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Preface

Population increase and socioeconomic rise of developing countries in many parts
of the world has escalated the water demand for various uses including agriculture,
municipal, recreational, and industrial demands. The increased demands in the past
few decades have put severe stresses on the available water resources across the
world particularly in arid and semi-arid regions. Hence, optimal management of
water resources is a crucial issue and it is imperative to adopt realistic policies to
ensure that water is used more efficiently in various sectors. In this book, we
present the latest tools and methods to assist the students, researchers, engineers,
and water managers to properly conceptualize and formulate the resource allo-
cation problems, and deal appropriately with the complexity of constraints in water
demand and available supplies. Although existing references supply total infor-
mation relevant to the optimization analysis in water resources engineering, pro-
viding a book for undergraduate and graduate students and newcomers to this field
is a requirement. In other words, what is needed is to present concepts more simply
on the basics of optimization theories, get directly to the principal points, and
apply simple examples in preparation for the use of more advanced texts.

In this book, the basics of linear and nonlinear optimization analysis for both
single and multiobjective problems in conjunction with several examples with
various levels of complexity in different fields of water resources engineering are
presented. The main advantages of the current book rather than existing publi-
cations briefly are:

1. The authors’ idea is to use simple examples and solve them step by step as the
best way to introduce the materials in the book, and also to provide useful
information to better understand the implementation of theoretical concepts.
Hence, each chapter of the book contains some examples related to the basic
principles of linear and nonlinear optimization analysis for both single and
multiobjective problems (Chaps. 2–4).

2. As EXCEL, LINGO, and MATLAB are three of the well-known computer
programs used today in optimization analysis, the process of solving optimi-
zation problems using those programs are presented in details as an alternative.
This characteristic teaches the application of the noted computer programs in
optimization analysis and makes analyzing, organizing, interpreting, and
presenting results quick and easy (Chap. 5).
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3. Real case studies are important resources for students to apply theoretical for-
mulas, and computer programs to analyze real events. Hence, three real case
studies as a valuable source for students, practitioners, and researchers are
presented in the last chapters of book to show how the optimization concepts and
theoretical formulas are used in analyzing real world problems (Chaps. 6–8).
The case studies in brief are;

• Reservoir Optimization and Simulation Modeling,
• Reservoir Operation Management by Optimization and Stochastic Simula-

tion, and
• Water supply optimization in central Florida (simulation-optimization using

integrated surface and groundwater modeling to allocate groundwater
pumping that is protective of the natural ecosystem while meeting water
supply demands of over two million people using a mix of surface water,
groundwater, and desalinated water).

4. Finally, complete lists of most optimization studies on hydrosystem engineer-
ing (1963–2013) are presented in the Appendix of the book in table format.
These tables include authors’ names, dates of study, and a brief description of
their work. With the help of these tables, readers can easily find all previous
studies related to hydrosystem optimization analyses that may of particular
interest to them.

To sum up, the main purpose of this book is to serve as a guide for conducting
and incorporating optimization analyses in water resource planning processes. This
book’s main theme is to improve the understanding of the quantity and quality of
information we have, and the importance of information we do not have, for the
take only out purpose of improving decision making. The principal audiences of
this book are undergraduate and graduate students of water engineering and all
new researchers who are interested in academic research associate with optimi-
zation analysis as well as practitioners in the field of water resources management.
Furthermore, this book can be used as reference for teaching in various fields of
water engineering including: hydrology, hydraulic, water resources analysis, water
quality analysis, etc. This book is also a useful reference for practicing engineers/
professionals as well as students and individual researchers. They can apply
optimization analysis as a useful tool to make best informed decisions when
designing for unaccounted loads.
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Chapter 1
Importance of Optimization Analysis

Abstract This introductory chapter introduces the challenges that the water
professionals will encounter in water management and allocation of water supply,
factors that impact the water availability, water-energy-climate change relation-
ships, water transfer and the role of various stakeholders, and finally policy
decisions deriving the investments needs for planning and maintaining water
supply systems.

1.1 Introduction

The world’s readily available fresh water resources are becoming increasingly
scarce due to higher demands by municipal, industrial, recreational, and agricul-
tural sectors mostly because of population increase and higher standards of living
in many areas, but also in part due to changes in land use and global climate
change as a result of rapid development. In fact, the nexus between water and
energy use seems to be a real issue that needs the attention of decision makers at
all levels of governments and international organizations. The water energy nexus
and related stresses do not subscribe to jurisdictional and political boundaries
recognized nationally or internationally, and hence requires multi-organizational/
stakeholders solutions. Effective management of natural and water resources is
becoming one of the most important challenges of our era to resolve, for main-
taining and/or improving the living standards we enjoy in the developed and
developing counties. In addition, the relations between energy, water, food, and
environmental issues must be considered carefully in the development of water
management plans and ultimately towards the goal of Integrated Regional Water
Management (IRWM) Plan which is closely tied to sound watershed planning. The
realities of water management include a limit to the availability of water whether
local or imported supplies. This places a greater emphasis on innovative local/
regional projects that are multi-faceted and multi-purpose considering a holistic
approach and consensus from various stakeholders. The water professionals must
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focus on many aspects when performing initial studies as a building block for
water management plan developments, those include:

1. Future water supply availability/reliability,
2. Direct and indirect municipal/irrigation water reuse,
3. Water quality through salinity management and desalting opportunities,
4. Water projects and tie-into climate change adaptation,
5. Future funding needs and revenue streams,
6. What are the pros and cons of various funding options? As well as other site

specific consideration.

To overcome the stresses on natural resources and in particular the fresh water
supply sources multi-purpose and multi-objective water/natural resources man-
agement is taking root across the world. These days we see professionals in various
fields of environmental and water resources engineering as well as allied disci-
plines of economics and social sciences collaborate to develop water resources
management solutions that meet the urban, agriculture, industrial, habitat, envi-
ronmental, recreational, and ecosystems requirements with constraints and prior-
ities that must be consensus based by the stakeholders.

Water is a valuable resource everywhere in the world even areas that have
seemingly plenty of precipitation. For example, although southeastern USA and
Great Lakes states in Midwest receive above average rainfall with respect to other
regions of the world, these areas still have water management challenges because
of extreme events, water quality issues and management of non-point source
pollution. The world is facing water supply challenges that will test the technical
and managerial skills of trained professionals and the expertise of water scientists
to the fullest extent in the next two–three decades. The effects of climate change,
extreme floods and the economic and structural damages by frequent floods,
pollution from urban and agricultural run-off, require collaboration from multitude
of engineering and scientific experts as well as other stakeholders. In short, often
there are competing interests in managing and protecting this vital resource in
every region of the world. One area of utmost importance is the key component of
how stakeholders consider water issues and make appropriate policy decisions or
rank different priorities during water shortage and other emergencies.

Water management requires input from a multidisciplinary team from hydrol-
ogists to ecologists and other experts. To assess the availability of water for
various uses under different conditions experts often develop water management
models for a proposed project. These models often look at all sources available
considering economics, water quality, specific use, and socioeconomic issues. For
example, specialists may be looking at the hydrogeology of the area (ground and
surface water interaction) in high water table conditions like much of south and
central Florida and how exploitation of a water source impacts the other and the
surrounding ecosystem; the economic aspects of water use and the impact of water
use on the environment is of great interests to social scientists and ecologists. For
instance, the potential relation between the ecosystem value and economic benefits
of water use has been studied by ecological economists over the last decades.
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Climate scientists also are looking at the effects of climate change and variability
on water availability and scarcity, while behavioral scientists are examining
people’s biases and beliefs and the effects on the policy and decision making
process.

1.2 Challenges Facing Water Management and Policy
Professionals

Water resources management presents a variety of challenges, and growing world
population make certain demands on the existing water resources across the world.
Industry and industrial waste management cause other impacts, while agricultural
water use bring about a variety of challenges from meeting water demand during
droughts to soil water logging, salinization to nutrient and pesticide migration to
groundwater aquifers and surface waters. Economic development and vitality is
quite simply dependent on water availability at a reasonable price.

Water resources are among the most important factors which could be affected
by climate changes and recent global warming. In addition, increasing water use in
turn can increase the negative impacts of climate changes on ecosystems and local
hydro-climate. With most developments the environment typically gets short-
changed, that is why we need to look at ecosystem sustainability as part of the
equation. Engineers need to work closely with economists, information technol-
ogists, and ecologists for information on the economic value of ecosystem services
and the impacts of water use on ecosystems. Resource management professionals
want to figure out how we can support both ecosystem protection and economic
development with the limited amount of available water. This requires managing
the water supplies using schemes that can take into account various objectives and
constraints with given priorities, this is called ‘‘optimization’’. The water man-
agement system that uses optimization is amenable to an adaptive management
approach, based on various scenarios, which the study team can analyze and
provide the results to the stakeholders for informed decision making. For example
in a given area the scenarios may assume significant sea level rise and its impact
on groundwater availability and quality degradation, rainfall and temperature
changes over land, and a range of population and economic growth rates, and
economic trade off among various uses.

Various stakeholders as well as scientists/engineers participate in the study
helping the team in the course of developing appropriate plans for water man-
agement to find out public support on data and latest technological tools. The water
resources professionals job is not only to solve the problem of water scarcity in
every region, say for example in south Florida or southern California, rather to use
a regional example as a case study to see how multiple stakeholders can cope with
complex issues and move towards more sustainable water use on a consensus
based approach that optimizes the use of available supplies simply because there
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are very limited additional sources often at much higher costs. Another area that
requires input from water professionals as well as social scientist, economists and
well informed stakeholders is considering reclaimed water as an available resource
that can be used for various uses including municipal supply.

1.3 Local, Regional, and International Competition
for Water and Ensuing Conflicts

In 2010 United Nations (U.N.) General Assembly declared 2013 as the Interna-
tional Year of Water Cooperation (IYWC). The U.N. is aware about the compe-
tition over the existing finite fresh water resources in the world. Current and past
water conflicts and disputes have included confrontations between countries in the
Middle East (Israel and Jordan, Israel and Lebanon, Turkey and Iraq, Palestine and
Israel, etc.), in Southwest Asia (India and Pakistan, India and Bangladesh), in
Africa (Egypt, Sudan and Ethiopia), and in South America (Bolivia, Peru and
Chile), among many other places. Even within countries there are sometimes
conflicts among different regions over water allocations of trans-boundary water
resources and inter-basin transfers; for example in the USA, states of Alabama,
Georgia and Florida have been fighting for decades over Apalachicola-Chatta-
hoochee-Flint River System (ACF) and tributaries’ inflow that end up in the Gulf
of Mexico; and Colorado River transfer to California, Nevada and Arizona has
been a source of hot debates for the past few decades; in central west Iran, water
transfer from Zayandehrud in Isfahan to Yazd and from Karoon Basin to
Zayandehrud Basin have caused local protests and in some cases physical con-
flicts. Another recent example is the damming of tributaries of Lake Urmia in
northwest Iran which has caused the lake to shrink significantly posing irreversible
ecological damage in the region and a lively national debate on dam building and
irrigation water use (Fig. 1.1).

In the case of ACF, water allocation and establishment of Minimum Flows and
Levels (MFLs) required for aquatic and ecologic health of downstream habitats
especially during low flows and droughts was a source of conflict that took decades
of negotiations and law suits and eventually an act of US Congress to develop an
agreement among tri-states which was hard to accept by the parties, but their best
options was to agree to share the limited resource rather than devoting time and
money to endless conflict resolution (Fig. 1.2).

Conflicts like these have shown that the water professional/managers need not
only to be well versed in the science and engineering aspect, but also need
knowledge of applicable laws, regulations, negotiation skills and applied optimi-
zation principles in order to formulate feasible options that can be looked at as
win–win for all parties involved. So, the upcoming conflicts will be extremely
dependent on the human ability to deal with the water demand challenges; if we
are able to increase water use efficiency and productivity such that we can free up
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Fig. 1.1 Lake Urmia, the third largest salt water lake on earth at a 2003, and b 2010 (Payvand
2011)

Fig. 1.2 Map of the ACF river basin watershed in the southeast USA showing the Apalachicola
river and its two main tributaries, the Chattahoochee river and Flint river (Atlanta Regional
Commission 2010)
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water resources for protecting our environment, thereby ensuring the sustainability
of the supply, and allowing for new users and uses, it will be easier to cooperate. If
we cannot manage the available water demands, water management will become
difficult like a zero-sum exercise, and so there would be permanent challenges on
the available water resources.

According to the recent figures, nearly 800 million people in the world live
without safe water, that is, roughly 15 % of the world population. Some 2.5 billion
others live without access to sanitation, about 40 % of the world’s population
(United Nation Water 2013). These figures portray a grim scenario for political
and social stability in many areas of the world for the foreseeable future: ethnic
conflicts, regional tensions, political instability and mass migrations would prevail
without immediate actions by governments and international organizations.

In the not too distant future, many countries will certainly face water related
problems including shortages, water quality issues, epidemics due to contaminated
water, or floods, and these problem increase the risk of instability and regional
tensions (Global Water Security: Intelligence Community Assessment 2012). In
this report these issues are connected to a world where the population is growing
fast and the demand for freshwater is growing even faster. Therefore, close
coordination and cooperation between various sectors in governments, NGOs,
international organizations is of fundamental importance if we are to successfully
share and manage our most precious resource (fresh water), for which we need
reliable and defensible information to make sound and consensus based decisions.

To address these issues there is a need to cooperate with players outside the
water sector, to foster collaboration between the various decision-making entities,
between the private, public and civic sectors as well as between actors who work in
water research, public policy and public relations. That is, only through sound and
forward-looking consensus based partnerships a water wise world may be achieved.
Because of population growth and pressures on water and natural resources within
and among nations, sound and fair resource management is a clear imperative;
water professionals will have no time to waste to come up with a solution to natural
resources management in general, and water resources in particular.

One area of great need is the optimal management and operation of existing
reservoirs and water allocation which are critical issues in sustainable water
resource management due to increasing water demand by various sectors. Multi-
plicity of stockholders with different objectives and especially water utilities make
reservoir operation and other sources of available water a complicated problem
with a variety of constraints, and at times conflicting objectives to be met. In such
cases, the conflict resolution models can be efficiently used to determine the optimal
water allocation scheme considering the utility and relative authority of different
stakeholders. Water resources planning and management is a combined process of
sharing water that very often involves specific difficulties and complex decisions on
resolving conflicts among decision makers, water users and stakeholders. Because
of limitations on the quantity and quality of water resources, the optimal operation
of reservoirs in a watershed is very important for providing a secure water supply
from a system’s point of view, Karamouz et al. (2003) discuss this issue in details.
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1.4 Urban and Agricultural Water Supply Challenges

Worldwide approximately more than 70 % of available freshwater is used for
irrigation of crops to supply food and fiber for the growing populations. Although
great strides have been made in irrigation efficiency in a number of developed and
developing countries to reduce water use in the agricultural sector, there is still
progress to be made into save water and reduce environmental impacts. The
remaining 30 % is used for other uses including municipal water supply. For a new
framework for urban water systems to become fully established, industrialized
countries should serve as a model for future water supply management in devel-
oping countries. Sweeping changes will be needed in the ways that engineers and
managers of urban water systems approach the planning, design, and operation of
urban water infrastructure. For this change to take hold, it will be necessary to
embrace not only new technologies but also innovative management strategies that
can create more resilient, economically sustainable water systems that will better
serve society’s present and future needs. Public acceptance, particularly for new
technologies and unfamiliar practices (e.g., grey water recycling, reclaimed water
use), will require more effective communication about the processes and their
established safety.

For the purpose of understanding current and future development needs, the
elements of the new framework for urban water systems may be subdivided into
four themes: increasing water availability through improved system efficiency,
demand management, desalination to augment water supply, stormwater harvest-
ing, and water reuse/reclaimed water. Broadening treatment options by developing
technologies that lead to more resilient systems, linking water quality to its
intended use and incorporating managed natural systems into urban water infra-
structure; considering wastewater as a resource through energy and nutrient
recovery; and establishing an enabling environment by explicitly addressing
institutional and management challenges related to a need to account for
non-monetary benefits, manage tradeoffs among alternatives and more effectively
engaging stakeholders and public at large. Let’s look at each of these themes in
more details.

1. Increasing Water Availability: In the past, water supply issues were frequently
solved by building huge structures such as dams or water distribution networks
for storage, transfer and conveyance of water. Conservation has been another
way to save water in the residential, agricultural, and industrial sectors over the
last decades. For example, Singapore applied a water conversation tax to reach
11 % reduction in average monthly water consumption between 1995 and 2004
to improve water availability (Tortajada 2006). These efforts are definitely
helping to meet increasing demands and should be encouraged.

2. Demand Management: Many water utilities in the USA and other countries
have provided incentives to households to replace older home water fixtures
with newer ones that use less water (e.g., low use shower heads, toilets using
less water per flush, etc.). While water use efficiency will continue to serve as
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an important component of urban water supply in the coming decades, there are
signs that it will eventually become less attractive, as the least expensive water
conserving appliances and industrial process modifications are implemented.
Using water losses strategies is one of the best practical approaches to increase
the efficiency of urban water systems and better manage demands. For example,
about 14 and 40 % of treated water in the U.S. and developing countries
respectively, is lost to leaks (Grant et al. 2012). A common occurrence in many
old cities of the world is pipe breakage which is not only the cause of significant
water loss, but it is also the cause of collateral damage like flooding. In this
case, the modern management techniques can be used to save water through
effective leak detection and in a more cost-effective manner.

3. Desalination: Although many challenges remain with regard to environmental
impacts and large initial capital costs, desalination is now considered a viable
option for urban water supply, particularly in situations where either climate
change or short-term events (e.g., catastrophic floods) compromise water
quantity and quality. The acceptability of seawater desalination has come about
principally because of the reduction in power consumption of the reverse
osmosis stage due to improved membrane design and implementation of energy
recovery technologies. Many cities in different regions of the world rely par-
tially or fully on desalinated sea water or brackish groundwater (e.g., Arab
nations of the Persian Gulf, Tampa Bay Region of Florida, Australia’s driest
capital city of Perth, San Diego Region in southern California, among many
others. The examples cited, receive up to half of their water supply by desa-
lination plants. Many other municipalities are also planning for desalination
plants as supplementary source during droughts and other emergency situations
(i.e., disruptions in regional transmission facilities). One are of concern is the
potential increase of greenhouse gas emissions associated with operation of the
desalination plants, but that could be offset by energy from renewable sources
(wind farms and solar panels).

4. Stormwater Harvesting: Based on this scheme the runoff could be captured and
recharged into the aquifers or stormwater and reuse for non-drinkable usages by
combination of urban runoff and flood control management. This underutilized
water source can be used to supply some parts of water requirements of cities.
A known example in the course of stormwater harvesting is the Los Angeles
County Department of Public Works which runs 27 spreading basins that
recharge about 150 million m3 of surface water runoff in one year (Los
Angeles County Department of Public Work 2012). Similar approaches are
implemented in other areas of southwest USA as well as arid countries in the
Middle East (central and southeastern Iran). Although some of the recharged
runoff consists of dry weather flows from rivers that receive wastewater
effluent, the majority of the recharged water is associated with wet weather
flows. Other areas in southern California are also pursuing efforts to further
enhance the recharge of stormwater as part of a strategy for coping with pos-
sible decreases in imported water sources (Ventura County). One caveat in this
scheme is that more research is needed to assess the water quality implications
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of this practice, and, when necessary, integrate passive treatment processes into
recharge systems. Even, in high rainfall regions like southeast USA aquifer
storage and recovery (ASR) has been studied and in some cases implemented in
the last two decades for water supply augmentation.

5. Water Reuse/Wastewater Reclamation: This option is becoming more and more
attractive and even imperative in areas with limited water supply of their own
that relay on imported water and/or desalinated water. Options for reuse include
using highly treated wastewater (tertiary treated) for irrigating urban landscape
(parks, gulf courses, and lawns), in some cases for agricultural uses (greenbelts
around cities in the arid and semi arid areas of the world, or tree farming), use
in industrial operations when applicable such as fertilizer manufacturing and
steel mill cooling requirements, and in the case of advanced treatment for
municipal water supply (Orange County, California has constructed and cur-
rently operates the most advance treatment plant which is more like a refinery
than a wastewater treatment plant) for municipal use by injecting the reclaimed
water into the underground aquifer to maintain a seawater intrusion barrier and
feeding percolation basins used to augment their imported source via ground-
water recharge, in effect an ASR with reclaimed water. This plant is an
acclaimed state-of-the-art in wastewater treatment/reclamation and attracts
visitors from all over the world (www.ocwd.com or www.gwrsystem.com).
Orange County Water District (OCWD) operates the plant in a series of steps.
After wastewater is treated at the Orange County Sanitation District, it flows to
the Groundwater Replenishment System (GWRS) where it undergoes a sta-
te-of-the-art purification process involving microfiltration, reverse osmosis,
ultraviolet light and lastly treatment with hydrogen peroxide. The product water
is near-distilled-quality. About 70 million gallons (265,000 m3) per day of the
GWRS water are used to both pumped into injection wells to create a seawater
intrusion barrier to protect freshwater aquifers, and transfer to the percolation
basins in Anaheim where the GWRS water naturally filters through sand and
gravel to the deep aquifers of the groundwater basin; about half the total is used
for each operation (Groundwater Replenishment System 2003).

As seen various approaches are being used to meet water supply requirements
of municipalities. However, water allocation rules may lose their validity in terms
of supplying reliable water to current and future water demands due to changing
hydrologic and socio-economic conditions, as well as, changes in land use and
development requirements in a given region. Therefore, water sector decision
makers are very interested in knowing when and how they must update the water
allocation rules, especially the withdrawal ratios from reservoirs, river and
groundwater, to fulfill the current water demands while minimizing the costs
associated with fulfillment of unmet water demands; in short, how to factor in
uncertainty. Hydrologic and socio-economic uncertainties are the most influential
parameters in water supply and demand management, which in turn affect water
allocation rules for long-term planning. Hydrologic uncertainty may be included
explicitly in water supply management models for minimizing the long-term
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operational cost or maximizing the water supply reliability in drought conditions.
Integrated water supply and demand simulation is also useful for achievable
improvements in water supply reliability by a combined supply–demand man-
agement strategy like the scheme used by Tampa Bay Water (Chap. 8). However,
the challenge is that integrated holistic models put serious restrictions on the
predictive accuracy and the size of the problem to be solved. In addition to
long-term impacts, uncertainty and integrated modeling for water allocation,
inclusion of operational and performance objectives in terms of equity, reliability
and social acceptability are the required criteria for assessment of dependable
water allocation systems (Dinar et al. 2005; Joshi and Gupta 2010). Water allo-
cation rules need to be derived and classified based on hydrologic and
socio-economic conditions in the basin, for example Normal Operation Policy
(NOP) and Emergency Operation Policy (EOP) that are triggered based on a
drought index value for reservoir operation rules (Eum et al. 2011). Engineers
dealing with hydro-systems mostly focus on optimum operational analysis that
reveals how much improvement is achievable by changing the attitude towards
water system operation in terms of preferences or the degree of integration
between different disciplines influencing the project. Within this framework, dif-
ferent constraints on optimal operation (i.e., spatial interactions, uncertainties,
long-term impacts and performance indices) can be incorporated for analysis and
classification of different water allocation rules.

Optimization application in conjunctive use of surface water-groundwater-
desalinized water, and managing downstream water quality, as well as, aquatic and
ecosystem needs related to Minimum Flows and Levels (MFL) and power pro-
duction is an area of much interest in face of uncertain hydrologic conditions.
Many examples of these applications are cited in the literature, for example,
Tampa Bay Region of Florida in the USA (Chap. 8 in this volume), south-eastern
USA like Tennessee Valley Authority (TVA) and Zayandehrud and Karoon Rivers
in Iran, Euphrates and Tigris in Turkey-Syria-Iraq, as well as others. Water allo-
cation using integrated Water Quality-Quantity modeling has been applied to study
water resource issues and conjunctive use by Javier et al. (2010), Zhang et al.
(2010), Qin et al. (2009), and Wang et al. (2008) to use water for beneficial
consumptions while making sure ecosystem and aquatic needs are met while
meeting local and national regulations.

Water Management on a regional and national basis is even more complex and
requires a multi-purpose and multi-disciplinary approach. For example, let’s con-
sider an inter-basin water transfer that will be crucial for economic survival of the
receiving basin but will also affect the donor basin in many aspects (Zayandehrud
and Karoon Rivers in Iran). For such analysis an Integrated Stochastic Dynamic
Programming (ISDP) approach seems appropriate, but what are the factors and
parameters that need to be considered and optimized? Let’s contrast an ISDP for
reservoir operation with an inter-basin water transfer. In the former, the water
storage and inflow are state variables and the release from the reservoir is the
decision variable. In the latter, the operation of both reservoir in the donor and GW
in the receiving basin would be state variable in addition to many other parameters
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in order to arrive at an optimum water transfer policy. Many parameters may have
to be considered in an ISDP such as: net benefits to the water users in both basins,
water demands of both basins, characteristics of the reservoir in the donor and the
aquifer in the receiver basin, pumping costs for the receiver, etc. An example of a
potential ISDP application is the operation of the three Gorges Dam in China that
needs to incorporate all these factors as well as many others.

1.5 Global Climate Change Impacts on Integrated
Regional Water Management

Recently, many proposed and enacted Integrated Regional Water Management
Planning (IRWMP) have required that the plans must include an evaluation of the
adaptability to Climate Change and its impact on the water management systems
in the region. Given the currently predicted effects of Climate Change on water
resources, IRWM Plans are to address adapting to changes in the various char-
acteristics of runoff, storage, and recharge such as their timing, intensity, amount,
and quality (RMC 2013). For example, areas of southern California that receive
water from the Sacramento-San Joaquin River Delta, the area within the San
Francisco Bay Delta, and areas served by coastal aquifers will have to consider the
effects of sea level rise on water supply conditions and identify suitable adaptation
measures. Decisions about adapting water management schemes, as well as,
mitigating Climate Change through reductions in Green House Gases (GHG)
emissions, should take into account the risks to the region of no action alternative.
A key factor in assessing the effects of Climate Change and adapting to those
changes as it relates to water supply is the use of adaptive management. IRWM
plans need to contain policies and procedures that promote adaptive management.
As more effects of Climate Change manifest and new tools are developed, new
information becomes available that the Regional Water Management officials must
adjust for in their IRWM plans accordingly. However, tools to properly assess the
risk of any one effect of Climate Change on a region are currently not well
developed, and the abilities of different regions to use such tools vary consider-
ably. The challenge is how to account for this impact in an IRWM?

In addition to responding to the effects of Climate Change, IRWM plans can also
help mitigate Climate Change by reducing energy consumption, especially the
energy embedded in water use, and ultimately help decreasing GHG emissions.
Water management in developed countries results in the consumption of significant
amounts of energy and the accompanying production of GHG emissions, especially
where water must be pumped for long distances; from the underground aquifers; or
over significant elevations. As an example, according to California Energy Com-
mission November, 2005 CEC-700-2005-011 California’s Water—Energy Rela-
tionship Final Staff Report, 19 % of the electricity and 30 % of the non-power plant
natural gas of the State’s energy consumption are spent on water-related activities.
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The close connection between water resource management and energy is an
important consideration to meet national and international GHG emission reduction
goals. All aspects of water resources management have an impact on GHG emis-
sions, including the development and use of water for habitat management and
recreation, domestic, municipal, industrial, and agricultural supply and hydro-
electric power production and flood control. Therefore, water professionals need to
be also cognizant of water-energy nexus and its impact on GHGs as a driver of
Global Climate Change (Fig. 1.3).

1.6 The Incentive for This Book

The above introductory sections enumerated the challenges that water professional
face in designing, building, and managing water supply infrastructures of all kinds
(canals, reservoirs, desalinization plants, wastewater reclamation, etc.). The main
driver behind all this is to provide more water supply while reducing costs both in
building the systems and maintaining them through their design life (sustainabil-
ity). Therefore, students in this field as well as practitioners need to become well
versed in optimal use of resources both to build and maintain the facilities, as well
as managing the output from the facilities (source of water supply for all users).
This applied optimization book is designed to fill the gap that currently exists for
all parties interested in learning how to use the optimization principles to solve
their water management problems. There are many text books in the field of

Fig. 1.3 The Cornalvo dam, Spain—1,500 years young—a well maintained dam can be
operated for many years for sustainable water supply. The Cornalvo dam in Spain was built by
the Romans almost 1,500 years ago and it is still fully functional (WikiPedia 2013)
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operations research and engineering systems, as well as water management that
discuss optimization theory and its application areas, but they lack clear and so,
concise example problems that a beginner student needs to easily relate to the
theories discussed here. This book is different in the sense that after introduction of
various methods and concepts, example problems that are readily understandable
are introduced and solved step-by-step using commonly available software to help
the reader connect the theory with applications. Various example problems that are
commonly encountered by water professionals are introduced after the presenta-
tion of each topic and then solved to elaborate the application of the method in the
real world. This introductory chapter introduces the challenges that the water
professionals will encounter in water management and allocation of water supply,
factors that impact the water availability, water-energy-climate change relation-
ships, water transfer and the role of various stakeholders, and finally policy
decisions deriving the investments needs for planning and maintaining water
supply systems.

Chapter 2 introduces the reader to the concept of Linear Optimization and its
applicability to solve classes of problems that are amenable to this method.
Chapter 2 covers the basic concepts of linear optimization analysis and its
applications in water resources engineering. In this chapter, the graphical and
simplex solution methods for solving linear optimization problem are discussed
and then illustrated step by step with some example problems. In addition, the
applications of simplex method in solving water distribution network plus one- and
two- dimensional confined aquifer optimization problems using the Solver tool in
Excel are presented. The graphical and simplex methods are discussed in detail
with example problems in urban water management and aquifer pumping
optimization.

Chapter 3 introduces the reader to nonlinear programming and the conceptual
framework for nonlinear optimization, as well as its applications in water
resources engineering. In addition, different nonlinear optimization methods
including one-dimensional optimization techniques, unconstrained and constrained
optimization methods in conjunction with a number of example problems to
indicate why and how nonlinearities arise in a wide range of water resources
optimization problems. Random search method, Newton method, Univariate
Method, and Steepest Descent Method are then discussed with example problems
in each section to help readers connect the concepts with applications.

In Chap. 4, the reader is introduced to Multi-objective Optimization (MOO) and
the fact that most real world problems are multi-objective in nature and require
consideration of several minimizing or maximizing objective functions to be
optimized simultaneously. For multi-objective problems, a set of optimal solutions
instead of a single solution needs to be determined. This chapter provides the idea
behind multi-objective optimization in water resources engineering projects in
today’s complex world of water supply-water demand management and lays the
foundation for using readily available software to address and solve these
multi-faceted problems. This chapter also provides a number of applicable and
commonly encountered example problems and their step-by-step solutions to help
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the reader better understand the concept and applied side of multi-objective
optimization. In these examples, Weighted Method and its application to different
aspect of water supply and environmental management issues are demonstrated.

Chapter 5 introduces the reader to LINGO and MATLAB softwares and their
adaptability to solve all classes of optimization problems. These well-known
applications in science and engineering field can be readily used to formulate,
express, and solve optimization models. In this chapter, the process of solving both
single and multi-objective optimization problems using these programs is pre-
sented in details. Furthermore, a number of useful examples are provided and
solved step-by-step to help readers better understand the application of LINGO
and MATLAB in solving linear and nonlinear optimization problems. The
remaining chapters of this book discuss case studies applying optimization
schemes to address real world water supply-water demand issues.

Chapter 6 presents a combination of optimization (LINGO) and simulation
(HEC-ReSim) models to determine monthly operating rules for the Zayandehrud
Reservoir system in central west Iran. A single-objective framework is used to
optimize and determined outflow-storage of the reservoir and simulate the system
behavior over 47 years. The results show that optimizing the operation of Za-
yandehrud reservoir could increase its storage by 88.9 % as well as increase the
reliability index of regulated water for all downstream demands more than 10 %.

Chapter 7 presents Stochastic Simulation principles and its application for
optimized reservoir operation and water supply management. Managing optimal
use of available water supplies resources is a vital issue in many parts of the world
especially in arid and semi-arid regions. It is imperative to adopt realistic policies
to ensure that not only water is used efficiently in various sectors, but it is also
allocated effectively for best use during droughts and/or high demand periods. This
chapter presents an optimization analysis to determine monthly operating rules for
the Doroudzan Reservoir located in southern Iran. Different strategies under
limited water availability conditions are analyzed by running an optimization
model based on observed and synthetic inflow data, and the performance indica-
tors of each strategy are presented. Each strategy includes a minimum requirement
release in the optimization process that results in a specific operational policy. In
this example, LINGO is applied to determine optimum operational parameters and
synthetic inflows are generated using the Monte Carlo simulation method.
The results demonstrated that the applied methods could effectively optimize the
current operational policy of an existing reservoir in a single-objective framework.

Chapter 8 presents a comprehensive application of real world simula-
tion–optimization scheme to manage multi-wellfield, reservoir, and desalinated
water supply in central west Florida. Tampa Bay Water is Florida’s largest
wholesale water supplier, serving more than 2.3 million people with annual
average daily demand ranging from 220 to 262 million gallons (mgd). The water
supply agency mission has been to develop, store, and supply water for municipal
purposes in a manner to reduce adverse environmental impacts due to excessive
groundwater withdrawals from concentrated areas. Conflict between meeting
water demands and preventing harm to surrounding wetlands and lake systems was
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intensified in the early 1990’s, making it difficult to manage wellfields effectively.
In 1996, the predecessor Agency was mandated by Florida Legislature to develop
regional water supply solutions and a comprehensive answer to the water supply
needs of the Tampa Bay area in a manner that is protective of the environment
(groundwater cutback) and meets the long term water demand of the region.

To relieve ecosystem stress and develop an environmentally sustainable water
supply system, Tampa Bay Water implemented an Optimized Regional Operation
Plan (OROP) that incorporated additional water supply sources (surface water and
desalinated water). The Optimized Regional Operations Plan (OROP), includes a
region wide integrated ground water-surface water simulation–optimization model
that is used to schedule well pumpage among eleven wellfields with an objective
of maximizing surficial aquifer water levels which are correlated closely to wet-
land and lake water levels in the surrounding areas of wellfields. This scheme also
envisioned a mitigation plan which provides rehydration for hydrologically-
stressed wetlands and lakes. As additional water supply sources came on-line, the
OROP model and the mitigation plan were used to ensure that water production
would not result in unacceptable adverse environmental impacts, and that histor-
ical impacts from groundwater production were gradually addressed.

The OROP was designed to minimize production impacts to wetlands and lakes
by rotating among sources in response to target levels set in surficial aquifer
monitoring wells. These target levels were determined by statistical correlations
between minimum levels established for wetlands and lakes and surficial aquifer
water levels (the applied concept of Minimum Flows and Levels, MFLs).
The establishment of minimum wetland and lake levels was based on regulatory
criteria that relate environmental health to indicators of historical wetland and lake
levels (known as historical normal pool).
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Chapter 2
Linear Optimization

Abstract The purpose of this chapter is to cover the basic concept of linear
optimization analysis and its applications in water resources engineering. The
graphical and simplex solution methods for solving linear optimization problems
are illustrated step by step. In addition, the applications of simplex method in
solving water distribution network and one and two dimensional confined aquifer
optimization problems using the Solver tool in Excel are presented.

2.1 Linear Programming

A linear optimization problem can be defined as solving an optimization problem
in which the objective function and all associated constraints are linear. The linear
optimization is also known as linear programming (LP) and it can be defined as the
process of minimizing or maximizing a linear function to find the optimum value
(minimum or maximum) for linear and non-negative constraints. The term pro-
gramming here implies the way of planning and organizing (formulation) to find
the optimal solutions, and it is different from its meaning in coding and computer
programming. In general, this method is a relatively simple technique to find
realistic solutions for a wide range of optimization problems and includes three
essential elements listed below:

1. Identify decision variables: decision variables are the unknown variables of the
problem statement that need to be determined to solve the problem. Defining
decision variables precisely is a fundamental step in formulating a linear
optimization model.

2. Obtain the objective function: in this step we need to define the objective of
desired problem statement which shows the main goal of the decision-maker.
Afterward, the relations between decision variables and the objective should be
accurately determined. It should be noted that the function cannot include any
nonlinear component such as exponential, products, or division of variables,
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and variables under a root sign. All variables only must be added or subtracted
in a linear fashion.

3. Determine the constraints: constraints explain the requirements that desired
problem shall meet, and it can be in the forms of either equalities (=) or
inequalities (B, C).

The general form of linear programming model can be written as:

min f x1; x2; . . .; xnð Þ ¼ c1x1 þ c2x2 þ � � � þ cnxn ð2:1Þ

Subject to the following constraints:

a11x1 þ a12x2 þ � � � þ a1nxn ¼ b1

a21x1 þ a22x2 þ � � � þ a2nxn ¼ b2

�
�
�

ak1x1 þ ak2x2 þ � � � þ aknxn ¼ bk

xi� 0 for i ¼ 1; 2; . . .; n

ð2:2Þ

where, xi are decision variables and a, b, c are known constants. The above
equations also can be presented in the matrix form as:

min f Xð Þ ¼ cT X ð2:3Þ

in which,

c ¼

c1

c2

:
:

cn

2
66664

3
77775

and X ¼

x1

x2

:
:

xn

2
66664

3
77775

Subject to the following constraints:

aX ¼ b ð2:4Þ

X � 0 ð2:5Þ

where,

a ¼

a11 a12 : : a1n

a21 a22 : : a2n

: : :
: : :

ak1 ak2 : : akn

2
66664

3
77775

and b ¼

b1

b2

:
:

bn

2
66664

3
77775
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It is important to note that maximization of any objective function is equivalent
to negative minimization of that function. Hence, a maximization problem can be
simply converted to a minimization problem in any linear programming.

max f Xð Þ ¼ min � f Xð Þ ð2:6Þ

In addition, the constraints sometimes are presented in the form of inequalities,
while, they can be simply presented in the form of equalities by adding or sub-
tracting slack variables (s) as:

inequality constraint ak1x1 þ ak2x2 þ � � � þ aknxn� bk

equality constraint ak1x1 þ ak2x2 þ � � � þ aknxn þ s ¼ bk
ð2:7Þ

or

inequality constraint ak1x1 þ ak2x2 þ � � � þ aknxn� bk

equality constraint ak1x1 þ ak2x2 þ � � � þ aknxn � s ¼ bk
ð2:8Þ

The solution to an optimization problem can be categorized into four types as:
(1) a unique optimal solution, (2) an infeasible solution, (3) an unbounded solu-
tion, and (4) multiple solutions. The unique optimal solution is obtained when all
of the constraints are satisfied and the minimum or maximum values of the
objective function are precisely determined. In this case, the set of all feasible
solutions is called the feasible region. On the other hand if we cannot find any
solution that satisfies the desired constraints, the problem is called infeasible.
Therefore, the feasible region is empty and there is no optimal solution since there
is no solution in this condition. The unbounded solution in LP problems happens
when the objective value is feasible while its value increases or decreases indef-
initely and approaches to negative or positive infinity. And finally, there are
multiple solutions, if more than one solution can be found for the desired opti-
mization problem. In this case, all values of objective function are equaled and can
be considered as optimum value.

In the following sections, the graphical and simplex methods for linear pro-
gramming are presented with a few examples for each technique.

2.2 Graphical Method

Graphical methods can be applied to solve linear optimization problems involving
two decision variables and a limited numbers of constraints. As the graphical
methods are visual approach, they can increase our understanding from the basics
of linear programming and the steps to find the optimal value in an optimization
problem. To be more familiar with the concept of these methods, a simple example
is presented in the following section.
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Example 2.1 Maximize the function f(x)

f xð Þ ¼ 15x1 þ 18x2

Subject to the following constraints:

2x1 þ 3x2� 35

4x1 þ 2x2� 50

x1� 0 and x2� 0

Solution: The first step is drawing the constraints to find the feasible region. In
this case, we need to replace the inequality sign of each constrain with the equality
sign as follow:

2x1 þ 3x2 ¼ 35

4x1 þ 2x2 ¼ 50

Now, assume x1 = 0 and solve for x2 from first constraint equation and repeat
the process again by assuming x2 = 0 and solving for x1. For the first constraint,
we have:

If x1 ¼ 0! x2 ¼ 11:66

If x2 ¼ 0! x1 ¼ 17:5

And, for the second constraint equation:

If x1 ¼ 0! x2 ¼ 25

If x2 ¼ 0! x1 ¼ 12:5

Now, draw a line to connect the points (0, 11.66) to (17.5, 0) for the first constraint
and (0, 25) to (12.5, 0) for the second constraint, as shown in the Fig. 2.1.

The shaded area in Fig. 2.1 shows the feasible region and all points that are in
this domain satisfy both constraints of the model. The best points in the feasible
region that maximize the function f(x) would be the optimal solution. For the sake
of analysis, the feasible solution is redrawn as shown in Fig. 2.2. The intersection
point between the two constraints can be calculated by solving the following two
equations with two unknowns simultaneously as:

2x1 þ 3x2 ¼ 35
) x1; x2ð Þ ¼ ð10; 5Þ

4x1 þ 2x2 ¼ 50

8<
:

Therefore, we need to draw a straight line from points (0, 11.66) to (10, 5), and
(10, 5) to (12.5, 0).

To find the optimal solution in the feasible area, we assume a value for the
objective function, for example f(x) = 270, and draw a line to see it is inside the
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feasible region for 15x1 ? 18x2 = 270 or not (Fig. 2.3). In this case, the line does
not intersect the solution domain, therefore we know that the value for the
objective function must be less than 270. It is important to note that all points with
different values of x1 and x2 on this line have the same value of 270. We can
consider other values for the objective function and draw new lines with lower
values for f(x). The optimal point which is the maximum value will happen at the
intersection of the last possible point in the feasible region and the associated
objective line. In this problem, the maximum value occurs when f(x) = 240 since
it is the last line that intersects the boundary of feasible solution domain (con-
straints). As noted above, the values of x1 and x2 can simply be calculated by
solving the constraints equations simultaneously and the results will be x1 = 10
and x2 = 5.

Fig. 2.1 The feasible solution domain for Example 2.1

Fig. 2.2 The feasible region of the problem
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This problem also can be solved as minimization problem by changing the sign
of function f(x) into -f(x) and write it as following:

min g(x) ¼ �f(x) ¼ �ð15x1 þ 18x2Þ

In this case we need to find the line that intersects the boundary of constraints to
determine the minimum for the function g(x). Based on Fig. 2.4, the line g(x) = -

240 is the last intersecting point, and so, it can be considered as the optimal value
of the function g(x). As described above, the values of x1 and x2 can be simply
calculated by solving the constraint equations simultaneously as x1 = 10 and
x2 = 5. If the minimum value of g(x) or -f(x) is multiplied by a negative sign, it
will result in the maximum for the function f(x).

2.3 Simplex Method

As noted above, the graphical method can only be used for LP problems with one
or two decision variables, while many real LP problems involve more than two
decision variables and so, we need to apply other optimization techniques to find
the optimal solution. The simplex method is a well-known mathematical technique
for solving LP models by constructing an acceptable solution domain and
improving it step by step until the best solution is found and the optimum value is
reached. The necessary steps in simplex method to find the optimal solution are
presented in the following example.

Fig. 2.3 The procedure of finding maximum of f(x)
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Example 2.2 Maximize the objective function f(x) using the simplex method.

max fðxÞ ¼ 2x1 þ 3x2

Subject to

x1 þ x2� 27

2x1 þ 5x2� 90

�x1 þ x2� 11

x1� 0 and x2� 0

Solution: The following steps illustrate the whole process of solving a LP
model using the simplex method.

Step 1: Convert desired LP problem into a standard form.

To convert a LP model to its standard form, all inequality constraints should be
presented in the equality forms by considering the following conditions:

1. Adding a non-negative slack variable si for the constraints in the form of:

ai;1x1 þ ai;2x2 þ � � � þ ai;mxm� bi

Hence, the constraint can be written as:

ai;1x1 þ ai;2x2 þ � � � aþ ai;mxm þ si ¼ bi

2. Subtracting a non-negative surplus variable si for the constraints in the form of:

ai;1x1 þ ai;2x2 þ � � � þ ai;mxm� bi

Fig. 2.4 The procedure of finding minimum of g(x)
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Therefore, the constraint can be written as:

ai;1x1 þ ai;2x2 þ � � � þ ai;mxm � si ¼ bi

Thus, transforming equalities into the standard form based on the above con-
ditions can be written as:

x1 þ x2 þ s1 ¼ 27
2x1 þ 5x2 þ s2 ¼ 90
�x1 þ x2 þ s3 ¼ 11
x1� 0 and x2� 0

8>><
>>:

It is important to note that non-negative constraints remain in inequality forms
of C or B. Figure 2.5 shows the feasible region and the corresponding constraints
for example 2.2.

Step 2: Determine the basic and non-basic variables.

By considering f(x) as objective function and putting it along with the con-
straints, we will get the following system of linear equations:

Z � 2x1 � 3x2 ¼ 0

x1 þ x2 þ s1 ¼ 27

2x1 þ 5x2 þ s2 ¼ 90

�x1 þ x2 þ s3 ¼ 11

x1� 0 and x2� 0

8>>><
>>>:

The variables x1 and x2 are considered as non-basic variables and the other
slack variables (s1, s2, and s3) denoted as basic variables. In other words, the
variables that only appear in one equation are basic and the other ones which are
repeated in objective function and other equations are non-basic variables.

Step 3: Obtain entering and leaving variables.

The LP model in this problem includes five unknown variables (n = 5) x1, x2,
s1, s2, and s3 and three equations (m = 3) which are the constraints of the problem.
As the numbers of unknown variables are more than equations (n [ m), we will
assume that the two non-basic variables are equal zero in order to find a basic
solution for desired problem. It is important to note that the possible solution for
LP model can be obtained if n - m non-basic variables exist at the Zero level. By
setting x1 = x2 = 0, we have: f(x) = 0, s1 = 27, s2 = 90, s3 = 11.

Now the question is: can we still increase the objective function, or should this
answer be considered as the optimal solution? By looking at the objective function
equation, it can be seen that increasing x1 or x2 results in an increase in the values
of f(x). Because both variables x1 and x2 have negative coefficients -2 and -3
respectively (or positive coefficients 2 and 3 in the original form as
f(x) = 2x1 ? 3x2), we still can increase the value of f(x) by setting higher values
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for non-basic variables. On the other hand, if all coefficients of the objective
function are nonnegative, it can be concluded that the current basic solution,
f(x) = 0 that is obtained by setting x1 = x2 = 0, is the optimum solution.

In this problem, the coefficients of both non-basic variable are negative, and
hence, still it is possible to increase one of the variables x1, or x2 from zero to a
higher value to increase the value of f(x). By increasing one of the non-basic
variables from zero to a higher value, one of the basic variables should be pushed
down to zero in order to maintain a feasible solution with n - m non-basic
variables. The selected non-basic variable which are going to be a basic variable, is
called the entering variable and the basic variable that is changed to a non-basic
variable is named leaving variable. The largest negative coefficient in the function
f(x) or the largest positive coefficient in the original f(x) function can be selected
as the entering variable in the maximization problems. The main reason for
choosing a variable with the most negative coefficient is its potential to increase
the objective function as much as possible. It is important to note that there is an
inverse way to choose the entering variable for a minimization problem. In other
words, the variable with largest positive coefficient of f(x) is selected as the
entering variable. However, in the simplex method it is easier to convert mini-
mization problems into a maximization problem and then find the optimum value
of the desired objective function. The maximized function can be found by seeking
the minimum of the negative of the same function by changing f(x) to -f(x).

Based on discussions above, the entering variable candidates in this problem are
x1 and x2. As x2 has the largest negative coefficient in f(x) - 2x1 - 3x2 = 0, it is
selected as the entering variable. Once the entering variable is chosen, we need to
determine one of the basic variables as leaving variable. The problem in the
equality form can be written as:

Fig. 2.5 The feasible region and corresponding constraints of f(x)
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R1 ! f ðxÞ � 2x1 � 3x2 ¼ 0
R2 ! x1 þ x2 þ s1 ¼ 27
R3 ! 2x1 þ 5x2 þ s2 ¼ 90
R4 ! �x1 þ x2 þ s3 ¼ 11

8>><
>>:

where, Ri means the ith row of the equality system. To solve this LP model, the
initial tableau corresponding to the equations can be represented as following:

The leaving variable can be selected by calculating the ratio of right side of
equations (last column of table) to the non-negative coefficients of selected
entering variable in the rows linked to the basic variables (here R2, R3, R4). The
entering variable and its coefficients are bold in Table 2.1. Finally, the leaving
variable will be the current basic variable associated with the row with minimum
ratio. In this problem the ratios are calculated as:

R2 !
27
1
¼ 27

R3 !
90
5
¼ 18

R4 !
11
1
¼ 11

The minimum value among the rations (27, 18, 11) is 11 and so, the current
basic variable associated with this ratio which is s3 is selected as the leaving
variable and consequently become a non-basic variable.

Step 4: Determine pivot equation.

In this step, the row associated with the minimum ratio is selected as pivot
equation and the coefficient of entering variable in the pivoting row is the pivot
element. In this example, the pivot equation is R4 and the pivot element is 1. To
make a new simplex table, both side of pivot equation should be divided by pivot
element to have a unit value for pivot element, and then, add or subtract multiples
of the pivot equation to or from the other rows (here R1, R2 and R3) in order to
eliminate the selected entering variable (here x2) from them. It is important to note
that this method is called Gauss-Jordan elimination method. The equality equa-
tions after applying Gauss-Jordan elimination method will be changed as follows:

R1 þ 3R4 ! f ðxÞ � 5x1 þ 3s3 ¼ 33
R2 � R4 ! 2x1 þ s1 � s3 ¼ 16
R3 � 5R4 ! 7x1 þ s2 � 5s3 ¼ 35
R4 ! �x1 þ x2 þ s3 ¼ 11

8>><
>>:

The new coefficients of all basic and non-basic variables based on the simplex
method are shown in the Table 2.2.
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Step 5: Find the optimal solution.

