
Studies in Systems, Decision and Control 51

Staffan Sunnersjö

Intelligent
Computer Systems
in Engineering
Design
Principles and Applications

Studies in Systems, Decision and Control

Series editor

Janusz Kacprzyk, Polish Academy of Sciences, Warsaw, Poland

Volume 51

email: kacprzyk@ibspan.waw.pl

About this Series

The series “Studies in Systems, Decision and Control” (SSDC) covers both new
developments and advances, as well as the state of the art, in the various areas of
broadly perceived systems, decision making and control- quickly, up to date and
with a high quality. The intent is to cover the theory, applications, and perspec-
tives on the state of the art and future developments relevant to systems, decision
making, control, complex processes and related areas, as embedded in the fields of
engineering, computer science, physics, economics, social and life sciences, as well
as the paradigms and methodologies behind them. The series contains monographs,
textbooks, lecture notes and edited volumes in systems, decision making and con-
trol spanning the areas of Cyber-Physical Systems, Autonomous Systems, Sensor
Networks, Control Systems, Energy Systems, Automotive Systems, Biological
Systems, Vehicular Networking and Connected Vehicles, Aerospace Systems, Auto-
mation, Manufacturing, Smart Grids, Nonlinear Systems, Power Systems, Robot-
ics, Social Systems, Economic Systems and other. Of particular value to both the
contributors and the readership are the short publication timeframe and the world-
wide distribution and exposure which enable both a wide and rapid dissemination
of research output.

More information about this series at http://www.springer.com/series/13304

http://www.springer.com/series/13304

Staffan Sunnersjö

1 3

Intelligent Computer
Systems in Engineering
Design
Principles and Applications

Staffan Sunnersjö
Jönköping University
Jönköping
Sweden

ISSN  2198-4182	 ISSN  2198-4190  (electronic)
Studies in Systems, Decision and Control
ISBN 978-3-319-28123-0	 ISBN 978-3-319-28125-4  (eBook)
DOI 10.1007/978-3-319-28125-4

Library of Congress Control Number: 2015958837

© Springer International Publishing Switzerland 2016
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part
of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations,
recitation, broadcasting, reproduction on microfilms or in any other physical way, and transmission or
information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar
methodology now known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
The publisher, the authors and the editors are safe to assume that the advice and information in this book
are believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the
editors give a warranty, express or implied, with respect to the material contained herein or for any errors
or omissions that may have been made.

Printed on acid-free paper

This Springer imprint is published by SpringerNature
The registered company is Springer International Publishing AG Switzerland

To my wife, Gertie Sunnersjö

vii

Preface

We have all seen street musicians at work playing several instruments simultane-
ously and admired their ability to sound like an orchestra single handed. These
somewhat unusual musicians struggle with many and diverse instruments trying
to produce well-orchestrated music that the audience will find pleasing enough to
contribute to the artist’s bread-and-butter. To succeed, the performing artist must
be proficient with many instruments, be able to improvise as he goes along and
have an ear for the total effect of his efforts. The practitioner of engineering design
might feel a certain kinship with this man. Like the musician, the engineering
designer needs to have skills in many technical disciplines, to be able to improvise
and to come up with new ideas as problems are encountered. Further, in the same
way as the music, the product that comes out of the design process will be judged
in its entirety, not by the properties of its individual parts.

Is it meaningful, or even possible, to use computers for unstructured, multidis-
ciplinary and creative tasks such as engineering design? This book seeks to give a
qualified answer to this question. It will be apparent that the simple question has a
complex answer.

There are many tasks in engineering where computers have established a sig-
nificant role often concerned with product documentation or analysis. This book
however is directed towards the use of computers for the purpose of creation. It
focuses on how to simulate the work of a design group by implementing engi-
neering knowledge in a computer and then letting the computer operate on this
knowledge to produce new design solutions. This is not the kind of creative tasks
we normally expect computers to be able to perform and it might appear as if
the computer possessed some kind of intelligent behaviour, a kind of Artificial
Intelligence. The resemblance to human intelligence is however superficial, but
the technology has proved its worth on many types of design tasks. We call this
technology Automated Engineering Design or Design Automation, DA. The focus
is on the synthesis tasks of design work rather than the analysis tasks, which
are normally aimed at predicting the behaviour and properties of a given design
proposal.

Prefaceviii

In this book, the term Automated Engineering Design is used in the straightfor-
ward meaning of partly or completely automating tasks in the engineering design
process by the use of computer support. Such tasks are mainly found within a
category of what is called “variant design” or “redesign” in a broad sense. This
implies that the intended design process is well understood and does not require
any innovations or new knowledge—the computerised design system will always
operate “inside the box”.

Designing new products is a different matter. This will always require elements
of creativity, resourcefulness and subjective judgment. Good, original design must
exhibit a “spark of life” to be successful on the market. This, in the opinion of the
author, is something a computer will never be able to deliver. Admittedly though,
past prophecies of the future of the digital computer have in retrospect tended to
underestimate its potential.

This book aims to discuss how to plan and build useful, reliable, maintainable
and cost-efficient computer systems for automated engineering design. The book
takes a user's perspective and seeks to bridge the gap between texts on principles
of computer science and the user manuals for commercial design automation soft-
ware. The approach taken is top-down, following the path from definition of the
design task and clarification of the relevant design knowledge to the development
of an operational system well adapted for its purpose.

This is an introductory text for the practicing engineer working in industry and
covers most vital aspects of planning such a system. Experiences from applica-
tions of automated design systems in practice are reviewed based on a large num-
ber of real, industrial cases. The principles behind the most popular methods in
design automation are presented with sufficient rigour to give the user confidence
in applying them on real industrial problems. The textbook is also suited for a half
semester course at graduate level and has been complemented by suggestions for
student assignments. The primary purpose of the book is to discuss application of
design automation methods, but the reader will find that the study of design auto-
mation will also shed new light on the manual design process as is often the case
when computer technology is applied to a familiar task.

The perspective is that of the specialist of the field of application rather than
the specialist in computer science. For the latter, who has an interest in seeing his/
her subject from a user perspective, the book will offer new insights. The exam-
ples are taken from the field of mechanical engineering, but the book should be
equally applicable to, e.g. civil engineering or electrical engineering. The book has
grown out of the lecture notes of two postgraduate courses given annually or bian-
nually during the last ten years at the product development program at the School
of Engineering at Jönköping University.

Some time ago, a young relative of mine asked me what my research work
was all about. I said that I worked with computer support for variant design and
explained in a few words what this meant. She replied: “But Staffan, this sounds
incredibly boring, how can you stand working with such things?” I was some-
what taken aback by this reaction since I have always found my work exciting and

Preface ix

thought-provoking. Obviously I had not succeeded in communicating my enthusi-
asm for the subject. When writing this book, I have tried to keep this conversation
in mind in order to not only cover the utilitarian aspects of the subject but also
emphasise its much wider implications and the insights it gives into designing and
planning and, maybe, into human thinking in general.

Jönköping, Sweden	 Staffan Sunnersjö

xi

Acknowledgements

This book tries to summarise more than 20 years of experience of research, teaching
and application of Design Automation methods carried out at the Swedish Institute
of Production Research, IVF, and later at the department of Mechanical Engineering
at the School of Engineering, JTH, Jönköping University, Sweden. The author is
indebted to colleagues and management at these two research establishments for
providing funds and facilities and a stimulating environment. I would like to express
my gratitude to Ingvar Rask and Rafael Amen at IVF for the expertise they have
contributed to our research in the field. At JTH, discussions both on the development
of Design Automation know-how and how to teach the subject have been many and
inspiring. Special thanks are due to Fredrik Elgh, Mikael Cederfeldt, Joel Johansson
and Roland Stolt, all at JTH. Several of the cases of application in this book origi-
nate from the works of these colleagues. I am also indebted to a group of special-
ists active in industry, notably Esa Ryhanan at E-Rules and Sandvik Coromant, who
have shared generously of his own experiences and made valuable comments.

Finally I would like to express my gratitude to my lovely wife Gertie, who has
supported me in this work and also proof-read the manuscript. I do not think she
has any particular interest in the subject, but as always, she has encouraged me and
made my life pleasant during the literary labour, reminding me that there are other
things in life than engineering. For this I dedicate this book to her.

Jönköping, Sweden	 Staffan Sunnersjö

xiii

Contents

1	 Introduction. 	 1
1.1	 Design of Industrial Products. 	 1
1.2	 Which Are the Motives for Design Automation?. 	 3
1.3	 Modelling and Simulation of the Design Process 	 4
1.4	 Intelligent Computer Systems . 	 6

1.4.1	 Declarative Representation of Knowledge or Constraints. . . . 	 7
1.4.2	 Representation of Implicit Knowledge

by Computational Intelligence. 	 8
1.4.3	 Procedural Programming for Mathematical Modelling. 	 8
1.4.4	 The Causal Triangle. 	 9

References. 	 9

2	 Industrial Products and How They Are Developed. 	 11
2.1	 Man-Made Objects and the Laws of Nature 	 11
2.2	 A Generic Process for Product Development. 	 13
2.3	 Design Tasks with Potential for Automation. 	 18

2.3.1	 Tasks Suitable for Automation. 	 18
2.3.2	 Design for Variety, DFV. 	 21

2.4	 Investing in New Products. 	 23
References. 	 25

3	 Computerised Methods to Design for Variety, DFV 	 27
3.1	 What Are the Deliverables of the Design Process? 	 27

3.1.1	 Definition of Product Geometry. 	 29
3.1.2	 Definition of Product Structure and Technical

Specifications. 	 33
3.2	 Parametric Design . 	 34
3.3	 Configuration Design. 	 39

3.3.1	 Modularised Products. 	 40
3.3.2	 Product Structure for Variant Design. 	 42

3.4	 Generative and Hybrid Design. 	 45
References. 	 47

http://dx.doi.org/10.1007/978-3-319-28125-4_1
http://dx.doi.org/10.1007/978-3-319-28125-4_1#Sec1
http://dx.doi.org/10.1007/978-3-319-28125-4_1#Sec2
http://dx.doi.org/10.1007/978-3-319-28125-4_1#Sec3
http://dx.doi.org/10.1007/978-3-319-28125-4_1#Sec4
http://dx.doi.org/10.1007/978-3-319-28125-4_1#Sec5
http://dx.doi.org/10.1007/978-3-319-28125-4_1#Sec6
http://dx.doi.org/10.1007/978-3-319-28125-4_1#Sec6
http://dx.doi.org/10.1007/978-3-319-28125-4_1#Sec7
http://dx.doi.org/10.1007/978-3-319-28125-4_1#Sec8
http://dx.doi.org/10.1007/978-3-319-28125-4_1#Bib1
http://dx.doi.org/10.1007/978-3-319-28125-4_2
http://dx.doi.org/10.1007/978-3-319-28125-4_2#Sec1
http://dx.doi.org/10.1007/978-3-319-28125-4_2#Sec2
http://dx.doi.org/10.1007/978-3-319-28125-4_2#Sec3
http://dx.doi.org/10.1007/978-3-319-28125-4_2#Sec4
http://dx.doi.org/10.1007/978-3-319-28125-4_2#Sec5
http://dx.doi.org/10.1007/978-3-319-28125-4_2#Sec6
http://dx.doi.org/10.1007/978-3-319-28125-4_2#Bib1
http://dx.doi.org/10.1007/978-3-319-28125-4_3
http://dx.doi.org/10.1007/978-3-319-28125-4_3#Sec1
http://dx.doi.org/10.1007/978-3-319-28125-4_3#Sec2
http://dx.doi.org/10.1007/978-3-319-28125-4_3#Sec3
http://dx.doi.org/10.1007/978-3-319-28125-4_3#Sec3
http://dx.doi.org/10.1007/978-3-319-28125-4_3#Sec4
http://dx.doi.org/10.1007/978-3-319-28125-4_3#Sec5
http://dx.doi.org/10.1007/978-3-319-28125-4_3#Sec6
http://dx.doi.org/10.1007/978-3-319-28125-4_3#Sec7
http://dx.doi.org/10.1007/978-3-319-28125-4_3#Sec8
http://dx.doi.org/10.1007/978-3-319-28125-4_3#Bib1

Contentsxiv

4	 Clarifying, Idealising and Modelling of Engineering Knowledge 	 49
4.1	 What Is Knowledge? . 	 49
4.2	 Thinking Inside the Box. 	 50
4.3	 Idealisation of Product Knowledge . 	 51
4.4	 Characterisation of Engineering Knowledge. 	 53
4.5	 Modeling of Knowledge for Computer Processing. 	 55

4.5.1	 The Computer and the Human Brain. 	 55
4.5.2	 Representation of Knowledge . 	 58

References. 	 58

5	 Problem Structure and Knowledge Processing 	 61
5.1	 Well-Structured and Ill-Structured Design Tasks. 	 61
5.2	 Fundamentals of Graph Theory and Dependency

Structure Matrices . 	 63
5.2.1	 Definitions in Graph Theory. 	 64
5.2.2	 Tree Structures. 	 66
5.2.3	 The Dependency Structure Matrix (DSM). 	 66

5.3	 Problem Structure and Choice of Solution Principles. 	 69
5.4	 Problem Complexity. 	 70
References. 	 71

6	 Representation and Processing of Explicit Knowledge. 	 73
6.1	 Procedural Solution Methods. 	 75

6.1.1	 Design Problems Cast in a Mathematical Form. 	 76
6.1.2	 Case of Application of Procedural Solution Method. 	 77

6.2	 Inference Based Systems. 	 79
6.2.1	 Separating Knowledge and Control. 	 79
6.2.2	 How Is Inference Based Programs Different

from Procedural Programs?. 	 82
6.2.3	 Frames for Object Oriented Knowledge Base. 	 83
6.2.4	 Knowledge Objects . 	 84

6.3	 Exhaustive Search by G&T. 	 86
6.3.1	 Problems with Discrete Variables and Cyclic

Flow Graphs. 	 86
6.3.2	 Generate and Test, G&T. 	 88

6.4	 Constraint Processing. 	 91
6.4.1	 The Method of Elimination . 	 92
6.4.2	 Constraint Processing in Practice. 	 93

References. 	 95

7	 Representation and Processing of Implicit Knowledge. 	 97
7.1	 Case Based Reasoning, CBR, and Case Based Design, CBD. 	 98

7.1.1	 Establishing a Case Base. 	 99
7.1.2	 Case Retrieval by Search and Match. 	 100

http://dx.doi.org/10.1007/978-3-319-28125-4_4
http://dx.doi.org/10.1007/978-3-319-28125-4_4#Sec1
http://dx.doi.org/10.1007/978-3-319-28125-4_4#Sec2
http://dx.doi.org/10.1007/978-3-319-28125-4_4#Sec3
http://dx.doi.org/10.1007/978-3-319-28125-4_4#Sec4
http://dx.doi.org/10.1007/978-3-319-28125-4_4#Sec5
http://dx.doi.org/10.1007/978-3-319-28125-4_4#Sec6
http://dx.doi.org/10.1007/978-3-319-28125-4_4#Sec7
http://dx.doi.org/10.1007/978-3-319-28125-4_4#Bib1
http://dx.doi.org/10.1007/978-3-319-28125-4_5
http://dx.doi.org/10.1007/978-3-319-28125-4_5#Sec1
http://dx.doi.org/10.1007/978-3-319-28125-4_5#Sec2
http://dx.doi.org/10.1007/978-3-319-28125-4_5#Sec2
http://dx.doi.org/10.1007/978-3-319-28125-4_5#Sec3
http://dx.doi.org/10.1007/978-3-319-28125-4_5#Sec4
http://dx.doi.org/10.1007/978-3-319-28125-4_5#Sec5
http://dx.doi.org/10.1007/978-3-319-28125-4_5#Sec6
http://dx.doi.org/10.1007/978-3-319-28125-4_5#Sec7
http://dx.doi.org/10.1007/978-3-319-28125-4_5#Bib1
http://dx.doi.org/10.1007/978-3-319-28125-4_6
http://dx.doi.org/10.1007/978-3-319-28125-4_6#Sec1
http://dx.doi.org/10.1007/978-3-319-28125-4_6#Sec2
http://dx.doi.org/10.1007/978-3-319-28125-4_6#Sec3
http://dx.doi.org/10.1007/978-3-319-28125-4_6#Sec4
http://dx.doi.org/10.1007/978-3-319-28125-4_6#Sec5
http://dx.doi.org/10.1007/978-3-319-28125-4_6#Sec6
http://dx.doi.org/10.1007/978-3-319-28125-4_6#Sec6
http://dx.doi.org/10.1007/978-3-319-28125-4_6#Sec7
http://dx.doi.org/10.1007/978-3-319-28125-4_6#Sec8
http://dx.doi.org/10.1007/978-3-319-28125-4_6#Sec9
http://dx.doi.org/10.1007/978-3-319-28125-4_6#Sec10
http://dx.doi.org/10.1007/978-3-319-28125-4_6#Sec10
http://dx.doi.org/10.1007/978-3-319-28125-4_6#Sec11
http://dx.doi.org/10.1007/978-3-319-28125-4_6#Sec12
http://dx.doi.org/10.1007/978-3-319-28125-4_6#Sec13
http://dx.doi.org/10.1007/978-3-319-28125-4_6#Sec14
http://dx.doi.org/10.1007/978-3-319-28125-4_6#Bib1
http://dx.doi.org/10.1007/978-3-319-28125-4_7
http://dx.doi.org/10.1007/978-3-319-28125-4_7#Sec1
http://dx.doi.org/10.1007/978-3-319-28125-4_7#Sec2
http://dx.doi.org/10.1007/978-3-319-28125-4_7#Sec3

Contents xv

7.2	 Interpolation Methods . 	 102
7.2.1	 Curve Fitting and Response Surfaces. 	 103
7.2.2	 Neural Networks. 	 104

7.3	 Optimisation. 	 106
7.3.1	 Hill Climbing Methods. 	 107
7.3.2	 Genetic Method . 	 109

References. 	 110

8	 Planning a Design Automation System. 	 111
8.1	 Seven Steps for Systematic Planning of a Design

Automation Project . 	 112
8.1.1	 Get Acceptance and Involvement. 	 113
8.1.2	 Define and Delimit Problem. 	 113
8.1.3	 Evaluate Cost/Benefit. 	 113
8.1.4	 Acquire Design Knowledge. 	 114
8.1.5	 Clarify and Map Design Process . 	 115
8.1.6	 Classify Problem and Select Solution Strategy. 	 115
8.1.7	 Select Software Tools and Plan for Implementation,

Maintenance and Expansion. 	 116
8.2	 Criteria for Evaluation. 	 117
8.3	 Knowledge Acquisition and Process Mapping. 	 118

8.3.1	 Compiling Design Knowledge by Reverse Engineering. . . . 	 118
8.3.2	 Mapping of Design Process. 	 120

8.4	 Planning Architecture and Working Principles 	 122
8.4.1	 Review of Options. 	 123
8.4.2	 Where Should the Knowledge Be Stored and Processed?. . . 	 124
8.4.3	 Matching Design Process to DA Methods. 	 126

8.5	 Documentation. 	 128
8.5.1	 Why Documentation Is Important. 	 128
8.5.2	 Formal Methods for Documentation 	 129

8.6	 Aspects on Security . 	 130
8.7	 Knowledge Quality. 	 131
References. 	 132

Appendix A: Industrial DA Systems in Production or Prototyping. 	 133

Appendix B: Exercises . 	 149

http://dx.doi.org/10.1007/978-3-319-28125-4_7#Sec4
http://dx.doi.org/10.1007/978-3-319-28125-4_7#Sec5
http://dx.doi.org/10.1007/978-3-319-28125-4_7#Sec6
http://dx.doi.org/10.1007/978-3-319-28125-4_7#Sec7
http://dx.doi.org/10.1007/978-3-319-28125-4_7#Sec8
http://dx.doi.org/10.1007/978-3-319-28125-4_7#Sec9
http://dx.doi.org/10.1007/978-3-319-28125-4_7#Bib1
http://dx.doi.org/10.1007/978-3-319-28125-4_8
http://dx.doi.org/10.1007/978-3-319-28125-4_8#Sec1
http://dx.doi.org/10.1007/978-3-319-28125-4_8#Sec1
http://dx.doi.org/10.1007/978-3-319-28125-4_8#Sec2
http://dx.doi.org/10.1007/978-3-319-28125-4_8#Sec3
http://dx.doi.org/10.1007/978-3-319-28125-4_8#Sec4
http://dx.doi.org/10.1007/978-3-319-28125-4_8#Sec5
http://dx.doi.org/10.1007/978-3-319-28125-4_8#Sec6
http://dx.doi.org/10.1007/978-3-319-28125-4_8#Sec7
http://dx.doi.org/10.1007/978-3-319-28125-4_8#Sec8
http://dx.doi.org/10.1007/978-3-319-28125-4_8#Sec8
http://dx.doi.org/10.1007/978-3-319-28125-4_8#Sec9
http://dx.doi.org/10.1007/978-3-319-28125-4_8#Sec10
http://dx.doi.org/10.1007/978-3-319-28125-4_8#Sec11
http://dx.doi.org/10.1007/978-3-319-28125-4_8#Sec12
http://dx.doi.org/10.1007/978-3-319-28125-4_8#Sec13
http://dx.doi.org/10.1007/978-3-319-28125-4_8#Sec14
http://dx.doi.org/10.1007/978-3-319-28125-4_8#Sec15
http://dx.doi.org/10.1007/978-3-319-28125-4_8#Sec16
http://dx.doi.org/10.1007/978-3-319-28125-4_8#Sec17
http://dx.doi.org/10.1007/978-3-319-28125-4_8#Sec18
http://dx.doi.org/10.1007/978-3-319-28125-4_8#Sec19
http://dx.doi.org/10.1007/978-3-319-28125-4_8#Sec20
http://dx.doi.org/10.1007/978-3-319-28125-4_8#Sec21
http://dx.doi.org/10.1007/978-3-319-28125-4_8#Bib1

xvii

About the Author

Staffan Sunnersjö  is a professor emeritus in Machine Design at the School of
Engineering at Jönköping University, where he has lead a research group in
computer-supported engineering design. He was previously head of the division
for Engineering Design at the Swedish Institute for Production Research and before
that worked as a consultant and in industry at various R&D positions mainly related
to shipbuilding and electrical power generation for about 15 years.

After receiving his Ph.D. in Mechanical Engineering at the University of Aston
in Birmingham, UK, in 1976, he specialised in structural dynamics and vibration
control until the early nineties when his research focus turned towards engineering
design methodology and design automation. He has published four books and more
than fifty scientific papers about engineering design and taught postgraduate courses
on the subject, but also has considerable practical experience of development and
implementation of design automation systems in industry.

1

1.1 � Design of Industrial Products

As humans we have used man-made objects since the dawn of times, but it is only
since the industrial revolution some 250 years ago that the cost efficient engineer-
ing materials and manufacturing processes emerged that have since fundamentally
changed our society. Industrial production is often characterised by mechanisa-
tion, large scale operations, utilisation of mechanical power, specialisation and
standardisation.

Engineering design is about planning products that are to be manufactured by
an industrial process. In order to maintain their efficiency, these manufacturing
processes impose certain constraints on the product design. The constraints could
be of a purely technical nature depending on the intended manufacturing process,
or be due to company policies or be economically motivated. These are require-
ments imposed by the manufacturing company, but the product must also be found
attractive on the marketplace. A set of requirements that will make the prod-
ucts interesting and desirable for prospective customers must thus also be met.
Balancing the internal company requirements against the expectations and needs
of the market is a core issue for all designers and the competitiveness of a new
product relies very much of how skilfully and resourcefully these, often conflict-
ing, requirements are met.

One aspect of this is the diversity of product variants. The potential buyer
would be most pleased if all products were tailor-made to suit the needs of the
individual customer. The manufacturing and logistics departments of the supplier
on the other hand, would prefer very long series of standard products and the pro-
duction of any “specials” is usually strongly opposed. This is a consequence of
the industrial process: Crafts products are made individually and by hand, indus-
trial products are manufactured in series in a standardised and efficient process.

Chapter 1
Introduction

© Springer International Publishing Switzerland 2016
S. Sunnersjö, Intelligent Computer Systems in Engineering Design,
Studies in Systems, Decision and Control 51, DOI 10.1007/978-3-319-28125-4_1

2 1  Introduction

Standardisation is one aspect of the term “industrial production” which needs to be
somewhat elaborated before we proceed.

The strive for standardisation is typical for industrial production and is also
a necessity for the automation of design processes. This applies to the standardi-
sation of the product itself, i.e. its parts, modules and product structure, as well
as the standardisation of the design procedures used. Standardisation inevitably
implies restrictions of design freedom. This might appear detrimental to the use-
fulness of the method, but very often practical experience shows that this side
effect can be highly beneficial. Properly applied measures to bring about standard-
isation reduce costs for inventory, logistics and manufacture. Industrial efficiency
comes with repetition.

It is thus natural that crafts products are easily tailored to the requirements of
individual customers, while products coming out of an industrial process are more
standardised. When using automated engineering design systems there is an over-
all ambition to combine the flexibility of piecewise production with the efficiency
of mass production. Figure 1.1 illustrates this shift in long term production para-
digms from crafts products, over series and mass production of standard articles
towards mass production with a high degree of variety for different markets and
customers—mass customisation.

Although application of design automation methods is a necessity when sup-
plying customised products in an industrial scale, it is by no means the only
requirement. There is also a need for a well-planned flexibility of component
designs, product structures and production processes. Seen in this perspective
design automation belongs to the core technologies in design and production of
industrial products.

Number of variants
Fig. 1.1   Long term change of production paradigm. From an idea by Womack (1990)

3

1.2 � Which Are the Motives for Design Automation?

Engineering design is creative work. It requires ingenuity, intuition and good
judgement—all talents that are typically human and not easily implemented in a
computer program. This might seem discouraging from an automation perspective
and so it is as long as we are talking about original design. Investigations of how
time is spent at industrial design offices, see e.g. (Encanação et al. 1990; Ullman
1997) or Cederfeldt and Elgh (2005), indicate however that typically 70–90 %
of working hours are spent modifying, adapting or in some other way redesign-
ing already existing and proven, basic design solutions. In Crabtree (1993) it is
reported from interviews with designers in the US aircraft industry that 56 % of
product development delays were due to lack of documented design knowledge.
This underlines the importance of reuse of ideas and engineering knowledge that
is established and form part of a company’s corporate knowledge. Redesign work
is by no means trivial, but it does not rely on creativity, but rather on skilful appli-
cation of existing product knowledge. This is the natural field of application for
design automation methods and this is where the major benefits usually are found.

Product development traditionally aims at a basic product design that is viable
on the market. The key to real economic success however often lies in the crea-
tion of a product family based on this original design. The technology of the basic
design is reused for the whole range of product variants with a minimum of cost,
thereby multiplying the benefits of the original investment. This means that crea-
tion of product variants for a better penetration of established markets and gaining
access to new markets becomes possible without major investments in develop-
ment projects.

Design automation offers opportunities to increase speed, quality, cost effec-
tiveness and other desirable characteristics of product variant design. There is also
a trend among customers to discard standard products and demand a higher degree
of customisation. The process of globalisation also requires products to be made
in many versions for different countries and markets. Computers are very efficient
for tasks involving laborious, repetitive work, while humans excel in tasks requir-
ing creativity, judgment, common sense and other similar traits. It is of critical
importance to distinguish which engineering tasks that might successfully be car-
ried out by a computer and which tasks are better handled by a human designer. In
fact one strong motive to introduce design automation systems is to release engi-
neering resources for creative work, e.g. original design. Although the use of a DA
system often requires no creativity, the setting up of one is a highly creative and
demanding task.

Successful companies have often created an element of uniqueness in their
business processes. This applies also to their use of design automation methods
as will be apparent in the industrial examples in Appendix A. Nevertheless, the

1.2  Which Are the Motives for Design Automation?

4 1  Introduction

following motives are often found when analysing what benefits companies gain
by using design automation methods:

•	 Dramatic reduction of lead times in design, analysis, process planning, cost esti-
mation and production preparation,

•	 Relieve designers and production planners of routine work and make resources
available for creative tasks,

•	 Better optimisation of products and processes,
•	 Quality assurance—Streamlined, stringent and traceable development process

that is not critically dependent of which individual that is doing the design work,
•	 Acquisition and accumulation of corporate knowledge.

In a survey of twelve Swedish manufacturing companies either using or in the
process of planning a Design Automation system, the objectives for applying
this method was investigated. The distribution between six common objectives is
shown in Fig. 1.2. The least common objective is the establishment of a corpo-
rate knowledge bank. In the opinion of the author, companies underestimate this
aspect, which might well be the most important factor. The value of the knowledge
bank might however be significant in the long term perspective, while companies
often have to achieve very quick return on invested time and money.

1.3 � Modelling and Simulation of the Design Process

Design automation deals with the tasks of idealising, modelling and simulating
the design process and its associated knowledge. When a new product variant
is required the computer model is executed with the new specifications as input

0 20 40 60 80

6

5

4

3

2

1

Series1

Laborious design task

Quality assurance

High repetition frequency

Lead time minimisation

Highly optimised design

Establish knowledge bank

(%)

Fig. 1.2   Distribution between six common motives for automating variant design at twelve
manufacturing companies. Drawn from results in Amen et al. (1999)

5

resulting in an adapted product variant as output. The computer model can be seen
as a simulator that emulates the designer or the design team.

Modelling is a key concept in many branches of engineering science. The pur-
pose of using models is to create a simplified description of a phenomena or a
process that if completely represented becomes too detailed and unwieldy to be
practical. In the classical engineering disciplines models are usually of a mathemat-
ical nature and are adjusted and verified by comparisons with experiments. Such
models are used to analyse product behaviour and product properties. For our appli-
cation something else is clearly wanted—our model is set up for the purpose of cre-
ating design solutions, i.e. to synthesise a solution from given premises. To achieve
this we need to study and represent the human design process and all its sub-tasks.
But how do we simulate human thinking processes that are ill structured, multidis-
ciplinary and may result in not one, but many, valid answers? This is a complex task
and in the same way as for all types of modelling, the challenge is to create simple
models that still retain all the important characteristics of the real world.

This task is illustrated by Fig. 1.3. From given product specifications (input
parameters), the design team applies its experience and product specific knowl-
edge and comes up with a proposed solution defined by a set of design variables.
The design variables should fully describe the product quantitatively as well as
qualitatively and could be numerical (real, integer, sets), boolean, text strings or
more complex representations. When simulating this process it is required that the
same input parameters result in similar (not necessarily identical) design variables
as the human designers would arrive at, representing a fully viable design solution.
This implies that the flexible, dynamic and multifaceted human mind is to be emu-
lated by a computer processor with its preprogrammed and rigid modes of opera-
tion. Clearly this is not a straightforward matter of computer programming. On
the contrary, the transition from human knowledge and human working methods
to computer executable instructions is the key challenge when developing design
automation systems and the methods used often comes from a field of computer
science called Artificial Intelligence.

Fig. 1.3   Simulation of design work

1.3  Modelling and Simulation of the Design Process

6 1  Introduction

The concept of simulating human thinking requires some comments. Similarity
behind cognitive processes in humans and computers are often superficial and it is
not self-evident that the aim should be to make the computer mimic human think-
ing. What is an efficient mode of operation for the human mind may be unsuitable
or impossible for the computer and vice versa. There might well be more efficient
ways to utilise the processing power of the computer—the important thing is that
the results of human thinking and computer processing coincide.

It is thus important to understand the strengths and weaknesses of the
computer’s way of operation when applied to design tasks. It is natural to take
advantage of the computer’s ability to carry out long sequences of numerical oper-
ations, which the human mind is not well adapted to. Computer support enables
the use of design methods not otherwise realistic, e.g. stringent and large scale
optimisation processes. This is also true of long chains of logical operations where
the computer vastly outperforms the human mind. Human reasoning is slow and
tedious, goes on between individuals or inner monologs, but is in practice often
replaced by instant response based on experience or intuition. Humans, includ-
ing human engineers, do not behave as logically as we would like to think we do,
making the use of computer support not only more efficient but also more reliable.

1.4 � Intelligent Computer Systems

Let it be said immediately—computers have no intelligence in the normal sense of
the word! They will only carry out instructions that they have been programmed to
do. For many tasks such processing is entirely satisfactory but this rigid and pre-
dictable mode of operation is not what we normally associate with “intelligence”.
Although most people have an opinion of what intelligent behaviour is, the term
intelligence itself is by no means clear-cut and a generally accepted definition is
lacking. For a discussion of intelligence and computers, see e.g. (Luger 2005).

So why use the term “intelligence” at all? There is a field of computer sci-
ence called Artificial Intelligence, AI, which focus on programming methods
intended to emulate human intelligence. Many computational methods used for
design automation were originally developed as general purpose AI methods.
The term artificial intelligence originates from a conference held in Cambridge
Massachusetts in 1956, which shows that the concept of simulating intelligence
arouse very early in the history of digital computers.

What is characteristic of artificial intelligence methods is not a particular com-
puter technology but rather the common purpose of creating computer systems
to solve problems normally associated with human problem solving. This means
that computers may exhibit something that resembles intelligent behaviour, while
in reality the computer only processes sequences of binary numbers as is its only
possible mode of operation. In principle, all computable design problems can be
solved by traditional programs—the difference is in efficiency, maintainability,
reliability and transparency. Programming methods close to the computer’s way of

7

working promote computational efficiency but are inefficient from a programmer
perspective, while programming methods oriented towards user or problem repre-
sentation are user friendly but less efficient computationally.

With this understanding of the term “intelligence” there is some justification in
regarding computer systems used for decision support or automation as intelligent.
Such systems are normally limited to restricted domains and have found applica-
tions in many fields such as speech recognition, translation, diagnosis, banking,
web commerce and automatic programming.

Intelligent systems for design automation represent one such group of dedi-
cated computer systems that perform tasks one might not expect computers to do
and that use problem orientated programming methods. Two main groups of AI
related programming methods can be distinguished: Declarative Programming and
Computational Intelligence. A third category that should not be forgotten is the
Procedural programming methods that represent traditional programming which
also have an important place in the context of design automation. These methods
often used in design automation systems are very briefly introduced below (see
also Fig. 1.4) but will be given a more exhaustive treatment in Chaps. 6 and 7.

