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PREFACE

This book resulted from the NATO Advanced Research Workshop on “Electron
Kinetics and Applications of Glow Discharges,” held in St. Petersburg, Russia, on May
19-23, 1997. Glow discharges have found widespread applications in many technological
processes from the manufacture of semiconductors, to recent developments in nano-
technology, to the traditional fields of gas lasers, and discharge lamps. Consequently,
the interest in the physics of glow discharges has experienced yet another resurgence of
interest.

While the non-equilibrium character of glow discharges is widely accepted, the
opinion still prevails that the main features can be captured by fluid models, and
that kinetic treatments are only required for the understanding of subtle details. The
erroneousness of this belief is demonstrated by the failure of fluid models to describe
many basic features of glow discharges such as, for instance, electrode phenomena,
striations, and collisionless heating effects. An adequate description of glow discharges
thus has to be of kinetic nature.

The organizers and participants of the workshop were united in the belief that
a critical assessment of the state-of-the-art of kinetic methods for the description of
glow discharges was overdue. In particular, two different “schools” have developed over
the past decades: analytical and semi-analytical approaches are favored by researchers
mostly from Eastern countries while strongly computer-based methods are mostly used
in the Western countries. The objectives of the workshop were: a) to bring together
representatives of these different schools to propel research of glow discharge kinetics
by creating synergistic effects between these different approaches, and b) to assess a
broad spectrum of theoretical and experimental studies of glow discharge kinetics.

The authors of this book are well-known experts in the field of glow discharge
research. The book presents a state-of-the-art review of our understanding of the
kinetic nature of glow discharges.*

The workshop organizers want to thank all speakers and participants of the work-
shop for their scientific contributions and their support, which was invaluable in making
this workshop a successful event. We are particularly thankful to

NATO Division of Scientific and Environmental Affairs

for its generous support of the workshop. In particular, we thank Dr. L. Veiga da Cunha
and his staff for the excellent cooperation. We gratefully acknowledge co-sponsoring of
the workshop by

*Articles resulting from poster presentations given during the workshop are published in Plasma
Physics Reports, Volume 24, No. 7 (1998).



The Russian Foundation of Basic Research,
Applied Materials, Inc., and

OSRAM Sylvania, Inc.

We also wish to thank Drs. Anatoliy Kudryavtsev and Alexander Smirnov and Mrs.
Karon Mooney for their support in organizing this workshop, and Dr. C. Eggs for the
technical assistance provided in editing this book.

Uwe Kortshagen
University of Minnesota
Minneapolis

Lev D. Tsendin
St. Petersburg State Technical University
St. Petersburg, Russia
March 1998
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PRINCIPLES OF THE ELECTRON KINETICS IN GLOW DISCHARGES

L.D.Tsendin

Russia, St.-Petersburg State Technical University, St.-Petersburg, Polytech-
nicheskaja 29, 195251.

INTRODUCTION

The glow discharge physics, or, more widely speaking, the physics and technology of
low-temperature plasmas, are undergoing a sort of the Renaissance nowadays. Numerous
applications greatly stimulated interest in various topics of this problem.

First of all, the main working parameters - temperature and pressure - of the vast
majority of technological processes are inevitably increasing. It follows that more and
more considerable part of a processed material converts into the plasma state, and an
opinion arises that in the coming century the considerable, if not the main, part of the
materials and surface processing will inevitably use the plasma technology. The second
reason of extreme rise of interest in this field follows from the fact that, among the more
or less easily obtainable objects, the low-temperature gas discharge plasmas are the most
remote ones from the thermodynamic equilibrium. As a result, a great variety of the plasma
objects are widely used as active media of optical quantum generators and amplifiers. This
extremely non-equilibrium property of glow discharge plasmas is the reason, also, why the
most exotic chemical syntheses, which cannot be performed otherwise, are possible in the
plasma state.

All these (and numerous other) reasons make it imperatively necessary to develop
such a branch of knowledge, which can be called as the “plasma engineering”. In other
words - how to design and to construct the plasma objects with the beforehand prescribed
properties, where the useful processes are optimized, the treatment and reactions rates are
maximal, etc. The central challenge consists in the fact that all the problems of such a
sort are in some sense the inverse ones. They can be typically formulated as follows: how
to combine the external parameters - the gas pressure and composition, current, voltage,
frequency, vessel and electrode geometry, regime of the hydrodynamic flow, etc. - in
order to achieve these technologic goals. But up to now the progress in this direction is
rather slow. Notwithstanding to the fact that the intensive investigations, both of academic
and of applied character, are carried out for many decades, it is difficult to point out any
important technology which was predicted and developed theoretically - most part, if not
all, of the glow discharge applications were found and optimized more or less empirically.
The experiments and calculations have pursued, as a rule, a more modest aim - how to
explain and to justify the existing technological processes, and not to optimize the existing
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and to predict new ones. Up to now most by the direct problems are solved - what are
the plasma properties in a given device or installation, why it is so effective, what are the
reasons for formation of a given product, etc. There are several explanations of such a
situation.

First of all, the self-consistent character of problems makes it practically hopeless to
seek for any analytic solutions, and forces an explorer to use some form of the numeric
simulation. From the other side, a great variety of external parameters, complexety of
the involved processes, and low accuracy and reliability of the data about the elementary
processes, often lead to the fact that any separate calculation is in essence useless. In order
to formulate and solve the inverse problems, first of all, it is necessary to have a rather good
experience and intuition. The latter are acquired in process of solution of a considerable
variety of the direct problems in a wide parameters range and subsequent detailed analysis
of them. What we need for formulation and solution of the inverse problems are the scaling
laws, i. e. the dependencies of the internal plasma parameters on the external ones.

One of the central difficulties which is met in pursuing of such a strategy is connected
with proper account of the electron kinetics. Since the gas discharge plasmas represent
extremely non-equilibrium systems, correct description of the kinetics, and especially of
kinetics of the electron sub-system, which is, as a rule, the most remote from the thermo-
dynamic equilibrium one, is of the vital importance for the glow discharge physics. The
electron distribution function (EDF), and especially its high-energy tail, which usually de-
pends exponentially on the discharge parameters, determines practically all the main plasma
properties. Since the electron energies usually far exceed the energies of other discharge
sub-systems (neutral gas, walls, electrodes, etc.), the EDF is formed predominantly in com-
petition between the energy gain in the electric field (the simplest situation corresponds
to the standard Ohmic heating), and energy losses in different electron collisions with all
species of the charged and neutral particles which are present in a plasma, and with solid
boundary surfaces. The simplest condition of 100% surface recombination is assumed
usually for description of the latter process. The most important sources of the violation
of thermodynamic equilibrium are connected usually with influence of the electromagnetic
field, and of the cold solid surfaces.

The electromagnetic field in plasma is always self-consistent - it is not prescribed by
an external circuit and geometry of discharge, but is created by the charged particles of a
plasma itself. This fact makes it extremely desirable to obtain relatively simple analytic
expressions for the EDF which are valid for rather wide variety of the field profiles. As in
every self-consistent problem, it is impossible to obtain a numerical solution of any separate
part of it - if you have started to simulate such a problem numerically, you are forced
to perform it throughout up to the end. After performing great volume of calculations
and obtaining plenty of graphs and tables, it is not too easy to extract out of them the
understanding of an underlying physics, derivation of the scaling laws, prediction of the
solution variation with external parameters, etc..

The great simplification of the electron kinetics is possible, if the dominant processes
are characterized by comparatively long time scales and by smooth spatial profiles of
plasma parameters and fields. For such conditions the collisions of plasma particles result
in the formation of equilibrium between the particles and the local and instantaneous values
of the external fields. Even if this partial equilibrium significantly differs from the genuine
thermodynamic equilibrium, and the electron distribution function drastically differs. from
the Maxwellian one, an average particle is representative for description of the behavior of
the all ensemble of plasma particles in a given place and moment. The particles of each
species can be described in terms of their density, mean velocity (or momentum), and mean
energy. Such averaged description is usually called a fluid approximation, and the closed
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set of equations for these values is known as fluid, or transport equations.
The characteristic peculiarity of the field profiles arising in gas discharges consists in

their extreme inhomogeneity. As a rule, the typical such profiles can be subdivided into
the weak plasma field, which occupies the main volume of a discharge, and the strong
field regions in the space charge sheaths. In the cathode region of the dc discharge, for
example, the small portion of energetic electrons is accelerated by the space charge field;
influence of the weak plasma field on these electrons is negligible. On the other hand,
the vast majority of the bulk plasma electrons cannot reach the high field sheath region,
and their EDF is determined by the low plasma field. It means that both these fields are
of equal importance for the EDF formation: simply they are responsible for formation of
different parts of the EDF. And one of the central problems consists in the proper account
of this fact. Up to now in a lot of publications the traditional fluid approximation is
used for description of the whole electronic ensemble. It becomes more and more clear
nowadays that the extremely non-equilibrium and non-uniform state of the glow discharge
plasmas makes it absolutely hopeless to use this approach in qualitative estimates, to say
nothing about calculations and modelling. The great number of phenomena which are
specific and characteristic for the glow discharges cannot be understood properly even on
a descriptive qualitative level in the framework of such an approach - i.e. in terms of
an average electron. Since in the partially ionized glow discharge plasma the collisions
between electrons which Maxwellize the electron distribution function are relatively seldom,
the different parts of the EDF are very flexible and almost independent. It follows that
the whole electronic ensemble in typical situations can be subdivided into several weakly
connected populations, which can be formed by different segments of the field profile. In
other words, the situation is possible, when for the parts of the EDF which correspond to
various energies the spatially different parts of the field profile are responsible. To assign to
the EDF in a given point one unique value of directed velocity and one value of the average
energy, as it is made in the fluid approach, means the rough oversimplification, and often
results in qualitatively erroneous results. Practically always the characteristic energy scales
of different parts of the EDF differ drastically. It means that the real relative abundance
of electrons in different energy regions can differ in orders of magnitude from the values
calculated in the fluid model. Numerous situations exist, when it is absolutely evident
that the low-pressure discharges can be described properly only on the kinetic level. At
the higher pressure, such the most characteristic discharge phenomena, as the cathode and
anode sheaths properties, potential profiles in sheaths, the Faraday dark space formation,
generation and propagation of striations, stochastic electron heating, electron runaway in
strong electric fields, etc., demand self-consistent kinetic description of electrons, too. Just
now the opinion becomes more and more popular that the glow discharge physics, as a
whole, is to be formulated essentially kinetically. To succeed in this challenge, efficient
solution methods of the electron Boltzmann equation, both numerical and analytic, are to
be developed.

We shall discuss here briefly the main physical mechanisms which determine the EDF
in spatially and temporally inhomogeneous plasmas. We restrict ourselves by the simplest
case of pure atomic gases and by the most characteristic limiting examples of the EDF
formation.

CLASSIFICATION OF COLLISIONS. BULK ELECTRONS.

Under typical gas discharge conditions it is possible to divide the electrons unam-
biguously into two groups. The kinetic analysis of these groups is to be performed on
essentially different lines. The first of these groups corresponds usually to the vast major-
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ity of electrons. These bulk electrons are produced, as a rule, by ionization in a plasma
volume. Their kinetic energy w does not exceed significantly the energy of the first elec-
tron excitation level ε1 . In this case, for not too high electric field intensities, which are
characteristic for the discharge plasmas, the EDF can be subdivided into the EDF “body”
(w ε1) and the exponentially decreasing EDF tail (w > ε 1).

In a discharge volume a relatively small fraction of high-energy electrons with w >> ε1

is often present. These electrons are produced by acceleration of γ-electrons in cathode
sheaths of DC discharges, or in electrode sheaths of RF capacitive discharges, where a
strong electric field exists, by externally injected electron beams; sometimes such fast
electrons are generated in resonance points of electromagnetic waves, etc.

We shall enlist here the main types of collisions which are relevant in simplest cases
to the EDF formation. We start first from the bulk electrons.

The simplest and the most widely discussed is the situation when only elastic electron-
atomic collisions are present. The energy relaxation in these collisions is extremely sup-
pressed. It means that, if the probability of the energy gain δε from the field sufficiently
fast decreases with δε, the process of energy exchange with electromagnetic field corre-
sponds to diffusion in energy. The energy diffusion coefficient equals to
, where ν = ν ( v ) - the transport collision frequency, - the average step in the ran-
dom walk in energy. In the uniform stationary DC field, for example, The
slow, practically continuous, energy losses in the elastic collisions can be described in
terms of the negative convective flux along the kinetic energy axis w with “velocity”

Since the isotropisation of the EDF in the
elastic collisions occurs orders of magnitude faster than the energy relaxation, the resulting
EDF is almost isotropic, and the expansion in the Legendre polynomials turns out very
effective. In this expansion (which corresponds in our case of energy relaxation only in
elastic collisions to the expansion in powers of << 1) only the first two terms are
important. The relatively small anisotropy of the EDF results from combined action of
the electric field and smooth (with respect to the mean free path) variation of the plasma
density. The kinetic equation for the isotropic part of the EDF in a uniform case is of the
form

where Γε - the flux of electrons in the energy space, v, 1/v - the Lame coefficients in this
space. The solution of (1) with zero flux Γε , when the diffusive flux upwards in energy
is totally compensated by the convective flux due to the energy loss Vε (w), corresponds
to the famous Druyvesteyn-Davydov’s EDF 1, 2, 3 . It decreases exponentially with the

characteristic energy scale

(2)

The average electron energy of the EDF (2) is of the order of
This result can be interpreted as the energy gain from the DC electric

field on the energy relaxation length If the spatial scale of the field
or plasma density inhomgeniety exceeds λε , and the corresponding temporal scale exceeds

the EDF in the inhomogeneous non-stationary plasma is close to (2),
and the fluid description is valid. A lot of important and interesting situations cannot be
described in these terms.
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The situation with inelastic collisions is more complicated, and even more or less
rigorous classification of possible situations is not formulated yet. First of all, in the self-
sustained gas discharges plasma is created by the electron collisions with neutral particles -
i.e. in some sort of the inelastic collisions, - and is removed in comparatively slow processes
of ambipolar diffusion and recombination. In other words, without a proper account of the
inelastic collisions it is impossible even to describe the plasma profile formation itself.

A simplified description of the inelastic collisions can be formulated, it the EDF
‘body’ in the electric field is described by a single characteristic energy scale (in plasmas
of self-sustained gas discharges this energy scale is of the order of 1 eV - up to the order
of magnitude less, than the ionization potential). In this case the inelastic collisions can
be subdivided into two groups. The collisions with relatively small (with respect to )
electron energy loss, as a rule, can be treated as continuous, or quasielastic. The expansion
of the inelastic collision integral in powers of << 1 can be performed in this case,
and these collisions can be taken into account by introducing, instead of δe l  = 2m/M,
of the effective value δe f f which now becomes energy-dependent 4, 5 . It means that in
the molecular gases the electron collisions which are accompanied by the exchange with
rotational and vibrational molecular levels with quanta energies ε k of the order of 10

–3
 eV

and 10
–1

 eV), are usually quasielastic. In typical molecular gases the inequality δe f f  << 1
still holds, and the two-term expansion for the EDF is usually valid. The fluid approach
with account of these collisions is applicable, if the problem scales exceed λε , ε with
δeff  (w) instead of δe l. But such a simple criterion with δe f f , which is determined by the
electron energy balance, can be strongly misleading when applied to the electron collisions
with great (with respect to ) energy loss. In this case the distinction between the spatial and
temporal scales of the energy relaxation and of the EDF relaxation can be very significant
6 - 10 .

In typical discharge situations for the bulk plasma electrons with energies below and
slightly above the first electronic excitation potential the transport collision frequency ν t r

and the frequencies of the electronic excitation νk  usually satisfy the inequalities

(3)

At relatively low field intensities (it corresponds to relatively high pressure), when is
small with respect to the energy of the first electronic level ε1 , the distribution of majority
of electrons is determined by (2). The diffusive and convective fluxes in energy at w < ε 1
almost compensate each other, and the resulting flux Γε  is exponentially small. The colli-
sions with excitation of the electronic states, which are accompanied by loss of practically
all energy of the plasma electrons, determine only the EDF tail at w ≥ ε1 . The energy
scale of this tail is

(4)

From (3) it follows that this scale is considerably less, than the scale of the EDF “body” at
w < ε1 . It means that the tail of EDF is also described by the two-term approximation, and
that it decreases with energy considerably faster than the function (2). In other words, the
income terms in the kinetic equation, which describe electrons after they have undergone
the inelastic collisions with excitation of the k-th electronic level (the terms with the shifted
energy (w + ε k ), as an argument), are significant only in small region of the order of (4) at
small energies. In the main part of the EDF body, and at its tail these terms are negligible.

Hence, the problem is reduced to the diffusion on energy in vicinity of an boundary
with an absorbing media which is situated at w ≥ ε1 , and in rough approximation the zero
“black wall” boundary condition at w = ε1 can be imposed on the distribution function f0
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in the energy diffusion equation (1). The electrons, which are “absorbed” at the EDF tail
due to the excitation of the electronic states, reappear at low energies; in the intermediate
energy region the flux in energy Γε is small due to the fact that the diffusive flux here is
almost compensated by the convective one. The electron energy in this case is lost mainly
in the quasielastic collisions. The relaxation of the tail electrons with w ≥ ε1  in time and
space is fast with respect to λε , ε , and the fluid description is valid, if the same criteria
of the smooth variation of the field and density, as for the EDF “body” w < ε1 (of course,
with δ eff (w) instead of δe l) are fulfilled. The source terms in the continuity and energy
balance equations, which are determined, as a rule, by the tail of EDF, depend only on
intensity of the local electric field. It means that the closed equations set for the plasma
density in the fluid approximation can be written down in this case.

Figure 1. The field

is plotted as E/E* , where E*/p = 6.4 V/cm Torr for He, 2.0 V/cm Torr for Ne, 9.0 V/cm Torr for Ar.

dependence of the average electron energy for 1) helium, 2) neon, 3) argon. The field

The horizontal dashed lines correspond to the distribution function in the black-wall approximation, when

the energy loss in elastic collisions is ignored and the mean electron energy is = 0.3 for He, 0.36 for

Ne, and 0.43 for Ar.

Value of which corresponds to the scale of the exponential decrease of the EDF (2)
due to the quasielastic collisions, increases with the field intensity, and at moderate fields
becomes of the order of ε1 . At such fields the transition occurs to the regime in which the
electron energy balance is controlled by the “genuine” inelastic collisions with large energy
losses. Since the inequality (3) is fulfilled usually with significant margin, in considerable
range of the electric fields the characteristic energy scale of the EDF tail remains small
with respect to ε1 , which corresponds now to the energy scale of the “distribution body”
at w < ε1 .  is possible in this case to neglect the quasielastic energy losses (the second
term in (1)), but to retain the approximate “absorbing wall” boundary condition f0  = 0 at
w = ε 1. This situation is illustrated at Fig. 1 10 , where the average electron energy versus
electric field intensity is presented for several noble gases (He, Ne, Ar). The ascending
branches of the curves at low fields correspond to the case when the energy balance is
determined by the elastic collisions (2). The plateau, when practically doesn’t depend
on the field and remains of the order of ε1 , corresponds to the situation when the electron
energy is lost mainly in inelastic collisions (in excitations of the electronic states), but the
distribution tail decreases fast, and the contribution of the electrons with w > ε1  to the
total density and energy is small. According to (1), the energy diffusion flux is conserved
up to w = ε1 , and is absorbed fast at w > ε1 . The inelastic collisions are accompanied by
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considerable losses of electron energy of the order of several eV, and discreteness of these
energy losses is sometimes crucial 6 - 10 . In such a situation it is necessary to distinguish
between the spatial and temporal scales of the energy relaxation, and the scales of the
relaxation of the electron distribution function. Some aspects of this problem are discussed
lower. Frequently used is an approach, when the value of δeff , averaged over all the
collisions, is introduced. The relaxation scales, which are calculated according to λε , ε ,
are identified with the scales in the criterion of applicability of the fluid approach. It
follows, that in the presence of the inelastic collisions with large discrete energy losses,
the real such criterion, which demands that the characteristic scale is to exceed the scale
on which electrons “forget their biography”, is considerably more stringent 10 . Since the
distribution tail decreases fast, only several first electronic excitation levels determine the
EDF. In the limiting case when only one electronic level is important, for example, the
electron energy loss in collisions does not correspond to the relaxation of the EDF at all -
the EDF in arbitrary DC electric field in the total energy scale reproduces an EDF in an
injection point, shifted on an integer number of energy steps ε1

6 - 10 .

The scale ε*(4) increases with the field strength, and becomes of the order of ε1 . If
∆*ε ( E) exceeds ε1 , the corresponding collisions become quasielastic - and the equation
(1) of the energy diffusion with new definition of the quasicontinuous energy loss rate
Vε (w) is applicable again.

For the approximate account of collisions in the electron Boltzmann equation for
the bulk plasma electrons such a strategy can be proposed. If the energy loss in the an
individual act of collision is small with respect to the EDF energy scale, the processes can
be treated as quasielastic, and treated in the approximation of continuous energy losses.
In the opposite case, at the moderate field strength, the EDF body in the energy interval

, where the majority of electrons is contained, is extremely simple. It
corresponds to the conservation of the flux in energy Γ ε . The energy scales of the EDF
tail, and of the small region at low energy, where the energy flux conservation is violated,
are both equal to (4).

Such an approach exhausts, in principle, the possible formation scenaria of the EDF
of the bulk plasma electrons. They are essentially based on assumption about the EDF
isotropy which follows from the condition (3), that the electron scattering dominates over
their slowing down. The second assumption which was used in the derivation of (1),
(2) consists in concept of the energy diffusion. It is based on the model that the energy
exchange of electrons with electromagnetic field corresponds to random walk in energy with
relatively small stochastic steps. For case of a DC electric field and energy-independent
electron-neutral cross-section, for example, the probability of an energy step, which exceeds
(eEλ ), is exponentially small. What remains unclear - what is the situation, when these
basic assumptions are violated.

If the scattering cross section for inelastic collisions with large energy loss is compa-
rable with the transport one, the EDF anisotropy becomes significant. Hence, the two-term
expansion for the EDF is not applicable in this case. Various numerical approaches which
are based on straightforward solution of the Boltzmann equation11, 12 , or on the expansion
of the EDF into spherical harmonics up to a high number 13, 14  were proposed. In 15  the sit-
uation was considered, when the transport cross-section is small with respect to the inelastic
one. The simple analytic expressions for the extremely anisotropic “needle-like” EDF were
derived. Its dependence on the angle between the DC electric field and electron velocity

is close to the Gaussian one. To our knowledge, the work on regular application of
such an approach, and on the description of different mechanisms of the EDF relaxation,
especially in the molecular gases, up to now is in an embrional state. It seems reasonable,
accordingly, to discuss various possible scenaria of the EDF formation in this important
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and complicated field for the simplest one-level model when only one type of the inelastic
collisions is present, even if up to now no definite cross-section data are available in order
to prefer one of them in a given experimental situation.

In the Fig.2 in the plane of variables where λ,λ* are the transport and
inelastic mean free paths, the various possibilities are presented.

Figure 2.

In the domain a both the EDF body w < ε1 , and the tail, which decreases as

exp , are highly anisotropic.

This case arises when the scattering is altogether negligible. In a weak field ε1  >>
it corresponds to the widely known Drude-Lorenz model. The

extremely anisotropic electron motion in this case is analogous to the relay-race ion motion
in the similar gas which is determined by the resonant charge-exchange 15 .

In the region b the EDF body can be described in the two-term approximation f0  (w) +

(5)

It corresponds to the energy flux Γ ε conservation. At energies this
isotropy is violated, and the needle-like highly anisotropic EDF emerges 15 . Analogously
to the standard diffusion theory 

16
, at w = ε 1 the approximate matching condition which

demands absence of the averaged over angles influx in energy of the energetic electrons
which are moving against the field at w = ε1

(6)

From (6) the expression for w* in (5) follows, which doesn’t depend on characteristics of
the inelastic collisions:

(7)
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In the energy region 0 < which contains the majority of the tail electrons,
the electron trajectories can be considered as straight, and

(8)

The domain c (Fig.2) corresponds to the above-mentioned case of the almost isotropic EDF,
for which the energy balance is determined by the inelastic collisions, and the EDF at the
tail fast decreases, as

(9)

The energy scale of the tail is

(10)

If the integral (9) converges at w → ∞, the so-called runaway in energy occurs - the
EDF remains almost isotropic, but doesn’t tend to zero at high energy. In other words, the
stationary distribution in an electric field cannot be reached, and unlimited heating (i.e. the
rise of the chaotic energy) of the electron gas takes place.

The domain d corresponds to situation, when the tail scale exceeds ε1 . In this case
the inelastic collisions can be approximated as continuous, and the approach Eqs. (1), (2)
becomes valid again. The runaway in energy in this case occurs, if the integral

converges at the upper limit.
In the domain e the relaxation of energy occurs faster than relaxation of momentum.

It means that the action of collisions is equivalent to the velocity-dependent friction force
ε1 /λ* (w). This force can compensate the electric field only if the friction force increases
with energy. In the opposite case the genuine runaway 17 - 19 arises - the electron gas is ac-
celerated infinitely by the electric field, and influence of the collisions becomes negligible.
This phenomenon becomes possible, if the integral converges at the upper limit, i.
e. the mean free path λ* (w) increases with energy.

FAST ELECTRONS.

From the other side, at sufficiently high electron energies all the scattering events
between electrons and atomic systems become asymptotically Rutherford-like. In other
words, from the point of view of a fast free electron all the binding energies of the bound
molecular electrons are negligible, and with increase of the projectile energy both the
scattering and slowing down of a fast electron by gas molecules more and more resemble
its interaction with a fully ionized plasma which consists of free slow electrons and bare
nuclei 20, 21 .

Due to the peculiarities of the Coulomb scattering, all the above-mentioned assump-
tions of domination of the scattering over the energy loss, of diffusion in energy, and of
absence of the any form of the runaway, which are extremely efficient for description the
bulk electrons, are violated at high electron energy and/or in intense electric fields. First
of all, the Rutherford cross-section steeply decreases with the electron energy. It follows
that in a DC electric field, for example, the probability of large energy gain remains finite.
It manifests in the widely-known phenomenon of the electron runaway occurs 17 - 18 . This

9



phenomenon exists not only in fully ionized plasmas, but in a neutral gas too19 . In strong
enough electric field all electrons become the runaway ones. In the everyday gas discharge
practice so high the fields are seldom. The more interesting (but far more difficult for
analysis, as it can be seen from the only existing solution for the fully ionized plasma18 )
is the situation in relatively weak field, when portion of the runaway electrons is exponen-
tially small. The additional difficulty is connected with the fact that the most interesting
for gas discharges are the electrons of intermediate energies, at which the asymptotic law
of the Coulomb collisions is inapplicable yet. The situation in this field is unclear now.
It is aggravated by the fact that the straightforward numerical simulation is hampered by
the lack of the experimental data, especially on the angular dependencies of the inelastic
collisions. It can be stated, in any case, that in a rather intense electric fields the condition
(3) of the EDF isotropy, and the approximation of the diffusion in energy are violated.

In 22 the simple model which allows an analytic solution was proposed for this sit-
uation. At high energies the ratio of the scattering to the slowing down doesn’t exceed
the atomic number Z. It means that the scattering is not too significant at least in light
gases. At lower energies experimental evidences exist, too, that the EDF anisotropy is very
significant. It manifests, for example, in the fact that the density of the fast electrons rises
significantly at an axis of a cylindrical hollow cathode 23 . Hence, in 22  it was supposed
that the model, which altogether neglects the scattering, and assumes delta-like angular
dependence of the EDF, should be not too bad an approximation. Since the retarding
force, which results due to the inelastic collisions, at increases with energy, and at
high energies it decreases 21 with it, in the energy region of interest the maximum of this
force is situated. According to some of the existing data 

24
, this maximum is rather flat.

Consequently, the simplest assumption of velocity-independent retarding force was made
in

22
.

THE EDF NON-LOCALITY.

One of the most pronounced and important kinetic effects consists in the EDF non-
locality. Under this term we shall understand all the complex of phenomena, which are
connected with the plasma and field inhomogeneity, and result in distinction between the
real EDF, and the EDF in homogeneous plasma and field. Many aspects of this problem
are discussed in detail in many other contributions to this book; see also the last review
papers 25 - 27 . We shall discuss here briefly only several characteristic examples of numerous
situations, in which the fluid approach is in principle misleading, and a rigorous kinetic
treatment is necessary.

The radial electron fluxes in the nonlocal DC positive column.

In the local limit, when the EDF is formed by the momentum and energy balance in
a given place, it is determined by the local values of plasma density and field. The small
corrections to the local EDF which are proportional to small gradients of these parameters
manifest themselves in formation of the particles and energy fluxes which are proportional
to these gradients. In this (fluid) approximation the direction of the differential fluxes (i.e.
of the contributions of different EDF parts to the total particles and energy fluxes) coincide
with direction of the total fluxes. As plasma becomes more inhomogeneous, these fluxes
increase, and the differential fluxes become more “independent”.

If the radius of the discharge tube is small with respect to the electron energy relaxation
length, the EDF isotropic part f0  (w, r) for the electrons, which are trapped by the radial
space charge field with potential Φ (r), depends only on total energy ε = w +eΦ(r) .

10



Radially directed anisotropic part of EDF

(11)

which determines the differential radial fluxes, paradoxically vanishes in this approxima-
(0)tion, with ƒ0 = ƒ0 (ε). It means simply that due to the large radial plasma inhomogeneity,

the gradient of the small radially-dependent corrections ƒ0
(1)

( ε, r) results in considerable
radial fluxes, both integral and differential. In other words, in the local regime the energy
gain from the Ohmic heating is balanced by the collisional losses locally in every point of
the tube cross-section, and in the nonlocal regime - such a balance exists only in average.
Since the spatial displacement occurs fast, the total energy is approximate integral of mo-
tion, and the main part of the EDF depends on it, according to the Liouville theorem. The
radial fluxes are leveling up the local energy disbalance, forcing the EDF to depend on ε
only. Since the rate of the EDF relaxation at different kinetic energies can be extremely
different, the disbalance at various energies can differ significantly, and even be oppositely
directed. Any attempts to apply the fluid approximation in this case are equivalent to
pouring of new wine into an old wineskin, and are in principle misleading.

Neglecting the energy losses in elastic collisions, in the two-term approximation the
kinetic equation in the variables = r/R for the isotropic part of the EDF at
energies above reduces to:

The parameter A = ε1 / (eEz R) characterizes in this case the nonlocality of problem.
We’ll consider nonlocal case A >> 1. In order to equalize the electron and ion ambipolar
radial fluxes, the radial potential profile arises which consists of the smooth plasma profile
Φ (r), and of potential jump in the sheath. A typical Φ ( r ) dependence in the positive
column is presented in the Fig. 3; Φ w - the wall potential. It corresnonds to the outward

directed net electron flux  in the fluid model.

The inelastic collisions occur in the dashed region w
After such an event, which is described by the dashed arrows in the Fig. 3, an electron

= ε–eΦ > ε1 (III in the Fig. 3).

Figure 3.
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emerges at low energies (in the doubly-dashed region I), and starts to gain energy from
the longitudinal electric field. This process of the energy diffusion due to the Ohmic
heating corresponds to the double vertical arrows. In the region II the main isotropic
radially independent part of the EDF is close to (5) with only two replacements. The
kinetic energy w is to be replaced for the full one ε, and the products vVε  (w), vDε (w)
are to be replaced for the value of the same products which are averaged over the part
of the tube cross-section available for an electron with a total energy ε 25, 26 . In other
words, the problem coincides with the problem of thermal conductivity in long radially
inhomogeneous rod with insulated side walls. The diffusion in energy with conserving
radially-integrated energy flux Γε  generates in this region II the radial differential fluxes
due to two main reasons. Since the available region increases with energy, the outward
directed flux arises. The second reason follows from the fact that the genuine energy
diffusion coefficient depends on the kinetic energy w and in order to level up the EDF at
given total energy and at different r, the radial transport is necessary.

As the energy ε approaches the inelastic threshold ε1 , the inward directed differential
flux arises, since the probability of the inelastic collisions (as well, as the kinetic energy)
at given ε is maximal in the tube center. It means that the fast electrons sink is maximal
here, and such a flux arises to maintain the EDF dependence on the total energy.

And at ε values, which exceed the wall potential Φw , the electrons can leave a plasma
to tube wall, and strong outward directed flux results. In contrast to the average radial flux,
which is determined by the ambipolar (i.e. by the ion) diffusion, this outward flux of the
energetic electrons is not restricted by the quasineutrality condition, and is determined by
the extremely fast electron diffusion. It leads to strong exponential depletion of the EDF
tail, in competition with the exponential depletion caused by the inelastic collisions. It
follows, in particular, that within logarithmic accuracy the values of eΦ w , and of ionization
potential are close to each other. If not so, it is impossible to maintain the stationary state,
in which the ionization rate is balanced by the wall escape.

Results of the recent publications 27, 28 agree with these considerations.
At the distance of the order of the mean free path in vicinity of the wall the anisotropy

of the EDF which is caused by the fast recombination on the cold tube wall becomes
significant. In a result, at ε >eΦ w ; r = R the backward flux of the energetic electrons
which move almost normally towards plasma from the wall in the “anti-loss cone” is
absent. For the majority of the tail electrons with ε >eΦ w  the solid angle of this cone is
small. The approximate solution for this case was obtained in

30
. This cone is filled due to

the elastic collisions and vanishes deep in the plasma. This phenomenon was investigated
in detail in . Since the elastic collisions were considered as isotropic, up to distance of31

the order of λ the step-wise dependence ƒ ( ) was obtained, where - angle between an
electron velocity and normal to the wall.

Striations.

Since the gas discharge represents an extremely non-equilibrium system, the uniform
stationary state very often turns out to be unstable. Correspondingly, the DC positive
column very often exists in the striated form, when all the plasma parameters are strongly
longitudinally modulated. It is more or less widely known, that this phenomenon results
from the development of a some form of ionization instability32, 33 . But the variety
of different forms of the striations is overwhelming, and up to now even satisfactory
classification of them is absent. This situation demonstrates our poor understanding of the
ionization phenomena even in such relatively simple and thoroughly explored an object.

In 34, 35  the 1D fluid model of running striations was proposed. It turned out that the
propagation of unstable and/or weakly damping ionization signals in the DC positive column

12



is possible only if the wavelength is small with respect to the length of energy relaxation
Te / eE z . The instability is caused by non-linear dependence of the ionization rate on the
plasma density due to influence of the electron-electron collisions on the form of the EDF
tail, or due to step-wise ionization. But, as it was stated above, the fluid description of a
plasma, especially of so subtle processes, as of the EDF tail formation and of the ionization,
is, generally speaking, impossible on such a short spatial scale. Such an approach can be
justified only at rather high plasma density, when the frequent electron-electron collisions
maintain the Maxwellian EDF, at least in the EDF “body” w < ε1 . Comparison of this
model with the experimental results at high current values demonstrates good agreement
34, 35 . The extension of the fluid theory for non-linear and 2D fluid problems was performed
in 36 - 38 .

In practically all other situations, in our opinion, the phenomenon of striations cannot
be described properly in the framework of the fluid model, and the rigorous kinetic approach
is necessary.

One of the most striking properties of the standing striations, for example, consists in
the fact, that:

1) the striations are fixed with respect to cathode (all the periodic structure of stratified
column is shifted, if the cathode is displaced), and

2) the striations are equally sharp practically at arbitrary distance from the cathode
32, 33 .

The alternating bright and dark layers imply that the EDF tail in the neighboring
points contain strikingly different portions of energetic electrons. Since the same electrons
are drifting from the cathode towards the anode, it means that the electrons “remember”
their starting point, and “know”, what energy to have at a given distance from it. The
question arises, what is the microscopic mechanism of this “genetic memory”? How an
electron, which have undergone thousands of stochastic collisions of various types, with
the accuracy up to centimeters, if not to millimeters, “remembers” what energy to have?
Especially if it is not the same electron which was emitted by the cathode, but its remote
offspring?

In 10  the mechanism of the EDF “bunching” by the spatially periodic electric field
Ez (z ) was proposed. This mechanism is characterized by many necessary properties. The
situation was considered, when in the energy balance the inelastic collisions dominate. In
absence of the energy losses in the quasielastic collisions the EDF at w < ε1 in an arbitrary
(!) monotone potential Φ (z ) is extremely simple 6,7 :

(12)

Here the total energy ε = w +e Φ(z) is introduced. In the simplest one-level approximation
we have

(13)

Since in the one-level approximation the relaxation of the EDF is absent, the resulting
EDF simply reproduces the differential fluxes Ψ (ε), which are injected into field from the
cathode. This situation reminds the widely known experiment of Franck and Hertz. It is
natural to expect, that account of the small (of the order of ) energy losses in the elastic
collisions, and/or of other levels of the electronic excitation, results in the stochastisation
of the EDF. In other words, the combined action of the elastic and inelastic collisions
smoothes down any steep injected EDF. It was shown in10  that in the spatially periodic
fields with the potential fall on the wavelength of the order of

(14)
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where k - an integer number, an arbitrary smooth injected EDF, under combined influence
of energy loss in the elastic and inelastic collisions (in the one-level model), and of the
field, is transformed into a combination of delta-like peaks. It can be shown that the
account of several excitation levels, at least in some simple models, can be described in
terms of introducing of the parameter eƒƒ , instead of .

The self-consistent solution of the problem of striations was given in 39 only for
small signals and for case, when small energy losses in the elastic collisions are present.
But it seems more or less evident, that the field profiles, which exhibit the “bunching”
property, can arise self-consistently in numerous situations. The field profile in a plasma is
determined by the quasineutrality condition, i.e. by the motion of ions. If, for example, the
excitations in the one-level model are accompanied, with some probability, by ionization,
the source terms in the ion equation, which, in fact, is the equation for the potential profile,
will posses the same periodicity. Accordingly, such a potential profile arises automatically,
if the plasma density is controlled by the step-wise ionization. In the noble gases difference
between the first excitation and ionization potentials is not too significant, and such a
scenario seems also possible, even. if the direct ionization dominates.

Formation of the cold electron population in the low pressure discharges.

Since the diffusive lifetime of the charged particles decreases at low pressure, the
ionization rate, which is necessary for maintenance of a stationary discharge, rises. It
follows that the EDF tail at the lower pressures is more pronounced. Usually it implies, that
all the electrons are characterized by higher energy, too. On the other hand, the abundant
population of the cold electrons is frequently observed. The most popular example of such
a kind presents the Faraday dark space (FDS) in the DC discharges. In 40  it was observed,
that in capacitively coupled RF (RFC) discharges, due to generation of the numerous slow
electrons, sometimes the average electron energy even falls with the pressure decrease. In
41 the occurrence of the abundant cold electron population in ECR discharge was reported.
The microscopic mechanism of these surprising phenomena remains in detail unclear, but
numerous evidences exist of their essentially kinetic nature.

The FDS in a DC discharge arises in the following manner. The fast electrons, which
incorporate the primary ones, emitted by cathode surface, and these of the secondaries,
tertiaries, etc., are generated in the strong field of the cathode sheath. They penetrate deep
into plasma, where the field is weak. A considerable part of the net ionization owes its
existence to this nonlocal mechanism. The ions, which are generated in the plasma, are to
be transported to cathode by the slow process of ambipolar diffusion. As a result, a rather
high plasma density maximum arises in the vicinity of the range end of these fast electrons.
In order to suppress the anode-directed electron current from this density peak, the inverse
electric field arises, which traps the main fraction of electrons in vicinity of this maximum.
The trapped electrons are distributed according to the Boltzmann’s law. Accordingly, the
potential minimum coincides with the density maximum. The electron current on the anode
side of it is transported by the intermediate electrons with EDF (12). The only heating
mechanism of the trapped electrons consists in their seldom collisions with the intermediate
ones. Consequently, numerous population of the slow electrons emerges. Three distinct
electron groups are responsible for different plasma properties in a cathode region of DC
discharge. Fast electrons produce ionization, intermediate - are transporting current, and
the slow trapped ones determine plasma density in the FDS22 . The situation is presented
schematically at the Fig. 4.
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It is to be noted, that the popular phenomenological division of the cathode region
into the FDS and negative glow seems, in some sense, rather superficious and misleading.
The division into the ion space charge sheath, and into the plasma region of weak field,
seems to be more consistent with the underlying physics. The sheath occupies, roughly
speaking, only the part of the negative glow (NG), where the “fertile” electrons are born,
The plasma region consists of the FDS and of the part of the NG, where only the ingoing
electrons are capable of multiplication.

Figure 4.

In any low pressure currentless discharge, due to the EDF nonlocality, the EDF depends
on the total energy only, and the plasma density N (x) is to be maximal
in the discharge geometric center. It implies that the potential minimum arises in the plasma
center. If the energy input is by any reason maximal in any other point but the geometric
center of the discharge vessel, the trapped electrons cannot reach the energy source, and
the population of the cold electrons arises.

The possible scenario in the RFC discharge is sketched in the Fig.5 The plasma
density profile, and the stationary space charge potential correspond to the curves a),
b). Since in the plasma the electron conductivity current dominates, due to the current
conservation the oscillatory RF field ~ 1/N is minimal in center, c). It follows, that
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Figure 5.

Figure 6.
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the spatially averaged over the available for an electron with energy
area energy diffusion coefficient steeply rises with energy (Fig. 4d). Such a dependence
of the energy diffusion coefficient results, according to (5), in the EDF of the type of
Fig.5e. The stochastic electron heating, which is produced by the electron collisions with
the oscillating plasma-sheath boundary, becomes significant with the pressure decrease.
Since the low energy electrons cannot reach this boundary, the stochastic heating presents
an additional mechanism which enhances the energy diffusion at high energies. Comparison
of the experimental (dashed line)42 , and of calculated 43 EDFs is given in the Fig.6.

Due to presence of strong and non-uniform magnetic field, of complicated electrody-
namics, low collisionality, etc., in the case of ECR discharges the situation is considerably
more complex. Nevertheless, it seems relatively evident, that if the point of the cyclotron
resonance is situated far from the geometric center of a vessel, the population of cold
electrons inevitably arises.
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1. INTRODUCTION

The notion that secondary electrons generated by cosmic rays could be accelerated
over kilometer distances by thunderstorm electric field was first proposed by Wilson.¹
The frictional force F of fast nonrelativistic electrons moving in air diminishes with
the kinetic energy of electrons ε (Fig. 1) until a minimum value,

(1)

is reached at At relativistic energies ε >> mc² the force F is slowly
growing This specific behavior of friction force F i n
nonrelativistic region is a cause of runaway effect in a constant electric field.² Clearly,
if an electric field E, applied to the medium, exceeds the minimum value Fmin:

(2)

then the electrons with the energies ε greater than characteristic value
(Fig. 1) will runaway. In other words electrons will be accelerated up to very high
energies.

Runaway electrons in the context of thunderstorm electric fields in air were
studied previously by a number of authors. 3,4 A fundamental new idea proposed
by Gurevich, Milikh and Roussel-Dupree in 1992 showed how the generation of an
avalanche of runaway electrons could lead to the air breakdown. 5 As is well known
impact ionization of the air by energetic electrons leads to the production of newborn
electrons with a wide spectrum of energies. Those secondary electrons whose energy
exceeds the characteristic value εc become a part of runaway population and contribute
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Figure 1. Dynamical friction force. The normalized energy loss per unit length (Fd /Ec0) for
electrons in air is plotted as a function of the electron Lorentz factor γ .

to further acceleration and ionization that again populates the runaway regime. The
net result is an avalanche in which the number of runaway electrons and with them of
electrons of all other energies grows exponentially. This process was called runaway
breakdown. It proceeds in electric fields E > E c (2) and in the presence of high-
energy electrons (produced as a results of cosmic-ray interaction with atmosphere).
It is important to note, that the critical field for runaway breakdown is about an
order of magnitude lower than the threshold field for conventional breakdown Ecth :

Ec ≈ 0.1E cth (3)
This fact makes it possible for runaway breakdown to take place in relatively low
electric fields Ec  ≤ E << E cth  and as a result to determine fast charge transfer process
in thundercloud, which can have important implication for lightning preconditioning
and overall development of thunderstorm electricity.

Runaway breakdown proceeds as a beam of fast electrons having maximum
energies of the order of 1 MeV. 6 A detailed kinetic theory 7 for the runaway process
permitted a precise determination of the intensive fluxes of X-rays produced by
bremsstrahlung emission in the 10–500 keV energy range.

The experimental observations of intensive X-rays by McCarthy and Parks8  could
be considered as a first manifestation of runaway breakdown during thunderstorm.
These effects were recently confirmed and studied in details by Eack, Beasley et
al.. 9–11  Even more convincing were the observation of very intensive γ -ray bursts
by’ BATSE. 12 These observations indicate the direct connection between spectacular
high-altitude lighting and runaway breakdown.

Nevertheless, it is worthy to note that the Earth’s magnetic field B can substan-
tially affect the runaway breakdown process at the altitudes above z ~ 20 km. At
z 40 km, this influence already dominates. That is why, the influence of magnetic
field B on high-altitude lighting should turn out to be significant even though it
strongly depends on the angle between E and B.13, l4

Moreover, the role of lighting emission is not completely understood. For instance,
in Refs. 15, 16 is supposed that alternating electromagnetic field is just a source of air
ionization growth produced by high altitude lighting at z ~ 60–80 km. While, in such
a case in Refs. 15–17 only conventional breakdown in gas was considered. From the
one hand it gives rise to some difficulties in interpretation of the breakdown — the
field is usually less than needed for conventional breakdown. From the other hand
conventional mechanism of gas breakdown can not explain strong γ-emission which
as usually supposed to appear under high-altitude lightnings.
2 0



It is pertinent to remember in connection with this fact that runaway process of
electrons may appear not only in constant electric field. In particularly, runaway of
electrons and ions may occur under stochastic Fermi acceleration. This process playing
possibly a marked role in injection mechanisms of cosmic ray generation18  leads to
chaotic acceleration and manifests itself as a substantial distortion of the spherically-
symmetrical part of a distribution function. 19  In this case, a chaotic (thermal) tail in
the distribution function and symmetrically spreading in all directions particle flux are
observed. One can say that effective temperature T = T (ε ) depends on the particle
energy ε, growing infinitely with increasing of the energy ε. Clearly, this process could
be called spherical-symmetrical or “thermal” mechanism of runaway. The process may
be evolved effectively not only under the Fermi acceleration mechanism, but also under
the action of a constant electric field on a plasma in case of strong electron scattering
by ions (i.e. at Z >> 1, where Z is an ion charge) or by isotropically excited ion-sound
plasma oscillations. 20, 21

It is natural to expect that the same thermal runaway effect arises in motion
of fast electrons in air if chaotic alternative electric field is applied or in constant
electric and magnetic fields under strong scattering by nuclei Z >> 1. In air Z  7.25
(in reality, the effective value Z eff  could be slightly lower because of electron shielding
on low levels 7 ). Undoubtedly, that the value of Z in air is insufficient for total
stochastization of electron motion in a constant electric field. In the same time, in
the first approximation, even in this case consideration of chaotic acceleration could be
useful. It simplifies significantly the kinetic theory of the air breakdown and gives it
possible to solve the problem in different conditions: with and without magnetic field,
in oscillating electric field a.s.o. However, what are the conditions, when spherical
symmetrical (thermal) approach is correct? Can that thermal mechanism of runaway
give rise to gas breakdown? Is that process significant in air, i.e. what is the
relationship between critical field of thermal mechanism of runaway breakdown in
crossed electric and magnetic fields or in oscillating electric field and the critical field
of conventional breakdown?

This paper is just devoted to the investigation of these problems.

2. TRANSFORMATION OF KINETIC EQUATION

To describe the breakdown on runaway particles in electric field E and magnetic
field B we start from kinetic equation7 :

(4)

here is an ionization integral which describe the production of new electrons due
to collisions with molecules of the air, The term describes electron
energy loses and the term is a pitch-angle scattering. The classical integrals and
and a model integral were determined in the paper Ref. 7. In arbitrary coordinate
system, terms and could be presented in a form:

(5)
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Here

is a dynamical friction force,

is a collision frequency, I = 80.5 eV for air, N m is the molecular density,

v is the electron speed. Note, that here Z ≈ 14.5, as we denote it as the average charge
of air molecules N2  and O2 .

There are several characteristic times in the equations (4), (5). One of them is
defined by energy losses tE  and the other one by the pitch-angle scattering tθ .

(6)

If the effective charge Z is large enough, then depending on the considered energy range
it could be different relation between tE  and tθ . If

(7)

then

and distribution function in this region should be close to spherical symmetrical due to
dominant angular scattering. On the contrary for high energy electrons

(8)

angular scattering is weak enough and distribution function is determined mainly by
energy losses and angular distribution of a new born electrons.

We will start our analyses, considering the low energy range, where conditions (7)
is fulfilled. Introducing a new small parameter of the problem ∈ = t θ /tE we rewrite
equations (4) and (5) in the form:

Let us seek for the solution to equation (9) in a power series on the parameter ∈:

(9)

In zero approximation we have
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On the next step of this procedure, after averaging of equation (9) on the momentum
direction, one can find:

(14)

(15)

(10)

It is seen from (10), that the term Taking this. fact into account, we have in
the first approximation on ∈:

(11)

here

It is naturally to seek for a solution to the equation (11) in a form:

(12)

It is easy to check, that ƒ1 (12) is an eigenfunction of the operator

That is why, the equation (11) is identical to another more simple equation22

As follows from equation (13) the matrix Aik  has a form:

(13)

Substituting (12) into (10) we result in the equation for isotropic part of the distribution
function ƒ0 :

Equation (15) describes both thermal runaway effects and diffusive spreading of break-
down in the space. The analogous equation in nonrelativistic limit was derived in
Ref. 22. If the magnetic field is negligible the distribution function in (15) is cylindri-
cally symmetrical ƒ = ƒ (t, p , r ⊥, z ) and equation (15) could be rewritten in a form:

(16)
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where

(17)

The first term in (16), (17) describe the heating of electrons by electric field, the second
one describe the diffusive spreading of breakdown in space and the third term describe
the motion and acceleration of particles in discharge along electric field direction. The
coefficient 1/3 in (16), (17) appears because of scattering and angle averaging. Previ-
ously Ref. 6 was demonstrated that the breakdown discharge is spreading in space due
to the scattering of a new born fast particles. Now we see that there is another process
(angle scattering) which affect the diffusive spreading of breakdown discharge also.

Below, we restrict our consideration by a space uniform problem and neglect the
dependence of ƒ on the variable r. Equation (15) in these conditions has a form:

(18)

Here cos is an angle between electric and magnetic fields.
It is necessary to note that in spite of the equation (18) was derived in conditions

of strong angle scattering of electrons in constant electric field, the quite analogous
equation could be obtained in the case of oscillating or stochastic electric field.22

3. QUALITATIVE ANALYSIS

We will begin from the analysis of the general kinetic equation (4). Since equation
(4) is a linear one we can search for its solution in a form quite analogous to the one
used in conventional breakdown theory 23, 24 :

(19)

Here parameter — is the ionization growth rate and ƒ(p) is a stationary
distribution function which is established in the process of breakdown. It is determined
by the stationary equation (4) with

Boundary conditions to this equation at the low energies are determined by the
following physical process. Low energy electrons are generated by fast runaway elec-
trons, they lose their energy in collisions and then disappear at very low energies due
to dissociative or three body attachment of electrons to O2  molecules. That mean, that
boundary conditions at p → 0 is determined by the balance of the model ionization
term S ion (ƒ) and electron energy loss term 0 (ƒ):

(20)

As we will see below this condition determines quite definite mode of solution.
At the high energies when p → ∞ it is natural to expect that:

(21)
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Qualitatively the structure of the solution of stationary equation (4), (19) with
boundary conditions (20), (21) could be understood basing on the parameters (7), (8)
and the concrete form of distribution function for runaway problems obtained in pre-
vious works. 19–22, 25  At the low energy region γ ≤ 3–4 (see (7)) distribution function
is close to the spherically symmetric and gradually falls down with the energy of elec-
trons 7 ƒ ∝ ( γ – 1) –1. At the high energies γ >> 8 (see (8)) function ƒ(p) became
directed along the direction of electric field (or in presence of a strong magnetic field
— along the drift direction, analyzed in Ref. 13). Its directivity is high, but not too
high determined by the combined action of electric field and ionization integral Sion (ƒ).
The distribution function can here effectively grow up with γ. It reaches maximum
value at the second critical point γ2 c (see Fig. 1) and then rapidly falls down at γ > γ 2 c

analogous to Ref. 25.
It should be emphasized, that according to this analysis the range of energies were

the stationary distribution function is determined is extremely large growing exponen-
tially with E/Ec (see Fig. 1). It means that in reality stationary distribution could
be established at E ~ Ec only. At E ≥ 2 Ec it is nonstationary and breakdown essen-
tially depend on the process of developing and establishing of a stationary distribution
function. The last process depends strongly on the form of initial distribution function
ƒ0 (γ). In our case of the runaway breakdown in the atmosphere the initial distribution
of fast electrons is determined by a cosmic ray secondaries, which have in most part
the low energies ε ≤ (1–2) MeV. So we can consider:

(22)

It will be shown below, that in this case the quasi stationary distribution function is
rapidly established at γ ≤ γm , but in the high energy range γ > γm  it is stretching
out very slowly. It means in reality that breakdown process in initial conditions (22) is
determined mainly by low energy electrons γ ≤ γm . For this electrons condition (7) is
well fulfilled and kinetic equation could be significantly simplified (16). Below we will
use this equation to describe runaway air breakdown.

It should be notified also that as the full stationary solution is not established
during runaway breakdown process in initial conditions (22), the electron distribution
is stretching out with time in energies, what means that the number of electrons —
fast and slow is growing in time not strictly exponentially. This make it different from
the classical breakdown process which is always growing exponentially in time.23, 24

4. RUNAWAY AIR BREAKDOWN

Let us investigate now the problem of air breakdown, considering spherically sym-
metrical kinetic equation (18). Since equation (18) is a linear one, we can search for its
solution in a form:

(23)

γ and t* are nondimensional variables

(24)

Substituting (23) in (18) and introducing parameters and
one can find from (18)

(25)
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Here γ is Lorentz-factor of electron,

— is a friction force determined by interaction of electron with air molecules, and

(26)

— is a parameter which we will call effective temperature,
1) 11.2 — is a fundamental constant.6  Model ionization integral Si in (4)
takes a form 6, 7:

(27)

Note, that effective temperature Teff according to (26) depend significantly on the
energy of electrons ε = m c²(γ – 1). Thus, in the absence of magnetic field (h = 0)
temperature Teff in nonrelativistic limit γ – 1 < 1 is proportional to ε ³. Directly this
strong grows of Teff  with ε lead to thermal runaway effect.

The equation (4) has two asymptotics in the limit γ → 1. They have different
behavior at γ → 1: first one is and the second one ƒ0 ~ 1/(γ – 1). The
first asymptotic corresponds to equipartition between two terms in LHS of the equation
(4) and is equivalent to zero flux condition at γ → 1. The second one is defined by the
balance of friction force term in LHS and particle source S(ƒ0) at RHS, it behaves as

(28)

Only the second solution has a physical meaning in our case. Really, the fast particles
from runaway region γ – 1 > 2/δE  generate a wide range of electrons with low energies
ε, which under the action of friction force lose their energy and disappear at ε → 0 due
to attachment to the air molecules. So the γ → 1 asymptotic of distribution function
is determined by the balance of particle generation and friction force, as was already
noted in Section 2.

Integrating equation (25) over γ we obtain the following expression for nondimen-
sional ionization rate λ*i (24):

(29)

Here we took into account asymptotic behavior of distribution function at γ → 1 (28).
We supposed also in accordance with (21), (22) that ƒ ≡ 0 at γ ≥ γ∞ . Note that close
to the threshold conditions

(30)

runaway breakdown process is always well described by the equations (18), (29)
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As it was shown in Section 2 the equation (18) strictly speaking has no exponential
growth rate. To clarify this point let us consider the solution of equation (25) in a limit

here γ 2 c is a second root of equation

(see Fig. 1) In this limit the equation (25) has following asymptotics the first one

and the second one

were

Numerical and analytical analysis show that the first asymptotic can not satisfy the
boundary condition (28). The second asymptotic gives a growing up solution ƒ ( 2 ) which
contradict to the restriction (21). It means that in rigorous theory to obtain exponen-
tially growing in time solution we should consider an extremely spread in energies
solution of the full kinetic equation (4), taking into account directional part of distri-
bution function analogous to Refs. 20, 25. But as it was shown earlier in real situation
for runaway breakdown in atmosphere this solution is not realized.