Once the new basic and non-basic variables are determined and the new sim-
plex table is generated, we need to examine if the computed value for f(x) is an
optimal solution or not. Based on Table 2.2, there is a non-basic variable (i.e., x1)
in the first row of the tableau with negative coefficient -5 that has potential to
improve the value of f(x). In other words, for this maximization problem by setting
higher values for non-basic variable x1, the value of f(x) will be increased. Hence,
the non-basic variable x1 (it is bold in the Table 2.2) is considered as the entering
variable and by using the same procedure described above the leaving variable
should be selected. The ratios based on the new simplex table are:

R2 � R4 !
16
2
¼ 8

R3 � 5R4 !
35
7
¼ 5

As the leaving variable is chosen by dividing the ratio of right side of equations
to the non-negative coefficients of entering variable in the constraint rows, the
coefficient -1 should not be considered. The minimum of values (8, 5) is 5, and so,
the current basic variable associated with this ratio, which is s2, is chosen as the
leaving variable. The pivot equation and pivot element here are R3 - 5R4 and 7,
respectively. Afterward, both side of pivot equation is divided by pivot element to
have a unit value for pivot element, and then, add or subtract multiples of the pivot
equation to or from the other rows as R1 ? 3R4, R2 - R4 and R4 to eliminate the
selected entering variable x1 from them. The elimination procedure is:

Table 2.1 Simplex tableau based on the coefficients of basic and non-basic variables

Equations All variables
?

f(x) x1 x2 s1 s2 s3 Right side
of equations

R1 f(x) 1 -2 -3 0 0 0 0
Basic variables

R2 s1 0 1 1 1 0 0 27
R3 s2 0 2 5 0 1 0 90
R4 s3 0 -1 1 0 0 1 11

Table 2.2 Simplex tableau based on the new coefficients of basic and non-basic variables

Equations All variables ? f(x) x1 x2 s1 s2 s3 Right side of equations

R1 ? 3R4 f(x) 1 -5 0 0 0 +3 33
Basic variables

R2–R4 s1 0 2 0 1 0 -1 16
R3–5R4 s2 0 7 0 0 1 -5 35
R4 x2 0 21 1 0 0 1 11
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R01 ¼ R1 þ 3R4ð Þ þ 5R03 ! Z þ 5
7 s2 � 4

7 s3 ¼ 58
R02 ¼ R2 � R4ð Þ � 2R03 ! s1 � 2

7 s2 þ 3
7 s3 ¼ 6

R03 ¼ 1
7 R3 � 5R4ð Þ ! x1 þ 1

7 s2 � 5
7 s3 ¼ 5

R04 ¼ R4 þ R03 ! x2 þ 1
7 s2 þ 2

7 s3 ¼ 16

8>><
>>:

The new coefficients of all new basic and non-basic variables are shown in the
Table 2.3.

As it can be seen from this new tableaux, the value of the objective function is
increased from 33 to 58. Now the question is ‘‘is this the optimal solution?’’ To
find the appropriate answer for this question, we need to examine the coefficients
of variables in the first row ðR01Þ and find the negative coefficient. If all coefficients
are nonnegative, the optimization process is done and so, the final value of 58 will
be the maximum for f(x). But, there still is a coefficient with negative value in the
row of objective function of Table 2.3. Therefore, it can be concluded that s3 is the
entering variable and the leaving variable should be determined in this step.
The ratios based on the previous simplex tableau are:

R02 !
6

3=7
¼ 14

R04 !
16

2=7
¼ 56

The minimum value of (14, 56) is 14 and so, the current basic variable asso-
ciated with this ratio, which is s1 is chosen as the leaving variable. The pivot
equation and pivot element here are R02 and 3/7 respectively. Now we will try to
eliminate the selected entering variable s1 from the equation system as follow:

R001 ¼ R01 þ 4
7 R002 ! Z þ 4

3 s1 þ 1
3 s2 ¼ 66

R002 ¼ R02 ! 7
3 s1 � 2

3 s2 þ s3 ¼ 14
R003 ¼ R03 þ 5

7 R002 ! x1 þ 5
3 s1 � 1

3 s2 ¼ 15
R004 ¼ R04 � 2

7 R002 ! x2 � 2
3 s1 þ 1

3 s2 ¼ 12

8>><
>>:

The calculated coefficients for all new basic and non-basic variables are pre-
sented in the Table 2.4. As it can be seen from the objective coefficients in the row
of R001, all coefficients are nonnegative and hence, no non-basic variable to increase
the value of the objective function. Therefore, the current solution x1 = 15 and
x2 = 12 are the optimum solution, and the maximum value of Z is 66.

The LP problems with many constraints and objective functions also can be
solved quickly by applying powerful software like Excel. Excel contains a powerful
tool, called Solver, to find the optimal solution of linear programming using the
simplex method. This tool can be found on the Data tab of the Excel worksheet in
which the opening window looks like Fig. 2.6. As seen from this figure, the first
section of Solver Parameters window is Set Objective. In this part, we need to address
the cell reference or name for the objective cell which contains a formula. Afterward,
the value of the objective cell should be determined as: Max, Min, or a Value
(the objective cell to be a certain value). The third part is By Changing Variable Cells
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that is used for choosing the decision variable cell ranges. It is important to note that
the decision variables must be related to the objective cell. To enter all constraints
of the problem, the Subject to the Constraints box should be applied. In this case,
click the Add option and in the Cell Reference box, enter the cell reference of
constraints. Excel provides the following three different techniques to solve an
optimization problem: (1) Simplex LP, (2) GRG Nonlinear, and (3) Evolutionary
approaches. The application of Excel in solving LP problems are illustrated in the
following examples. The following example is a linear problem, and the Simplex LP
method is selected to find the optimum value of profit (R). It should be noted that
Solver is not a very robust tool for non-linear and complex optimization problems,
but it is useful to find solution of simple problems.

Example 2.3 The proper monitoring of earth dams and safety evaluation of the
large structure under operational conditions require using a number of instruments
such as piezometers to monitor the earthen embankment pore water pressures for
potential engineering improvement (filter systems, cut off walls, sheet piles, low
permeability apron, etc.) to prevent failure. The Caspian Company has two pro-
duction lines and produces two types of piezometers called ‘‘P1’’ and ‘‘P2’’. The P1

production line has a capacity of 25 piezometers per day, whereas the daily
capacity of the P2 line is only 35 piezometers. The labors requirement to produce
P1 and P2 are 2 man-hours and 3 man-hours, respectively. The maximum capacity
of Caspian Company is 140 labor hours per day to produce two types of piez-
ometers. Determine the daily production, if the profit for the P1 piezometer is $20
and for the P2 piezometer is $25.

Table 2.3 New coefficients of basic and non-basic variables based on the simplex method

Equations All
variables ?

Z x1 x2 s1 s2 s3 Right side of
equations

R01 Z 1 0 0 0 5
7 � 4

7
58

Basic variables
R02 s1 0 0 0 1 � 2

7
3
7

6

R03 x1 0 1 0 0 1
7 � 5

7
5

R04 x2 0 0 1 0 1
7

2
7

16

Table 2.4 New coefficients of basic and non-basic variables based on the simplex method

Equations All
variables ?

f(x) x1 x2 s1 s2 s3 Right side of
equations

R001 f(x) 1 0 0 4
3

1
3

0 66

Basic variables
R002 s3 0 0 0 7

3 � 2
3

1 14

R003 x1 0 1 0 5
3 � 1

3
0 15

R004 x2 0 0 1 � 2
3

1
3

0 12
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Solution:

1. The first step is to determine the objective and associated constraints of
example problem. It is obvious that the objective function is maximizing the
profit R($) subject to the following constraints:

(a) The number of P1 piezometers (np1) produced each day are less than or
equal to 25,

(b) The number of P2 piezometers (np2) produced each day are less than or
equal to 35,

(c) The total number of labor hours is a linear function of 2 and 3 man-hours
for production of piezometers, that is: 2np1 ? 3np2 B 140.

Fig. 2.6 The Solver parameters in Excel 2010
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And the profit function in this example can be written as follow:

Rð$Þ ¼ np1 � 20$
� �

þ np2 � 25$
� �

Then, the exact statement of this problem or the objective function is:

maxR $ð Þ ¼ np1 � 20$
� �

þ np2 � 25$
� �

Subject to:

np1 � 25; np2 � 35; 2np1 þ 3np2 � 140

Figure 2.7 shows the governing conditions in the Caspian Company to produce
the piezometers. Based on the constraints, the feasible production combinations
are the points in the shaded area of Fig. 2.7 and we need to find a point in this area
that makes the highest profit. To solve this problem, different values for np1 are
considered, then associated np2 are calculated, and finally the target point con-
sidering all constraints is found. Based on the presented results in Table 2.5, the
acceptable ranges that meet all constraints of this problem are from 30 to 34, for
np2 and from 19 to 25 for np1 which are shown in a gray color. According to this
range, the highest profit for np2 and np1 are equal to 30 and 25, respectively.

The first column of Table 2.5 includes various numbers of P2 piezometers (np2),
while the second column (np1) is calculated based on the relationship between two
variables P1 and P2. According to the results, if the Caspian Company produces 25
P1 type and 30 P2 type piezometers per day, the highest profit will occur.

In summary, the procedure for finding optimal solution using the Excel Solver
can be explained as:

1. Set Objective: set the profit as target value that should be maximized,
2. By Changing Variables Cells: consider np1 and np2 as decision variables,
3. Subject to the Constraints: determine the constraints as: np1 B 25, np2 B 35,

and 2np1 ? 3np2 B 140.

The achieved results using the Solver tool are the same as the computed results
in the previous section. It is important to note that the existence of solution is only
dependent on the defined constraints of the desired problem and it is not a function
of objective function.

2. If the maximum capacity of Caspian Company is changed from 140 to 170
persons-hour of labor per day, there would not be feasible solution regarding
this new production constraint, and there is no single point to satisfy all con-
straints. Figure 2.8 and Table 2.6 illustrate the feasible production combina-
tions of piezometer productions by considering new values for the labor
constraint.
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As can be seen from Table 2.6, there is no solution that satisfies all constraints,
and hence, this problem is infeasible for the new value of labor constraint.

Using the Solver tool in Excel, the same results will be achieved and the
program shows the following message as: The Objective Cells values don’t con-
verge (Fig. 2.9).

3. As mentioned previously, the unbounded solution happens when the feasible
region (shaded area in Fig 2.7) is unbounded and so the value of objective

Fig. 2.7 The feasible production combinations for Caspian Company

Table 2.5 The possible combination of piezometer productions in Caspian Company

np2 np1 = (140 - 3np2)/2 R ($) np2 np1 = (140 - 3np2)/2 R ($)

0 70 1,400 24 34 1,280
2 67 1,390 26 31 1,270
4 64 1,380 28 28 1,260
6 61 1,370 30 25 1,250
8 58 1,360 32 22 1,240
10 55 1,350 34 19 1,230
12 52 1,340 36 16 1,220
14 49 1,330 38 13 1,210
16 46 1,320 40 10 1,200
18 43 1,310 42 7 1,190
20 40 1,300 44 4 1,180
22 37 1,290 46 1 1,170
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function can be increased or decreased to infinity without leaving the feasible
region. For instance if we don’t consider any constraint for np1 (ignore con-
straints 1 and 3) its value can be varied from zero to infinity, and hence, the
profit (R) simultaneously rises and approaches infinity (Fig. 2.10).

4. If the profit for each P2 piezometer is changed from 25$ to $30, the profit
function will be changed as follow:

Rð$Þ ¼ np1 � 20$
� �

þ np2 � 30$
� �

In this case, there may be more than one combination of producing P1 and P2

piezometers to reach the maximum profit. As can be seen in Table 2.7, the

Fig. 2.8 The feasible production combinations for new labor constraint

Table 2.6 The possible combination of piezometer productions with new labor constraint

np2 np1 = (170 - 3np2)/2 R($) np2 np1 = (170 - 3np2)/2 R($)

0 85 1,700 24 49 1,580
2 82 1,690 26 46 1,570
4 79 1,680 28 43 1,560
6 76 1,670 30 40 1,550
8 73 1,660 32 37 1,540
10 70 1,650 34 34 1,530
12 67 1,640 36 31 1,520
14 64 1,630 38 28 1,510
16 61 1,620 40 25 1,500
18 58 1,610 42 22 1,490
20 55 1,600 44 19 1,480
22 52 1,590 46 16 1,470
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production of different numbers of P1 and P2 piezometers resulted in same profit
for Caspian Company. In other words, it is possible to produce several different
combination of P1 piezometer (e.g., 19, 22, or 25) or P2 piezometer (e.g., 34, 32, or
30), while the profit is still constant and it is 1,400$. Hence, there are multiple

Fig. 2.9 The solver results

Fig. 2.10 The unbounded condition
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optimal solutions to produce np2 and np1 in comparison to a unique optimal
solution discussed above.

5. It is important to note that addition or subtraction of a positive constant value to
or from the objective function will not change the optimum solution of the
problem. This rule also is confirmed for multiplication or division of objective
function by a positive constant value. In this section, the Caspian Company’s
profits are calculated for different profit functions as follows, and then the
optimum solutions are determined in each case.

R $ð Þ ¼ np1 � 20
� �

þ np2 � 25
� �� �

þ 35

R $ð Þ ¼ np1 � 20
� �

þ np2 � 25
� �� �

� 20

R $ð Þ ¼ np1 � 20
� �

þ np2 � 25
� �� �

� 1:5

R $ð Þ ¼ np1 � 20
� �

þ np2 � 25
� �� �

=5

The results show that the optimum solutions in all cases are constant as
np1 = 25, and np2 = 30 and they are not changed by changing the profit function
with a positive constant value (Table 2.8).

Figure 2.11 shows any addition, subtraction, multiplication, and division of a
constant value to or from desired objective function doesn’t change the optimum
solution for np1.

In the following section the application of simplex method for solving three
types of common optimization problems in the field of water resources engineering
are presented. The problems cover the process of linear programming for water
distribution networks with and without pump stations, confined aquifer with one-
dimensional steady-state flow, and confined aquifer with two-dimensional steady-
state flow.

2.3.1 Optimization of Water Distribution Networks

A water distribution network is a major urban infrastructure which distributes
water supply to residential, industrial, and commercial customers under various
demand conditions at adequate pressures and flows. In general, water distribution
systems are composed of pipes, pumps, distribution storages like reservoirs, and
other hydraulic components. In addition to design and analysis of a water distri-
bution system form a hydraulic point of view, a designer needs to determine the
minimum cost of a distribution system to meet demands for all users at required
pressure level. The overall cost of a water distribution system includes:

1. Cost of piping and appurtenances such as pumps, valves, flush hydrants, res-
ervoirs, tanks, etc.,

2. Cost of energy for pumping the water to desired network connections to provide
the minimum required pressure head elevation, and
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3. Operation and maintenance costs that includes administration and management
of personnel, flushing the system at a particular time interval, repairing pipes,
servicing of the pumps, billing customers, etc.

Table 2.7 The possible combination of piezometer productions with multiple solutions

np2 np1 = (140 - 3np2)/2 R($) np2 np1 = (140 - 3np2)/2 R($)

0 70 1,400 24 34 1,400
2 67 1,400 26 31 1,400
4 64 1,400 28 28 1,400
6 61 1,400 30 25 1,400
8 58 1,400 32 22 1,400
10 55 1,400 34 19 1,400
12 52 1,400 36 16 1,400
14 49 1,400 38 13 1,400
16 46 1,400 40 10 1,400
18 43 1,400 42 7 1,400
20 40 1,400 44 4 1,400
22 37 1,400 46 1 1,400

Table 2.8 The values of different profit function for Caspian Company

np1 np2 R($) R ? 35 ($) R -

20 ($)
R 9 1.5 ($) R/

5 ($)

25 30 1,250 1,285 1,230 1,875 250
22 32 1,240 1,275 1,220 1,860 248
19 34 1,230 1,265 1,210 1,845 246

Fig. 2.11 Variation of profits versus np1
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In this problem, we will optimize the piping cost (pipe length with a specific
diameter of a simple branched water distribution system) with and without con-
sidering a pump station in the system. In other words, the main objective function
here is obtaining the length of pipe with specific diameter (d) in each reach (Li,j)
between two connections of desired water distribution networks to minimize the cost
of piping. A water distribution system tends to use a pipe or a combination of pipes in
each reach to have minimum piping cost, while it has to satisfy the water demands
and pressure requirements at all nodes as well as hydraulic constraints. The opti-
mization process in the form of linear programming (LP) can be written as follow:

min Z ¼
X

i;j

X
di;j

Ci;j;dli;j;d þ
X

n

Cpn Hpn ð2:9Þ

where, Ci,j,d and li,j,d are the cost per unit length, and the length of pipe between
nodes i and j with diameter d, respectively: Hpn is the pumping head, n is the total
number of pumps in the system, and Cpn is the cost per unit of pumping head. It is
important to note that when there is no pump station in a water distribution system,
the second term of Eq. (2.9) should be omitted. The main constraints for a water
distribution network are energy and length constraints in conjunction with non-
negativity of all pipes length and pumping head elevation. The constraints in this
case can be written as:

1. Energy constraint:

Hmin;k �Hc þ
X

n

Hpn �
X

i;j

X
di;j

Ii;j;dli;j;d �Hmax;k ð2:10Þ

where, Hmin,k and Hmax,k are the minimum and maximum required head at the demand
point k, respectively: k is the total number of demand points, Hc is the constant
elevation of piping system, and Ii,j,d is the hydraulic gradient or gradient between two
hydraulic head measurements over the length of the flow path. The energy loss for
water flow in a pipe can be estimated using the Darcy-Weisbach equation as:

HL ¼ I � l ¼ 8fQ2

p2gd5
l ð2:11Þ

where, f is Darcy-Weisbach friction factor, Q is flow rate (cfs), and d is diameter of
pipe (ft).

2. Length constraint: X
i;j;d

li;j;d ¼ Li;j ð2:12Þ

where, Li,j is the total reach length between each two connections that is a known
variable in these types of problems. In other words, the total length of pipe in every
reach, which can be a combination of pipes with different diameters, must be
equaled to the total reach length between two connections.
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3. Non-negativity conditions:

li;j;d � 0
Hpn � 0

�
ð2:13Þ

Example 2.4 According to the above statements, determine the minimum cost of
pipe and pump (head elevation) in various demand nodes in the following
conditions:

1. When there is no pump in the system (Fig. 2.12), and
2. When there is a pump station in the system (Fig. 2.13).

Other necessary information includes:

(a) The unit cost of pipe for two standard diameters (Table 2.9),
(b) The minimum required pressure head elevations for all determined users (A,

B, and C) are 550 (ft) and the demand discharges are presented in Table 2.10.
(c) Darcy-Weisbach friction factor is 0.02,
(d) The unit cost of pumping head is 220$,
(e) The total length of pipe between each connection is 1,000 ft.
(f) The constant elevation of piping system is assumed 650 ft when there is no

pump in the system, and 555 ft when a pump is considered in the system.

Solution:

1. As noted above, the objective function is to minimize the cost, of pipes (smaller
diameter) and it can be defined as follow:

min Z ¼ C0;1;1l0;1;1 þ C0;1;2l0;1;2
� �

þ C1;2;1l1;2;1 þ C1;2;2l1;2;2
� �

þ C2;3;1l2;3;1 þ C2;3;2l2;3;2
� �

þ C2;4;1l2;4;1 þ C2;4;2l2;4;2
� �

þ C1;5;1l1;5;1 þ C1;5;2l1;5;2
� �

¼ 10� l0;1;1 þ 15� l0;1;2
� �

þ 10� l1;2;1 þ 15� l1;2;2
� �

þ 10� l2;3;1 þ 15� l2;3;2
� �

þ 10� l2;4;1 þ 15� l2;4;2
� �

þ 10� l1;5;1 þ 15� l1;5;2
� �

Subject to

(a) The length constraints as:

l0;1;1 þ l0;1;2 ¼ 1,000 ft

l1;2;1 þ l1;2;2 ¼ 1,000 ft

l2;3;1 þ l2;3;2 ¼ 1,000 ft

l2;4;1 þ l2;4;2 ¼ 1,000 ft

l1;5;1 þ l1;5;2 ¼ 1,000 ft
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(b) The energy constraints for all users is as follows:

For user A:

650� I0;1;1 � l0;1;1 þ I0;1;2l0;1;2

� �
� I1;2;1l1;2;1 þ I1;2;2l1;2;2
� �

� I2;3;1l2;3;1 þ I2;3;2l2;3;2
� �

� 550

where,

I0;1;1 ¼
8fQ2

p2gd5
¼ 8� 0:02� QA þ QB þ QCð Þ2

p2 � 32:2� 1:75ð Þ5

Fig. 2.12 The water
distribution system without
pumping station

Fig. 2.13 The water
distribution system with
pumping station

Table 2.9 The cost information of pipes based on diameters

Diameter (in) Diameter (ft) Cost ($/ft)

21.0 1.75 10.0
24.0 2.00 15.0

Table 2.10 Demand discharges information

Demand discharges

Q1 Q2 Q3 Q4 Q5 Q6

User A QA = 10 QA = 14 QA = 18 QA = 15 QA = 18 QA = 20
User B QB = 12 QB = 18 QB = 20 QB = 17 QB = 18 QB = 21
User C QC = 14 QC = 20 QC = 24 QC = 36 QC = 31 QC = 23
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The hydraulic gradient for Q1 is:

I0;1;1 ¼
8� 0:02� 36ð Þ2

p2 � 32:2� 1:75ð Þ5
¼ 0:0398 ft=ft

and for I2,4,2 and Q3 the hydraulic gradient is:

I2;4;2 ¼
8� 0:02� 20ð Þ2

p2 � 32:2� 2ð Þ5
¼ 0:0063 ft=ft

Then, the hydraulic constraint for user A in Q1 will be calculated as:

650� 0:0398� l0;1;1 þ 0:0204� l0;1;2
� �

� 0:0149� l1;2;1 þ 0:0076� l1;2;2
� �

� 0:0031� l2;3;1 þ 0:0016� l2;3;2
� �

� 550

and for user B in Q1 is:

650� I0;1;1 � l0;1;1 þ I0;1;2l0;1;2
� �

� I1;2;1l1;2;1 þ I1;2;2l1;2;2
� �

� I2;4;1l2;4;1 þ I2;4;2l2;4;2
� �

¼ 650� 0:0398� l0;1;1 þ 0:0204� l0;1;2
� �

� 0:0149� l1;2;1 þ 0:0076� l1;2;2
� �

� 0:0044� l2;4;1 þ 0:0023� l2;4;2
� �

� 550

and finally for user C in Q1 is:

650� I0;1;1 � l0;1;1 þ I0;1;2l0;1;2
� �

� I1;5;1l1;5;1 þ I1;5;2l1;5;2
� �

¼ 650� 0:0398� l0;1;1 þ 0:0204� l0;1;2
� �

� 0:0060� l1;5;1 þ 0:0031� l1;5;2
� �

� 550

The noted procedure above should be repeated for existing users in different
demand points. The values of hydraulic gradient for all reaches and various
demand discharges are shown in the Table 2.11

In the next step, the optimum values of pipes length are calculated by mini-
mizing the objective function, Z. The simplex LP method (Excel|Data|Solver) is
applied for optimization analysis and the results are presented in the Table 2.12.

2. In this section, the optimization problem is formulated for desired water dis-
tribution network by considering a pump station in the system (Fig. 2.13).
Therefore, the objective function in this case can be written as:

min Z ¼ CpHp

� �
þ C0;1;1l0;1;1 þ C0;1;2l0;1;2
� �

þ C1;2;1l1;2;1 þ C1;2;2l1;2;2
� �

þ C2;3;1l2;3;1 þ C2;3;2l2;3;2
� �

þ C2;4;1l2;4;1 þ C2;4;2l2;4;2
� �

þ C1;5;1l1;5;1 þ C1;5;2l1;5;2
� �

¼ 220� Hp

� �
þ 10� l0;1;1 þ 15� l0;1;2

� �
þ 10� l1;2;1 þ 15� l1;2;2
� �

þ 10� l2;3;1 þ 15� l2;3;2
� �

þ 10� l2;4;1 þ 15� l2;4;2
� �

þ 10� l1;5;1 þ 15� l1;5;2
� �

The length constraints are the same as presented in the previous section, and the
energy constraint for user A can be written as:

40 2 Linear Optimization



555þ Hp � I0;1;1 � l0;1;1 þ I0;1;2l0;1;2
� �

� I1;2;1l1;2;1 þ I1;2;2l1;2;2
� �

� I2;3;1l2;3;1 þ I2;3;2l2;3;2
� �

� 550

and for user B is:

555þ Hp � I0;1;1 � l0;1;1 þ I0;1;2l0;1;2
� �

� I1;2;1l1;2;1 þ I1;2;2l1;2;2
� �

� I2;4;1l2;4;1 þ I2;4;2l2;4;2
� �

� 550

and finally for user C has following form:

555þ Hp � I0;1;1 � l0;1;1 þ I0;1;2l0;1;2
� �

� I1;5;1l1;5;1 þ I1;5;2l1;5;2
� �

� 550

.
The optimized lengths for different demand points are presented in Table 2.13.

2.3.2 Optimization of One-Dimensional Confined Aquifers

The occurrence and movement of water beneath the surface of the Earth is called
groundwater flow, and it when occurs in the saturated soil and rock below the water
table, it is called saturated flow. Groundwater flow is an important part of the
hydrologic cycle where different types of surface water such as reservoirs, rivers,
streams, and overland flow from precipitation infiltrate into the earth crust and
become subsurface water. A significant part of the subsurface water can be either
stored or transmitted through a geological unit called aquifer. In other words, an
aquifer is an underground water-saturated formation or layer consisting of per-
meable rock, sediment, or soil that yields usable amounts of water to wells and
springs. Wells can be drilled into the aquifers to pump groundwater from the aquifer
and deliver it to various demand points such as domestic, industrial, agricultural,

Table 2.11 The hydraulic gradient for all reaches and demand points

Demand discharge (cfs)

Hydraulic gradient QA = 10 QA = 14 QA = 18 QA = 18 QA = 15 QA = 20
QB = 12 QB = 18 QB = 20 QB = 18 QB = 17 QB = 21
QC = 14 QC = 20 QC = 24 QC = 31 QC = 36 QC = 23

I0,1,1 0.0398 0.0830 0.1180 0.1378 0.1420 0.1258
I0,1,2 0.0204 0.0426 0.0605 0.0707 0.0728 0.0645
I1,2,1 0.0149 0.0314 0.0443 0.0398 0.0314 0.0516
I1,2,2 0.0076 0.0161 0.0227 0.0204 0.0161 0.0265
I2,3,1 0.0031 0.0060 0.0099 0.0099 0.0069 0.0123
I2,3,2 0.0016 0.0031 0.0051 0.0051 0.0035 0.0063
I2,4,1 0.0044 0.0099 0.0123 0.0099 0.0089 0.0135
I2,4,2 0.0023 0.0051 0.0063 0.0051 0.0046 0.0069
I1,5,1 0.0060 0.0123 0.0177 0.0295 0.0398 0.0162
I1,5,2 0.0031 0.0063 0.0091 0.0151 0.0204 0.0083
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or environmental segments. Based on the physical characteristics of aquifers, they
can be categorized into confined and unconfined aquifers. The confined or artesian
aquifer is one in which the groundwater is sandwiched between two layers with low
permeability and it is under pressure greater than atmospheric. On the other hand,
the unconfined aquifers contain a water table instead of impermeable layer above
the saturation zone (Fig. 2.14). It is important to note that when a well is drilled into
confined aquifers, the groundwater rises above the upper boundary of aquifer and
may even flow from the well onto the land surface, while, the water level in wells
will be at the same elevation as the water table in an unconfined aquifer.

Table 2.12 The optimized lengths when there is no pumping station

Length of pipe (ft)

Pipe segment QA = 10 QA = 14 QA = 18 QA = 18 QA = 15 QA = 20
QB = 12 QB = 18 QB = 20 QB = 18 QB = 17 QB = 21
QC = 14 QC = 20 QC = 24 QC = 31 QC = 36 QC = 23

l0,1,1 1,000 396.21 0.00 0.00 0.00 0.00
l0,1,2 0.00 603.79 1,000 1,000 1,000 1,000
l1,2,1 1,000 1,000 205.42 0.00 142.02 0.00
l1,2,2 0.00 0.00 794.57 1,000 857.97 1,000
l2,3,1 1,000 1,000 1,000 781.85 1,000 454.29
l2,3,2 0.00 0.00 0.00 218.14 0.00 545.70
l2,4,1 1,000 1,000 1,000 781.85 1,000 314.15
l2,4,2 0.00 0.00 0.00 218.14 0.00 685.84
l1,5,1 1,000 1,000 1,000 985.69 349.02 1,000
l1,5,2 0.00 0.00 0.00 14.30 650.97 0.00
min Z($) 50,000 53,018.95 58,972.86 62252.99 62,544.721 66,157.75

Table 2.13 The optimized lengths when there is a pumping station

Length of pipe (ft)

Pipe segment QA = 10 QA = 14 QA = 18 QA = 18 QA = 15 QA = 20
QB = 12 QB = 18 QB = 20 QB = 18 QB = 17 QB = 21
QC = 14 QC = 20 QC = 24 QC = 31 QC = 36 QC = 23

l0,1,1 1,000 0.00 0.00 0.00 0.00 0.00
l0,1,2 0.00 1,000 1,000 1,000 1,000 1,000
l1,2,1 1,000 1,000 1,000 1,000 1,000 0.00
l1,2,2 0.00 0.00 0.00 0.00 0.00 1,000
l2,3,1 1,000 1,000 1,000 1,000 1,000 1,000
l2,3,2 0.00 0.00 0.00 0.00 0.00 0.00
l2,4,1 1,000 1,000 1,000 1,000 1,000 1,000
l2,4,2 0.00 0.00 0.00 0.00 0.00 0.00
l1,5,1 1,000 1,000 1,000 1,000 1,000 1,000
l1,5,2 0.00 0.00 0.00 0.00 0.00 0.00
Optimum of Hp 54.077 78.977 112.160 115.441 108.140 99.524
min Z($) 61,897.00 72,374.83 79,675.28 80,396.92 78,790.82 81,895.20
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The general form of a two-dimensional diffusion equation for flow through a
heterogeneous anisotropic media considering recharge or discharge (for example
from a well) can be written as:

Tx
o2h

ox2
þ Ty

o2h

oy2
¼ S

oh

ot
þW ð2:14Þ

where T(L2/T) is transmissivity, h(L) is hydraulic head, S is the storage coefficient
(dimensionless), t is time, and W(L/T) is a sink term. The transmissivity is an
important hydraulic property of aquifers which shows the capability of aquifer to
transmit water through its whole saturated thickness. In other words, transmissivity
can be defined as the rate of water flow through a cross-sectional area of an aquifer
with a unit width and thickness b under unit hydraulic gradient. This parameter in a
confined aquifer is calculated, as follow:

T ¼ K:b ð2:15Þ

where, K(L/T) and b(L) are the hydraulic conductivity and the saturated thickness
of aquifer respectively. For unconfined aquifers the saturated thickness can be
replaced with the hydraulic head h as:

T ¼ K:h ð2:16Þ

The other variable in Eq. (2.14) is the dimensionless factor storage coefficient
or storativity that is defined as volume of water the aquifer will store or release per

Fig. 2.14 Confined and unconfined aquifers
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unit surface area and per unit decrease or increase in hydraulic head. This factor
shows the ability of aquifer to store water and can be computed as:

S ¼ b:Ss ð2:17Þ

where, Ss (L-1) is the specific storage and it is defined as amount of water that an
aquifer releases from storage per unit volume of saturated area per unit decline or
raise in hydraulic head while remaining fully saturated. It is important to know that
the values of storage coefficient in confined aquifers are less than 5 9 10-3 and
more than 5 9 10-5 (Todd 1980). For unconfined aquifer, the storage coefficient
varies from 0.01 to 0.30. The sink term W is the net discharge (e.g., withdrawal
from a well) or recharge (q) from the control volume and is equal to:

Wi;j ¼
qi;j

DxiDyj
ð2:18Þ

The positive and negative values of q represents pumping and recharge,
respectively.

Example 2.5 Consider a confined aquifer with one-dimensional steady-state flow
and fixed hydraulic heads along the boundaries, as is shown in Fig. 2.15. Develop
an LP model to maximize the hydraulic heads for various pumping rates and
determine the optimum head in each well for the following conditions:

1. The minimum value of the total desired discharge (Wmin) from all wells is equal
to 4 ft/day,

2. The minimum value of the desired discharge (Wmin) from each well is equal to
4 ft/day.

The necessary information to solve this problem are: Wmin = 4 ft/day,
Dx = 100 ft, T = 10,000 ft2/day, h0 = 125 ft, h4 = 100 ft.

Solution: The governing equation for the one-dimensional steady-state flow
in(only x - direction) considering the pumping wells in confined aquifer can be
derived from Eq. (2.14) as follows:

Tx
o2h
ox2 þ Ty

o2h

oy2
¼ S

oh

|fflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflffl}
This term becomes 0

þW) o2h
ox2 ¼ W

Tx ð2:19Þ

The implementation form of the Eq. (2.19) based on the central finite difference
technique has the following form:

hiþ1 � 2hi þ hi�1

Dxð Þ2
¼ Wi

Tx
ð2:20Þ

The objective function to maximize the hydraulic heads for various pumping
rates can be written as (Aguado et al. 1974):

44 2 Linear Optimization



max Z ¼
Xn

i¼1

hi ð2:21Þ

where, n is the number of wells (in this example n = 3), and hi is the hydraulic
head in each well. The constraints that should be applied in this problem are:

Subject to

hiþ1 � 2hi þ hi�1

Dxð Þ2
¼ Wi

Tx

Wi� 0 i ¼ 1ton
hi� 0

8>><
>>:

ð2:22Þ

It should be noted that to provide a minimum specific pumping rates for all
wells together, the following constraint also must be considered:

Xn

i¼1

Wi�Wmin ð2:23Þ

in which, Wmin is the minimum value of the total desired discharge from wells. The
following supplementary constraint is useful for finding the optimum hydraulic
heads in wells:

hi� hiþ1 i ¼ 0 to n ð2:24Þ

The developed LP model for having minimum value of 4 (ft/day) discharge from
all wells together, can be written as:

max Z ¼ h1 þ h2 þ h3

Subject to the following constraints as:

i ¼ 1! h2 � 2h1 þ h0

Dxð Þ2
¼ W1

Tx

i ¼ 2! h3 � 2h2 þ h1

Dxð Þ2
¼ W2

Tx

i ¼ 3! h4 � 2h3 þ h2

Dxð Þ2
¼ W3

Tx

8>>>>>>><
>>>>>>>:

Which can be summarized as:

Fig. 2.15 A confined aquifer with one-dimensional steady-state flow and fixed hydraulic heads
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i ¼1! h0 ¼ 125 ¼ 2h1 � h2ð Þ þ W1 � Dx2

Tx

� 	

i ¼2! 0 ¼ 2h2 � h1 � h3ð Þ þ W2 � Dx2

Tx

� 	

i ¼3! h4 ¼ 100 ¼ 2h3 � h2ð Þ þ W3 � Dx2

Tx

� 	

8>>>>>>>><
>>>>>>>>:

and the other constraints are:

W1 þW2 þW3�Wmin

h1; h2; h3� 0
W1;W2;W3� 0
h0� h1� h2� h3� h4

Therefore, the unknowns in this problem are h1, h2, h3 and W1, W2, W3 for all
wells completed in the confined aquifer. The essential point here is considering
negligible values for well losses and well diameters in this optimization analysis.
This problem can be solved simply by using Excel (Data|Solver) and applying the
simplex method. The achieved results are presented in the following Table 2.14

The developed LP model for having the minimum value of 4 (ft/day) discharge
from each well is almost the same as the previous section except Eq. (2.23) which
should be applied as:

Wi�Wmin; i ¼ 1 to n ð2:25Þ

The estimated hydraulic heads and discharge rates for all wells based on the
new constraint are presented in Table 2.15.

2.3.3 Optimization of Two-Dimensional Confined Aquifers

The governing equation for steady-state flow in two-dimensional (x and y—
directions) considering the pumping wells in the confined aquifer can be derived
from Eq. (2.19) as follows:

Tx
o2h

ox2
þ Ty

o2h

oy2|fflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflffl}
Tx¼Ty¼T

¼ S
oh

ot|{z}
0

þW) o2h
ox2 þ o2h

oy2 ¼ W
T ð2:26Þ

The implementation form of Eq. (2.26) using the central finite difference
technique can be written as:
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hiþ1;j � 2hi;j þ hi�1;j

Dxð Þ2
þ hi;jþ1 � 2hi;j þ hi;j�1

Dyð Þ2
¼ Wi;j

T
ð2:27Þ

With the assumption of Dx = Dy, Eq. (2.27) can be presented as:

hiþ1;j � 4hi;j þ hi�1;j þ hi;jþ1 þ hi;j�1 ¼
Dxð Þ2

T
Wi;j ð2:28Þ

The following problem shows the application of these equations in solving an
optimization problem.

Example 2.6 Consider the plan view of steady-state flow in a two-dimensional
(x. and y—directions) confined aquifer shown in Fig. 2.16. Develop a LP model to
determine the maximum hydraulic heads of wells located at nodes (2, 1), (1, 2),
and (2, 3) that are shown as solid red circle, and one well located at any one of
nodes (1, 1), (2, 2), and (1, 3) which are shown as hashed circles on the Fig. 2.16.
The boundaries (dark hexagon nodes) are considered as fixed hydraulic heads to
prevent any drawdown in wells and dewatering of aquifer that can be resulted in
aquifer deformation and soil layer compression/consolidation.

The necessary information for this problem are: Wmin = 0.5–2 ft/day,
Dx = Dy = 500 ft, T = 10,000 ft2/day, and hð0;1Þ ¼ hð0;2Þ ¼ hð0;3Þ ¼ hð1;0Þ ¼ hð1;4Þ
¼ hð2;0Þ ¼ hð2;4Þ ¼ hð3;1Þ ¼ hð3;2Þ ¼ hð3;3Þ ¼ 25 ft.

In this problem, it is assumed that the aquifer is homogeneous, and so, its
hydraulic properties are the same at any point of aquifer (Tx = Ty). It is good to
know that the terms homogeneous and heterogeneous are related to hydraulic
conductivity of the aquifer at different locations. If the hydraulic conductivity
remains constant, the aquifer is homogeneous, while, the aquifer is heterogeneous
(or non-homogeneous), if hydraulic conductivity varies throughout the aquifer.

Solution: The objective function for this problem is (Aguado et al. 1974):

max Z ¼ hð1;2Þ þ hð2;1Þ þ hð2;3Þ þ hð1;1Þ þ hð2;2Þ þ hð1;3Þ

Table 2.14 Hydraulic heads and discharge rates with a minimum specific discharge for all wells

Z(ft) Hydraulic head (ft) Discharge rate (ft/day)

h0 h1 h2 h3 h4 W1 W2 W3

331.5 125.0 117.75 110.5 103.25 100.0 0.0 0.0 4.0

Table 2.15 Hydraulic heads and discharge rates with a minimum specific discharge in each well

Z(ft) Hydraulic head (ft) Discharge rate (ft/day)

h0 h1 h2 h3 h4 W1 W2 W3

317.5 125.0 112.75 104.5 100.25 100.0 4.0 4.0 4.0
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The constraints at desired nodes can be written as
For node (1, 1):

h2;1 � 4h1;1 þ h0;1 þ h1;2 þ h1;0 ¼
Dxð Þ2

T
W1;1

) 4h1;1 � h1;2 � h2;1 þ
Dxð Þ2

T
W1;1 ¼ h0;1 þ h1;0

For node (2, 1):

h3;1 � 4h2;1 þ h1;1 þ h2;2 þ h2;0 ¼
Dxð Þ2

T
W2;1

) 4h2;1 � h1;1 � h2;2 þ
Dxð Þ2

T
W2;1 ¼ h3;1 þ h2;0

For node (1, 2):

h2;2 � 4h1;2 þ h0;2 þ h1;3 þ h1;1 ¼
Dxð Þ2

T
W1;2

) 4h1;2 � h2;2 � h1;3 � h1;1 þ
Dxð Þ2

T
W1;2 ¼ h0;2

For node (2, 2):

h3;2 � 4h2;2 þ h1;2 þ h2;3 þ h2;1 ¼
Dxð Þ2

T
W2;2

) 4h2;2 � h1;2 � h2;3 � h2;1 þ
Dxð Þ2

T
W2;2 ¼ h3;2

Fig. 2.16 Plan view a two-
dimensional confined aquifer
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For node (1, 3):

h2;3 � 4h1;3 þ h0;3 þ h1;4 þ h1;2 ¼
Dxð Þ2

T
W1;3

) 4h1;3 � h1;2 � h2;3 þ
Dxð Þ2

T
W1;3 ¼ h0;3 þ h1;4

For node (2, 3):

Node 2; 3ð Þ ! h3;3 � 4h2;3 þ h1;3 þ h2;4 þ h2;2 ¼
Dxð Þ2

T
W2;3

) 4h2;3 � h2;2 � h1;3 þ
Dxð Þ2

T
W2;3 ¼ h3;3 þ h2;4

These constraints also can be written in the form of matrix as follow:

4 �1 �1 0 0 0

�1 4 0 �1 0 0

�1 0 4 �1 �1 0

0 �1 �1 4 0 �1

0 0 �1 0 4 �1

0 0 0 �1 �1 4

2
666666664

3
777777775
�

h1;1

h2;1

h1;2

h2;2

h1;3

h2;3

2
666666664

3
777777775
þ Dxð Þ2

T

w1;1

w2;1

w1;2

w2;2

w1;3

w2;3

2
666666664

3
777777775

¼

h0;1 þ h1;0 ¼ 50

h3;1 þ h2;0 ¼ 50

h0;2 ¼ 25

h3;2 ¼ 25

h0;3 þ h1;4 ¼ 50

h3;3 þ h2;4 ¼ 50

2
666666664

3
777777775

Additional constraints for solving this problem are:

W1;1 þW2;2 þW1;3�Wmin

W1;2�Wmin

W2;1�Wmin

W2;3�Wmin

hi;j� 0

8>>>><
>>>>:

The following table shows the hydraulic heads and discharge rates at desired
nodes of two-dimensional confined aquifer for different minimum value of the
total discharge from internal wells. As it can be seen from the Table 2.16, when
the minimum discharge from the well reaches 2 (ft/day) wells cannot meet the
requirement, and so, the LP problem is infeasible. To find the optimum value of
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hydraulic heads at all internal nodes, you can simply use Excel (Data|Solver) and
choose the simplex method.

In addition to considering the effect of different values of minimum discharge
(Wmin) on the hydraulic heads (discharge from the wells and desired objective
function in Dx = 500 ft), the effect of decreasing Dx on those parameters also are
considered in Wmin = 1.0, and Dx = 45 and 200 ft. The results of this part of
example are shown in the Table 2.17.

Table 2.16 The Hydraulic heads and discharge rates at all internal nodes in various Wmin

Wmin = 0.5 (ft/day) Wmin = 1.0 (ft/day) Wmin = 1.5 (ft/day) Wmin = 2.0 (ft/day)

h(1,1) 22.16 19.33 16.49 No feasible solution
h(2,1) 20.10 15.20 10.30 No feasible solution
h(1,2) 18.56 12.11 5.67 No feasible solution
h(2,2) 20.73 16.46 12.19 No feasible solution
h(1,3) 18.83 12.66 6.49 No feasible solution
h(2,3) 19.27 13.53 7.80 No feasible solution
W(1,1) 0.00 0.00 0.00 No feasible solution
W(2,1) 0.50 1.00 1.50 No feasible solution
W(1,2) 0.50 1.00 1.50 No feasible solution
W(2,2) 0.00 0.00 0.00 No feasible solution
W(1,3) 0.50 1.00 1.50 No feasible solution
W(2,3) 0.50 1.00 1.50 No feasible solution
Z 119.64 89.29 58.93 No feasible solution

Table 2.17 Hydraulic heads and discharge rates at all internal nodes in various Dx

Dx = 45 (ft) Dx = 200 (ft) Dx = 500 (ft)

h(1,1) 24.90 24.09 19.33
h(2,1) 24.91 23.43 15.20
h(1,2) 24.89 22.94 12.11
h(2,2) 24.93 23.63 16.46
h(1,3) 24.95 23.02 12.66
h(2,3) 24.92 23.16 13.53
W(1,1) 1.00 0.00 0.00
W(2,1) 1.00 1.00 1.00
W(1,2) 1.00 1.00 1.00
W(2,2) 0.00 0.00 0.00
W(1,3) 0.00 1.00 1.00
W(2,3) 1.00 1.00 1.00
Z 149.50 140.28 89.29
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2.4 Problems

Problem 2.1 Minimize the function f(x) using graphical method.

f xð Þ ¼ 6x1 þ 3x2

Subject to the following constraints:

3x1 þ 2x2� 21

x1 � x2� 4:5

x1 þ 2x2� 3

4x1 þ x2� 5:5

x1� 0 and x2� 0

Problem 2.2 Convert the following LP problem in standard form.

min f ¼ x1 þ 3x2 � 7x3

Subject to

x1 þ x2 þ x3� 5

5x1 � 4x2� � 11

x2 þ x3� � 2

Problem 2.3 Maximize the following objective function using the simplex
method.

max fðxÞ ¼ x1 þ 8x2

Subject to the below constraints:

x1 � 2x2� 11

2x1 þ 6x2� 13

x1 � x2� 6

x1� 0 and x2� 0

Problem 2.4 Minimize the following objective function using the simplex
method.

min f xð Þ ¼ 0:35x1 � x2 þ 2:5x3
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Subject to x1 � 3x2� 4

x2 þ 1:5x3� 1

x1 � x3� 5

x1� 0 and x2� 0

Problem 2.5 Determine the minimum cost of pipe and pump (head elevation) in
various demand nodes in Example 2.4 by changing the location of pump station from
pipe section 1–2 to the pipe section 0–1, and then, compare the optimization results.

Problem 2.6 Determine the optimal pumpage for a confined aquifer with one-
dimensional steady-state flow and fixed hydraulic heads along the boundaries in
Example 2.5 where Wmin = 50 ft/day, Dx = 25 ft, T = 8,000 ft2/day, h0 = 85 ft,
h4 = 75 ft.

Problem 2.7 Consider the plan view of steady-state flow in a two-dimensional
(x and y—directions) confined aquifer shown in the following figure. Develop a LP
model to determine the maximum hydraulic heads of wells located at nodes (2, 1)
and (1, 2), that are shown as solid red circle, and one well located at any one of
nodes (1, 1) and (2, 2), which are shown as hashed circles on the figure below. The
boundaries (dark hexagon nodes) are considered as fixed hydraulic heads to pre-
vent any drawdown in wells and dewatering of aquifer that can be resulted in
aquifer deformation and soil layer compression/consolidation.
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The necessary information for this problem are: Wmin = 90 ft/day,
Dx = Dy = 240 ft, T = 10,000 ft2/day, and hð0;1Þ ¼ hð1;0Þ ¼ hð2;0Þ ¼ hð3;1Þ ¼
hð0;2Þ ¼ hð1;3Þ ¼ hð2;3Þ ¼ hð3;2Þ ¼ 105ft. In this problem, it is assumed that the
aquifer is homogeneous, and so, its hydraulic properties are the same at any point
of aquifer (Tx = Ty).
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Chapter 3
Nonlinear Optimization

Abstract This chapter begins with an introduction to nonlinear programming and
continues with introducing the conceptual framework of nonlinear optimization
problems as well as their applications in water resources engineering. In addition,
different nonlinear optimization methods including one-dimensional optimization
techniques, unconstrained and constrained optimization methods in conjunction
with a number of useful examples are provided to indicate why and how non-
linearities arise in wide ranges of water resources optimization problems.

3.1 Introduction

Although linear programming is a powerful and widely applicable tool in mod-
eling a variety of practical optimization problems, but many problems are inher-
ently nonlinear and they can only be modeled using nonlinear functions. An
optimization problem is a nonlinear problem if some of the objective function or
some of the constraints are nonlinear. The nonlinear programming (NLP) or
nonlinear optimization is an extension of linear programming to find the optimal
solution of nonlinear problems. In the case of nonlinearity, the problems are
considerably more complex than the linear problems and finding the optimal
solution is more difficult. A common difficulty regarding nonlinear problems is
finding the global or absolute optimal solution; and often a local or relative
solution is found for the nonlinear problems. A global optimum can be defined as
the best minimum or maximum value of the objective function in the entire fea-
sible region, whereas, a local optimum is an optimum value over a subset of the
domain and it happens in an immediate neighborhood (Fig. 3.1). A global mini-
mum for function f(x) at the point x� over the space S occurs if;

f x�ð Þ � f xð Þ for 8 x 2 S ð3:1Þ

E. Goodarzi et al., Introduction to Optimization Analysis in Hydrosystem Engineering,
Topics in Safety, Risk, Reliability and Quality 25, DOI: 10.1007/978-3-319-04400-2_3,
� Springer International Publishing Switzerland 2014
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and in the case of global maximum x� should satisfies the below relationship as;

f x�ð Þ � f xð Þ for 8 x 2 S ð3:2Þ

A local minimum of function f(x) happens at the point x� over the space S if the
following relationship is satisfied for an e [ 0;

f x�ð Þ� f xð Þ for 8x 2 S with x� x�j j\e ð3:3Þ

And a local maximum occurs if;

f x�ð Þ� f xð Þ for 8x 2 S with x� x�j j\e ð3:4Þ

In general, there are multiple local solutions for nonlinear optimization prob-
lems and so, finding the global solution is a difficult task except for some special
cases such as convex or unimodal functions. The function f(x) is a convex function
on the space S if the line segment that connects any two pairs of function occurs
entirely above the graph. On the other hand, the function f(x) is a concave function
on the space S if the line segment joining two arbitrary points of f(x) is located
wholly below the graph. A convex function can be defined mathematically as;

f 1� kð Þx1 þ kx2½ � � 1� kð Þf x1ð Þ þ kf x2ð Þ ð3:5Þ

The function f(x) is strictly convex if the Eq. (3.5) hold with a less than sign (\)
instead of a B.

On the other hand, the function f(x) is concave if;

f 1� kð Þx1 þ kx2½ � � 1� kð Þf x1ð Þ þ kf x2ð Þ ð3:6Þ

In this case, the function is strictly concave if the above equation holds only the
greater sign ([).

Figure 3.2 shows a convex and a concave function, respectively. It is important
to note that the convex function is always a bowl-shaped up, while the concave one
is always a bowl-shaped down. Any local minimum and maximum of a convex
and concave function is also a global minimum and maximum.

Fig. 3.1 The local and
global optimum solutions
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In addition to applying Eqs. (3.5) and (3.6), the convexity and concavity of
function f(x) for x 2 ðx1; x2; . . .; xnÞ can be determined using the Hessian matrix.
This symmetric matrix is defined as;

H xð Þ ¼

o2f

ox2
1

o2f
ox1ox2

� � � o2f
ox1oxn

o2f
ox2ox1

o2f
ox2

2

o2f
ox2oxn

..

. . .
. ..

.

o2f
oxnox1

� � � o2f
ox2

n

2
66666666664

3
77777777775

ð3:7Þ

Consider f(x) as continuous second partial derivatives, then the convexity and
concavity can be obtained as;

1. The function f(x) is convex, if and only if H(x) is positive semidefinite,
2. The function f(x) is strictly convex, if and only if H(x) is positive definite,
3. The function f(x) is concave, if and only if H(x) is negative semidefinite,
4. The function f(x) is strictly concave, if and only if H(x) is negative definite.

The definitions of positive definite and semidefinite, and negative definite and
semidefinite of Hessian matrix H are defined as;

1. Positive semidefinite:

xT Hx� 0 for all x ð3:8Þ

2. Positive definite:

xT Hx [ 0 for all x 6¼ 0 ð3:9Þ

3. Negative semidefinite:

xT Hx� 0 for all x ð3:10Þ

Fig. 3.2 The convex and concave functions
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4. Negative definite:

xT Hx\0 for all x 6¼ 0 ð3:11Þ

5. Indefinite:

xT Hx [ 0 for some x
xT Hx\0 for some other x

ð3:12Þ

where,

xT Hx ¼ ðx1; . . .; xnÞ
a11 � � � a1n

..