1.4.1 � Declarative Representation of Knowledge
or Constraints

Knowledge and constraint based systems are typically based on explicit, declar-
ative knowledge and generic execution control. This means that the design rules
and constraints that govern a specific problem are defined by the programmer in

Intelligent Systems for DA

Procedural Declarative Implicit

Inference based Constraint based

Fig. 1.4   Computer systems for design synthesis problems arranged according to the principles
of underlying technology

1.4  Intelligent Computer Systems

http://dx.doi.org/10.1007/978-3-319-28125-4_6
http://dx.doi.org/10.1007/978-3-319-28125-4_7

8 1  Introduction

a knowledge base, while the execution control rely on a generic program that will
apply the relevant parts of this knowledge base as required. Hence, the program-
mer does not explicitly govern how the knowledge should be used, he/she only
has to make sure that all elements of knowledge is correct and consistent. This
division between knowledge and execution control is typical for declarative pro-
gramming methods and reduces program size and simplifies programming and
maintenance. One familiar example of declarative programs are spreadsheets
where updating takes place without any direct control by the user. Two impor-
tant classes of declarative programming methods often used in design automation
systems will be discussed in some detail in Chap. 6: Inference based systems and
Constraint based systems.

1.4.2 � Representation of Implicit Knowledge
by Computational Intelligence

Knowledge based system as well as many systems based on mathematical mod-
els use explicit knowledge in the sense that when executed they will lead directly
to the required solution. For many problems it is however not practical or even
possible to formulate explicit design rules. For instance, solutions might have to
be found by iterative procedures that search the design space systematically. One
such search based method is numerical optimisation that use problem specific defi-
nitions and a generic solver.

Another situation when explicit knowledge is never defined is when already
existing product variants are to be used for a set of new requirements. In this case
the design rules are imbedded in the existing design solutions and not explicitly
formulated. This approach is known as Case Based Reasoning, CBR, where a spe-
cial search engine scans a systematically arranged case base with existing solu-
tions in the same product domain to find a best match.

A third example of computational intelligence methods is an interpolation
method called neural networks. The method is inspired by the structure of biologi-
cal brain tissue and consists of a network of nodes and links. The gain factors of
the links are adjusted so that the entire network produces input-output results simi-
lar to a set of existing, proven solutions.

1.4.3 � Procedural Programming for Mathematical Modelling

Although methods originating from the field of artificial intelligence are often
used in design automation systems, it is important to remember that traditional,
procedural programming methods also play an important role. For problems
where the same (set of) fixed procedure(s) should always be used and where
heavy numerical computations are required, the traditional programming methods

http://dx.doi.org/10.1007/978-3-319-28125-4_6

9

usually turn out to be the most efficient. Having acknowledged their importance,
these methods will not be given much further attention in this book since they are
well known and there exist an abundance of literature for such methods.

1.4.4 � The Causal Triangle

It was previously mentioned that the methods used in design automation originate
from the field of Artificial Intelligence which deals with a wide range of problems.
These applications adress problems with different relations between causes and
effects and we need to position design automation applications from this perspec-
tive. Figure 1.5 illustrates the three principle modes of operation:

1.	 Initially, the effects are unknown. During processing, the causes create effects
when the predefined rules are applied. This is a generative process called
deduction or inferencing.

2.	 Initially, the causes are unknown. During processing, the causes of the effects
can be determined using the predefined rules. This is a goal driven or diagnosis
process called abduction.

3.	 Initially, the rules are unknown. During processing, the rules that relate causes
to effects are derived. This is a rule derivation process called induction.

When we consider design automation applications the predominant mode of
operation is alternative one above and the term “inference” frequently occur when
discussing such systems. One could imagine also rule derivation as a possibility
if design rules need to be determined as well as applications where the required
goals are back-tracked to their respective sources. However, the dominating appli-
cation is inferencing and this is the only causality that will be treated in this text.

References

Amen, R., Rask, I., Sunnersjö, S.: Matching Design tasks to knowledge based software tools. In:
Proceedings of ASME Design Engineering Technical Conference, Las Vegas (1999)

Cederfeldt, M., Elgh, F.: Design automation in SMEs—current state, potential, need and require-
ments. In: Proceedings of ICED05 Conference, Melbourne, Australia (2005)

Fig. 1.5   Deductive (red),
abductive (green) and
inductive (blue) proocesses

1.4  Intelligent Computer Systems

10 1  Introduction

Crabtree, R., Nirmal, B., Fox, M.: Design Engineering: Problems in Coordination. In:
Proceedings of JSME/ASME Workshop on Design, Tokyo (1993)

Encanação, J.L., Lindner, R., Schlechtendahl, E.G.: Computer Aided Design: Fundamentals and
System Architectures. Springer-Verlag Ltd., Berlin (1990)

Luger, G.: Artificial Intelligence—Structures and Methods for Complex Problem Solving.
Pearson Education Ltd, Harlow (2005)

Ullman, D.G.: The Mechanical Design Process. McGraw-Hill Book Co., Singapore (1997)
Womack, J., et al.: The Machine that Changed the World. Rawson Associates, New York (1990)

11

2.1 � Man-Made Objects and the Laws of Nature

In our everyday life we are surrounded by and dependent on man-made systems
and products. These are sometimes referred to as artifacts. We live in an artificial
environment, we breathe air that comes heated and humidified out of the ventila-
tion system, we use electronic equipment to communicate at distances out of hear-
ing and we use transport systems to travel around the globe. When we venture a
leisure trip into nature most of us bring special clothing and equipment to preserve
our artificial environment as far as possible. The principles of natural and man-
made objects are elaborated in depth by Nobel Laureate H Simon in his classical
book The Sciences of the Artificial, (Simon 1996). Here we will discuss how the
natural laws of physics will interact with the design rules of human origin in prod-
uct development and what the implications are for the planning and functionality
of a design automation system.

Natural laws are highly predictable and highly repetitive—if you throw a stone
into the air, gravity will force it back to the ground with 100 % certainty. The same
cannot be said for design rules created by man. The artificial laws that we impose
on manmade things reflect intentions, and these intentions may well change over
time. The intentional rules or constraints that we impose on a manufactured object
usually reflect design knowledge based on intuition, experience or policy and are
often termed heuristic rules. It is an important quality of a design automation sys-
tem to be flexible in the sense that it allows easy change of the design rules, espe-
cially those having an artificial origin.

Of course all man-made products are subject to the inherent natural laws of
e.g. physics or chemistry, but their properties and behaviour are also subject to
rules defined by man. These artificial laws, represent the conscious intentions of
the persons or organisations that designed and manufactured the products. Hence,
the designer of a complex mechanical product is governed not only by constraints

Chapter 2
Industrial Products and How
They Are Developed

© Springer International Publishing Switzerland 2016
S. Sunnersjö, Intelligent Computer Systems in Engineering Design,
Studies in Systems, Decision and Control 51, DOI 10.1007/978-3-319-28125-4_2

12 2  Industrial Products and How They Are Developed

originating from technical disciplines like structural mechanics, fluid dynamics,
thermodynamics and so forth, but also by constraints originating from legislative
or national standards, corporate policies, manufacturing system characteristics,
customer specifications, or, maybe most importantly, the experiences and intui-
tion of the individual designer. For the product to be successful neither category of
constraints, natural or artificial, can be neglected.

To exemplify how these two categories of constraints interact and affect the
design solution, let us consider a simple mechanical component like a threaded
fastener in the form of a cylindrical steel screw. If the screw is subject to a ten-
sional force F, has a radius r and the steel used has a maximum permissible stress
of σy; then the required dimension, the radius, can be calculated from:

Assume F = 10,000 N and σy = 250 MPa, then a value for r of 3.57 mm will
result. A screw with a diameter 7.14 mm would thus exactly be able to carry
the required load. The result follows from elementary stress theory, i.e. a law of
nature.

If the fastener had been part of a living creature and made of biological tissue
the diameter would probably due to the evolution of the species converge towards
this optimal value in the same way as a human thigh-bone is carefully sculptured
to carry the loads that it is exposed to. For a part of a man-made object however,
other considerations and design rules must be taken into account. Clearly nobody
would want to use a screw with an odd diameter like 7.14 mm. Such a screw can-
not be bought off the shelf, it would require special stock of spare parts and no
service technician would possess a socket wrench that would fit the head. The
designer would instead use a standard M8 screw, thereby slightly over dimension-
ing the component for the sake of standardisation. Behind this decision is an intent
to follow metric fastener standards and company policy.

Does this distinction between natural laws and design rules of human origin
have any specific bearing on issues related to design automation? Very much so,
as we will see these differences have a profound effect on how to realise such a
system.

First of all the two categories of design rules and methods usually require dif-
ferent methods of implementation. Computer tools for representation of objects
under the influence of natural laws of physics are mainly directed towards math-
ematical modelling and simulation. These tools thus need to have powerful func-
tions for analytical and numerical processing. The design rules and methods that
are of human origin on the other hand, are frequently of a heuristic nature. By
heuristic knowledge in the context of engineering is usually meant simple design
rules discovered through experience or common sense, see Sect. 3.2 for a more
exhaustive definition.

Typically the man-made rule sets are large compilations of rather simple rela-
tions and constraints, e g lists of allowable values or combinations, sometimes

r =

√

F

πσy

http://dx.doi.org/10.1007/978-3-319-28125-4_3

13

with many levels of conditional statements and nested loops. Representation of
the human design intent of a product design very often requires programming
paradigms that are efficient for logical reasoning and combinatorial problems. The
differences between the two categories of product design knowledge demand cor-
responding differences in the functionality of the computer programming para-
digms used in a design automation application.

There is a second significant difference illustrated by the screw example. First
assume that screw diameters in the range three to ten millimetres are allowed. The
proposed diameter of 7.14 mm resulting from the calculation based on elementary
stress theory is a real number. The solution space of real numbers is continuous
with an infinite number of solutions in the permissible range. If we introduce a
design rule of typical human origin saying that only metric standard screws are
allowed, then only discrete diameter values may be chosen. The solution space is
then reduced dramatically and in our example consists only of M3, M4, … M10,
i.e. the solution space consists of eight discrete numbers. For discrete solution
variables within a limited solution space different types of search methods can be
employed.

Limiting the solution space thus opens up for other programming paradigms
than we are used to from traditional programming. For many design automa-
tion tasks computer methods based on some form of search strategy have proved
very powerful. Let us return again to our example with the cylindrical screw. If
we apply the search approach of generate and test here, we would start with the
smallest screw, M3, calculate the arising stress and compare with the allowed
value. If the resulting stress is below the maximum permissible value, this screw
is selected, otherwise the next size is tried until a satisfactory size is found. This
example is trivial and here the search based method has no real advantage over
direct calculation and rounding, but for many ill structured design problems search
based methods are very powerful, particularly from a computer programming per-
spective or may even be the only available method that works in practice. It should
be emphasised again that these methods can only be used when the solution space
is finite and consists of discrete solutions, which is often, but certainly not always,
the case for problems governed by design rules of human origin.

2.2 � A Generic Process for Product Development

The purpose of a design automation system is to simulate the product development
process as it is traditionally carried out. Before we focus on design automation a
brief orientation of this process is called for.

Product development is a process characterised by creativity, trial-and-error,
subjective judgements, unexpected surprises and many difficult trade-off deci-
sions. Should it be seen as a work of art or a process of science?

Management would much prefer to see product development as a scientific pro-
cess. Experience however tell us that product development projects are notoriously

2.1  Man-Made Objects and the Laws of Nature

14 2  Industrial Products and How They Are Developed

difficult to control. Time and cost budgets are frequently overdrawn and fulfilment
of requirement specifications often becomes a matter of negotiations between
the departments for engineering and marketing. In a survey of ten companies in
the defence and supplier industries budgets were on average overdrawn by about
50 % and time gates by about a factor of two, (Svensson 1990). A large automo-
tive project typically involves several thousand development engineers each with
specialist knowledge of a particular part, system or property. Requirement speci-
fications for such projects could be of the order of two thousand to three thou-
sand measurable quantities (Sunnersjö 2003). All in all these large scale projects
represent rather formidable efforts, which management cannot really control in a
strict sense, but has to rely on the skill and judgement of others. Assuming that
all project participants have sufficient skills for their respective tasks, the manage-
ment challenge is to assure that the whole development team moves in the same
direction and has a common understanding of what is to be achieved. This can be
more easily achieved if there is a map of the process and this map is well known
and accepted by everybody involved.

The map should take the form of a description, or model, of the product devel-
opment process. In a survey (Nordström 1995) of how twelve Swedish manufac-
turing companies used ten popular product development methods it turned out that
the only quality assurance method widely used and appreciated was when compa-
nies established a company specific product development model. The mere pro-
cess of setting up such a model improves the process itself and the existence of a
model clearly helps in making everybody aware of their own role in the process
and how the different steps in the process depend on each other. It was generally
accepted that the companies with the best development process will in the long run
also produce the best new products.

The introduction of the concept of a product development model is usually
attributed to Pahl and Beitz (1996). Their book, Engineering design—a systematic
approach, first published in the German language in 1977, must surely be the most
quoted publication in the engineering design literature. This book takes a signifi-
cant step in moving product development towards a scientific process. It presents
a detailed and logical step by step procedure for product development, parts of
which was later used for the German standard, VDI-2221. Another significant con-
tribution in the same direction was made by Hubka and Eder (1988), who intro-
duced the concept of system theory into engineering design.

Both these works focus on engineering design tasks, which are central, but not
stand-alone, activities in product development. Marketing, production planning,
business activities, intellectual property rights and so forth are other aspects that
must be considered. Also technical pre-studies, which are more general investiga-
tions intended to create a level of preparedness for future technical developments
that may be required in new products, is part of the complete development process.

The concept of integrated product development (“total design”, “simultane-
ous product development”, “concurrent engineering”) became the generic pana-
cea when planning product development processes in the early nineties with
Pugh (1991) as one of the dominating text books. For most steps in the product

15

developing process there exist general design methods with the intention of pro-
viding stringency and effectiveness to the process. Two popular textbooks, both
with a methodology focus, are Ulrich and Eppinger (2012) and Ullman (2003).

All product development models with appended methods present a simplified
view of a very complex process. Nevertheless experience has proved them use-
ful. Below an example of a simple model integrating design and manufacturing
developments is presented, see Fig. 2.1. It has been used by the author for about
20 years and found acceptance where applied. It is a useful frame of reference
when studying traditional development processes with the intent to set up a design
automation system.

The process of Fig. 2.1 normally proceeds in a zig-zag fashion starting with the
conceptual design phase generating a concept model, then moving to an inventory
of production processes suitable for the planned product concept and resulting in a
production process proposal. Then the process again moves back to the design leg
with the preliminary design phase and so on.

In an ideal world the process will always move forward (double arrow, “synthe-
sis”) passing through all the required stages. In real life however, product devel-
opment inevitably becomes an iterative process with many loops (single arrow,
“analysis”). Obviously we would want these feed-back loops, indicating that some-
thing must be corrected, to be few and short. It would be very unfortunate if a seri-
ous problem, that requires a change of the chosen concept, would be discovered
first when the product has been launched on the market. Much time and money
would then have been wasted and even worse, customer confidence might have
been upset.

To minimise the risk of late changes in the product development process it is
important to analyse the proposals for design and manufacture so that unsuitable
solutions are discovered at an early stage. This analysis could be performed by e.g.
computer simulations, scale model testing or prototype testing. Between all stages
in Fig. 2.1 there are feed-forward synthesis arrows and feed-backward analysis
arrows that constitute the two elements of the iterative process.

Before proceeding we need a somewhat more stringent definition of the two
terms synthesis and analysis. In this book the terms are used according to the fol-
lowing definitions:

•	 Synthesis: The phase where an identified engineering task or problem definition
is addressed in order to find a satisfying solution based on previous knowledge
and expertise (Johannesson and Persson 2004).

•	 Analysis: The phase where the product or product part solution is evaluated
based on its physical representation and characteristics. Importantly, the analy-
sis is also an activity that precedes the synthesis phase as a problem definition is
broken down into manageable parts (Dieter and Schmidt 2009)

To exemplify the concepts of synthesis and analysis, consider Fig. 2.2. The truss
is defined by the rod dimensions, the rod lay-out, the boundary conditions and the
material properties. Using these data the resulting stiffness, K, can be calculated
by e.g. the finite element method. This is an example of analysis.

2.2  A Generic Process for Product Development

16 2  Industrial Products and How They Are Developed

If we reverse the problem and instead start out with a required stiffness and
length and want to define a truss structure that will provide this stiffness we have
a synthesis problem. Clearly a large number of solutions exist, e.g. we could use
thinner rods made of a stiffer material or arrange the lay-out differently. A syn-
thesis problem is often governed by constraints that will reduce the number of
possible solutions. For instance, it might be a requirement that all rods are of the

Fig. 2.1   Process model for product development that integrates product design (left leg) and
production preparation (right leg). The process starts with a product plan from the marketing
department and results in a complete definition of the new product and plans for its manufacture.
Synthesis activities denoted by double arrow, analysis activities with single arrow. See also Rask
and Sunnersjö (1998)

17

same diameter and material. If we are satisfied just by finding a solution that is
consistent with the given constraints, we have a constraint satisfaction problem. If
constraint satisfaction is not good enough, but instead the best possible solution is
required, then we have defined an optimisation problem.

The alternation between creative synthesis actions and evaluative analysis
actions is typical not only for the product development process but also for many
other creative intellectual tasks. This iterative process is illustrated in Fig. 2.3.
Starting from a problem definition, i.e. in our case a requirement specification for
a new product, we apply our previous knowledge and experience from the specific
technical field together with an element of creativity. Going from problem definition
to solution proposal is a synthesis activity. As the figure illustrates the task at hand
could be more or less straightforward depending on the necessity of creative, new

P

d

Stiffness K=P/d

Fig. 2.2   Cantilever truss subjected to force P causing the displacement d

Fig. 2.3   Solving engineering problems through successive alternations between synthesis and
analysis activities. See also Rask et al. (2000)

2.2  A Generic Process for Product Development

18 2  Industrial Products and How They Are Developed

ideas. For design automation applications it is of course only possible to fully auto-
mate development processes where all necessary product knowledge already exists.

When the synthesis phase has resulted in a design proposal, this will be evalu-
ated for functionality and compared with the original specification requirements.
The evaluation implies analysis of the product and its functions which could be
achieved by e.g. computations, expert review or prototyping. The analysis phase
will result not only in a conclusion whether the specifications are fulfilled or not,
but also in new knowledge about the product and its behaviour and properties.
This is added to the already existing knowledge bank and improves the chance of
succeeding in the next synthesis loop, should the previous one not having resulted
in an acceptable solution.

2.3 � Design Tasks with Potential for Automation

Over the last three to four decades amazing progress has been made on compu-
tational methods for analysis and simulation. Finite element methods, FEM, for
structural and solids stress and strain analysis, Computational fluid dynamics,
CFD, for flow problems, Boundary elements for potential field problems (e g
acoustics) and rigid body dynamics, RBD, for mechanism analysis to name only
a few. Corresponding progress in the other leg of Fig. 2.8, the synthesis tasks,
has however been much slower. This is no surprise, synthesis problems are much
more open, do not have a fixed solution path, have many possible solutions, are
often ill structured and the knowledge base is made up by a mixture of rules of
varying character and origin. Computational synthesis tasks seldom require heavy
number-crunching. Instead the difficulty lies in the capture of human knowledge
and human working methods within the narrow confines of the digital computer.
Modern programming methods do however open up new possibilities to solve syn-
thesis problems. The cases of applications must however be carefully chosen and
this section will discuss what characterises problems that are potential candidates
for automation.

2.3.1 � Tasks Suitable for Automation

Selecting and defining the task(s) to automate is the first and foremost step when
planning a design automation project. Figure 2.1 shows the complete product
development process for original design from start to finish. It is rarely feasible
to automate the process in its entirety. Instead typical design automation systems
are intended for some kind of variant design and address only those parts of the
process where the ratio cost/benefits is particularly favourable. It is often tempt-
ing to address too large tasks, but the key to success lies in finding appropriate
limitations.

19

The engineering design process spans over a wide spectrum of tasks with dif-
ferent requirements of creativity starting with straightforward selection based on
given criteria and leading to problems of original design requiring a high degree of
innovation. A categorisation of design tasks according to degree of creativity was
suggested by Ullman (2003) and is given below in an adapted form suited for the
purpose of design automation. The list is given in ascending order of demands on
creativity:

•	 Selection: Choice of individual component among predefined sets to satisfy
specified constraints and objectives

•	 Parametric Design: Dimension driven geometry that adapts a predefined basic
design (including topology variations) according to input specifications, formu-
las, methods, constraints or relations (template design)

•	 Configuration: Choice of individual components (from predefined sets) to be
assembled into a system with specified properties (“catalogue design”). Choice
governed by specified constraints and objectives.

•	 Configuration of parametric components: Combination of above
•	 Redesign: Includes work to adapt, modify, improve and optimise an existing

design solution to fulfil new requirements
•	 Original design: The design task is defined by requirement specifications and

given constraints but the principles as well as the details are left to the designer.
Future variations of an original design concept belong to previous categories

These six categories of design tasks form a suitable starting point when discussing
the applicability of design automation methods. Obviously we want to build such
systems at low cost and at the same time reaping large benefits. How to achieve
this will be elaborated more in detail in Chap. 8, but a few fundamental considera-
tions will be discussed here. First of all the task to be automated must be chosen
so that it is not mutually dependent on other tasks. If mutual dependencies with
other tasks exist, these tasks will need to either be included in the same system or
solved by human intervention.

One basic assumption is that all knowledge required to solve the design task
is available directly or indirectly in a format that can be implemented by a com-
puter program. A well-defined workflow for the design tasks that are to be imple-
mented must exist or be possible to develop. These prerequisites constitute what is
called a computable design problem. Another way of putting this, which is nearer
to computer science terminology, is to say that the problem must be possible to
solve subject to the closed world assumption. The implication of this assumption
is that all facts are regarded as false unless they have a value that is either stored in
the computer memory or possible to infer.

These criteria indicate that products based on mature, proven and well docu-
mented technology are good candidates for automation. The more stringent and
explicit this product knowledge is, the easier it is to program it into executable
code. Referring to the list above it could be concluded that the first four design
categories, selection, parametric design, configuration, configuration of paramet-
ric components, are the primary candidates for automation. Original design is not

2.3  Design Tasks with Potential for Automation

http://dx.doi.org/10.1007/978-3-319-28125-4_8

20 2  Industrial Products and How They Are Developed

a suitable application, while redesign offer some possibilities for more advanced
forms of design automation.

The previous discussion concerned the feasibility or ease of building a design
automation system for a given task. The other consideration when selecting tasks
to be automated is what benefits that could be expected. Often customisation has
a value in its own right and is the dominating driving force. Providing fast and
accurate quotations for customer adapted products is a specific business factor
where design automation might be crucial. Generally speaking, it is when a prod-
uct will need to be redesigned in a large number of variants and when design cost
or design lead time become a problem that it will be advantageous to use design
automation methods. Figure 2.4 illustrates how the potential for design automation
increases with product variety and technological maturity.

The previous discussion implies that variants are sold directly to the customer
and that the ability to meet requirements of products adapted to customer require-
ments have a significant business value. There are however also useful applications
of design automation where many variants are created for the internal development
process but only the final version is actually sold to the customer. This kind of iter-
ative design process often has the objective of optimising certain properties of the
product and the design automation system becomes an instrument for this process.

Fig. 2.4   The potential for design automation is high for products being technologically mature
and being produced in many variants. The value 1 on the abscissa axis denotes that all products
delivered are unique, while the value 1 on the ordinate axis denotes that all the required design
rules are known and documented

21

2.3.2 � Design for Variety, DFV

The process of product development will be different if detail design and manu-
facture is initiated by a customer order compared to when the product is designed,
manufactured and stocked, waiting for a customer. The two alternatives are illus-
trated in Fig. 2.5. The first three steps are similar, but while the traditional, mar-
ket based process continues until the product is launched on the market, the order
based design makes a halt until a customer order with specifications is placed.
Only then is detail design and manufacture carried out. The traditional market
based process means that the marketing department takes the role of a customer

Market analysis &
business plan

Conceptual design
& process
planning

Functional tests &
trial manufacture

Detail design

Customer

Preparation &
manufacture

Logistics

Craete system for
automated
design, funct ionl
predict ions and
manufacture

Detail design

Praparation &
manufacture

Customer

Customer-Spec

A

B

Lessons
learned

Market analysis &
business plan

Conceptual design
& process
planning

Functional tests &
trial manufacture

Fig. 2.5   Market based and order based design and manufacturing processes. Part A is carried
out prior to order, part B when an order has been placed

2.3  Design Tasks with Potential for Automation

22 2  Industrial Products and How They Are Developed

representative and specifies the product trying to anticipate what the market pref-
erences will be at the time the product is launched. Needless to say, considerable
resources have been spent before the product meets the customer and if develop-
ment time amounts to several years, there is a risk that the internal specification
has not been on target.

The order based process avoids much of these problems but requires some sort
of automated design system and a manufacturing facility with high flexibility. For
products that are built in short series and high costs, e.g. ships, power plants, rail-
way cars, production equipment etc., order based design is the self-evident way
of working. But there are many degrees of variations available where the product
platform is market based and the equipment is order based, e.g. in the motor car
industry.

Standardisation is a core value in almost all efficient industrial processes. All
experience indicate that industrial success is promoted by standardised products
and procedures. However, as we have seen, with increased global business envi-
ronment there is also a trend towards increased product variety. How can these
contradictory trends be reconciled? How can flexibility and standardisation be
combined? Design automation methods have an important role in this respect, but
of course, the product itself must be designed in such a way that the required vari-
ations can be realised with relative ease. The methodology to achieve this is called
Design for Variety, DFV, and the corresponding industrial process is illustrated in
Fig. 2.6.

From a business point of view one can distinguish between four categories of
design variations.

•	 Select from stock: All available variants are designed and manufactured prior
to customer order

•	 Configure to order: Standardised modules and components are assembled in a
variable product structure

•	 Modify to order: Use of a generic product structure with adaptable modules
and components

•	 Engineer to order: Use variable product structure and adaptable modules and
components

Customer influence and customer involvement in the product development process
is low at the top of the list and increases as we move downwards. For engineer

Fig. 2.6   Design for variety: from pre-studies to product families

23

to order contracts, e g in shipbuilding, power plants and production equipment,
the customer usually plays a very active role and often defines requirements and
choice of technology. At the top of the list, it is up to the manufacturer to predict
what preferences the potential customers will have when the product is ready to
launch. The latter situation, e.g. for production of motor cars or house-hold appli-
ances, involves a higher risk because much has been invested in the new product
before it is launched and the market response can be evaluated.

Irrespective of what business case is at hand, in order to be successful in DFV
it is important to plan for product families and not for singular products from the
beginning. By “product family” we mean a group of related products that to a high
extent share the same features, components or modules. A viable product family
concept will consist of products where a large proportion of the products have a
common set of features, components or modules that remain the same within the
whole product family. This common set is called the product platform. If a high
proportion of the products are made up of this platform the product family is said
to have a high degree of commonality. If standardised features, components or
modules are used in different platforms these are said to carry-over. Of course,
methods like commonality and carry-over save resources and should be exploited
when possible without sacrificing the variety that the market demands.

To satisfy the requirements of a DFV process, the “Product planning” phase of
Fig. 2.1 should thus result in a specification for both the product platform and the
complete product family, i.e. the full range of planned products. It will be much
more difficult to expand this range at a later stage. A good rule is to always aim for
exploration of the principles of standardisation when planning the product range.

2.4 � Investing in New Products

Development of complex products is a costly process with inherent risks. For a
manufacturing company however, updating of its product range is a necessity if
the company hopes to survive in the longer perspective. To give an indication of
the economic aspects of product development some examples from the motor car
industry will be given below.

A rule of thumb for the relative development costs attributes about 2/3 of the
total budget to product development, i.e. the left leg of Fig. 2.1, and 1/3 to what is
often referred to as the industrialisation phase, which is the right leg plus acquisi-
tion costs for tooling, production equipment, premises and so forth.

For the total project development costs some examples from the history of the
automotive industry are given in Fig. 2.7. Note that the vertical axis is graded in
a logarithmic scale, which means that the increase in development costs, which
appears to be linear with time, in reality is exponential. The trend points towards
twofold cost increase over 15 years and in 1995, when the graph was made, devel-
opment costs accounted for between 5 and 10 % of the turnover for typical mass
producing automotive manufacturers.

2.3  Design Tasks with Potential for Automation

24 2  Industrial Products and How They Are Developed

Although the costs given are rough estimates based on indirect information and
some rather crude assumptions, the general trend of costs escalating out of propor-
tion is indisputable. This is of course a situation that cannot be sustained in the
longer perspective and the industry has also applied various approaches to arrest
the accelerating development costs, which at this time seemed to be out of control.
Apart from a general strive to improve efficiency in all phases, most methods boil
down to an effort to distribute the heavy development costs over as many units as
possible.

Popular concepts like outsourcing, commonality and carry overs have proved
their worth to control cost escalation during the last two decades. The methods all
have in common that they, in different business scenarios, seek to reuse existing,
proven designs, adapt them to new specifications and avoid costly tasks of original
design starting from scratch.

Take outsourcing as an example. This approach implies that the car manufacturer
abstains from the responsibility of developing new technology and new designs for
those parts of the car that are not considered to contribute to the core value of the
brand. Instead a supplier takes this role and specialises in certain components. This
supplier will usually have several industrial customers who want much the same

Project cost

Product launch

Fig. 2.7   Total project costs for car models launched over 50 years. Costs in million SEK (one
SEK approx. 9 euros), compensated for inflation and normalised to 1995. Numbers are rough esti-
mates based on information reported in news media and interviews with development personnel

25

component, but with various specified adaptions. The core technology is the same
and many parts thus share the technical development costs. It is then up to the sup-
plier to be able to adapt the design correctly, quickly and cheaply so that each cus-
tomer specification is satisfied and, recognising the archetypes of variant design as
described in Sect. 2.3.1, this is where DFV by design automation has an important
role to play.

Commonality is the term used where many models in a product family to a
large extent share the same components and carry-over is when parts and mod-
ules from previous designs are reused in new projects. In these three efforts to take
control over accelerating development costs, the concept of design automation has
the role of enabling technology. Adaption and reuse of proven design solutions
saves engineering time, but this is not the main saving. If proven solutions can be
used the heavy costs of prototyping, testing and regulatory approvals can often be
avoided. Combining reuse of proven technology with state of the art design auto-
mation systems is a very competitive concept.

References

Dieter, G., Schmidt, L.: Engineering Design. McGraw-Hill, New York (2009)
Hubka, V., Eder, W.: Theory of Technical Systems. Springer, Berlin (1988)
Johannesson, H., Persson, J.-G., Pettersson, D.: Produktutveckling (Product Development).

Liber, Stockholm (2004)
Nordström, L.: Kvalitetsmetoder i konstruktionsarbetet (Quality Methods in Engineering

Design), vol. 1. Swedish Association of Manufacturing Industry, Stockholm, Sweden.
Faktarapport No 1103-7067. (1995)

Pahl, G., Beitz, W.: Engineering Design—A Systematic Approach. Springer, London (1996)
Pugh, S.: Total Design. Addison-Wesley Publishers, UK (1991)
Rask, I., Sunnersjö, S.M., Amen, R.: Kunskapshanterande IT-system för produktframtag-

ning (Knowledge based IT systems for Product Realisation). IVF Publication No 00823,
Gothenburgh, Sweden (2000)

Rask, I., Sunnersjö, S.: Konceptkonstruktion—Val av material och tillverkningsmetod
(Conceptual Design). IVF, Göteborg (1998). ISBN 91-89158-08-3

Simon, H.: The Sciences of the Artificial. MIT Press, London (1996)
Sunnersjö, S., Rask, I., Amen, R.: Requirement-driven design processes with integrated knowl-

edge structures. In: Proceedings of DETC03, ASME 2003/CIE-48218, USA (2003)
Svensson, P.: Management of product development. PhD thesis, Chalmers university, ISBN:

91-7032-479-4 (1990)
Ullman, D.: The Mechanical Design Process. McGraw-Hill, New York (2003)
Ulrich, K., Eppinger, S.: Product Design and Development. McGraw-Hill, New York (2012)

2.4  Investing in New Products

27

3.1 � What Are the Deliverables of the Design Process?

In the previous chapter we discussed which design tasks that might be candidates
for design automation from a technical feasibility perspective but also how a
sound business case for such automation could be identified. An industrial com-
pany would obviously want to first identify its position in the business related
framework (called DFV above) and verify that an automation effort will pay off
its investment costs. It would then proceed to analyse if and how this business
process could be realised with available technical means. The product definition
is the final deliverable from the automation system, hence we now need to con-
sider what such a system is required to produce. Just as the human designer uses
IT-tools like spread-sheets, CAD (Computer Aided Design) and PDM (Product
Data Management) systems to define the designed product, these tools will also
form parts that are more or less integrated in an automation system. Instead of
being operated by human designers they will interact with a computerised knowl-
edge processor.

The end result of the design process, whether it is manual or automated, will be
a product definition or a product model, that is sufficiently complete for the pro-
duction department to acquire materials and components, manufacture parts and
then to assemble the complete product. In this context the product model will be
expressed in terms of its design variables that completely define the product.