Really, runaway breakdown arises only in the presence of a high energy electrons.
In the air conditions these electrons are cosmic ray secondaries with the energy ε ≤ 1
MeV. So, the initial distribution function is not too spread in energies and could-be
supposed as a beam which have an energy cut at ε = εm (22).

Now, we will estimate the contribution of various parts of distribution function in
growth rate (29). Let us suppose, that the main contribution is defined by the range
of γ ~ γ 0  and γ0  >> 1. Taking into account (28) one can find from (29):

(31)

So, we see, that contribution into the growth rate (31) decrease with increasing of γ0 .
It means that the bulk part of distribution function ƒ(γ) for γ ≤ 1–2 gives the main
contribution into the λ*i .

Let us estimate now the spreading of the initial beam in time. The equation (18)
is diffusive type in energy. For simplicity we restrict our consideration on relativistic
limit. In this limit the simplified equation (18) takes a form:

(32)

The solution of (32) has a following form:

(33)
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We see from (33) that the spreading of this beam and the motion of its maximum is
rather slow (in limit δz  << 1). If the speed of maximum D is lower, than λ*i ,

(34)

we will have quasi-exponential growth rate. Using this condition we obtain from (32),
(34) restrictions on critical field:

(35)

It should be noted that λ*i  depend on E/Ec. This dependence was obtained previously 6, 7

Using this relations one can find:

(36)

here 1 ≤ α ≤ 1.3 is a shielding parameter7  (Zeff   = Z/α). If condition (36) is fulfilled
the growth rate should be quasi-exponential.

We resume the results of analytical analysis in this section.
1. For atmospheric conditions the runaway air breakdown process could be de-

scribed by simplified time dependent kinetic equation (18) with boundary conditions
(28), (21) and initial distribution function (22).

2. The solution of equation (18) effectively depends on the form of initial distri-
bution function and generally speaking does not grow exponentially in time. But for
the initial conditions (22) and for not very high values of electric field (36) it could be
close to exponential.

5. NUMERICAL RESULTS

Conventional air breakdown always grow in time exponentially. It is fully described
by the threshold electric field Ecth and growth rate time which is rapidly diminishing
function of E/Ecth .

Runaway breakdown in general case is not growing exponentially in time. Its
growth rate and threshold electric field depend significantly on the initial form of dis-
tribution function. Not far from the threshold runaway air breakdown process could
be quite analogous to conventional, though it has much lower threshold electric field.

Here we will discuss the numerical solution of equation (18) with boundary condi-
tions (21), (28) and a model ionization integral. First of all it is necessary to mention
that numerical simulations justify analytical predictions about the behavior of the solu-
tion. We see (Figs. 2 and 3), that if the electric field is close to the threshold (δth  ≈ 1 . 3 )
the electron density is growing up exponentially, but the exponent depends on the en-
ergy of initial beam εb .

5.1. Comparison with exact solution. Previously in the absence of magnetic
field B = 0 the solution of kinetic equation (4) with the model ionization integral S ion
was investigated numerically.7  It is shown at Fig. 4 for δ E  = 2. One can see from
the figure that the main bulk of electron distribution function is close to spherically
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Figure 2. Spherically symmetric solution with ε b = 10 MeV. The electron density is plotted as a
function of time for δE = 1.4, h = 0 and εb  = 10 MeV.

Figure 3. Spherically symmetric solution with εb  = 1 MeV. The electron density is plotted as a
function of time for δE = 1.4, h = 0 and εb = 1 MeV.

29



Figure 4. General solution of Boltzmann equation. The magnitude of the self-similar electron distri-
bution function δE  = 2 and no magnetic field (h = 0) is plotted as a function of the electron energy
and the angle θ between the applied electric field and the electron momentum vector. These results
were obtained in Ref. 7.

symmetrical. Quite analogous statement could be made about the form of distribution
function ƒ for higher electric fields δ E = 5, 8, obtained in Ref. 7, though at the high
energies ε ≥ 1 MeV we see there, that the distribution function takes more directional
character.

The solution of simplified spherically symmetrical equation (18) with boundary
conditions (21), (28) and the same model ionization integral and initial distribution
function as in Ref. 7 for δ E  = 2 is demonstrated at the Fig. 5. One can see quite a
reasonable agreement with Fig. 4. The dependence of the growth rate λi on electric
field δE  is presented in Table 1. As we expected for the low value of δE  the growth rate
of electron density is close enough to the previous one and the difference between them
is increasing with increasing of δE .

The solution of equation (18) allowed to determine the threshold electric field for
runaway breakdown with B = 0, which was found to be δ th  ≈ 1.3. We see from
Figs. 4, 5 and Table 1, that not far from the threshold the form of distribution function
and breakdown growth rate is well enough described in spherical symmetrical approach,
what is in a full agreement with the results of analytical analysis, presented in the
previous section. It allows us to explore the influence of magnetic field and oscillating
electrical field on runaway breakdown in the same spherical symmetrical approximation.

5.2. Influence of magnetic field. The exact kinetic equation (4) is quite com-
plicated for numerical analysis if magnetic field B is fully taken into account. The

Table 1. Avalanche Time for Spherical
Symmetric and Exact Kinetic Equa-
tions

δ 0
(  sp ) (ns) (ns)

2 19.6 27
5 2.4 7
8 0.6 2.9

30



Figure 5. Spherically symmetric approach. The magnitude of the self-similar electron distribution
function for δ E = 2 and no magnetic field (h = 0) is plotted as a function of the electron energy. These
results were obtained using the spherically symmetric approach and can be compared directly with
the general solution obtained in Ref. 7 (see Fig. 4).

5.2. Influence of magnetic field. The exact kinetic equation (4) is quite com-
plicated for numerical analysis if magnetic field B is fully taken into account. The
above both analytical and numerical analysis shows that spherically symmetrical ap-
proach (18) is very useful if one consider solution not far from the threshold. Let us
analyze now using this approach the dependence of the threshold electric field δEt h on
magnetic field B. It is characterized by two parameters: normalized value of magnetic
field h = B/E c0 and angle β between B and E. The influence of magnetic field is mostly
strong for β = 90°, when E ⊥ B. The dependence of δEth on h for β = 90° is shown on
Fig. 6 and in Table 2. One can see from the figure and Table 2 that δEt h is growing with
h. This result seems quite natural: as one can see from equations (18), (26) the growth
of magnetic field at β = 90° diminishes the effective electron temperature Teff . It means
that the effective width of distribution function is decreasing with increasing magnetic
field and one need to apply more strong electric field to achieve breakdown conditions.
It is interesting to note that obtained in Ref. 13 analogous growth of breakdown electric
field δ Et h with h based on the analysis of the pure electron runaway process without
heating, was much stronger. It means that the influence of thermal effects on run-
away breakdown is enhancing with the increasing of normalized magnetic field h. This
fact agrees with the form of distribution function in the presence of magnetic field ob-
tained in Ref. 14 which is more close to the spherical symmetrical one (note that the
amplification of breakdown time constant λi with h 14 does not agree with our results).

The dependence of δEt h on h for different values of the angle β are presented at
Table 3. One can see that δE t h

for given h is diminishing with diminishing β and the
relation

(37)

Table 2. Threshold Electric Field for Runaway
Breakdown with a Magnetic Field (β = 90°)

h 0 1 2 5 10 30 100
δt h 1.30 1.66 1.70 1.80 2.25 3.30 5.25
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Figure 6. Threshold electric field vs. normalized magnetic field for β = 90°. The normalized threshold
electric field for runaway breakdown (δ E th ) is plotted as a function of the normalized magnetic field
(h) for an angle β = 90° between the electric and magnetic fields.

ω > λ i

ω < λ i

is always fulfilled. This behavior of δE t h naturally follows from the formulae for T eff in
Eq. (18).

5.3. Alternating electric field. Spherical symmetrical approach and equation
(18) gives the possibility to analyze breakdown in alternating and stochastic electric
fields.

It is possible to show that in the case of stochastic field the equation (18) is not
changed if one substitute averaged 〈E²〉 instead E ². Because of this all previous results
for constant electric field are valid for stochastic field too.

The results of numerical solution of equation (18) for the case of alternating electric
field are shown on Fig. 7 and 8. The solution in this case depends on relation between
frequency of electric field and ionization rate λ i . If

(38)

the situation is quasistationary (see Fig. 7) and the total number of secondary electrons
is following to the change of electric field oscillating with the frequency ω. In opposite
case when

(39)

Table 3.  A v a l a n c h e

Time as a Function of
Angle β for δ E =  2 . 0 ,

δ B  = 10

β (degree) (sp) (ns)
0 19.6

15 72.1
30 100
45 273
60 ∞
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Figure 7. Oscillating electric field with ω < λ i . The electron density is plotted as a function of time
for δ ω t h and h = 0. In this case ω < λ i .

(42)

the breakdown is defined by the same equation (18), but the effective temperature takes
the form²²:

(40)

Here E 0 — is the amplitude of oscillating electric field. We see that equation (40) if
ω << ν coincide with the same equation for the constant electric field E, only this field
is in times less due to averaging of E² on oscillations. This averaging is clearly seen
at Fig. 8. So the threshold amplitude for low frequency electric field should be

(41)

Numerical calculations confirm this results exactly giving ≈ 1.8. Note,
that in the nondimensional variables (4) frequency ω takes the form:

We see that the equation (18), (4) in normalized variables takes just the same form as
in magnetic field with h = hω . The only difference comes from the fact that ωB  ∝ h /γ ,
but ω does not depend on γ .

In oscillatory electric field and magnetic field the effective temperature takes a
form²²

(43)

We see, that in this case a gyroresonance effect is possible in conditions when β = 90°,
v is small enough (h >> 1) and frequency ω is close to ωB at γ ≈ 1.3–1.5.

6. CONCLUSION

Analytical and numerical arguments, presented in Sections 3–4 showed, that the
kinetic equation for electrons describing runaway breakdown process in atmospheric
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Figure 8. Oscillating electric field with ω > λ i . The electron density is plotted as a function of time

for δ ω t h and h = 0. In this case ω > λ i .

conditions could be significantly simplified and presented in spherical symmetrical form
(18). It allowed us to solve this equation and determine breakdown threshold electric
field and growth rate. In the first time this problem is consistently solved in the presence
of the constant magnetic field, which plays a significant role in the Earth’s atmosphere
at the heights z ≥ 20–40 km. 13, 14  In the Table 4 the threshold for a runaway breakdown
by vertically directed electric field is presented as the function of height z for northern
E ( n )

th  (β ≤ 30°) and equatorial E ( eq)
th ( β ≈ 90°) latitudes. Threshold electric field for

the conventional breakdown Ecth  is given in the Table also. One can see, that in the
northern latitude (and midlatitudes) conditions runaway breakdown threshold fields is
always much less than conventional

(44)

But in equatorial region the same relation (44) is well fulfilled for the heights z ≤ 50–
60 km only. This fact could be significant for understanding of the nature of high
altitude lightning at different latitudes.

We have shown that runaway breakdown in homogeneous atmosphere can take
place not only in a constant but in oscillating in time with any frequency electric
fields also. The physical nature of this new effect is deeply connected with thermal
runaway process. The possibility of existence of runaway breakdown in oscillating
electric fields could be significant for interpretation of lower ionosphere ionization during
thunderstorms 26 and high altitude lightning mechanism. But the atmosphere at the
heights z ≥ 50 km is strongly rarefied and due to this the spatial inhomogeneity could
be significant here. So, a more detailed analysis of this problem is needed which lays
out of the frame of present paper.

Table 4. Heights Dependence of Breakdown Parameters

z (km) N m c m–3  E (n) (V/cm) h (eq )
t h E (eq )

t h ( V / c m )  E cth ( V / c m )

0 2.7 x 10 l 9 2961 0.04 2900 2 x 10 4

10 8.6 x 10 18 929 0.126 966 6.4 x 10 3

20 1.8 x 10 l 8 195 0.60 226 1.33 x 10 3

30 3.7 x 10 17 40.1 2.92 54 274
40 8.2 x 10 16 8.9 13.2 17 60.7
50 2.2 x 10 16 2.4 49.1 7.4 16.3
60 6.7 x 10 15 0.72 161 3.7 4.9
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NONLOCAL EFFECTS IN STATIONARY AND NON-STATIONARY
DISCHARGES

(1)

Ivanov V.V., Klopovsky KS., Lopaev D.V., Mankelevich Yu.A.,
Rakhimov A.T., Rakhimova T.V.

Nuclear Physics Institute
Moscow State University
119899 Moscow, RUSSIA

Introduction

At present the interest to non-equilibrium processes in spatially non-uniform low-
temperature plasma is stimulated by wide using it in various technologies such as film
deposition and etching in microelectronics, lighting technology and etc.

Optimisation of plasma parameters for these aims requires to perform both the
experimental investigations and the numerical modelling. Comparison of experimental
data with the results of modelling enables to obtain the detailed information about the
elementary processes in plasma and to reveal its effect on discharge electrodynamics.
In turn for providing the validity of modelling it is required to do testing of the nu-
merical models by the experiment, since for the complex gases the rate constants of
many elementary processes are known with the insufficient accuracy or unknown at all.
Calculation of electron distribution function (EDF) determining the electron kinetic
coefficients and the rate constants is one of the main problem of modelling. In general
case EDF is a function of seven variables and can be found by solving the Boltzmann
equation:

where r - vector radius, v - vector of electron velocity,
collision integral, defining the change of in elastic (Je l) and inelastic (Jin )
collisions) a strength of electric field, e and m - charge and mass of electron,
respectively.

Because the general effective algorithm for solving equation (1) is absent, one use
different simplified approximations. The most often applied approximation concludes
in neglecting the spatial non-uniformity of plasma, when one can neglect the second
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term in (1). However, this approach is valid when the characteristic dimension L of
plasma non-uniformity exceeds the electron energy relaxation length Λe . :L >> Λ e.
When the opposite relation is valid the approximation of spatial uniformity becomes
incorrect. Hence electron distribution function is not determined by local
electric field and, in this sense, becomes non-local.

There are many discharge physics problems which can not be considered in as-
sumption of local electric field dependence of EDF. The classic problem of this type is
a cathode sheath of glow discharge. The existence of such fields in the glow discharge
as a negative glow and Faraday dark space is directly connected with the non-locality
of electron energy spectrum. Similar problems arise in the stationary RF discharges
and the positive column of DC discharge at the lowered pressures where the strong
spatially non-uniform field takes place (electrode sheaths in RF discharge, a region of
wall ambipolar potential in positive column). As a result EDF should be calculated
using equation (1) jointly with the equations of discharge electrodynamics. Solving
the spatially non-uniform Boltzmann equation is a complex task even in given electric
fields. Therefore the development of effective approaches and methods for the EDF
calculations is one of the most actual problem of plasma physics. At the same time the
required level of EDF calculation validity must be rather high because EDF can not be
very often measured with the satisfactory accuracy.

At last time the different approaches to EDF calculation in the spatially non-
uniform fields were developed:

(1) known analytical approaches based on a conservation of total electron energy
in almost collisionlless plasma. Namely this approach, at first proposed by Bernstein
and Holstein, one often call << non-local>>.

(2) different numerical methods of solving the kinetic equation (1) based on:
a) two-term approximation (TTA)
b) many-term approximation (MTA)
(3) Monte-Carlo technique for direct integrating the electron motion equations.
For the self-consistent simulation of discharge processes one apply:
1’) analytical methods, utilising the approach (1)
2’) numerical methods with integrating the Boltzmann equation by TTA
3’) method of Particle-In-Cell with Monte-Carlo technique (PIC MC) or
4’) modified “fast” versions of PIC MC for significant lowering the computer efforts.
Except of the methods based on kinetic approach to electron behaviour description,

the methods with approximative accounting for the spatial non-locality of electron
energy spectrum are also developed. So in order to take into account the influence
of EDF non-locality in drift-diffusion approximation of discharge kinetics one assumes
that the ionisation rate and others kinetic coefficients are a function of electron average
energy < ε >, which is determined from equation of electron energy transport in the
discharge gap. The dependencies of all kinetic coefficients on < ε > are found by solving
the stationary spatially uniform Boltzmann equation.

In this report we will consider an applicability of above-mentioned approaches to
EDF calculations description by investigating the stationary discharges in variable and
constant electric fields (RF discharge and positive column of DC discharge). As an
example of non-stationary discharge where a kinetic description of electrons is also
important we will consider a pulsed discharge between dielectric plates with a very
small gap. Such discharges are used for phosphor excitation in AC plasma display
panel.
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Positive column of DC discharge.

Low pressure discharges in electronegative gases are widely used in microelectron-
ics and new material technologies. It strongly increases the interest to the study of
electronegative gas plasma at the last years1–8 .

The difficulties in the study of mechanisms of various processes in electronegative
plasma are to a great extent due to insufficient information about the spatial profiles
of charged particles (electrons, positive and negative ions), as well as about the elec-
tron distribution function (EDF), which can be non-local at low pressure. A study
of the problem under consideration is very complicated in RF discharges with com-
plex configuration. For this reason, despite the preferential use of RF discharges in
plasmachemical technology, there is a significant interest to the study of the DC glow
discharges.

DC glow discharge at low pressure in a long cylindrical tube with the electric
field directed axially is appropriate to study (both experimentally and theoretically)
the effects of non-locality and anisotropy of the EDF, as well as to examine various
elementary processes and chemical reaction in the plasma.

One of the main features of such a discharge is the follows: it is strongly non-
equilibrium and non-uniform in radial direction (being uniform along the axial one).
As a rule there is no stable discharge glowing in electronegative gases in this geometry
does at the value pd parameter lower 0.1 Torr cm.

Calculation of the EDF (which determines rate constants of the main elementary
processes and the transport coefficients in plasma) is one of the most important prob-
lems in modelling of these discharges. Spatial variations of the EDF can be described
in various ways: (1) by solving the parabolic equation for mean energy 3,7 ; (2) by solv-
ing the spatially non-uniform Boltzmann equation 3,9 ; (3) by solving the equations of
motion for large number of test particles in a given potential (method Monte-Carlo10,
MC), or in self-consistent potential determined by Poisson equation (Particle In Cell
Monte-Carlo (PIC MC) technique 11,12 ).

For testing the different approaches to modelling of DC discharge we have carried
out comprehensive experimental and theoretical investigations of DC discharge positive
column in pure oxygen. Note that a structure of cross-sections of electronic scattering
on oxygen molecule is such that EDF anisotropy is small even at high energies closed
to ionisation potential. It allows to test the applicability of TTA at solving the general
Boltzmann equation (1).

A study of oxygen plasma is of fundamental interest for the understanding of
plasma electrodynamics in electronegative gases, when the processes with radicals,
metastable particles can essentially effect on all discharge parameters. For studying
the mutual influence of discharge electrodynamics and plasmachemical processes we
have carried out a series of the experiments in which it were measured:

a) axial electric fields, radial profiles of plasma potential and EDF by modulated
probe technique;

b) gas and wall temperature;
c) negative ion concentration by laser photodeattachment technique;
d) concentrations of active particles - metastable molecules

and atoms O (3 P) by emission spectroscopy and actinometry technique respectively.
The DC discharge was formed in a glass tube with the inner diameter of 12mm in
a range of pure oxygen pressures 0.15-6 Torr and discharge currents 1-40 mA. The
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details of experimental set up and measurements with Langmuir probes are presented
in work 13 .

We note that non-locality of EDF can be easy experimentally recorded at low gas
pressure, when 14–16 the spatial dependence of EDF is determined only by the potential
energy of electrons in a space-charge field. The physical basis of this assumption is
that the condition L << Λe  is valid at low pressures and the motion of electrons in the
space-charge field is a function of the total energy u( r) = ε – e ϕ (r ), where ε and eϕ(r)
are kinetic and potential energies of electron respectively. Hence the experimentally
measured EDF at different spatial points has to be identical after the displacement in
the energy scale on the difference of plasma potentials in the corresponding points. It
has been observed in measurements 17,18 of the EDF in an RF discharge in Ar.

Data of our experiments were a start point to study the applicability of differ-
ent approximate methods of solving the Boltzmann equation with taking into account
the EDF spatial dependence. It is worth noting that a study of EDF non-locality
in molecular gases is a difficult problem due to an existence of inelastic processes
with low excitation energy thresholds. It is necessary to note that the measurement
EDF in electronegative gases is also complicated by the presence of high negative ion
concentration. In the experiment13 Λ e  L at p=0.15 Torr and therefore EDF nonlocal
effects are more pronounced at this pressure.

Figure.1 represents experimental EDF in a scale of total energy (potential energy is
taken on potential on a discharge axis) at three radial positions Ri =0, 3, 5 mm, current
density of 5 mA/cm² and different pressures. As it is well seen at pressure of 0.15
Torr the EDF approximation as a function of total energy is quite valid, i.e. F(r, ε ) =
F (u (r )). EDF’s at different radial positions coincide in a scale of total energy up to 13
eV. Note that shifting in radial direction one can observe only such electrons of EDF
which have kinetic energy higher than the potential energy at the given point of space.
Therefore the low-energy part of the EDF is caused a “cut off” effect. If the pressure
increases, EDF’s at different point of space start to differ from each other, It show that
for certain values of Rp the EDF can not be approximated as a function only of the
total energy u (r).

The radial profiles of electron average energy are shown in Figure.2 at the same
conditions as in Figure.1. It is seen that a spatial region of lowered < ε > can be directly
connected with energy dependence of EDF’s. A negative slope of EDF’s increases
with energy that corresponds to decreasing the average energy of electrons which can
penetrate far from the discharge axis. It can be interpreted as an effect of electron <<
cooling>> by radial field, formed by a space charge. It is interesting to compare the
experiment data on EDF with the strict calculations of electron energy spectrum. The
applicability of non-local TTA for EDF calculation in spatially non-uniform radial field
Er ( r) was analysed from comparison with data of the experiment and MC calculation.

It should be noted that active particles such as atomic oxygen and oxygen meta-
stable molecules have a great influence on oxygen discharge electrodynamics. Besides
the ion heating in a strong axial field changes the radial profiles of potential. The com-
plete self-consistent model of oxygen discharge has of course to take into account these
processes. In the aims of simplification and correct comparison the applicability of NL
TTA was analysed by comparing with the MC calculation in experimentally measured
axial and radial fields. In following the analysis of the experimental data was carried
out on base of self-consistent model by using the PIC MC technique.

Note, that we have no experimental data about the wall potential ϕW  that it was
necessary for the calculations in the prescribed electric fields. Therefore, in both NL
TTA and MC simulations ϕW were chosen from EDF steady-state condition.
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Figure 1. Experimental radial EDF’s in a scale of Figure 2. The radial distribution of mean electron
total energy for oxygen DC discharge at 5 mA/cm ². energy at the same conditions as in Fig.1. Circles are
f(0), f(3) and f(5) show the radial position of EDF's the experiment data. Solid and dashed lines are MC
in mm from the discharge axis. calculations and NL TTA calculations respectively.

Comparison of calculated and experimental results is represented in Figure.3(a,b).
At pressure of 1 Torr Λε  << R. Therefore one can expect that EDF has to be local
excepting only a thin layer nearby the wall. It is well seen that both the experimental
and all the calculated results including also local EDF are close. With decreasing the
pressure a role of spatial non-locality effects increases. However NL TTA leads to
an essentially more high non-locality of electron energy spectrum at high energy than
it is observed in the experiment and MC calculation. This discrepancy is connected
with the invalid description of wall electron losses (it is necessary to take into account
a cone of the losses). However the marked discrepancy in calculated EDF’s only
slightly influences on ionisation coefficient and other plasma kinetic coefficients. On
this reason, even at low pressure the plasma kinetics simulations based on the different
approaches to determining the spatially non-uniform EDF practically lead to the same
results in integral discharge characteristics. As an illustration of it the calculated
radial distributions of electron average energy are shown in Figure.2. As one can see
the calculations by NL TTA and MC technique are in good agreement.

To build up a general model of the discharge in spatially non-uniform electric field it
is necessary self-consistently to solve Boltzmann equation for EDF, continuity equations
for charged and neutral particles and Poisson equation for electric field. Self-consistent

Figure 3a. Comparison of EDF calculated in local
field TTA with the experimental ones and calculated

Figure 3b. Comparison of EDF calculated in local

by MC tecnique and NL TTA method.
field TTA with the experimental ones and calculated
by MC technique and NL TTA method
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simulation in a wide range of RN values requires to use more strict approaches than
TTA, for example PIC MC. In our work we have used the fast algorithm of PIC MC (
FPIC MC), developed by us for stationary and quasi-stationary (periodic) discharges.
FPIC MC is in fact modified PIC MC method. It allows us to perform the calculations
with more small account of probe quasi-particles. Thus the statistics was accounted for
a great number of time steps that enables to do the calculations on personal computer
with PENTIUM processor.

The calculations were performed in a pressure range of 0.15-1 Torr. In order to test
our program we used a limited set of plasmachemical reactions. O +

2  and O – ions were
considered as the main positive and negative ions respectively. The concentrations of
active neutral particles - oxygen atoms and metastable molecules were taken from the
experiment. The calculations take into account both the ion heating in axial field and its
influence on radial ion diffusion and rate constants of detachment processes. Diffusion
coefficient of non-equilibrium ion diffusion can be presented by Einstein formula19 :

(2)

(3)

where mred  = mM/(m + M )- reduced mass of ion (m-ion mass,M-mass of gas
molecule), w- a drift velocity, k B - Boltzmann constant, Tg - gas temperature, – ef-
fective transversal ion temperature and at least

(4)

Two processes of associative detachment:

(5)

(6)

(7)
were supposed as the main processes of electron detachment from negative ion

O– (²P).
The best agreement between self-consistent simulation and experimental results

for the Ez /N dependence on RN parameter was reached when the values of reaction
rate constants were taken of 2 × 10 –10  cm ³ /s and 6 x 10 –11 cm³/s, respectively. It should
be noted that these rate constants are in the range of known literature data.

However the calculations were shown that:
1) detachment processes have a strong effect on electrodynamics of the discharge;
2) there is a difference of calculated radial profiles of ion concentration and plasma

potential from the measured ones.
These differences are conditioned by negative ion kinetics. Note that under our

experiment conditions drift-diffusion approach to ion kinetics is quite applicable because
a length of the wall potential drop includes about 50 lengths of ion free path. In the
calculations of effective ion temperatures we used experimental data on O +

2  and O –

mobilities. Therefore the influence of resonant charge transfer on O – transport was
also taken into account, i.e. O – mobility was corrected on gas dissociation degree.
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Radial distributions of negative ions in positive column of oxygen DC discharge at
current 5 mA are shown in Figure 420 . The form of these distributions slightly depends
on discharge current so that it allows one to affirm that there is no a clear decomposition
of plasma on ion-ion and ion-electron components in the radial direction. However a
total ion concentration in turn strongly depends on discharge current and pressure. It
is due to a significant contribution of detachment processes into ion kinetics.

The calculated radial profiles of ion concentration are also represented in Figure 4.
It is well seen that taking into account the non-equilibrium ion diffusion allows one not
only correctly to describe the radial ion distribution and has a great effect on ion con-
centration too. Thus the investigations of negative ion kinetics have to be accompanied
the simultaneous measurements of ion spatial distributions for the correction of exper-
imental data. Obtained data enable us to determine the dependencies of detachment
rate constants on “energy” of colliding particles (really on ion temperature):

(8)

(9)

where effective temperature of O–  ion. Since the ion energy distribution
function is anisotropic we supposed that is the independent average

from and :

(10)

where is the effective transversal temperature and is the effective axial tem-
perature of O – ions:

(11)

(12)

(If to suggest that m is mass of O – ion and M is mass of O 2 molecule,
These rate constants allowed by the best way to describe the experimental data on

negative ion concentrations as a function of discharge current (Figure.5). It should be
noted that the rate constants and as a consequence the mechanisms of the detachment
reactions (1), (2) were chosen by analysing both the data on potential curves of O2  and
O –

2  molecules and the recent data on potential surfaces of O3 ozone and O –
3  anion 21–23 .

Thus one can conclude that in oxygen where EDF anisotropy is small it is possible
to use non-local two-term approximation in solving the Boltzmann kinetic equation.
However the use both of the simplified averaged methods based on TTA and of the
complete NL TTA in the other electronegative gases (for example C F 4  or SF 6 ) is
rather incorrect.

As an example let’s consider self-consistent model of DC discharge positive column8
in pure C F4 . Here like oxygen DC discharge the non-equilibrium ion diffusion takes
into account. Owing to high electron affinity to atomic fluorine (F) -3.5 eV ( F- i s
the main negative ion in given case) only the associative mechanism of detachment is
possible:

(13)
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From the experimental study and modelling of the plasma chemical composition,
we can conclude that the dominant detaching species should be CF2 and C F3 radicals.
The concentration of CF is very small, and F-atom is very ineffective as a detaching
species.

Figure 4. The radial distribution of negative ion density Figure 5. Negative ion concentration on an axis in oxygen
in oxygen DC discharge. Symbols are the experiment data, DC discharge against the discharge current density. Circles
solid lines are PIC MC simulations. Dashed line shows the are thee data, solid lines are its fits and dashed
same simulation for 0.15 Torr without ion heating (see text). lines are PIC MC simulations accounting for the ion heating.

The calculations made for RN = 10 16 cm–2  have shown that we need rather high
radical concentrations (about 2 x 10 14 cm –3 for k det  = 1 x 10 –10 cm³/s ) in order to obtain
a good agreement with the experiment. However, so high radical concentrations do not
agree with our actinometric measurements of F-atom concentration (< 2 x 1013 cm –3

for these conditions), since [CF2 ] and [CF3 ] can be only lower than [F], as can be shown
by modelling. Thus the question about the reason for some discrepancy between the
experimental data and the results of calculations is not quite clear now, and it needs
further study. In the conditions of our experiment, total partial concentration of these
radicals is rather small (1%). Therefore, in the most of calculations we did not take
into account the processes of detachment.

Calculation results of axial electric fields in positive column are compared with
the experimental ones. These results are represented in Figure 6 as a dependence of
the reduced field E z /N on RN parameter. As can be seen from figure, there is a
satisfactory agreement between the experimental data and results of calculations in the
local approximation for the case of comparatively high pressures (RN > 10 16 cm –2).
Results of calculations using the non-local approximation have led to practically the
same results, so these are not shown in the Figure 6.

Note, that the E z /N values calculated using the MEE-technique of accounting for
the non-locality7 are very close to those obtained in the local approximation in the
whole range of RN studied. For this reason, these data are not shown in Figure 6.
However, the radial profiles of the electron concentration and the ionisation rate are
somewhat different in these two cases (see below).

For RN < 10 16 cm –2, the calculations were carried out using the following discharge
models: local and non-local with the usual ion diffusion (i.e. described by the diffusion
coefficient determined from the Einstein relation assuming that the ion temperature
is equal to the gas one), as well as local and non-local with the non-equilibrium ion
diffusion.
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Figure 6. The reduced electric field in CF4  discharge as a function of RN: experiment5 (?);
calculation via the local model with the usual (*) and non-equilibrium (€) ion diffusion;
calculation via PIC MC with usual (+) and non-eqtilhium (�) ion diffusion.

We have also studied the effect of spatial anisotropy of the EDF. Formerly, the
anisotropy was usually ignored even in the case of low RN (corresponding to high
values of Ez /N). This allowed one to use a model based on solution of the Boltzmann
equation in the two-term approximation in assumption that the EDF depends on the
radial coordinate only through its dependence on the total electron energy (including
the potential energy in the radial electric field) 14,15 .

(14)

Figure.7 shows the function F(v p , v z ) for the case of low pressure (p = 0.13Torr).
The calculations have been made taking into account the non-equilibrium ion diffusion.
Figure 7a shows F(v p , v z ) as a tree-dimensional surface, while in Figure. 7b it is shown
as a set of level lines with a constant step. As can be seen from figure 2, the degree of
anisotropy is high in all the velocity space. The maximum of the distribution function
occurs at v p = 0, but there is a shift along the axial component of about 7 × 107 cms –1.  I n
the region of high electron energies (close to the ionisation potential of CF4 ) the function
becomes more isotropic. However, even in this region, the ratio of the components of
electron energy (for movement along and against the electric field respectively) is about
1/2. If we take into account that the main contribution to the ionisation rate is caused
by the electrons with energies close to the ionisation threshold, then we can conclude
that nearly all ionisation in CF4  discharge at low pressure is due to electrons moving
in only one direction (against Ez ).
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Our results demonstrate that applicability of such model to CF4  discharge (at low
RN) is quite doubtful. In the region close to the tube axis due to the axial symmetry
the EDF F (vr , v ϕ , v z ) depends in fact only on two variables: vz  and
This allows us to define a electron distribution function F(vp , v z ), which is normalised
as follows:



Figure 7a. The EDF in the central region of CF4 Figure 7b. The same one as in Figure 7a only in the form of level
discharge as a function of the axial and radial lines with a constant step (the numbers indicate the EDF values as
components of the electron velocity via PIC MC. percentages of the EDP maximum).

Let us return to Figure 6 and consider the effect of non-locality and non-equilibrium
ion diffusion on the reduced electric field. The influence of both factors is the highest at
low RN and it rapidly decreases with the increase of RN. For RN = 1016 cm– 2, all the
models (with zero detachment rate) give practically the same results. It is interesting
that taking into account the non-locality or the non-equilibrium ion diffusion alone (for
the case of low pressure) leads to significantly lower variation of Ez /N than accounting
for the both factors simultaneously.

The calculations have shown that non-equilibrium ion diffusion in CF4  DC dis-
charge like in oxygen DC discharge prevents the formation of a layer of electropositive
plasma. Since the detachment processes are negligible in CF4 plasma, the axial reduced
field are very high at low pressures. This leads to more pronounced non-equilibrium
ion diffusion effect than in oxygen.

Figure 8 shows the radial profiles of positive and negative ion concentrations (as
well as that of radial electric potential ϕ), which have been calculated using the usual
and the non-equilibrium ion diffusion for 0.13 Torr. The role of the non-equilibrium
diffusion is the strongest in forming the ion radial distributions at low pressure. In
this case, there is a widening of the ion radial profiles, as well as the decrease of the
concentrations at the tube axis.

Figure 8. Radial profiles of negative (dashed lines) and positive (solid lines) ions as
as well as that of the radial plasma potential in CFDC discharge calculated via PIC MC:
1 - calculation with using the usual ion diffusion, 2 - calculation with using the non-
equilibrium ion diffusion. a) P=0.13 Torr, b) P=2.6 Torr.
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As notice before we have also performed the applicability analysis of drift diffusion
approximation when electron energy spectrum non-locality is introduced through the
spatial dependence of mean electron energy (MEE). The radial profiles of electron
concentration, mean electron energy and ionisation rate calculated by local, MEE and
PIC MC models are shown in Figure 9(a,b,c) respectively at CF4 pressure of 0.13 Torr.
The results of MEE and local models are close that leads to the same value of reduced
field. However Ez /N in PIC MC model is significantly higher. This corresponds to
the twice increase of mean electron energy and, as a consequence, electron density on
a discharge axis drops. The difference in ionisation rates is less stressed. In the same
time the radial profiles in MEE and PIC MC models are notably more flat than in
local model. As it is well seen MEE method incorrectly describes the discharge at low
pressures because the electron diffusion loss rate in MEE does not depend on electron
energy.

Figure 9. The radial profiles of electron concentration (a), electron mean energy (b),
and ionization rate (c) in CF DC discharge at P=0.13 Torr for various models:
local feild approximation - dashed lines, MEE - long-short dashed lines, PIC MC -
solid lines.

At least it is worth noting again that the developed effective algorithm of modified
FPIC MC enables one to carry out a self-consistent simulation of the discharges on
personal computers. So the calculation on this self-consistent model requires about 3
hours on the personal computer with PENTIUM processor. The calculations which
have been done in the given axial and radial field for oxygen DC discharge required
approximately 15 minutes, that is comparable with computer efforts 24, where the
normal “nonlocal” approach to electron kinetics description was used.

RF discharge

RF discharges of megahertz frequency range in electropositive (Ar, He) and elec-
tronegative (He:O 2, O 2) gases at pressures 3 × 10–2 - 10 Torr were the objects of our
investigations. The EDF non-local character conditioned by the presence of close elec-
trode sheaths is an essential feature of these discharges. For studying self-consitently
the non-locality of EDF we used the following methods:

- solving the spatially non-uniform Boltzmann equation in two term approximation
(NL TTA):

(15)
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(16)

(17)
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where Jx  and Jε  are the fluxes in physical and energy spaces, Q e l is the elastic
collision integral, Qin  - inelastic one;

- mean electron energy method when plasma kinetic coefficients are presented as
a function of mean electron energy instead of an electric field strength. (MEE):

- fast algorithm based on modified Particle In Cell Monte-Carlo technique (FPIC

MC)
24 .
The main feature of FPIC MC method in RF discharge case is connected with

quasi-analytical representation of ambipolar potential dependence on time and space
coordinates both in the electrode sheaths and in the central part of the discharge.
Besides it was believed that the stationary state of spatial profile of plasma potentials
corresponding to the different phases of RF period is a real stationary state of ambipolar
potential. The simulation have shown that:

- non-locality effects have a notable influence on RF discharge parameters even at
the higher pressure (He pd = 10 Torr cm)

- the boundary of MEE method applicability is limited by pd ≥ 1 Torr cm.
However it should be kept in the mind that the ionisation rate < σiv > is determined
by the “tail” of EDF, whereas < ε > is determined by the low-energy region. Therefore
the ionisation rate presented as a function of the average energy can not reflect the
actual relation between these quantities in the discharge.

- the applicability of NL TTA method is limited by a range of pd ≥ 0.3 – 0.5 Torr
cm. The restriction of NL TTA applicability at more low pressures-(even at slight
anisotropy of EDF) is connected with incorrect description of electron losses on the
wall. The correct approach taking into account the electron losses requires to describe
EDF in full velocity space that is of course for the frame of TTA.

- the correct simulation of RF discharges at pd < 0.1 Torr cm under the EDF
essential anisotropy or γ - processes conditions is impossible without the strict solution
of Boltzmann equation (by using FPIC MC method, for example). More detailed
information about these results may be found 12,24,25 ..

Figure 10 (a,b) illustrate the results, obtained in the frame of NL TTA.
We have performed calculations of RF discharge in helium with the following

parameters 7 : ω /2 π = 10 MHz, interelectrode gap d = 1cm, j o = 0.5m A/cm², and
N = 3  – 5 x 1017cm – 3 . These calculations revealed that accounting for a spatially
non-local electron energy spectrum has a significant effect on the charged particle and
electric field profiles in plasma even for pd = 10 Torr cm. The study of temporal and



spatial distribution of has revealed that the highest discrepancy
in the results is observed in the electrode sheaths where absolute value and gradient of
electric field are largest - the calculated values of < ε > differ by a factor of two, and
those of < σ i v > differ by more than an order of magnitude.

Figure 10a. Averaged over RF period the
interelectrode distribution of ionization rate at helium
pressure of 10 Torr and j=0.5 mA/cm .²Accounting for
the EDF non-locality is shown by solid line.

Figure 10b. Averaged over RF period the
interelectrode distribution of mean electron energy
at the same as in Fig. 10a.

From a practical standpoint it is of more interest to compare the discharge prop-
erties averaged over the period of the RF field. Figure 10 shows averaged over a period
the distribution of < σj v > n e  and mean electron energy. The effect of nonlocal spa-
tial behaviour significantly reduces the quantity of < σi v > n e  near the electrodes
and increases it somewhat in the centre of the gap, which is related to the interior of
the plasma. The number of particles produced in the volume is found to be different:
taking into account the spatial nonlocal behaviour of the distribution reduces it by a
factor of two. Figure 11-13 illustrate the results obtained by means of FPIC MC for
the experimental conditions 17,24 at the lower pressures 0.03, 0.1 and 1 Torr. Figure II
shows the interelectrode distribution of bulk ionisation rate < σi v > n e averaged over a
RF cycle for this case. This distribution clearly demonstrates the fact that the electron
energy spectrum is not spatially local over all the range of the pressure variations. At
p = 1 Torr the ionisation rate constant is reached its maximal value in electrode sheath
regions, where electric field is high. Nevertheless the ionisation rate is nonlocal that
it is well seen in Figure 10. At lowering neutral gas pressure the fast electrons may
reach central part of discharge, increasing the ionisation rate in the region with the
small electric field strength. It is interesting to note that at low pressure (0.03 Torr)
the EDF has an essentially two temperature feature which connected most probably
with Ramsauer minimum in elastic cross section.

As it was shown in our calculation 7 under the condition of weak nonlocality the
spatial electron-temperature distribution has its maximum near the electrode sheaths,
where the electric field is maximum. Therefore we can expect that the maximum of
the electron temperature will shift gradually toward the centre of the discharge with
the decrease of pressure, whereas the maximum of the electric field will remain inside
the sheaths. The experiments 17 show that at p=0.3 Torr, the electron temperature is
maximum in the central region of the discharge. However, the electron temperature
in the central region of the discharge decreases with the increase of pressure. A two-
temperature structure of the EDF is more typical for the electron energy spectrum in
given case.
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Figure 11. Averaged over RF period the ionization rate in helium RF discharge
at the different pressures: 1 - P=1 Torr, 2 - P=0.1 Torr,3 - P=0.03 Torr.17

Figure 12 shows the EDFs calculated at the centre of the interelectrode gap. The
curves correspond to pressures of p=0.3 Torr and p=0.03 Torr in the experimental
conditions 17 and show a good agreement with the experimental data. At p=0.3 Torr,
the EDF decreases smoothly in the range ε <10 eV and has a sharp cut-off above the
excitation threshold so that the average electron energy is determined by the electrons
with energies ε <10 eV. At the same time at p=0.03 Torr the EDF has an unusual
bi-Maxwellian form with temperatures T1  << T 2  (where T1 =1 eV and T 2 =4 eV). Note
that at both low and higher pressures the ambipolar potential existing in the plasma
forms a potential well for electrons. As a result the low-energy electrons will be trapped
in the central region of the interelectrode gap.

Figure 12. EDF in a center interelectrode gap in
argon RF discharge at pressures: 1 - P=0.3 Torr, 2- 
P=0.03 Torr.Dased lines are the experiment data. 17

Figure 13. Mean electron temperature distribution
in the intereleotrode gap in argon RF discharge at
1 - P=0.3 Torr, 2 - P=0.03 Torr, * - experiment.17

For the low-energy electrons the value of the energy mean free path λε  is related
only to elastic collisions. Consequently in the energy range ε <10 eV for Ar (which
is the range where the main energy is stored) the Ramsauer effect can enlarge the
slope of the EDF. This fact must be most pronounced at p=0.03 Torr. For the high-
energy electrons at pressure 0.3 Torr we have λε  < d. Therefore the energy losses
due to inelastic collisions are sufficiently high. At pressure of 0.03 Torr we have λε >
d. and, consequently, the fast electrons travel almost without collisions through the
entire interelectrode gap. Due to the presence of these electrons in outer regions the
temperature in these regions is determined by this fraction of the electrons (Te =4 eV)

Figure 13 shows the experiment al and calculated spatial distributions of the av-
erage electron energy < ε >. One can see that the spatial derivatives of the quantity
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< ε > on the electrode boundary layers are the same for both high (0.3 Torr) and low
(0.03 Torr) pressures. Unfortunately at p=0.03 Torr there is no experimental data for
the layers thinner than 1 cm whereas the sharp growth in the electron temperature at
low pressures should be observed for such layers. Figure 13 shows that there is a more
than twofold difference between the calculated values of the average electron energy
in the central region of the interelectrode gape and near the electrodes. In an argon
plasma, not only the Ramsauer effect but also a stochastic heating can enhance the
electron heating in the electrode boundary layers. Therefore it was assumed17  that the
two-temperature form of the EDF is due to both the Ramsauer effect and stochastic
heating. However the role of these effects in formation of an unusual EDF shape (
which results in the specific temperature dependencies plotted in Figs.13) is not studied
in details.

Comparing the experimental and simulation results in oxygen RF discharge we
concluded that excitation particle dynamics should be taken into account in self consis-
tent model of this discharge 7 . At low pressures the effects of nondiffusion ion behavior
and processes on electrode surfaces may be important as well.

Plasma display panel cell discharge.

Special features of the stationary and quasistationary discharges modelling were
analysed in the previous paragraph. It was shown that for certain plasma parameters
more simplified methods based on two-term approach for EDF calculations are valid.
However, there is a number of non-stationary discharges in non-uniform electric fields,
where non-local two-term approach gives only qualitative agreement of the calculated
results with experimental data. In such discharges fast electrons from a cathode sheath
have a pronounced effect on electrodynamics. Hollow cathode discharges, “open” dis-
charges, PDP cell discharges are the examples of such discharges.

Generally, non-locality effects of the EDF are revealed when the length of electron
energy relaxation is comparable with characteristic length of electric field variations.
Non-locality effects for discharge gaps of about 1 cm are appeared under low pressure.
However non-locality effects may reveal for high pressure discharges with microscopic
gaps 26 as in a PDP cell.

Let’s consider for a PDP cell discharge the influence of non-locality effects on
discharge electrodynamics and plasma radiation. Model of the discharge consists of
two parallel electrodes with the gap of about 100 micrometers. The electrodes are
covered with dielectric layers, which in turn are coated with thin MgO layer to reduce
discharge breakdown voltage due to high secondary emission coefficient of MgO. The
discharge volume is filled with a noble gases mixture27 . Here we present the calculations
for Xe:Ne=90:10 mixture, gas pressure P=560 Torr and initial gap voltage Vs=273.5 V.
Self-consistent one-dimensional model of a non-stationary high pressure gas discharge
has been developed and used to study the PDP cell operation. In the model the electric
field distribution is determined from Poisson equation and electric circuit equation.
Simultaneously the continuity equations for electrons, different ions and neutral species
of a noble gases mixture are numerically solved. Electron kinetics is simulated using
two methods: particle-in-cell Monte Carlo (PIC MC) method and drift-diffusion local
approach. Correct electron kinetics simulation requires to solve non-stationary non-
uniform Boltzmann equation simultaneously with the solving of other model equations
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that is difficult even for a one-dimensional modelling. Since non-locality of EDF mainly
deals with cathode beam electrons it would appropriate to use another possibility and
to develop the self-consistent hybrid model. Electrons are divided on two groups - fast
and slow. Slow electrons as well as ions are described using common drift-diffusion
approach 27 :

(18)

(19)

Here n e slow and ni are the slow electron and i-th ion density, Γe  and Γi  are electron
and ions fluxes, µ e, µ i and D e , D i are mobilities and diffusion coefficients of electrons
and ions respectively. S e and S i are the integral loss-production terms due to different
plasma-chemical reactions. For drift-diffusion approach the electron kinetic coefficients
are previously determined by solving the Boltzmann equation in two-term approach for
all possible ranges of reduced electric fields.

For neutral components the continuity equations are also solved:

(20)

where n k  - neutral particle density, - neutral particle flux, D k  -
diffusion coefficient, Sk (z, t )- volume input and output of particle k in different plasma
chemical reactions taken mainly from 27 .

It should be noted that loss-production terms due to different plasma-chemical
reactions are calculated using the developed chemical translator that allows one auto-
matically to treat any reaction set.

The continuity equations are added by the Poisson equation for an electric field:

and by the external electric circuit equation:

(21)

(22)

Dielectric layers are simulated as an additional capacity. The voltage on the gas
gap is the difference between external voltage Vs  and potential drop Vd  on the dielectric
layers:

(23)

Standard boundary and initial conditions for charged particles were used.
The behaviour of the fast electrons is determined by solving the non-stationary

non-uniform Boltzmann equation. To solve the Boltzmann equation the particle-in-cells
Monte-Carlo method adapted for non-stationary discharges is used. Fast electrons can
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pass in a slow electron group if two conditions are simultaneously realised
Here E(z ) is an electric field in the point z, ε is an electron energy.

The threshold electric field - Etr  is chosen according to a representation of all electrons
in high electric field region as the fast ones. The energy threshold εt r  was close to the
lowest threshold of inelastic processes.

Results Temporal and spatial distributions of the calculated electric field, elec-
tron density, xenon ion density are shown on Figure 14a-16a ( PIC MC method) and
Figure 14b-16b (drift-diffusion approach). Calculated time behaviour of such transient
discharge can be presented as a follows. At the initial moment the electric field is uni-
form and is not disturbed by small charge density. Electrons produced in ion collisions
with the dielectric layer on the cathode drift to the anode and ionise the gas mixture.
The non-compensated charge density is increased and begins to influence on the elec-
tric field distribution initially near the anode. The region of quasineutral plasma with
low reduced electric field (E/N < 5 Td) is formed near the anode and expanded to
the cathode. As a result the discharge positive column and thin cathode sheath, i.e.
the region with strong electric field and non-compensated ion density, are formed. The
length of cathode sheath (CS) is decreased with time. When the cathode sheath is
formed current and charge density in all discharge gap as well as the charge transferred
on the dielectric layers are increased. The elevated reduced electric field (~ 30 Td, see
Figure 14) in positive column occurs when discharge current and cathode sheath elec-

Figure 14a. Time and space variation of electric field.
Particle in Cell Monte-Carlo simulation.

Figure 14b. Time and space variation of electric field
Diffusion-drift approach.

Figure 15a. The same as in Figure 14a only for electron density. Figure 15b. The same as in Figure 14b only for electron density.
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Figure 16a. The same as in Figure 14a only for Xe ions. Figure 16b. The same as in Figure 14b only for Xe ions.

tric field reach its maximum. This elevated high field arises because of the necessity
to transfer the higher current density. The charges deposited on the dielectric layers
reduce the discharge voltage, that lead to plasma decay.

Described discharge dynamics are similar in PIC MC (case ”a”) and drift-diffusion
calculations (case ”b”). However there are significant quantitative differences in these
cases. The time of cathode sheath formation in PIC MC calculations equals 360 ns that
is 1.64 times larger than that in local field calculations as it is well seen in Figure 14.
The length of the cathode sheath at the moment of maximal current is 13 and 5 µm
in case ”a” and ”b” respectively. The differences in discharge dynamics are associated
with the several reasons. First of all the excitation and ionisation rate coefficients
calculated by solving the Boltzmann equation in two-term approach (case ”b”) and
in PIC MC approach (case ”a”) are substantially different even in low electric fields
X0-100 Td. The differences become else more remarkable in the strong field ~1000
Td, where EDF is substantially anisotropic. Besides EDF is non-local in and near the
cathode sheath that is not taken into account in case ”b”.

As it is seen in Figure 15 the electron densities in the positive column where the
non-local effects are not important, are slightly distinct (6 x1012  and 7 x 1012 cm – 3

at the moment of maximal current) because of different time dependence of current
density. Electron densities in the cathode sheath at the moment of maximal current are
close for cases ”a” and ”b” that is not obvious and is a result of mutual compensation of
two effects taken into account in PIC MC calculations. EDF is substantially anisotropic
in high cathode sheath field. Accounting for the anisotropy results in the remarkable
decrease of the ionisation rate and as a consequence the maximal electron density. On
the other hand there is a notable ionisation due to fast electrons from the CS just in
the region of maximal electron density near the boundary of the CS. These effects are
responsible for the same level of the electron density maximums despite on the lower
ionisation rate. In the local field approach the ionisation occurs in the CS. Beyond the
CS the reduced electric field changes a sign and its positive value does not exceed 5
Td in the wide region of plasma -from x = 5 µ m up to x = 42 µ m, x is the distance
from the dielectric layer covering the cathode. It should be noted that in PIC MC
calculations the positive electric field is higher ~ 10 Td and the region of positive field
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is extended fromx = 13 µ m up to x = 45 µ m. The increase of electric field is due
to the necessity to compensate the negative charge transferred by fast electrons up to
x = 30 µ m, see Figure 17. Just the charge transfer results in the formation of negative
glow in the stationary discharges. Note that the local approach does not allow one to
obtain the negative glow region of stationary discharge.

The non-locality of electron energy spectrum is revealed in the ion density profiles.
Second maximum in the Xe ion density profile (Figure 16a) farther away from the
cathode is just determined by ionisation due to fast electrons from the CS. In the case
”b” (see Figure 16b) there is one maximum with it being 1.5 times greater than the first
maximum in case “a” and being shifted closer to the cathode. Similar dependencies are
observed for neon ion concentration which is one order of magnitude lower than xenon
ion density.

As it is seen, time-space behaviour of EDF is of primary importance in the dis-
charge kinetics. The example of EDF is presented on Figure 17: the time dependence
of fast electron energy spectrum at the point x = 10 µ m in Figure 17a and the space
profile of EDF at the moment of maximal current in Figure 17b. The formation of
electron quasibeam, i.e. fast electrons which were not subject to inelastic collisions, is
clearly seen in Figure 17a. Unlike true beam, its velocity distribution is not unidirec-
tional. Substantial degradation of the beam energy occurs to the moment of maximal
electric field (t=361 ns). Despite of it there are electrons with the energy up to 150
eV. Hereafter the substantial depletion of high electron energy spectrum occurs owing
to decreasing the electric field. Space degradation of electron beam takes place at the
length approximately equal to the CS length, as it is seen in Figure 17b. At the point
of x = 14 µ m a substantial number of electrons has else the energy higher than Xe
ionisation potential. It is well seen in Figure 17b that the main part of fast electrons
penetrates into the region of positive electric field. On the contrary, for the DDA cal-
culation a mean electron energy in this region does not exceed 4 eV and consequently
the ionisation is practically absent.

Figure 17a. Electron energy distribution
function at a distance of 10µm from cathode at
different time moments.

Figure 17b. Electron energy distribution
function at different distances from cathode at
moment of maximum electric field (t = 361ns).

Time-space distributions of densities of Xe* (3 P1 ) and X e *(3 P2 ) atoms which are
responsible for VUV plasma radiation (resonant emission of Xe* (3P1) atoms and xenon
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dimer have two maximums, One is located near the cathode, second is lo-
cated in the quasineutral plasma region. For PIC MC calculations these maximums
are farther away from the cathode than for DDA calculations. The concentrations
of excited xenon near the cathode are higher for PIC MC calculation (for example

cm–3 and cm– 3 for case ”a” and ”b” respec-
tively). The excited xenon atom concentrations in the quasineutral plasma region are
similar for both calculations.

Observed peculiarities can be understood considering the spatial distribution of
input power transferred into different inelastic processes and ions. The fraction of full
input energy (~90 erg/cm²) transferred into electrons is 37% for case ”a” and 44% for
case ”b”. Distribution of integral input energy fractions for the different components:

are summarised in Table 1.

Table 1.

Ne + Xe+ Xe* (3P Xe *( 3
2) P 1)

local 11.1% 21% 1.8% 1.1%
PIC MIC 1.1% 15% 2.9% 1.8%

Xe ** ion energy
7.7% 56%
14% 63%

The energy redistribution shows a further important difference of two approaches.

(24)

The energy that goes to Xe electronic excitations is higher in PIC MC calculations due
to decreasing (in two times) the energy transferred into ionisation of Xe and Ne. This
energy redistribution deals with the more lower effective mean energy of electrons in
PIC MC calculations because of the lowered effective electric field with is due to the
more longer cathode sheath. Moreover the local approach significantly overestimates
mean electron energy in the cathode sheath.

The influence of EDF non-locality effects on the integral plasma characteristics,
namely, on radiation power in resonance line (147 nm) and dimer band (173 n m) is
seen in Figure 18. Overall discharge radiation power per unit of electrode surface is
equal to:

(25)

Here k is the number of the line. As it seen in Figure 18 and mentioned above the
radiation power is increased when non-local EDF effect is taken into account.
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Figure 18. Time dependence of radiation power.
1 - resonance line (147 nm), 2 - dimer line(l73 nm).
solid line - PIC MC simulation,
dushed line - diffusion-drift approach.
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To the best knowledge of authors it is the first time when the effects of non-locality
and anisotropy of EDF on properties of radiative plasma in non-stationary high pres-
sure discharge are analysed. Full self-consistent model of electrodynamics, plasma and
neutral kinetics has been developed. Electron kinetics is simulated by solving the
Boltzmann equation by PIC MC method and taking into account the electron energy
spectrum anisotropy, non-uniform and non-stationary electric field and charge densi-
ties distributions. It has been shown that electron energy spectrum is substantially
non-local and anisotropic nearby the cathode sheath region. Substantial anisotropy
of EDF decreases the ionisation and excitation rates and increases characteristic elec-
trodynamical time of the discharge development. EDF non-locality influences on the
redistribution of input energy between electron and ion components and between the
different inelastic processes. Considered effects lead to increased plasma radiation in
PIC MC calculations than in drift-diffusion approach calculations.