. . .
. ..

.

an1 � � � ann

0
B@

1
CA

x1

..

.

xn

2
64

3
75 ð3:13Þ

Example 3.1 Classify the following 2 9 2 matrix.

H ¼ 7 �3
�4 8

� �

Solution: To classify matrix A, we need to estimate xTAx as follow;

xT Hx ¼ x1 x2½ �
7 �3

�4 8

� �
x1

x2

� �

¼ 7x1 � 4x2 � 3x1 þ 8x2½ �
x1

x2

� �

¼ 7x2
1 � 4x1x2 � 3x1x2 þ 8x2

2

¼ 7x2
1 þ 8x2

2 � 7x1x2

As the final function is positive for all x1 6¼ 0, and x2 6¼ 0, the Hessian matrix is
positive definite.

Another way to test the status of H(x) is using its eigenvalues. The Hessian
matrix is positive definite if all of its eigenvalues are positive, and it is negative
definite if all of its eigenvalues are negative. To find the eigenvalues (k) of an
n 9 n Hessian matrix H(x), the following condition should be satisfied;

H � kInj j ¼ 0 ð3:14Þ

where, the sign j j is determinant of (.), and In is the identity matrix.

Example 3.2 Find the Eigenvalues of the presented matrix in Problem 3.1, and
classify the matrix.

H ¼ 7 �3
�4 8

� �
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Solution: Based on Eq. (3.14), we need to solve the following equation;

H � kI2j j ¼ 0

¼
7 �3

�4 8

� �
� k

1 0

0 1

� �����
����

¼
7 �3

�4 8

� �
�

k 0

0 k

� �����
����

¼
7� k �3

�4 8� k

� �����
����

¼ 7� kð Þ 8� kð Þ½ � � �3ð Þ � �4ð Þ½ � ¼ k2 � 15kþ 44 ¼ 0

The matrix has two Eigenvalues k ¼ 4 and k ¼ 11: As all of Eigenvalues are
positive, the Hessian matrix is positive definite.

Another important way to test the status of Hessian matrix is using the concept
of leading principal submatrix and leading principal minors. A k 9 k submatrix of
an n 9 n matrix H, which is known as leading principal submatrix, can be
determined by removing the last n - k columns and rows from matrix H. The
determinant of this submatrix is called leading principal minor of H. Some leading
principal minors of an n 9 n can be written as follow;

• First leading principle minors;

H1 ¼ a11j j

• Second leading principle minors;

H2 ¼
a11 a12

a21 a22

����
����

• Third leading principle minors;

H3 ¼
a11 a12 a13

a21 a22 a23

a31 a32 a33

������

������

• The nth leading principle minors;

Hn ¼

a11 a12 a13 . . . a1n

a21 a22 a23 . . . a2n

a31 a32 a33 . . . a3n

: : : : :
: : : : :

an1 an2 an3 . . . ann

�����������

�����������

The matrix H is a positive definite matrix if and only if all of its leading
principal minors are positive, and it is positive semidefinite if its entire principal
minors are non-negative. On the other hand, the matrix H is a negative definite if
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and only if the sign of leading principal minors Hi is negative for odd values of
i and positive for even values of i.

Example 3.3 Determine if the following functions are convex or concave.

f1 xð Þ ¼ 7x2
1 � 5x1x2 þ 3x2

2

f2 xð Þ ¼ �7x2
1 � 5x1x2 � 3x2

2

f3 xð Þ ¼ �5x2 þ 6

Solution: To obtain the convexity and concavity of each function, we need to
calculate the leading principal minors as;

H xð Þ ¼

o2f1

ox2
1

o2f1

ox1ox2

o2f1

ox2ox1

o2f1

ox2
2

2
6664

3
7775 ¼

14 �5
�5 6

� �

Therefore,

Hi¼1 ¼ 14j j ¼ 14

Hi¼2 ¼
14 �5

�5 6

����
���� ¼ 14� 6ð Þ � �5ð Þ � �5ð Þ½ � ¼ 59

As all of the leading principal minors are positive, the matrix H is positive definite
and so, the function f1(x) is strictly convex. For the second function, we have;

H xð Þ ¼

o2f2

ox2
1

o2f2

ox1ox2

o2f2

ox2ox1

o2f2

ox2
2

2
6664

3
7775 ¼

�14 �5
�5 �6

� �

Hence,

Hi¼1 ¼ �14j j ¼ �14

Hi¼2 ¼
�14 �5

�5 �6

����
���� ¼ ð�14Þ � ð�6Þ½ � � �5ð Þ � �5ð Þ½ � ¼ 59

As the sign of leading principal minors Hi is negative for odd values of
i (i = 1), and it is positive for even values of i (i = 2), the matrix H is a negative
definite and so, the function f2 is strictly concave. For a single variable function
like f3(x) we can simply examine the sign of second derivative in which a positive
sign shows the function is convex, while, a negative sign demonstrates a concave
function. In the case of this problem, we have;

o2f3

ox
¼ �10\0
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Therefore, it can be concluded that the function f3 is a concave function
(Fig. 3.3).

Nonlinear optimization techniques can be divided into three main classes as; (1)
one-dimensional optimization methods, (2) unconstrained optimization tech-
niques, and (3) constrained optimization methods. Each of these three classes
includes a number of important optimization techniques that are useful in finding
the optimum solution of nonlinear functions; and the most important of them are
explained in the following sections.

The one-dimensional search methods use an iterative process to find the opti-
mum values and it is classified into two main categorizes as; elimination and
approximation approaches. These two categorizes also are divided into several
useful methods in which some of them are presented in Table 3.1. In this chapter
the Fibonacci and golden section methods from elimination category, and the
Newton method from approximation groups with appropriate examples are
described in the next sections.

The second nonlinear optimization technique is unconstrained optimization
methods which are classified into two main types as Direct Search Methods and
Indirect Search (or Descent) Methods. The direct search methods do not use the
derivatives of the desired objective functions and only the values of objective
function that should be minimized or maximized are used here, while, indirect
search methods need both values of objective functions and the derivatives of
objective functions. Some of the most important direct and indirect search methods
for solving nonlinear optimization problems are presented in the Table 3.2. In this
chapter, the random search and univariate methods from direct search group and
the steepest descent method from indirect category are illustrated.

As noted above, the third category of nonlinear optimization approaches is
constrained optimization methods that include the following techniques to solve an
optimization problem; penalty function method, Lagrange multiplier, quadratic
programming, and generalized reduced gradient (GRG) method. In the following
sections, the Lagrange multiplier and GRG methods in conjunction with a number
of useful examples are presented.

Fig. 3.3 The concave
function f3(x)
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3.2 One-Dimensional Search Methods

The nonlinear objective functions are usually very complicated and finding an
analytical solution for them is very cumbersome or even impossible. In these
cases, one may apply trial based techniques, such as one-dimensional search
methods that use a trial procedure to estimate an initial solution for the objective
function, and improve the calculated solution consecutively until the pre-deter-
mined convergence criterion is met. The main objective function in one-dimen-
sional optimization problem is;

min F ¼ f xð Þ ð3:15Þ

in which, f(x) is function of a single variable x, and it has a unique solution if f(x)
is a unimodal function over some ranges of a closed interval like xl; xu½ �. The
closed interval here is called a bracket. A unimodal function is a function with
unique minimum or maximum in a region that is going to be searched, and for x1

and x2 which are placed in the interval xl; xu½ � it can be mathematically defined as;

1. A unimodal function with minimum value (Fig. 3.4a); if the points x1 and x2 are
both on the same side of the optimum point (x�), and xl\x1\x2\x�, then the
point near the optimum has the lower values in which f x�ð Þ\f x2ð Þ\fðx1Þ:

Table 3.1 Different types of
one-dimensional search
methods (Rao 2009)

Elimination methods Approximation methods

Unrestricted search method Quadratic interpolation method
Exhaustive search method Cubic interpolation method
Dichotomous search method Direct root methods:
Interval halving method • Newton method
Fibonacci method • Quasi–Newton method
Golden section method • Secant method

Table 3.2 Direct and
indirect search methods

Direct search methods Indirect search methods

Random search method: Steepest descent (Cauchy) method
• Random jump method

• Random walk method
• Random walk method with

direction exploitation
Grid search method Conjugate gradient

(Fletcher–Reeves) method
Univariate method Newton’s method
Pattern direction method Marquardt method

Rosen Brock’s method of
rotating coordinates

Quasi–Newton method

Simplex method
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Fig. 3.4 Two arbitrary unimodal functions

2. A unimodal function with maximum value (Fig. 3.4b); if the points x1 and x2

are both on the same side of the optimum point (x�), and x�\x1\x2\xu, then
the point near the optimum has the higher values as f x�ð Þ[ fðx1Þ[ fðx2Þ.

3. A unimodal function with minimum value (Fig. 3.4c); if the points x1 and x2 are
both on the same side of the optimum point (x�), and x�\x1\x2\xu, then the
point near the optimum has the lower values as f x�ð Þ\f x1ð Þ\fðx2Þ:

4. A unimodal function with maximum value (Fig. 3.4d); if the points x1 and x2

are both on the same side of the optimum point (x�), and xl\x1\x2\x�, then
the point near the optimum has the higher values as f x�ð Þ[ fðx2Þ[ fðx1Þ:

The interval xl; xu½ � also is known as range of uncertainty that includes the
optimum value and it is established for desired unimodal function regardless of
whether the function is continuous or discontinuous; or differentiable or non-
differentiable. Based on this method, a portion of the range of uncertainty con-
tinually eliminated on the basis of function evaluations until the remaining interval
gets adequately small. In other words, for a unimodal function f(x) with a mini-
mum at x� and considering two points xi and xj in which xl\xi\xj\xu, we can
write;

1. If f xið Þ[ fðxjÞ, the minimum of f(x) is not in the interval xl; xi½ �, and so,
x� 2 xi; xu½ �. Hence, some ranges of the interval can be eliminated and narrowed
down into two different points in the range (Fig. 3.5a).

2. If f xið Þ\fðxjÞ, the minimum of f(x) is not in the interval xj; xu

� �
, and so,

x� 2 xl; xj

� �
. Therefore, the range xj; xu

� �
can be eliminated in searching for

minimum value of objective function (Fig 3.5b).
3. If f xið Þ ¼ fðxjÞ, both intervals xl; xi½ � and xj; xu

� �
can be eliminated.
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3.2.1 Fibonacci Method (Elimination Technique)

In mathematics, the Fibonacci numbers are the numbers that are defined as;

Fm ¼ Fm�1 þ Fm�2 ð3:16Þ

with the initial values of F0 = F1 = 1. Therefore, the Fibonacci series for
m = 0–4 can be calculated as;

Fm¼0 ¼ Fm¼1 ¼ 1

Fm¼2 ¼ Fm¼1 þ Fm¼0 ¼ 1þ 1 ¼ 2

Fm¼3 ¼ Fm¼2 þ Fm¼1 ¼ 2þ 1 ¼ 3

Fm¼4 ¼ Fm¼3 þ Fm¼2 ¼ 3þ 2 ¼ 5

8>>><
>>>:

The Fibonacci numbers for m = 0–13 are presented in the Table 3.3.
Assume two points x1

i and x1
j are located in the range of uncertainty (dn) in which

dn ¼ xl; xu½ �, and f x1
i

ffl �
[ fðx1

j Þ: As it can be seen in the Fig. 3.6, the minimum of

Fig. 3.5 Reducing the range of uncertainty

Table 3.3 Fibonacci
numbers for m = 0–13

m Fm

0 1
1 1
2 2
3 3
4 5
5 8
6 13
7 21
8 34
9 55
10 89
11 144
12 233
13 377
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f(x) does not lie in the interval xl; x1
i

� �
and so, the left interval xl; x1

i

� �
can be

eliminated and the uncertainty range will be narrowed down into the right interval
dR

nþ1. It is important to note that, after eliminating the interval xl; x1
i

� �
, the point x1

i

is the starting point of new reduced range of uncertainty and so dn ¼ x1
i ; xu

� �
.

In the case of f x1
i

ffl �
\fðx1

j Þ, the interval x1
i ; xu

� �
will be discarded. In the next step,

another interior point, say x2
j , can be selected to repeat the process of reducing

uncertainty range getting closer to the optimum value. Since f x1
j

	 

[ fðx2

j Þ, the

minimum value is placed in the interval dR
nþ2 and the uncertainty range of x1

i ; x
1
j

h i

can be deleted. This procedure should be repeated in order to find the final reduced
uncertainty range and the optimum value.

Based on Fig. 3.6, the following relation can be written as;

d1 ¼ dL
2 þ dR

3

If we assume all the sub-intervals are equal (e.g., dL
2 ¼ dR

2 ¼ d2 and
dL

3 ¼ dR
3 ¼ d3), it can be concluded that;

d1 ¼ dL
2 þ dR

3 ¼ d2 þ d3 ð3:17Þ

Based on this equation, a sequence of intervals for n experiments can be
generated as follows;

d1 ¼ d2 þ d3

d2 ¼ d3 þ d4

d3 ¼ d4 þ d5

..

.

dn ¼ dnþ1 þ dnþ2

8>>>>>>><
>>>>>>>:

ð3:18Þ

Fig. 3.6 The process of elimination intervals
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According to the presented sequence of intervals for n experiments, there are
n equations with n ? 2 unknown variables, and so, it is possible to generate
unlimited sequences by considering some additional assumptions. To generate the
Fibonacci sequences, it can be assumed that the interval dn+2 will be eliminated at
step n, and hence;

dnþ1 ¼ dn � dnþ2|{z}
0

) dnþ1 ¼ dn ¼ F0dn

ð3:19Þ

Therefore, the following relations can be established;

dn ¼ dnþ1 þ dnþ2|{z}
0

¼ dn ¼ F1dn

dn�1 ¼ dn þ dnþ1 ¼ F1dn þ F0dn ¼ 2dn ¼ F2dn

dn�2 ¼ dn�1 þ dn ¼ F2dn þ F1dn ¼ 3dn ¼ F3dn

dn�3 ¼ dn�2 þ dn�1 ¼ F3dn þ F2dn ¼ 3dn þ 2dn ¼ 5dn ¼ F4dn

..

.

dn�m ¼ dk ¼ dkþ1 þ dkþ2 ¼ Fmþ1dn ¼ Fn�kþ1dn

..

.

d1 ¼ d2 þ d3 ¼ Fndn

ð3:20Þ

According to the above equations, the last interval of uncertainty that happens
at n = m is;

dn ¼
d1

Fn
ð3:21Þ

Based on above equation, the location of nth experiments (d�n) can be calculated
as;

d�n ¼
Fm�n

Fm�ðn�2Þ
dn�1 ð3:22Þ

and the range of uncertainty at the end of this experiment (dn) is;

dn ¼ dn�1 � d�n ¼
Fm� n�1ð Þ

Fm
d1 ð3:23Þ

For example in the case of n = 2, the location of 2nd and the range of
uncertainty at this location are;
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d�2 ¼
Fm�2

Fm
d1

d2 ¼ d1 � d�2 ¼
Fm�1

Fm
d1

It is important to note that the interior points in one-dimensional search
methods can be calculated based on the following relations;

x1 ¼ xl þ d�2

x2 ¼ xu � d�2

) x2 ¼ xl þ ðxu � x1Þ ð3:24Þ

The following example provides all necessary steps for obtaining the minimum
value of a unimodal function based on Fibonacci technique.

Example 3.4 Minimize f(x) in the interval [0.0,4.0] using the Fibonacci method
for the total number of experiments n = 8.

f xð Þ ¼ 3x2 � 4xþ 5:5

Solution: The required steps to find the minimum value of desired objective
function based on the above principles are presented in the following sections. It is
important to note that the initial range is d1 ¼ xu � xl ¼ 4:0� 0:0 ¼ 4, m = 8 and
n varies from 2 to m.

Step 1: Determine d�n for n = 2 from the following equation;

d�2 ¼
F8�2

F8�ð2�2Þ
d2�1 ¼

F6

F8
d1 ¼

13
34
� 4 ¼ 1:529

Now, the interior points x1 and x2 in conjunction with f(x1) and f(x2) can be
calculated as (Fig. 3.7);

x1 ¼ xl þ d�2 ¼ 0þ 1:529 ¼ 1:529! f x1ð Þ ¼ 6:399

x2 ¼ xu � d�2 ¼ 4:0� 1:529 ¼ 2:470! f x2ð Þ ¼ 13:929

Step 2: Compare the values of f(x1) and f(x2) to determine the range of interval
that should be eliminated. As f x1ð Þ\fðx2Þ, the interval x2; xu½ � ¼ ½2:470; 4:0� is
discarded using the unimodality assumption (Fig. 3.8). Therefore, the range of
uncertainty at the end of this experiment will be;

d2 ¼ d1 � d�2 ¼ 4:0� 1:529 ¼ 2:470

Or,

d2 ¼
F7

F8
d1 ¼

21
34
� 4 ¼ 2:470
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By discarding the interval ½2:470; 4�, the range of uncertainty reduces to
½0:0; 2:470�, and hence, xl ¼ 0:0, and xunew ¼ x2 ¼ 2:470.

Step 3: In this step, the value of d�3, the interior point and x3 should be computed,
and then, the functions fðx1Þ and fðx3Þ will be compared.

d�3 ¼
F5

F7
d2 ¼

8
21
� 2:470 ¼ 0:941

Fig. 3.7 The objective function f(x)

Fig. 3.8 The eliminated interval in step one
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And

x3 ¼ xl þ xu � x1ð Þ ¼ 0þ ð2:470� 1:529Þ
¼ 0:941! f x3ð Þ ¼ 4:392

As fðx1Þ[ fðx3Þ, the interval x1; xunew½ � which is ½1:529; 2:470� will be elimi-
nated (Fig. 3.9). So, the range of uncertainty in this step is;

d3 ¼ d2 � d�3 ¼ 2:470� 0:941 ¼ 1:529

Or

d3 ¼
F6

F8
d1 ¼

13
34
� 4 ¼ 1:529

The new interval reduces to ½0:0; 1:529�, and hence, xl ¼ 0:0, and
xunew ¼ x1 ¼ 1:529.

Step 4: The process of elimination is continued based on the new evaluated
interval as follows;

d�4 ¼
F4

F6
d3 ¼

5
13
� 1:529 ¼ 0:588

And,

x4 ¼ xl þ xu � x3ð Þ ¼ 0:0þ ð1:529� 0:941Þ
¼ 0:588! f x4ð Þ ¼ 4:185

Fig. 3.9 The second eliminated interval
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As f x3ð Þ[ fðx4Þ, the interval x3; xunew½ � which is ½0:941; 1:529� is deleted
(Fig. 3.10). The range of uncertainty here is;

d4 ¼ d3 � d�4 ¼ 1:529� 0:588 ¼ 0:941

Therefore, the interval reduces to ½0:0; 0:941�, and xl and xunew are 0:0 and 0:941,
respectively.
Step 5: The necessary calculations in this step are;

d�5 ¼
F3

F5
d4 ¼

3
8
� 0:941 ¼ 0:352

And,

x5 ¼ xl þ xu � x4ð Þ ¼ 0:0þ ð0:941� 0:588Þ
¼ 0:352! f x5ð Þ ¼ 4:461

As f x5ð Þ[ fðx3Þ, the interval 0; x5½ � which is ½0:0; 0:352� should be excluded
(Fig. 3.11), and the range of uncertainty is computed as;

d5 ¼ d4 � d�5 ¼ 0:941� 0:352 ¼ 0:588

In this step, the interval reduces to ½0:352; 0:941�, and so, xlnew ¼ 0:352 and
xu ¼ 0:941. The remaining steps for calculating the minimum value of desired
objective function are presented in Table 3.4.

The final range of uncertainty due to Fibonacci search can be calculated as;

dn ¼
d1

Fm
ð3:25Þ

Fig. 3.10 The third eliminated interval
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Now, the final interval in Table 3.4 can be compared with Eq. (3.25), as;

d8 ¼
d1

F8
¼ 4

34
¼ 0:118

In addition, at the point n ¼ m the ratio of the final interval dn to the initial
range of uncertainty can be compared with the ratio 1=Fm, as;

dn

d0
¼ 1

Fm
ð3:26Þ

Therefore;

d8

d0
¼ 0:118

4:0
¼ 0:0294

Fig. 3.11 The fourth eliminated interval

Table 3.4 The Fibonacci method procedure

n d�n xi xj f(xi) f(xj) Greater
f(x)

dn xl xu

2 1.5294 1.5294(x1) 2.4706(x2) 6.3997 13.9291 f(x2) 2.4706 0.0000 2.4706
3 0.9412 1.5294(x1) 0.9412(x3) 6.3997 4.3927 f(x1) 1.5294 0.0000 1.5294
4 0.5882 0.9412(x3) 0.5882(x4) 4.3927 4.1851 f(x3) 0.9412 0.0000 0.9412
5 0.3529 0.5882(x4) 0.3529(x5) 4.1851 4.4619 f(x5) 0.5882 0.3529 0.9412
6 0.2353 0.5882(x4) 0.7059(x6) 4.1851 4.1713 f(x4) 0.3529 0.5882 0.9412
7 0.1176 0.7059(x6) 0.8235(x7) 4.1713 4.2405 f(x7) 0.2353 0.5882 0.8235
8 0.1176 0.7059(x6) 0.7059(x8) 4.1713 4.1713 – 0.1176 0.5880 0.7059
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And,

1
F8
¼ 1

34
¼ 0:0294

The minimum value f(x�) occurs at the center of interval [0.5882,0.7059], and
so (Fig. 3.12);

x� ¼ 0:5882þ 0:7059
2

¼ 0:6471

) f x�ð Þ ¼ f 0:6471ð Þ ¼ 4:1678

To see how we are close to the exact optimum value, the minimum value can be
obtained simply by setting the first derivative equal to zero as;

df xð Þ
dx
¼ 0! f 0 xð Þ ¼ 6x� 4 ¼ 0

) x ¼ x� ¼ 4
6
¼ 0:6666

and so, f x�ð Þ ¼ 4:1666.
Comparing the results of analytical method with the Fibonacci technique shows

the answers are very close.

3.2.2 Golden Section Method (Elimination Technique)

In general, the entire procedure of finding an optimum value using Fibonacci and
Golden Section Methods (GSM) are almost the same and their basic idea is

Fig. 3.12 The final interval
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reducing the range of uncertainty and generating the new smaller interval for
minimizing the desired unimodal function. However, the total number of iterations
(n) must be obtained before beginning calculations in the Fibonacci approach,
while, this is not an initial condition in GSM and the search process is stopped when
an acceptable accuracy is achieved and the bracketing interval is reasonably small.
The fundamental rule in the GSM is based on splitting an interval in which the ratio
of every two nearby segments remains constant as;

d1

d2
¼ d2

d3
¼ d3

d4
¼ � � � dn

dnþ1
¼ x ð3:27Þ

Based on the Eq. (3.27), we can write;

d1
d2
¼ x! d2 ¼ d1

x

d2
d3
¼ x! d2 ¼ x � d3

) d1

d3
¼ x2 ð3:28Þ

And,

d2
d3
¼ x! d3 ¼ d2

x

d3
d4
¼ x! d3 ¼ x � d4

) d2

d4
¼ x2 ! d1

d4
¼ x3 ð3:29Þ

Therefore, the ratio of the first interval to the last one is;

d1

dnþ1
¼ xn ð3:30Þ

On the other hand, according to the evaluated sequence of intervals for
n experiments which are presented in Eq. (3.18) as d1 ¼ d2 þ d3, we can write;

d1

d3
¼ d2

d3
þ 1 ð3:31Þ

By applying Eq. (3.28) into Eq. (3.31), it can be concluded that;

x2 ¼ xþ 1

That is;

x2 � x� 1 ¼ 0 ð3:32Þ

As the positive root of this equation is x ¼ 1:618, we can say the ratio of each
interval to the next interval is the constant value of 1.618. Therefore, the length of
uncertainty range at this location is a multiple of d1, as shown below;

d2 ¼
d1

x
¼ d1

1:618
¼ 0:618 d1
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And so,

dnþ1 ¼
dn

x
¼ dn

1:618
) dnþ1 ¼ 0:618 dn ð3:33Þ

In addition to the range of uncertainty, the location of the nth experiment can be
evaluated as;

dnþ1 ¼ dn � d�nþ1 ð3:34Þ

where,

d�nþ1 ¼ 0:382 dn ð3:35Þ

For example, the range of uncertainty for n ¼ 2 is d2 ¼ 0:618 d1, and based on
Eq. (3.34), we have; d2 ¼ d1 � d�2. Therefore, it can be concluded that
d�2 ¼ 0:382 d1.

All necessary steps to find an optimum value based on the GSM are presented
in the following example.

Example 3.5 Using the GSM with the convergence criterion of d ¼ 0:045, solve
example 3.4 and compare the results with the outcome of Fibonacci approach.

f xð Þ ¼ 3x2 � 4xþ 5:5

x 2 0:0; 4:0½ �

Solution: The procedure in the GSM is same as the Fibonacci approach and
includes the following steps;
Step 1: Put n = 1 and determine d�2 and d2 as;

d�2 ¼ 0:382d1 ¼ 0:382� 4:0 ¼ 1:528

And,

d2 ¼ d1 � d�2 ¼ 4:0� 1:528 ¼ 2:472

d2 ¼ 0:618d1 ¼ 0:618� 4 ¼ 2:472

Now, the values of x1 and x2 should be calculated as follows;

x1 ¼ xl þ d�2 ! x1 ¼ 0þ 1:528 ¼ 1:528

x2 ¼ xu � d�2 ! x1 ¼ 4:0� 1:528 ¼ 2:472

And so,

f x1ð Þ ¼ f 1:528ð Þ ¼ 6:392

f x2ð Þ ¼ f 2:472ð Þ ¼ 13:944
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Comparing the two functions fðx1Þ and fðx2Þ we see f x1ð Þ\fðx2Þ, and so, the
interval x2; xu½ � ¼ ½2:472; 4:0� is discarded by using the unimodality assumption
and the range of uncertainty reduces to ½0:0; 2:472�. As the convergence criterion
(d) is still larger than specified criteria, we have to continue calculations to
approach closer to the specified convergence criterion.

d ¼ xu � xl ¼ 2:472� 0:0 ¼ 2:472 [ 0:045

Step 2: In this step, d�3, d3, the interior point x3, and the function f(x3) are evaluated
as follows;

d�3 ¼ 0:382d2 ¼ 0:382� 2:472 ¼ 0:944

And,

d3 ¼ d2 � d�3 ¼ 2:472� 0:944 ¼ 1:528

d3 ¼ 0:618d2 ¼ 0:618� 2:472 ¼ 1:528

And then,

x3 ¼ xl þ xu � x1ð Þ ¼ 0:0þ 2:472� 1:528ð Þ
¼ 0:944! f x3ð Þ ¼ 4:397

As f x1ð Þ[ f x3ð Þ, the interval [1.528,2.472] is eliminated and the new interval
is [0.1,528]. Now, we need to check the convergence criterion (d) as follows;

d ¼ 1:528� 0:0 ¼ 1:528 [ 0:04

Based on the evaluated value of d, we still need to continue the calculations. All
necessary steps to solve this problem using the GSM are presented in the
Table 3.5.

The minimum value f(x�) can be computed as;

x� ¼ 0:6400þ 0:6800
2

¼ 0:6600

) f x�ð Þ ¼ f 0:6600ð Þ ¼ 4:1668

and the convergence criterion (d) in the last step is;

d ¼ 0:68� 0:64 ¼ 0:04\0:045

As it can be seen, the convergence criterion is met and the answer is in an
acceptable range. To compare the results of Fibonacci and GSM, the ratio of the
final to the initial range of uncertainty in the same number of iteration (here n = 8)
can be applied as;

For Fibonacci method

dn

d1
¼ d8

d1
¼ 0:1176

4:0
¼ 0:0294
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and for Golden Section Method

dn

d1
¼ d8

d1
¼ 0:138

4:0
¼ 0:0344

Based on the computed values, the Fibonacci technique is more efficient than
the GSM technique in reducing the range of uncertainty. However, the GSM
allows to continue the searching process to meet the convergence criterion, and so,
the ratio of length of final interval to the initial one in this method is;

dn

d1
¼ d11

d1
¼ 0:033

4:0
¼ 0:0081

3.2.3 Newton Method (Approximation Technique)

Consider the polynomial function f(x) as differentiable function with relative
minimum or maximum at x = x�, we can write;

dfðxÞ
dx

����
x¼x�
¼ f0 x�ð Þ ¼ 0 ð3:36Þ

In other words, the first derivative of f(x) demonstrates how whether a function
is decreasing or increasing. The second derivative tells us whether the first
derivative is raising or declining, and so, it can be concluded that;

d2fðxÞ
dx2

����
x¼x0

¼ f00 x0ð Þ[ 0! there is a minimum

d2fðxÞ
dx2

����
x¼x0

¼ f00 x0ð Þ\0! there is a maximum
ð3:37Þ

Table 3.5 The golden section method procedure

n d�n dn xi xj f(xi) f(xj) Greater
f(x)

xl xu

2 1.5280 2.4720 1.5280(x1) 2.4720(x2) 6.3924 13.9444 f(x2) 0.0000 2.4720
3 0.9443 1.5277 1.5280(x1) 0.9440 (x3) 6.3924 4.3974 f(x1) 0.0000 1.5280
4 0.5836 0.9441 0.9440(x3) 0.5840 (x4) 4.3974 4.1872 f(x3) 0.0000 0.9440
5 0.3607 0.5835 0.5840(x4) 0.3600(x5) 4.1872 4.4488 f(x5) 0.3600 0.9440
6 0.2229 0.3606 0.5840(x4) 0.7200(x6) 4.1872 4.1752 f(x4) 0.5840 0.9440
7 0.1377 0.2228 0.7200(x6) 0.8080(x7) 4.1752 4.2266 f(x7) 0.5840 0.8080
8 0.0851 0.1377 0.7200(x6) 0.6720(x8) 4.1752 4.1668 f(x6) 0.5840 0.7200
9 0.0526 0.0851 0.6720(x8) 0.6320(x9) 4.1668 4.1703 f(x9) 0.6320 0.7200
10 0.0325 0.0526 0.6720(x8) 0.6800(x10) 4.1668 4.1672 f(x10) 0.6320 0.6800
11 0.0201 0.0325 0.6720(x8) 0.6400(x11) 4.1668 4.1688 f(x11) 0.6400 0.6800
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Based on the Taylor’s theorem, if function f(x) and its derivatives are known at
the x = x0, then;

fðxÞ ¼ f x0ð Þ
0!
þ f0 x0ð Þ

1!
x� x0ð Þ þ f0 x0ð Þ

2!
x� x0ð Þ2þ � � � þ fn x0ð Þ

n!
x� x0ð ÞnþRnðxÞ

¼
Xn

k¼0

fk x0ð Þ
k!

x� x0ð Þk
" #

þ RnðxÞ

ð3:38Þ

where, Rn is the error term.
The Taylor series converge to the f(x), if and only if limn!1 RnðxÞ ¼ 0:0: By

using the first two terms of Taylor’s series and setting the first derivative of this
series equal to zero to find the minimum value function f(x), we can write;

f0 xð Þ ¼ f0 x0ð Þ þ f00 x0ð Þ x� x0ð Þ ¼ 0

And so,

x ¼ x0 �
f0 x0ð Þ
f00 x0ð Þ

or

xkþ1 ¼ xk �
f0 xkð Þ
f00 xkð Þ

ð3:39Þ

where, x0 (or xk) denotes an approximation to the minimum value of f(x).
The Newton’s method uses the Eq. (3.39) iteratively till meet the convergence

criterion which is defined as a very small value such as e.

Example 3.6 Apply Newton method to find the minimum of the function f(x)
shown in Fig. 3.13 considering e ¼ 0:01, and two starting points x0 = 0.1 and
x0 = 2.5.

f xð Þ ¼ 3x2 � 4 lnðxÞ
x 2 0:1; 2:5½ �

Solution: Based on Eq. (3.39), we need to evaluate the first and second
derivative of function f(x) as;

f0 xð Þ ¼ 6x� 4
x

f00 xð Þ ¼ 6þ 4
x2
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Step 1: Apply the first starting point xk¼0 ¼ 0:2 and calculate xkþ1 ¼ x1 as;

f0 xð Þ ¼ 6x� 4
x
¼ 6� 0:1� 4

0:1
¼ �39:4

f00 xð Þ ¼ 6þ 4
x2
¼ 6þ 4

0:12
¼ 406:0

and so,

x1 ¼ x0 �
f0 x0ð Þ
f00 x0ð Þ

¼ 0:1� �39:4
406:0

� �
¼ 0:197

Now, we need to check the convergence criterion;

f0 xkþ1ð Þj j ¼ f0 0:197ð Þj j ¼ �19:118j j[ 0:01

Step 2: Put k = 1 and then calculate x2 as follows;

f0 xð Þ ¼ 6� 0:197� 4
0:197

¼ �19:118

f00 xð Þ ¼ 6þ 4
0:1972

¼ 109:020

and so,

x2 ¼ x1 �
f0 x1ð Þ
f00 x1ð Þ

¼ 0:197� �19:118
109:020

� �
¼ 0:372

The convergence check shows the procedure should still be continued.

f0 0:372ð Þj j ¼ �8:507j j[ 0:01

Table 3.6 and Fig. 3.14 show the entire procedure for evaluating minimum of
f(x), and the path that the function approaches from the first starting point (0.1) to
the minimum using the Newton method.

As it can be seen from this table, the convergence criterion is already met at
k = 5, but the procedure is continued up to k = 6, where the f0ðxÞ ¼ 0:

Fig. 3.13 Function f(x) in
interval [0.1,2.5]
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All of the necessary steps to calculate the minimum value and also the routes of
approaching toward the minimum point using the Newton method based on the
starting point 2.5 are presented in Table 3.7 and Fig. 3.15.

3.3 Unconstrained Optimization Methods

The main concern of unconstrained optimization is finding the optimum point of
nonlinear functions when there is no constraint and restriction on the decision
variables. These types of problems commonly arise in many areas of engineering
and science including economic, physics, hydrosystem engineering, environmental
engineering, mechanical engineering, and so on. The following section focuses on
the unconstrained optimization problems and looks into three different methods to
solve nonlinear and unconstrained optimization problems;

1. Random search methods that is placed in direct search category (see Table 3.2),
2. Univariate method which is a member of direct search methods (see Table 3.2),
3. Steepest descent method from descent category (see Table 3.2).

Table 3.6 The entire procedure of evaluation minimum of f(x) for starting point 0.1

k xk fðxÞ f0ðxÞ f00ðxÞ xk+1 Convergence
check

0 0.100 9.240 -39.400 406.000 0.197 Continue
1 0.197 6.614 -19.118 109.023 0.372 Continue
2 0.372 4.367 -8.507 34.843 0.617 Continue
3 0.617 3.075 -2.788 16.523 0.785 Continue
4 0.785 2.817 -0.382 12.486 0.816 Continue
5 0.816 2.811 -0.007 12.009 0.816 Stop
6 0.816 2.811 0.000 12.000 0.816 –

Fig. 3.14 The approaching
routes from starting point 0.1
toward the minimum value
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3.3.1 Random Search Method

Random search methods are known as numerical optimization techniques that use
various types of randomness algorithms in the form of a pseudo-random number
generator to find the optimum value for a continuous or discrete objective function.
For example, Monte Carlo method is an important numerical technique that
commonly is used to generate sequences of random numbers. This method is one
of the most famous and widely used numerical methods from the early of 1940.
With the remarkable increase in computer capabilities and the development of
variance reduction schemes in recent years, applying this method has been
increased in different scientific fields. The basic element of this method is iteration
and generation of random variables from a specific range. In other words, it is a
numerical simulation which replicates stochastic input random variables from
desired probability distribution (Goodarzi et al. 2012). The random search methods
are capable to handle large optimization problems, it converges quickly to the
global optimal solutions, and they are relatively easy to use in various types of
optimization problems. Three of the most important random search methods are;
random jumping method, random walk method, and random walk method with
directional exploitation. The random jumping method with appropriate example is
illustrated in the following section.

The random jumping method is one of the simplest techniques to find the
minimum value of function f(x) subject to the lower and upper bounds xli and xui ,

Fig. 3.15 The approaching
routes from starting point 2.5
toward the minimum value

Table 3.7 The entire procedure of evaluation minimum of f(x) for starting point 2.5

k xk fðxÞ f0ðxÞ f00ðxÞ xk+1 Convergence
check

0 2.500 15.085 13.400 6.640 0.482 Continue
1 0.482 3.617 -5.408 23.223 0.715 Continue
2 0.715 2.876 -1.307 13.828 0.809 Continue
3 0.809 2.811 -0.086 12.107 0.816 Continue
4 0.816 2.811 0.000 12.000 0.816 Stop
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respectively, for design variable xi, i ¼ 1; 2; 3; . . .; n in which xli\xi\xui . The
main step in this technique is generating different sets of random numbers Ri which
are uniformly distributed between 0 and 1, and then, evaluating function f(x) at the
points xi, i ¼ 1; 2; 3; . . .; n to find the smallest f(x) as minimum value.

xi ¼

x1

x2

..

.

xn

2
6664

3
7775 ¼

xl1 þ R1ðxu1 � xl1Þ
xl2 þ R2ðxu2 � xl2Þ

..

.

xln þ Rnðxun � xlnÞ

2
6664

3
7775 ð3:40Þ

It is important to note that although the problem is unconstrained, two upper
and lower bounds are considered on the vector xi. The following example shows
how this method works in finding the minimum value of the desired function.

Example 3.7 Water Cylindrical Tank
Consider an open-top water cylindrical tank that can be used for storing water in
the emergency cases in small urban area. Assume the required volume (V) for this
cylindrical tank is 200 m3 with the dimensions r and h as radius and height of the
cylinder, respectively (Fig. 3.16). As the cost of building the open-top cylindrical
water tank is a function of the amount of material used, find the minimum
dimensions of the tank based on the random jumping method to minimize the cost
of building the water tank.

Solution: To minimize the cost of building an open-top cylindrical water tank,
we need to minimize the outside surface area of the tank which is function of
radius and height as follows;

f r; hð Þ ¼ A ¼ pr2 þ 2prh

In other words, the objective function here is the outside surface area and the
decision variables are r and h. As the volume of this cylindrical tank is already
known, the variable h also can be written based on radius of cylinder r as follow;

V ¼ pr2h! h ¼ V

pr2
¼ 200

pr2

Fig. 3.16 Open-top water
cylindrical tank
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Therefore, the number of decision variables is reduced to one variable and so,
the objective function can be written as;

f rð Þ ¼ A ¼ pr2 þ 2pr
200
pr2

� �
¼ pr2 þ 400

r

When the objective function is established, we need to generate a large number
of random numbers that are uniformly distributed between 0 and 1. The Data
Analysis tool in Excel can be used to produce a specified numbers of random
variables. Figure 3.17 shows the necessary steps to apply available tool in Excel
for generating random numbers based on the uniform distribution.

Figure 3.18 is presented to show the trend of varying the outside surface area of
cylindrical water tank versus the radius of cylinder as the main decision variable in
this problem, and also to graphically track the approximate location of the mini-
mum point.

This problem is solved for six different conditions to see the effect of number of
generated random numbers and different lower and upper bound of the problem on

Fig. 3.17 Generate random numbers using Excel

Fig. 3.18 The outside surface area versus radius of cylindrical tank
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the optimal solution in random jumping method. To compare the estimated results
with the analytic solution, the minim value of the outside surface area is evaluated
as;

df rð Þ
dr
¼ 0! 2pr � 400

r2
¼ 0

) r ¼ 3:993 mð Þ and f 3:993ð Þ ¼ 150:265 ðm2Þ

In addition, the height of cylinder simply can be calculated as;

h ¼ 200
pr2
¼ 3:993

The following tables show the achieved results based on the random jumping
method in various conditions. The presented results in Table 3.8 are based on 100
generated random numbers considering 1 and 10 as the lower and upper bounds,
respectively.

Table 3.9 illustrates the results of optimization analysis for 1,000 random
numbers considering 1 as the lower bound and 10 as the upper bound.

The final outcomes for all considered condition in this problem are briefly
presented in the Table 3.10. According to the results, using larger numbers of
sample sizes resulted in increasing the precision of calculations, while, expanding
the interval of upper and lower bounds gives the results with lower precision.

In general, the random search methods have lots of advantages including their
simplicity to use, applicability for discontinuous and non-differentiable objective
functions in addition to continues functions, and capability to find the global
minimum while there are several relative minima.

Table 3.8 The results for 100 generated random numbers and rl = 1 and ru = 10

Upper
bound (rl)

Lower
bound (ru)

i (iteration) Generated random
numbers (sorted)

r = xl ? Ri(xu - xl) f(r)

1 10 1 0.037 1.337 304.790
2 0.049 1.442 283.987
3 0.059 1.533 268.377

..

. ..
. ..

.

22 0.315 3.832 150.515
23 0.334 4.010 150.268
24 0.347 4.120 150.414

..

. ..
. ..

.

98 0.981 9.833 344.449
99 0.995 9.954 351.436
100 0.998 9.981 353.046

minimum 150.268
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3.3.2 Univariate Method

The univariate method is a simple direct search method that is based on choosing
n fixed search directions for the objective function f(x) and performs a series of
iterations to reach the optimal point. Based on this technique, a multivariable
function is reduced to a single variable function and a sequence of one-dimen-
sional minimization search will be performed by changing one variable at the time
while holding the remaining variables constant. Afterward, the selected starting
point of non-constant variable is improved and the objective function is estimated
using this new value. In the next step, the process is repeated for the second
variable to improve its initial estimation whereas keeping the other constants. This
process should be continued for all variables and change the objective function
step by step to meet the convergence criterion to reach the minimum point. It is
important to note that each iteration of a univariate search method includes a
search direction dk and a step length ak in the kth iteration in which;

xi;kþ1 ¼ xi;k þ akdk ð3:41Þ

Table 3.9 The results for 1,000 generated random numbers and rl = 1 and ru = 10

Upper
bound (rl)

Lowe
bound (ru)

i (iteration) Generated random
numbers (sorted)

r = xl ? Ri(xu - xl) f(r)

1 10 1 0.0006 1.005 401.098
2 0.0008 1.007 400.991
3 0.0012 1.011 400.350

..

. ..
. ..

.

346 0.3315 3.983 150.266
347 0.3318 3.986 150.265
348 0.3330 3.997 150.265

..

. ..
. ..

.

998 0.9961 9.965 352.095
999 0.9981 9.983 353.158
1,000 0.9987 9.988 353.449

minimum 150.265

Table 3.10 The final results of random jumping method in various conditions

Upper bound (rl) Lower bound (ru) n (number of iteration) Decision variable r min fðrÞ
1 10 100 4.009 150.268
1 20 100 4.041 150.287
1 40 100 3.672 151.292
1 10 1,000 3.996 150.265
1 20 1,000 3.991 150.265
1 40 1,000 4.001 150.266
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In general, the search direction needs to be a descent direction to reduce the
objective function in the direction of search. Therefore, the value of objective
function for the new points should be less than or equal to the previous points. The
search direction can be obtained as;

dk½ �T¼

1; 0; 0; . . .; 0ð Þ for k ¼ 1
0; 1; 0; . . .; 0ð Þ for k ¼ 2

..

.

0; 0; 0; . . .; 1ð Þ for k ¼ n

8>>><
>>>:

ð3:42Þ

After this, we need to determine whether the decreasing trend of objective
function is in the positive or negative direction by choosing an examination length
(e), and estimating;

fk ¼ f xi;k

ffl �

fþ ¼ fðxi;k þ edkÞ
f� ¼ fðxi;k � edkÞ

ð3:43Þ

In the next step, the following conditions should be checked;

1. If fþ\fk, dk is the correct direction and so, fk ¼ fðxi;k þ akdkÞ;
2. If f�\fk;�dk is the correct direction and hence, fk ¼ fðxi;k þ akdkÞ; and
3. If fk\fþ and fk\f�; the search procedure should be stopped.

The step length ak which is a positive scalar should be determined based on an
optimization analysis as follows;

a�k ¼ min
a

fðxi;k þ akdkÞ ð3:44Þ

Then, the previous point is replaced with the estimated new value;

xi;kþ1 ¼ xi;k þ a�kdk

fkþ1 ¼ f xi;kþ1
ffl � ð3:45Þ

The process of finding minimum value will be terminated if the convergence
condition is satisfied.

Example 3.8 Minimize f(x) using univariate method with the starting points
x1 = 0 and x2 = 0, and e ¼ 0:05.

f xð Þ ¼ 1:25x1 � 0:45x2 þ x4
1 þ x1x2 þ x2

2

Solution: The following sections include the necessary steps in details to find
the optimal solution.
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Step 1: K = 1

(a) The first direction for search is chosen as dk¼1 ¼ 1; 0ð Þ by considering the
starting points xi;k ¼ 0; 0ð Þ. Then, the functions f1, f+, and f� are computed as;

f1 ¼ f xi;1
ffl �

¼ 1:25 0ð Þ � 0:45 0ð Þ þ 0ð Þ4þ 0ð Þ � 0ð Þ þ 0ð Þ2¼ 0

and

x1;1 þ ed1 ¼ 0þ 0:05� 1 ¼ 0:05

x2;1 þ ed1 ¼ 0þ 0:05� 0 ¼ 0

8><
>:

) fþ ¼ f 0:05; 0ð Þ ¼ 0:0625

x1;1 þ ed1 ¼ 0� 0:05� 1 ¼ �0:05

x2;1 þ ed1 ¼ 0� 0:05� 0 ¼ 0

8><
>:

) f� ¼ f �0:05; 0ð Þ ¼ �0:0624

(b) Now, we need to determine the correct direction of dk. As f�\f1, the correct
direction is �d1 and so, f1 ¼ f xi;1�a1d1

ffl �
.

x1;1 � a1d1 ¼ 0� a1 � 1 ¼ �a1

x2;1 � a1d1 ¼ 0� a1 � 0 ¼ 0

8<
:

and so,

f �a1; 0ð Þ ¼ 1:25 �a1ð Þ � 0:45 0ð Þ þ �a1ð Þ4þ �a1ð Þ 0ð Þ þ 0ð Þ2

¼ �1:25a1 þ a4
1

The optimum value of a can be obtained by setting the first derivative equal to
zero as;

df

da
¼ 0) �1:25þ 4a3

1 ¼ 0! a1 ¼ a�1 ¼ �0:6786

(c) In this step, the calculated step length a1 is substituted in the appropriate
equations and the optimum value of f(x) will be estimated in the first iteration.

x1;2 ¼ 0� �0:6786ð Þ � 1 ¼ 0:6786

x2;2 ¼ 0� �0:6786ð Þ � 0 ¼ 0

8<
: ) f2 ¼ f 0:6786; 0ð Þ ¼ 1:0603

As it can be seen the variable x2 is held constant and the variable x1 is improved
in the first iteration.
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Step 2: K = 2

(a) The second direction is selected as d2 = (0,1) by considering the starting point
of xi;2 ¼ 0:6786; 0ð Þ. Therefore, the functions, fþ, and f� are;

x1;2 þ ed2 ¼ 0:6786þ 0:05� 0 ¼ 0:6786

x2;2 þ ed2 ¼ 0þ 0:05� 1 ¼ 0:05

) fþ ¼ f 0:6786; 0:05ð Þ ¼ 1:0742

8><
>:

x1;2 � ed2 ¼ 0:6786� 0:05� 0 ¼ 0:6786

x2;2 � ed2 ¼ 0� 0:05� 1 ¼ �0:05

) f� ¼ f �0:05; 0ð Þ ¼ 1:0513

8><
>:

(b) As f�\f2, the correct direction is �d2 and so, f2 ¼ f xi;2 � a2d2
ffl �

.

x1;2 � a2d2 ¼ 0:6786� a2 � 0 ¼ 0:6786

x2;2 � a2d2 ¼ 0� a2 � 1 ¼ �a2

8<
:

and so,

f 0:6786;�a2ð Þ ¼ 1:25 0:6786ð Þ � 0:45 �a2ð Þ þ 0:6786ð Þ4

þ 0:6786ð Þ �a2ð Þ þ �a2ð Þ2¼ a2
2 � 0:2286a2 þ 1:0603

After that, the optimum value of a can be obtained as;

df

da
¼ 0) 2a2 � 0:2286 ¼ 0! a2 ¼ a�2 ¼ 0:1143

(c) Finally, the optimum of f(x) can be estimated as;

x1;3 ¼ 0:6786� 0:1143� 0 ¼ 0:6786

x2;3 ¼ 0� 0:1143� 1 ¼ �0:1143

8<
: ) f3 ¼ f 0:6786;�0:1143ð Þ ¼ 1:0472

As it can be seen, the variable x1 is fixed in the second iteration while, the
variable x2 has been changed. The entire procedure of finding the minimum value
of function f(x) are shown in the Table 3.11. The values of fþ and f� are both
greater than fk in the iteration 8, and so, the optimization process is terminated in
this step and the value of -0.9831 is considered as minimum of f(x) at the
x1 ¼ �0:7745 and x2 = 0.6084.
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3.3.3 Steepest Descent Method

The steepest descent method or the Cauchy’s method is a well-known and old
optimization technique which was proposed by Cauchy (1847) for solving
unconstrained and non-linear minimization problems. The main idea behind this
approach is considering the negative of gradient of objective function f(x) at any
individual point as search direction d, in which this direction results in maximum
descent in the function f(x). Hence, this method is called the steepest descent or
gradient descent method. Although this method is very simple and also recognized
as fundamental approach in the developing optimization theory, it is not known as
very efficient method and the convergence rate also can be very slow in the most of
real problems. The necessary steps to find the minimum of continuously differ-
entiable function f(xi) in which xi ¼ x1; x1; . . .; xn, using the steepest descent
method are;

1. Choose an initial starting point xi,k in the first iteration (k = 1),
2. Determine the search direction dk as;

di;k ¼ �rf xi;k

ffl �
¼ of

ox1;k

of
ox2;k

of
ox3;k

� � � of
oxn;k

� �T

ð3:46Þ

3. Compute the optimal step length ak along a given search direction as follow;

xi;kþ1 ¼ xi;k þ a�kdk

a�k ¼ min
a

f xi;k þ akdk

ffl � ð3:47Þ

4. Check the convergence criterion based on the following formula;

f xi;kþ1

ffl �
� f xi;k

ffl �

f xi;k

ffl �
�����

������ e ð3:48Þ

where, e is the convergence tolerance. If the convergence criterion is not met, the
estimated points become the starting point and we need to lunch the search from
step 2 using this new evaluated point.

Example 3.9 Apply the steepest descent method to solve the Problem 3.7 by
considering e ¼ 0:001.

