorax length (THL), thorax height 
(THH), thorax volume (THVOL = THW*THL*THH), the widths of abdominal 
segments 2–4 (T2, T3, T4), the lengths of the parts of the proboscis (FU, 
LABR, PR), width of the fleshy pad at the end of the proboscis (LL), and the 
number of sucking channels on the pad (PS).

Figure (ii) Principal components biplot of the first 
two axes of a principal components analysis of 
morphological variables of a set of species of flies. 
The plotted points represent the scores along the 
first two axes of each individual species. The vectors 
represent the loadings (eigenvectors) of the original 
variables along the first two axes.
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 3.4 Testing hypotheses

The previous section has introduced an armoury of basic significance tests with 
which we can undertake confirmatory analyses of differences and trends. Knowing 
that such tests are available, however, is not much use unless we know how and 
when to employ them and gear our data collection to meet their requirements. It 
is important to stress again, therefore, that the desired test(s) should be borne in 
mind from the outset when experiments and observations are being designed and 
the data to be collected decided upon.

3.4.1 Deciding what to do

Having arrived at some predictions from our hypotheses, we must decide how best 
to test them. This sounds straightforward in principle but involves making a lot of 
careful decisions. Are we looking for a difference or a trend? What are we going to 
measure? How are we going to measure it? How many replicates do we need? What 
do we need to control for? There is no general solution to any of these problems; 
the right decision depends entirely on the prediction in hand and the material 
available to test it. In a moment, we shall go back to the predictions we derived 
from our observational notes to see how we can test some of them. Before doing 
that, however, we should be aware of  some important principles and pitfalls of 
experimental/observational design and analysis.

Significance, sample sizes and statistical power
As should be obvious from what we’ve said already, much hinges on the quality 
of the data sample we have at our disposal. It should be as representative of the 
population from which it derives as possible if  we’re to stand a chance of coming 
to sensible conclusions. But what does that mean? How many data values make 
a representative sample? What sample size do we need to make our tests for 
differences or trends reasonably powerful, i.e. actually capable of  detecting the 
effects we’re testing for? Sadly, there is usually no simple answer. Vague rules of 
thumb, such as ‘at least 20 values per sample’, can be and have been suggested (e.g. 
Dytham, 2010), but they are just that, vague rules of thumb.

What is really needed is a formal analysis of the so-called statistical power of  a 
significance test in relation to the sample size available.

When we carry out an experiment, we are trying to discern a pattern (a 
difference or a trend) in the face of variation from a number of sources. We use 
a statistical test to guide us, which in essence boils down all the data into a single 
number, the test statistic for that analysis, the distribution of which is known under 
the null hypothesis. Remember that the p-value we get from the test statistic is the 
probability of obtaining our data if the null hypothesis is true.

We can think about statistical testing in terms of discriminating a signal from 
the noise of  natural variability. This noise can cause us to make errors in the 
conclusions of our experiment, since we don’t know what the true situation is, i.e. 
whether the null hypothesis is true or not. This sets up four possibilities (Fig. 3.5)
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We can make two correct decisions (reject the null hypothesis correctly because 
it is actually false, or not reject the null hypothesis correctly because it is in fact 
true). We can also make two mistakes. One (a Type I error) is important because 
we are drawing a conclusion – we reject (erroneously) the null hypothesis in favour 
of  its alternative, H1. All statistical tests of  hypotheses are designed to fix the 
probability (denoted a) with which such mistakes are made – it’s the familiar 
threshold for significance, usually 0.05. We’re prepared to be wrong 5 per cent of 
the time, but that’s low enough to be reasonable.

The other mistake (a Type II error) is when we erroneously fail to reject the null 
hypothesis even though it is false. This is less serious since we are not drawing any 
conclusions about the data (unless we would like to make the much stronger claim 
that the null hypothesis is actually correct, an error of logic in scientific procedure). 
The rate at which this mistake happens, b, is a function of a number of factors, 
including a, the design of the experiment, the test used, the sample sizes, the true 
(unknown) magnitude of the difference or trend, and the true (unknown) variation. 
The rate at which we get it right, (1 - b), is called the power of  the test. Clearly, 
there is a trade-off  between the two error rates: if  we decrease a, then we increase 
b (all else being equal) and the power decreases.

Suppose we have two groups we are trying to discriminate with a t-test, each 
with the same normal distribution of  measurements but with different mean 
values. If  the means are far apart with scarcely overlapping distributions, then 
they are easy to distinguish by eye, but, more importantly, are likely to be different 
statistically (Fig. 3.6a). Move the mean values closer so that the distributions 
overlap substantially, and they become much harder to tell apart by eye, and are less 
likely to differ statistically (Fig. 3.6b). Reduce the variance so that once more the 
distributions hardly overlap, and once again they are easy to tell apart (Fig. 3.6c). 
These situations emphasise that the power of a test depends in part on the true 
(unknown) situation of the data, in this case the true difference between the means, 
and the true variance. How easy it is to tell the two groups apart is measured by 
a parameter called the effect size, which represents the ‘distance’ between H0 (no 
difference) and H1 (a significant difference).

Figure 3.5 The four possible outcomes of a 
significance test in terms of accepting or rejecting the 
null hypothesis (see text).
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The accuracy of our estimates of means and variances depends on the sample 
size we have chosen to take, and hence is under our control. Larger sample sizes 
provide more accurate estimates, and hence a given difference between two mean 
values is detected with greater power. Thus for a given statistical test, if  we know 
a set of parameters (the Type I error rate a, the effect size, and the sample size), 
then we can calculate the power.

How much power is enough? What is an acceptable error rate for b? Like the 
significance level, a, this is essentially an arbitrary decision. The usual levels quoted 

Figure 3.6 Three different degrees of spread and 
separation in the distribution of two variables, leading 
to different degrees of discriminability (see text).
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in the literature are 80 per cent (i.e. b = 0.20), or (for those who believe that both 
Type I and Type II error rates should be the same) 95 per cent.

So what is a power test for? There are two main uses:

(i) A priori power analysis.
This is to ensure, in advance, that we are going to test our hypothesis adequately, 
that the experimental design we have chosen is actually capable of doing the job. We 
specify the power we want to have, and two of the three other parameters of a, effect 
size and sample size: given those, we can then calculate the third parameter. For a 
given design, the most obvious aspect under our control is the sample size, and hence 
a priori power tests are usually used to calculate how large the sample sizes should be 
in order to achieve a particular power. We specify a to be the conventional 0.05, and 
choose an effect size that indicates just how far away from H0 we consider important 
enough to warrant attention. We can choose to pay attention to ‘small’, ‘medium’ 
or ‘large’ effects, depending on what theory, data or cost–benefit considerations tell 
us. The recommended values vary with the kind of test: for a t-test they are 0.2 (a 
small effect size), 0.5 (medium) and 0.80 (large); for ANOVA they are 0.1, 0.25 and 
0.4, respectively; and for correlation and regression, 0.02, 0.15 and 0.35, respectively 
(what is being calculated varies among these tests, so they are not directly equivalent). 
Given a particular value of effect size, we can then calculate the required sample size 
using an appropriate software program (such as the free-to-download G*Power; R® 
can do some power tests but G*Power is easier and more comprehensive). G*Power 
can be downloaded from http://www.gpower.hhu.de/en.html. When we do this 
(Fig. 3.7), the results are often a bit of a blow: for example, using a one-tailed t-test 
to detect a medium-sized effect with a = 0.05 needs a sample size of 102!

(ii) Post hoc power testing.
Here, researchers retrospectively calculate the power of the test they have done. This 
is the kind of power test implemented in many statistical packages. An unfortunate 
tradition has built up that suggests that this kind of power test should routinely be 
used after a non-significant test and can be used to interpret the non-significant 
result – it cannot (see Hoenig & Heisey, 2001). Indeed, post hoc power tests are 
virtually useless since they tell us nothing more than the p-value itself  gives.

Some dangerous traps
Confounding effects.
One of the commonest problems in collecting and analysing data is avoiding 
so-called confounding effects. Confounding effects arise when a factor of interest 
in an investigation is closely correlated with some other factor that may not be of 
interest. If such a correlation is not controlled for, either in the initial design of an 
investigation or by using suitable techniques during analysis, such as analysis of 
covariance (see Box 3.6), the results will inevitably be equivocal and any potential 
conclusions compromised. For example, suppose we wanted to know whether the 
burden of a particular parasitic nematode increased with the body size of the host (e.g. 
a mouse). We might be tempted simply to assay worm burden and measure body size 
for a number of arbitrarily chosen host individuals, and then perform a correlation 
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analysis. If we got a significant positive correlation coefficient, we might conclude 
that burden increased with body size. An unwelcome possibility, however, is that host 
body size correlates with age so that bigger hosts also tend to be older. If there is 
some age- related change in immune competence (e.g. older hosts are less able to resist 
infection), a positive correlation with size could arise that actually has nothing to do 
with host body size. In this case size is confounded with age, and simple correlation 
analysis cannot disengage the two. The best solution here would be to select different-
sized hosts from a given age group so that the confounding effect is controlled for from 
the outset. Order effects are common confounding factors in many undergraduate 
projects. Testing animals in, say, treatment 1 first, then in treatment 2, then in 3, etc., 
confounds treatment with time. Animals may simply be tired by the time they get to 
treatment 3, so any difference in their response to the treatment could be due to that.

Floor and ceiling effects.
Floor and ceiling effects arise when observational or experimental procedures 
are either too exacting or too undemanding in some way to allow a desired 
discrimination to be made. For example, looking for differences in mathematical 

Figure 3.7 Power calculation using G*Power. (a) Opening screen, (b) 
example of the sample size required for a one-tailed t-test to detect a 
medium-sized effect with a = 0.05.
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ability among people by asking them the solution to 5 + 3 is unlikely to be 
very fruitful because the problem is too easy; everyone will get the right answer 
straight away. A ceiling effect (everyone performs to a high standard) will thus 
prevent any differences there may be in ability becoming apparent. Conversely, 
if  the same people were asked to solve a problem in catastrophe theory the odds 
are that no-one would be able to do it. In this case, a floor effect (everyone does 
badly) is likely to prevent discrimination of ability. Floor and ceiling effects are 
not limited to performance-related tasks. Similar limitations could arise in, for 
instance, histological staining. If  a particular tissue requires just the right amount 
of staining to become discriminable from other tissues, the application of too little 
stain would result in everything appearing similarly pale (a floor effect) while too 
much stain would result in everything appearing similarly dark (a ceiling effect). 
Real differences in tissue type would thus not show up at the extremes of  stain 
application. Floor and ceiling effects are clearly a hazard to be avoided and are 
well worth testing for in preliminary investigations.

Non-independence. 
Another common source of error in data collection and analysis arises from non-
independence of data values. In many circumstances, there is a temptation to treat 
repeated measures taken from the same subject material as independent values 
during statistical analysis. As Martin & Bateson (1993) point out, this error arises 
from the misconception that the aim of a scientific observation or experiment is 
to obtain large numbers of  measurements rather than measurements from a large 
number of  subjects. The point is, of  course, that obtaining additional measures 
from the same subject is not the same as increasing the number of subjects in the 
sample. An example of such an error would be as follows. Suppose an investigator 
wished to assess the average rate of  nutrient flow in the phloem of a particular 
plant species. Setting up a preparation might be involved and time-consuming. 
To save effort, the investigator decides to take as many measurements as possible 
from each preparation before discarding it. As a result, there are 15 measurements 
from one preparation, 10 from another and 12, 16 and 5 from three more. To 
calculate the average, the investigator totals the measurements and divides by 
n = 58 (i.e. 15 + 10 + 12 + 16 + 5). Of  course, the measurements from each 
preparation are not independent; there may be something about the plant in each 
case that gives it an unusually high or low rate of  nutrient flow relative to most 
of  the plants in the population. Incorporating each measurement taken from it 
as an independent example of  flow rate in the population as a whole is clearly 
going to bias the average upwards or downwards. The true n-size in the above 
example is five (the number of  preparations), not 58. Measurements from each 
preparation should thus be averaged, or collapsed in some other way, to provide 
a single value for use in analysis. The fallacy of  this kind of  approach becomes 
obvious if  we consider estimates of  average plant height rather than nutrient flow 
rate. Few people would seriously measure the height of  the same plant 16 times 
and regard these as independent samples of  the height of  the species concerned. 
The principle, however, is exactly the same in the flow rate example and is referred 
to as pseudoreplication.
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The problem with non-independence is that it can operate at several different 
levels and sneak insidiously into analyses unless careful attempts are made to 
exclude it (see, for example, Boxes 3.4(a–b) and 3.5e). We have discussed it only at 
the level of the individual subject. However, depending on what is being measured, 
it could arise if, for example, related individuals are used as independent subjects or 
if  plants grown on the same seed tray or animals kept in the same cage are used. We 
should thus be on our guard against it at all times. The golden rule is: one replicate 
equals one data point.

 3.5 Testing predictions

Having highlighted some potential pitfalls, we must now bear them in mind as we 
return to our main observational examples and design experiments to test some of 
their predictions. We shall take one prediction from each.

Example 1

Plants and 
herbivores

E.g. Prediction 1A (ii) Leaf damage by slugs will decrease the further up a plant that 
samples are taken.

This predicts a negative trend between leaf damage and height up the plant. The 
assumption is that the height of a leaf off  the ground influences its vulnerability 
to slugs. Two approaches immediately suggest themselves. We could conduct a 
survey in the field, measuring the height of leaves above the ground and scoring 
the amount of slug damage on each, or we could carry out an experiment, in the 
field or the laboratory, exposing leaves at different heights to slugs in a controlled 
environment. Either way, there is a formidable number of  factors to take into 
account if  we’re to get a sensible outcome.

The most obvious is that our exploratory samples came from a wide range of 
plant species. At the very least there are likely to be confounding effects of species-
specific attributes such as the presence of  distasteful toxins or other deterrents. 
A first consideration in a field survey, therefore, might be to select plants of  a 
similar range of heights within each of several species. This would ensure that the 
confounding effects of height and species were removed, but on its own it would 
still not be enough for a robust comparison. A major uncontrolled factor remains: 
the prevalence of  slugs. Different species of  plant are likely to occupy different 
habitats, some of which are more suitable for slugs than others. Another potential 
confounding effect may therefore need to be removed. To check, we could carry out 
a simple census of slug populations around our subject plants. If  numbers did not 
differ significantly, we could happily ignore them. If  they did differ, however, we 
should need some way of taking them into account. One way would be to weight 
the recorded damage by the observed prevalence of slugs before analysis. We could 
analyse the relationship between weighted damage and height as a trend, using a 
correlation or regression analysis, but an alternative approach, which would allow 
us to look in more detail at the effect of plant species, would be to use two-way 
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analysis of variance. A two-way analysis of variance, with height of leaves above 
the ground (low, medium, high) and plant species as the two factors, would reveal 
the separate main effects of  height and plant species, but also the (very likely) 
interaction between them. The interaction term would probably be very important 
here because structural and developmental differences between species will almost 
certainly influence the effects of position up the plant. An alternative way to take 
slug prevalence into account in a parametric analysis of  variance would be to 
include it as a covariate, a constant-interval measurement whose effect on the data 
can be controlled for within the analysis of main effects and interaction.

If  height did emerge as a significant predictor of  slug damage, it would, of 
course, lead to further questions. Is the height effect due to slugs being unwilling 
to climb beyond a certain height? Is it due to leaves further up being tougher or 
more noxious? Is it due to taller plants having greater gaps between successive 
leaves so discouraging further ascent by slugs? Any height * species interaction 
might offer a clue to some of these (and other) possibilities by highlighting species 
characteristics that increase or decrease the height effect. An easier way to get at 
them, however, might be to do some laboratory experiments.

A laboratory study would attempt to control things more tightly at the outset. 
One approach might be to cultivate individual plants of  some of  the species 
sampled so that they were of  similar height, and the important morphological 
characteristics, such as the number and spacing of leaves, were, as far as possible 
with different species, standardised. Plants of  different species could then be 
arranged randomly or in a regular, alternating pattern on a bench, so that any 
systematic confounding of position and species was avoided, and each plant was 
exposed to the same number of similarly sized slugs for a set period, say overnight, 
and then scored for leaf  damage. We might be tempted simply to catch a few 
slugs in the field and use those. However, this would be unwise. Freshly caught 
slugs would enter the experiment with an unknown feeding history. We would 
know neither their level of  hunger, nor what they had recently been feeding on. 
Both factors could introduce unwelcome bias into the experiment or even cause a 
floor effect. The best thing to do would be to bring slugs into the laboratory well 
before the experiment (or culture them in the laboratory), feed them all on the same 
material (a combination of the plant species to be tested) and deprive them of food 
for a short time (e.g. 12 hours) prior to testing. All slugs would then be standardised 
for feeding experience and hunger.

The design above would allow us to assess the effect of leaf height on damage 
and, if  we chose to observe slug activity (directly or using, for example, time-lapse 
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photography), we might be able to conclude something about how any effect came 
about. Suppose we found that higher leaves did indeed sustain less damage, but 
that this was due not to slugs failing to get up to them but to slugs feeding for 
a shorter time when they did get there. Two possible explanations might be: (a) 
slugs were nearly satiated by the time they reached the higher leaves or (b) higher 
leaves are less palatable. An easy way to test for the latter would be to present slugs 
with standard-sized discs of material cut from leaves at different heights. We could 
choose three heights (high, medium and low) on different, but standard-sized, 
plants. If  higher leaves are less palatable, discs cut from them would sustain less 
damage within the test time.

Example 2

Hosts and 
parasites

E.g. Prediction 2A Parasite burdens will increase with host testosterone levels.
This prediction derives from the hypothesis that reproductive hormones might 

influence susceptibility to infection. Both sex and stress hormones are known to 
affect the immune system, often in concert, though their effects on resistance to 
parasites are very variable. Prediction 2A is based on the observation that adult 
voles in the samples generally had greater parasite burdens than juveniles, and males 
greater burdens than females (Fig. 2.1). Since the difference between age classes 
is much more pronounced in males, testosterone becomes a plausible candidate 
for driving the effects of age and sex on parasite burdens. As with the seemingly 
simple prediction about leaf height and herbivore damage, however, much needs 
to be thought about in testing whether there is a connection.

We could start by taking some animals from the field and assaying their parasite 
burdens and testosterone levels. This could be done non-destructively by taking 
blood samples and faeces for blood and gut parasites, and inspecting the fur 
for ticks, fleas and other ectoparasites. Circulating testosterone concentrations 
could be assayed from either the blood or the faecal samples. Since testosterone 
secretion is highly pulsatile, and we are interested in chronic effects, faecal 
samples might provide the more appropriate measure since they accumulate 
testosterone metabolites over a period. Depending on the degree of discontinuity 
of testosterone concentration across age and sex classes, and the extent to which 
it can be normalised, we could test for testosterone as a predictor of age and sex 
differences in parasite burden by including it as a covariate in a two-way analysis 
of variance. The response variable of interest would be our measure of parasite 
burden, with predictors of the factors sex and age class. If  we first ran the analysis 
without testosterone and found significant age and sex effects (as Fig. 2.1 suggests 
we might), but then found that the effects disappeared and were replaced by a 
significant covariate effect of testosterone when the latter was included, we should 
have some evidence that testosterone was important in generating our initial age 
and sex differences in parasite burden. If  the distribution of testosterone values 
did not permit this, we could instead test for differences in testosterone between 
age and sex classes using non-parametric analysis of variance and seek correlations 
between testosterone levels and parasite burden within classes.
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Such analyses might tell us something, but it would be limited. One of the main 
problems is that simply taking animals from the field and testing for associations 
between hormone levels and parasites does not allow us to say anything about cause 
and effect. Testosterone may well influence parasite burden, but equally both may 
correlate with something else, such as level of social activity, which affects exposure 
to infection. The association would then be an artefact of testosterone levels and 
parasite burden being linked to exposure. A further problem is that testosterone may 
covary with circulating levels of corticosterone, a glucocorticoid ‘stress’ hormone 
that also influences the immune system. The best way to control for these potentially 
confounding effects is either to manipulate levels of testosterone and corticosterone 
directly, by injection or slow-release implants, and then see what happens when  animals 
are given a controlled infection with a known parasite, or to monitor spontaneous 
levels of the hormones over a period and challenge in the same way. In order to use 
either approach, however, animals would need to be cleaned of existing parasites and 
given a period of acclimation before any experiment. Corticosterone plays a role in 
the immune response to many infections, particularly gut helminths (worms), and 
any residual infection is likely to compromise investigations of hormonal effects on 
resistance. The best approach to start with would probably be to monitor spontaneous 
levels of testosterone followed by challenge. While manipulating levels experimentally 
allows selective control of individual hormones, it can also cause unwanted side 
effects and disrupt the delicate interactions between physiological systems that 
underpin hormonal effects on resistance. It may also be necessary to remove relevant 
endocrine tissue surgically or by chemical ablation to prevent spontaneous secretion 
affecting the control of circulating levels. Such manipulations might thus be better 
as a follow-up to test conclusions arising from the more observational approach. 
The assumption in the latter, of course, is that differences in spontaneous circulating 
levels of hormone will predispose individuals to correspondingly different degrees of 
resistance. We should then look for an association between hormone levels prior to 
infection and the subsequent severity of the infection. Regression analysis would be 
the obvious candidate, perhaps using a suitable multivariate model to take the effects 
of both testosterone and corticosterone levels into account simultaneously.

Example 3

Nematodes and 
pollutants

E.g. Prediction 3B Species present at unpolluted sites but missing from polluted sites 
will show greater mortality when exposed to pollutants.

This prediction assumes that pollution is causally responsible for the absence of 
certain species from polluted samples. While this seems simple enough to test, we 
might want to explore its basis a little more before embarking on a set of experiments.
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The most obvious point is that, with samples from only three sites, pollution 
status and site are confounded. Particular species may be present or absent at 
a given site purely by chance, or because sites happened to differ in some other 
important respect (e.g. interstitial water content of  the soil) that affected their 
viability for different species. Ideally, therefore, we should first replicate our samples 
within site categories by choosing a number of sites, say four to six, of each kind 
(unpolluted, polluted with heavy metals, polluted with organophosphate) across 
which there is some variation in other environmental features. Species that are 
consistently absent from polluted sites in these samples would provide a better 
basis for further investigation.

One way forward might then be to collect or culture representative nematode 
species that are present only at unpolluted sites and expose them, say in 
standardised Petri dish cultures, to representative concentrations of  heavy metal 
or organophosphate pollutant, not forgetting a suitable control (e.g. distilled 
water). Each treatment might be replicated half  a dozen times. One-way analysis 
of  variance of  mortality by treatment would then reveal any significant effect due 
to the experimental pollutants. Significantly greater mortality in the two polluted 
treatments would be evidence in favour of  a direct impact of  pollution on species 
survival and thus presence/absence at particular sites. However, a lack of any effect 
would not necessarily rule out pollution as being responsible for the absence of 
certain species from polluted sites. Simply bathing adult worms in solutions and 
seeing if  they die is a crude approach to say the least. Pollutants may work at any 
of  a number of  points in the worms’ life cycle, perhaps reducing fecundity (the 
number of  eggs produced) or the survival of  larvae. Similar experiments could 
be performed to test these possibilities. More subtly, the effects may depend on 
particular environmental conditions, for example interactions between pollutants 
and other chemicals in the soil. This may be the case even though the simple 
experiment above showed a mortality effect; bathing worms in raw pollutant may 
kill them, but this may not be the way they are killed by pollution in the field. 
More complex experimental treatments, simulating patterns of  exposure in the 
soil, might thus be called for.
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Example 4

Crickets

E.g. Prediction 4C Encounters will progress further when opponents are more similar 
in size and it is more difficult to judge which will win.

This prediction derived from observing that encounters between male crickets 
followed an apparently escalating pattern from chirping and antenna-tapping 
to out-and-out fighting and that, on the whole, bigger crickets tended to win. A 
possibility, therefore, is that progressive escalation reflects information-gathering 
about the relative size of  an opponent and the likelihood of  winning if  the 
encounter is continued. If  relative size is difficult to judge, as when two opponents 
are closely matched, the likelihood of winning cannot be judged in advance and 
the only way to decide the outcome is to fight. The prediction is thus of a negative 
trend between degree of escalation and the relative size of opponents: degree of 
escalation should increase with decreasing difference in size.

At first sight, this seems easy enough to test using a Spearman rank correlation 
or regression analysis. However, we first need some way of measuring degree of 
escalation. So far all we have are behavioural descriptions – chirping, antennating, 
fighting, etc. – from which we have inferred levels of  escalation. Somehow we 
must put numbers to these. It is clear that we cannot put the behaviours on some 
common constant-interval scale; we cannot, for instance, say that antennating is 
twice as escalated as chirping and fighting ten times as escalated. The easiest thing 
is simply to rank them. Thus what we assume to be the lowest level of escalation, 
say chirping, takes a rank of  1 and the highest level a rank of  n, where n is the 
number of levels we decide to identify. We can then use the ranks of 1 to n as the 
y-values in our trend analysis.

To obtain our x-values, we must decide on a suitable measure of size. Ideally, the 
measure should be reliable and repeatable within and between individuals; measuring 
the size of the flexible abdomen, for instance, might not be a good idea because this 
could vary with food and water intake and thus vary from one encounter to another. 
It would be better to measure some component of the hard exoskeleton, e.g. the 
length of the long hind leg or the width of the thorax, which will not vary over the 
time course of observations. Of course, in our analysis, we are interested in a measure 
of the relative size of opponents, so our x-values must be some measure of relative 
size. The most obvious might be the difference in size between  opponents. However, 
it is not hard to see why this would be inadequate. Suppose we observed two crickets 
of thorax widths 7.5 and 8.5 mm respectively. Suppose we observed another pair of 
thorax widths 6.5 and 5.5 mm. In both cases, opponents differ by 1 mm and would 
score the same on a simple difference measure. In the first case, however, 1 mm is only 
6 per cent of the combined width measures; in the second it is 8 per cent. A 1 mm 
difference may thus create a greater asymmetry in the likelihood of winning in the 
second case than in the first. As a result it would be better to use a ratio rather than a 
difference scale on the x-axis, e.g. size of bigger opponent/size of smaller opponent. 
However, ratios have strange statistical properties, and so we might want to use the 
ratio in logarithmic form, i.e. log(larger) – log(smaller).