Conclusion

In this report effects of EDF non-locality in stationary and non-stationary dis-
charges are studied using kinetic approaches. Applicability of two-term approach in RF
discharges, in positive column of a DC discharge and in plasma display panel (PDP)
cell discharge is analyzed. Effective algorithm of self-consistent modeling of stationary
and non-stationary discharges is proposed. The necessity of adequate description of
negative ion kinetics and transport is demonstrated in the course of the experimental
and theoretical investigations of discharges in electronegative gases.
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1. INTRODUCTION

Particle simulations of plasmas have been in use since the 1950’s for many applica-
tions, but only recently for bounded collisional plasmas, such as glow discharges, where
neutral particles outnumber charged particles by 2 to 4 orders of magnitude. This paper
will review some of the models and techniques used over the past four decades, leading
up to our current capability of simulating discharges. Our path will follow the devel-
opment of first principles, self-consistent many-particle bounded plasma modeling and
simulations, mostly particle-in-cell (PIC), with the addition of Monte-Carlo collisions
(electrons and ions with neutrals), called PIC-MCC.

Plasma simulations using fluid codes (solving several moments of the Boltzmann
equation) tend to run much faster than particle codes, but supply less detail and some
times incomplete physics (e.g., ignoring stochastic electron heating). Kinetic codes
(solving for the full distribution function from the Boltzmann equation, plus fields
from Poisson’s equation) tend to run slower, perhaps similar to particle code speeds.
(These answers differ among experts and whether in 1, 2, or 3 dimensions.)

It is desirable to keep the first-principle, self-consistent approach in PIC-MCC and
to incorporate speed-up mechanisms into PIC-MCC. A very real objective is to make
PIC-MCC codes attractive and readily useful by experimentalists who are designing
new plasma processing equipment using RF and microwave drives. In order to reach
this objective, run times must be on the same order as the time to make experimental
changes (time to “cut metal”). We will take such times to be less than a day, perhaps
as short as one hour, much shorter than now achieved by one if not two factors of 10.

Our paper will present old and new and combinations of attempts being made
to make PIC-MCC codes run faster, that is, to reach equilibrium sooner, on single
processor machines. (We are also working on paralleling our codes.) We report on
speed gains between 6 and 30 times, using implicit integrations, subcycling, and light

Electron Kinetics and Application of Glow Discharges
Edited by U. Kortshagen and L. D. Tsendin, Plenum Press, New York, 1998 59



Figure 1. An early electron diode model, with one electron sheet between grounded electrodes,
showing the field acting on the sheet as it traverses the diode, as obtained from Gauss’ Law. The fields
acting on many sheets maybe obtained by superposition (no Poisson solver is needed), allowing one
to write the equation of motion for each particle directly. Applied fields may be added. From Birdsall
and Bridges (1966).3

ions, in combination, on argon and oxygen RF discharges. This is a progress report,
with these initial successes, and not a final report.

2. PAST HISTORY, ROUGHLY 1940’S TO 1980

This brief section will be a review of representative contributions in this period,
noting particular pre-cursors to PIC and MCC and bounded modeling. More complete
reviews may be found in the texts by Roger Hackney and James Eastwood (1981),11

Charles Birdsall and A. Bruce Langdon (1985)5  and Toshi Tajima (1989).14  A more
recent review is by Birdsall (1991).²

Figure 1 shows an early bounded one-dimensional model, with thin sheet electrons.
The force on the sheet is easily obtained from Gauss’ Law; and readily extended to
multiple sheets. P.K. Tien and J. Moshman (1956)15  did a 1d1v particle simulation,
with a similar model, adding a DC bias (to make an electron gun), injecting electrons
with a half Maxwellian velocity distribution from the left plane, in order to obtain the
high frequency noise current.

Periodic models may be found in the Birdsall and Langdon text,5  due mostly
to John M. Dawson (1962),7 who made a major contribution by showing that most
plasma kinetics may be obtained, in one dimension, with as few as 5 to 10 particles
(sheets) in a Debye length. Owen Eldridge and Marc Feix (1962)8  made complementary
contributions. Periodic models also used Gauss’ Law to obtain the electric fields to use
in the particle equations of motion.

Figure 2 shows a two-dimensional gridded model and flow chart, initiated in the
early 1960’s, with numerous contributions from the group with Oscar Buneman at
Stanford University. The mathematical grid in the plasma region is used to facilitate
obtaining the fields from the charge density. Roger Hackney (1965)10  provided a fast
method of solution for Poisson’s equation with a grid in 2d , another essential tool.

Figure 3 shows the flow chart for simulation systems in 1d, 2d, and 3d using
particles and a grid.

The name “particle-in-cell,” PIC, originated with Francis Harlow at Los Alamos,
in developing fluid codes (1964).9  Birdsall and Fuss used the name “cloud-in-cell,”
CIC independently (1969),4  in order to emphasize the tenuous nature of the finite-sized
particles implied by particle weighting to the grid. Langdon provided most of the theory
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Figure 2. A mathematical grid is set into the plasma region in order to measure the charge and current
densities from which the fields will be obtained on the grid. A typical charge q will be “weighted” to
the nearby grid nodes, using various splines. From Birdsall and Langdon (1985).5

Figure 3. Flow chart for one ∆ t of the particle-grid method, or PIG. From Birdsall and Langdon
(1985).5
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of finite-size plasma charged particles, with and without a grid, beginning about 1968,
well summarized in our text. Richard Morse and Clair Neilson at Los Alamos extended
PIC to fully electromagnetic fields (1971).13

In the 1960’s, 1970’s and 1980’s there were many publications using PIC codes, for
fusion plasmas and many other applications, with a considerable number of refinements.
PIC simulation publications were and are mixed right in with theory and experimental
articles, indicating strong acceptance of such simulations (and other kinds of simulations
as well) by the plasma community.

The major focus on simulation publications continued to focus on the behavior of
the plasma bulk or core, ignoring the edges, following the example of nearly all plasma
textbooks.

3. RECENT PAST, ROUGHLY 1980 ON

As noted just above, the plasma edge and truly bounded plasmas were relatively
neglected up until the 1980’s or so. What was going on at the plasma edge was treated
as “kitchen physics”: not very scientific — perhaps, more realistically, as not readily
amenable to scientific understanding, or standard plasma theory techniques. Emission,
absorption, sheaths, pre-sheaths, cathodes, anodes, non-Maxwellian velocities, regions
that were quite non-neutral, with large fields and potentials etc, were anathema to
the plasma community. About 1980, several groups reasoned: All the more reason to
start exploring the plasma edge occurred around the world, a challenge which now has
grown to a large plasma industry (literally, as 40% of semiconductor manufacturing
steps involve plasmas — at the edge!).

Our first real foray into such was a 1983 seminar to construct a bounded plasma
model, with real walls (emitting, absorbing), full sheath, external R, L, C circuit
elements and V, I sources. The result is recorded in William S. Lawson (1989),12 who
wrote our PDW1 code in 1983, the predecessor of our Plasma Device codes.

Figure 4 shows a planar 1d bounded plasma device, with an external driving circuit,
as used in our Plasma Device codes, PDx1 (x = p, planar; c, cylindrical; s, spherical),
which are now in world-wide use and free: (see http://ptsg.eecs.berkeley.edu) .
These are 1d3v, with many input files for different models, and their own graphics (i.e.,
self-contained, ready to run).

Figure 5 shows the flow chart for bounded models, with a box for processing par-
ticles lost or injected at the boundaries (or possibly in the volume). Another box is
added to process elastic and inelastic collisions between charged particles and back-
ground neutral gas particles, as needed for discharges.

The PIC Monte-Carlo collision box was presented by Birdsall (1991),² as devel-
oped in Berkeley (beginning about 1988), by his post-doc, Ian Morey (who had begun
collision work with Prof. Rod Boswell at the Australian National Univ., Canberra),
M. Surendra (a student of Prof. David Graves, Chem. Engr. Berkeley) and Birdsall’s
students, Vahid Vahedi, John Verboncoeur, and M. Virginia Alves. A detailed key
reference for PIC-MCC is by V. Vahedi and M. Surendra (1995).19

The essential difference between the MCC used here and prior Monte-Carlo col-
lision methods (which have random mean free times or mean free paths), is that PIC
moves particles only every ∆t. The main steps are to use a constant maximum collision
frequency ν max  (which includes the possibility of a null collision) to obtain the fraction
of particles to be collided in a time step ∆ t, then to randomly divide the colliding
charged particles among the different collisions which may occur, then to invert the
total and differential cross sections in order to update the speeds and directions of the
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Figure 4. Model for the plasma device code PDP1, showing all of the elements of a whole device, with
the plasma between the electrodes and the external driving circuit outside, all solved simultaneously.
From Verboncoeur et al. (1993).2 0

Figure 5. Flow chart for bounded and collisional models. The new “box” beyond that in Figure 3,
at the top, is to handle the bookkeeping for particles lost or gained at the walls, and sometimes in
the volume. The new “box” at the right is the Monte-Carlo collision processor. From Vahedi and
Surendra (1995). 19
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Figure 6. A two dimensional system to be simulated. The top and bottom boundaries are grounded.
The left and right hand boundaries may be driven separately, with external circuits having either a
voltage source and a (blocking) capacitor or a current source. From Vahedi and DiPeso (1997).17

particles. PIC-MCC works efficiently for low pressures and small volumes, where the
fraction of particles colliding each ∆t is relatively small.

4. VERY RECENT PIC-MCC RESULTS, 1995 ON

Figure 6 shows a two-dimensional model simulated by V. Vahedi and Greg DiPeso
(1997). 17  The left electrode might be a silicon wafer, biased, say, by a 13.56 MHz
source, and the right electrode might be driven at a higher frequency, as the source of
the plasma.

Figure 7 shows another 2d3v model, this time with an internal grounded grid, from
V. Vahedi, J. Norman Bardsley, and G. DiPeso (1995).16  It was found that the internal
grid makes the RF discharge more asymmetric (i.e., has a larger ratio of grounded area
to driven area) by providing more grounded surface area for the plasma. This greater
asymmetry results in:

(a) lower plasma to ground potential drop;
(b) reduced ion bombarding energy on the grid (and other grounded surfaces);
(c) reduced sputtering from the grid;
(d) larger target sheath width at a fixed pressure, which reduces the ion bombard-

ing energy at the target to compensate for the increased bias voltage.
These results show the power of 2d3v simulations to complement lab experiments

in examining new configurations and exploring (optimizing) over many parameters.

5. COMPARISON OF COMPUTING SPEEDS

Fluid codes work with densities n , velocities v , and temperatures T , as functions
of x, y, z, and t for each species, as moments of the Boltzmann equation. A Poisson
solver is used for the potential, or the Maxwell set for the fields, with either set solved
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Figure 7. Ions in a two dimensional system which has an internal grid tied to the grounded top-right-
bottom electrodes, with the left hand electrode (target for the ions) driven by the RF source. From
Vahedi, Bardsley and DiPeso (1995).16

on a mathematical mesh overlaying the plasma region. The velocity distributions are
drifting Maxwellians. There is a long history of solving fluid equations. Such are usually
the fastest codes available.

(An exception in speed is the use of global codes, where all of the variables are
spatially averaged, sort of “zero-dimensional,” essentially using a set of rate equations.
Such may run very fast, and, if available, should be run in advance of all simulations.)

Kinetic codes work with the distribution functions, ƒ(x, y , z , v x, v y, v z, t), for each
species, solving the Boltzmann equation, also along with an appropriate potential or
field solver. As the number of phase space dimensions increases from 2( x , v x ) to the
full 6, the difficulty increases and the speed decreases.

Particle codes have already been described earlier. 2 ,19  These follow individual par-
ticles in their own and applied electric and magnetic fields, from first principles, self-
consistently, with the collisions done by the MCC null collision method described above.
The potentials or fields are obtained on a mesh, much as in the methods above, with
appropriate weighting of the particles to the mesh (to obtain ρ and J) and weighting
of the (new) fields back to each particle, then advancing the particles. Each computer
particle represents, say, a million to a billion real electrons or ions. The simulation
must run with a sufficient number of particles in order to minimize the discrete particle
noise, and other unwanted effects. There are many 1d3v codes in wide use, for many
applications. There are quite a few 2d3v codes around and not a small number of full
3d3v codes. Going from 1d to 2d involves mostly the field solver, with some thought;
going from 2d to 3d is straightforward. Many species may be used

In their, say, textbook form, usually explicit, PIC codes run appreciably slower
than do fluid codes but possibly close to the speed of kinetic codes. Hence, it is most
desirable to seek and apply various ways of speeding up PIC and PIC-MCC codes,
numerical and physical, in order to compete with other codes. The object is to make
first-principles, self-consistent codes run to equilibrium in under one hour, competing
with the ability to make changes in the lab. What follows is application of several
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known acceleration methods, plus one newer one.

6. METHODS USABLE TO SPEED UP PIC-MCC CODES;
APPLICATION TO ACCELERATING RF DISCHARGES TOWARD
EQUILIBRIUM

6.1. Motivation

The current “rule-of thumb” on simulation timing is that one needs to run about
1000 RF (or microwave) cycles in PIC-MCC to reach equilibrium, which may be a
million time steps, with from 10,000 particles to 10 or 100 times as many. Current
explicit PIC-MCC codes, running on single processor moderately fast workstations
(e.g., 233 or 500 MHz), do not begin to complete such a run in one hour. (All of our
runs, reported in the following, were made on 233 MHz workstations.)

6.2. Base Model: Explicit Integration

Numerous methods for speeding up particle (PIC and PIC-MCC) codes have been
published in detail and widely applied, but usually one at a time. See, for example,
Table I in Vahedi et al. paper on capacitive RF discharges. 18  We will apply several speed-
up methods together to RF discharge simulations. Our base method for comparison
is explicit coding, with no speed up applied, hence having a speed Gain = 1. Gain
measures the gain in speed of a simulation; it is defined as: (sped up run time)/(base
run time); a number ≥ 1.

6.3. Implicit, ∆ t implicit >> ∆ t base

A favorite acceleration comes from implicit methods, which allow much larger
time steps, yet maintain stability and accuracy, due to attenuating fields at high fre-
quencies and (usually) at short wavelengths. For these implicit methods, please see the
texts by Birdsall and Langdon (1985)5  (Chap. 9) and by Brackbill and Cohen (1985)1

(Chaps. 9 and 11); the so-called direct implicit method is used here.

6.4. Subcycling, ∆ t i >> ∆ t e

With the short time steps used in order to satisfy stability and accuracy conditions
for the electrons, the far heavier ions move hardly at all in one electron time step
At,. Hence, the ions might be moved less frequently, every kth electron step (∆ ti  =
k∆ te), where k may be 10 to 100, depending on the ion mass. Such is called electron
subcycling. See the texts Birdsall and Langdon (1985)5  (Chap. 9) and Brackbill and
Cohen (1985)1  (Chap. 10) for the details.

6.5. Use of Many Processors in Parallel

We are currently in the process of converting our Plasma Device PIC-MCC simu-
lation codes to use on a paralleled network of workstations (“NOW”). With N such in
parallel, we might approach a maximum speed-up of N times.

6.6. Use of Much Lighter Ions Initially, M light << Mreal , then Reversion to
M real

Early on we had decided to try altering the physics (mass, charge, q/m, etc.)
such that equilibrium would be reached much faster, in a smaller number of RF cycles.
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Recently, Igor Kouznetsov (a student of Prof. Lieberman) showed us how he used
much lighter ion masses M light in order to speed up his simulations (which mocked a
discharge, not RF driven), looking for space-charge effects. The physics for accelerating
a discharge to equilibrium is rather simple: reducing the mass of the ions increases their
speed, which enables them to reach an equilibrium state in a smaller number of RF
cycles, hence less computer time.

The light ion computer run is made in two steps. The first part is with the lighter
ions, running until this discharge comes to equilibrium. Then we switch back to the
heavier (real) masses Mreal  (keeping the same kinetic energies, by decreasing the ion
velocities by and run until equilibrium is again reached. (There was a
short lived transient in re-starting with the real masses, then a more gradual transition
to the final equilibrium.) The hope is that the overall running time is less than that
running with M r e a l throughout (it is). Since the speed of the light ions is faster by the
factor we expect the light ions to reach equilibrium faster than real ions
by this factor, the maximum Gain possible, assuming that the second equilibrium is
reached relatively quickly.

Increasing the speed of the ions, however, increases the rate of loss of the ions to
the walls. This means that we must increase the creation rate (ionization) in order
to make up for this increased rate of loss. One way to increase the creation rate
was to increase the electron-neutral cross-sections (including ionization) in our code
by the factor  (Note that when we decreased the ion mass, the PDP1
code automatically increased the maximum collision frequency by W e
then found that we still could not maintain the discharge without also increasing the
amplitude of the RF current drive. The required increase in power needs to be estimated
from analysis; so far we have made empirical guesses.

6.7. Use of Variable Weights

This is explained under the oxygen runs, as it applies there more than with argon.

6.8. Use of Initial Density Profiles Closer to Equilibrium

This speed-up is to start with initial profiles of electron and ion densities as close
to final equilibrium values as we can generate, say, analytically, or from previous runs.
The electrons and ions will start with Maxwellian velocity distributions, to be refined
next. At this writing, this speed-up has not yet been tried.

6.9. Staying within Time Step Limits, e.g.,

Many of the above accelerations stretch the limits on time steps. We list six global
cautions in the Tables below that usually must be obeyed in order to obtain stability
and accuracy, and to minimize self heating. Most are discussed in the 3 simulation
texts noted earlier. Note in the Tables that the higher gains come when we run near
these limits.

We are exploring interrelations among these six limits and the number of cells
(that is, ∆x) and the use or not of digital smoothing of the charge density.

If we assume that fast plasma phenomena are not significant in RF discharge
physics, the highest frequency we need to resolve is the RF driving frequency ωRF , and
the shortest length we need to resolve is the sheath width s. However, the stability
criterion for conventional explicit PIC requires resolving the electron plasma frequency
and the electron Debye length: Typically, ωpe >> ω RF  and

67



λ De  << s so that in explicit schemes we are forced to pick a much smaller ∆ t than is
necessary to resolve ωRF , and a much smaller ∆x than is necessary to resolve s.

Implicit schemes allow us to relax the time constraint above to ωRF ∆t << 1. They
also allow us to relax the constraint on ∆x by only requiring us to resolve s rather than
λ De . However, implicit schemes are more complex and require more operations than
explicit schemes.

An additional accuracy condition which must always be satisfied is for
1, where vs  is the characteristic velocity of a particle of species s, and ∆t s  is the time
step of a particle of species s. This ensures that particles will not travel more than one
cell per time step and will sample the electric fields properly.

Since MCC only assumes one collision per particle per time step, care must be
taken to choose a ∆ t such that the probability of having a particle collide more than
once per ∆ t is low. The collision probability of the jth particle in a time step ∆t i s

(1)

where vj and E j  are the speed and kinetic energy of the jth particle, and σT (Ej ) is its
total collision cross section with the target density ngas. Then, the collision probability
for n collisions in the same ∆ t is approximately Pn

j . The number of missed collisions
per ∆ t is then proportional to

(2)

For example, an error of err = 0.01 requires Pj  < 0.095 and
0.1. See Vahid and Surendra (1995). 19  In our Tables below, we calculate

which is larger than all the νj ∆ t .

7. APPLICATION TO 100 mT ARGON RF DISCHARGE

Our first step was to examine the 1000 RF cycle “rule of thumb” on our standard ex-
plicit argon current driven model, as reported on earlier by V. Vahedi et al. (1993). 18  We
did this for his 1d3v model, at a pressure of 100 mT of argon, with 2 cm electrode spacing,
160 cm² area, current driven by 0.4 A at 13.56 Mhz. The runs were initiated with equal
number of electrons and ions, uniform in x, with Maxwellian electrons at Te  = 2 eV, and
Maxwellian ions at T i  = 0.03 eV. The initial number of ions and electrons was a little larger
than that expected at equilibrium, so that the particle numbers decrease as the run pro-
gresses to equilibrium. These runs were made with about 2e4 particles, half electrons, half
ions.

7.1. Base Run, Explicit Coding

We ran the base run, explicit coding, for about 1,000 RF cycles, 2 million ∆t base, where
∆t base = time step for base run. The computing time was about 7.5e4 seconds, roughly
21 hours. However, the actual time for the base model to reach equilibrium, judging from
the behavior of the number of particles and other diagnostics, was less, at about 500 RF
cycles. We assume that a simulation has reached equilibrium when the number of particles
and other diagnostics (i.e., density, electric field, potential profiles, temperature, energy
distributions) do not change “appreciably” when we run the simulation longer.
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7.2. Implicit Case

(3)

(4)

As mentioned earlier, implicit coding allows a larger timestep ∆t while maintaining
numerical stability. We used a timestep of When run for 1000 RF
cycles, the computing time was about 1.9e4 seconds (5.3 hours). Hence, the running time
was reduced by a factor of 7.5e4/1.9e4 = 4; Gain = 4. We did not obtain a gain of 8 as might
be expected from the 8 times larger ∆t because running the code implicitly was roughly
twice as costly as running it explicitly. A profile of the explicit and implicit runs showed
that the percentage of time spent in the mover was 37% in both cases but the more complex
implicit mover took 1.85 times longer per call than the explicit mover. Also even though
the collision handler was called only every 8∆ t base , it took 4.5 times as long per call in the
implicit case as the explicit case because the number of collisions per call increases with ∆t :

where Ns is the number of particles of species s, and Pnull, s is the maximum fraction of parti-
cles of species s which undergo a collision in time ∆t. This suggests that at lower pressures,
where collision handlers play smaller roles, we can expect higher Gains for implicit runs.

7.3. Implicit and Subcycling Case

A further reduction in time can be gained by subcycling the electrons in the implicit
run. As mentioned earlier, this coding chooses ∆t i  >> ∆ te . We chose a subcycling factor
k = 20, which means that the ions are pushed only every 20∆ t e . When run for 1000 RF cy-
cles, the computing time was about 1.2e4 seconds. This represents a Gain = 1.9e4/1.2e4 =
1.6 over the implicit without subcycling case. The total Gain = 7.4e4/1.2e4 = 6.3 over the
base case.

In the non-subcycling case, for every 20∆ te , we push 20(1e4) + 20(1e4) = 4e5 par-
ticles. In the subcycling case, for every 20∆ t e , we push 20(1e4) + 1e4 = 2.1e4 particles.
This means that we expect a maximal Gain of about 4e5/2.1e4 = 1.9 from subcycling. (As
the subcycling factor k increases, the ion move becomes negligible and the gain approaches
2.) However, only about 1.6 of the expected 1.9 was realized because, like the implicit case,
the subcycling did not reduce appreciably the total time spent with the collision handler.
This is because, for the ions, even though the collision handler is called only every ∆ti , the
number of ion collisions per call is now increased to:

As with the implicit case, at lower pressures we should expect higher gains due to subcy-
cling since the collision handler would play a lesser role. We should also note that albeit
small in 1d simulations, the time to calculate fields is also not reduced by subcycling.

8. APPLICATION TO 10 mT ARGON RF DISCHARGE

8.1. Base Run, Explicit Coding

A second explicit base run was made at argon pressure of 10 mT, with larger
spacing, 5 cm, and with more current, 0.6 A at 13.56 MHz, same cross-sectional area,
160 cm². As with the 100 mT case, the runs were initiated with an equal number of
electrons and argon ions uniform in x, with Maxwellian electrons and ions at Te =  2
eV and Ti = 0.03 eV. The number of computer particles used in this simulation was
roughly 1.3e4 instead of the 2e4 used in the 100 mT simulation. When run explicitly,
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Table 1. Argon, 100 mT, Explicit, Implicit, Implicit Plus Subcycled
Electrons. Current drive of 0.4 A. The first 256 RF cycles took longer
than the succeeding runs, as the initial number of particles was large,
then decreased. Note that the implicit gain is not the full time step
increase of 8, but about half that, due to the implicit mover taking
about twice the time of the explicit mover. The subcycling expected
maximum gain is 1.9 (the ion move is not negligible), but about 1.6 is
realized, due to the mover not being the only computation
100 mT Argon Simulations
Model Base, ∆ tb a s e Implicit, 8∆ t b a s e Implicit, 8∆ t b a s e ;

Subcycled, k = 20
256 RF cycles 24,856 sec 6564 sec 4368 sec
512 17,244 sec 4,299 sec 2721 sec
768 16,613 sec 4032 sec 2507 sec
1024 16,707 sec 4149 sec 2421 sec
Total time 7.5e4 sec 21 hrs 1.9e4 sec, 5.3 hrs 1.2e4 sec, 3.3 hrs

G A I N 1 4 6.3
0.43 1.3 1.3
0.013 0.04 0.78
0.076 0.61 0.61
0.0024 0.019 0.38
2.7 1.0 1.0
0.16 1.3 1.3

the discharge reached equilibrium in about 1000 RF cycles. The run took about 5e4
seconds or 14 hours, slightly longer than (1.3e4/2e4)*(time to run 100 mT argon model
for 1000 RF cycles).

8.2. Light Mass Case

In our case, when we used M real /M light = 100, we found that we needed to double
the amplitude of the current drive to 1.2 A in order to produce density profiles which
were similar to the base case.The light ions reached equilibrium at about 128 RF cycles
<< 1000 RF cycles. Next, we ran a simulation with the real masses and the original
current drive, but using the dump file from the light mass simulation. This simulation
only needed an additional 128 RF cycles to reach an equilibrium, which was very close
to the equilibrium reached by running the base simulation for 1000 RF cycles. The
total running time of the light mass simulation was 1.2e4 seconds which is a factor of
4.1 less than the base simulation running time of 5e4 seconds; Gain = 4.1.

8.3. Light Masses and Implicit

Further reduction in run time can be made by using the implicit mover as described
above in the 100 mT case, along with the light mass simulation. We ran the implicit
mover with a The implicit mover reduced the running time by
a factor of 4.4 (not by 8), because the implicit code is roughly twice as costly as the
explicit code, as noted above. Note that, as expected, the Gain of 4.4 in the 10 mT
case is larger than the Gain of 4 in the 100 mT case because, at the lower pressure, less
time is spent with the collision handler.

The total Gain in time from using a combination of light masses and an implicit
mover is Gain = 4.4 * 4.1 = 19.

7 0



Table 2. Argon 10 mT Base, Light Ion, Light Ions Plus Implicit Runs.
Current drive of 0.6 A for the base case, with drive of 1.2 A for the light
ions. In the light ion runs, the ions move 10 times faster, reaching light
ion equilibrium at 128 RF cycles; the next 128 cycles were run with the
true mass, reaching equilibrium in another 128 cycles. Note that the
combination of light ions and implicit leads to an appreciable gain of 19
10 mT Argon Simulations
Model Base, ∆ t b a s e Light ions, Light ions, plus

M r e a l /M l ight = 100 implicit, 8 ∆ tb a s e

Total time 5e4 sec, 13.9 hrs 1.2e4 sec, 3.3 hrs 2.7e3 sec, 45 min

G A I N 1 4.1 19
0.13 0.13 1.0
6.7∈ – 3 0.12 0.96
7.6∈ – 3 7.6∈ – 2 0.61
2.4∈ – 4 2.4∈ – 3 0.019
1.0 1.0 1.0
0.16 0.16 1.3

9. APPLICATION TO 100 mT OXYGEN RF DISCHARGE

Our third model is a 100 mT current-driven oxygen discharge. As with the 100
mT argon model, the length of the system was 2 cm, the cross-sectional area was 160
cm², and the amplitude and frequency of the current drive was 0.4 A and 13.56 MHz
respectively. The oxygen model has three species, electrons, O+ ions and O – ions.2
Because oxygen is electronegative, we expect the O+

2  and O –  population to be much
larger than the electron population. Hence, we started the simulation with about 5e4
O +

2 , 5e4 O –  ions and 5e3 electrons. The initial densities were all uniform in x, with
Maxwellian electrons at T e = 2 eV and Maxwellian O +

2  and O – at T i = 0.03 eV.

9.1. Base Run, Explicit Coding

We ran the simulation explicitly for 1000 RF cycles. Because of the large number
of particles, the run took 3e5 seconds or 3.5 days (slightly less than (1.05e5/2e4)*(time
to run 100 mT argon model for 1000 RF cycles). But, even after 1000 RF cycles,
the density profiles were still evolving, suggesting that the simulation did not reach
equilibrium. The number of ions in the simulation did not change appreciably over the
1000 RF cycles, but the number of electrons did drop sharply to about 1.5e3 electrons.

9.2. Subcycling Ions

In an argon discharge where there are roughly an equal number of electrons and
ions the maximum gain due to subcycling the ions is limited to two. However, in an
electronegative discharge the number of ions can be much larger than the number of
electrons so that the gain due to subcycling can be far greater. We conducted another
oxygen simulation in which we subcycled the electrons by a factor of 80; that is, the
ions were pushed only every 80∆ te . When run for 1000 RF cycles, the computing
time was 1.5e4 seconds, representing a Gain of 3e5/1.5e4 = 20 >> 2. For most of our
oxygen simulation, we had 5e4 O+

2 , 5e4 O –, and 1.5e3 electrons. In the non-subcycling
case, for every 80∆ te , we push 80(5e4) + 80(5e4) + 80(1.5e3) = 8.12e6 particles. In
the subcycling case, for every 80∆ te , we push 5e4 + 5e4 + 80(1.5e3) = 2.2e5 particles.
This means that we expect a maximal Gain of about 8.12e6/2.2e5 = 37. But, as in the
argon case, we obtain a Gain of 20 rather than 37 because, although subcycling reduces
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the time spent moving and gathering particles (typically the most costly procedures),
subcycling does not reduce the time spent handling collisions or calculating fields.

9.3. Subcycling and Variable Weights

For very electronegative gases, the densities of the ions are much higher than the
density of the electron. In our simulation, for every electron there were about 30 O+

2
and 30 O– .We require about 1000 electrons in our model in order to reduce numerical
noise and to satisfy the condition that the number of electrons per λDe  be at least
5. This means that we will have at least 3e4 O+  and 3e4 O–  ions in our simulation.2
Since moving and gathering particles are typically the costliest procedures, much can
be gained by reducing the number of computer particles.

One way to reduce the number of computer particles is to weight the ion super-
particles more heavily than the electron superparticle. For example, if an electron
superparticle represents 1e8 real electrons, an ion superparticle can represent 1e9 real
ions; this is called w = 10. Then, instead of requiring 3e4 O+

2 and 3e4 O – ions per
every 1000 electrons, we can have 3e3 O+

2 and 3e3 O– per every 1000 electrons. A vari-
able weighting procedure for oxygen discharges has been developed and implemented
by Cooperberg et al. (1994).6  If there. were no collisions, then the procedure would be
fairly straightforward since there would be no interactions involving particles of differ-
ent weights. But, because of collisions, the weight of each particle is a dynamic variable
that is updated every time it undergoes a collision. In order to keep the number of ions
low (i.e., maintain their initial weights), it is necessary to set a cap on the number of
electrons and ions that is close to their initial values.

In our example, we did a simulation using both subcycling and variable weights.
As before, we used a subcycling factor k = 80, and we used a variable weight factor
w = 10. This reduced the number of O+

2  and O – from 5e4 each to 5e3 each. So
instead of pushing, 5e4 + 5e4 + 80(1.5e3) = 2.2e5 particles every 80∆ t e , we only had
to push 5e3 + 5e3 + 80(1.5e3) = 1.3e5 particles every 80∆ t e . This implies a Gain
= 2.2e5/1.3e5 = 1.7. The subcycling run with variable weights took 1e4 seconds to
run 1000 RF cycles. Compared to the subcycling run without variable weights the
Gain = 1.5e4/1e4 = 1.5, very close to the expected gain of 1.7. The total Gain from
subcycling and variable weights is Gain = 20 * 1.5 = 30.

Implicit increasing of ∆t e  will add little Gain here, as there are relatively few
electrons to move, and the implicit mover is roughly twice as costly as the explicit one.

10.  FUTURE DEVELOPMENTS

As stated earlier, a major objective is to make first-principles, self-consistent (PIC-
MCC) codes run fast enough to be useful to plasma processing machine designers and
experimentalists, on their time scale. We take this to mean running at least as fast
as experimentalists can “cut metal,” say, in a matter of hours. We have made good
progress on single processor machines, with perhaps a factor of 10 to go yet in Gain,
some from better physics, and some from better numerics. And, of course, there is
more yet to be gained from using many processors in parallel.

The above is a progress report, achieving Gains in time of 6, 20 and 30, over base
runs, with runs to equilibrium now taking times like 45 minutes to three hours, begin-
ning to become attractive for design purposes, parameter searching and optimization.

The future is really with us, with faster single processors announced regularly,
easier ways to parallel, and so on.
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Table 3. Oxygen, 100 mT, Explicit, Subcycling, Subcycling and Variable
Weights. Current driven, 0.4 A, length of 2 cm. Electronegative gas, dominated
by the positive and negative ions, such that subcycling the electrons works very
well, as noted by the gain of 20. However, even at 1024 RF cycles, the density
profiles are continuing to evolve, even though the number of particles is changing
slowly
100  mT Oxygen  S imulat ions
Model Base, ∆ tb a s e Subcycling, Subcycling plus

k = 80 Weighting, w = 10
Total time 3e5 sec, 3.5 days 1.5e4 sec, 4.2 hrs 1e4 sec, 2.8 hrs

G A I N 1 20 30
0.22 0.22 0.22
6.2∈ – 3(+) ; 1.5∈ – 3(–) 0.5 (+); 0.12(–) 0.5 (+) ; 0.12 (–)

0.071 0.071 0.071
8.9∈ – 4(+) ; 2.3∈ – 4(–) 0.071(+) ; 0.018 (–) 0.071(+) ; 0.018 (–)

5.0 5.0 5.0
0.043 0.043 0.043

Recently CKB showed our codes to a group including a former grad student,
who did some excellent simulations almost 4 decades ago. He ran the former student’s
problem through very quickly on an ordinary PC, with many diagnostics. The student’s
reaction was: “There goes my thesis in one minute!” This will happen again, but
sooner than waiting 4 decades.

11. CONCLUSIONS

The future is very bright. Our speed-up attempts here, using several known meth-
ods all together, plus a new one, plus more to come, will cut single processor workstation
run times from days to less than an hour by the end of this year. As a benchmark,
our speed-up runs given above took about six weeks of rather intensive computing; our
efforts continue. We hope that these speed-ups will be noticed in industries that are
now highly empirical. Hopefully, examples will be set by the first laboratories to use
simulations for device and machine design; others must follow.
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1. INTRODUCTION

The Convected Scheme (CS) will be reviewed here, with emphasis on recent mod-
ifications of the scheme which make it particularly accurate and effective in a variety
of different physical situations corresponding to several important classes of discharges.
The CS is a numerical scheme for solving the Boltzmann equation which corresponds
in some limit to the method of characteristics. 1, 2, 3 It also has features in common with
the ‘Water Bag’ model of Berk and Roberts. 4 The distinct feature of the method is that
it relies on physical intuition to build up a numerical scheme which reflects the under-
lying physics. Focusing attention on individual ‘cells’ in phase space, the distribution is
advanced in time by following the phase space ‘fluid’ in one initial cell at a time. This
allows particle numbers from the initial cell to be conserved exactly, numerically. Vari-
ous conserved dynamical quantities are also conserved, either by using a mesh based on
the conserved quantity or by imposing conservation of that quantity as the fluid from
each initial cell is moved around the mesh and replaced on the mesh.

Schemes which conserve energy on a mesh which does not employ the total energy
as an independent variable were developed early on. 5, 6 Other schemes which treat
scattering processes very accurately were also developed.7 It has been clear from the
outset of this work that it is advantage ous to be able to follow each phase space cell
as long as possible, before replacing its contents on the mesh.8  Collisions disrupt the
integrity of the contents of a moving cell, so that they need to be replaced in other
cells. Ways in which the particles can be replaced while allowing the rest of the cell
to continue being followed without interruption, and without a proliferation of moving
cells, are discussed and results presented.

CS simulations have been applied to a number of important classes of plasmas:
1) Self-consistent simulations of ion motion, in presheaths and sheaths.9

2) Self-consistent simulations of electrons and ions in (1-space,2-velocity)-simulations of
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dc and rf discharges.5, 6, 8, 10, 7, 11 It was in this context that the importance of including
Coulomb collisions between trapped and untrapped electrons in certain dc discharges
became apparent. 11

3) Self-consistent simulations of electrons and ions in positive column plasmas. 12  A mesh
and integration scheme which reflect the appropriate conserved dynamical qantities in
cylindrical geometry were devised. 13

4) CS results in (2-space, 3-velocity) independent variables were compared to the pre-
dictions of the non-local theory of Tsendin et a1.14 CS results were also compared to
Monte Carlo simulations of swarms 15  and of positive columns. 13 Very good agreement
was obtained, especially when a suitable CS was used which employed conserved dy-
namical variables or which allowed long time steps to minimize mesh errors.

The original purpose of the CS was to develop a physically-based scheme which had
the appropriate physics built into the ‘microscopic’ treatment of the particle motions.
The time step is limited, in this case, only by the physical processes - not by the
numerical representation of those processes.

As the scheme has evolved, the emphasis has turned to the related issue of how to
handle the numerical errors (‘numerical diffusion’) which occur in a scheme such as this,
when cells are moved around a mesh a very large number of times during a simulation.
The best strategy for minimizing errors must depend on the physics of the problem,
and is probably best stated in terms of the characteristic times of the particle motion.

The first time scales one must consider are for collisionless (or ballistic) motion,
ball, the time to go a characteristic length (such as the system size) and the times

for elastic and inelastic collisions and When one must be sure
that numerical diffusion is not a problem during elastic collisions. A simulation which
handles both ballistic motion and elastic collisions with little diffusion was presented
in [Ref. 11].

In the work which is presented in the last section here, the emphasis is on a problem
where particles are relatively collisionless; In this case we need
to follow particles for a large distance without much numerical diffusion. Ideally we
would simply follow packets of particles as they move around phase space and never put
them back into different cells, except when they undergo collisions, because the process
of replacement into other cells usually leads to diffusion. However, we cannot afford
to follow vast numbers of such packets. We need to limit their numbers, and the way
to limit their numbers is probably to limit the lifetime of the packets, and to put the
particles in expired packets into ‘younger’ packets. The CS ‘overlap’ rules are used in
the replacement of particles, from one packet into another. The issue then becomes how
to choose the lifetime of the packets so that efficiency and accuracy are greatest, how
to choose when to launch new packets, and sometimes how to ensure that the moving
packets completely fill phase space so that we can easily put new particles into them.

One of the simplest ways to launch packets or “moving cells” is to have each moving
cell instantaneously coincide with a corresponding fixed cell, and to have the back of
one moving cell coincide exactly with the front of the moving cell behind it. This solves
the problem of filling phase space, but involves redundancy - there are several moving
cells for each fixed cell. These moving cells have the exact same values of the conserved
dynamical variables (e.g. angular momentum, total energy) as the fixed cell and for
the portion of the moving cells which are within the initial fixed cell, they have the
exact same values of kinetic energy as the fixed cell. For example, we could envisage
a situation where for any fixed cell we keep track of three or more moving cells, see
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Fig. 1. Supposing that three cells is enough. Cell 1 might be a moving cell which has
completely left the initial fixed cell which it initially corresponded to. Cell 2 partially
overlaps the initial fixed cell and is on the way out. Its front is in contact with the
back of cell 1. Cell 3 partially overlaps the initial fixed cell and is on its way in. It will
exactly coincide with the fixed cell at the moment cell 2 first leaves the fixed cell. The
front of cell 3 is the back of cell 2. The back of cell 3 coincides with the back of the
fixed cell at first, but the back of cell 3 will be set loose when cell 3 completely fills the
fixed cell. The back of cell 3 will be the front of the next moving cell to be launched.

Particles being replaced in the fixed cell can be put back in cells 2 and 3 - or just
whichever is currently overlapping the center of the fixed cell. Replacing only in the
moving cell which overlaps the center of the fixed cell leads to less diffusion - and leaves
more time for the moving cells to empty out. No particles are replaced in cell 1, so it
will be emptied by collisions and we can stop following it after some time. (We may
need more than one cell like cell 1 which has left the initial cell and which no longer
has particles put back into it. to allow time for these cells to be mostly emptied out.)

Figure 1. Schematic of the radial ballistic move. Original fixed cell is bounded by constant L z
contours, radial cell boundaries and constant total energy contours (not shown). Direction and speed
of moving cell faces are indicated by arrows.

In the last section of this paper, conserved dynamical variables are used to define
the mesh - including the total energy. For a fixed potential V the use of the total energy
allows the replacement of ‘old’ packets or scattered particles to be done in a relatively
straightforward way with no associated numerical diffusion - see section 3.

The success of the method in describing these different plasmas, in some cases
where other simulation methods are not available, shows the utility of the method and
illustrates the class of problems for which the CS is suited.

2. PREVIOUS CS SIMULATIONS

i.) A d.c. discharge in helium has been modeled from electrode to electrode, fully
kinetically using a self-consistent electric field and including all the physical processes

77



believed to be important for ions, electrons and neutral atoms.11 The cathode fall, neg-
ative glow, and cathode fall-negative glow boundary develop naturally in the simulation
without an internal boundary condition and without breaking the electron energy dis-
tribution function in components. Results of the simulation have been compared to
precise experimental results for the electric field profile, species densities, and aver-
age electron energy. Excellent agreement is obtained demonstrating that the physical
model used is both correct and complete.
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ii.) The effects of allowing anisotropy in elastic electron collisions with neu-
tral atoms instead of using the momentum transfer cross-section, the effects of using
anisotropic distribution in inelastic electron-atom collisions, and the effects of includ-
ing a Coulomb electron-electron collision operator have been examined.7, 8 It was shown
that changes in any of the collisional models, especially the second and third described
above, can make a profound difference in the simulation results. This confirms that
many discharge simulations have great sensitivity to the physical and numerical approx-
imations used. Our results reinforce the importance of using a kinetic theory approach
with highly realistic models of various collisional processes.

iii.) A numerical procedure which provides an accurate solution of the Boltzmann
equation in cylindrical geometry with coordinates (ρ, ) was developed. 12 The solution
method, which is a version of the CS, eliminates some specific sources of numerical
diffusion in cylindrical geometry. The velocity is represented as (vz , v ⊥, M ), where M
is a moment arm or ‘reduced’ angular momentum, M = ρsin φ and φ is an azimuthal
angle in velocity space (referenced to ). The reasons for all the coordinate choices
were discussed. Propagator algorithm(s) for solving the kinetic equation were presented
which remove certain numerical errors.

iv.) Kinetic calculations have been employed to model electron behavior in a
low-pressure Inductively-Coupled Plasma (ICP) in order to investigate the processes
governing the formation of the electron distribution function (EDF).14 Our approach
involved a numerical “propagator” treatment of time-resolved electron motion in five-
dimensional phase space (two spatial and three velocity coordinates) based on the
“Convected Scheme” (CS).

In the next section, we will describe a version of the CS where the electrostatic
potential is constant in time. In this case, the distinction between a “moving” mesh and
a “fixed” mesh simplifies, since one can define a mesh which cyclic in the dynamically
conserved variables. Instead of launching new moving cells, the fixed cells at each radial
position are continuously being exactly overlapped by cells which were “upstream” at
an earlier time. The following section describes in some detail how this is implemented
in this special case of a time independent electrostatic potential.

3. CONVECTED SCHEME SIMULATIONS OF THE ELECTRON
DISTRIBUTION FUNCTION IN A POSITIVE COLUMN PLASMA

In previous work the CS used propagators which were designed to locally conserve
appropriate quantities (such as numbers and energy) and the possibility of using long
time steps to reduce numerical diffusion. The next set of innovations enable us to
eliminate numerical diffusion and associated mesh errors during the ballistic motion
entirely. Where possible we use conserved dynamical variables to specify the compu-
tational mesh thereby eliminating the need to replace particle densities back onto the
mesh at the end of a ballistic (collisionless) step. In this approach, the initial condition
of a computational cell (total energy and angular momentum about the z axis, say)
specifies a unique orbit in phase space. One additional independent variable is used



which is the position or phase in any particular orbit of the cell particles are in- the
cell moves around the orbit with the particles. The phase in the orbit of each cell is
updated as time passes so the particles can stay in the same computational cell and
follow its trajectory without any replacement onto a fixed mesh. Collisions, of course,
will couple different trajectories together locally in space. The spatial location of the
collision can be determined from the phase and the independent dynamically conserved
variables. In this procedure, the distribution function is the main dependent quantity
and is computed by integrating forward in time.

In Section 3.1, the coordinate system and computational mesh are introduced and
explained. Section 3.2 describes the “ballistic” (collisionless) motion of electrons on the
mesh, while Section 3.3 describes electron-neutral atom collisions. Section 3.4 presents
the results and comparisons of the CS and MC methods for a dc positive column.

3.1. Coordinate System and Mesh for Electrons in Cylindrical Geometry

In this section, the coordinate system used to describe electron motion is discussed,
as well as reasons for choosing it. Then the electron computational mesh is introduced.
The computational mesh can be described by many different sets of independent vari-
ables. To eliminate computational errors, such as artificial numerical diffusion, a set of
variables should be dynamically conserved during the ballistic (collisionless) motion.

In earlier work in cylindrical geometry, 12,14 the coordinate system used was: (ρ, v z ,
v⊥ , M ). Here, ρ is the radial position, vz  is the axial (z) velocity, v⊥  is the speed in the
plane perpendicular to z axis and M is a moment arm or “reduced” angular momentum:
M = ρ sin φ , where φ is an azimuthal angle in velocity space (referenced to the unit
vector ).

This mesh, as was discussed, has some desirable properties. First, it allows the
axial motion to be effectively decoupled from the radial motion. This allows an efficient
vectorization of the ballistic motion. Second, in the absence of radial and azimuthal
electric fields, both v⊥  and M are conserved during ballistic motion. This, in turn,
eliminated errors introduced by the finite size of the computational mesh. Finally, in
the absence of an azimuthal electric field, the product v⊥ M is conserved.

On the other hand, this set of independent variables has a few undesirable proper-
ties. First, once a radial (and/or azimuthal) electric field is present, errors introduced
by the finite size of the mesh in v⊥  and M could affect the accuracy of the propagators,
since neither are conserved quantities. This problem was addressed by taking small
enough cells (a large number) or alternately by taking large time steps ∆t so that the
error was manageable.

A second and perhaps more serious problem occurred if the time step, ∆t, w a s
small so that only a small fraction of electrons in a certain radial cell could move to the
adjacent radial cell. The correction for this has been described in detail elsewhere.8, 12

In search of a suitable choice of independent variables, one would prefer variables
which are conserved during the ballistic radial move. In addition, the systematic error
due to numerical diffusion during radial motion should be avoided if possible. In the
absence of an azimuthal field, two conserved quantities are the angular momentum
about the axial (z ) axis,

(1)

and the total energy in the plane perpendicular to the z axis,

(2)
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Here m is the mass of an electron, V (ρ) = -eΦ (ρ) is the potential energy, e is the
elementary charge and Φ (ρ) is the radial electrostatic potential. We choose to keep
the axial velocity v z , along with L z and ∈ ⊥ , since that choice allows us to decouple the
axial and radial motion for computational efficiency.

Given L z and ε ⊥ , a trajectory can be determined. The last independent variable
must change with time. We choose to use moving cells, so particles stay in these cells.
We need a label to indicate where these cells have got to. The elapsed time since
passing some reference point on the orbit (or phase) is chosen. In the normal numerical
procedure we integrate the particle motion around the orbit by taking discrete time
steps and replacing particles on the fixed mesh after each step. The discrete nature of
the steps leads to numerical diffusion, since spreading out of the particles takes place
each time the particles are put back onto the mesh.

Instead of using discrete steps in the ballistic (or collisionless) motion, the pro-
cedure used here involves first following particles around their orbits and accurately
calculating and tabulating for future use the time between crossings of successive ra-
dial cell faces. This allows us to keep track of where the cells containing particles are at
any time during their orbit, without having to put the particles ‘into’ the radial mesh
cells they are passing through during the ballistic motion. This in turn eliminates the
numerical diffusion associated with the ballistic motion. Particles which have collisions
at some point in their orbit are introduced into the radial cell where the collision occurs.
After the collision these particles are restored with a new L z , ∈⊥ , vz , and elapsed time
in their new orbit. Other particles will return to their exact initial position after each
period (if their motion is periodic).

The details of the construction of the mesh have been given previously.13  We
define a phase space cell by the indices (k, i, n, p) which represents phase space coordi-
nates with total energy ε⊥ ( k ), angular momentum about the z axis of Lz (i, k), at time

(n, i, k) in that orbit and an axial velocity given by v z (p), where and
N v , is the number of positive vz  cells. ?From these coordinates, all other coordinatesz

(i.e. ρ, v ρ, v φ, M, etc.) may be derived as needed.
We will see below, that this set of independent variables and the associated mesh

alleviate many of the errors associated with the finite size of the computational mesh.

3.2. The Electron Ballistic Move

In the previous section we discussed the independent variables and the associated
computational mesh. In this section, we will describe how the collisionless, or “ballis-
tic”, move is implemented on the mesh. Here there are two ballistic motions: one in
radius and another in the axial direction. We first discuss the radial motion.

By the construction of the mesh, the radial motion is trivial. It consists of looping
over all valid ∈⊥ ( k ) and L z (i, k) and incrementing the boundaries of each (n, i, k) cell
by the time step ∆ t. Once (n, i, k) exceeds T(i, k) one of two conditions is met. If the
L z (i , k ) and ε ⊥ (k) orbit is a confined orbit (i.e. ∈⊥ (k) – V(R) < 0 and
R ), it simply means that the cell has completed one orbit and (n, i, k) should be
decreased by T(i, k). Otherwise, the phase space cell is in an unconfined orbit (it can
reach the outer boundary) and means that cell has struck the wall.
Those particles in the phase space cell are removed and the cell is ‘reset’ by decreasing

(n, i, k) by T(i, k).
It is easily seen that since the particles are not put back on the fixed ρ(j) mesh as

they move around the orbit (unless they have a collision) the systematic problem which
occurred with small time steps (see Section 3.1) does not occur. Also, since the mesh
was created according to the radial electric field (i.e. (Φ (ρ)), there is no inaccuracy in
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energy associated with the radial ballistic move. Of course, the computational overhead
is small since we are only incrementing the time array ( (n, i , k )) and checking for outer
boundary hits.

We now will describe the axial or z ballistic move. Complete decoupling of the
z motion from the radial motion results in a very simple ballistic mover for v z . In a
positive column, the axial field E z is uniform which simplifies matters further. The
(k, i , n , p ) initial cell has a mean (i.e. cell centered) velocity vz (p). After a time step
∆ t, the moved cell has

(3)

This moved velocity is typically not equal to the mean vz  in a cell on the mesh. If
, where ∆Vz  is the local spacing of the vz  mesh, then simply

splitting the moved cell between two neighboring cells such that mv ' ²z /2 is conserved
gives a small error, as noted in earlier work.12 However, if δv z  << ∆ V z , then splitting
the moved cell can introduce another systematic error. 12 In this work, instead of using
a ‘fixed’ v z mesh a ‘floating’ mesh is used to eliminate numerical diffusion and other
mesh errors during the ballistic move on the vz  mesh. See Ref. 13.

3.3. The Electron Collision Operator

In the previous section, we described the ballistic or collisionless motion of the
electrons. We will now outline the collisional propagator and how it is implemented on
the computational mesh. Details of the collision operator were given in Ref. 13.

We can always use moving cells to follow particles until they collide. After each ∆t
the scattered particles are replaced on the fixed mesh as described here. Unscattered
particles continue in the moving cells. The scattered particles are then put into moving
cells. We need to have the information as to where the old moving cells are in a
form which is convenient for mapping the fixed cells onto the moving cells after the
moving cells have moved through multiple time steps. If we can not easily map the
fixed cells onto the moving cells after they have moved around, we will have to launch
new moving cells after each ∆t and follow them until they are emptied by collisions
or until we can map them onto each other. The use of conserved dynamical variables
makes mapping onto moving cells straightforward. If total energy, for instance, was
not a convenient variable, the CS conservative overlap rules allow the mapping to be
done when necessary. The mapping of moving cells onto fixed cells is straightforward.
Sorting the indices of the reverse mapping would need to be done efficiently in general.

Elastic electron-neutral atom collisions, inelastic electron-neutral atom collisions
resulting in excitation and inelastic electron-neutral atom collisions resulting in single-
step ionization are included in the electron collision operator. In contrast to previous
CS collision operators, the operator used here does not include Coulomb collisions
between electrons 7 nor does it incorporate anisotropic scattering of electrons.7, 12 These
two mechanisms could easily be included, however. These simplifications are deliberate
because this work is to be used to compare positive column models based on the local
field (fluid) approximation, the nonlocal approximation, the convected scheme and other
approximations to benchmark Monte Carlo results.

This section completes the description of the propagators needed for the CS.

3.4. Results and Discussion

In the previous four sections we have described the CS mesh and propagators for
the ballistic and collisional motion. In this section we present a few results similar to
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Figure 2. Comparison of EDF’s from the MC (symbols) and CS (lines) models. Each EDF is
calculated with its self-consistent axial electric field and wall potential. The different curves represent
different radial positions: ρ = 0.06R , 0.5R, 0.94R are the solid (×), dashed (diamond) and dotted (+)
lines, respectively.

those presented in Ref. 13. In these simulations, the radial electrostatic potential is
assumed to be harmonic from the center of the discharge to the inner boundary of the
last radial cell (there are 25 equally spaced radial cells) such that the potential at that
point has fallen 8 volts. In the last radial cell, the potential is harmonic (Φ (r ) = a + bρ ² )
such that it is continuous at the inner radial boundary and so Φ(R) = V w , where Vw is
the “wall potential”. 13, 16 The axial field, Ez , and V w are then varied until the electron
wall losses are balanced by the ionization rate. Similarly, the ionization rate must also
balance the ion loss rate which is approximated from the ambipolar diffusion equation,

(4)

Here  is the average ionization rate per unit volume, Λ = R /2.405 is the diffusion
length, and is the average electron density. For the ambipolar diffusion coefficient Ds

we use an approximation proposed by Ingold, 17 which approaches the free-fall Tonks–
Langmuir 18 case in the small R × N limit as well as the-collision dominated Schottky 19

case in the large R × N limit: Here is the
usual ambipolar diffusion coefficient from the Schottky theory, with µi  = e /Mν cx  the
ion mobility, ν cx  = N vi Q cx  the ion–neutral charge exchange collision frequency, vi the
thermal speed of the ions and Qcx = 40 × 1 0 –20  m² the charge exchange cross section.
The electron temperature Te  is approximated as 2/3 of the mean kinetic energy of the
EDF in the discharge center divided by the Boltzmann constant kB. All simulations
were done in an “argon-like” gas and in a tube of radius one centimeter. 13, 16

In Figure 2, the calculated electron EDF at two different neutral gas pressures are
compared to MC16  results. In these simulations, V w and E z agree to within 5% between
the two methods and the constraints (i.e. ionization rate balanced by wall loss rate)
are in agreement to within 2%. Similar results are also shown in Ref. 13.

4. CONCLUSION

The Convected Scheme (CS) was reviewed, with emphasis on recent modifications
of the scheme which make it particularly accurate and effective in a variety of different
physical situations corresponding to several important classes of discharges. Detailed
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discussion of the algorithm and results for a dc positive column were compared to
Monte Carlo simulations and excellent agreement was found.
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INTRODUCTION

The properties of closed drift thrusters or stationary plasma thrusters (SPT) make
them especially suitable for applications such as satellite station-keeping and orbit transfer.
They are characterized by an E×B configuration where the externally applied magnetic field
is radial and perpendicular to the axial, self-consistent electric field which accelerates the
ions to the exhaust. These thrusters have been studied for more than three decades and are
now operating on several Russian satellites. Due to the complexity of electron transport in
these devices, the properties of the stationary plasma thrusters are not clearly understood
and an important research effort has been undertaken in Europe and in the US to clarify
some aspects of the physical mechanisms occurring in these devices and to optimize their
operating conditions.

In this paper we present some recent effort to develop numerical models of the SPT.
In the first part, the basic parameters which characterize the performances of a thruster are
defined. In the second part we describe the stationary plasma thruster and discuss some of
the physical phenomena which are not well understood in the SPT. In the third section we
briefly review the numerical models which have been developed. In the fourth and fifth
section we present a quasi-neutral hybrid model of the SPT that we have developed and
show some preliminary results.