Solution: Based on the Problem 3.7, the objective function is;

f rð Þ ¼ pr2 þ 400
r
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Firstly, an initial starting point is chosen at the first iteration as rk¼1 ¼ 0:4 and
then, the value of f(r) has been evaluated in this point as;

f rð Þ ¼ p� 0:42 þ 400
0:4
¼ 1,000.503

The gradient of f(r) in this point can be calculated as;

rf rð Þ ¼ of

or
¼ 2pr � 400

r2

and

rf rk¼1ð Þ ¼ of
or1
¼ 2p 0:4ð Þ � 400

0:4ð Þ2
¼ �2,497.49

Therefore,

dk ¼ �rf r1ð Þ ¼ 2; 497:49

Now, we need to calculate the optimal step length a�k by minimizing
f rk þ akdkð Þ as follow;

a�1 ¼ min
a

f r1 þ a1d1ð Þ ¼ min
a

f 0:4þ a12,497.49ð Þ

in which the minimum value can be evaluated as;

df 0:4þ a12,497.49ð Þ
da1

¼ 0

! d

da1
p 0:4þ a12,497.49ð Þ2þ 400

0:4þ a12,497.49ð Þ

� �
¼ 0

) a1 ¼ a�1 ¼ 0:00143

and so,

r2 ¼ r1 þ a1d1 ¼ 0:4þ 0:00143� 2,497.49 ¼ 3:9714

) f r1 þ a1d1ð Þ ¼ 150:2694

The convergence criterion is not met yet since;

150:2694� 1,000.503
1,000.503

����
���� ¼ 0:8498 [ 0:001

In the second iteration, set k = 2 and r2 = 3.9714 and then, calculate the
gradient as follow;
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rf rk¼2ð Þ ¼ of
or2
¼ 2p 3:9714ð Þ � 400

3:9714ð Þ2
¼ �0:4082

) d2 ¼ �rf r2ð Þ ¼ 0:4082

Afterward,

df 3:9714þ a20:4082ð Þ
da2

¼ 0) a2 ¼ a�2 ¼ 0:0537

Hence,

r3 ¼ r2 þ a2d2 ¼ 3:9714þ 0:0537� 0:4082 ¼ 3:9933

) f r2 þ a2d2ð Þ ¼ 150:2650

The convergence criterion is met here as;

150:2650� 150:2694
150:2694

����
���� ¼ 2:9193� 10�5\0:001

Therefore, it can be concluded that the minimum of f(r) is 150.2650 that hap-
pens in r = 3.9933.

Example 3.10 Apply the steepest descent method to solve the Problem 3.8 with
the starting points x1 = 0 and x2 = 0, and e ¼ 0:0005.

f xð Þ ¼ 1:25x1 � 0:45x2 þ x4
1 þ x1x2 þ x2

2

Solution: The value of function f(x) in the selected starting points is;

f 0; 0ð Þ ¼ 1:25 0ð Þ � 0:45 0ð Þ þ 0ð Þ4þ 0ð Þ 0ð Þ þ 0ð Þ2¼ 0

Then, the gradient of f xi;k

ffl �
can be computed as;

rf xi;k

ffl �
¼ of

ox
¼

of
ox1;1

of
ox2;1

2
664

3
775 ¼

4x3
1 þ x2 þ 1:25

x1 þ 2x2 � 0:45

2
4

3
5

Now, we need to evaluate the gradient of f xi;k

ffl �
at the selected points as follow;

rf 0; 0ð Þ ¼ 1:25
�0:45

� �

Therefore,

�rf ¼ �d1;1

�d2;1

� �
¼ �1:25

0:45

� �
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To estimate the optimal step length a�k , the minimum of f xi;k þ akdk

ffl �
should

be calculated as;

a�1 ¼ min
a

f x1;1 þ a1d1;1; x2;1 þ a1d2;1
ffl �

¼ min
a

f �1:25a1; 0:45a1ð Þ

and

df �1:25a1; 0:45a1ð Þ
da1

¼ 0

! d

da1
2:4414a4

1 � 0:36a2
1 � 1:765a1

� �
¼ 0

) a1 ¼ a�1 ¼ 0:6087

and hence,

x1;2 ¼ x1;1 þ a1d1;1 ¼ 0þ 0:6087� �1:25ð Þ ¼ �0:7608
x2;2 ¼ x2;1 þ a1d2;1 ¼ 0þ 0:6087� 0:45ð Þ ¼ 0:2739



and this calculations resulted in;

f �0:7608; 0:2739ð Þ ¼ �0:8726

The convergence criterion is not met yet, and we need to proceed to the next
iteration. All necessary calculations to find the minim value are presented in the
Table 3.12.

3.4 Constrained Optimization Methods

A large class of optimization problems lies in constrained optimization problems
that can be formulated as constrained maximization or minimization problems
with complex constraints. In a constraint optimization problem, the feasible areas
are bounded and there are restrictions on the points that the decision variables may
be taken and we are interested in. In this case, the optimum value should be
determined such that all constraints are simultaneously satisfied. In the following
sections the Lagrange Multiplier and Generalized Reduced Gradient methods as
two important constrained optimization techniques with a few examples associated
with each method are presented.

3.4.1 Lagrange Multiplier Method

The Lagrange multiplier is an optimization technique to find the local minima or
maxima of desired objective function which are subject to equality constraints. In
other words, it is a mathematical tool to find the optimum value of differentiable
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functions by converting a constrained non-linear problem into an unconstrained
problem by applying an augmented function known as Lagrangian function. The
Lagrangian function for a minimization problem can be defined as;

L x; kð Þ ¼ f xð Þ þ
Xm

k¼1

kkgk xð Þ ¼ f xð ÞkT g xð Þ ð3:49Þ

where, k is an m� 1 vector of Lagrange multipliers, and g(x) is a vector of
constraint equations.

To find the minimum of f(x) based on the Lagrange multiplier method, we need
to set the following partial derivatives equal to zero;

oL

oxi
x�; k�ð Þ ¼ of

oxi
þ
Xm

k¼1

kk
og
oxi
¼ 0 for i ¼ 1; 2; . . .; n

oL

okk
x�; k�ð Þ ¼ gk xð Þ ¼ 0 for k ¼ 1; 2; . . .;m

ð3:50Þ

in which, x� is the optimum solution and k� is the associated Lagrange multipliers.
The following problems explain the procedure of using Lagrange multiplier

method in finding the optimal solution of unconstrained optimization problems.

Example 3.11 Find the minimum of function f(x) based on the Lagrange multi-
plier method;

min f xð Þ ¼ 6:34 x1 � 0:5ð Þ2þ4:5 x2 � 1:5ð Þ2

Subject to:

x1 þ 3:35 x2 � 1ð Þ ¼ 0

Solution: In the first step, the Lagrangian function should be established as;

L x; kð Þ ¼ 6:34 x1 � 0:5ð Þ2þ4:5 x2 � 1:5ð Þ2
h i

þ k x1 þ 3:35 x2 � 1ð Þ½ �

Based on the Eq. (3.50), the derivatives can be calculated as;

oL

ox1
¼ 12:68x1 þ k� 6:34 ¼ 0

oL

ox2
¼ 9x2 þ 3:35k� 13:5 ¼ 0

oL

ok
¼ x1 þ 3:35 x2 � 1ð Þ ¼ 0

Solving the above equations simultaneously resulted in x�1 ¼ 0:3706,
x�2 ¼ 0:8893, and k� ¼ 1:6405. The minimum of f(x) associated to these optimal
solutions is 1.7840.
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Example 3.12 Apply the Lagrange multiplier method to solve the Problem 3.7.

f r; hð Þ ¼ pr2 þ 2prh

Subject to:

h� 200
pr2
¼ 0

Solution: The Lagrangian function can be written as;

L r; h; kð Þ ¼ pr2 þ 2prh
ffl �

þ k h� 200
pr2

� �

Now, we need to calculate the derivatives as follows;

oL

or
¼ 2pðhþ rÞ þ 400k

pr3
¼ 0

oL

oh
¼ 2pr þ k ¼ 0

oL

ok
¼ h� 200

pr2
¼ 0

The optimal solution for this problem, which are the minimum dimensions of
tank, are; r= 3.992, h = 3.992, k ¼ �25:088. And the value of f(r) is 150.265.

3.4.2 Generalized Reduced Gradient Method

The Generalized Reduced Gradient (GRG) method is a popular optimization
method to solve constrained nonlinear optimization problems. This method
includes an implicit variable elimination procedure and it can be considered as
extensions of the Simplex method for linear programming that is presented in
Chap. 2. Based on the GRG algorithm, the inequality constraints are converted into
equality constraints by adding nonnegative slack variables to constraint equations,
and express the basic (or dependent) variables in terms of non-basic (or inde-
pendent) variables to solve desired nonlinear optimization problem. Consider the
following non-linear optimization problem as;

min f xið Þ i ¼ 1; 2; . . .; n ð3:51Þ

Subject to:

gk xið Þ� 0 k ¼ 1; 2; . . .;m
xl� xi� xu

ð3:52Þ
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where, f(xi) and gk xið Þ are continuously differentiable, n is the number of inde-
pendent decision variables, m is the number of constrains, and l and u are the lower
and upper bounds, respectively. In the first step, we need to add a non-negative
slack variable to each of the inequality constraints. Therefore, the Eq. (3.51) and
Eq. (3.52) can be written as;

minf xið Þ i ¼ 1; 2; . . .; n ð3:53aÞ

Subject to:

gk xið Þ þ xnþk ¼ 0 k ¼ 1; 2; . . .;m
xl� xi� xu

xnþk � 0
ð3:53bÞ

The idea behind the GRG method is to convert a constraint problem into an
unconstrained problem and eliminate some variables using the equality con-
straints. Based on this method, the independent variables are expressed in terms of
m basic variable (xb) and n–m non-basic variable (xnb), and then, m constraint
equations is solved for the all basic variables in terms of non-basic variables. All
necessary steps to solve a non-linear optimization problem using the GRG method
are presented in the following section, as;

1. Add nonnegative slack variables to all inequalities except the non-negativity
inequalities,

2. Choose initial feasible trial values for non-basic variables,
3. Present objective function in terms of non-basic variables,
4. Determine the search direction d in each iteration as;

d ¼ rnbf ¼ of
oxnb

� �
� pT og

oxnb

� �
ð3:54Þ

in which r is the gradient operator. Based on the steepest decent method, the
search direction when applied to a function f is rf in which r is the gradient
operator and shows the direction of the maximum rate of increase in the objective
function. It is important to note that �rf should be applied for minimization
problems. The parameter in Eq. (3.54) pT can be computed as;

pT ¼ of
oxb

� �T
og

oxb

� ��1

ð3:55Þ

in which, og=oxb½ � ¼ B is a nonsingular or regular matrix, and oF=oxb½ �T is the
transpose of matrix oF=oxb½ �. It is important to note that nonsingular matrix such
as B is a square invertible matrix which its inverse is denoted by B�1. Therefore
Eq. (3.55) can be written as;

pT ¼ of
oxb

� �T

B�1 ð3:56Þ
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5. Determine the optimal feasible step size b for the line search procedure by
substituting the non-basic variables using the following equation to obtain the
new objective function f xnbð Þnew

� �

xnbð Þnew ¼ xnbð Þoldþbd

f xnbð Þnew

� �
¼ f xnbð Þoldþbd
� � ð3:57Þ

Now, we need to determine a basic variable which should be became non-basic
one based on the optimal and feasible value of b. In other words, different values
of b in a desired step must be used till one of the basic variables drops to zero, and
then, use that variable as non-basic variable in the next iteration to find the new
reduced objective function.

All of the aforementioned steps must be repeated till the optimum value is
reached. In order to be more familiar with the main concepts behind GRG tech-
nique, the following problem discusses the principles of GRG technique to solve a
non-linear optimization problem.

Example 3.13 Solve the following maximization problem using GRG method;

max fðxÞ ¼ x2
1 þ 3x1 � x2

Subject to the below constraints;

x2
1 þ 4x2� 15

2x2
1 � 3x2� 20

x1� 0; x2� 0

8<
:

Solution: The solution procedure which is including the necessary steps of
GRG method, are presented in the following section.

Step 1: At the first, nonnegative slack variables are added to all inequalities except
the non-negativity inequalities. Here there are two inequalities, and so, two slack
variables like x3 and x4 should be added to the constraint equations as;

g1ðxnb; xbÞ ¼ x2
1 þ 4x2 þ x3 � 15 ¼ 0

g2 xnb; xbð Þ ¼ 2x2
1 � 3x2 þ x4 � 20 ¼ 0



Hence, the non-basic variables (xnb) and basic variables (xb) are (x1, x2) and
(x3, x4), respectively, that can be shown as;

X ¼ xnb

xb

� �
¼ x1; x2

x3; x4

� �

Step 2: The desired initial feasible trial values should be selected for the current
non-basic variables. The initial selected values in the first iteration are xi¼1

nb ¼
x1 ¼ 2; x2 ¼ 2ð Þ: (Fig. 3.19).
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The values of objective function and slack variables based on the selected initial
values can be calculated as;

fðxÞ ¼ x2
1 þ 3x1 � x2 ¼ 22 þ 3� 2ð Þ � 2 ¼ 8:0

x3 ¼ 15� x2
1 � 4x2 ¼ 15� 22 � 4� 2ð Þ ¼ 3:0

x4 ¼ 20� 2x2
1 þ 3x2 ¼ 20� 2� 22

ffl �
þ 3� 2ð Þ ¼ 18:0

Step 3: In this step, the objective function should be presented in terms of non-
basic variables as;

max f xnbð Þ ¼ f x1; x2ð Þ ¼ x2
1 þ 3x1 � x2

It is important to note that the objective function which is expressed in terms of
non-basic variables is called the reduced objective.
Step 4: To improve the current solution using the selected initial values for non-
basic variables, we need to determine the search direction d in each step. The
reduced gradient of f(x) (or rf), and consequently the search direction d are
computed as;

d ¼ rnbf ¼ of
oxnb

� �
� pT og

oxnb

� �
ð3:58Þ

where,

of
oxnb

� �
¼

of
ox1
of
ox2

2
664

3
775
ðx1¼2;x2¼2Þ

¼ 2x1 þ 3
�1:0

� �

ð2;2Þ
¼ 7:0
�1:0

� �

Fig. 3.19 The feasible region and the initial selected values for non-basic variables
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and

og

oxnb

� �
¼

og1

ox1

og1

ox2
og2

ox1

og2

ox2

2
664

3
775 ¼

2x1 4
4x1 �3

� �

ð2;2Þ
¼ 4 4

8 �3

� �

and the value of pT in this problem is;

pT ¼ of
ox3

of
ox4

� � og1

ox3

og1

ox4
og2

ox3

og2

ox4

2
664

3
775

�1

¼ 0 0½ � 1 0
0 1

� ��1

¼ 0 0½ � 1 0
0 1

� �
¼ ð0; 0Þ

One of the simplest tools which can be used to estimate the inverse of desired
matrices is the WolframAlpha computational knowledge engine. It is an online
service that answers many mathematical questions that can be reached using the
following address; http://www.wolframalpha.com. According to the above com-
putations, the search direction vector d is;

d ¼ d1

d2

� �
¼ 7:0
�1:0

� �
� 0; 0ð Þ 4 4

8 �3

� �
¼ 7:0
�1:0

� �

Step 5: To find the optimal feasible step size b for the line search procedure, the
non-basic variables should be substituted as xnbð Þnew¼ xnbð Þoldþbd, and so, the
new objective function is;

max f xnbð Þnew

� �
¼ f x1 þ bd1; x2 þ bd2ð Þ ¼ f x1 þ bd1|fflfflfflfflffl{zfflfflfflfflffl}

x1new

; x2 þ bd2|fflfflfflfflffl{zfflfflfflfflffl}
x2new

0
B@

1
CA

and so,

maxf xnbð Þnew

� �
¼ f 2:0þ 7b; 2:0� bð Þ ¼ 2:0þ 7bð Þ2 þ 3 2:0þ 7bð Þ � 2:0� bð Þ
¼ 49b2 þ 50bþ 8

Afterward, we need to determine a basic variable which should be became non-
basic variable for an optimal and feasible value of b. As mentioned above, various
values of b must be used till one of the basic variables drops to zero, and then, pick
that variable as non-basic variable in the next iteration. The estimated results for
current basic and non-basic variables and F xnbð Þ associated with various b are
presented in the Table 3.13.

As it can be seen from the table, by increasing b both basic variables x3 and x4

are decreasing and approaching to zero. The negative value for x3 (�1:70) at
b ¼ 0:15 demonstrates this solution is an infeasible solution since the slack
variables should be nonnegative, and also it shows x3 drops to zero for a particular
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value of b between 0.1 and 0.15. The feasible b is simply found as 0.1032 and the
associated values of other variables and objective function are shown in the last
row of Table 3.13. The new solution points here are (x1 ¼ 2:72; x2 ¼ 1:90).

Step 6: As the variable x3 is dropped to zero, it should be selected as new non-
basic variable, while, x2 will be the new basic variable. Therefore, we have;

X ¼ xnb

xb

� �
¼ x1; x3

x2; x4

� �

The new basic variables in terms of new non-basic variables can be expressed
as;

x2 ¼
1
4

15� x2
1 � x3

ffl �

and

x4 ¼ 20� 2x2
1 þ 3x2 ¼ 20� 2x2

1 þ 3
1
4

15� x2
1 � x3

ffl �� �

¼ 1
4
�11x2

1 � 3x3 þ 125
ffl �

The reduced objective function in terms of new non-basic variables x1 and x3 is;

maxf xnbð Þ ¼ f x1; x3ð Þ ¼ x2
1 þ 3x1 � x2

¼ x2
1 þ 3x1 �

1
4

15� x2
1 � x3

ffl �� �
¼ 5

4
x2

1 þ 3x1 þ
x3

4
� 15

4

Step 7: All calculations in Step 4 should be repeated for the new reduced objective
function at point x1 = 2.72 and x3 = 0, as;

of
oxnb

� �
¼

of
ox1
of
ox3

2
664

3
775
ðx1¼2:72;x3¼0:0Þ

¼
10
4

x1 þ 3

1
4

2
64

3
75
ð2:72;0:0Þ

¼ 9:8
0:25

� �

Table 3.13 The optimal value of b

b x1 x2 x3 x4 F(x1, x2)

0.00 2.00 2.00 3.00 18.00 8.00
0.05 2.35 1.95 1.68 14.81 10.62
0.10 2.70 1.90 0.11 11.12 13.49
0.15 3.05 1.85 -1.70 6.95 16.60
0.1032 2.72 1.90 0.00 10.87 13.68
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and

og

oxnb

� �
¼

og1

ox1

og1

ox3

og2

ox1

og2

ox3

2
664

3
775 ¼

2x1 1

4x1 0

2
4

3
5
ð2:72;0:0Þ

¼
5:44 1:0

10:88 0:0

2
4

3
5

and

pT ¼ of
ox2

of
ox4

� � og1

ox2

og1

ox4
og2

ox2

og2

ox4

2
664

3
775

�1

¼ 0 0½ � 4 0
�3 1

� ��1

¼ 0 0½ � 4 0
�3 1

� �

¼ ð0; 0Þ

Based on the above computations, the new search direction vector d in this step is;

d ¼ d1

d3

� �
¼ 9:8

0:25

� �
� 0; 0ð Þ 4 0

�3 1

� �
¼ 9:8

0:25

� �

Step 8: The new reduced objective function is calculated based on the new search
direction vector as;

max f xnbð Þnew

� �
¼ f x1 þ bd1|fflfflfflfflffl{zfflfflfflfflffl}

x1new

; x3 þ bd3|fflfflfflfflffl{zfflfflfflfflffl}
x3new

2
64

3
75

¼ f 2:72þ 9:8b; 0:0þ 0:25bð Þ

¼ 5
4

2:72þ 9:8bð Þ2þ3 2:72þ 9:8bð Þ þ 0:25
4
� 15

4
¼ 120:05b2 þ 96:10bþ 13:66

The results of line search to determine the feasible and optimal b is shown in
Table 3.14.

The new solution in this step are x1 = 3.37, x2 = 0.91, and
f x1new; x3newð Þ ¼ 20:57.

Step 9: As the variable x4 drops to zero, it is considered as new non-basic variable,
and x1 will be a new basic variable. Therefore, we can write;

X ¼ xnb

xb

� �
¼ x3; x4

x1; x2

� �

Table 3.14 The optimal value of b

b x1 x3 x2 x4 f x1new; x3newð Þ
0.00 2.72 0.00 1.90 10.90 13.66
0.05 3.21 0.01 1.17 2.90 18.76
0.10 3.70 0.03 0.32 -6.42 24.47
0.06637 3.37 0.02 0.91 0.00 20.57
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Hence, the basic variables in terms of non-basic variables can be written as;

x1 ¼ 15� 4x2 � x3ð Þ
1
2

x2 ¼
1
3

2x2
1 þ x4 � 20

ffl �

We need to eliminate x1 and x2 from right sides of the above equation to express
the basic variables only in terms of non-basic variables. The easier way is to solve
the following system of equations one time for x2 and x1.

g1ðxÞ ¼ x2
1 þ 4x2 þ x3 � 15 ¼ 0

g2 xð Þ ¼ 2x2
1 � 3x2 þ x4 � 20 ¼ 0



Solve for x2 resulted in;

�2 x2
1 þ 4x2 þ x3 � 15

ffl �
¼ 0

þ
2x2

1 � 3x2 þ x4 � 20 ¼ 0
)

8<
: x2 ¼

1
11
�2x3 þ x4 þ 10ð Þ

and solving the system for x1 resulted in;

3
4 x2

1 þ 4x2 þ x3 � 15
ffl �

¼ 0
�

2x2
1 � 3x2 þ x4 � 20 ¼ 0

)

8<
: x1 ¼

�3
11

x3 �
11
4

x4 þ
125
11

� �1
2

The reduced objective in terms of x3 and x4 can be written as;

max f xnbð Þ ¼ F x3; x4ð Þ ¼ x2
1 þ 3x1 � x2

¼ �3
11

x3 �
11
4

x4 þ
125
11

� �1
2

" #2

þ3
�3
11

x3 �
11
4

x4 þ
125
11

� �1
2

� 1
11
�2x3 þ x4 þ 10ð Þ

� �

¼ 1
44

6
ffiffiffiffiffi
11
p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

�12x3 � 121x4 þ 500
p

� 4x3 � 125x4 þ 540
h i

Step 10: All computations in Step 4 should be repeated based on the new
reduced objective function at point x3 = 0 and x4 = 0, as follow;

of

oxnb

� �
¼

of

ox3
of

ox4

2
664

3
775
ðx3¼0;0x4¼0:0Þ

¼

�9ffiffiffiffiffi
11
p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

�12x3 � 121x4 þ 500
p � 1

11
33

ffiffiffiffiffi
11
p

4
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�12x3 � 121x4 þ 500
p � 125

44

2
664

3
775
ð0:0;0:0Þ

¼ �0:21
�1:61

� �

As it can be seen rnbf has negative value for the current non-basic variables as
�0:21 and �1:61. The negative gradient points for a maximization problem that
the function is expected to increase, indicates moving the parameters in this
direction will be resulted in a lower value of desired function. In other words, an
increase in one of the non-basic variables will decrease the value of objective
function. Therefore, the optimal solution for this nonlinear problem occurs in
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x1 = 3.37, x2 = 0.91, and f x1new; x2newð Þ ¼ 20:57. Figure 3.20 shows the solution
points in different steps, constraints and feasible region, and the objective func-
tions associated with its different values.

Example 3.14 An unconfined aquifer, shown in Fig. 3.21, includes three obser-
vation wells which are located 15 m apart in the direction of flow. The constant
upstream and downstream heads are 100 and 95 m, respectively; and the aquifer
made up of gravelly course sand with the hydraulic conductivity of 40 m/day. The
typical values of hydraulic conductivity for various materials are presented in
Table 3.15.

Determine the optimum head in each well for various minimum values of the
total discharge (Wmin) from 20 to 80 ðm/dayÞ.

Solution: The governing equation for steady-state flow in a one-dimensional
unconfined aquifer by considering the pumping wells can be written as;

Tx
o2h

ox2
¼ W ð3:59Þ

As mentioned in the Chap. 2, the saturated thickness will be replaced with the
hydraulic head h in unconfined cases (Tx ¼ Kh), and so,

o

ox
h

oh

ox

� �
¼ W

K
ð3:60Þ

Fig. 3.20 The solution points, constraints, feasible region, and the objective functions associated
with its different values
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Apply the following derivative trick as;

dh

dx
h ¼ 1

2
dh2

dx
ð3:61Þ

The implementation form of the Eq. (3.60) can be written as follow;

d2h2

dx2
¼ 2W

K
ð3:62Þ

Based on the central differencing technique Eq. (3.62) can be discretized as;

h2
iþ1 � 2h2

i þ h2
i�1

Dxð Þ2
¼ 2Wi

K
ð3:63Þ

In this case, the objective function to maximize the hydraulic heads for various
pumping rates is (Aguado et al. 1974);

Table 3.15 Hydraulic conductivity for different materials (Smedema and Rycroft 1983)

Material Hydraulic conductivity (m/day)

Gravelly course sand 10–50
Medium sand 1–5
Sandy loam, fine sand 1–3
Loam, well-structured clay loam and clay 0.5–2
Very fine sandy loam 0.2–0.5
Poorly structured clay loam and clay 0.002–0.2
Dense clay (no cracks, no pores) \0.002

Fig. 3.21 Schematic view of unconfined aquifer
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max Z ¼
Xn

i¼1

h2
i ð3:64Þ

where n is the number of wells (here n = 3), and ht is the hydraulic head in each
well. The constraints that should be applied in this problem are;

h2
iþ1 � 2h2

i þ h2
i�1

Dxð Þ2
¼ 2Wi

K
Wi� 0 i ¼ 1 to n
Pn¼3

i¼1
Wi�Wmin

hi� hiþ1 i ¼ 0 to n

8>>>>>><
>>>>>>:

ð3:65Þ

Therefore, the developed optimization model for having minimum value of
20–80 m/day from all wells simultaneously, can be written as;

max Z ¼ h2
1 þ h2

2 þ h2
3

and the constraints are;

i ¼ 1! h2
2 � 2h2

1 þ h2
0

Dxð Þ2
¼ 2W1

K

i ¼ 2! h2
3 � 2h2

2 þ h2
1

Dxð Þ2
¼ 2W2

K

i ¼ 3! h2
4 � 2h2

3 þ h2
2

Dxð Þ2
¼ 2W3

K

8>>>>>>>><
>>>>>>>>:

)

i ¼ 1! h2
0 ¼ 1002 ¼ 2h2

1 � h2
2

ffl �
þ 2�Dx2

K W1

	 


i ¼ 2! 0 ¼ 2h2
2 � h2

1 � h2
3

ffl �
þ 2�Dx2

K W2

	 


i ¼ 3! h2
4 ¼ 952 ¼ 2h2

3 � h2
2

ffl �
þ 2�Dx2

K W3

	 


8>>>><
>>>>:

And,

W1 þW2 þW3�Wmin

h1; h2; h3� 0

W1;W2;W3� 0

h0� h1� h2� h3� h4

The unknowns in this problem are h1, h2, h3 and W1, W2, W3 in all wells of
desired aquifer. As noted in previous chapter, the amount of well losses and well
diameters are considered as negligible value. This problem is solved simply by
using Excel (Data Solverj ) and applying the GRG method. The achieved results are
presented in the Table 3.16.
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It is important to note that this problem also can be solved using simplex
method by applying a simple linearization procedure for hydraulic head. As the
only non-linear variable here is h2, the substitution m = h2 can be applied, and so,
the Eq. (3.65) will be changed as;

miþ1 � 2mi þ mi�1

Dxð Þ2
¼ 2Wi

K
ð3:66Þ

Therefore, the objective function of problem in this case is;

max Z ¼ m1 þ m2 þ m3

and the constraints are;

i ¼ 1! m2 � 2m1 þ m0

Dxð Þ2
¼ 2W1

K

i ¼ 2! m3 � 2m2 þ m1

Dxð Þ2
¼ 2W2

K

i ¼ 3! m4 � 2m3 þ m2

Dxð Þ2
¼ 2W3

K

8>>>>>>><
>>>>>>>:

)

i ¼ 1! m0 ¼ 1002 ¼ 2m1 � m2ð Þ þ 2� Dx2

K
W1

� �

i ¼ 2! 0 ¼ 2m2 � m1 � m3ð Þ þ 2� Dx2

K
W2

� �

i ¼ 3! m4 ¼ 952 ¼ 2m3 � m2ð Þ þ 2� Dx2

K
W3

� �

8>>>>>>>><
>>>>>>>>:

And,
W1 þW2 þW3�Wmin

m1;m2;m3� 0

W1;W2;W3� 0

m0�m1�m2�m3�m4

Table 3.16 Hydraulic heads and discharge rates in various Wmin using GRG method

Wmin = 20 (m/day) Wmin = 40 (m/day) Wmin = 60 (m/day) Wmin = 80 (m/day)

h0 100.00 100.00 100.00 100.00
h1 98.20 97.54 96.44 95.35
h2 96.95 96.37 95.79 95.20
h3 95.70 95.19 95.13 95.05
h4 95.00 95.00 95.00 95.00
W1 10.26 23.01 50.95 78.20
W2 0.00 0.00 0.00 0.00
W3 9.74 16.99 9.05 1.80
Z 28200 27,862.5 27,525 27,187.5
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The unknowns in this problem are m1, m2, m3 and W1, W2, W3 in all wells of
unconfined aquifer. This problem is solved simply by using Excel (Data Solverj ) and
applying the Simplex method, and the achieved results are presented in Table 3.17

As it can be seen from Table 3.17, the values of objective function Z have not
been changed using both GRG and Simplex methods, while, the values of h and
W are different regarding difficulties in the complexities of nonlinear functions.

3.5 Problems

Problem 3.1 Find the eigenvalues of the following matrices and then classify
them.

(a) H ¼ 5 �2
�3 6

� �

(b) H ¼ 12 5
1 8

� �

(c) H ¼ �4 9
1 3

� �

Problem 3.2 Determine the concavity or convexity of the following functions.

(a) f1 xð Þ ¼ x4
1 � x1x2 þ 3x3

2

(b) f2 xð Þ ¼ �x3
1 � x2

2 þ 5
(c) f3 xð Þ ¼ x1x2 � x2

Table 3.17 Hydraulic heads and discharge rates in various Wmin using simplex method

Wmin = 20 (m/day) Wmin = 40 (m/day) Wmin = 60 (m/day) Wmin = 80 (m/day)

m0 10,000.00 10,000.00 10,000.00 10,000.00
m1 9,700.00 9,643.75 9,587.50 9,531.25
m2 9,400.00 9,287.50 9,175.00 9,062.50
m3 9,100.00 8,931.25 8,762.50 8,593.75
m4 9,025.00 9,025.00 9,025.00 9,025.00
h0 100.00 100.00 100.00 100.00
h1 98.49 98.20 97.92 97.63
h2 96.95 96.37 95.79 95.20
h3 95.39 94.51 93.61 92.70
h4 95.00 95.00 95.00 95.00
W1 0.00 0.00 0.00 0.00
W2 0.00 0.00 0.00 0.00
W3 20.00 40.00 60.00 80.00
Z 28,200 27,862.5 27,525 27,187.5
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Problem 3.3 Explain how one-dimensional search method works.
Problem 3.4 Define the Fibonacci sequence and calculate the 15th, 21th, and 50th
Fibonacci number.

Problem 3.5 Minimize f(x) on the interval [-4,2] using the Fibonacci method for
the total number of experiments n = 10.

f xð Þ ¼ ðxþ 1Þ2 þ 0:25xþ 1:5

Problem 3.6 Solve problem 3.5 using the golden section method with the con-
vergence criterion of d ¼ 0:065, and then compare your results with the outcome
of Fibonacci approach.

Problem 3.7 Apply Newton method to find the minimum of function f(x) by
considering e ¼ 0:01, and starting point x0 = 0.2.

f xð Þ ¼ x4 � 2:45 expðxÞ
x 2 0:2; 2½ �

Problem 3.8 Find the minimum of function f(x) in Problem 3.7 using random
jumping method.

Problem 3.9 Minimize f(x) using univariate method with the starting points
x1 = 0 and x2 = 0, and e ¼ 0:1.

f xð Þ ¼ x2
1 þ x2

2 � 3:8x1 � 2:11x2

Problem 3.10 Apply the steepest descent method to solve Problem 3.9 with the
starting points x1 = 0 and x2 = 0, and e ¼ 0:005.

Problem 3.11 Explain main difference between constrained and unconstrained
optimization problems.

Problem 3.12 Find the minimum of function f(x) based on the Lagrange multiplier
method.

f xð Þ ¼ x2
1 þ x2 � 3ð Þ2 � x1 � x2

Subject to:

x2
1 � x2\11

Problem 3.13 Apply GRG method to find the maximum of function f(x).

�x4
1 þ x2

2 � x1x2

Subject to the following constraints;

x2
1 � 2x2� 31

x1 þ 3x2� 14
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Problem 3.14 Solve Example 3.9 by considering e ¼ 0:01 and e ¼ 0:1, and
compare your results to see how changing e will effect on the optimization results.

Problem 3.15 Solve Example 3.14 by assuming three observation wells are
located 5, 10, and 30 m apart in the direction of flow.
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Chapter 4
Multiobjective Optimization

Abstract Many real-world problems require multiobjective evaluation that
involves several minimizing or maximizing objective functions to be optimized
simultaneously. In the case of multiobjective problems, a set of optimal solutions
instead of a single solution will be determined. This chapter provides a basic
introduction to the application of multiobjective optimization in water resources
engineering and also provides a number of useful and applicable examples to
better understand the concept of multiobjective optimization.

4.1 Basic Concepts

In some situations, the optimization problems include more than one objective
function to be optimized simultaneously. In these cases, the process of optimizing
a number of objective functions (at least two objectives) is called multiobjective
optimizations (MOO). Based on the single objective optimization concept, a
particular global maximum or minimum value is found in the desired search space,
whereas, in the multi-objective problems a set of solutions instead of a single value
will be determined. In other words, the main purpose of multiple objective opti-
mizations is generating a set of optimal solutions, known as Pareto front, that
show the best trade-off relations between all objectives. In general, there are
conflicts between objectives of multiple objective problems in which improvement
in one of them results in declining another one, and so, all desired objectives
cannot be met simultaneously.

Most of the water resources optimization problems are naturally multiobjective
and they are usually nonlinear and multi-dimensional. Some examples for multiple
and conflictive objectives in the water resources engineering are; designing water
distribution system with the highest efficiency, while, reducing the cost of design
simultaneously; or minimizing cost of building hydraulic structures, whereas, the
flow capacity should be maximized; or keep the water level in the dam reservoir as
high as possible to generate maximum electricity, while keep it at appropriate level
to prevent overtopping due to unexpected heavy rainfall.

E. Goodarzi et al., Introduction to Optimization Analysis in Hydrosystem Engineering,
Topics in Safety, Risk, Reliability and Quality 25, DOI: 10.1007/978-3-319-04400-2_4,
� Springer International Publishing Switzerland 2014
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The general form of a multiobjective problem, also known as a vector mini-
mization problem, with n objectives is;

min f1ðXÞ; f2ðXÞ; . . .; fkðXÞ½ �; X ¼

x1

x2

..

.

xn

2
6664

3
7775 ð4:1aÞ

Subject to;

gj Xð Þ � 0; j ¼ 1; 2; . . . m ð4:1bÞ

where, f1 xð Þ; f2 xð Þ; . . .; fkðxÞ denote the objective functions, gj xið Þ represent the
constraints of the problem, and x is the decision variable. It is important to note
that for n = 1, the MOO problem is reduced to a single objective function, and so,
the traditional optimization method can be used to solve the problem.

The term ‘‘min’’ here means all of the objective functions are minimized
simultaneously, while, it is not possible to find a single solution as an optimal
solution for all of the functions together. In general, it is very difficult to find all
possible solutions of all objectives simultaneously in a multiobjective optimization
problem, and so, most engineers would like to make a balance among optimal
solutions. In other words, the main objective of MOO is finding a collection of
acceptable optimal solutions, known as Pareto optimal set or Pareto efficiency, and
selects the best answer from the obtained Pareto set. Mathematically, a feasible
solution X* is a Pareto optimal solution if (1) for every feasible solution like X and
i ¼ 1; . . .; k, fi Xð Þ � fiðX�Þ, which is known as strict Pareto optimum or a strict
efficient solution; or (2) for at least one objective function fiðXÞ[ fiðX�Þ, that is
known as weak Pareto optimum or a weak efficient solution (Caramia and
Dell’olmo 2008). In other words, a vector solution X ¼ ðx1; x2; . . .; xnÞ is consid-
ered as Pareto optimal solution if and only if reducing an objective function causes
a simultaneous increase of one or more other objective functions. To be more
familiar with this concept, consider two arbitrary objectives functions f1 xð Þ and
f2 xð Þ as shown in Fig. 4.1. The Pareto optimal solutions here include all the values
of x between 3 and 8 which are plotted as bold blue and red lines on the graph.

It is important to note that any optimal solution of Pareto optimal set cannot be
better off without making at least one component of the other objective functions
worse off. For example, when we are producing less of one product while producing
more of another simultaneously, we can say an economy is productively efficient.
It is interesting to know that the appropriate balance among the multiple objectives
is called trade-off in the business and economic analyses and this term also is used
in engineering optimization problems. Hence we can say, the Pareto set represents
the trade-off among objective functions and a collection of efficient solutions
instead of one solution in a desired optimization analysis. It should be noted that if
any improvement in at least one objective function doesn’t make any other
objective function worse off, the Pareto optimal is called Pareto improvement.
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The other important concept in this case is Pareto frontier or Pareto curve that
simply shows the trade-off between all of the objective functions. When a set of
solution of desired multiobjective optimization problem is plotted in the objective
space, the Pareto optimal set is called Pareto frontier or Pareto curve and all the
points on this curve are Pareto optimal (Alba et al. 2009). Figure 4.2 and Table 4.1
show the values of f1 xð Þ and f2 xð Þ for different values of x 2 ½0; 13�, and the Pareto
frontier for those two arbitrary functions, respectively. All points on the Pareto
frontier (between B and C) are Pareto optimal, since reduction of f1 xð Þ on this
curve causes a simultaneous increase of f2 xð Þ.

On the other hand, other points such as A and D are not Pareto optimal since
decreasing value of f1 xð Þ from point A to B results in simultaneous reduction of
f2 xð Þ; or increasing f1 xð Þ from point C to D causes reduction of values of f2 xð Þ
simultaneously. While, by increasing the values of f1 xð Þ from B to C all values of
f2 xð Þ are decreased.

The Pareto curve shows all the combination of optimal solution for desired
objective functions. However, still there are a number of significant questions
about this curve as; what determines whether the points B or D or any point
between B and D is the best answer? Or, how can we determine the right com-
bination form the Pareto set? Or how decision makers can make the best decision
based on the Pareto curve?

There are several different ways for solving multiobjective optimization prob-
lems in which some of them with a number of examples are presented in this chapter.
In general, the classical methods can be categorized into three approaches as;
Weighted method, Goal Programming, and e-Constraint method. The ultimate goal
of these techniques are maximizing or minimizing the new single objective based on
the determined constraints of the system. In the following sections, solving a multi
objectives problem based on weighted, and e-constraints methods are presented.

Fig. 4.1 The Pareto optimal solutions for two arbitrary objectives functions f1 xð Þ and f2 xð Þ
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4.2 Weighted Method

The Weighted method is one of the most widely used classical techniques in
multiobjective optimization analysis. Based on this method, all objective functions
are combined together and converted into a single objective function using dif-
ferent coefficient for each function as weight factor. In other words, a new
objective function is constructed, and then, the Pareto set is built to find the
optimal solution. Consider f1 xð Þ; f2 xð Þ; . . .; fn xð Þ as a set of objective functions
that should be minimized or maximized. The new objective function for the
optimization process can be written as a scalar optimization form;

F xð Þ ¼ w1 � f1 xð Þ þ w2 � f2 xð Þ þ � � � þ wn � fn xð Þ ¼
Xn

k¼1

wk � fk xð Þ ð4:2aÞ

Fig. 4.2 The Pareto frontier for two arbitrary objectives functions f1 xð Þ and f2 xð Þ

Table 4.1 The values of f1 xð Þ and f2 xð Þ for different values of x

x f1ðxÞ f2ðxÞ x f1ðxÞ f2ðxÞ
0 68 385 7 70.50 70
1 43 310 8 C 98.67 65
2 A 26 245 9 D 134.83 70
3 B 17.83 190 10 180.00 85
4 24.00 145 11 235.17 110
5 34.17 110 12 301.33 145
6 49.33 85 13 379.50 190
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with

wk 2 0; 1½ �;
Xn

k¼1

wk ¼ 1 ð4:2bÞ

in which, wk are the scalar-valued weights that show the relation between the
objective functions.

The most difficult part of this method is finding the appropriate weights for all
objectives based on the relative importance of each objective function when there
is insufficient information about the desired problem. In other words, the problem
can be solved repeatedly with various values for weight coefficients, then; the
decision makers select the proper solutions regarding the importance of the each
objective function. The advantages of using this method are its efficiency, sim-
plicity to apply, and finding the optimal solutions on the entire Pareto set. How-
ever, there are a number of disadvantages regarding the weighted method as;

1. Decision-makers need to determine the weights by their intuition/experience or
judgment,

2. Changing the weights maybe cause a big or small changes in the objectives,
3. The method cannot find the appropriate solutions on the non-convex part of

Pareto set,
4. There is possibility to have a number of minimum solutions for a particular set

of weights in which it generates various solutions in the Pareto set.

Example 4.1 Consider the functions f1 xð Þ and f2ðxÞ as follows;

f1 xð Þ ¼ 6ðx� 7Þ2 þ 2xþ 17

f2 xð Þ ¼ ðx� 2Þ3 þ 23

Subject to;

2 � x � 10

Minimize F xð Þ ¼ g½f1 xð Þ; f2 xð Þ� using the weighted method.

Solution: Figure 4.3 shows the objective functions and the obtained constraint
of the problem. In order to minimize the f1 xð Þ and f2ðxÞ based on the weighted
method, F(x) should be written as;

F xð Þ ¼ w1f1 xð Þ þ w2f2ðxÞ

where w1 and w2 are the weights of each objective function.

The simplest way to solve this problem is considering different values for
weights and then solving the single objective equation to find the optimal solution.
However, without prior information about the weights, choosing the appropriate
values for them is difficult while, the quality of solution highly depends on the
selection of the weights.
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In this problem, different values from 0 to 1 (with 0.1 increments) are assigned
and the problem is solved in each value. The weights are used to compare the
results and to contribute to the relative importance of each objective function.
First, we have tried to find the minimum of F(x) without using Excel or any other
computer program and the results are presented for five combinations of w1 and w2

in Table 4.2. The bold values in this table show the minimum value of F(x) based
on the allocated weights to f1 xð Þ and f2ðxÞ. For example, Fw10:3; w2¼0:7 means the
value of F(x) as;

F xð Þ ¼ 0:3� f1 xð Þ þ 0:7� f2ðxÞ

Fig. 4.3 The objective functions and constraints of the problem

Table 4.2 Minimum of F(x) in different weights

x f1 xð Þ f2ðxÞ Fw1¼0;w2¼1 Fw1¼0:3;w2¼0:7 Fw1¼0:5;w2¼0:5 Fw1¼0:8;w2¼0:2 Fw1¼0;w2¼1

2 171.00 23.00 23.00 67.40 97.00 141.40 171.00
2.5 143.50 23.13 23.13 59.24 83.31 119.43 143.50
3 119.00 24.00 24.00 52.50 71.50 100.00 119.00
3.5 97.50 26.38 26.38 47.71 61.94 83.28 97.50
4 79.00 31.00 31.00 45.40 55.00 69.40 79.00
4.5 63.50 38.63 38.63 46.09 51.06 58.53 63.50
5 51.00 50.00 50.00 50.30 50.50 50.80 51.00
5.5 41.50 65.88 65.88 58.56 53.69 46.38 41.50
6 35.00 87.00 87.00 71.40 61.00 45.40 35.00
6.5 31.50 114.13 114.13 89.34 72.81 48.03 31.50
7 31.00 148.00 148.00 112.90 89.50 54.40 31.00
7.5 33.50 189.38 189.38 142.61 111.44 64.68 33.50
8 39.00 239.00 239.00 179.00 139.00 79.00 39.00
8.5 47.50 297.63 297.63 222.59 172.56 97.53 47.50
9 59.00 366.00 366.00 273.90 212.50 120.40 59.00
9.5 73.50 444.88 444.88 333.46 259.19 147.78 73.50
10 91.00 535.00 535.00 401.80 313.00 179.80 91.00
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However, there is a problem with the results and we cannot trust them readily.
For instance, the minimum values in the fifth and seventh columns are 45.40, but
how can we be assured that the minimum happened at x = 4, and not at x = 3.8 or
x = 4.1? The minimum of F(x) which are calculated using the Solver Tools in
Excel for each new combination of w1 and w2, are presented in Table 4.3.

It is important to note that the GRG nonlinear solver method of Excel is applied
to compute the minimum values of F(x). In addition, Figs. 4.4 and 4.5 show the
value of F(x) with different weights in conjunction with its minimums; and the
Pareto points in the objective space, respectively.

Figure 4.5 illustrates the Pareto optimal solutions in which each solution cor-
responds to a particular decision and it helps decision-makers to make trade-off
decisions between all objective functions.

Table 4.3 The minimums of F(x) for each combination of w1 and w2

x w1 w2 f1 xð Þ f2ðxÞ min FðxÞ
2.00 0.0 1.0 171.00 23.00 23.00
3.26 0.1 0.9 107.44 25.00 33.24
3.75 0.2 0.8 87.70 28.40 40.26
4.15 0.3 0.7 74.16 32.89 45.27
4.50 0.4 0.6 63.60 38.56 48.57
4.83 0.5 0.5 54.90 45.68 50.29
5.16 0.6 0.4 47.55 54.69 50.40
5.51 0.7 0.3 41.31 66.31 48.81
5.89 0.8 0.2 36.19 81.79 45.31
6.32 0.9 0.1 32.44 103.39 39.54
6.83 1.0 0.0 30.83 135.91 30.83

Fig. 4.4 Values of F(x) in different weights in conjunction with its minimums
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It is important to note that the weighted method is not a robust approach as the
solutions are sensitive to the selected weights. In other words, the applied incre-
ment of weights is 0.1 in this problem, while the minimum of F(x) may happen in
some other weights such as w1 ¼ 0:25 and w2 ¼ 0:75 that needs lower increment
to be found. Therefore, decision-makers need to perform several optimization
analyses using various weights to make an appropriate decision.

Example 4.2 Find the optimal solution of the following two-objective optimiza-
tion problems using the weighted method.

min f1 x1; x2ð Þ ¼ 1:5ðx1 � 1Þ2 þ ðx2 þ 1Þ2

min f2 x1; x2ð Þ ¼ 0:35ðx1 þ x2 � 1Þ2 þ ð2x2 � x1Þ2 þ 4

Subject to:

0 � x1 � 5
0 � x2 � 6

2x1 � x2 � 6
x1 � 4x2 � 0

Solution: All necessary steps to solve this problem are presented in the fol-
lowing section.

1. The first step to minimize both f1 x1; x2ð Þ and f2 x1; x2ð Þ is building the function
Fðx1; x2Þ as, F x1; x2ð Þ ¼ w1f1 x1; x2ð Þ þ w2f2 x1; x2ð Þ. Then, different values of
wi should be considered to find the Pareto set and optimal solutions. Figure 4.6
shows the linear constraints in this problem and the shaded area as the feasible
region.

Fig. 4.5 The Pareto frontier for the objectives functions f1 xð Þ and f2 xð Þ
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The problem is solved using the weighted method by applying the Solver tool in
Excel and results are listed in Table 4.4. As can be seen in this table, the values of
x1 and x2 are placed in the feasible region and also by reducing f1 the values of f2

increased simultaneously.
In addition to the table, Fig. 4.7 shows the Pareto optimal solutions for all used

weights in this example. Based on the Pareto curve, the decision-maker can make a
trade-off decision for the problems, however, the optimum value cannot be simply
determined at a single point in the design space.

Based on Fig. 4.7, the least value of f2 occurs when the weight of f1 or w1 is
zero, while by moving on the curve the weights of f1 will be increased, that means
the order of importance of f1 is increased. However, from the point w1 ¼ 0:4 to
w1 ¼ 1:0 any changes of f2 causes little change in f1. In other words, the sensi-
tivity of f2 with respect to f1 is not high in this part of curve. It is important to note
that this sensitivity information can be a useful source for decision makers to make
trade-off decision in this problem. For instance, point w1 ¼ 0:4; w2 ¼ 0:6 is an

Fig. 4.6 Linear constraints of the problem

Table 4.4 The minimums of Fðx1; x2Þ when both f1 and f2 should be minimized

w1 w2 x1 x2 f1 x1; x2ð Þ f2 x1; x2ð Þ min Fðx1; x2Þ
0 1 0.67 0.33 1.94 4.00 4.00
0.1 0.9 0.67 0.30 1.86 4.00 3.79
0.2 0.8 0.67 0.26 1.76 4.02 3.57
0.3 0.7 0.68 0.22 1.64 4.06 3.34
0.4 0.6 0.69 0.17 1.52 4.13 3.08
0.5 0.5 0.72 0.18 1.51 4.13 2.82
0.6 0.4 0.74 0.18 1.51 4.14 2.56
0.7 0.3 0.75 0.19 1.50 4.14 2.30
0.8 0.2 0.77 0.19 1.50 4.15 2.03
0.9 0.1 0.79 0.20 1.50 4.15 1.77
1 0 0.80 0.20 1.50 4.16 1.50
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appropriate choice when the minimum value of f2 is more acceptable and also we
don’t like to totally forgo the objective function f1. In this case the GRG nonlinear
solution method of Excel is applied to compute the minimum value of MOO
function F(x).

4.2.1 Optimization of Hydropower and Turbine

Hydropower is the power extracted from the natural potential of falling or flowing
water to generate electricity. It is the most widely-used renewable sources of
energy and generating power based on this method is one of the oldest methods for
centuries. Water turbine is a turbo-machine that takes kinetic energy from moving
water and converts it into a mechanical energy. A hydropower plant generally
includes three main parts as; (1) dam to control water flow, (2) reservoir to store
water, and (3) power plant to generate electricity. Firstly, water goes through an
intake screen and then continues in a large pipe which is called penstock. After-
ward, the kinematic energy of water spins the turbine to generate electricity, and
then, the water goes out of the penstock flowing downstream of dam (Fig. 4.8).
The amount of power that a hydroplant generates is function of two factors;

1. The effective or net head ðHeÞ which is the difference between water level in
the reservoir and the water level in the tail race minus losses in the conveying
system of the plant.

2. Flow (Q) which is the amount of stream passes through the turbine to spin.

The key equation to estimate the available power from falling water is;

P wð Þ ¼ gqgQHe ð4:4Þ

Fig. 4.7 The Pareto frontier for the objectives functions f1 x1; x2ð Þ and f2 x1; x2ð Þ
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where, g is the turbine efficiency, q is density of water ð1,000 kg/m3Þ, g is
acceleration of gravity ð9:81 m/s2Þ, Q is the flow rate ðm3=sÞ, and He is the
effective head.