However, the industrial process neither begins with nor stops with the product
design. A large number of other tasks need to be carried out before the product
is ordered, designed, manufactured, delivered and paid for. In an ideal world the
product model would be a complete definition of all product knowledge needed

Chapter 3
Computerised Methods to Design
for Variety, DFV

© Springer International Publishing Switzerland 2016
S. Sunnersjö, Intelligent Computer Systems in Engineering Design,
Studies in Systems, Decision and Control 51, DOI 10.1007/978-3-319-28125-4_3

28 3  Computerised Methods to Design for Variety, DFV

for the entire industrial process. Apart from purchasing, manufacturing and assem-
bly information, it would also contain information for:

•	 Functional description with requirement specifications,
•	 Time and cost estimates for quotations and invoicing
•	 Technical calculations and simulations,
•	 Manufacturing preparation. Example: Programming of paths for numerically

controlled machining,
•	 Control of geometry, finish and properties. Example: Measurement tables and

inspection and testing instructions, programming of numerically controlled
measurement machine

•	 Products in different phases of production. Example: Geometry of blanks and
preformed parts

•	 Design of tooling, fixtures and jigs,
•	 Planning and monitoring of deliveries,
•	 Publishing of documentation and manuals,
•	 Life cycle instructions, i.e. how to distribute, maintain, disassemble and recycle

the product,
•	 Immaterial property rights such as acquisition of licenses for registered patents
•	 Documentation of the design rules and constraints that have created the product.

To set up such an exhaustive and complete product model as described above
would be very cost and time consuming and it is unlikely that it could be imple-
mented as a unified, computerised model. A complete product model in this sense
might not be worthwhile or even technically feasible, but by starting with the auto-
mated system directly related to the design of the product it is later often possible
to find highly profitable additions for downstream tasks in the industrial process.
Quotations for instance, is at the heart of the business process and by automating
cost estimates based on preliminary designs, the quotation process can often be
improved dramatically both regarding lead times and accuracy. The same can be
said for production preparation and control tasks. Making design rules available to
production could help to improve manufacturability without violating functional
requirements. Having integrated product, production and control data it often turns
out that drawings could be simplified or even become superfluous and hence, the
decision to integrate and automate the process will in itself affect what needs to be
automated.

Product design is the natural starting point when building an automation sys-
tem, but very substantial benefits in other parts of the industrial process can often
be found and should be exploited. Having emphasised the importance of not
restricting the attention to product design, in this text we will continue to con-
centrate on this specific task in order to maintain our focus. The methods used
in design automation are often equally applicable in other tasks in the industrial
process.

29

The content and character of the product definition resulting from the design
process will of course vary from case to case, but for mechanical engineering
products one can usually distinguish three main types of information:

•	 Product geometry, e.g. drawings, CAD models
•	 product structure, e.g. Bill Of Materials, Product Variant Master
•	 technical specifications, e.g. heat treatment, welding specs

We will now discuss these information categories in more detail. For each cate-
gory a short frame of reference for the respective design tasks will be given and
the conclusions for automation of these processes are discussed.

3.1.1 � Definition of Product Geometry

Product design and documentation is today almost entirely done using CAD sys-
tems. These commercial systems used for geometry generation and storage are
very large software packages that build on sophisticated technology. In this sec-
tion the origins of these technologies are reviewed together with some basic prin-
ciples and the implications these principles might have in the context of design
automation.

2D CAD
The most common documentation of an engineering product is the two-dimen-
sional drawing. The traditional drawing board is today replaced by two dimen-
sional CAD systems, which increases productivity but in principal does not
change the working methods or the product definition documents.

An artist’s impression of an object is a free illustration of what the artist has
perceived. A technical drawing could also serve as an illustration but is something
fundamentally different. A 2D drawing is a representation of a 3D object using
standardised projections and sections. To produce clear and correct drawings
require considerable training and experience. Both the producer and the user of
the drawing must understand and follow the same standard, otherwise the product
definition might be misunderstood. A 2D drawing is not in itself a complete defini-
tion, instead it must be interpreted by a knowledgable person. Also for an experi-
enced designer it can however be quite difficult to understand a 2D drawing of an
unfamiliar object and to translate it correctly into a physical 3D object. Generally
speaking, 2D drawings are not computer readable which is a clear disadvantage in
the context of design automation. For certain simple geometries that genuinely are
in 2D, like bodies of revolution, a parametric 2D CAD system is fully satisfactory
as the geometry module in a design automation system, but for more general prod-
ucts, something else is required.

3D CAD
Many of the shortcomings of 2D drawings can be eliminated by using three dimen-
sional representations. This means that the complete model extends into space

3.1  What Are the Deliverables of the Design Process?

30 3  Computerised Methods to Design for Variety, DFV

having three dimensions, while the elements that make up the model could be of
dimension zero (points), one (straight lines, curves), two (surfaces) or three (solids).

There are in principal four types of three dimensional CAD models: Wireframe
models, surface models, volume models and solid models, as illustrated in Fig. 3.1.
Wireframe models consist of elements of dimension zero or one, which define ver-
tices and edges of a three dimensional object. Wireframe models have limited abil-
ity to represent free form three dimensional objects, they do not fully define the
object and for more complex products they become very cluttered. As computer
capacity has increased more advanced representations have consequently emerged.
The first step is to cover parts of the wireframe model with flat or sculptured sur-
faces, thus extending the dimensionality of the allowable geometrical elements to
two, which then form a surface model. If all wires are covered with surfaces and
these surfaces form a connected shell without openings or slits, this is called a vol-
ume model.

The volume model appears similar to the real object but nevertheless is an
incomplete representation that needs to be interpreted. The model shows the prod-
uct geometry but lacks the information of how it is put together which, as we
will see later, is necessary when the model is to be parametrically controlled. A
three dimensional model that fully defines the geometry of the product consists
of vertices, edges, directed surfaces (“directed” to define on which side the mate-
rial is) and a topological description of how the elements are connected. This is
called a solid model and has become the dominating geometrical representation
in advanced design in mechanical engineering. Since the solid model is complete
it can be used to draw required information for other tasks in the design process,
e.g. creation of drawing documents, analyses and simulation, property calcula-
tions, calculation of NC tool paths, interference control, visualisation and so on.
The solid model can be made parametric, see Sect. 3.2, and then becomes a very
efficient tool to handle geometry in a design automation system (Fig. 3.1).

Fig. 3.1   Four types of CAD models in 3D: Wireframe (left), surface (middle) and volume or
solid models (right). Note that volume and solid models appear similar. See also Amen and
Sunnersjö (1996)

31

Solid CAD models are created and stored along either of two main principles
or combinations and developments of these: Constructive Solid Geometry, CSG,
or Boundary Representation, B-rep. The two principles are illustrated in Fig. 3.2.

The CSG method uses a library of predefined, adjustable building blocks, e.g.
cube, sphere, cylinder, wedge and so forth to build the intended geometry by
boolean operations like “A union B” (corresponds to: Join objects A and B, e.g. by
welding) or “A difference B” (corresponds to: Remove material defined by object
B from object A, e.g. by machining).

Obviously the standard building blocks, called primitives, cannot create any
complex geometries. The primitives can therefore be complemented by user
defined building blocks, or features, where a 2D profile is defined and transformed

Fig. 3.2   Building a solid
CAD model (middle) by
CSG (top) or B-rep (bottom)
methods. See also Amen and
Sunnersjö (1996)

3.1  What Are the Deliverables of the Design Process?

32 3  Computerised Methods to Design for Variety, DFV

into a 3D object by extrusion, revolution or following some more complex trajec-
tory in the third dimension. The 2D profile can be made dimension driven and is
updated using either a parametric or variometric method. The former is based on
execution of the stored chain of operations that created the basic profile, while the
latter method is based on solving the system of equations that define the profile
geometry mathematically.

Some CAD systems have predefined building blocks for common manufactur-
ing features, form features, like fillets, rounds, counter-sunk holes, dove-tails and
so forth in addition to the fundamental primitives. Building geometry models by
adding stepwise more detailed form features reminds of machining a blank to net
shape and is a work method that seems to appear natural to engineering designers.

In CSG models not only the resulting geometry is saved but also the construc-
tion history of this geometry. This history tree is a kind of recipe for the solid and
provides an opportunity to create product variants, which is a method of great
importance in applications for design automation as we will see later.

Solid CAD models can also be built using the B-rep method. This is a more
direct method that is used for objects with complex geometrical shapes and free
form surfaces. The solids are defined by their vertices, edges and directed sur-
faces and this is the only information stored. There is consequently no history tree,
which means that the model cannot easily be changed and also that the model’s
correctness depends on the accuracy with which it has been defined. The latter
property often causes problem when transferring models between different CAD
systems working with different accuracies, which might introduce erroneous slits
or overlaps between surfaces in the transferred model.

In practice most commercial CAD systems for solid modelling use a combina-
tion of CSG and B-rep methods. In such systems a B-rep model that is complete
and without any slits or other defects is automatically transformed into a solid
model that can then be further developed by use of boolean operations either with
primitives or other free form solids.

More advanced company confidential technology for modelling with and with-
out history tree is implemented in the large commercial CAD systems and when
using these as part of a DA system it is important to test how model updating actu-
ally performs in practice in the specific system. Generally speaking a parametric
solid modeller is the natural choice of geometry tool for design automation appli-
cations and further on we will discuss how to use such systems for parametric
design.

In the discussion above we have taken for granted that a model defining the
geometry of the product will always be required. This is however not necessarily
the case and if this is not so, we should not waste resources to produce such docu-
ments. It is common practice for some products that the tools rather than the actual
products are being modelled in the CAD system. It might appear surprising that no
product documentation exists, but for some products formed by e.g. pressing and
deep drawing, the tool geometry is much more important than the details of the
pressed object, since the tool geometry is required to program the machining of the
dies. This is exemplified by the industrial DA system described in Appendix A.5.

33

2D drawings are often the end result of a design process, one reason being that
legal documents in this form are often required, e.g. as a part of a contract with a
sub-supplier. There are however many opportunities to omit drawings altogether
and use the digital 3D solid model as the master representation of the product.
Sometimes it might be possible to go one step further and store only some sort
of “recipe” of the product model, which is then used to regenerate the geometry
when required. In the industrial DA system described in Appendix A.3 only the
input parameters to the automation system are stored while the actual product defi-
nition is discarded once the product is delivered. Should any particular drawing be
needed later on, the system is executed with the new parameters.

When planning a design automation system all these opportunities to simplify
the design process and reduce the amount of documentation, whether digital or on
paper, should be considered and exploited when possible. As pointed out before,
a design automation project is a golden opportunity to review and streamline all
aspects of the design process. The buzzword “Lean”, in the sense of removing all
non-value adding operations, is highly relevant in this context.

3.1.2 � Definition of Product Structure and Technical
Specifications

A company delivering complete products to the end customer is called an OEM
(original equipment manufacturer). The complete product is assembled from indi-
vidual parts and modules, which could be manufactured in-house or bought from
outside suppliers. Although the OEM has the full responsibility for the product,
the insight into some of its constituents might be limited if the product is complex
and contains many bought parts.

On a traditional assembly drawing the identifiers for components and part
drawings are defined by a written list, a “bill of materials”, BOM. In a solid CAD
assembly the corresponding information is given as an underlying product struc-
ture, which is a directed tree graph, see Chap. 5, defining what components make
up the product and in which order they are assembled. The assembly tree could
have leaves (parts) or branches (modules) that can be chosen from several alterna-
tives by the customer, thus opening up possibilities to customise the product for
the individual buyer.

The tree structure can be represented directly in the CAD system or a dedicated
archive system, but a more versatile tool is a PDM (product data management) or
a PLM (product life management) system. Such systems allow controlled sharing
of information, authorisation procedures, safe file storage and the establishment of
workflows for frequently recurrent tasks.

The components could be tailored and manufactured for one specific product,
but many components are standard parts bought off-the-shelf and where the OEM
possesses no detailed knowledge or documentation. Examples of such compo-
nents are fasteners, ball bearings, hydraulic actuators or electronics. Geometry is

3.1  What Are the Deliverables of the Design Process?

http://dx.doi.org/10.1007/978-3-319-28125-4_5

34 3  Computerised Methods to Design for Variety, DFV

represented as outside dimensions, while the inner properties are defined by some
sort of technical specification, e.g. for a ball bearing stating type, main dimen-
sions, maximum speed and maximum static and dynamic load.

Technical specifications are also required for manufactured components regard-
ing materials and specific details of the manufacturing process not apparent from
the CAD model. This could be heat or surface treatment, but also specific control
or test procedures that the component is required to pass. Further, the technical
specifications could refer to company or legislative standards that the product is
required to follow.

3.2 � Parametric Design

Many products are designed in a series of sizes, i.e. the basic geometry is varied
in steps to create a size range from which a customer could select a suitable vari-
ant. Examples of products that are usually planned and designed in a size range
are standard catalogue components like bearings, belt transmissions, valves and
so on. Products in this category are normally manufactured and stocked until the
component is selected by the customer. Alternatively, the size range could be “vir-
tual” and manufacture does not start until an order is placed and the basic design
is then modified according to customer specifications. The degree of customisa-
tion is naturally higher for modified rather than selected products. Usually some
main dimensions are varied in steps to cover a suitable range. For some products
where “form gives function”, e.g. a fan blade, the product is scaled with propor-
tions maintained, while other products might well change both in size and propor-
tions. For some components it might by more natural that some non-geometrical
entity is varied, e.g. the power of an electrical motor. The required steps in these
entities will then need to be transformed to corresponding geometrical dimensions,
often by use of domain dependent scaling laws.

A parametric design is governed by a number of driving dimensions., which
could be a small fraction of all dimensions required to define the product. The
driving dimensions should ideally be independent of each other and govern the
remaining driven dimensions through constraints, usually of a geometrical (e.g.
“Perpendicular to”) or mathematical (e.g. “Area = length * width”) nature. The
causalities between driving and driven dimensions are established when the model
is built and cannot easily be changed. Defining which are the driving dimensions
must thus be carefully planned. In this book the driving parameters, whether geo-
metric or not, will be called input parameters while all the resulting output vari-
ables will be referred to as design variables.

The traditional way of defining the geometry of parametric products is by a
template drawing, consisting of a schematic drawing of the basic geometry with
symbols for the driving dimensions together with a table giving the numeri-
cal value(s) of these dimensions for a specific product family. With the arrival of
parametric 2D CAD systems, the template drawings have been replaced by 2D

35

drawings that adapt the product geometry to the specified driving parameters so
that it is correct in scale and proportion.

Owing to the CSG building method and in particular the stored history tree, the
solid model could be made parametric in much the same way: The driving dimen-
sions are given as input parameters, the driven dimensions are evaluated and the
operations defined in the history tree are activated step by step using the updated
dimensions. A solid model will result, that is correct in scale and proportions. Note
that the order of operations is decisive for the resulting solid as exemplified in
Fig. 3.3.

Except for adapting the basic geometry to new dimensions, a solid model
could also undergo topological changes, see Fig. 3.4. This is achieved by includ-
ing optional elements (features) in the history tree with flags “on” or “off”. These
optional elements could be user defined or taken from a more general library of
parametric form features that relate to the relevant manufacturing methods or it
could be design features that make up the functional elements of the component.

This way of building a complete solid model from parametric elements, like
primitives, form features, design features and more complex user defined features
is an efficient way of working with solid modelling. The real advantage comes
however when the model is built to allow automatic adaption of driving dimen-
sions and topological variations. This is possible only if the parameters of the
parts used are linked together by constraints so that if one parameter is changed,
this change will propagate through the model updating all dependent parameters,
thereby maintaining its basic geometrical properties.

These properties are sometimes self-evident, a threaded hole intended for
attaching a screw should, with few exceptions, be perpendicular to the surface, a
smooth transition between two surfaces is achieved by a tangency constraint and

BOX SHELL CASING

CYLINDER

BOX SHELL CASING

CYLINDER

Fig. 3.3   Solid model resulting from the same primitives and the same Boolean operations but
executed in different orders. Dashed arrow indicates operation “CUT”. Adapted from Amen and
Sunnersjö (1996)

3.2  Parametric Design

36 3  Computerised Methods to Design for Variety, DFV

so forth. Other cases might be more complex and require more elaborate con-
straints to retain the essential geometrical characteristics after updating.

The constraints represent some kind of intent that the designer has for the
product geometry and this intent should be preserved also when the geometry is
updated with a new set of driving dimensions. Often this intent is clear enough but
there might well arise situations where a parameter change also alters the topology
of the component which might be acceptable or not. This is something the CAD-
system cannot decide—it is a situation where the designer must intervene. A sim-
ple example is given in Fig. 3.5.

Generally speaking, to construct complex, parametric solid models that allow
parametric changes of both topology and dimensions can be a challenging task.
There are examples of models with several hundred driven dimensions and need-
less to say, the likelihood of such a complicated model to update reliably is small.

Topological

P
ar
am

et
ri
ca

l

Fig. 3.4   Product range of tractor wheels with dimensional and topological variations. From Elgh
(2009)

37

If the model is planned to be a part of a design automation system and be used
frequently over many years it requires careful planning to assure its functional-
ity. Some things are obvious like not using a feature that could be turned “off” as
a reference for any dimensions, or define restriction of the ranges of the driving
dimensions so that the model does not collapse. Other things are difficult to fore-
see and exhaustive testing of the stability of the model is necessary.

An important first step when setting up a parametric model is to define what
dimensions should be the driving dimensions (input parameters) and what dimen-
sions should be the driven dimensions. Together driving and driven dimensions
will be the list of design variables that define the product or component. The input
parameters must be chosen so that all main dimensions that might be required
to be changed can be controlled. Subsequent to updating, these will then gener-
ate updated driven dimensions. This causality among the design variables are

Fig. 3.5   As the hole is
moved from right to left a
new corner is created and will
be automatically rounded.
Is this what the designer
intended? From Amen and
Sunnersjö (1996)

3.2  Parametric Design

38 3  Computerised Methods to Design for Variety, DFV

important because often it is not possible to change the defined order later without
having to rebuild the model.

There is an element of reversed engineering in the process of determining
the relations between driving and driven dimensions. The similarity is due to the
fact that a basic design for the intended range of variations normally exists as a
starting point. To build a product size range one must then for each driven design
variable clarify the origin of that variable and how its value has been determined,
e.g. by deriving relations to the driving dimensions or directly to the requirement
specification. Such an analysis process provide an excellent opportunity to scru-
tinise and improve existing design practices. The concept of driving and driven
dimensions and their relations is further discussed in Sect. 8.3.1 and illustrated by
Figs. 8.4–8.6.

Three approaches to model parametric solids will be discussed below and these
are shown in Fig. 3.6. The example chosen is a model of a plate that allows change
of four dimensions, (three of which are independent) and two topologies (corner
rounded or not).

The dimension driven part method simply means that two dimension driven
parts, one for each intended topology, are created. This method is obviously very
reliable, but for complex geometries and many combinations it will require many
parts and many of the design rules used will have to be duplicated. If however the
parts to a large extent are standard and are often reused for the products they are
intended to, it might well be worthwhile to create a library of such parts.

The generic part method handles topology changes by activating or deacti-
vating the required features. For our example only one part is thus required. The
topology variation parameters are represented in a similar way as the geometrical
parameters which is advantageous for the clarity of the model. For more complex
geometries however, the relationships between different parameters become more
complicated to handle and also there is a risk that some parameters might have
relations that are topology dependent. Although efficient there is thus a signifi-
cant risk for malfunctioning that needs to carefully investigated when using this
method to build a parametric model.

Finally, the modular part method uses small, stored parts that can be assem-
bled into all the required topology variations. The parts are parametric, stored in a
library and combined using Boolean operations into the required topology. For our

Fig. 3.6   Three methods to create parametric geometry. From Cederfeldt (2007)

http://dx.doi.org/10.1007/978-3-319-28125-4_8
http://dx.doi.org/10.1007/978-3-319-28125-4_8
http://dx.doi.org/10.1007/978-3-319-28125-4_8

39

example three parts are required. This disadvantage of needing three parts is bal-
anced by not having to program the model to activate/deactivate any features.

The three methods described will often need to be combined in practical appli-
cations. The stiffener shown in Fig. 3.7 is constructed by a combination of the
dimension driven part method and the generic part method. The model has been
used extensively and proved stable and flexible. When working with parametric
components there is always a risk of successively overloading the model with too
many rules and constraints. What might originally have been a robust parametric
model might become too complex as new design rules are encountered and imple-
mented. The complexity might cause loss of overview and unforeseen problems
with updating. One solution might be to store parts of the design rules externally.
The balance between knowledge built into the CAD model or stored and pro-
cessed outside is discussed further in Chap. 8.

3.3 � Configuration Design

Imagine sitting in an airplane descending towards O’Hare, Shiphol or some other
major international airport. The airports are surrounded by thousands of parked
cars and the cars within sight represent a tremendous effort of technology, man-
power and organisation. Despite the large number of cars it is unlikely that any
two cars are identical—most modern cars are built individually according to the
manufacturing paradigm of mass customisation.

As you bring your car out of the parking lot the approximately 30,000 parts of
which it is assembled work together both technically and aesthetically. When the
car was built each part was delivered on order based demand by an intricate net-
work of suppliers and has appeared at the right moment at the right station at the
line to be assembled.

Modern cars are built to customer specifications and this variety is part of the
challenge in the automotive industry. The cars are manufactured at a rate of around
one car per minute and at prices that most people can afford. The car itself is an
imposing piece of engineering, but the industrial system that produces it is of a

Fig. 3.7   Two variations of steel stiffener for a ship bulkhead (left) and the parametric parts of
which the stiffener is constructed (right). From Cederfeldt (2007)

3.2  Parametric Design

http://dx.doi.org/10.1007/978-3-319-28125-4_8

40 3  Computerised Methods to Design for Variety, DFV

complexity that is truly mind-boggling. The ability to mass produce individual
cars is an example of mass customisation by configuration design, where the prod-
uct structure is set up specifying what parts should be used, how they should be
assembled and what variety is planned for. Configuration design in industry is nor-
mally executed with the help of some sort of design automation system, which in
this context is called a configurator. The main purpose of the configurator is to
automatically produce specifications of the product structure and technical specifi-
cations for all components whether manufactured in-house or bought from outside
suppliers.

Motor car production was for a long time associated with standardisation.
The efficient production systems that produce motor cars in large volumes and
at modest costs initiated the paradigm of mass production in the nineteen-twen-
ties. Standardisation allowing manufacture of very long series of identical cars
is a central theme for this paradigm. During the nineteen-nineties the paradigm
was gradually replaced by mass customisation, which implies that the benefits of
long series production has been supplemented by a carefully controlled degree of
variety so that the products can be adapted individually for each customer. It also
means that production is not started until an order is placed—nothing is built to
stock which reduces the costs of inventory and makes the company less exposed to
risks of unpredictable market conditions.

Apart from satisfying individual customer requests, the adaptability of a con-
figured product allows special product versions for different markets in the world
as well as focusing segments of the home market, thereby giving deeper market
penetration and higher volumes.

3.3.1 � Modularised Products

By allowing the customer to specify products that to some extent are tailored to
each customer’s requirements, the product value as well as the possible market
share are increased. However, if conventional work procedures are used it is likely
that such customisation will mean increased costs and lead times, increased tech-
nical risks and a reduced efficiency in production, logistics and maintenance.

To be efficient the whole industrial process, including the design of the prod-
uct, must be planned in a different way in order to create product families rather
than singular products. For system products this leads to the use of the concept of
product modularisation. These systems consist of modules and interfaces, where
the product has been decomposed into units with well defined interfaces accord-
ing to a deliberate strategy related to marketing, design or manufacture. Ideally the
functional requirements should map to the specified modules as 1:1 to allow easy
updating or maintenance. The interfaces must be carefully planned, flexible, well
documented and have long life. New modules must be “backward compatible” so
that updating of the system is possible with minimal parts replaced. When plan-
ning a modular product one needs to consider development, production, variety,

41

logistics and service. For many of these aspects it is beneficial to arrange the prod-
uct structure so that variant forming will take place late in the production process,
i.e. during a large part of the assembly process the products in production will be
identical.

In the automotive industry the concept of Product architecture is often referred
to. This is a scheme for how the functions of the product should be allocated to its
components (example: should the engine cooling water also supply coupé heat-
ing?) A group of related products that share common features, components, or
subsystems; subject to a marketing plan, is called a Product family (example: PC
frame that can be equipped with different CPU cards, graphics and storage facili-
ties). These two terms describe how the product range is composed from a design
and marketing perspective while the Product platform has more of a production
and purchasing perspective (“exploit commonality”) and defines the set of fea-
tures, components or subsystems that remain constant from product to product,
within a given product family. This might be the case for a family of car mod-
els including sedan, sports and estate models sharing e.g. drive lines, chassis and
other subsystems. All three concepts have a strong bearing on the possibilities to
deliver custom made products efficiently.

Modular design is a method to create product variety. But it is also a tool of
more general benefit in that overhead, or indirect costs, are reduced. Indirect costs
of typical engineering goods manufactured i modern highly automated factories,
account for a surprisingly high portion of the total manufacturing cost, often more
than half. Hence, reduction of indirect costs is high priority. On the other hand
standardised modules will have a tendency to get higher specifications than what
is necessary, resulting in higher component costs. The degree of modularisation
chosen is thus something of an optimisation problem as illustrated in Fig. 3.8.

Efficiency in mass customisation by configuration design relies on three corner
stones: Flexible production systems, flexible product structures and computer sup-
port to manage the process initiated by each new order. In this text we will focus
on the two last aspects.

Fig. 3.8   Degree of
modularisation expressed
as commonality has an
optimum where the total cost
is lowest. A new product
range should normally start
at a high commonality but
will over time tend to loose
commonality due to market
pressure, as indicated by the
arrow above

3.3  Configuration Design

42 3  Computerised Methods to Design for Variety, DFV

3.3.2 � Product Structure for Variant Design

The potential for variety inherent in the product structure is one of the key issues
for mass customisation. The objective is to meet customer demands of tailor made
products by a clever set of options using a small number of components, while
most parts of the product, the product platform, remains standard and made in
long series, Products that to a large extent are assembled from modules are called
modularised, while products that do not have a modular structure are called inte-
gral. For some system product modularisation comes naturally, while for other
products this is not so and modularisation might result in over specification with
heavier and costlier products as result. One obvious example is when many func-
tions need to be carried out by the same component which is contradictory to one
of the basic ideas of modularisation.

The product structure can be represented by a directed, rooted tree graph (see
Sect. 5.2). The root is from praxis, although illogically, drawn at the top and indi-
cates the complete product, the leaves the individual parts and the branches mod-
ules or subassemblies.

In the example in Fig. 3.9, two separate product structures are required—one
for each tractor variant. For a family of tractors we would prefer to use a single,
generic tree structure with a built in variability. This can be achieved by using a
tree structure called Product Variant Master, PVM, which is a structural formalism
specifically intended for configuration design, see (Hvam et al. 2008).

In the same way as for other product structures the links of the PVM tree
denotes Part of, if followed upwards, and Consists of when followed down-
wards. The graph is constructed by considering each component one at a time
and position it accordingly into the tree. To introduce variability into the prod-
uct structure a link denoting kind of relations is introduced. The two static
structures of Fig. 3.9 can then be merged into one flexible structure, as shown
in Fig. 3.10.

According to the given specification the generic DFV is then instantiated so
that parts and modules are chosen and the complete configuration defined. In
many applications it is not possible to combine all options with each other. For
the drive line for instance, the choice of engine must be matched by a suitable
type of transmission. To define which restrictions that should be enforced one
could use a relational table, e.g. like in Fig. 3.11, where all allowable combina-
tions are listed. The computer system managing the product structures will then
issue a warning to the user if a combination is chosen that is not listed in the
relation table.

Often however the restriction on options are much more complex than what
can be managed by a relational list. There might be relations between design
variables that must be upheld, there may be conditional rules that must be tested
and implemented and so on. For this purpose the DFV tree is complemented by
a list of constraints, that define the allowable design space as regards configura-
tion options. With this functionality implemented the computer system becomes a

http://dx.doi.org/10.1007/978-3-319-28125-4_5

43

product configurator. Depending on the complexity and amount of constraints the
constraint handling capacity could reach from a simple decision tree with condi-
tional restrictions to a powerful constraint processing system of a generic character
where constraints can freely be inserted or removed.

An alternative graphic representation to PVM is to use some standard notation
for object oriented modelling like Unified Modelling Language, UML, see (Haug
2008). This is generic and provides a rich expressiveness, but might feel less nat-
ural to most engineering designers. In this text we will therefore use the PVM
approach.

Chassi

Fig. 3.9   Product structures as rooted trees for tractor with wheels (left) and caterpillar traction
(right). Going downwards in the trees defines “consists of”, going upwards defines “part of”.
Adapted from Elgh (2009)

3.3  Configuration Design

44 3  Computerised Methods to Design for Variety, DFV

Fig. 3.10   Flexible product structure in the form of a PVM for generic tractor (left) and instantiated
as a four wheel tractor without front equipment (right). In the PVM alternative choices of compo-
nents (“kind of” relations) have been denoted by dashed lines. These choices to be made subject to
constraints, e.g. front wheels cannot be selected if caterpillars were chosen. From Elgh (2009)

Fig. 3.11   Relational list
of allowed combinations of
components in motor car
drive line

45

3.4 � Generative and Hybrid Design

Building a system product by configuration of a set of predefined components
is often referred to as catalogue design, a common approach in design of elec-
tronic equipment, hydraulic systems and other products built from bought compo-
nents. There is however also the possibility to combine configuration design with
parametric design, e.g. configuration of parametric components. The parametric
components that are intended to be part of a configurable system product, are
sometimes referred to as configurable components (Classon 2006). These hybrid
design systems could be applied to products constructed of components that are all
parametric or a mixture of parametric and static components. The term “compo-
nent” does not necessarily refer to a separate, physical object, it could also apply
to functional features of a part or even be an abstract part like a cavity designed
for a specific purpose. For the part dimensions to be variable it is required that
constraints are defined so that changes of the driving variables propagate to all
dependent variables in order to maintain the intended geometry characteristics.
Figure 3.12 shows an industrial example of a product family for cutting tool heads
that are configured from parametric parts.

Parametric and configuration design represent different design methods.
However, if the steps within a component range with kind-of relations to the PVM
structure are made very small, the configurator will deliver design solutions simi-
lar to those of a parametric design system. In this way the two methods overlap
so that systems built according to the principles of configuration can also handle
parametric problems and vice versa.

In parametric design as well as in configuration design the solution space in
terms of allowable variable ranges, product structure(s) and constraints is clearly
defined. For a given requirement specification this solution space is searched

Fig. 3.12   Parametric parts used to configure a cutting tool head. See also application case No 2
in Appendix. Courtesy of Sandvik Coromant AB

3.4  Generative and Hybrid Design

46 3  Computerised Methods to Design for Variety, DFV

for one or several legal solutions that satisfy all constraints. If such a solution is
found, these design variables are inserted into the product model and a proposed
solution is instantiated. This is straightforward and a common approach to design
automation, but there are also cases when this is not possible or practical.

Some problems require that a proposed solution is generated step by step dur-
ing program execution where subsequent design steps depend on previous ones
using some form of recursive algorithms. Not until the whole design is completed
is it possible to know whether all constraints are satisfied and a viable solution has
been found. We call this approach to design automation generative design, which
implies that the design proposal is generated under program control rather than
being instantiated from a search tree representing the legal solutions.

Take as an example application No 8 in Appendix, the lay-out of resistance
wire in a car seat heater. The lay-out is subject to constraints and it has an objec-
tive function (cost) that should be minimised. Fundamentally this is an optimisa-
tion problem but at present stringent optimisation was considered not feasible.
Instead lay-outs were created using experience based rules for a sequence of vary-
ing inputs. The proposed lay-out was then tested for adherence to constraints and

Fig. 3.13   Seat heater wire lay-out. Manual design (left) automatic design (right). Both are con-
sidered satisfactory from a user point of view. From Elgh (2009). Courtesy of Kongsberg Auto-
motive AB

47

accepted or failed. The solution that satisfied all constraints and had the lowest
cost while satisfying thermal requirement specification was selected as the best
design. This best design was used for cost estimates and quotations. For the orders
that the company wins, it is usually possible to improve the design somewhat fur-
ther manually (Fig. 3.13).

References

Amen, R., Sunnersjö, S.: The Solids Handbook (in Swedish). The Association of Swedish
Manufacturing Industry, Stockholm (1996). ISSN 1103-7067

Cederfeldt, M.: Planning design automation. Ph.D. thesis, Chalmers University of Technology,
Göteborg, Sweden (2007)

Classon, A.: A configurable component framework supporting platform-based product develop-
ment. Ph.D. thesis, Chalmers University (2006). ISBN 91-7291-791-1

Elgh, F.: Lecture notes from JTH masters program in product development (2009)
Haug, A.: Representation of industrial knowledge as a basis for developing and maintain-

ing product configurators. Ph.D. thesis, Technical University of Denmark (2008). ISBN
9788791035678

Hvam, L., Mortensen, N.H., Riis, J.: Product Customisation. Springer, Heidelberg (2008)

3.4  Generative and Hybrid Design

49

As human beings we think and reason without paying much attention to our own
mental processes. Human intelligence appears to be a collection of mental abilities
that are partly complementary but also overlapping, creating a degree of redun-
dancy. The challenge when setting up a design automation system is to transform
knowledge in a form that has been satisfactory for the workings of the flexible
and resourceful human mind into facts, rules and methods that can be programmed
for execution by a rigid and stringent computer processor. This includes process-
ing explicit and implicit knowledge or, when possible, making implicit knowledge
explicit, to device methods to bridge knowledge gaps when such occur or, con-
versely, to mediate when design rules are contradictory or overlapping. This chap-
ter will discuss the most important aspects of this process.

4.1 � What Is Knowledge?

Knowledge processing and knowledge representation are essential elements in
design automation, which is sometimes also called Knowledge Based Engineering,
KBE. While this term might be a somewhat restrictive characterisation it rightly
emphasises how central the concept of knowledge is to design automation. Before
proceeding we thus need to discuss what we really mean by knowledge in the pre-
sent context.

Knowledge theory is a central field of philosophy called epistemology. This the-
ory discusses questions about the nature of knowledge and what the foundations of
knowledge are. Philosophers have for 400 years been divided between the two main
approaches of knowledge from experience (Empirism) and knowledge from reason-
ing (Rationalism), where the former believes that all knowledge is obtained from
the surrounding world via the senses, while the latter means that all knowledge

Chapter 4
Clarifying, Idealising and Modelling
of Engineering Knowledge

© Springer International Publishing Switzerland 2016
S. Sunnersjö, Intelligent Computer Systems in Engineering Design,
Studies in Systems, Decision and Control 51, DOI 10.1007/978-3-319-28125-4_4

50 4  Clarifying, Idealising and Modelling of Engineering Knowledge

come from abstract reflections upon ideas. To build knowledge based system we
need some sort of mental framework for the concept of knowledge, but the study of
knowledge in the philosophical sense is far beyond the scope of this work.