CHARACTERIZATION OF A THRUSTER: SPECIFIC IMPULSE AND THRUST

The exhaust velocity of the propellant in electric thrusters can be much larger than in
conventional chemical systems, and therefore, from momentum conservation, a much
lower mass of propellant is necessary to obtain the same change in the velocity of the
satellite¹. The specific impulse of a thruster is, by definition, equal to the exhaust velocity of
the propellant divided by the value of the gravitational constant at the earth’s surface, g=9.8
m/s². It is therefore expressed in seconds and is about one tenth of the exhaust velocity
expressed in m/s.

The thrust is defined as T = Us  where is the mass flow rate and U s the exhaust

velocity of the propellant. The thruster efficiency η is defined by
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where P is the injected power.
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Electric thrusters can be divided in three categories¹: 1) the electrothermal thrusters,
2), the electromagnetic thrusters (magnetoplasmadynamic thrusters) and 3), the ion
thrusters (or electrostatic thrusters).

In electrothermal thrusters the propellant is electrically heated and accelerated
through the nozzle. The heating can be provided by an electric current flowing through the
propellant (arcjet, power in the 10 kW range).

Electromagnetic thrusters are very ambitious devices (power larger than 1 MW)
which where first designed for manned interplanetary flights. A variety of electromagnetic
thrusters has been proposed. In one of them, the magnetoplasmadynamic thruster, the
plasma is compressed by its self magnetic field and its subsequent expansion provides the
thrust.

In ion thrusters, positive ions are extracted from a plasma and accelerated to high
velocities, generally by a system of grids. The SPT is a particular type of ion thruster which
does not require grids to extract the ions from the plasma. A magnetic field perpendicular to
the thrust direction induces a large electric field in the plasma, which accelerates the ions to
the exhaust. Ion thrusters are characterized by electric powers in the kW range. Figure 1
shows the engine efficiency as a function of specific impulse in typical thrusters.

Specific Impulse Isp (s)

Figure 1. Engine efficiency as a function of specific impulse for different types of thrusters (after Brophy²)

Stationary Plasma Thrusters are very efficient in the range of specific impulses (1000-
2000 s) which is optimum for station-keeping and orbit transfer. The thrust to power ratio in
SPT's is relatively large, on the order of 60 mN/kW.

THE STATIONNARY PLASMA THRUSTER: DESCRIPTION AND QUESTIONS

Figure 2 represents schematically the geometry of a SPT. The two coaxial cylinders
are in a dielectric material. Xenon is injected from the anode, at the end of the cylinders and
on the cathode side, outside the cylinders. We are mainly interested here in the plasma
column which is located between the coaxial cylinders. Since the device must work under
conditions of relatively low gas density (the xenon density is on the order of a few 1013 cm-3

close to the anode), and the length of the column is on the order of a few cm (typically 4
cm), the electrons undergo very few collisions from the cylinder entrance, on the cathode



side, to the anode and it would not be possible to sustain a plasma in the column without a
better confinement of the electrons. This confinement is provided by a magnetic field
created by coils located on the external surface of the cylinder. The magnetic field is
generally radial in the exhaust region (cathode side of the cylinders) as indicated in Fig. 2.

Figure 2. Schematic of a stationary plasma thruster.

Due to the closed electron drift in the E×B field, the Stationary Plasma Thrusters are
also called “closed drift thrusters” or “Hall thrusters”.

The electron transit time to the anode is considerably increased by the presence of the
radial magnetic field which makes possible intense ionization of the neutral gas. The
potential drop in the plasma column is on the order of 200 to 300 V in standard conditions.
The positive ions are not sensitive to the magnetic field and undergo practically no
collisions in the column. They are accelerated toward the exhaust and reach energies
corresponding to a large part of the potential drop across the column.

Typical conditions are:
– xenon flow rate at the anode: 5 mg/s
– radial magnetic field at the exhaust: 200 Gauss (about ten times less at the anode)
– voltage drop across the column: 200-300 V
– discharge current: 5 A
– internal cylinder radius: 3 cm; external cylinder radius: 5 cm
– column length: 4 cm

Several features of the SPT are not well understood. One of them is the conductivity
of the column which is higher than what can be expected from the classical collisional
conductivity in a transverse magnetic field. The collisional electron mobility perpendicular
to a magnetic field line is given by:
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where ν is the electron momentum exchange collision frequency and ωB  the electron

cyclotron frequency

Magnetic Field (G)

Figure 3. Estimated current in a SPT, as a function of radial magnetic field, for a plasma density of 101 2 cm- 3,
electric field of 50 V/cm, 3 and 5 cm cylinder radii, and different values of the electron collision frequencies
using a classical mobility (open symbols), and assuming anomalous Bohm conductivity (full symbols). The
star represents a typical current measurement under these conditions.

Assuming an electron mobility of this form, the order of magnitude of the current
flowing through the device can be estimated by JT  ≈ enµ e E where n is the plasma density
and E the electric field in the column. Plasma density and electric field in the column can be
estimated from experimental measurements and are on the order of 1012  cm -3 and 50 V/cm,
respectively. Calculating the current from this estimation of the plasma parameters and
mobility gives the results represented in Fig. 3. The typical electron-neutral collision
frequency in the SPT is in the 106 -10 7 s-1  range and seems too small to be responsible for the
large measured conductivity.

The problem of unexpectedly large conductivity and diffusion across the magnetic
field lines in a magnetized plasma is a classical one and some authors³ proposed that this
anomalous transport results from correlated azimuthal variations in density and electric
field or to Bohm diffusion4 .

Assuming anomalous Bohm conductivity (i.e. conductivity due to field fluctuations,

with an electron mobility of the form gives a current in better agreement with

experimental measurements4. However it has not been clearly established that Bohm
diffusion plays a dominant role in this device and the Russian school of Morozov and
Bugrova 5-8 has proposed another interpretation of the observed anomalous conductivity.
They point out that although collisions between electrons and heavy particle are not
sufficient to explain the large electron mobility, electrons also collide with the dielectric
walls 9-15. Non-specular reflection of electrons and secondary electron emission by electron
impact on the dielectric walls could also be responsible for the large measured conductivity
(the collisions frequency of electrons with the walls is on the order of 108  s -1, which would
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give an electron mobility in the correct range (see Fig.2), but only electrons with energy
higher than the Debye sheath potential could contribute to this “wall” conductivity).

Figure 4. Example of electron trajectories in E× B fields, in the SPT geometry. The electric field is axial and
uniform (50 V/cm) and the magnetic field is radial and of the form Br =B 0 r/R1, with B0 =100 Gauss. The
reflection on the wall is supposed to be specular and the electron is trapped.

Kaufman 4 suggested that anomalous diffusion in closed drift thrusters could shift
from being caused by bulk fluctuations to being caused by wall effects (or vice-versa), as
the magnetic field is increased.

Typical electron trajectories in the SPT are displayed in Figs. 4-6. Figure 4 shows an
electron trajectory for a uniform axial field and a purely radial magnetic field (uniform
axially and varying as l/r). The electron is supposed to be specularly reflected by the wall
(mirror reflection). In these conditions it is easy to show that the electron is trapped along
the axial direction and cannot drift to the anode.

Figure 5. Example of electron trajectories in E× B fields, in the SPT geometry. The electric field is axial and
uniform (50 V/cm) and the magnetic field is radial and of the form Br =B 0r/R1, with B0 =100 Gauss. The
reflection on the wall is diffusive and semi-isotropic. The electron can drift to the anode.

The azimuthal motion of the electron can be seen in Fig. 4. Note that in the example
shown in Fig. 4 the electron does not reach the internal wall at R1. This is a magnetic mirror
effect due to the l/r variation of the radial magnetic field.

If the velocity of the electron after the collision with the wall is randomly distributed,
there is change in the electron momentum and axial motion is possible. The “collision” with
the wall has the same effect as a collision with an atom or a molecule.

Monte Carlo simulations show that the. electron mobility in these conditions has the
same form as for electron-atom collisions, i.e.
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where the equivalent momentum exchange frequency for electron-wall collisions can
be written as:

where v e,the  is the electron thermal velocity, and C is a constant. We have performed
Monte Carlo simulations in a coaxial cylinder geometry under a uniform axial electric field
and a l/r radial magnetic field, assuming diffusing, semi-isotropic reflection on the walls.
The electron mobility deduced from these simulations was very well represented by the
expression above with a coefficient C equal to 0.3 (the electron energy distribution function
was monoenergetic). A mathematical model of wall conductivity by P. Degond16 confirmed

the  Te/B 2 dependence of the electron conductivity.

Note than in E× B fields and in the limit ωB  >> ν , the electron mobility becomes

In contrast with the unmagnetized case, the electron mobility now increases with
increasing collision frequency.

When the magnetic field is not purely radial, some electron trajectories may never
reach the walls and are trapped in the volume, as can be seen on the example of Fig. 6.

Figure 6. Examples of electron trajectories in the SPT with a uniform axial field, a large radial component of
the magnetic field and a non zero axial component of the magnetic field: (1) trapped electron (mirror effect),
(2) electron scattered by the wall (non specular reflection).

The fact that Morozov et al. have found that the discharge current is affected by the
microscopic structure (rugosity) of the surface of the dielectric walls indicates that “wall
conductivity” plays an important role in electron transport to the anode. According to
Morozov et al. 5,7,11, secondary electron emission due to electron impact on the dielectric
walls also contributes significantly to the overall conductivity. The secondary electron
emission coefficient by electron impact becomes larger than 1 for electron energies above
typically 20 to 30 eV and a non negligible number of electrons are in this energy range in
the SPT.

The concept of wall conductivity can however apply only to those electrons which
can overcome the potential barrier of the Debye sheath which is on the order of a few kTe.
The bulk electrons cannot reach the walls and their transport to the anode must be due to
collisions or to field fluctuations (Bohm conductivity or sheath oscillations?).
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It is not possible, at the moment, with only the help of the models, to demonstrate that
the plasma conductivity in the SPT is due to Bohm anomalous diffusion or to electron-wall
collisions and the only way to solve this problem is to confront experimental results with
simulation results based on different assumptions. All the published models of the SPT
therefore assume either classical conductivity (collisions with walls, neutral atoms and ions)
or Bohm conductivity.

Other features of the SPT are also far from being clearly understood. For example it
appears that under standard operating conditions, the current through the plasma and voltage
across the column undergo oscillations at different frequencies (from kHz to MHz) some
of them being of large amplitude (in the 10 kHz range). An detailed description of these
oscillations is given by Choueiri.17  One aspect of these oscillations, as predicted by a model,
will be described below.

BRIEF REVIEW OF THE NUMERICAL MODELS OF THE SPT

Due to the complexity of electron transport in the SPT, the ideal numerical model
would be a particle model in three dimensions. Such a model would be extremely useful to
understand the azimuthal motion of the plasma and the possible effects of field fluctuations
on electron transport. Such a model is however completely unpractical because it would
involve considerable amounts of computation time. This is because the time step in particle
models must be smaller than the plasma period (on the order of 2.10–11 s) and it would be
necessary, in order to reach steady state to follow the time evolution of the system for more
than hundreds of microseconds (the transit time of a neutral atom in the SPT is on the order of
100 µs). The plasma period constraint can be overcome by using an implicit particle model
but even in this case the task seems formidable.

A few 2D (r-z) particle models have been developed to study charged particle transport
in the SPT 18, 19 . Hirakawa and Arakawa 18  took into account the anomalous conductivity
by introducing an oscillating azimuthal electric field (due to plasma fluctuations). This
assumption was supported by a separate 2D particle simulation in a (r, θ) plane with a
uniform axial field where the authors found that the azimuthal electric field and electron
density oscillate in the azimuthal direction as suggested by Yoshikawa and Rose20 and by the
experiments of Janes and Lowder.3 The phase-shift between the field and electron density
oscillations was such that the averaged axial electron velocity νD  given by:

was on the order of the Bohm velocity. Only a few results are presented in the paper of
Hirakawa and Arakawa, and the questions of computation time, existence of steady state or
current oscillations are not discussed.

A second class of numerical models of the SPT is based on the quasineutrality assump-
tion. The assumption of quasineutrality seems reasonable to describe the plasma column of
the SPT except in the Debye sheath near the wall. In a quasineutral model (see next section)
Poisson’s equation is not solved and the constraints related to the explicit time integration
of the transport equations and Poisson’s equation are therefore eliminated. This assumption
considerably simplifies the numerical aspect of the simulation. In these models electron
transport is generally described by fluid equations assuming either Bohm conductivity or
classical conductivity including electron-wall collisions. Since the ions are not magnetized,
and since the ion mean free path is much larger than the device dimensions, their transport
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must be described by free fall equations, using either a fluid model or a particle (or Vlasov)
model. Lentz and Martinez-Sanchez 21 developed a transient 1D quasineutral hybrid model
of a stationary plasma thruster where a Boltzmann equation was used for ion transport. In the
1D, quasineutral, steady state model of Manzella, 22  ion transport was described by continuity
and momentum equations assuming free fall. Similar fluid and hybrid models have been
used by Morozov and Savelyev 23. Komurasaki and Arakawa 24, and Fife25  developed a 2D,
quasineutral, steady state, hybrid model using fluid equations for electron transport and a
Monte Carlo simulation for ion transport. Bohm conductivity was assumed for the electrons.

Although the above references show that an effort in numerical modeling of stationary
plasma thrusters has started in several laboratories during the last few years, we are still far
from having a numerical tool able to give us a clear picture of the operating regime of the
SPT and to help optimize this device.

QUASINEUTRAL HYBRID MODELS OF THE SPT

We discuss here the principles of the quasineutral hybrid models of the SPT which have
been developed at CPAT. These models are simple and are far from containing all the physics
involved in the problem, but they can certainly help understand some aspects of the SPT. We
give the principles of the models for steady state and transient situations. The models are
illustrated with results from 1D, steady state and transient simulations of a stationary plasma
thruster under typical operating conditions.

Principles of a Quasineutral Model

In a quasineutral model the electric field is not deduced from Poisson’s equation but
from a combination of the charged particle transport equations. The classical concept of
ambipolar diffusion for example, is obtained from the assumption of quasineutrality, and by
combining the electron and ion momentum transport equation in the drift-diffusion approx-
imation. In a hybrid model of a stationary plasma thruster, the drift-diffusion equation is a
reasonable approximation of the momentum transport equation for electrons. Positive ions
are collisionless. A natural way of implementing quasineutrality in a numerical model of the
SPT would therefore be to proceed as follows:

i) for a given field distribution and ionization rate distribution, the ion free fall equations
(fluid or microscopic) are integrated between times t and t+ ∆t. This gives the ion density
at time t+ ∆t.

ii) the neutral atom density at time t+ ∆t is calculated using fluid or microscopic transport
equations.

iii) knowing the plasma density from i), the electron continuity and momentum transport
equations are used to calculate the field distribution.

iv) the electron energy equation is used to calculate the electron mean energy at time t+ ∆t .
The distribution of the ionization rate is deduced from the mean electron energy (assuming
a given shape of the electron energy distribution function). Proceed to step i).

The details of the equations are given below.

1D Steady State Mode

The 1D model we have developed is based on the simple following assumptions:

i) quasineutrality is assumed
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ii) all the quantities depend only on the axial position x parallel to the cylinder axis
iii) the electric field is axial and the magnetic field is radial, with a given axial distribution
iv) the neutral atoms are emitted at the anode and have a constant velocity v0  in the x

direction
v) the positive ions are created by electron impact ionization of the neutral atoms with an

initial velocity equal to v0 ; their velocity is parallel to x and they are collisionless
vi) electrons are described by a continuity equation, a drift-diffusion momentum transport

equation, and a phenomenological energy equation.

Using these assumptions, the neutral atoms transport equations reduce to:

where n a is the neutral atom density, n is the plasma density and ki  is the ionization rate.
At steady state, the Vlasov equation for ions does not need to be solved since the ion

density can be simply written:

where M is the ion mass and V(x) is the potential at x.
The steady state continuity equations for electrons, positive ions and neutral atoms

imply:

where ϕe , ϕ p , and ϕa  are the electron, ion, and neutral atom fluxes, respectively. The

integration of theses equations give the following current continuity relations:

where d is the abscissa at the exhaust.
The electric field distribution is then obtained from the electron momentum equation.

If we neglect electron diffusion, we can simply write:

The potential drop across the column is imposed and the electron flux at the exhaust,
i.e. the electron flux entering the column, is deduced from the potential boundary condition:

the electron mobility is given by the classical expression:

and ν is supposed to be related to electron-wall collisions and is supposed to be given by:
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where  is the electron thermal velocity, and R1 and R 2 are the radii of the coaxial
dielectric cylinders.

The electron mean energy is obtained from the phenomenological energy
equation:

The parameter δ is taken to be constant and equal to 2 cm –1  in the results presented
below. δ is an energy relaxation length. This parameter must account for the electron energy
losses due to collisions with the walls (including secondary emission) and with the gas atoms.
The effect, on the global results, of more realistic forms of the energy loss per unit length is
being studied.

Finally, the ionization rate is obtained from the assumption of a Maxwellian distribution
function by the relation (see, e.g. Raizer 26):

where A is taken to be 3·10 –17  cm2/eV for xenon.

An under-relaxation iterative method was used to solve the above system of equations.

An example of steady state solution is shown in Fig. 7 for a SPT 100 (L=4 cm, R1 =3
cm, R2=5 cm). The electric field and potential distribution, the plasma density, neutral atom
density, ionization source term, electron mean energy and imposed radial magnetic field are
displayed on this figure. Two distinct regions appear in this figure: a uniform field region 3
cm long, on the anode side, where the ionization rate and plasma density are relatively small,
and a non uniform field region where the positive ions are accelerated. The ionization rate is
maximum at the interface between this two regions. The maximum plasma density is on the
order of 10 12  cm –3. Note that the neutral atom concentration falls to almost zero after the
ionization region, i.e. most of the neutral atoms are ionized. The maximum ion flux at the
exhaust in this model is obviously equal to the neutral atom flux at the anode.

In spite of the simplicity of the model, the predicted features are in qualitative agreement
with the experimental observations. Some of the quantitative properties (e.g. plasma density,
discharge current) of the discharge are also in reasonable agreement with the experiments.
However one point which is difficult to extract from the published experimental work is the
detailed structure of the electric filed distribution in the conduction region between the anode
and the acceleration (non uniform field) region.

The model predicts a rather large (on the order of 50 V/cm), positive electric in that
region. Some of the experimental results indicate that the plasma potential reaches a maximum
in the conduction region. This would imply a reversal of the axial electric field in that region.
The actual field distribution in this region is probably very dependent on the magnetic field
distribution. The model described above cannot predict a field reversal since electron diffusion
has been neglected.

This model can only describe a steady state discharge or the time averaged properties of
the discharge. Since the experiments show that the SPT exhibits current oscillations in a very
large frequency band, it is interesting to generalize this model to transient situations. This is
described below.
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Figure 7. Axial variation of (a) electric field and potential, (b) plasma density, (c) neutral density, (d)
ionization source term, (e) mean electron energy, from a 1D quasi-neutral hybrid steady state model of the
SPT in the conditions defined by: voltage across the column: 300 V, xenon flow rate: 5 mg/s, dielectric
cylinder radii: 3 and 5 cm, radial magnetic field distribution displayed in (f).

1D Transient Model

We are interested here in time scales much longer than the electron transit time. We
therefore use the same time independent equations as in the previous section, to describe
electron continuity, and momentum and energy transport.

Time dependent equations are used, on the other hand, for neutral atom and ion
transport. The neutral continuity equation is now written:

The ion density can no longer be obtained from a simple integral equation and the
following Vlasov equation must be solved:

where

ƒ is the ion distribution function, vx is the x component of the ion velocity, and δ is the Dirac
function (the ions are supposed to be created with a velocity equal to v0). The electron
density, n , equal to the ion density (quasi-neutrality)is deduced from the ion distribution
function by:

The electron flux is deduced from the continuity equations

where the ion flux is obtained from the solutions of the ion Vlasov equation.

95



The neutral atom density and ion distribution function are integrated over one time
step using standard upwind numerical schemes. The electric field distribution is
recalculated after each time step as above, i.e. using the equations:

The electron mean energy and the ionization rate are calculated at each time step as before.

Figure 8. Space and time variations of the neutral atom density in the SPT in the form of contour curves
(similar conditions as in Fig. 7, except that the voltage drop across the column is set to 250 V instead of 300
V) obtained from the 1D1V quasi-neutral hybrid model. The anode is located at x= 0 and the exhaust at x=4
cm. The origin in time is arbitrary.

The transient model described above is close to the quasineutral hybrid model of Morozov
and Savelyev 23 but some of the assumptions (e.g. form of the ionization rate and the energy
loss term) are different.

Figure 9. Time evolution of the ion current at the exhaust showing strong oscillations at a frequency on the
order of 100 kHz.
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This model has been used to study the transient evolution of the device under
conditions similar to the steady state example above. The conditions are similar to those of
Fig. 7 except for the column voltage drop which is 250 V instead of 300 V

We found that the transient solutions of the system of equations described above
exhibit systematic oscillations at a frequency on the order of 100 kHz. The frequency of the
oscillations can be changed (in the 20kHz-100 kHz range) by adjusting the parameters
characterizing the loss term in the electron energy equation. These oscillations are
associated with a small motion of the position of the neutral density gradient as shown in

Figure 10. Space and time variations of the plasma density in the SPT in the form of contour curves obtained
from the 1D1V quasi-neutral hybrid model (same conditions as Fig. 8). The anode is located at x= 0 and the
exhaust at x=4 cm. The origin in time is arbitrary.

The ion current displayed in Fig. 9 exhibits large amplitude oscillations. The
oscillations of the position of the neutral density gradient induce a strong oscillation of the
ionization source term which leads to strong oscillations of the plasma density (see Fig. 9).

Figure 11. Electric field distribution at different times during one cycle of the current oscillations (same
conditions as in Fig. 8).

The qualitative nature of the oscillations and their large amplitude seem to correspond
to the reported experimental observations for this frequency range17,27,28 . The model of
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Morozov and Savelyev 23 predicts discharge oscillations which are also in qualitative
agreement with the results presented above.

The oscillations of the plasma density are associated with a large amplitude electric
field wave as shown in Fig. 11 where the space and time variations of the electric field over
one period of the current oscillations are displayed. Figure 12 shows the spatial variations
of the ion velocity distribution function at different times, in the form of contour curves.
The darker regions of Fig. 12 correspond to larger values of the ion distribution function.
The oscillations of the ion flux at the exhaust appear clearly on this figure.

Figure 12. Phase space diagram of the positive ion density at different times during once cycle of the current
oscillations (same conditions as in Fig. 8).

CONCLUSION

The mechanisms of electron transport in a Stationary Plasma Thruster are still not
clearly understood and numerical or theoretical models cannot at this moment state whether
the measured conductivity in this device is due to electron-wall collisions or to field
fluctuations.

Simple quasineutral hybrid models of the SPT where the electrons are described as a
collisional fluid and ions are assumed to be collisionless have been developed. These
models can predict reasonably well the discharge properties when some parameters
(electron mobility, electron energy loss coefficient) are adequately adjusted. A transient
version of these quasineutral models can reproduce well the low frequency, large amplitude
oscillations observed in the SPT. The current oscillations are associated with a small
oscillation of the location of the neutral density gradient and ionization source region. More
work is however needed to confirm that the model provides the good physical interpretation
of the oscillations.
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DC POSITIVE COLUMN IN THE NONLOCAL REGIME

J. H. Ingold

One Bratenahl Place, Suite 610
Cleveland, OH 44108 USA

INTRODUCTION

The consensus throughout the period 1920-1970 appears to be that the EEDF in the
DC positive column is Maxwellian, and that average energy of the electrons is radially
invariant. This consensus is supported in review articles by Druyvesteyn and Penning[1]
and Francis[2] in which positive column pedagogy is based on Maxwellian EEDF’s, al-
though the possibility of non-Maxwellian EEDF’s at low current is recognized in both
review articles. Direct consequences of the Maxwellian EEDF assumption are: (i)
Average energy, transport coefficients, and collision frequencies are radially invariant;
(ii) Power input per unit volume due to Joule heating and power dissipated per unit
volume due to elastic and inelastic collisions are equal in each volume element of the
positive column; (iii) Radial effects such as heat flow are negligible. A positive column
having these characteristics is said to be operating in the local regime, because elec-
tron properties are in equilibrium with the axial electric field in each volume element.
But what about other EEDF forms? If transport coefficients and collision frequencies
are radially invariant, then they can be parametrized by the axial electric field as in
a O-D Boltzmann calculation, leading to an improvement over the Maxwellian EEDF
assumption. Strictly speaking, when electron-electron collisions can be ignored, then
a Maxwellian EEDF results only when the electron-atom momentum transfer collision
frequency is independent of electron energy. Realizing that real gases do not have this
kind of collision frequency, Blank[3] asks under what conditions can it be assumed that
positive column transport coefficients and collision frequencies are radially invariant,
similar to conditions found in a drift tube experiment. In agreement with Bernstein
and Holstein[4], Blank concludes this assumption is valid for an energy-dependent mo-
mentum transfer collision frequency when “the electron energy relaxation distance is
small compared with positive column radius.” To put this conclusion in perspective,
consider a neon-like gas with atomic mass of 20 AMU and electron-atom momentum
transfer cross section Qea  of 2.6 Å². Blank’s condition expressed in mathematical form
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is PR >> 0.283 = 21 Torr-cm where P is gas pressure in Torr, R is positive
column radius in cm, M/m is mass ratio of atoms and electrons, and Q ea is expressed
in Å². It is shown later in the present article that the value of PR must be in the
range 50-100 Torr-cm for the assumption of radially invariant transport coefficients
and collision frequencies in a neon positive column to be valid.

Evidently, when PR < 0.283 the Local Model is not valid. It is argued
in [4] that radial effects become important at low pressure, causing electron properties
such as average energy, axial drift velocity, etc., to have significant radial variation. In
this case, transport coefficients and collision frequencies cannot be parametrized by the
axial electric field as in a 0-D Boltzmann calculation, because the axial electric field is
independent of radial position. A positive column having these characteristics is said
to be operating in the nonlocal regime. Radial terms must be taken into account in
solving the Boltzmann equation, meaning that a 1-D Boltzmann solution is required in
the nonlocal regime.

In an important series of papers beginning in 1974, Tsendin[5] extended the posi-
tive column work begun by Bernstein and Holstein and elucidated further by Blank.
Tsendin and followers cite several features of the nonlocal model which are different
from those of the local model: (i) The Boltzmann relation between electron density
n(r), space charge potential φ(r), and electron temperature θ no longer holds, i. e.,

(ii) There is significant radial variation in average energy of
electrons, hence in transport coefficients and collision frequencies; (iii) Likewise, there
can be a significant difference between power input by Joule heating and power dis-
sipation due to collisions in a given volume element of the discharge; (iv) To account
for (iii), a significant amount of heat must flow inward in the electron gas; (v) Wall
potential is much less.

Each of these five different features is corroborated by recently published numerical
solutions of the 1-D Boltzmann equation[6]. Features (ii) and (v) are corroborated by
additional numerical solutions of the 1-D Boltzmann equation[7] and by other numerical
methods, including Monte Carlo (MC) [9], the Nonlocal Approximation[10], and the
Convective Scheme (CS) [11, 12]. Table 1 summarizes the comparison of local model
calculations[8] with these nonlocal methods. The striking difference in wall potential of
the local model compared with that of the nonlocal models strongly suggests that the
traditional local model is inadequate at values of PR on the order of unity and less.
The purpose of this article is to show that traditional local theory can be extended to
the nonlocal regime by adding electron energy balance with radially varying average
energy, achieving much better agreement with Reference [6], for example.

Before turning to the subject of the present article—Nonlocal Moment Method—it
is instructive to review 1-D Boltzmann methods in use today for analyzing the DC pos-
itive column. Methods which do not start with the 1-D Boltzmann equation and the
two-term Legendre expansion are not discussed. Those which do can be divided arbi-
trarily into four categories: (1) Nonlocal Kinetic Method—valid at all PR; (2) Nonlocal
Kinetic Approximation Method—valid at low PR ; (3) Local Moment Method—valid
at high PR , but often used at low P R; (4) Nonlocal Moment Method—valid at all PR.
The Nonlocal Kinetic Method is a first principles method which is valid at all values of
PR for which the 1-D Boltzmann equation based on the two-term Legendre expansion
of the EEDF is valid. The EEDF is denoted by ƒ(r, v) and the two-term expansion is
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Measurable properties of the positive column are calculated directly from ƒ0  and f1. A
prime example of this method was published recently by Uhrlandt & Winkler[6]. The
Nonlocal Kinetic Approximation Method[4, 5] is also based on the two-term Legendre
expansion of the EEDF. However, solution of the 1-D Boltzmann equation for ƒ0  and f1
is avoided by assuming further that ƒ0  and f 1 can be expanded according to the scheme

where total energy and ƒ 00  is given by the O-D Boltzmann equation
obtained from the 1-D Boltzmann equation by radially averaging each term, while the
radial component of f 10 (r, ∈) is taken to be zero. The results are similar to those of
the First Principles Method at low values of P R, but start diverging near PR = 1.
The Local Moment Method, or traditional model, is not based on solution of the 1-
D Boltzmann equation, but on moments of it—moments of either the pristine 1-D
Boltzmann equation or of the equations for ƒ0  and f 1 . A key assumption of this method
is that electrons are in equilibrium with the axial electric field, implying that the energy
imparted to the electrons by a steady, uniform field is exactly balanced by energy lost
in elastic and inelastic collisions with heavy particles in each volume element of the
discharge. The Nonlocal Moment Method is the subject of the present article, and is
discussed in detail in the next section.

Table 1. Comparison of Local Moment Method with Other Methodsa

GAS TYPE

HELIUM
PR = 0.045 Torr-cm
I = 1 0 m A
R = 1 m m
ARGON
PR = 0.85 Torr-cm

= 1 × 10 10  cm – 3

R = 1  c m
ARGON
PR = 0.28 Torr-cm

= 1 × 10 10  cm – 3

R = 1  c m
ARGON
PR = 0.0085 Torr-cm

= 1 × 10 10  cm – 3

R = 1  c m
NEON
PR = 0.1 Torr-cm
I = 10 mA
R = 1 cm

METHOD E z φ w n (0) i Pb REF
(V/cm) (V) (10 10 /cc) (105 /sec)

NONLOCAL c

MC
CS 48 52 6 450 YES [11]
LOCAL0D d 39 84 11 400 YES [8]
NONLOCAL 12 15 NO [10]
MC 12 18 NO [9]
CS 11 17 2.6 1.1 NO [12]
LOCAL0D 15 52 2.5 2.2 YES [8]
NONLOCAL 6 16 NO [10]
MC 6 17 NO [9]
CS 6.3 17 2.2 3 NO [12]
LOCAL0D 7.4 53 2.3 3.5 YES [8]
NONLOCAL 1.4 24 NO [10]
MC 1.4 24 NO [9]
CS 1.4 24 6.7 NO [12]
LOCAL0D 0.9 64 2.1 5.1 YES [8]
NONLOCAL 2.7 41 NO [5]
MC
CS
LOCAL0D 2.5 59 0.33 7.9 YES [8]

a  –φ w  is wall potential relative to axis;
b YES in this column means that Poisson’s equation is solved self-consistently with equations of motion,
etc., to give the radial potential distribution. NO means either that the radial potential distribution
is assumed, or that the plasma (ambipolar) approximation n (r) = n i (r) is assumed.
c NONLOCAL means Nonlocal Kinetic Approximation Method
d LOCAL0D means Local Moment Method with O-D Boltzmann EEDF.
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NONLOCAL MOMENT METHOD

General Remarks

This section deals with extension of the Local Moment Method, or traditional local
model, of the DC positive column to the nonlocal regime where electrons are no longer in
equilibrium with the axial field. The extension is accomplished by including the energy
balance equation obtained by taking the third moment of the 1-D Boltzmann equation
after the the two-term Legendre expansion is made. As with the Local Moment Method,
the EEDF must be assumed in order to evaluate transport coefficients and collision
frequencies appearing in the moment equations. A key assumption of the Nonlocal
Moment Method is that transport coefficients and collision frequencies bear the same
relation to average energy, which is a function of radial position in the nonequilibrium
positive column, as they do in the Local Moment Model—according to a 0-D Boltzmann
solution. This assumption is tantamount to assuming a form for the EEDF which
depends on electron density, average velocity, and average energy in a particular way
that ensures correct values of transport quantities when electrons are in equilibrium
with the electric field[13]. This method differs from the Local Moment Method in
that average energy, transport coefficients, and collision frequencies can vary across
the positive column, even though the axial field does not. This method has several
advantages over the Local Moment Method, not the least of which is validity over the
entire range of PR , just as with the first principles Nonlocal Kinetic Method. It can be
shown that the Nonlocal Moment Method transitions naturally to the Local Moment
Method at high values of P R, so it is straightforward to establish the PR range of
validity of the Local Moment Method. Due to space limitation, however, discussion
of the PR boundary between nonlocal and local regimes is beyond the scope of the
present article.

Equations

Formulation of this problem is based on moments of the Boltzmann equation taken
after the two-term Legendre expansion is made. This procedure leads to the following
equations for the DC positive column with the electron gas characterized by particle
density n, particle current density Γ , average energy u , and heat current density H:

(1)

(2)

(3)

(4)

where D, µ, G, and β are transport coefficients defined by Allis[14], νu  is elastic energy
exchange collision frequency, νx, i is excitation/ionization frequency, and Vx, i is excita-
tion/ionization energy. D and µ are the well-known coefficients of particle diffusion and
mobility, respectively, while Allis[14] calls G and β the coefficients of heat diffusion and
thermoelectricity, respectively. The electric field E has two components—the imposed
axial field Ez , which is independent of r and z , and the radial space charge field Er(r).
The vectors Γ and H each have axial and radial components which vary with radial
position.
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Ions with zero temperature, mobility µi , mass m i, and density n i are characterized
by ion momentum balance:

(5)

where it is assumed that Γ i r = Γ r , reflecting the assumption of a steady state.
Finally, Poisson’s equation relating radial space charge field to space charge density

is:

(6)

where e = 1.6 ×1 0–19 C is electronic charge and ∈ = 8.85 × 10–14 C/V/cm is permittivity.
Equations (1), (2), (5), and (6) form the basis of the Local Model with radially

invariant average energy, transport coefficients, etc. Extension of the Local Model to
the nonlocal regime is accomplished by the addition of (3) and (4) to account for radial
heat flow in the electron gas with radially varying average energy.

The objective of this section is to apply the equations given above to the neon pos-
itive column investigated by Urhlandt & Winkler[6], who applied the Nonlocal Kinetic
Method to a 0.75 Torr neon discharge in a tube of 1.7 cm radius with a current of
10 mA. They showed that such a discharge operates in the nonlocal regime because
power expended in collisions is not equal to the power generated by the external field
in each volume element of the discharge. On axis, for example, they found that Joule
heating amounts to 6.4 mW/cm³, while the power expended in collisions amounts to
16 mW/cm³. To maintain this discharge in the steady state, a significant amount of
energy flow from the outer region of the discharge to the inner region is required.

so that

To reach this objective, the approach taken here is to assume a form for the EEDF
which depends on electron density, average velocity and average energy in a particular
way that ensures correct values of transport quantities when electrons are in equilibrium
with the electric field. In other words, transport coefficients are assumed to be functions
of radially varying average energy, not of radially constant Ez /N. Still another way
of saying this is to say that transport coefficients are parametrized by average energy,
not by E z /N[15]. The parametrization is carried out by solving the 0-D Boltzmann
equation and constructing a table of transport coefficients and collision frequencies
versus average energy, then solving (1)-(6) for the radial variation of the six quantities—

To solve (1)-(6) by a Runge-Kutta technique, it is convenient to eliminate E from
(3) by means of (1) to give

(7)

The first term on the right represents an energy flow due to convection. The second
term on the right represents an energy flow due to diffusion, which can be directed
either inward or outward, depending on the relative magnitudes of β /µ and G / D .
When the EEDF is Maxwellian, due to electron-electron collisions, for example, then
β /µ – G/D = 0, resulting in little or no energy flow due to diffusion or conduction.
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However, in the case of neon when e-e collisions are ignored, it will be seen that the
quantity β /µ – G/D is positive, so. that the energy flow due to diffusion is directed
inward, accounting for apparent nonlocal behavior of the low current neon discharge[16].
The third term on the right represents energy flow due to thermal conduction. The
quantity

is nothing more or less than the thermal conductivity of the electron gas; this quantity
is positive so that energy flow due to thermal conduction is directed outward in the
neon discharge.

The energy balance equation (4) becomes

(8)

when the relation Γ z  = – µ n E z is used to eliminate Γ z . The second term on the
right side of this equation represents a cooling effect due to the radial electron current
density flowing against the radial space charge field. This term is neglected in the
present treatment because it generally is small compared with the term µnE²z . Γ r lies

between µi ni Er and  where the space charge potential φ(r) is related to
E r by

depending on whether ion motion is limited by ion mobility or by ion inertia. In the
mobility-limited case, for example, which is small compared with µnE ² ,

z
except, perhaps, very near the wall.

For clarity, the equation system is repeated here. There are six equations to be
solved for the six quantities

( 9 )

(10)

(11)

(12)

(13)

(14)

Boundary Conditions

Six boundary conditions are needed to specify a unique solution to this set of six
first order equations. By symmetry,

(15)
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These conditions ensure that

and

(18)

However, because the right side of (11) appears to have a singularity at r = 0, conditions
(15) alone do not ensure that

It is necessary to apply l’Hospital’s rule to the right side of (11) and impose the condition
that the numerator of the resulting quantity be zero at r = 0 to ensure zero ion density
gradient on axis[17]. Following this procedure gives

(16)

where subscript “0” means “evaluated at r = 0” and ν i m = e/m i µi  is the ion-neutral
momentum transfer collision frequency.

The remaining two boundary conditions are conditions on Γr  and H r  that must be
satisfied at the wall located at r = R , where R is the discharge tube radius. These
two conditions follow from the assumption that the wall emits neither electrons nor
electron energy back into the discharge. The two conditions are derived from the
Legendre expansion for the EEDF as follows. The total current of electrons going in
the –r direction at the wall is

(17)

where µ is not electron mobility, but cosine of the angle between v and the direction
perpendicular to the wall. If no electrons are emitted by the wall, then the total
particle current directed inward at the wall must be zero. This condition is expressed
mathematically by the equation

Likewise, if no electron energy is emitted by the wall, then the total heat current
directed inward at the wall must be zero. This condition is expressed mathematically
by the equation

(19)

When ƒ0  is Maxwellian, for example, then these conditions become

respectively, where is mean speed. When ƒ0  is not Maxwellian,
then the numerical factors 1/4, 1/3, and 16/3π are different.
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Method of Solution

The set of first order ordinary differential equations (9)-(14) is solved by a Runge-
Kutta technique, subject to the set of boundary conditions (15), (16), (18), and (19).
Therefore, starting values for all six dependent variables must be selected to find a
particular solution. Because boundary conditions (18) and (19) are specified at the
wall where r = R , values of u (0) and (dHr/dr) r =0  must be iterated to find the solution
which satisfies them. The latter quantity is changed by iterating Ez . Therefore, the
solution procedure can be summarized as follows: (i) Set initial values Γr (0) = H r(0) =
Er(0) = 0; (ii) Guess values of n (0), u(0), and E z ; (iii) Solve (9)-(14) out to r = R. If
(18) and (19) are not satisfied, then the procedure is repeated with new values of u(0)
and E z. Finally, if discharge current I , defined by the equation

is not equal to the desired value, then the entire process is repeated with a new value
of n (0).

In the present work, relatively simple expressions for the transport coefficients
µ, D, β , and G as functions of u are found from a 0-D Boltzmann solution for the
EEDF, as described below.

Parametrization of Transport Coefficients

Transport coefficients and inelastic collision frequencies are parametrized by average
energy according to O-D Boltzmann calculations[18]. Because the total cross section for
momentum transfer between electrons and neon atoms varies approximately as the 0.2
power of electron energy in the range 1-20 eV, the 0-D Boltzmann transport coefficients
can be represented approximately by the simple expressions µN = 1.48 × 1 0 23 u–0.7

V – 1cm– 1 sec– 1 , DN = 1.20 × 1 0 23 u0.3  cm–1 sec –1 , β N = 2.20 × 1 023 u0.3   cm –1 sec– 1 ,
and GN = 1.34 × 10 23 u1.3 Vcm – 1 sec– 1, in this energy range. These values are obtained
when the 0-D ƒ0  is substituted in the recipes for transport coefficients given by Allis[14].
Similar expressions for neon transport coefficients with slightly different exponents of
average energy are proposed in Reference [16].

The corresponding inelastic collision frequencies are shown in Table 2. The first
six excited levels of atomic neon are lumped together to get excitation frequency gx .
Density of the lumped excited state is handled in the same way as in Reference [6].
Ionization cross section of the lumped excited state is assumed to be that of Vriens[19].

Table 2. O-D Inelastic Rates.

u ( V ) gx (cm³/sec) g i (cm³/sec)
6.0 4.0E-14 3.0E-22
7.0 5.0E-12 7.0E-17
8.0 4.5E-11 1.2E-12
9.0 1.3E-10 1.1E-11

10.0 2.6E-10 4.4E-11
11.0 4.5E-10 1.0E-10
12.0 7.3E-10 1.8E-10
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Results and Discussion

Comparison with 1s t Principles Nonlocal Kinetic Method. To illustrate, the
neon positive column described by Urhlandt & Winkler[6] is simulated in the present
work. Results corresponding to results shown in their Figures 1, 4, 5a and 5b are shown
in Figures 1, 2, 3, and 4, respectively. Figure 1 shows remarkably good agreement
between calculated space charge potential φ(r) an measured φ( r) which is assumed as
input in Reference [6]. Figure 2 shows radial variation of electron/ion density, average

Figure 1: Radial space charge potential –φ ( r). Upper curve is measured potential assumed by
Uhrlandt & Winkler, while lower curve is calculated output of the present work. Positive column
conditions: 0.75 Torr neon, I = 10 mA, R = 1.7 cm.

energy, radial particle current density, and radial heat current density. These curves
are qualitatively similar to those of Urhlandt & Winkler, but there are quantitative
differences. For example, inward radial heat current density Hr  peaks at about 20 × 1 015

V/cm²/sec, whereas the peak value calculated by Urhlandt & Winkler is about 9 × 1015

V/cm²/sec. Figure 3 shows the radial variation of the ionization source, which includes
stepwise as well as direct ionization. The total ionization source on axis is about 9 × 1014

cm– 3sec – 1, whereas Urhlandt & Winkler found a value of about 4 × 1014 cm–3 sec – 1 .
Figure 4 shows the radial variation of power output per unit volume L (r), consisting
of elastic and inelastic collision losses, and the power input per unit volume P ( r),
consisting of Joule heating. Nonlocal behavior is evident in that these two quantities are
not equal in each volume element of the discharge, even though their volume integrals
are equal. As in previous comparisons, Figure 4 shows different peak values of Joule
heating and collision loss compared with those in Reference [6]. The differences between
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(20)

Figure 2: Radial variation of electron properties: electron density n (r), average energy u (r), radial
current density Γr , radial heat current density H r . Compare with figure 4 of Reference [6]. Positive
column conditions: 0.75 Torr neon, I = 10 mA, R = 1.7 cm.

all of these results and corresponding results of Reference [6] can possibly be made
smaller by using the same cross sections used in Reference [6].

According to (7), radial heat current density Hr  is the sum of three components—
Hconv ,  Hd i f f, and H cond.  The three components are defined as

Figure 5 shows the three components of Hr  plotted versus r. Note that the convective
component is small compared with the other two components, which nearly cancel each
other. Identification of radial heat flow as being composed of three components is not
done in Reference [6], so comparison of these quantities cannot be made here.

Generally speaking, good qualitative agreement between results of the Nonlocal
Moment Method presented here and results of the the first principles Nonlocal Kinetic
Method of Urhlandt & Winkler is demonstrated. Proof is given in Table 3, in which a
comparison of measurable quantities is made for the four methods listed in the previ-
ous section: Method 1—1s t Principles Nonlocal Kinetic Method; Method 2—Nonlocal
Kinetic Approximation Method; Method 3—Local Moment Method; and Method 4—
Nonlocal Moment Method. Entries in the second row of Table 3 are results of Bailey
and Bennett [20]. Entries in the third row of Table 3 are obtained by solving the Local
Moment Model constructed from the Nonlocal Moment Model by setting du/dr = 0
in (10), solving the resulting equation for Hr , substituting this Hr  in (9) to give the
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Figure 3: Radial variation of ionization rates: 1 step = ν g i (r)n(r), 2 step = ν x i(r)n(r), total
based on ionization from 16.62 eV lumped state with parabolic spatial

distribution giving average density equal to 10 –5 times ground state density, similar to Reference [6],
and with ionization cross section recommended by Vriens in Reference [19]. Compare with Figure 5a
of Reference [6]. Positive column conditions: 0.75 Torr neon, I = 10 mA, R = 1.7 cm.

familiar equation

(21)

and solving this equation simultaneously with (11), (12), and (14) while assuming
radially invariant transport coefficients and collision frequencies.

Table 3. Comparison of Calculated Measurable Quantities:a PR = 1.3 Torr-cm.

Meth n(0)
(cm – 3)

u(0) L(0) Ez φw Jw Source
(cm– 3 ) (V) (V/cm 3/sec) (V/cm) (V) (µA/cm2)

1 5.8 × 10 9 2.7 × 109 7.4 1.0 × 10 17 2.17 20.0 9.1 [6]
2 4.5 × 109 1.9 × 109 7.5 1.2 × 10 17 2.53 22.1 7.2 [20]
3 4.4 × 10 9 1.3 × 109 8.2 1.0 × 1017 4.25 58.9 14.6 Present
4 5.6 × 10 9 2.5 × 109 8.5 2.0 × 1017 2.24 19.9 9.2 Present

a E z  and φ(r) are inputs to 1-D Boltzmann solution, but are calculated outputs in other methods;
is wall potential measured relative to positive column axis; Jw  is ion

current density measured at wall.

This table shows that calculated measurable quantities from the Nonlocal Moment
Method agree fairly well with those of the Nonlocal Kinetic Method, while those of the
other two methods do not agree as well. In particular, the axial electric field is almost
twice as large for the Local Moment Method, and the wall potential is about three times
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Figure 4: Radial variation of power input due to Joule heating and power output due to collisional
losses for the Nonlocal Moment Method. Compare with Figure 5b of Reference [6]. Positive column
conditions: 0.75 Torr neon, I = 10 mA, R = 1.7 cm.

larger, as a consequence of average energy u = 8.2 V being constant across the positive
column. As mentioned above, it is possible that closer agreement between results
of Urhlandt & Winkler’s 1-D Boltzmann solution and those of the present Nonlocal
Moment solution can be obtained by using the same cross sections they use.

Collision loss L (r) and Joule heat P (r) , which are equal for the Local Moment
Method, are compared with those for the Nonlocal Moment Method in Figure 6. The
halfwidth of the Local Moment L (r) is significantly larger than that of the Nonlocal
Moment L(r) because u = 8.2 V is constant across the positive column in the Local
Moment calculation, whereas u varies radially in the Nonlocal Moment calculation as
shown in Figure 2.

Other Comparisons. In the previous subsection, the Nonlocal Moment Method
presented in this article is shown to be in good qualitative agreement with the 1s t Prin-
ciples Nonlocal Kinetic Method. Similarities between the Nonlocal Moment Method
formulation and that of other approximate methods have already been cited[13, 15, 16].
The procedure of parametrizing transport coefficients and collision frequencies by aver-
age energy instead of by E z /N in order to apply moment equations to nonequilibrium
problems in gaseous electronics is widely used. An early example applying this proce-
dure to a case of spatial nonequilibrium is [16]. Subsequent examples include studies of
spatial nonequilibrium in the cathode fall[15], temporal nonequilibrium in pulsed fluo-
rescent lamps[21], nonequilibrium motion in time-of-flight experiments[22], and spatial
nonequilibrium near absorbing boundaries[13, 23]. In [16], spatial nonequilibrium in a
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Figure 5: Radial variation of individual components of heat flow. Net heat flow Hr is equal to the
sum H c o n v + H cond + H d i f f . The magnitude of the convective contribution to heat flow is on the
order of 1% of the conductive and diffusive contributions. Positive column conditions: 0.75 Torr neon,
I = 10 mA, R = 1.7 cm.

neon positive column with PR = 1.4 Torr-cm is studied with a formulation that in-
cludes moment equations similar to (9) and (10) and simplifying assumptions of charge
neutrality n = n i  and ƒ0(∈) α exp[–( ∈/ θ)2]. It is suggested in [16] that sometimes
a good approximation is obtained by setting both Γr  and H r given by (1) and (3),
respectively, equal to zero, then eliminating E r from the resulting equations to get

This can be a useful approximation when the momentum transfer collision frequency
νm (∈) is expressible as ν m (ε) α ∈ ( l+1)/2 because transport coefficients µ, D, β , G a r e
then proportional to u j , where j = –(l+1)/2, (1–l)/2, (1–l)/2, (3–l)/2, respectively,
allowing analytic integration of the equation above to give u/u0 , = (n/n 0)δ , where the
constant δ is given by

The 0-D transport coefficients given above in the subsection called Parametrization
of Transport Coefficients correspond to l = 0.4 and δ = 0.4. The relation u /u 0 =
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Figure 6: Radial variation of power input due to Joule heating and power output due to collisional
losses for the Local Moment Method. Dashed curves same as in Figure 4. Positive column conditions:
0.75 Torr neon, I = 10 mA, R = 1.7 cm.

(n/n0 ) 0.4 is satisfied closely by the Nonlocal Moment Method solutions for n (r) and
u(r) shown in Figure 2, even though the approximation Hr  = 0 is not satisfied as closely
as the approximation Γr  = 0, as pointed out in Reference [6]. In contrast, δ = –2 when
l = –3/2, consistent with the conclusion reached in the next section—namely, that u
increases with increasing r when l < –1.

In addition to these similarities, there are some interesting differences. For example,
it is found in [24] that average energy u (r) increases with increasing r in He/Hg and
Ar/Hg plasmas with PR ≈ 1 Torr-cm. This result implies that the second derivative
of u with respect to r is greater than 0 on axis. However, (10) predicts the opposite
for all plasmas with momentum transfer collision frequency νm (∈) that increases with
increasing electron energy ∈ in the energy range of interest, which category includes
He/Hg and Ar/Hg mixtures. By differentiating (10) with respect to r and evaluating
the result at r = 0, the following expression is found:

When the first derivatives appearing in this expression are eliminated by means of
(12-14) and (16) and when ν i /ν im<< 1, then this equation becomes
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The right side of this equation is dominated by the term proportional to the ratio of
electron and ion mobilities—u /u i —which is on the order of 100 for He/Hg and 1000
for Ar/Hg. Therefore, the right side is negative because (β/µ – G /D) > 0 for both gas
mixtures. The reader is reminded that the expression for u" (0) given above is exact
when the exact result for ƒ0 (r, ∈), like the one obtained in Reference [6], for example,
is used to calculate transport coefficients. It is possible that the result found in [24]
is due to the approximate way in which radial effects are included in the Boltzmann
equation.

Mechanism Causing Radial Nonequilibrium. The prevalent speculation about
the mechanism responsible for radial nonequilibrium resulting in excess ionization on
axis in low PR plasmas focuses on the qualitative argument that the radial space
charge field accelerates inward-bound electrons sufficiently to cause higher rates of
inelastic collisions than encountered in radially uniform plasmas at the same value of
Ez /N. If this speculative mechanism be the correct one, then it should occur when
ƒ0 is Maxwellian (ν m( ∈) independent of ∈) or sub-Maxwellian (νm(∈) decreasing with
increasing ∈), as well as when it is super-Maxwellian (νm(∈) increasing with increasing
∈). However, average energy is radially invariant, or nearly so, when ƒ0 is Maxwellian,
and increases with increasing r when ƒ0 is sub-Maxwellian, according to the analysis
of Bernstein and Holstein[4]. Therefore, it appears that the speculation is incorrect.
Instead, the mechanism responsible for radial nonequilibrium in a low PR plasma with
super-Maxwellian ƒ0  appears to be the inward-bound heat diffusion current density
Hdiff , defined in (20), which carries heat from the outer region of the positive column
where Joule heat P( r) is larger than the collision loss L ( r) to the inner region where
P(r) < L (r), thus augmenting Joule heat generated on axis by the external field. When
ƒ0  is sub-Maxwellian, then H d i f f > 0, average energy increases with increasing r, and
there is an ionization deficit on axis, in contradiction to the speculative mechanism
mentioned above.

The direction of H d i f f depends on the quantity β /µ – G/D. For momentum transfer
collision frequency ν m (∈) independent of electron energy ∈ (Maxwellian ƒ0), this quantity
is zero. For νm (∈) increasing with increasing ∈, this quantity is positive, causing inward
heat diffusion and negative gradient in average energy. For ν m (∈) decreasing with
increasing ∈, it is negative, causing outward heat diffusion and positive gradient in
average energy. Each coefficient in this expression is determined primarily by behavior
of bulk electrons, not that of tail electrons. Inward heat flow, for example, causes
additional heating over and above Joule heating, increasing average energy in the central
region of the positive column over and above the corresponding equilibrium value. The
shape of ƒ0  changes accordingly; there are fewer bulk electrons and more tail electrons,
causing excess ionization over and above the corresponding equilibrium value[25]. It
doesn’t take much additional heating to give significantly more ionization. In the neon
case discussed at the beginning of this section, Ez /N = 8.4 Td and u (0) = 8.5 V for
the nonequilibrium positive column analyzed by the Nonlocal Moment Method. For
the same value of E z /N in neon, the value of equilibrium average energy is 7.4 V. The
corresponding difference in one-step ionization frequency is a factor of about 350 and
the difference in excitation frequency is a factor of about 5 for these two values of
average energy. Of course, this argument is qualitative, because it is based on the 0-D
Boltzmann solution for ƒ0 . However, the same general result can be expected when the
exact ƒ0  of [6] is used to calculate transport coefficients and collision frequencies.
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Transition to Local Regime

Transition to the local regime can be investigated by solving (9)-(14) at higher
pressure. The solution of these equations for u( r), L (r), and P (r) is shown in Figure
7 for 50 Torr neon pressure. Average energy is practically constant over most of the
positive column cross section. L(r) and P (r are almost equal at each radial position,)
indicating that the 50 Torr neon positive column can be described adequately by the
Local Model.

Figure 7: Radial variation of average energy, power input due to Joule heating, and power output
due to collisional losses for the Nonlocal Moment Method. The quantity P ( 0)/L(0) – 1 is a measure
of the departure from equilibrium. Positive column conditions: 50 Torr neon, I = 10 mA, R = 1.7 cm.

Comparison of measurable quantities for the Local Moment Method and the Non-
local Moment Method at 50 Torr is shown in Table 4. This table shows. that poor
agreement is obtained for wall potential φw  even at 50 Torr, while there is little differ-
ence in other measurable quantities.

Table 4. Comparison of Calculated Measurable Quantities:a  PR = 85 Torr-cm.

Nonlocal Mom 6.0 × 1010 2.1 × 1010 1.4 1.2 × 10 17 5.3 5.1 0.3

Method n(0) u(0) L(0) E z φw Jw

(cm – 3) (cm – 3) ( V )  ( V / c m 3 /sec) (V/cm) (V) (µA/cm 2)
Local Moment 5.5 × 10 10 2.0 × 1010 1.4 1.0 × 10 17 5.4 14.1 0.4

a Ez and φ(r ) are inputs to 1-D Boltzmann solution, but are calculated outputs in other methods;
is wall potential measured relative to positive column axis; J w is ion

current density measured at wall.
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CONCLUSIONS

It is concluded from this work that positive column behavior at any pressure can
be adequately described by the Nonlocal Moment Method when radial heat flow in the
electron gas is taken into account, and when electron transport coefficients and rele-
vant collision frequencies are assumed to be related to radially varying average energy
according to 0-D Boltzmann calculations. The Nonlocal Moment Method transitions
naturally to the Local Moment Method at sufficiently high values of PR. The P R
range of validity of the four theoretical methods discussed in this article is given in
Table 6. The limits of the four ranges of PR are arbitrary. The question marks mean
that the method can be used in this particular range of PR, but it must be recognized
that results are inaccurate to some degree or another.