Making trade-off between hydropower generation and control flood in down-
stream area are two of the highest priorities for water resources engineers. On the
one hand, reducing the water level at reservoirs to prevent downstream flood
damages is an important issue, while providing necessary electricity for down-
stream areas which is main priority, needs high water water level at the reservoir.
It is clear that these two objectives are in conflict with each other, and so, we have
to optimize both objectives simultaneously to improve regulation operations. The
main objective functions in this problem are;

1. Minimizing downstream flood peak to minimize flood damages,
2. Maximizing the hydropower generation to supply downstream electricity needs.

Example 4.3 Consider a dam with a crest width of 10 m, a crest length of 350 m,
and structural height of 60 m. The elevation of spillway is 3.0 m below the dam
crest and it is placed at 1,057 (m) above sea-level.

The other basic information for desired hydropower dam including elevations of
penstock entrance ðRinÞ, spillway ðRsÞ, dam crest ðRcÞ, turbine ðRTÞ, tailrace ðRtailÞ,
reservoir bed level ðRbÞ, downstream base flow ðHbÞ, penstock diameter (D),
penstock length (L), and turbine efficiency (g) are shown in Fig. 4.8 and Table 4.5.

Fig. 4.8 Schematic view of a hydropower dam

Table 4.5 Basic information of dam

Rin ðmslÞ Rs ðmslÞ Rc ðmslÞ RT ðmslÞ Rtail ðmslÞ Rb ðmslÞ Hb ðmÞ D (m) L (m) g

1,040.0 1,057.0 1,060.0 997.0 994.0 1,000.0 3.5 3.0 50.0 0.9
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In this problem, downstream water depth ðHdÞ is considered as a function of
water elevation in the reservoir ðRuÞ and it is computed based on one of the
following equations.

1. If Ru � Rin, there is no release and so,

Hd ¼ 0 ð4:5Þ

where, Ru is water elevation in the reservoir. In this case, the flow that passes
through the turbine is zero (Q = 0).

2. If Rin � Ru � Rin þ 0:75ðRs � RinÞ, then;

Hd ¼ 0:74ðRu � RinÞ0:65 ð4:6Þ

The flow rate in this condition is Q ¼ 100 m3=s.

3. If Rin þ 0:75ðRs � RinÞ � Ru � Rs, the amount of flow that passes through the
turbine is Q ¼ 200 m3=s, and so;

Hd ¼ 0:94ðRu � RinÞ0:71 ð4:7Þ

4. If Rs � Ru � Rc, the amount of water that spills from spillway also is added to
the downstream river, and hence, the depth of water will be increased.

Hd ¼ 1:2ðRu � RinÞ0:83 ð4:8Þ

The flow rate in this case is same as previous condition and it is equal to
200 m3=s.

In addition, the damage cost Dð$Þ due to downstream flooding is considered as
direct function of downstream water elevation and follows the equations below:

Hd [ Hb Dð$Þ ¼ 825 exp 0:35ðHd � Hb½ �
Hd � Hb Dð$Þ ¼ 0:0

�
ð4:9Þ

where, Hb is base flow depth in the river in which its value is 3.5 m in this
problem.

Set up and solve the optimization model to find the optimum values of flood
peak ðHdÞ and hydropower generation (P). It is important to note that the down-
stream water depth should not be less than 3.5 m (or 993.5 msl) regarding some
environmental issues like keeping fish, plants and wildlife alive, and also water
elevation in the reservoir must not be less than 1,040 msl. Consider the penstock
pipe as a steel—smooth pipe with 50 m length.
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Solution: The objective functions in this case can be expressed as (Ngo et al.
2007);

min
f1 Ruð Þ ¼ Rc � Ruð Þm
f2 Hdð Þ ¼ Hd þ Hbð Þm

This problem is solved for two different forms of objective functions by consid-
ering m = 2, and m = 1 with the following constraints;

Hd � 0

1,040 � Ru � 1,060

1. For m = 2

Figure 4.9 shows how both objective functions vary by changing the water
level in the reservoir. As it can be seen from this figure, there are conflicts between
two objectives and increasing one of them due to raising water level in the res-
ervoir results in decreasing another one simultaneously.

Therefore, the aggregated objective function F which should be minimized
using the weighted method, can be written as (Fig. 4.10);

F Ru;Hdð Þ ¼ w1f1 Ruð Þ þ w2f2 Hdð Þ ¼ w1ðRc � RuÞ2 þ w2 Hd þ Hbð Þ2

In order to estimate the Pareto front and find the trade-off between desired
objectives, the GRG nonlinear solution method of Excel is used in different
combinations of weights to find the optimum points (Fig. 4.11).

Fig. 4.9 Objective functions f1 and f2 versus water level in the reservoir for m = 2
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The Pareto optimum points, minimum values of F and the Pareto curve are
shown in Table 4.6 and Fig. 4.12, respectively.

The Pareto curve which provides useful information to verify all possibly
conflicting and quantitative properties of an optimization system is shown in the
Fig. 4.12. As it can be seen in this figure, by increasing f2 the first objective
function ðf1Þ is decreasing and this reduction is more considerable for f1 when w1

varies from 0.1 to 0.6. However, increasing w1 from 0.6 to 1.0 resulted in small
changes of f1 while f2 varies significantly. Choosing the optimum point on the
Pareto curve depends on the priority of dam administrative, and the operator can
choose a single point among all the available Pareto solutions.

Fig. 4.10 Values of F and its minimums in different weights for m = 2

Fig. 4.11 Using Excel’s Solver tool for optimization analysis
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To compute the value of power in all desired steps, we need to calculate the
effective head as follows;

He ¼ Hg � hf � HT ð4:9Þ

where, Hg is the gross head, hf is the head losses due to loss at penstock, and HT is
the differential level between center of turbine and tailrace level. The variables Hg

and HT can be computed as follow, respectively;

Hg ¼ Ru � Rtail ¼ Ru � 994

and

Table 4.6 The minimums of F with generated hydropower and damage costs

w1 w2 Ru � Rb ðmÞ Q ðm3=sÞ Hd ðmÞ min F

0.00 1.00 40.00 0.00 3.50 12.25
0.10 0.90 46.52 100.00 6.00 50.61
0.20 0.80 52.75 100.00 7.37 53.97
0.30 0.70 52.75 100.00 7.37 53.80
0.40 0.60 52.75 100.00 7.37 53.62
0.50 0.50 52.75 100.00 7.37 53.45
0.60 0.40 57.00 200.00 10.53 49.72
0.65 0.35 57.00 200.00 10.53 44.63
0.80 0.20 57.00 200.00 10.53 29.36
0.90 0.10 57.00 200.00 10.53 19.18
0.96 0.04 59.55 200.00 17.66 12.66
1.00 0.00 60.00 200.00 17.92 0.00

Fig. 4.12 The Pareto frontier for the objectives functions f1 and f2 for m = 2
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HT ¼ RT � Rtail ¼ 997� 994 ¼ 3:0

The friction loss at penstock ðhf Þ for a circular pipe can be computed using the
Darcy-Weisbach equation as;

hf ¼ f
L

D

V2

2g
ð4:10Þ

where, f is friction factor that can be found from Moody diagram, L is length of
penstock (m), V is velocity at penstock (m/s), D is diameter of penstock (m), and
g is gravitational acceleration ðm/s2Þ. The friction factor also can be calculated as
function of pipe diameter and coefficient of roughness (n) using the following
equation;

f ¼ 124:5
n2

D3
in SI unit

f ¼ 185
n2

D3
in English unit

ð4:11Þ

The coefficient of roughness or Manning’s roughness coefficient for different
materials can be found in various references. However, the values of this coeffi-
cient for several commonly used materials are presented in Table 4.7.

According to the presented information above, the value of f can be estimated
as;

f ¼ 124:5
n2

D3
¼ 124:5

0:0122

33
¼ 6:64� 10�4

The next important parameter in Eq. (4.10) is velocity at penstock. In general,
this parameter is expressed in terms of flow rate in the pipe as;

V2 ¼ Q2

A2
w

ð4:12Þ

where, Aw is the cross-sectional wetted area ðm2Þ that is an implicit function of
pipe flow, cross-sectional area of flow, pipe slope, etc. For simplicity and con-
sidering the maximum losses, it is assumed pipe is flowing full and so, the wetted
area is calculated as;

Table 4.7 Manning’s
roughness coefficient (n) for
different materials

Material Manning’s roughness
coefficient (n)

Earth asphalt 0.025
Steel—smooth 0.012
Wood 0.012
Asphalt 0.016
Concrete—steel forms 0.011
Plastic 0.009
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A2
w ¼

pD2

4

� �2

¼ p2D4

16
ð4:13Þ

and hence, the Darcy-Weisbach equation can be written as;

hf1 ¼
8fLQ2

gp2D5
ð4:14Þ

Therefore, the value of hf1 in this problem is;

hf1 ¼
8fLQ2

gp2D5
¼ 8� 6:64� 10�4ð Þ � 50� 2002

9:81� p2 � 35
¼ 0:452 m

The values of the effective heads, generated powers, and damage costs based on
the optimized water elevations are presented in Table 4.8.

For example, the values of generated hydropower and damage cost at w1 ¼ 0:5
and w2 ¼ 0:5 in Table 4.8 are calculated as;

Hg ¼ Ru � Rtail ¼ 1,052.75� 994 ¼ 58:75 mð Þ
HT ¼ RT � Rtail ¼ 997� 994 ¼ 3:0 mð Þ
He ¼ Hg � hf � HT ¼ 58:75� 0:452� 3:0 ¼ 55:30 mð Þ

P MWð Þ ¼ gqgQHe ¼
0:9 � 1,000 � 9:81 � 100 � 55:30

106
¼ 48:82 MWð Þ

D 1,000 $ð Þ ¼ 825 exp 0:35ðHd � Hb½ � ¼ 825exp 0:35ð7:37� 3:5½ �
1,000

¼ 3:20ð1,000 $Þ

8>>>>>>>>>><
>>>>>>>>>>:

Figure 4.13 shows the effect of increasing water elevation in the reservoir on
the generated powers and downstream flood damage costs. Based on this figure,
both functions are increasing by raising water elevations in the reservoir, while the

Table 4.8 The generated powers and damage costs based on optimized water elevations for
m = 2

w1 w2 Ru Ru � Rtail ðmÞ He ðmÞ P (MW) Dð1,000 $Þ
0.00 1.00 1,040.00 46.00 42.55 0.00 0.00
0.10 0.90 1,046.52 52.52 49.07 43.32 1.98
0.20 0.80 1,052.75 58.75 55.30 48.82 3.20
0.30 0.70 1,052.75 58.75 55.30 48.82 3.20
0.40 0.60 1,052.75 58.75 55.30 48.82 3.20
0.50 0.50 1,052.75 58.75 55.30 48.82 3.20
0.60 0.40 1,057.00 63.00 59.55 105.15 9.65
0.65 0.35 1,057.00 63.00 59.55 105.15 9.65
0.80 0.20 1,057.00 63.00 59.55 105.15 9.65
0.90 0.10 1,057.00 63.00 59.55 105.15 9.65
0.96 0.04 1,059.55 65.55 62.10 109.65 117.05
1.00 0.00 1,060.00 66.00 62.55 110.45 128.42
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main purpose of optimization analysis in this problem is increasing the generated
power and decreasing downstream flood damage simultaneously. Therefore, the
results of optimization analysis can be applied to make trade-off between gener-
ated power and flood damage cost in this problem.

2. For m = 1

As it can be seen in Fig. 4.14 the first objective function is a linear function of
water elevation in the reservoir for m = 1 and still there is conflict between two
objectives in which increasing one of them results in decreasing the other
simultaneously.

In this case, the aggregated objective function F can be written as;

F Ru;Hdð Þ ¼ w1f1 Ruð Þ þ w2f2 Hdð Þ ¼ w1ðRc � RuÞ þ w2 Hd þ Hbð Þ

The constraints are the same as the previous condition, and the GRG nonlinear
solution method of Excel is used in different combinations of weights to find the
optimum points. The Pareto optimum points, minimum values of F, and the Pareto
curve are shown in Table 4.9 and Figs. 4.15 and 4.16, respectively.

As noted above, the Pareto curve provides valuable information to verify all
possibly conflicting and quantitative properties of an optimization system and it is
shown in the Fig. 4.16.

The values of effective heads, generated powers, and damage costs based on the
optimized water elevations in the case of m = 1 are presented in Table 4.10.

Fig. 4.13 The generated powers and downstream flood damages for m = 2
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Figure 4.17 illustrates how the generated powers and downstream flood damage
costs are changing by increasing water elevation in the reservoir. As it can be seen
in this figure, the generated power and damage costs are increasing a little more
smoothly in the case of m = 2 in comparison to m = 1. For example, P changes
from 0 to 48.82 by changing w1 from 0 to 0.2 for m = 1, while it varies from 0 to
43.32 and then to 48.82 by increasing w1 from 0 to 0.2 in the case of m = 2.
However, the overall trend is same and both achieved values are acceptable as
results of optimization analysis.

Fig. 4.14 The objective functions f1 and f2 versus water level in the reservoir for m = 1

Table 4.9 The minimums of F with generated hydropower and damage costs for m = 1

w1 w2 Ru � Rb ðmÞ Q ðm3=sÞ Hd ðmÞ min F

0.00 1.00 40.00 0.00 3.50 3.50
0.10 0.90 40.00 0.00 3.50 5.15
0.20 0.80 52.75 100.00 7.37 7.34
0.30 0.70 52.75 100.00 7.37 7.34
0.40 0.60 52.75 100.00 7.37 7.32
0.50 0.50 57.00 200.00 10.53 6.76
0.60 0.40 57.00 200.00 10.53 6.01
0.65 0.35 57.00 200.00 10.53 5.63
0.80 0.20 60.00 200.00 17.92 3.58
0.90 0.10 60.00 200.00 17.92 1.79
0.96 0.04 60.00 200.00 17.92 0.72
1.00 0.00 60.00 200.00 17.92 0.00
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4.2.2 Optimization of Broad-Crested Weir

Flow measurement is the quantification of fluid movement parameters. Since the
early days of hydraulics, various flow measuring devices such as hydraulic struc-
tures have been developed and used in waterways such as open channels or rivers to
estimate rate of flow based on the measured upstream water level (Boiten 1993). For
instance, weirs as a type of hydraulic structure consist of some obstruction to
increase water level and are commonly used to measure discharge. Among different

Fig. 4.15 Values of F and its minimums in different weights for m = 1

Fig. 4.16 The Pareto frontier for the objectives functions f1 and f2 for m = 1
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types of weirs, rectangular broad-crested weir is one of the most widely used
hydraulic structures in open channels and rivers. It is a common engineering
structure with a horizontal crest above which the streamlines are practically straight
and parallel. This simple structure has often been used in irrigation systems,
hydroelectric schemes, and highways. The rectangular broad-crested weirs with 90�
upstream face slope which is known as square-edged weir (edge refers to the
entrance from the approach channel) is a simple design structure with the following
advantages;

Table 4.10 The generated powers and damage costs based on optimized water elevations for
m = 1

w1 w2 Ru Ru � Rtail ðmÞ He ðmÞ P (MW) D ð1,000 $Þ
0.00 1.00 1,040.00 46.00 42.55 0.00 0.00
0.10 0.90 1,046.52 46.00 42.55 0.00 0.83
0.20 0.80 1,052.75 58.75 55.30 48.82 3.20
0.30 0.70 1,052.75 58.75 55.30 48.82 3.20
0.40 0.60 1,052.75 58.75 55.30 48.82 3.20
0.50 0.50 1,052.75 63.00 59.55 105.15 9.65
0.60 0.40 1,057.00 63.00 59.55 105.15 9.65
0.65 0.35 1,057.00 63.00 59.55 105.15 9.65
0.80 0.20 1,057.00 66.00 62.55 110.45 128.42
0.90 0.10 1,057.00 66.00 62.55 110.45 128.42
0.96 0.04 1,059.55 66.00 62.55 110.45 128.42
1.00 0.00 1,060.00 66.00 62.55 110.45 128.42

Fig. 4.17 The generated powers and downstream flood damages for m = 1 and m = 2
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1. Constant discharge coefficient in optimum flow condition,
2. Less sensitivity to downstream submergence,
3. Simple design and construction,
4. Low construction and utility costs (Goodarzi et al. 2012a).

In particular situations, the weir’s structural design can present some flexibility
for modifying the upstream face slopes to provide better hydraulic characteristics
and measure discharge efficiency at higher precision. Goodarzi et al. (2012a)
experimentally studied different models of broad-crested weirs with a rectangular
compound cross section. In their study, the upstream slope of weir was changed
from 90� to 75�, 60�, 45�, 30�, 22.5�, 15�, and 10� and a new correction factor to
estimate the discharge coefficient over weirs with various upstream slopes were
introduced. The results of this study showed decreasing upstream slopes from 90�
to 10� leading to increasing discharge coefficient. In general, the rate of flow and
the upstream water level over the crest can be related as;

Q ¼ Cda

2
3

2
3

g

� �1=2
" #

B � h3=2
1 ð4:15Þ

where Q is flow discharge ðm3=sÞ, B is the weir’s breadth which spans the full
channel width, g is gravitational acceleration m/s2

� �
, and Cda is discharge coef-

ficient for the weir with upstream face slope a. This coefficient can be calculated
using the parameter Cr which is the ratio of Cda to the discharge coefficient of a
standard broad-crested weir ðCd90Þ as follow;

Cr ¼ 1:0þ 4:63 Cos3=2ðaÞ
gð2:33þ n4Þ

ð4:16aÞ

Cr ¼
Cda

Cd90

ð4:16bÞ

where P is weir height, L is weir length, h1 is depth of flow upstream of the
standard broad-crested weir, n ¼ h1=L.

Example 4.4 Consider a broad crested weir with the crest length, L = 1.75 (m),
weir’s breadth B = 3.1 (m) which spans the full channel width, weir height
P = 1.25 (m), and Cd90 ¼ 0:9 in a channel with the average flow of Qu ¼
1:5 ðm3=sÞ and the standard deviation of rQ ¼ 0:2 ðm3=sÞ. The schematic view of
the weir is shown in the Fig. 4.18. The cost of building the weir including the
construction cost and the expense of materials is estimated using the following
equation;

Cost $ð Þ ¼ 115þ 365:156 V0:0775
T

where, VTðm3Þ is the total volume of the weir.
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It is important to note that the volume of weir is computed based on the
following relation;

VT ¼ Vr þ Vp

in which, Vr is the volume of cubic central part of the weir with a constant value
and it can be calculated as;

Vrðm3Þ ¼ B� P� L

and Vp is the volume of prism section which is function of upstream face slope, as;

Vp m3
� �

¼ P� L1

2
� B ¼ P2 � B

2
TanðaÞ

Based on the aforementioned information, design a weir with the maximize
discharge coefficient ðCdaÞ and minimum cost of construction. Determine the
appropriate objective functions and obtain the Pareto front for this problem based
on the weighted method.

Solution: The objective functions in this problem can be defined as;

max Cda ¼ Cr � Cd90 ¼ 1:0þ 4:63 Cos3=2ðaÞ
gð2:33þ n4Þ

ffl �
� Cd90

and

min Cost 1,000 $ð Þ ¼
115þ 365:156V0:0775

T

	 

1,000

As the average discharge in the channel is Qu ¼ 1:5 ðm3=sÞ with the standard
deviation of rQ ¼ 0:2 ðm3=sÞ, and the upstream face slopes should be varied
between 90� to 10�, the following constraints should be considered in the design of
the weir;

Fig. 4.18 Schematic view of broad-crested weir
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Qu � rQ|fflfflfflffl{zfflfflfflffl}
1:5 � 0:2 ¼ 1:3

� Q � Qu þ rQ|fflfflfflffl{zfflfflfflffl}
1:5 þ 0:2 ¼ 1:7

10	 � a � 90	

If the upstream face slope approaches to 90�, the cost of weir construction
decreases since the volume reduces, whereas the discharge coefficient also
decreases. In this problem, on the one hand we need to decrease the upstream face
slopes (approach to 10�) to get higher value for discharge coefficient and on the
other hand, the values of a should be increased (approach to 90�) to decrease the
cost of building. To convert the problem into a single objective function and solve
it using the weighted method, the objective functions should be written as;

min f1 a; nð Þ ¼ �Cda ¼ � 1:0þ 4:63 Cos3=2ðaÞ
gð2:33þ n4Þ

ffl �
� Cd90

min f2ðVTÞ ¼ Cost 1,000 $ð Þ ¼
115þ 365:156 V0:0775

T

	 

1,000

Based on the weighting method, we have;

F ¼ w1f1 þ w2f2 ¼ w1Cda þ w2Cost

As it can be seen in the Fig. 4.19, there is conflict between two defined
objective functions in which by increasing the upstream face slopes (a), the first
objective f1 is increasing, while, the second objective function f2 is decreasing.

The GRG nonlinear method of Excel is applied to find the optimal solution and
estimate the values of discharge coefficient, upstream depth, total volume of weir,
and cost of building in different weights and the results are presented in the
Table 4.11.

Fig. 4.19 The objective functions versus upstream face slopes
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Figure 4.20 shows the Pareto front for two objective functions f1 and f2. As it
can be seen from this figure, any optimal solution for discharge coefficient cannot
be better off without making the other objective functions worse off. In other
words, the higher values of discharge coefficient impose much more costs of
construction. Therefore, the decision maker needs to make the appropriate decision
based on the hydraulic requirement efficiency of weir and also the available
financial resources of the project.

Figure 4.21 shows how the discharge coefficient and the cost of building of
weir are changed by increasing the upstream face slope. Based on this figure, both
of those decision variables are increasing by approaching the upstream slopes from
90� to 10�. The presented results in Table 4.11 are only for 11 different weights

Table 4.11 The optimized values of decision variables

w1 w2 F a �Cd Cd h (m) Volume
(m3)

Cost ð$Þ

1 0 -1.078 10.00 -1.078 1.078 0.533 12.320 558.609
0.9 0.1 -0.914 10.00 -1.078 1.078 0.533 12.320 558.609
0.8 0.2 -0.750 10.00 -1.078 1.078 0.533 12.320 558.609
0.7 0.3 -0.587 10.00 -1.078 1.078 0.533 12.320 558.609
0.6 0.4 -0.423 11.03 -1.077 1.077 0.533 11.793 557.110
0.5 0.5 -0.260 12.93 -1.075 1.075 0.534 11.036 554.842
0.4 0.6 -0.097 15.15 -1.072 1.072 0.535 10.388 552.786
0.3 0.7 0.065 18.01 -1.068 1.068 0.536 9.785 550.761
0.2 0.8 0.227 22.29 -1.062 1.062 0.538 9.163 548.549
0.1 0.9 0.387 31.15 -1.044 1.044 0.544 8.397 545.624
0 1 0.539 90.00 -0.900 0.900 0.601 6.781 538.551

Fig. 4.20 The Pareto front for desired broad crested weir
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with the step 0.1, while, many in-between values can be used by choosing smaller
step size. An efficient way to produce much more weights is applying random
generator techniques such as Monte Carlo technique.

Monte Carlo is one of the most famous and widely used statistical methods
from the early 1940s. With the remarkable increase in computer capabilities and
the development of variance reduction schemes in recent years, application of this
method has increased in different scientific fields. The basic part of this method is
iteration and generation of random variables from a specific range. In other words,
it is a numerical simulation which replicates stochastic input random variables
from desired probability distribution (Goodarzi et al. 2012b). In the case of this
problem, 200 random numbers which are uniformly distributed between [0, 1] are
generated for w1 by using Excel Data Analysis Tools. The estimated Pareto curve
in conjunction with values of discharge coefficient, upstream depth, total volume
of weir, and cost of building are presented in the Fig. 4.22 and Table 4.12,
respectively.

4.3 e-Constraint Method

In addition to the weighted method, the e-constraint approach can also be used to
build the Pareto set for a multi-objective optimization problem. This method was
first proposed by Chankong and Haimes in 1983 to transform a multiobjective
problem into a traditional single objective problem by choosing one objective as
main objective function and considering the remaining objectives as constraints in

Fig. 4.21 Changing discharge coefficient and the cost of building versus upstream face slope
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the desired optimization problem. Based on this method, the optimization problem
mathematically can be defined as;

min fiðXÞ; X ¼

x1

x2

..

.

xn

2
6664

3
7775 ð4:15Þ

Subject to;

gj Xð Þ � 0; j ¼ 1; 2; . . . m

fk Xð Þ � ek k ¼ 1; . . .n; k 6¼ i

where, e ¼ e1; e2; . . .; ei�1; eiþ1; . . .; en.
Therefore, the Pareto set is generated by solving the optimization problem

repeatedly for different values of e. It is important to note that this method is not
very efficient for problems with more than two objective functions, and also
finding the Pareto solution strongly depends on the choice of e. Example 4.5 is
solved using the e-constraint method to become more familiar with the concept of
this technique in solving optimization problems, and also compare the achieved
results based on this method with the outcomes of weighted approaches.

Example 4.5 Minimize the following functions f1 xð Þ and f2ðxÞ;

f1 xð Þ ¼ 6ðx� 7Þ2 þ 2xþ 17

f2 xð Þ ¼ ðx� 2Þ3 þ 23

Subject to

2 � x � 10

Fig. 4.22 Pareto curve based on generated random data
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Solution: As mentioned above, one of the objective functions would be con-
sidered as the main objective and the second one will be added to the constraints. It
should be noted that it really doesn’t matter which function is kept as the main
objective and which one is considered as a constraint of the problem. Here the
objective function f1 xð Þ is chosen to be minimized and hence, the problem can be
written as;

Table 4.12 The optimized values based on the random weights

i w1 w2 Cd h (m) a Cost ð$Þ
1 0.9963 0.0037 1.0775 0.5331 10.00 558.60
2 0.9948 0.0052 1.0775 0.5331 10.00 558.60
3 0.9948 0.0052 1.0775 0.5331 10.00 558.60
. . . . . . .
. . . . . . .
64 0.6575 0.3425 1.0775 0.5331 10.00 558.60
65 0.6536 0.3464 1.0775 0.5331 10.07 558.49
66 0.6509 0.3491 1.0774 0.5331 10.119 558.42
. . . . . . .
. . . . . . .
80 0.6005 0.3995 1.0766 0.5333 11.01 557.12
81 0.5983 0.4017 1.0766 0.5334 11.05 557.06
82 0.5947 0.4053 1.0765 0.5334 11.12 556.98
. . . . . . .
. . . . . . .
102 0.4852 0.5148 1.0744 0.5341 13.23 554.53
103 0.4823 0.5177 1.0744 0.5341 13.29 554.47
104 0.4799 0.5201 1.0743 0.5341 13.34 554.42
. . . . . . .
. . . . . . .
123 0.3948 0.6052 1.0721 0.5349 15.28 552.68
124 0.3933 0.6067 1.0720 0.5349 15.32 552.65
125 0.3919 0.6081 1.0720 0.5349 15.35 552.62
. . . . . . .
. . . . . . .
167 0.1827 0.8173 1.0598 0.5390 23.31 548.12
168 0.1797 0.8203 1.0595 0.5391 23.50 548.05
169 0.1790 0.8210 1.0594 0.5391 23.55 548.03
. . . . . . .
. . . . . . .
187 0.0806 0.9194 1.0356 0.5473 34.59 544.82
188 0.0612 0.9388 1.0223 0.5521 39.77 543.82
189 0.0549 0.9451 1.0159 0.5544 42.16 543.42
. . . . . . .
. . . . . . .
198 0.0096 0.9904 0.9000 0.6010 90.00 538.55
199 0.0080 0.9920 0.9000 0.6010 90.00 538.55
200 0.0038 0.0249 0.9000 0.6010 90.00 538.55
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min f1 xð Þ ¼ 6ðx� 7Þ2 þ 2xþ 17

subject to;

2 � x � 10
f2 xð Þ ¼ ðx� 2Þ3 þ 23 � e

Now, we need to solve the problem for different values of e2 to find the Pareto
set in this problem. Table 4.13 shows the values of x, f1 xð Þ, and f2 xð Þ for the
selected values of e. Based on the results, there is no feasible solution for e\23,
shown by the dash line in the table, while the values of x, f1 xð Þ, and f2 xð Þ
approaches to a constant value for e [ 135.

In this problem, the GRG nonlinear method of Excel is applied to solve the
optimization problem. Figure 4.23 demonstrates the Pareto optimal solutions
based on e-constraint technique for desired two-objective minimization problem.

Table 4.13 Different values of x, f1 xð Þ, and f2 xð Þ for the values of selected e2

x min f1 xð Þ f2 xð Þ e x min f1 xð Þ f2 xð Þ e

– – – 15 5.476 41.887 65.000 65
– – – 22 5.733 38.104 75.000 75
2.019 169.915 23.000 23 5.958 35.432 85.000 85
3.000 119.000 24.000 24 6.254 32.845 100.000 100
3.913 82.006 30.000 30 6.514 31.444 115.000 115
4.289 69.662 35.000 35 6.747 30.878 130.000 130
4.571 61.535 40.000 40 6.820 30.834 135.000 135
4.802 55.590 45.000 45 6.833 30.833 135.912 136
5.000 51.000 50.000 50 6.833 30.833 135.912 150
5.175 47.338 55.000 55 6.833 30.833 135.912 190

Fig. 4.23 The Pareto set based on e-constraints method
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4.3.1 Optimization of Marine Outfalls

Wastewater can be defined as combination of liquid and solid wastes and it can be
generated from many resources like domestic (e.g., household wastes like toilets,
shower, cooking, laundry, and the floor drains) and industrial sources (e.g., food
waste, mining, oil waste, fertilizers, and toxic chemicals). Three important types of
wastewater can be named as sewage, influent, and effluent. In general, the
domestic wastewater is known as sewage, the wastewater which is flowing into a
treatment plant is known as influent, and the treated wastewater from treatment
plant which can be discharged into a stream, river, lagoon, lake or ocean is called
effluent. The main purpose of wastewater treatment before disposal is removing
industrial and human wastes to protect the health of our community and preventing
the potential diseases as well as supplying clean water. The treatment process
typically includes three main steps as;

1. Preliminary treatment; to remove large particles and materials in raw
wastewater,

2. Primary treatment; to remove suspended solids by sedimentation, and
3. Secondary treatment; to remove or reduce residual organics that are left from

the previous steps.

After completion of the treatment procedures, the wastewater flows through a
marine outfall to the sea. The marine outfall is an important part of costal infra-
structure to transform sewage or effluent from desired sources to an undersea
disposal point far from coast. The main objectives of marine outfall systems are
disposing of wastewater in a safe point to reduce the health risk of coastal com-
munities, swimmers, and temporary coastal visitors. A marine outfall system
generally consists of three main parts as follows;

1. An outfall pipe or feeder pipe,
2. Diffuser pipe, and
3. Risers and ports (Fig. 4.24).

Fig. 4.24 A marine wastewater disposal system
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It is important to note that mixing zone is defined as a limited area around
diffusers where an effluent discharges into ocean, and mixing the effluent with the
water body results in dilution of effluent in the vicinity of the plume. To estimate
dilution the following relation can be applied;

Sn ¼
C0 � Ca

C � Ca
ð4:16Þ

where, C, C0, and Ca are conductivity at sampling point, effluent source, and
ambient water, respectively (Abessi et al. 2012). It is important to note that
although mixing changes the quality of ambient, the standards of water quality in
this zone should be limited to critical toxicity condition.

Near-field (or initial mixing region) and far-field are two major phases of
mixing processes of an effluent. In the near-field region, rapid mixing takes place
and the shape of this area is affected by the source characteristics, outfalls
geometry and interaction of buoyancy flux with the ambient current (Roberts et al.
1989). On the other hand in the far-field region, the effect of source is reduced and
also the rate of increasing dilution is slower than near-field area (Kang et al. 1999).
Figure 4.25 shows the near-field and far-field locations for a single outfall pipe
that discharges effluent into the ocean. Based on Tian et al. (2004), the edge of
near-field region is approximately placed within 10 % of whole mixing zone.

In the following section optimization analysis of an outfall system as a practical
example in designing marine outfalls is presented.

Example 4.6 Assume, a city needs to discharge an average municipal wastewater
of QT ¼ 1:6 m3=s into the ocean though a marine outfall. In preliminary design,
outfall considered as a long pipe on the floor at the shallow coast of the study area.
The outfall terminates to a diffuser with T-shape nozzles spaced equal to S from
each other (Fig. 4.26). The discharge needs to be released at least 200 m (or
L C 200 m) far from the shore due to local environmental regulations. To
diminish environmental impacts of sewage in local marine ecosystem reaching
minimum dilution 100 at the end of near-field suggested in receiving ambient
water quality standards.

Fig. 4.25 Near-field and far-field locations for a single outfall pipe
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It is assumed that the receiving water is unstratified (homogeneous) for the sake
of design procedure, and the diffusers are shortly spaced and flow behave as line
plume;

Sn q

b1=3H
¼ 0:49 for

S

H
� 0:3 ð4:17Þ

and when the diffuser in long spaced and flow behave as point plume, we have;

Sn q

b1=3H
¼ 0:41

S

H

� ��2=3

for
S

H
� 1 ð4:18Þ

where, H(m) is the water depth, Sn is dilution, S(m) space between nozzles, LdðmÞ
diffuser length, n total number of ports, q is volume flux, b is buoyancy flux and
they are defined as;

q ¼ QT

Ld

b ¼ g00q
ð4:19Þ

in which, g00 is modified acceleration due to gravity and can be calculated as;

g00 ¼
gðqa � q0Þ

q0
ð4:20Þ

in which, q0ðkg/m3Þ is effluent density and qaðkg/m3Þ is ambient density (Tian
et al. 2004).

As the nozzles are T-shaped, each riser has two ports on it in which Ld ¼ n
2 S. In

addition, it is assumed that the effluent and ambient densities are 998 and
1; 021 kg/m3, respectively; and the ambient depth in the area changes linearly from
the shore as follow;

H ¼ 0:03� ðLþ LdÞ

where, L and Ld are the feeder pipe and diffuser pipe lengths.

Fig. 4.26 Sketch of outfall in primarily design (Tian et al. 2004)
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Determine the optimal design of outfall to meet environmental required stan-
dards with the minimum cost when the construction cost for each meter of outfall
initial pipe in 25,000 $ and for each meter of diffuser is 45,000 $. In this problem
for the sake of simplicity, it is assumed that diffusers are shortly spaced and flow
behaves as line plume, and hence, only Eq. (4.17) should be applied. In addition,
the maximum allocated budget for this project is $25 M.

Solution: In this problem, we are going to maximize dilution while minimizing
the cost of building project. Based on Eq. (4.17), we have;

Snq

b1=3H
¼ 0:49 ) Sn ¼

0:49� b1=3H

q

Sn ¼
0:49� g00

QT
Ld

� 1=3
ffl �

� 0:03� Lþ Ldð Þ½ �
QT
Ld

¼
0:49� gðqa�q0Þ

q0

� 1=3
ffl �

� 0:03� Lþ Ldð Þ½ �

QT
Ld

� 2=3

By applying the values of g, qa, q0, and QT , dilution can be calculated as;

Sn ¼
0:49� 9:81� 1;021�998ð Þ

998

� 1=3
ffl �

� 0:03� Lþ Ldð Þ½ �

1:6
Ld

� 2=3

) Sn ¼ 0:0065� Ld
2=3 Lþ Ldð Þ

ð4:21Þ

On the other hand, it is assumed that there are two ports for each risers or
Ld ¼ n

2 S, and so, Eq. (4.21) can be written in the following form;

Sn ¼ 0:0065� n

2
S

� 2=3
Lþ n

2
S

� 
ð4:22Þ

Therefore, the first objective function that should be maximized is Eq. (4.22).
The constraints of this problem are;

L � 200 ðmÞ
S
H � 0:3

The second objective is the cost function that needs be minimized. This
function is sum of the cost of feeder pipe and diffuser package (including diffuser
pipe, risers, and ports) and can be computed as;

Cð$Þ ¼ C1 þ C2
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in which,

C1 ¼ 25,000� L

C2 ¼ 45,000� Ld

Therefore, the total cost is;

Cð$Þ ¼ 25,000� Lþ 45,000� ðn
2

SÞ

In brief, the objective functions and constraints of this problem are;

min � Sn ¼ � 0:0065� n

2
S

� 2=3
Lþ n

2
S

� ffl �

min C $ð Þ ¼ 25,000� Lþ 45,000� n

2
S

� 

Subject to the following constraints;

L � 200 ðmÞ
S
H � 0:3

It is important to note the values of dilution higher than 100 are acceptable in
receiving ambient water quality. By applying the e-constraint method, one of
objective functions can be considered as main objective and the second one will be
added to the constraints, and so, the problem will be changed into a single
objective function. In this example, dilution function is kept to be maximized and
the cost function is considered as constraints. Hence, the objective function and
constraints can be written as follows;

min � Sn ¼ � 0:0065� n

2
S

� 2=3
Lþ n

2
S

� ffl �

Subject to;

25,000� L þ 45,000� n

2
S

� 
� e

L � 200 ðmÞ
S

H
� 0:3

As the maximum allocated budget for this project is $25 M, the value of e varies
between 0 and 25 to find the optimum values of dilution, numbers of ports, length
of feeder pipe, and length of diffuser pipe. This problem is solved for different
values of e, and the results of optimization analysis as well as Pareto set are
presented in the Table 4.14 and Fig. 4.27, respectively.

144 4 Multiobjective Optimization



Table 4.14 The optimized values of dilution and cost

n S L Sn Cost e Ld H S/H

– – – – – 5 – – –
79.36 2.80 200 46.74 10 10 111.11 9.33 0.3
97.22 3.20 200 66.84 12 12 155.55 10.66 0.3
116.96 3.80 200 100.68 15 15 222.22 12.66 0.3
122.22 4.00 200 112.94 16 16 244.44 13.33 0.3
126.98 4.20 200 125.67 17 17 266.67 14.00 0.3
131.31 4.40 200 138.87 18 18 288.88 14.66 0.3
135.26 4.60 200 152.53 19 19 311.11 15.33 0.3
138.88 4.80 200 166.66 20 20 333.33 16.00 0.3
142.22 5.00 200 181.23 21 21 355.55 16.66 0.3
145.30 5.20 200 196.26 22 22 3.77.77 17.33 0.3
148.14 5.40 200 211.72 23 23 400.00 18.00 0.3
150.79 5.60 200 227.62 24 24 422.22 18.66 0.3
153.26 5.80 200 243.96 25 25 444.44 19.33 0.3
155.55 6.00 200 260.71 26 26 466.66 20.00 0.3
157.70 6.20 200 277.88 27 27 488.88 20.66 0.3
159.72 6.40 200 295.47 28 28 511.11 21.33 0.3

Fig. 4.27 The Pareto set solutions based on e-constraints method

4.3 e-Constraint Method 145



4.4 Problems

Problem 4.1 Minimize F xð Þ ¼ g½f1 xð Þ; f2 xð Þ� using the weighted method

f1 xð Þ ¼ ðx� 1Þ3

f2 xð Þ ¼ �x2 þ 5x

Subject to the following constraint and plot the Pareto set;

2 � x � 4

Problem 4.2 Find the optimal solution of the following optimization problem
using the weighted method and plot the Pareto front.

min f1 x1; x2ð Þ ¼ ðx1 � 1Þ2 þ ðx2 � 2Þ2

min f2 x1; x2ð Þ ¼ �x2
1 � x2

2 þ 13

Subject to:

5x1 � 3x2 � 9
6x1 þ 3x2 � 5
�2 � x1 � 4
�2 � x2 � 6

Problem 4.3 Solve Example 4.3 by considering the turbine efficiencies as 65, 75,
85, and 95 %, and then, compare your results to see the effect of different effi-
ciencies values on the optimization results.
Problem 4.4 Solve Example 4.3 by considering the penstock diameter D = 2.5,
2.5, and 3.5 m and then, compare your results to see the effect of different penstock
diameters on the optimization results.
Problem 4.5 Assume two different values for discharge coefficients as Cd90 ¼ 0:8
and Cd90 ¼ 0:95 in Example 4.4, and find the Pareto front based on the weighted
method.
Problem 4.6 Solve Example 4.4 by applying e-constraint approach and compare
the achieved results with the outcomes of weighted method.
Problem 4.7 Solve Example 4.6 if desired city needs to discharge an average
municipal wastewater of QT ¼ 1:0 and 2:2 m3=s into the ocean though a marine
outfall. Compare your results to see the effect of different discharges on the
optimization results.
Problem 4.8 Solve Example 4.6 if diffusers are long spaced.
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Chapter 5
Optimization Analysis Using LINGO
and MATLAB

Abstract LINGO and MATLAB are two of the well-known computer programs
and powerful languages used today for expressing optimization models. In this
chapter, the process of solving both single and multiobjective optimization problems
using those programs is presented in details. Furthermore, a number of useful
examples are provided and solved step by step to better understand the application of
LINGO and MATLAB in solving linear and nonlinear optimization problems.

5.1 LINGO

The procedure of solving optimization problems to find the optimal solutions
usually needs a large number of mathematical computations in particular when
there are numerous objective functions and constraints. With the remarkable
increase in the computation power in the past decade, using custom designed
computer programs and commercial software provide a smart way to solve dif-
ferent types of optimization problems more efficiently and in a reasonable time.
Among all optimization models, LINGO is the most comprehensive optimization
tool in solving a wide range of optimization problems and it is capable to model
any large or small systems efficiently. The word LINGO is the abbreviation of
Linear, Integer, Nonlinear, and Global Optimization that implies the ability of this
software in finding optimal solution of linear, integer, and nonlinear problems. The
main characteristics of LINGO are;

1. Availability of different optimizer functions including general integer and fast
linear,

2. Useful features for editing input data,
3. Linked to the libraries of FORTRAN as a strong programming language in

engineering and science,
4. Using the subroutines to run a given program in LINGO, and
5. Availability of a comprehensive on-line help for all LINGO users.

E. Goodarzi et al., Introduction to Optimization Analysis in Hydrosystem Engineering,
Topics in Safety, Risk, Reliability and Quality 25, DOI: 10.1007/978-3-319-04400-2_5,
� Springer International Publishing Switzerland 2014
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5.1.1 Creating an Input Model

As noted in the previous chapters, the structure of any optimization model includes
three main elements as; objective function, decision variables, and constraints.
Before building a model in LINGO, we need to precisely define and determine
those elements to see what model should be optimized, what variables would be
changed to find the optimal solution, and what restrictions must be applied on the
decision variables to obtain valid solutions in a feasible region. Some of the main
operators in LINGO are shown in Table 5.1.

The objective function should be written in the first line and the phrases Min
and Max are used to demonstrate the objective as a minimization or maximization
problem, respectively. Furthermore, the following points should be considered in
writing desired model;

1. All comments in the model must be initialized with the exclamation point (!)
and the text will be appeared in green color.

2. Each line should be ended with a semicolon (;), otherwise the LINGO cannot
solve the problem.

3. As noted above, the first line involves the objective function and the constraints
are immediately after the objective line without any word such as ‘‘subject to’’,
‘‘st’’, and etc.

4. The operators ‘‘\’’ and ‘‘[’’ also denote ‘‘B’’ and ‘‘C’’, respectively.
5. To solve the model, we can use the Solve button or using the CTRL+S shortcut.

To become more familiar with the LINGO in solving an optimization problem,
consider the following simple example.

Example 5.1 Maximize the function f(x) as;

f xð Þ ¼ 40xþ 25y

Subject to;

xþ y� 15

5� y� 35

Solution: First we need to define the objective function as following;

Max ¼ 40 � xþ 25 � y;

Then, the constraints should be written immediately below the objective function
as;

xþ y \ ¼ 15;

y \ ¼ 35;

y [ ¼ 5;
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Figure 5.1 shows all elements of created model for this simple problem. As it
can be seen from Fig. 5.1, the text between exclamation point and semicolon
appears in green color and LINGO ignore this line when running the model.

It is important to note that comments can be written anywhere and it is not
necessary to input them in the first line and before all commands. For example,
Problem 5.1 is solved while each expression in the model includes a comment
(Fig. 5.2).

5.1.2 Solving Linear Models

As already noted, the model can be solved using the Solve button on the toolbar or
applying the CTRL+S shortcut. If an error occurs, LINGO shows an error message
to notify user. For example, when a syntax error happens, LINGO provides the
following error message as a syntax error has occurred (Fig. 5.3).

If no error occurs, LINGO runs the model to find the optimal solution using a
solver module, and then, the Solver Status and Solution Report windows will
appear (Figs. 5.4, 5.5). The solver status window includes lots of useful infor-
mation such as;

• The class of model i.e., LP, NLP, or IP. In the case of this problem, the model is
classified as LP or linear programming.

Table 5.1 The main LINGO operators

Operator Sign Operator Sign

Addition + Equals =

Multiplication * Greater than [
Subtraction - Less than \
Division / Logics NOT, AND, OR
Exponent ^ Strings & and &&

Fig. 5.1 Created model in LINGO
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• The state of estimated solution which can be global optimum, local optimum,
feasible or infeasible solution is presented. Based on Fig. 5.4, the model found a
global optimum solution.

• The number of iteration that is used to find the optimal solution.
• The total number of variables as well as the nonlinear and integer variables also

is shown by Solver Status. As this problem includes only two linear variables,
the total number of variables equals two, while, the number of nonlinear is zero.

The next window that includes the optimal solution and the value of each
variable associated with the optimal solution is the Solution Report Window,
shown in Fig. 5.5. Based on the presented results in this window, the objective
value which shows the maximum of function f(x) is 525.0 and variables x and y are

Fig. 5.2 The LINGO model with a number of comments on each line

Fig. 5.3 The syntax error in LINGO
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10 and 5, respectively. The Slack or Surplus column can accept the following
values;

• Zero; when desired constraint is satisfied as an equality,
• Positive; the number of variable units that should be added to the optimal value

before desired constraint becomes an equality,
• Negative; shows the constraint is violated.

Example 5.2 Solve Problem 2.3 using LINGO. The objective function associated
with this problem is;

max R $ð Þ ¼ np1 � 20 $
� �

þ np2 � 25 $
� �

and the constraints are;

np1 � 25; np2 � 35; 2np1 þ 3np2 � 140

Solution: The input model in LINGO and the results of analysis are shown in
Fig. 5.6.

Fig. 5.4 Solver status window
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Based on the results, the model class is LP and the solution is a global optimum
solution with the maximum profit of $1,250. The values of variables np1 and np2

that will produce the optimal solution are 25 and 30, respectively.

Fig. 5.5 Solution report window

Fig. 5.6 The model and achieved results for Example 5.2
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Example 5.3 Apply LINGO to solve the Problem 2.4 only for demand discharge
Q2 (QA = 14, QB = 18, and QC = 20) when there is no pump station. The
objective function in that problem is defined as;

min Z ¼ C0;1;1l0;1;1 þ C0;1;2l0;1;2
� �

þ C1;2;1l1;2;1 þ C1;2;2l1;2;2
� �

þ C2;3;1l2;3;1 þ C2;3;2l2;3;2
� �

þ C2;4;1l2;4;1 þ C2;4;2l2;4;2
� �

þ C1;5;1l1;5;1 þ C1;5;2l1;5;2
� �

¼ 10� l0;1;1 þ 15� l0;1;2
� �

þ 10� l1;2;1 þ 15� l1;2;2
� �

þ 10� l2;3;1 þ 15� l2;3;2
� �

þ 10� l2;4;1 þ 15� l2;4;2
� �

þ 10� l1;5;1 þ 15� l1;5;2

� �

And, the constraints are;

(a) The length constraints as;

l0;1;1 þ l0;1;2 ¼ 1,000 ft

l1;2;1 þ l1;2;2 ¼ 1,000 ft

l2;3;1 þ l2;3;2 ¼ 1,000 ft

l2;4;1 þ l2;4;2 ¼ 1,000 ft

l1;5;1 þ l1;5;2 ¼ 1,000 ft

(b) The hydraulic constraint for user A in Q2 will be calculated as;

650� 0:0830� l0;1;1 þ 0:0426� l0;1;2
� �

� 0:0314� l1;2;1 þ 0:0161� l1;2;2
� �

� 0:0060� l2;3;1 þ 0:0031� l2;3;2
� �

� 550

And, for user B in Q2 is;

650� I0;1;1 � l0;1;1 þ I0;1;2l0;1;2

� �
� I1;2;1l1;2;1 þ I1;2;2l1;2;2

� �
� I2;4;1l2;4;1 þ I2;4;2l2;4;2
� �

¼ 650� 0:0830� l0;1;1 þ 0:0426� l0;1;2

� �
� 0:0314� l1;2;1 þ 0:0161� l1;2;2

� �

� 0:0099� l2;4;1 þ 0:0051� l2;4;2

� �
� 550

And, finally for user C in Q2 is;

650� I0;1;1 � l0;1;1 þ I0;1;2l0;1;2
� �

� I1;5;1l1;5;1 þ I1;5;2l1;5;2
� �

¼ 650� 0:0830� l0;1;1 þ 0:0426� l0;1;2
� �

� 0:0123� l1;5;1 þ 0:0063� l1;5;2
� �

� 550

Solution: The model for water distribution network under demand discharge Q2

is shown in Fig. 5.7. As it can be seen from this figure, you can simply input the
objective function and constraints and also put desired comments for each line as
well.

Based on the results, the model class is LP and the optimal solution is a global
optimum with the value of $53,007.4. The estimated minimum value here is close

5.1 LINGO 155



to the archived result in Chap. 2 (min Z = 53,018.95) using the Solver tool of
Excel (Fig. 5.8).

Table 5.2 shows the results of optimization analysis using LINGO and Excel
for the length of pipes and minimum value of desired objective function

Example 5.4 Solve Example 2.5 by applying LINGO for the following conditions;
(1) the minimum value of the total desired discharge (Wmin) from all wells equals
4 ft/day, and (2) the minimum value of the desired discharge (Wmin) from each

Fig. 5.7 Created model in LINGO

Fig. 5.8 The optimal values of pipe length
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well equals 4 ft/day. As noted in Chap. 2, the necessary information to solve this
problem are Wmin = 4 ft/day, Dx ¼ 100 ft, T = 10,000 ft2/day, h0 = 125 ft, and
h4 = 100 ft.

Solution: The objective function to maximize the hydraulic heads for various
pumping rates is;

max Z ¼
Xn¼3

i¼1

hi ¼ h1 þ h2 þ h3

And, the constraints of this problem are;

2h1 � h2ð Þ þ W1�Dx2

Tx

� �
¼ 125

2h2 � h1 � h3ð Þ þ W2�Dx2

Tx

� �
¼ 0

2h3 � h2ð Þ þ W3�Dx2

Tx

� �
¼ 100

For the first part of question, the other constraints are;

W1 þW2 þW3�Wmin

h1; h2; h3� 0
W1;W2;W3� 0

h0� h1� h2� h3� h4

Figures 5.9 and 5.10 show the model of one-dimensional confined aquifer in
LINGO and the optimized values of hydraulic heads and discharge rates,
respectively.

Table 5.3 shows the optimized hydraulic heads and discharge rates using two
different computer programs. As it can be seen from this table, there is only a little
difference between Excel and LINGO outcomes.