To arrive at a useful definition of such a framework we need to narrow down
the scope from knowledge in general to knowledge about automated engineering
design in particular. A tentative, but practical, taxonomy for this class of knowl-
edge will be presented in Sect. 4.4. Also the discussions below refer to this narrow
scope.

The insights that an individual, a department or a company have about a given
product technology can be seen as a hierarchy in three steps:

•	 Data. Static, unorganised and unprocessed facts
•	 Information. Data systematically aggregated for a purpose
•	 Knowledge. Understanding of information based on perceived importance and

relevance for a problem domain. Includes insights, ability to apply methods and
information, perception, skill, praxis, training, experience

In this text the term design knowledge is used for knowledge according to the defi-
nition above, but delimited to what is required for a specific design task.

There is a slight problem with the word “understanding” in the definition of
knowledge. Since a computer can have no understanding in any sense, how is
it possible to implement knowledge in a computer at all? If we see this from a
strictly semantic viewpoint the answer is: No, it isn’t possible. On the other hand,
if we have knowledge of a procedure that we understand will solve the task and if
we can program the computer to carry out this procedure, it seems perfectly rea-
sonable to state that we have implemented knowledge in a form of understanding
of how to carry out a certain task.

As was mentioned previously the term Knowledge Based Engineering is
sometimes used as a synonym to Design Automation in general and Inference
based systems in particular. Taking into account that engineering problems often
involves also procedural, mathematical processing, the less restrictive term Design
Automation has however generally been used in this text.

4.2 � Thinking Inside the Box

In product development there is a time for creativity and innovation and there is
a time for constraints and standardisation. The engineering design profession
attracts people with an inclination for creative work and pursuit of excellence, so
standardisation and other restrictions do not come naturally. In product develop-
ment projects there are however milestones when decisions need to be taken and
design solutions frozen. Once such a milestone is passed, new ideas that might
replace the already selected solutions are, generally speaking, not welcome. This
is so because subsequent design work will be based on earlier solutions and the
project will never make any progress if early decisions are frequently altered.

51

Design automation is based on standardised procedures. There are things to be
said for such standardisation in general. If specific design tasks are always car-
ried out in the same, predefined way it will generally result in a better and more
consistent quality. The work will not be critically dependent on which person that
has been assigned the task and more effort can be invested in establishing the pro-
cedure. Also, what the Japanese call Kaizen, i.e. small, frequent steps of improve-
ment, is only possible when a standardised procedure is available to start from.

The same is to some extent true also for new versions of products already on
the market. Of course modifications and improvements need to be introduced
when a revision of an existing product is to be made. It is however important to
restrict the alterations to certain modules or components and leaving the remainder
intact, otherwise the cost of the product will escalate out of proportion. Designers
will always feel tempted to introduce improvements in existing products, but such
changes must be introduced in a well-planned and disciplined way.

There is thus a delicate balance to strike between innovative and more evolu-
tionary solutions in product development. Innovative solutions mean that new
knowledge often must be sought, while thinking of products within the confines of
well-known and proven technology is based on established and available knowl-
edge. Design automation is about the latter kind of tasks, but with the intention of
freeing time and resources for humans to focus on the former.

4.3 � Idealisation of Product Knowledge

The process of transforming human product knowledge to executable code is usu-
ally extensive and gaps or weaknesses in existing knowledge are often revealed.
The approach based on idealisation and modelling is familiar to anyone with expe-
rience from setting up simulation programs for physical phenomena in technical
systems. This approach is well applicable also for creating a simulator for design
office work. The approach is top-down in the sense that it starts out with clarifying
and condensing domain knowledge (idealisation) and proceeds with determining a
suitable method for representation (modelling). It is often also clarifying to deter-
mine the characteristic problem structure (see Chap. 5), which indicates which
method(s) for knowledge processing that could be suitable.

In the traditional design office the product designers usually have many years
of experience of their products and how they are manufactured. The design knowl-
edge is a mixture of experience, stringent rules, company policies, rules of thumb
and so on. For the person in charge of building a DA-system it will soon be clear
that it is not simply a matter of interviewing designers to extract design rules.
Because of the experience and versatility of the engineers, a stringent and exhaus-
tive set of design rules have usually never been needed before and consequently
does not exist. Steps to handle this situation are discussed below and in Fig. 4.1.

There usually exists domain knowledge for the technical aspects of the prod-
uct that is accessible but unstructured. We can call this “raw” knowledge, which

4.2  Thinking Inside the Box

http://dx.doi.org/10.1007/978-3-319-28125-4_5

52 4  Clarifying, Idealising and Modelling of Engineering Knowledge

consists of various sources of information related to the product and its manufac-
ture. The raw knowledge is likely to have gaps where the required knowledge is
lacking as well as contradictory knowledge elements. Despite these shortcomings
of available knowledge, the necessary decisions have been taken, usually out of
experience or intuition.

Building a design automation system provides an excellent opportunity for the
designers to clarify knowledge gaps and contradictions and agree on what should
be company praxis. The benefit of this work thus does not only support building a
Design Automation system, but often equally important, it improves the quality of
what we might call corporate knowledge, which may well be the company’s most
valuable asset. By corporate knowledge we mean such knowledge that is explicitly
defined and documented in a form that makes it available to all individuals in the
organisation that benefit from it to fulfil their given tasks.

Knowledge acquisition is primarily directed towards the top left quadrant of
Fig. 4.1, i.e. towards such knowledge that the organisation is aware of possess-
ing and using. In this process knowledge is often also discovered in the lower,
left quadrant, which represents knowledge that is familiar to singular individuals
but should be useful also for others in the organisation, i.e. individual knowledge
should be made part of the corporate knowledge. Similarly, knowledge gaps may
be discovered relating to the upper, right quadrant for knowledge which the com-
pany decides it will not need. This could e.g. mean that certain manufacturing
methods or certain materials intentionally have been excluded. Finally, and this is
what makes design managers nervous, the lower right quadrant relating to knowl-
edge one did not know one did not have or knowledge one thought one had. Of
course it is of the utmost importance to identify such knowledge gaps as early as
possible, not during prototype testing, or even worse, not after delivery to the cus-
tomer. The costs to rectify faults escalates quickly with time.

The raw knowledge needs to be idealised in order to form a basis for a comput-
erised knowledge base, see Fig. 4.2. Hence, from the large and only partly relevant
source of “raw knowledge” we need to:

•	 Select the relevant parts
•	 Formulate clear design rules based on this knowledge

Fig. 4.1   Classes of
knowledge encountered
during knowledge
acquisition. Adapted from
Luft and Ingham (1955)

Knowledge we
know that we have

Knowledge we know
that we do not have

Knowledge we didn´t
know that we have

Knowledge we
didn´t know that
we didn´t have

53

•	 Investigate whether the set of design rules is complete and consistent
•	 Verify the correctness of these rules
•	 Define compromises between conflicting rules
•	 Develop new knowledge where knowledge gaps appear
•	 Document design rules
•	 Ascertain that the knowledge base represents the design intent of the design

team
•	 Verify by a formal authorisation process that the rule set does represent corpo-

rate knowledge

The outcome of this process we can call “processed knowledge”. This knowledge
will subsequently be coded to form the knowledge base of the DA system. For this
purpose the processed knowledge is cast into a format that is in accordance with
the syntax of the DA system used. The structured knowledge should still be human
readable, but structured so that computer coding comes naturally as the next step.
It also helps documentation and future maintenance if the knowledge base is struc-
tured in a way that appears natural for the designers.

4.4 � Characterisation of Engineering Knowledge

The classification presented below should be seen not so much as a stringent,
quantitative model of reality, but more as a helpful mental framework when plan-
ning design automation. In order to identify suitable methods for knowledge
representation it clarifies the problem when the knowledge is categorised into
meaningful groups. Each group or category in this classification maps naturally to
frequently used knowledge representation methods. Six classes of product knowl-
edge for DA defined for this purpose were given in (Sunnersjö 2009, 2010). The
different categories represent knowledge with varying richness and stringency

Fig. 4.2   Idealisation of raw
knowledge to knowledge
ready for coding into DA
system

4.3  Idealisation of Product Knowledge

54 4  Clarifying, Idealising and Modelling of Engineering Knowledge

of background knowledge. It is to be expected that as design rules and methods
evolve and mature over time there will a natural progression of knowledge towards
the more stringent categories.

The empirical basis for this study of knowledge categories is investigations at
ten manufacturing companies in Denmark and Sweden. The applications repre-
sent high industrial variety, where some applications focus on advanced high-tech
products that need to be highly optimised; others focus on tailoring each product
to individual customers or to prepare layouts for quotation calculations. The six
classes are:

1.	 Tacit1 knowledge. Unexplained and unarticulated knowledge embedded in the
human mind through common sense and experience. Includes intuition, convic-
tions, skills, craftsmanship. It is generally recognised that tacit knowledge can-
not easily be communicated since it is not explicit. The concept of tacit
knowledge was introduced by Polanyi (1966).

2.	 Knowledge based on comparison. Guide lines based on experiences and
insights from comparable products and processes. The design rules are often
not articulated explicitly but are embedded in the design of previous products.
If previous experiences and lessons learned are stored, understood and taken
into account the idea of basing new products on existing, proven solutions is
attractive. However, previous experiences might not be applicable or misunder-
stood which can lead to unexpected malfunctioning of the new product.

3.	 Experimental knowledge. Facts and relations that are reliably established by
experiments, e.g. measured physical properties, performance, efficiency and so
on. Within the bounds of the empirical investigations interpolation from meas-
ured data to required design data is often acceptable, while extrapolation out-
side the bounds of experience should be avoided.

4.	 Geometrically related knowledge. In mechanical engineering spatial relation-
ships and geometrical reasoning is often of great importance. Function is often
achieved through the geometrical form of products, i.e. function is embedded
in form. Examples where geometrical reasoning is a key factor are styling,
packing problems, complex assemblies, load carrying structures and designs
where action of flowing media is involved.

5.	 Knowledge represented in mathematical form. When governing design vari-
ables can be derived from fundamental physical principles the problem can be
represented in a mathematical form. For simplified problems explicit analytical
expressions may be available, but for most realistic design problems approxi-
mate, numerical computations are required. Design methods in the form of
mathematical expressions or numerical algorithms provide physical insight and
rigour to the problem and are therefore preferable when available and realistic
in terms of effort, computer execution time and so on.

1From Latin Tacitus, meaning “silent”.

55

6.	 Heuristic knowledge. Simple and useful guide lines that are based on expe-
rience, reasoning and fragments of theory. Knowledge expressed as facts and
rules. Not necessarily based on stringent theory and consequently give poor
insight into phenomena and governing parameters. Application outside range
of experience may result in unpleasant surprises. When groups of authori-
ties agree on heuristic rules, design praxis is defined. Praxis is a common and
important form of documented knowledge; more specifically, many commer-
cial and legislative standards (e.g. ship classification rules, pressure vessels
codes, standards for lifts and trains) belong to this category of knowledge.

The accumulated distribution of the ten companies into the six knowledge catego-
ries is plotted in Fig. 4.3. Heuristic knowledge dominates clearly, with mathemati-
cal and geometrical knowledge coming second and third.

4.5 � Modeling of Knowledge for Computer Processing

4.5.1 � The Computer and the Human Brain

In Sect. 1.3 the approach of seeing the design automation system as a “simula-
tor of the design office” was introduced. Similarity behind cognitive processes in
humans and computers appear however to be rather superficial, which is not sur-
prising considering how different the “hardwares” are. The explicit, step-by-step
reasoning performed by the computer is not typical for the human way of think-
ing. Instead reasoning goes on between individuals and through inner monologs,
while decisions often are taken as instant response based on experience, intuition
or pet ideas. Humans, including human engineers, do not behave as logically as

P
er

ce
nt

ag
e

0

10

20

30

40

1:Tacit; 2: Comparative 3: Experimental 4: Geometrical;
5: Mathematical; 6: Heuristic

1 2 3 4 5 6

Fig. 4.3   Accumulated distribution of knowledge into six categories for the ten industrial appli-
cation cases studied

4.4  Characterisation of Engineering Knowledge

http://dx.doi.org/10.1007/978-3-319-28125-4_1

56 4  Clarifying, Idealising and Modelling of Engineering Knowledge

we would like to think we do. So, it is not self-evident that the computer system
should attempt to emulate the human cognition process—there might be better
ways to solve a problem. What is clear however, is that the results of the com-
puterised process should coincide with (not necessarily be identical to) that of the
human expert. Often it is within reach to develop a computer system that produces
consistently better solutions than the manually produced counterparts.

In order to appreciate the magnitude of the challenge to represent human think-
ing within the confines of such a blunt instrument as the digital computer we shall
review a few facts about the human brain and how it compares with the computer
(Balkenius 2007). For an exhaustive treatment of neural science, see a standard
textbook like (Kandel et al. 2000).

Our understanding of the human brain has improved dramatically during the
last decades, much due to refined methods of computer tomography. Still, a real
understanding of how the brain actually works on a detailed level does not exist.

Mental processes are performed in the cerebral cortex, which is a thin layer of
neurons covering the surface of the brain. The part of cortex where abstract think-
ing is carried out is positioned in the frontal lobes. The interior of the brain mainly
consists of connections, axons and dendrites, between the neurons plus support
systems to provide the neurons with oxygen and nutrition and to provide structural
stability and a suitable working temperature.

The brain has approximately 90 billion neurons in cortex, all directly or indi-
rectly connected. This represents an enormous capacity and, unlike the computer,
the human mind never runs out of memory. The brain has grown out of the primary
task of managing our bodies. Abstract thinking, e.g. the ability to anticipate the
future from lessons learned in the past, is from an evolutionary perspective a late
and minor function. The brain capacity dedicated to eye-sight and image process-
ing for instance, far exceeds the capacity dedicated to abstract thinking. However,
the ability to reason about abstract things has late in the evolution of man, proved
to be of great value and has strengthened our competitiveness relative to other spe-
cies in such a way, that we have become the undisputed rulers of our planet.

The functions of the brain rely on electro-chemical signals. These signals are
very slow compared to the electrical signals of the digital computer. Nevertheless
the human brain can respond extremely fast when required, e.g. in memory
retrieval or response when something threatens us. The explanation is the exten-
sive interaction between the interconnected neurons. The brain neurons work
using massive parallel processing on all levels to an extent that no super-com-
puter can challenge. Realising this characteristic leads to the conclusion that digi-
tal computers outperform humans when it comes to serial processing like heavy
number crunching, but humans are much more efficient in finding associations,
comprehend phenomena, find new solutions and so forth. Of course these are dif-
ferences that we should keep in mind when selecting tasks for design automation.

One striking feature of the human brain is its ability to work with and draw
meaningful conclusions from incomplete knowledge. We have the very important
ability to bridge knowledge gaps in a sensible way. Consider Fig. 4.4. Despite the
fact that no sides of the triangle are drawn, we interpret the geometry as if a white

57

triangle partly intersects the three black circles. We do this because in our experi-
ence this is usually the case when we see a pattern of this kind. For the human being
quick conclusions from incomplete information is a necessity otherwise we would
be too slow and too hesitant in our response to events that affect or threaten us.

Is this ability good or bad in an engineering perspective? It could be both: On
the one hand it is a very fast and efficient method if missing information can be
sensibly filled in. On the other hand, jumping to preconceived conclusions could
lead seriously wrong. The fact that authorities agree on conclusions from incom-
plete knowledge should not be mistaken for stringent knowledge—the reliability
of the knowledge used is still the crucial factor. One thing is certain however, the
computer demands 100 % complete information and cannot draw any conclusions
at all if this is not the case. Every small detail, however obvious it might appear,
must be specified in the computer code. For the computer nothing is self-evident!

The human mind is also able to deal with the opposite situation, namely redun-
dant, contradictory and overlapping information, or, in our case, design rules.
When confronted with design rules that are contradictory we can usually reach
a sensible compromise or give priority to the most relevant or convincing design
rule. Such applications of experience and common sense is not within the powers
of the computer. There are strategies available though that goes some way towards
this goal, e.g. defining weights for the rules to determine which should be given
priority, or giving preference to rules dated late or rules that statistically have often
been referred to. When such strategies do not seem relevant, one must resort to let-
ting the computer ask the human operator for a decision.

The conclusions from the brief summary above is that computer based design
automation systems are best suited for problems that are repetitive and labori-
ous by nature and require attention to detail as well as endurance and access to
a large knowledge repository. Examples of this could be long series of numerical
computations or retrieval of information from large data bases. The human mind
on the other hand is superior for problems requiring comprehension, experience,
common sense, good judgement and so forth. It is wise to keep these fundamental
differences in mind so that the computer is applied to the tasks for which it is best
suited and not compete with the human mind where it is at its best.

Fig. 4.4   Three black circles
with cut-outs. The eye sees
a white triangle laid over
the circles, but the triangle
does not really exist. From
Kanizsa (1955)

4.5  Modeling of Knowledge for Computer Processing

58 4  Clarifying, Idealising and Modelling of Engineering Knowledge

4.5.2 � Representation of Knowledge

DA-systems are often based on technologies developed in the field of Artificial
Intelligence, AI, which are technologies developed for the purpose of representing,
or modelling, human reasoning and knowledge. The more commonly used meth-
ods in design automation were briefly introduced in Sect. 1.4, see in particular
Fig. 1.4. We will now proceed with a discussion of how the six categories of engi-
neering knowledge introduced in Sect. 4.4 should be matched to these methods of
representation.

The different knowledge categories previously described have a corresponding
software method that is well suited to that particular type of knowledge as illus-
trated in Fig. 4.5. This mapping between knowledge category and modelling tools
will be the main topic for the following Chaps. 6 and 7.

References

Balkenius, C.: Intelligent computer systems for automated engineering design. Lecture notes for
Ph.D. course. JTH, Jönköping, Sweden (2007)

Kandel, E., Schwartz, J., Jessel, T.: Principles of Neural Science. McGraw-Hill, New York (2000)
Kanizsa, G.: Margini quasi-percettivi in campi con stimolazione omogenea. Rivista di Psicologia

49(1), 7–30 (1955)

Fig. 4.5   The matrix indicates suitable implementation methods for different categories of engi-
neering knowledge when planning systems for automatic design

http://dx.doi.org/10.1007/978-3-319-28125-4_1
http://dx.doi.org/10.1007/978-3-319-28125-4_1
http://dx.doi.org/10.1007/978-3-319-28125-4_6
http://dx.doi.org/10.1007/978-3-319-28125-4_7

59

Luft, J., Ingham, H.: The Johari Window. University of California, Los Angeles (1955)
Polanyi, M.: The Tacit Dimension. Doubleday & Co., New York (1966)
Sunnersjö, S.: A taxonomy of engineering knowledge for design automation. In: Proceedings of

TMCE 2010, Delft University of Technology, The Netherlands (2010)
Sunnersjö, S.: An empirical study of different aspects of knowledge used in engineering design.

In: Proceedings of NordPLM, Göteborg (2009)

References

61

5.1 � Well-Structured and Ill-Structured Design Tasks

To solve a computable design problem a sequence of operations (arithmetics, data
storage, evaluation of conditional statements and so forth) will be performed.
There are cases where this is a straightforward task, the sequence of operations
are well known or can be clearly established. Often this is the case for processing
associated with analysis. Such problems are said to be well-structured, implying
that the program code has a predefined path of execution, which it is up to the pro-
grammer to clarify and specify.

Let us look at an example of a well-structured problem. Assume the task is to
write a program to calculate the cross sectional inertia, function I(Fb, Ft, Lh, Lt),
of the beam cross section of Fig. 5.1, with respect to the dotted baseline. The con-
tributions from the two flanges and the web are calculated according to standard
formulas and then these three contributions are translated to the baseline using
Steiner´s theorem. The resulting formula is written top right in Fig. 5.1. All param-
eters are available in the sketch, but we can see that the vertical position of the
centre of gravity, function TP, is required and needs to be calculated. This is easy
enough and also done using standard formulas with the result given at the bot-
tom right of Fig. 5.1. However, since TP is needed to calculate I the order of the
two formulas must be reversed. For this calculation the causality between TP and
I will always be fixed and the same. This is a type of calculations that are best
programmed by traditional, procedural programming methods and where the cau-
salities between different steps of the processing are naturally imbedded in the
structure of the code.

Design tasks however, often require a synthesis process and typically these prob-
lems are more open and flexible than an analysis process. Design processes are by
nature creative, have no fixed solution path and often many possible, valid results.
Many synthesis processes are inherently ill-structured, where program control

Chapter 5
Problem Structure and Knowledge
Processing

© Springer International Publishing Switzerland 2016
S. Sunnersjö, Intelligent Computer Systems in Engineering Design,
Studies in Systems, Decision and Control 51, DOI 10.1007/978-3-319-28125-4_5

62 5  Problem Structure and Knowledge Processing

needs to be determined during execution rather than following a predetermined
path towards a solution. This type of problems are usually solved by some kind of
search based approach often using methods from the field of Artificial Intelligence.

Typical applications of ill-structured problems, which require search based
solution methods, are scheduling problems (e.g. match classrooms, teachers and
classes for a semester at university), planning tasks (e.g. plan material flow and
manufacturing operations in a factory plant) and packaging (e.g. fill parcels of
different sizes into a container). Here and in Chap. 6 we will use a more design
oriented problem to exemplify problem structure and solution principles, namely
the design of a machine element called “automatic balancer”. This is a device
used in high speed rotating machinery to counteract the effect of occurring unbal-
ance. Typical applications are handheld grinding machines, laundry spin driers or
blood centrifuges. The principle lay-out of the element is shown in Fig. 5.2. Due
to fundamental dynamic phenomena the balls will automatically move to positions
where they counteract the external system unbalance when the rotational speed
exceeds the critical speed of the system. The effect is to minimise rotor vibrations.

The balancer represents a typical “open ended” design task. It is designed
and manufactured by a sub-contractor on order from many different companies,
who fit it as a component in their own products. One such customer might want
to know what balancing capacity a given design will have, another customer may
want to know what diameter and how many tracks are required to reach a speci-
fied capacity and a third customer wants to minimise the ball diameters to keep
the thickness of the device at a minimum. A large number of relevant sets of input
parameters and relations to corresponding output variables can be set up, and the
engineering knowledge required to answer these questions are well known. Ideally
we would want to be able to use the same computer code for all variations of the
design task. This means that a rather small number of relations and constraints
that applies to parameters and variables should be executed in different sequences
and with different causalities (directions) depending on what questions that are
asked. With this requirement of dynamic input parameter sets the design problem
becomes highly ill-structured. We will see how the four main solution principles
for knowledge processing will perform in this respect. In order to clarify the prob-
lem structure in a stringent way, we will use methods from graph theory, which
will be introduced in the next section.

Fig. 5.1   Calculation of cross sectional inertia of I beam

http://dx.doi.org/10.1007/978-3-319-28125-4_6

63

5.2 � Fundamentals of Graph Theory and Dependency
Structure Matrices

To understand if, and how, a design problem can be solved it is essential to clar-
ify and understand the structure of the problem, i.e. how the sub-tasks or process-
ing steps depend on each other and how the information flows during processing.
Depending on the problem and the intended implementation methods this could
apply not only to the data flow during execution but also to the solution search
space or the product structure.

There is a branch of discrete mathematics called “Graph theory” which is
dedicated to the study and analysis of generic structures. This theory is due to
the eighteenth century German mathematician L Euler. He was intrigued by the

Notation

Alfa Ball angle NN Number of balls in track N

BMN Mass of ball in track N RT1 Outer radius of disc

Dens Density of balls RT1N Outer radius of track N

FiN Diameter of balls in track N RN Radius of balls in track N

MaN Mass of balls in set N TN Wall thickness of track N

N Number of tracks UBM Unbalance moment

Fig. 5.2   Dynamic balancer with main design variables. Product properties are total mass of balls
and the resulting unbalance moment

5.2  Fundamentals of Graph Theory and Dependency …

64 5  Problem Structure and Knowledge Processing

problem of devising a route over the seven bridges of his hometown Königsberg so
that the same bridge was never passed more than once. These Sunday walks spec-
ulations resulted in a formalism for structures which is applicable to many disci-
plines and widely used also today, see e.g. reference Haggarty (2002).

Graph theory is closely linked to the theory of Dependency Structure Matrices,
DSM, which provides an alternative way of expressing the same information in a
more compact manner and in a format allowing computer processing of the infor-
mation, see references Warfield (1973), Steward (1981) and Eppinger (2012). Both
methods serve the purpose of allowing complex problems to be represented in a
way that allows conclusions about problem properties (subtasks, dependencies,
causality, information flow) and applicable solution methods to be drawn.

5.2.1 � Definitions in Graph Theory

In the following those elements of graph theory that are particularly relevant to
design automation applications will be briefly summarised.

Definition  A graph, G = (N, L), consists of nodes (vertices) and links (edges),
see Fig. 5.3. The graph defines a finite domain, i.e. there is a finite number of dis-
crete nodes and a finite number of discrete links.

A graph is essentially an illustration of a list of nodes and their connections as
shown in Fig. 5.4. The connectivity of the nodes are defined by the list of pairs
forming start and end nodes for each link. The arrow between Fi1 and R1 in
Fig. 5.4 represents the link between these two nodes and is the first entry in the list
of links. The information in the list and in the graph is the same, but the structure
of the graph is more comprehensible than that of the list.

Definition  Graphs could be undirected or directed depending on whether the
links can be followed in both directions A directed graph has links that imply a

Fig. 5.3   A graph consists of
nodes and links

65

causality or a sequence in time that must be enforced. Figure 5.3 is an undirected
graph and Fig. 5.4 is a directed graph.

Definition  A path is a sequence of links connecting a pair of nodes, e.g. L14;L45
is a path from N1 to N5 in Fig. 5.5.

Definitions  A path that returns to a previously visited node forms a cycle, see the
path through nodes 1-4-3-1 in Fig. 5.5.

Connectivity (links,
edges, arcs):
T1;R1
Fi1;R1
N1;UBM
R1;UBM
R1;Alfa
Alfa;UBM
Fi1;Alfa
Alfa;BM1

BM1;Fi1

Nodes
(vertices):
T1
Fi1
N1
R1
Alfa
BM1
UBM

Fig. 5.4   A “graph” is a representation of a list of ordered pairs. The example shows a directed
graph

Fig. 5.5   Directed graph with
one cycle

5.2  Fundamentals of Graph Theory and Dependency …

66 5  Problem Structure and Knowledge Processing

5.2.2 � Tree Structures

For DA applications a special type of graphs called “trees” are of particular impor-
tance. Definitions, theorems and properties of tree structures are summarised
below.

Definition  A graph is fully connected if all nodes can be reached through a
sequence of links (=paths exist between all pairs of nodes).

Definition  A tree is a graph which is fully connected and has no cycles.

Definition  A rooted tree is a tree graph starting in a single node. Nodes with only
incident links (no links leaving the node) are called leaves. The tree graph is usu-
ally drawn upside down (root at top).

Theorem  For a directed rooted tree it is always possible to sort all nodes in an
ascending order so that i < j, implying that for a data flow graph the determina-
tion of node i should precede determination of node j.

Definition  A graph sorted with all nodes in an ascending order is said to be top-
ologically sorted. The corresponding DSM, see Sect. 5.2.3, has all nonzero ele-
ments below the diagonal. This implies that no variable value is requested before
it has been determined

Definition  The directed tree structure is used to represent hierarchical struc-
tures. Examples are product structures (rooted), search trees (rooted) or data
flow charts

Definition  A data flow problem represented by a directed rooted tree implies
that the input parameters form the starting point or root. If one or several of these
starting parameters are replaced by design variables, the problem is said to have a
dynamic input data set.

5.2.3 � The Dependency Structure Matrix (DSM)

For large problems with many nodes and links the graphic representation becomes
complex and the overall view and clarity is lost. Further, the graph itself is not
suitable for computer processing. A matrix notation in the form of an “adja-
cency” (binary) matrix is then often preferred. The adjacency matrix is a type of
Dependency Structure Matrix, DSM, where for each column representing a node,
the existence of a link to another node is denoted by “1”. For instance, the col-
umn marked “Fi1” has “1” marked in rows “R1” and “Alfa”, which corresponds to
the arrows denoting links between respective nodes in Fig. 5.6. A cycle in a graph
appears as a coupled block in a DSM, i e if cell ij is marked with “1”, then also
cell ji will be marked.

67

When used for the purpose of planning complex design work (or a design auto-
mation system) it is often more convenient to set up a DSM directly rather than go
via a graph. Since the two representations contain identical information the defini-
tions and theorems developed in graph theory are fully applicable to DSMs.

In order to set up a DSM, the complete design task is divided into suitable sub-
tasks, see Fig. 5.8. Sometimes each subtask is associated with a component in the
product structure, sometimes the subtasks are of a more abstract or general nature.
The subtasks label rows and columns of the matrix and are inserted in optional,
but consistent, order, e.g. following an assumed sequence or the product struc-
ture. Starting from the top row of the matrix and moving downwards one should
then clarify for each subtask what results from the other subtasks that are directly
needed to be able to carry out the present task. The three alternative dependencies
between tasks are given in Fig. 5.7.

Consider Fig. 5.8. Subtasks A and B require no input from other tasks, they
might for instance be input parameters. They are independent and could be car-
ried out in parallel. Task C requires input from B and B is available so C can be
resolved. Task D require input from A and C, where A was available from start and
C from the previous step. D can thus be resolved. Tasks C and D must be solved
in sequence sin D depends on C. When we come to task E a problem arises. E
depends on F which is not yet available. F however only depends on A, so if the

Fig. 5.6   A graph can be mapped one-to-one to an adjacency matrix

Dependent tasks Independent tasks Interdependent tasks
(Series) (Parallel) (Coupled)

Fig. 5.7   Three types of dependencies (causalities) for design subtasks

5.2  Fundamentals of Graph Theory and Dependency …

68 5  Problem Structure and Knowledge Processing

execution order of E and F were reversed we could resolve both E and F, which
are said to be conditionally sequential. Tasks G and H however are mutually
dependent, coupled, and cannot be resolved one at a time but need to be treated
simultaneously. Coupled subtasks often constitute the main stumbling blocks in
engineering design irrespective of whether the process is to be carried out manu-
ally or by an automated system.

An example of a DSM of industrial origin is shown in Fig. 5.9. The example
refers to the design of the flow channels in a thermal plate heat exchanger, see the

Fig. 5.8   Dependency Structure Matrix, DSM, representing eight subtasks, A–H, having four
types of dependencies

Fig. 5.9   DSM for flow channels of plate heat exchanger. The box constitutes an optimisation
problem involving three different technical disciplines. From Rask and Sunnersjo (1998)

69

industrial case No. 5 in Appendix A. The DSM was used when setting up a design
automation system with an objective to optimise a design solution with conflicting
requirements of strength, thermal efficiency and manufacturing requirements.

5.3 � Problem Structure and Choice of Solution Principles

The preceding graph theory can be used to analyze the structure of a given prob-
lem, or more precisely, the structure of its knowledge base and determine what
solution principles that are applicable and suitable. In processing of explicit
knowledge for design automation there are basically four alternative solution prin-
ciples available:

Procedural, which represents the traditional approach to computer program-
ming where the programmer defines the sequence of operations that are to be per-
formed. The domain knowledge and the processing instructions are interspersed in
the computer code.

Inference (or rule) based, where problem specific knowledge is stored in
a knowledge base and program execution is governed by a generic “inference
machine”. The programmer is not required to specify the sequence of operations,
only to ensure that the knowledge base is complete and consistent. As knowledge
is required, the inference engine will search the knowledge base and activate the
needed facts, rules and methods.

Generate and test, G&T, is a very simplistic, but robust, approach where the
solution space is systematically populated and scanned for a valid solution. This
method of exhaustive search is only applicable to problems with a finite number
of possible solutions and, due to combinatorial effects, restricted to small solution
spaces.

Constraint based search is a method where the set of given constraints are eval-
uated in order to narrow down the remaining solution space. The solution space
might be so drastically reduced that only one valid solution remains or allowing
the remaining, “pruned” search tree to be scanned for valid solutions using G&T.

These paradigms can also be combined into hybrid solutions. Chapter six is
devoted to a more exhaustive review of these four solution principles.

The principles for mapping solution principle to problem structure can now be
summarised as follows:

•	 A problem with data flow represented by a topologically sorted, rooted tree
can be solved using traditional procedural programming techniques, as a series
of assignments, branching and so on.

•	 A problem with a knowledge base represented by a directed tree can be solved
using inference based forward or backward chaining algorithms. Allows
free structuring of knowledge, which is separated from control instructions.
Dynamic input data set possible only if cycles of the data flow do not arise.

5.2  Fundamentals of Graph Theory and Dependency …

70 5  Problem Structure and Knowledge Processing

•	 A problem represented by a search space (e.g. product structure) that is a
rooted, directed tree and multidirectional constraints on discrete design var-
iables can be solved by exhaustive search (G&T). Design variables must be
discrete and finite in number. Execution time grows rapidly with the solution
space, so for practical reasons only small problems can be solved using this
principle. Dynamic input data set is generally allowed.

•	 The search tree can be reduced by applying constraint programming tech-
niques (pruning). Pruning could be due to constraints that must be enforced
or due to”common sense” constraints that are introduced to reduce the solu-
tion space. After pruning due to constraint processing the search tree is often
reduced to a size where G&T can be applied to solve the problem.

•	 A problem with graphs that have cycles (or blocks in the DSM) must be parti-
tioned so that the graph becomes a directed tree before solution. When the vari-
ables are real numbers partitioning is carried out using an equation solver or,
for under-constrained problems, an optimisation algorithm, see Fig. 5.9.