Table 5. P Ra Range of Validity

Method ↓ PR < 1 1 < P R < 1 0 10 < P R < 100 100 < P R
1s t Principles Nonlocal Kinetic YES YES YES YES
Nonlocal Kinetic Approximation YES ? NO NO
Local Moment NO NO ? YES
Nonlocal Moment YES YES YES YES

a PR is expressed in units of Torr-cm.
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INTRODUCTION

The nonisothermal plasma of the axially homogeneous, cylindrical positive column
of dc glow discharges represents an attractive example of a spatially bounded inhomoge-
neous plasma. Several attempts have been made in the past1-3 as well as are currently 4-l4

undertaken to improve the microphysical description and thus the understanding of the
significant physical processes occurring in such weakly ionized nonequilibrium plasmas.

These plasmas are usually enclosed by insulated walls. As a consequence a radial
space charge field is established in the column to make the confinement and a stable
operation of the plasma possible.

An important aspect of the microphysical description of the spatially bounded
plasma column is the appropriate treatment of the nonequilibrium kinetics of the active
electron component taking into account the specific plasma conditions. Particularly the
knowledge of the electron velocity distribution function (EVDF) and of various macro-
scopic properties of the electrons, which are obtained by appropriate velocity space
averages over the EVDF, are of significant importance for the quantitative description
of the column plasma.

The occurrence of the space charge field in the column can cause a pronounced
radial alteration of the velocity distribution function and of related macroscopic prop-
erties of the electrons under certain discharge conditions.

Depending on the special objective of the quantitative plasma description often
only a certain part of the electron kinetic quantities is of primary interest. In this
respect the isotropic part 1-9  of the per one electron normalized EVDF or the so-called
energy distribution function (which can be immediately obtained from the isotropic
distribution function) is often of primary interest. This normalized isotropic distri-
bution function already allows to determine several important quantities as the rate
coefficients of various inelastic electron-atom collision processes in the plasma. These
quantities are then used, for example, to determine the densities of different excited
atom and ion species by solving their corresponding particle balance equations.

However a more strict and comprehensive microphysical study of the electron
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kinetics in the plasma of the cylindrical positive column requires a more complete
treatment 1 0 - 1 4  of the EVDF. In particular the additional determination of the anisotropic
part of the EVDF is of large importance. Only the knowledge of the anisotropic distri-
bution function allows a consequent determination of the macroscopic transport of the
electrons and of their energy in radial and axial direction and a consistent treatment
of the macroscopic particle and energy budget of the electrons in the column plasma.

Thus in an appropriate electron kinetic treatment the action of the axial and
radial electric field components, the impact of elastic and various inelastic electron-atom
collisions, the collisional ionization in the plasma volume and the electron transport in
axial direction and to the insulated tube wall has to be taken into account.

This kinetic problem has been treated by quite different techniques. Mainly in
the past and currently too various procedures to solve numerically the complex kinetic
equation or analytically an essentially simplified version of the latter have been de-
veloped. In last years increasingly simulation techniques as Monte Carlo simulation,
particle in cell simulation and convective scheme methods have been adapted.

To avoid the strict solution of this complex kinetic problem different simplifications
of the real kinetics of the electrons have been accepted and adopted in the past for
the microphysical descriptions of the column plasma. In this context especially the
“conventional homogeneous approach” 1, 3, 16 and the “nonlocal approach”15, 2, 5-10, l6

should be mentioned.
To obtain the per one electron normalized isotropic distribution, in the conven-

tional homogeneous approach the impact of the radial space charge field and of the
radial inhomogeneity of the column plasma on the electron kinetics has been neglected.
These simplifications have been assumed in the past, since in the central region of the
plasma column the radial inhomogeneity of the plasma seems to be less pronounced
and the radial electric field becomes small and approaches zero in the column centre
due to the rotational symmetry of the plasma. In this approximation16 the normalized
isotropic distribution is determined by solving instead of the complex inhomogeneous
kinetic equation the much simpler, homogeneous kinetic equation including with respect
to the electric field the sole action of its axial component. To additionally describe the
radial density alteration of the electrons, a separate particle balance of the electrons is
considered. In this balance radial-independent electron transport coefficients and rate
coefficients for the ionization by electron collisions are considered. These coefficients
have been determined by the normalized isotropic distribution obtained from the solu-
tion of the homogeneous kinetic equation according to the conventional homogeneous
approach.

The further approximate treatment of the complex inhomogeneous kinetics of the
electrons by the nonlocal approach15, 2, 6, 7 is based on estimates of the characteristic
lengths for spatial energy relaxation by electron-atom collisions in the column plasma of
low pressure glow discharges. Such estimates show that the energy relaxation length can
be comparable with or even larger than the radius of the discharge column. Therefore
it is assumed that the energetic establishment of the electrons in radial direction due
to collision processes occurs on a similarly large spatial scale and that the collisional
energy dissipation can be approximately taken into account by spatially averaging the
inhomogeneous kinetic equation in an appropriate way. Because of the expected weak
energetic dissipation in electron-atom collisions it is supposed that the movement of
the electrons in the radial electric field and their scattering mainly in elastic collisions
take place without remarkable energy loss in collisions and these are the dominant
processes which determine the radial alteration of the isotropic distribution in the
column plasma. Then the isotropic distribution should essentially depend on the sum
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of the kinetic energy and the potential energy of the electrons in the radial electric field,
i.e. on the so-called total energy of the electrons, and not additionally on the radial
coordinate. Based on these assumptions15, 2, 6, 7, 16 the complex inhomogeneous kinetic
equation is integrated with respect to the radial coordinate at fixed total energy. In
this way again a much simpler kinetic equation however with respect to the space of
the total energy of the electrons is obtained. The structure of this kinetic equation is
very similar to the homogeneous kinetic equation used in the conventional homogeneous
approach. By the nonlocal approach the isotropic distribution with the inclusion of the
electron density is obtained. The transformation back from the total to the kinetic
energy yields a radial alteration of the isotropic distribution from which the per one
electron normalized isotropic distribution can additionally be calculated.

Due to the largely contrary assumptions with respect to the energy dissipation by
electron-atom collisions, in these two cases of the simplified treatment of the inhomo-
geneous kinetics of the electrons remarkably different radial structures for example of
the isotropic or energy distribution and of the relevant transport and rate coefficients
of the electrons are obtained. But in real column plasmas different situations some-
where between these two limits are to expect depending particularly on the efficiency
of the collisional energy dissipation of the electrons in the plasmas considered. This
dissipation is mainly determined by the density of the ground state atoms and by the
magnitude and the energy thresholds of the corresponding collision cross sections of the
various electron-atom collision processes in the column plasma under consideration.

However the electron kinetics in the dc column plasma is controlled, in any case,
by the above-mentioned complex kinetic problem and the describing inhomogeneous
kinetic equation 4, 5, 10-14, 16, 17 whose solution should give the real radial alteration of
the EVDF and of the relevant velocity space averaged macroscopic properties of the
electrons in the column.

Recently an approach 12, 13, 17 for the numerical solution of this complex electron
kinetic equation has been developed which allows in addition to the isotropic distri-
bution especially the determination of the radial anisotropic distribution and thus the
analysis of radial particle and energy transport of the electrons as well as of their ra-
dially resolved particle and energy balance. Using this approach various studies of
the radially dependent kinetics of the electrons have been performed for given axial
electric field and radial course of the radial electric field. Both field components have
been obtained from measurements under various plasma conditions in different column
plasmas.

In the following main aspects of this approach and results on the radial alteration
of electron kinetic quantities in various column plasmas obtained by this approach are
presented and discussed.

MAIN ASPECTS OF THE KINETIC STUDIES

The basic equation to study the kinetics of the electrons in nonuniform plasma
regions is the inhomogeneous, time-independent Boltzmann equation of the electrons

(1)

which determines the velocity distribution function ƒ( ) of the electrons with
being the number of electrons in the interval at the position ( ) in

the velocity and coordinate space.
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This equation includes by appropriate collision integrals the action of elastic (C e l
l ),

various types (k) of exciting (Clk
ex ) and ionizing (Ci

io) electron-atom collision processes
with different atomic species (l) and the impact of a nonuniform electric field
where –e 0 and m denote the charge and mass of the electrons. Further less important
terms describing the electron collisions of second kind and the electron gain due to
ionization in co1lisions between excited atoms, i.e. the chemo-ionization, have been
neglected in the kinetic equation for brevity reasons.

As in steady state and in time-dependent plasma conditions approximate solutions
of the kinetic equation can be obtained by using orthogonal expansions of the velocity
distribution function with respect to the directions of the electron velocity in
the kinetic equation. Depending on the structure of the electric field, of the expected
inhomogeneity in the plasma and of the imposed boundary conditions for the velocity
distribution a reduced expansion with respect to one angle coordinate only or a more
complex expansion with respect to both angle coordinates of has to be used.

The electric field in the axially homogeneous column plasma is a superposition of
the constant axial electric field and of the radially varying radial space charge field, i.e.

Thus the direction of the total electric field is different
from the radial direction in which the inhomogeneity of the plasma column occurs.
Therefore an expansion of the velocity distribution in spherical harmonics with respect
to both angle coordinates of has to be used.

Because of the cylindrical symmetry of the total electric field in the column plasma
in the lowest approximation order of this expansion, the so-called two term approxim-
ation, the velocity distribution can be represented by the expression

( 2 )

with being the radial and axial component and the magnitude of and
U = m v 2 /2 the kinetic energy. This two term approximation includes, in addition to
the isotropic distribution ƒ0 (U, r), a radial component ƒr (U, r) and an axial component
ƒz (U, r) of the vectorial anisotropic distribution. Particularly the radial anisotropic
distribution allows to describe the particle and energy current density of the electrons
in radial direction and thus to reveal significant aspects of the electron confinement by
the radial space charge field. In order to describe in an appropriate way the electron
loss to the tube wall, the electron generation in the column plasma by various ioniza-
tion processes, in electron collisions with atoms in the ground state and excited states
and additionally in collisions between excited atoms, has to be included in the kinetic
equation.

When substituting the expansion (2) into the kinetic equation (1) finally the partial
differential equation system13, 17
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(3)

for the isotropic part ƒ0(U, r) and the radial and axial anisotropic part ƒr (U, r ) and
ƒz (U, r ) of the velocity distribution with the coeff icient

is obtained. Here
are and the cross sections for momentum transfer in elastic (d )
collisions and the total cross sections for the exciting (ex) and ionizing (io) collisions
with various atomic states (l), i.e. with atoms in the ground state and in excited
states, of density Nl (r) and mass M l . The quantities and denote the corre-
sponding energy losses in the inelastic collision processes. The first equation of this
system includes terms with the shifted energy arguments U + and 2 U + due
to the different kinds of inelastic collision processes. The special form of the shifted
arguments related to the ionization terms is a consequence of the assumption that the
remaining kinetic energy has been shared in equal parts among both electrons occurring
after each ionizing collision.

If the spatial evolution of the isotropic distribution ƒ0 (U, r) and both components
ƒr(U, r) and ƒz (U, r) of the anisotropic distribution have been determined all significant
macroscopic quantities of the electrons can be calculated by appropriate energy space
averaging over these distribution functions.

To give some examples, the electron density n (r), the mean energy density um (r)
(i.e. the mean electron energy times density), the particle and energy current densities

and and their respective radial and axial components, the energy loss rates
and L l

i o (r) by elastic collisions and by the various exciting and ionizing
collision processes and the particle gain rate Gl (r) by ionizing collisions with the gas
component l are represented by the averages 13, 17

(4)

Some information about the physics involved in the kinetic treatment can already
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be obtained when considering the macroscopic balance equations13, 17 of the electrons
which are consistent to system (3). These are, in particular, the particle and energy
balance

(5)

(6)

All macroscopic quantities occurring in these balances have already been presented
in (4). According to the particle balance the evolution of the radial electron particle
current density jr(r) is directly determined by the radial behaviour of total electron
gain G (r) in ionizing collisions. The energy balance says that the difference between
the two energy transfer rates Pr (r ) and Pz(r ) due to the action of the radial and the
axial field components Er (r ) and E z  and the energy losses Le l(r ) and L in ( r) due to
elastic and inelastic collisions is compensated for by the spatial evolution of the radial
energy current density jer(r).

Thus under plasma conditions with largely local energy relaxation an almost com-
plete compensation of the energy transfer rates due to the action of both field compon-
ents by the total loss in all collision processes should occur at each radial position in
the energy balance equation and only a small radial energy current density should be
established.

A suitable form of the equation system (3) for its numerical solution is obtained
when replacing the kinetic energy U by the total energy ∈ according to U(ε , r) =
∈ – W (r ) where W (r) = is the potential energy of the electrons in the
radial electric field. This transformation and the elimination of the both anisotropic
distributions leads to the elliptic differential equation13, 17

(7)

for the isotropic distribution where here and henceforth the abbre-
viation is used. This elliptic equation includes additional
terms with shifted energy arguments due to the exciting and ionizing collisions.

The corresponding equations 13, 17 for the transformed radial and axial anisotropic
distribution and are

(8)
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The solution of the elliptic equation (7) has to be found on a solution area whose parts
of the boundary curve partly depend on the course of the potential energy W(r ) of the
electrons in the radial space charge field. If the radial course W(r) of the potential
energy is known, for example from corresponding measurements, the solution area of
the elliptic problem can be fixed. Fig. 1 illustrates for a column plasma with the radius
rw the typical shape of this area. The nonrectangular part ∈ = W (r) of the boundary
belongs to zero kinetic energy of the electrons.

Figure 1. The solution area and the boundary conditions of the elliptic mixed boundary value
problem.

Appropriate boundary conditions for the isotropic distribution on all parts of the
boundary curve are needed to solve the elliptic problem. Fig. 1 presents additionally the
mixed boundary conditions which have been used in the solution procedure. Some of
the conditions are formulated by means of the radial anisotropic distribution .
By using the expression (8), the radial anisotropic distribution can immediately be
substituted by the isotropic distribution. Detailed explanations of the various boundary
conditions can be found in 13, 12, 17. However the boundary condition related to the
surface of the column plasma will be briefly considered here.

The consistent particle balance (5) requires that all electrons generated by various
ionizing collision processes in the cylindrical plasma volume have to be continuously
transported to the tube wall in order to maintain a time-independent state. This
naturally enforces the occurrence of the radial electron particle current density jr (r). As
shown in (4), the current density jr (r) is described by an energy space average over the
radial anisotropic distribution ƒr (U, r ) and the latter is coupled via the second equation
of (3) or the first equation of (8) to the isotropic distribution. In order to determine
the physically relevant solution of (7), the boundary value g( U) = A e x p (aU2 ) with
a < 0 for the radial anisotropic distribution ƒr (U, r W) has been adopted, where a is an
appropriate constant. This boundary value describes up to the factor A the energetic
distribution of the electron particle current density jr (r W) on the tube wall. The
constant a in the boundary value allows to vary the contributions from different parts
of the energy space of the electrons to their radial particle current density. However, due
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to the radial confinement of the electrons by the space charge field, i.e. the reduction
of the electron radial movement to the wall by the action of the radial field, it is to
expect that the radial electron current close to the plasma surface is carried mainly
by the low energy electrons and thus mainly by the low energy part of the anisotropic
distribution. For given axial and radial electric field components, related to selected
values of the outer discharge parameters, i.e. the gas pressure, the tube radius and the
axial discharge current, the value of the macroscopic electron particle current density
jr (rW ) to the tube wall can no longer be freely chosen. Therefore, the factor A is used
to adjust the current density onto the wall to the axial discharge current. Further
details on this adjustment procedure involved in the solution approach can be found
in13, 17 .

But the choice of an appropriate boundary condition for the kinetic problem on
the plasma surface remains still an open question and presents currently an object of
intensive studies 10, 14.

For the numerical solution of the mixed boundary value problem a nonequidistant
rectangle grid is used to derive the discrete representation of the elliptic equation (7) and
of the mixed boundary conditions given in Fig. 1 by using a finite difference approach.
The discretization of the boundary conditions has been made at grid points on the
boundary curves avoiding auxiliary grid points outside of the solution area.

The elliptic equation (7) contains in various collision terms additionally to the
density of the ground state atoms the radially varying densities of the atoms in the most
populated excited states, i.e. those in the lowest metastable and resonance states. These
circumstances enforce to formulate appropriate particle balances for these metastable
and resonance atoms too and to determine the self-consistent solution of the elliptic
problem and of these particle balances. The self-consistent solution has been obtained
using an iterative approach.

The accurate numerical solution of the elliptic problem for specific plasma con-
ditions has been proven to be a laborious task. Using measured values of the axial
field strength Ez  and of the radial course W (r) of the potential energy for dc plasma
columns as input parameters of the kinetic problem, the radial alteration of the velo-
city distribution and of the various macroscopic quantities of the electrons in different
column plasma has been calculated by solving the elliptic mixed boundary value prob-
lem together with the particle balances of the most populated excited states.

RADIAL STRUCTURE OF ELECTRON KINETIC QUANTITIES

To illustrate typical aspects of the radial alteration of various kinetic quantities,
results of the kinetic studies related to the cylindrical column plasma of glow discharges
in the two inert gases neon and krypton and in the He/Xc-mixture with 2 per cent Xe
admixture are presented and discussed in the following. With respect to the discharge
parameters, i.e. the column radius rW , the gas pressure p 0 at 0° C and the axial
discharge current I z, the parameter sets rW  = 1.7 cm, p0  = 75 Pa and I z  = 10 mA
for neon, rW = 2.96 cm, p 0  = 580 Pa and Iz  = 0.75 mA for krypton and the further
two sets r W = 2.96 cm, p 0 = 200 Pa, I z  = 8.5 mA and rW  = 2.96 cm, p 0 = 600 Pa,
I z  = 20 mA for the He/Xc-mixture, i.e. one discharge condition for each inert gas and
two discharge conditions for the mixture, have been selected.

The course of the potential energy W (r) of the electrons in the space charge field
Er (r) and the axial field strength E z , as obtained from probe measurements 16, 18 i n
the column plasmas under the specified discharge conditions, are presented for neon,
krypton and the He/Xc-mixture in Figs. 2a-c. As mentioned above these quantities
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have been used to solve the corresponding elliptic problems. As to be seen from these
figures the potential energy on the wall W (rW) amounts to 21.0 and 14.0 eV in the
neon and krypton column and 12.0 and 11.5 eV in the mixture at 200 and 600 Pa,
respectively.

Figure 2. Radial potential energy W (r) and the axial field strength Ez  obtained from corresponding
measurements and the parameter a used in the boundary value g( U) for four plasma conditions.

For the first two plasma conditions Figs. 3a,b show the calculated radial alteration
of the normalized isotropic distribution ƒ0 (U, r)/ n(r), i.e. the isotropic distribution ad-
ditionally normalized on the electron density n( r) at each radial position. The isotropic
distributions are presented in their natural (U, r)–space. From Fig. 3a a pronounced
radial alteration of the normalized isotropic distribution by several orders of mag-
nitude at higher kinetic energies can be observed in the neon plasma. However, Fig.
3b indicates that a much less pronounced radial alteration of the normalized isotropic
distribution is obtained when solving the kinetic equation (7) for the krypton plasma.
As illustrated by this figure a slight alteration only of ƒ0 (U, r )/n(r) occurs when going,
for example, from the column centre to the radial position r = 0.77·rW . Already these
two examples make obvious that quite different situations with respect to the radial
alteration of the normalized isotropic distribution are found in different plasmas and
discharge conditions.

Let us consider the radial alteration of both these isotropic distributions, obtained
by solving the complex kinetic problem, under the point of view of the above-mentioned
simplified approaches for the determination of the isotropic distribution, i.e. the con-
ventional homogeneous approach and the nonlocal approach.

According to the conventional homogeneous approach, often used in the past,
the normalized isotropic distribution ƒ0 (U, r)/n(r) is approximately determined by the
corresponding homogeneous kinetic equation. By this approach then a per one electron
normalized isotropic distribution is obtained which naturally does not depend on the
radial coordinate r. Thus it can be concluded that this simplified approach is in obvious
contradiction with the behaviour of ƒ0 (U, r)/n(r) found for the neon plasma from the
kinetic equation (7), however yields to a certain extent an approximation for the real
normalized isotropic distribution in the krypton plasma.
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Figure 3. Isotropic distribution ƒ0 (U, r)/n(r) normalized on the
electron density n (r) at various radial positions for the neon (a) and for
the krypton (b) column plasma.

In order to evaluate the validity of the basic assumption used when applying the
nonlocal approach, for the same plasma conditions as considered in Figs. 3a,b the radial
alteration of the corresponding isotropic distributions (ε, r ) related to the (ε, r )–space
is shown in Figs. 4a,b. The respective continuation of the curves by vertical lines marks
the position of zero kinetic energy on the total energy scale for different radial positions.
Now with respect to the representation by the total energy ε an almost reverse radial
alteration of the isotropic distribution compared with that in Figs. 3a,b is obtained.
As outlined above the basic assumption of the nonlocal approach is that the isotropic
distribution (ε,r) is a function of the total energy ε only, i.e. its dependence on the
radial coordinate r can be neglected. A consideration of Figs. 4a,b makes obvious that
this simplified approach is now in clear contradiction with the behaviour of (ε , r )
found for the krypton plasma, however yields to a certain extent an approximation for
the real isotropic distribution in the neon plasma. But even in the latter case radial
alterations of almost one order of magnitude remain in the isotropic distribution (ε, r )
at higher total energies ε.
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Figure 4. Isotropic distribution (ε, r ) at various radial positions for
the neon (a) and for the krypton (b) column plasma. The vertical lines
indicate the starting points of (ε , r ), i.e., the ε value related to zero
kinetic energy.

On the basis of the consistent treatment of the radially varying electron kinetics in
addition to the isotropic distribution ƒ0(U, r ) the determination of the radial and axial
anisotropic distribution ƒr (U, r) and ƒz (U,  r) becomes possible.

Because of the complete neglect of the impact of the radial plasma structure in the
frame of the conventional homogeneous approach there is naturally no any way to de-
termine the radial anisotropic distribution. The latter statement holds too with respect
to the nonlocal approach since, due to the first equation of (8) and the above-mentioned
neglect of the radial dependence of (ε , r), the radial anisotropic distribution formally
vanishes. As an immediate consequence the radial transport of the electrons and that
of their kinetic energy can not be treated and described by both these simplified ap-
proaches. As a further consequence the electron production by ionization in the plasma
volume can not be taken into account in the corresponding simplified kinetic equations
otherwise an obvious inconsistency would arise. An attempt has been made recently 10

to overcome this inconsistency to a certain extent by inserting an electron loss term
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in the kinetic equation of the nonlocal approach which represents the radial upflux of
electrons to the tube wall. However, this treatment is incompatible with the vanishing
radial transport of the electrons.

Related to the first three of the four parameter sets given above the energy de-
pendence of the isotropic distribution ƒ0 (U, r ) and of both anisotropic distributions
ƒr (U, r ) and ƒz (U, r ) is shown in Figs. 5a-c at the same two values 0.2 and 0.77 of
the normalized radial position r/r W . From these figures a relatively small magnitude
of the radial anisotropic distribution compared with the isotropic as well as the axial
anisotropic distribution can be seen for all three discharge conditions and at both radial
positions. This means there is no any indication that a large anisotropy of the velocity
distribution is established in the plasma and that the validity of the two term approx-
imation is lost somewhere in the plasma. Furthermore, in all three cases and at both
radial positions, i.e. in the central region and in the surrounding of the discharge wall,
always two branches with positive sign at lower and negative sign at higher electron
energies occur in the radial anisotropic distribution. This typical behaviour is a distinct
reflection of the radial confinement of the electrons by the space charge field.

With respect to the radial alteration of the three distribution components and
particularly to the two branches occurring in the radial anisotropic distribution, shown
in Figs. 5a-c, it should be underlined that this behaviour is a direct consequence of the
interplay between the action of the axial and radial electric field and that of the various
collision processes and is not artificially enforced by the choice of the boundary value
g(U) for the radial anisotropic distribution. This has been checked, for example, by
repeated calculation of the velocity distribution for the same plasma conditions, however
for different values of the parameter a involved in the above-given boundary value
g(U). An alteration of a in certain limits causes a small alteration of the distribution
components however only in the immediate neighbourhood of the tube wall.

To give a further indication, that the specific course of the radial anisotropic dis-
tribution is lastly a consequence of the electron confinement by the space charge field
and does not sensitively depend on the choice of the boundary value on the plasma
surface, the solution of the kinetic problem has been repeated without the inclusion of
ionizing collisions in the kinetic equation. The consistent particle balance (5) immedi-
ately shows in this case, that the radial particle current density vanishes at each radial
position and thus on the plasma surface too. Therefore, the boundary value g(U) has
to be replaced by zero and no electron transport onto the wall takes place. However in
this case only small modifications of the results are obtained and the typical behaviour
of the radial anisotropic distribution remains. This result is illustrated by Fig. 6 for
the neon plasma. At one radial position the isotropic distribution as well as the radial
anisotropic distribution are compared for the cases with and without inclusion of the
ionization processes in the kinetic equation.

As outlined above and already presented in (4), the radial and axial anisotropic
distribution determine by appropriate energy space averages the radial and axial com-
ponents j r , j z , jer and j e z of the particle and energy current density and of the
electrons. The radial alteration of both components of the particle and energy current
density are shown in Figs. 7a,b for neon and in Figs. 7c,d for krypton and the He/Xe-
mixture at 200 Pa. The comparison of both components of the particle current density
shows that the radial current density jr is in all three column plasmas by about two
orders of magnitude smaller than the axial current density jz . The change of the sign
in the radial anisotropic distribution with increasing kinetic energy, as illustrated for
the same discharge conditions in Figs. 5a-c, leads always to a remarkable compensa-
tion of the positive and negative contributions to the integral value in the calculation
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Figure 5. Isotropic distribution ƒ0 (U, r), radial and axial anisotropic
distribution ƒr (U, r) and ƒz (U, r) at two radial positions for neon (a),
krypton (b), and for the He/Xe-mixture (c).

of j r and j e r from ƒr (U, r). This is lastly a consequence of the fact that always the
two contributions to the radial particle current density according to jr  = j rd + j re ,
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Figure 6. Isotropic distribution ƒ0 (U, r ) and radial anisotropic
distribution ƒr (U, r ) at the radial position r =0.77 rw  for neon in
comparison with the corresponding distribution function ƒ0

o (U, r ) and
ƒr

o (U, r ) determined without the inclusion of ionizing collisions in the
kinetic equation.

namely the diffusion part and the field driven

part , compensate each other to a large
extent. Their representations follow immediately from (3) and (4). These parts are ad-
ditionally shown for the neon plasma in Fig. 7a. In the same way the diffusion and the
field driven part j erd  and j ere of the radial energy current density jer  can be introduced
which are additionally presented for the neon plasma in Fig. 7b. However a detailed
comparison of the radial particle with the radial energy current density indicates for
each of the plasmas considered that a lesser compensation of the respective diffusion
and field driven part occurs with respect to the energy current density. As Figs. 7a-d
clearly show, an unexpectedly large radial energy current compared with the radial
particle current of the electrons occurs particularly in the neon and krypton plasma
and against the expectation the radial energy current flows in all plasmas from the
outer column region to the column centre. Thus a larger radial transport of electron
energy is required to establish a stable operation of the column plasmas.

Let us further discuss the radial alterations occurring with respect to the energy
budget of the electrons in the column plasmas considered. This can be made by consid-
ering the various contributions to the energy balance equation (6), i.e. the alteration
of the energy transfer rates P z  and P r caused by the action of the field components
Ez  and E r , of the energy losses L e l and L in by elastic and inelastic collisions and of
the energy source or sink represented by the divergence of the radial energy current
density div . For all four plasma conditions specified above, i.e. for
neon, krypton and the He/Xe-mixture at 200 and 600 Pa, Figs. 8a-d show the radial
alterations of all contributions to the energy balance equation (6) of the electrons.

From Fig. 8a, related to the plasma in neon, it becomes obvious that in the central
region of the column plasma the total energy loss in collisions L ≡ Le l + L i n is about
two times the energy gain from the axial field. However outside the central region
increasingly the reverse situation occurs. The large difference between the energy gain
Pz  and the energy loss L at each radial position is compensated for by a large divergence
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Figure 7. Radial alteration of the radial and axial electron particle current density jr  and j z , of the
radial and axial energy current density je r and j e z for neon (a and b), krypton (c) and for
He/Xe-mixture (d). The diffusion part jr d and the field driven part j r e of the radial particle current
density and the analogous parts je r d and jere of the radial energy current density are additionally
presented for neon (a and b).

of the radial energy current density of the electrons. The very small contribution
Pr of the radial space charge field to the energy balance represents a small cooling of
the electrons in the space charge field.

The behaviour of the energy balance terms in the krypton plasma, which is presen-
ted in Fig. 8b, is very similar to that in the neon plasma. However the total energy
loss in collisions L exceeds now in the central column region the energy input Pz  from
the axial field by a factor of about 1.5, i.e. by a somewhat reduced factor compared to
neon.
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Figure 8. Important terms of the local electron energy balance for neon (a), krypton (b) and for the
He/Xe-mixture at 200 and 600 Pa (c and d): divergence of the radial energy current density ,
axial heating Pz , radial cooling P r, energy loss in elastic and inelastic electron collisions L e l a n d  L i n.

The consideration of the results on the spatially resolved energy balance related to
the neon and krypton plasma clearly indicates that particularly in the central column
region the largest deviations between the local gain and loss of energy occur and a
large energy current from the outer to the inner column region is required to satisfy the
consistent energy balance. This underlines once more that the various processes inside
the plasma mainly determine this somewhat unexpected behaviour of the electrons and
that the latter does not be artificially caused by the particular choice made above of
the boundary value g (U) for the radial anisotropic distribution.

However the further representations of the energy balance terms in Figs. 8c,d
related to the He/Xe-mixture indicate that under these discharge conditions remarkably
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smaller differences between the total energy loss in collisions and the energy gain from
the axial electric field occur in almost the entire column plasma. In the case of Fig. 8d,
related to the higher pressure of 600 Pa, finally an almost local compensation of the
energy loss in collisions L and the energy input Pz  from Ez  is found, and the transport
of energy by the radial energy current density is of less importance.

To give some informations concerning the particle budget of the electrons, Figs.
9a,b present, for the column plasma in neon and in the He/Xe-mixture at 200 Pa
the radial alteration of the various contributions to the consistent particle balance
(5). According to this balance the sum of the electron gain due to the ionization by
electron collisions with ground state atoms (G0 ) and with excited atoms ( Gex ) and
by the chemo-ionization (Gch ) of excited atoms is compensated for by the divergence
of the radial electron particle current density div( ). It can be observed that the
ionization of excited atoms remarkably contributes to the electron production and this
is particularly true for the He/Xe-mixture. In this figure the contribution Gch  of the
chemo-ionization is explicitly presented due to its larger impact on the electron particle
balance.

Figure 9. Terms of the local electron particle balance for neon (a) and for the He/Xe-mixture at
200 Pa (b): divergence of the radial current density electron production rates due to ionization
from the ground state G 0  and excited states Gex by electron collisions, and due to chemo-ionization
Gc h .

CONCLUDING REMARKS

The various results reported above on the radial alteration of electron kinetic quan-
tities in the dc column plasma of neon, krypton and He/Xe-mixtures have distinctly
illustrated that quite different situations with respect to the radial alteration of the
isotropic distribution, the radial energy current density and the dominant processes in
the energy balance of the electrons can be established.

Depending on the specific plasma conditions considered, the radial behaviour of
electron kinetic quantities can be found somewhere between two limiting cases, for
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example, between a pronounced radial alteration and an almost radial-independent be-
haviour of the isotropic distribution normalized on the local electron density or between
a pronouncedly nonlocal and an almost local behaviour of the dominant exchange pro-
cesses occurring in the energy balance of the electrons.

In particular, the results related to the krypton plasma have clearly demonstrated
that very complex situations with respect to the kinetics can occur. In this case an
almost radial-independent normalized isotropic distribution but still a pronouncedly
nonlocal behaviour in the energy balance is found.

It has been further seen that some kinetic properties obtained for the different
plasma situations are largely in disagreement with basic assumptions of simplified treat-
ments of the kinetic problem as the conventional homogeneous approach or the nonlocal
approach.
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INTRODUCTION

Now the kinetic approach is actively developing for description of various spatially
inhomogeneous structures of gas discharge plasmas. The modern state of the problem
is reflected in the reviews1,2 where the convincing argumentation is given for inapplica-
bility of fluid approach and for necessity of successive kinetic analysis for description of
such classical plasma objects as, for instance, positive column of a discharge at low pres-
sure and small currents, for cathode and anode regions of glow discharge, for striations,
etc.

In the present paper the results of the last works of the authors on experimental
and theoretical studies of homogeneous positive column and of anode region of inert gas
discharges, as well as of S- and P-striations in the column and near anode are general-
izing. The considerable difference between the results of kinetic and fluid approaches
is demonstrated on concrete examples.

POSITIVE COLUMN OF NONSTRATIFIED INERT GAS DISCHARGE

For the first time the problem about determination of electron distribution func-
tion in radially inhomogeneous plasma of the positive column has been formulated
by Bernstein and Holstein³ and later independently from them by Tsendin4 . In the
papers 5,6 there have been set up the problem on self-consistent description of the posi-
tive column of a discharge on the basis of joint solution of Boltzmann kinetic equation
for electrons and of equation for field which is the ion motion equation. Most details in
the self-consistent kinetic theory of the positive column on example of neon discharge
have been discussed in the papers 7,8 . The self-consistent kinetic description consists
in finding of the potential profile in which the distribution function has to be formed
providing ionization rate, electron density and losses on the wall which are required for
maintaining of this field and allowing the current flow through the gas.

The considerable differences in description of discharges at low and high pressures
take place. At high pressures, when electron energy relaxation length is shorter than the
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tube radius, the electrons are accelerated in longitudinal electric field without noticeable
diffusion displacements in radial direction. This permit to neglect the radial gradient
of distribution function in kinetic equation. The motion of electrons in radial direction
does not influence the distribution function formation with the exception of a small
region near the tube walls, the length of which is about the energy relaxation length
(local approximation). At low pressures, when the energy relaxation length exceeds
the tube radius, the radial diffusive motion of electrons produces the dominant effect
on distribution function, and here its form is determined by whole radial profile of
potential (nonlocal approximation).

The potential fields of the positive column, where the motion of electrons will be
analyzed are schematically shown in Fig.1.

Figure 1: a) Potential field e Φ(x, r ) in which the motion of electrons is analyzed. The plane
∈ = const corresponds to electron motion without energy loss in collisions. Inelastic impacts lead to
the jump of electrons with energies > ε 1 from the plane ∈ = const on the plane ∈ – ε 1 = const.
b) Potential field e (r) at x = const. The curves are determined by the equalities

The numbers 1, 2, 3 correspond to elastic,
inelastic and direct ionization regions respectively.

If in electron energy balance the inelastic losses dominate (low pressures) and the
electron-electron interactions are negligibly small (small currents), electrons move with
conservation of their total energy is kinetic and

is potential energies). On the plane ∈ = const the electrons are accelerating by the
action of the axial field E (diffusion along x axis) and diffusing in radial direction by the
action of radial gradients. As electron kinetic energy exceeds the excitation threshold ε1

the electrons can undergo inelastic collision and jump on the plane ∈–ε 1  = const. In the
presence of energy loss in elastic collisions and of energy exchange in electron-electron
collisions the components of flux in ∈ direction appear. The surface corresponding to
electron motion ceases to be a plane, it becomes bent in x and r directions.

For the solution of self-consistent problem it is convenient to write the Boltzmann

kinetic equation for isotropic ƒ0  and anisotropic components of distribution function
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on the plane x = const in variables ε , r (Fig. 1b).
The complete system of equations has a form

(2)

(4)

(1)

(3)

Here ν (v) is the transport frequency of elastic impacts, ν *(v) is the summarized fre-
quency of inelastic impacts, bi is the ion mobility, j i  is the ion flux in radial direction,
n i(ϕ(r )) and I (ϕ( r)) are ion density and ionization rate, and are the unit vectors
in axial and radial directions. The form of Eqs. (1), (2) shows the approximations done:
the momentum relaxation considers elastic impacts only and expansion of distribution
function is restricted to two terms. The last term in Eq. (1) describes the appearance
of slow electrons which have lost energy in inelastic collisions (the transitions inside
the cylindrical region (Fig. 1a)). We can unite the low excitation levels of inert gases in
one effective level with excitation potential ε1 . Then the velocities v, v' as well as the
energies ε, ε ' are connected by the relations

The kinetic equation (1) should be supplemented by the boundary conditions which can
be written in the different ways depending on required accuracy of expectable results.
One of the simplest boundary conditions for solution of self-consistent problem are as
following

These boundary conditions correspond to “black-wall” approximation at energies
equal to wall potential ε = ε w . The electrons with energies ε > εw leave fast to the
walls, and those with energies ε < ε w are trapped in radial direction by the field of
space charge (r ). Under this approximation the electron losses on the wall can be
obtained as a flux in energy space at ε = ε w . Trapped electrons determine electron
density and provide the flowing of axial discharge current.

More precise boundary conditions can be set in the form

(5)

These conditions correspond to the presence of two almost independent groups of elec-
trons - trapped and free ones with energies ε > ε w . The free electrons under this
approximation leave to the walls in regime of unipolar diffusion. The lack of such
boundary conditions consists of the discontinuity of the derivative ∂ƒ0 / ∂r at ε = ε w
The boundary conditions with continuous derivatives consider the presence of loss cone
in the near wall region9 .

To obtain the distribution function it is necessary to know the radial potential
profile. Under assumption of quasineutral plasma (n i  ≈ n e ) it is determined by the
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equation (3) where the ionization rate and the electron density should be expressed in
terms of the distribution function

(7)

(8)

(9)

(6)

The ionization term under conditions of low-pressure discharge combines direct Id ( ϕ)
and stepwise I s(ϕ) ionization and ionization in collisions of metastable and resonance
atoms I m (ϕ) (chemoionization). Averaging the direct ionization frequency νi  over dis-
tribution function we obtain the direct ionization rate as a function of potential, εi  is
ionization potential

The four lower metastable and resonance levels of an inert gas atom contribute
to stepwise and chemoionizations. The explicit calculation of their rates requires the
analysis of the balance equation system for the levels with regard to resonance radiation,
diffusion of metastables to the walls, energetic transmissions in collisions with atoms
and electrons and radiation processes through upper excited states. Since the influence
of ionization processes on distribution function and radial potential is small it is possible
to use the approximation of one effective level providing the stepwise ionization and
chemoionization. The balance equation for the effective level with density Nm  can be
approximately written in the form

where

(10)

(11)
Here W is the total number of inelastic impacts, νm  is the summarized frequency of
deactivation of the level N m  connected with metastable diffusion to the walls, effective
probability of resonance radiation outcome, etc., rather than with ionization processes.
εs and σ s  are the threshold and the cross-section of stepwise ionization and km is
the rate constant of chemoionization. The solution of equation (8) gives the excited
atom density Nm  which permits to calculate the rates of stepwise ionization (10), of
chemoionization (11) and of summarized one I = I d + I s + I m .

The system of equations (1)–(3) permits under given external parameters of the
discharge – pressure p , current i, radius R , and the constants of elementary processes
characterizing the sort of gas - to obtain the internal discharge parameters such as

electron distribution function ƒ0  a n d , axial field E and radial potential eϕ (r ), in
particular the wall potential εw , and thus to reconstruct the potential field shown in
Fig.1 and to calculate related macroscopic plasma properties.

The solution of the kinetic equation (1) can be obtained by its averaging over
electron radial motions that is justified if electron energy relaxation length exceeds the
tube radius.

The energy relaxation length can be defined as a distance at which electrons can
diffuse at a time of energy exchange in elastic, inelastic and electron–electron impacts
and at a time of accumulation of energy equal to excitation threshold
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In this meaning the energy relaxation length defines the spatial scale at which electron
distribution function is formed due to collisions of different kind.

(12)
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At the energies w < ε 1 (elastic region, ν* = 0) for the discharge at low pressure
and small current, when and ν ee  are small, the equation (12) gives λε  ≈ ε1 /eE. At

the energies w > ε 1 (inelastic region) . And the averaging of kinetic
equation is valid when

here λ , λ* are electron free paths with respect to elastic and inelastic impacts. At
low pressures the first condition is fulfilled well. The relaxation length with respect to
inelastic impacts exceeds the size of inelastic region r2 (ε) for energies larger than
excitation threshold by the value about

After averaging the equation becomes

(13)

The procedure of averaging is connected with calculations of the integrals over radius
of the functions depending on kinetic energy, that demands the knowledge of required
potential profile in explicit way. At the first stage the averaging can be done by means
of trial potential depending, for instance, on two parameters β and εw

The distribution function ƒ0 (e) obtained thus from the solution of Eq.(13) depends on
three parameters of trial potential E, ε w and β and permits to find n e ( ϕ) and I(ϕ) from
the equations (6), (7), (10), (11) and to find new potential profile ϕ (r) from equation
(3). The parameters of trial potential were varied in order to satisfy to equality of ion
and electron fluxes on the wall, and to balance of charged particles in bulk plasma and
of losses on the walls. The obtained solution for distribution function satisfies to kinetic
equation (13) and the solution for potential satisfies to ion motion equation (3).

The results of self-consistent solution of the problem with boundary conditions (5)
for discharge in neon are shown Fig. 2.

The distribution functions as the functions of total energy ε have explicit radial
dependence near wall potential ε w and at higher energies, such behavior is a consequence
of diffusion of free electrons to the walls. As the pressure grows the rate of charged
particle losses on the walls decreases, that requires the decrease of ionization rate and
hence of the field E/p and of mean energy 〈 w 〉. The characteristic energetic scale size
of the distribution function drop in inelastic region also decreases with
the growth of pressure leading to decrease of wall potential εw .

The solutions of kinetic equation (1) represented in Fig.2 are obtained with the
help of the averaging over radial motions up to the energies ε < εw – eER and by sewing
together with the solution explicitly dependent on radius at the energies ε > εw – eER.
This approximation assumes that the condition of distribution function nonlocality is
fulfilled in both elastic and inelastic regions. However, at large energies this condition
can be broken because of the high values of the frequency of inelastic impacts. That can



Figure 2. The distribution functions calculated in the self-consistent potential for Ne, i = 10 m A ,
R = 1 cm in a) linear, b) logarithmic scales. Dots are experimental results ( p = 1 torr , i = 10 m A).
c)- radial dependence of distribution function near wall potential at p = 0.1 torr.

Table 1. Calculated values of discharge parameters. n0 , I 0 , (w0 )
and 2πRjR  are axial values of electron density, ionization rate,
average energy and of particle flux to the walls respectively.

i p E ε w n0 I0 〈w0 〉 2 π Rj R

mA torr V/cm eV cm –3 cm –3 s –1 eV cm–1 s –1

Ne 10 0.1 4.01 40.7 8.5·108 9.7·10 1 4 9.2 1.94·1015

Ne 10 1.0 2.67 25.5 4.9·109 5.4·10 1 4 5.6 0.6·10 1 5

He 5 0.3 2.32 31.2 1.0 ·109 4.5·101 4 6.5 1.4·1015

He 35 0.3 1.94 28.8 8.0·109 3.1·101 5 6.1 9.9·1015

result in localization of distribution function in this energy range and in enlargement
of electron sinks by inelastic collisions in axial region. This phenomenon has been
demonstrated in the paper 10 where kinetic equation (1) has been numerically solved in
given potential field without averaging procedure.

The radial distributions of potential, electron density, mean energy and of ioniza-
tion sources are represented in Fig. 3a,b for neon discharge and in Fig. 3c,d for helium
discharge. The values of parameters of the discharges are shown in Table 1.

In neon at lower pressures the direct ionization dominates, at higher pressures the
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Figure 3. The radial dependencies of electron density n/n0 , mean energy < w> / < w 0  >, direct
I d / I0 , stepwise I s / I0 , chemoionization Im /I 0  and of total I/I 0 ionizations, and radial distribution of
potential e ϕ(r). (ε w is the value of wall potential). a) Ne, pR = 0.1 torr · cm, i/R = 10 mA/cm ,
R = 1 cm. b) Ne, pR = 1.0 torr · c m , i/R = 10 mA/cm , R = 1 cm. c) He, pR = 0.6 torr · c m ,
i/R = 2.5 m A / c m, R = 2 cm. d) He, pR = 0.6 torr · c m , i/R = 17 mA/cm , R = 2 c m .

stepwise processes start to play role. In helium discharges chemoionization is domin-
ant. The considerable radial fall of mean energy is observed. The ionization source
distributions are noticeably contracted compared to density profile.

The radial profiles of potential represented in Fig.3 have been obtained under
assumption of plasma quasineutrality up to the tube wall. The magnitude of the wall
potential ε consists of two summands: the drop of potential in quasineutral plasma
and the potential fall in the near-wall sheath of space charge. The potential fall in
plasma eΦ pl can be estimated in the following way.

Under assumption that the size of the space-charge sheath Ld  is smaller than ion
free path λ i (collisionless sheath) we can use the Bohm criterion in the form

(14)

This equation determines the value of and the electron density at the plasma–
sheath boundary.
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In the opposite case when L d > λ i  (collisional sheath) the potential fall in plasma
can be estimated from the following considerations11 . Beyond the zone of ionization
the radial flux of charged particles remains constant and equal to

1 4 4

(15)

Differentiating this equality we get

Using the Poisson equation we come to

By setting n i  – n e ~ n at the boundary of quasineutral plasma we obtain the equation
for determining of in the case of collisional sheath for unrestricted dependence

n( ϕ ) .

In the case of Boltzmann distribution of electron density
the equation (15) yields

where

This case has been discussed in detail in the book12 . For the real low–pressure inert
gas discharge the Boltzmann distribution should be replaced by the dependence given
by Eq.(6).

The-potential fall in the sheath of space charge eΦs h can be obtained as a remainder
between the wall potential εw and the plasma potential eΦp l. Then the size of the
space–charge sheath L d is given by the relation12 .

(16)

The length of the sheath L
( C )
d is considerably larger than the ion free path λ i , and

consequently the sheath proves to be collisional one.
More correct description of the radial distribution of potential and of the near–

wall space–charge sheath formation can be obtained under supplementing of equation
system (1)-(3) by Poisson equation. Complete system of equation for calculations of
discharge parameters has a form

(17)

(18)



(19)

(20)

The equation system (1)–(3), (17)–(20) has been integrated over radius up to the
wall, and parameters E, ε w , β varied until the conditions
j i ( R ) were fulfilled. The results of solution are shown in Fig. 4 on example of discharge
in helium.

Figure 4. The results of solution of self-consistent problem with respect for plasma deviation from
quasineutrality. Designations are the same as in Fig. 3. The potential fall in quasineutral plasma
eΦp l and the size of the space-charge sheath Ld  are determined from the condition n e  ≈ n i /2. a) He,
p = 0.3 torr , i = 5 m A, R = 2 c m , b) He, p = 0.3 torr , i = 35 m A , R = 2 c m .

The comparison of Fig. 4a, 3c and Fig. 4b, 3d carried out under the same discharge
conditions shows that the growth of potential profile near the wall is not so abrupt
and sufficiently lengthy sheath of space charge forms. The plasma potential eΦ pl  and
the sheath size Ld  shown in Fig.4 have been estimated from usual condition n e  ~
ni /2. The value of eΦ (C)

p l obtained from the estimations for collisional sheath by the
formula (15) is in good agreement with the potential eΦ p l (Fig. 4) with accuracy
within 5%. The value of the sheath size Ld  estimated by the formula (16) proves to be
in two times underestimated. Taking account of plasma deviations from quasineutrality
weakly influence absolute values and radial distributions of ionization sources as well
as charged particle fluxes on the tube wall.

It is interesting to compare the results of calculations by nonlocal theory with
those of diffusion theory developed with the same constants of elementary processes.
Similar problems have been solved in the papers13,14 . Assuming that the distribution
function can be represented as a product ne (r ) · ƒ 0 (w) we can write the kinetic equation
for isotropic distribution in neglect of spatial gradients in the form

(21)

The proper calculations of transport coefficients in weakly–ionized plasmas with non-
maxwell EDF are described in the book12 . The diffusion coefficient can be different
along and across radial electric field. In neglect of the diffusion coefficient anisotropy
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the traditional diffusion theory of the positive column can be developed on the basis of
the following set of equations.

(22)

(23)

(24)

(25)

(26)

(27)

(28)

(29)

(30)

In Fig. 5 the distribution functions obtained under nonlocal and local approxim-
ations are compared.

Figure 5. The electrons distribution functions in absolute measure as the functions of kinetic energy
and radial coordinate, calculated by nonlocal and local approximations. In nonlocal approximation a
considerable deficit of fast electrons at discharge periphery is observed. Ne, pR = 1 torr · cm,
i/R = 10 m A / c m

The important difference consists in sufficient depletion of nonlocal distribution
function with fast electrons, especially at receding from the axis towards the wall. This
leads to large differences in macroscopic properties of discharge. The comparison of
calculation results of plasma parameters by kinetic (nonlocal) and by diffusion (local)
theory are shown in Figs. 6,7.

The wall potential and the length of the sheath given by local theory exceed by
far those values by nonlocal theory. The plasma potentials differ insufficiently. In the
frames of diffusion (local) theory the values of plasma potential eΦ ( D )

p l and of potential

drop in the sheath e Φ
( D )

sh can be estimated as
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Figure 6. The comparison of calculation results by nonlocal and by local theories for Ne,
pR = 1 torr · c m , i/R = 10 mA/cm. The designations are the same as in Fig. 3,4. Radial distribution
of axial current density jx /j 0  in nonlocal theory is wider than radial profile of electron density.

Figure 7. Comparison of calculation results by nonlocal theory (solid lines) and by local theory
(dashed lines) for potential distributions e ϕ ( r ), for radial current densities jr (r ) · 101 5 cm–2 s – 1, and
for normalized by unit axial current densities jx (r ). j x(0) = 9.8 mA/cm ²  for nonlocal regime and
j x (0) = 11.6 mA/cm ² for local regime. Ne, pR = 1.0 torr · c m , i/R = 10 mA/cm. The value of
potential fall in the space-charge sheath is about 9 eV in nonlocal regime and 26 eV in local.

These values are in good agreement with those signed in Fig. 6b, 7. The potential
drop in the sheath obtained by diffusion model is about three times larger than that by
kinetic model. The reason for such large difference in potential drop is connected with
assumption of Boltzmann electron distribution in diffusion model, while kinetic model
gives much more abrupt functions.

The value of near–wall potential fall is of great importance for numerous applica-
tions dealing with ion bombardment, ion etching, etc. On solving of different problems
of ion kinetics in the near–surface regions it is necessary to consider the peculiarities of
space–charge sheath formation.

The main conclusion following from these investigations is that the physical picture
of formation of the positive column of low-pressure discharge can not be described in
the frames of fluid model.
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ANODE REGION OF NON-STRATIFIED INERT GAS DISCHARGE

In the transitional region between the axially uniform and radially inhomogeneous
positive column and the anode covering whole section of the discharge tube a transfor-
mation of the potential field of the positive column (Fig.1) into the equipotential surface
of the anode takes place. The transitional region includes a disturbed by the anode
region of quasineutral plasma which size at low pressures and small currents is about
L ~ ε 1 /eE, and a sheath of space charge with a length about Debye radius, where the
anode fall of potential is concentrated. This two-dimensionally inhomogeneous anode

Figure 8. Schematic potential field in the transitional region from the positive column to the
equipotential anode.

region is schematically shown in Fig. 8 for the case of the positive anode fall. Visually
observed pattern of the discharge radiation at the transition from the positive column
to the anode is represented in Fig. 9a.

The surface of the anode is covered by the brightly luminous thin film which then
changes into weakly luminous region which is slightly compressed towards the axis and
has a length of several millimeters (dark anode space). Then the uniform emission is
observed similar to that in the positive column. In spite of the visual homogeneity
of the transitional region there are interesting kinetic phenomena connected with a
sink of electrons to the anode present. The experimental data show that axial field
remains approximately equal to the field in the uniform positive column up to several
millimeters from the anode. The distribution of the plasma potential at the discharge
axis is shown in Fig. 9b.

The principal questions concerning electron kinetics in the anode region consisting
of inhomogeneous quasineutral plasma and space-charge sheath have been considered
by Tsendin

15
. The calculations of the distribution functions and of the macroscopic

plasma properties as well as comparison with the experimental results are carried out
in the papers16–18 for the discharge in neon.

The distribution function of the axially and radially inhomogeneous quasineutral
plasma of the anode region can be obtained from the solution of kinetic equation

(31)
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Figure 9. Anode region of glow discharge. a) visually observed radiation pattern, b) approximation
of the axial potential in the anode region and trajectories of electron motion. c) axial distributions of
mean energy, ionization sources and of mean energy.

The distribution function of the axially and radially inhomogeneous quasineutral
plasma of the anode region can be obtained from the solution of kinetic equation
At the first approximation the equation solution can be found in the potential field

where E and eϕ ( r) are determined from the solution of the
problem about positive column. The presence of the anode absorbing the electrons is
taken into account by the zero boundary condition for isotropic distribution function
at the anode. This approximation assumes that at the time of ion diffusion to the tube
wall their displacement in axial direction is much less than the length of anode region,
and the electron free path is shorter compared to diffusive scale R /2.4.

Averaging the equation (31) over radial motions of electrons, similar to the problem
for positive column, we come to equation

(32)

(33)
Since at present stage the problem solution is not directed to calculations of self-

consistent potential (Fig. 8), the boundary condition at the wall potential can be
replaced by more simple requirement of distribution function vanishing at infinite en-
ergies. The solution of Eq. (32) with boundary conditions (33) is shown in Fig. 10a
for different distances from the anode, the distribution functions measured at the same
points are shown in Fig. 10b.



Figure 10. EDF at different points from the anode. Ne, pR = 1 torr · c m , i/R = 10 mA. T h e
numbers at the curves correspond to the distance from the anode in cm. a) theory, b) experiment.

By means of calculated distribution functions the electron density, mean energy,
total number of excitation processes of levels with different excitation potentials have
been calculated as the functions of the distance from the anode. In Fig. 9c the results
of measurements and of calculations are compared.

These investigations demonstrate that the disturbing effect of the anode is spread-
ing at considerable distances about energy relaxation length. On approaching to the
anode the distribution function becomes depleted by slow electrons at first and then by
more and more fast ones. This leads to decrease of electron density and to small growth
of mean energy. Up to the distances of about (the length of electron energy re-
laxation in inelastic region) the presence of the anode does not induces the distortion of
distribution function tale, this accounts for the visual uniformity of radiation in spite of
the decrease of electron density. Close to the anode the distribution function becomes
distorted in inelastic region, that causes the abrupt decrease of discharge emission (dark
anode space).

The attempts to describe the quasineutral plasma of anode region under considered
conditions from the principles of fluid theory in terms of diffusion and mobility seem
to be unpromising due to their inability to reproduce the physical picture of the anode
region formation.

S- AND P- STRIATIONS IN THE POSITIVE COLUMN

The positive column of a dc glow discharge in inert gases at low pressures and
small currents can exist not only in axially uniform state but also in stratified form.
In the non-stratified positive column the electron kinetics is analyzed in the radially
inhomogeneous potential field and constant axial field E. In the stratified discharges
the matter of first rate importance is the analysis of electron kinetics in the spatially
periodic potential field eϕ (x) along the direction of current flowing. Of four known
types of striations we shall consider two: S- and P-striations. The length of S-striation
is determined by the value L s = ε s /eE, (E - is the period averaged electric field
strength) where a potential fall εs  at one spatial period exceeds a little the excitation
threshold ε1 . The length of P-striation Lp  and the potential fall at one length εp  are
about half as large as in S-striations.
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The stratified positive column has been investigated experimentally and theoret-
ically. The probe technique has been used to carry out the measurements of spatio-
temporal distribution of plasma potential eϕ (x, t ) and of electron distribution function
in different phases of S- and P- striations. In the experimentally measured potential
field the kinetic equation has been solved, and the distribution functions obtained by
theory have been compared to measured ones.

One of the most important problem for investigation of moving striations is that of
correct measurement of axial potential profile. As a rule the measurements of plasma
potential have been carried out relative to the grounded anode with a help of immovable
probe, which gave temporal distribution of plasma potential eϕ(t). To reconstruct the
spatial profile eϕ(x) from the temporal profile the argument t has been substituted by
the coordinate x = v t, (v - is the phase velocity of striations). Such recalculations
have led to appearance of the nonmonotonous profiles corresponding to the presence
of potential wells 19 ,20. However the experimental measurements21-23 show that in the
case of fixed anode potential the propagation of the wave of potential in axial direction
must cause the oscillations relative to the anode of plasma potential as a whole. These
oscillations have a frequency of striations and amplitude compared with the potential
fall on striation length. The using of a mobile probe permits to measure properly the
spatio-temporal profile of potential eϕ(x, t ) and to separate the potential of ionization
wave and temporal plasma oscillations as a whole. Stewart21 had moved the anode
and cathode simultaneously relative to the immobile probe and thus directly measured
the spatial profile of plasma potential. Correct measurements22–24 show that illusory
potential wells of large depth in striations in the positive column are absent in reality.