Table 5.2 The optimized results

Pipe segment LINGO Excel

l0,1,1 398.51 396.21
l0,1,2 601.48 603.79
l1,2,1 1,000 1,000
l1,2,2 0.00 0.00
l2,3,1 1,000 1,000
l2,3,2 0.00 0.00
l2,4,1 1,000 1,000
l2,4,2 0.00 0.00
l1,5,1 1,000 1,000
l1,5,2 0.00 0.00
min Z ($) 53,007.43 53,018.95
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If the minimum value of the desired discharge (Wmin) from each well is con-
sidered 4 ft/day, the model is almost same as previous section except the following
condition as Wi�Wmin. The applied model and optimized results using LINGO is
shown in Fig. 5.11.

The outcomes of LINGO are compared with the achieved results using Excel in
Table 5.4. In this case, both programs resulted in the same values of hydraulic
heads and discharge rates.

Fig. 5.9 Input model in LINGO for one-dimensional confined aquifer

Fig. 5.10 The optimized values of hydraulic heads and discharge rates
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5.1.3 Solving Nonlinear Models

As mentioned previously, LINGO is capable to find the local or global optimum
solution of nonlinear models as well as linear models. To solve a nonlinear
optimization problem, LINGO uses the Generalized Reduced Gradient (GRG)
technique which is explained comprehensively in Chap. 3. In general, LINGO
includes a set of built-in solvers to find the optimal solution of linear and nonlinear
optimization problems in which some of the most important solvers in LINGO are;

1. Simplex solvers for linear models,
2. Barrier solver for linear models,
3. Integer solver that works with both linear and nonlinear models,
4. General nonlinear solver for nonlinear problems,
5. Global solver to find the global optimum of non-convex problems.

In the following section, several nonlinear optimization problems that are
already presented in previous chapters are solved using LINGO and the achieved
results have been compared with the outcomes of Excel program.

Table 5.3 The optimized hydraulic heads and discharge rates in LINGO and Excel

Z (ft) Hydraulic head (ft) Discharge rate (ft/day)

h0 h1 h2 h3 h4 W1 W2 W3

Excel 331.5 125.0 117.75 110.5 103.25 100.0 0.0 0.0 4.0
LINGO 331.5 125.0 115.75 110 105.25 100.0 4.0 0.0 0.0

Fig. 5.11 The optimized values of hydraulic heads and discharge rates when Wi C Wmin
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Example 5.5 Solve Example 3.4 using LINGO and compare the results with the
outcomes of Fibonacci and golden section methods.

min f xð Þ ¼ 3x2 � 4xþ 5:5

Solution: The simple nonlinear model in conjunction with the final solution for
this problem is shown in Fig. 5.12. The result shows that the optimal solution is
4.166 and it happens at the point x = 0.666. According to Chap. 3, the estimated
result using the Fibonacci method is 4.167 at x = 0.647, while, the minimum value
based on the golden section method is 4.166 at x = 0.66.

Example 5.6 Solve the Example 3.7 using LINGO to find the minimum dimen-
sions of cylindrical water tank.

f rð Þ ¼ pr2 þ 400
r

Solution: The problem can be solved simply like the previous problems shown
in Fig. 5.13. As it can be seen in the Solver Status window, the optimal solution is
obtained as local solution as f(r) = 150.239 at the point r = 3.993. Now, we need
to find an appropriate answer for this question; is the local estimated optimum

Table 5.4 The optimized hydraulic heads and discharge rates in LINGO and Excel when
Wi C Wmin

Z (ft) Hydraulic head (ft) Discharge rate (ft/day)

h0 h1 h2 h3 h4 W1 W2 W3

Excel 331.5 125.0 117.75 110.5 103.25 100.0 4.0 4.0 4.0
LINGO 317.5 125.0 112.7 104.5 100.25 100.0 4.0 4.0 4.0

Fig. 5.12 The optimal solution
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solution the same as the global solution? Or is there another solution for this
problem. As noted above, LINGO has a Global Solver engine to find the global
optimum of non-convex problems. This engine is a strong tool that searches over
the desired problem until the global optimum is found.

To run the model and find the global optimum solution, choose options from
toolbar and a window like Fig. 5.14 will appear as Lingo Options. In this window,
click the Global Solver button and check mark the Use Global Solver and then
click OK.

The model is solved again using Global Solver and the results are shown in
Fig. 5.15. As it can be seen from the Solver Status window, the solution is global
optimum and the results are the same in both conditions.

Example 5.7 Apply LINGO to solve Example 3.8 and compare the results with
the univariate method. The objective function is;

f xð Þ ¼ 1:25x1 � 0:45x2 þ x4
1 þ x1x2 þ x2

2

Solution: The optimal solution using LINGO is -0.0506 at the points x1 = 0.0
and x2 = 0.225 (see Fig. 5.16). Comparing these results with the outcomes of
univariate method shows there is a big difference between them. As the default
assumption in LINGO is considering lower bound equals zero for all variables, the
results are restricted to the positive value.

To remove this restriction, we need to apply the function @Free (variable) for
each decision variable to accept any value. The results based on using this new
function are shown in Fig. 5.17. The optimal solution here is -0.9831 and at the
points x1 = -0.775 and x2 = 0.612.

A number of the variable domain functions of LINGO that restrict variables in
different ways in conjunction with their applications are presented in Table 5.5.

Fig. 5.13 The minimum dimensions of cylindrical water tank
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Fig. 5.14 Use the global solver in LINGO

Fig. 5.15 The global optimum solution for cylindrical water tank

162 5 Optimization Analysis Using LINGO and MATLAB



Fig. 5.16 The optimal solution

Fig. 5.17 The optimal solution

Table 5.5 The LINGO variable domain functions

Function Description

@BIN(variable) To being a binary integer value
@BND(lower bound, variable,

upper bound)
To being greater-than-or-equal-to lower bound and less-than-

or-equal-to upper bound
@FREE(variable) To being either positive or negative
@GIN(variable) To being integer value
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Example 5.8 Apply LINGO to determine the optimum head in each well for the
minimum discharge of 20 (m/day) in Example 3.14. The optimization model in
this problem is defined as;

max Z ¼ h2
1 þ h2

2 þ h2
3

Subject to the following constraints;

2h2
1 � h2

2

� �
þ 2�Dx2

K W1

� �
¼ h2

0

2h2
2 � h2

1 � h2
3

� �
þ 2�Dx2

K W2

� �
¼ 0

2h2
3 � h2

2

� �
þ 2�Dx2

K W3

� �
¼ h2

4

where h0 = 100 m and h4 = 95 m. The other constraints are;

W1 þW2 þW3�Wmin

h1; h2; h3� 0
W1;W2;W3� 0

h0� h1� h2� h3� h4

Solution: The model used in LINGO and all optimal values of head in each
well are shown in Fig. 5.18. It is important to note that the Solver Status shows the
estimated results are local optimum solution. The model is re-run again using the
global solver engine in LINGO and the outcomes are shown in Fig. 5.19. As it can
be seen from these figures, the maximum of function Z are the same in both
analyses, while there is a difference between the values of h and W.

Table 5.6 shows the estimated values of hydraulic heads h and the sink term
W using both LINGO and Excel.

Fig. 5.18 The unconfined aquifer model and local optimum solutions
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5.2 MATLAB

MATLAB or Matrix Laboratory is a powerful and high-performance language for
numerical computations, programming, data analysis and visualizations with a
friendly user interface. The syntax of this high-level language is similar to the
C programming language and it can be applied to create models and develop
different algorithms to solve simple or complex problems. The applications of
MATLAB cover a vast range of areas including; civil engineering, mechanical
engineering, signal processing and communications, modeling and simulation,
physics, biology, chemistry, economic, etc. This program includes a number of
interfaces to import and export data as well as managing the available decision
variables. In addition, it has extensive facilities for displaying two and three-
dimensional data visualization as graphs with high quality and good resolution.

Fig. 5.19 The unconfined aquifer model and global optimum solutions

Table 5.6 The values of hydraulic heads h and the sink term W in Excel and LINGO

Variables Excel Local optimum solution Global optimum solution

h0 100.00 100.00 100.00
h1 98.20 97.91 97.95
h2 96.95 96.95 96.95
h3 95.70 95.98 95.94
h4 95.00 95 95.00
W1 10.26 20.00 18.76
W2 0.00 0.00 0.00
W3 9.74 0.00 1.23
Z 28,200 28,200 28,200
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Furthermore, the MATLAB library includes lots of simple and sophisticates
mathematical functions for linear algebra, numerical integration, Fourier analysis,
and optimization (for more information see the online Documentation Center of
MATLAB). Tables 5.7 and 5.8 show a numbers of arithmetic, rational and logical
operators which are used in MATLAB.

Furthermore, a numbers of commands for managing a session in MATLAB are
presented in Table 5.9.

The Optimization Toolbox of MATLAB is a powerful optimization platform
that uses well known algorithms to solve wide ranges of constrained and uncon-
strained optimization problems. This toolbox includes a numbers of mathematical
functions to find the optimal solutions of linear, nonlinear, and multiobjective
problems as well as binary integer programming, nonlinear least squares, and
nonlinear system of equations (Coleman et al. 1999). The Optimization Toolbox in
MATLAB can be opened by using the command Optimtool in the Command
Window and the toolbox should be as shown in Fig. 5.20.

The Optimization Tool includes two main windows as Problem Setup and
Results (left side window) and Options (right side window), as shown in Fig. 5.21.
The Problem Setup and Results window is used to choose the Solver method,
determine the appropriate algorithm, and define the objective function and con-
straints of desired optimization problem.

The existing Solver methods in MATLAB can be categorized in six main
groups as;

1. Linear and quadratic minimization problems; this part involves linear pro-
gramming (linprog) and quadratic programming (quadprog),

2. Linear least squares; this option includes linear least squares with linear con-
straints (lsqlin) and linear least squares with nonnegative constraints (lsqnonneg),

Table 5.7 Arithmetic operators

Operator Sign Operator Sign

Plus + Matrix left-division \
Minus - Matrix right-division /
Matrix multiplication * Array left-division .\
Multiplication .* Array right-division ./
Matrix exponentiation ^ Colon operator :
Array exponentiation .^ Transpose .’

Table 5.8 Rational and logical operators

Operator Sign Operator Sign

\ Less than B Less than or equal to
[ Greater than C Greater than or equal to
= Equal to = Not equal to
& AND | OR
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3. Nonlinear zero finding; this section contains single-variable nonlinear equation
solving (fzero) and nonlinear equation solving (fsolve),

4. Nonlinear minimization of functions; this option involves unconstrained non-
linear minimization (fminsearch), single-variable fixed interval minimization
(fminbnd), constrained nonlinear multivariable minimization (fmincon), mini-
mization of unconstrained multivariable function (fminunc), and minimization
of semi-infinitely constrained multivariable nonlinear function (fseminf),

5. Nonlinear least squares; this section includes solver for nonlinear curve-fitting
(data-fitting) via least-squares (lsqcurvefit) and nonlinear least squares problems,

6. Nonlinear minimization of multi-objective optimization problems; this option
has two solvers to find the optimal solution for multiobjective goal attainment
(fgoalattain) and minimax (fminimax) problems.

The next tab is Algorithm that includes four parts as; interior point, SQP, Active
set (or medium scale), and trust region reflective or (large scale). All necessary
information about all of these options and their applications in different optimi-
zation analysis are available in the Help button of MATLAB.

Table 5.9 A numbers of commands for managing a session in MATLAB

Command Sign Operator Sign

Clear command window clc Search for a help topic help
Check for existence of file or variable exit Declare variables to be global global
Remove variables from memory clear Searches help entries for a keyword Look for
List current variables who Stops MATLAB quit
List all files in current directory dir Displays contents of a file type
Display current date date Deletes a file delete

Fig. 5.20 Command window and optimization toolbox
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5.2.1 Solving Linear Optimization Problems

The linprog function can be used to solve linear programming problems in the
following format;

min
x

Z ¼ ftx ð5:1aÞ

Subject to;

Ax� b

Aeqx ¼ beq

x� lb

x� ub

ð5:1bÞ

where, f is any vector, the matrices A, Aeq and the vectors b and beq defines the
linear constraints, and lb and ub are lower and upper bounds, respectively.

A linear program in the format of Eq. 5.1a can be solved using the following
command in MATLAB;

1. x ¼ linprog f;A; b;Aeq; beq; lb; ubð Þ: solve the minimization problem while
satisfying the inequality constraint Ax B b and equality constraint Aeqx = beq

with the lower and upper bounds lb and ub on decision variable x.
2. x ¼ linprog f;A; b;Aeq; beq; lb; ub; x0ð Þ; solve the minimization problem same

as above while setting x0 as the starting point.
3. x; fval½ � ¼ linprog f;A; b;Aeq; beq; lb; ub; x0ð Þ; return the minimum of function

f at solution point x.

Fig. 5.21 Main options of optimization toolbox
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4. x; fval; exitflag½ � ¼ linprog f;A; b;Aeq; beq; lb; ub; x0ð Þ; determine exitflag
value that shows the exit condition.

5. x; fval; exitflag; output½ � ¼ linprog f;A; b;Aeq; beq; lb; ub; x0ð Þ; return useful
information about the output of optimization.

A number of linear examples are presented in the following section that shows
how to apply the linprog function in MATLAB for linear programming
optimization.

Example 5.9 Find the maximum of following linear program using MATLAB.

f xð Þ ¼ 2x1 þ x2 þ 5x3

Subject to the following constraints;

x1 þ 2x2� 4
2x1 þ 2x3� 5
x1 þ x2 þ x3 ¼ 2:5
1� x1� 2:5
0:5� x2� 2
0� x3� 3

Solution: The first step is converting the above linear equation and its con-
straints in the MATLAB format as following;

f xð Þ ¼ � 2 1 5½ �
x1

x2

x3

2
4

3
5

As the linprog is a minimizer we need to use a negative of function f(x) to
convert problem into a minimization problem. The constraints in the form of
matrix can be written as;

Inequalities :
1 2 0

2 0 2

� ffl x1

x2

x3

2
64

3
75� 4

5

� ffl

Equalities : 1 1 1½ �
x1

x2

x3

2
64

3
75 ¼ 2:5

It important to note that all comments in the model must be initialized with the
sign ‘‘%’’, and so, the text will appear in a green color.

Figure 5.22 shows the whole procedure of solving this linear optimization
problem and the solution points x1, x2, and x3. As it can be seen in the workspace
window of Fig. 5.22, the values of decision variables x1, x2, and x3 are 1.0, 0.5, and
1.0, respectively. It should be noted that in addition to the optimal solution of
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decision variables, we need the maximum value of objective function f(x). Hence,
the command x ¼ linprog f;A; b;Aeq; beq; lb; ubð Þ should be changed to
x; fval½ � ¼ linprog f;A; b;Aeq; beq; lb; ubð Þ.

As it can be seen in Fig. 5.23 the minimum of -f(x) is -7.5, and so, the
maximum of this function will be 7.5.

If we don’t use the semicolon (;) at the end of the last command line, the results
will appear immediately after the commands at the same page (Fig. 5.24). In
general, if a command line terminates with semicolon, the output associated with
that statement will not be displayed.

Fig. 5.22 The MATLAB code and the solution points

Fig. 5.23 The optimal solution of function f(x)
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The Optimization Toolbox also can be simply applied to solve the given linear
problem. In this case, open the Optimization Tool by writing the Optimtool in the
command window, and then, choose linprog-Linear programming from the Solver
section. Then, input the objective function and its constraints in the associated
sections and apply Start button to solve the problem (Fig. 5.25).

If there are no lower or upper bounds on the desired decision variables, an
empty set as lb = []; or ub = []; should be used in MATLAB.

Example 5.10 Solve Example 2.3 using MATLAB. The objective function is;

max R $ð Þ ¼ np1 � 20 $
� �

þ np2 � 25 $
� �

And, the constraints are;

np1 � 25; np2 � 35; 2np1 þ 3np2 � 140

Solution: The objective function in the matrix format can be written as;

f xð Þ ¼ � 20 25½ � np1

np2

� ffl

Fig. 5.24 The optimal solution in the command window
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Subject to;

1 0
0 1
2 3

2
4

3
5 np1

np2

� ffl
�

25
35

140

2
4

3
5

The MATLAB codes for this linear optimization problem are shown in Fig. 5.26.
Based on the results, the maximum profit of $1,250 and the values of variables np1

and np2 at the optimal points are 25 and 30, respectively. Figures 5.26 and 5.27

Fig. 5.25 Solving problem using optimization tool

Fig. 5.26 The maximum profit R($) and values of np1 and np2
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show the optimization procedure using Command Window and Optimization Tool,
respectively.

Figure 5.28 shows the MATLAB codes that is used to plot the feasible area and
the feasible region which is presented in Fig. 5.29.

Fig. 5.27 The optimal solutions using optimization tool

Fig. 5.28 MATLAB codes to plot feasible region
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The first line in Fig. 5.28 includes the linspace function which generates line-
arly spaced vectors. In the case of this example, the command x = lin-
space(0,25,30) generates a row vector x in which 30 points are linearly spaced
between 0 and 25. As constraints of this problem are restricted to np1 � 25 and
np2 � 35, the values of 25 and 35 are chosen in the linspace functions. The second
line includes the meshgrid function that transforms the vector x and y into a set of
arrays X and Y. The rest of codes are used to apply the last constraints in this
problem and then plot the feasible area.

Example 5.11 Apply MATLAB to solve the Example 5.3 for demand discharge
Q2 (QA = 14, QB = 18, and QC = 20) when there is no pump station.

Solution: As the objective function in the matrix format is;

Z ¼ 10 15 10 15 10 15 10 15 10 15½ �

l0;1;1
l0;1;2
l1;2;1
l1;2;2
l2;3;1
l2;3;2
l2;4;1
l2;4;2
l1;5;1
l1;5;2

2
666666666666664

3
777777777777775

The hydraulic constraint for users A, B and C in the demand discharge Q2 are
considered as inequality constraints and can be written as;

Fig. 5.29 The feasible area
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0:0830 0:0426 0:0314 0:0161 0:0060 0:0031 0 0 0 0

0:0830 0:0426 0:0314 0:0161 0 0 0:0099 0:0051 0 0

0:0830 0:0426 0 0 0 0 0 0 0:0123 0:0063

2
64

3
75

�

l0;1;1
l0;1;2
l1;2;1
l1;2;2
l2;3;1
l2;3;2
l2;4;1
l2;4;2
l1;5;1
l1;5;2

2
6666666666666666664

3
7777777777777777775

�
100

100

100

2
64

3
75

And, the length constraints which are considered as equality constraint are;

1 1 0 0 0 0 0 0 0 0
0 0 1 1 0 0 0 0 0 0
0 0 0 0 1 1 0 0 0 0
0 0 0 0 0 0 1 1 0 0
0 0 0 0 0 0 0 0 1 1

2
66664

3
77775
�

l0;1;1
l0;1;2
l1;2;1
l1;2;2
l2;3;1
l2;3;2
l2;4;1
l2;4;2
l1;5;1
l1;5;2

2
666666666666664

3
777777777777775

�

1000
1000
1000
1000
1000

2
66664

3
77775

The lower bounds (lb) and upper bounds (ub) in this problem can be defined as;

lb ¼

0
0
0
0
0
0
0
0
0
0

2
666666666666664

3
777777777777775

and ub ¼

1000
1000
1000
1000
1000
1000
1000
1000
1000
1000

2
666666666666664

3
777777777777775

The MATLAB codes and the estimated results for this linear optimization
problem are shown in Fig. 5.30. In addition, this problem is solved using the
Optimization Tool of MATLAB and the input values as well as the achieved
results are shown in Fig. 5.31.
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Table 5.10 compares the estimated results of LINGO, Excel, and MATLAB for
water distribution network Example. These results include the pipe lengths and
minimum values of piping cost Z.

Fig. 5.30 MATLAB codes and achieved results

Fig. 5.31 Apply optimization tool
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5.2.2 Solving Unconstrained Nonlinear Optimization
Problems

To find the minimum of an unconstrained nonlinear optimization problem, the
function fminsearch can be applied as follows;

1. x ¼ fminsearch fun; x0ð Þ; solve the minimization problem by considering the
starting point x0.

2. x; fval½ � ¼ fminsearch fun; x0ð Þ; find the minimum of function f at the solution
point x.

The following problem shows the application of above function in MATLAB to
find the minimum value of an unconstrained nonlinear equation.

Example 5.12 Solve Example 3.4 using MATLAB and compare the results with
the outcomes of LINGO, Fibonacci and golden section methods.

min f xð Þ ¼ 3x2 � 4xþ 5:5

Solution: The MATLAB code and result are presented in Figs. 5.32 and 5.33,
respectively. The result shows that the optimal solution is 4.1667 and at the point
x = 0.6667, which is the same as the outcomes of LINGO. In addition, the
achieved result from Fibonacci and golden section methods are (0.647,4.167) and
(0.66,4.166) respectively.

It is important to note that this problem also can be simply solved using the
Optimization Tool. Figure 5.34 shows the process of input data and the solution to
the problem using this toolbox.

Example 5.13 Solve Example 3.8 using MATLAB and compare the results with
the univariate method. The objective function in this problem is;

f xð Þ ¼ 1:25x1 � 0:45x2 þ x4
1 þ x1x2 þ x2

2

Table 5.10 The optimized
results

Pipe segment LINGO Excel MATLAB

l0,1,1 398.51 396.21 398.51
l0,1,2 601.48 603.79 601.48
l1,2,1 1,000 1,000 1,000
l1,2,2 0.00 0.00 0.00
l2,3,1 1,000 1,000 1,000
l2,3,2 0.00 0.00 0.00
l2,4,1 1,000 1,000 1,000
l2,4,2 0.00 0.00 0.00
l1,5,1 1,000 1,000 1,000
l1,5,2 0.00 0.00 0.00
min Z ($) 53,007.43 53,018.95 53,007.42
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Solution: Figures 5.35 and 5.36 show the process of solving this unconstrained
nonlinear optimization problem and its solution, respectively. As it can be seen in
Fig. 5.35, the fminsearch function with the starting points (0,0) is applied and the
result shows the minimum value is -0.9832 at the solution point -0.7751, 0.6126.
The optimal solution from LINGO is -0.9831 at point (-0.775,0.612), and the
univariate method resulted in minimum of -0.9831 at (-0.7745,0.6084).

Fig. 5.32 MATLAB codes

Fig. 5.33 The results of optimization analysis
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It is important to note that the hold on command can be used to add another plot
to the existing graph. In other words, hold on keeps the present plot and its axis
properties and then adds the new graph to the existing graph. In the case of this
problem, plot3 also is applied to add the minimum of function f(x) as a single point
(red point) on the graph (Fig. 5.36).

Fig. 5.34 Solve unconstrained nonlinear optimization problem using optimization tool

Fig. 5.35 MATLAB codes
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This problem also can be solved simply by using the Optimization Tool in
MATLAB. Figure 5.37 shows the solver function, objective function, starting
point, and the results of optimization analysis.

5.2.3 Solving Constrained Nonlinear Optimization Problems

To find the minimum value of a constrained nonlinear problem, the ‘‘fmincon’’
solver of MATLAB can be used in the following forms;

Fig. 5.36 Function f(x) and the minimum point

Fig. 5.37 Apply optimization tool to find the optimal solutions
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1. x ¼ fmincon fun; x0;A; bð Þ, find the minimum of function f(x) which is
described by the term ‘‘fun’’ at starting point x0 and subject to linear inequality
Ax B b.

2. x ¼ fmincon fun; x0;A; b;Aeq; beqð Þ, find the minimum of function f(x),
described by term ‘‘fun’’, at starting point x0 and subject to linear inequality
Ax B b and linear equality Aeq x = beq.

3. x ¼ fmincon fun; x0;A; b;Aeq; beq; lb; ubð Þ, find the minimum of function f(x)
at starting point x0 and subject to linear inequality Ax B b and linear equality
Aeq x = beq with the lower and upper bounds lb and ub, repectively.

4. x; fval½ � ¼ fmincon fun; x0;A; bð Þ, return the minimum of function f(x) at the
solution point x subject to linear inequality Ax B b.

5. x; fval½ � ¼ fmincon fun; x0;A; b;Aeq; beqð Þ, return the minimum of function f(x)
at the solution point x subject to linear inequality Ax B b and linear equality
Aeq x = beq.

6. x; fval½ � ¼ fmincon fun; x0;A; b;Aeq; beq; lb; ubð Þ, return the minimum of func-
tion f(x) at the solution point x subject to linear inequality Ax B b and linear
equality Aeq x = beq with the lower and upper bounds lb and ub, respectively.

It is important to note that the function ‘‘fun’’ accepts a scalar like x and returns
a scalar f(x). The fmincon function can be used as x; fval½ � ¼ fmincon @myfun;ð
x0;A; b;Aeq; beq; lb; ubÞ, in which @myfun is defined as;

Function f = myfun (x)
f = f(x)

The following examples represent the process of using fmincon function in
solving nonlinear optimization problems.

Example 5.14 Apply MATLAB to determine the maximum value of function f(x)
as;

max fðxÞ ¼ expð�x3
1 þ x1 � 2x2

2Þ

Subject to the following constraints;

x1 þ x2� 0:15

2x1 � x2� 0:85

Solution: Figure 5.38 shows the behavior of function f(x) against both decision
variables x1 and x2 in the range of x1; x2 2 ½�1; 1�.

The required steps to solve this nonlinear optimization problem using MAT-
LAB are;

1. Write an m-file as shown in Fig. 5.39, and save it with the name of
‘‘objfunc.m’’;

2. Write a new m-file for the constraints, starting points, and fmincon function as
is shown in Fig. 5.40.
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It should be noted that as both constraints are linear, they are formulated as
matrix inequality in the form of Ax B b. The optimal solution for this nonlinear
problem occurs in x1 = 0.3221, x2 = -0.1721, and f(x1,x2) = -1.2579. Hence,

Fig. 5.38 Function f(x) against two variables x1 and x2

Fig. 5.39 The objective function m-file

Fig. 5.40 The constraint m-file
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the maximum of function f(x) is 1.2579. Figure 5.41 shows the function f(x) and
its maximum value after applying desired constraints.

This problem also can be solved using Optimtool in MATLAB. In this case, the
procedure of solving desired nonlinear optimization problem by applying Op-
timtool is shown in Fig. 5.42.

Fig. 5.41 The function f(x) and its maximum value after applying constraints

Fig. 5.42 Apply Optimtool in solving nonlinear optimization problem
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Example 5.15 Apply MATLAB to solve Problem 3.13 and compare results with
the GRG method. The objective function and constraints are;

max fðxÞ ¼ x2
1 þ 3x1 � x2

Subject to the below constraints;

x2
1 þ 4x2� 15

2x2
1 � 3x2� 20

x1� 0; x2� 0

8<
:

Solution: As f(x) and its constraints are nonlinear, we have nonlinear pro-
gramming and the nonlinear solver like fmincon should be applied to find the
optimum solution. In the case of this problem, the negative function of f(x) should
be used to convert problem into a minimization problem. Afterward, two different
m-files must be written for the objective function and constraints and saved under
the work path of MATLAB. Figure 5.43 shows the behavior of function f(x) versus
two decision variables x1 and x2.

The necessary steps to solve this problem in MATLAB briefly are;

1. Write an m-file under the name of ‘‘objfunc.m’’ for the objective function as is
shown in Fig. 5.44. It is important to note that the name of m-file should be
exactly same as ‘‘Objfunc’’. To become more familiar with the command
‘‘function’’, please see the help feature of MATLAB.

2. Write an m-file as Confun.m for the constraints (Fig. 5.45). The current m-file
also should be saved under the name of ‘‘confun’’.

3. To solve this optimization problem, we can either use the ‘‘fmincon’’ function
in command window (Fig. 5.46) or apply the Optimtool of MATLAB.

Fig. 5.43 Function f(x) in a specific range
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Fig. 5.45 The constraint m-file

Fig. 5.44 The objective function m-file

Fig. 5.46 MATLAB codes to solve desired constrained nonlinear problem
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It should be noted that the @Objfunc, and the @Confunc call defined objective
function and desired constraints respectively, are used to find the optimal solu-
tions. The optimal solution for this nonlinear problem occurs at x1 = 3.3710,
x2 = 0.9091, and f(x1, x2) = -20.5675. Hence, the maximum of function f(x) is
20.5657. Figure 5.47 shows the function f(x) and its optimal solution after
applying the constraints.

4. As already noted, the Optimtool of MATLAB also can be applied to find the
optimum solution of desired nonlinear optimization problem. Figure 5.48
shows the process of solving this problem using this toolbox.

5.2.4 Solving Multiobjective Optimization Problems

The aforementioned weighting and e-Constraint methods in Chap. 4 are two of the
most traditional optimization approaches to solve the multiobjective optimization
problems by transferring a multi-objective problem to a single objective one and
solving the problem until finding the set of solutions. Although many researchers
have used these techniques in optimization analyses, there are some practical
limitations and difficulties about them in particular for solving complex optimi-
zation problems. For example, in the case of the weighted method, although it is
simple to implement, a selection of weights requires prior information in which
lack of this information can result in unacceptable solution and resolving the
problem by considering the new weights. In addition, this method is not capable to
determine points on the concave portion of the frontier and sometimes it is sen-
sitive to the shape of Pareto front. In contrast to the traditional techniques, evo-
lutionary methods like Genetic algorithm (GA) are known as robust and powerful
methods that have been used so far by many researchers to solve complex

Fig. 5.47 The function f(x) and its optimal solution after applying constraints
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optimization problems with multiple conflicting objectives. The Genetic algo-
rithms methods are population based and they use a population of solution in each
iteration and outcome also will be a population of solutions, while the traditional
approaches are able to produce only one solution in each iteration and so, the
outcomes is a single value. The main advantages of evolution methods for mul-
tiobjective optimization problems can be written as (Simonovic 2009; Deb 2008,
2009);

1. Less sensitivity to the shape of Pareto front,
2. Ability to produce multiple-objective solutions in a single iteration,
3. The outcomes are not affected by the initial solution (unlike non-linear opti-

mization methods which are gradient based and need initial starting points).

MATLAB applies genetic algorithm to find the Pareto optimal solution for a
multiobjective optimization problem. The appropriate function of MATLAB in
this case is ‘‘gamultiobj’’ that uses genetic algorithm to perform a multiobjective
minimization (optimization) and obtains local Pareto set. This function can be used
in the following forms;

1. X ¼ gamultiobj FINESSFCN;NVARSð Þ; determine Pareto set X for the
objective function which is described in FITNESSFCN. The second factor
NVARS shows the number of decision variables for the problem.

2. X ¼ gamultiobj FINESSFCN;NVARS;A; bð Þ; find the local Pareto front sub-
ject to linear inequality Ax B b.

Fig. 5.48 The optimal solutions using Optimtool of MATLAB
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3. X ¼ gamultiobj FINESSFCN;NVARS;A; b;Aeq; beqð Þ; obtain local Pareto set
X subject to linear inequality Ax B b, and linear equality Aeq x = beq.

4. X ¼ gamultiobj FINESSFCN;NVARS;A; b;Aeq; beq; lb; ubð Þ; find the optimal
solution in the form of Pareto curve subject to linear inequality Ax B b and
linear equality Aeq x = beq with the lower and upper bounds lb and ub,
repectively.

5. ½X; FVAL� ¼ gamultiobjðFITNESSFCN; NVARS; . . .Þ; returns the value of all
of the objective function which are described in FITNESSFCN.

The following examples shows the application of ‘‘gamultiobj’’ solver in
solving multiobjective optimization problems.

Example 5.16 Solve Example 4.1 using MATLAB and find the Pareto front as
well. The objective functions for the example problem are;

f1ðxÞ ¼ 6ðx� 7Þ2 þ 2xþ 17

f2ðxÞ ¼ ðx� 2Þ3 þ 23

Subject to the following constraint;

2� x� 10

Solution: Figure 5.49 illustrates how two objective functions are changing
against the only decision variable in this problem. As it can be seen in the figure, by
increasing variable x, one objective is decreasing while the other one is increasing.

At first, we need to generate an m-file for these two objective functions as
shown in Fig. 5.50 and save it with the same name of the function f which is
‘‘Mobjfunc’’.

Fig. 5.49 Objective functions f1(x) and f2(x) versus decision variable x
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In the next step, the function ‘‘gamultiobj’’ should be applied to find the optimal
solutions and Pareto front. Figure 5.51 shows the appropriate command lines for
solving this multiobjective optimization problem.

For the sake of convenience, the results of this optimization analysis are only
presented for a limited number of population size (Fig. 5.52). However, the Pareto
front for a bigger population size (population of size 50) are presented in Fig. 5.53.

Fig. 5.50 The objective function m-file

Fig. 5.51 Apply ‘‘gamultiobj’’ solver

Fig. 5.52 Multiobjective optimization results
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Example 5.17 Apply MATLAB to solve Example 4.2 and determine the Pareto
optimal solutions. The objective functions for the example problem are;

min f1 x1; x2ð Þ ¼ 1:5ðx1 � 1Þ2 þ ðx2 þ 1Þ2

min f2 x1; x2ð Þ ¼ 0:35ðx1 þ x2 � 1Þ2 þ ð2x2 � x1Þ2 þ 4

Subject to the following constraints:

0� x1� 5
0� x2� 6
2x1 � x2� 6
x1 � 4x2� 0

Solution: Figure 5.54 illustrates how the objective functions varies against two
decision variables x1 and x2 in the specific range of x1, x2 2 [-10,10].

To arrive at a solution, the same process as was applied in the previous example
is followed. First, we need to write an m-file for all objective functions and
constraints, and then, apply ‘‘gamultiobj’’ solver to find the optimal solutions.
Figure 5.55 shows the appropriate m-file for both objective functions f1(x1,x2) and
f2(x1,x2).

As constraints are linear in this problem, it is not necessary to write a separate
m-file and they can be written as shown in Fig. 5.56.

The problem is solved using the MATLAB and a part of estimated results are
presented in Fig. 5.57. As it can be seen in this figure, by reducing the first
objective, the values of second one are increased simultaneously.

Fig. 5.53 The pareto front
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Fig. 5.54 Objective functions f1(x) and f2(x) versus decision variables x1 and x2

Fig. 5.55 The objective functions m-file

Fig. 5.56 The constraints and ‘‘gamultiobj’’ solver
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Figure 5.58 shows the Pareto optimal solutions for this example. Based on the
Pareto curve, the decision-maker can make a trade-off decision for the problems
that the optimum value cannot be simply determined at a single point in the design
space.

Fig. 5.57 The optimization results

Fig. 5.58 The pareto front
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5.3 Problems

Problem 5.1 Solve Problem 2.1 using LINGO and MATLAB.
Problem 5.2 Find the maximum value of function f(x) in Problem 2.3 using
LINGO and MATLAB.
Problem 5.3 Minimize function f(x) using LINGO and MATLAB an compare
your results with the outcomes of Simplex method.
Problem 5.4 Apply LINGO and MATLAB to solve Problem 2.5.
Problem 5.5 Determine the optimal pumpage for a confined aquifer with one-
dimensional steady-state flow and fixed hydraulic heads along the boundaries in
Problem 2.6 by applying LINGO and MATLAB.
Problem 5.6 Solve Problem 2.7 using LINGO and MATLAB.
Problem 5.7 Minimize f(x) on the interval [-4,2] using LINGO and MATLAB in
Problem 3.5 and compare your results with the Fibonacci method.
Problem 5.8 Find the minimum of function f(x) by applying LINGO and MAT-
LAB in Problem 3.7 and compare your results with the outcomes of Newton
method.
Problem 5.9 Solve Problem 3.12 using LINGO and MATLAB and see how your
results are different from the results of Lagrange multiplier method.
Problem 5.10 Apply MATLAB to find the Pareto front for Problem 4.1.
Problem 5.11 Find the optimal solutions in Problem 4.2 using MATLAB and
compare your results with the results of weighted method.
Problem 5.12 Solve Problem 4.3 by applying MATLAB.
Problem 5.13 Apply MATLAB to find the optimal solution in Problem 4.8.
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Chapter 6
Reservoir Optimization and Simulation
Modeling: A Case Study

Abstract This chapter presents a combination of optimization (LINGO) and
simulation (HEC-ReSim) models to determine monthly operating rules for the
Zayandehrud reservoir system in Iran. Based on the optimized flow determined in
the single-objective framework, system behavior was simulated over 47 years. The
results show that optimizing the operation of Zayandehrud reservoir could increase
its storage by 88.9 % as well as increase the reliability index of regulated water for
all downstream demands by more than 10 %.

6.1 Introduction

A reservoir is a natural or artificial lake to storage water; it keeps the water level at
a controlled level, and releases it regularly to supply downstream requirements.
The most important applications of reservoirs are: flood control, agricultural and
environmental water supply, domestic and industrial water supply, hydroelectric
power generation, and recreational activities. However, due to increasing water
demands across the world and difficulties in building new dams, it is important to
enhance the efficiency of reservoir operation based on optimization analyses. In
other words, we need to determine the appropriate operating policies to find the
amount of water that should be released in different periods according to down-
stream needs. The major points that need to be considered in any reservoir opti-
mization analysis are:

A part of this chapter is published in the Water International journal as follows:
Ziaei. M, TeangShui. L, Goodarzi. E, (2012). Optimization and simulation modeling for
operation of the Zayandehrud reservoir. Water International Journal, Taylor & Francis. Vol. 37,
No. 3. pp. 305–318.

E. Goodarzi et al., Introduction to Optimization Analysis in Hydrosystem Engineering,
Topics in Safety, Risk, Reliability and Quality 25, DOI: 10.1007/978-3-319-04400-2_6,
� Springer International Publishing Switzerland 2014
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1. Determine the main objective function in a reservoir optimization analysis (e.g.,
minimizing spills, maximizing releases, or minimize the cost to maximize
benefits),

2. Obtain decision variables that should be optimized (e.g., water levels or
releases),

3. Determine the constraints of the problem (e.g., inflows, outflows, dead storage)
properly.

In general, various mathematical programming methods such as linear or
nonlinear techniques are applied to optimize operation of reservoirs. However,
regarding the uncertainties of hydrological and hydraulic variables, it is difficult to
draw a solid operational program that controls all decision variables. It should be
noted that each reservoir system includes a number of unique characteristics due to
its particular geographic location, local climate conditions, and downstream
requirements; and hence it needs to be studied individually.

Optimizing the operation of existing water resources and structures is of par-
ticular importance in arid and semi-arid countries such as Iran where water
demand is on the rise. Because of the high geographical variability of rainfall in
Iran, reservoir operation occupies an important place in the usage of water
resources. An efficient approach to defining reservoir operation is to use optimi-
zation models in combination with simulation models (Ngo et al. 2007). The main
advantage of simulation models is that they provide insight into how the real
system might perform over time under varying conditions.

In this chapter the combination of optimization and simulation studies for long
periods on ZayandehRud reservoir located in central part of Iran is presented.
Many areas of Iran, in particular central regions, have recently been suffering
draught, with large proportions of the country’s crops and livestock perishing
while it is difficult to supply the industrial and agricultural water demand. Thus,
obtaining appropriate operation policies and scenarios can help managers with
decision making to attain optimum allocation of water resources based on prior-
ities and downstream demands. The main objectives of the ZayandehRud reservoir
study regarding a monthly simulation–optimization model are:

1. To derive an optimal operational policy for assessing the amount of allocated
water to all downstream demands (agricultural, domestic, industrial, and
environmental) with regards to minimizing shortages, and

2. To simulate reservoir conditions using optimized data record of 47 years
(1957–2003) for the Zayandehrud reservoir.

6.2 Optimization Analysis

Optimization or optimality is the expression that is referring to the study of
minimizing or maximizing a real function by selecting the values of real or integer
variables systematically from within an acceptable interval. This concept
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essentially is used for improving the efficiency of system and gains the best
available values of some objective function in the problem area. As described in
previous chapters optimization problems can be divided into two fundamental
parts: the objective function, and the set of constraints. The objective function
describes the performance criteria of the system. Constraints describe the
boundaries and restrictions under which the system or process is being analyzed. In
general, constraints include physical characteristics of the reservoir system such as
storage capacities, diversion or stream flow requirements for various purposes, and
mass balance. An optimal solution is a set of values of the decision variables that
satisfy the constraints and provides an optimal value of the objective function.

LINGO, one of the simplest tools commonly used to formulate, solve, and
analyze different linear and non-linear optimization problems, has been applied as
an optimization model throughout this study. LINGO is capable of modeling all
systems (large or small) for linear or non-linear problems. It creates related groups
for solving the problem in which these groups are determined based on the
inherent defined problems such as discharge, precipitation, demand, time period,
etc. Then, LINGO allows the placing of similar objects into a set and uses a single
statement for all elements of a set. This model allows a user to quickly input model
formulation, assess the correctness or appropriateness of the formulation based on
the solution, quickly make minor modifications to the formulation, and repeat the
process. Many researchers such as Bozorg Haddad et al. (2008) and Montazar et al.
(2010) have applied LINGO to arrive at an optimal allocation plan of surface and
ground water for various types of hydrosystems.

Application of optimization techniques to reservoir operation problems has
been a major focus of water resource management for some time (for compre-
hensive surveys, see Wurbs 1993 and Labadie 2004). Bower et al. (1962) rec-
ommend two rules for determining releases over a specific period: a Standard
Operation Policy (SOP) and a hedging rule. The SOP calls for a target release in
each period, if possible. If insufficient water is available to meet the objective, the
reservoir releases all the available water and becomes empty; if too much water is
available, the reservoir can fill up and spill the excess water. Different optimization
models include linear, nonlinear and dynamic programming, which have been used
to recognize the hedging rules with respect to the economic return or other system
products such as water supply reliability (Hashimoto et al. 1982; Shih and ReVelle
1995; Neelakantan and Pundarikanthan 1999; Shiau and Lee 2005). The linear-
based models are still popular and effective tools in dealing with optimization
problems (Rani and Moreira 2009). Linear Programming (LP) is concerned with
solving problems where all relations among the variables include the constraints
and the objective function, and that all underlying models of real-world processes
are linear. Latif and James (1991) presented a linear programming-based con-
junctive model and applied it to the Indus basin in Pakistan to maximize the net
income of irrigators. Peralta et al. (1995) developed a linear programming-based
simulation optimization model to obtain sustainable groundwater extractions over
a period of five decades, under a conjunctive water use scenario. Shih and Revelle
(1995) investigated a discrete hedging rule for water supply operation during
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droughts and impending droughts by applying a mixed integer linear programming
model. Devi et al. (2005) presented a linear programming model for optimal water
allocation in a large river basin system. They applied the model to the trans-
boundary Subernarekha River in India. Loucks and Beek (2005) introduced and
compared various methods of water resource system optimization based on linear
programming in the LINGO model. Sudha et al. (2007) studied the effects of
optimization on the efficiency of water use in agriculture and highlighted what is
needed for optimizing reservoir operation.

6.3 Simulation Analysis

One of the most efficient ways of analyzing water resource systems is applying
simulation models. These models work based on physical relatives with a series of
operational rules to simulate new conditions and system behavior under a specified
policy. HEC’s ResSim reservoir simulation program is a computer program
applicable for hydrologic and hydraulics of reservoir system simulation. This
model is also used for research in water resources management to survey the
connection between decisions support system and GIS. HEC-ResSim developed
by the United States Army Corps of Engineers (USACE) is the new extension of
the HEC-5. This model is commonly used for simulation of flood control and
conservation systems alternative analysis. HEC-ResSim, reservoir simulation
program applies reservoir operation for critical state variables with operational
investigation or variance purposes as constraints. The reservoir simulation models
for flood control are generally defined based on single guide curves that cause for
the creation of optimum realization of benefits (Timothy and Curran 2003). This
program simulates reservoir operation, including all characteristics of a reservoir
and channel routing downstream. The model also allows users to define alterna-
tives and run simulations simultaneously to compare results. On this basis, HEC-
ResSim as a simulation tool is able to manage drought situations where the
objective is to access the impacts of different drought rules, their timing, and
impacts to activate emergency measures. Computations can be performed, and the
results are viewed within the simulation module. In this case, many problems
require determination of the properties of the output of a system given the input
and transfer function. When the transfer function is simple, the properties of the
output can be obtained analytically. But when transfer function is complex, the
derivation of the properties of output maybe difficult (Olani 2006). Hec-ResSim
involves three main functions that are called modules and are briefly described as:

1. Watershed setup, contains system elements and basic geographic information,
2. Reservoir network, used to create a water resource network, and
3. Simulation module that performs, identifies, and manages outputs of simulation

or optimization runs.
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Each module has a unique purpose and an associated set of functions accessible
through menus, toolbars, and schematic elements. HEC-ResSim allows the change
of the background layer to show the physical layout of the system. i.e., it is
possible to import an Arc GIS shape file of watershed into the HEC-ResSim and
put in the background of program. Input data of HEC-ResSim include stream flow,
demands (i.e., domestic, Industrial, agricultural withdrawals), power generation (if
is available) and reservoir operations. Necessary data for reservoir operation
includes providing adequate data of reservoir capacity, evaporation and diversions,
capacity of spillway and elevation-volume curves. The main parts of ResSim
program can be written as bellow:

1. Schematic which is a part of watershed module and include a schematic net-
work of streams and rivers of watershed.

2. Module Elements to show different element in a network such as reservoirs,
reaches, junctions, and diversions.

3. Operation Scheme that includes necessary criteria for reservoir release
decisions.

4. Alternatives; this option allows to user to compare estimated results.
5. Analysis Tools to analyze the results of simulation and also preparing summary

reports and HEC-DSSVue.

This model has been applied for simulating the history of events, especially for
flood and drought periods (Hanbali 2004). Babazadeh et al. (2007) considered the
performance of a storage dam by HEC-ResSim simulation model under various
scenarios in present conditions and different periods considering sedimentation.
Other researchers who have used this model for simulation are Olani (2006) and
Klipsch (2003). The main computer programs for reservoir system modeling using
simulation and optimization were reviewed by Ejeta and Mays (2002) and Wurbs
(1993). Karamouz and Vasiliadis (1992) investigated a non-linear optimization
model along with simulation model to analyze the long-term performance of a
reservoir system. Reservoir simulation models for flood control are generally
defined based on single rule curves that bring about optimized benefits (Timothy
and Curran 2003).

6.4 Case Study

Water demands change from year to year and month to month. There are many
physical, social, economic, and political reasons for these alternations. In recent
years, significant climatic changes have been observed in many parts of the world,
including more severe floods, greater precipitation, and even unusual droughts in
many areas of the world. These changes have considerably influenced the water
demands in many parts of the world including Iran that many regions of which are
classified as arid ore semi arid. Iran has a variable climate and it has an arid
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climate in the central regions and most of the relatively scant annual precipitation
falls from October through April and in some parts of the country, annual pre-
cipitation average is 25 cm (*8 in.) or less. Due to limited water resources,
optimal operation of these resources is unavoidable. Latest estimates show, the
demand for water in Iran will be 116.2 billion cubic meters in 2020 with a pop-
ulation of 100 millions where agriculture and fishery fields are the greatest water
consumers (Babazadeh et al. 2007). Obviously, it is necessary to do more research
toward storage and management of water resources to meet different demands in
the country. In Iran, reservoirs are usually constructed to provide multiple pur-
poses, such as irrigation, municipal and industrial water supply, and hydropower
generation. Because of the high geographical variability of rainfall in the country,
reservoir operation occupies an important position in the usage of water resources.
So, understanding reservoir behavior and optimal release are crucial for envisaging
drought period and maximizing the annual net benefit. The final output expected
from water management studies is an optimization and simulation model that will
be used to assess given situations and constraints.

The Basin of ZayandehRud River is located in the west central part of Iran and
is the major water source for Isfahan Province. This river is one of the most
important rivers of Iran and the largest river in Isfahan Province. It starts in the
Zagros Mountains and flows 400 km eastward before ending in the Gavkhouni
Marsh, a seasonal salt lake, in the south-east of Isfahan City (Fig. 6.1). It is
important to note that the ZayandehRud reservoir also is known as Chadegan
reservoir since it is located in Chadegan area.

The River basin has an area of 41,500 km2, altitudes change from 3,974 to
1,466 m above mean sea level (msl), annual average rainfall (precipitation) is 130,

Fig. 6.1 The schematic view of ZayandehRud basin (Molle and Mamanpoush 2012)
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and monthly average temperature range of 3–29 �C. Managing optimum operation
of Zayandehrud Reservoir is unavoidable because of high limitations of available
water resources and recently severe droughts in the province of Isfahan. The
ZayandehRud Dam and its physical characteristics are shown in Fig. 6.2 and
Table 6.1, respectively.

Isfahan is a generally arid region, with agriculture, industry, and municipalities
all dependent on the river as an economical source of water that seems insufficient
to meet the need for water. So, there are many transbasin diversions constructed
from other basins which are delivering water to the reservoir. Since many years
ago there has been severe shortage of water, an optimal exploitation from available
water sources has become the most important and intricate problem in the
Zayandehrud basin.

Fig. 6.2 The schematic view of ZayandehRud basin (Molle and Mamanpoush 2012)

Table 6.1 Physical
characteristics of
ZayandehRud dam

Characteristics Description

Type of dam Concrete arch dam
Elevation from foundation (m) 100
Crest length (m) 450
Type of spillways Gated spillway
Reservoir gross capacity (MCM) 1,470
Min elevation of operation (MCM) 210
Effective capacity (MCM) 1,250
Regulated annual water (MCM) 1,200
Irrigated area (ha) 95,000
Area of reservoir (km2) 4,130
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To deal with varying flow of the river, reservoirs have been built and inevitably
the government has done several transbasin diversion projects such as; Koohrang1,
Koohrang 2, and Cheshme Langan with a total of 900 million cubic meters annual
input has been implemented. Another transbasin diversion plan, the Koohrang 3
which is ongoing will have annual input of 250 MCM. The most important project
of transferring water which is under study is called the Behesht Abad, consisting
of, reservoir dam, tunnel with 5.5 m diameter and 65 km length with 1,100 MCM
average annual input.

6.5 Optimization Model

The main objective of this study is to maximize the total reservoir release by
considering domestic, industrial, and environmental aspects as major priorities
over the planning horizon. Hence, the objective function of the problem can be
written as follows:

max Z ¼
XN

i¼1

Ri ð6:1Þ

where, Ri is the regulatory water release of the ith month and N is the planning
horizon (total months of optimization, in this case N = 564).

It is important to note that Eq. 6.1 is used for single-objective optimization and
solving it results in maximizing the dam’s total regulatory water within
564 months. The general form of the intended linear optimization model can be
written as:

F xð Þ ¼ c1x1 þ c2x2 þ � � � þ cNxN¼cT x ð6:2Þ

where c1, c2, …, cN, are real numbers, cT is the transposed vector of vector c, and
vectors c and x are defined as:

c ¼
c1

..

.

cN

2
64

3
75 and x ¼

x1

..

.

xN

2
64

3
75

where x1, x2, …, xN are the problem decision variables. So, Eq. 6.1 can be written
as:

max Z ¼
XN

i¼1

Ri ¼ ðR1 þ R2 þ � � � þ RNÞ ¼ cT x ¼ K ð6:3Þ

The requirement values for each month of the period are constant and known,
and hence, the second term of Eq. 6.3 is constant and its value is considered as
K. Therefore, the amounts of coefficient matrixes and decision variable are as
follows:
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c ¼
þ1
..
.

þ1

2
64

3
75 and x ¼ R

R1

..

.