Having decided on our measures, we can now plan observations. Since we are 
looking for a trend, we want to end up with pairs of x- and y-values. One way we 
might proceed is to put a number of individually marked males into a sand-filled 
arena and record all encounters over, say, 20 minutes, noting the males involved and 
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 3.6 Refining hypotheses and predictions

The discussions above do two things. First they give some simple indications as 
to how to set about testing particular predictions. Second, they show that the 
outcomes of such tests differ in the extent to which they increase or decrease our 
confidence in the hypothesis from which the prediction derives. Thus, for example, 
a failure to find an association between leaf  damage and height up a plant in a 
field survey (Prediction 1A(ii)) would not greatly undermine our confidence in the 
hypothesis (1A) that leaf damage reflected availability to slugs. A host of factors 
besides height up the plant is likely to affect attack by slugs. Prediction 1A(ii) is 
thus a very restrictive test of Hypothesis 1A. The important point, however, is that 
the process of testing Hypothesis 1A does not stop there. It isn’t abandoned just 
because one rather simplistic prediction did not work out. Instead the predictions 
are refined, gradually ruling out confounding factors. We saw this in the plants and 
herbivores example, as the suggested investigations used laboratory experiments 
to test for effects of  height by controlling for changes in the size, spacing and 
palatability of leaves further up the plant.

Refinement also takes place in the opposite direction. A prediction that is borne 
out does not necessarily offer direct support for its parent hypothesis. The test of 
Prediction 3B (nematodes and pollutants) is a good example. This predicts that the 
species of nematode absent from polluted sites will die when exposed to pollutants 
in the laboratory. It derives from the general hypothesis (3A) that pollution reduces 

the highest level (on our scale of 1 to n) to which each encounter progressed. One 
problem with this approach, however, is that some males would interact more than 
once. The pairs of x- and y-values arising from each repeat encounter could not 
be used independently because body size ratio would be confounded with pair of 
opponents and escalation levels might be influenced by the males’ past experience 
of each other. It would therefore be better to arrange encounters between different 
pairs of males to provide independent replicates of a range of size ratios. Since we 
are using ordinal (rank) measures of  y and selected ratios as x, and we have no 
reason to expect a linear relationship, we should test for significance in our trend 
using a Spearman rank correlation rather than regression.
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species diversity. The finding that pollutants kill these species when they are 
bathed in them in Petri dishes does not necessarily mean that direct susceptibility 
to pollutants is the reason for reduced species diversity at polluted sites, or even 
the absence of  those particular species from such sites. Their susceptibility in 
the laboratory may reflect a more general susceptibility to stressors. A variety of 
chemicals, quite unrelated to the environmental pollutants in question, might have a 
similar effect and this should certainly be tested. The absence of a particular species 
from polluted sites may reflect an interaction between effects of  pollutants and 
competitive ability, with absence ultimately being due to competitive exclusion by 
other species rather than mortality through pollution. A more complex experimental 
design comparing effects on putatively robust (present at polluted sites) as well as 
putatively susceptible species would increase confidence in a mortality effect if  
differential mortality of susceptible, but not robust, species emerged.

Although we have presented hypotheses and their predictions in a rather cut-and- 
dried fashion through this book, it is clear that there is really considerable fluidity 
in both. The relationship between hypothesis, prediction and test is a dynamic one 
and it is through the modifying effects of each on the others that science proceeds.

As soon as you start to get to grip with the statistical analysis of data, you will see that the way R® 
does it embodies a general approach that is important to know about. Once grasped, most analyses 
become simpler and rather straightforward, not harder and more complex.

The main objective is to find the values of the parameters of a model that produce the best fit 
to the data. Apart from coding errors and possible outliers, the data are ‘sacrosanct, [telling] us 
what actually happened in a given set of circumstances’ (Crawley, 2007: 324). Our job is to find the 
best model to fit to the data, i.e. the minimal sufficient model (see below) that results in the lowest 
amount of unexplained (residual) variation.

What are the main principles? 

Explore the data via plots

It is always a good idea to plot the data to see the patterns. R® has some superbly easy ways of doing 
this, that take all the effort away. The routines are well worth getting to know:

BOX 3.14    The principles of statistical analysis with R®

> plot(x) an ‘index plot’ of the data values against position in the 
sequence, useful for error checking

> hist(x, breaks=seq(-0.5,9.5,1)) a frequency distribution of the values of x, whether 
integers or real numbers; you control the bins of the 
distribution through the breaks argument

> plot(x,y) gives scatterplots (when x continuous) or boxplots (when 
x is a factor)
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The following routines draw panels of plots, every variable in a dataframe against every other 
variable (pairs), or a plot of y vs x for different ranges of z (coplot).
> pairs(dtfr)

> pairs(dtfr, panel=panel.smooth)

> coplot(y ~ x|z)

Lattice is a library for panels of plots of various types, a very powerful way of visualising the 
patterns in the data (see Zuur et al., 2009: chapter 8):
> library(lattice)

> xyplot(y~x|f)

and similar multiple plots can be done with ‘barchart’ (barplots) and ‘bwplot’ (box-and-whisker 
plots).
> histogram(~x|A) 

will plot multiple frequency distributions of x split by levels of A.
Most or all of these routines can take a set of graphical arguments. The full set can be seen by 

typing ?par in R®: xlab=c(“x-axis label”), ylab; lty=1 (solid line) or 2 (dashed line); 
pch=0 (open square), 1 (open circle), 3 (open triangle), 4 (cross), 20 up (filled versions); col=1 
(black), 2 (red), 3 (blue), etc; cex = relative size of  symbols. The common ones are listed in 
Appendix IV.

General Linear Models

After a bit of experience in using the R® commands for differences (aov) and trends (lm), you will 
rapidly see that these are simple subsets of  General Linear Models (the command glm), where 
there are simply predictors of two types: factors (differences, where the estimated parameters are 
the mean values of each level of the factor), and covariates (trends, where the estimated parameter 
is a slope). Factors come in two types: fixed (where levels represent only themselves) and random 
(where levels are intended to represent the universe of possible levels, and hence are generalisable 
to that universe).

The output from a glm takes a bit of  getting used to, since it looks quite different. Take, for 
example, the one-way ANOVA data of Box 3.5a. Using aov:
> m1<-aov(bbee~treat)

> summary(m1)

> point(x,y) adds more points
> abline(lm(y~x)) adds a straight line
> lines(x,y) adds a curve line joining points
> lines(lowess(x,y)) adds a smoothed non-parametric trend
> sequence<-order(x)

> lines(x[sequence],y[sequence]) makes sure points are in order

Df Sum Sq Mean Sq F value Pr(>F)

treat 3 80.28 26.7586 3.3131 0.02163 *

Residuals 156 1259.95 8.0766
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144 Chapter 3 Answering Questions

whereas using glm:
> m2<-glm(bbee~treat)

> summary(m2)

glm(formula = bbee ~ treat)

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 12.4785 0.4493 27.770 < 2e-16 ***

treatleaves -1.3425 0.6355 -2.113 0.03623 *

treatnormal -1.2417 0.6355 -1.954 0.05248 .

treatstones -1.9500 0.6355 -3.069 0.00254 **

(Dispersion parameter for gaussian family taken to be 8.076575)

Null deviance: 1340.2 on 159 degrees of freedom

Residual deviance: 1259.9 on 156 degrees of freedom

AIC: 794.24

In the glm output, you get one line per parameter estimated; apart from the ‘intercept’, you get 
as many parameters as there are degrees of freedom in the design. Here there are three degrees of 
freedom, and hence three parameters. Notice that the ‘dispersion parameter’ is the residual variance 
(the mean square). Unlike in regression, where the intercept is the overall mean, the ‘intercept’ in 
glm is the mean value for the first group (here, the control). The other parameters in a one-way 
design are differences of each group from the ‘intercept’ (the mean for the first group): their s.e.s 
are of the differences, not the means (which is why they are bigger).

In two-way designs it gets a bit more complex. Let’s redo the two-way design of Box 3.9a as a 
glm. Here it is as aov:
> m1<-aov(enzyme~parasitism*diet)

> summary(m1)

Df Sum Sq Mean Sq F value Pr(>F)

parasitism 1 1.6504 1.65039 26.4377 8.053e-07 ***

diet 1 0.0166 0.01661 0.2660 0.60675

parasitism:diet 1 0.3358 0.33581 5.3793 0.02167 *

Residuals 156 9.7384 0.06243

and here as a glm:
> m2<-glm(enzyme~parasitism*diet)

> summary(m2)

glm(formula = enzyme ~ parasitism * diet)

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 9.86550 0.03950 249.728 < 2e-16 ***

parasitism-unparasitized 0.29475 0.05587 5.276 4.35e-07 ***

diet-peas 0.11200 0.05587 2.005 0.0467 *

parasitismunparasitized:dietpeas -0.18325 0.07901 -2.319 0.0217 *

---
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(Dispersion parameter for gaussian family taken to be 0.06242563)

Null deviance: 11.7412 on 159 degrees of freedom

Residual deviance: 9.7384 on 156 degrees of freedom

AIC: 16.205

In the ANOVA there are three d.f., one each for the main effects and one for the interaction. In 
the glm there are also three d.f., but they seem completely different. Again there is an ‘intercept’ 
and then three parameters, and again they are differences. The intercept is again the mean of the 
first group, here the parasitised-beans group. The first parameter is for column 2 (unparasitised), 
and is the difference between the ‘intercept’ and both groups in column 2 (unparasitised groups). 
The second parameter is the difference between the ‘intercept’ and both groups in row 2 (the peas 
diet). The third is the difference between the observed mean of the unparasitised peas group, and 
the prediction based on intercept + col2 + row2; this is the interaction, the non-additivity of the 
column and row effects. Notice again how the ‘dispersion parameter’ is the residual variance (the 
mean square).

Generalised Linear Models

General Linear Models allow great flexibility in the predictors, but all response variables are 
supposed to have normally distributed residuals. The huge advance in recent years has been to 
extend this range to a set of different residual distributions in Generalised Linear Models: Poisson, 
binomial, gamma, etc. (see p.64–65). This has meant that many analyses that previously had to be 
done using non-parametric methods can now be done using the much more flexible, powerful and 
complex parametric models. The impact of this on statistical analysis can hardly be exaggerated. 
In R® the various distributions are very easily invoked; for example:
> glm(counts ~ parasitism * diet, family = Poisson)

Crawley (2007) gives a full account of these kinds of models.

Model checking

Since the idea is to fit the best and simplest model to the data, we need to check whether we have 
the correct model. R® has some very simple diagnostics to help. Usually once the model has been 
fitted and saved (into ‘model’, for example), we just type:
> plot(model)

Table (i) gives the assumptions to be tested for each error distribution, and how to check them.

Effect size

Using R® and glms encourages the investigator to concentrate on the magnitude of the effect of a 
predictor, rather than its significance. An effect can be highly significant yet biologically irrelevant, 
and conversely only just significant yet biologically highly relevant.

Crawley (2007) is an excellent guide to the use of R® for General and Generalised Linear Models, 
and explains very clearly the principles enumerated here.
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3.7 Summary 147

 3.7 Summary

1. The form of the predictions derived from hypotheses dictates the design of 
the experiments and observations needed to test them. As a result of testing, 
hypotheses can be rejected, provisionally accepted or modified to generate 
further testable hypotheses.

2. Decisions about experimental/observational measurement and the confirmatory 
analysis of  such measurements are interdependent. The intended analysis 
determines very largely what should be measured and how, and should thus 
be clear from the outset of an investigation.

3. Some kind of  yardstick is needed in confirmatory analysis to allow us to 
decide whether there is a convincing difference or trend in our measurements 
(i.e. whether we can reject the null hypothesis of no difference or trend). The 
arbitrary, but generally accepted, yardstick is that of  statistical significance. 
Significance tests allow us to determine the probability that a difference or 
trend as extreme as the one we have obtained could have occurred purely by 
chance. If  this probability is less than an arbitrarily chosen threshold, usually 
5 per cent but sometimes 1 or 10 per cent, the difference or trend is regarded 
as significant and the null hypothesis is rejected.

4. Different significance tests may demand different attributes of  the data. 
Parametric and non-parametric tests differ in the assumptions they make about 
the distribution of data values within samples and the kinds of measurement they 
can cope with. Tests can also be used in specific/one-tailed or general/two-tailed 
forms depending on prior expectations about the direction of differences or trends.

5. Basic tests for a difference include chi-squared, the t-test, the Mann–Whitney 
U-test and one- and two-way analysis of  variance. Each has a number of 
requirements that must be taken into account, and care is needed not to make 
multiple use of two-group difference tests in comparing more than two groups 
of data.

6. Basic tests for a trend include Pearson product-moment and Spearman rank 
correlations and regression analysis. Correlation is used when we merely wish 
to test for an association between two variables. Regression is used when we 
change the values of  one variable experimentally and observe the effect on 
another to test for a cause-and-effect relationship between two variables. 
Regression analysis yields more quantitative information about trends than 
correlation but makes more stringent demands on the data.

7. Multifactor and multivariable forms of difference and trend analyses allow the 
effects of several different variables to be analysed together within tests.

8. Testing predictions requires careful thought about methods of measurement, 
experimental/observational procedure, replication and controlling for 
confounding factors and floor and ceiling effects.
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148 Chapter 3 Answering Questions

9. Whether or not a test supports or fails to support a prediction, the implications 
for the parent hypothesis need careful consideration. A hypothesis does not 
necessarily stand or fall on the outcome of one prediction; everything depends 
on how discriminating the prediction really is.
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4

If  your investigation has gone to plan (and possibly even if  it hasn’t), you will 
have generated a pile of  data that somehow needs to be presented as a critical 
test of your hypothesis. Performing appropriate significance tests is only one step 
on the way. While significance tests will help you decide whether a difference or 
trend is interesting, this information still has to be put across so that other people 
can evaluate it for themselves. There are two reasons why we should take care 
how we present our results. The first is to ensure we get our message over; there is 
little point making a startling discovery if  we can’t communicate it to anyone. The 
purpose of our investigation was to test a hypothesis. We might conclude that the 
results support the hypothesis or that they undermine it. Whichever conclusion 
we reach we must sell it if  we wish it to be taken seriously. Since scientists are by 
training sceptical, selling our conclusion may demand some skilful presentation 
and marshalling of  arguments. The second reason is that we must give other 
people a fair chance to judge our conclusions. As we saw earlier, simply saying that 
some difference or trend is significant doesn’t tell us how strong the effect is. It is 
important to present results in such a way that others can make up their own minds 
about how well they support our conclusions. In this chapter, we shall look at some 
conventions in presenting information that help satisfy both these requirements. 
We begin with some simple points about figures and tables.

 4.1 Presenting figures and tables

We stressed earlier that it is usually not helpful to present raw data. Raw data are 
often too numerous and the information in them too difficult to assimilate for 
useful presentation. Instead, we summarise them in some way and present the 

Presenting information
How to communicate outcomes and conclusions
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4.1 Presenting Figures and Tables 151

summary form. We have already dealt with summary statistics in a general way 
when we discussed exploratory analysis; here we discuss their use in presenting the 
results of confirmatory analysis.

Although it is usually obvious that raw data require summarising, there can be a 
temptation to summarise everything, as if  summary statistics or plots were of value 
in themselves. In confirmatory analyses, they are of value only to the extent that 
they help us evaluate tests of hypotheses. We thus need to be selective in distilling 
our results. Naturally, the summaries and forms of  presentation that are most 
appropriate will depend on the type of confirmatory analysis. It is therefore easiest 
to deal with different cases in turn.

4.1.1 Presenting analyses of difference

Where we are dealing with analyses of difference, the important information to get 
across is a summary of the group values being compared. The form this takes will vary 
with the number of groups and levels of grouping involved. There are two basic ways 
of presenting a summary of differences: figures and tables. As we have argued 
previously, figures tend to be easier to assimilate than tables, even when the latter 
comprise summary statistics. However, tables may be more economical when large 
numbers of comparisons are required, or where comparisons are subsidiary to the 
main point being argued but helpful to have at hand. If tables are used, it is important 
that they present all the key summary information necessary to judge the claims they 
make. This usually means (a) summary statistics (e.g. means { standard errors,† 
medians { confidence limits) for each of the groups being compared, (b) the sample 
size (n) for each group, (c) test statistic values, (d) the probabilities  
(p- values) associated with the test statistic values and (e) an explanatory legend 
detailing what the table tells us. The test statistics and p-values can be presented either 
in the table itself or in the legend. The same information, of course, can be presented 
in figures except that the summary statistics are represented graphically (e.g. as bar 
charts) instead of as numbers, and information about sample sizes, test statistics and 
probability levels more conventionally goes in the legend (often called the figure 
caption) rather than in the figure itself. (Nevertheless, as long as it doesn’t clutter the 
figure and detract from its impact, it can be very helpful to include statistical 
information within the figure, and we shall do this later where appropriate.) Whichever 
you use, it is wrong to present both: so the summary data should be presented either 
as a figure or as a table or in the text, but they should only be given once.

Differences between two or more groups (with one grouping factor)
Here we are presenting the kinds of result that might emerge from a Mann– Whitney 
U-test, or a one-way analysis of variance. Suppose we have tested for a difference in 
growth rate (general prediction) between two groups of plants, one given a gibberellin 

†While there are various forms of summary statistic, means {  standard errors are widely used because 
the mean of a set of values is an easy concept to grasp and because the standard error estimates the 
distribution of means within the population, which approaches a normal distribution as the sample size 
increases. It is thus usually legitimate to quote means {  standard errors as summary statistics even 
when the distribution of data values demands a non-parametric significance test.
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152 Chapter 4 Presenting Information

(growth-promoting) hormone treatment, the other acting as an untreated control. 
The treated group contained 12 plants and the untreated group eight. Using a one-
way analysis of variance for two groups, we discover a significant difference at the 
0.1 per cent (p 6 0.001) level between the groups, with treated plants growing to 
a mean ({  standard error) height of 14.75 { 0.88 cm during the experimental 
period, and controls growing to a mean height of 9.01 { 0.63 cm. We could present 
these results as in Table 4.1a. Note the legend explaining exactly what is in the table.

The significance column could be omitted from the table, in which case the 
test statistic and probability level should be given in the legend. The legend would 
now read:

Table 4.1a The mean height to which plants grew during the  experimental 
period when treated with gibberellin or left untreated. H comparing the two 
groups = 12.22, p 6 0.001.

Experimental groups

Treated Untreated Significance
Mean ({  s.e.) height (cm) 14.75 { 0.88 9.01 { 0.63 H = 12.22, d.f. = 1
n 12 8 p 6 0.001

Table 4.1a The mean height to which plants grew during the experimental period when 
treated with  gibberellin or left untreated.
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Experimental groups

Treated Untreated Significance

Mean ({  s.e.) height (cm) 14.75 { 0.88 9.01 { 0.63 ***
n 12 8

Table 4.1b The mean height to which plants grew during the experimental period when 
treated with gibberellin or left untreated. ***,   H = 12.22, d.f. = 1, p 6 0.001.

An alternative and frequently adopted convention in presenting significance 
levels is to use asterisks instead of the test statistic and probability numbers. In this 
case, different levels of probability are indicated by different numbers of asterisks. 
Usually * denotes p 6 0.05, ** p 6 0.01 and *** p 6 0.001, but this can vary 
between investigations so it is important to declare your convention when you first 
use it. Using the asterisks convention, the table would now read as in Table 4.1b. 
Exactly the same forms of presentation, of course, could be used for comparisons 
of more than two groups. However, if  we had used a U-test to test for a difference 
between two groups, we should now have to change to a one-way analysis of 
variance to avoid abuse of a two-group difference test (see Chapter 3).

The presentation of  means and standard errors (or medians and confidence 
limits) is appropriate whenever we are dealing with analyses that take account of 
the variability within data samples. In chi-squared analyses, however, where we 
are comparing simple counts, there is obviously no variability to represent. If  we 
were presenting a chi-squared analysis of the number of plants surviving each of 
three different herbicide treatments and one control treatment, therefore, the table 
would be as shown in Table 4.2a. Table 4.2b shows an alternative presentation. If  
we wish to present our results as figures rather than tables, we can convey the same 
information using simple bar charts. Thus Table 4.1a can be recast as Fig. 4.1a. 

Table 4.2b The number of plants surviving treatment with different herbicides. ***, 
x2 = 19.3, d.f. = 2, p 6 0.001.

Experimental group

Herbicide Herbicide Herbicide

1 2 3 Control Significance
Number of plants  
 surviving

15 8 6 27 ***

Table 4.2a The number of plants surviving treatment with different herbicides.

Experimental group

Herbicide Herbicide Herbicide

1 2 3 Control Significance

Number of plants  
 surviving

15 8 6 27 x2 = 19.3, d.f. = 2,
 p 6 0.001

4.1 Presenting Figures and Tables 153
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Similarly, Table 4.1b could be recast as Fig. 4.1b. For a comparison of three groups, 
say comparing the effectiveness of the lambda bacteriophage in killing three strains 
of Escherichia coli suspected of differing in susceptibility, the figure might be as 
shown in Fig. 4.2a.

In Figs 4.1a, b and 4.2a, we have assumed a one-way analysis of variance was 
used to test a general prediction (hence the test statistic H). If  we had instead tested 
a specific prediction because we had an a priori reason for expecting a rank order 
of  effect (e.g. gibberellin-treated plants would grow taller than untreated plants 

Figure 4.1 (a, b) The mean height to which plants grew during the  experimental 
period when treated with gibberellin (+G, n = 12) or left untreated 
(U, n = 8).***, H = 12.2, d.f. = 1, p 6 0.001. Bars represent standard errors.   
(c) Figure 4.1b with a different scale. The mean height to which plants grew during 
the experimental period when treated with gibberellin (+G, n = 12) or left untreated 
(U, n = 8).***, H = 12.2, d.f. = 1, p 6 0.001. Bars represent standard errors.
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(Fig. 4.1), or strain B of E. coli would be most resistant and strain A least resistant 
to attack by the phage (Fig. 4.2)), we should recast the figures with groups in the 
predicted order and quote the test statistic z rather than H. Thus Fig. 4.2a could 
be recast as Fig. 4.2b.

For most people, bar charts like these convey the important differences between 
groups more clearly and immediately than equivalent tables of numbers. However, it 
is worth stressing some key points that help to maximise the effectiveness of a figure.

1. Make sure the scaling of numerical axes is appropriate for the difference you 
are trying to show. For instance, the impact of Fig. 4.1b is much reduced by 
choosing too large a scale (see Fig. 4.1c).

2. Always use the same scaling on figures that are to be compared with one 
another. Thus, comparing Fig. 4.3a with Fig. 4.3b is misleading because the 
different scaling makes the magnitude of the bars look the same in (a) and 
(b). Using the same scale, as in Fig. 4.3c, shows that there is in fact a big 
difference between (a) and (b).

3. Make sure axes are numbered and labelled properly and that labels are easy 
to understand and indicate the units used. Avoid obscure abbreviations in 
axis labels: these can easily be ambiguous and misleading or unnecessarily 
difficult to interpret.

4. Axes do not have to start at zero. Presentation may be more economical if  an 
axis is broken and starts at some other value. Thus, Fig. 4.4a could be recast 
as Fig. 4.4b with the break in the vertical axis indicated by a double slash.

Figure 4.2 The mean percentage area of plaque (=  bacterial death) formation by lambda 
bacteriophage on three strains (A–C) of E. coli. Bars represent standard errors.  
(a) Non- parametric analysis of variance testing a general prediction of difference between 
strains. n = 8 cultures in each case. (b) Non-parametric analysis of variance testing a 
 specific  prediction of difference between strains (A 7 C 7 B). n = 8 cultures in each case.

4.1 Presenting Figures and Tables 155
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156 Chapter 4 Presenting Information

5. Include indications of variability (standard errors, etc.) where appropriate. 
Also include sample sizes and p-values as long as these don’t clutter the 
figure. If  they do, put them in the legend.

6. Always provide a full, explanatory legend. The phrasing of the legend should 
be based on the prediction being tested, and the legend should include any 

Figure 4.3 (a) The total number of T-helper cells in experimental samples from laboratory 
mice following administration of two different cytotoxic drugs (A and B). n = 40 samples 
for each drug treatment. (b) As Fig. 4.3a, but for experimental samples from humans. (c) The 
total number of T-helper cells in experimental samples from laboratory mice (open bars) and 
humans (shaded bars) following administration of two different cytotoxic drugs (A and B). 
n = 40 samples for each drug treatment and species.
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statistical information (sample sizes, test statistics, etc.) not included in 
the figure. Do not repeat information in both figure and legend, though. 
The legend should allow a reader to assess the information in the figure 
without having to plough through accompanying text to find more detailed 
discussion.

Figure 4.4 (a, b) The total number of species of trees bearing epiphytes in 2-km2 study 
areas of rainforest in Bolivia where forests are managed economically (open bar) and 
 unmanaged (shaded bar). n = 1 3 2-km2 area in each case.

4.1 Presenting Figures and Tables 157
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Differences between two or more groups (with more than one factor)
Here we are concerned with the sort of  results that might arise from a two-way 
analysis of  variance or n * n chi-squared analysis. Presentation is now a little 
trickier because of the number of comparisons we need to take into account. A 
table is probably the simplest solution. For instance, suppose we had carried out a 
two-way analysis of variance looking at the difference in the frequency of accidental 
egg damage between three strains of  battery hen maintained in three different 
housing conditions. Here we have two factors (strain and housing condition) each 
with three levels. The analysis tests for a difference between strains (controlling 
for housing condition), a difference between housing conditions (controlling for 
strain) and any interaction between the two factors (see Chapter 3). The best way 
to present the differences between levels within factors is to tabulate the summary 
statistics for each of the nine (3 * 3 groups) cells and include the test statistics in 
the legend. Thus testing for any difference between groups (i.e. not predicting a 
difference in any particular direction) might give the results shown in Table 4.3.