5.4 � Problem Complexity

The solution space for a given problem can, at least in theory, be estimated by
applying the rules of combinatorics. The size of the solution space together with
the methods used to search it determine the total number of required operations
and consequently what execution time that will be required. Search based solution
methods always run a risk of being slow to execute and also powerful comput-
ers may require unacceptable execution times if unsuitable algorithms are used. Of
course execution time will be hardware dependent (clock time, available memory
and so on), but even small changes of the problem formulation or the algorithms
used might have a very significant effect upon execution time.

To estimate actual execution times in advance is a difficult task of combinato-
rics, but more important than absolute time is to study how sensitive solution time
will be to problem size, i.e. how well the intended solution procedure scales. The
effect of scaling up a problem can be very dramatic and it is important to be able
to foresee such effects. Otherwise there is a risk to establish a design automation
system that works well as a prototype, but is not viable when problem sizes grow.
As scaling up is almost bound to happen for systems that come into industrial use,
poor scaling properties could lead into a cul-de-sac that might render the system
useless.

To characterise the scaling properties of a solution method a metric called time
complexity function is used. This function is related to execution time in an indi-
rect way and gives a qualitative indication of how suitable an algorithm is to han-
dle realistic, large problems (scalability).

71

Let N represent the size of a problem, e.g. the number of design variable val-
ues. The time complexity function is then defined as

meaning that for large values of N, C(N) will be limited by the dominating func-
tion f(N). To give an example, consider a solution process where the number of
operations have been estimated to a + bN + cN2. For large values of N the third
term will always dominate and hence, f(N) = N2.

The following complexity classes are relevant for most common processing
methods,

•	 linear, C(N) ~ O(N)
•	 polynomial, C(N) ~ O(Na), a = 2,3,.
•	 exponential, C(N) ~ O(bN)
•	 factorial, C(N) ~ O(N!)

As an indication the computational complexity for the most important solution
principles that will later be discussed in Chapter six are given below,

•	 Procedural, static sequence, C ~ O(N)
•	 Inference based, dynamic sequencing, C ~ O(N2)
•	 Constraint programming + G&T C is problem dependent
•	 G&T, all permutations C ~ O(N!)

How then should we interpret these complexity functions? Say that we want to
topologically sort a directed graph with ten nodes by G&T (brute force approach).
The N nodes can be arranged in N! ways. For 10 nodes C is 3.5 × 106. This prob-
lem is solved instantly on any lap-top computer. For 25 nodes C is 1.5 × 1025.
For a computer doing one billion operations per second this will take 7.5 billion
years, i.e. the problem cannot be solved irrespective of what computer power that
is available. Computational methods that works correctly but result in unaccepta-
ble execution times as the problem size increases are called intractable. With few
exceptions such methods cannot be used to solve design automation problems of
realistic size.

References

Eppinger, S., Browning, T.: DSM. MIT Press, Boston (2012)
Haggarty, R.: Discrete mathematics for computing. Pearson Ed Ltd, England (2002)
Rask, I., Sunnersjo, S.: Design structure matrices for the planning of rule based engineering sys-

tems. In: Conference Proceedings Integration in Manufacturing, Esprit, Goteborg, Sweden
(1998)

Steward, D.: The design structure system: A method for managing the design of complex sys-
tems. IEEE Trans. Engg. Manag. (1981)

Warfield, J.: Binary matrices in system modelling. IEEE Trans. Syst. Man Cybern. 3, 441–449
(1973)

C(N) ∼ O(f(N))

5.4  Problem Complexity

73

Assume that we have clarified and compiled the specific domain knowledge and
problem structure required to perform a certain task of variant design. This knowl-
edge, i.e. understanding of information and methods to be used, must then be
transformed into a format that can be coded as a computer program. This is not
primarily a matter of conversion to specific language syntax, but rather a matter of
being able to express subtle real world knowledge in the standardised formats that
the computer will accept. Chapters 4 and 5 discussed the process of idealisation,
where real world knowledge is clarified and distilled into a simplified form, while
still retaining all its significant meaning and characteristics. From a representation
of the knowledge in idealised form, the practical coding into a specific program-
ming language or tool could be seen as a process of knowledge modelling. This is
the topic of Chaps. 6 and 7.

From computer programs for analysis we are used to a procedural approach
where a predefined sequence of instructions is executed. This is to some extent
applicable also to computational synthesis problems, but such problems often
present more divergent and dynamic solution structures. Rather than following
the predefined solution paths of procedural programs, the solution paths for syn-
thesis problems may need to be determined dynamically during execution. This
implies some sort of search process, i.e. a computational facility to search the con-
tent of the knowledge base or the solution space for the steps that lead to a viable
solution.

Representation and processing of knowledge are the key elements when plan-
ning a design automation system. Figure 6.1 gives an overview of the main factors
of a computable design task. By applying the defined relations on the specified
input parameters the sought after design variables will be determined step by step.
The dependencies among the relations will govern how the solution process will
proceed and the previously discussed DSM characteristics provide decisive criteria

Chapter 6
Representation and Processing of Explicit
Knowledge

© Springer International Publishing Switzerland 2016
S. Sunnersjö, Intelligent Computer Systems in Engineering Design,
Studies in Systems, Decision and Control 51, DOI 10.1007/978-3-319-28125-4_6

http://dx.doi.org/10.1007/978-3-319-28125-4_4
http://dx.doi.org/10.1007/978-3-319-28125-4_5
http://dx.doi.org/10.1007/978-3-319-28125-4_6
http://dx.doi.org/10.1007/978-3-319-28125-4_7

74 6  Representation and Processing of Explicit Knowledge

for what methods that can be used. The overall objectives determine when the
search process is finished. Hence objectives

•	 “Explicit”, implies that one and only one solution is to be found
•	 “Constraint satisfying”, implies that several viable solutions exist, but the first

solution encountered is accepted
•	 “Optimal”, implies that the best possible solution is required

The nature of the technical knowledge required to solve typical tasks in engineer-
ing design was discussed in Chap. 4. With these discussions in mind we will now
review how the available programming methods match these categories. The mul-
tidisciplinary nature of design work indicates that in many cases one, single com-
puter method will not suffice, instead a combination is necessary. Also it is very
likely that for engineering applications, the knowledge will have elements that
require logic reasoning as well as numerical computations in the same program.

In this text the characteristics and origin of the knowledge used have been the
decisive element when categorising the methods described for design automation
applications. One watershed thus, is whether design rules are, or can be made,
explicit or whether they are implicit, i.e. imbedded in knowledge related to the
problem. The former type of methods are covered in the present Chap. 6, while
the latter type will be discussed in Chap. 7. Referring to Fig. 1.4, this means that
systems based on the declarative paradigm and systems based on traditional proce-
dural programming are treated here while systems categorised as Computational
Intelligence are treated in Chap. 7.

Fig. 6.1   Main factors governing the mode of operation of a design automation system

http://dx.doi.org/10.1007/978-3-319-28125-4_4
http://dx.doi.org/10.1007/978-3-319-28125-4_6
http://dx.doi.org/10.1007/978-3-319-28125-4_7
http://dx.doi.org/10.1007/978-3-319-28125-4_1
http://dx.doi.org/10.1007/978-3-319-28125-4_7

75

Procedural programs are fast and efficient for problems with heavy numerical
computations and where the problem structure is hierarchical. In procedural pro-
grams the “knowledge base” is mixed with process control instruction, a fact that
is unfavourable from the perspective of overview and quality assurance of the pro-
gram. Programs written according to the declarative paradigm differ significantly
from the procedural programs by a strict division between the knowledge base and
the solver, which is called inference engine. The knowledge base is strictly aimed
at representing the knowledge governing the problem without consideration to its
processing. The design rules may be stored in a way that is beneficial to the user
and gives a good overview.

If the data flow graph for a problem has cycles, the inference based systems
run into trouble by getting stuck in eternal loops. Instead methods that search the
solution space can be applied. The basic, straightforward way of Generate and Test
is limited to small problems, but in combination with a constraint solver also full
scale industrial problems can be solved. All these methods have one thing in com-
mon: The knowledge base consists of elements that give an explicit definition of
the knowledge that is to be used to search for and, if possible, find a design solu-
tion that satisfy given requirements and constraints.

6.1 � Procedural Solution Methods

Traditional computer code works according to the procedural or imperative prin-
ciple. The program consists of a list of instructions that the computer will perform
one at a time and in sequence. Before approaching the actual coding it is up to the
programmer to plan this sequence of operations (input/output, file storage, calcu-
lations, loops, jumps, sorting…) and to anticipate at which points there is a need
to introduce branching of the execution process. A detailed scheme needs to be
worked out which will serve as input to the task of writing the program.

In the resulting code instructions related to the domain specific design knowl-
edge will be intertwined with instructions related to execution control. The
“knowledge base” is thus dispersed over the entire program code and structured
according to what is needed during the execution process. This is a situation
that arises by necessity in procedural programming. It has its advantages but in
the context of design automation also some significant disadvantages. It will be
difficult to get an overall view of the accumulated domain knowledge and thus
difficult to control the relevance and accuracy of the knowledge that the program
uses. Further, since the knowledge is not structured in any systematic fashion but
only according to the execution process, it might be difficult to localise a specific
knowledge element that might need control or updating. Programs for industrial
applications are often developed in steps over long time and by many program-
mers and becomes gradually more and more difficult to maintain, one reason
being that a required change in the sequence of instructions may cause side effects
to other parts of the program that are difficult to foresee.

6  Representation and Processing of Explicit Knowledge

76 6  Representation and Processing of Explicit Knowledge

One way to at least partly separate knowledge and execution control also for
procedural programs is to set up a work-flow manager separate from the executa-
ble statements representing the domain knowledge, see the bulkhead design exam-
ple No. 6 in Appendix A. In this application an executable design manual has been
set up consisting of knowledge objects (see Fig. 6.2) for all subtasks of the design
calculations. The required chain of operations are then defined in a workflow man-
ager graphically represented by a DSM.

This arrangement gives clarity and overview but the workflow is static, which
means that if any changes are required it is up to the programmer to redefine the
work-flow taking into account any side effects these changes might have. The radi-
cal solution to the problem is to turn to programs using an inference engine. Such
programs will allow a separate knowledge base that could be arranged for clarity
and overview rather than execution control. If the problem structure is such that
the information flow graph has cycles, i.e. cannot be transformed into a topologi-
cally sorted tree, other methods are required.

Having said this in favour of inference based systems it must also be said that
traditional, procedural programming methods still have, and should have, a signifi-
cant role in many design automation systems. In cases with few variations of solu-
tion sequence or where the execution needs to be directly controlled, procedural
programs may well be the best choice. One important case where execution order
must be predefined is when product geometry is to be built up under program con-
trol in a history based CAD system, see Sect. 3.1.1. Also, it is very common that
methods used as parts of the knowledge or constraint based systems that will be
discussed later, are written using procedural programming methods. Referring to
the previously discussed graph theory, procedural programming is applicable, and
often preferable, when the data flow is hierarchical as in a topologically sorted tree
or in a DSM with all marks under the diagonal.

6.1.1 � Design Problems Cast in a Mathematical Form

Procedural programming is often the natural choice for computable design prob-
lems that can be cast in a mathematical form. Assume that a design solution is
defined by a set of N real design variables, xi; i = 1, … N. Out of the N design

Fig. 6.2   Knowledge object as a black box system further elaborated in Section 6.2.4

http://dx.doi.org/10.1007/978-3-319-28125-4_3

77

variables Q are given as input parameters. The design variables are constrained by
the following M relations:

For this formulation of a design problem the following conditions determine what
solutions one would expect to find:

•	 If N − Q = M, the problem is fully constrained and at the most one solution for
xi exists,

•	 If N − Q > M, the problem is under-constrained and many solutions for xi
could exist,

•	 If N − Q < M, the problem is over-constrained. In the general case, no solution
for xi exist

The solution procedure is independent of which xi that define input parameters and
design variables respectively.

There certainly exist design problems that can be formulated in this way and
the solution procedure is then comparatively straightforward. In engineering praxis
however there are often complications. The design variables might be a mixture
of real, integer and logical variables. This means that equations are replaced by
bounds and intervals or logical operations. Further, design problems are often
under-constrained, which leads to a constraint satisfaction or an optimisation prob-
lem rather than a solution of simultaneous equations.

A more flexible solution approach is therefore often called for. Rather than
solving a system of equations it is natural to define a solution sequence of oper-
ations, simple or more complex, representing a fixed workflow. This is a viable
approach if the sequence remains the same or only has a small number of varia-
tions, which could be implemented as conditional branching. Let us return to the
example with the dynamic balancer described in Sect. 5.1 and Fig. 5.2 and inves-
tigate how a procedural program would work, and what problems that might be
encountered.

6.1.2 � Case of Application of Procedural Solution Method

Say that the task is to predict the unbalance capacity for a given balancer design.
The information flow of the calculation is given as a graph in Fig. 6.3, left, and
the corresponding DSM, right. The nodes of the graph are the methods (formu-
las) used to calculate respective variables (indicated in brackets), while the links
between nodes transfer the variables. Correspondingly the DSM has the subtasks,
named after the variable computed, inserted as row labels. The details of the



















f1(x1; x2; . . . xN) = 0

f2(x1; x2; . . . xN) = 0

. . .

fM(x1; x2; . . . xN) = 0

6.1  Procedural Solution Methods

http://dx.doi.org/10.1007/978-3-319-28125-4_5
http://dx.doi.org/10.1007/978-3-319-28125-4_5

78 6  Representation and Processing of Explicit Knowledge

methods required are not essential from a design automation perspective and are
thus given in Fig. 6.4 without explanations.

We can see that the graph of Fig. 6.3 is a rooted, topologically sorted tree and,
correspondingly, the DSM has all marks below the diagonal showing a hierarchi-
cal information flow. According to the criteria of Sect. 5.3, it is clear that the prob-
lem can be solved by a procedural program that will return a value for unbalance
capacity and a value for total weight of balls.

Fig. 6.3   Graph and DSM illustrating information flow for calculation of capacity of automatic
balancer

Fig. 6.4   DSM for balancer with methods for each subtask specified showing dependencies
between input parameters, intermediate variables and design properties

http://dx.doi.org/10.1007/978-3-319-28125-4_5

79

6.2 � Inference Based Systems

An industrial production system for design automation is often a software package
of considerable size, e.g. the system described in case 2 in Appendix A contains
about 25,000 design rules. To sort out and keep track of the solution process cor-
rectly is not a trivial task, especially after a couple of years of use. By then many
individuals have over time contributed to the knowledge base and it is obvious that
quality assurance and overview become serious issues for such systems. Also safe
and easy updating of the system is of great importance. To have the knowledge
base merged into a procedural code and intertwined with control instructions is a
significant difficulty in these respects.

In many cases it would be better to state only the design rules and then have
the computer find the right path through the knowledge base and process the
rules. The inference based method provides such an alternative, which is appli-
cable to problems that have a hierarchical tree structure but without the need for
topological sorting. Contrary to what is the case for procedural systems, inference
based systems operate without a predefined solution path, which is instead gener-
ated during execution and governed by input parameters and intermediate results.
Among such results might well be human interaction in case the system demands
complementary information from the user.

6.2.1 � Separating Knowledge and Control

The fundamental concept behind inference based solution principles is to separate
the program into two parts:

•	 The knowledge base that contains all the domain specific knowledge that
is required to arrive at a solution. The knowledge base is set up by the user,
who does not need to be concerned with how the knowledge should be applied.
Hence, the order in which the design rules are stored is unimportant but it is the
user´s responsibility that they are correct, consistent and complete. This method
of programming is called declarative.

•	 The inference engine is generic and controls how the knowledge base is exe-
cuted at run-time. The inference engine is not related to any specific problem
and operates outside the control of the user. It is often written in procedural
code and has as its main task to scan the knowledge base to clarify which design
rules that should be applied and in which order.

The knowledge base in an inference based system is made up by:

•	 Facts, which could be given facts, e.g. data given as input parameters or perma-
nently defined in the computer code when programmed. It could be transient
facts supplied by the user or sensors during execution, or it could be derived
facts that are determined by the rules and methods of the system during execu-
tion. Examples: Planet is Earth. G has the value 9.81 m/s2

6.2  Inference Based Systems

80 6  Representation and Processing of Explicit Knowledge

•	 Rules (or Production rules), which are conditional statements of the form “if
(condition) then (action)” where a predefined action is performed when a cer-
tain condition is met. Conditional statements may be combined using Boolean
operations like “AND, OR, EQUAL” Example: if (Planet is Earth) then (a is
assigned the value G)

•	 Methods, instruction(s) on how to determine facts that are requested when
needed. Example: Perform calculation at2/2 and assign the result to S

The vocabulary concerning the term “rule” is somewhat confusing. What is here
called “inference based systems” is often referred to as “rule based systems”. Rule
then stands for design rules, consisting of “facts, production rules and methods”
not restricted to the conditional production rules only.

We will now illustrate the search process with a very simple example. Assume
that we want to determine the distance S that a body will fall when dropped on
planet earth during time t. To solve the problem we could apply the facts, rules
and methods given above. The path of search and reasoning would be something
like this: S is the sought unknown variable and we can see that a value is assigned
to S by the formula in the method. Time is assumed to be given input, but accel-
eration, a, is unknown, so we must first search for a rule that assigns a value for
a. The action part of the rule will set the value of a to G providing the rule condi-
tion is “true”. Planet is specified as earth so the assignment applies. The numeri-
cal value for G is found as a fact and the formula defined as a method can now
be evaluated and S assigned a numerical value. Unlike in a procedural solution
sequence the order in which the knowledge is defined is irrelevant—the problem is
solved by a search process that we will later recognise as a process of “back-ward
chaining”.

The three elements of the knowledge base represent formats, which in combi-
nation go a long way towards capturing the design knowledge required to perform
a given design process. Given facts and methods are static elements which are
called when required, while the actions of rules are dynamically determined dur-
ing execution and depend on the current values of variables that form the condi-
tional part of the rule. The three elements are often used in combination, e.g. a fact
is utilised as part of a condition in a rule or the action in a rule triggers a method
to determine the required result. A method might very well be a more complicated
procedure than an algebraic formula. It could be a call to an external program per-
forming numerical computations, interpolation, selection in a data base and so
forth. Figure 6.5 illustrates how the inference engine step by step derives new facts
from the given input parameters until eventually all required design variables have
been determined.

In its simplest form the inference engine is a program that scans the knowl-
edge base to search for opportunities to determine the requested design variables
by execution of the rules with fulfilled conditions. Figure 6.6 illustrates how the
conditions of the N_max number of rules in the knowledge base are tested. The
rules found to have satisfied conditions are “triggered” and stored in the “conflict
set”. One of the rules is selected (many different strategies for selection exists)

81

and the action is “fired”. The resulting new, derived fact(s) is/are added to the cur-
rent fact base and the scanning is repeated with the new fact included. This pro-
cess is repeated until no more rules with satisfied conditions remain. The final fact
base will now contain all requested design variables provided the knowledge base
is complete and consistent and the rules do not have dependencies which form
cycles.

The process described starts with the given facts, applies iteratively the design
rules and methods and then determines all design variables that will result. This
process is called forward chaining and one characteristic is that all results will be
derived irrespective of what was really sought for. An alternative approach was
described in the previous example where a distance S was sought. This process
works backwards from each sought variable and derives how it is related to the
given facts. This process is called backward chaining and is the more efficient
method when only parts of the design variables are required.

The described process is very basic and would be slow to execute due to its
iterative character. Commercial software packages use various approaches to
improve efficiency. One obvious waste of time is to evaluate the conditions of the
rules each time the loop in Fig. 6.6 is executed. More sophisticated system use
algorithms that save the test results to the following iterations e.g. the Rete algo-
rithm (Coppin 2004). For the user however, in most cases it is sufficient to under-
stand the basic principle and the fact that the more sophisticated algorithms, will
return the same results, only much faster.

For both backward and forward chaining in their simplest form, the knowl-
edge base is searched for applicable rules. These could be stored in a rooted tree
structure, e.g. a product structure is a common and natural storage principle. When
searching this tree the search could follow each branch to the leaves of the tree,

Fig. 6.5   The requested design variables are made up of given input parameters and derived facts
determined in an iterative procedure

6.2  Inference Based Systems

82 6  Representation and Processing of Explicit Knowledge

one at a time. This is called searching depth first, while the alternative breadth first
implies that of the breadth of the tree is visited first and then step by step moves
down into the tree.

6.2.2 � How Is Inference Based Programs Different from
Procedural Programs?

The inference based system works autonomously and creates a solution path as it
processes the design rules in the knowledge base. This mode of operation is very
different from what we are used to in traditional programs. Let us now return to the
balancer example having a workflow for procedural programming shown in Fig. 6.4.

Fig. 6.6   Fundamental
flowchart for basic inference
engine

83

The left column lists the parameters and variables, while right column contains the
relations that should be enforced. In the figure the parameters and variables are top-
ologically sorted, i.e. all indications in the DSM appear below the diagonal. This
would not have been necessary if a rule based system had been used which allow
the relations to be stored arbitrarily and the solution path found during execution.

So what is gained by use of this programming paradigm? Obviously the answer
is dependent on problem characteristics and the particular software used, but gen-
erally speaking it can be said that inference based systems have:

•	 Modularised program architecture, i.e. facts, methods and rules can be added,
altered or removed without having to consider any side effects on the execution
process. The execution of rules is demand driven and determined during execu-
tion and it is dynamic and adapts to changes of the knowledge base,

•	 In principle, no need for control logic,
•	 Simpler and shorter code. No “Spaghetti code”, which can be problematic in

procedural code if the knowledge base contains a large number of complicated,
nested conditions.

•	 Better management of design rules. The fact that the path of execution is not
(critically) dependent on the order in which the design rules are stored provides
the opportunity to store them systematically for easy overview

Are there any disadvantages?

•	 Facts, methods and rule executed entirely governed by an inference engine is an
idealised situation. In engineering design it is sometimes necessary to enforce a
certain sequence and to override the inference engine with a predefined execu-
tion sequence. One example is when a CAD model with a history tree is gen-
erated, which cannot be done in an arbitrary order. A feature to determine the
order of execution is therefore included in some software packages for inference
based engineering systems

•	 There is a risk of long execution times for large knowledge bases
•	 Since the path of execution is dynamic and therefore not known by the pro-

grammer beforehand, debugging might be more difficult than in procedural sys-
tems. Also, it is essential to understand how the inference engine works in order
to write the rules for correct processing

•	 It might be self-evident, but still needs saying: Irrespective of what program-
ming method that is used, it is still up to the user to verify completeness, con-
sistency and correctness of the knowledge base and that the rules do not have
cyclic dependencies.

6.2.3 � Frames for Object Oriented Knowledge Base

An important advantage of rule based programs is that the elements of the knowl-
edge base can be stored in any order that is practical. This provides an opportu-
nity to arrange the knowledge base in a tree structure for efficiency and ease of

6.2  Inference Based Systems

84 6  Representation and Processing of Explicit Knowledge

management. The paradigm of object oriented programming is realised in the AI
world by the concept of frames.

Frames, which could be seen as front-ends of rules and methods, allow knowl-
edge to be represented in hierarchic structures with classes and relations. This
approach implies:

•	 Knowledge abstraction: Divide knowledge base in classes with relations (e.g.
“part-of”, “consist-of”) to improve structure and overview. Generalisation (up)
and specialisation (down)

•	 Inheritance: Facts, rules and methods in one class are passed on to frames in all
sub-classes

•	 Encapsulation: Each frame acts as a black box processing input data (facts) and
delivering output data (updated facts).

Figure 6.7 shows an example of the template for a Frame. This will store:

•	 Meta data: Name, author, date…
•	 Place in hierarchy: Superclass (parent), subclasses (children)
•	 Slots: Attribute classes
•	 Facets: Contents of slots. Facets could be e.g. default values, facts, rules, meth-

ods, calls to external procedures.

6.2.4 � Knowledge Objects

These can be seen as an extension of Frames, for cases where the subtasks require
sizeable programs and might also include external programs written in other lan-
guages. The underlying idea behind knowledge objects is to divide the design

Fig. 6.7   Template for Frame or Knowledge object

85

knowledge into suitable “chunks” that behave as black boxes with only input and
output values available outside the object, see also (Sunnersjo et al. 2006). The
work-flow manager or inference engine then searches for objects where all input
parameters are available, executes that object and adds the resulting variables to
the current facts base and starts a new search, but now with the results from the
previous loop added. This process goes on until no more objects can be executed.

One can visualise the organisation of the system as a class room with the stu-
dents in front of a black-board divided into cells where the current values of all
design variables are written, Fig. 6.8. The system is event-driven, e.g. action is
initiated when a value is changed and represented by students having different
assignments that are initiated when the values of one or more cells drawn on the
blackboard are changed.

In the example the process starts when the value in cell 22 is changed by out-
side intervention from 1 to 5. Imagine that KO3 has been told to monitor cells 11
and 22 and act so that rule KO3 is always enforced. Since the condition of this rule
is true after the change, this student will now change the colour of cell 23 to blue.
This in turn alerts KO2 who will, according to rule KO2, add the number one to
the previous value of cell 12. Processing then halts until some new event initiates
further processing.

The knowledge objects could be substantial programs, often of a procedural
nature, that perform operations in isolation from the calling program and each
other. Operations can range from calculation of an algebraic formula to data base
searches, interpolation or optimisation. It could also involve calls to external pro-
grams, like geometry manipulation using a CAD system, structural simulation
using Finite element software or more specialised technical computations such

Fig. 6.8   Inference based system with knowledge objects seen as a black board analogy

6.2  Inference Based Systems

86 6  Representation and Processing of Explicit Knowledge

as property calculations of performance predictions. The organisation of a design
system according to this architecture provides a very high degree of modularity
and flexibility. New objects can be added or old objects replaced with object based
on new technology without affecting other parts of the system. The inference
engine then acts like a manager that initiates, controls and evaluates the results
generated outside the rule system. Example No six in Appendix A is built using
knowledge objects governed by a static work-flow manager, while example No
nine, involving heavy numerical simulations, uses an event driven process control.

6.3 � Exhaustive Search by G&T

6.3.1 � Problems with Discrete Variables and Cyclic
Flow Graphs

We now return to our example of the balancer in Fig. 5.2. It was pointed out in the
previous section that by using an inference based system we are free to store the
relations in any order we like without affecting the result. But suppose we want
to reverse the task compared to previous example, e.g. define a required unbal-
ance capacity instead and ask what size of balancer outer radius that is required,
all other variables remaining constant. Clearly this problem requires the same
general product knowledge and design rules as previously but this program will
not solve the problem directly. Instead the graphic representation of problem
structure in Fig. 6.9, shows a cycle between the two variables R1 and Alfa. This is
equivalent to the coupled box in the DSM.

Fig. 6.9   Data flow graph with one cycle and DSM with coupled block

http://dx.doi.org/10.1007/978-3-319-28125-4_5

87

As the problem is formulated it cannot be solved directly in the form of an
explicit answer resulting from a chain of assignments. The two methods of the
cycle must be merged into one in order to make the information flow of the prob-
lem hierarchic, an operation called partitioning, see Fig. 6.10. The merger is in
this case done using a solver for a system of equations, which becomes the method
that replaces the original two methods denoted two and three in the Figures.

After partitioning it appears that the task could be solved in a straightforward
way either by a inference based program or procedurally using a short sequence of
assignments. There are however two significant drawbacks with this approach, that
explains why other methods are often preferred in a case like this.

First, the variables will often be a mixture of real and integer numbers. The
balancer problem is represented by design parameters, intermediate variables,
design variables and product properties. These will be real numbers (e.g. weight)
or discrete numbers, either by necessity (e.g. No of balls) or choice (e.g. diameter
of balls). It is common that the main design variables that define the product are
discrete numbers.

For the current example, the equation solver will in general return a real
value for ball race diameter, FI1, but for reasons of standardisation it might only
be acceptable with solutions having integer variable values. Simply rounding to
nearest integer value would introduce an arbitrariness that is not acceptable. But
constraining FI1 to discrete numbers means that the equalities will generally not

Fig. 6.10   A coupled
problem reduced to a
hierarchic tree structure by
partitioning

6.3  Exhaustive Search by G&T

88 6  Representation and Processing of Explicit Knowledge

be satisfied. Instead we need to introduce inequalities (bounds and intervals). In
the balancer case we could replace the constraint relating to UnBalance Moment,
UBM = 6.0 Nm with the inequality UBM ≥ 6.0 Nm, which would result in a bal-
ancer that has a balance capacity equal to or better than the original requirement.
This mixture of real and discrete numbers is a stumbling block that is not easily
solved with the straightforward procedural or rule based solution.

The two processing sequences of Figs. 6.4 and 6.9 respectively, return numeri-
cal values to two required design variables. In practice there are many more sets
of given parameters and requested output variables that the system must be able
to handle to be a useful tool for adapting the basic balancer to varying customer
demands. One customer might want to minimise the ball diameters to reduce the
thickness of the device, one will only allow the same ball diameters in all three
tracks, one might allow one track only and so on. For the balancer at least 15 dif-
ferent combinations of input parameters and corresponding design variables could
be expected in practice. All computations are based on the same design rules but
there is a need to reverse and rearrange the relations.

If we apply procedural methods, one solution procedure needs to be pro-
grammed for each planned input data set. An overwhelming task if the number
of possible variations of input data is large. If an inference based solver is used
the solution sequence is determined at run-time and depend on the specified input
data set. For this to be straightforward the corresponding Graph must be free from
cycles and non-directed, i.e. the relations reversible. Otherwise, as is the case for
the balancer, the DSM needs to be partitioned and a solution method for each par-
tition needs to be constructed. This is clearly not an easy task for an automatic
system.

To overcome these problems a seemingly very primitive method will now be
introduced.

6.3.2 � Generate and Test, G&T

Consider the system of equations in Fig. 6.11. To solve this we would normally
substitute the expression for y of equation number one into equation number two
and solve using the well-known formula for quadratic equations. An alternative,
brute force approach could be to simply try a sequence of values for x and y and
test against the two given constraints. In the example we find that the combination
of x = 2 and y = 4 satisfy both constraints. This might appear as a very primitive
way of solving a mathematical problem, but there are problems where this method
of exhaustive search has attractions.

Generally speaking, exhaustive search suffers from poor scalability. Execution
time will grow exponentially with problem size and the method is what we in
Sect. 5.4 called intractable, i.e. problems with large solution space will cause a
combinatorial explosion. For this method to be applicable two conditions must

http://dx.doi.org/10.1007/978-3-319-28125-4_5

89

be met. The search space (rooted tree) must be finite, i.e. the nodes must repre-
sent discrete events such as the design variables being restricted to integer values.
Secondly, the allowable variable ranges must be possible to estimate and this esti-
mate used to keep down the size of the search space.

For large problems G&T is not a practical alternative. The reasons why this
brute force approach could play a role despite its poor scalability is that design
variables such as main dimensions, part selections, number of components and so
forth, naturally are defined as integer values anyway. Further, for variant design
the allowable ranges of design variables are normally well known from experience
and can confidently be specified within reasonably tight limits.

We now return to the example with the balancer, this time a version with only
one track. For this example a minimum value for the unbalance moment, UBM,
is required and the task is to determine the three main design variables so that a
design is found where the UBM requirement is satisfied. The problem could be
defined as a constraint satisfaction problem:
Main design variables:

•	 Ball diameter, Fi1. Range: 8–17 mm in steps of 1 mm
•	 Disc radius, RT1. Range: 200–249 mm in steps of 1 mm
•	 Number of balls, N1. Range: 2–20 in steps of two

Property variables:

•	 Total mass of ball set, M
•	 Resulting UnBalance Moment, UBM

Objective:

•	 Find a combination of Fi1, RT1 and N1 that satisfy the specified constraint,
UBM > 6.0 Nm.

Fig. 6.11   Search space with 16 trial solutions for the system of equations

6.3  Exhaustive Search by G&T

90 6  Representation and Processing of Explicit Knowledge

The solver will scan through the tree of combinations illustrated in Fig. 6.12 until
the first satisfactory solution is found. As mentioned before the search method
could be either breadth-first or depth-first or something more sophisticated, e.g.
search starts at a point where previous experience has shown that many satisfac-
tory solutions exist. Note that the answer will be different depending on how the
tree is arranged and how the search is carried out. All we will know is that the
resulting solution satisfies the given constraints of the problem.

However, often constraint satisfaction is not sufficient, one wants to find the
best possible solution, which in our case could be interpreted as finding a design
that satisfies the requirement on unbalance moment with a ball set weighing as lit-
tle as possible. The objective is then changed to:

•	 Find a combination of Fi1, RT1 and N1 that minimises (M) subject to the con-
straint UBM > UBM_specified

The solution space for the problem is shown in Fig. 6.13. Using the G&T method
all possible variable combinations are created and their respective properties are
calculated and stored. Then, in a second step, these solutions and their properties
are tested one by one against specified constraints until a satisfactory solution is
found. Note that there is no way of knowing beforehand whether one, many or
no solution exists. If one, and only one, solutions is found, this is of course the

Fig. 6.12   Solution space for single track balancer

91

answer. If no solution is found we need to either relax the constraint specifying
UBM or extend the ranges for the design variables. If we find more than one satis-
factory solution, these will be sorted with respect to the value of M, total mass of
ball set, and the solution with the lowest value of M is selected.

The solution space is calculated from the three sets of main dimensions as
10 * 50 * 10 = 5000 trial solutions. The calculation and testing of this solutions
space is almost instantaneous on a modern PC. If we add a second track there will
be half a million trial solutions, still allowing acceptable solution times. When
we increase the number of tracks to three or four, execution time will however
become a problem, in particular if more variables are added. The practical useful-
ness of G&T is therefore limited, but it is important to understand that constraint
processing, which will be presented below and is much more efficient but also
more complicated, will appear to work in exactly the same way when seen from a
user perspective.

6.4 � Constraint Processing

As we have seen G&T is a versatile method that works also for cyclic data flow
problems and where the solution sequence is reversed. As the number of vari-
ables and their respective ranges increase however, the search space quickly
becomes excessively large. A more sophisticated approach is then required which
combines G&T with a technique called constraint programming. The purpose
of using a constraint solver is to remove unfeasible parts of the solution space
(“pruning the search tree”) and thus reduce the problem size before applying G&T.