RN

2
64

3
75

As reservoir water balance must be preserved in all stages of optimization, the
reservoir continuity equation is considered the main constraint in this case. The
reservoir continuity equation can be written as:

Siþ1 ¼ Si � Ri þ Ii i ¼ 1; 2; . . .;N ð6:4Þ

where Si is the reservoir volume in the month, Si+1 is the reservoir volume in the
(i ? 1)th month, Ri is the released volume of water from the reservoir in the ith
month, and Ii is the inflow to the reservoir in the ith month.

6.5.1 Boundary Conditions

1. Based on the policies of the Ministry of Energy of Iran, the priority demands in
ZayandehRud basin are domestic, industrial and environmental, and should be
fully supplied in the planning horizon. In other words, the minimum allowed
release of the dam must supply the total needs of the mentioned priorities in
each month. Equation 6.5 shows the boundary conditions in this case:

DI þ DE þ DDð Þi�Ri� DI þ DE þ DD þ DAð Þi ð6:5Þ

where DI is the industry requirement, DE is the environmental requirement, DD is
the domestic requirement, and DA is the agricultural requirement.

Equation 6.5 demonstrates that the agricultural water demand will be sacrificed
during shortage and all the water in this sector will be dedicated to other sectors to
minimize priority deficiencies.

2. The maximum reservoir capacity equals 1,250 MCM and 0 B Si B Smax.
3. The starting month for optimization is January and the Zayandehrud reservoir is

almost half full in January of different years. So, it is assumed that the reservoir
is half full at the beginning of optimization, or S1 = 580 (MCM).

6.6 Finding Outlier Data

Outlier data means the data that are significantly higher or lower than normal range
of time-series data. For extreme data that appear to be high or low outliers they can
be tested with the Bulletin 17B detection procedure as follows. Based on long term
optimization in this study (47 years), finding outlier data is necessary.
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1. Use the sample size (n) to obtain the value of the detection deviate K0 (in this
study, regarding to the 564 inflow data, K0 is 3.148,

2. Compute the mean ð�YÞ and standard deviation (Sy) of the logarithms of the
series data,

3. Compute the value of the detection criterion for high outliers (Yoh):

Yoh ¼ �Y þ K0Sy ð6:6Þ

4. Compare the logarithm of the extreme data being considered (Yh) with the
criterion (Yoh). If Yh [ Yoh, then the data can be considered a high outlier,

5. For low outlier data, compute the value of the detection criterion as follows.

Yol ¼ �Y � K0Sy ð6:7Þ

6. Compare the algorithm of the extreme data being considered (Y1) with the
criterion (Yol). If Y1 \ Yol, then the data can be considered a low outlier. In this
case, the coefficients and data are as follows (McCuen 2005).

For this example, Table 6.2 illustrates the initial information that is required for
Bulletin 17B procedure.

Based on the initial information in Table 6.2, the outlier test was performed and
the results are shown in Table 6.3. The results of outlier test show that there is no
outlier data for ZayandehRud basin.

Table 6.2 Initial
information for outlier test

Statistical parameters Quantity

Mean 2.099
Standard deviation 0.337
Yoh 3.158
Yol 1.041
n 564
k 3.138
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6.7 Simulation by HEC-ResSim

Simulation of reservoir system by ResSim is based on utilizing physical infor-
mation of the reservoir, importing inflow data and downstream demands. The steps
of simulating process in this study can be summarized according to following
steps:

1. Collecting necessary data and reservoir modeling,
The required data for the ZayandehRud reservoir has been collected from the
administration for 47 water years (1957–2003).

2. Develop a schematic view of the watershed and create major parts of basin such
as location of reservoir(s), junctions, and etc. shown in Fig. 6.3. Geo-referenced
map files of the ZayandehRud basin (identified in step one) is used as schematic
background of the model.

3. HEC-ResSim contains seven methods for routing streamflow (Coefficient,
Muskingum, Muskingum-Cunge 8-pt Channel, Muskingum-Cunge Prismatic
Channel, Modified Puls, SSARR, and Working R&D Routing), for flow routing
in the main channel and major tributaries. As the study area is located in an arid
climate, the effect of flooding is ignored.

Table 6.3 Outlier test for inflow data to ZayandehRud reservoir

Rank Inflow to ZayandehRud Log of data High outlier test Low outlier test

1 82 1.913 No high outlier data No low outlier data
2 93 1.968 No high outlier data No low outlier data
3 140 2.146 No high outlier data No low outlier data
4 301 2.478 No high outlier data No low outlier data
5 286 2.456 No high outlier data No low outlier data
6 228 2.357 No high outlier data No low outlier data
7 157 2.195 No high outlier data No low outlier data
8 92 1.963 No high outlier data No low outlier data
9 52 1.716 No high outlier data No low outlier data
10 48 1.681 No high outlier data No low outlier data
11 57 1.755 No high outlier data No low outlier data
12 104 2.017 No high outlier data No low outlier data
. . . . .
. . . . .
. . . . .
557 315.5242 2.499 No high outlier data No low outlier data
558 206.4787 2.3148 No high outlier data No low outlier data
559 138.0758 2.140 No high outlier data No low outlier data
560 75.99744 1.880 No high outlier data No low outlier data
561 44.21952 1.645 No high outlier data No low outlier data
562 37.11744 1.569 No high outlier data No low outlier data
563 43.23456 1.635 No high outlier data No low outlier data
564 58.4496 1.766 No high outlier data No low outlier data
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4. Providing operational and physical data for any reservoirs in the watershed. The
physical data of reservoir involves; the length and elevation of crest of dam, the
capacities of outlet structures, pool storage definition of reservoir, etc.

During simulation by ResSim, various types of data should be applied in which
they are classified as follows in this study:

1. Time-series data; monthly inflow to ZayandehRud reservoir is used for
47 years (1957–2003), and

2. Physical data include; elevation-storage-area of the ZayandehRud reservoir,
reach between reservoir and sources of demands in downstream, outlet capacity
curves for spillway, and junctions and diversions between the reach and
demands (agricultural, environment, and industrial). The top and bottom ele-
vations of the Zayandehrud reservoir are 2,060 and 2,005 m, respectively.

In addition, the following constraints are considered for desired case of study:

1. Evaporation of surface water,
2. The sediment profile of 50 years has been used at the beginning of the simulation

period (administration of dam),
3. Simulation period is 47 years (1957–2003),
4. Operation policy is based on demands in downstream of reservoir, and
5. Based on the previous studies, the amount of seepage in the ZayandehRud

reservoir is negligible, so, in this study it has been ignored.

Fig. 6.3 Reservoir network modules of HEC-ResSim for ZayandehRud reservoir
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6.8 Study Results

6.8.1 Reservoir Operation Policy

Reservoir-river operation is based on specific policies that present practical
guidelines for the amount of stored or released water from the reservoir to meet
project requirements. A rule curve comprises static policies and practical guide-
lines to determine specific operation policies for downstream flow requirements
and reservoir operation. In this study, LINGO 11.0 was applied for the single-
objective optimization, and total releases were optimized by the model from 1957
to 2003.

After that, the optimized monthly averages of regulatory release were used to
attain the new rule curve for ZayandehRud reservoir which will be used as a
guideline for dam administration to find the best water allocation to downstream
demand, and optimal water distribution to different sectors to minimize deficiency.
Table 6.4 and Fig. 6.4 show the proposed and the new rule curves for different
months of the year.

6.8.2 Operation Policy Performance

Evaluating reservoir operation policy performance is an important step in an
optimization model. A major indicator is the reliability index (a), which was
defined as the probability that the system output is satisfactory or the probability
that the system will not fail in a given period. Reliability can also be defined as a
probability of providing a specific percentage of water for demand in the given
time period. Hashimoto et al. (1982) investigated reservoir operation system
performance with a reliability index and presented Eq. 6.8:

Table 6.4 The values of
current and new rule curve
based on the optimized data

Month New rule curve Current rule curve

January 73 73
February 74 74
March 132 185
April 197 276
May 218 314
June 296 395
July 237 311
August 243 315
September 192 241
October 190 250
November 131 179
December 75 75
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a ¼ The number of months with standard supply
Total months

� 100 ð6:8Þ

Reliability analysis has shown that the reliability index of regulatory water
increased 10.8 % for priority demands (Table 6.5).

6.8.3 Optimization Outcomes

The regulatory dam releases were evaluated by executing a simulation model for
optimized and non-optimized conditions. The values of water elevation and
storage volume before and after optimization analysis (from 1999 to 2001), as
sample results, are presented in Tables 6.6 and 6.7. The trend of varying water
elevation and water storage volume under optimization and non-optimization
conditions also are shown in Figs. 6.5 and 6.6, respectively.

As the volumes of reservoir storage are 636.1 and 336.8 MCM for optimized-
and non-optimized operation, respectively, the reservoir storage volume increased
about 88.9 % under the optimized operation condition.

Increasing the average storage in the reservoir allows dam administrators to
distribute water based on priorities and decrease deficiencies in draught seasons.
Furthermore, optimization results signified that the reservoir is full for 33 months

Fig. 6.4 The proposed and the new rule curve

Table 6.5 Reliability index for ZayandehRud reservoir

Reliable months Percentage of reliable months (%)

Opt. Non-opt. Opt. Non-opt.

463 402 82.1 71.3
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(5.9 %) and four months (0.7 %), and empty for 76 months (13.5 %) and
181 months (32.1 %) under optimized and non-optimized conditions, respectively
(Table 6.8).

6.9 Discussions

As the Zayandehrud reservoir is located in a semi-desert area and the annual
average precipitation in Esfahan Province is only 130 mm per year, there is a
constant shortage in the Zayandehrud basin; and even with optimized operation,

Table 6.6 The variations of water elevation under optimized and non-optimized conditions in
1999–2001

1999 2000 2001

Months Opt. Non-opt. Opt. Non-opt. Opt. Non-opt.

January 2,009.7 2,009.7 2,009.5 2,009.5 2,014.7 2,014.7
February 2,009.8 2,009.8 2,010.1 2,010.1 2,016.4 2,016.4
March 2,013.3 2,011.4 2,012.9 2,010.2 2,019.5 2,017.4
April 2,024.2 2,018.1 2,016.7 2,009.6 2,027.3 2,021.3
May 2,027.3 2,014.5 2,016.3 2,009.5 2,032.9 2,022.3
June 2,020.6 2,009.5 2,010.0 2,009.5 2,031.6 2,013.1
July 2,009.8 2,009.5 2,009.5 2,009.5 2,024.7 2,009.5
August 2,009.5 2,009.5 2,009.5 2,009.5 2,012.9 2,009.5
September 2,009.5 2,009.5 2,009.5 2,009.5 2,009.5 2,009.5
October 2,009.5 2,009.5 2,009.5 2,009.5 2,009.5 2,009.5
November 2,009.5 2,009.5 2,009.5 2,009.5 2,009.5 2,009.5
December 2,009.5 2,009.5 2,010.8 2,010.8 2,009.5 2,009.5

Table 6.7 The variations of storage volume (MCM) under optimized and non-optimized con-
ditions in 1999–2001

1999 2000 2001

Months Opt. Non-opt. Opt. Non-opt. Opt. Non-opt.

January 99.1 99.1 97.5 97.5 147.7 147.7
February 99.8 99.8 102.7 102.7 166.4 166.4
March 134.3 115.1 129.5 103.9 204.3 177.8
April 268.7 186.2 169.6 98.8 319.4 226.6
May 317.6 147.2 164.9 97.5 421.3 239.8
June 220.7 97.5 102.3 97.5 396.1 133.5
July 99.8 97.5 97.5 97.5 276.6 97.5
August 97.5 97.5 97.5 97.5 131.7 97.5
September 97.5 97.5 97.5 97.5 97.5 97.5
October 97.5 97.5 97.5 97.5 97.5 97.5
November 97.5 97.5 97.5 97.5 97.5 97.5
December 97.5 97.5 109.7 109.7 97.5 97.5

6.8 Study Results 209



Fig. 6.5 Water elevations in optimized and non-optimized conditions

Fig. 6.6 Water storage volume in optimized and non-optimized conditions

Table 6.8 The number of
months that reservoir is full
or empty

Opt. Non-opt.

Number of months reservoir is full 33 4
Percentage that the reservoir is full (%) 5.9 0.7
Number of months reservoir is empty 76 181
Percentage that the reservoir is empty (%) 13.5 32.1
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downstream needs cannot be completely accommodated. However, the important
point is finding the best policy to allocate water between downstream demands
using optimization analysis considering the priorities (drinking water, industrial
and environmental).

Table 6.9 shows the total regulatory volume to supply downstream operation
demand under both non-optimized and optimized operation conditions. The results
demonstrate that the annual regulating volumes of the Zayandehrud dam are
2,033 MCM for non-optimized conditions, but decrease to 1,952 MCM under
optimized operation. Under the optimized and non-optimized operating conditions
on average, 72.6 and 75.7 % of downstream demand would be met, respectively.
The results reveal that water allocated for the agricultural sector is sacrificed by
getting distributed among other sectors in the optimization process, so the total
release is reduced here. According to the results, about 70 % of downstream
requirements were supplied under optimal and non-optimal conditions in different
months of the 47 year period.

Figure 6.7 shows the average of the total regulatory volume under the non-
optimized and optimized operating conditions in conjunction with total down-
stream demands. By considering 70 % supply of downstream demand in all
months, there would be 101 months of shortage in optimized condition, while,
there are 162 months of shortage under non-optimized conditions. It can be con-
cluded that the reliability of system would be 82.1 and 71.3 % in the optimized and
non-optimized conditions, respectively. Figure 6.8 shows the average of optimized
and non-optimized regulatory volume for drinking, industrial and environmental
purposes of ZayandehRud reservoir. The results demonstrate that the annual
regulatory volume to meet the drinking, industrial and environmental needs under

Table 6.9 The mean of regulated water in 47-year for total demands (MCM)

Months Demands Optimized Non-optimized

January 73 69 67
February 74 72 72
March 185 136 178
April 276 219 271
May 314 255 303
June 395 302 335
July 311 225 232
August 315 209 186
September 241 149 116
October 250 138 110
November 179 106 95
December 75 70 68
Annual (sum) 2,688 1,952 2,033
Supply (percent) 72.6 75.7
Number of month with deficit 101 162
Reliability (%) 82.1 71.3
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non-optimized and optimized operational conditions are 1,039 and 111 MCM per
year, respectively. On average, 93.6 and 87.5 % of the required water for domestic,
industrial and environmental purposes was met under the optimized and
non-optimized operating conditions, respectively. Although deficiency still exists
under the optimized condition for all priorities and it is only 6.4 %; however,

Fig. 6.7 Total downstream demands and the average of total regulatory volume

Fig. 6.8 Average of regulatory volume for drinking, industrial and environmental needs
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under the non-optimized condition it is 12.5 %. This was overcome by the use of
supplementary wells in the domestic and industrial water supply network and
mostly applied during peak water requirement.

Furthermore, it can be observed that the Zayandehrud reservoir cannot supply
the required needs of priorities for 99 and 206 months under optimized and non-
optimized operating conditions, respectively. So, the reliability index is 82.4 and
63.5 % under optimized and standard operating conditions, correspondingly. In
other words, under standard condition, 63.5 % of the water supply would be on the
safe side, while in the optimal operating condition 82.4 % of the required water
can be provided.

Finally, the achieved results revealed that the annual regulatory volume of the
ZayandehRud dam to meet agricultural needs under non-optimized and optimized
conditions were 994 and 840 MCM per year, respectively. The agricultural
demand was supplied by 56 % under the optimized and 66.3 % under the non-
optimized conditions. In other words, during the planting season, the agricultural
sector would have faced 44 and 33.7 % deficit in irrigation supply in optimized
and non-optimized operating conditions, respectively. Increased deficiency under
the optimized condition is due to considering the lowest priority in the agricultural
sector and allocating its water to other parts with higher priorities during shortage.
The reliability indexes of agricultural water supply were 71.3 and 52.1 % under
non-optimal and optimal operation conditions, correspondingly. These values
demonstrate that the water allocated to the agricultural sector is sacrificed and
distributed among other priorities (Fig. 6.9).

Fig. 6.9 The regulated volume of water for agricultural sector
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6.10 Conclusions

This chapter focused on the operation of the ZayandehRud reservoir using a
combination of LINGO and HEC-ResSim optimization and simulation models.
Study results prove that the applied methods can efficiently optimize the rule
curves for operating the existing reservoir in a single-objective framework. In
addition, optimizing resulted in increasing reservoir storage by about 88.9 %,
increasing the time that the reservoir is full by about 5.2 %, and decreasing the
time that the reservoir is empty by about 18.6 %. Although optimizing
ZayandehRud reservoir results in a 3.1 % reduction of total supply, it also causes
10.8 % increased reliability index of regulatory water for all requirements. Fur-
thermore, optimization resulted in an increase of 6.1 % of water supply and 19 %
reliability index to supply priorities (drinking water, industrial and environmental).
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Chapter 7
Reservoir Operation Management
by Optimization and Stochastic
Simulation: A Case Study

Abstract Population increase and socio-economic mobility has escalated the
water demand for various purposes and has put stress on existing water resources
across the world, in particular in arid and semi-arid regions. Hence, managing the
optimum use of water resources is a crucial issue and it is imperative to adopt
realistic policies to ensure water is used more efficiently in various sectors. This
chapter presents an optimization analysis to determine monthly operating rules for
the Doroudzan Reservoir located in southern Iran. Different strategies under
limited water availability conditions have been analyzed by running an optimi-
zation model based on observed and synthetic inflow data, and the performance
indicators of each strategy are presented. Each strategy includes a minimum
requirement release in the optimization process and results in a specific operation
policy. In this study, LINGO is applied to determine optimum operational
parameters and the synthetic inflows are generated using the Monte Carlo simu-
lation method. The results demonstrated that the applied methods could efficiently
optimize the current operational policy of an existing reservoir in a single-
objective framework.

7.1 Introduction

Increasing water demands, higher standards of living, growing population, climate
variability, and water resource limitations have caused conflicting issues among
water consumers and put stress on existing water resources across the world

A part of this chapter is published in the Water International journal as follow; Goodarzi. E,
Ziaei. M, Shokri. N, (2013). Reservoir operation management by optimization and stochastic
simulation. Journal of Water Supply: Research and Technology (AQUA) IWA Publishing,
62.3: 138–154.

E. Goodarzi et al., Introduction to Optimization Analysis in Hydrosystem Engineering,
Topics in Safety, Risk, Reliability and Quality 25, DOI: 10.1007/978-3-319-04400-2_7,
� Springer International Publishing Switzerland 2014
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(Ganji et al. 2007). Arid and semi-arid areas of the developing world are suffering
from insufficient water supply and lack of adequate quantities and quality of water
resources. Therefore, proper management of water resources and providing
comprehensive programs to optimize available water supplies plays an important
role in satisfying existing demands. Constructing dams to create reservoir and
storing water allow distribution at the right time in downstream districts. Reser-
voirs have significant roles in water resource engineering in which their proper
design, construction and maintenance contribute considerably toward fulfilling
water supply requirements and minimizing the risk of water shortages. In recent
years, applying optimization techniques to reservoir operation by mathematical
tools has become a major focus of water resource engineers. Reservoir operation
consists of several control variables that define strategies for guiding a sequence of
releases to meet downstream demands. Wurbs (1993) and Labadie (2004) pre-
sented comprehensive reviews about reservoir operation models and their appli-
cations in water resources engineering. Bower et al. (1962) recommended
Standard Operation Policy (SOP) and the hedging rule to determine necessary
releases over desire planning horizon. The SOP releases only require demand in
each time period. In other words, if sufficient water is not available to meet the
objective, the reservoir releases all the available water and empties, and if there is
excess water the reservoir can fill and spill the surplus water. Hence, applying SOP
method will not result in preserving water for future requirements, while the
hedging rule attempts to store available water and use it in the upcoming periods.

Different optimization models including linear, nonlinear and dynamic pro-
gramming are using the hedging rule with respect to the economic return or the
other system products such as water supply reliability (Hashimoto et al. 1982; Shih
and ReVelle 1995; Neelakantan and Pundarikanthan 1999; Shiau and Lee 2005).
However, the linear based models are still popular and effective tools in dealing
with optimization problems (Rani and Moreira 2009). A Linear Programming (LP)
solves problems that have linear relations among their variables including the
constraints, objective functions, and all of the underlying models. Latif and James
(1991) maximized the net income of irrigators using a linear programming-based
conjunctive model for the Indus basin in Pakistan. The main objective of their
study was finding the optimal ground-water extraction for stabilizing the water
table below land surface, while supplementing the surface irrigation supply at the
same time. Peralta et al. (1995) developed a linear programming-based simulation
optimization model to obtain sustainable groundwater extractions over a period of
five decades, under a conjunctive water use scenario for the Mississippi River
Valley alluvial aquifer in northeastern Arkansas. Based on the results of this study,
a number of optimal water-use strategies are computed for alternative management
scenarios from 1990 to 2039. Shih and Revelle (1995) investigated a discrete
hedging rule for water supply operations during droughts and impending droughts
by applying a mixed integer linear programming model. Devi et al. (2005) pre-
sented a linear programming model for optimal water allocations in a large river
basin system and applied the model to the Transboundary Subernarekha River in
India. The main purpose of their study was finding the maximum annual benefits
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from irrigation and hydropower and also determining optimal water allocations
during the dry and wet years. Loucks and Beek (2005) compared various opti-
mization methods in water resources engineering based on linear programming. In
this study, they have tried to address specific water resources planning and man-
agement problems, and also introduce optimization methods for infrastructure
design and operating policies. Sudha et al. (2008) developed a mixed integer linear
programming (MILP) model and used five different management strategies to test
their new developed model. The results of their study showed that an appropriate
management strategy with deficit irrigation, which supplies less water in non-
critical growth periods and maximum water during stress sensitive periods, is the
best viable solution to increase the performance of system. Ngo et al. (2007)
discussed a combination of optimization and simulation models as an efficient
approach for defining reservoir operation. In this study, a simulation model with
real-coded GA and shuffled complex evolution (SCE) is applied for optimizing a
reservoir operation in Vietnam. The results of this study demonstrated that the
applied method can be used efficiently to optimize the rule curves for operating the
reservoir in a multi-objective framework. Ejeta and Mays (2002) and Wurbs
(1993) reviewed the main simulation and optimization computer programs for
reservoir system modeling. Karamouz and Vasiliadis (1992) investigated a non-
linear optimization model, along with a simulation model, to analyze the long-term
performance of existing reservoirs. In another study, Sattari et al. (2009) investi-
gated the efficiency of the Eleviyan irrigation dam in Iran by setting up the
optimization model that maximized the water release for irrigation purposes after
municipal water needs were met. In their study, three phases were considered to
investigate the efficiency of desired irrigation dam as; (1) setting up the optimi-
zation model using recorded inflows prior to the construction of the reservoir, (2)
applied inflows generated by the Monte Carlo simulation method, and (3) using
inflows after the construction of the reservoir. The results of their study demon-
strated that the operation policy was effectively attained during the operation
period.

This study presents an optimization analysis to determine monthly operating
rules for the Doroudzan Reservoir in the semi-arid area of Iran. The efficiency of
this reservoir was investigated in seven different strategic alternatives by maxi-
mizing amounts of water released downstream. Each strategy includes a minimum
required release in the optimization process and resulted in a specific operational
policy. In other words, an optimal operational policy for assessing the amount of
allocated water to all downstream demands (domestic-industrial, agricultural, and
power generation) are derived based on available data in the period 1986–2006
(21 years). It is important to note that demands are considered to be constant over
the desired planning horizon and they have not been changed from year to year. In
addition, due to the complete development of downstream areas of the Doroudzan
Reservoir over previous years and also the recent droughts in Iran, building any
new industries or expanding agricultural area has been halted. Therefore, the
applied data for downstream demands are approximately the same as the demands
in 2012.
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Furthermore, the optimization model was re-run using synthetic inflow data to
determine the effect of alternative scenarios on the reservoir operation in a period
longer than the observed data. Then, the achieved results through both observed
and synthetic inflow data were compared to evaluate the optimized results in both
conditions.

7.2 Materials and Methods

7.2.1 Study Area

Doroudzan Dam is one of the most important dams in southern Iran. The pre-
liminary studies and investigations of the dam site were carried out between 1963
and 1966 and the dam construction was started in 1970 and completed in 1974.
The basin of this multipurpose earth-fill dam is situated near the city of Shiraz on
the Kor River and in the Bakhtegan lake catchment area (Fig. 7.1). The elevation
of the highest watershed point is 3,749 m above mean sea level (MSL) and is
located in the northwestern region of the watershed. The total volume and dead
storage of the reservoir are 993 and 133 million cubic meters (MCM), respectively.

Basic technical information concerning Doroudzan Dam is shown in Table 7.1.
The dam is a major source of water, supplying 112,000 hectares of agricultural
land and the domestic-industrial and power plants requirements of Shiraz, the
capital of Fars province, and Marvdasht and Zargham, two other main cities in the
province.

Fig. 7.1 Schematic view of Doroudzan Reservoir basin that extends between 51� 430 and 52� 430

E longitude and 30� 080 and 31� 000 N latitude
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All inflows, reservoir storage, evaporation, and releases from 1986 to 2006 have
been collected by the Fars Ministry of Energy Data Center land based/surface data
collection. Team members collected all available hydro-meteorological data
including inflows, water elevation, rainfall, temperature, etc. for each station along
the Kor River, and the recorded data were ported in Microsoft Excel for data
quality assurance and quality control. Table 7.2 and Fig. 7.2 present the constant
monthly downstream demands and monthly inflow data over the observation
period of 252 months. As monthly inflows are less than the average of inflows
(97.49 MCM) in 172 of 252 months, it can be concluded that dry periods are more
dominant than wet periods in the area of study.

7.2.2 Linear Programming and LINGO

Linear programming (LP) is a popular method and the most widely used technique
for optimization models. The popularity of linear programming is because of its
efficient solution algorithms, its availability of generalized computer software
packages, and its applicability to wide ranges of water resources problems (Wurbs
2005). Problems such as determining the size of a reservoir, finding the best

Table 7.1 Physical
characteristics of Doroudzan
Reservoir

Type Earth-fill
Height 57 m
Crest length 710 m
Crest width 10 m
Fill volume 4.8 9 106 m3

Volume 993 9 106 m3

Dead storage 133 9 106 m3

Spillway type Ogee spillway

Table 7.2 The constant
monthly downstream
demands of Doroudzan
Reservoir (MCM)

Months Domestic-
industrial

Agriculture Power plant Total
demands

Jan 2.82 0 48.41 51.24
Feb 3.21 0 55.82 59.03
Mar 3.74 103.42 56.15 163.31
Apr 3.91 104.04 61.41 169.36
May 3.74 167.91 59.33 230.99
Jun 4.03 155.32 125.14 284.49
Jul 4.1 136.3 114.86 255.26
Aug 4.22 144.34 117.25 265.81
Sep 4.18 141.4 56.91 202.49
Oct 3.47 25.32 53.76 82.55
Nov 3.33 20.1 37.54 60.97
Dec 3.41 0 39.42 42.82

7.2 Materials and Methods 221



system yield, and obtaining optimum releases are handled commonly through LP
application (Loucks et al. 1981). LINGO is a comprehensive tool for modeling all
systems (large or small) for linear or non-linear problems as decribed previously in
Chap. 5. It provides a fully integrated package that includes a powerful language
for expressing optimization models and a full featured environment for building
and editing problems. Furthermore, it creates related groups for solving the
problem based on the inherent defined problems such as discharge, precipitation,
demands, and time period. LINGO allows the placing of similar objects into a set
and uses a single statement for all elements of a desire set. This model allows a
user to quickly input the model formulation, assess the correctness or appropri-
ateness of the formulation based on the solution sought, quickly make minor
modifications to the formulation, and repeating the process until a solution is
reached. Many researchers such as Bozorg Haddad et al. (2008) and Montazar
et al. (2010) applied LINGO to evolve an optimal allocation plan of surface and
ground water for various hydrosystem types. In another study, Ziaei et al. (2012)
combined LINGO and HEC-ResSim models to determine monthly operating rules
for the Zayandeh-Rud Reservoir system in central part of Iran as described in
detail in Chap. 6. In their study, system behavior was simulated over 47 years and
the results showed that optimizing the operation of Zayandeh Rud Reservoir could
increase its storage by 88.9 %, and increase the reliability index of regulated water
for all downstream demands by over 10 %. In this study, LINGO is used to

Fig. 7.2 Inflow time series and its average in the period 1986–2006
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determine optimum operational parameters of the Doroudzan Reservoir for dif-
ferent strategies and the results are presented in the following sections.

7.2.3 The Optimization Model and Constraints

Optimization methods are designed to provide the best values of system design and
obtain high performance solutions. Hence, the results can increase efficiency of
system outcomes and reduce conflict in operating policies (Loucks and Beek
2005). The main objective of this study is to maximize the total reservoir release
after fully meeting the domestic-industrial demands and considering different
priority coefficients for agricultural and power plant segments over the desired
planning horizon. The mathematical form of objective function in this study is
considered as follow:

max Z ¼
X21

i¼1

X12

j¼1

Ri;j ð7:1Þ

subjected to

Si;jþ1 ¼ Si;j þ Ii;j � Ei;j � Ri;j � SPi;j ð7:2Þ

and

Si;j� Smax

Si;j� Smin

�
8i and 8j ð7:3Þ

where Z is a target function, Ri;j is release supplies to downstream, Si;j is the initial
storage in the reservoir, Ii;j is inflow into the reservoir, Ei;j is evaporation from
reservoir surface, Ri;j is release supplies to downstream, and SPi;j is spill from the
reservoir in year i and month j. Smax and Smin are the maximum and minimum
storage volumes of the reservoir. In addition, it is assumed that reservoir volume is
not sensitive to the precipitation variable.

Equation 7.1 has been used for single-objective optimization and its solution
will result in maximizing total regulatory releases for 252 months period of record.
It should be noted that reservoir water balance must be preserved in all stages of
optimization, and thus the reservoir continuity equation is considered as the main
constraint in this case study. The assumed constraints for the applied LP model in
this study are as follows:

1. The water budget equation that includes reservoir input (inflow and precipitation),
outflow (domestic-industrial, agricultural, power plant releases, evaporation and
spill from the reservoir), and stored water at the end of previous storage period
(Eq. 7.2).

2. As the portion of reservoir capacity below dead storage is not used for oper-
ational purposes, the water volume in the reservoir should always be above the
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dead storage. In the case of Doroudzan Reservoir, the dead storage is
133 MCM and then Si;j� 133 MCM.

3. To minimize unnecessary spills from the reservoir at the time that the stored
water in the reservoir exceeds the total capacity, the maximum water volume in
the reservoir is assumed to be equal to the total reservoir volume. Thus,
Si;j� 993 MCM.

4. As the maximum inflows into the reservoir typically occur between January and
April (Fig. 7.3a), January is assumed as the initial optimization month and the
average water volume in January over 21 years was considered as the initial
condition in the optimization model. Therefore, S1;1 ¼ 654:77 MCM.

5. Different management strategies have been applied to select the appropriate
release policy for Doroudzan reservoir. According to downstream demands
(domestic-industrial, agricultural and power plant sectors), the minimum
allowable releases are considered as follows:

Di;j þ aAi;j þ bVi;j�Ri;j�Di;j þ Ai;j þ Vi;j ð7:4Þ

where Di;j is the sum of domestic and industrial demands, a is priority coefficient of
agricultural segment Ai;j, and b is priority coefficient of power plant sector Vi;j in year
i and month j. It is important to note that the hydroelectric generation is not only an
in-stream water user, it is also a large consumptive user of water at the plant.

The Doroudzan reservoir cannot supply the necessary water for all demands
simultaneously and there is always a deficiency in providing downstream needs.
Therefore, different management policies have been considered to find the
appropriate operational policy with the maximum reliability for monthly releases.
The model was run for seven management strategies which imply different min-
imum requirements, as follows:

Strategy 1: Only supplying domestic-industrial requirements (a ¼ 0, and
b ¼ 0).

Strategy 2: Supplying domestic-industrial needs plus 25 % of agricultural
requirements (a ¼ 0:25, and b ¼ 0).

Strategy 3: Supplying all domestic-industrial needs plus 50 % of agricultural
demand (a ¼ 0:5; and b ¼ 0).

Strategy 4: Supplying all domestic-industrial requirements plus 75 % of agri-
cultural needs (a ¼ 0:75; and b ¼ 0).

Strategy 5: Supplying domestic-industrial needs plus 25 % of agricultural and
25 % of power plant requirements (a ¼ b ¼ 0:25).

Strategy 6: Supplying domestic-industrial needs plus 50 % of agricultural and
25 % of power plant requirements (a ¼ 0:5; and b ¼ 0:25).

Strategy 7: Supplying domestic-industrial needs plus 25 % of agricultural and
50 % of power plant demand (a ¼ 0:25 and b ¼ 0:5).
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The values of a and b are summarized for all adopted strategies in Table 7.3. In
this study, the values a and b have been determined according to the dam’s
administrative recommendations and demands pattern history in the study area. As
the highest priority in this study is domestic-industrial, the coefficient of Di;j is
considered one in all strategies. The second and third priorities are agricultural and
power plant, respectively, and so the allocated priority coefficients for these two
demands are considered less than domestic-industrial needs. The values of a and b
demonstrate that the agricultural and power plant segments will be sacrificed
during shortage and a portion of the available water in these sectors will be
dedicated to other sectors to minimize deficiencies in main priority areas.

7.2.4 Reliability Index

In order to assess the operational performance of reservoir water delivery systems,
several performance criteria can be applied to characterize demand scenarios,
system alternatives and operation policies. In the example of reservoir system
considered herein, there is a single variable deciding whether the system perfor-
mance is reliable or not over the desired planning horizon. If water supply is not
lower than water demand, the system is reliable and downstream demands will be
met (Kundzewicz and Kindler 1995). In this case, the reliability index (g) is a
major indicator which is defined as the probability of the system not failing in a
given period. Hashimoto et al. (1982) investigated reservoir operation system
performance with a reliability index as follow:

g ¼ NM

NT
� 100 ð7:5Þ

where, NM is the number of months with standard supply, and NT is the total
months over desired planning horizon.

In this study, the total and monthly reliability of the system have been con-
sidered to find the most reliable strategies and also the most supply deficit months
over the desired planning horizon.

Table 7.3 The agricultural
and power plant coefficients
in different strategies

Strategy Agricultural coefficient (a) Power plant coefficient (b)

1 0.0 0.0
2 0.25 0.0
3 0.5 0.0
4 0.75 0.0
5 0.25 0.25
6 0.5 0.25
7 0.25 0.5
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7.3 Results and Discussion

The main purpose of this chapter is to obtain monthly operational rules for
Doroudzan Reservoir in southern Iran. The optimization model was run using
observed and synthetic inflows data, and optimal operation policies were derived
for assessing the amount of allocated water to all downstream demands including
domestic-industrial, agricultural, and power plants.

7.3.1 Optimization Analysis Based on Observed Inflows

The operation of reservoirs is based on some specific policies that present practical
guidelines for the amount of stored or released water to meet project require-
ments. A rule curve is a kind of static policy and practical guideline for deter-
mining specific operational policies based on downstream needs. In this study,
LINGO was applied for a single-objective optimization, and the total releases were
optimized by the model for 252 months. The optimized monthly averages of
regulatory release in seven water supply strategies are presented in Table 7.4.
These results can be applied as guidelines to find the appropriate way to distribute
water among different sectors with minimum deficiency.

Figures 7.3 and 7.4 compare the total monthly demands, the monthly demands
in each strategy, the average monthly inflows, and the monthly averages of opti-
mized and non-optimized releases in all adopted strategies and demonstrate how
optimization changes the monthly distribution of regulatory releases in different
strategies compared to the total demands and non-optimized releases. Based on the
results, the Doroudzan Reservoir cannot supply the necessary water for all
demands simultaneously and dam administrators have to choose the appropriate
operation policy based on downstream needs. Therefore, different strategies are
considered to supply downstream demands based on historical inflows, existing
water in the reservoir, and minimum downstream requirements.

According to Fig. 7.3a, the inflows into the reservoir decrease from April to
June, while the total demands increase during this period. These months are the
most critical months and the optimized releases have downward trends in strate-
gies 1, 2, 3, and 5 (see Figs. 7.3b–d and 7.4b). In these cases, low inflows force the
optimization model to only provide the minimum requirements in desired strategy
and store more water to be released in the following months, such as July, August,
and September that include high demands. On the other hand, the optimized
releases are increased by increasing minimum requirements in strategies 4 and 7,
and so, dam administrators have to release much more water in these strategies to
supply downstream needs. As much more water should be released, the volume of
stored water will be decreased significantly (see Fig. 7.5 and Table 7.6).

In addition to release, the yearly averages of stored water in the non-optimized
and optimized conditions are estimated for all adopted strategies and the results are
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presented in Table 7.5. According to this table, optimization increased the total
stored water in the reservoir by 2:9, 4:54, 7:04, 6:69, and 1:75 % in strategies 1, 2,
3, 5, and 6, respectively, while stored water decreased about 34:9 and 33:92 % in
strategies 4, and 7, respectively.

Table 7.4 Monthly average of optimum reservoir releases in different strategies (MCM)

Month Strategies

1 2 3 4 5 6 7

Jan 49.90 50.84 46.63 30.47 49.51 45.48 33.95
Feb 56.37 56.37 54.03 34.11 57.04 52.38 41.09
Mar 148.11 131.47 137.63 119.13 136.05 128.10 119.06
Apr 153.60 149.44 142.35 124.71 139.81 143.47 123.99
May 113.35 116.30 128.64 164.94 117.37 97.62 157.29
Jun 57.45 77.38 91.35 161.59 84.17 122.48 158.62
Jul 87.82 89.87 98.39 147.62 111.74 126.02 145.65
Aug 141.24 126.21 139.53 145.37 135.02 146.61 145.32
Sep 155.27 163.69 153.88 122.41 145.83 125.63 113.28
Oct 75.02 79.09 60.41 31.32 71.25 67.26 37.67
Nov 60.97 58.46 51.91 34.35 52.74 49.69 37.28
Dec 42.82 42.82 37.19 25.93 41.41 37.19 28.74

Fig. 7.3 Comparison of total monthly demands and monthly average of observed release with
total demands in each strategy and a monthly average of inflows, b monthly average of optimum
releases in strategy 1, c strategy 2, and d strategy 3
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These results showed that much more water must be released to provide
downstream needs in strategies 4 and 7. Figure 7.5a–d shows the yearly variations
of optimized and non-optimized stored water in strategies 1, 4, 5 and 7,
respectively.

Besides the monthly averages of releases and stored water, the monthly values
of optimized and non-optimized releases and stored water during two certain dry
and wet years are also presented based on a particular criterion. In this case, if
more than 75 % of monthly inflows through a specific year are less than the
average of inflows in the period of 1986–2006 (97:49 MCM), that year is con-
sidered as a dry year; and if less than 50 % of monthly inflows in a certain year are
less than the average of inflows during planning horizon, the desired year is
considered as a wet year.

As the study area is located in a semi-arid region where dry periods are more
dominant than wet periods, two different thresholds are considered to determine
the wet and dry years. In the case of Doroudzan Reservoir, the years 1993 and
2001 are selected as wet and dry years, respectively, and the associated inflows of
each year in conjunction with the average of inflows in the period of 1986–2006
are shown in Fig. 7.6.

Figures 7.7 and 7.8 show the monthly values of optimized and non-optimized
releases and stored water for strategies 3 and 6 for desired dry and wet years. As

Fig. 7.4 Comparison of monthly demands and monthly average of observed release with total
demands in each strategy and monthly average of optimum releases in a strategy 4, b strategy 5,
c strategy 6, and d strategy 7
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can be seen from these figures, the optimized releases during a dry year can only
provide the minimum requirement of downstream, while there are more releases
and additional storages in the reservoir during a wet year.

7.3.2 Reliability Analysis

If no water is discharged from the reservoir or if the allocated water to the
downstream area is below demand requirements, the released flow does not meet
demands and a deficit exists. In this study, the performance of Doroudzan
Reservoir was assessed before and after optimization by applying Eq. 7.5. Results
showed that there are 211 deficit months and the reliability of system was only
16.27 % before optimization, while optimization analysis increased the reliability
index in all adopted strategies (Table 7.6). Although there is still deficiency under
optimized conditions, optimization resulted in fewer deficit months, and the reli-
ability of the system has increased in all strategies. However, the reliability is
considerably lower in strategies 4 and 7 rather than the other adopted strategies.
This decreased reliability indicates that the system will face serious problems
when supplying domestic-industrial and 75 % of agricultural needs or domestic-
industrial, 25 % agricultural needs, and 50 % power plant requirements in

Fig. 7.5 Comparison of yearly average of observed stored water and optimum stored water in
a strategy 1, b strategy 4, c strategy 5, and d strategy 7
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Table 7.5 Yearly average of observed and optimum stored water in different strategies (MCM)

Date Observed Strategy
1

Strategy
2

Strategy
3

Strategy
4

Strategy
5

Strategy
6

Strategy
7

1986 501.34 723.35 703.05 718.84 405.93 692.73 697.55 398.22
1987 821.36 596.85 618.11 682.41 268.84 658.29 684.70 258.59
1988 836.53 815.49 840.26 850.78 462.36 822.50 809.45 433.48
1989 691.67 797.49 806.13 813.76 351.32 845.32 792.95 309.59
1990 714.21 744.56 726.39 696.04 283.99 777.96 747.66 273.49
1991 696.23 685.19 656.81 637.85 311.41 685.84 729.64 300.18
1992 832.32 491.65 501.17 526.83 324.87 486.91 514.98 323.11
1993 908.84 785.58 761.43 855.59 518.20 827.70 803.99 505.05
1994 672.02 624.63 682.97 695.02 375.02 709.24 651.64 333.28
1995 764.99 580.63 615.00 651.36 400.57 614.25 589.70 399.15
1996 761.82 793.06 757.22 837.51 418.05 799.31 784.83 398.77
1997 599.58 637.30 714.50 696.98 330.11 709.22 688.32 288.37
1998 723.18 663.40 691.48 700.43 472.61 699.54 730.99 476.66
1999 663.91 793.75 812.07 849.16 709.10 843.63 824.71 733.76
2000 412.78 894.41 898.00 848.95 628.35 876.44 760.72 696.05
2001 383.37 765.08 751.35 729.31 402.05 756.45 471.67 394.05
2002 740.06 756.67 769.13 816.35 725.82 763.77 685.18 724.74
2003 762.72 752.14 742.80 764.62 685.58 759.67 734.52 696.48
2004 756.66 704.76 715.47 771.58 624.46 742.43 717.78 680.55
2005 731.39 798.39 861.70 832.90 590.17 861.40 816.67 644.74
2006 589.70 582.91 600.40 613.85 193.33 606.58 581.70 356.33

Ave. 693.56 713.68 725.02 742.39 451.53 739.96 705.68 458.32

Fig. 7.6 Monthly inflows in two certain wet and dry years in conjunction with monthly average
of inflows in the period 1986–2006
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strategies 4 and 7, respectively. In this condition, the dam’s administrator has to
provide the necessary water from other available water sources to supply down-
stream needs with higher reliability. For example, supplementary wells can be
used to overcome deficiency during peak water demand periods.

Fig. 7.7 Monthly values of optimized and non-optimized releases and stored water in strategies
3 and 6 during dry year (2001)

Fig. 7.8 Monthly values of optimized and non-optimized releases and stored water in strategies
3 and 6 during wet year (1993)
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On the other hand, the importance of deficit magnitude has also been considered
to find the most harmful months over the desired planning horizon. Hence, the
optimized releases are compared with the total water demands in all 252 months
and monthly reliabilities are presented in Table 7.7. Although optimization
increased the reliability index in most months, its values are almost under 40 % in
May–August. Since there are high water requirements and also low inflows
between May and August (Fig. 7.3a), these months are recognized as the most
harmful months, in particular for agricultural and power plant segments. However,
it can be concluded that the achieved results prove the success of optimization
analysis to supply minimum requirements associated with each strategy and also
provide appropriate operational policies for Doroudzan Reservoir.

Figures 7.9a–d compare the monthly reliability in optimized and nom-opti-
mized conditions for all adopted strategies. These figures show how the reliability
of the system in each strategy varies in comparison to the other strategies. For

Table 7.6 The number of deficit months, reliability of system, and changing the mean of total
stored water in comparison to non-optimized condition

Strategy Number of
deficit months

Reliability (%) Variation of stored
water (%)

Observed 211 16.27 –
1 65 74.00 2.90
2 77 69.00 4.54
3 103 59.00 7.04
4 177 29.76 -34.90
5 93 63.10 6.69
6 123 51.19 1.75
7 169 32.94 -33.92

Table 7.7 Monthly reliability in optimized and non-optimized conditions

Monthly reliability (%)

Month Observed release Strategies

1 2 3 4 5 6 7

Jan 19.05 95.24 95.24 90.48 52.38 95.24 76.19 52.38
Feb 14.29 95.24 95.24 90.48 57.14 95.24 76.19 57.14
Mar 23.81 90.48 76.19 76.19 47.62 76.19 66.67 47.62
Apr 52.38 90.48 85.71 76.19 38.10 76.19 76.19 47.62
May 23.81 47.62 38.10 28.57 28.57 33.33 14.29 28.57
Jun 0.00 19.05 14.29 4.76 19.05 4.76 9.52 23.81
Jul 0.00 33.33 23.81 14.29 19.05 23.81 19.05 28.57
Aug 0.00 52.38 38.10 33.33 14.29 33.33 28.57 14.29
Sep 0.00 76.19 76.19 61.90 14.29 61.90 42.86 19.05
Oct 0.00 90.48 95.24 66.67 0.00 80.95 66.67 4.76
Nov 4.76 100.00 95.24 80.95 9.52 80.95 66.67 19.05
Dec 57.14 100.00 100.00 85.71 57.14 95.24 71.43 52.38
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example, Fig. 7.9c shows the system is not very reliable in Strategy 7 in com-
parison to strategy 1, while it is more reliable than Strategy 4.

7.3.3 Optimization Analysis Based on Synthetic Inflow Data

In this study, in addition to the observed inflow data which were applied to
evaluate optimum releases for different strategies by an LP model, a period longer
than the recorded 252 months is examined by using synthetic data to determine the
effect of alternative scenarios on the reservoir operation. It is important to note that
using synthetic data in optimization analysis is necessary to see the changes in the
reservoir operation policies in a longer period. Synthetic inflows were generated
for a longer period of 432 months by the Monte Carlo method based on the
statistical characteristics of the 252 months of observed inflow data. Then, the LP
model was re-run in strategies 1 and 5. For this alternative, only strategies 1 and 5
were considered for optimization analysis based on synthetic inflow data. In the
next step, the optimized values of releases were obtained from historical and
synthetic inflow data for both strategies 1 and 5.

In the first phase, the most common statistical distributions including Normal,
Gamma, Gumbel, Log-normal, and Pareto were fitted to 252 monthly observed
inflow data and the best distribution was selected based on the goodness-of-fit test.
To find the best fitting statistical distribution, the Kolmogorov–Smirnov (KS) and
Chi Square tests were applied and the results are presented in Table 7.8.

Fig. 7.9 Monthly values of optimized and non-optimized releases and stored water in strategies
3 and 6 during wet year (1993)
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According to this table, the distribution yielding the smaller KS value, herein
the Log-normal distribution, was selected and synthetic inflow data were generated
for 432 months. Figures 7.10 and 7.11 compare the optimum releases and syn-
thetic optimum releases in strategies 1 and 5, respectively, from 1993 to 2003.
Furthermore, variations of stored water in strategy 1 were calculated by the applied
optimization model using both data sets, and the results are plotted in Fig. 7.12 for
the period of 1993–2003.

7.3.4 Performance of the Model

There are a number of ways in statistics to quantify the difference between values
implied by an estimator and the true values of the quantity being estimated. In this
case, three common techniques are the mean error (ME), mean absolute error
(MAE) and root-mean-square error (RMSE), which can be applied to measure
differences between values predicted by a model or an estimator and the observed

Table 7.8 Goodness-of-fit
test for observed data

Distribution Kolmogorov–Smirnov Chi square

Normal 0.207 240.35
Gamma 0.135 62.49
Gumbel 0.155 115.37
Lognormal 0.086 31.73
Pareto 0.223 84.95

Fig. 7.10 Optimum releases and synthetic optimum releases in strategy 1 (1993–2003)
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values. Mean Error indicates whether the forecasts are biased, MAE measures the
average magnitude of the errors in a set of forecasts, and RMSE is a quadratic
scoring rule which measures the average magnitude of the error. Lower values of

Fig. 7.11 Optimum releases and synthetic optimum releases in strategy 5 (1993–2003)

Fig. 7.12 Variations of stored water in strategy 1(1993–2003)
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RMSE, ME, and MAE indicate a better fit between the model’s predictions and the
observed data. In this study, ME, MAE, and RMSE are used to quantitatively
evaluate the performance of the applied model and estimate deviations of optimum
releases (Ropt) and stored water (Sopt) from synthetic optimums release (Ropt�s) and
stored water (Sopt�s). A performance summary of the predicted and observed
values is presented in Table 7.9.

RMSE, MAE, and ME values between optimum release (Ropt) and synthetic
optimum releases (Ropt�s) are calculated as 1.26, 0.79, and -0.36 in strategy 1, and
1.18, 0.82, and -0.32 in strategy 5, respectively. As it can be seen from Figs. 7.10,
7.11 and 7.12, and also Table 7.10, the outcomes of the LP optimization model
using observed and synthetic data are well resembled and confirm each other.
Table 7.10 presents the monthly averages of synthetic and normal optimized
releases in strategies 1 and 5. Although the results of simulation do not always get
used because of inflow regime variations due to climate changes and also recent
droughts in Iran, they can be applied by dam administrators for future imple-
mentation operation policies to create new operational plans as part of novel
management strategies within an acceptable range.

Table 7.9 Performance summary of the synthetic and observed values

RMSE ME MAE

ROpt: versus Ropt�s in strategy 1 1.26 -0.36 0.79
ROpt: versus Ropt�s in strategy 5 1.18 -0.32 0.82
SOpt: versus Sopt�s in strategy 1 22.34 4.11 19.31

Table 7.10 Monthly average of optimum and synthetic optimum releases in strategies 1 and 5

Month Strategy 1 (MCM) Strategy 5 (MCM)

Optimum release Synthetic optimum
release

Optimum release Synthetic optimum
release

Jan 49.90 50.12 49.51 49.68
Feb 56.37 56.66 57.04 57.36
Mar 148.11 148.46 136.05 136.41
Apr 153.60 154.18 139.81 140.41
May 113.35 114.13 117.37 117.71
Jun 57.45 57.81 84.17 84.67
Jul 87.82 88.52 111.74 112.25
Aug 141.24 141.55 135.02 135.51
Sep 155.27 155.29 145.83 145.76
Oct 75.02 75.23 71.25 71.42
Nov 60.97 61.09 52.74 52.83
Dec 42.82 43.15 41.41 41.72
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7.4 Conclusions

This chapter focused on the Doroudzan Reservoir operation using observed and
synthetic inflow data in different strategies. The objective function of the applied
LP model was maximizing allocated water for various downstream needs by
considering the domestic-industry as main priority and assuming various priorities
coefficients for agriculture and power plant segments. Different strategies were
analyzed by running the optimization model for observed inflows during
252 months, and then seven different operation policies within each strategy’s
performance figured out. The achieved results can be briefly summarized as;

1. There were 211 deficit months before optimization and the reliability of system
was only 16.27 %, while optimization analysis increased the reliability index
from a minimum of 29.76 % in strategy 4 to a maximum of 74 % in strategy 1.