This analysis reveals significant effects of both strain and housing conditions on 
egg breakage. These are obvious from the summary statistics in the table: breakage 
in strains 1 and 3 is relatively high under housing conditions A and B but drops 
sharply in condition C. In contrast, breakage in strain 2 is highest in conditions 
B and C and lowest in A. Damage tends to be greater in types A and B housing 
than in type C. In addition to these main effects, however, there is also a significant 
interaction between strain and housing condition (see legend to Table 4.3) with the 
effect of housing differing between strains. Although interaction effects can also 
be gleaned from a table of summary statistics like Table 4.3, they can be presented 
more effectively as a figure; one of the levels of grouping constitutes the x-axis and 
the measure being analysed is the y-axis. The relationship between the measure 
and the x-axis grouping can then be plotted for each group in the second level. 
Figure 4.5 shows such a plot for the interaction in Table 4.3. The lines in the figure, 
of course, simply indicate the groups of data: they are in no way comparable with 
statistically fitted lines. Full details of the analysis are given in the legend because 
such a figure would not normally be presented as well as the summary table since 
it repeats information already given in the table. The graph should have the s.e.s 
plotted with the mean values, but it does tend to become very cluttered. Judgement 

Table 4.3 The mean  ({  s.e.) percentage number of eggs broken during the experimental  
period by three strains of battery hen (1–3) under three different housing conditions 
(A–C). Parametric two-way analysis of variance shows a significant effect of both strain 
  (F = 145.09, d.f. = 2,27,  p 6 0.001) and housing ( F = 103.29, d.f. = 2,27, p 6 0.001) 
and a significant interaction between the two (F = 58.76, d.f. = 4,27, p 6 0.001). N = 4 
in each combination of strain and housing condition.

Strain

1 2 3

Housing 
condition

A 43.50 { 2.32 1.25 { 0.75 22.25 { 2.14
B 38.75 { 1.09 13.75 { 1.38 16.50 { 1.71
C  6.25 { 0.85 10.25 { 1.80  6.25 { 1.80
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is required as to whether a table or a figure is the best presentation. From Fig. 4.5 it 
is clear that, while all three strains show differences in egg damage across housing 
conditions, the direction and degree of  decline are different in different strains. 
This implies that the effect of housing condition varies with strain, which is what 
is meant by an interaction between housing condition and strain.

With an n * n chi-squared analysis, we are just dealing with total counts in 
each cell so there are no summary statistics to calculate and present. The simplest 
presentation is thus an n * n table with each cell containing the observed and 
expected values for the particular combination of  groups (the expected value 
in each cell usually goes in brackets). Table 4.4 shows such a presentation for a 

Figure 4.5 The mean percentage number of eggs broken by three strains of  battery 
hen (solid, strain 1; dash/dot, strain 2; dotted, strain 3) in three different  housing 
conditions (A–C). Parametric two-way analysis of variance showed a significant 
effect of both strain (F = 145.09, d.f. = 2,27, p 6 0.001) and housing condition 
(F = 103.29, d.f. = 2,27, p 6 0.001) and a significant interaction between the two 
(F = 58.76, d.f. = 4,27, p 6 0.001). n = 4 in each combination of strain and housing 
condition.

Table 4.4 The number of seeds germinating in a tray in relation to temperature (low, 5 °C; 
high, 25 °C) and soil type. Expected values in brackets.   x2 = 14.38, d.f. = 1, p 6 0.001.

Number of  seeds germinating

In clay soil In sandy soil

Low temperature
40

(57.97)
100
(82.03)

High temperature
131

(113.03)
142

(159.97)
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chi-squared analysis of the effects of temperature and soil type on the number of 
seeds out of 150 germinating in a seed tray.

4.1.2 Presenting analyses of trends

Presenting trend analyses is rather simpler because, in most cases, a scatterplot with 
or without a fitted line is the obvious format. When it comes to more complicated 
trend analyses that deal with lots of different measures at the same time, it is usually 
possible to present the various significant relationships as so-called partial correlation 
or regression plots. These can be selected within the regression analysis procedures of 
R®, for example. Alternatively, summary tables rather than figures may be necessary.

Presenting a correlation analysis
Since correlation analysis does not fit a line to data points, presentation consists 
simply of a scatterplot, though depending on how we have replicated observations 
this may include some summary statistics (see below). Information about test 
statistics, sample sizes and significance could be given in the figure, but it is more 
usual to include it in the legend. Thus Fig. 4.6a shows a plot of  the number of 
food items obtained by male house sparrows (Passer domesticus) in relation to their 
dominance ranking with other males in captive flocks of six (rank 1 is the most 
dominant male, which tends to beat all the others in aggressive disputes, and rank 
6 is the least dominant, which usually loses against everyone else). In this case, 
observations were repeated for three sets of males so there are three separate points 
(y-values) for each x-value in the figure.

M04_BARN5999_05_SE_C04.indd   160 19/10/2016   15:11



Although there is a significant trend towards dominant males getting more food, 
the correlation is negative because we chose to use a rank of 1 for the most dominant 
male and a rank of 6 for the least dominant. Rankings are frequently ordered in this 
way, leading to the slightly odd situation of concluding a positive trend (e.g. dominants 
get more food) from what looks like a negative trend (the number of food items 
decreases with increasing rank number). There is no reason, of course, why dominance 
shouldn’t be ranked the other way round (6 = most dominant, 1 = least dominant) 
so that a positive slope actually appears in the figure.

Sometimes when replicated observations are presented in a scatterplot, they are 
presented as a single mean or median with appropriate standard error or confidence 
limit bars. Thus an alternative presentation of Fig. 4.6a is shown in Fig. 4.6b. Note 
that a different explanatory legend is now required because the figure contains 
different information.

In some cases, replication may not occur throughout the data set. Say we 
decided to sample a population of minnows (Phoxinus phoxinus) in a stream to 
see whether big fish tended to have more parasites. To avoid the difficulties of 
making accurate measurements of fish size in the field and possibly injuring the 
fish, we visually assess those we catch as belonging to one of six size classes. We 
then count the signs of parasitism on them and return them to the water. Because 
we have no control over the number of each size class we catch, we end up with 
more samples for some classes than for others. When we come to present the data, 
we could present them as individual data points for each size class (Fig. 4.7a) or 
condense replicated data for classes to means or medians (Fig. 4.7b). In the latter 

Figure 4.6 (a) The number of food items obtained during the period of observation by male 
house sparrows of different dominance status in groups of six (rank 1, most dominant; rank 
6, least dominant, data for three groups at each rank). rS = -0.77, n = 18, p 6 0.001.  
(b) The mean number of food items obtained during the period of observation by male house 
sparrows of different dominance status in groups of six (rank 1, most dominant; rank 6, least 
dominant). rS = -0.77, n = 18, p 6 0.001. Bars represent standard errors.

4.1 Presenting Figures and Tables 161
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case, only some points might have error or confidence limit bars attached to them 
because only some classes are replicated (see Fig. 4.7a). Data for those classes that 
are not replicated are still presented as single points.

It is, of  course, important to remember that even where correlations are 
presented as mean or median values rather than independent data points, the 
correlation analysis itself  (i.e. the calculation of the correlation coefficient) is still 
performed on the independent data points, not on the means or medians. Values of 
n are thus the same in Figs 4.6a and 4.6b and in Figs 4.7a and 4.7b. Correlations 
can be performed on summary statistic values, but obviously a lot of information 
is lost from the data and n-sizes are correspondingly smaller.

Presenting a regression analysis
Presenting a regression analysis is essentially similar to presenting a correlation 
except that a line needs to be fitted through the data points. If  the trend isn’t 
significant, so that a line should not be fitted, a figure probably isn’t necessary in 
the first place. The details of calculating a regression line have been given earlier. 
You may sometimes come across regression plots that show confidence limits as 
curved lines above and below the regression line itself. However, we shall not be 
dealing with these here. For further information, see Sokal & Rohlf (1995).

As with correlation, data can be presented as independent points or, where 
replicated for particular x-values, as means or medians. Once again, where means or 
medians are presented, significance testing and the fitting of the line are still done 
using the individual data points, not the summary statistics. Figure 4.8  presents 

Figure 4.7 (a) The relationship between the size of minnows (arbitrary size classes) and the 
number of signs of parasitic infection observed on them. rS = 0.74, n = 11, p 6 0.02.  
(b) The relationship between the size of minnows (arbitrary size classes) and the mean 
number of signs of parasitic infection observed on them. rS = 0.74, n = 11, p 6 0.02. Bars 
represent standard errors.
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a regression of  the effect of  additional food during the breeding season on the 
number of young moorhens (Gallinula chloropus) surviving into their first winter 
in three study populations. Five different quantities of  food were used and the 
three populations received them in a different order over a five-year experimental 
period. In Fig. 4.8a, the numbers for each population are presented separately; in 
Fig. 4.8b they are presented as means ({  s.e.) across the three study populations.

 4.2 Presenting results in the text

So far in this section, we have assumed that results will be presented as figures or 
tables. Figures and tables, however, take up a lot of  space in a report and may not 
be justified if  the result is relatively minor or there is a strict limit on the length of 
the report. In such cases, analyses can instead be summarised in parentheses in the 
text of  the ‘Results’ section (see later). The usual form for a difference analysis is 
to quote the summary statistics, test statistic, sample size or degrees of  freedom 
and p-value. Thus the information in Table 4.1a could easily be presented in the 
text as:

Treatment with gibberellin resulted in a significant increase in 
growth compared with non-treated controls (mean ({  s.e.) height 
of  treated plants = 14.75 { 0.88 cm, n = 12; mean height of 
controls = 9.01 { 0.63 cm, n = 8; H = 12.22, d.f. = 1, p 6 0.001).

Figure 4.8 (a) The number of chicks surviving to their first winter in relation to the number 
of units of extra food provided during the breeding season in three populations of moorhen. 
F = 13.27, d.f. = 1,13, p 6 0.01. (b) The mean number of chicks surviving to their first winter 
in relation to the number of units of extra food provided during the breeding season in three 
populations of moorhen. F = 13.27, d.f. = 1,13, p 6 0.01. Bars represent standard errors.
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For a trend, it is usual to quote just the test statistic, sample size or degrees 
of  freedom and the p-value. For instance, the information in Fig. 4.8a could be 
summarised as follows:

The number of  chicks hatching during a breeding season that survived 
into their first winter increased significantly with the amount of extra food 
provided within the population (F = 13.27, d.f. = 1,13, p 6 0.01).

It is impossible to generalise about when an analysis could be presented in the 
text rather than in separate figures or tables. Sometimes, as we have said, it is simply 
a matter of limited space. However, rough guidelines might include the following: 
(a) difference analyses between only two or three groups; (b) corroborative analysis, 
supporting a main analysis already presented as a figure or table (for instance, if  
a main analysis showed a significant correlation between body size and fighting 
ability, a corroborative analysis might check that body size was not confounded 
with age and that the correlation could not have arisen because bigger individuals 
had more experience of fighting); (c) analyses providing background information 
(e.g. showing a significant sex difference in body size where this is germane to, say, 
an analysis of the diet preferences of the two sexes).

Units
Whether we are dealing with data in tables, figures or text, it is essential that 
 appropriate units of measurement are included and cited with their conventional 
abbreviations (Box 4.1). Summary statistics are meaningless without them.

 4.3 Writing reports

Just as figures and tables of data should be presented properly to ensure they are 
effective, so care must be taken in the text of a report. In the scientific community, 
reports of  experiments and observations are usually published in the form of 
papers in professional journals, or sometimes as chapters in specialist books. In all 
cases, however, the aim is both to communicate the findings of a piece of research 
and provide the information necessary for someone else to repeat the work and 
check out the results for themselves. Both these elements are crucial and, as a result, 
scientific papers are usually refereed by other people in the same field to make sure 
they come up to scratch before being published. Not surprisingly, a more-or-less 
standard format for reports has emerged which divides the textual information into 
well-recognised sections that researchers expect to see and know how to refer to 
find out about different aspects of the work. Learning to use this format properly is 
one of the most important goals of any basic scientific training. We shall therefore 
now discuss the general structure of  a report and what should and should not 
go in each of its sections; then we shall develop a full report, incorporating our 
various points about text and data presentation, from some of our main example 
observations.
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Length

Area

Volume

Mass

Time

BOX 4.1    Some common units of measurement and their  
 conventional abbreviations

Million years
Years
Hours
Minutes
Seconds

My
y
h
min
s

Kilogram
Gram
Milligram
Microgram
Nanogram

kg
g
mg
mg
ng

Kilometre
Metre
Centimetre
Millimetre

km
m
cm
mm

Square kilometre
Hectare
Square metre
Square centimetre
Square millimetre

km2

ha
m2

cm2

mm2

Cubic decimetre
( K  litre)
Cubic centimetre
( K  millilitre)
Cubic millimetre
( K  microlitre)

dm3

(l)
cm3

(ml)
mm3

(ml)

4.3.1 The sections of a report

There are five principal sections in a report of experimental or observational work: 
Introduction, Methods, Results, Discussion and References. Sometimes it is helpful to 
have some small additional sections such as Abstract, Conclusions and  Appendices, 
but we shall deal with these later. The structure of the entire paper should conform 
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to what is called the ‘wine glass’ or ‘hour glass’ model, i.e. the Introduction starts 
with broad ideas from the literature, and gradually narrows down to end with the 
study specifics; the Methods are highly specific, as are the Results; the Discussion 
starts with the specific findings and then broadens out to consider their significance 
in the context of the broad ideas of the Introduction. There should therefore be 
lots of references in the Introduction and Discussion, and sometimes the Methods, 
but none in the Results.

Introduction
The Introduction should set the scene for all that follows. Its principal objective is 
to set out: (a) the background to the study, which means any theoretical or previous 
experimental/observational work that led to the hypotheses under test. Background 
information is thus likely to include references to previously published work and 
sometimes a critical review of  competing ideas or interpretations. It might also 
include discussion about the timing (seasonal, diel, etc.) of experiments/observations 
and, in the case of fieldwork, the reasons for choosing a particular study site; (b) 
a clear statement of  the hypotheses and predictions that are being tested; and  
(c) the rationale of the study, i.e. how its design allows the specified predictions to be 
tested and alternatives to be excluded. The Introduction should thus give the reader 
a clear idea as to why the study was carried out and what it aimed to investigate. 
Its structure should start with broad statements about the general field, and the 
gradually narrow down, paragraph by paragraph, to the specific matter at hand. By 
the end it should be clear why the study was a good idea, and hence it should end 
with a statement of the objective(s) of the work. The following is a brief example:

Reptiles are ectotherms and thus obtain most of the heat used to maintain 
body temperature from the external environment (e.g. Davies, 1979). 
Rattlesnakes (Crotalus spp.) do this by basking in the sun or seeking warm 
surfaces on which to lie (Bush, 1971). An increased incidence of  snake 
bites in the state over the past two years has been attributed to a number 
of construction projects that have incidentally provided rattlesnakes with 
concrete or tarmac surfaces on which to bask (North, 2006). The aim of 
this investigation was to study the effect of  the construction projects on 
basking patterns among rattlesnakes to see whether these might increase 
the exposure of people to snakes and thus their risk of being bitten. The 
study tests two hypotheses: (a) concrete and tarmac surfaces are preferred 
basking substrates for rattlesnakes and (b) such surfaces result in a higher 
than average density of snakes near humans.

When the reader moves on to the Methods and Results sections, they will 
then appreciate why things were done the way they were. Reading Methods or 
Results sections without adequate introductory information can be a frustrating 
and often fruitless business since the design of  an experiment or observation 
usually makes sense only in the context of its rationale. As we shall see below, it is 
sometimes appropriate to include background material in the Discussion section, 
but in this case it should be to help develop an interpretation or conclusion, not an 
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afterthought about information relevant to the investigation as a whole; if  it is the 
latter, it should be in the Introduction.

Methods (or Materials & Methods)
The Methods section is perhaps the most straightforward. Nevertheless, there are 
some important points to bear in mind. Chief among them is providing enough 
detail for someone else to be able to repeat what you did exactly. Clearly, the precise 
detail in each case will depend on the investigation, but points that need attention 
are likely to include the following.

Experimental/observational organisms or preparations.
The species, strain, number of  individuals used, growth or housing conditions 
and husbandry, age and sex, etc. for organisms; the derivation and preparation 
and maintenance techniques, etc. for preparations (e.g. cell cultures, histological 
preparations, pathogen inoculations).

Specialised equipment.
Details (make, model, relevant technical specifications, etc.) of  any special 
equipment used. This usually means things like tape or video recorders, specialist 
computing equipment, spectrometers, oscilloscopes, automatic data-loggers, 
optical equipment such as telescopes, binoculars or specialised microscopes, 
centrifuges, respirometers, specially constructed equipment such as partitioned 
aquaria, choice chambers, etc. Run-of-the-mill laboratory equipment like 
glassware, balances, hotplates and so on don’t usually require details, though 
the dimensions of  things like aquaria or other containers used for observation 
and the running temperature of  heating devices, etc. should be given. There 
should not be a section or list called ‘equipment’. The Method section should 
not be written as a series of  commands, but should be about what you did, and 
should be in the past tense.

Study site (field work).
Where an investigation has taken place in the field, full details of  the study site 
should normally be given. These should include its location (e.g. grid reference) 
and a description of its relevant features (e.g. size, habitat structure, use by people) 
and how these were used in the investigation. The date or time of year of the study 
may also be relevant.

Data collection.
This should include details of  all the important decisions that were made about 
collecting data. Again, it is impossible to generalise, but the following are likely 
to be important in many investigations: any pretreatment of  material before 
experiments/observations (e.g. isolation of  animals, drug treatment, surgical 
operations, preparation of  cell cultures, staining); details of  experimental/
observational treatments and controls; sample sizes and replication; methods of 
measurement and timing; methods of recording (check sheets, tape recording, tally 
counters, etc.); duration and sequencing of  experimental/observational periods; 
details of any computer software used in data collection. Of course, it is important 
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not to go overboard. For instance, it isn’t necessary to relate that a check sheet was 
ticked with a red ballpoint pen rather than a black one, but if  the pen was used to 
stimulate aggression in male sticklebacks (which often attack red objects) then it 
would be relevant to state that a ballpoint pen was used and that it was red.

Results
The Results section is in some ways the most difficult to get right. Many students 
regard it as little more than a dumping ground for all manner of summary and, 
worse, raw data. Explanation, where it exists at all in such cases, frequently consists 
of an introductory ‘The results are shown in the following figures ...’ and a terminal 
‘Thus it can be seen ...’. A glance at any paper in a journal will show that a Results 
section is much more than this. At the other extreme, explanation within the Results 
often drifts into speculative interpretation, which is more properly the province of 
the Discussion (see below).

A Results section should do two things and only two things: first, it should 
present the data (almost always in some summarised form, of course) necessary to 
answer the questions posed; and second, it should explain and justify the analytical 
approach taken so that the reasons for choice of test and modes of data presentation 
are clear. The section should thus include a substantial amount of explanatory text, 
but explanation should be geared solely to the analyses and presentation of data 
and not the interpretations or conclusions that might be inferred from them. An 
example might be as follows:

Figure 1 shows that rattlesnakes are significantly more likely to be found on 
concrete (Fig. 1a) and tarmac (Fig. 1b) surfaces around dawn and dusk than 
around midday. Since many of the construction projects in the survey of 
snake bite incidence have involved highways (Greenbaum et al., 1984), this 
temporal pattern of basking may result in highest snake/human encounter 
at times when public conveniences are closed and motorists are forced to 
relieve themselves at the roadside. Indeed Table 1 shows a strong association 
for three highways between time of day and number of motorists stopping 
by the roadside.

It is also important that all the analyses and presentations of data involved in 
the report appear in the Results section (as figures, tables or in the text) and only 
in the Results section; no analysis should appear in any other section.

Discussion
The Discussion is the place to comment on whether the results support or refute 
the hypotheses under test, and how they relate to the findings of  other studies 
and more widely to the ideas of  the field (introduced in the Introduction). The 
Discussion thus involves interpretation and reasonable speculation, with further 
details about the material investigated and any corroborative/contradictory/
background information as appropriate. As we have said, however, while the 
Discussion may flesh out, comment, compare and conclude, it should not bring 
in new analysis. Neither should it develop background information that is more 
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appropriate to the Introduction (see earlier). The kind of  thing we’d expect might 
be as follows:

The results suggest that concrete and tarmac surfaces are not favoured 
for basking by rattlesnakes in comparison with broadly equivalent natural 
surfaces when relative area is taken into account. One reason for this might 
be the greater proximity and greater density of cover close to the natural  
surfaces sampled. Many snakes (Jones, 1981), including rattlesnakes 
 (Wilson, 1998), prefer basking areas within a short escape distance of thick 
cover. Despite not being preferred by snakes, the greater incidence of bites 
on concrete and tarmac surfaces can be explained in terms of the greater 
intensity of use of these surfaces by humans. However, Wilson (1998) has 
noted that the probability of attack when a snake is encountered increases 
significantly if  there is little surrounding cover. The paucity of cover around 
the concrete and tarmac samples may thus add to the risk of attack in these 
environments.

Acknowledgments.
Scientific work is always a collaboration between many people, and therefore there 
are always people to thank in the small Acknowledgements section just before the 
Reference listing. The extent to which a person contributes determines whether their 
name appears as an author, or is thanked for their help in the acknowledgements 
section.

References
Your report should be referenced fully throughout; when points are multiply 
referenced, these should be listed chronologically within the brackets. References 
should be listed alphabetically in a headed References section at the end, surname 
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first. References styles vary enormously between different kinds of  report so 
there is no one accepted format. However, a style used very widely is illustrated 
below and we suggest using it except where you are explicitly asked to adopt a 
different style. In this style, references in the text should take the form:

... Smith (1979, 1980) and Grant et al. (1989) claim that, during a storm, 
a tree 10 m in height can break wind for over 100 m (but see Nidley, 1999, 
2001; Jones & Green, 2002) ...

In the References list at the end, journal references take the form:

Grant, A. J., Wormhole, P. & Pigwhistle, E. G. (1989) Tree lines and the 
control of soil erosion. Int. J. Arbor. 121, 42–78.

Jones, A. B. & Green, C. D. (2002) Soil erosion: a critical review of the effect 
of tree lines. J. Plant Ecol. 97, 101–107.

Smith, E. F. (1979) Planting density and canopy size among deciduous 
trees. Arbor. Ecol. 19, 27–50.

Smith, E. F. (1980) Planting density and growth rate among deciduous 
trees. Arbor. Ecol. 20, 38–52.

         year
author    full or abbreviated        volume no.      inclusive page nos.      title of paper 
      journal title

for books they take the form:

Nidley, R. (1999) Deforestation and its Impact on National Economies. 
Hacker Press, London.

publisher          place of publication          title of book in italics

and for chapters in edited volumes the form:

Nidley, R. (2001) Economic growth and deforestation. In Sustainable 
 Economics and World Resources, eds A. B. Jones & C. D. Green, 
pp. 64–78. Hacker Press, London.

Indent the second and subsequent lines of  each reference, as shown here: it 
makes finding a particular reference so much easier, and is standard in scientific 
publishing. Where more than one source by a particular author (or set of authors) 
in a particular year is referred to in the text, the sources can be distinguished by 
using lower case letter suffixes, e.g. (Smith, 1976a, b) indicates that you are referring 
to two reports by Smith in the year 1976. The order in which you  attribute a, b, c, 
etc. is determined by the order in which you happen to refer to the publications 
in your report, not the order in which they were published in the relevant year.
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Personal observations and personal communications.
Although most of the references you will make will be to work by other people, 
or yourself, that has been published in some form, it is occasionally appropriate 
to refer to unpublished observations. This usually arises where some previous, but 
unpublished, observation is germane to an assumption, fact, technique, etc. that 
you are relying on in your own report. If  such observations are your own, they can 
be referred to in the text as ‘(personal observation)’ or ‘(pers. obs.)’. If  they have 
been reported to you by someone else, then they can be referred to as, for example, 
‘(P. Smith, personal communication)’ or ‘(P. Smith, pers. comm.)’ – note that the 
name of the person providing the information is given as well.

Abstract.
A small, but important, section of many scientific reports, certainly published ones 
like papers in learned journals, is the Abstract. This is a short (often strictly word-
limited) summary of  the aims and main findings of  the investigation. The idea 
is to provide the reader with a quick overview of  what was done and what was 
interesting about it, so that the reader can decide whether they want to read the 
report in more detail. Abstracts are particularly important in the case of published 
reports because they are often made available online to people browsing the various 
searchable scientific literature databases (see Box 1.1). They are thus a useful ‘shop 
window’ for available studies on the chosen topic. Increasingly, as part of  the 
general push for greater public awareness of science, abstracts are now also being 
made available in the form of ‘lay summaries’, meaning that they are redrafted 
in simple, everyday language that people without formal scientific training can 
understand (see section 4.4 below); often they are sent out to the media. Whether 
or not you intend to try to publish your report, however, producing an Abstract for 
it is good practice because it makes you think clearly about the important messages 
in your work and express them succinctly. An Abstract is included in the example 
report in Box 4.2 to illustrate the point.

Other sections of a report
In some cases, there may be additional sections to a report.

Conclusions.
Sometimes, especially where analyses and interpretations are long and involved, it 
is helpful to highlight the main conclusions in a tail-end section so that the reader 
finishes with a reminder of the ‘take-home’ message of the investigation. In general, 
however, the Abstract serves the function of a conclusion, and therefore you have 
either an Abstract or a Conclusion, but not both.

Appendix.
Occasionally, certain kinds of information may be incorporated into an Appendix. 
Such information might include the details of mathematical models or calculations, 
detailed background arguments, selective raw data or other aspects of the study 
that potentially might be of  importance to readers but which would clutter up 
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and disrupt the main report were they to be included there. Appendices are thus 
for informative asides that might help some readers but perhaps distract others. 
It follows, therefore, that appendices should be used selectively, sparingly and for 
a clear purpose, not as a dumping ground for odds and ends on the grounds that 
they might just turn out to be useful.