Figure 11. Axial potential for S- (a) and P-striations (b) measured at different times. Wells are
dashed. x = 0 corresponds to position of the anode. Ne, a) pR = 2.7 torr · c m , i = 18 m A ; b)
pR = 2.24 torr · c m , i = 16 m A .

In Fig.11 the axial potential profiles for S- and P- striations measured in neon in
dependence of the distance from the anode at different instants are plotted. It is seen
that far from the anode the profiles eϕ(x) consist of the regions of weak and strong
fields, and there are no potential wells. The electron distribution functions measured
at 16 points over S-strata length and at 12 points over P-strata length are shown in
the Fig. 12a,b, the corresponding points are marked on the curves 2 of the Fig. 11a,b.
It can be seen that in S-striation there is one maximum in the election distribution
function in the region of weak field that does not practically move over energy (points
9-16). In the transient region from weak to strong field this peak begins to move fast
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over energy (points 1,2). Approximately in the middle of the strong field region (points
3,4) a new peak of slow electrons appears in the EDF (~1,5 eV). Further the amplitude
of this maxima increases as it moves over energy.

The distribution functions measured in P-striations differ greatly from those in S-
striations. The principal difference is that in the region of smooth change of potential
there are two maxima in the EDF for P-striations rather than one as it is in S-waves.
The distance between these two peaks is approximately equal to the potential period
of P-strata εp  (~10 eV). The experimental pattern of the motion of these two maxima
over energy and coordinate in the region of weak (points 7–12) and strong (points 2–5)
fields is shown in Fig. 12b for one wave length.

Figure 12. EDF measured for S- (a) and P- (b) striations at different points along discharge axis,
marked on the curves 1 in Fig. 11a,b. a) Ne, pR = 2.7 torr · c m , i = 18 mA. b) Ne,
pR = 2.24 torr · c m , i = 16 m A .

Such a behavior of experimental distribution functions in S- and P-striations can
be interpreted on the basis of nonlocal electron kinetics in spatially periodic electric
fields. It should be mentioned that the basic ideas of kinetic approach of EDF formation
in striations have been discussed in the papers 25–28. The kinetic equation for ƒ0 (ε, x )
in variables of total energy ε = w + e ϕ(r), x for one-dimensional case can be written
in the following way

(34)

The analysis of this equation can be considerably simplified by using the ”black–
wall” approximation = 0 which is valid when inelastic collision frequency
ν* is high enough.

The partial differential equation (34) describes electron diffusion along the coordin-
ate x (acceleration in the longitudinal periodic electric field) and the drift over energy
due to elastic collisions. If the elastic impacts are neglected in the equation (34) it
becomes an ordinary differential equation and its solution parametrically dependent on
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ε can be written as follows

(35)

here x 2( ε) is a potential curve, where kinetic energy is equal to the first level of atom
excitation. The integration constant Φ (ε ) is determined by the boundary condition for
the distribution function from the cathode side of the positive column. With energy
losses neglected in elastic impacts the motion of electrons on the plane ε, x occurs with
constant total energy along the horizontal lines from potential curve x1 (ε) corresponding
to w = 0 up to the curve x2 (ε) where w = ε 1. After inelastic collision an electron jumps
upright from the curve x2 (ε) onto the curve x 1 (ε). All trajectories of electrons are
parallel to the axis x on the plane ε , x. Therefore the information about initial electron
distribution is transferred at any distance. The recurrence relation for the amplitude
of the distribution function

(36)
results from the current density being constant at every cross-section x = const. In the
presence of small energy losses in elastic collisions the electron trajectories on the plane
ε, x are spreaded due to dispersion of the energy losses, and information about initial
distribution is lost on receding from the point of injection. The final result of spatial
relaxation of arbitrary distribution function injected in a uniform field is a distribution
formed in this field

In the spatially periodic field the bunching effect suggested by Tsendin27 can take
place. In presence of small energy losses in elastic collisions the solution of equation
(34) can be found by means of expansion with small parameter

in the form

The function ƒ0
(0)  (ε, x ) is the solution of equation (34) with θ = 0 and is the same

as the expression (35). After the substitution of expansion (37) in the kinetic equation
the recurrence relation for the amplitude Φ (ε) can be represented in the form

The coefficient Ψ(ε) describes the energy loss in elastic collisions when electrons
with the energy ε move from x 1 (ε) to x 2(ε). The coefficient C (ε) corresponds to the
diffusion coefficient over energy. The slightly varying function C( ε ) can be regarded
as a constant. In the spatially-periodic fields the function Ψ (ε) can be represented as
follows

(37)

(38)

β(ε) is the periodic function of energy. The small parameter
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L - spatial period of field E (x). Shifting the argument ε in (38) by the value θAε1
and expanding the coefficients of equation up to terms of the second order in θ , the
recurrence relation for the amplitude Φ (ε ) can be obtained

(39)

From the equation (39) the passage to the limit with θ → 0 to the expression (36) can
be easily seen. The right part of equation (39) represents the divergence of the flux
over energy consisting of drift and diffusion. The stationary solution corresponds to
zero flux in energy space i.e. the drift equalizes the diffusion. In this case the condition
of periodicity will be

(40)
The amplitude Φ (ε) corresponding to the stationary solution, can be written in the
following way

(41)

The final form of the electron distribution function is given by (35) where Φ ( ε ) is
determined by (41) and the small additions in the expansion (37) can be neglected.
Constant B is determined by the normalization condition on current density.

This model has been used for the calculations of distribution functions in S- and
P- striations. Experimentally measured potential profiles (Fig. 11) were approximated
by linear staircase functions shown in Fig. 13a for S-strata and in Fig. 13b for P-strata.

Figure 13. Approximations of potential profiles for S- (a) and P- (b) striations.

As the inequality ε s > ε 1 is valid for S-strata there is one resonance trajectory on
the energy interval [0, ε1 ] which is shown with arrows in Fig. 13a. For P-strata εp ≈
ε s /2 < ε 1 and on the same energy interval [0, ε 1] there are two resonance trajectories
shown in Fig. 13b. The distribution functions in variables of kinetic energy w and
coordinate x, calculated for S- and P-striations in the potential field of Fig. 13 are
shown in Fig. 14a,b. In Fig. 15 the calculated distribution functions for P-strata are
compared with measured ones at the different positions along discharge axis.

It can be easily seen that the nonlocal theory describes properly the basic features
of the distribution function behavior in S- and P- striations in the positive column of
a dc glow discharge.
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Figure 14. a) EDF calculated in the potential profile shown in Fig. 13a for S-striation. b) EDF
calculated in the potential profile shown in Fig. 13b for P-striation.

Figure 15. The comparison of calculated a) and measured b) EDFs in P-striations at the points
shown in Fig. 1 lb on the curve 1.

S- AND P-STRIATIONS IN THE ANODE REGION

The passage of striations through the anode region of a glow discharge has not
been practically investigated. The spatio-temporal dependences of potential in strati-
fied plasma near anode reveal some interesting features (Fig. 11a,b). The most inter-
esting effect which has been found29 is the appearance of potential profiles with wells
adjacent to the anode at certain time intervals (curves 1 in Fig. 11a,b) with synchron-
ous appearance of the explicit peak of slow electrons on the EDF with the energies of
fraction of eV. Potential well corresponds to the positive plasma potential with respect
to the anode (negative anode drop). The positive anode drop corresponding to poten-
tial profile without potential well occurs for the most part of striation period (curves 2
in Fig. 11a,b).

In Fig. 16a the transformation of the experimentally measured EDF is given for
moving through the anode region P–striations at different distances from the anode for
the potential profile without wells. A decrease of the EDF is seen on approaching to
the anode. At first the depletion of the EDF with slow electrons takes place and then
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Figure 16. a) EDF measured in P-striations in the near anode region at different distances from the
anode for potential profile without well. Ne, pR = 1.4 torr · cm, i = 20 mA. b) EDF calculated in
the near anode region for P-striations. x = 0 corresponds to the anode position.

this process involves more and more fast electrons. At the distance 4 mm the electron
density falls by more than one order. The EDF measured in the undisturbed positive
column do not reveal the similar decrease and are reproduced quite well from one strata
to another at a distance from the anode. The theoretical calculations of EDF in the
near–anode region of stratified discharge can be carried out by analogy with stratified
positive column on the basis of kinetic equation (34) and equations (35), (41) with the
additional zero boundary condition for the EDF at the anode

The results of EDF calculations for P-strata in the anode region are represented in
Fig. 16b. It is clear that the nonlocal theory describes properly the EDF depletion
experimentally observed as strata moves to the anode.

Figure 17. EDF measured in S-striations at the distance 2 mm from the anode at different times.
Ne, pR = 2.7 torr · cm, i = 18 m A .

In Fig. 17 the electron distributions measured for S-strata at the distance 2 mm
from the anode approximately corresponding to the center of potential well on the curve
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1 in Fig. 11a are shown at different times over strata period (T=500 mcs). It can be
seen that at the time interval 260-290 mcs, corresponding to potential well presence
there is a sharp peak of slow electrons. The EDFs measured at other points of time,
corresponding to potential profiles without wells, do not have the peak of slow electrons.
The similar pattern is observed for P-striations. In Fig. 18 the EDF measured in P-

Figure 18. EDF measured in P-striations at different distances from the anode for potential profile
with well. Ne, pR = 1.4 torr · cm, i = 20 mA.

strata at different distances from the anode for the potential curve 1 in Fig. lib
are shown. It is clearly seen that within potential well the electron distribution is
compressed to the region of small energies. The amplitude of the peak of slow electrons
has a maximal value at the middle of the well. On the boundary of the well the shape
of the EDF changes abruptly, its amplitude considerably decreases, the peak of slow
electrons vanishes and distribution function becomes typical for P-strata in the positive
column without well.

The problem of the EDF formation for trapped electrons in the potential wells
along direction of a current has been analyzed in the papers30, 31. Experimental behavior
of EDF in potential wells can be explained on the basis of kinetic equation

(42)
where ν e = In Λ is the frequency of electron-electron collisions, In Λ is Coulomb
logarithm, Ta  is the temperature of maxwell distribution of atoms,

S* is the operator of inelastic collisions.
In the equation (42) in contrast to the equation (34) the electron-electron collisions

and the heating of electron in collisions with neutral atoms are taken into account. It
has been shown 30 that in presence of potential wells the slow electrons are naturally
divided into two almost independent groups: trapped (ε < ε 0) and free (ε > ε 0)
electrons, where ε0  is the depth of potential well. If the energy relaxation length with
respect to elastic and electron–electron collisions is larger than the size of the well it
can be believed that electrons move within the well with constant total energy ε, and
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the EDF does not depend on coordinate x but depends on total energy ε only. In this
case it is possible to average kinetic equation (42) over space and to write

(43)

where

L is the well size, x– (∈), x +(∈) are the turn points of electron with energy ε. T h e
sources of electrons q(ε) describe the appearance of slow electrons within the well
due to inelastic collisions of free electrons with energy more than excitation threshold.
Equation (10) has a physical sense of continuity equation for the flux which consist of
a diffusion with coefficient and a drift with velocity where the source is q(ε).

The experimental data (Fig. 16) show that typical energy of trapped electrons
is ~0.3 eV and is much less than the well depth ε0 , that allows to construct EDF of
trapped electrons with the zero boundary condition at ε = ε0 . The solution of equation
(43) in this approximation is as follows

(44)

The transition to the maxwell form can be easily seen from the solution (44) for electrons
with ε < ε 0 . When electron–electron collisions dominate the ratio
Te, and ƒ t  can be written in the form0

(45)

For calculation of the electron temperature Te it is necessary to consider energy
balance for trapped electrons which can be obtained by multiplying equation (42) by
kinetic energy and integration over energy within the interval 0 ÷ ε0  and over coordinate
within the well size. Finally energy balance equation can be written in the form

(46)

where is the heating of trapped electrons by means of in-
elastic collisions of free electrons with ε > ε1 yielding slow electrons with energies ε – ε1 ,

is the heating due to a cooling of free electrons in collisions with
tripped ones, is the flux of electron energy beyond
the boundaries of the well due to collisions with atoms having non-zero temperature Ta ,

is the diffusive cooling due to electron–electron col-

lisions within the well, describes the energy interchange of
trapped electrons in elastic collisions with atoms in the well volume. The final equation
of energy balance for the calculation of Te  is as follows

(47)

It is necessary to know the density of trapped nt  and free n i electrons, mean energy εi

and distribution function ƒ0
i ( ε 1 ) for free electrons. The value of Te  calculated from the
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equation (47) is about 0.34 eV; that is in a quite good agreement with the position of
the peak of slow elections in experiment.

On the basis of kinetic equation solution (44) for trapped electrons and (35) for
free electrons the EDF can be constructed in the whole energy interval. The idea that
electrons are divided on two slightly connected groups described by (44) and (35) allows
to find the parameters of these groups: nt , T e  for trapped electrons and ni, ε i  for free
electrons. The question about temperature and density of trapped electrons can be
solved on the basis of joint solution of energy balance and particles balance equations.
The balance of particles can be obtained by integrating of kinetic equation (42) over
energy at the interval 0÷ε0  and over coordinate within the well boundaries. The given
system of equation permits to find the density nt  and the temperature Te  of trapped
electrons by means of the density ni  and the mean energy ε i  of free electrons and thus
to calculate the consistent EDF in the whole range of energies.

The particular solution under discharge condition when, nt / ni ≈ 1.7, gives T e ≈
0.38 eV that is in good agreement with experimental data. In Fig. 19 the comparison
of EDF theoretically calculated for trapped and free electrons (solid) with experimental
function (dots) is shown. It is clear that theoretical model under consideration qual-

Figure 19. EDF measured (dots) and calculated (solid) in P-striations for potential profile with
well. Ne, pR = 1.4 torr · cm, i = 20 mA.

itatively describes electron energy distribution formation in the presence of potential
wells. The assumptions of black-wall condition for trapped electrons at ε = ε0  a n d
two independent electron groups existence result in break and bend of EDF at ε = ε0 .
The behavior of EDF near ε 0 requires more rigorous analysis of kinetic equation in this
region of energies. Nevertheless this model gives a descriptive physical pattern of the
EDF formation and relation between of densities and mean energies of trapped and
free electrons.
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INTRODUCTION

The electron kinetics in the cathode region determines the principal characteristics
of many types of glow discharges. Among them are short plane glow discharges (PGD)
and various modifications of hollow cathode discharges (HCD). The key parameter here
is the electron distribution function (EDF) which is to be determined in both energy
and configuration spaces. The problem of finding the EDF in spatially inhomogeneous
plasmas in the presence of complicated electric fields (and also in complex geometries)
is highly non trivial. The principal difficulty is connected with the fact that the analysis
has to be self-consistent (see, e.g., Ref. 1). In fact, in order to find the inhomogeneous
plasma profiles and the electric field in a plasma, it is necessary to know the distribution
of charged particle sources, which are determined by the EDF. In its turn, the EDF
cannot be found without information about the distribution of the plasma density and
electric fields.

At the present time, different straightforward numerical methods exist. They are,
e.g., the Monte Carlo methods,² the particle-in-cell methods,³ the convective schemes,4

the direct solution of the Boltzmann equation,5 and their modifications and combina-
tions. Application of these methods has revealed good agreement with results of labo-
ratory experiments. However, these methods are often cumbersome and require large
amounts of computer time and are unhelpful in developing qualitative understand-
ing. In such a situation, simple and effective approximate methods of (semi-)analytic
solution of the electron Boltzmann equation in arbitrary electric fields become very
important.1 Such approaches allow one to obtain simple and physically transparent so-
lutions and can also be helpful in interpreting numerical results. The idea is to divide
the configuration and energy space into regions with sharp boundaries and to develop
effective methods of treating the electron kinetics in each of these regions separately.
Full-scale numerical modeling can be very useful for verification of these approxima-
tions. In this paper, some approximations and their applications to glow discharges in
the steady-state will be presented. More details can be found in the works of Tsendin
(e.g., Refs. 1,6) and references cited in the present paper.
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The traditional subdivision of the cathode region (CR) into the cathode dark space
(CDS), negative glow (NG) and the Faraday dark space (FDS) is based on optical
distinctions. These distinctions are more or less of secondary nature, and it seems
more useful and instructive to subdivide the CR into two regions, the ion space charge
sheath with strong electric field [where the cathode potential fall (CF) occurs], and the
quasineutral plasma region (where the electric field is weak or even changes sign). The
sheath occupies the dark space and cathode-adjacent part of the NG, and the plasma
consists of the remainder of the NG, FDS and positive column (PC). The difference in
nature between the CR and the PC is that the NG and the FDS are sustained by the
fast electrons coming from the CF while the PC is sustained by electrons gaining energy
in the local field. To describe the electron kinetics in the CR, one can divide electrons
into groups according to the role these electrons play in the discharge dynamics: (i)
the fast electrons which have energies above the first excitation potential, ∈* , that
is, w > ε * and which ionize and excite the gas particles; and the slow (or plasma)
electrons with energies w < ε* . The slow electrons can further be subdivided into (ii)
the intermediate electrons which have energies above several electron temperatures and
which are current carriers, and (iii) the bulk (ultimate or thermal) electrons which are
trapped in the self-consistent electric potential wells and which ensure quasineutrality
of the plasma. Since the density and energy of these electron groups differ by many
orders of magnitude and vary in completely different ways, it is highly convenient to
treat each of these groups separately.

FAST ELECTRONS

The major peculiarity of modeling the fast electrons in the CR is that these elec-
trons are not in hydrodynamic equilibrium with the local electric fields. The reason
is that, due to the lack of collisions in the spatially localized CF region, the primary
electrons ejected from the cathode and generated in the CF can gain substantial en-
ergies in the strong and rapidly varying cathode fields and can even “run-away” from
collisions. Let us illustrate these statements. It is known from various studies of the
fast electron kinetics that the fast EDF can roughly be described by two parameters:
(i) the energy-loss function, L(w), which in the range of energies 10 – 103  eV, can be
approximated as being energy independent, namely, L (w) = L 0; and (ii) the energy
loss per ion-electron pair, ∈0  (typically, ∈0  ≈ 2∈i with ∈i  being the ionization potential).
In this approximation, the number of ionizations per unit path (or the Townsend co-
efficient), α, is given by α = N L0 /∈0, where N is the neutral particle density. Also,
the energy relaxation length of an electron with a kinetic energy, w, can be introduced:

The value of λw  determines the spatial scale on which the electron
energy changes significantly. For typical discharge conditions, the value of λw exceeds
the characteristic scale of the electric field inhomogeneity, namely, the CF width, d,
that is, λ w >> d. It follows from this inequality that strong non-locality takes place. In
other words, the electrons gain energy in one region of configuration space (CF) and
lose it in another region (NG). It is now well understood that, to model the dynamics
of the fast electrons, the local field approximation cannot be used and the kinetic ap-
proach is necessary. Many numerical methods exist to treat the fast electrons: Monte
Carlo methods,² direct solution of the Boltzmann equation,5  and others. There also
exist a number of analytical models. One of the simplest analytical models describing
the ionization non-locality is that proposed by Kolobov and Tsendin.7  Let us briefly
consider the principal results of this work.

In Ref. 7, a short dc glow discharge is considered. The discharge gap [0 ≤ x ≤ Ld ,
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where x is the spatial coordinate and Ld  is the discharge gap length (distance between
the cathode and the anode)] is divided into three spatially separated regions with sharp
boundaries: (i) the CF region or the region of strong electric field, for 0 ≤ x ≤ d, (ii)
the NG which is almost field-free due to the efficient ionization by fast electrons, (iii)
the Faraday dark space which the fast electrons cannot reach. The Boltzmann equation
is the starting equation in describing the kinetics of the fast electrons. Two important
simplifications have been made to obtain an analytic solution to this equation. First, it
has been assumed that the fast EDF is fully anisotropic, that is, the electrons are only
forward scattered in collisions with atoms. Second, a continuous-energy-loss model has
been used. These assumptions are valid provided that the kinetic energy of the fast
electrons, w, significantly exceeds the energies of atomic electrons, that is, w >> ∈* .
The kinetic equation for the fast EDF, F( x, w ), has then been written in the following
form

(1)

where v is the electron velocity and J (x, w ) is the source term due to generation of
electrons. In this model, evolution of the kinetic energy of an electron is governed by
the following simple equation [which is the characteristic of Eq. (1)], dw/dx = –eE(x)–
NL(w),E(x) is the electric field. The right-hand side of this equation represents an
effective force F(x, w ) which is the difference of the accelerating force eE(x) and the
retarding force NL(w). The force F (x, w ) is non-conservative because of the presence
of the retarding force. If F (x, w ) is positive, the electrons “run-away” from collisions
and their kinetic energy permanently increases in the CF. An assumption of an energy-
independent loss function, namely, L(w) = L 0 can further be made. This allows one to
introduce an effective potential ϕ(x) according to the relation F( x) = –ed ϕ/ dx, where

with φ(x ) being the electrostatic potential. The electrons move
in this potential conserving their total energy ∈ = w–eϕ(x ): they are accelerated in the
CF (their kinetic energy increases) and they slow down and consequently join the slow
electron group in the NG. Assuming that the secondary electrons are born in ionization
events with zero energies, the solution to the kinetic equation (1) is found in terms of
the total energy ∈ which represents an independent variable in this model. Using this
fast EDF, it is shown that in the CF and NG, the total electron current, je  (which equals
the fast electron current, jf ), is given by . This expression corresponds to
a generalization of the conventional Townsend approach with the ionization coefficient
α = const. The major difference, however, is that the proposed kinetic approach takes
into account the ionization non-locality.

Isotropic Fast Electrons

The model of fully anisotropic scattering presented above can be successfully used
to describe the kinetics of high energy electrons (w > 100 eV). It is known, however, that
the angular distributions of cross-sections, for elastic and inelastic scattering, change
within the energy range under consideration (10 – 103  eV), going from anisotropic at
high energies (w > 100 eV) to isotropic at lower energies (w < 50 eV). In this situation
one should also expect changes in the degree of EDF anisotropy as electron energy
varies (see, e.g., Ref. 2). The effect of isotropization becomes important in the NG
where the electric field (which makes the fast EDF more anisotropic) is absent.

A simple model has been proposed in Ref. 8 to take into account the angular
distribution of the fast electrons. It has been shown that at low energies, w < ∈i s

(∈ i s is the so-called isotropization energy), the momentum of electrons relaxes much
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more rapidly than their energy and the EDF for these energies can be regarded as
nearly isotropic. The value of ∈i s depends on the behaviour of the corresponding cross-
sections and it is different for each particular gas. For example, ∈i s ≈ 80 eV for He
and it is expected to be higher for heavy gases where quick isotropization can take
place. Using the well-known two-term expansion, the kinetic equation for the isotropic
part of the EDF, Fi s (r, w) (r is the spatial coordinate), of the low energy fast electrons
(∈* ≤ w < ∈i s ) can be written as

(2)

where D t r is the fast electron diffusion coefficient and S[F] is the source term determined
by the anisotropic EDF of high energy fast electrons, F(r, w), [see Eq. (1)]. For
convenience, the collisional integral in Eq. (2) is written in the form similar to that
used above in Eq. (1). Calculations of the spatial profiles of an atomic line (excited
mainly by low energy fast electrons, w ≈ 20-60 eV) according to Eq. (2) and of an
ionic line (excited mainly by high energy anisotropic fast electrons, w > 120 eV) agree
well with the experimental data (from Ref. 9) obtained in a cylindrical HCD (see. Fig.
1). The model predicts a marked difference in the spatial behaviour of anisotropic and
isotropic electrons, namely, that a strong focusing of the anisotropic electrons takes
place at the discharge axis and that the isotropic electrons are distributed more or less
uniformly over the NG.

Figure 1. Radial intensity distributions Figure 2. Normalized electron multiplication
(normalized to their maximum value) of two coefficient, as a function of the normalized
helium lines: 468.6 nm ionic line and 587.5 nm CF width, d/L, calculated using the
atomic triplet line at the pressure of 1.7 Torr in approximation of small αd (αd << 1), the
a cylindrical HCD in He. Solid lines correspond multipass approximation (L /Λ << 1), and
to the experimental data from Ref. 9 dashed obtained from a numerical solution of the full
lines are calculations. kinetic equation from Ref. 11.

The Hollow Cathode Effect

The fast electron kinetics in the CR of a PGD has been studied in details in a
number of papers (see, e.g., Refs. 2,4,7). Another issue, in which the fast electron
kinetics plays an essential role (see, e.g., Refs. 10,11), is the hollow cathode effect
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(HCE). Since there are still some unresolved questions concerning the HCE, we will
further consider the HCE in some more detail. The HCE is a very complex multi-
parametric phenomenon and there is an extensive literature devoted to it. The most
spectacular feature of the HCE is the large increase of the current density, j, which
takes place when the intercathode distance, L, is decreased while the discharge voltage,
U, is being fixed. (Note that a conventional plane or cylindrical HCD is considered here
and later on. For a cylindrical HCD, L corresponds to the tube diameter, D ). Hence
the HCD can be considered a priori as a highly abnormal discharge. Another important
feature of the HCD is that it operates at voltages which are much lower than those
corresponding to an abnormal glow discharge (AGD) at comparable current densities.
The HCDs are also characterized by low slope resistance voltage-current (V-I) curves.
All these features can be explained by the improved confinement of the fast electrons
and ions as compared to the usual discharge geometries (e.g., a short PGD).

The important difference between the HCD and PGD is that, in the HCD, there
exists a region of a strong reversed field in the opposite CF. Hence, the fast electrons are
able to oscillate in the cavity and deposit all their energy into the plasma. Also, while
traveling in the opposite CF, they can produce further generations of fast electrons
(pendulum effect). The latter effect results in additional ionization being produced:
The onset of the HCE occurs when the critical length, Lc  = Λ + d, exceeds the inter-
cathode distance, L, that is, L c  > L, where Λ = eφ c /(α∈0) is the reaching distance of
fast electrons with φc being the cathode potential fall. 11 In Ref. 10, the HCE has been
modeled numerically. In Ref. 11, an analytic analysis of the HCE has been proposed.

The results of Ref. 11 indicate that a large rate of ionization in the opposite
CFs is essential for the HCE to exist. However, it is known that the HCDs used
in practical applications operate at substantial current densities (> 1 mA cm– 2) and
moderate voltages (< 500 V). In such conditions, the CFs are generally thin ( d << L )
and ionization there is small compared to that in the NG. Hence, the pendulum effect
seems to become less significant. So the puzzling question arises: does the HCE still
exist when the CFs are thin and ionization there is insignificant ?

In this work, we tried to answer this question and to model the HCE starting from
the natural premise of small ionization in the CF, namely, small product αd. This
approach is different from the more complicated approach (valid for any αd product)
proposed in Ref. 11 in which, even in the multipass approximation when L/Λ << 1, it
is necessary to resolve numerically a spatially averaged kinetic equation. The analytic
approach used in the present work allows simple and physically transparent formulae
to be obtained for the electron multiplication coefficient (EMC). The approximation of
this work however does not rely on small ionization in the opposite CFs since, due to
the accumulation of a great number of oscillations, the ionization rate [α nαd with
n(≈ Λ/L) being the number of oscillations (see below)] can be significant.

Let us calculate the EMC, M, when αd << 1. Consider a long PGD with a thin
CF and a linearly decreasing electric field, E (x) = 2φc /d(1 – x / d). The anode is
supposed to be at a distance L d > L . In this case, Eq. (1) applied in the limit αd << 1
(practically, αd < 0.3 – 0.4 suffices) yields M = (eφ c/∈0 )(1 + αd/3) + α d, where the
terms of the order of (αd)² and higher orders have been neglected. The term eφ c /∈ 0

in this equation represents the number of ionizations by a primary electron in the NG
with no ionization in the CF (d = 0). The term describes the number
of ionizations in the NG due to the successive generations of secondary electrons in
the CF (d ≠ 0). The third term ad (≈ e αd  – 1, α d << 1) determines the number of
ionizations by a primary electron in the CF. Hence, we can now separate the EMC into
two parts: M = M NG  + M CF, where is the EMC in the NG due to
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an initial electron started from the cathode, M CF is the EMC due to the fast electron
successful generations in the CF. To calculate MCF , we proceed as the following.

One can see from the above expression for M that an electron with an energy eφc ,
increases the number of ionizations by when it passes through a CF
of width d. It is clear that an electron with an energy w will produce

ionizations, where is the path which this electron travels in the op-
posite CF (forward and back). In the continuous-energy-loss model (see above), the
initial electron started from the CF with an energy w = eφ c , after being deceler-
ated in the NG in a length of L – 2d, will come to the boundary of the opposite CF
possessing a kinetic energy Therefore, after the primary elec-
tron’s first passage through the opposite CF, the number of ionizations will increase by

en considering a second reflection and so on and summing up
over all the possible reflections, one can get

(3)

where It can be shown from Eq. (3) that

when n = 0 (no reflection) (4)

when n >> 1 (multiple reflections)

From these equations, it can be concluded that when the multipass regime (when
the number of oscillations, n , is large, n = L /Λ >> 1) is realized, the additional ion-
ization in the CFs is important, that is, M CF > M NG , only when
that is, when the CF is thick. The multipass regime takes place when the fast electrons
lose a small fraction of their energy during a passage through the plasma and so they
traverse the plasma many times.

It is then convenient to introduce the normalized EMC,  , as ,
which characterizes the efficiency of ionization in the CFs (e.g., M = 1 when ionization
in the CFs is absent). Calculations of the EMC using three different approaches are
shown in Fig. 2. One can see that the calculations according to the approximation
of small ad correspond well to those calculated numerically from the full kinetic
equation from Ref. 11. Good agreement is also seen between the results of these two
approaches and those obtained from a numerical solution of a spatially averaged kinetic
equation in the multipass approximation (L/Λ << 1). 11 One can observe in Fig. 2 that
when d/L < 0.2 the fraction of additional ionization does not exceed 20% at eφc = U =
200 V and 40% at U = 400 V.

In order to model the HCE, one has to specify the self-sustaining condition (or
the current-continuity condition). Due to the specific geometry of the HCD, most of
the ions generated the NG return to the cathode. Under the conditions of interest, the
major source of electrons is the ion bombardment of the cathode. Hence, in the absence
of recombination or other volume losses, the self-sustaining condition in the steady-state
can be written as M (φ c , d) = 1/γ , where γ is the secondary electron emission coefficient.
To complete the model, we use the well known expression (for a collision dominated
CF) for the current density at the cathode surface where C is a
constant.
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Results of modeling the HCE in the approximation of small αd are shown in Fig.
3. Experimental conditions from Ref. 12 have been used. One can see that the current
amplification factor, j/ j 0 (where j0 is the normal current density 13), increases by more
than two orders of magnitude when L is reduced from 4 cm to 0.3 cm. It is not a
surprising result and has been reproduced elsewhere (e.g., Refs. 10,11). The reason is
that when L is reduced, the ionization in the NG becomes so efficient that the CF width,
d, must decrease to satisfy the self-sustaining condition M = 1/γ and j consequently
goes up j α d –5/2 . Also, in the multipass regime due to the self-sustaining condition,
d α L [see Eq. (4)], and hence a decrease of L requires a decrease of d. One can see
in Fig. 3 that there is a good agreement with the experimental current density at L =
1.8 cm. V-I characteristics in a large range of current densities (0.5-300 mA cm–2) are
presented in Fig. 4 for two cylindrical HCDs in He. The tube diameter D corresponds
here to the intercathode distance, L. One can see a good agreement between the
calculated V-I curves and those observed experimentally. It is worthwhile to mention
the following. It is well known that the HCDs are characterized by V-I curves which
have a small slope resistance. In most cases, two different slopes can be observed: a
higher slope at low current densities and a lower slope at higher current densities (see
Fig. 4). Calculations show that in order to estimate the influence of the additional
ionizations in the CF, it is possible to establish a simple rule: when the voltage of
the HCD no longer increases (or increases slightly) with current, ionization in the CF
can be ruled out. Mathematically, it means that the discharge voltage approaches its
“critical” value, eUc = ∈ 0/ γ , when ionization in the CF is completely absent. This is
of course valid only when other loss mechanisms such as recombination and/or fast
electron losses from the cavity are not important.

Figure 3. Results of modeling the HCE for the Figure 4. V-I characteristics calculated in the
conditions of Ref. 12 using the approximation of approximation of small ad. Experimental
small αd. The current amplification factor j/ j0 voltage values are shown open circles: (a) from
is plotted vs the intercathode distance, L. The Ref. 12, (b) from Ref. 14. The normalized EMC
closed circle indicates an experimental point is shown by a dashed line. γ = 0.18 in the
from Ref. 12: L = D = 1.8 cm, j = 0.5 mA calculations.
cm –2  [see Fig. 4(a)].

We have to point out two other important conclusions which can be drawn from the
calculations presented above. First, the HCE has been modeled with only a small frac-
tion (< 20%) of additional ionizations in the CFs. Secondly, the HCE has been modeled
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with a linear electron multiplication in the CF (M CF  α αd ). Hence, we can conclude
that for the HCE to exist there is no need for substantial ionization and exponential
electron multiplication 11 to occur in the CFs. These latter factors can be important
in the early stage of the HCE when the CFs are thick (d/L > 0.3) and the current
density is low (close to its normal value) or for the HCD operating at high voltages/low
secondary electron emission coefficients (or low pressures/small intercathode distance).
These latter types of the HCDs are not considered here and they require a special
study (e.g., Refs. 15,16). Note, e.g., that for the HCD operating at high- U/low-γ [or
low-p /large-(Λ / L) ratio] the fast electron losses from the cavity can be very important.
These losses are not taken into account in the present model. Thus for the cases of
practical interest (moderate voltages, U < 500 V, and substantial current densities,
j > 1 mA cm – 2 ), additional ionization in the CF can be neglected. These operating
conditions are those of the large class of the HCDs which are widely used in analytical17

and laser 18,19 applications. This means that these HCDs can be modeled with good
precision based on the assumption that a monoenergetic electron beam enters the NG
with an energy corresponding to the CF potential drop.8 , 2 0 , 2 1  These models, of course,
cannot explain the HCE. However, within the limits of their validity, these models cor-
rectly describe energy integrated characteristics such as the ionization and excitation
profiles. Calculations of more precise energy dependent characteristics cannot be done
using these crude approximations of anisotropic scattering and continuous-energy-loss.

It is still believed that the pendulum effect leads to a drastic increase in the number
of ionization processes. 22 However, as it can be seen from the above calculations, the
pendulum effect does not result in an increase on number of ionizations because this
number (= 1/γ ) is fixed by the self-sustaining condition (see Fig. 3 where = 1.2
and it does not vary). Instead, the pendulum effect results in ionization becoming so
efficient in the NG that there is no longer need for the electron multiplication to occur
in the CFs and hence the CF width reduces and the current density increases.

It can be seen from the above calculations that the HCE exists even if a very small
fraction of ionization occurs in the CFs. Moreover, we believe that in the stage of
“developed” HCD (when its current density significantly exceeds the normal one and
the CFs are thin), any mechanism which results in an increase (even very small) of
ionization in the NG when the product pL is decreased can lead to the HCE. This fact
thus points out the difficulty in identifying the mechanism which is responsible for the
HCE in its “developed” stage. We will demonstrate this statement by considering the
mechanism of diffusional losses of ions from the discharge cavity.

The ion motion represents another quite independent mechanism of the HCE. If
the width of the NG is comparable with (or exceeds) the tube radius, a considerable part
of ions in case of the plane cathode is lost to the side tube walls and does not produce
electron emission from the cathode. The role of the ion losses is usually neglected while
describing the HCE and it is assumed that all the ions generated in the HCD diffuse
to the cathode (in the absence of recombination or other volume losses).11 In order to
estimate the rate of ion losses, it can be assumed that their transport is determined by
ambipolar diffusion. A diffusion loss coefficient, δi , can be introduced, which is roughly
equal H 2 / (H 2 + L 2 ) where H is the width of the cathode. Provided that (H/L) ² >> 1,
δ i ≈ 1 and the ion diffusional losses can be neglected. The latter condition is not always
satisfied (e.g., the experimental set-up in Ref. 23). In order to estimate the effect of
these losses, another self-sustaining condition is used, δi γ M  = 1 (see Ref. 11). This
expression however is not fully exact since only those ions which are generated in the NG
can be lost from the cavity. The ions generated in the CF are collected by the cathode
by the strong CF electric fields. The fact that the loss rates are different for the ions in
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the NG and the CF can change the situation dramatically. To demonstrate this, one
can use the fast EDF obtained above and calculate the fraction of the ions generated in
the CF and then introduce the loss of the ions in the NG. It is however interesting to see
the effect due to these losses only when the intercathode distance is reduced. In order
to do so, we neglect additional ionization in the opposite CF. Keeping in mind that the
loss rates in the NG and the CF are different, we should modify the expression δi γ M
= 1. Let us consider a practical situation which is realized frequently in experiment23 :
a system of two disk cathodes of radius Rc  separated by a distance L . In that case,

where L NG = L –  2 d is the NG length. For
the case when additional ionization in the CF can be ruled out, one can write the self-
sustaining condition as , where and

are the number of ionizations produced by a primary electron
in the NG and CF, respectively; lNG (l CF) is the path of this electron in the NG (CF)
which can be calculated easily in a manner similar to that used above to obtain Eq.
(3), . It is clear that l CF α d so that when the intercathode distance L
is decreased, δi  → 1 and M CF (and so d ) must decrease to satisfy the self-sustaining
condition. Hence, an increase in the current density is expected when L decreases.
This is similar to the HCE when only the effect of additional ionization in the CF
is taken into account. Indeed, in these both cases, the number of ionizations in the
NG increases when L reduces and, to satisfy the self-sustaining condition, the number
of ionizations in the CF (and so d ) must decrease since d α L . To model this effect
quantitatively, we take the following values: Rc = 1.5 cm (see Ref. 23), p = 1 Torr, He
gas, eφc = 250 V, γ = 0.2. Results of calculations are presented in Fig. 5. One can
see that there is a drastic increase of the discharge current density which results from
the decrease of d when L is reduced from 4 cm to 0.75 cm. It is important to note that
the effect is observed with the values of the diffusional loss coefficient δi being close to
1 (δi  varies from 0.75 to 0.9). Therefore, the HCE can be modeled without recourse
to any additional ionization in the CF. This result, of course, cannot be considered as
being valid by itself and should be considered in conjunction with the mechanism of
ionization in the opposite CFs and other competing mechanisms. But this example
illustrates that the ion dynamics has comparable importance to the electron dynamics
in the HCE. It also proves how complicated the phenomenon of the HCE is and points
to necessity of a comprehensive global model of the HCD.

SLOW ELECTRONS

In most numerical models of the CR, the electrons are divided into fast and slow
ones. The fast electrons are treated kinetically (Monte Carlo methods, electron Boltz-
mann equation, etc.). The slow electrons are described using the fluid (or hydrody-
namic) approach. Typically, two parameters are used to describe the slow EDF: the
electron density, ne , which is found from the continuity equations and the electron
temperature, Te , which is generally not calculated but is used as an input parameter.
In plasmas with weak electric fields (e.g., the NG and FDS), in the elastic energy re-
gion, the EDF body (bulk) has the Maxwellian distribution (see below) with a high
number density, ne, and a low mean energy, Te (< 1 eV). The “hot” tail of the EDF
with energies up to ∈* is essentially non-Maxwellian. The number of these electrons
(usually called the intermediate electrons or hot plasma electrons), nƒ, is significantly
lower than that of the bulk electrons and their mean energy, ∈ƒ,
is high Since under typical discharge conditions, the bulk electrons
are trapped in the self-consistent electric fields, the intermediate electrons carry the
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electron current in the NG and FDS and so play an important role in the formation
of the self-consistent electric fields. Moreover, the intermediate electrons are essential
in the energy balance of the bulk electrons (see below). Hence, it is important to take
into account the existence of the intermediate electrons, which is generally not done in
the traditional fluid approach. Since the intermediate electrons cannot be described in
the fluid approach in terms of two parameters, namely, ne  and T e, they must be treated
kinetically.

In order to calculate the slow EDF, a kinetic equation is to be derived. The
following simplifications can be made. First, in the elastic energy range, the EDF
can be treated as isotropic due to the high rate of electron-atom collisions. Second,
to simplify the integral of interelectron collisions and write it down in the Fokker-
Plank (differential) form, it can be supposed that the EDF body at thermal energies
is Maxwellian with the density ne  and temperature Te . This supposition is valid since,
under typical conditions, the interelectron collisions are dominant at thermal energies.
Third, one can write down the kinetic equation in variables r and total energy (kinetic
+ potential) ∈ = w + eφ a (r) where φ a(r) is the ambipolar potential. 6 [Note that it is
possible to separate the plasma electric field into the ambipolar electric field which is
due to the plasma gradients and the direct (or current carrying) field which originates
from an external power supply.] The kinetic equation for the isotropic part of the slow
EDF, ƒe (∈, r), can be then written down as

(5)

where D r = (1/3)λ v is the slow electron diffusion coefficient in configuration space, λ
and v are the electron mean free path and velocity, respectively;

 (Ta  being the atom temperature) and
w (νe + δ ν a ) are, respectively, the electron diffusion and friction coefficients in energy
space due to interelectron (frequency νe ), elastic electron-atom (frequency νa ) collisions
and direct electric field Ed (see Refs. 1,24 for more details). The third term in Eq. (5)
represents the continuous source (in energy space) of the secondary electrons generated
in ionization by fast electron impact with an integral intensity equal to the ionisation
rate, Q + (r); R +( w) is the energy distribution of the secondary electrons. The fourth
term in Eq. (5) is due to processes involving excited particles (e.g., Penning ionization,
collisions of the second kind24). (Note that the slow EDF is thus directly coupled to
the kinetics of ionized and excited particles).

It follows from the kinetic equation (5) that the slow EDF can be separated into
two distinct parts, ƒe  = ƒ M  + ƒƒ  : (i) the bulk EDF, ƒM, which represents the solution
of the homogeneous equation, where T(w) = D ∈/V∈  is effective
temperature and Cn  the normalization constant. When the interelectron collisions are
dominant, that is, and
which is Maxwell-Boltzmann. The electron density, ne , can be determined from the
ion transport equations and the electron temperature from the corresponding energy
balance equation; (ii) the EDF of the intermediate electrons, ƒƒ, which represents the
solution of the inhomogeneous kinetic equation and which is essentially non-Maxwellian
(see Eq. (6) and Eq. (7) below).

It also follows from the kinetic equation that the relationship between the spatial
and energy characteristics of the EDF is determined by the electron energy relaxation
length (see Refs. 1,6). The spatial scale on which a significant
change of the electron energy takes place is determined by λ∈, and depending on how
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Figure 5. Results of modeling the HCE upon Figure 6. Temporal evolution of Te  and n e  in
reducing the intercathode distance, L. Only the the beginning of a discharge pulse in the hollow
ion diffusional losses are taken into account. cathode-anode discharge. Symbols correspond to
Two disk cathodes of radius R c  = 1.5 cm are experimental data, lines are calculations.31

considered.

λ ∈  relates to the characteristic plasma dimension Lpl  (e.g., for a cylindrical plasma,
L pl ≈ R ) one can consider* the limiting cases specified below (see Refs. 1,6 for details)

In the case when λ∈  << L pl, that is when electron energy relaxation takes place
at a short distance, the terms with spatial gradients of ƒe  and the potential φa(r) ,
can be neglected in the kinetic equation (5) and the EDF can be found in the local
approximation. The perturbation of the local EDF due to diffusion to the plasma
boundaries shows up only at short distances from the boundaries of the order of λ∈  <<
Lpl . An approximate expression for the intermediate EDF (∈ > 2 ÷ 3 T e ) in the local
regime can be written as

(6)

where the ionization term only is considered and the difference between the total and
kinetic energies is neglected (see Refs. 24-26 for more details).

In the other limiting case when λ∈  >> L p l, the terms with gradients of the EDF
and the potential φa( r) became essential, and the regime of the EDF formation is non-
local, which means that the EDF in a given space region is determined not only by
the plasma parameters of this region but also by the whole volume. The term with
spatial diffusion is dominant for the trapped electrons (see below) and their EDF is a
function of total energy ∈ only, The EDF of the trapped electrons is
Maxwell-Boltzmann. Contrary, the balance of the untrapped electrons is determined
by escape to the plasma boundaries and their non-local EDF can be approximately
written as

(7)

where for simplicity a cylindrical coordinate system is used and d f (w) is the time of
free diffusion of an electron with an energy w (see Refs. 24,25 for more details).

Let us now illustrate the importance of the kinetic approach to the slow electrons
in describing the self-consistent electric fields and the electron temperature.
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Self-Consistent Electric Fields and Field Reversal Criteria in the PGD

As has been pointed out above, in spatially inhomogeneous plasmas, the electron
distribution function, plasma density profiles, and electric fields must be calculated self-
consistently. One of the most interesting examples of such a self-consistent problem is
the phenomenon of the field reversal in the PGD when a significant part of the NG and
FDS is occupied by a potential well for the thermal electrons.7 ,27

In normal and abnormal PGDs, the non-locality of ionization can be considerable
and substantial numbers of charged particles can be generated in the low field region
where the plasma density is maximum. The range of a fast electron with a kinetic
energy corresponding to the CF potential drop φc , can be calculated as Λ = eφc / (α∈0)
(see above). This formula gives estimations of the NG length which agree well with
experimental results (e.g., see Fig. 3 in Ref. 7). Hence, the position of x = Λ can be
regarded as a boundary between the NG and the FDS. This position also approximately
corresponds to the position of the electron density maximum (n m ). It has been shown
in Ref. 7 that the position of the first field reversal (to first order in µi / µe) is near the
end of the NG where the electron density is maximal. The ions, which are generated to
the left of this maximum, travel in the NG by ambipolar diffusion to the CF boundary.
The region between the NG and PC, where the electron density is still significant, is
the FDS. The length of the FDS can be estimated as where lD  is
the length on which an ion diffuses during its lifetime and nc is the electron density
in the PC (if recombination on the chamber walls is the dominant loss mechanism for
the ions, then lD  ≈ R /2.4). The electric field, E c , and electron density, nc, in the
PC are determined from the charged particle balance equation which can be written
approximately as I(Ec/N) = n c / a with I being the ionization rate and a the ambipolar
diffusion time, a ≈ R ² /(5.8Da).

In the case of a long discharge, when the discharge gap length, Ld, exceeds L F,
a second field reversal may occur at the FDS-PC boundary. In that case, a potential
well for the slow electrons develops. Its depth, φt , is of the order of few Te  (eφ t << ∈* ).
In the non-local regime when λ ∈  >> L F (e.g., λ ∈ >> 1 cm up to few Torr in He) one
can separate the slow electron group into two subgroups. The first subgroup consists
of the trapped electrons (which are almost all the bulk electrons) with total energies
below the trapping potential φt , that is, ∈ ≤ e φ t , which can only move within a limited
space in the discharge cavity determined by the condition ∈ ≤ eφa (r) . The second
subgroup consists of the untrapped electrons (which are practically all the interme-
diate electrons), with total energies above the trapping potential, that is, ∈ > eφ t,
which can move to the plasma boundaries and which are the electron current carri-
ers. The particle balance of the untrapped electrons is determined by their sources
(Q + and Q *) and free diffusion to the plasma boundaries [see Eq. (7)]. In this non-
local regime, the value of the trapping potential can be determined from the condition
that, in the steady-state, the flux of electrons entering the energy interval ∈ ≤ eφ t

must be equal to the fluxes of electrons escaping via the sink at ∈ = eφ t, through
collisions of the second kind and the Coulomb collisions, and through annihilation
by recombination. 2 1 , 2 5 Although the trapped electrons constitute the vast majority of
the electrons, their contribution to the electron current is zero.7  The relationship be-
tween the spatial distribution of the electron density and the electric potential is given
by7: where n M is the trapped-
electron density. Typically, in the main part of the NG and FDS, the Boltzmann term
in this equation dominates and the electric field profile is given by the ambipolar dif-
fusion equation, (Note that a significant departure from
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this expression for E(x) can take place when the density of the intermediate electrons,
nƒ, is high26). This implies that the reversed field in a short PGD rises monotonically
towards the anode and that the depth of the potential well, eφ t , is determined by the
anode potential.

The electron current in the FDS is transported due to diffusion of the intermediate
electrons (eφ t ≤ ∈ ≤ ∈*). The distribution function of these electrons is essentially non-
Maxwellian and has to be calculated from the kinetic equation as specified above [see
Eq. (7)]. Using this EDF, one can roughly estimate the electron current in the FDS as

where D e
(ƒ)  is the diffusion coefficient of an electron with an energy

∈ƒ. The traditional fluid approach employs a division of the slow electron current into
the diffusion and mobility components. However, the densities of the trapped and
untrapped electrons vary along the FDS in an entirely different manner.7  Since the
electron current is carried only by the untrapped electrons, it is in principle impossible
to express j e  in terms of the total electron density and its derivatives. Therefore,
the fluid approach is altogether misleading in this case and can result in substantial
errors. Moreover, the fact that the fluid approach cannot be used for describing the
field reversal follows even from some general considerations. Indeed, in the situation
when the field reversal exists, the diffusion term in the electron current is greater than
the mobility term, that is, It follows immediately from this inequality
that the characteristic FDS length, is smaller than the electron energy
relaxation length, λ ∈ ≈ T e /E, namely, LF  < λ ∈. In this case, as it has been shown in
numerous works devoted to the non-local electron kinetics (see, e.g., Refs. 1,6), the
regime of the EDF formation is non-local and a quantitative description requires the
kinetic approach.

At elevated pressures (p > 10 Torr, local regime: λ∈  << L p l), the field reversal in
the PGD can be absent.7 Instead of the electric field which decelerates the electrons, an
electric field arises which accelerates the electrons to the anode. A similar situation of
the absence of the trapping potential can occur in the longitudinal direction of a long
(large H/R ratio) cylindrical HCD. 14,25

In the case of the local regime (λ∈  << L pl ) no distinguishing, in principle, is needed
between the untrapped and trapped electrons. However, the fluid approach still cannot
be used since it is necessary to know the intermediate EDF to find Te (see below).
In the case of a short PGD or when a second field reversal exists, the value of the
trapping potential can be found by equating the electron and ion currents at the plasma
boundaries. Also, at high pressures (p > 10 Torr), when the FDS is expected to
be very short (< λ ∈  ≈ 1 0 – 1-10 –2 cm), abnormally long FDSs (1-3 cm) have been
observed. This paradoxical situation could be explained by the transport of charged
particles being determined by the so-called ambipolar drift when the dependence of the
electron mobility, µe , on the local electric field (or Te ), µ e(E), becomes important.28

This phenomenon has been observed in the high-pressure high-power gas lasers and it
can be important in the plasma display panels operating at high pressures.

Electron Temperature

Knowledge of the electron temperature, Te , is particularly important in the field-
free plasma since the overwhelming majority of electrons there have a Maxwell - Boltz-
mann distribution. The rates of the major plasma processes thus become directly
related to Te . They are, for example, the rates of ambipolar diffusion, recombination,
stepwise processes and many others. Because of the difficulty in predicting the electron
temperature using the traditional fluid approach (see below), the value of Te  is usually
assigned to 1 eV (e.g., Refs. 29,30) regardless the plasma conditions (gas pressure, dis-
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charge current, etc). In some models and model estimations, the value of Te  is assumed
to be equal to the gas temperature, Tg , that is, Te  = T g  = 300 K (e.g., Ref. 9). The use
of these ad hoc values of the electron temperature can lead to erroneous predictions of
the electron density, metastable density and so on. Indeed, not only can the electron
temperature be very different from 300 K or 1 eV but it can also depend strongly on
the plasma parameters (gas type, pressure, electron density, etc) (e.g., Refs. 21,25,31).

The fact that the bulk electrons have the Maxwellian distribution can significantly
simplify the problem of calculating their mean energy (or Te ). Otherwise, when the
form the EDF body is not known a priori, a complicated electron Boltzmann equation
has to be solved which includes the integro-differential term of interelectron collisions.
Hence, the direct solution of the kinetic equation to find Te  (and also n e) can present
difficulties. Instead, the energy balance equation should be used. An important aspect
of the problem of finding of Te  in the field-free plasma is that the major source of energy
for the bulk electrons is due to collisions with the hot intermediate electrons. Hence, to
predict correct values of T e , it is essential to know the intermediate EDF which must
be treated kinetically. This cannot be done within the framework of the fluid approach
in which one deals with the energy integrated moments of the EDF.

Multiplying the kinetic equation Eq. (5) by ∈ and then integrating over energy,
the energy balance of the Maxwellian electrons can be written as (e.g., Ref. 32)

(8)

Here, the first term represents conduction cooling with λe being the electron ther-
mal conductivity coefficient; Hr , H Q+ and H Q* represent, respectively, the energy gains
in recombination and in collisions with the intermediate electrons created in ionization
by fast electron impact and in interactions involving excited particles; 24 L e l  and L i n e l

represent the energy losses in elastic collisions with atoms and ions and in inelastic
collisions with excited particles (e.g., metastables), respectively. The diffusion cooling
is described by L D  which results from the escape of some of the bulk electrons to the
absorbing boundaries (e.g., to the anode) and from the work expended in overcoming
the ambipolar field in the plasma. 33

It follows from the energy balance equation (8) that the electron conductivity
equalizes the electron temperature over distances (electron
energy is conserved in interelectron collisions). Hence, in the case when λT  >> L pl,
the electron temperature is uniform and spatial averaging can be performed and the
principal term with diffusion can be eliminated in Eq. (8). In the other limiting case
when λ T  << L pl , a local energy balance takes place and the electron temperature is
spatially non-uniform.

In equation (8), the principal heating terms [being obtained from the term of
interelectron collisions in Eq. (5)] can be represented in a physically transparent form
a s

(9)

where characterizes the effective energy transferred to the system of cold
bulk electrons in collisions with the hot intermediate electrons created in ionization (in
processes involving excited particles) with the corresponding rate Q+ (Q *) (see Refs.
24,25 for more details). According to Eq. (9), the values of the energy transfer E +

e f f

and E *
e f f are directly related to the form of the intermediate EDF, ƒƒ (∈,r). Using the

results of Ref. 25, it is possible to obtain a crude estimation of E +
e f f as
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(10)

It can be seen from this equation that the efficiency of the energy transfer is
determined by the frequency of collisions, νe , between the cold bulk electrons and the
hot intermediate ones. In the case when the interelectron collision frequency is high,
that is, , the value of the energy transfer is large, E +

eff  ≈ ∈ ƒ, and
consequently Te can be high. In the other case of weak interelectron interactions, when

, the value of the energy transfer is small, E +
eff  << ∈ƒ , and Te is close

to the gas temperature, Te  ≈ T g = 300 K. Hence, depending on the plasma conditions
(pressure, electron density, etc), the electron temperature can vary significantly which
must be fully incorporated in the plasma models.

Practical Examples

Here we present briefly some examples of the HCDs where the described ki-
netic model have been applied. Various types of the HCDs have been investigated
which allowed us to study different types of glow discharges: from an abnormal PGD
with a steep V-I characteristic to the conventional HCD with an almost flat V-I
characteristic. 19 All other types of the HCD with non-traditional electrode configu-
rations can be classified as intermediate variants of the glow discharges. They include
the HCDs with the anode (or the system of anodes) placed inside the discharge cavity:
the hollow-anode-cathode,1 8 , 3 1 the cage,21 the segmented,19 the helical 34 HCDs. Their
common feature is an increased rate of charged particle (fast electrons, ions) losses from
the discharge cavity as compared to that in the conventional HCDs. This makes them
operate at a higher voltage and higher slope resistance than do the conventional HCDs
(see Ref. 19 for more details).