Fig. 6.13   Constraint
network for balancer with
one track

6.3  Exhaustive Search by G&T

92 6  Representation and Processing of Explicit Knowledge

6.4.1 � The Method of Elimination

From a user perspective constraint based systems resemble inference based sys-
tems in that the knowledge is declarative and the control of execution is left to a
generic constraint solver. The knowledge base of the inference system corresponds
to a constraint store and the directed dependency graph is replaced by a nondirec-
tional constraint network, see Fig. 6.13. Similarly to the rules in the knowledge
base, the constraints in the constraint store can be arithmetic, symbolic, condi-
tional, combinatorial and make calls to external programs. The order in which
constraints are specified has effect on the results but not in a critical way (only
the order in which solutions are found) and consequently constraints can be added
or removed without considering side effects. Unlike the rule systems, constraints
have no causality (direction), meaning e.g. that x < y infers that y > x. There is
normally a strong interaction between the constraints which appears as variables
being shared by several constraints.

Constraint based methods are applicable only to problems with discrete varia-
bles and a finite solutions space.1 The fundamental principle behind these systems
is the method of elimination, i.e. the design knowledge defines what parts of the
solution space that are invalid and removes from the initial solution space those
variable values that cannot be assigned. What remains of the variable sets are by
definition valid solutions and these solutions can be generated and tested in search
for the best combination of properties.

The workflow when processing constraints follow the steps below:

1.	 Define the Constraint Satisfaction Problem, CSP, in Fig. 6.14 as S(X, D, C)
where:

•	 X = (x1; x2; … xN) are finite sets of design variables
•	 D is a finite set of domains in which the variables are ordered
•	 C is a set of constraints
•	 Example: x1 = (D1) = (4,6,8); x2 = (D2) = (6,8), i.e. the solution space

comprises six solutions.

2.	 Enforce constraints by activating the stored constraints

•	 Example: C1(x1): x1 ≠ 6; C2(x1; x2): x1 < x2;

3.	 As constraints are applied parts of the initial solution space in the form of vari-
able domains are removed (e.g. truncation of lists, substitutions…).

•	 Example: Due to C1 the value of x1 is not 6 and due to C2 it is not 8, thus it
is always 4. Due to C2 x2 is not 4, it must thus be either 6 or 8. Hence the
solution is S = (x1; x2) = (4,6);(4,8)

1Some commercial systems have developed methods to handle also real number variables.

93

4.	 When no more reduction of the solution space is possible, an exhaustive search
of product properties for the remaining valid variable combinations is done, the
solution properties are evaluated and the best solution selected.

6.4.2 � Constraint Processing in Practice

When defining a constraint satisfaction problem it is not possible to know whether
the problem has one, many or no solutions. What course of action is available
under these circumstances?

•	 The cases where one and only one solution exists presents no problem
•	 No combination of variables within given ranges satisfy constraints: The prob-

lem has no solution. A possible course of action is to review all constraints
and relax if possible. Possibly an increase of variable ranges could remedy the
situation.

•	 Several combinations satisfy all constraints: If constraint satisfaction is enough,
terminate search when the first solution is found

•	 Several combinations satisfy all constraints but only the best solution i accept-
able. All solutions are determined and either of the two alternatives below are
chosen,

–	 Define objective function, e.g. cost, evaluate the objective function for all
solutions and pick the best

–	 In iterative steps, tighten constraints (e.g. cost, weight) until only one solution
remains (narrowing of search space)

Efficient pruning of the search tree is core computational technology of commer-
cial constraint based systems and is a science in its own right. From a user per-
spective it can be assumed that the system works as is if it did actually evaluate
all possible combinations and then discarded those that violate given constraints
while retaining the acceptable solutions. For reasons of efficiency the systems do
not work in this simplified way, instead different heuristics are used to reduce the
search tree. From a user point of view however, the concept of exhaustive search is
a perfectly acceptable mental model to use for planning.

To get a glimpse of how efficient pruning is achieved a few methods often built
into constraint solvers will be very briefly summarised. All the methods are based
on the concept of enforcing the given constraints while retaining full consistency

Fig. 6.14   Constraint graph
for example above

6.4  Constraint Processing

94 6  Representation and Processing of Explicit Knowledge

of the defined problem. Application of a constraint on one variable will often
affect also other variables and these effects are enforced by use of propagation
rules. Below are examples of the most basic approaches intended to remove unfea-
sible parts of the search tree:

•	 Reduce constraint set to unary (one variable) and binary (two variables)
constraint

•	 Enforce node consistency and remove unary constraints (reduce initial ranges)
•	 Enforce link consistency by evaluation of all links and removal of domain ele-

ments that are inconsistent. Note that as one domain is revised, the procedure
has to start all over again which is very time consuming! Much more advanced
algorithms exist and are employed in commercial systems.

•	 Path consistency is checked and enforced where three or more nodes are linked
together. Straightforward application is very inefficient, but more advanced
algorithms exist.

Irrespective of method the intention is to “prune” the search tree by drawing con-
clusions from the constraint set about which branches that are feasible and which
branches that are not and consequently should be removed from the search tree.
The constraints emanate from the relationships in the problem which could relate
to some physical phenomena. For the example with the dynamic balancer one such
constraint was the required centrifugal force. It is however often possible to intro-
duce constraints of a more heuristic nature to reduce the problem size, and it is
up to the user to formulate such “common sense” constraints that are effective in
reducing the solution space.

For the balancer example one could for instance specify that the balls in all
tracks should have the same diameter (Fi1 = Fi2 = Fi3) and that track three has
fewer balls than track two, which has fewer balls than track one. The former con-
straint simplifies assembly and inventory, the latter improves the efficiency of the
mass of the ball sets. These are common sense restrictions from a designers point
of view and would reduce the solution space by orders of magnitude.

Constraint based systems is a common choice for configuration problems
which by nature have discrete design variables (selections) and a finite solution
space. Today a potential buyer can customise many products using the Internet.
There are configurators intended for customer use for products ranging from bicy-
cles and PC:s to motor cars and normally there is some sort of constraint solver
working in the background to make this possible.

To summarise the characteristics of methods to store and process explicit
knowledge the:

•	 Procedural processes require that a predetermined sequence of operations can
be found (by the programmer) that leads to the desired solution

•	 Inference (or rule) based processes assumes that a sequence of operations that
leads to the desired solution can be found (automatically) at run-time. Solution
sequence is determined during execution. Knowledge structures with cycles can
not be solved

95

•	 Generate&Test algorithms creates all possible design solutions first, then
removes those solutions that do not satisfy given constraints. Discrete variables
and finite solution domain is required. Combinatorial explosion will make the
method unfeasible for all but very small problems!

•	 Constraint processing improves the efficiency of exhaustive search by pruning
the search tree according to specified constraints. The remaining nodes of the
search tree are used for G&T. Solves coupled, multidirectional problems with
finite number of possible solutions. The design variables must be finite sets of
discrete numbers or symbols.

References

Coppin, B.: Artificial Intelligence Illuminated. Jones and Bartlett Publishers, UK (2004)
Sunnersjo, S., Cederfeldt, M., Elgh, F., Rask, I.: A transparent design system for iterative product

development. J. Comput. Inf. Sci. Eng. ASME 6(3), 300–307

6.4  Constraint Processing

97

Design tasks where all design rules can be derived and formulated stringently
from basic physical principles are based on insight, understanding and control.
This desirable situation implies that it is possible to compile a knowledge base
that explicitly and completely describes the knowledge required to design a spe-
cific product. Such is the case for some engineering products, e.g. the automatic
balancer previously used as example, and the representation and processing of
explicit knowledge was described in the preceding Chapter. However, to really
investigate and formulate design rules for all aspects of a product range might in
practice either be out of reach technically or costly out of proportion. In the real
world engineering design rely to a considerable extent on less rigorous knowl-
edge. Insights in the form of experience, rules of thumb and common sense play
an important role. One way of describing this is to see the knowledge as implic-
itly embedded in successful products, test results, user experiences or even in
the design problem formulation. To produce a design proposal in such cases this
knowledge needs to be acquired and applied in its implicit form. Three search
based methods with ability to represent and process implicit knowledge will be
discussed in this Chapter.

The distinction between explicit and implicit knowledge processing is clear
cut in many cases but not in all. If we return to the six knowledge categories of
Chap. 4 we can conclude that tacit knowledge and knowledge based on comparison
clearly are of an implicit nature. Methods that use mathematical tools are stringent
and rigorous in themselves but may in some cases represent implicit knowledge
embedded in experimental data, as in neural networks, or optimal solutions found
by systematic search through hill-climbing or genetic optimisation. It thus seems
logical to include optimisation algorithms, neural networks and other interpolation
algorithms in the present Chapter.

Chapter 7
Representation and Processing
of Implicit Knowledge

© Springer International Publishing Switzerland 2016
S. Sunnersjö, Intelligent Computer Systems in Engineering Design,
Studies in Systems, Decision and Control 51, DOI 10.1007/978-3-319-28125-4_7

http://dx.doi.org/10.1007/978-3-319-28125-4_4

98 7  Representation and Processing of Implicit Knowledge

7.1 � Case Based Reasoning, CBR,
and Case Based Design, CBD

The method of Case Based Reasoning, CBR, is widely used in general AI applica-
tions to store and retrieve experiences and “lessons earned”. The method evolved
during the 1970s and 1980s and is generally attributed to Robert Schank, see
Schank (1983). Many help desk support systems use some version of the CBR
method which is then mainly based on storage of text strings, symbols and logic
arranged in a tree structure. In engineering design one important field of appli-
cation is to store, retrieve and reuse previous design solutions that have proved
successful.

This focused application of CBR, which will be referred to as Case Based
Design, CBD, thus tries to reuse existing solutions whenever possible rather than
creating new designs—the general assumption being that similar design prob-
lems have similar design solutions. The term “reasoning” is somewhat exagger-
ated—their isn’t much reasoning involved in the process. Instead, the underlying
idea behind CBD is to abstain from using explicit product knowledge and base the
design of new product variants on the knowledge embedded in similar, existing
products. For a product that has been in use for a significant length of time and
performed well it can be concluded that its design features, dimensions, material
composition and so on satisfy customer and other requirements well. This conclu-
sion can be drawn without having any detailed insight into the actual relations and
constraints that govern the problem.

For a customer order of a new variant from an existing product family, it is a
sensible thought to start by looking for previous, similar solutions and make minor
adaptations rather than start from scratch each time. The origins of and relations
between all design variables are often not fully known or understood in the sense
that they are not derived from fundamental physical principles. The actual design
knowledge is never explicitly stated when using the CBD approach, instead the
existing, proven solution serve as a design guideline.

Obviously there are pros and cons with this strategy. On the one hand the
proven reliability of an existing product together with low costs and short lead
times for product development and the motivation to avoid management of unnec-
essary variants are significant advantages. On the other hand insight into product
knowledge promotes improvements and innovations leading to a gradual evolution
of the product. Normally companies working with CBD technology for this pur-
pose will also do parallel work based on explicit knowledge. New product lines
as well as cases not found in the case base will make certain that such traditional
design work will never be superfluous.

99

7.1.1 � Establishing a Case Base

In an engineering design office all company products will be documented by
e.g. drawings, bills of materials and technical specifications. This documenta-
tion shows how the product should be designed and manufactured and is next to
100 % complete. Very little is however documented in a structured way about why
a certain solution was chosen, why a certain surface treatment was selected or why
specific dimensions were decided. This explicit knowledge is typically described
in notebooks, reports or files in an unstructured way or in the memories of expe-
rienced designers. The information in this form is useless for the computer not
only because it is unstructured, but also because it is probably incomplete. Instead,
the use of CBD implies that existing solutions with a high degree of similarity
to a required new variant are retrieved from a relational database, which is called
a case base. Although the knowledge describing and defining the attributes of a
specific case is implicit, the CBD method requires extensive, but not necessarily
complete, information about the problem formulation, solution chosen and rele-
vant circumstances.

Some kind of computer support is needed to search the case base since the
stored solutions will normally be too numerous to be managed only by the memo-
ries of the designers involved. What is searched for is not necessarily a perfect
match (which probably does not exist), but finding a small number of candidate
cases which are close to what is searched for among a large number of existing
designs.

The final selection among these candidates is then done manually by the
designer, who also takes the decision whether the best match is close enough and
can be used directly or decides if modifications might be necessary. In some cases
no acceptable candidate is found and an entirely new variant must be created.

As cases are retrieved, modified, used and found to be successful, these updated
cases are added to the case base, thereby extending and modernising the repos-
itory of available design options. Thus the case base represents a living storage
of implicit knowledge and will reflect changes in market, technology and current
engineering practice.

To facilitate the search process the design variants must be indexed in a pur-
poseful way. Indexing could be symbolical or numerical or both. The important
thing is that indices accurately represent the crucial properties and characteristics
of the design so that the search and match process is driven only by the attributes
that really matter. Figures 7.1 and 7.2 illustrate indexing of a roof rack bracket
from case No 4 in Appendix A, and shows how the product range is divided into
five topological variants that are distinct and can be clearly defined. Each of these
topologies have a set of parameters that represent the main dimensions that are
crucial for the functionality of the product. Selecting and defining the indices
require in-depth understanding of the product and how it works and thus requires
active involvement of the designers concerned.

7.1  Case Based Reasoning, CBR, and Case Based Design, CBD

100 7  Representation and Processing of Implicit Knowledge

The governing parameters are stored on a template, one for each case in the
case base. These templates should also contain meta data like references to cor-
responding drawings, tools, control instructions, laboratory test reports and any
certificates that might be required. Obviously this information must be strictly
structured so that it can easily be captured and stored in a uniform way for each
new case. There must be consensus among the users that on the one hand all rel-
evant information is captured by the set of attributes selected and on the other
hand, that the process is not made unnecessarily laborious by including attributes
of minor importance. The challenges in this respect comes over time once the sys-
tem is established. If in retrospect it turns out that additional attributes should have
been included, this will be very difficult and time consuming to put right.

7.1.2 � Case Retrieval by Search and Match

Cases are typically retrieved in two or more steps. The primary search process
scans the case base for one or several class(es) or concept(s), that are relevant for
the new variant. This search is normally based on symbolic parameters with the

Fig. 7.1   Roof rack attachment with fixturing bracket. From Cederfeldt (2007)

Fig. 7.2   Range of brackets divided in natural classes depending on topology or concept. The
existing cases are sorted into these classes and ready to be searched for best match. From Ceder-
feldt (2007) in cooperation with Thule Sweden AB

101

binary values one or zero—either the class applies or it does not. The calculation
of the similarity factor, SIM, thus becomes,

where a denotes the class of the new variant and bi is the set of classes of the
stored variants.

When a relevant class is found, the second step of the retrieval process will
rank the cases of this class according to how similar they are to the new speci-
fication. This ranking process will use a matching calculation to determine the
similarity factor, SIMcase-No. This metric is calculated as the weighted sum of
the contributions of each attribute depending on how well it conforms to the goal
value. This coincidence is calculated using a window that attenuates the contribu-
tion depending on how far from the goal value the evaluated case attribute is. A
simple and popular formula for calculation of similarity between a parameter for
the new product, Pnew and a parameter for an existing product, Pold is,

i.e. for identical parameter values the similarity is one, otherwise it is between one
and zero. A large deviation from the goal values brings the similarity close to zero.
The total similarity metric for case Q with k indices is calculated as the weighted
sum of all contributions and then becomes,

where w are the k weighting factors representing the estimated importance of
parameter j and summation is made over k parameter values.

Another simple window function was set up in application case No four in
Appendix A. Here a modified root mean square calculation was used and this
function is illustrated in Fig. 7.3.

Selecting window function and weighting factors is a matter of subjective
estimates and trial and error must be relied on. It is important that the similar-
ity values for the different cases really differentiate, but the result is not critically
dependent on the choices of weight factors and constants, since the purpose only is
to identify a small group of promising candidates. The final decision must always
be taken by a knowledgeable designer who takes the final responsibility for the
design.

SIMsymb;i(a, b) =

{

1; if a = bi

0; otherwise

}

SIM(Pold;Pnew) =
a

a+

√

(Pnew−Pold)
2

P2
new

SIMcase_Q =

∑k
j=1

wj · SIMQ,j
∑

wj

7.1  Case Based Reasoning, CBR, and Case Based Design, CBD

102 7  Representation and Processing of Implicit Knowledge

7.2 � Interpolation Methods

One way of looking at a product is to see it as an input-output system (see Hubka
and Eder in Sect. 2.2). This approach to modelling seems natural for products
like pumps, engines, fans, heaters and so on. To model such a product includes
the establishment of a transfer function that accurately simulates system response.
There are engineering systems with many input parameters, many output varia-
bles and complicated relations between the two. Assume that we for the purpose
of determining a value for some crucial product property need to create a digital
model for such a system. In cases where these relationships are possible to derive
analytically or determine by simulations, this would be the preferred strategy.
There will however be many cases where such derivations are difficult to estab-
lish but where experimental data in the form of sets of inputs and corresponding
sets of outputs exist. The rules and relations governing the effects of these systems
are implicit and hidden in the experimental data and the use of such data offers
an alternative to direct, explicit modelling. The model is based on discrete points
from experiments (or simulation) but will return property values for a continuous
range of parameter values—a process of interpolation.

Fig. 7.3   Window-function for case matching used for application case no 4 of Appendix A

http://dx.doi.org/10.1007/978-3-319-28125-4_2

103

7.2.1 � Curve Fitting and Response Surfaces

For a system with one or two input parameters and one output variable, the
relationship between input and output could be represented by curve fitting or
response surface techniques provided the functions are reasonably smooth and
well behaved. For a linear approximation of system properties a function f is
defined as,

where x and y are the input parameters, a0, a1, a2 are constants to be determined
and ε is an error function that will represent deviations between model and experi-
mental data. The same approach can be generalised to systems with nonlinear
properties using a second order surface definition,

The linear system requires at least N + 1 value pairs and the quadratic system at
least (1 + N)N/2 + N + 1 value pairs. It is preferable to use more empirical data
than this, about 1.5 times the minimum, to average out fluctuations of the data.
The error term is written,

where f ei is the experimental value Number i. To determine the constants, ai, the
error term is minimised by differentiating the function with respect to the sought
constants and then setting these derivatives to zero. When the system of equations
is solved the constants giving minimum error term will result.

Using polynomials for curve and surface fitting is the standard approach. For
those cases where physical insight suggest a better approximation there is every
reason to use this instead. An example from the field of acoustics will illustrate
this approach. Figure 7.4 shows how a pressure pulse in water dies out with dis-
tance. Say that we need to define a continuous pressure function, P(r), that will
reflect how pressure attenuates with distance, r. From acoustic theory it is known
that also a complex sound source at a distance can be well approximated by con-
tributions from a monopole (pulsating sphere) and a dipole (oscillating sphere)
pressure sources. Monopole pressure is reduced in inverted proportion to the dis-
tance, while a dipole is reduced in inverted proportion to the squared distance. The
assumed pressure pulse function is thus written

where P is a complex valued variable that represents magnitude and phase of the
pulse. The function was fitted through seven measured values under the hull of a
ship and resulted in the graph of Fig. 7.4.

f (x, y) = a0 + a1x + a2y + ε

f (x, y) = a0 + a1x + a2x
2
+ a3y+ a4y

2
+ a5xy + ε

ε(a1, . . . aN) =

N
∑

i=1

[

f ei − f (x, y)
]2

P(r) =
a1

r
+

a2

r2
+ ε

7.2  Interpolation Methods

104 7  Representation and Processing of Implicit Knowledge

Response surfaces based on polynomials higher than two and having many
variables become impractical. Hence, when the relations have discontinuities and
strong non-linear effects a more powerful modelling method is needed. One option
is the use of neural networks.

7.2.2 � Neural Networks

The purpose of the network is to create a set-up which will respond to inputs and
generating outputs similar to the original system. Use of neural networks has been
an active research field since the 1940s and the technology is applied to a wide
variety of problems like speech recognition, robotics, pattern recognition and diag-
nostics. There is an abundance of literature on the subject. This section will give
a brief overview of using the method in design automation. For guidance on how
to build neural network systems in practice the reader is referred to e.g. Matlab
Neural Network Toolbox.

The concept is inspired by the structure of the biological brain tissue. Such
tissue consists of neurones being interconnected in an enormous network.
Connections with incoming signals to the neurons are called dendrites and connec-
tions for outgoing signals are called axons. The actual functioning of the human
brain is not known at the detailed level and it may well be that the similarity
between biological brain tissue and computerised neural networks is superficial.
Nevertheless, neural networks are composed of a set of artificial neurons that are
interconnected in a way that reminds of the dendrites and axons of the cerebral
cortex.

Consider the network, called a Perceptron, in Fig. 7.5. All incoming signals
to respective neuron are multiplied with a weighting coefficient, wi, and are then

Fig. 7.4   Example of curve
fitting: pressure pulse
magnitude as a function of
distance from source. Real
part (white) and imaginary
part (black). From Sunnersjö

(1983)

105

added to form the total input, C. For neurone Q with N inputs the cumulative input
is given by,

Each neuron has a transfer function which relates the CQ value to the output value.
Such transfer functions could e.g. have the form of a ramp, as in Fig. 7.5, or a step.
It is however advantageous to use a transfer function that is differentiable to sim-
plify the optimisation process that is done when “training” the system. Therefore
the Sigmoid transfer function, which reminds of a smoothed ramp, is often used
and is defined by

Figure 7.5 shows one example of how the neurons are arranged in a network.
There are a large number of variants of nets possible and the choice is not triv-
ial. In practice one has to rely on a trial-and-error procedure. The net shown in
Fig. 7.5 has two outer layers that account for input and output respectively. They
have one neuron for each input parameter and correspondingly for the output vari-
ables. In between these layers are a number of hidden layers. All neurones in the
hidden layers are connected to all neurones in the two adjacent layers. There are
no connections between neurones in the same layer.

CQ =

N
∑

i=1

wixi + w0

fs(C) =
1

1+ e−C

x1

x2

x3

y1

y2

Hidden layers with neurones
connected all-to-all

 F(c)

 1.0 -

Fig. 7.5   Neural net with three input parameters, xi, and two output variables, yi (top) and ramp
as neurone transfer function (bottom)

7.2  Interpolation Methods

106 7  Representation and Processing of Implicit Knowledge

A neural net works in two steps, training and prediction. When training a net a
number of given input/output sets known to be true are presented to the net. The
weighting coefficients of the net are varied iteratively to achieve best average cor-
respondence between net predictions and true values. This is an optimisation prob-
lem with the weight coefficients as design variables and the squared differences
between predictions and true values as the objective function to be minimised. If
the transfer functions are differentiable, the stationary points can be found by solv-
ing the system of equation with the derivatives of the objective functions set to
zero. One would think that more training values would result in better modelling.,
but what actually happens is that the predicted response coincides better with the
discrete, given data points, but might on the other hand exhibit a “jumpy” unphysi-
cal behaviour. This is known as “overtraining”.

Once the weighting coefficients have been determined so that the net works
with sufficient accuracy it can instead be used for predictions of response to new
sets of input data to determine reliable predictions based on interpolation. As with
all interpolation the results are reliable only within the parameter ranges used for
training of the system.

As previously discussed the neural net is an alternative to analytical deriva-
tion or numerical simulation where the real physics of the problem is too compli-
cated or time consuming to clarify. For such cases the net could form a part of a
design automation system used to estimate required properties. Further use could
be where simulations are possible but very time consuming. If a large number of
design points are needed for such cases, e.g. for iterative optimisation, determina-
tion of robustness or stochastic properties all interpolation methods could be used
to represent system response. Based on a small number of data points this digital
system could return correct responses in a fraction of the time needed for each
new simulation.

7.3 � Optimisation

Optimisation is a wide field of heuristics and mathematics used to determine the
“best” solutions for numerical problems within given constraints. Three of the
more common numerical methods will be briefly introduced in this section. It is
natural to categorise the knowledge used as implicit since the domain specific
knowledge is embedded in the relations and constraints governing the design vari-
ables of the problem and the solution is determined by a search process.

Design tasks with conflicting requirements, e.g. simultaneous requirements
of low weight and high strength, often forms the core of a design problem. To
strike the best possible balance using analytical or heuristic methods can some-
times be difficult. Often an iterative search process is needed, which step by
step converges towards an optimal solution. From Chap. 5 we remember that a
box in the DSM often indicates that there is an underlying optimisation problem.

http://dx.doi.org/10.1007/978-3-319-28125-4_5

107

Optimisation is therefore a tool often required as a part of a design automation
system, usually in combination with a parametric CAD model.

An optimisation problem is defined by the following characteristic factors,
which need to be clarified before attempting a solution,

•	 Optimisation objective. For a single objective problem: What property or func-
tion should be optimised (e.g. weight, strength, cost, efficiency, performance)?
For a multiple objective problem: Which combinations should be optimised
(weight and strength)?

•	 Design parameters (fixed). What parameters are defined as input for the prob-
lem (e.g. dimensions, surrounding temperature, power)?

•	 Design variables. What design variables should be varied to obtain maximum
of the objective function? Are these variables continous or discrete? Define
driving (independant) and driven (dependent) design variables.

•	 Fixed conditions and constants. Force of gravity, natural laws, standards.
•	 Relations and constraints. Define the mathematical or other relations between

governing parameters and variables and between variables themselves.

To solve this kind of problems there are heuristic, analytic, numeric and genetic
methods. The methods used for optimisation is of course equally applicable to
minimisation—it is only a matter of changing sign of the objective function. The
review below is focused on numeric and genetic methods.

7.3.1 � Hill Climbing Methods

The young man in Fig. 7.6 is going to try to find the highest point (optimum of
the objective function) of the hill. Since he is blind-folded he must employ some
sort of search strategy since random search would be far too inefficient. The prin-
ciple of hill climbing as an optimisation method implies starting at a point within
the solution space, finding the direction of steepest ascent and taking one step in
that direction. The process is repeated until the top is found and then terminated.
The position of the climber is defined by the x and y coordinates of a horizon-
tal coordinate system (design variables). Since the topology of the hill is uneven,
the direction needs to be redefined for each new step. The search space is limited
by the fence (constraints) which must not be crossed. The stepwise climbing will
eventually lead the climber to the vicinity of the goal where the slope right at the
top is zero. This is the criteria for the optimum being found and the search should
terminate.

The most straightforward method for hill climbing is called Complex and is a
non-gradient method, see Andersson (2001). The process starts using a group of
three random initial values for a problem with two design variables, see Fig. 7.6.
The start values are inserted in the objective function and the three objective val-
ues are determined. The point with the lowest resulting objective value is removed
and replaced by its reflexion through the centroid of a line drawn between the two

7.3  Optimisation

108 7  Representation and Processing of Implicit Knowledge

remaining points. This process is repeated over and over again and thereby mak-
ing the group of points start climbing uphill and gradually find its way towards the
maximum until convergence to optimum is achieved.

Complex is a robust but somewhat slow optimisation method. For cases when
the objective function is differentiable a more efficient search method is to use the
gradient of the objective function to determine the direction of steepest ascent.
Both search methods start from the same problem definition:

Objective Function

Constraints

Solution space

Start value

In addition, the gradient method also requires the objective function to be differen-
tiated with respect to the design variables,

G(x1; x2; . . . xN)

C(x) ≤ Ri

xi ∈ X

x0;i

Grad(G) =

[

∂G

∂x1
;

∂G

∂x2
; . . .

∂G

∂xn

]

Fig. 7.6   Finding highest point by blind folded “hill climbing”

109

The hill climbing proceeds in steps in the direction where the slope is steepest just
like the Complex method. The step directions are determined for each new step
by inserting the design variables of the current position in the expression for the
gradient of the objective function. This method will normally converge faster than
Complex. Both these methods, or variants of them, are widely used and they are
easily available as parts of math kits like MatchCad or Matlab.

As Fig. 7.6 indicates the hill climbing process is blindfolded and the user needs
to pay attention and not take the results for granted. First, it may well be that the
highest point is at the solution space boundary. This optimum will not be char-
acterised as a stationary point with slope equal to zero. In such cases the normal
criteria for search termination will not be relevant and need to be complemented.
Secondly, there is always the risk of climbing a local optima within the solution
space leading to the search process terminating before the global optimum, i.e. the
highest point in the entire solution space, has been found. There is no panacea for
either of these problems except human monitoring and intervention.

7.3.2 � Genetic Method

As the name implies this method uses the evolution process in nature as a model
for simulation. Optimisation by genetic search has proved to be a reliable and effi-
cient method which is not bothered by discontinuities of the objective function or
getting trapped in local optima. In the same way as natural evolution however, the
convergence can be slow and one cannot be certain that the search converges at all.
Starting the optimisation at new coordinates will probably give different results,
but usually not drastically different.

The initial, start solutions are seen as individuals in a population. The perfor-
mance of each individual is determined by an objective function, or in the termi-
nology of genetic optimisation, the fitness function. The individuals with poor
performance are removed from the population and new individuals, (children) are
created by mating pair of individuals (parents) that perform well. By systemati-
cally removing the least successful individuals and replacing them with off-spring
from the best parents each new generation will gradually reach better and better
values of the fitness function.

The design variables are organised in groups, each associated with a component
or a group of components. The design variable values are written as binary strings
and assembled to form a gene that defines the current properties of the component
design. Together all genes form a chromosome that fully defines the product.

The evolution is based on the principle of survival of the fittest. Thus a fitness
function will be used to determine which solutions that should be retained and
which should be removed from the population of solutions.

7.3  Optimisation

110 7  Representation and Processing of Implicit Knowledge

The genetic optimisation process in its simplest form follows the steps below:

1.	 Determine an initial population of separate design solutions with design vari-
ables randomly distributed over the solution space

2.	 Evaluate the objective function for all individuals
3.	 Retain the solutions that rate in the better half of the population and delete the

remaining solutions
4.	 Select pairs of solutions randomly and combine their genes (mating) until all

remaining solutions have produced offspring. The genes of each of the parents
are divided, e.g. in the middle, and swopped so that if parent 1 has a gene A;B,
and parent 2 has a gene C;D, then the first child will get the gene A;D and the
second child the gene C;B

5.	 The process returns to step 2 and a new iteration is started. The changes
between iterations are monitored and when the results appear to not improve
further, the process is terminated.

How a genetic optimisation run progresses is not so easy to foresee and the pro-
cess can be improved by trial and error. To avoid getting stuck in local optima
the genes are occasionally mutated, i.e. a small, random disturbance is added e.g.
every hundred generation in order to continue search for the optimum. It is often
beneficial not to mate all individual solutions and instead leave the best 10 %
unchanged (“elitist search”). Despite a degree of uncertainty that is associated
with the properties of the method, the practical experiences are very convincing.
It is obvious that evolutionary processes have an inherent stability and effective-
ness. For guidance of the practical use of the method, see e.g. Matlab Toolbox on
Genetic optimisation.

References

Andersson, J.: Multiobjective optimization in engineering design—applications to fluid power
systems. Dissertation No. 675, Linköping University, Sweden. 2001LiTH-IKP-R-1097 (2001)

Cederfeldt, M.: Planning design automation. PhD thesis, Chalmers University of Technology,
Göteborg, Sweden (2007)

MatLab Neural Network Toolbox, http://www.mathworks.com/products/neural-network/
MatLab Genetic Optimisation Toolbox, http://www.mathworks.com/discovery/genetic-algorithm.html
Schank, R.: Dynamic Memory: A Theory of Reminding and Learning in Computers and People,

Cambridge University Press, USA. ISBN:0521248582 (1983)
Sunnersjö, S.: Propeller induced hull vibrations—the determination of exciting forces, Proc Inter-

Noise 83, Edinburgh (1983)

http://www.mathworks.com/products/neural-network/
http://www.mathworks.com/discovery/genetic-algorithm.html

111

When product variety is a driving business factor success relies on skilful creation of:

•	 A family of products that are modularised and/or parametric,
•	 A production system with a high degree of flexibility
•	 Standardised design procedures implemented in supporting computer systems

The focus of this text is the third point. Aspects relating to product design were
briefly discussed in Chaps. 2 and 3, while the production aspects and their interac-
tion with the product design is entirely left out here—it needs a book of its own.
Application cases with systems implemented in industry and academia are pre-
sented in Appendix A.

This chapter is intended to demonstrate how to apply the tools and methods
previously presented in this text to set up a well functioning, reliable, maintainable
and cost effective design automation system. Developing such a system is a con-
siderable investment in time and money and once implemented it will be a crucial
factor in the business of the company. Figure 8.1 illustrates a process which nar-
rows down the original wide field of options to a system tailored for the needs of a
specific company.

The basic principles of knowledge processing in engineering as previously
described are implemented in most commercial software. Companies with suf-
ficient resources and needing something not readily available might choose to
write their own programming language, which may be based on these principals
or some variation. Such software will be dedicated to a specific problem domain,
e.g. creation of a certain type of 3D geometry in a given CAD system. Building
a library for frequently occurring functions greatly simplifies setting up DA sys-
tems for new products and product variants and reuses the same code to save time
and money. These problem specific languages, which are company proprietary, are
generally called Domain Specific Languages, DSL, and are used for many types of
applications also outside DA, see e.g. (Fowler 2011).

Chapter 8
Planning a Design Automation System

© Springer International Publishing Switzerland 2016
S. Sunnersjö, Intelligent Computer Systems in Engineering Design,
Studies in Systems, Decision and Control 51, DOI 10.1007/978-3-319-28125-4_8

http://dx.doi.org/10.1007/978-3-319-28125-4_2
http://dx.doi.org/10.1007/978-3-319-28125-4_3

112 8  Planning a Design Automation System

8.1 � Seven Steps for Systematic Planning of a Design
Automation Project

For an energetic management it might appear tempting to acquire a commercial
system off the shelf and get started right away with the coding. Often the CAD
or PDM systems that the company already uses have plug-ins for some kind of
design automation and selecting such a system might appear to be the obvious
solution. There are however good reasons why some time should be spent to get a
reasonable understanding of what the design tasks require in terms of knowledge
representation and processing and how the intended system should work before
thinking in terms of commercial software.