Use of abbreviations.
It is also worth saying something about the use of abbreviations. Many long-winded 
technical and jargon terms are often abbreviated in reports, papers and books. This 
is common practice and perfectly acceptable, as long as abbreviations are defined 
at their first point of use and conventions are adhered to where they exist (some 
acronyms, for example, are so well established that people are hard put to recall the 
full terminology). Thus:

The high vocal centre (HVC) in the forebrain of birds is associated with the 
production of song. The volume of the HVC also varies with the complexity 
of song in different species.

and

To see whether there was any effect of site on the frequency of calling, we 
carried out a one-way analysis of  variance (ANOVA). The results of  the 
ANOVA suggested that site had a profound effect.

present no problem, whereas:

The HVC in the forebrain of  birds is associated with the production of 
song.

or

To see whether there was any effect on the frequency of calling, we carried 
out an ANOVA.

leaves the uninitiated little the wiser.
While abbreviations and acronyms are acceptable, however, they should be used 

judiciously. Littering text with them is a sure way to destroy its readability and 
confuse the reader. Molecular work is especially prone to the use of acronyms for 
enzymes and genes, and hence more care is needed when reporting such work to 
ensure that your readers can understand it.

4.3.2 Example of a report

Having outlined the general principles of structuring a report, we can finish off  by 
illustrating them more fully in a complete report (see Box 4.2). The report is one 
that might arise from some of the experiments we proposed earlier in the main 
examples, in this case aggression in crickets.
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The effect of body size on the 
 escalation of aggressive encounters 
between male field crickets (Gryllus 
bimaculatus)

Abstract

Fighting is a costly activity; it takes time and 
energy and risks injury or even death. One 
way animals may be able to reduce the cost 
of  aggressive competition is by assessing their 
chances of  winning before becoming involved 
in a fight. Various attributes of  opponents 
might provide information about the likelihood 
of  winning, an obvious one being body size. 
When male field crickets (Gryllus bimaculatus) 
were allowed to interact in a sand-filled 
arena, encounters were more likely to become 
aggressive as the difference in body size between 
opponents declined, suggesting relative body 
size was important in assessing whether or not 
to escalate into a fight. However, the results also 
suggested that experience of winning or losing a 
fight itself  affected the tendency to initiate and 
win subsequent fights. Aggressive encounters 
between male crickets may thus depend on 
both assessment of  opponents and the degree 
of  confidence of  competing individuals at the 
time of  encounter.

Introduction

Fighting is likely to be costly in terms of time 
and energy expenditure and risk of  injury to 
the individuals involved. We might thus expect 
natural selection to have favoured mechanisms for 
reducing the likelihood of costly fights. One way 
animals could reduce the chance of becoming 
involved in an escalated fight is to assess their 
chances of  winning or losing against a given 
opponent before the encounter escalates into 

all-out fighting. There is now a substantial body 
of theory (e.g. Parker, 1974; Maynard Smith and 
Parker, 1976; Enquist et al., 1985) suggesting 
how assessment mechanisms might evolve and 
much empirical evidence that animals assess each 
other during aggressive encounters (e.g. Davies 
& Halliday, 1978; Clutton-Brock et al., 1979; 
Austad, 1983). Since the outcome of a fight is 
likely to be determined by some kind of difference 
in physical superiority between opponents, 
features relating to physical superiority might be 
expected to form the basis for assessment.

Male field crickets compete aggressively for 
ownership of  shelters and access to females (see 
Simmons, 1986). Casual observation of  male 
crickets in a sand-filled arena suggested that 
body size might be an important determinant 
of  success in fights, with larger males winning 
more often (pers. obs.). This is borne out 
by Simmons (1986), who found a similar 
effect of  body size in male G. bimaculatus. 
Observations also showed that aggressive 
interactions progressed through a well-defined 
series of  escalating stages (see also Simmons, 
1986, and e.g. Brown et al., 2006 and Nosil, 
2002 for other cricket species) before a fight 
ensued. One possibility, therefore, is that 
these escalating stages reflect the acquisition 
of  information about relative body size, 
and interactions progress to the later, more 
aggressive, stages only when opponents are 
closely matched in size and the outcome is 
difficult to predict. This study therefore tests 
two predictions arising from this hypothesis:

1. large size will confer an advantage in 
aggressive interactions among male 
crickets, and

2. interactions will escalate further when 
opponents are more closely matched in 
size.

BOX 4.2   Example report
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Table 1 Degree of escalation increases from Aggressive stridulation to Flip. Each behaviour can thus be 
ascribed a rank escalation value ranging from 1 (low escalation) to 6 (high escalation).

Behaviour Description Escalation ranking

Aggressive  
stridulation

One or both males stridulate aggressively. 
This may occur on its own or in conjunction with 
other aggressive behaviours

1

Antennal lashing One male whips his opponent with his antennae 2

Mandible spreading One male spreads his mandibles and displays them to 
his opponent

3

Lunge A male rears up and pushes forward, butting the 
 opponent and pushing him backwards

4

Grapple Males lock mandibles and wrestle 5

Flip One male throws his opponent aside or onto  
his back.
Re-engagement was rare following a Flip

6

Methods

Four groups of  six virgin male crickets were 
used in the experiment. All males were derived 
from separate, unrelated stock colonies a week 
after adult eclosion so each group comprised 
arbitrarily selected, unfamiliar males on 
establishment. Crickets were maintained on a 
12h:12h light:dark cycle that was shifted by 4 h 
to allow observation at periods of  peak activity 
(Simmons, 1986). Before establishing a group, 
the width of  each male’s pronotum (thorax) 
was measured at its widest point using Vernier 
calipers and recorded as an index of  the male’s 
body size (the pronotum was chosen because 
it consists of  relatively inflexible cuticle that 
is unlikely to vary between observations or 
with handling; adult body size is determined 
at eclosion so does not change with age). The 
dorsal surface of  the pronotum of  each male 
was then marked with a small spot of  coloured 
enamel paint to allow the observer to identify 
individuals.

Groups were established in glass arenas 
(60 * 60 * 30 cm3) with 2-cm deep silver 

sand substrate. Each arena was provided with 
water-soaked cotton wool in a Petri dish and 
two to three rodent pellets. No shelters or other 
defendable objects were provided to avoid bias 
in the outcome of interactions due to positional 
advantages. Arenas were maintained under 
even 60 W white illumination in an ambient 
room temperature of  25 °C throughout the 
experiment.

The six males in a group were introduced 
into their arena simultaneously and allowed 
to settle for 5 min. They were then observed 
for 30 min, during which time all encounters 
between males were dictated onto magnetic 
tape, noting: (a) the individuals involved, 
(b) the individual initiating the encounter 
(the first to perform any of  the components 
of  aggressive behaviour – see below),  
(c) the individual that won (decided when one 
opponent first attempted to retreat) and (d) the 
components of  aggressive behaviour used by 
each opponent during the encounter. Following 
Simmons (1986), the aggressive behaviours 
recognised here are shown in Table 1.
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Data analysis

Both predictions were tested with a Spearman 
rank correlation. Some extra analyses to test 
consequences of the predictions for two-group 
differences used the Mann–Whitney test.

Results

Do larger males tend to win aggressive 
encounters? To see whether larger males tended 
to win more often, the percentage of encounters 
won by each male in the four groups was plotted 
against pronotum width (Fig. 1). A significant 
positive trend emerged. Figure  1, however, 
combined data from all four groups. Did the 

relationship hold for each group separately? 
Spearman rank correlation showed a significant 
relationship in three of  the four groups 
(rs =  0.94, 0.99, 0.97 (p 6 0.05 in all cases) and 
0.66 (ns), n = 6 in all groups, one-tailed tests).

If  there is a size advantage as suggested by 
Fig. 1, we might expect larger males to initiate 
more encounters than smaller males since they 
have more to gain. Figure 2 shows a significant 
positive correlation between pronotum width 
and the percentage of the recorded encounters 
for each male that was initiated (see Methods) 
by that male. As expected, therefore, larger 
males tended to be the  initiator in more of their 
encounters.

Figure 1 The relationship between the size (pronotum width) of a male and the percentage 
of encounters won by the male in a group of six. rs = 0.81, n = 24, p 6 0.0001.
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One possibility that arises from Figs 1 and 2 
is that the apparent effect of body size was an 
incidental consequence of the tendency to initiate. 
There may be an advantage to initiating itself, 
perhaps because an individual initiates only when 
its opponent’s ability to retaliate is compromised 
(e.g. it is facing away from its attacker). If  the 
males doing most of the initiating in the groups 
just happened to be the bigger ones, the initiation 
could underlie the apparent effect of body size on 
the chances of winning. To test this, the percentage 
encounters won by each male when he was the 
initiator was compared with the percentage 

won when he was not. The analysis showed no 
significant difference (U = 82, n1, n2 = 19, ns†) 
between the two conditions.

Does difference in body size affect the degree 
of escalation in encounters? Figure 3 shows the 
relationship between the ratio of  pronotum 
width for pairs of  opponents and the degree of 
escalation of  their encounters. A ratio of  one 
indicates equal size, and ratios greater than one 
increasing departure from equality. Degree of 
escalation is measured as the maximum rank 
value (1–6, see Methods, Table  1) recorded 
during an encounter. As predicted, the figure 

†Although it is perfectly legitimate to use a Mann–Whitney U-test here, the fact that we are actually comparing data for 
the two conditions (initiated versus non-initiated encounters) within males means we could have used a related-samples 
two-group difference test (e.g. a Wilcoxon matched-pairs signed ranks test) which takes this into account.

Figure 2 As Figure 1 but for the relationship between male size and the percentage number 
of encounters initiated by the male. rS = 0.63, n = 24, p 6 0.03.
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shows a significant negative correlation between 
size ratio and degree of  escalation so that 
escalated encounters were more likely between 
opponents that were closely matched in size. 
The trend in Fig. 3 is for data across all groups. 
Does the trend hold within individual males? 
Correlation analysis for those males (four) that 
were involved in five or more encounters with 
opponents of different relative size suggests that 
it did, although the trends were significant in only 
two cases (rs = -0 .9 6 , n = 7 , p 6 0 .0 5 ; 
rs = -0 .7 2 , n = 5 , ns ;  rs = -0.76, n = 6,
ns ; rs = -0 .9 9 , n = 6 , p 6 0 .0 5 , one-tailed 
tests). A similar analysis of  the relationship 
between size ratio and the duration of aggressive 
encounters also showed a significant tendency 

for closely matched males to fight for longer 
(rs = 0 .6 2 , n = 2 0 , p 6 0 .0 0 2 ).

Does the experience of winning or losing affect 
subsequent interactions? The results so far are 
consistent with males assessing each other on the 
basis of relative size. However, it is possible that 
the experience of winning or losing a fight might 
itself  influence a male’s approach to subsequent 
encounters. A male that has just won a fight, for 
example, might assess his chances of  winning 
the next one as being higher than if  he had 
just lost (a ‘confidence’ effect). To see whether 
this was the case, the outcome of  fights for 
males that were recorded as having ten or more 
encounters during the observation period were 
analysed according to whether the male won 

Figure 3 The relationship between ratio of pronotum widths of fighting males and the maximum 
level of escalation (1–6, see Methods) reached in fights. rs = -0 .7 1 , n = 2 0 , p 6 0 .0 0 2 .
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or lost his first recorded encounter. A Mann–
Whitney U-test showed that males winning 
their first encounter won a significantly greater 
proportion of  their subsequent encounters 
than those losing their first encounter 
(U = 8, n1 = 6, n2 = 9, p 6 0.05). They also 
initiated a significantly greater proportion of the 
encounters (U = 9, n1 = 6, n2 = 9, p 6 0.05). 
Interestingly, there was no significant difference 
in body size between males winning versus 
losing their first encounter (U = 16, n1 = 6, 
n2 = 9, ns), so the ‘confidence’ effect seemed 
to be to that extent independent of  the effect 
of  size.

Discussion

The results bore out both predictions about the 
effects of body size on the outcome of aggressive 
interactions between male field crickets: larger 
males were more likely to win and escalation was 
more likely between closely matched opponents. 
This is consistent with the outcome of  fights 
being largely a matter of  physical superiority 
and with the structuring of interactions into a 
well-defined series of escalating stages reflecting 
assessment.

The fact that larger males were more likely 
to initiate an interaction could mean that the 
relative size of a potential opponent is assessable 
in advance of physical interaction. However, it 
could also reflect a general confidence effect 
arising from previous wins by larger males (males 
may initiate according to the simple decision 
rule ‘if  I won in the past, I’ll probably win this 
time, so it is worth initiating’). Indeed, Simmons 
(1986) presents evidence that the number of past 
wins has a positive influence on the tendency 
for males to initiate, a result consistent with the 
apparent confidence effect in the present study 
(but see e.g. Brown et al., 2006 and Nosil, 2002 
for more equivocal results from other species). 
Alternatively, initiation could reflect individual 
recognition, with males picking on those 

individuals against whom they have won in the 
past. Since this study did not record encounters 
independently of  the performance of  one of 
the categories of  aggressive behaviour, it is 
not possible to say whether initiations against 
particular opponents occurred more or less 
often than expected by chance. Whatever the 
basis for deciding to initiate, however, there was 
no evidence that initiation itself  conferred an 
advantage in terms of the outcome.

Although no resources (shelters and females) 
were available in the arenas, the size advantage 
in the aggressive interactions recorded here is in 
keeping with the tendency for larger males to take 
over shelters and mate successfully with females 
(Simmons, 1986). While females prefer to mate 
with males in or near shelters (because these 
provide good oviposition sites and protection 
from predators), they will mate with males 
en-countered in open areas (Simmons, 1986). 
Aggression between males in the absence of 
shelters or females may thus reflect an advantage 
to reducing competition should a female happen 
to be encountered.
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 4.4 Writing for a more general readership

So far, we’ve looked at writing reports on the assumption that the target 
readership is other biologists, whether these are lecturers or tutors in an 
educational setting, or fellow researchers. The key concerns with this kind of 
writing are: (a) adhering to the appropriate conventions of  scientific reporting, 
and (b) the technical clarity with which the hypotheses and predictions under 
test, the manner in which the study was carried out, the statistical analyses 
and the background and conclusions to the study are presented for critical 
professional scrutiny. This can make for a rather dry and jargon-strewn read 
for anyone coming to it out of  general interest, and perhaps with little or no 
formal scientific education (the proverbial ‘intelligent layman’). Nevertheless, 
there are many good reasons why such a person should be able to appreciate 
what has been done, and why (not least because they are probably helping to pay 
for it out of  their taxes!), and equally good reasons why scientists themselves 
should make the effort to render their work accessible rather than leaving it to 
other people, such as journalists, who often have a poor grasp of  the work or 
try to sensationalise it into a newsworthy story.

In the UK, the art of  explaining science to the ‘intelligent layman’ now has 
its own buzz phrase, the ‘Public Understanding of  Science’ (or PUS, to use its 
slightly unfortunate acronym), one enthusiastically promoted by government and 
honoured with an eponymous chair at Oxford. In its wake, scientists are actively 
encouraged to engage with the media to promote and explain their work, and many 
universities and colleges offer courses on popular scientific writing and other public 
communication skills. Not surprisingly, therefore, science students increasingly see 
career opportunities in the wider communication of their subject. So what exactly 
does ‘wider communication’ entail? Well, of course, it depends to some extent on 
what you’re trying to talk about and to whom, but there are some general points 
that will help keep you on the right track.

Avoid jargon
Probably the first golden rule is to avoid, as far as possible, using any technical 
jargon or unfamiliar scientific terminology. For example, the following passage in 
a scientific article on immune response to infection:

Maynard Smith, J. & Parker, G. A. (1976) The logic 
of asymmetric contests. Anim. Behav. 24, 159–175.

Nosil, P. (2002) Food fights in house crickets, Acheta 
domesticus, and the effects of body size and hunger 
level. Can. J. Zool. 80, 409–417.

Parker, G. A. (1974) Assessment strategy and the 
evolution of  animal conflicts. J. Theor. Biol. 47, 
223–243.

Simmons, L. W. (1986) Inter-male competition 
and mating success in the field cricket, Gryllus 
bimaculatus (de Geer). Anim. Behav. 34, 567–579.
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In a study of European bank voles (Myodes glareolus) high burden populations 
were characterised by high levels of plasma corticosterone and testosterone 
and high fluctuating asymmetry (FA) in hind foot length (a putative measure 
of developmental instability; e.g. Palmer & Strobeck, 1986; Møller & Swaddle, 
1997), but reduced aggressiveness among males (Barnard et al., 2002, in review).

might be rendered as:

Bank voles are small woodland rodents, rather like mice, but with shorter 
ears and tails. They are common across Europe where, like other wild 
mammals, they are often infected with various parasites, such as tapeworms 
and fleas. In areas where infections are very severe, voles often show evidence 
of stress and poor physical development, and males are less aggressive than 
their counterparts elsewhere.

This has managed to recast the whole thing in easily understood, everyday language 
that most people would be able to follow. It tells them what voles are (many may not 
know), and what the piece is talking about when it refers to parasites. It also leaves 
out all the clutter of scientific referencing, essential for the professional scientist, 
but a distraction for the general reader.

Sometimes, however, the use of a certain amount of technical jargon may be 
inescapable, or even helpful in giving some idea of the scientific approach behind 
a report. If  so, explain it in simple everyday terms. For instance, a different version 
of the passage above might have gone as follows:

Voles from areas with very high levels of  parasite infection show poor 
physical development. This can be judged by something scientists call 
‘fluctuating asymmetry’, which is a measure of  the difference in size 
between the same parts of  the body, say the front or hind legs, on the 
left and right sides. The bigger the difference, the greater the hardship the 
animal is assumed to have experienced during its development.

This includes the technical term ‘fluctuating asymmetry’, because the reader might 
wonder exactly how poor physical development was measured, but immediately 
counters its potential to confuse with a simple description of what it means.

Use catchy analogies
Most people scanning a newspaper or magazine for articles that might interest them 
need something to draw their attention to a particular piece in the first place, and 
then to maintain their attention as they read it. A snappy title might achieve the 
first aim, but ensuring the second can be a bit trickier. A favourite device is to draw 
parallels with familiar aspects of our own experience. The old adage that ‘sex sells 
newspapers’, for example, is as true now as it ever was, and anything that reflects on, 
or can be compared with, our own sexual behaviour, however tangentially, can usually 
be assured of at least a passing glance. Health, war, culture and intelligence are other 
good ‘hooks’ for getting attention, because they touch on our preoccupations or views 
on what makes us uniquely human. Some popular science writers use characters or 
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events from literature or works of art to draw analogies and create striking imagery, the 
late Stephen Jay Gould being an enthusiast of the style. Indeed, cleverly appropriate 
metaphors are an effective way in general to get points and ideas across, as illustrated by 
Richard Dawkins’s famous book The Selfish Gene (first published in 1976), a successful 
popular account of the principle of natural selection that uses the ‘selfish’ metaphor to 
characterise the effects of selection on how organisms behave. As authors like Dawkins 
have discovered, however, it is often wise to emphasise that you are using metaphors 
as just that, and not in a literal sense (for instance, the ‘selfish’ gene metaphor simply 
captures the idea that genes code for characteristics that enhance their chances of being 
passed on to the next generation; it doesn’t imply they are thoughtlessly self-centred in 
the sense we might use ‘selfish’ to describe other people). Bearing these points in mind, 
we might lead into our vole story with something like the following:

The stressed office worker falling prey to every passing infection is a 
familiar cliché of  our pressured, industrialised lives, and good medical 
research suggests it has a sound basis in fact. But is it something unique 
to us and our artificially hectic lifestyle? Evidence from the leafy glades 
of Europe’s woodlands suggests not. A recent study of voles in the Polish 
forests of Mazury has revealed an association between stress and infection 
with parasites that has more than an echo of sick office worker syndrome.

So here we’ve used a familiar everyday analogy to get the reader’s attention and 
cue them in to the message of what follows; the reader knows to expect something 
about how stress relates to disease and is thus primed to follow the piece. Box 4.3 
presents a general readership piece along these lines on the cricket study reported 
in formal scientific style in Box 4.2.

 4.5  Presenting in person: spoken papers and poster 
presentations

The outcomes and conclusions of your research can also be presented in person in 
the form of a talk, or in a fashion somewhat intermediate between a written and 
spoken presentation known as a poster presentation. As with the written word, 
the audience for a talk or poster can be diverse – from a group of fellow students 
reporting their research at the end of  a field course, to the serried ranks of  a 
thousand or so delegates at an international conference. The major difference from 
the traditional written word is that you are presenting the information live (poster 
presentations usually involve sessions where you explain and defend your findings 
personally to interested readers), and this difference can be enough to test the 
composure of even the most confident individual. At one level there are as many 
styles of spoken and poster presentations as there are presenters, and, to a lesser 
extent, each person in the audience will have a slightly different reaction to any 
given style. However, there are features that are shared by good presentations, and 
we discuss some of these here.
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4.5.1 A presentation is not a written report

As we explained in section 4.4, writing for a general readership needs a different 
approach from writing a scientific paper. The same is true of spoken and poster 

Canny crickets size up the opposition

As any military commander worth his salt will 
tell you, ‘know thine enemy’ is a wise rule when 
it comes to a showdown against a powerful 
opponent. Rush in on impulse and it probably 
won’t take long to regret it. This turns out to be 
as true for other animals as it is for ourselves. 
And, while they may not be hot on handy 
aphorisms, our fellow planetary inhabitants 
can be as wily as any military strategist when 
it comes to fisticuffs. Take the humble field 
cricket ( Gryllus bimaculatus), for example.

Field crickets are distributed widely 
throughout southern Europe, where males 
contribute to the ringing chorus of insects that 
fills the evening air in summer. The reason males 
put all this effort into calling, however, is not 
to provide musical accompaniment for human 
bystanders, but to set about the serious business 
of competing for females. And here, the males’ 
tuneful performance is just for starters.

As well as providing a sound beacon by 
which females can home in on a male, calls are 
picked up by other, rival, males. Since calling is 
costly – it takes time and effort, and can attract 
predators – these males can avoid paying the cost 
themselves by keeping quiet and intercepting the 
females attracted by their rival’s efforts. Thus, 
callers can rapidly find themselves having to 
compete for their hard-won female with a bunch 
of freeloaders. Calling aggressively at them may 
have some effect, but often not much, so it’s not 
long before things start to get physical. This is 
where careful choices have to be made.

Observations of  crickets in the field, and 
under laboratory conditions mimicking those 
in the field, show that males don’t just get stuck 

in indiscriminately. Interactions follow a well-
defined sequence of behaviours that gradually 
escalate in their level of  aggressiveness. If  an 
opponent doesn’t give way when lashed with the 
aggressor’s antennae, for instance, the encounter 
might progress to locking jaws and wrestling. 
Ultimately, the larger of  the contesting 
males tends to win, but the way encounters 
progressively up the ante strongly suggests 
males are weighing each other up before going 
all out. If so, an obvious prediction is that fights 
should last longer and be more intense as the 
difference in size between opponents decreases, 
because it would be harder for each to tell who 
was the biggest. Some recent experiments by 
scientists at the University of Nottingham, UK 
have shown that this is exactly what happens.

When pairs of males were carefully measured 
and then allowed to compete with each other, they 
were much more aggressive, and fought for longer, 
when closely matched in size. Thus, if  reliable 
information about relative size and strength was 
not forthcoming when opponents prospectively 
probed each other, there appeared to be nothing 
for it but to set to. But things weren’t quite as 
simple as this. While assessing the opposition 
certainly seemed to be part of the process, it 
turned out that males were also affected by their 
previous experience of winning or losing. If they 
had just won a fight, they were more likely to 
enter the next one with gusto and win that too. If  
they’d lost, however, they were more circumspect 
the next time and tended to lose again. This 
suggests that the degree of confidence with which 
a male approaches a fight has an important role 
to play, and that, in the world of crickets, just as 
in our own, he who hesitates is lost.

BOX 4.3   A general readership account of fighting in crickets (from Box 4.2)
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presentations; indeed, they have more in common with writing for a general audience 
than writing a paper. And while presenting a spoken paper is sometimes termed 
reading a paper, the result, if taken literally, usually makes for deadly listening for the 
simple reason that written and spoken language are generally very different in style. 
Written prose is usually more formal in structure and use of language than the spoken 
word, which abounds with illustrative figures of speech, amusing asides and informal 
phraseology that is easy on the ear. For instance, in a published paper we might write:

In summary, therefore: (a) female thargs are on average 50 per cent larger 
than males, (b) only males over 4 kg in body weight initiate courtship, and 
(c) only males over 5 kg mate successfully.

But we’d probably say something more like:

OK, so what can we conclude from all this? Well for one thing it’s clear that 
females are the larger sex in thargs, which may mean that only relatively big 
males stand a chance of success in courtship. This may be why it’s only 4 kg 
plus males that attempt courtship and only 5 kg plus males that actually 
get anywhere with it.

Very few people can write successfully in spoken language, so a paper read out 
verbatim usually sounds stilted and wooden. One past master of the art of writing 
in spoken English (in his case) is the evolutionary biologist Richard Dawkins, who 
customarily reads his talks from a prepared script, but he is a real exception.

The same is really true of poster presentations. One thing a poster absolutely 
should not be is a written paper pinned to a board, however attractively the author 
may feel the pages are set out. The art of good poster presentation owes more to the 
skills of the advertising agency than of the professional writer: it’s all about getting 
a message over clearly and immediately (people browsing anything from 20–30 
upwards to 500 or more posters are not going to hang around reading sheets of 
dense prose; they want headlines and images they can take in at a glance). We have 
occasionally seen a scientific paper stapled to a poster board at a conference, but 
this is more likely a consequence of a catastrophe befalling the original, intended 
poster than a serious attempt to use a written report as a poster presentation.