Let us first consider the hollow cathode-anode discharge 31  where the discharge
device is made up of two closely spaced, square parallelepipeds (0.8 × 0.8 × 4 cm3): the
outer parallelepiped is an oxide cathode, and the inner one is a grid anode. This type
of the HCD is interesting in illustrating some aspects of the non-local electron kinetics.
It demonstrates that not only is the electron temperature dependent on the plasma
parameters, but also it is determined by the geometry of the discharge device. Since the
anode in this system is placed inside the discharge cavity, the untrapped intermediate
electrons generated in the NG can easily escape to it, especially when the gas pressure
is low and the regime of the slow EDF formation is non-local. Hence, in this condition
the hot intermediate electrons do not interact effectively with the cold bulk electrons
(for the intermediate electrons, 1/ dƒ >> ν e ) and the energy transfer E +

eff  is low [see
Eq. (10)]. An example of measurements and calculations of the temporal “evolution of
ne and T e  in this system is presented in Fig. 6. The measured electron temperature
and density are reproduced rather well by the model. Even at the low pressure of 0.2
Torr, when the rate of electron cooling in elastic collisions with atoms is small, the
observed and predicted values of Te  are small (≈ 0.5 eV in the steady-state), which is
explained by E +

e f f  being small. Attempts to calculate Te  in the local approximation
(that is, assuming that the intermediate electrons do not diffuse to the walls) have led
to the values of Te  being excessively higher than that observed experimentally. As a
result of the correct prediction of Te , good agreement between theory and experiment
was also obtained for the electron density (see Fig. 6).

Let us next consider the cage HCD. 21  The cage HCD is formed by a set of al-
ternating rod anodes and cathodes and it is characterized by the large volume of a
longitudinally uniform NG plasma of a cylindrical geometry (the plasma radius R =
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Table 1. Results of modeling the cage HCD.21  Comparison of the
experimentally observed and calculated (given in parentheses) values of the
central electron density ne 0 , peak factor χ and electron temperature T e  a t
different gas pressures p. Discharge current I = 30 mA.

p, Torr 1 2 4

ne 0 , 10 11  cm–3 0.62 (0.84) 3.2 (4.3) 8.3 (10)
χ 1.9 (2.0) 2.3 (2.1) 3.7 (3.4)
Te , eV 0.54 (0.58) 0.094 (0.13) 0.061 (0.076)

1.7 cm and height H = 30 cm ). One can see in Table 1 that the experimental data
obtained by electric probes agree well with the model predictions. The electron density
spatial profile is fitted by where χ is the electron density peak
factor. The election density profile is directly related to the spatial distribution of the
ionization profile, Q+ (r), and hence to that of the fast electrons. At low pressures (p <
2 Torr), the fast electrons can easily reach the discharge center, Q+ (r) is uniform and
an almost parabolic density profile is observed (χ ≈ 2). At higher pressures (p > 3
Torr), the fast electrons cannot travel to the discharge center, a dip develops on the
discharge axis, and a flatter (χ > 3) electron density profile is observed. Calculations
of the ionization profile, Q+ (r), using the fast EDF obtained above, have allowed us
to obtain the electron density profiles and so χ . Another important result is that the
electron temperature depends strongly on the gas pressure (see Table 1). This is be-
cause of the higher electron cooling rate in collisions with atoms at higher pressures.
When such a flat density profile (low ambipolar diffusion rate) and such a low electron
temperature exist, recombination may become important, the rate of which varies as

where In the regime of purely recombination losses (no diffusion
losses), the electron density profile follows the ionization profile and a dip on the den-
sity profile can develop.35  Also, the maximum of the electron density with pressure14

can be explained by recombination being more important at high pressures. The above
mentioned phenomena could not be explained if one considers the electron temperature
being constant with varying pressure and being equal to 1 eV (which would underesti-
mate the recombination rate) or to 300 K (which would overestimate it).

CONCLUSIONS

The electron kinetics in the cathode region of glow discharges with plane and
hollow cathodes has been analyzed. The following conclusions can be made:

• in order to describe the cathode region of the glow discharges, the kinetic ap-
proach is necessary to the entire electron distribution function: both the fast and slow
electrons have to be treated kinetically.

• due to the enormous difference in the characteristic energy, space and density
scales of different electron groups, it is desirable to have effective (semi-)analytical ap-
proaches to each of these groups. Such approaches allow physically transparent results
to be obtained. Also, they can be useful in the development of fast computer codes
to model laboratory experiment in real time. Full scale direct numerical techniques
are important to check the validity of these approaches and to provide quantitative
description in conditions when the (semi-)analytical methods cannot be applied.

• using the self-consistent kinetic model, a large class of the glow discharges has
been described quantitatively: from the abnormal glow discharges to the conventional
hollow cathode discharges, and also a large variety of the intermediate glow discharges.
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Some important results are:
(i) it is shown that the hollow cathode effect results from the in crease of the number

of ionizations in the negative glow and not in the cathode fall with the total number
of ionizations in the discharge cavity remaining constant. The hollow cathode effect
could be modeled in the limit of small ionization in the cathode fall. Alternatively, a
mechanism of the ion diffusion losses is proposed and shown to be important.

(ii) it is pointed out that knowledge of the electron temperature is crucial in mod-
eling the plasma of the cathode region since the rates of major plasma processes are
determined by the electron temperature. It is shown that the electron temperature
can vary significantly depending on the plasma parameters (pressure, electron density,
discharge geometry) and that the problem of finding the electron temperature is purely
kinetic.

(iii) it is shown that to describe quantitatively the self-consistent electric fields in
the plasma of the cathode region, it is essential to use the kinetic approach. Such a
description is impossible in the framework of the traditional fluid approach which only
yields qualitative answers.

(iv) good agreement could be obtained between the predicted and measured plasma
parameters (with spatial and energy resolution and also temporal resolution) such as
the electron distribution function, the electron density and temperature, the excitation
profiles of. different spectral lines.
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A HYDRODYNAMIC DESCRIPTION OF ELECTRONS IN A
SPACE-TIME VARYING ELECTRIC FIELD

N. L. Aleksandrov

Department of Physical Mechanics
Moscow Institute of Physics and Technology
141700 Dolgoprudny, Russia

INTRODUCTION

Usually, in gases in a uniform steady electric field far from boundaries, electron
transport and rate coefficients are dependent on E/N, the ratio of the electric field
strength to the neutral species density, because the energy gain from the field is bal-
anced by the energy loss in collisions. In special cases, the electron properties are also
a function of the vibrational temperature of the molecules, Tv , and the degree of ion-
ization α = n/N, where n is the electron density. To describe this situation, one uses
the local field (or ‘equilibrium’) approximation which assumes that the electrons are in
equilibrium with the local electric field. However, if the electric field (and other param-
eters) varies rapidly in space or time, then the local energy balance is disturbed. This
occurs, for instance, in the cathode fall of a glow discharge, in the head of a streamer, in
RF discharges and so on¹. In addition, one can find the space or time-varying electron
density under the conditions of electron swarm experiments².

Several approaches have been suggested to study the electron swarm behavior in
gases in non-uniform and/or unsteady fields1-8 . These include a Monte Carlo technique,
momentum transfer theory, direct solution of the Boltzmann equation and model an-
alytical approaches. The aim of this paper is to give a hydrodynamic description of
electrons in a space-time varying electric field. This approach was suggested by Alek-
sandrov et al 9 and used initially to study the stability of the gas-discharge plasma.
When considering the first-order nonlocality and unsteadiness corrections, the method
of interest is simpler than Monte Carlo simulation and other cumbersome approaches.
At the same time it consistently takes into account a variety of collisional processes
which affect the electron energy distribution.

The basic equations are summarized in section 2. In section 3, the transport and
rate coefficients are given for a model system and real gases. A comparison between the
results of this method and other approaches is presented in section 4. Some applications
of the considered method including a simulation of gas-discharge plasma are given in
section 5. Generalizations to other cases are summarized in section 6.

Electron Kinetics and Application of Glow Discharges
Edited by U. Kortshagen and L. D. Tsendin, Plenum Press, New York, 1998 179



BASIC EQUATIONS

180

We consider a weakly ionized gas or plasma in an electric field E when the elec-
tron energy distribution function (EEDF) is in non-equilibrium. This means that the
inequalities eE λ u > T and  ν u  >> ν ee are valid. Here, e is the electron charge, T is
the gas temperature, λ u is the EEDF relaxation length, ν u  is the frequency of the
EEDF relaxation and ν ee  is that of the electron-electron collisions. Then, the EEDF is
non-Maxwellian and dependent on the reduced electric field E/N and the gas compo-
sition. This is true at the low ionization level α (α < 10 – 6 – 10 –5 in atomic gases and
α < 10 – 4 – 10 –5  in molecular).

We have νu  << νm  in the most gaseous media at not too high electric fields, where
νm is the frequency of the electron momentum relaxation. In this case the usual two-
term expansion of the electron velocity distribution function in spherical harmonics can
be used 2,10 :

We shall restrict ourselves to the practically important situation of L >> λm  a n d
ν m  >> 1, where is the electron mean free path for the momentum

transfer, σ m  is the collisional cross section for the momentum relaxation,

and a is the EEDF parameter ( E/N, n , T v , etc). Then, the equation describing the
spherically symmetrical EEDF ƒ0 (ε ) is written in the form 10

(1)

where m and ε = m v² /2 are the electron mass and energy respectively and S 0  is the
electron-neutral collision integral. Here, ƒ0 (ε) is normalized such that

(2)

The function f1 (v) is represented by

(3)

The collision integral S0  has the form²

(4)
where M is the neutral particle mass. The second term on the right-hand side of
equation (4) represents the electron energy loss εj in an inelastic collision having a
scattering cross section σ j . The last term describes the processes of electron generation
ad loss.



The EEDF in a uniform steady system is obtained from equation (1), neglecting
the first three terms. For real gases this equation is to be solved numerically2,11,12.

An integration of (1) yields the electron density balance equation

(11)

(5)

where Q represents the processes of electron generation and loss,

(6)

(7)

The transversal diffusion coefficient D T is inversely proportional to N (in the gas ap-
proximation which is assumed to be valid). The product NDT  is a function of param-
eter E/N (and in some cases of α and T v ). Therefore, the last term on the left-hand
side of equation (5) is the sum of the diffusion flux (~ ∇n), the ‘thermodiffusion’ flux
(~∇E/N) and other fluxes which are proportional to the gradients of the correspond-
ing parameters.

We consider the gradients of n e and E/N and time derivative of E/N such that

(8)

and

(9)

Then, the ratio of the third term on the left-hand side of equation (5) to the second
has an order λu /L << 1. The distribution function correction resulting from the second
and third terms of equation (1) changes all fluxes along the electric field. The variation
of the diffusion flux causes the well known anisotropy of electron diffusion in electric
fields in gases 2,13-15 . The degree of anisotropy is generally of the order 1. Other types
of the electron fluxes are expected to be also significantly anisotropic.

We follow the approach suggested previously by Parker and Lowke 13,14 and by
Scullerud15 for the diffusion fluxes and by Aleksandrov et al 4,9 for the other fluxes. In
perturbation theory frames under conditions (8) and (9) we look for the solution of
equation (1) in the form

(10)

where e = E/E and the electron drift velocity w0 is calculated from equation (6) with
ƒ0  = ƒ00. The function ƒ00 (ε) obeys the equation

and the normalization condition (equation (2)). By substituting equation (10) into (1)
and using equation (5), we can derive equations for the expansion coefficients bi(ε )

(12)
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(14)

where

(16)

The functions bi(ε) obey the condition

(13)

Substituting equation (10) into (6), we obtain the electron drift velocity in the unsteady
spatially inhomogeneous system

(15)

The coefficients κ i have the dimensions of diffusion coefficients and describe the effects
of inertia (in first order in (νu )–1 ) and of nonlocality (in first order in λu /L) in the
EEDF. For νm  = constant it follows from equations (13) and (15) that Ki = 0.

The rate coefficient for any electron inelastic process (the excitation of atoms and
molecules, ionization, electron attachment and so on) is equal to

where σ is the cross section of the process. Similarly, on substituting equation (10) into
(16), we obtain the electron rate coefficient in the unsteady inhomogeneous case

(17)

where k0 is calculated from equation (16) with ƒ0  = ƒ00 and

(18)

According to our approach (see, also,16 ), a hydrodynamic description of electrons in a
nonequilibrium weakly ionized plasma reduces to the electron density balance equation
(equation (5)) which takes into account the nonlocal and inertial corrections (equations
(14) and (17)). To complete a system of equations describing the state of the plasma one
should add the balance equation for the number of ions and the ordinary electrodynamic
equations. If the gas number density N is not constant, the gas-dynamic equations for
neutral component should be also taken into account. The mathematical structure of
the resulting system of equations is simpler than the structure of the ordinary system
of equations which also contains the balance equation for the average electron energy.
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THE TRANSPORT AND RATE COEFFICIENTS OF ELECTRONS

The magnitude and sign of the introduced transport and rate coefficients are gov-
erned by the elastic and inelastic collisional cross sections for electrons and may change
substantially, depending on the nature of the gas, E/N, α and Tv . Consider these
coefficients for a model system and real gases.

A Model of Divergent Collision Integral

In general, equations (11) and (12) must be solved numerically. However, if the
collision integral has a divergent form

(19)

these equations can be treated analytically. The collision integral takes this form when
the loss of electron energy is dominated by elastic collisions (atomic gases). In molecular
gases, the collision integral for rotational and vibrational excitation reduces to the same
form under certain conditions.

Let us consider power-law dependences of the frequencies for elastic and inelastic
processes on the electron velocity

Then, the solution of equation (11) is written as

where Γ is the gamma-function,

If p < 3, the electron drift velocity and the longitudinal diffusion coefficient are 2,13,15

and

where
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In the one-dimensional case, electron fluxes in a space-time varying electric field are
described by the coefficients κ4  and These are equal to 4,9

where

Real Gases

Calculation of the additional transport coefficients κi was carried out for CO, air,
Ar, Xe, the CO:Ar mixtures 17, N2 , CO2  and the N2 :CO2  mixtures 18 (see, also,4). Their
dependence on Tv  was studied for N2 , CO and CO2

19,20 . The additional rate coefficients
k were calculated for N , CO , Ar and airi 2 2 21,22 23 . The inelastic processes considered
were the excitation of the rotational, vibrational and electronic levels of molecules and
atoms, electron attachment and ionization. Details of the numerical method of solving
equations for ƒ00 (ε) and b  ( ) and the self-consistent sets of electron cross sections havei ε
been discussed elsewhere17-19,24 . These sets satisfy the available swarm experiment
parameters.

Figure 1 shows the ratios κ i /DT ( i = 2 – 4) which were calculated for air as a
function of E/N 4,23 . The coefficients κi have the same order of magnitude as D T  and
are the complicated non-monotonic functions of E/N.

The calculated coefficients κi  are also presented with a dimensionless notation.
The values of κi  are of the order λu  for ε0  ≥ I , where ε0  is the characteristic electron
energy and I is the threshold energy of the considered inelastic process. For ε0 << I ,
the rate coefficient is determined by electrons with energy ε such that I < ε < I + ∆ε ,
where ∆ε << I. Then, considering that the relaxation length for the rate of the inelastic
process can be estimated by eEλI I, the results of the calculation can be expressed
in terms of the dimensionless quantity The values of and calculated
by Aleksandrov et al
refnote23 for air for the excitation of and
ionization of N2  and O2  and dissociative electron attachment to O2 are shown in figures
2 and 3. The values of and are much less than that of and .

Two general features are apparent from the comparison in figures 2 and 3: (i ) for
the different processes with I >> ε0  (the excitation of the electronic levels of N2 , the
ionization and the electron attachment to O2) and for each given i we have nearly the
same values of with and and (ii) for the
vibrational excitation of N2 with is a non-monotonic function of E/N which
may change in sign.
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Figure 1. The values of (A) κ2/DT , (B) κ 3 /DT , and (C) κ 4 /DT  in air
versus E/N.

These features are not unexpected. For example, the inequality implies
that a positive (along the electric field) gradient of E/N results in an increase in the
rate of the high-threshold inelastic processes. This may be explained in the following
way. If the field is rapidly increasing is space, the local electron-energy balance is
perturbed. Then, the ionization and excitation in the low-field region are due to fast
electrons streaming across from the high-field region25 . A similar situation holds
when we have Here, the electrons fail to follow the increasing field;
therefore, the high-energy tail of the EEDF is underpopulated and the rate of the
inelastic process is less than its steady magnitude corresponding to the given value of
E/N. As a result, we have The ratio I /ε0  increases with decreasing E/N,
inducing because the high-energy tail of the EEDF is relatively
more sensitive to the field non-uniformity than its low-energy part.

The E/N –dependence of for the vibrational excitation of N2  molecule is more
complicated. The vibrational cross sections in N2  have a strong peak in the 2–3 eV
range. Therefore, the change of sign in the value of results from the relative under
– or overpopulation of electrons in the region of the relatively narrow peak in the
vibrational cross section during the spatial evolution of the EEDF25 .

COMPARISON WITH OTHER APPROACHES

There have been several previous Monte Carlo simulations25-27  of the electron prop-
erties in highly non-uniform fields excluding boundary effects by the choice of the a pri-
ori field profile. To compare these studies with the considered approach, Aleksandrov
and Kochetov21  calculated the non-local field corrections for these conditions with the
sets of electron cross sections used for the Monte Carlo simulations cited.

Under non-uniform field conditions Moratz et al25  gave not only the electron coef-
ficients but also the EEDF, which has much more information for the electron kinetics.
Figure 4 represents comparisons of the EEDF calculated by Moratz et al25  for the field
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Figure 2. The values of (a) and (b) for N2  in air23 .
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Figure 3. The values of (a) and (b) for O2  in air 23.
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Figure 4. The EEDF in nitrogen for the field slope (a) of 2.67 and (b)
16 kTd cm –1  at E/N = 300 Td:(...), local field 25 ; A and B, decreased field
C and D, increased field. A and C are Monte Carlo simulations 2 5 , B and D
are the considered approach.
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slopes 2.67 and 16 kTd cm–1  at 300 Td (1 Td = 10 –17  Vcm²) with the local field
distribution and with results by Aleksandrov and Kochetov 21. The calculations were
performed for molecular nitrogen at N = 1017  cm –3 . It is important that for the field
slope 2.67 kTd cm– 1  both of the non-local approaches give nearly the same ionization
coefficients whereas the local ionization coefficient differs from these values by a factor
of 1.5–221 . A better agreement between the results of the non-local approach and the
Monte Carlo simulation is observed for a decreasing field when the high-energy tail of
the distribution is more populated by electrons. At higher field slopes the considered
approach fails to describe quantitatively the electron behavior in gases.

Aleksandrov et al22 analyzed the applicability of the considered approach to the
description of the electron behavior in an unsteady uniform electric field. To do this,
the results of this method were compared with the direct solution of the unsteady
Boltzmann equation. Figure 5 shows this comparison for the ionization coefficient ki o n

in N 2 at a pressure of 1 torr, together with the quasi-stationary value of kion  and the
ratio Ω/νu where

and

The calculations were assumed that, in the time interval from t = 10–8  to 3 × 10 –8  s, the
electric field varied (grew or decreased) linearly with time. The approach which is based
on equation (17) gives correct results for the decreasing field even if Ω/νu  = 0.5. In the
case of a growing field, the agreement with the exact solution is worse; however, even in
this case the agreement is sufficiently good, although the quasi-stationary coefficients
can differ by factor of two or three from the exact one.

APPLICATIONS OF THE HYDRODYNAMIC DESCRIPTION OF ELEC-
TRONS

Swarm Experiments

Electron swarm experiments are used to measure the electron transport and rate
coefficients in a uniform electric field under non-uniform and/or unsteady electron den-
sity conditions².

The electron coefficients are usually assumed space (or time) independent. Wed-
ding and Kelly 28 measured the spatial variations in the relative excitation rates for
two electronic states of molecular nitrogen, namely the 337.1 nm (0,0) band of the
second positive system and the 391.4 nm (0,0) band of the first negative system, for a
point-source steady-state Townsend discharge. This enables us to compare the results
of the calculation22 of with experimental data. Figure 6 shows the measured radial
variation in the ratio of the excited state populations and
n" refer to the 337.1 and 391.4 nm bands respectively) in a CO 2 :N2 :He:CO (6:34:54:6)
mixture under the following conditions: E/N = 3 × 10 –15  V cm2 , pressure p =0.37 Torr
and the axial position z = 2.5 cm.

It should be noted that N (r, z ) would be expected to be unity for all radial posi-
tions if there were no dependence of the electron rate coefficients on density gradients.
However, the ratio of the normalized excited state populations indicates a significant
radial variation. At small radii we have δn/δz < 0 28 ; this being so, the additional
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Figure 5. Ionization coefficient in N2  in (a) increasing and (b) decreasing fields: (1) the exact
calculation, (2) the considered approach, (3) the quasi-stationary value, and (4) the ratio Ω / ν u .

190



electron diffusion flux increases the energy gained by electrons in the electric field. The
rates of the processes with higher thresholds are more sensitive to a variation in the
electron energy, resulting in k ′1 < k″1 and N (r, z) < 1. At larger radii the opposite
situation occurs because then we have ∂n/∂z > 0

28
.

Using a normalization procedure adopted by Wedding and Kelly and assuming
that the density gradient terms are small, then N (r, z) reduces to

where αT is the first Townsend ionization coefficient. To compare the measurements
with the theory, Aleksandrov and Kochetov 21 calculated k′1 , k ″1  and other electron
swarm parameters for the conditions mentioned above. The results of this calculation
are also shown in figure 6. In this case the electron density was supposed to be given
by28

(20)

where

DL  is the longitudinal diffusion coefficient, νion is the ionization frequency, K3/2 (s) is a
modified Bessel function of the second kind, γ1  is the first root of the Bessel function
J0 (x) and R is the internal radius of the guard rings maintaining a uniform electric field
in the experiment. Here, the spatial electron density distribution is described supposing
a dipole source at the cathode (r = 0, z = 0) and a diffuse source of secondary electron
production at large radii. A is constant and a measure of the total secondary electron
production.

Wedding and Kelly28  showed that equation (20) is consistent with experiment by
choosing A = 0.4 and normalizing the theoretical curve with respect to the experimental
one. In contrast to this, the calculation of k′1 and k″1 gives an absolute value of N (r, z)
which agrees closely with the experimental data28 without any need for normalization.

Evidently, an analysis of the electron rate coefficients under non-uniform elec-
tron density conditions can provide new information on the electron properties and
an additional possibility for deriving electron-atom (molecule) collision cross sections
by comparison of experimental and theoretical electron-swarm findings. This method
appears to be particularly appealing because it refers to the electron swarm proper-
ties controlled by the high-energy tail of the EEDF and to the high-threshold electron
processes.

Stability of A Gas Discharge Plasma

We show that the hydrodynamic approach described above may be used to in-
vestigate non-equilibrium plasma instabilities. The diffusion processes decreasing the
plasma perturbations, as a rule, have a stabilizing effect. The exception is the so-called
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Figure 6. The radial variation in the excited state population ratio N(r,z) for z=2.5 cm: (A)
experiment 28 and (B) calculation 21 .

thermocurrent instability of a weakly ionized plasma carrying current which is caused
by competition between the diffusion and ’thermodiffusion’ processes. This type of
instability was first predicted by Timofeev

1 6  who assumed the electron diffusion and
thermodiffusion to be isotropic. Taking into account the electron transport anisotropy,
this instability was investigated by Aleksandrov et al4 .

The mechanism of the thermocurrent instability is usually explained in the follow-
ing way. The longitudinal electron flux induced by the gradients of the electron density
n and of the parameter E /N in the one-dimensional case is equal to

(21)

where

The last term in equation (21) is analogous to the thermodiffusion term in the equilib-
rium system case because the reduced electric field E/N determines the characteristic
electron energy. Let us neglect the ion current and consider the time to be long in com-
parison with the relaxation time of the plasma charge is the electrical
conductivity). Then the electric current conservation law

results in a simple relation between the electron density gradient and the E/N gradient.
In this case the ambipolar diffusion flux along the electric field in the two charged-
component plasma can be written in the form
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Figure 7. Region of thermocurrent instability for He in α – E/N space.

where µi  and µ e  are the ion and electron mobilities respectively and

According to (22), for
(23)

diffusion is replaced by anti-diffusion and the plasma density perturbations are am-
plified. The instability under consideration is termed the thermocurrent because it is
caused by the electron current being proportional to the E/N gradient.

It should be noted that the thermocurrent instability takes place only if
In the opposite limit the longitudinal ambipolar diffusion is controlled by the plasma
quasineutrality violation which always stabilizes the perturbations.

A consistent discussion of the thermocurrent instability should be based on a ki-
netic treatment because the hydrodynamic approach provides for its growth rate to
tend to infinity in the limit of short wavelengths4 . The threshold of instability develop-
ment, however, can also be obtained by the hydrodynamic theory. The conclusion from
the calculation 4 of the electron transport coefficients that the instability can occur in
He at E /N = (4 – 7) × 1 0 –17 V cm²  has thus been supported by kinetic calculation by
Shveigert 2 9 on the basis of the inhomogeneous Boltzmann equation.

Akishev et al30 have obtained experimental confirmation of the occurrence of this
instability in He at a pressure of 1-4 Torr. They observed oscillations of the current, the
electrode voltage and the potential of probes in a glow discharge. The pressure depen-
dence of the period of the oscillations and the E/N instability region were consistent
with the conclusions of the theory.

The transport coefficient calculations by Aleksandrov and Kochetov2 4 , 3 1 indicate
that condition (23) is also satisfied in CO2  at E /N = (7 – 23) × 1 0

–17
V cm² and that

an increase in the ionization degree a and in the vibrational temperature of molecules
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Figure 8. Region of thermocurrent instability for He in H /N – E /N space.

has a stabilizing effect. Figure 7 shows the region of the thermocurrent instability for
He in α – E /N space. Evidently, at high values of α the electron-electron interactions
tend to drive the EEDF towards a Maxwellian which prevents the development of this
instability.

The application of a transverse magnetic field H turned out to be favourable
to the thermocurrent instability growth

32
. This is associated with the disturbances

propagating at an angle to the electric field and with a change in the electron transport
parameters, Figure 8 shows the region of the thermocurrent instability for He in H /N –
E/N space which was determined at small a from a calculation of the electron transport
coefficients in E × H fields 32 .

Domain instability of gas discharge plasma which is caused by negative differential
conductivity 4 , 9 , 3 3 can also be affected by the non-locality and unsteadiness of the EEDF.
This arise, e. g., in mixtures of molecular gases (N2 , CO, CO 2 , HCl) with inert gases
(Ar, Kr, Xe). Here, in the linear approximation the increment and velocity of the most
dangerous long-wave perturbations for are 4,9

where

Domain instability develops at Γ > 0; this is the case at < 0 and k 4  > 0 or vice
versa. The latter can take place in ion-ion plasmas3 4. In electron-ion plasmas with

< 0, the domain instability causes a bright plane layer moving along the electron
drift velocity. Evidently, that the layer can move also in the opposite direction when
D E < 0.

194



A new type of plasma instability takes plase in an electronegative gas when the rate
of electron attachment to a molecule strongly increases with the electric field 1 , 4 , 3 3 , 3 5 , 3 6.
This attachment instability causes solitary layers (domains) with a high electric field
and a low electron density (or vice versa) to propagate between the electrodes in the
high-pressure discharge in gaseous mixtures containing O2 , CO 2 , H2O or HCl. Both this
phenomenon and the instability incluced by negative differential conductivity manifest
themselves primarily as oscillations of the electrical current or of the voltage difference
across the discharge gap.

as 9,36-38
In the linear approximation the velocity of long-wave disturbancies can be written

(26)

(27)

(28)

(29)

(25)

(24)

where

ν a = k a0 N is the attachment frequency and ka0, k a1 , k a2  and k a3  refer to the attachment
rate coefficient. The coefficients ka1 , k a 2 and ka3  represent changes in the attachment
rate coefficient caused by the spatial evolution of the EEDF in plasmas with n and
E/N gradients (see equation (17)).

The first term in equation (24) represents the transport of plasma disturbances due
to the relaxation of the space charge and is of the order The second and
third terms, being of the order of describe the transport of perturbations due to
the nonlocal behaviour of the EEDF and the electron transport and rate coefficients.
The importance of any particular term is determined by the parameter which
is equal to the ratio of electric field pressure to electron pressure. For >> 1,
the domain propagates from cathode to anode whereas for << 1, the domain may
propagate also in the opposite direction. For example, when >> 1, the attachment
instability was experimentally studied in an externally-sustained gas discharge in an
O2:He mixture 38.

Simulation of Long-streamer Propagation

Streamer propagation is an important discharge phase of the breakdown of a long
gas gap. Nowadays the interest in these transient filamentary plasmas is due to their
applications to the removal of air-borne toxic chemicals (SO2 , NOx , etc.).

A great deal of effort has been devoted to computer simulation of the streamer-
plasma properties39-41 . The basic dynamical equations for the streamer propagation are
the continuity equations for electrons, ions and active particles, and Poisson’s equation
for the electric field:
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Here ne , n p , n n  and n* are the electron, positive-ion, negative-ion and active-particle
densities, respectively, ve , vp and v n  are the corresponding drift velocities and ε0  is
the permittivity of free space. The terms Qe , Q p , Q n  and Q* describe the production
and loss of electrons, positive ions, negative ions and active particles, respectively. The
drift velocities and the rate coefficients are usually assumed to be functions of the local
reduced electric field E/N although there are strong n e  and E/N gradients at the
streamer head. The effects of nonlocality of the EEDF on the streamer properties were
studied by a Monte Carlo technique or momentum transfer theory only for very short
(« 1 cm) streamers 42-44.

The hydrodynamic approach described in section 2 was used to simulate much
longer streamers in air taking into account the nonlocal and unsteady effects 23. The
1.5 D (axisymmetrical) simulation model and numerical method used in this calculation
were essentially the same as those used by the authors 40,45. That is, the radius of the
streamer channel was assumed to be fixed. Equations (25)-(29) were solved numerically
by the finite-difference method with the adapted mesh. The mesh was stretched in
the axial coordinate near the anode and in the streamer head, and was uniform in
other regions. The electric field was determined from the condition that the streamer
space charge is distributed over the cylindrical channel surface. The simulation was
performed in a sphere-plane air gap for a spherical anode of 1 cm radius and channel
of 0.03 cm radius. The calculation based on the local field approach and that based
on the hydrodynamic description of electrons give nearly the same results, although
taking into account only the nonlocal effect due to the E/N gradient affects the results
distinctly. This is because at the streamer head the E/N and ne  gradients are in the
opposite directions; that is, the various nonlocal effects cancel each other. The same
is true at higher pressures. The main conclusion from this calculation is that a long
streamer in air at pressures higher than 0.1 bar can be simulated using local approaches.

CONCLUDING REMARKS

Strictly speaking, the approach considered holds for small field and electron density
gradients (λ u  << L ) and time derivatives ( >> 1) only. The validity and accuracy
of such a treatment for gradients and time derivatives that are not small are not clear
in advance. Nevertheless,. when our results are compared with the results of more
consistent approaches (Monte Carlo technique, etc.), it is apparent that our approach
can also be used for the cases of and with the corrections for the
electron transport and rate coefficients being of the order of unity.

A self-consistent modelling of discharge phenomena taking into account the non-
local effects coupled to Poisson’s equation for the electric field is a formidable task. This
raises the necessity of developing a suitable hydrodynamic-like method incorporating
the important kinetic effects. Our approach is intended to provide data necessary for
this description of the electron properties in non-uniform and unsteady fields. The
method considered here is simpler than Monte Carlo simulation and other cumbersome
approaches. It is applicable to a description of the electron kinetics in gases with
a variety of electron-atom or electron-molecule scattering processes. Our approach
is also more simple and consistent than other hydrodynamic-like approaches which
include the balance equation for the average electron energy. This equation is usually
written by analogy with the hydrodynamic equations for a highly ionized gas derived
by a Chapman-Enskog procedure which is not valid for a nonequilibrium weakly ionized
plasma 16.

In this paper we have assumed that the EEDF depends only on the parameter
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E/N. When the EEDF depends also on the vibrational temperature of molecules Tv
or on the ionization degree α, a new type of corrections to the electron transport and
rate coefficients, proportional to and appear. This approach was
also generalized to cases of E × H fields 32,46 and electromagnetic waves 47. Similarly, the
ion properties in gases in a strong electric field can be considered48. It is interesting
that, due to a strong anisotropy of the ion energy distribution function, new corrections
proportional to e(∇e) and (e = E /E) appear.
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GLOW-LIKE DISCHARGES WITH RUNAWAY ELECTRONS

Leonid P. Babich

Russia Federal Nuclear Center - VNIIEF
“Sarov, 607190, Nizhegorodskii region, Russia

INTRODUCTION

Unspoken opinion restricts the gas-discharge physics by electromagnetic interactions
with free electron and photon energy being no more than lower tens of electronvolts. The
point is that an idea has been universally adopted according to which the dynamics of
breakdown and discharges in dense gases was governed by the entire assembly of electrons
moving along the electric force -eE with a drift velocity determined solely by the local value
of the reduced field intensity E/N. The chaotic motion of electrons has been considered to
dominate over this relatively slow directed motion. This idea originated from a concept of
the energy equilibrium of the entire electron assembly with a local E/N. It has being assumed
valid however fast the gas discharge process developed. Nevertheless within the line of the
gas discharge physics a “thread” of discharge phenomena governed by strongly nonlocal
processes, was stretching to develop gradually into an original area recognized presently
by scientific community. Wilson was the first who has suggested as early as 1925 that the
equilibrium could be violated in sufficiently high electric fields. Thirty years earlier the
outset of the era of thermonuclear plasma researches, when the first famous works have been
published on the phenomenon known presently as an electron runaway in a rarefied fully
ionized plasma governed by Coulomb collisions, Wilson has spoken out and substantiated an
idea that electric fields of thunderstorm clouds could accelerate charged particles up to very
high energies in the Earth’s atmosphere.¹ Furthermore, it seems to be universally admitted
that the term “runaway electrons” itself has appeared for the first time only in the scientific
literature of the 50’s to determine a flux of high-energy electrons accelerated away from a hot
plasma core of thermonuclear reactors. Actually it has been introduced by Eddington as early
as 1926 in that section of his paper,² where he has discussed “the question of the origin of the
penetrating radiation found in the earth’s atmosphere,...in  connection with subatomic energy”
as the nature of stellar energy source. At the end of the 20’s scientists have not been convinced
that the radiation known presently as cosmic rays, originated from extra-terrestrial sources in
spite of downward flow of the radiation. The experimental evidences of the cosmic nature of
the radiation were not universally adopted. In any case, Eddington “...was somewhat shaken
by Wilson’s calculations as to run-away electrons in thunderstorms”.² Proceeding from results
of these calculations he considered to be plausible that could produce the observed radiation
without involving drastic subatomic processes in stars or interstellar cosmic space.
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It seems safe to believe that for the first time the phenomenon of runaway electrons
was observed in the 30’s in the first experiments performed to search penetrating radiation
produced by thunderstorm electric activity, though the results of these observations are
commonly considered as statistically insignificant. Exactly Wilson’s hypothesis following
by these experiments has begun a direction in the gas discharge physics known as highenergy
phenomena in dense gases. On account of for years this scientific area was being presented by
experiments performed from time to time within so specific field as atmospheric electricity in
connection with thunderstorm activity, it happened to be outside the attention of a vast majority
of scholars being studied and applied electric discharges in dense gases. Only at the end of
60-th laboratory discharges in gases at the pressure up to 1 atm. were observed to generate
runaway electrons of high energies. Exactly the process of electron runaway underlies earlier
unknown phenomena and gas-discharge dependencies: (a) high-current glow-like discharges
with high degree of spatial homogeneity, 3, 4 (b) production of electrons with anomalous energy,
3 , 5 (c) displacement of the minimum of Paschen’s curves,

3
(d) inversion of the polarity effect

at high values of overvoltage,
6

(c) filamentation of diffuse gas-discharge channels,
7

( d )
the effect of utmost voltage. 8 Nonetheless in spite of many interesting consequences were
originated on account of runaway electrons to participate in the discharge dynamics, the
most intriguing and amazing phenomenon was high-energy runaway electrons themselves to
appear in so dense media as the lower layers of the Earth’s atmosphere.

FUNDAMENTALS OF NONLOCAL MODEL OF BREAKDOWN IN DENSE GASES

In the present section the author will follow briefly his present day comprehension of
ideas having been developed by Babich and Stankevich,

9
 and Kunhardt and Byszewski. 10

The case of a “weak” external field with the intensity less than the critical field intensity is the
most intricate since a distortion of the external field by space charges is necessary to satisfy
both Raethers treatment of breakdown and runaway criterion for electrons with initial energy
below the value, at which electron energy losses per unit path hit maximum value nearby to
100 eV. The case of a strong field is rather obvious.

In the framework of the conventional conception assembly averages, such as an average
electron energy, ionization frequency and directed (drift) velocity achieve their maxima
along the surface of a primary streamer, which is reasonable to define as a surface, where
selfconsistent field intensity, as a function of r, is maximum for every given x. Here x is
counted along and r transverse to the streamer axis. The maxima are decreasing functions
of the angle between the axis and the vector of the local selfconsistent field on the streamer
surface with an absolute maximum values at the streamer apex point, where selfconsistent field
intensity hits its absolute maximum. As the average electron energy increases to be within
the domain of reducing cross-sections, the maximum of the ionization frequency gradually
displaces to larger angles. The drift velocity remains maximal at apex point for ever. Thus
a filament-like development of the ionization process conserves till electrons at small angles
achieve the energy domain of rapidly decreasing ionization frequency. In subsequent stages
the streamer channel grows “crown” at large values of the angle.

Let us turn to the nonlocal conception incorporating runaway electrons as a crucial factor
governing the discharge dynamics 3, 9, 10 . If proceed from the stochastic definition of runaway
electrons, formulated by Kunhardt, Tzeng and Boeuf

11
, the increase of the front field results

in a continuous growth of a high-energy tail of the electron distribution, the last being more
anisotropic and its tail being longer for small angles. In the framework of the deterministic
approach the runaway energy threshold is minimum at the apex. Here the runaway criterion
is met first of all, gradually spreading over all streamer front surface. As a result according
to Kunhardt and Byszewski an “injection cone” of angles develops with a maximum number
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Figure 1. Gow-like discharges in the air at STP conditions: d = 1.5 cm, cathode radius r = 6 mm (a, c).
Photochronogram of space-time evolution of the discharge (b)

of runaway electrons on the streamer (avalanche) axis.10

Electrons, accelerated away from the moving front surface with a maximum field in-
tensity, relax to a local external field (become “trapped”.10 ) Prior to being captured runaway
electrons decelerated through the wide energy domain of large ionization frequency, so that
they initiate chains of secondary avalanches along a filamentary channel within the injection
cone.

This self-consistent process of the field intensification ahead of the channel apex, in-
jection of runaway electrons, secondary avalanche development, and electron acceleration
acquires a cone-like behavior. At very high overvoltages the breakdown should develop as a
channel with a crown at large angles due to short-range runaway electrons and as a diffuse
glow at small angles between the streamer axis and the vector of the local field, and far to an
anode due to the preionization of an ambient gas by long-range runaways and overlapping of
secondary avalanches prior to their transition to the streamer stage (Fig. 1). So the pictures of
the breakdown dynamics are very much alike regardless to the conception (local or nonlocal)
used, with the only exception of diffuse glows. The observation below allows to evaluate
which one is valid for the particular case. At sufficiently high E/N the average electron energy
achieves its maximum over a surface somewhere ahead of the streamer (primary avalanche)
front surface defined above. This infers a failure of the local conception, which assumes
both surfaces being coincident. The higher is E/N, the earlier the local conception fails in
the course of the streamer development and consequently the larger is the distance between
positions of the two maxima. Which conception is to be adopted is determined by idiosyn-
crasies of the particular experiment. Extremely low current pulse rise-time, very high velocity
of the ionization propagation, diffuse glow-like forms with high spatial homogeneity, low
ionization degree and plasma temperature along with extremely high current density are the
most significant features of discharges governed by runaway electrons.

BREAKDOWN AND DISCHARGES AT VERY HIGH OVERVOLTAGES

Results obtained at VNIIEF along the line of experiments started by Tarasova and
Khudyakova who reported a production of intensive x-radiation by electric discharges 4 at
very high values of the overvoltage in rod to plane air gaps at STP conditions, will be delivered
here as the most consistent. Maximum value of idle running HVW used was about 300 kV
and rise-time less than 0.6 ns, Storage capacity was charged by microsecond HWV up to
about 8 micro-coulombs. This charge determined the initial supply of electrons. As a rule but
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Figure 2. Open-circuit HVW oscilloscope trace U = 240 kV - (a), voltage realized U(t)-(b, e), gas-discharge
current I(t) - (c, f), runaway electrons (d, g). Ordinary discharge - (b, c, d), barrier discharge - (e, f, g). Air,
STP conditions, d = 1 cm, hemispherical cathode with r = 6 mm. 100 MHz time marker - (h).

not necessary the breakdown occurred at the front of idle running HVW, so that maximum
value and rise-time of a pulse U(t) realized over a tested gap, were less than corresponding
values for idle running HVW, and depended on a rod geometry and a gas species and density.
At STP conditions and interelectrode spacing larger than 1 cm the breakdown developed into
a volumetric diffuse glow-like discharge. The glow was separated by a comparatively narrow
“dark space” from small one or several bright near-cathode plasmas with a crown seen in Fig.
1. The corresponding oscilloscope traces of U(t) and a current I(t) displayed almost lonely
pulses (Fig. 2). Eddy current is seen in Fig. 2f. The similar structure of discharges with a
“dark band” was observed by Bychkov et. al. in the air at P=30mTorr. 12

Their discharges produced intensive x-radiation. At lower d the cathode plasmas grew
through the glow to bridge the gap by bright narrow channels, so that oscilloscope traces
of realized voltage U(t) and I(t) became oscillatory. At low d the average field intensity
U(d)/d increased in spite of decreasing U. The current rise time was estimated to be less than
0.5 ns for either cases. Because a large conductivity current appeared at the voltage U(t)
front, the delay time of the breakdown was less than 0.6 ns, indicating that the ionization
front propagated with a velocity higher than 0.1c, where c is the light velocity in free space.
There were studied plasma characteristics and dynamics of the diffuse glow discharge as the
most interesting due to the spatial homogeneity of the plasma within the main volume.

13
 The

cathode plasma emitted in bands of the second positive system of nitrogen, NII lines, HI
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Figure 3. Time dependence of the blackening of a film B(t) produced by the diffuse glow (1) and the emission
from the dense cathode plasma (2) measured from the photochronogram displayed in Fig. lb. Oscilloscope
trace of the gas-discharge current (3).

line, lines of ions and (or) atoms of a cathode along with a broad continuum. The emission
of nitrogen molecules and ions began l-2 ns prior to the appearance of the continuum and
metal lines. The electron temperature and the gas ionization degree were 1.8 eV and 0.01,
respectively. The diffuse glow emitted only in nitrogen bands, which were the same as from
the cathode plasmas. Here the ionization degree was less than 0.00001. Temporal evolution
of the light emission is illustrated in Fig. lb. Corresponding blackening of a film used B(t)
produced by the diffuse nitrogen glow and cathode plasma emission, are presented in Fig. 3
along with I(t). The duration of the glow almost equaled to that of the current. The lower
limit of the glow propagation velocity was estimated to be 0.2c. B(t) due to the glow and
emission from the near-cathode domain occurred to be almost equal during the first 0.5 ns,
which is the same as the current rise-time.

In view of the nitrogen emission in the cathode region preceded that of the metal atoms,
this result implies that during the time shorter than the current rise-time, a faintly glowing
streamer-like primary channel developed. Since values of B(t) produced by it and by the
volume glow were equal in spite of the near-cathode streamer was many times narrower than
the main glowing volume, the energy flux emitted by an unit surface of the streamer, was
greater than that of the main volume. Apparently, the streamer was rather power- consuming
formation. Electrons were accelerated in front of the streamer to become runaways, and
mechanism of polarization self-acceleration came into play, so that subnanosecond pulse of
anomalous energy electrons was generated. They preionized the main volume. Homogeneity
of the plasma within it resulted from the overlapping of secondary avalanches. In the dark
domain the energy of secondary electrons was too large for the molecule excitations due to
electron impacts to be sufficiently frequent to provide detectable light intensity.

RUNAWAY ELECTRONS

Subsequent study of the intensive radiation observed by Tarasova and Khudyakova
outside the anode of the above discharges at STP conditions, revealed a pronounced anisotropy
of the radiation along the axis of the discharge.

5
The voltage was no more than 300 kV.

It was too low for the discharges to generate ultra-relativistic electrons which emit the
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Figure 4. Attenuation curves of runaway electrons in aluminum foils. Figures indicate open circuit voltage.
Crossings of dashed lines with axis indicate extrapolated range of runaway electrons.

bremsstrahlung predominantly along the direction of their own motion. Furthermore, a
dependence of the observed radiation range on the atomic number Z of an absorber was found
to be too weak for x-rays. Both results inferred that Tarasova and Khudyakova detected
high-energy runaway electrons rather than x-rays. A comparison of experimental data with
calculations on the absorption laws of electrons and x-rays in metallic foils of various Z and
density unambiguously confirmed this conclusion.5

There was measured a dependence of the runaway electron number on the initial pressure
of the air at room temperature for two values of aluminum absorber thickness, allowing to
path through for electrons in the energy range above 40 keV and 200 keV respectively. The
other conditions were as follows: maximum value of idle running HVW 270 kV, d = 1.5 cm,
polished cathode with r = 6 mm. Rather sharp decrease of the electron number measured at low
P inferred that the generation of high-energy electrons was governed by volumetric processes
rather than by surface ones such as the field emission from a cathode, and apparently was
owing to a decrease in the rate of ionizing collisions of electrons, but not only. According
to curve obtained for the thicker absorber, some high-energy portion of runaway electron
distribution rather weakly depended on P and on U(t) as well. This was the way by which
electrons of “anomalous energy” for the first time distinctly revealed themselves.

In this sense absorption curves of runaway electrons occurred to be very illuminative.
At lower pressures the curves measured by Tarasova et al.,5  corresponded to a wide energy
distribution. At pressures of the order of hundreds Torr the curves revealed features typical
for monoenergetic electrons, i.e. the most steeply decreasing linear section in the middle and
the pronounced straggling at the end. Fig. 4 illustrates the curves obtained from discharges
in helium at P = 22 Torr and in the air at STP conditions. The linear section allowed to
get extrapolated range of electrons and estimate their energy to be 270 keV, which is higher
than eU (“anomalous energy”). Babich and Loiko published the most reliable quantitative
data on the energy distribution of runaway electrons obtained by the method of magnetic
spectroscopy (Fig. 5). 14 The measurements were carried out for discharges in a gap with a
conical cathode and a grid anode. Electrons with energies less than 50 keV were absorbed in
the window of the vacuum chamber of the spectrometer. Discharges in the air at P higher than
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Figure 5. Energy distributions of runaway electrons (arbitrary units): maximum value of idle running HVW
270 kV, air, d = 2 cm, sharp conical cathode with r = 0.2 mm, grid anode; Figures in brackets indicate [pressure
in Torr, number of pulses].

Table 1. Anomalous - energy electrons

Interelectrode spacing d, cm 3.5 2 1 0.5
Voltage realized, kV 210 190 150 130
Peak electron energy,
Energy excess,

keV 320 290 260 180
keV 110 100 110 50

100 Torr generated energy distribution of runaway electrons with a well-defined maximum,
whose position shifted to higher energies as P was increased. The value of the peak energy
really was higher than eU. The measured width of this distribution W = 60 keV did not
change within the pressure range 200-760 Torr. The intrinsic width was essentially less.
Since electrons with energies higher than 50 keV have ranges longer than the thickness of the
window, the lack of electrons at low energies along with W being less than the peak energy
and “anomalous” value of the latter appealed for a mechanism of the electron acceleration
unobserved earlier.

At P less than 200 Torr the spike-like energy distribution expanded owing to the gen-
eration of a large number of runaway electrons with lower energies. As P was reduced the
maximum energy of the distribution initially decreased, and then in agreement with the U(P)
dependence it increased backward, reaching at P = 22 Torr the value eU = 270 keV which
was the uppermost energy allowed by the ordinary runaway mechanism. Within domain P
less than 1 Torr the distribution became a line spectrum reflecting the structure of idle running
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HVW oscillations, with the value eU =270 keV being persisted. The value of maximum
energy was higher than that at reduced pressures in spite of U at hundreds of Torr was es-
sentially less than maximum value of idle running HVW. This observation also confirms the
generation of “anomalous energy” electrons. Table 1 shows maximum values of the voltage
realized U and electron energy at the spike maximum at STP conditions for the air. For d
longer than 1 cm the energy difference between the peak energy and eU equaled 100-110
keV, while for lower values of d it is less pronounced. It is pertinent to recall that in long
gaps the discharge in the air was a volumetric diffuse glow, whereas in gaps with spacing less
than 1 cm it was a bright contracted channel.

Experiments with identical accelerating and retarding voltages would allow to obtain the
most convincing evidence for the generation of anomalous-energy electrons. A convolution
of runaway electron motion and variation of HVW is an unpleasant shortcoming of such
experiments. Two gaps with a common grid anode and equal spacing d = 2 cm were
arranged. Runaway electrons accelerated within the first gap, passed through the anode into
the space domain of the second gap, where they were decelerated by the retarding field and
finally detected by a film within a cassette positioned at the second cathode. Wedges were
attached to the cassette to estimate final extra energy of electrons traversed the retarding
voltage. One and the same HVW was applied to both gaps, so that with the accuracy to
the time necessary for an electron to travel the gap spacing (d/c = 0.07 ns) it passed equal
accelerating and retarding voltages. Runaway electrons with the energy less than eU never
reached the film since they experienced additional energy losses in the air and the cassette.
At normal conditions the extra energy occurred to be 90 keV, which is nearly the same as
the energy excess from Table 1. The result was concealed by the characteristic time of
HVW variation was of the order of the travel time of runaway electrons in both gaps. So
magnetic spectrometer measurements are to be considered as the most conclusive. It was of
crucial importance to know space and temporal characteristics of runaway electrons in order
to identify their origin and understand the way, by which they govern the breakdown and the
overall dynamics of the discharge. The transverse structure of runaway electron fluxes was
observed to reflect the distribution of emitting plasma spots over the cathode surface. The
width of the runaway electron beams at STP conditions appeared to be directly proportional
to the gap spacing d. These results inferred that runaway electrons were generated within
the cathode region. The width of anomalous energy electron pulse at STP conditions was
measured at half-maximum to be 0.5 ns.14 As the air density was reduced, the width increased
to become at P = 10 Torr equal to a half-width of the first oscillation of idle-running HVW
(Fig. 2a) due to production of a copious amount of ordinary runaway electrons. To identify
the start of a runaway electron generation was of a particular importance. Runaway electrons
governed the breakdown as was treated above, provided that they are generated at the stage of
primary avalanches or streamers. Otherwise, they are the result rather than one of the crucial
causes of the particular way of breakdown. The anomalous energy electrons were detected
at the front of the high-voltage pulse U(t). However to connect them with the conductivity
current pulse was of more significance. They were assumed to be generated within an initial
stage of the fast rise of the current. This was proved to be true with 1ns accuracy by means of a
barrier discharge, which allowed to delay the electron emission and onset. The corresponding
oscilloscope traces, presented in Fig. 2, show the onset of anomalous energy electrons did
coincide with that of the conductivity current. Furthermore, a series of experiments showed
that the number of anomalous-energy electrons was essentially independent on the current
maximum value in the range 0.2-1.5 kA.

15
 A method of two parallel gaps differed by d, was

used to study the dependence of the number of anomalous energy electrons on the maximum
value of the current. The method allowed to vary the current by means of a variation of the
spacing of one of the gaps, with the voltage pulse U(t) was being one and the same over both
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Table 2. X-ray dose from anomalous - energy electrons.

Absorber thickness Dosage, 0.01 mR/pulse
Polyethylene, mm Aluminium, mm measured calculated
2 0 7.8 7.4
2 0.270 3.6 3.2
2 0.540 2.3 2.5

gaps. The result inferred the duration of the stage responsible for the generation of anomalous
energy electrons was reasonable to estimate as (0.2/1.5) times of the current rise time. This
product equals to 66 ps, which is far less than the measured magnitude 0.5 ns.

The problem arose to understand the nature of this phenomenon and to find a mechanism
responsible for it. It is well-known that high-energy particles are rather usual for highly ionized
collisionless rarefied plasmas governed by long-range collective interactions. The generation
of such particles by cold collision-dominated gas-discharge plasma with a low ionization
degree most likely may be explained by extrapolating the conventional Raether treatment of
the breakdown phenomenology, which incorporated localized fields of space charges, to the
domain of extremely high electric field intensities. In this sense the proximity of the number of
anomalous energy electrons (Fig. 4, air) to the Raethers critical avalanche is very significant.
From the very outset of the streamer model of breakdown in dense gases the ionization of
a gas and the field intensification at the anode-directed streamer front and associated with it
permanent increase of a local drift velocity were considered to be selfconsistent. Actually
this collective process one may treat in the framework of the conventional local approach
as an electron drift self-acceleration by the edge field soliton, propagating owing to the
ionization of a background gas by the swarm of electrons trapped by the soliton itself, and
polarization of the resultant plasma. The self-consistency, if being incorporated with the
nonlocal approach, infers that under certain conditions runaway electrons can also be trapped
by the edge soliton, i.e. the joint motion of the electrons and the soliton coupled due to the
ionization, at sufficiently high E/N becomes in fact “pure” (not drift) self-acceleration in the
laboratory frame of reference at least within some limited space-time domain of the overall
breakdown process. On account of the front field soliton intensity is proportional to the
square degree of the streamer length, the energy obtained by runaway electrons on account of
the self-acceleration increases as a cubic degree of the streamer length. For sufficiently long
and narrow streamer the energy of accelerated electrons can be even larger than the energy
eU corresponding to the voltage realized.

X-RAYS PRODUCED BY ANOMALOUS-ENERGY ELECTRONS

Production of x-rays by glow-like discharges at high values of the overvoltage was
observed and studied by Stankevich and Kalinin,18 Kremnev and Kurbatov

1 6
, Bychkov et. al.

12 , Byszewski and Reinhold
17, Kolbychev and Samyshkin

1 9
and other scholars cited in Ref.

3. The most numerous and consistent experimental investigations of this issue were carried
out at VNIIEF.

Table 2 illustrates some data on x-ray emission measured under conditions indicated in
Fig. 4 right, as follows. The electrons were absorbed in 2 mm thick layer of polyethylene at-
tached outside the anode foil of 8 mm thickness. Aluminum foils were positioned between the
polyethylene layer and the dosimeter. The effective energy of x-ray photons was determined
from the thickness of the half-attenuation layer to be equal to 14 keV This value being far less
than the energy of anomalous-energy electrons 300 keV (Table 1) forced Tarasova et. al. to
conclude that the discharges in the air at STP conditions generated a large amount of runaway
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electrons with an average energy 1.514 keV.5  They used relation deduced by Kramers, which
actually is valid for the intensity of bremsstrahlung produced in a thin target. Working out
from the idea that bremsstrahlung cross section and x-ray absorption coefficient increase as
the photon energy decrease, with the absorption coefficient increase indicating the increase of
the x-ray input in the dose measured, Babich et. al. supposed that soft x-rays produced by the
discharges in the air of atmospheric density was excited by electrons of anomalous energy in
the aluminum anode and the absorbing layers.

20
 This idea contradicted the Framers relation,

because the latter predicted the x-ray energy (2/3)300 keV for anomalous-energy electrons
whose energies at the anode are presented in Table. 1. The value 200 keV is much higher
than the effective x-ray photon energy 14 keV. To corroborate the idea, there were calculated
x-ray spectrum and spectral distributions of intensity and dose of bremsstrahlung produced
by anomalous-energy electrons, whose attenuation curve indicated by 270 kV, is presented in
Fig. 4. The initial energy of electrons was assumed to be equal to the peak energy as presented
in Table 1. Distributions of intensity and dose appeared to be concentrated in the low-energy
domain of spectrum in the vicinity of the quantum energy 10 keV far below the spike energy
of electrons. The results of integration of the dose distribution are collected in Table 2. The
agreement with the measured dose of x-rays is excellent. So the x-ray emission produced
by the glow - like discharges at high values of the overvoltage in the air gaps of centime-
ter range at atmospheric density, was originated from bremsstrahlung of anomalous-energy
electrons. Nevertheless the discharges studied were calculated and observed to generate a
copious amount of runaway electrons of lower energies which affected the mechanism of the
discharges to support volumetric discharge forms.