Experience shows that many DA systems have had to be rebuilt from scratch
after commissioning or only being used a short time because the need of impor-
tant functions might not have been anticipated from the beginning or are not work-
ing properly. Also, building a first small system, maybe a prototype, is a learning
experience that will clarify many aspects of the intended project and will help to
avoid the real stumbling-blocks.

A project to set up and operate a DA system is usually led by a knowledge
engineer, who could be an experienced engineering designer with an interest in
computing or a programmer with an interest in design and product development.
Below are listed seven items worth considering before taking any definitive deci-
sions on the project, let alone selecting specific software.

Fig. 8.1   A top-down process
to create an automated design
system

113

8.1.1 � Get Acceptance and Involvement

The establishment of the relevant domain knowledge is entirely dependent on the
cooperation of experienced designers—the knowledge engineer is unlikely to pos-
sess sufficiently detailed knowledge. Unless the designers feel that the system will
be to their advantage and get actively involved in its creation, the project will not
be successful. There might be an apprehension to share design knowledge unless
the system is seen as an aid in the designer’s own work. It is thus important that
the designers understand that they are the intended users of the system and that
their views will be decisive for how the system is specified, developed and used.

Experience from industrial applications indicate that DA systems will abolish
much routine work and allow the designers to devote more time on improvements
of existing products as well as the creation of new products. It even indicates a
somewhat different professional role, where the designers leave the direct prod-
uct modelling work in front of the CAD screen and instead work more indirectly
by creating design rules that the DA system will use to create the actual product
definition. All in all, a DA system will benefit the business of the company but also
make the individual designer’s work more interesting and satisfying.

8.1.2 � Define and Delimit Problem

One experience from many projects is that the tasks addressed are often too
large—the total problem needs to be broken down into parts that can be solved
and implemented one by one. If each subtask can be used stand-alone a modular
structure will result naturally and the benefits as well as experiences of the system
are obtained early. It is essential that the chosen tasks are not mutually dependent
since this will result in cycles over the boundaries of the subtasks, which will need
operator intervention to be resolved.

Early in the process a review should be made of how well the underlying tech-
nology is known and if a well defined work flow exists or is possible to develop.
The final answer in this respect will not be known until late in the project but a
knowledgeable opinion must be obtained before the project is defined.

8.1.3 � Evaluate Cost/Benefit

This is a notoriously difficult part and serious investment pay-off estimates are
seldom made. This is however something that could be said also about other com-
plex IT investments. Except for straightforward configurators for catalogue design,
the direct investment costs are difficult to estimate as is the long term costs and
effects. The benefits are often easier to estimate at least in terms of reduced design

8.1  Seven Steps for Systematic Planning of a Design Automation Project

114 8  Planning a Design Automation System

costs and lead times. To a considerable extent starting a DA project will therefore
be based on the subjective convictions of a knowledgeable staff. If many of the
following criteria apply, there are good chances that a DA system will prove to be
a profitable investment:

•	 The products are sold in many variations
•	 Fast and correct quotations important
•	 Multidisciplinary design tasks cause delays because of difficulties to assemble

specialists
•	 Reduced design costs important
•	 Reduced lead times important
•	 Poor development capacity because specialists are engaged in routine work
•	 Availability of domain specialists is a bottle-neck
•	 Quality problems because different individuals solve similar tasks by different

methods
•	 System to manage corporate knowledge is valuable
•	 Design process traceability important.

8.1.4 � Acquire Design Knowledge

This is the responsibility of the knowledge engineer, who will have to rely on the
support of the experienced designers. It is one of the most crucial points in a DA
project, but also an opportunity to review and improve existing design methods.
Section 4.3 describes how raw knowledge is idealised and structured to provide
a definition of domain knowledge to be used in coding. Sources for information
will be text books and other publications, company specific design guide lines and,
most importantly, interviews with the designers. Raw knowledge is acquired from
individual designers or groups of designers while it is the task of the knowledge
engineer to structure, formalise and document the knowledge and define when it is
applicable. The programmer, finally, implements the knowledge in computer code
for representation and processing.

The first step of this task is to agree on and define a common terminology,
thereby assuring that the people involved in the project have the same understand-
ing of the terms used. A simple thing like defining variable names that helps to
intuitively identify the variable will in the long run prove important. The facts,
rules and methods used to design a certain product must then be discussed, agreed
upon and defined. Doubtless, there will appear examples where different designers
have different views of how something should be done and this is the opportunity
to agree on what should be the preferred working methods of the company. For
documentation and security reasons it is wise to distinguish between generic and
company specific domain knowledge.

http://dx.doi.org/10.1007/978-3-319-28125-4_8

115

This task can be expected to be a sizeable work that will require much time and
many meetings with specialists. The outcome should be seen as a statement sum-
marising the company’s corporate knowledge of the product in question. As such
it should be documented and authourised by the manager responsible for engineer-
ing, and it should be made available for all designers concerned. The methods for
knowledge acquisition will be discussed in more detail in Sect. 8.3.

8.1.5 � Clarify and Map Design Process

To clarify the intended work flow of the DA system the existing, manual design
process is studied. The standard method for process modelling is the IDEF0 func-
tion modelling method, see e.g. Department of Defense: Systems Engineering
Fundamentals. Which has its primary applications in production engineering. The
method provides a formal representation of data flows using block diagrams with
blocks relating inputs to outputs, see Figs. 8.2 and 8.3 which although not follow-
ing IDEF10 standard, give an illustration of how these flow-charts are set up.

An alternative method for mapping of problem structure and information flow
is the Dependency Structure Matrix, DSM, presented in Sect. 5.2.3. This method
gives a good overview and also reveals characteristics that are significant for
choice of DA method. How this method is used in practice will be discussed in
Sect. 8.4.2.

8.1.6 � Classify Problem and Select Solution Strategy

Having defined the knowledge to be used in the design process and how this pro-
cess is structured, a suitable method for representation and processing can now be
selected. Sometimes the problem requires a combination of two or more solution
methods. Starting from an understanding of what knowledge categories that are
required for the problem, the matrix of Sect. 4.5.2 can be used to identify suit-
able computational methods. To assure that the chosen method(s) will be able
to process knowledge with the existing dependency structure, the discussion of
Sects. 5.3 and 8.4.2 will provide guide-lines.

Fig. 8.2   Computable design
task seen as input-output
process

Functions,
mechanisms

Input
parameters

Output
variables

Control

8.1  Seven Steps for Systematic Planning of a Design Automation Project

http://dx.doi.org/10.1007/978-3-319-28125-4_5
http://dx.doi.org/10.1007/978-3-319-28125-4_4
http://dx.doi.org/10.1007/978-3-319-28125-4_5

116 8  Planning a Design Automation System

8.1.7 � Select Software Tools and Plan for Implementation,
Maintenance and Expansion

Design automation systems can be programmed from scratch in any of the com-
mon programming languages, it could be bought off the shelf with a wide range
of functionality already implemented or it could be something in between these
extremes.

Building the system in-house is a significant undertaking, but has the advantage
of giving full insight and control. Relying on commercial software always creates a
risk of vendor dependence which may or may not be acceptable. There is a risk that
software tools will be removed from the suppliers range of products and is no longer
supported. If much resources have been used to set up the system in this software
this is a significant set-back. It is a calculated risk and if a commercial software is
selected there must also be a plan for what to do if it can no longer be used.

In most cases the DA system must be integrated with other design tools like
CAD or PDM systems. Some of the suppliers of such systems also offer plug-ins
for various functions of design automation. CAD systems focus on parametric

Fig. 8.3   Map of information flow. Details are represented by expanding the flow chart into
required No of levels. The three subtasks on top are denoted 1.1, 1.2, 1.3. Subtask 1.2 is broken
down into subtasks 2.1, 2.2, 2.3 and so on

117

models which are driven by DA algorithms while PDM systems primarily support
configuration design. There are of course also combinations available.

One possible compromise with regard to vendor dependence is to build the sys-
tem from widespread and commonly used software units that are combined into
a system with well defined interfaces. If one block expires it is a limited task to
replace it with something new.

Any software, commercial or programmed in-house, might require replace-
ment. Often however, the actual coding is not the dominating task in a DA project.
Instead clarifying and preparing the knowledge normally is what consumes most
resources. One way of reducing the effort when change of software is necessary is
to have the domain knowledge carefully idealised and documented. If this is well
taken care of a change of software is a limited effort.

Also when the same software can be used over many years there will be
requirements of maintaining and updating the system. These program revisions
must be done in a planned way at regular intervals except for acute errors that
must be corrected immediately. Updating might be due to a need to,

•	 Correct errors that manifest themselves after commissioning of the system
•	 Improve user-friendliness of DA system
•	 Introduce new product ranges
•	 Introduce new product requirements
•	 Adapt to new product technology
•	 Adapt to improved computer technology.

8.2 � Criteria for Evaluation

Having arrived at a proposal for a DA system the suitability can be evaluated
according to the following five criteria, which have a general importance for all
IT-systems,

•	 Flexibility—Ease of adaptation to new requirements.

–	 Possibility to expand the system with more knowledge, more options and a
higher degree of detail (scalability),

–	 Possibility to introduce new variants, new geometry, new product structure or
new solution methods.

–	 Possibility to let the system grow to handle models that are much more com-
plex than what will be tested in prototyping,

•	 Longevity—Realistic length of operational life.

–	 Future software maintenance made easy with clear architecture, good docu-
mentation, functional transparency and widely used programming languages.

–	 Vendor dependence for specialised software imposes risks that vital parts of
the system might not be supported in the long run. What is the solution if this
should happen?

8.1  Seven Steps for Systematic Planning of a Design Automation Project

118 8  Planning a Design Automation System

•	 User friendliness—Ease of learning

–	 Is the system easy to use for new users?
–	 Do the interfaces with other software like CAD or FEM appear seamless?

•	 Transparency—Functions clear and understandable

–	 Easy to access, read and understand the knowledge base used
–	 A way of operation that the user can follow and understand
–	 A program architecture that is easy to understand for new system developers

that need to modify or update the system
•	 Costs:—Efficiency in terms of time and money

–	 Initial investment in software and hardware
–	 Costs for programming and testing
–	 Costs for maintenance.

8.3 � Knowledge Acquisition and Process Mapping

The stored design rules that govern the new product variants have been frequently
referred to in this text. The composition of these rules will of course vary depend-
ing on application, but to give the reader an indication of what to expect in terms
of rule actions a list originating from an investigation by Ryhanen (2004) of a DA
system intended for a typical mechanical engineering product is quoted below:

•	 Rules that choose a configuration based on some condition.
•	 Rules that automatically create the part’s geometry from the input specifications.
•	 Rules that calculate engineering properties about the part.
•	 Rules that optimise cost, performance, and quality.
•	 Rules that extract information from external databases.
•	 Rules that communicate with and analyse the results of external engineering

analysis programs.

8.3.1 � Compiling Design Knowledge by Reverse Engineering

For a company where products are normally planned in families and where vari-
ants are intended to be created automatically, the development of the DA system
should proceed in parallel with the development of the actual product. When the
need for automatically created variants arises for products that are already on the
market the knowledge engineer will have a somewhat more difficult task to get
access to the intentions and reasons of current design solutions.

In both cases however, the process could be compared to a process of reverse
engineering, where the knowledge engineer is faced with the task of fully defining

119

a product by its design variables and derive their origin back to requirement speci-
fications, laws of nature, algorithms, standards, guide-lines and personal opinions
of experienced designers. The process will comprise the following steps,

•	 The starting point is an existing prototype or product
•	 Set up a Product Variant Master, see Sect. 3.3.1
•	 Define all design parameters, design variables, topological variations and con-

figuration variations, see Fig. 8.4. Choose expressive parameter and variable
names to make the knowledge base easier to understand

•	 Trace origin of all product defining information and their relations
•	 Clarify all relations between requirement specifications (customer, legal, physi-

cal, standards, manufacture…) and product definition
•	 Express relations in a form that provides a good knowledge representation for

the intended computational method (procedural, rule based, constraint based)
•	 Document all results from the above steps.

The generic data flow of Fig. 8.4 is exemplified by an application for design of
a cast housing for part of an industrial robot, see Fig. 8.5. The dimensions of the
housing is determined by its internal components like gear wheels, bearings, shafts
and couplings, which are chosen to satisfy the load carrying requirements. The 15
input parameters reflect the requirements and constraints and these are fed to an
external inference based system which determines the required component dimen-
sions—in all 171 variables out of which 44 variables define the housing. These
in turn are by applying geometrical design rules, which are stored as part of the

Fig. 8.4   Information flow in DA system where input parameters will multiply and generate the
product definition (design variables). Input parameters might directly become variables (left), or
by actions of relations, result in new variables (middle) or by actions of relations and intermedi-
ate (state) variables result in new variables (right). The design variables are subsequently trans-
ferred to other engineering tools

8.3  Knowledge Acquisition and Process Mapping

http://dx.doi.org/10.1007/978-3-319-28125-4_3

120 8  Planning a Design Automation System

CAD model, used to create the final geometry. This is defined by a total of 1334
driven design variables. The division of design rules between an external inference
system and geometrical rules stored in the CAD system is a natural solution for
problems with complicated geometry (Fig. 8.6).

8.3.2 � Mapping of Design Process

In some sense the DA system will simulate the work of the designer(s). To accom-
plish this, the traditional, manual design process must be clarified and mapped.
This is the natural starting point, but it is not self-evident that the DA system
should copy the manual process—there might be different and better ways that
suit the computer’s way of working.

As mentioned in Sect. 8.1.4 there is a choice to carry out this process mapping
either using IDEF0 method or to use the DSM method. IDEF0 gives a complete and
standardized representation of the information flow and is supported by several soft-
ware tools. One problem however, is that for complicated processes the diagrams
become excessively complex and difficult to overview. Also parallel work and feed-
back loops are not easily represented. Although mapping using IDEF0 is feasible
and correct, the following discussion will therefore assume that the DSM is used.

Fig. 8.5   Cast housing till robotic wrist. Basic design (top) and size range for different load
capacity (capacity of B5 is twice that of B1)

121

Graph theory lies behind many considerations that govern choice of solution
method in DA. Graphs are however unpractical except for very small problems
while DSMs, which carry exactly the same information, is a better tool to map and
analyse real design processes. The DSM was originally a mathematical concept
based on the adjacency matrix, which in turn is a compact representation of graphs
with nodes and links. Today the DSM has become a tool of much wider use to
analyse dependencies, see (Eppinger and Browning 2012). The DSM can be set up
for different levels of detail and provides compact representation also of complex
data flows.

DSM as a general method is used for two purposes: Clustering and sequencing.
Clustering applies to e.g. modularisation of products and also to organisational
issues. Both applications are outside the scope of this text. Sequencing or parti-
tioning, on the other hand i highly relevant and reminds of the process of “topo-
logical sorting” that was discussed in relation to graphs in Chap. 5. Sequencing
can be performed at several levels of detail, where higher levels are called activ-
ity based and the lowest, most detailed level is called parameter based. Activity
based DSMs are necessary to provide overall view and to keep matrix sizes down.
However, it is important to realise that if DSMs are to be used as process maps
for coding, it is essential to reach also the parameter level. This is so for two rea-
sons: Firstly, estimating dependencies at task level is prone to mistakes and sec-
ondly, many coupled tasks tend to be resolved, or at least be much simplified when
brought down to parameter level, as is illustrated in Figs. 8.7 and 8.8.

Input
parameters:
Load (2)
Geometry (9)
Tolerances (1)
Material data (3)

Inference based
system:
-Facts, methods
and rules (112)
-Tables (6)

Parametric solid:
-Geometric constraints (46)
-Math constraints (10)
-Solids operations (20)

Product
geometry:
-Straight lines
(125)
-Arcs (57)
-Circles (3)
-Splines (6)

1334 design
variables

15
Parameters

171 design
variables

Fig. 8.6   Data flow for design of variants of the housing in Fig. 8.5. The input parameters gener-
ate intermediate design variables by applying design rules in a separate KBE system. The result-
ing variables are used to instantiate the generic CAD model

8.3  Knowledge Acquisition and Process Mapping

http://dx.doi.org/10.1007/978-3-319-28125-4_5

122 8  Planning a Design Automation System

The characteristics of the DSM give significant indications of what processing
methods that are suitable for a certain problem, see Sect. 8.4.2.

8.4 � Planning Architecture and Working Principles

A complete design system including automatic functions will normally consist of
several software components to handle geometry, manage product structure, carry
out technical calculations and cost estimates, produce drawings, control tables
and so forth. The mechanisms to represent and process knowledge is of course an

Fig. 8.7   DSM at task level for cast housing of industrial robot

Fig. 8.8   Coupled block
above is expanded to
parameter level and
partitioned for best sequence.
Note that the coupled block is
resolved through partitioning
so that a hierarchic data flow
is obtained

123

essential part of this system and how this is integrated with the other engineering
resources require careful consideration.

There are commercial systems that claim to do all tasks in engineering design
in an integrated environment. This sounds like the ideal solution, but nevertheless
there are companies that prefer to build their own systems in standard languages
using standard components. There are many aspects to take into account here—
Ease of programming, interfacing with other programs, longevity, transparency,
support, speed, cost and so forth. Some of these aspects have been touched upon
earlier in the text and some will be discussed in this section.

8.4.1 � Review of Options

It is certainly possible to build a system with dynamic rule processing using an
ordinary programming language. However, when there is suitable commercial
software available, using such software probably will save both time and money.

One of the largest and most extensively used systems described in this text, (appli-
cation case No one in Appendix A) was written from scratch in Fortran IV in the
1970s including all graphics for drawings. Coding in a standard language like this is
very time demanding but provides control and security. On the other hand, the flexibil-
ity for such a system is poor and maintenance is likely to become difficult over time.

Historically, the first generation of parametrical drawing programs came with
the advent of 2D CAD systems with templates for input and macro languages to
program geometrical and other relations. These simplified the programming of the
graphics functions. The drawback was non-portable macro programs, often not
even compatible between releases, requiring significant maintenance work.

With the arrival of 3D solid modellers with parametric functionality a further
step towards automation was taken. Combined with a PDM system parametric and
configuration design problems can be handled. These systems could be either pro-
cedural or inference based.

From the AI world generic rule based (expert system shells) and constraint
based systems have been adapted for engineering purposes and either been given
graphics functions or being integrated in a CAD or PDM systems. There are also
dedicated design systems, e.g. for prefab houses or shipbuilding with many pre-
programmed functions and also classification codes. Figure 8.9 illustrates the
information flow where design rules are applied to input parameters in order to
create a product definition.

A condition of significance for the system architecture is whether information
flow between the modules of the system should be one-directional or bi-directional
(see Fig. 8.9). In particular this concerns how the knowledge processor is linked
to the CAD system. Consider as an example of a one-directional system the case
where the parameter values from a spread-sheet or a specific template are trans-
ferred as predefined dimensions to a CAD model which is then updated. If e.g. the
CAD model is used to calculate the weight of the product for selection of suitable

8.4  Planning Architecture and Working Principles

124 8  Planning a Design Automation System

fasteners, this information is fed back from the CAD system to the knowledge
processor where the fastener selection is done. This would require bi-directional
information flow. If the weight calculation is part of an optimisation loop this
would require a close, bidirectional coupling. Also when a CAD model is built
topologically under program control seamless coupling between CAD system and
knowledge processor is needed. Such closely connected systems would need to
use a system specific Application Protocol Interface, API. This discussion leads to
the question that introduces the next section.

8.4.2 � Where Should the Knowledge Be Stored
and Processed?

Storing and processing knowledge is the central activity in a DA system. In what
program module this activity should be carried out is worth some consideration.
The question could be seen as a choice between two extremes, where the design
rules are stored as:

•	 Part of the product model—the model “knows” how to design itself
•	 Part of the design process—the system simulates the design process with design

knowledge available in the work flow.

CAD

Rule base

KBE inference
engine

Customer
reqs
Manuf
constr
Norms
Standards

Fig. 8.9   Bidirectional data flow in rule based system in combination with a CAD system

125

Both these paradigms and combinations in between are widely used both for
parametric design using a CAD system or configuration design using a PDM sys-
tem. The choice is whether knowledge should be stored and processed inside the
CAD/PDM system or in a separate program outside.

Speaking in favour of full integration is:

•	 Good computational efficiency of the system,
•	 having the same vendor for both CAD/PDM and knowledge processor clarifies

the question of responsibility
•	 CAD system can be directly used in knowledge processing without any

interfaces.

Speaking against it is:

•	 Vendor dependence for critical functions,
•	 poor transparency of system,
•	 limited to what is available in the existing tool kit and
•	 slow execution of macros.

Generally speaking the integrated architecture is mainly for products with few and
simple components.

The alternative approach using external knowledge base and processor has
advantages in terms of:

•	 Less vendor dependence,
•	 possibility to organise knowledge for better overview,
•	 full insight and control.

On the other hand, for simple products the system becomes unnecessarily complex
and yet another system has to be maintained. For complex products and for sys-
tems where much of the computing is done by external programs this seems to be
the natural method.

The two alternatives are illustrated in Figs. 8.10 and 8.11. The choice must be
taken case by case, but it often appears natural to store geometrical constraints (par-
allel to, tangent to…) directly in the CAD model and external programs for non-
geometrical knowledge and to govern the work flow. The practical solution will
normally be a combination of the two principles, which however often means that
there is a difficulty in that the design knowledge is divided into two systems, pro-
grammed by different persons. Coordination and maintenance require an extra effort.

One example of how design rules are divided between internal and external
processing was showed in Figs. 8.5 and 8.6. The application requires design calcu-
lations and selections as well as geometrical rules and the knowledge processing is
naturally divided into two groups. Figure 8.6 illustrates the growth of design vari-
ables as design rules are applied, which is the direct result of the automation effect
of the DA system.

8.4  Planning Architecture and Working Principles

126 8  Planning a Design Automation System

8.4.3 � Matching Design Process to DA Methods

Consider the design task of Fig. 8.12. How would a designer solve this problem?
There are essentially four different approaches:

Fig. 8.10   DA-system for tube bending tools with design knowledge stored as a part of the CAD
model. Processing by inference engine in the CAD system. From Johansson (2011)

Fig. 8.11   As above, but knowledge processing in external, inference based system linked to the
CAD using API. From Johansson (2011)

127

1.	 The designer has done similar tasks before and knows which formulas to apply
and where in the handbooks to find them,

2.	 The designer finds a corresponding elementary case, starting from there he/she
back-tracks and searches for all formulas required to insert into the elementary
case and then calculates minimum required height,

3.	 As above, but the designer tries beam standard sizes until the smallest beam
with sufficient strength is found,

4.	 The designer searches the files of finished projects and tries to find a similar
case that is on the “safe side”.

These four methods remind of four common DA approaches: Number one corre-
sponds to the traditional procedural approach, Number two works like a rule based
system with a backward chaining inference engine, Number three reminds of a
G&T solver and Number four corresponds to the CBR, or rather, CBD, method.

When selecting which method to use for a certain design problem there are two
fundamental issues to consider:

•	 How should the relevant design knowledge be represented?
•	 How should this knowledge be processed?

The first issue was discussed in Chap. 4 with a diagram in Sect. 4.5.2 giving cross
references between knowledge categories and methods for computer representa-
tion. The second issue was discussed in Chap. 5, where it is shown how the char-
acteristics of the problem structure in graph form could be used to select possible
methods. While these conclusions were cast in a mathematical form, the practical
recommendations from these studies are summarised below:

•	 Traditional computational problems with a process workflow that is predefined
and fixed, with few conditional operations and when relations are sequential are
best solved using straightforward procedural programming with tools like C or
VB or algorithmic programs like MathCad, Matlab and so forth. This situation
is often found for mature products with an exhaustive and a well researched
foundation of engineering rules and is efficient also when heavy numerical pro-
cessing is required.

F

Fig. 8.12   Determine height of a beam with a quadratic cross-section so that deflection under
force F is less than × millimetres (left). All necessary data and beam bending formulas are avail-
able i design manuals (right)

8.4  Planning Architecture and Working Principles

http://dx.doi.org/10.1007/978-3-319-28125-4_4
http://dx.doi.org/10.1007/978-3-319-28125-4_4
http://dx.doi.org/10.1007/978-3-319-28125-4_5

128 8  Planning a Design Automation System

•	 For problems with conditionally sequential relations (no cycles in graph or
coupled boxes in the DSM) and/or where it is difficult to predetermine the
workflow (e.g. complicated and nested conditional statements) there are three
options:

–	 The DSM is partitioned and resequenced so that the problem can be solved
procedurally,

–	 The relations are resolved at runtime using an inference based system.
–	 If parameters and variables are discreet numbers with a finite solution space,

a constraint based method is an efficient alternative.1

	 The choice is dependent on whether the processing sequence can be expected
to change at runtime and the expected need for such system maintenance that
will cause changes of sequence. If this is the case it is usually advantageous to
use rule or constraint based systems, since changes in the order of execution is
much easier carried out. Further, the declarative knowledge base will be easier
to control and manage as it allows free storage of design rules rather than in the
order of execution.

•	 For cases with coupled relations (cycles in graph, boxes in DSMs, multidirec-
tional processing) there are several possible combinations:

–	 For very small problems with explicit knowledge and where parameters and
variables are discrete numbers with a finite solution space, G&T is a possible
option

–	 As above but full size problems, the Constraint based systems which can
resolve also problems with cycles, is an option.

–	 When the variables are real numbers and when the best possible solution is
required, the coupled part of the DSM should be solved through an optimiza-
tion procedure.

–	 When the relations cannot be expressed explicitly, but is based on the experi-
ence that certain mutually dependent variables form a set that define the prod-
uct, then the natural solution strategy is case-based reasoning.

8.5 � Documentation

8.5.1 � Why Documentation Is Important

Documentation tends to be a neglected task that no one embraces with enthusi-
asm—designers shun bureaucratic work and management tend to see documenta-
tion as a non-value adding activity. Nevertheless it is absolutely necessary that the
knowledge used by the system is fully documented and that this documentation is
kept up to date when changes are made. There are industrial examples where large

1Constraint based systems that handle also real numbers exist.

129

orders have been lost because of certain variants being prohibited due to unex-
plained numerical constants in the knowledge base. In a situation pressed for time
it might not be possible to investigate whether obstructive data could be changed
or not, unless an explanation of its origin is given.

An industrial system represent a considerable investment and is intended to be
used and maintained for many years., meaning that it must be possible for new
personnel to continue the work of the original knowledge engineer(s) and pro-
grammers. It is obvious that the knowledge base must be easily human readable,
otherwise the system will over time become a black box which no one understands
or can control. Knowing what data, rules and methods that are applied is however
not enough, there must also be references to the background describing why this
knowledge should be applied. These references could be in the form of references
to comments, standards, design manuals or experimental data. The importance is
due to the need to update the knowledge base if changes occur in e.g. technology or
customer preferences. Another important reason to spend resources on background
knowledge is when a new product family is to be created. It is then very likely that
large parts of existing code could be reused, but only of course, if the conditions
under which the coded knowledge are applicable. Also this requires an explanation
of why certain knowledge is used and what the limits of its application are.

The big challenge is to keep program and documentation synchronised over
time. It requires an almost utopian self discipline to remember that every small
correction or change to the code must be documented. Some sort of automated
prompter or restriction for load of updated code might be well advised.

The necessity of exhaustive documentation is thus clarified. There is however a
less defensive argument to spend resources on documentation: The possibility to
use the knowledge base of the DA system as compilation of the corporate knowl-
edge possessed by the company. The stringency of the computer implementation
forces this documentation to be very detailed and explicit and thus provides a very
exhaustive design manual.

8.5.2 � Formal Methods for Documentation

The method for documentation must be tailored to each specific company and its
products. There are however a few formal methods that should be mentioned as
examples to study. A Product Variant Master, see Sect. 3.3.2 is a natural starting
point and defines the product structure and possible variants. To the branches of this
tree structure the rules governing the configuration are attached. In principal a stand-
ardised form is set up for each rule or group of rules that are to be documented.

One such system of forms has been established within an EU program for the
aircraft industry (Stokes 2001) and is based on a set of cards called ICARE. This
acronym stands for Illustration (geometry), Constraints, Activity (process, con-
trol), Rules, Entity (product structure, geometry). The system is extensive and also
computerised and is intended for large scale projects.

8.5  Documentation

http://dx.doi.org/10.1007/978-3-319-28125-4_3

130 8  Planning a Design Automation System

A somewhat less extensive system which seems to be much used is based
on CRC cards, which is an acronym formed from Class, Responsibility and
Collaboration, see (Hvam et al. 2008). The CRC cards specifies meta data like
“Author”, “Date”, and a specification of the task to be carried out. A graphi-
cal illustration of the part should normally be included. Then the names of the
input parameters, rules to be applied and the names of the resulting output vari-
ables are specified. References to the origin of the knowledge base could be given
as Collaborations. One natural way to arrange the CRC cards is to structure the
knowledge similarly to the product structure. The position of the card in the cho-
sen structure, is defined by specifying “part of” and “consists of”. If an object ori-
ented structure is used, then the names of superclass and subclass are specified.
When the complete knowledge used has been stored on CRC cards a coherent and
well structured documentation has been established.

A third, more generic option should be mentioned. A standard, called Unified
Modeling Language, UML originally developed for software modelling, has
become popular also for other object oriented modelling tasks. The method is well
suited to model knowledge and the resulting information model is well adapted for
implementation in a relational database. One attractive possibility is to arrange the
information model like a design manual and set up links between the product struc-
ture and information model. For design rules in the form of algorithms there are pos-
sibilities to use a form of documentation that is both human readable and computer
executable, thus guaranteeing that executable code and documentation is always
synchronised. This technology is called literate programming, see (Knuth 1984), and
commercial programs like MathCAD and MatLab belong to this category.

8.6 � Aspects on Security

The knowledge base of a design system is a compilation of vital corporate knowl-
edge that is concentrated, structured and stored at a single location. Consequently,
there is a risk of proliferation of knowledge to unauthorized persons. This is an
objection that is often raised among potential users of design automation, but is
seldom a concern for companies having experience from the technology. The main
reason is probably that even if the knowledge is sensitive, it is a part of a specific
industrial system and it is difficult to use it outside its normal context. If, despite of
this, a risk is perceived, there are a number of security measures that can be taken:

•	 Avoid running a design system on computers with Internet connection and
remove all portable facilities for copying

•	 Lock the system computer and/or store it overnight in a safe room
•	 Use hardware locks and passwords

131

•	 Divide the design system into parts that can not be executed separately and run
these on different computers

•	 Separate programs from data files
•	 Store program back-ups and documentation in a safety vault

All these actions complicate development and use of system and hence, must be
carefully balanced against the perceived risk.

8.7 � Knowledge Quality

This book has discussed how to capture, represent and process knowledge. The
usefulness of doing this depends entirely on the quality of knowledge—an effi-
cient design system is of no use unless the knowledge implemented in it is of high
quality., i.e. correct, complete, consistent, valid, documented and well structured.
The rules and methods implemented should reflect current best knowledge and
best practice, which requires regular updating of the knowledge base to assure that
new insights are paid attention to.

Over time new product models and requirements are introduced and many
characteristics of the products gradually change. When this is the case it is impor-
tant to reassess design rules especially approximations that are applicable only
within a certain range to verify that these are still valid and acceptable. Also, areas
with known weaknesses might need concentrated research efforts to improve the
insights available. This quality assurance work is made much easier if the knowl-
edge documentation is well structured and transparent. A neglected knowledge
base will over time become something of a digital dustbin, but well cared for it
could become a gold mine of relevant and accessible corporate knowledge—the
company’s most valuable asset (Fig. 8.13).

Fig. 8.13   Gold mine or
dust-bin?

8.6  Aspects on Security

132 8  Planning a Design Automation System

References

Department of Defense: Systems Engineering Fundamentals. Defence Acquisition University
Press, USA (2001)

Eppinger, S., Browning, T.: DSM. MIT Press, Boston (2012)
Flower, M.: Domain. Specific Languages. Addison-Wesley, Boston (2011)
Hvam, L., Mortensen, N.H., Riis, J.: Product Customization. Springer, Heidelberg (2008)
Johansson, J.: Automated Computer Systems for Manufacturability Analysis and Tooling Design.

PhD thesis, Chalmers Technical University. ISBN 978-91-7385-510-5 (2011)
Knuth, D.: Literate Programming. The Computer Journal. Wiley, London (1984)
Ryhanen, E.: A business strategy based on automated design and manufacture. Notes from con-

ference design for product variety. JTH, Jönköping June 2004
Stokes, M.: Managing Engineering Knowledge. Professional Engineering Publication Ltd.,

London, 2001LiTH (2001)

133© Springer International Publishing Switzerland 2016
S. Sunnersjö, Intelligent Computer Systems in Engineering Design,
Studies in Systems, Decision and Control 51, DOI 10.1007/978-3-319-28125-4

How do the theories and methods discussed in this book agree with experiences
from real world applications? A systematic and exhaustive answer to the question
would require a much larger investigation than what is possible to present here.
The intention with this Appendix is instead to give the reader real, working exam-
ples as background information when studying the methods presented. This helps
to better understand what applications that could be efficiently solved using DA,
how the different technologies presented are used in practice and what obstacles
that may arise and different ways to overcome these. Industrial systems for design
automation have been used at least since the 1970s, and this Appendix will give
examples from a wide range of different applications and different technologies.

Often large scale industrial systems are close to the core of a company’s oper-
ations and therefore surrounded by a degree of secrecy. The examples described
in this Appendix are therefore of a varying completeness and also belong to dif-
ferent periods in time. Some of the systems are large, but straightforward indus-
trial applications, while others represent small prototype systems aimed at more
difficult problems that stretches the boundaries of the technology. The systems
have different development histories ranging from management initiatives with
adequate planning and properly allocated resources to what could be seen as
“skunk works” where individuals or small groups have seen opportunities for dras-
tic improvements of efficiency and acted spontaneously on their own initiative.
Design automation is far from a late innovation. More than 50 years ago one arti-
cle (Fielding 1965) was published that offers an interesting historical perspective,
showing that the questions raised in the mid 1960s are still highly relevant.