4.5.2 General considerations

Know your audience
It should probably go without saying that the content of a presentation will depend 
on the audience. A more general audience, such as a local natural history society 
or schoolchildren, will require more background to the study and less technically 
demanding language than a group of  specialists, such as we should find in a 
research group. As a rule, the more general the audience, the more a presentation 
should deal in simple (but nonetheless accurate) take-home messages rather than 
the detailed mechanics of how the messages were arrived at (see below). We are not 
advocating skipping important qualifying information in general presentations, 
just recommending that care is taken not to lose the interesting facts and findings 
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in it all. The key is therefore that the pitch and style need to be geared appropriately 
for different audiences.

Know your allocation
As well as choosing an appropriate style for your presentation, there is almost 
always another challenge to be met: it has to fit into a predetermined allocation 
of time or space. Where talks at conferences are concerned, this can be extremely 
short, 10 minutes or so sometimes, but may be up to 50 minutes or an hour if  you’re 
a key speaker. People often underestimate how long it takes to speak to a slide in 
a talk, and therefore tend to have too many slides for the time. As a general rule 
you should allow about two minutes per slide, which means around 10 slides for a 
20-minute talk. Remember to talk the audience through each slide, pointing to the 
relevant pieces of information to which you are referring; don’t just put the slide 
up and talk as if  it wasn’t there. Poster sizes are usually determined by the size and 
shape of available boards, and, of course, the number of posters that have to be 
squeezed onto them. Either way, it is an essential skill of  giving spoken or poster 
presentations that you can tailor them to a required slot. It is thus vital to know the 
time allotted for your spoken presentation or the dimensions of the poster space. If  
in doubt (though you shouldn’t be), err on the short side – few in the audience will 
mind if  the talk finishes a few minutes early or if  your poster doesn’t completely 
fill the poster board. However, taking more than your allocation of time or space 
will usually elicit negative reactions, or result in you being cut off  mid-presentation 
by an irritated session chairperson or not being able to put your poster up at all.

Know your aim
A presentation is sometimes seen as an opportunity (or temptation) to report every 
last detail of your study. This is a fatal mistake! There is never enough time or space 
to do it, and nobody’s attention span would take it even if there was. Carefully, but 
ruthlessly, choose the aspects of your study that will be of most interest to the audience. 
Thus, if you are reporting interesting mating behaviour in your study species, focus on 
what makes it interesting and perhaps sets it apart from mating behaviour in other, 
similar species rather than on exactly how many dreary wet days you spent freezing 
in a remote hide collecting the data, or how you finally arrived at the clever statistical 
analysis you used. Make sure also that your points can be readily conveyed in the 
presentation – a personal demonstration of your study species’ mating display on a 
table top could be the highlight of a spoken presentation, but you will need to think 
of another way of conveying the information if presenting a mostly unattended (by 
you) poster – a carefully chosen, clear photograph being an obvious option.

Less is more
Although a cliché, the spirit of this little aphorism has probably contributed more 
to good presentations than almost anything else. Whether the text will appear as 
a slide in a talk or as a panel on a poster, it is often surprising just how few words 
are needed to convey the meaning. For example, a first attempt at an introductory 
slide for a talk about fighting in crickets might set the agenda as follows:
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However, this is a lot of text, which will probably take more time than the slide is 
on the screen to read properly. The point is, you don’t need to use full sentences to 
convey the essential message, and less text means you can use larger fonts and maybe 
some associated images to make the whole thing more digestible. The following box 
might be an effective distillation of the full-blown text in the box above.

Introduction

■ Fighting is likely to be expensive in terms of time and energy and the risk of 
injury to individuals

■ We might thus expect selection to have favoured mechanisms to reduce the 
likelihood of costly fights

■ One way this could be achieved is by individuals assessing their chances of 
winning against an opponent before getting involved in a fight

■ There is now a substantial body of  theory suggesting how assessment 
mechanisms might evolve, and much evidence that animals do assess each 
other during aggressive encounters

■ Male field crickets (Gryllus bimaculatus) compete aggressively for ownership 
of shelters and access to females, and casual observation suggests that body 
size might be an important determinant of success in fights

INTRODUCTION

■ Fighting can be costly
■ Selection may thus favour reduced fighting
■ Perhaps through assessing opponents first
■ We can model the evolution of assessment
■ And test models using fighting in crickets

This style is often referred to as telegraphese, because messages sent by telegram 
were charged by the word and shorter messages saved money. (An extreme example 
was an exchange of telegrams between the nineteenth-century French author Victor 
Hugo and his publisher: Hugo sent a telegram containing only a question mark, 
correctly assuming his publisher would understand he was asking how the sales 
of his recent novel were going – the publisher replied with an exclamation mark, 
indicating they were extremely good).

Less is also more when it comes to images (like photographs or video windows) 
and embellishments (like borders, cartoons and coloured text boxes), so the advice 
is the same as for words: unless an image or embellishment is really central to 
the message you are trying to convey, or essential for clarity, carefully consider 
whether it merits inclusion (see also Box 4.4). The aim is to design the presentation 
around the core message, not to produce a kaleidoscope of  information for its 
own sake.

4.5 Presenting in Person: Spoken Papers and Poster Presentations 185

M04_BARN5999_05_SE_C04.indd   185 19/10/2016   15:11



186 Chapter 4 Presenting Information

Images versus text
‘A picture is worth a thousand words’ is another cliché, but again captures 
the spirit of  good presentation. Images and graphics can often replace text 
or they can enhance and support it, perhaps by illustrating the environment 
in which the study took place, or the lifestyle of  the species concerned. For 
instance, the detailed list of  escalating aggressive behaviours in Table 1 of  the 
report in Box 4.2 could be replaced by a series of  three to four photographs 
of  the relevant behaviours with simple accompanying labels. A picture or two 
of  fighting crickets might also helpfully embellish some of  the introductory, 
data or summary slides that would comprise a talk, or figure as background 
embellishments in a poster.

Tables of data published in papers (for example, like that in Table 4.3) can very 
rarely be included in presentations as they are. Apart from the difficulty of reading 
the detail once the table becomes larger than a 3 * 3 matrix, the information is 
not in the best form for the audience to appreciate the interesting differences and 
similarities in the data. Converting tables to graphs, such as bar charts or means 
plots, helps to make such differences clear (see Figs 4.1, 4.2 and 4.3).

It is rather less obvious that figures from published papers are also not in the 
best form for a presentation. Unless they make a key point, figures can take up a 
lot of space. In some cases, therefore, it may be simpler to present summary results 
in text form. The figures in the example report in Box 4.2, for example, could, 
if  pushed for time or space, be converted from scatterplots to the summary text 
format below:

bigger crickets win more often rs = 0.81 n = 24***

and initiate more fights rs = 0.63 n = 24*

and similarly sized crickets are more likely to escalate rs = -0.71 n = 24**

However, in general, graphs make differences or trends easier to assimilate at a 
glance and are probably preferable where constraints allow.

Legibility
The ease with which poster and projected text can be read is affected by many 
things, some of which are specific to the venue and the local conditions. However, 
there are a few basic points worth bearing in mind:

Font sizes and styles.
For slides used in talks, a sizeable font is needed to ensure text can be read comfortably 
throughout a lecture venue. Our suggestion would be somewhere in the range of 18 
pt (for small rooms) to 28 pt (for large theatres), with 24 pt probably being a good 
all-round working medium. For posters, 14 pt is probably the minimum to go for; 
where posters are produced in PowerPoint® (see Box 4.4), and subsequently blown 
up to A0 size, the font size on screen is likely to be somewhat smaller.
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But font size is not the only consideration. Many people have various forms of 
visual impairment or reading difficulties such as dyslexia. The legibility of text to 
such people can be greatly affected by the style of font chosen. In general, sans serif  
fonts, like Arial or Verdana, are much clearer to people with visual impairments or 
dyslexia than serif  fonts such as Times New Roman, because of the crisper, cleaner 
lines of the letters, which give them a sharper boundary with the background.

Contrast and colour combinations.
Contrast between text and background is obviously another issue, as is the 
degree of  comfort in reading it. Black text on a white background has high 
contrast, but it can be rather boring and harsh on the eye in long presentations. 
Colour combinations such as pale blue or yellow text on a dark blue background, 
or yellow text on green can be more comfortable, but be careful to avoid 
combinations that create problems for colour-blind readers (combinations of 
red and green being an obvious one to avoid – about 8 per cent of  males are red/
green colour blind). If  you want to check the latter, there are various websites 
and packages that can simulate the appearance of  your text to a reader who is 
colour-blind (e.g. www.vischeck.com/).

Getting attention
In both talks and posters, it is necessary to get the attention of people you want 
to address. You may have a somewhat more captive audience for a talk, but that 
doesn’t stop people’s attention wandering, and, if  it wanders sufficiently, they may 
even walk out. There are various things to think about here. One of the first is your 
title slide or poster header.

The title of  a written paper often tends to be literal and rather pedestrian, 
though people do liven them up with snappy phrases. Thus, the title of a written 
paper based on the cricket study in Box 4.2 might be something like:

The Effect of Body Size on the Escalation of Aggressive 
 Encounters between Male Field Crickets it Gryllus bimaculatus

W. G. Grace
Animal Behaviour & Ecology Research Group, School of Biology, University of 

 Nottingham, University Park, Nottingham NG7 2RD, UK

This is perfectly descriptive of  what is to follow, but a lot of  text and not very 
inspiring visually. In the case of  a poster, where people are drifting casually past 
waiting to be hooked by something attractive and interesting-looking, this is 
unlikely to have much impact. Even in a talk it might suggest a rather dry and 
cluttered offering is in prospect. Thus it is worth thinking of  something catchy 
as a title and choosing font styles and text layouts that catch the eye. Where 
fighting in crickets is concerned, something along the lines of  the following 
might do the trick:
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Again, some carefully chosen images can be used to brighten it up.

Gimmicks.
In the scramble for attention, there is often the temptation to descend into 
gimmickry. The advent of  PowerPoint® (see Box 4.4) has unfortunately brought 
countless opportunities for this in the slides of spoken presentations, with sound 
effects, innumerable modes of slide transition, animated cartoons, video windows 
and many, many more offerings to tempt the over-enthusiastic. While we certainly 
wouldn’t advise eschewing these entirely (some slide transitions, animations and 
especially the use of video are extremely effective), use them with a great deal of 
restraint. A gimmicky slide transition with sound effects, for instance, may add a 
helpful element of surprise the first time, but it will pall to a serious irritation by 
the third or fourth. In general, the use of gimmicks in slides risks making you look 
more of a nerd than a slick professional.

To some extent, the case for a bit of carefully judged gimmickry is more arguable 
in the case of posters, which have to speak out from a background of countless rivals. 
Most posters are now printed as a single sheet (A0 size) from a file produced by a 
presentation package such as PowerPoint®. However, the advantages of this in terms 
of ease of mounting and not having to keep track of many separate components 
can be offset by the greater difficulty of making your poster distinctive. One way in 
which you can combat this A0 uniformity problem is to have attachments. We have 
seen convincing recreations of a corner of reed bed (complete with nest and artificial 
eggs of  the study species), clockwork models and miniature sound and video 
playback systems – all devices that successfully made that poster stand out from 
the crowd enough to draw us in and begin reading it. But we have also seen efforts 
(e.g. attached helium balloon banners and clumsy attempts at interactive gadgets) 
that made the poster look like a tawdry fairground attraction and were decidedly 
off-putting. Alternative, and quite useful, extras are contact details, abstracts and 
preprints of the poster on A4 sheets offered in a manner that can be taken away by 
interested visitors to the poster – usually from a container attached to the poster.

Signposting
In a talk, slides are presented in sequence, so you might imagine there is no 
problem for the audience in following the logical flow of text and images. This is 
a dangerous assumption. It is easy to be fooled by your own familiarity with the 

Know Thine Enemy:

assessment and fighting in male crickets

image of two crickets fighting

W. G. Grace
Animal Behaviour & Ecology Group,  

University of Nottingham, UK

photo of  
author(s)

research  
group logo
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material into assuming too much on the part of  the audience. It is always worth 
having a slide that outlines the structure of  your talk and signposts it for people. 
Thus the famous dictum ‘Stand up, say what you are going to say, say it, then 
sit down’ is excellent advice. By signposting, of  course, we don’t mean listing the 
conventional sections of  a written paper (Introduction, Methods, Results, etc.) 
Even though your talk may de facto follow these sections, you should use the 
opportunity of  a talk structure slide to give a more specific indication of what the 
talk will be about. For instance, to pursue our cricket example, a structure slide 
here might go something like:

Fighting and assessment in crickets

1. why assess opponents in aggressive contests?
2. aggression in crickets
3. experimental design
4. the evidence for assessment
5. modelling assessment strategies
6. testing the model’s predictions
7. conclusions and the wider view

Again, this can be embellished with a judiciously chosen image in the corner to 
give it some visual interest. The structure slide can be reprised at various points 
in the talk to update the audience on where things have got to and where they’re 
about to go.

A second piece of advice in terms of structuring a spoken presentation is to 
move on to a new slide or point in an animated list (see Box 4.4) only when you 
are ready to deal with the new material. To judge by the many speakers who move 
on to the next slide or point before finishing the current one, there is a strong 
temptation to hurry on. Resist the temptation! The audience’s attention will be 
taken by the new material, your current point will be lost, and confusion is likely 
to start setting in.

Signposting in a poster presentation.
In a poster, text and images tend to be presented in blocks spread over the area 
of  the presentation. Under these circumstances it can sometimes be difficult to 
determine the intended route through it all. Two obvious ways of overcoming this 
are to use arrows between successive pieces of  text, or to number each piece of 
text in sequence. Associated images, tables and figures can then be numbered as 
Plate n, Table n or Figure n accordingly. Numbering blocks of  text is probably 
neater; arrows running through posters can sometimes make them look fussy and 
cluttered, and you can always use a different coloured font for your numbers to 
make them stand out.
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Summaries
In many ways almost the most important part of  your presentation is the final 
impression you leave with your audience/readers. You need to finish with a bit 
of  a bang in the form of  some clear, crisp take-home messages that will stay 
with those hearing or reading them. Thus, it is vital that you don’t just peter 
out at the end of  a rambling discussion and leave the audience/readership to 
decide for itself  what was important about the work. Present a clear summary 
slide or poster panel! The summary should be succinct and memorable, and, 
in a talk, we strongly advise making it the last slide (rather than the common 
practice of  ending with the equivalent of  the Acknowledgements section of  a 
written paper). Not only is it then the last slide the audience sees, but it can 
be displayed for the longest period as it often remains on display during the 
question session. A summary slide/panel for the study of  fighting in crickets 
might go something like:

Summary

■ Large male G. bimaculatus are more likely to win fights
■ Fighting is more severe when opponents are closely matched in size
■ Both prior assessment and individual confidence influence the decision to 

fight
■ Fighting in the absence of females or reproductive resources may help reduce 

competition when they are available

Questions
Questions from your audience/readers are an integral part of  both spoken papers 
and posters and deserve as much consideration as the talk or poster itself. No 
study is ever the final word, and other people will often have refreshingly new 
views on how it might be improved or developed. It is often possible to imagine 
the sort of  questions you could be asked, because you will be aware of  the study’s 
shortcomings and what remains to be done yourself, and it is well worth thinking 
through these ahead of  your presentation. But by far the best way to prepare for 
what might come is to do some dummy runs of  your talk or poster to groups 
of  people, such as classmates, members of  your research group, departmental 
seminar groups or whatever’s handy. This almost always throws up issues you 
won’t have thought of, and is particularly good at highlighting where you’re failing 
to make things clear. When on the spot receiving questions at your presentation 
proper, listen carefully to what is actually being asked; under stress there can be a 
tendency to hear the question you are expecting rather than what is really being 
asked. One way to avoid this trap is to begin a reply by briefly paraphrasing the 
question back to the asker; not only does this help to establish you are answering 
the right question, but it also gives a little extra time to marshal your thoughts 
for the answer.
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4.5.3 Using Microsoft PowerPoint® to prepare slides and posters

Just as with preparing text and organising and analysing data, there are commercial 
software packages designed for the world of spoken and poster presentations at 
meetings. For the same reasons as Excel® (flexibility and availability), Microsoft’s 
PowerPoint® is the almost universal package of  choice here. However, just like 
Excel®, PowerPoint® offers a combination of rich opportunities and decided pitfalls. 
As with Excel®, we don’t have the space here to give a full-blown tutorial on using 
PowerPoint®, but what follows below and in Box 4.4 is a brief  introduction to the 
package’s pluses and minuses.

The most obvious production advantage of  PowerPoint® is that slides for 
spoken presentations are produced electronically and not photographically (i.e. as 
transparencies or diapositives), a process associated with time delays, inflexible results 
and, often, high cost. Unfortunately, the same advantage doesn’t apply to posters. 
Although PowerPoint® allows posters to be created electronically (see Box 4.3), the 
actual poster still has to be produced through a time-consuming and costly printing 
process and there is little scope for tinkering without reprinting the entire thing.

One of the most irritating, and potentially disastrous, problems with PowerPoint® 
is that, despite being almost ubiquitous, different versions vary considerably and 
perform differently on different computer systems, data projectors and printers. As 
a result, there is no guarantee that what you saw during the creation process will 
appear during your talk or in your final poster, and, with depressing regularity, your 
laptop may not work with the particular data projector in the auditorium. Even 
when all the hardware works together, colours, fonts, layouts, animation effects and 
audio/visual embellishments are common casualties of  different versions of  the 
software. It is therefore essential to check your presentation thoroughly on the system 
that will be used at the time well ahead of the giving it for real. It is also worth 
checking the compatibility of transfer media ahead of a talk; many times we have 
seen the miserable consequences of discovering five minutes before being introduced 
that the host machine won’t read the CD, USB stick or whatever on which the 
speaker has saved their presentation, or won’t connect with the speaker’s home 
network on which it resides. Problems in all respects are particularly likely if  you 
are switching between PC and Macintosh systems, so always check doubly 
thoroughly here. Many Mac users convert their PowerPoint® presentation into a 
pdf file† and use the full screen view option (on the Window menu of the Adobe 
Acrobat® programme) to display the image. Often the pdf file is considerably larger 
than the original. A further disadvantage is that animated transitions within a slide 
(see ‘Build’ effects within slides, in Box 4.4) are not preserved when the pdf file is 
created. This can be overcome by making several versions of  the same slide in 
PowerPoint® and successively adding details before creating the pdf.

With such technical considerations in the background, Box 4.4 introduces some 
basic facilities offered by PowerPoint® for creating slides and posters, but personal 
experience with using it will lead you to lots of  others and your own personal 
preferences for style and approach.

†This requires that Adobe PDF appears as a printer option when the Print option is chosen from the 
File menu of PowerPoint®.
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Microsoft’s PowerPoint® is now almost the 
default vehicle for preparing and giving spoken 
and poster presentations. What follows is an 
extremely basic summary of some of its facilities 
in this respect. As with most packages, there 
are usually several ways of achieving the same 
result (e.g. the keyboard shortcut Control+Z 
undoes an action, as does selecting ‘Undo’ from 
the drop-down Edit menu). Most users quickly 
become familiar with one way of doing things 
and often remain in blissful ignorance of  the 
others.

Preparing slides for a talk

Slide styles

When you first boot up PowerPoint® the screen 
offers a default slide format that requests a title 
and subtitle. You may wish to use this, or you 
may want a different format. If  the latter, click 
on the ‘New’ (empty page) icon on the far top 
left of the screen and a range of alternative slide 
layouts will appear on the right of the screen (of 
which the boot-up default layout is the first). 
Single click on the design you want and it will 
appear centre screen ready for completion. 
Where styles have ready-formatted text boxes, 
such as the first four in the ‘Test Layouts’ panel, 
text can be added simply by clicking in the box 
and typing in. When using the blank open slide 
in the first ‘Content Layouts’ format, text must 
be added by clicking on the ‘Text Box’ button 
(the lined panel with the ‘A’ in the top left corner) 
on the bottom tool bar, and immediately clicking 
on the slide to create a panel within which to 
type text. Of course, the open slide format can 
be used for many other things besides text, 
including graphs, photographs, tables, video 
windows, free-style drawing and so on. Other 
formats offer different combinations of image, 
table and text as indicated.

Backgrounds

The form and colour of  the background of  a 
slide can be changed by clicking on ‘Format’ at 
the top of the screen, followed by ‘Background’ 
and selecting the various colour and fill pattern 
options on offer. Remember to bear in mind the 
legibility of  any text you may want to overlay 
on the background. In general, the simpler and 
plainer the background the better. Complicated 
and fussy images, like photographs of  scenery 
or organisms, usually make very poor, confusing 
backgrounds.

Font size and style

The font size can be changed by selecting the 
appropriate number in the ‘Font’ box in the top 
tool bar (the white box with a number in it next 
to the font style [e.g. Arial, Times New Roman] 
option). Follow the guidelines for font sizes and 
styles in the main text. The colour of your text 
can be changed by highlighting it and clicking 
on the A with a coloured (default black) bar 
underneath it on the tool bar and choosing a 
colour from the available options; alternatively 
click on the symbol and choose a colour prior to 
typing your text. Be aware of the strengths and 
pitfalls of  different combinations of  font and 
background colours (see text).

Transitions between slides

PowerPoint® offers many different transition 
effects when moving from one slide to the next: 
fade or dissolve in, wipe effects, cover over and 
many more. To choose one, click on the ‘Slide 
sorter view’ button (the one with four small 
squares in it) at bottom left of the screen. This 
displays your presentation as rows of slides. Now 
click on the slide(s) (hold down ‘Shift’ if you wish 
to select more than one slide simultaneously) for 
which you wish the transition effect to apply, 
then click on ‘Transition’ in the top tool bar. 

BOX 4.4   A basic guide to PowerPoint®
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This produces a menu of options to the right of 
the screen, on which you can click to make your 
selection. PowerPoint® will briefly demonstrate 
the effect as you click it.

‘Build’ effects within slides

As well as customising transitions between 
slides, you can customise the manner in which 
text appears in some slide formats. The usual 
format for this is the numbered or bullet-pointed 
text slide (the third in the panel of ‘Text Layouts’ 
formats above). To choose a style here, click on 
the ‘Normal view’ button to the farthest left at 
the bottom of the screen and move to the slide 
you wish to customise. Now click on ‘Design’ in 
the top tool bar, then on ‘Animation schemes’ in 
the options panel that pops up to the right, and 
finally on your chosen effect. Again PowerPoint® 
will quickly demonstrate the effect.

Images and movie and sound files

Images, such as photographs or graphs or 
tables from statistics packages or scanned 
from publications, can easily be added to 
slides in PowerPoint®, either from the Windows 
clipboard, if  they’ve been copied there from 
another Windows source (just use the ‘Paste’ 
option to copy them into the active slide in 
‘Normal view’), or using the ‘Insert’ option, if  
the images are in files saved elsewhere. To use 
the latter, click on ‘Insert’ and, if  you want, say, 
a photograph or figure that is saved as a ‘jpg’ 
or ‘gif ’ file, click ‘Picture’ and ‘From File’ then 
browse for the file concerned. Double-click on 
the file name and the image will appear in the 
slide. You will now need to size and position 
it as required using the mouse. The ‘Picture’ 
option also allows other possibilities, such as 
inserting ‘Clip Art’ images and ‘Autoshapes’ 
(the standard drawing shapes available from 
the lower Windows tool bar).

Movie files (such as ‘avi’ or ‘mpeg’ files) can 
be inserted in the same way. From ‘Insert’ click 

on ‘Movies and Sounds’, then ‘Movie from File’ 
and browse for the required file. Double-click 
on it to make it appear in the slide. At this point 
PowerPoint® gives you the option of  having the 
movie play automatically or not until you click 
on it. Choose which you wish, and size and 
position the movie window as required. You 
can now customise the animation in various 
ways. To make the movie play as soon as the 
slide appears, right-click on the movie window 
and choose ‘Custom Animation’. In the right-
hand column that now appears, click on the 
downward pointing arrowhead on the blue 
background immediately next to the title of  the 
movie file and check the ‘Start With Previous’ 
option. Click on the arrow again, select 
‘Timing’ and make sure there is a zero second 
delay (or type in a delay of  your choice); then 
click ‘OK’. If  you want the movie clip to repeat 
play until you have finished with the slide, 
right-click on the movie window again and 
click on ‘Edit Movie Object’. In the resulting 
dialogue box, check the ‘Loop until stopped’ 
option and click ‘OK’.

For sound (e.g. ‘wav’) files, the process is 
the same as for movies up to the point that a 
small loudspeaker icon appears on the slide 
to show that a sound has been inserted. One 
very useful feature is that by highlighting this 
icon and using ‘Custom Animation’, you can 
make the sound play when you press the Enter 
key, avoiding the need to position the mouse 
arrow over the icon. You can also arrange the 
slide in an animation sequence triggered by the 
appearance of  a previous item such as a picture 
of  the animal making the sound. An important 
consideration for both sounds and movies is the 
size of  the file. Even short clips usually exceed 
1 MB and take what seems minutes to load. 
Remember to keep clips as short as possible and 
check how long they take to load – preferably 
with the setup that will be used when delivering 
the talk.
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Checking slides and running the presentation

At any point during the creation of  your 
presentation, you can check what slides will look 
like when actually running by clicking on the 
‘Slide Show’ button, which is the one with the 
goblet-like icon representing a slide screen on 
the bottom tool bar. This is also the button to 
click when you give the presentation itself. Left-
clicking the mouse, or pressing the ‘Page Down’ 
or carriage return keys on the keyboard, will 
move the slide show forwards. Right-clicking 
the mouse and clicking ‘Previous’, or pressing 
the ‘Page Up’ key, will move the slide show back.