2. The optimization increased the stored water in the reservoir by 2:9, 4:54, 7:04,
6:69, and 1:75 % in strategies 1, 2, 3, 5, and 6, respectively.

3. The Doroudzan Reservoir cannot supply the necessary water for all demands
simultaneously and dam administrators have to choose the appropriate strategy
based on available water and downstream priorities. However, the optimization
analysis increased efficiency and decreased the conflict in the management of
tradeoffs between available water and downstream demands.

4. Furthermore, the optimization model was re-run based on the synthetic inflow
data to consider the performance of the model based on synthetic inflows and
obtaining appropriate operation policies. The results demonstrated that the
outcomes of the LP optimization model using observed and synthetic data are
well resembled and confirm each other. Therefore, it can be concluded that
applying synthetic data in optimization analysis is useful to see the changes in
the reservoir operation policies in a longer period.

It can be concluded that optimization with mathematical modeling techniques
can enhance reservoir operation efficiency throughout scientific allocation of the
available water, and determine the appropriate operational releases regarding
downstream demands.
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Chapter 8
Using Optimization in Wellfield
Operations: An Implementation Case
Study at Tampa Bay Water

Nisai Wanakule and Alison Adams

Abstract This chapter includes simulation–optimization analysis of water supply
in central Florida using integrated surface and groundwater modeling to allocate
groundwater pumping that is protective of the natural ecosystem while meeting
water supply demands of over 2 million people using a mix of surface water,
groundwater and desalinated water.

8.1 Introduction

Tampa Bay Water is Florida’s largest wholesale water supplier, serving more than
2.3 million people with annual average demand between 220 and 262 million
gallons per day (mgd). It was established in 1974 as the West Coast Regional
Water Supply Authority by State Legislation through a five-party agreement
among Hillsborough, Pinellas and Pasco counties and the cities of St. Petersburg
and Tampa. The city of New Port Richey joined the Agency in 1984 as a non-
voting member. The Agency’s mission has been to develop, store, and supply
water for municipal purposes in such a manner that gives priority to reducing
adverse environmental effects of excessive or improper withdrawals of water from
concentrated areas. Conflict between meeting water demands and preventing harm
to wetland and lake systems was intensified in the early 1990s, making it difficult
under the existing Authority’s organization to manage wellfields effectively. In
1996, the Authority was mandated by the Legislature to develop regional water
solutions and a comprehensive answer to the water needs of the Tampa Bay area.
As a result, two actions occurred, (1) the Authority was reorganized into Tampa
Bay Water and obtained ownership and control over the regional groundwater
supply facilities, and (2) Southwest Florida Water Management District

N. Wanakule � A. Adams
Tampa Bay Water, 2575 Enterprise Rd, Clearwater FL 33763, US

E. Goodarzi et al., Introduction to Optimization Analysis in Hydrosystem Engineering,
Topics in Safety, Risk, Reliability and Quality 25, DOI: 10.1007/978-3-319-04400-2_8,
� Springer International Publishing Switzerland 2014
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(SWFWMD) and the Authority and its Member Governments entered into a new
agreement, the Partnership Agreement, which required new water sources be
developed. It also required a reduction in pumpage from eleven existing wellfields
in three phases: an immediate reduction from 192 mgd to 158 mgd; then to 121
mgd by 2003; and finally to 90 mgd by 2008. In return, SWFWMD committed up
to $183 million to assist with developing new, alternative water supply sources.

In response to groundwater cutbacks to relieve wetland stress and develop an
environmentally sustainable water supply system, Tampa Bay Water developed
the following initiatives:

(a) The revised Master Water Plan, which included the surface water supply system
and surface water treatment plant to treat water withdrew from area rivers and
from the then to-be-constructed off-stream reservoir.

(b) The Optimized Regional Operations Plan (OROP), an integrated ground
water-surface water model to schedule well pumpage among eleven wellfields
with an objective of maximizing surficial aquifer water levels.

(c) The Phase I Mitigation Plan, which provided a rehydration plan for hydro-
logically-stressed wetlands and lakes.

As the new water supply sources of the Master Water Plan came on-line, the
OROP model and the Phase I Mitigation Plan were designed to ensure that water
production would not result in unacceptable adverse environmental impacts and
that historical impacts from groundwater production were addressed.

A Master Water Plan developed prior to the reorganization in 1998 was
modified to include many new projects with a very challenging time schedule. The
Plan included new water treatment facilities and conveyance for that supply to be
developed in the Tampa Bay area to enable mandated wellfield cutbacks and meet
growing demand. Components of the plan also included additional infrastructure to
interconnect the 11 consolidated wellfields, the hemisphere’s largest seawater
desalination plant with a permitted capacity of 28.75 mgd; an ‘‘enhanced surface
water system’’ comprised of three supply sources, a 15.5 billion gallon (BG) off-
stream reservoir and a new 72 mgd regional surface water treatment facility
(which has been expanded to a 120 mgd permitted surface water treatment
facility); a redesigned and refurbished wellfield; and more than 80 miles of
interconnecting pipelines. The program was projected to meet the regions needs
with environmentally sustainable, diversified, drought proof and/or drought
resistant and cost effective new sources as well as aggressive water conservation
efforts to reduce demands by up to 17 mgd. Figure 8.1 shows the current facilities
after Phase I of the Master Plan had been completed.

The OROP was designed to minimize production impacts to wetlands and lakes
by rotating among sources in response to target levels set in surficial aquifer
monitoring wells. These target levels were determined by statistical correlations
between minimum levels established for wetlands and lakes and surficial aquifer
water levels. The establishment of minimum wetland and lake levels was based on
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regulatory criteria that relate environmental health to indicators of historical
wetland and lake levels (known as historical normal pool).

The Phase I Mitigation Plan began with a study that assessed wetland hydro-
logic impacts, and predicted wetland water level recovery, based on aerial photo-
interpretation, GIS analysis and integrated surface water—groundwater modeling.
Based on the results of that study, rehydration plans were being developed for

Fig. 8.1 Locations of Tampa Bay Water facilities in 2013
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those wetlands that were predicted not to recover to their minimum levels (on a
long-term average basis) after the Master Water Plan projects were operational.
These mitigation plans included surface drainage alterations (e.g. ditch blocks,
water control structures), rehydration with reclaimed water or excess surface
water, and possibly groundwater augmentation.

In 1998, about 71 % of the demand was met by 12 regional wellfields with the
remaining 29 % met by the use of a surface water reservoir owned and operated by
City of Tampa. Eight of the 12 Tampa Bay Water’s regional wellfields were
interconnected which, if the supplies were adequate, would facilitate the rotation
of pumpage based on environmental, physical and regulatory constraints. It was
obvious that Tampa Bay Water had to start implementing an innovative water
supply management program to effectively manage the existing wellfields and the
up-coming new water sources in an environmentally sustainable manner.

8.2 Optimized Regional Operation Plan

8.2.1 Background

The Optimized Regional Operations Plan (OROP) is a key component of the
Operations Plan. The OROP is a custom-built application which incorporates an
optimization model and utilizes output from various models, current hydrologic
and pumpage data, and a set of operating constraints to manage the 11 wellfields
under the Consolidated Permit (also known as the Central System Facilities), the
Brandon Urban Dispersed Wells (BUDW), and the Carrollwood wells (Fig. 8.2)
through the development of weekly production schedules. The models used to
provide input to the optimization model include the Integrated Hydrologic Model
(through the development of a unit response matrix or URM), a group of artificial
neural network models, surface water forecasting tools, and short-term demand
forecasting models. Input to the optimization model includes demands, surface
water availability and scheduled withdrawals from the Hillsborough River/Tampa
Bypass Canal system, Alafia River and Regional Reservoir, and scheduled pro-
duction from the seawater desalination facility. The optimization model schedules
production from the Central System wellfields based on current hydrologic con-
ditions, operational constraints, permit limits, forecasted treated surface water
reliably available from the regional surface water treatment plant, and reliably
available desalinated seawater, to meet forecasted Member Government demands,
and seeks to optimize groundwater levels based on targets at a selected set of
surficial aquifer and Upper Floridan Aquifer monitoring wells called control
points. It also adheres to operating policies and infrastructure physical limits as
well as complies with conditions of the Consolidated and other water use permits.
Policy issues are addressed by using weights to assign preferences to maximize
groundwater levels at the control point locations.
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The output of the optimization routine is a weekly schedule prioritizing pum-
page from all active production wells of the Central System Facilities.

The OROP is formulated as a linear programming (LP) model. Constraints that
govern the optimization model generally fall into one of four categories—physical
constraints (e.g., pump capacities, conveyance facilities), regulatory constraints
(e.g., wellfield pumping limits, specified water levels), operational constraints
(e.g., water quality, minimum production limits), and demand constraints. An
additional set of constraints that represents the integrated surface/groundwater
hydrologic system is required to complete the optimization formulation.

The hydrologic model, which is based on the physical characteristics of the
surface and groundwater systems, simulates changes in water levels due to changes
in pumpage and rainfall. The pumpage/water-level relationships are based on the
Integrated Hydrologic Model (IHM) Northern Tampa Bay application providing a
unit response for each production/monitor well combination which relates pum-
page changes to water-level changes.

Water quality constraints are included in both the physical constraint and
regulatory constraint categories. Tampa Bay Water produces a ‘‘finished’’ product
that meets not only Safe Drinking Water act requirements but also additional
standards and requirements defined in the Agency’s governance documents.

8.2.2 Optimization Formulation

The objective of this optimization problem is to maximize ground-water levels at
specified locations in the surficial aquifer system (SAS) while satisfying the pro-
jected water demands and complying with regulatory requirements, given the
system constraints. The primary decision variables for each time period are the
pumping rates at each production well withdrawing from the Upper Floridan
Aquifer system (UFAS). The secondary decision variables (also called state
variables) are the ground-water levels in monitoring wells for both the SAS and
UFAS. The problem is subjected to two general constraint sets and three specific
constraint sets. The general constraint sets consist of a system of equations
describing the surface and ground-water hydrology and the variable bounds.
Tampa Bay Water’s Integrated Hydrologic Model of the Northern Tampa Bay area
is currently used to simulate the physical system hydrology. The specific constraint
sets consist of the demand constraints, the regulatory constraints on water levels
and pumpage specified in the water use permits (WUPs), and operation/mainte-
nance and water quality constraints of the infrastructure system. The optimization
routine determines the wellfield and well production schedule based on the water
demands projected for each of the points of connection and reliably available
treated surface water and desalinated seawater. Before the problem is formulated
mathematically, a set of notations must be defined as;
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i An index of an element in the set Ru or R
t An index for time period corresponding to the week number in the

simulation model, (t B 0 refers to time index prior to the start of
simulation)

hi,t
u The SAS water level at location i at the end of time period t

hi,t The UFAS water level at location i at the end of time period t
xi The assigned weight to enable priority factors applied to reduce

environmental stress preferentially at location i
Ru A set of monitoring wells in SAS where water levels are being

maximized
R A set of regulatory monitoring wells specified in WUPs
Hi Regulatory water level in the UFAS at the monitoring well i
qj,t Average weekly pumping rate from the jth well for time period t
dn,t

r Pipe flow from the nth source to the rth point of connection during
time period t

Dt
r Water demand for the rth point of connection for time period t

wn A set of production wells for the nth wellfield
j An index of an element in the set wn

Pn
y Regulatory 12-month average withdrawal for wellfield n

Pn
m Regulatory peak month withdrawal for wellfield n

Pn
m Regulatory peak month withdrawal for well j

Wt The week number in water year (commence on Oct 1 each year) for
time period t

Cj
Fe Level of measuring iron concentration (mg/l) in production well j

Cj
H2S Level of measuring hydrogen sulfide concentration (mg/l) in produc-

tion well j
Q

j
; �Qj The lower and upper production limits (by the maintenance require-

ment, or well capacities, or the peak shaving program) for the jth well,
Qcc The Cypress Creek Pumping Station capacity
Qwf

n
; �Qwf

n
Minimum and maximum limits (required to maintain line pressure or
to stay in the venturi calibration ranges) for the nth wellfield

All pumping rates, production limits, demand requirements, and flow quantities
are in mgd, and also all of water levels are in feet NGVD. In addition to the above
notation, the following abbreviations are used to identify source and demand
points (Table 8.1).

Moreover, WFc is a set of Consolidated Permit Wellfields as cr, cc, cb,
sp, mb, s21, nwh, cm, ew, st and np, and also SCHI is South-Central Hillsborough
Intertie.

The problem in this case can be expressed mathematically as follows:

max Z ¼
X
i2Ru

XT

t¼1

xih
u
i;t ð8:1Þ
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Subject to the following constraints;

1. Demand constraints:
Some wellfields and Points of Connection (POC) are interconnected to the
‘‘Regional System’’ as shown in Fig. 8.3. This constraint set must satisfy not only
demands at Points of Connection but also the physical representation of the
Regional System, namely, the quantity and direction of pipe flow. All demands
used in this formulation are projected demands obtained from the Short-Term
Water Demand Forecasting System Model.

The pipe flow and demand constraints are written at each POC as follows:

Table 8.1 Abbreviations to identify source and demand points

cr Cross Bar Ranch
Wellfield

cc Cypress Creek Wellfield cb Cypress Bridge
Wellfield

sp South Pasco Wellfield mb Morris Bridge Wellfield s21 Section 21
Wellfield

nwh Northwest Hillsborough
Wellfield

cm Cosme Odessa Wellfield ew Eldridge Wilde
Wellfield

st Starkey Wellfield np North Pasco Wellfield bu Brandon Urban
Dispersed Wells

sch South-Central
Hillsborough
Wellfield

crw Carrollwood wells cot Purchased water
from City of
Tampa

CC Cypress Creek Water
Treatment Plant
(WTP)

MB Morris Bridge WTP LB Lake Bridge WTP

LP Lake Park WTP NW Northwest Hillsborough
WTP

CM Cosme WTP

LR Little Road WTP MT Maytum WTP PD West Pasco Point of
Connection–
Pasco
Distribution
System

OD Odessa Water
Treatment Plant–
Pasco Distribution
System

CH Central Hillsborough
Regional Water
Treatment Facility
(replaced Highview)

MP South Pasco Meter
Pit

PK Pinellas County
Distribution System
(Keller WTP and
Regional System)

LT Lithia Water Treatment
Plant

RWTP Regional Surface
Water
Treatment Plant

SDP Seawater Desalination
Plant

TBC Hillsborough River/
Tampa Bypass Canal
pump station

ALF Alafia River pump
station

TBRR Tampa Bay Regional
Reservoir

CBTM Cypress Bridge
Transmission Main

NCHI North-Central
Hillsborough
Intertie
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(a) Morris Bridge WTP

dMB
cc;t �DMB

t 8t ¼ 1; . . .; T ð8:2Þ
X
j2wmb

qj;t � dCC
mb;t ¼ 0 8t ¼ 1; . . .; T ð8:3Þ

(b) Lake Bridge WTP

dLB
cc;t�DLB

t 8t ¼ 1; . . .; T ð8:4Þ
X
j2wcb

qj;t � dCC
cb;t ¼ 0 8t ¼ 1; . . .; T ð8:5Þ

Fig. 8.3 OROP control points
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(c) Lake Park WTP

dLP
mp;t þ dLP

s21;t þ dTHIC
cot;t �DLP

t 8t ¼ 1; . . .; T ð8:6Þ
X

j2ws21

qj;t � dLP
s21;t þ qnw7;t ¼ 0 8t ¼ 1; . . .; T ð8:7Þ

(d) Cosme WTP

dCM
nwh;t þ dCM

mp;t þ dCM
cc;t þ

X
j2wcm

qj;t�DCM
t 8t ¼ 1; . . .; T ð8:8Þ

(e) Northwest Hillsborough WTP

dNW
nwh;t �DNW

t ; 8t ¼ 1; . . .; T ð8:9Þ
X

j2wnwh

qj;t � qnw7;t þ
X

j2wcrw

qj;t � dNW
nwh;t� dCM

nwh;t ¼ 0; 8t ¼ 1; . . .; T ð8:10Þ

(f) Keller WTP (has been combined with Pinellas County Distribution System)
(g) Pinellas County Distribution System

dPK
cc;tþ

X
j2wew

qj;t�DPK
t ; 8t ¼ 1; . . .; T ð8:11Þ

(h) Little & Maytum WTPs—Equations (8.12) and (8.13) reflect the new West
Pasco Infrastructure

dLR
cc þ dLR

mt �DLR
t ; 8t ¼ 1; . . .; T ð8:12Þ

X
j2 wst\wnpf g

qj;t � dLR
mt �DMT

t ; 8t ¼ 1; . . .; T ð8:13Þ

(i) Pasco Interties

dPD
cc �DPD

t ; 8t ¼ 1; . . .; T ð8:14Þ

dOD
cc �DOD

t ; 8t ¼ 1; . . .; T ð8:15Þ

(j) Regional (Cypress Creek WTP) and sub-regional pipe flow water balance

dPK
cc;tþ dMP

cc;t þ dCM
cc;t þ dPD

cc;tþ dOD
cc;t þ dLR

cc;t ¼
X
j2wcr

qj;t þ
X
j2wcc

qj;t þ dCBTM;t;

8t ¼ 1; . . .; T
ð8:16Þ

dLB
cc;tþdMB

cc;t þ dCBTM;t � dCC
mb;t � dCC

cb;t� dNCHI;t ¼ 0; 8t ¼ 1; . . .; T ð8:17Þ

248 8 Using Optimization in Wellfield Operations



X
j2wsp

qj;t þ dMP
cc;t � dCM

mp;t� dLP
mp;t ¼ 0; 8t ¼ 1; . . .; T ð8:18Þ

(k) Finished water clear wells

dNCHI;t ¼ dSDP;t þ dRWTP;t þ dUS301
COT ;t � dCH

cc;t; 8t ¼ 1; . . .; T ð8:19Þ

(l) Raw water tanks and high service pump station

dSCHI;t ¼ dRWTP;t � dTBC;t; 8t ¼ 1; . . .; T ð8:20Þ

(m) Flow from Tampa Bay Regional Reservoir

dTBRR;t ¼ dSCHI;t � dALF;t; 8t ¼ 1; . . .;T ð8:21Þ

(n) Central Hillsborough Water Treatment Facility and Lithia WTP

dCH
cc;t �DCH

t ; 8t ¼ 1; . . .; T ð8:22Þ

dLT
cc;t þ

X
j2wbu

qj;t þ
X

j2wsch

qj;t�DLT
t ; 8t ¼ 1; . . .; T ð8:23Þ

In constraints (8.20) and (8.21), dTBC;t; dALF;t; dSDP;t; and dTBRR;t are the
forecasted availability of surface water supply at Tampa Bypass Canal pump
station, Alafia River pump station, Seawater Desalination Plant, and the C.W. Bill
Young Regional Reservoir, respectively.

2. Regulatory and facility constraints:

(a) WUP’s regulatory levels for non-cumulative weekly average (swing level)

hi;t �Hi � 3; 8i 2 R; t ¼ 1; . . .; T ð8:24Þ

(b) WUP’s regulatory levels for cumulative weekly average (minimum level)

Xt

s¼�W�1

hi;s

 !
=Wt�Hi; 8i 2 R; tjWt [ 8 ð8:25Þ

(c) Weekly minimum and maximum production by wellfield (facility con-
straints, rule-curves, venturi limits)

Qwf
n
�
X
j2wn

qj;t� Q
wf
n ; 8n 2 WFc [ fbug; t ¼ 1; . . .; T ð8:26Þ

(d) 12-month running average total pumpage from the Consolidated Permit
Wellfields. This permit constraint can be expressed as,

X
n2WFc

X
j2wn

Xt

s¼t�51

qj;s� 52Py; 8t ¼ 1; . . .; T ð8:27Þ
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(e) Peak month for each wellfield (4-week basis)

X
j2wn

Xt

s¼maxð1;t�3Þ

qj;s�minð4; tÞPm
n ; 8n 2 WFc [ fbug; t ¼ 1; . . .; T ð8:28Þ

(f) Peak month for each well (4-week basis)

Xt

s¼maxð1;t�3Þ

qj;s�minð4; tÞPm
j ; 8j 2 wn; n 2 WFc [ fbug; t ¼ 1; . . .; T ð8:29Þ

(g) Cypress Creek Pumping Station capacity
X
j2wcr

qj;t

X
j2wcc

qj;t�Qcc; 8t ¼ 1; . . .; T ð8:30Þ

(h) Saltwater intrusion
Constraint equations to address saltwater intrusion are expressed in the same

manner as regulatory wells. Equations (8.24) and (8.25) are applied at saltwater
intrusion monitoring wells using the long-term mean values of water levels as the
minimum levels.

(i) South Central Hillsborough Wellfield permit condition

X
j2wsch

Xt

s¼t�51

qj;s� 52Py
sch; 8t ¼ 1; . . .; T ð8:31Þ

X
j2wsch

Xt

s¼maxð1;t�3Þ

qj;s�minð4; tÞPm
sch; 8t ¼ 1; . . .; T ð8:32Þ

(j) Carrollwood Wells peak month limitation based on Lake Carroll stage

X
j2wcrw

Xt

s¼maxð1;t�3Þ

qj;s�minð4; tÞPm
crw; 8t ¼ 1; . . .; T ð8:33Þ

Pm
crw ¼

0:820 mgd, if Lake Carroll monthly level � 34:5 ft NGVD

0:707 mgd, otherwise:

(
ð8:34Þ

(k) Water quality
One of Tampa Bay Water’s obligations is to deliver Quality Water to its

Member Governments. In order to meet this requirement, the Operations
Department staff identified four wellfields in which certain wells exhibit a history
of poor raw water quality with respect to iron and hydrogen sulfide concentrations.
In order to address this raw water quality issue which is not addressed in the
treatment of groundwater, Operations Department staff developed maximum
concentrations of iron and hydrogen sulfide for the effluent from these wellfields.
Constraint set 35 was formulated based on long-term observations of iron and
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sulfide concentrations (CFe
j and CH2S

j ) from wells Cross Bar Ranch Wellfield,
Morris Bridge Wellfield and South Pasco Wellfield.

X
j2wn

qj;tC
Fe
j � 0:2

X
j2wn

qj;t; 8n 2 cr;mbf g; t ¼ 1; . . .; T

X
j2wn

qj;tC
H2S
j � 1:0

X
j2wn

qj;t; 8n 2 mb; spf g; t ¼ 1; . . .; T
ð8:35Þ

3. Other operating constraints: (requested by Operations Department)

(a) Minimum flow from Eldridge-Wilde wellfield
X
j2wew

qj;t� 10; 8t ¼ 1; . . .; T ð8:36Þ

(b) Balance flows in pipelines for COSME cutoff

dMP
cc;t ¼ dCM

cc ; 8t ¼ 1; . . .; T ð8:37Þ

(c) Lake Park venturi minimum

dLP
mp;t� 4; 8t ¼ 1; . . .; T ð8:38Þ

(d) Flow range for Maytum water treatment plant

2:5�
X

j2 wst\wnpf g
qj;t� 10; 8t ¼ 1; . . .; T ð8:39Þ

4. Physical System: (derived from IHM model)

g hu; h; qð Þ ¼ 0 ð8:40Þ

5. Upper and lower bounds:

Q
j
� qj;t � Qj; 8j 2 wn; n 2 WFc [ fbu; schg; t ¼ 1; . . .; T ð8:41Þ

6. Non-negativity: (unidirectional flow pipes)

dr
cc;t � 0; 8r 2 PK;OD;PD;CM;MP; LB;MB;CH; LR; LTf g; t ¼ 1; . . .; T

dCM
nwh;t � 0; dCM

mp;t [ 0; NW
nwh;t � 0; dLP

mp;t � 0; dLP
s21;t [ 0; CC

mb;t � 0 8t ¼ 1; . . .; T

dLR
mt;t [ 0; CC

cb;t¼ 0; dTHIC
COT ;t � 0; dUS301

COT ;t � 0; ¼ 1; . . .; T

dALF;t� 0; dTBC;t � 0; dRWTP;t� 0; dSDP;t � 0; dNCHI;t� 0 8t ¼ 1; . . .; T

ð8:42Þ
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8.3 Implementation Details

8.3.1 Unit Response

Equation (8.40) represents the physical system constraint that consists of the set of
equations describing the surface and ground-water hydrology. Theoretically, the
Integrated Hydrologic Model (IHM) could be embedded as a constraint function
within the optimization routine. Due to the run times of the IHM, this is not practical
since each optimization iteration requires as many functional evaluations as the
number of decision variables. In addition, the embedded approach would require a
nonlinear optimizer to solve the optimization problem. An alternative, the unit
response method, is used to represent the functional constraint with an equivalent
linear response system of equations predetermined using IHM. The development of
the unit response matrix for OROP is described in Wanakule (2009).

Let,
ui,j a matrix element of the (SAS or UFAS) water level from the base scenario

at location i at the end of time period t
ui,j a (SAS or UFAS) unit response matrix as defined in Eq. (8.3) for the

monitoring location i and production well j
Dqj,t a matrix element represents the increase in pumpage from the base scenario

at the jth well during the time period s

The constraint (8.40) is replaced by two sets of system equations relating
pumpage increments to water levels in each aquifer layer and is expressed as
follows:

hu
i;t ¼ uu

i;t�
X

j

Xt

k¼1

uu
i;j;k D qj;t�kþ1; 8i 2 Ru; t ¼ 1; . . .; T ð8:43Þ

hi;t ¼ ui;t �
X

j

Xt

k¼1

ui;j;k D qj;t�kþ1; 8i 2 R; t ¼ 1; . . .; T ð8:44Þ

The incremental pumpage, Dqj,t, is related to the decision variables qj,t as
Dqj,t = qj,t - vj,t where qj,t is the pumpage from the base scenario or the initial
projection of the pumpage schedule.

Note that the objective function can now be explicitly expressed in terms of
pumpage decision variables by substituting the expression (8.43) into equation
(8.1) to yield;

Minimize Z ¼
X
i2Ru

xi

XT

t¼1

X
j

Xt

k¼1

uu
i;j;k D qj;t�kþ1

 !
ð8:45Þ
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Investigation of the unit response time profiles found that SAS drawdowns at
various monitoring wells recover from a pumpage pulse differently depending on
the nearby hydrogeology and the distance between the pulsed and observation well
pair. For a longer lag-time response, rainfall will play a major role in influencing
water-level responses. Hence, the resting (e.g., non-pumping) drawdown profile or
the calculated responses from the pumpage no longer apply. To take advantage of
differences in drawdown volumes at various monitoring sites, the time summation
in (8.45) should be shortened to include the time profile up to the next expected
effective rainfall (EERF) week. The expected number of weeks for effective dry-
spell (T0) will vary from week to week and can be predetermined from the twelve
long-term rainfall gages in the region. This can be achieved by changing the
terminal week number on the time summation, T, in the above equation to T00. In
addition, the equation can be simplified if this time summation is predetermined
such that:

ûi;j;s ¼
XT 0

k¼s

uu
i;j;k; for s ¼ 1. . .4 ð8:46Þ

and the objective function can be rewritten as:

Minimize Z ¼
X
i2Ru

xi

X4

s¼1

X
j

ûu
i;j;s D qj;s

 !
ð8:47Þ

8.3.2 Solving the Optimization Problem

Each week OROP is run. The solution is optimized over the upcoming four-week
period using the incremental analysis approach. With the incremental analysis, the
prevailing hydrologic conditions are not used directly to derive the optimum
solution. Instead, a set of preferential weights for control points is used to establish
priority pumping sites. The current formulation provides for this preferential
selection through a set of weighting factors, xi, which are assigned based on the
surficial aquifer status at each control point at the start of the four-week period. A
modified approach to the weighting formulation was approved as part of the July
2003 OROP annual report. The original function was modified to consider the
natural range of wetland water-level fluctuations at all associated OROP control
points.

Basically, the weight at each monitoring site is calculated by applying the
current field measured water level to the functional relationship for that site. Since
weights are predetermined and constant over the duration of the optimization
routine, the optimum solution is limited to only a short-term (4-week) projection.
Since the solution is optimized over a four-week period, a sequence of these short-
term solutions may not yield the optimal operation in the long run. This is because
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the short-term solution lacks some knowledge of seasonal demand patterns. To
overcome this constraint, the optimization model is run in two steps, a long-term
(52-week) projection and the short-term (4-week) projection. The long-term pro-
jection is made without the weighting factors to first establish the upper and lower
bounds of production at each wellfield, taking into account seasonal variations in
demand. These bounds become the operational rule-curves for the short-term
projection. All constraints for the short-term and long-term cases are the same with
the following exceptions:

1. The time index and the summation for constraints with a time-averaged
function must be adjusted (corresponding to time span of the stress period); that
is, since the time span for a stress period of the short-term (one week) and long-
term (4 week) model are different, the constraint function involving time-
averages in the two models will have different running and terminal indices
(e.g., the annual average for the one-week stress period will be averaged over
52 values compared with 13 values for the four-week stress period) and,

2. The upper and lower bounds for production values by well and wellfield are
different (the short-term case being constrained by the rule-curve results
determined in the long-term case).

8.3.3 Current OROP Implementation Procedure

8.3.3.1 Inputs to OROP

1. Demand at 12 Points of Connection (POC)

Each Friday morning, weekly demands for each of the 12 delivery points used in
OROP are forecasted using the Short-term Demand Forecast application. Results
are reviewed by Source Rotation or Operations Department staff and either
accepted or changed. Factors for consideration to make a change to the demand
forecast include recent weather trend or an infrastructure change at a POC that has
not been captured by the model (e.g., increased hydraulic capacity, new connec-
tion, temporary connection, and temporary maintenance activity by member
government such as free chlorine burn). The OROP data base automatically picks
up the results and stores them for use in the weekly OROP production run. Staff
can further revise the demand forecast prior to actually running OROP.

2. Alternative sources availability and use

(a) On Wednesdays Operations Manager and Source Rotation Manager discuss
SWTP production options for the upcoming week, decide the appropriate
production quantity and use of reservoir (storage or withdrawal). On Fridays,
Source Rotation staff enters this quantity into the OROP database for use in the
weekly OROP production run. Factors for consideration include annual budget

254 8 Using Optimization in Wellfield Operations



and current (year to date) production, near term (next week) and next month
surface water availability, reservoir level, season, total system demand,
infrastructure constraints (e.g., scheduled maintenance, source water quality,
chemical deliveries).

(b) Each Friday morning, weekly rates in mgd of surface water availability for the
Alafia River, Lower Pool TBC, and Middle Pool TBC are forecasted for four
weeks into the future by Source Rotation staff; the OROP data base auto-
matically picks up the results and stores them for use in the weekly OROP
production run.

(c) Each Friday morning, weekly rates in mgd for the desalination facility are
determined and entered into the OROP data base. Factors for consideration
include water quality, intake water temperature, blending ratios with treated
surface water, seasonal demands, scheduled maintenance and TECO activities
which affect production.

(d) Operations staff informs Source Rotation staff if Tampa Bay Water plans to
purchase water from the City of Tampa and the quantity. Source Rotation staff
enters this data into the OROP data base. Factors for consideration include
season, surface water availability, the City’s ability to deliver, and budget.

3. Wellfield production constraints

When scheduling the weekly OROP production run, the Operations staff has the
opportunity to consider additional constraints at the wellfield level, either turning a
wellfield off, setting a production minimum or production maximum. These are not
permanent constraints and are available to handle short term operational problems.
If there are not additional specific constraints for the week, then this information is
not used by OROP.

4. Wells on-line status

Within the OROP database are the well status tables. Data is stored regarding
the status of all production wells, regarding on-line or off-line, permanent or
temporary, and the reason for being off-line (e.g., bacteriological testing, water
quality, mechanical problems, electrical problems). The Operations staff maintains
the wells on-line/off-line status, which can be updated prior to the weekly OROP
production run.

5. Water level data and predicted water levels at control points and 18 UFAS
wells

(a) Continuous water-level data are collected at all OROP control point
monitor wells and sent to the Enterprise database through wireless trans-
mission. The data are subjected to automated quality control/quality
assurance procedures and stored. The OROP database retrieves the most
current water-level data for all control point wells automatically through
stored-procedures in the database.
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(b) Predictive water levels for the 18 UFAS wells and 42 control points are
currently generated by the groundwater artificial neural network (ANN)
models developed by staff. The OROP database retrieves these predicted
water levels and stores them for use in the weekly OROP production run.

6. Current pumpage

(a) Daily production for all active wells is collected and stored in Tampa Bay
Water’s SCADA database. This production data is processed through our
automated quality control/quality assurance procedures and stored in the
Enterprise database for use. The OROP database retrieves current pumpage
data for all production wells in order to determine well peak month current
quantities and the 12-month running average to compare against program
constraints.

(b) Initial value for well production is taken from the last seven days of actual
production prior to the OROP weekly run.

8.3.3.2 OROP Output

1. OROP Detailed Report includes demand summary, surface water availability,
wellfield pumpage rates, well priorities, control point weights, etc.

2. OROP Operators Report provides well priorities and pumpage rates, and
wellfield rates for first two weeks of four week schedule; summarizes alternate
sources availability for the upcoming two weeks.

3. OROP Schematic of Weekly Flows.

8.4 Summary of Models

The current OROP uses Gurobi Optimization program as, a commercial solver for
linear programming (LP), quadratic and quadratically constrained programming
(QP and QCP), and mixed-integer programming (MILP, MIQP, and MIQCP). The
OROP programming code is written in AMPL (Fourer et al. 2002), a high level,
comprehensive, and powerful algebraic modeling language for mathematical
programming. AMPL is the software originally developed by AT&T Bell Labo-
ratories that uses common notation and familiar concepts to formulate optimiza-
tion models and examines solutions while the software manages communication
with an appropriate solver and databases. The language acts as a shell script that
allows efficient prototyping, change and/or experimentation with the model.
AMPL supports most commercial solvers including Gurobi. The OROP model
application has been re-developed and deployed under a Microsoft WindowsTM

application using Visual Basic Dotnet programming language. This allows the
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application to conform to Tampa Bay Water’s Information System technical
requirements, facilitates use of the application by the Operations staff, and
improves software maintenance and documentation. The OROP solution or the
weekly pumping schedule is obtained via Tampa Bay Water’s Decision Support
System (DSS). The optimization model was approved by the District as part of the
original OROP report (1998).

OROP develops an optimized well production schedule for the upcoming four-
week period. In addition to constraint parameter data and current well production
rates, the optimization model requires weekly information for the forecasted
inputs. These inputs include weekly demands forecasts at each of the points of
connection, projected UFAS and SAS water levels, and weekly forecasted surface
water availability. Since the original OROP was implemented, Tampa Bay Water
has developed additional modeling tools which provide weekly input to OROP.

8.4.1 Weekly Demand Forecast Models

Demand delivered to the points of connection is one piece of input data that is
required to be forecasted. In 2002, Tampa Bay Water developed a set of short-term
forecasting models for eleven points of connection. These models were subse-
quently implemented as part of the OROP process beginning in 2003. In 2005, the
performance of these models was evaluated. This evaluation concluded that rea-
sonable weekly forecast could be generated from the models using the average of
the six daily models. The study included a recommendation to evaluate alternate
forecasting methods. Performance of these models was highly dependent upon
obtaining reliable real-time rainfall data for three NOAA rainfall stations and
rainfall forecasts. Not all of the NOAA stations used to develop the models pro-
vide real time rainfall data accessible to Tampa Bay Water. In some cases delays
of up to three months were experienced. In addition, Tampa Bay Water explored
several approaches for obtaining improved rainfall forecast for one-week, two-
weeks and four-week periods, but to date have not found suitable rainfall products
readily available. Documentation and evaluations of these models can be found in
previous OROP annual reports.

In 2006, Tampa Bay Water implemented a new set of short-term demand
forecasting models. Seven autoregressive with exogenous variable (ARX) models
for 11 points of connections were developed (Asefa and Adams 2007). The models
estimate aggregated demands by demand planning areas and use a disaggregation
algorithm to determine demands at point of connections. Variables include recent
demands, several rainfall measures (including rain amount, number of rainy days
in a week, and number of consecutive dry days), and a temperature threshold.
Model inputs are based on observed data; no forecasts of model inputs are cur-
rently conducted. For two points of connection (Central Hillsborough and Morris
Bridge) there are insufficient data available to develop ARX models; the naïve
forecast (previous week’s demand) is used to forecast Central Hillsborough
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demands. The Morris Bridge POC demands are currently based on the City of
Tampa’s request for water. The agency continues to investigate short-term rainfall
forecasting methods which could be incorporated into the new ARX models to
improve the near-term demand forecast. During Water Year 2010, these models
will be evaluated and revised, if necessary, based on additional period of record
data.

8.4.2 Groundwater Level Forecast Models

In 2004, Tampa Bay Water developed a set of artificial neural network models to
predict water levels at the set of surficial aquifer control points and set of UFAS
monitor wells. In 2005, Tampa Bay Water began implementing these models to
replace the use of the ISGW model for predicted UFAS and SAS water levels used
in the optimization model.

8.4.3 Surface Water Availability Models

Tampa Bay Water has two water use permits authorizing withdrawals from surface
water sources. The Hillsborough River/Tampa Bypass Canal (HRTBC) water use
permit was originally issued in 1999 and authorized diversions from the Hillsbor-
ough River during high flow times (Hillsborough Reservoir discharge [ 100 cfs)
and withdrawals from the Tampa Bypass Canal Lower and Middle Pools while
requiring a minimum flow of 11 cfs over TBC structure S-160. In 2007, this water
use permit was modified to remove the minimum flow over S-160 requirement, base
withdrawals from the Tampa Bypass Lower Pool on pool stage, and increase the
Hillsborough River diversion percentage while maintaining a minimum flow of
100 cfs over the dam. Tampa Bay Water placed the Tampa Bypass Canal with-
drawal facilities and pump station into service in September 2002.

The Alafia River water use permit was issued in 1999 and authorized with-
drawals of up to 10 % of available flow to a maximum of 51.8 mgd when the river
flow is above the permit threshold of 80 mgd.

The following Alafia withdrawal rules (SWFWMD 2012) establish the baseline
flow:

1. Average daily river flow at Lithia gage is multiplied by a factor of 1.117 to
account for additional watershed contribution between the gage and Bell shoals
withdrawal point,

2. Recent weekly spring flows of Buckhorn. and Lithia Spring major are then
added,

3. Annual average daily withdrawal of 5.06 mgd of existing Mosaic water use
permit is added.

258 8 Using Optimization in Wellfield Operations



If baseline flow is less than 128 cfs (82.7 mgd) for the previous day, there will
be no withdrawal. If baseline flow for previous day is between 128 cfs and 142 cfs
(92.4 mgd), the difference between baseline flow and 128 cfs is the allowable
withdrawal. If baseline flow for previous day is more than 142 cfs, 10 % of
baseline flow up to a maximum of 60 mgd will be allowed.

Tampa Bay Water placed the Alafia River withdrawal facilities and pump
station into service in February 2003.

In 2002, Tampa Bay Water began development of models to forecast surface
water availability from the Hillsborough River/Tampa Bypass Canal system. The
Hillsborough River/TBC watershed is a very complex hydrologic system including
groundwater and surface water interactions, several major tributaries, spring dis-
charges, and man-made routing and flow control structures. The purpose of the
HRTBC models was to generate streamflow predictions for the major tributaries to
the lower Hillsborough River basin and to route these flows through the lower
Hillsborough River and Tampa Bypass Canal. The resulting predicted TBC flow
rates and associated water surface elevations were used to predict the quantity of
surface water supply available for withdrawal, treatment and distribution. Flow
generation models for the Hillsborough River gauges were developed using arti-
ficial neural network (ANN) modeling techniques. An assessment of these neural
network models was performed for the July 2005 OROP annual report. Results of
this assessment showed that the models did not perform as well during Water Year
2004 as during the initial testing and validation of the models. A second evaluation
of these ANN models was conducted in 2006. The results of this evaluation
indicated that the surface water flow models demonstrated good performance
based on known upcoming rainfall and the hydraulic models showed good per-
formance based on known stream flow. However, once upcoming rainfall was
considered unknown, stream flow model performance degraded considerably.

A weekly Markov flow model was first developed for the Alafia River at the
Lithia gauge as described in the OROP Annual Report for Water Year 2001. The
focus of the Alafia River water availability model was on prediction of flow for the
Alafia River at the Lithia gauge. Since the flow component from Lithia Springs is
both small and relatively invariant, when compared to Alafia River flow at the
Lithia gauge, short term predictions for Lithia Springs flows are treated as a
constant equal to the last weekly observation.

Each week the Markov model was used to forecast Alafia River flow at the
Lithia gauge for the next four upcoming weeks. These results along with the last
measurement made for Lithia Springs were entered into the equation to determine
the forecasted flow at the Alafia River Pump Station. The last step of the weekly
forecast was to apply the WUP withdrawal rules to the forecasted flow to obtain
the projected surface water availability for the next 4 weeks. This procedure was
followed every week, i.e. updating the last 3 weeks of the previous weekly fore-
cast and projecting one more week into the future. Staff discontinued use of this
model after new surface water forecasting models were developed.

In 2007, Tampa Bay Water developed new surface water artificial neural
network models to forecast river flows for the Hillsborough River (Morris Bridge
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gauge), Trout Creek, Cypress Creek, and Alafia River. The current models used to
provide input into OROP were developed using a GLUE-based (generalized
likelihood uncertainty estimate) neural network approach and generate weekly
forecast for up to 4 weeks. Inputs to the models include past stream flow, rainfall
and water levels of shallow and deep aquifers. Documentation of this approach is
provided in Appendix D. The models are developed using MATLAB

�
. Water use

permit withdrawal rules are applied to the results of the forecasted flows to
determine the amount of surface water expected to be available for the upcoming
four-week OROP period. These models are currently used to provide surface
water availability input data for OROP.

8.5 Control Points

Thirty-one surficial aquifer monitor wells were established as control points for the
initial optimization model as described in the first revision of OROP report (Tampa
Bay Water 1998c). Historical data were used to perform correlation analyses and
to develop regression relationships that formed the basis for the weighting function
at each site. Since implementation of the OROP in January 1999, changes have
been made to the original set of 31 control points. These changes are documented
in subsequent OROP annual reports. Currently, there are forty SAS and two UFAS
monitor wells which are used as control points in the optimization routine
(Fig. 8.3). Target groundwater levels have been established for all of the control
points in the vicinity of the 11 wellfields, the Brandon Urban Dispersed Wells and
the Carrollwood Wells.

One of the tasks for the OROP annual update was a re-evaluation of the cor-
relation and regression analyses that were performed at the control point locations.
An evaluation was conducted later to determine if the wetland/control point
regression analyses needed to be updated annually. The results indicated that
conducting regression updates every other year is sufficient for control points that
have been active for several years. As a result, the bi-annual update to the control
point target levels has been adopted as the current practice since.

8.5.1 Preferential Weights for Objective Function

The primary purpose of the optimization problem is to seek a pumpage scenario
that given demands, operational and system constraints and availability of alter-
native supplies will minimize water-level drawdown at specific locations (i.e.,
control points). An optimization routine has been setup with an objective function
that will maximize the weighted sum of the water levels at all 42 OROP control
points.
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The preferential weights xi enable priority factors to be applied to enhance
water levels preferentially at the wetland associated with the ith SAS monitoring
site or control point. This weighting factor is predetermined for each control point
based on the most recent water-level reading, and remains constant throughout the
optimization simulation period (4 weeks). Actual water levels at the monitor wells
(based on observed data) are compared to the target levels every week. Individual
weighting factors for each site are updated every week based on observed water
levels, and are used in revising the four-week short-term analysis for pumping
distributions. The weights are based on relative measures of water levels compared
to the target levels set at each monitor well and are applied to reflect the deviation
between actual and target levels. The weights function as a ranking system for the
optimization algorithm that causes the search for an optimal solution to prefer-
entially reduce drawdown (in support of increased water levels) at locations with
greater weight, thereby driving those water levels toward their target levels. Equal
weights apply to all cases in which current water levels are equal to or above their
respective targets. The weighting system is strongly non-linear where sites with
large water-level deficits receive considerably higher weight than those where
current water levels are near their targets. In certain cases, actual water levels may
be above their target levels, which would result in a preference for production in
that vicinity as compared to other locations in the region where water levels are
below target levels. The current weighting function is expressed in the functional
form of a piecewise linear on semi-logarithmic scale as follows:

log xð Þ ¼

ðHmax�bÞ
ðHmax�HT Þ

h i
if b [ HT

1þ ðHT�bÞ
ðHT�HNLÞ

h i
if HNL� b�HT

2þ 2 ðHNL�bÞ
6

h i
if b\HNL

8>>><
>>>:

ð8:48Þ

where Hmax is the period of record (POR) maximum water level and HNL is the
lowest elevation of the natural fluctuation range, which has been determined to be
8 feet below the Hmax.

This weighting function provides three different semi-logarithmic linear
equations for three regimes of water-level fluctuations. The piecewise weighting
function will bind the weighting factor at Hmax, HT, HNL, and (HNL - 6) to 1, 10,
100, and 10,000, respectively. The rate of change in weighting factor after the
water level drops below HNL will be the same for all wells. When HT is lower than
HNL, the function reduces to two equations since the second piece of the linear
equation is no longer applicable. The remaining third function is modified to
maintain a constant slope and becomes:

log xð Þ ¼ 1þ 2
ðHT � bÞ

6

� �
if b\HT ð8:49Þ

Figure 8.4 depicts the current functional relationship of the weighting factor
and water level for the same OROP well and wetland pair. Under this functional
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relationship, the weighting factor is unbounded or undefined when measured water
level in the control well is above Hmax or below HNL. If the water level is above
Hmax, the weighting factor becomes insignificant which will rotate production to
nearby wells. If the water level drops below HNL, the weighting factor becomes
very large and will force production away from nearby wells, even if the draw-
down response is relatively small.

8.6 Environmental Management Plan Wetland Referrals

As part of the Consolidated Permit for the 11 Central System wellfields, Tampa
Bay Water implements an Environmental Management Plan (EMP). The EMP
requires monitoring of wetland hydrology and ecology and periodic review of
environmental conditions at wetlands that could potentially be affected by water
production. Hydrologic parameters at monitored wetlands are statistically com-
pared to reference and control sites semi-annually at the end of both the spring
(dry) and fall (wet) seasons. Sites that fail this statistical test are called ‘‘outliers’’
and are tabulated and tracked during future semi-annual tests. In compliance with
Special Condition 3 of the 2011 Consolidated Water Use Permit, Tampa Bay
Water staff modified the protocol for the interaction between the EMP and OROP.
Based on this protocol, no action is required for the first two consecutive failures
of the outlier test. If a wetland site fails a third consecutive outlier test a site-
specific analysis is performed to determine if there is an adverse environmental
impact and if it is attributable to wellfield pumpage. If adverse impacts due to
wellfield pumpage are confirmed, then the wetland site is referred to OROP to
attempt to relieve the impact. Actions undertaken within OROP could include the
adjustment of an OROP control point target level or the addition of a new control

Fig. 8.4 The piecewise linear weighting function on semi-logarithmic scale
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point. (If it is determined that a change in OROP will not have a ‘‘meaningful
effect’’, a referred wetland may also go directly to the Phase 2 Mitigation program,
with no recommended change in OROP.)
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Appendix

The following tables briefly show the most of important optimization studies in
water resources engineering.

Author(s) Date Title

Buras 1963 Conjunctive operation of dams and aquifers
Young 1967 Finding reservoir operation rules
Hall and Butcher 1968 Optimal timing of irrigation
Hall et al. 1968 Optimization of the operation of a multipurpose reservoir

by dynamic programming
Aron 1969 Optimization of conjunctively managed surface and

groundwater resources by dynamic programming
ReVelle et al. 1969 The linear decision rule in reservoir management and

design 1. Development of the stochastic model
Burt 1970 Groundwater storage control under institutional restrictions
Harboe et al. 1970 Optimal policy for reservoir operation
Aron and Scott 1971 Dynamic programming for conjunctive use
Burt and Stauber 1971 Economic analysis of irrigation in sub-humid climate
Dudley et al. 1971 Optimal intra-seasonal irrigation water allocation
Heidari et al. 1971 Discrete differential dynamic programming approach to

water resources systems optimization
Biere and Lee 1972 A model for managing reservoir water releases
Trott and Yeh 1973 Optimization of multiple reservoir system
Argaman et al. 1973 Design of optimal sewerage systems
Aguado and Remsen 1974 Groundwater hydraulics in aquifer management
Aguado et al. 1974 Optimal pumping for aquifer
Becker and Yeh 1974 Optimization of real-time operation of a multiple reservoir

system
Cohon and Marks 1975 A review and evaluation of multiobjective programming

techniques
Mishra 1975 Optimization of conjunctive use of ground water and

surface water
Becker et al. 1976 Operations models for central valley project
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(continued)

Author(s) Date Title

Alley et al. 1976 Aquifer management under transient and steady-state
conditions

Dudley et al. 1976 Reliability, trade-offs and water resources development
modeling with multiple crops

Fults et al. 1976 A practical monthly optimum operations model
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integrated water resources management

Damodaram and
Zechman

2013 Simulation–optimization approach to design low impact
development for managing peak flow alterations in
urbanizing watersheds

Price and Ostfeld 2013 Iterative linearization scheme for convex nonlinear
equations: application to optimal operation of water
distribution systems

Kang and Lansey 2013 Scenario-based robust optimization of regional water and
wastewater infrastructure

Zhang et al. 2013 Optimal operation of multi-reservoir system by multi-elite
guide particle swarm optimization

Afshar et al. 2013 Multiobjective calibration of reservoir water quality
modeling using multiobjective particle swarm
optimization (MOPSO)

Kurek and Ostfeld 2013 Multi-objective optimization of water quality, pumps
operation, and storage sizing of water distribution
systems

Shammout et al. 2013 Participatory optimization scenario for water resources
management: a case from jordan

Guo et al. 2013 Multi-objective optimization of the proposed multi-
reservoir operating policy using improved NSPSO

Zagonari 2013 An optimization model for integrated coastal management:
development and a case study using Italy’s Comacchio
municipality

Giustolisi et al. 2013 Operational optimization: water losses versus energy costs
Kourakos and

Mantoglou
2013 Development of a multi-objective optimization algorithm

using surrogate models for coastal aquifer management
Huang et al. 2013 A stochastic optimization approach for integrated urban

water resource planning
Damodaram and

Zechman
2013 Simulation–Optimization approach to design low impact

development for managing peak flow alterations in
urbanizing watersheds

Pianosi et al. 2013 Tree-based fitted Q-iteration for multi-objective Markov
decision processes in water resource management

Shokri et al. 2013 Reservoir operation for simultaneously meeting water
demand and sediment flushing: stochastic dynamic
programming approach with two uncertainties
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