The majority of Industrial systems for DA are aimed at product configuration,
possibly complemented by parametric modelling of components. Engineering
design is however a topic that embraces many aspects of technology and future
DA systems will be capable of handling more demanding tasks in redesign,
which might require more design freedom than straightforward configuration and

Appendix A
Industrial DA Systems in Production
or Prototyping

134134 Appendix A: Industrial DA Systems in Production or Prototyping

parametric design. The list therefore also includes applications that represent very
different solution approaches exemplifying virtually all methods discussed in this
book.

Essentially it is left to the reader to form his/her impression of industrial DA
systems out of the list of applications compiled below, but some reflexions or con-
clusions for future work are given:

•	 Setting up a DA system is a demanding task—do not expect the first attempt to
be successful. Build small prototypes and test. Systems often need to be devel-
oped from scratch more than once until the right approach is found

•	 There is decidedly not any standard solution that fits all tasks
•	 It is beneficial to develop a new product and its associated DA system

simultaneously
•	 In a development project it is not unusual that the DA program development

cost is of comparable size to the cost of development of the product itself.
•	 Take the opportunity to abolish product documentation (drawings, BOM, con-

trol instruction) that might become unnecessary when the new system is put into
production

•	 Use geometrical functionality of the CAD system, but limit use to standard
functions that will always be available in new versions or new systems

•	 Vendor dependence and operational life of commercial software could become
a problem. Consider at an early stage how the system could be migrated should
that become necessary

•	 Maintenance becomes important over time and should be taken into account
when building the system

•	 Documentation essential for long and safe operational life
•	 No examples found where companies, once having established a DA system,

later have abolished it and gone back to manual operations.

A.1 Electrical Power Transformers

Translated and adapted from Sunnersjö (1993) with the permission of
Industrilitteratur AB (now lamanica AB)

This example describes an application in production between mid 1970s to mid
1990s. The system is of a traditional type and all functions, including drafting, is
integrated in the procedural code. It represents a technology for implementation
that is now outdated, but the example is instructive because its full life span is
documented including the effects the system had on the design process of the com-
pany (Fig. A.1).

The product is based entirely on mature technology and the design and produc-
tion processes are order based. On average 1.3 units were delivered per variant of
medium and large size transformers. This places the product at the top right corner
of Fig. 4.1, i.e. an application with good potential to be profitable.

http://dx.doi.org/10.1007/978-3-319-28125-4_4

135135Appendix A: Industrial DA Systems in Production or Prototyping

The programs are written in Fortran and comprises about 250,000 lines of code
and about 20 man-years invested in programming. About the same effort was spent
on streamlining the product family for efficient variant forming. A pilot study of
using macro programs for 2D CAD was carried out but found to be less cost-effective.

A complete set of drawings amounts to about 150 manufacturing drawings
per order. This means about 12,000 drawings per year and in addition a few hun-
dred quotations including a small set of drawings and cost calculations each.
Approximately 95 % of the documents could be used directly in production, while
the remainder required some manual modifications. The productivity gain com-
pared to the previous, manual process was about 10:1.

The system is built around a basic product design from which variants are
created by configuration of parametric components. When the system went into
production about 90 % of enquiries could be processed automatically, the remain-
ing 10 % required manual design. When the system was closed down after 20
years of operation, only about 30 % of small transformers and 70 % of medium
sized transformers could be processed automatically. It appears that when market
and technology changed, it proved difficult to update the programs quickly enough
to implement required changes and thus, an increasing proportion of the design
work again had to be taken care of manually. This highlights a significant draw-
back with the procedural standard program used. In the late 1990s the original sys-
tem was replaced by a parametric solid modeller with internal, procedural macros.

Fig. A.1   Three-dimensional view of transformer unit. From Sunnersjö (1993)

136136

A.2 Cutting Tool Holder

Name of system: “Tailor Made” (Fig. A.2)
The company manufactures for instance tooling for milling, drilling and turn-

ing for the manufacturing industry world-wide. The products are supplied from
stock or customised on demand. It is business strategy to use a design automation
system both for order based design and to generate products in size ranges to be
delivered from stock.

When an inquiry is received the system makes preliminary drawings and esti-
mates of cost and delivery time within 24 h compared to the previous lead time of
three to four weeks. If the offer results in a customer order the detailed design with
drawings and production planning including NC preparation and control instruc-
tions is carried out. The tailor-made component is delivered within one to two
weeks compared to the previous delivery time of about ten weeks. Administrative
costs are almost completely eliminated.

Development of the system was initiated in 1984 and it has an interest-
ing history spanning 30 years. The DA-system is developed by a team of about
30 persons working in parallel with the product designers. When a new product
development project is started a parallel DA project is also started so that when the
new product is available it can immediately be generated in customised variants.

A first version based on parametric 3D CAD (wireframe) with macro program-
ming was taken into production from 1985. This was replaced in 1994 with a com-
mercial rule based system integrated through APIs with a parametric 3D solid
model. This system has in excess of 14,000 rules and 11,000 methods and is a
vital part for the operations of the company. When the software vendor stopped
supporting the rule based system the company decided to develop future software
in-house. An interim system was developed and put into production in 2006, while
a more permanent software was developed from scratch and put into production in

Fig. A.2   Milling head (left) assembled from parametric parts (right). Courtesy of Sandvik
Coromant AB

Appendix A: Industrial DA Systems in Production or Prototyping

137137

2011. This program is written in Java, uses open source code, and implements a
domain specific language (DSL). DA logic is expressed in the DSL using declara-
tive backward chaining rules. The DSL also have high level interfaces with the
CAD system which enforces that company standards for creation of CAD models
are followed.

All in all four different software platforms have been, and still are, used in pro-
duction which represents a significant maintenance effort. This experience high-
lights the importance of:

•	 A well-defined problem domain
•	 Using standardised CAD methods
•	 Using conventional programming languages
•	 Good scalability
•	 Planning for maintenance
•	 Methods for verification and testing
•	 Documentation of design knowledge used

A.3 Ventilation Systems

Name of system: Selection configurator (Fig. A.3)
The company designs and produces custom built ventilation systems in an

order based process. Product configuration, parametric component design and cost
calculation has been done by an automatic configurator since the 1990s. The sys-
tem includes an extensive knowledge base with technical, legislative, customer
and regional preferences. When an order is placed the product is specified by an
alpha-numeric code (about 10 groups each with 30 digits). The configurator is
used by sales people and installation technicians.

After order the delivery process starts by generating the detailed product def-
inition. A small number of 2D CAD drawings are created for assembly instruc-
tions and for export to building drawings. Otherwise no drawings are produced

Fig. A.3   Customised ventilation units. Courtesy of Fläkt Woods Group

Appendix A: Industrial DA Systems in Production or Prototyping

138138

and furthermore, no product definition needs to be saved after delivery—only
input data and program version. If a spare part should be needed the design is
regenerated.

Subsequent to the detail design process, production planning and NC prepa-
ration is carried out automatically and the stations at the production line receive
instructions for each order individually. The production planning system processes
about 100 orders per day. Approximately 30 % of these need minor manual modi-
fications. The system has passed through several generations and been coded in
different programming languages over the years. It is now run over the internet
using a procedural code in VB and a relational database. It is estimated that in
excess of 100,000 man-hours have been spent building and maintaining the
system.

A.4 Roof Rack Attachments

Name of system: Tracks
Adapted from Johansson and Cederfeldt (2012) and (Johansson (2012) in

cooperation with Thule Sweden AB
The company manufactures roof racks for motor cars and sells world-wide

(Fig. A.4). For cars without fix-points the roof rack is attached to the roof with a
system of fixturing brackets and rubber mounting pads. Each car model requires
individually designed attachments due to different roof curvatures. Since the roof
rack is a safety related component calculations or tests of its ability to meet crash
test requirements has to be made and approved by national road safety authorities.

About 150–200 new car models are launched each year and the company col-
lects measurements of roof profiles for about thirty new fixture kits on interna-
tional motor car fairs and at other opportunities. These profile measurements are
used to design new brackets and rubber pads. From a business perspective it is
vital to offer car buyers roof racks as soon as a new model is launched. A customer
who buys a roof rack is likely to later also by accessories like roof box, bicycle
holder and so on.

The company has about 1500 variants of fixturing brackets either in stock or
as drawings, tooling and so on. Rather than designing new variants for each new
car model the idea was to reuse similar, existing and proven solutions. This would
save time and money from design, calculation, tooling, testing and approval of
new variants. A system based on Case Based Reasoning was initiated.

The fixturing brackets were divided into natural classes, see Fig. 7.2 in
Sect. 7.1. Within each class the specifications of the new design is compared to
the designs stored in a case base and rated for how well they agree. The variants
that are closest to the goal geometry are retrieved by the DA system and displayed
simultaneously with the the outline of the roof. The necessity for the graphic dis-
play became obvious with practical use. If one of the retrieved cases are very close

Appendix A: Industrial DA Systems in Production or Prototyping

http://dx.doi.org/10.1007/978-3-319-28125-4_7

139139

to the goal fit, this will be used for the new application. If the best retrieved variant
is close but not quite acceptable the required modifications are carried out and the
component stored in the case base. Probably the component can be produced with-
out new tooling or new tests. If no close variant is found a new bracket design is
carried out automatically using the goal geometry as specification. The new design
is stored in the case base.

A corresponding procedure is carried out to select best match among the 400
stored rubber pads. This presents a more difficult problem of shape matching
which is solved by analysis of the clearances arising between roof and existing
rubber pads in a sequence of positions. This simulation and analysis is carried out
by the CAD system.

The system took about one man-year to develop in procedural VB code dur-
ing which time several prototypes were tried and discarded. The shape matching
is computationally heavy and the first working prototype took 45 minutes to scan
the case base. Execution time could later be reduced to less than three minutes,
which drastically changed the usefulness of the system. The system was put into
full use in 2012 and has since been used for virtually all new attachment kits. The
design time for new variants has been decreased by about 40 % (two weeks), tool-
ing costs is reduced by about 50 %, quality assurance improved and total lead time
was reduced in excess of 10 %.

A.5 Plate Heat Exchanger

System name: Cross-roads (Fig. A.5). For further details see (Rask and Sunnersjö
2012)

The company designs and manufactures plate heat exchangers for different liq-
uids in a variety of sizes, pressures and user specifications. The heat exchanger
consists of a stack of plates, each with pressed channels that form a system for

Fig. A.4   Mounting system
for roof rack manufactured
by Thule Sweden AB

Appendix A: Industrial DA Systems in Production or Prototyping

140140

process fluids. The patterns and dimensions of the channels are of critical impor-
tance for the performance of the heat exchanger. The channel design is the focus
of the DA-system. The design process includes engineering design, stress analysis,
fluid flow analysis and manufacturing processes. The motives for automation are
twofold, to assure that all designs are made according to defined instructions and
to optimise heat transfer.

Investigating the steps of the design process and coding the DA-system took
about four man-years. A DSM was set up which showed a box with cyclic depen-
dencies, see Fig. 5.1 in Chap. 5. The sub-tasks were set up in an order that has
evolved over many years of practical experience. When the coupled part of the
DSM was broken down to parameter level and partitioned it turned out that two
boxes were present, each representing an optimisation problem. The objective was
to the maximise channel cross section area under constraints from strength and
production requirements.

Cross-Roads was programmed in a rule based program with inference engine
feeding design variables to a parametric solid modeller. The system designs the
heat transfer surfaces of the plates as well as the press tools used in manufacture.
The system was used for all new plate design world-wide between 1995 and about
2005. When the rule based software was no longer supported the system was
rebuilt in a procedural, algorithmic programming tool (Fig. A.6).

Fig. A.5   Press die for plate
in heat exchanger

Appendix A: Industrial DA Systems in Production or Prototyping

http://dx.doi.org/10.1007/978-3-319-28125-4_5

141141

A.6 Bulkhead Stiffeners for Submarine

System name; CORP
For further details see Sunnersjö et al. (2004) (Fig. A.7)
Bulkheads in submarines are reinforced with welded stiffeners, which have

the cross-section of a T-beam. Both plate and stiffeners are made of high tensile
strength steel of massive dimensions which require expensive and time consuming
welding procedures. There are thus strong motives to design the complete bulk-
head as light as possible. Having the same principal design the stiffeners are para-
metrically adapted to their respective length and position on the plate. There are
two business motives to automate this design process: Quick response to customer
enquiries and finding the most cost-effective balance between number of stiffeners
and dimensions of stiffeners.

A thorough investigation into the calculations of stiffener dimensions resulted
in a DSM with a hierarchical data flow. The calculations were made in an algorith-
mic and literate (self-documenting) language thereby providing good and automat-
ically updated documentation. The calculations were quite extensive amounting to
about 90 pages of algorithms. The pages were arranged as a design manual where
each subtask formed a section which was readable but at the same time had the
role of a knowledge object with inputs/outputs (Fig. A.8).

Fig. A.6   DSM for flow channel design. Top box refer to optimisation of channel cross section,
bottom box refers to optimisation of channel pattern. Courtesy of Alfa Laval Thermal AB

Appendix A: Industrial DA Systems in Production or Prototyping

142142

The static DSM acted as a workflow manager and activated stepwise processing
where the variables from previous steps was used as input for subsequent steps.
As the processing proceeds down the DSM, eventually all design variables were
determined and stored in the database. For each stiffener an optimisation process
was executed to determine its optimal proportions. All design variables are subse-
quently fed to a parametric solid modeller for graphic display, generating drawings
and to carry out stress calculations.

Fig. A.7   Bulkhead with parametric stiffeners

Fig. A.8   Static DSM with sequential information flow acts as a work-flow manager

Appendix A: Industrial DA Systems in Production or Prototyping

143143

From the database information was extracted for process planning and related
cost estimates. A library of generic, standard processes for the types of operations
to be used, were instantiated with the current variable values and time and cost for
each component and feature were determined. These are accumulated and added
to the costs for material which results in the total cost. To find the optimal combi-
nation of number of stiffeners and plate thicknesses, calculations are carried out
for a suitable range, e.g. between six and eighteen stiffeners, as in Fig. A.9.

A.7 Rolling Element Bearings and Tooling

Translated and adapted from Sunnersjö (1993) with the permission of
Industrilitteratur AB (now Lamanica AB)

Rolling element bearings are made and stocked in size ranges, where inner and
outer diameters are driving dimensions. The differences between sizes are not sim-
ply a matter of scaling dimensions in proportion. Instead, each size needs to be
recalculated and redesigned from basic design knowledge.

A rolling element bearing is typically defined by 400–700 design variables. The
system also designs blanks and tooling which are defined by about 500 variables.
Hence, for each dimension in the size range more than 1000 variables will need to
be calculated making this application a strong case for automation.

The system was developed in the mid 80s as a procedural program (Fortran)
feeding a 2D parametric CAD system. It was used daily for about 15 years with
revisions at least once a year. In mid 1990s it was replaced by a parametric solid
modeller with internal macros as well as external programs for computations. The
system had an estimated productivity gain of 1:40.

Fig. A.9   Cost and weight
of bulkhead as a function
of number of stiffeners. For
this case optimum occurs for
twelve stiffeners with 23 mm
plate thickness

Appendix A: Industrial DA Systems in Production or Prototyping

144144

A.8 Seat Heaters for Motor Cars

Name of system: “Wire-layout”
For more detailed information see Johansson and Elgh (2013)
Seat heaters consist of a foam carrier on which resistance wire is glued in an

evenly distributed pattern. When required electrical current is led through the wire
thus producing an increased seat temperature. The company sells to the motor car
industry worldwide. Typically 75 new variants are put into production each year
requiring four to six weeks of design work within a total lead time of 12 months
from order to production.

A very large number of enquiries are received each year, and from a business
perspective prompt and accurate quotations are of vital importance. Although seat
heaters are a seemingly simple product about 160 design variables are required
to define the design. To improve the capacity for quotations a design system for
a preliminary wire-layout was developed. A time and cost calculation module
was added to make it possible to use the preliminary design for cost calculations
(Fig. A.11).

A second purpose of the system was to determine which wire type that will
be most cost effective. Reaching the specified heat effect will depend on the
wire type, the length of the wire and the pattern. To find the best alternative for
a specific application a range of suitable wires are run on the system, and the

Fig. A.10   Double row spherical roller bearing

Appendix A: Industrial DA Systems in Production or Prototyping

145145

preliminary designs are evaluated and the most favourable cost is used for quota-
tion. If the offer results in an order the preliminary design is reviewed and can
usually be somewhat improved manually. The system, which could be classified
as generative, uses a ruled based solver with inference engine that interacts via
an API with a parametric CAD system with macro-programmed instructions. The
workflow is sequential with two exceptions which are solved by manual interac-
tion. Generation of a wire layout takes a few minutes on a lap-top. The system is at
the time of writing a prototype, not a production system.

A.9 Tool Set for Aluminium Tube Bending

Adapted from Johansson (2011) in cooperation with Sapa Group. Name of system:
“Bend-IT” (Fig. A.12)

Aluminum tubing is formed using a draw bending process. The required tool
set consists of: Form die, pressure die, clamp die, mandrel and wiper. In most
cases all or several of these tools must be designed and custom built for each new
order. To save lead time there are good motives to automate this design process.

The manufactured parts will always deviate somewhat from the nominal geom-
etry, which is acceptable as long as these deviations are within specifications. The
tool design together with the setting of process parameters govern the outcome of
the bending process, particularly the developed length and the centreline radius

Fig. A.11   History tree with design rules inserted and lay-out (top). Generative system with hier-
archical data flow. DSM for design process (bottom). See also Fig. 3.13 in Sect. 3.4. Courtesy of
Kongsberg Automotive AB

Appendix A: Industrial DA Systems in Production or Prototyping

http://dx.doi.org/10.1007/978-3-319-28125-4_3

146146

of the bend. Undesired effects like wrinkling, ovality of correction and decreased
wall thickness must be kept within specifications. The required bending moment
and angle needs to be estimated and whether or not a mandrel is needed. If this is
the case a suitable type of mandrel should be selected.

The knowledge used to plan this process and design the tools that will pro-
duce parts within accepted tolerances is a mixture of heuristics and mathematical
formulas. This is represented in a rule based design system having an inference
machine and feeding a 3D parametric CAD system. The system is based on a
knowledge object architecture giving a highly modular structure, which later
proved very valuable when the system was expanded to profile bending, multi
bend operations and preparations for FEM simulations. The system is at present a
prototype, not in production.

A.10 Aero Engine Diffusor

The company designs and manufactures components and subsystems for aero
engines. Preliminary design for quotation is a critical business factor where auto-
mation enables fast and correct response to enquiries. The company also benefits
significantly from being able to generate and evaluate many lay-outs to find the
most cost efficient design concept (Fig. A.13).

First the extent and desired variation is defined, wherafter a parametric 3D
CAD with an internal, rule based solver, is run with a high degree of automation.
A range of alternative configurations is created as solid models as well as associ-
ated shell models that are automatically pre-processed and analysed using Finitie
Element solvers.

Structural integrity of each concepts is evaluated, including eigenfrequences
and modes, stresses, distortions and more. The application further generate core
input for cost assessment and manufacturing key parameters.

Fig. A.12   Tool set and tube
in bending operation

Appendix A: Industrial DA Systems in Production or Prototyping

147147

The system has been in use from around 2006, mainly in the sales and early
concept design process. As an example the system created, defined and evaluated
14 different lay-outs in two weeks, something that far exceeds what is possible
with manual manipulation of a parametric modeller. The system has proved to
be very valuable also in discussions with customers during the sales process. The
company uses several other generative design automation systems in their sales
and design process.

References

Cederfeldt, M.: Planning design automation. Ph.D. Thesis, Chalmers University of Technology,
Göteborg, Sweden (2007)

Fielding, F.: Cost value of design automation. In: Proceedings of Annual ACM IEEE Design
Automation Conference, ACM Press, New York (1965)

Isaksson, O.: KBE and CAD for concurrent engineering applications. Lecture notes from confer-
ence "design Automation", May 2007 at Fläkt Woods Group, Jönköping, Sweden (2007)

Johansson, J.: Combining case based reasoning and shape matching. In: Proceedings of ASME
DETC2012-70631, Chicago (2012)

Johansson, J., Cederfeldt, M.: Interactive case based reasoning through visual representation. In:
Proceedings of Design 2012, Dubrovnik, Croatia (2012)

Johansson, J., Elgh, F.: How to successful implement automated engineering design systems.
ISPE CE (2013)

Nilsson, In: Conference of the Association for product modeling, Aarhus Denmark. Department
of operations management, DTU, Lyngby, Denmark (2010)

Fig. A.13   Design system GUI (top) and two diffusor variants to be evaluated. Courtesy of GKN
Aerospace Sweden AB

Appendix A: Industrial DA Systems in Production or Prototyping

148148

Rask, I., Sunnersjö, S.: In Design structure matrix methods and applications by Eppinger, S.,
Browning, T., MIT Press 2012, pp 216–221 (2012)

Sunnersjö, S., Cederfeldt, M., Elgh, F., Rask, I.: A transparent design system for iterative product
development. J. Comput. Inf. Sci. Eng. 6(3) (2006)

Sunnersjö, S.: Förberedd konstruktion. Swedish association of manufacturing companies VI,
Industrilitteratur V020006 (1993)

Appendix A: Industrial DA Systems in Production or Prototyping

149© Springer International Publishing Switzerland 2016
S. Sunnersjö, Intelligent Computer Systems in Engineering Design,
Studies in Systems, Decision and Control 51, DOI 10.1007/978-3-319-28125-4

Some of the cases of applications in this book have been adapted and simplified
to serve as exercises. They require implementation in traditional programming
languages like C or VB and access to commercial software for mathematics and
CAD. The details of these implementations are not meaningful to reproduce here
as they will be program and version dependent. Instead the reader is encouraged to
attempt to solve the tasks with available and familiar software.

•	 Tutorial one demonstrates parametric modelling of a standardised beam cross
section which is driven by a template. It is also demonstrated how an external
calculation program interacts with the CAD model through the template.

•	 Tutorial two is an example of a design automation problem that require a gen-
erative solution model. Knowledge is stored both as part of the CAD model and
in external macros that generate the product model.

•	 Tutorial three is an exercise in parametric design with all knowledge stored as a
part of the CAD model. The execution order is shown to change automatically
when the design variable asked for is changed. It is also shown how new rules
can be added without any side effects on existing code.

•	 Tutorial four concerns the planning of a design automation system by applying
the methods described in the book. It serves as a summing up of the guide lines
presented

Tutorial 1: Parametric design using templates
By Mikael Cederfeldt

Use a parametric CAD system to create a model allowing for variant design of the
two beam types, I and HEA, depicted below (Fig. B.1). Drive the CAD system
from a template that can either use the beam standard size as input or where all
parameters are explicitly defined. Create only one geometry model (with on/off
features) that can be parametrically configured into the variants shown in the beam
type standards tables. Add a short program module that uses the variables to calcu-
late e.g. maximum tensile stress for a given bending moment.

Appendix B
Exercises

150150 Appendix B: Exercises

Tutorial 2: Generative design using APIs
By Fredrik Elgh

Problem description

The exercise is taken from a project which included the development of an design
automation system. The scope of the system was to generate variant designs of
heating elements for car seat heaters based on different customer specifications
and seat geometries. A heating element consists of a carrier material, a wire and
a connecting cable. The wire is laid out and glued in a pattern of sinusoidal loops
between the two layers of carriers, see Fig. B.1. The pattern is generated essen-
tially using heuristic knowledge.

The objectives with the DA-system were to cut quotation lead-time, allow for
evaluation of different design alternatives, quality-validate the design process, cap-
ture design knowledge, ensure producibility and provide design documentation.

Learning outcome

The purpose of this tutorial is to illustrate the concept of Generative Design. Most
design automation systems assumes that a predefined generic model has been set
up. This model must contain all possible variations of dimensions and topology,
which are then instantiated to create one particular variant. There are however situ-
ations when it is not possible to set up such a generic model (e.g. the topological
variation is too large) and the product geometry is instead generated under pro-
gram control. The task presented is such a case. The solution to the original prob-
lem with real seat geometry was shown in Fig. 3.13, while the tutorial addresses
a simplified geometry. It is a fairly demanding task, but instructive on macro pro-
gramming of CAD systems. It has been solved using Catia Knowledgeware with
macros written in VBA. Most programmable, parametric 3D solid modellers
should be able to handle the problem in a similar way.

Implementation task

In this tutorial the problem is reduced to a rectangular carrier element where height
and length can vary continuously. The objective is to define the centre-line of the
wire-pattern so that the heat is high and evenly distributed across the element. This
implies that the objective is to fill the element with so much wire as possible, i.e.
try to maximize the centre-line length. The output is the length of the centre-line
and the winding pattern (Figs. B.2, B.3 and B.4). There are two constraints that
cannot be violated: There must be (1) a clearance between the edge of the element
and the centre-line, and (2) a clearance between the wireloops within the pattern.

http://dx.doi.org/10.1007/978-3-319-28125-4_3

151151Appendix B: Exercises

Tutorial 3: Design rules as part of CAD model
by Staffan Sunnersjö and Roland Stolt

Description of exercise

The automatic balancer and its working principles are described in Sect. 5.1.
The purpose of this tutorial is to create a system for parametric design

using declarative rules or formulas being a part of the CAD model. It will be

Fig. B.1   Standard I and HEA beam cross sections

http://dx.doi.org/10.1007/978-3-319-28125-4_5

152152

Fig. B.2   Upper left A car seat with heating elements in the cushion and backrest. Lower left
A cushion element glued to the seat foam. On the right A cushion element showing the heating
wire, the thermostat and the connection cable between two layers of carrier material

Fig. B.3   Winding pattern
and a measure of the centre-
line’s total length

Fig. B.4   Main constraints of
the heating wire centerline

Appendix B: Exercises

153153

demonstrated that parameters can be changed dynamically and that this results in
different solution sequences. It will also be demonstrated how new rules can be
added to the rule base and automatically being taken into account. For simplicity,
assume that the balancer has one track and the number of balls is equal to two.
The example was implemented directly in Catia Knowledgeware, but several other
CAD systems have comparable functionality.

Specified parameters (input)

Φ1 Diameter of balls 0.02

Ω Rotational speed (rev/min) 1200

N No of balls 2

ρB Density ball mtrl 7800

UBM Unbalance moment 0.02

σy Yield stress of ring 15E6

Intermediate design variables

BM Mass of ball in track

α Angle ball

fc Centrifugal force

BMR1 Balancing moment/ball

σd Yield stress dimensioning

Design variables (output)

RT1 Outer radius of ring

HT1 Wall height

T1 Wall thickness

Appendix B: Exercises

154154

Design rules

The design of the balancer is subject to the relations below. These assignments are
to be programmed as design rules in the CAD system.

Calculation of centrifugal force on each ball:

Calculation of ball balancing moment:

Calculation of wall height:

Calculation of wall thickness:

Calculation of ball mass:

Calculation of disc radius:

Tasks

1.	 Set up a DSM for parameters, intermediate variables and output variables
using given input parameters and relations above

2.	 Set up the CAD model with parameters and variables coupled to the paramet-
ric geometry. Define relations based on above equations. Insert print messages
in all rules so that execution can be followed and study the sequence of rules
firing. Select starting values from the list above and run the system to deter-
mine output variables.

3.	 For standard applications ABS plastic is used with yield strength of 15 MPa.
If fc exceeds 175 N, material is changed to PETP, with yield strength of 35
MPa. Insert a rule for this purpose and check the effect of increasing speed or
ball diameter.

α = 0

fc =
UBM

N1

(

�

60
2π

)2

BMR1 =
UBM1

/

N1

HT1 = �1 + 0.005

σd =
σy
/

5

T1 =

√

3fc
/

σd

BM = π

�
3

1

6
ρB

ρB = 7800

RT1 =

BMR1

BM
+ T1+

�1

2

Appendix B: Exercises

155155

4.	 In the first case the allowable thickness of the balancer, and thereby the ball
diameters, were given. Assume that instead the outer diameter is given and we
want to find the correct ball diameters. We do not want to write a new code,
but merely add the required relations to the existing rule base and re-execute.
Add the following relations:

These two equations are however coupled and would result in “circular reference”.
To uncouple them make the approximation

Deactivate the rule that fires RT1 and set this value manually. Rerun the system
and see what rules fire and in what order.

5.	 A more demanding task: Solve the coupled problem by partioning using an
equation solver either internally in the CAD system or by an external solver for:

Tutorial 4: A pre-study for a design automation system

This tutorial encourages the reader to become familiar with the procedures dis-
cussed when planning a computer system for automatic design.

Select a limited design problem that you are well familiar with technically.
Write a short essay, 5–10 pages that relates to a chosen application of design auto-
mation. Briefly present this task and discuss:

•	 Which are the business motives for Product Variety and how is variety
achieved?

•	 What are the motives to automate the design process?
•	 Which are the categories of knowledge used. Use the categories presented in the

book or some other classification. Evaluate applicability and relevance of clas-
sification method.

•	 What human cognition processes are involved.
•	 From this perspective, is it meaningful to automate the process?
•	 Is the product technically mature with all required know-how available?
•	 How well structured is the design problem?

�1 =
3

√

6

BMR1
R1

πρB

R1 = RT1− T1−�1
/

2

R1 = RT1− T1− 0.009







R1 = RT1− T1−�1
�

2

�1 =
3

�

6

BMR1
R1
πρB

Appendix B: Exercises

156156

•	 What computerised solution methods should be applied? Discuss strength and
weaknesses.

•	 How should design knowledge be documented?
•	 How should knowledge base and processing interact with commercial software?
•	 How should the system be maintained and what are the security aspects?
•	 Other vital issues that must be considered early.

Appendix B: Exercises

	Preface
	Acknowledgements
	Contents
	About the Author
	1 Introduction
	1.1 Design of Industrial Products
	1.2 Which Are the Motives for Design Automation?
	1.3 Modelling and Simulation of the Design Process
	1.4 Intelligent Computer Systems
	1.4.1 Declarative Representation of Knowledge or Constraints
	1.4.2 Representation of Implicit Knowledge by Computational Intelligence
	1.4.3 Procedural Programming for Mathematical Modelling
	1.4.4 The Causal Triangle

	References

	2 Industrial Products and How They Are Developed
	2.1 Man-Made Objects and the Laws of Nature
	2.2 A Generic Process for Product Development
	2.3 Design Tasks with Potential for Automation
	2.3.1 Tasks Suitable for Automation
	2.3.2 Design for Variety, DFV

	2.4 Investing in New Products
	References

	3 Computerised Methods to Design for Variety, DFV
	3.1 What Are the Deliverables of the Design Process?
	3.1.1 Definition of Product Geometry
	3.1.2 Definition of Product Structure and Technical Specifications

	3.2 Parametric Design
	3.3 Configuration Design
	3.3.1 Modularised Products
	3.3.2 Product Structure for Variant Design

	3.4 Generative and Hybrid Design
	References

	4 Clarifying, Idealising and Modelling of Engineering Knowledge
	4.1 What Is Knowledge?
	4.2 Thinking Inside the Box
	4.3 Idealisation of Product Knowledge
	4.4 Characterisation of Engineering Knowledge
	4.5 Modeling of Knowledge for Computer Processing
	4.5.1 The Computer and the Human Brain
	4.5.2 Representation of Knowledge

	References

	5 Problem Structure and Knowledge Processing
	5.1 Well-Structured and Ill-Structured Design Tasks
	5.2 Fundamentals of Graph Theory and Dependency Structure Matrices
	5.2.1 Definitions in Graph Theory
	5.2.2 Tree Structures
	5.2.3 The Dependency Structure Matrix (DSM)

	5.3 Problem Structure and Choice of Solution Principles
	5.4 Problem Complexity
	References

	6 Representation and Processing of Explicit Knowledge
	6.1 Procedural Solution Methods
	6.1.1 Design Problems Cast in a Mathematical Form
	6.1.2 Case of Application of Procedural Solution Method

	6.2 Inference Based Systems
	6.2.1 Separating Knowledge and Control
	6.2.2 How Is Inference Based Programs Different from Procedural Programs?
	6.2.3 Frames for Object Oriented Knowledge Base
	6.2.4 Knowledge Objects

	6.3 Exhaustive Search by G&T
	6.3.1 Problems with Discrete Variables and Cyclic Flow Graphs
	6.3.2 Generate and Test, G&T

	6.4 Constraint Processing
	6.4.1 The Method of Elimination
	6.4.2 Constraint Processing in Practice

	References

	7 Representation and Processing of Implicit Knowledge
	7.1 Case Based Reasoning, CBR, and Case Based Design, CBD
	7.1.1 Establishing a Case Base
	7.1.2 Case Retrieval by Search and Match

	7.2 Interpolation Methods
	7.2.1 Curve Fitting and Response Surfaces
	7.2.2 Neural Networks

	7.3 Optimisation
	7.3.1 Hill Climbing Methods
	7.3.2 Genetic Method

	References

	8 Planning a Design Automation System
	8.1 Seven Steps for Systematic Planning of a Design Automation Project
	8.1.1 Get Acceptance and Involvement
	8.1.2 Define and Delimit Problem
	8.1.3 Evaluate CostBenefit
	8.1.4 Acquire Design Knowledge
	8.1.5 Clarify and Map Design Process
	8.1.6 Classify Problem and Select Solution Strategy
	8.1.7 Select Software Tools and Plan for Implementation, Maintenance and Expansion

	8.2 Criteria for Evaluation
	8.3 Knowledge Acquisition and Process Mapping
	8.3.1 Compiling Design Knowledge by Reverse Engineering
	8.3.2 Mapping of Design Process

	8.4 Planning Architecture and Working Principles
	8.4.1 Review of Options
	8.4.2 Where Should the Knowledge Be Stored and Processed?
	8.4.3 Matching Design Process to DA Methods

	8.5 Documentation
	8.5.1 Why Documentation Is Important
	8.5.2 Formal Methods for Documentation

	8.6 Aspects on Security
	8.7 Knowledge Quality
	References

	Appendix AIndustrial DA Systems in Production or Prototyping
	Appendix BExercises