Preparing a poster

A poster in PowerPoint® is usually prepared as a 
single slide, which is then printed at whatever size 
is required, normally A0, but A3 and other sizes 
are occasionally used. Because you are working 
within a single slide, it is usually necessary to work 
at something like 150 per cent or 200 per cent 
normal size, which can be set using the percentage 

‘Zoom’ scale in the top tool bar. Adding text is 
then a matter of clicking on the ‘Text Box’ button 
on the bottom tool bar and immediately clicking 
on the slide to create a panel within which to type 
text (as for open field slides above). Because you 
are working at magnification, there is a certain 
amount of  judgement to be made about font 
sizes. First you need to decide how much text 
there is going to be in total, and how this will 
be broken up and mixed with figures, tables and 
images across the poster. Then choose a font 
size that will accommodate this, but be clearly 
legible at a comfortable distance once the poster 
is printed up. You can usually judge this from its 
appearance in ‘Slide Show’ (see above) format. 
Graphs, tables, photographs, etc. can be inserted 
as for talk slides via the clipboard or ‘Insert’ 
options. Text boxes and images can then be 
moved around with the mouse until the desired 
layout has been achieved. Don’t forget a good 
clear banner or box title with all the required 
information in large, clear font (see suggestions 
for title slides in the text).

 4.6 Plagiarism

Before leaving our discussion of  reporting work, we have to mention one more 
issue that has recently been gaining attention in the general education community, 
and that is plagiarism. Plagiarism refers to any attempt to pass off   somebody 
else’s work as your own, and encompasses a wide range of  possibilities from 
 downloading pre-prepared essays from the Internet/World Wide Web, or copying-
and- pasting tracts of  text or other material from other people’s documents into 
your own without due acknowledgement of the source, to the slightly greyer area 
of insufficient referencing or use of quotation marks where odd phrases, sentences 
or ideas have been gleaned from the literature. Science depends on honesty and an 
ability to  attribute ideas and results properly in reporting studies, so quite apart 
from any dishonest advantage that may be sought in educational assessments, 
wanton plagiarism undermines the scientific process itself. It is therefore a serious 
matter. Of course, the possibility of  plagiarism has always been with us, but, in 
recent years, the Internet/World Wide Web has greatly exacerbated the problem 
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by making available a vast amount of material that is downloadable at the push 
of a button and (at least until very recently) difficult for an external party to trace. 
Many educational establishments now use sophisticated anti-plagiarism software 
(e.g. Turnitin®), which can scan a submitted piece of work and quickly match its 
contents to other electronic sources, so the arms race against cheats has moved on 
significantly. However, as with any policing process, it is possible to fall foul of the 
system inadvertently through carelessness or ignorance. Our advice, therefore, is 
to take careful note of the reporting conventions in professional journals, books 
and conferences, and, especially if  you’re a student, the guidelines given to you by 
your university, college or school.

 4.7 Summary

1. Confirmatory analyses are usually presented in summarised form (e.g. 
summary statistics, scatterplots) as tables or figures or in the text of a report. 
In all cases, sample sizes (or degrees of freedom), test statistics and probability 
levels should be quoted. In the case of tables and figures, these can be included 
within the table or figure itself  or within a full, explanatory legend.

2. Results should almost never be presented as raw numerical data because these 
are difficult for the reader to assimilate. In the exceptional circumstances where 
the presentation of raw data is helpful, presentation should usually be selective 
to the points being made and is best incorporated as an Appendix.

3. The axes of  figures should be labelled in a way that conveys their meaning 
clearly and succinctly. Where analyses in different figures are to be compared 
directly, the axes of the figures should use the same scaling.

4. The legends to tables and figures should provide a complete, self-contained 
explanation of what they show without the reader’s having to search elsewhere 
for relevant information.

5. Reports of  investigations should be structured into clearly defined sections: 
Introduction, Methods, Results, Discussion, References. Each section has a 
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196 Chapter 4 Presenting Information

specific purpose and deals with particular kinds of information. The distinction 
between them should be strictly maintained. When reports are long or involved 
it can be helpful to add an Abstract and/or Conclusions section to highlight 
the main points and take-home messages.

6. At a time when increasing importance is being attached to the public 
understanding of science, writing for a general interest readership, as opposed 
to the more usual professional scientific one, is a useful skill. Success often 
depends on avoiding technical jargon, or at least explaining it in everyday 
language, and using familiar analogies or imagery to get attention and facilitate 
understanding.

7. Information can also be presented in the form of  talks or poster papers at 
meetings. This can be a very important means of disseminating your work and 
getting yourself  known, and, as usual, there are various ‘dos’ and ‘don’ts’ that 
make for good practice in preparing presentations.

8. Be sure to reference sources of  information properly in any presentation of 
your work. Plagiarism (an attempt to pass off  somebody else’s work as your 
own) is a serious offence in education and scientific research.

Reference

Sokal, R. R. & Rohlf, F. J. (1995) Biometry, 3rd edition. Freeman, San Francisco.
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Test finder and help 
guide

Test finder

A Looking for a difference or a trend? (if unsure, go to Help 1)

* Trend – go to B
* Difference – go to C

* No – correlation
* Yes – linear regression

* One level of grouping (one-way designs) – go to D
* More than one level of grouping (n-way designs) – go to G

* No – go to E
* Yes – go to F

* No – (not analysable)
* Yes – 1 * n chi-squared

* No 7  only two treatments – matched-pairs tests, or use
one-way repeated-measures ANOVA

7  two or more treatments – one-way repeated-measures ANOVA
* Yes 7  only two treatments – t-test or Mann–Whitney test or use

one-way ANOVA
7  two or more treatments – one-way ANOVA

* No, data are counts – n * n chi-squared
* Yes – n-way ANOVA

B Have you fixed the X-values experimentally (looking to see whether changes in X cause changes in Y) 
or do you require the equation of the line itself (e.g. for predicting new values)? (if unsure, go to Help 2)

C Does each data value belong to treatments within one level of grouping, or does it belong to more 
than one level of grouping? (if unsure, go to Help 3 and Help 6)

D Are data for each treatment replicated? (if unsure, go to Help 4)

E Data are in the form of counts

F Data in one treatment are independent of those in other treatments (if unsure, go to Help 5)

G Are data for treatments within each level of grouping replicated? (if unsure, go to Help 6)

Z01_BARN5999_05_SE_EM1.indd   197 19/10/2016   15:13



198 Test Finder and Help Guide

Help 1 Difference or trend?
■	 Difference predictions are concerned with some kind of difference between two 

or more groups of data. The groups could be based on any characteristic that 
can be used to make a clear-cut distinction, e.g. sex, drug treatment, habitat. 
Thus a difference might be predicted between the growth rates of  men and 
women, or between the development of  disease in rats given drug A versus 
those given drug B versus those given a placebo.

■	 Trend predictions are concerned not with differences between mutually exclusive 
groupings but with the relationship between two more-or-less continuously 
distributed measures, e.g. the relationship between the size of a shark and the 
size of prey it takes, or the relationship between the amount of rainfall in a 
growing season and the number of apples produced by an apple tree.

Help 4

Help 3

Help 2 What sort of trend?

The basic choice here is between fitting a line (regression) or not (correlation).
Correlation is used whenever we merely want to know whether there is an 

association between X and Y – there is no real dependent or independent variable, 
and when plotted as a scattergraph you could equally well plot Y against X as 
opposed to X against Y.

Regression was developed for situations where the experimenter manipulates 
the values of  the independent variable (X) and measures the impact of  these 
manipulations on another dependent variable (Y). You are therefore looking for a 
causal relationship between X and Y – changes in X cause changes in Y. However, 
because knowing the slope of the relationship between X and Y is useful in many 
other contexts, the use of  regression has expanded to incorporate many cases 
where the X values are merely measured rather than manipulated. Technically 
this is wrong, but this usage is so firmly embedded in biological practice that the 
majority of scientific investigations do it. An example is when you want to use the 
relationship to predict the value of  Y for a particular X value. Comparisons of 
slopes are also extremely informative, and used extensively in biological research.

Replication

Replication simply means that each treatment within a level of grouping has more 
than one data value in it. The table below shows replicated data as columns of 
values within each treatment in a one-way (i.e. one level of grouping) design:

Levels of grouping

Many difference predictions are concerned with differences at just one level of 
grouping, e.g. differences in faecal egg counts following treatment of  mice with 
one of  four different anthelminthic drugs. Here drug treatment is the only level 
of grouping in which we are interested. However, if  we wished, say, to distinguish 
between the effects of  different drugs on male and female mice, we should be 
dealing with two levels of grouping: drug treatment and sex.
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Group

Pesticide A Pesticide B Control

% mortality  
of pest

10 30 0

5 27 1

3 50 1

0 6 0

1 3 2

20 3 5

Help 5 Independence

Unless specifically allowed for in the analysis, all statistical analyses assume that each 
data value is independent of all others. Each value in one group is non-independent 
of  one from each of the other groups if  they have something in common (e.g. it is 
measured on the same individual, or derives from animals from the same cage – i.e. 
a given individual is exposed to each treatment in turn, or the same cage provides 
animals for each treatment). The source of  non-independence thus needs to be 
taken into account in any analysis, and so requires a so-called repeated-measures 
design.

Help 6 Rows and columns
If  data have been collected at two levels of grouping, then each data value can be 
thought of as belonging to both a row and a column (i.e. to one row/column cell) 
in a table, where rows refer to one level of  grouping (say sex – see Help 4) and 
columns to the other (drug treatment – see Help 4). If  there are several values per 
row/column cell, as below for the number of individuals dying during a period of 
observation:

Treatment

Experimental Control

Sex
Male 3, 4, 8, 12 23, 24, 12, 32

Female 1, 0, 2, 9 32, 45, 31, 21

Treatment

Experimental Control

Sex
Male 27 91

Female 12 129

then a two-way analysis of variance is appropriate. If  there is just a single count in 
each cell, as in the number of male and female fish responding to an experimental 
or control odour stimulus:

then an n * n chi-squared test is appropriate.
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Some self-test questions
(Answers on p. 234)

1. An experimenter recorded the following body lengths of  freshwater shrimps 
(Gammarus pulex) in three different lakes.

Body size (mm)
Lake 1 Lake 2 Lake 3

9.9 10.5 9.6
8.7 12.1 9.0
9.6 11.2 8.7

10.7 9.7 13.2
8.9 8.7 11.9
8.2 11.1 14.0
7.7 10.7 12.9
8.1 11.8 10.8

Faunal diversity in the lakes was known (1 6 2 6 3) and the experimenter 
expected shrimps from more diverse lakes to be smaller because of increased 
interspecific competition. To test this idea he compared body lengths in each 
pair of  lakes (1 versus 2, 2 versus 3 and 1 versus 3) using Mann–Whitney 
U-tests. Is this an appropriate analysis? If  not, what would you do instead?

2. How would you decide between correlation and regression analysis when testing 
a trend prediction?

3. The following is part of the Discussion section of a report into the effects of 
temperature and weather on the reproductive rate of aphids on bean plants.

While the results show a significant increase in the number of  aphids 
produced as temperature rises, there is a possible confounding effect of the 
age of the host plant and the rate of flow of nutrients. Indeed, there was a 
stronger significant positive correlation between nutrient flow rate and the 
number of  aphids produced (rs = 0.84, n = 20, p 6 0.01) than between 
temperature and production (see Results).
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Treatment

Control Hormone Hormone Hormone

1 2 3

Average internode 
length (mm)

32.3 41.6 38.4 50.2

Do you have any criticisms of the piece?

4. What does the following tell you about the analysis from which it derives?

  H = 14.1,   d.f. = 3,   p 6 0.01

5. An agricultural researcher discovered a significant positive correlation 
(rs = 0.79, n = 112, p 6 0.01) between daily food intake and the rate of 
increase in body weight of  pigs. What can the researcher conclude from the 
correlation?

6. A plant physiologist measured the length of  the third internode of  some 
experimental plants that had received one of  three different hormone 
treatments. The physiologist calculated the average third internode length for 
each treatment and for untreated control plants. The data were as follows:

To see whether there was any significant effect of  hormone treatment, the 
physiologist performed a 1 * 4 chi-squared test with an expected value of 
40.6 in each case and three degrees of freedom. Was this an appropriate test?

7. What do you understand by the terms:

(a) test statistic,
(b) ceiling effect,
(c) statistical significance?

8. The figure shows a significant positive correlation, obtained in the field, 
between body size in female thargs and the percentage of females in each size 
class that were pregnant. From this, the observer concluded that male thargs 
preferred to mate with larger females. Is such a conclusion justified? Give 
reasons for your answer.
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Treatment Treatment Treatment Treatment

A B C D
0 20 52 71
1 21 69 92
2 35 100 55
1 15 32 78
0 20 105
0 24 82

92

9. Why are significance tests necessary?

10. The following were the results of an experiment to look at the effect of adding 
an enzyme to its substrate and measuring the rate at which the substrate 
was split. In the control Treatment A, no enzyme was added; in Treatment 
B, 10 mg of enzyme was added; in Treatment C, 10 mg was added but the 
reaction was cooled; and in Treatment D, 10 mg was added but the reaction 
was warmed slightly.

What predictions would you make about the outcome of the experiment and 
how would you analyse the data to test them?

11. A farmer called in an agricultural consultant to help him decide on the best 
housing conditions (those resulting in the fastest growth) for his pigs. Three 
types of  housing were available (sty + open paddock, crating and indoor 
pen). The farmer also kept four different breeds of pig and wanted to know 
how housing affected the growth rate of  each. What analysis might the 
consultant perform to help the farmer reach a decision?

12. Figures (a) and (b) were used by a commercial forestry company to argue 
that the effect of  felling on the number of  bird species living in managed 
stands (assessed by a single standardised count in each case) was similar in 
both deciduous and coniferous forest. Would you agree with the company’s 
assessment on this basis?
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13. What would a negative value of the test statistic r signify to you?

14. Derive some hypotheses and predictions from the following observational 
notes:

Sampled some freshwater invertebrates from three different streams using 
a hand-net. There were more individuals of each species at some sites than 
others, both within streams and between them. Also some sites had a more 
or less even distribution of individuals across all species whereas others had 
a highly biased distribution with some species dominating the community. 
Some species occurred in all three streams but they tended to be smaller in 
some streams than others. A number of predatory dragonfly nymphs were 
recorded but there was never more than one species in any one sample, even 
when more than one existed in a stream. Water quality analyses showed 
that one stream was badly polluted with effluent from a local factory. 
This stream and one of the others flowed into the third stream, forming a 
confluence. It was noticed that stones and rocks on the substrate had fewer 
organisms on or under them in regions of faster flow rate.

15. Is chi-squared used for testing differences or trends?

16. A student in a hall of residence suffered from bed bugs. During the course of 
a week he was bitten 12 times on his legs, 3 times on his torso, 6 times on his 
arms and once on his head. Could these data be analysed for site preferences 
by the bugs? If  so, how?

17. An experimenter had counted the number of times kittens showed elements of 
play behaviour when they were in the presence of their mother or their father 
and with or without a same-sex sibling. The experimenter had collected ten 
counts for each condition: (a) mother/sibling, (b) mother/no sibling, (c) father/
sibling, (d) father/no sibling, and was trying to decide between a 2 * 2  chi-
squared analysis and a 2 * 2 two-way analysis of variance. What would you 
suggest and why?

18. Why do biologists regard a probability of 5 per cent or less as the criterion for 
significance? Why not be even stricter and use 1 per cent?

19. A fisheries biologist was interested in the maximum size of  prey that was 
acceptable to adult barracuda. To find out what it was, he introduced six 
adult barracuda into separate tanks and fed them successively larger species 
of fish (all known to co-exist with barracuda in the wild). He then calculated 
the mean size of the fish that the barracuda last accepted before refusing a 
fish as a measure of  the maximum size they would take. Is this a sensible 
procedure?

20. A psychologist argued that since males of  a species of  monkey had larger 
brains than the females there was less point in trying to teach females complex 
problem-solving exercises. Any comments?
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21. An ecologist studying populations of voles in different woods suspected from 
a glance at the data that males from some woods had larger adrenal glands 
than those from others. Unfortunately, the age of the animals also appeared 
to differ between the woods. How might the ecologist test for a difference in 
adrenal glands between woods while controlling for the potential confounding 
effect of age?

22. What do you understand by an ‘order effect’?

23. A parasitologist wished to test for the effect of increasing the amount of food 
supplement to nestling birds on subsequent parasite burdens as adults. The 
parasitologist intended to carry out a linear regression analysis with amount 
of  food supplement on the x-axis and adult parasite burden on the y-axis. 
However, when the distribution of  parasite burden data was checked for 
normality, the following was found:

What implications does this have for the regression analysis?

24. What is meant by pseudoreplication?

25. When a botanist compared the frequency of different leaf sizes on a tree with 
a normal distribution, the significance test comparing the two distributions 
yielded a test statistic value with an associated probability of 0.0341. Do the 
botanist’s data conform to a normal distribution or not?

26. A behavioural ecologist was interested in the effects of  other competing 
males in the environment on sperm production by focal courting males. Her 
prediction was that courting males should produce more sperm to transfer to 
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a female if  there are more males around to compete for her. She decided to test 
her idea by exposing 20 focal males to each of three treatments: (a) no other 
males present, (b) one other male present, and (c) four other males present. 
She was careful to randomise the order in which the three treatments were 
presented to her different subjects and she measured the width of the thorax of 
each subject male and stimulus female to gauge their body size. The number of 
sperm produced was estimated as the weight of the spermatophore (package 
of sperm) transferred to the female. How might she go about analysing the 
data from the experiment to test her prediction?

27. A psychologist interested in sexual attitudes in men and women from different 
social environments carried out a questionnaire survey of some 150 subjects. 
The questionnaire consisted of 40 questions covering a range of aspects of 
sexual behaviour from behavioural characteristics preferred in potential partners 
to attitudes towards promiscuity and homosexuality. It also asked for various 
items of background information, such as financial status, family background, 
age, religion and ethnic group. How might the psychologist set about preparing 
this kind of data for analysis, and what analysis might they choose?

28. In a study of the effects of various environmental variables on resistance to 
an experimental infection in male house mice (Mus domesticus), a student 
had measured four variables with respect to subject males: food availability 
during development, maternal body weight, local population density and litter 
size. These were then related to a measure of resistance to an experimental 
infection with a blood protozoan (clearance rate) by means of four separate 
regression analyses, with clearance rate as the dependent variable in each case. 
Is this a reasonable approach to the analysis?

29. In a study of the behaviour of foraging bees, individual bees were presented 
with flowers treated in one of three different ways: (a) not previously visited 
by any bees, (b) previously visited by the subject forager herself, and (c) 
previously visited by a different individual forager. Several aspects of  each 
subject’s behaviour were measured, including the speed of  approach to 
the flower, the length of  time spent hovering in front of  the flower before 
visiting it, whether the flower was touched by the bee, how many times the 
bee touched the flower with its antennae, the duration of antenna touches, 
whether the flower was visited at all, the length of any visit, the length of time 
spent hovering by the flower after a visit, and the speed of departure from the 
flower. How might these data be analysed to reveal how the bees responded 
to the different flower treatments?

30. A physiologist was interested in the effect of  mobile phones on nerve cell 
(neurone) function. He therefore measured impulse transmission rates 
in replicated laboratory preparations of  neurones under three different 
strengths of electromagnetic field, plus a control of zero magnetic field. Each 
preparation was only used once, and each treatment was replicated 30 times. 
What kind of analysis is appropriate?
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Appendix I
Table of confidence limits to the median

Table of non-parametric confidence limits to the median

Sample size (n) r (for p approx. 95%)

2 –

3 –

4 –

5 –

6 1

7 1

8 1

9 2

10 2

11 2

12 3

13 3

14 3

15 4

16 4

17 5

18 5

19 5

20 6

21 6

22 6

23 7

24 7

25 8

26 8

27 8

28 9

29 9

30 10

r denotes the number of values in from the extremes of the data set that 
identifies the 95 per cent confidence limits (see text). Modified after 
 Colquhoun (1971) Lectures on biostatistics, Clarendon Press, Oxford.
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Appendix II
How to calculate some simple significance tests

Examples of tests for a difference between two or more groups

If  you calculate the test statistic of many parametric statistical tests by hand, 
the calculations often involve a standard set of core operations on the data. 
Rather than repeating them in all the relevant boxes, we have placed them 
here for reference. They all involve calculating a quantity known as the sum 
of squares, which is actually the same operation performed when finding the 
standard deviation or standard error (see Box 2.1).
1. Follow steps 1–3 of Box 2.1. The resulting quantity is the sum of squares 

of x, conventionally denoted by Sxx.

Sometimes you will have a y-variable as well as an x-variable (e.g. in regression, 
see Box 3.11). If  so:

2. Calculate the sum of all the y-values in the data set (gy).
3. Square all the y-values and sum them, giving (gy2).
4. Multiply the x- and y-values of  each x–y pair together, and add them 

together, giving (gxy).
5. Calculate gy2 - [(gy)2/n], giving the sum of squares of y, Syy.
6. Calculate gxy - [(gx)(gy)/n], giving the sum of the cross-products, Sxy.

Box A1   The basic calculations for parametric test statistics
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1. Frame the prediction. In this case it is the general prediction that the two 
groups (A and B) will have different mean values (A ≠ B). Thus the null 
hypothesis is that the two group means will not differ.

2. Count the number of data values in the first group; this number is referred 
to as n1. If n1 = 1, then there is definitely something wrong! (If this number 
represents a count of the number of items in one of two categories – that 
form the two groups – then you should be doing a x2 test. If it is a rank 
or a constant interval measurement, then you need to collect some more 
data!) Count the number of data values in the second group; this number 
is referred to as n2 (it should be greater than 1, as before).

3. Calculate the variances of each group separately (see Box 2.1 for how to 
do this), producing s1

2 and s2
2.

4. Calculate the value of P = (n1 + n2)/(n1n2).
5. Calculate the value of Q = [s1

2(n1 - 1) + s2
2(n2 - 1)]/(n1 + n2 - 2).

6. Calculate the value of  R = U(PQ). This is the standard error of  the 
difference between the two groups.

7. Calculate the mean values of  each group separately, and take the 
difference S = (m1 - m2). Switch the mean values round so as to make 
the difference positive, since in a general test we are not interested in the 
direction of the difference, but merely in whether it differs from zero.

8. Calculate the value of the test statistic, t = S/R.
9. In order to calculate t, we needed to know the difference in mean values, 

and the s.e. of this difference, i.e. two prior parameters were required. 
The degrees of freedom of t are therefore n1 + n2 - 2.

10. Look up the two-tailed value of  t in Table D of Appendix III for the 
critical value for your degrees of freedom. If  your value is greater than 
the relevant value in the table, then the difference you found is significant.

Box A2a   (i)  Mean values: how to do a general parametric  
test for two groups (two-tailed t-test)

1. Frame the prediction, i.e. decide which of  the two groups (A and B) is 
predicted to have the greater mean value. There needs to be some a priori 
reason (theory, or previous published or gathered data) for this prediction. 
Suppose that on the basis of  your knowledge, you predict that A 7 B. 
The null hypothesis is that the mean values for the two groups do not differ 
in the predicted direction.

Box A2a   (ii)  Mean values: how to do a specific parametric  
test for two groups (one-tailed t-test)
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2. Calculate the value of t as steps 2–9 above, but make sure that the difference 
in mean values is done in the way that is predicted to generate a positive 
difference. Here you are predicting that A 7 B, and hence (A - B) should 
generate a positive value of t. If  it does not actually generate a positive 
difference, then you know automatically that the result is not significant. 
Note that if  the result is an unusually large but negative value of t (that 
would have been significant, had you predicted the opposite pattern of 
mean values), you are not allowed to conclude anything other than that 
your prediction is not supported by the data. This is the cost of a specific 
(one-tailed) prediction paid in exchange for the benefit of  the more 
powerful test.

3. Look up the critical value of a one-tailed t-test in Table D of Appendix III 
using the degrees of freedom you have. If  your t-value is greater than the 
critical one, then you conclude that the result is significant: the evidence 
suggests that the group mean predicted to be greater really is so, and you 
reject the null hypothesis.

1. Count the number of data values in the group with the fewer values (if  
there is one); this number is referred to as n1.

2. Count the number of data values in the other group; this is n2.
3. Rank all the values in both groups combined. The smallest value takes the 

lowest rank of 1, the next smallest value a rank of 2 and so on. If two or 
more values are the same they are called tied values and each takes the 
average of the ranks they would otherwise have occupied. Thus, suppose 
we have allocated ranks 1, 2 and 3 and then come to three identical data 
values. If these had all been different they would have become ranks 4, 5 
and 6. Because they are tied, however, they each take the same average rank 
of 5 ((4 + 5 + 6)/3), though – and this is important – the next highest 
value still becomes rank 7 just as if the three tied values had been ranked 
separately. If there had been only two tied values they would each have taken 
the rank 4.5 ((4 + 5)/2) and the next rank up would have been 6. We should 
thus end up with rank values ranging from 1 to N, where N = n1 + n2.

4. Add up the rank values within each group, giving the totals R1 and R2 
respectively.

5. Calculate U1 = n1 * n2 + [(n1(n1 + 1))/2] - R1.
6. Calculate U2 = n1 * n2 - U1.

Box A2b    (i)  Mean ranks: how to do a general non-parametric  
test for two groups (Mann–Whitney U-test)
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There is no non-parametric test specially designed to test for a specific 
difference between two groups. Use the specific non-parametric analysis of 
variance (see Box 3.5d), because this can cope with any number of groups.

Box A2b    (ii)  Mean ranks: how to do a specific non-parametric  
test for two groups

1. Frame the prediction. In this case, the general prediction being made is 
to ask whether there are any differences among the mean values of the 
groups. Therefore the null hypothesis actually tested is that there are no 
differences among the mean values of the groups.

2. The test considers i groups of data, each of which contains ni data values. 
The total number of data values in all groups together = N = gni.

3. Calculate the mean values of each of the groups, mi.
Work out T, the total sum of squares of  all the data (follow Box 2.1, 
items 1–3).

4. Work out Si, the sum of squares for the data of each group separately 
(again, follow Box 2.1, 1–3).

Box A3a    (i)  Mean values: how to do a general parametric  
one-way analysis of variance (ANOVA)

If  U2 is smaller than U1 then it is taken as the test statistic U. If  not, 
then U1 is taken as U.

7. We can now check our value of U against the threshold values in U tables 
(a sample is given in Appendix III, Table B). If  our value is less than the 
threshold value for a probability of 0.05, we can reject the null hypothesis 
that there is no difference between the groups. Note that, in this test, we 
use the two sample sizes, n1 and n2, rather than degrees of  freedom to 
determine our threshold value.

If  one of the groups has more than 20 data values in it, U cannot be checked 
against the tables directly. Instead, we must use it to calculate another test 
statistic, z, and then look this up (some sample threshold values are given in 
Appendix III, Table C). The calculation is simple:

z =
U - (n1 * n2)/2

[(n1)(n2)(n1 + n2 + 1)]/12
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5. Calculate the error sum of squares, SSerror = gSi.
6. Calculate the among-groups sum of  squares, SSamong = T - SSerror. 

This should give the same result as calculating the sum of squares using 
the mean values mi rather than the raw data.

7. The d.f.total, the total degrees of freedom, is N - 1.
8. The among-groups degrees of freedom, d.f.among, is (i - 1).
9. The error degrees of freedom, d.f.error, is (N - i).

10. The mean square among groups, MSamong = SSamong/d.f.among.
11. The error mean square, MSerror = SSerror/d.f.error.
12. The test statistic, F = MSamong/MSerror.
13. The degrees of freedom for F are d.f.among, d.f.error
 (note that F has two values for degrees of  freedom, unlike other test 

statistics, which have only one).
14. Now look up the critical value of  F in Table G of  Appendix III for 

f1 = d.f.among, and f2 = d.f.error.
15. If your value for F is greater than the critical value, then the result is taken 

to be significant, and we reject the null hypothesis of equal mean values 
for all groups. Present the one-way ANOVA laid out in the standard 
manner (see Fig. (i) in Box 3.5b [without, of course, the contrasts]).

16. Note that this is a general prediction and, therefore, we can only 
conclude that there are some differences among the means: we are not 
allowed to say which particular pair of  mean values are significantly 
different because we did not make any specific prediction beforehand 
about the ordering of the mean values, nor did we set up planned specific 
contrasts between particular sets of  groups. Many researchers would 
like to be able to make such post hoc tests, however, and a plethora 
of  different methods are available and are often used. However, they 
should only be used as a rough guide to what the differences might be, 
preferably to set up a priori hypotheses for a new data set to test. Many 
people use the least significant difference, or LSD test. All this does 
is to take the MSerror from the ANOVA (which is an estimate of  the 
variation within groups) and construct a 95 per cent confidence limit 
with it using:

LSD = tN - i * U[(2/n) * MSerror]

 where tN - i is the 5 per cent threshold value of  t for N - i degrees of 
freedom. This looks a simple enough procedure, but in fact the LSD test 
is only accurate for a priori contrasts. It should, therefore, only be used 
as a rough guide in post hoc testing.
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Unfortunately there is effectively no parametric equivalent of the test for a 
particular rank order of mean ranks, as in Box A3b(ii). Although one does 
exist, called isotonic regression (see Gaines & Rice, 1990), it is very obscure 
and hardly ever used; it also involves computer-intensive randomisations of 
the data, and is well beyond the scope of this book. More common (but still 
unusual) is the use of a priori contrasts. If  done in advance of obtaining the 
data, these allow (i - 1) contrasts to be made. We explain this technique here.
1. Each contrast consists of one subset of the i groups (A) contrasted against 

another subset (B) (for example, a control (A) versus all treated groups 
(B)): each therefore involves effectively creating two groups out of  the 
data, and testing them using a t-test. Such contrasts can themselves be 
either general (A ≠ B) or specific (e.g. A 7 B).

2. Frame the predictions. Here you do this by formulating the contrasts that 
you want to make in advance of collecting the data. You are allowed (i - 1) 
contrasts. Express each contrast as an inequality, and make the left-hand 
side greater than or equal to zero. For example, if  you have three groups 
(A, B and C), and want to test whether group A is different from the other 
two groups (i.e. from the average of B + C), then this general hypothesis 
is that:

A ≠ (B + C)/2

and hence

2A - B - C ≠ 0, i.e. +2(A) - 1(B) - 1(C) ≠ 0

This gives us a set of  coefficients to apply to the mean values of  each 
group; in this case they are +2, -1 and -1 for the mean values of groups 
A, B and C, respectively.

Groups that you want to leave out of the contrast have a coefficient 
of zero. Thus another example might be that you are predicting that the 
control group A has a greater mean value than group C; this specific 
hypothesis is that:

A 7 C

and hence (making the left-hand side greater than zero)

+1(A) + 0(B) - 1(C) 7 0

The coefficients are labelled as li for the i groups.
3. You can check that you have a valid set of coefficients, because if  so, then 

they sum to zero, i.e. gli = 0.

Box A3a    (ii)  Mean values: how to do a specific parametric  
one-way ANOVA
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In addition, each contrast must be independent of all the others. This 
is the main reason why a maximum of (i - 1) contrasts are allowed, since 
it is not possible for more than that to be independent. Statistically, if  two 
contrasts are independent they are called orthogonal. If  you have equal 
sample sizes per group (as every well-designed experiment should have!), 
you can easily check whether any two contrasts (a and b) are independent 
since the following must be true:

glia * lib = 0

In the case of unequal sample sizes of ni per group, the equivalent formula 
is gni * lia * lib, and there are additional complications later on in the 
calculation. Strictly it is not essential for every contrast to be independent, 
but if  they are not (as in this example), you need to adjust the threshold 
probability of significance: instead of 0.05, it becomes 1 - (0.95)1/r, where 
r = the number of non-independent contrasts you make.

4. Do a general parametric one-way ANOVA first (see Fig. (i) in Box 3.5a), 
since technically you are breaking the among-group differences down into 
specific independent contrasts (decomposing the sums of squares in statistical 
jargon). You will need the error mean square, MSerror, to test each contrast.

5. For each contrast, obtain the coefficients (li) and using the mean values 
(mi) for each of the original groups, do the following calculation, which 
results in a sum of squares for the contrast. This contrast has one degree 
of freedom, and hence is also a mean square (MS):

L = gli * mi

If  you are testing a specific hypothesis about the contrast, check at this 
point that L is positive. If it is, this means that the data follow the predicted 
pattern (analogous to the positive value of a one-tailed t-test). If  it is not 
positive, then you know already that your hypothesis will not be supported 
by the data, and will not be significant.

MSL = L2n/gli
2

where n is the sample size of each group.
If  you have unequal sample sizes for your groups, follow the method 

of Sokal and Rohlf (1995, pp. 528–529), but you should probably use a 
computer package to do this calculation for you!

6. Now form the variance ratio

F = MSL/MSerror

where MSL is the mean square for the contrast, and MSerror is the error 
mean square from the one-way ANOVA. The test statistic is then

t = UF
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7. The degrees of freedom of the t-test for the contrast are a(n - 1), where 
a is the number of groups involved in the contrast (excluding the groups 
left out, those with coefficients of zero).
(a) If  your hypothesis is general, then look up the critical value of a two-

tailed t-test in Table D of Appendix III.
(b) If  your hypothesis is specific, then look up the critical value of a one-

tailed t-test in Table D of Appendix III.

8. Repeat steps 2–7 for each contrast.
9. Present the results of the one-way ANOVA, as well as the contrasts, laid 

out in the standard manner.

1. Formulate the prediction. In this case, the general prediction being made 
is to ask whether there are any differences at all among the mean ranks of 
the groups. Therefore the null hypothesis actually tested is that there are 
no differences among the group mean ranks.

2. The test considers i groups of data, each of which contains ni data values. 
The total number of data values in all the groups together = N = gni.

3. Rank all the values across all the groups combined (as in the U-test), 
giving low rank scores to low values. Once again, tied values are given the 
average of the ranks they would have been ascribed had they been slightly 
different. Where there are lots of tied values relative to the sample size, 
you may need to apply a tie-correction factor, but in this case it is better 
to get the calculation done by a computer.

4. Sum the ranks in each group, giving Ri in each case.
5. The test statistic is H, where

H =
12

N(N + 1)
* (gRi

2/ni) - 3(N + 1)

6. The degrees of freedom are (i - 1).
7. Look up the significance of the calculated H value as if  it were a x2, in 

Table A of Appendix  III (although H is not actually a x2, its value is 
distributed in the same way, so it is as if  we were using x2). There is no 
standard layout for a general non-parametric ANOVA; just quote the test 
statistic, its degrees of freedom and the probability (see Fig. (i) in Box 3.5b).

Box A3b   (i)  Mean ranks: how to do a general non-parametric  
one-way ANOVA
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8. Note that this is a general prediction and, therefore, if  significant we can 
only conclude that there are some differences among the mean ranks: we 
are not allowed to say which particular pair of mean values are significantly 
different because we did not make any specific prediction beforehand 
about the ordering of the mean values, nor did we set up planned specific 
contrasts between particular sets of groups. Many researchers would like 
to be able to make such post hoc tests, however, and some methods are 
available (but not often used). They should only be used as a rough guide 
to what the differences might be, preferably to set up a priori hypotheses 
for a new data set to test. Sokal & Rohlf (1995, p. 431) and Day & Quinn 
(1989) have some recommendations.

There are two ways of making specific predictions about the mean ranks of 
your groups. The one we favour here uses all the groups in a single a priori 
prediction of their rank order. The alternative is to use a priori contrasts (see 
point 9, below).
1. Formulate the specific prediction by specifying a particular rank order 

of  the mean ranks of  the groups, based on some a priori knowledge 
(theory, or previous published or gathered data), in advance of obtaining 
the data. The null hypothesis is that the rank order does not follow the 
prediction.

2. The test considers i groups of data, each of which contains ni data values. 
There are N data values in total in all the groups (=  gni).

3. Rank all the values across all the groups combined (as in the U-test), 
giving low rank scores to low values. Once again, tied values are given the 
average of the ranks they would have been ascribed had they been slightly 
different. Where there are lots of tied values relative to the sample size, 
you may need to apply a tie-correction factor, but in this case it is better 
to get the calculation done by a computer.

4. Sum the ranks in each group, giving Ri in each case.
5. Assign the predicted rank order to the groups, from the lowest (rank = 1) 

to the highest (rank = i). This rank order then provides the li coefficient 
values. Using these li values, calculate:
the observed L = gliRi,
the expected E = (N + 1)(gnili)/2,
the variance V = (N + 1)(Ngnili

2 - (gnili)2)/12.

Box A3b   (ii)  Mean ranks: how to do a specific non-parametric  
one-way ANOVA
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6. Calculate the test statistic, z, as: z = (L - E)/U(V). (Note that z is a 
standardised statistic which does not have any degrees of freedom.)

7. Look up the value of z in Table C of Appendix III, where you will see 
that the critical value for this specific (one-tailed) test is 1.64. If  your 
value is greater than this, then the result is significant. If  it is significant, 
we then reject the null hypothesis: there is evidence that the mean ranks 
fall into the predicted rank order.

8. What do you do if  the result is not significant? If  the mean ranks in 
fact fall in the opposite direction to your prediction, the value of z will 
be negative and quite possibly greater in absolute magnitude than 1.64. 
You cannot conclude anything about this, since your predicted rank 
order was not supported. You benefited from a gain in power over a 
general test, but the cost was that you could not conclude anything from 
a failure to reject the null hypothesis. You certainly cannot go and test an 
alternative rank order: this would now be post hoc since you have seen 
the actual pattern of  the mean ranks. What you can do, following on 
from a non-significant specific test, is to ask the question: my predicted 
rank order was not supported, but is there evidence of any differences 
among groups in the data? In other words, you can go ahead and do a 
general test for any differences.

9. An alternative method is to use a priori contrasts, similar to the 
parametric case of  Box A3a(ii). If  done in advance of  obtaining the 
data, these allow (i - 1) independent contrasts to be made, each one 
consisting of a subset of the groups contrasted against another subset. 
Follow the method of Box A3a(ii), points 1–2, to obtain the coefficients 
for the contrast you want to make, and then create two new groups by 
adding together the data for all the original groups that have the same 
sign (+  or -) coefficient. These two artificial groups are then tested using 
either a Mann–Whitney U-test (general prediction only), or preferably a 
non-parametric one-way ANOVA (general or specific prediction).

Note that the coefficients for these specific contrasts are not the 
same thing as the coefficients that specify the rank order for the test 
outlined above, points 1–8. You cannot use positive, negative and zero 
coefficients in the rank order test, imagining that you are doing a 
specific contrast.

10. There is no standard layout for a specific non-parametric one-way 
ANOVA; just quote the test statistic for each prediction, its degrees of 
freedom (if  appropriate) and the probability. Note that a z-test does not 
have degrees of freedom, whereas specific contrasts have one degree of 
freedom (using either Mann–Whitney U-tests or non-parametric one-
way ANOVA).
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This is a little more complicated than a parametric one-way ANOVA, but in 
principle it is the same. Using the freshwater/marine fish example:
1. The two-way design is cast as ij cells (here 4) formed from i columns 

(here i = 2) and j rows (here j = 2) in a table. Each cell has a number 
of replicate measurements, n per cell.

Formulate the predictions. In this case for example, (a) rows: marine 
fish differ in growth rate from freshwater fish; (b) columns: male fish 
differ in growth rate from female fish; (c) interaction: water type and 
sex of  fish interact to determine growth rate. The appropriate null 
hypotheses are that there are no differences among the rows, or among 
the columns, and that there are no interactions of any kind.

2. Work out the mean values of all the replicates in each cell (Bij), and the 
overall means of each column (Ci) and row (Rj) in the two-way design. 
The grand mean of all the data is M.

3. Calculate SSrows, the sum of squares of the row mean values (not the 
raw data), following the method given in Box A1. Do the same for the 
column mean values to find SScols, and the cell means to find SSgrps.

4. Calculate the interaction sum of  squares, Sint = SSgrps -
SSrows - SScols.

5. Calculate the sum of squares of each cell separately, and add them up 
to give SSerror.

6. The degrees of  freedom for columns d.f.cols = (i - 1), for rows 
d.f.rows = (j - 1), for the interaction d.f.int = (i - 1)(j - 1). The error 
degrees of freedom d.f.error = ij(n - 1).

7. Calculate the mean squares: MSrows = SSrows/d.f.rows; MScols =
SScols/d.f.cols; MSint = SSint/d.f.int; MSerror = SSerror/d.f.error.

8. Calculate the test statistic for each component:
Frows = MSrows/MSerror with degrees of freedom of d.f.rows, d.f.error

Fcols = MScols/MSerror with degrees of freedom of d.f.cols, d.f.error

Fint = Mint/MSerror with degrees of freedom of d.f.int, d.f.error

9. Look up these values of F with the appropriate degrees of freedom in 
Table G of Appendix III to see whether they exceed the relevant critical 
values. Present the two-way ANOVA laid out in the standard manner.

10. Note that if  the interaction is significant, then the row and the column 
effects don’t really mean much, because the difference among the row 
groups will then depend on which column group it is, and vice versa.

Box A4a   (i)  Mean values: how to do a general parametric  
two-way ANOVA
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11. You should be aware that there are two kinds of grouping factors that 
create the ‘ways’ of a one- or two-way ANOVA. The distinction doesn’t 
make a difference in a one-way parametric analysis, but it does in a two-
way. First, there are fixed factors, where the groups are fixed by the 
experiment, and are not intended to represent a few of a great range of 
possibilities; the hypothesis being tested is about whether real differences 
exist among the actual groups in the experiment. Many experimentally 
created groupings are of this type, such as a treated and a control group 
(which are not representative of a range of different possible groups). A 
random factor, on the other hand, has groups that are merely a sample of 
all possible groups, and are intended to represent this range of possibilities; 
here one is not really interested in whether there are differences among 
these particular groups, but rather in how much of  the variation is 
contained among as opposed to within the groupings. Rearing sets of 
animals in different cages would be a good example: cage differences are 
not really treatments, but merely random variation that is not interesting 
but nevertheless must be allowed for. Sokal & Rohlf (1995, Section 8.4) 
and Underwood (1997) have good discussions of this distinction.

As in the one-way case (Box 3.5b), we cannot specify a particular rank order 
that we expect, but we can make a priori contrasts. If  these contrasts are 
specified in advance of  obtaining the data, they allow (i - 1) contrasts to 
be made among column groups, (j - 1) contrasts among row groups, and 
(i - 1)(j - 1) contrasts involving the interaction of  both row and column 
groups. As before, each contrast consists of a subset of the groups contrasted 
against another subset.
1. Formulate the predictions that you want to make in the form of contrasts, 

before collecting the data. You do this by expressing the prediction as an 
inequality, just as in Box 3.9b. From rearranging the inequality, you obtain 
the relevant set of  coefficients, li, for each contrast. Unlike Box 3.9b, 
however, you can either cast each contrast as a general or a specific contrast 
(using ≠  or 6 , respectively, in the inequality, just as in Box 3.5b).

2. Each contrast must be valid and independent of all the others (using the 
checks exactly as detailed in Box 3.5b).

3. Do a general parametric two-way ANOVA first (see Box 3.9a), since you 
are technically breaking the among-group differences down into specific 
independent contrasts (‘decomposing the sums of squares’ in statistical 
jargon). You will need the MSerror term from this analysis.

Box A4a   (ii)  Mean values: how to do a specific parametric  
two-way ANOVA
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4. For each contrast, obtain the coefficients (li) and the mean values (mi) 
for each group, and follow exactly the method detailed for the one-way 
case in Box 3.5b, to obtain the test statistic, t, and its significance for your 
contrast.

5. Repeat step 4 for each contrast.
6. Present the results of the two-way ANOVA, as well as the contrasts, laid 

out in the standard manner.

1. Rank the data values in all cells combined and add up the ranks in each 
cell to give a rank total R® for that cell.

2. We can now use these rank totals to test our general predictions:
(a) Marine fish differ from freshwater fish.

Sum the rank totals for each column (see table on p. 115) separately 
giving an Ri value for marine and an Ri value for freshwater 
environments. Now calculate H as in the one-way analysis of variance 
(Box 3.5c), using the column Ri values and their appropriate ni values 
(here there are eight values making up each Ri, hence ni = 8), and 
check the resulting value in an appropriate table (e.g. Appendix III, 
Table A) as if  it were x2 for (i - 1) degrees of freedom.

(b) Male fish differ from female fish.
Sum the rank totals for each row separately giving an Ri value for 
male and an Ri value for female fish and calculate H again as above. 
Again, ni = 8 in our example.

(c) There is an interactive effect of water type and sex on the growth rate of fish.
This is an open-ended general prediction which combines both (a) 
and (b) above. It is asking whether there is any interaction between 
levels of grouping in determining growth rate. The calculation of 
H is exactly as above but the gRi

2/ni term includes the rank totals 
for all the cells in the table instead of just the columns or the rows 
to give Htot. Here ni is again the number of values making up each 
Ri (=  4 in our example). H for the interaction, Hint, can then be 
calculated as: Hint = Htot - Hwater - Hsex, where Hwater and Hsex refer 
to H values from (a) and (b) above. The degrees of freedom for Hint 
are d.f.tot - d.f.water - d.f.sex, in this case, therefore, 3 - 1 - 1 = 1 
(d.f.tot is the total i (number of group means) minus 1).

Box A4b   (i)  Mean ranks: how to do a general non-parametric 
two-way ANOVA

Z04_BARN5999_05_SE_APP2.indd   219 19/10/2016   15:20



220 Appendix II

Testing our specific predictions is a little more complicated but still relatively 
straightforward. We give three illustrations below:
(a) A prediction about the columns, e.g. marine fish grow faster than freshwater 

fish (or vice versa). In terms of the means in the table above this predicts 
that (B + D) 7 (A + C). Another possibility is the opposite prediction, 
that freshwater fish grow faster than marine, i.e. (A + C) 7 (B + D).

(b) A prediction about the rows, e.g. male fish grow faster than female fish 
(or vice versa). This predicts (A + B) 7 (C + D) (or, conversely, for the 
prediction that females grow faster than males, (C + D) 7 (A + B)).

(c) A prediction about interaction, e.g. the effect of water type on growth 
rate will be greater in male fish than in female fish. This predicts that 
(A - B) 7 (C - D). The converse (the effect will be greater in females) 
would, of course, predict (C - D) 7 (A - B). This class of prediction 
is thus concerned with the interaction between water type and sex.

These are the predictions we can make about the relative sizes of the means; 
how do we arrive at the coefficients for testing? The procedure is as follows:
1. The first step is to rearrange the various predicted inequalities so that all 

the means are on the left, thus:
(a) The prediction about the effect of  water type becomes 

-A + B - C + D 7 0 (for growth in marine 7 growth in 
fresh water) or +A - B + C - D 7 0 (for growth in fresh 
water 7 growth in marine).

We then substitute 1 with the appropriate sign for each letter so 
that we arrive at -1, +1, -1, +1 or +1, -1, +1, -1, respectively.

(b) In the same way, the prediction about the effect of  sex 
becomes +A + B - C - D 7 0 (for males 7 females) or 
-A - B + C + D 7 0 (for females 7 males) and the coefficients 
thus +1, +1, -1, -1 or -1, -1, +1, +1.

(c) The interaction predictions must also be framed in this 
way. Thus the prediction (A - B) 7 (C - D) becomes 
+A - B - C + D 7 0 and the coefficients +1, -1, -1, +1. The 
prediction (C - D) 7 (A - B) becomes -A + B + C - D and 
the coefficients therefore -1, +1, +1, -1.

2. Then, testing these predictions
(a) Marine fish grow faster than freshwater fish.

Remember this means we are testing the prediction 
-A + B - C + D 7 0. The coefficients li  thus become 
-1, +1, -1, +1 so that the rank totals for each cell are weighted as 
follows:

Box A4b   (ii)  Mean ranks: how to do a specific non-parametric 
two-way ANOVA
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 L = gliRi

 = (-1)(Rfreshwater/male) + (+1)(Rmarine/male)
 + (-1)(Rfreshwater/female) + (+1)(Rmarine/female)

E and V can then be calculated as:
 E = (N + 1)(gnili)/2
 V = (N + 1)[Ngnili

2 - (gnili)2]/12

The test statistic z can then be calculated as:
z = (L - E)/UV

and checked against a table of z-values (see Appendix III, Table C).
(b) Male fish grow faster than female fish.

Now we are testing the prediction +A + B - C - D 7 0, so li 
becomes +1, +1, -1, -1. The calculation of L, E and V and then the 
test statistic z can proceed as above, but with the new li weightings.

(c) The effect of water type is greater in males than in females.
This tests the interaction prediction +A - B - C + D 7 0 using 
li of  +1, -1, -1, +1. Once again, follow the calculations above for 
L, E, V and z.

There is no standard layout for a non-parametric two-way analysis of variance; 
just quote the test statistic, its degrees of freedom and the probability.

Examples of tests for a trend

Set out the two sets of data values to be correlated in pairs (remember, for 
each value in set 1 there must be a corresponding value in set 2). Thus, if  we 
were looking for a correlation between height and weight in people, the data 
would be set out as below:

Box A5   How to calculate a correlation coefficient

Person Weight (kg) Height (m)

1 63 1.8 (pair 1)
2 74 1.7 (pair 2)
3 60 1.9 (pair 3)
4 71 1.8 (pair 4)
. . . .
. . . .
. . . .

etc.
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It may be that several values of  one measure are paired with the same 
value of the other, for example when measuring some behaviour in several 
individuals from the same social group and using these values in a correlation 
of time spent doing the behaviour and group size. In this case, the data might 
be as follows:

Observation Time spent in 
behaviour (s) Group size

1 15.3 3 (pair 1)
2 17.1 3 (pair 2)
3 18.0 5 (pair 3)
4 6.0 5 (pair 4)
5 31.1 5 (pair 5)
. . . .
. . . .
. . . .

etc.

We can now calculate either a parametric (Pearson) or non-parametric 
(Spearman rank) correlation:

This tests for a linear association between two (bivariate-) normally distributed 
variables.
1. Formulate the prediction, either as a general (any) or a specific (positive 

or negative) association. You can test for either a general (two-tailed) or 
specific (one-tailed) correlation coefficient by using different threshold 
values of the test statistic.

2. Calculate Sxx, Syy and Sxy as shown in Box A1.
3. Calculate the test statistic, r = Sxy/U(Sxx * Syy).
4. Look up the threshold value for r using (n - 2) degrees of  freedom in 

Table E of Appendix III, using either the one-tailed or two-tailed levels 
of significance, as appropriate to your hypothesis.

Box A5   (i) Pearson correlation coefficient (parametric)
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This tests for a monotonic (i.e. continuously increasing or decreasing) 
association between two variables, and works with ranking or constant 
interval measurements, making no assumptions about the normality of the 
data. As with the Pearson coefficient, we can test for either a general (two-
tailed) or specific (one-tailed) correlation by using different threshold values 
of the test statistic.
1. Rank the values for the first measure only, then rank the values for the 

second measure only.
2. Subtract second-measure ranks from first-measure ranks (giving di) then 

square the resulting differences (di
2) and calculate the Spearman coefficient 

as:

rS = 1 - [(6g idi
2)/(n3 - n)]

 where n is the number of pairs of data values.
3. If  n is between 4 and 20 (4 is a minimum requirement), consult 

Appendix III, Table F for the appropriate sample size to see whether the 
calculated rS value is significant. Remember that general (two-tailed) or 
specific (one-tailed) tests have different threshold values for rS. Thus you 
must know whether you are looking for any association at all (general), 
or just a positive, or just a negative one (specific).

4. If  n is greater than 20, a different test statistic, t, is calculated from rS as:

t = rSU[(n - 2)(1 - r2
S)]

 t can then be checked against its own threshold values (Appendix III, 
Table D) for n - 2 degrees of freedom.

A significant calculated value for rS or, with large samples, t, allows us to reject 
the null hypothesis of no trend in the relationship between our two measures.

Box A5   (ii)  Spearman rank correlation coefficient 
(non-parametric)

1. Calculate Sxx, Syy and Sxy as in Box A1.
2. Calculate the slope of the line as: b = Sxy/Sxx.
3. Calculate the intercept of the line on the y-axis as: a = y - bx, where y 

is the mean of the y-values and x is the mean of the x-values.

Box A6   (i) How to do a parametric linear regression
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The line can now be fitted by calculating y = a + bx for some sample 
x-values and drawing it on the scattergram.

To calculate the standard error of the slope:
4. Calculate the variance of y for any given value of x as:

s2
y/x = [1/(n - 2)][Syy - S2

xy/Sxx].

5. The standard error of the slope is then: U(s2
y/x/Sxx).

6. To find the test statistic F, calculate the following:
Regression sum of squares (RSS) = (Sxy)2/Sxx

Deviation sum of squares (DSS) = Syy - (Sxy)2/Sxx

Regression mean square (RMS) = RSS/1
(1 is the value always taken by the regression degrees of freedom.)
Deviation mean square (DMS) = DSS/(n - 2).
(n - 2 is the value taken by the deviation degrees of freedom.)

F is now calculated simply as F = RMS/DMS, and its value can be checked 
against critical values in F-tables (Appendix  III, Table G) for 1 (f1) and 
n - 2 (f2) degrees of freedom.
7. To find y for new values of x:
 Having established our regression equation, we might well want to predict 

y for other values of x that lie within the range we actually used in the 
analysis. Once we had then gone away and measured y for our new x-value 
we should want to see whether it departed significantly from its predicted 
value. Three steps are needed:
(a) calculate the predicted y-value using the equation y = a + bx as 

when fitting the regression line, but this time use the new x-value (x′) 
in which you are interested;

(b) calculate the standard error (s.e.) of the predicted y-value as follows:

s.e. = U[(s2
y/x)(1 + 1/n + d2/Sxx)]

where d = x′ - x;

(c) calculate the test statistic t as:

t =
observed y - predicted y

s.e.
and look up the calculated value of t in t-tables (Appendix III, Table D) 
for n - 2 degrees of freedom (where n is the number of pairs of data 
values in the regression). If t is significant it means the measured value 
of y departs significantly from the value predicted by the regression 
equation, and might lead to interesting questions as to why.
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A non-parametric approach to regression is little used (see Sokal & Rohlf, 
1995: 539). There seem to be few advantages over using a simple rank 
correlation in cases where you do not want to predict a value of y from x, 
or to discover the actual equation of their relationship. However, some use 
is made of a non-parametric procedure (spline regression) fitted to a set of 
points to produce a smoothed description of  highly non-linear irregular 
relationships (see Schluter, 1988; and Pentecost, 1999).

Box A6   (ii) How to do a non-parametric regression
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Significance tables

Probability, p
Degrees of  freedom 0.05 0.01 0.001

1 3.841 6.635 10.83
2 5.991 9.210 13.82
3 7.815 11.34 16.27
4 9.488 13.28 18.47
5 11.07 15.09 20.51

6 12.59 16.81 22.46
7 14.07 18.48 24.32
8 15.51 20.09 26.13
9 16.92 21.67 27.88

10 18.31 23.21 29.59

Table A Critical values of chi-squared at different levels of p. To be significant, calculated 
values must be greater than those in the table for the chosen level (0.05, 0.01, 0.001) of p 
and the appropriate number of degrees of freedom.

n1 3 4 5 6 7 8 9 10 15 20
n2

2 – – 0 0 0 0 0 0 1 2
3 0 0 1 2 2 2 2 3 5 8
4 1 2 3 4 4 4 5 10 13
5 4 5 6 7 7 8 14 20

6 7 8 10 10 11 19 27
7 11 12 12 14 24 34
8 15 15 17 29 41
9 17 20 34 48

10 20 23 39 55

15 34 39 64 90
20 48 55 90 127

Table B Critical values of Mann–Whitney U at p = 0.05. To be significant, values must be 
smaller than those in the table for appropriate sizes of n1 and n2.
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z .00 .01 .02 .03 .04 .05 .06 .07 .08 .09
1.5 .0668 .0655 .0643 .0630 .0618 .0606 .0594 .0582 .0571 .0559
1.6 .0548 .0537 .0526 .0516 .0505 .0495 .0485 .0475 .0465 .0455
1.7 .0446 .0436 .0427 .0418 .0409 .0401 .0392 .0384 .0375 .0367
1.8 .0359 .0351 .0344 .0336 .0329 .0322 .0314 .0307 .0301 .0294
1.9 .0287 .0281 .0274 .0268 .0262 .0256 .0250 .0244 .0239 .0233

2.0 .0228 .0222 .0217 .0212 .0207 .0202 .0197 .0192 .0188 .0183
2.1 .0179 .0174 .0170 .0166 .0162 .0158 .0154 .0150 .0146 .0143
2.2 .0139 .0136 .0132 .0129 .0125 .0122 .0119 .0116 .0113 .0110
2.3 .0107 .0104 .0102 .0099 .0096 .0094 .0091 .0089 .0087 .0084
2.4 .0082 .0080 .0078 .0075 .0073 .0071 .0069 .0068 .0066 .0064

2.5 .0062 .0060 .0059 .0057 .0055 .0054 .0052 .0051 .0049 .0048
2.6 .0047 .0045 .0044 .0043 .0041 .0040 .0039 .0038 .0037 .0036
2.7 .0035 .0034 .0033 .0032 .0031 .0030 .0029 .0028 .0027 .0026
2.8 .0026 .0025 .0024 .0023 .0023 .0022 .0021 .0021 .0020 .0019
2.9 .0019 .0018 .0018 .0017 .0016 .0016 .0015 .0015 .0014 .0014

3.0 .0013 .0013 .0013 .0012 .0012 .0011 .0011 .0011 .0010 .0010
3.1 .0010 .0009 .0009 .0009 .0008 .0008 .0008 .0008 .0007 .0007
3.2 .0007
3.3 .0005
3.4 .0003

3.5 .00023
3.6 .00016
3.7 .00011
3.8 .00007
3.9 .00005

4.0 .00003

Table C Probabilities associated with different values of z. The body of the table shows 
probabilities associated with different values of z. Values of z given to the first decimal 
place vertically and the second decimal place horizontally. z must therefore exceed 1.64 to 
be significant at p 6 0.05.
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Probability, p
Degrees  
of   
freedom

0.05
0.10

0.025
0.05

0.01
0.02

0.005
0.01

0.001
0.002

0.0005
0.001

(one-tailed)
(two-tailed)

1 6.314 12.71 31.82 63.66 318.3 636.6
2 2.920 4.303 6.965 9.925 22.33 31.60
3 2.353 3.182 4.541 5.841 10.21 12.92
4 2.132 2.776 3.747 4.604 7.173 8.610
5 2.015 2.571 3.365 4.032 5.893 6.869

6 1.942 2.447 3.143 3.707 5.208 5.959
7 1.895 2.365 2.998 3.499 4.785 5.408
8 1.860 2.306 2.896 3.355 4.501 5.041
9 1.833 2.262 2.821 3.250 4.297 4.781

10 1.812 2.228 2.764 3.169 4.144 4.587

11 1.796 2.201 2.718 3.106 4.025 4.437
12 1.782 2.179 2.681 3.055 3.930 4.318
13 1.771 2.160 2.650 3.012 3.852 4.221
14 1.761 2.145 2.624 2.977 3.787 4.140
15 1.753 2.131 2.602 2.947 3.733 4.073

16 1.746 2.120 2.583 2.921 3.686 4.015
17 1.740 2.110 2.567 2.898 3.646 3.965
18 1.734 2.101 2.552 2.878 3.610 3.922
19 1.729 2.093 2.539 2.861 3.579 3.883
20 1.725 2.086 2.528 5.845 3.552 3.850

Table D Critical values of t at different levels of p. To be significant at the appropriate level 
of probability, values must be greater than those in the table for the appropriate degrees of 
freedom.
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Probability, p
Degrees  
of   
freedom

0.05
0.1

0.025
0.05

0.01
0.02

0.005
0.01

0.0005
0.001

(one-tailed)
(two-tailed)

1 0.988 0.997 1.000 1.000 1.000
2 0.900 0.950 0.980 0.990 0.999
3 0.805 0.878 0.934 0.959 0.991
4 0.729 0.811 0.882 0.917 0.974
5 0.669 0.755 0.833 0.875 0.951

6 0.622 0.707 0.789 0.834 0.925
7 0.582 0.666 0.750 0.798 0.898
8 0.549 0.632 0.716 0.765 0.872
9 0.521 0.602 0.685 0.735 0.847

10 0.497 0.576 0.658 0.708 0.823

11 0.476 0.553 0.634 0.684 0.801
12 0.458 0.532 0.612 0.661 0.780
13 0.441 0.514 0.592 0.641 0.760
14 0.426 0.497 0.574 0.623 0.742
15 0.412 0.482 0.558 0.606 0.725

16 0.400 0.468 0.543 0.590 0.708
17 0.389 0.456 0.529 0.575 0.693
18 0.378 0.444 0.516 0.561 0.679
19 0.369 0.433 0.503 0.549 0.665
20 0.360 0.423 0.492 0.537 0.652

25 0.323 0.381 0.445 0.487 0.597

Table E Critical values for the Pearson product–moment correlation coefficient r. Values 
must be greater than those in the table to be significant at the indicated level of probability.
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Probability, p

n
0.05
0.10

0.025
0.05

0.01
0.02

0.005
0.01

(one-tailed)
(two-tailed)

4 1.000
5 .900 1.000 1.000
6 .829 .886 .943 1.000
7 .714 .786 .893 .929
8 .643 .738 .833 .881

9 .600 .700 .783 .833
10 .564 .648 .745 .794
11 .536 .618 .709 .755
12 .503 .587 .671 .726
13 .484 .560 .648 .703

14 .464 .538 .622 .675
15 .443 .521 .604 .654
16 .429 .503 .582 .635
17 .414 .485 .566 .615
18 .401 .472 .550 .600

19 .391 .460 .535 .584
20 .380 .447 .520 .570
21 .370 .435 .508 .556
22 .361 .425 .496 .544
23 .353 .415 .486 .532

24 .344 .406 .476 .521
25 .337 .398 .466 .511

Table F Critical values for the Spearman rank correlation coefficient rs. Values must be 
greater than those in the table to be significant at the indicated level of probability.
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Appendix IV
The common codes for the important graphical 
parameters of R®

col = lty = pch =

0 blank blank open square
1 black solid open circle
2 red dashed open up triangle
3 green dotted plus
4 blue dotdash X
5 cyan longdash open diamond

open down
6 magenta twodash triangle
7 yellow X in box
8 grey star

9 cross in 
diamond

10 cross in circle
11 6-point star
12 cross in box
13 X in circle
14 triangle in box
15 filled square
16 filled circle
17 filled up triangle
18 filled diamond
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Answers to self-test 
questions

The general topic and page number relevant to an answer is given in brackets in 
each answer.
 1. No, this is not an appropriate analysis because it involves the multiple use of 

a two-group test (Mann–Whitney U-test Box 3.3c pp. 79–80, 85). A significant 
result becomes more likely by chance the greater the number of two-group 
comparisons that are made. An appropriate analysis would be a non-parametric 
one-way analysis of variance (Box 3.5d pp. 92–94), which allows a test of the 
specific prediction that body size will be greatest in Lake 1, intermediate in Lake 
2 and least in Lake 3.

 2. Regression analysis (Box 3.11 pp. 121–122) is appropriate when testing for 
cause and effect in the relationship between x- and y-values, and the x-values 
are established in the experiment. The data are measured on some kind of 
constant interval scale that allows a precise, quantitative relationship to be 
calculated. Because it depends on establishing a quantitative relationship, 
predicting new values of  one variable from new values of  the other also 
demands regression analysis (Linear regression p. 119). In other cases, 
correlation analysis is necessary. Non-parametric correlation analysis (Box 
3.10 pp. 117–118) is appropriate for both these kinds of  data, and others 
where x-values are merely measured, but yields only the sign and magnitude 
of  the relationship and makes no assumptions about the cause-and-effect 
relationship between x- and y-values (Cause and effect p. 119). (See also: 
What sort of trend? p. 198)

 3. The investigator has introduced a new analysis into the Discussion (the 
correlation between nutrient flow rate and aphid production). The analysis 
should, of course, be in the Results section (Results p. 168; see especially last 
sentence of this section. See also Discussion pp. 168–169, third sentence).

 4. The information tells you that the investigator carried out a non-parametric 
one-way analysis of variance and that they tested a general prediction, thus 
using the test statistic H instead of z. The three degrees of freedom tells you 
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that the analysis compared four groups and the p-value that H = 14.1 at 
d.f. = 3 is significant at the 1 per cent level. (Box 3.5c, pp. 91–92)

 5. The researcher can conclude that there is a significant positive association 
between daily food intake and growth rate, but can’t necessarily infer that 
increased growth rate is caused by greater food intake; it could be that  faster-
growing pigs simply eat more food as a result. (Cause and effect p. 119)

 6. No, a chi-squared test is not appropriate here because the data are constant 
interval measurements and not counts. (Types of measurement and types of 
test p. 60)

 7. (a)  A test statistic is calculated by a significance test, and its value has a 
known probability of occurring by chance for any given sample size or 
number of degrees of freedom. (Test statistic p. 73)

(b) A ceiling effect occurs where observational or experimental procedures 
are too undemanding to allow a prediction to be tested; all samples 
approach the maximum value. (Floor and ceiling effects pp. 133–134)

(c) Statistical significance refers to cases where the probability that a 
difference or trend as extreme as the one observed could have occurred 
by chance, if  the null hypothesis of no difference or trend is true, is equal 
to or less than an accepted threshold probability (usually 5 per cent, but 
sometimes 1 or 10 per cent). (What is statistical significance? pp. 57–59)

 8. No, the observer cannot conclude that male thargs prefer larger females just 
from this. It could be, for instance, that larger females are simply more mature 
and thus more likely to conceive. Alternatively, depending on how and when 
size was measured, pregnant females may be larger precisely because they are 
pregnant! (Cause and effect p. 119)

 9. Significance tests provide a generally accepted, arbitrary yardstick for 
deciding whether a difference or trend is interesting. The yardstick is the 
probability that the observed difference or trend could have occurred by 
chance when there wasn’t really such a difference or trend in the population. 
Random variation in sampling will mean that differences or trends will crop 
up from time to time just by chance. (The need for a yardstick in confirmatory 
analysis: statistical significance pp. 55–56)

 10. A reasonable prediction would be that the rate of reaction would be lowest in 
Treatment A, because no enzyme had been added, and highest in the warmed 
enzyme/substrate mixture of Treatment D. By the same rationale, Treatment C 
should have a lower rate than Treatment B because it is cooler. The predicted 
order is thus A 6 C 6 B 6 D. A suitable significance test would be a 
specific form of a non-parametric one-way analysis of variance using z as the 
test statistic. (Testing the rank order of all groups simultaneously pp. 93–94)

 11. The consultant could try a two-way analysis of variance (Box 3.9a pp. 105–106 
or Box 3.9c pp. 111–113). The two levels of grouping (Tests for differences in 
relation to two factors p. 103–104) would be ‘housing condition’ and ‘breed’, 
with three groups at the first level and four at the second. A dozen or so 
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samples for each combination of housing and breed would be useful, though 
the same number of samples should be used in each case since general rather 
than specific predictions are being tested. One thing the consultant should be 
careful to do is distribute pigs from different families arbitrarily across housing 
conditions so that any effect of housing on growth rate is not confounded 
with family-specific growth rates (related pigs might grow at a similar rate 
because they inherited similar growth characteristics) (Confounding effects 
pp. 132–133). The analysis would indicate any independent effect of housing 
and breed and any interaction between the two in influencing growth rate.

 12. Although the figures look very similar, they are deceptive because their 
y-axes are scaled differently (see point 2 p. 155). The drop in numbers in 
felled deciduous forest represents 49 per cent of  the number in unfelled 
forest. In coniferous forest it represents only 38 per cent. In proportional 
terms, therefore, the impact of felling seems to be greater in deciduous forest. 
However, the fact that the analysis is based on only single counts means it 
should act only as an exploratory analysis leading to a properly replicated 
confirmatory analysis. (Visual exploratory analysis pp. 23–26)

 13. A negative value of  r indicates a negative correlation, i.e. the value of  y 
decreases as that of x increases. The sign of the coefficient is ignored when 
checking against threshold values of  significance. (Correlation analysis 
pp. 117–119)

 14. Some predictions can be derived as follows:

(a) Difference predictions

Observation The distribution of individuals across species varied between 
different sites.

Hypothesis Differences in the degree of dominance of species within a 
community vary with the ability of species to compete with others for limited 
resources.

Prediction Dominant species will be those whose individuals win in contests 
with individuals of other species over the resource they occupy.

Observation Individuals of some species are smaller in some streams than in 
others, and some streams are more polluted.

Hypothesis Pollution results in reduced body size among some freshwater 
species.

Prediction The body size of any given species will be smallest in the most 
 polluted stream and largest in the least polluted stream.

(b) A trend prediction

Observation Fewer organisms were seen attached to the substrate in fast-flowing 
parts of the streams.
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Hypothesis Flow rate influences the ability of organisms to settle on the 
substrate.

Prediction If clean substrate is provided in areas of different flow rate, then 
fewer of the organisms drifting by will settle the faster the flow.

(Turning exploratory analyses into hypotheses and predictions p. 46–49)
 15. Differences. (Differences and trends pp. 51–54; Difference or trend? pp. 198)
 16. Yes, a 1 * 4 chi-squared analysis (Box 3.7 pp. 102–103) could be carried out, 

but care would have to be taken in calculating expected values because of the 
different surface areas of the body sites and their possibly different degrees 
of vulnerability. (Null hypotheses p. 50)

 17. Since the experimenter had collected ten counts for each combination of 
‘parent’ and ‘sibling’ treatment, a two-way analysis of variance would provide 
most information. It would allow either general or specific predictions about 
the effects of ‘parent’ and ‘sibling’ treatments and the interaction between 
them to be tested. The ten values in each case could be totalled and used in a 
2 * 2 chi-squared analysis, but this would test only for an overall combined 
effect of  the treatments; much useful information would thus be lost in 
comparison with the analysis of variance. (Box 3.9a pp. 105–106 or Box 3.9c 
pp. 111–113 versus Box 3.8 pp. 103–104)

 18. The threshold probability of  0.05 is an arbitrarily agreed compromise 
between the risk of accepting a null hypothesis in error (as would happen by 
setting the threshold p-value too high) and the risk of rejecting it in error (by 
setting the threshold too low). For many situations in biology, a threshold of 
p = 0.01 would result in an unnecessary risk of accepting the null hypothesis 
when it was not true. (What is statistical significance? pp. 57–59)

 19. Clearly this is not a sensible procedure because it confounds the size of prey 
with the amount each barracuda has already eaten. Barracuda may give up 
at a certain size of  fish simply because they are satiated, not because the 
fish is too big. Also, size is confounded with species, some of which may be 
distasteful or be unpalatable in other ways. Again, therefore, barracuda may 
reject a fish for reasons other than size. (Confounding effects pp. 132–133)

 20. There are at least three logical flaws in this line of reasoning. First, if males are 
generally larger than females then their brains will be proportionally larger too; 
any comparison of brain sizes should thus be on a relative scale. Second, should 
the brains of males turn out to be relatively larger, there is no a priori reason to 
suppose this will affect learning or any other ability. Third, even if differences 
in brain size do produce differences in learning, training may overcome any 
such differences. (Refining hypotheses and predictions pp. 141–142)

 21. The analysis requires a test for a difference (Difference or trend? p. 198). 
There is one level of  grouping (different woods), so a one-way analysis of 
variance (Box 3.5a pp. 86–88 or Box 3.5c pp. 91–92) of the effect of wood on 
adrenal gland size would be appropriate. The potentially confounding factor 
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(Confounding effects pp. 132–135) of age may be a problem, but as long as 
the distributions of adrenal gland size and age are normal (Parametric tests 
pp. 61–62), the ecologist could do a parametric analysis of  variance and 
include age as a covariate (Box 3.6 pp. 100–102). The result would then test 
for an effect of wood, controlling for any confounding effect of age.

 22. An order effect may occur when there is a systematic confounding of experi- 
mental treatment and time. Thus, testing for a difference in the performance 
of chicks in three different learning environments would suffer from an order 
effect if  birds always encountered environment 1 first, then environment 2 
and then environment 3. Any difference between environments may simply 
be due to being earlier or later in the sequence experienced by the birds (or 
earlier or later in the day/week/season if  individual birds experienced only 
one of the environments). (Confounding effects pp. 132–133, particularly the 
last three sentences on pp. 132–133)

 23. On the face of it, things don’t look good for the parasitologist’s regression 
analysis. The parasite-burden data clearly aren’t normal, and so violate 
an important assumption about the y-axis variable in a linear regression. 
However, all is not lost. It may be possible to normalise the data by performing 
an appropriate transformation. Indeed, a log10 transformation normalises 
the data quite nicely, as the figure below shows (a Kolmogorov–Smirnov one-
sample test yielded the outcome z = 1.113, n = 120, p = 0.157, showing 
the parasite data did not depart significantly from a normal distribution). 
The parasitologist can therefore carry on with the planned analysis using 
the transformed data. (Departures from normality p. 63–64, Transformations 
pp. 66, Box 3.1 pp. 66–69)
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 24. Pseudoreplication occurs where there is non-independence between measures 
purporting to be independent replicates. An extreme case would be taking 
repeated measurements of a particular character from the same individual, 
but more subtle pseudoreplication can arise, for example, when animals 
from the same cage or litter are treated as independent samples. Animals 
sharing a cage can have a profound influence on each other behaviourally, 
physiologically and even morphologically, and those from the same litter 
obviously share a genetic and experiential background. The number of cages 
or litters, rather than the number of individuals, thus determines the sample 
size in any statistical analysis. (Non-independence pp. 134–135)

 25. A bit sneaky this one. Unlike most significance tests of difference, you are 
looking for a non-significant outcome when you compare the distribution 
of data with a normal distribution. If  the comparison is not significant, it 
means your data do not depart from normality more than you would expect 
by chance. In the example the probability associated with the test outcome 
was 0.0341, which is less than 0.05. The data thus differ significantly from 
normal, so the botanist will have to use transformed data if  they want to do 
a parametric significance test, or use a non-parametric test instead. (Box 3.1 
pp. 66–69, particularly p. 67)

 26. The behavioural ecologist is testing for a difference between three experimental 
treatments (since the treatments involve the number of males, it could also be 
argued to be testing for a trend, but it is not clear a priori that any response 
by focal males would relate linearly to the number of  competitors, so the 
analysis is probably best treated as one of  difference). So an analysis of 
variance (ANOVA) of  some kind would be the obvious choice. A crucial 
feature of the experimental design, however, is that each focal male was tested 
in each of the treatments, so we have a repeated measures design. Assuming 
data for spermatophore weight satisfy the test for normality, we can use a 
parametric repeated-measures ANOVA (Box 3.5e pp. 95–96). Since males 
may be tempted to invest more when confronted with larger females (because 
they are likely to have more eggs to fertilise), female thorax widths could be 
included as a covariate (Box 3.6 pp. 100–102) in the analysis to control for 
this. Since the design is a repeated-measures one, we do not have to control 
for male size – the treatment effects are being measured within each male. If  
spermatophore weight is not normally distributed, then a non-parametric 
repeated-measures Friedman ANOVA (Box 3.5f pp. 96–99) could be used, 
but it isn’t possible to include covariates in this case.

 27. An obvious problem facing the psychologist is that the questionnaire data 
relating to attitudes will contain a lot of responses reflecting different aspects 
of sexual behaviour, many of which may be intercorrelated. So carrying out 
an analysis of each response individually would run into serious problems of 
non-independence and inflated estimates of significance (Non-independence 
pp. 134–135). One approach to overcome this would be to subject the 40 
responses to a principal components analysis (Box 3.13 pp. 127–128) to distil 
the data down to a set of mutually uncorrelated composite variables that each 
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reflect different aspects of attitudes towards sex. The 40 separate responses 
may well boil down to two or three composite variables that can then be used 
as dependent variables in an analysis of  variance by, for example, sex and 
ethnic group, with perhaps financial status (e.g. salary) and age as covariates 
(Box 3.6 pp. 100–102).

 28. As long as clearance rate is normally distributed, the idea of using regression 
analysis is reasonable, but what is problematic is the use of  four separate  
analyses. The independent variables are very likely to be intercorrelated 
(e.g. maternal weight may well depend on local food availability), so analysing 
them as if  they are all independent of each other risks a Type 1 error (Fig. 
3.5 p. 130). A better approach would be to conduct a multiple regression 
where the independent variables are all included in a single analysis and 
their mutual intercorrelations taken into account in assigning significance. 
(Box 3.12 pp. 123–125)

 29. Since many behavioural variables were recorded that are (probably) inter- 
correlated, the best approach would be to perform a principal components 
analysis (Box 3.13 pp. 127–128) first to reduce the many variables to their 
main features. It is likely that this will produce two or three components (each 
a composite of  the original variables) that can be interpreted in terms of 
combinations of the bees’ responses. Each of these components can be used 
as a dependent variable in a one-way analysis of variance of flower treatment 
(with three levels: unmanipulated control, previously visited by the subject 
bee, previously visited by a different bee). (Box 3.5a pp. 86–88 or Box 3.5c 
pp. 91–92)

 30. The treatment has four levels (three strengths of electromagnetic field and 
a control), and apart from the control, no information is available about 
the relative magnitudes of the experimental fields. Each response measure is 
independent of the others because each neurone preparation was used only 
once; it is thus clearly not a repeated-measures design. A simple one-way 
analysis of  variance would thus be appropriate. The only issue is whether 
a general or a specific prediction should be tested (e.g. Box 3.5a pp. 86–88 
or Box 3.5b pp. 88–91). Unless there is a good a priori reason for expecting 
a particular directional effect of  field strength, the only possible specific 
prediction is the contrast of  control versus electromagnetic levels (i.e. 
coefficients of  +3 [control] and -1 for each treatment): this is a sensible 
choice of specific contrast. (Box 3.5b pp. 88–91)
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