X-RAY EMISSION FROM VOLUMETRIC DIFFUSE DISCHARGES

The operation time of industrial nanosecond x-ray tubes of nanosecond range is limited
by the cathode erosion with subsequent insulator surfaces being covered by metal atoms and
dust. To overcome this crucial shortcoming, it is necessary to utilize emission due to gamma-
processes. Volumetric gas discharges are necessary to use in order to realize a homogeneous
irradiation by positive ions and photons the largest portion of a cathode active surface and
thus to avoid the formation of a cathode spot. Loiko et. al. 21 adopted a configuration
with a vast plane cathode and a rod anode allowing for the macroscopic electric field to be
homogeneous over the cathode surface, with the field intensity being significantly reduced
to eliminate the explosion emission. Experiments were carried out with two gas-discharge
chambers. Chamber (1) incorporated a plane cathode manufactured of 15 micrometer thick
aluminum foil, and a steel hemispherical anode with a diameter of 4 cm. Chamber (2)
incorporated 8 micrometer thick aluminum cathode and a cone W-Ni-Cu alloy cathode with
r = 3 mm. A plane beryllium window of 1 mm thickness was arranged outside the anode.
The interelectrode spacing in either chambers was d = 15 mm. Discharges were performed in
helium and air in the pressure range from 0.0001 Torr up to 1 atm. Two HVWs were applied,
one with subnanosecond rise-time less than 0.6 ns as illustrated in Fig. 2a, and the other
with rise-time of microsecond range. A dosimeter was positioned at the distance 3.5 cm
outside the cathode. Measured values of x-ray dose are plotted in Fig. 6. The position of the
maximum was determined primarily by the gas species and HVW used. According to curve
4 for microsecond HVW 0.004 Torr was found. The shortening of the rise-time resulted in
the displacement of the maximum to the range of higher pressure, as is illustrated by curves
1, 2, 3. The values 1 - 3 Torr for air and 20 Torr for helium were found for the maximum
position. The origin of the maximum is rather obvious, though it is due to rather complex
interplay of a few reasons. The strong decrease of the dose down to a negligible value at low
pressures indicates that production of x-rays measured by Loiko et. al. was due to ionization
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Figure 6. Dependencies of the x-ray  dose on the pressure: 1,2- chamber (1), 3, 4 - chamber (2); 1 - He, 2, 3, 4
-air; 1, 2, 3 - open-circuit HVW 250 kV, rise time less than 0.6 ns, 4-u = 110 kV, microsecond rise time.

processes in the gas volume, with the emission was being supported by gamma - processes,
though the authors privately communicated that extremely small sparking local spots as if
were seen on the cathode plane. At high values of the pressure when the dose was small, the
discharge developed in the form of bright contracted channels bridging the gap.

As the pressure was reduced, the channels expanded to become wider, and in the
range of the maximum the interelectrode space was filled by spatially homogeneous diffuse
glow. These results can be treated as an evidence that volumetric forms of the discharges are
consistent with acceleration processes. The maximal dose measured by Loiko et. al., appeared
to be only ten times less than that produced by industrial evacuated tubes. It is appropriate
to note that neither discharge regime tested nor diode geometry were not optimize to obtain
maximal dose and to approach the efficiency of the evacuated tubes.

DISPLACEMENT OF U(Pd) CURVE MINIMUM

Participation of runaway electrons in the breakdown dynamics should manifest itself on
the macroscopic level as an adequate behavior of Paschen’s curves U(Pd). What occurs with
the curve of a particular gas if the overvoltage arises? The first idea but the wrong one is
that the curve moves upward so that the position of its minimum (Pd) remains constant. It is
well known that the breakdown “on the left hand branch” of the static (dc) Paschen’s curve
U(Pd) is governed by runaway electrons. The runaway condition for zero-energy threshold,
which is the case for the breakdown, appeared to be satisfied, with the minimum value of
e(E/P) differing not very much from the maximum value of electron energy losses per unit
path reduced to unit pressure L.

Strongly attached gases are the only exception. This implied to go so far as to suggest
the validity of the equality e(U/Pd) to maximum value of reduced electron energy losses,
which is a fundamental constant for a particular gas. From it one can see that an increase of
the overvoltage (decrease of the open circuit HVW rise time) should be accompanied by a
rightward shift of the U(Pd) minimum. Fig. 7 shows curves U(Pd), measured in a gap with
almost homogeneous geometry and d = 1 cm for three values of rise time: static, microsecond,
and subnanosecond.³

The shift of the minimum is strongly pronounced. Throughout along the curve for
subnanosecond rise time runaway electrons and x-rays were detected. Data are shown from
other studies, where x-rays were detected from the air or nitrogen plane to plan gaps at lower

2 0 9



Figure 7. Dependencies U(Pd): 1, 2, 3 - static; 4 - microsecond HVW, 5 and 6 - nanosecond HVW with
subnanosecond rise time; 1, 3, 4, 5 - air, 2, 6 - helium; 3 - static E/P.

overvoltage. So the displacement predicted from the conception that the breakdown to govern
by runaway electrons, do take place. In its turn this result supports the nonlocal conception
of the breakdown in dense gases. In general, the dielectric strength of gases is characterized
by a single-parameter family of curves U(Pd, rise time), with the rise time being a parameter.
Moreover, this result implies that beside dc U(Pd) curve there exists another fundamental
dependence, indicating that for any given open circuit HVW rise time the minimum value of
the voltage is directly proportional to the corresponding value of Pd.

INVERSION OF THE POLARITY EFFECT

The outstanding peculiarity of the breakdown in attached gases is the pronounced polarity
effect, that is the breakdown voltage in gaps with positive rod to negative plane configuration
of electrodes being less than in the event of the opposite polarity. It is believed to be due to
a shielding of a negative point by a homopolar space charge. Kovalchuk et. al. observed the
effect to inverse for the breakdown in the mixture 0.21 sulphur hexafluoride + 0.79 nitrogen by
HWV with a rise time 4 ns.2 2 This result inferred that at high overvoltage the homopolar space
charge was destroyed most likely due to runaway electrons. Babich and Loiko studied the
polarity effect in “pure” sulphur hexafluoride, as the outstanding specimen of strongly attached
gas, and in the air at STP conditions.6  The geometry was rod (high-stressed electrode) to plane.
The rod active surface was cone with r = 0.2 mm or hemisphere with r = 6 mm. The algebraic
values of the breakdown voltage obtained with microsecond HVW, clearly demonstrated the
conventional polarity effect. These measurements were followed by experiments with the
nanosecond HVW pulses U(t) measured over sulphur hexafluoride and air gaps for variety
values of spacing d, indicated that voltage in the air and sulphur hexafluoride differed only
by tens of percents rather than by several times as for longer pulses. The polarity effect was
observed to inverse both in sulphur hexafluoride and in the air. Like in the air, the breakdown
in sulphur hexafluoride was diffuse glow for large values of spacing (d > 5 mm). To support
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Table 3. Anomalous - energy electrons in sulphur hexafluoride.

Cathode, radius

Gas
Electron energy, keV
U, kV
Energy excess, keV

Number of electrons: air/sulphur
hexafluoride

air
240
110
130

Cone
(0.2 mm)

sulphur hexafluoride
270

1 4 0
130

5

hemisphere
(6 mm)

a i r
280
180
100

4 0

sulphur hexafluoride
2 8 0
250
30

the idea that the inversion of the polarity effect was due to runaway electrons, the number
and energy of runaway electrons in sulphur hexafluoride at d = 2 cm and STP conditions
were measured. Results obtained are presented in the Table 3 along with the data for the air.
Runaway electrons from sulphur hexafluoride proved to be electrons of anomalous energy.
Their number occurred to be sufficiently large to govern the breakdown. Thus the diffuse
discharges in dense electronegative gases in rod to plane gaps at high overvoltages acquires
features similar for the vacuum discharge. This is most likely due to breakdown is governed
by the field emission and accelerated (runaway) electrons as in the vacuum. This idea implies
that the polarity effect turns over in electropositive gases as well.

COMPUTER SIMULATION OF THE OVERALL DISCHARGE DYNAMICS

Nonlocal approach to electron kinetics in collisional gas discharge plasma was developed
by Tsendin,

23 Tsendin and Golubovskii, 2 4 Kortshagen,2 5 Ingold, 2 6 Kortshagen and Tsendin,28

and other scholars as was reviewed by Kolobov and Godyak.
2 7

 They considered the case
which conventionally is allowed to identify as a weak non-locality. It includes fast beam-like
electrons. The case of incorporates runaway electrons. Results on computer simulation of
overall dynamics of glow-like diffuse discharge at high overvoltage governed by runaway
electrons, were published by Babich and Kutsyk.

29
The calculations were carried out up to

the state enabling a comparison with experimental data. The approach of electron energy
groups was adopted. Electron energy distribution was divided in three large - scale groups.

The first group incorporated electrons with almost isotropic distribution below some
maximum value. It was described by the conventional two-term approximation for the
distribution function f(x,v,t). The corresponding set of two equations was reduced to an
equation describing the evolution of low-energy component in terms of a local electron number
density with a given energy. The second group contained electrons of intermediate energies
in the domain below runaway energy threshold. In strong fields the number of particles in this
domain is considerable. They move mainly along the lines of electric force -eE. The two-term
approximation is violated for them. The simplest statistical approach was invented to describe
the kinetics of intermediate energy electrons. It enabled to calculate a fraction of electrons
crossing runaway threshold, as a function of the local field intensity. Runaway electrons
with energies above the threshold constituted the third group. The dynamics of runaway
electrons was described as one- dimensional motion of an equivalent point charge under the
action of the local accelerating electric force and the retarding force due to electron-neutral
particle interactions. Threshold at any given time instant was calculated from the equality of
acceleration and retarding forces for each space zone of the mesh. Drift approximation was
adopted to describe the kinetics of positive ions. The first Maxwell equation was solved to
calculate the intensity of self-consistent electric field with standard normalization condition
to the voltage realized U(t).

Equivalent electric circuit of HWV generator was used to calculate U(t). Field emission
was assumed to be a source of electrons from the cathode. At the initial time instant the
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Figure 8. Calculated (1) and measured (2) total conduction current in the gas-discharge gap (a). Calculated (1)
and measured (2) voltage across the gas-discharge gap (b). Helium, P = 1 atm.

gas-discharge gap was assumed to be weakly and homogeneously preionized.
A helium gap at P = 1 atm. with plane electrodes (S = 1 squire cm, d = 1 cm) was

simulated. Helium was chosen due to its poorest structure of atomic states to simplify
calculations of low-energy electrons. Fig. 8 demonstrate calculated and measured current
I(t) and voltage U(t). In view of rather good agreement of calculated and measured I(t) the
discrepancy between calculated and measured U(t) in all likelihood relates to the experimental
precision available. Fig. 9a illustrating calculated current of runaway electrons, indicates that
they constitute a substantial portion of the total current. The energy distribution of runaway
electrons at the anode presented in Fig. 9b, demonstrates high-energy tail which actually
was detected. Large value of the computed runaway electron current proved participation of
runaway electrons in the dynamics of glow-like discharges at high values of the overvoltage.

CONCLUSION

The idea for electrons to runaway and the term itself were introduced in the physics
of electron-neutral collision dominated plasma as early as the twenties of this century in
connection with thunderstorm activity. Presently runaway electrons are acknowledged to
govern the breakdown and discharges in a wide range of conditions. Preionization of a
gas by runaway electrons with subsequent overlapping of secondary electron avalanches
results in the development of volumetric glow-like forms of discharges. Several groups of
researchers observed runaway electrons detecting secondary x-ray emission. It was observed
that production of penetrating radiation correlated with development of glow-like forms of
discharges in a very wide range of the gas density. Loiko succeeded to detect directly runaway
electrons at STP conditions at relatively low overvoltage.³ In a full measure this effect reveals
itself at high overvoltages, as the generation of anomalous-energy electrons. At reduced gas
density this effect was observed to fade away gradually. A mechanism responsible for their
production is not exotic. It follows directly from the approach to the breakdown phenomenon
proposed by Raether. Production of anomalous energy electrons was treated on the basis of
electron acceleration self-consistent with propagation of the domain with enhanced electric
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Figure 9. Current of runaway electrons (a). Energy distribution of runaway electrons (b). Helium, P = 1 atm.

field in front of the streamer head. In its turn the observation of anomalous-energy electrons
is a direct evidence in favor of Raether treatment of the breakdown phenomenon itself. On
the macroscopic level participation of runaway electrons in the breakdown dynamics exposed
itself as a rightward displacement of the U(Pd) curve minimum as the overvoltage increased
and via the inversion of the polarity effect.
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THE DYNAMICS OF FERMI ACCELERATION

M. A. Lieberman

Department of Electrical Engineering and Computer Sciences
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Berkeley, CA

1. INTRODUCTION

1.1. Cosmic Rays: Discovery and Properties

In the morning of August 7, 1912, Austrian physicist Viktor Hess ascended to
over five kilometers in a balloon gondola as “an observer for atmospheric electricity.” 3 , 4

During the journey, he made careful measurements of the rate of discharging of three
electroscopes, and he noted a several-fold increase in the rate of discharging as the
balloon rose in altitude. In his publication in Physikalische Zeitschrift in November
1912, Hess suggested that the results of his observations were best explained “by a
radiation of great penetrating power entering our atmosphere from above.” Further
flights confirmed these findings, and the American physicist Robert Millikan, although
initially skeptical of the extraterrestrial origin, introduced the name cosmic rays.

It is now generally agreed that the majority of cosmic rays have a galactic origin.
The cosmic ray flux is isotropic and of order 1 cm

–2
s

– 1
, the energy density is approxi-

mately 1 eV/cm³, and the lifetime is approximately 107 years. Cosmic rays are mostly
protons, but are rich in heavy nuclei compared to solar abundances. The particle ener-
gies range from W ~ 108 –102 0  eV, with a power law distribution N(W) ∝ W –(2–2.5) .

Cosmic rays are believed to originate from supernovas such as the well-studied
Crab nebula, which is the remnant of a supernova in 1054 A.D. With one galactic
supernova every fifty years within a galactic disk volume of 1067  cm³ creating 104 3 J   of
fast particles, the energy balance is

Measurements of radiation from supernova remnants clearly show the presence of syn-
chrotron radiation, demonstrating the existence of high-energy (> 1011 eV) electrons.
Exactly how the fast particles are formed and accelerated is not well understood. Early
theories emphasized acceleration across high voltages or by means of shock waves.
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1.2. Fermi’s Proposal

In 1949, Fermi² put forth the idea that “cosmic rays are originated and accelerated
primarily in the interstellar space of the galaxy by collisions against moving magnetic
fields.” He went on to assert the basic acceleration mechanism as follows:

It may happen that a region of high field intensity moves toward the cosmic-ray
particle which collides against it. In this case, the particle will gain energy in
the collision. Conversely, it may happen that the region of high field intensity
moves away from the particle. Since the particle is much faster, it will overtake the
irregularity of the field and be reflected backwards, in this case with loss of energy.
The net result will be average gain, primarily for the reason that head-on collisions
are more frequent than overtaking collisions because the relative velocity is larger
in the former case.

Fermi noted that this idea naturally leads to a power law energy distribution, but
that it fails to explain in a straightforward way the heavy nuclei observed in the primary
cosmic radiation.

2. FERMI ACCELERATION

2.1. Fermi Maps and Dynamical Chaos

The Fermi problem of a particle bouncing between a fixed and an oscillating wall,
illustrated in Fig. 1, has become a paradigm problem in dynamics. This model of
energy gain by repeated collisions of a particle with an oscillating wall was examined
numerically by Ulam and associates,15 who found that the particle motion appeared
to be stochastic, but did not increase its energy on the average. Ulam’s result was
explained using a combination of analytical and numerical work by subsequent authors.
The Fermi problem was treated using an exact area-preserving dynamical mapping for a
sawtooth wall velocity by Zaslavskii and Chirikov.

17
 Similar studies were performed by

Brahic.¹ A “simplified” mapping, in which the oscillating wall imparts momentum to the
particle but occupies a fixed position, was introduced by Lieberman and Lichtenberg10

and studied for arbitrary wall velocities (Ref. 8; see also Ref. 7, Sec. 3.4).
To find the exact mapping dynamics for this system, we introduce a fixed surface

of section at some x = const. Defining to be the normalized velocity and
θn = ωt to be the phase of the moving wall at the n th collision with the fixed surface
at x = 0, then a difference equation for the motion of the particle can be determined
in terms of a wall motion where F is an even periodic function of the
phase ψ = ωt, with period 2π and with Fm a x = –Fm i n = 1. We obtain, in implicit form
the equations of motion

(1a)

(1b)

(1c)
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Figure 1. Fermi acceleration in which a particle bounces between a fixed and an oscillating wall.

Figure 2. Surface of section for the Fermi problem, showing occupation of phase space cells for
623,000 iterations of a single initial condition. Dashed curves are calculated from secular perturbation
theory (after Ref. 10).
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Here ψc  is the phase at the next collision with the moving wall, after the n th collision
with the fixed surface x = 0; M = l /2πa, with l the distance between the walls; and

is the velocity impulse given to the ball. In this form it is easy to see
that measuring the distance from the fixed wall as x, conjugate to v , then the phase
θ is a time-like variable conjugate to the energy-like variable ω = u². That is, in the
extended phase space ( , x, –v ω , t), the choice of a surface x = 0 gives an area-preserving
mapping for the remaining pair (–ω, t ). As we show in Section 1.2, this implies that
a stochastic orbit has a uniform invariant distribution over the accessible (ω , θ ) phase
space. Hence, assuming all phases are accessible, the energy ω has a uniform invariant
distribution.

Because of its implicit form, (1) is not convenient for. numerical or analytical study.
Substituting ω = u², assuming a sinusoidal wall motion in (1), and expanding to first
order in F' (and F ), we obtain

(2a)

(2b)

A still simpler form can be constructed if the sinusoidally oscillating wall imparts
momentum to the ball, according to the wall velocity, without the wall changing its
position in space. The problem defined in this manner has many of the features of the
more physical problem. In this simplified form the mapping is

(3a)

(3b)

The mapping in (3) serves as an approximation (with suitably defined variables) to
many physical systems in which the transit time between kicks is inversely proportional
to a velocity. The absolute-value signs in (3) correspond to the velocity reversal, at low
velocities u < 1, which appears in the exact equations (1). The absolute value has no
effect on the region u > 1, which is the primary region of interest. For the simplified
problem, a proper canonical set of variables are the ball velocity and phase just before
the nth impact with the moving wall. The normalized velocity u then has a uniform
invariant distribution, as will be seen in Section 1.2.

Transformations of the type (1)–(3) can be examined numerically for many thou-
sands of iterations, thus allowing both detailed knowledge of the structural behavior
and statistical properties of the dynamical system to be determined. Figure 2 shows the
u–ψ ) surface for the simplified Fermi map (3) with M = 100 for 623,000 wall collisions
of a single trajectory, with an initial condition at low velocity u0 ≈ 1. The surface has
been divided into 200 × 200 cells, with a blank indicating no occupation of that cell.
We find that the phase plane consists of three regions:

1. a region for large u , u > u b = in which invariant adiabatic curves pre-
dominate and isolate narrow layers of stochasticity near the separatrices of the
various resonances;
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2. an interconnected stochastic region for intermediate values of
u b , in which adiabatic islands near linearly stable periodic solutions are embedded
in a stochastic sea; and

3. a predominantly stochastic region for small u , u < u s , in which all primary
periodic solutions appear to be unstable.

Both regions (2) and (3) exhibit strong or global stochasticity of the motion. In the
latter region, although some correlation exists between successive iterations, over most
of the region it is possible to approximate the dynamics by assuming a random phase
approximation for the phase coordinate, thus describing the momentum coordinate by
a diffusion equation. We explore this question more fully in the next subsection.

2.2. The Fokker–Planck Equation

In regions of the phase space that are stochastic or mostly stochastic with small
isolated adiabatic islands, it may be possible to describe the evolution of the distribution
function in action space (or velocity space) alone. This is, in fact, the problem of most
practical interest. In the Fermi acceleration problem, for example, the motivation was
to find a possible mechanism for heating of cosmic rays. The variations in the phases
of the particles with respect to their accelerating fields are of little interest except as
they are required for determining the heating rates and the final energy distribution.

Let us consider in what sense the evolution of the distribution function ƒ(u, n ) can
be described by a stochastic process in the action u alone. Clearly we must confine our
attention to a globally stochastic region of the phase space in which adiabatic islands do
not exist or occupy negligible phase space volume. In such a region, it may be possible
to express the evolution of ƒ(u, n ), the distribution in u alone, in terms of a Markov
process in u 16:

(4)

where the transition probability, is the probability that an ensemble
of phase points having an action u at a “time” n suffers an increment in action ∆u after a
“time” ∆n. If we make the additional assumption that there exists an intermediate time
scale ∆ n >> 1 such that then we can expand the first argument of
the integrand ƒWt in (4) to second order in ∆ u to obtain the Fokker–Planck equation

(5)

For Hamiltonian systems, the friction coefficient B and the diffusion coefficient D are
related6as

(6)

allowing (5) to be written in the form of a diffusion equation

(7)

Assuming that phase randomization occurs on the time scale ∆n, then we can average
∆ u over a uniform distribution of phases to obtain
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Figure 3. Comparison of velocity distribution ƒ(u ) [here P (u)] for the simplified Fermi map (3) [solid
line] and the exact Fermi map (1) [dashed line] (after Ref. 7).

( 9 )

(10)

(8)

B(u) is then obtained directly from (6).
For the simplified Fermi map (3) with sinusoidal velocity, for which

we obtain and B = 0. Hence the Fokker–Planck equation for the velocity
distribution is

Similarly, for the Fermi map (2), we obtain

and the Fokker–Planck equation for the energy distribution g is, from (7)

(11)

To obtain a steady-state solution to the Fokker–Planck equation, we assume per-
fectly reflecting barriers at u = 0 and u = ub . Setting ∂/∂ n = 0 in (9) and taking the
net flux to be zero, we obtain a uniform invariant distribution in velocity ƒ(u) = const
for the simplified map. For the map (2), we obtain similarly a uniform invariant dis-
tribution in energy g (ω) = const. Introducing the velocity distribution ƒ(u) for (2)
through

(12)

and using dω = udu , we see that ƒ(u) = const × u for (2). In Fig. 3 we compare the
numerically calculated distributions for M = 100 and 5 × 106  interactions with these
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predictions. In the region below ≈ 12.5, the predictions are verified.
Above us , the distributions both fall off due to the presence of islands and higher-order
correlations in the phase space, with the dips near the island centers.

We can also solve the transient Fokker–Planck equation. For the simplified Fermi
mapping (3), with initial conditions of a δ-function at u = 0+, we can solve (9) to
obtain

(15a)

(15b)

(13)

which yields the distribution function for the transient heating of the particles. This
time development only holds, of course, until the particles begin to penetrate into the
region with islands, u > us .

2.3. Reduction to the Standard Mapping

The complete dynamics, including the transition region with adiabatic islands
embedded in a stochastic sea, is very complicated and can only be solved numerically.
To gain some understanding of the diffusion in the phase space region where correlations
are important, it is convenient to first transform the Fermi map to a local map near
a resonance. Taking the simplified Fermi map of (3), we obtain the so-called standard
mapping by linearization in action space near a given period-1 fixed point. These are
located at

Putting and shifting the angle

then the mapping equations take the standard form

where

is the new action and

(14)

(16)

(17)

is the stochasticity parameter. We have thus related K to the old action u1. The
conversion from Fermi to standard mapping is illustrated in Fig. 4 for two different
values of u 1, leading to two different values of K.

The dynamics of the standard mapping (15) can be considered to evolve on a
two-torus, with both θ and I taken modulo 2π. The periodicity of the mapping in I
gives rise to a special type of periodic orbit (period-l fixed point) in which I advances
by ±2π every iteration of the mapping. The condition for these so-called accelerator
modes is that I 1l = 2πm and m and l integers, with l ≠ 0. The
accelerator modes are stable provided < 2, which implies that stability
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Figure 4. Local approximation of the Fermi mapping by the standard mapping. (a) Linearization
about u 1a leading to K small and local stochasticity; (b) linearization about u1b  leading to K large
and global stochasticity (after Ref. 7).

windows for period-l fixed points exist for successively higher values of K as I increases
(cosθ1 l  decreases). As we will see below, remnants of these accelerator modes, called
quasi-accelerator modes, can exist in the Fermi mapping.

The transport coefficients for the standard mapping (15) are DI  = K ²/2 and
BI  = 0. Since this mapping locally approximates the Fermi mapping, we can relate DI

to D for the Fermi mapping. Using ∆I = – K∆u, we find that the diffusion coefficients
are related by

2.4. The Effects of Correlations

(18)

The island structure embedded in the Fermi stochastic sea is exceeding complex,
and, in fact, has fractal properties. We might expect this structure to lead to long
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Figure 5. Plot of D / DQ L versus stochasticity parameter K. The dots are the numerically computed
values and the solid line is the theoretical result in the large K limit (after Ref. 13).

time correlation of stochastic orbits in the neighborhood of adiabatic orbits, and this is
in fact what happens. The quasilinear transport coefficients are determined using the
random phase assumption applied to a single step jump in the action
However, as pointed out in Section 1.2, the Fokker–Planck description of the motion is
valid only in the limit n >> n c , where nc  is the number of steps for phase randomization
to occur. We should therefore consider the jump where n > n c . This
was first done using Fourier techniques for the standard mapping in the limit of large
K by Rechester and White 13 and for any K by Rechester et al.14  To order K –1 , the
result is (Ref. 7, Sec. 5.5a):

(19)

where and the J’s are Bessel functions. A numerical calculation
of D 50  using 3000 particles is compared with (19) in Fig. 5.13 There is good agreement,
except near the first few peaks of D. As we will see below, these are due to the presence
of accelerator modes. For K near but greater than the critical value Kc ≈ 0.9716, one
finds numerically that

(20)

For K < K c , an adiabatic (invariant) barrier exists and there is no long-time diffusion.
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(21)

Figure 6. The variance plotted as a function of initial action. Each dot corresponds to a measurement
of the diffusion obtained by iterating the Fermi map for 20 iterations. The solid line is the theoretical
variance obtained by integrating the Fokker–Planck equation (after Ref. 12).

For the Fermi map in which the phase is randomized within a region of the velocity
space for which the local approximation gives a near-constant stochasticity parameter
K, it is possible to derive a local (in velocity) diffusion coefficient.12 In this regime, for
which the diffusion coefficient becomes, using (18),

Let us note that if we are interested in using the Fermi map to model a heating
mechanism, then particles will generally start at low velocities, where the stable islands
have negligibly small area. As the particles are heated they enter regions of phase space
within which large islands exist. Without extrinsic stochasticity, the particles will not
penetrate these islands. Hence, although the equilibrium distribution is uniform in the
ergodic phase space surrounding the islands, the phase-averaged distribution ƒ(u , n )
will not be uniform, as is seen in Fig. 3. To correct for this effect, one must divide
D∞ (u ) by the fraction ion of phase space occupied by stochastic orbits. The details of the
calculation are described in Murray et al.12 ; see also Lichtenberg and Lieberman.7

Figure 6 shows a calculation of the variance of ƒ(u, n ) determined numerically by
directly iterating the Fermi map and by integrating the Fokker–Planck equation with
a delta function initial condition at action u0 . 12  There is good agreement between the
diffusion theory and the actual behavior of the map.

As noted previously, the standard mapping (15) has stable periodic orbits, the
accelerator modes, in which the action I advances by ±2π for every mapping iteration.
Such a mode is born at an inverse tangent bifurcation at K = 2π l and period doubles at

The first mode (l = 1) has the largest stable range of K values and
the largest maximum island size, and consequently is most important for modifying
the local diffusion. The fixed points are located at Il = 2πm, K sin θ l = 2πl. For
each I l within the window, there are two θl ’s, corresponding to two islands side-by-side
whose centers stream up and down in I respectively in the phase space, advancing
by each iteration. Hence phase points, trapped within the stable islands
about these fixed points, stream rather than diffuse in action, leading to a singularity
in the usually defined diffusion. This singularity is clearly visible as an increase in the
numerically determined diffusion coefficient at the peaks in D shown in Fig. 5.

For the simplified Fermi map (15), we see from (17) that K depends on u, and
therefore the effective K of the mapping of a given trajectory changes as it diffuses or
streams. Since K changes, the accelerator modes of the Fermi map are not truly stable,
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and may be designated as quasi-accelerator modes. The larger the mapping parameter
M, the longer the dynamics remains near a given value of K over a range of u-values.

For quasi-accelerator modes, there are two mechanisms by which diffusion is en-
hanced (Ref. 9; see also Ref. 7, Sec. 5.5d):

1. Particles on locally unstable orbits become trapped on locally stable orbits as
they are transported in the direction of increasing stable island size. They then
stream through values of u corresponding to increasing and then decreasing island
size until they are detrapped at values of u having the same island size at which
they were originally trapped.

2. Trajectories near stable islands are only weakly unstable, and therefore shadow
the stable trajectories over many mapping periods. This leads to long-time cor-
relations in the phase which again result in streaming.

3. CONCLUDING DISCUSSION

Fermi acceleration has been a fruitful approach to understand the dynamics of
the heating of particles by periodic fields. In this work we have reviewed the purely
dynamical mechanisms by which such heating takes place. However, let us note that
in many applications, such as the heating of electrons in weakly ionized gas discharges,
the extrinsic stochasticity associated with electron-electron, electron-ion, and electron-
neutral collisions can play a critical, and in many cases dominating role. The interplay
between the intrinsic dynamical chaos and the extrinsic chaos due to collisions has
received much attention both in the dynamics community (see Ref. 7, Sec. 5.6) and in
the discharge heating community. 5,11
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CAPACITIVE RF DISCHARGE

Allan J. Lichtenberg,¹ Ronald Cohen,² and Zuoding Wang¹

¹University of California
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1. INTRODUCTION

For low pressure capacitive rf discharges stochastic electron heating in the sheath is
generally the dominant heating mechanism. Energy is either added or subtracted from
each electron as it is reflected from a high voltage sheath, depending on whether the
sheath edge is moving toward the plasma (expanding sheath) or away from the plasma
(contracting sheath), respectively. The mechanism, originally proposed by Fermi¹ as a
method for cosmic ray production, is known as Fermi acceleration. This energy transfer
mechanism was applied to rf discharges by Godyak and associates,2–7 by Akhiezer and
Bakai,8 and by Kushner,9  using the assumption of phase randomization at each sheath
collision. It is well known, however, that depending on the parameters, there is an
energy transition between regular and stochastic particle motion, which may serve as
a barrier to the heating.10

Goedde, Lichtenberg, and Lieberman 11 studied the interaction of the electrons
with the sheath and developed a simplified self-consistent discharge heating model.
They assumed that the electron energy change from any single collision is small, all
electrons interacted with a sinusoidally oscillating sheath, and the only loss mechanism
was escape to the walls. For a near-collisionless plasma they determined the discharge
parameters for which the particle-sheath interaction had randomized phase at the en-
ergies of interest. Using those parameters, they calculated a power-law electron energy
probability function (EEPF).

Along with the theoretical development, experiments and particle-in-cell (PIC)
simulations have been performed to determine the stochastic heating and the EEPF.
In experimental investigations, Popov and Godyak5  showed the general correctness of
the notion that the interaction of the electrons with the plasma sheath can serve as
the main source of energy transfer at low pressures. Godyak and associates6, 7  have
measured non-Maxwellian electron distributions in rf capacitive discharges, which, at
low pressure, can be approximated by bi-Maxwellian electron distributions or by power-
law distributions.
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Kushner 9 found, in a Monte-Carlo simulation model, that electron reflection from
the oscillating sheaths leads to an enhancement of the high energy tail of the distribu-
tion. Subsequent Particle-in-Cell (PIC) Monte-Carlo models have also found electron
energy probability distribution functions which can be approximated by either two-
temperature Maxwellians or power-law distributions.12–15

Because of the Child–Langmuir type of ion distribution in the sheath, the sheath
oscillations are non-sinusoidal, and have an amplitude which is much larger than that
which would exist if the ions had a uniform density equal to the value at the plasma-
sheath interface. This results in enhanced stochastic heating, but also greatly compli-
cates the analysis. Lieberman16 developed a partially self-consistent heating model in
the regime of collisionless ions at high voltages, in which the sheath oscillations are
non-sinusoidal, as determined by the ion distribution. In order to make the analysis
tractable, the phase of the sheath oscillation at each electron-sheath collision was as-
sumed to be random, and the electron distribution was taken to be Maxwellian. The
phase randomization is found to be satisfied by collisional scattering if the pressure
is not too low, e.g. for a 10 cm. length Argon discharge at 13.56 MHz applied fre-
quency, if the pressure is 10 mTorr or higher (as we discuss below). The assumption
of a Maxwellian EEPF is not, however, justified, as described above. The effect on
the heating of using other EEPF’s has been explored17 but the analysis was not fully
self-consistent.

To obtain a self-consistent distribution the electron kinetic equation must be
solved. Simplified kinetic treatments of plasma discharges have been developed for
higher pressures at which the electrons are heated by ohmic heating. The analy-
sis, called a non-local treatment, was originally applied to dc discharges by Bern-
stein and Holstein18 and by Tsendin, 19 and has been extended to treat rf discharges
by Kaganovich and Tsendin.2 0  The basic idea is that electron-neutral scattering can
isotropize the electron distribution, but, due to the large mass ratio, does not greatly
affect the energy distribution in the elastic energy range. The effect of static potentials
does not change the local total electron energy (kinetic plus potential). This formalism
allows space and time averages to be performed. Comparisons with simulations and
experiments have been made by Kortshagen. 2 1 The method, as applied to a variety of
discharges, has been reviewed by Kolobov and Godyak.22 Unfortunately, in the pres-
ence of sheath heating, at low pressure, there are additional complications that make a
kinetic treatment much more difficult. Kaganovich and Tsendin23 formally introduced
the equations required to treat this problem, including an assumption about how the
potential structure in the plasma determines the extent to which particles experience
the stochastic heating field. However, they did not obtain solutions to the resulting
complicated set of equations.

In a separate paper 24 we have introduced additional approximations into the gen-
eral formalism so that the EEPF, the electron heating rate, and the electron and ion
loss rates can be obtained, with a minimum of numerical calculations. Our principal
assumption is that the discharge can be stratified into: (1), an energy region in which
low temperature electrons are produced by ionization, or injected by excitation and
ionization cooling of the hotter species; and (2), an energy region at which the hotter
electrons interact with the oscillating sheath to be heated and lost to the electrodes.
The hotter and cooler species interchange energy by collisional processes and diffusion
across the interface in velocity space. To simplify the calculation, the cooler species
are assumed to be held in by a square-well potential. Below the loss boundary and
the threshold for excitation the hotter species exhibits a power-law stochastic-heating
distribution as found previously.11 In the region above these energies the tail of the
distribution drops more rapidly than a power law, and can be approximated by a
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Maxwellian which is usually at a higher temperature than the particles which are not
stochastically heated. In addition to the main stochastic sheath heating, there is also
ohmic heating which can have an important effect on low energy electrons which do
not reach the sheaths. The analysis was not fully self consistent in that a relationship
to determine the square-well potential was not available. The use of an experimental
electron density supplied the necessary information, and also allowed us to develop a
heuristic ansatz for the potential. Here we introduce a self-consistent determination
of the potential, in an average sense, which makes the analysis fully self-consistent.
A second limitation of our previous analysis is the assumption that the phase of the
oscillating wall is randomized between each successive electron bounce. Here we will
be more explicit in determining the time for randomization, depending both on the
dynamics and on the collisionality.

(3)

2. MAPPING DYNAMICS

2.1. Sheath Dynamics

For an applied rf discharge voltage V = Vr f cos ω t, the voltage across one of the
sheaths is, approximately, Using continuity of
current and assuming that the electrons move as a body with respect to the rf field, if
we ignore ion-space charge in the sheath as a first approximation, the sheath electric
field is a constant E = V dc /s 0, and the sheath thickness follows the voltage as

(1)

where s0 is half of the maximum sheath width as determined from the Child–Langmuir
relation. The equation of motion for an electron in the sheath is, then

Introducing the dimensionless parameters
s0 /L, and the dimensionless position δ and time, then in terms of
these variables, the equation of motion becomes

(2)

Integrating (2) once gives the velocity of an electron as it moves through the sheath

where is the dimensionless velocity. Integrating again gives the position of
an electron as a function of time in the sheath

(4)

Here are the positions of the sheath bound-
ary when the electron enters and leaves the sheath. Equation (4) is a transcendental
equation for the electron transit time for a single pass through the sheath. Using
this value of in (3) yields the change in velocity due to each interaction with the
sheath. This model yields a mapping that to lowest order becomes the simplified Fermi
acceleration problem of a ball bouncing between a fixed and an oscillating wall.10

2.2. The Mapping

For a collisionless plasma, the motion occurs in two distinct parts: the unperturbed
motion through the bulk plasma, where the electron velocity is constant, and the rapidly

229



varying velocity region in the sheath. The combination of the two regions constitutes
a mapping of the velocity and phase of the motion between successive entries into the
sheath region, labeled by integers n, n + 1, etc., with in
(3). If ∈ << 1 then the zero-order phase advance equation is

(5)

and to lowest order in , (3) yields

(6)

(7)

(8)

Over most of the phase space the last term on the right of (7) is small and can be
dropped, along with its area preserving counterpart, the last term in (8). In this
approximation the change in velocity in one pass through the sheath is just ∆u =

which is the impulse approximation of the Fermi
acceleration mapping.10

The Fermi acceleration mapping has been extensively studied,10  indicating stochas-
tic heating at low energies in which a random phase assumption holds, an intermediate
energy region of somewhat lower diffusion, and an adiabatic barrier (KAM surface)
above which the motion is mainly oscillatory. An approximate value of the adiabatic
barrier can be found by expanding the mapping around a fixed point to obtain the
standard mapping, from which an analytic criterion for the barrier can be obtained10,11

The dynamics can be visualized by plotting the electron
energy versus the sheath phase in a surface of section, conveniently chosen as the plane
just after collision with the sheath. We illustrate the phase space in Fig. 1 for
typical values of the parameters, as chosen from numerical cases treated in Section 4.

For all cases the discharge length was L = 6.7cm and the applied frequency 13.56
MHz, corresponding to an experiment by Godyak and associates, 6, 7 whose results are
compared to the theory. Initial conditions at low energy are allowed to diffuse through
the available phase space, and the dots represent the particle positions after a specified
time. We note the characteristic behavior of a fully accessible low energy followed by
some inaccessible islands at intermediate energy and a barrier which prevents diffusion
to higher energies. For illustrative purposes a few KAM curves above the barrier are
also shown. The criterion tends to somewhat underestimate the barrier. Superposed on
the Figures are curves of which is the energy at which electrons
escape to the walls, with the parameters again chosen from the physical examples in
Section 4. The losses compete increasingly strongly with the diffusion for ε > ε esc,
which must be considered in a complete treatment, as described in the next section.
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Eqs. (5) and (6) constitute the lowest order mapping. For measure preservation, the
change in phase must also be determined to first order. Furthermore, the variables µ
and φ are not canonically conjugate in a Hamiltonian sense.11 For the surface of section
at a constant position, the electron energy ε and the crossing time t are canonically
conjugate; the equivalent normalized variables are ε = µ² and φ = ω t. The Hamiltonian
mapping is area preserving in these canonically conjugate variables. Assuming ε n +1 -
ε n << ε n, expanding (6) for small α, and determining the first-order change in phase in
the usual manner10  to ensure area preservation, (6) and (5) become



(9)

Figure 1. Phase space of the mapping, with no collisions. The dots are occupations after many
mapping periods. A loss cone (solid line) is superposed.

2.3. Collisional Effects

In an initial paper 11 the assumed ordering was ; i.e. the collision
time for elastic angular scattering of electrons on the neutrals is long compared to
the bounce time, but short compared to the escape time. That ordering allowed the
mapping to be approximated as collisionless, while the electron distribution could be
taken to be isotropic. Except at very low pressure, the second inequality is satisfied.
However, the first inequality is generally not satisfied. In our recent paper we made
a different assumption to treat the sheath heating, namely that the sheath kicks are
phase randomized between each collision of an electron with the wall. As we shall see
below, this implies either that the energy is in the range where the collisionless mapping
dynamics are phase randomized or where

The simplest form of the diffusion coefficient in velocity space is

where ∆u is the velocity kick, as previously defined, and is the time for phase
randomization.10 (In the energy variable provided ∆u << u , we find D ε
by replacing For the collisionless mapping in the stochastic
region, To examine the effect of collisions we first consider the highly collisional
regime with A flux argument then holds. Considering a single velocity class
at uniform density n, the flux to the oscillating sheath is Γ = nv and the total number
of particles in the discharge is N = nL. The inverse of the mean frequency of sheath
encounters is then approximately

(10)

The factor of 1/2 is somewhat of an artifact, since for may actually increase
slightly, and for the density is not uniform, with n0  > n (L) also increasing
A reasonable approximation is that (for For the values of energy for
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Figure 2. Comparison of the bounce time with the collisional elastic scattering time at three
pressures.

which and the mapping dynamics do not randomize the phase, the diffusive rate
may decrease. The rate of diffusion at a given energy can, in principle, be determined
from a mapping in which collisions are included. Although some approximate values
have been obtained in related problems,10 this has not been done in the present case.
The approximation that will be used in our kinetic analysis is that (for ≥

Because of resonances between the bounce frequency and the sheath oscillation
frequency, islands are formed in the phase space, as seen in Fig. 1. These islands
can partly maintain the higher diffusion rate in the range < 2π/Ω where Ω is
the radian frequency of the island motion. This phenomenon, somewhat analogous to
the “plateau” regime in toroidal neoclassical diffusion, will not be considered here.

To understand the collisional effects more quantitatively, we use the example of
the experimental configuration of Godyak and co-workers,6, 7  which has also been used
in our numerical calculations of a parallel plate discharge, with L = 6.7 cm spacing and
an argon feedstock gas. The collision times (inverse elastic scattering frequencies) for
p = 3, 10 and 30 mTorr are compared to the bounce time in Fig. 2.

We see that at p = 30 mTorr collisional elastic scattering is able to keep the phases
randomized over all energies of interest. In contrast, at 3 mTorr collisional random-
ization of the phase is marginally important, and p = 10 mTorr is an intermediate
case.

3. SPATIAL AND TIME AVERAGED KINETIC THEORY

3.1. The Averaged Kinetic Equation

The kinetic equation for the evolution of an EEPF can be written as

(11)

where and are fluxes in configuration space and velocity space, respectively; νiz

and ν ex  are the ionization and excitation frequencies, respectively, assumed only to be
a function of the particle energy ε , C en  is the electron-neutral atom elastic collision
operator; S is the source term corresponding to electrons produced by ionization and
electrons which lose energy by inelastic collision with neutral atoms; ƒ is the electron
distribution function; and x, , t are the position (in one dimension) vector velocity,
and time, respectively.
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We eliminate the dependence on x by averaging over the bulk plasma, which
extends from x = 2s0  to L – 2 s0 , where the rf voltage is applied between plates at
x = 0 and x = L and each ion sheath extends over a distance 2s0 . Then all the terms
in (11) remain unchanged in form, except that the spatial flux term becomes

(12)

where For the spatial integration we have taken ƒ(x) to be
approximately constant between the ion sheaths. We eliminate the time dependence by
averaging over an oscillation period, φ ≡ ωt = 2π. After this time average (11) reduces
to

(13)

Here we have used the same symbol for ƒ after averaging, ƒs  = ƒ( x = L – 2s0) with
ƒs  ≠ ƒ, and L (εx ) is the fraction of time in one rf period when the positively directed
x component of an electron’s kinetic energy, εx  is higher than V sheath ,

(14)

The electrons are stochastically and ohmically heated, and exchange energy by collisions
among themselves, such that

(15)

We have neglected the small terms arising from the elastic energy loss to the neutrals.
The stochastic heating flux can be written as

(16)

where the diffusion coefficient, determined from (9) is

(17)

and, as described earlier for stochastic dynamics or for with
L' = L – 2 s0 ; otherwise For explicitness, we take in the following
equations. In our model, stochastic heating is turned off for εx  < Φ . A step function

η(εx – Φ ) is therefore introduced in the stochastic flux, such that (16) becomes

(18)

In addition, s0  is reduced due to oscillations in the bulk plasma.16 Subtracting the
amplitude of the bulk oscillation caused by the electric field in the plasma, we have the
effective sheath amplitude for heating

(19)
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where p, is the average amplitude of rf electric field in the plasma. Ohmic heating
produces a flux 20

(22)

(21)

(20)

where νe l is the elastic electron-atom collision frequency. Here we use the value of Ep  at
the center of discharge in the averaged kinetic equation, because ohmic heating is more
important for colder electrons, which are trapped near the discharge center. Assuming
the distribution function of the cold electrons, which is the predominant component
in the center of the discharge, is nearly Maxwellian at temperature Tc , the linearized
velocity space flux produced by collisions among the electrons, for ε > Tc i s 25

where is the electron self-collision frequency,2 6  with n ave
the average density of electrons in units of cm–3. This equation is valid when the
distribution function’s deviation from a Maxwellian of temperature Tc takes place at
energy higher than Tc , i.e., T c < Φ .

Introducing these fluxes into the kinetic equation we have:

In the range of pressure we are studying, the frequency of elastic electron-neutral colli-
sions is much higher than those of any other physical processes, in particular, the equiv-
alent escape frequency defined below. Therefore, to the lowest order, The
equation for ƒ(u ) is obtained by averaging (22) over angles thereby annihilating Cen.
Care must be taken when we treat the stochastic heating term and escape term, because
Φ is a potential in x. We change the argument from u to ε , but use the same symbol for
the distribution function. The normalization of ƒ(ε) is where
n ave  is the average density in the bulk plasma. To relate this average density to the
central density and to the edge density, we assume a parabolic distribution with central
density n 0, dropping to a density ns  at the edge where for low pressures we use26

(23)

The resulting nave  is, approximately,

(24)

and n s /nave is obtained using (23). For the escape term, we introduce escape frequency
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The source term is also isotropic, i.e. S ( ) = S (u). We assume that in an ionization
process, the new electron has the same kinetic energy as the scattered one, which is
one half the difference between the original kinetic energy of the hot electron and εiz .
The kinetic energy of an electron after making an inelastic excitation collision with a
neutral argon atom is ε – ε ex , such that

(26)

(27)

where  and . The inelastic collision frequencies and the
elastic electron-neutral collision frequency is given by an analytical formula that fits
experimental data.24

Substituting these quantities into (22) we obtain the final form of the kinetic
equation,

3.2. Equilibrium Conditions

In a self-consistent analysis, we determine ƒ(ε) from input quantities: pressure p ,
V 1, ω and L. 26  The unknown quantities which must be determined along with ƒ(ε) are
Tc , Φ , β , n 0  and s 0 . We need five physical conditions to determine the five unknown
parameters in the equilibrium distribution.

One condition is that the total electron escape rate is equal to the ionization rate,

(28)

where εmax is the maximum value of energy an electron can reach before escaping. If
n 0 and s 0 are known, Eq. (22) determines ƒ(ε) at energy higher than Vdc – V 1, and
therefore (28) determines Vd c  (or β ).

A second condition is that the escape rate of ions is equal to that of electrons,

and n s are known. For a two temperature Maxwellian distribu-which determines Φ if Tc

tion the Bohm velocity is related to the lower temperature component,
provided the lower temperature component contains most of the density.26 There is a
transition to a larger value, related to the higher temperature, when the two den-
sities are comparable. Analysis for non-Maxwellian distributions must be similar,
but has not been performed. Most of the physics can be captured by using the
approximation, where T ave is an average temperature defined by

A third condition requires that the flux leaving the plasma be equal to the flux
crossing the sheath, which from Child’s law, is

(29)

(30)
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where Ki  = 0.82 in Lieberman’s model16  and s m is the ion sheath width, which cor-
responds to s 0 (1 + β ) in our model. Equation (30) is usually considered as a relation
between ns  and s m , since the other variables are nearly constant.

A fourth condition is that the total electron distribution cannot be heated by
collisions among themselves,25  leading to

(33)

(34)

(36)

(37)

(38)

(31)

(32)

which can be transformed to the form

Equation (32) is an implicit relation for Tc , as ƒ(ε) is itself a function of Tc , but is
rather insensitive to the detailed variation of ƒ(ε) .

If n s (or n 0) is given from experiments, the distribution function, containing the
parameters V dc , Φ , s 0 and Tc , can be obtained from equations (28), (29), (30), and
(32), and the boundary conditions. We previously compared our distribution function
to the experimentally determined distribution of Godyak and co-workers, using their
measured central densities.24

We also used an ansatz where z and c are constants, determined
from a best fit to the results using the experimental values of n0 . Although this ansatz
is physically reasonable, we would like a fully self-consistent theory in which ns  is also
determined by the theory. We can use kinetic theory in an averaged sense, consistent
with the square well approximation, to do this. We form the approximate average value
of the ratio of ne (Φ) to n s as

and relate ne (Φ) to n i(Φ) by

where α is an estimate of the ratio of the space-and-time-averaged electron density in
the sheath to the space-averaged ion density in the sheath, which can be obtained for
a Maxwellian following Lieberman.16  From Child–Langmuir theory we have

(35)

Combining (33)–(35), shifting the coordinates in the numerator of (33) to zero by
y = ε – Φ , and approximating the distribution ƒ(ε) by

we obtain

The integrals are readily evaluated to yield

which gives Φ /Tc in terms of Th /Tc . Thus (30) becomes an equation for ns .
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4.  NUMERICAL SOLUTIONS

4.1. Numerical Procedure

We solve the differential equation numerically using a fourth order Runge–Kutta
algorithm. To solve ƒ(ε ), we need to know the source term, which is determined by
larger values of ƒ(ε ), so we integrate from ε max. For simplicity, we take ε max to be
200V, which is sufficiently large that it does not significantly influence the solution. The
step of integration is 2.5 × 10 –3 V. ƒ(ε ) has two constants to be determined, which can
be taken as ƒ(ε max) and The first is determined by the normalization
of ƒ(ε ), since the kinetic equation is linear in ƒ(ε); and the second is determined by
the requirement that there is no flux at ε = 0. The eigenvalue problem has two
independent solutions, one which increases with ε , and one which decreases with ε .
Since we integrate the equation from ε max to ε = 0, the error caused by inappropriate
choice of rapidly becomes unimportant in the integration, as long as
the value of ε max  is large enough. This allows the “boundary” values at ε max  to be
chosen with considerable flexibility. The differential equation involves s0 , n 0, V dc , Φ
and Tc , which are to be determined recursively.

4.2. Numerical Results and Analysis

We compare our results to experimental results of Godyak and co-workers, 6,7  who
studied a 6.7 cm discharge with an electrode area of 160 cm,² symmetrically driven by
13.56 MHz rf source. The transverse dimension is sufficiently large that the system
can be considered as spatially one-dimensional. Comparison of numerical cases with
experimental results have previously been made 24 using the experimentally measured
central plasma density to complete the input data.

Using our new results of the modified stochastic heating formula, from (17), and
the fully self-consistent calculation, using (38), we can compare our improved theory
to previous theory.

From Fig. 2 collisional phase randomization occurs over the entire interesting range
of energies at 30 mTorr, and most of the interesting range at 10 mTorr. At 3 mTorr,
the dynamical stochasticity is sufficient to maintain the phase randomization as seen
in Fig. 1, so the random phase with is adequate for all 3 cases.

In Fig. 3 we compare the new method of calculating Φ to our previous ansatz for
calculating Φ , to the theory in which the experimental central density n0  is used, and to
the experiments from which the densities are taken. For the new calculation of Φ , α  ≈
0.5, while for the ansatz c = 2.25 and z = 0.6. We see that the distributions (EEPFs)
using the new calculation of Φ are quite close to the EEPFs using the experimental
n0, and, somewhat surprisingly, better than the heuristic results using the ansatz. In
Table 1 we compare the parameters, corresponding to the three theoretical methods of
calculating Φ . The theoretical values of n 0 , determined from the self-consistent theory,
using (30) are somewhat higher than the experimental values of n0 .

5. CONCLUSIONS AND DISCUSSION

We have developed an approximate kinetic treatment of a low pressure parallel-
plane capacitive rf discharge, that specifically treats the stochastic sheath heating of
electrons. The approximations are that the EEDFs are bounce averaged, and that the
heating and loss processes are sufficiently slow that the electrons are nearly isotropic
so that the kinetic equation can be expressed in terms of the single energy variable ε.
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Table 1. Comparison of Plasma Parameters Using the Three Theoretical
Methods

n0 (108 cm– 3) s 0 (mm) ε0 (eV) Φ (eV) T l (eV) T h (eV)
(a) p = 3 mTorr, V r f  = 240 V

using given n 0 16.0 6.05 6.88 5.46 1.35 7.02
ansatz 11.5 6.54 7.00 7.88 2.05 7.10
Eq. (38) 22.0 5.65 6.96 3.85 0.83 6.99

(b) p = 10 mTorr, V r f = 165 V
using given n 0 34.0 4.70 5.54 2.81 0.56 4.83
ansatz 21.0 5.20 5.23 4.70 1.12 4.78
Eq. (38) 56.5 3.57 7.23 2.51 0.55 4.33

In order to make the numerical solutions tractable, the electrons are divided into two
classes, a hotter distribution that is heated primarily by the sheath oscillations, and
a colder distribution that is prevented from reaching the sheaths by an internal square
well potential of magnitude Φ.

For a given feedstock gas, axial dimension between discharge electrodes, and rf
driving frequency, the input parameters are pressure p and discharge voltage V r f . After
setting the appropriate boundary conditions, there are five internal variables to be
solved for, the central density n 0 , the dc sheath potential Vdc, the sheath width s 0,
the temperature of the low energy species Tc  at ε << Φ , and the potential Φ . These

Figure 3. Comparison of the experiment to the three theoretical EEPF’s, using the experimental n0 ,
using the ansatz, and using (38) to calculate Φ : (a) p = 3 mTorr, V r f = 240 V; (b) p = 10 mTorr,

V r f = 165 V.
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unknowns are expressed in terms of four conservation equations: 1. electron particle
balance, 2. charge conservation, 3. collisional energy balance between the hot and
cold species, and 4. current conservation (the Child–Langmuir law). A fifth condition
required for a complete solution involves the internal potential structure whose details
are not readily available. To compare with experimental distributions, we previously
used an additional piece of information from the experiments, the central density n0 ,
or an ansatz on the potential Φ , found from the calculations with known n 0. We have
now replaced this ansatz with a self-consistent calculation of an average Φ .

The results of the kinetic calculations capture the main features of the experimental
EEPF. Some significant differences are (a) that the transition between the low energy
and high energy distributions is sharp, caused by the square well approximation, and
(b) that both the high temperature Th  and the cold temperature Tc  are higher than in
the experiments.

The introduction of a more realistic phase randomization time, depending on the
collisionality, has been introduced, but does not significantly change the temperature of
the high energy tail of the EEPF. The model may still be overestimating the stochastic
heating due to various effects, such as correlations in the dynamical stochastization
near the border of stochasticity. The phase randomization due to collisions has been
treated in an approximate manner. We are currently working on improvements to the
treatment of phase randomization, using the complete mapping dynamics, including
collisions.

Other improvements that can be made are an improved stochastic heating calcula-
tion, taking the non-sinusoidal sheath motion explicitly into account, and an improved
ohmic heating calculation, taking into account the spatial variation of ohmic heating
with density, and a more accurate calculation of α.

Finally, we note that, although our analysis has been applied to Argon, the method
can be readily extended to treat an electronegative gas. The extension requires only
minor modifications of the theory, because the negative ions in the central core plasma
are decoupled from the sheath region.
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INTRODUCTION

Inductively Coupled Plasma (ICP) sources or inductive discharges are known for over
a century.¹ They have been used and studied in last decades mostly in two quite opposite
regimes. High pressure (about atmospheric gas pressure) ICPs have been used to generate
near equilibrium plasmas² while low pressure ICPs (around mTorr pressure range) with non-
equilibrium plasmas have been used as ion sources for particle accelerators and as ion thrusters
for space propulsion.³ Recently, interest in low pressure ICPs has been revitalized due to great
expectations in using such devices in plasma processing and lighting technology. The ability
to achieve a large plasma density at a low gas pressure and the absence of electrodes makes
these discharges attractive in development of new technology and stimulates an intensive
research activity on the basic plasma phenomena occurring in such discharges.

In an inductive discharge the main interaction of the electromagnetic field with the
plasma, and thus rf power dissipation, takes place in the skin layer of thickness δ near the
plasma boundary. Depending on gas pressure, plasma density and driving frequency the
interaction of electromagnetic field with plasma within the skin layer can be of local or
non-local character. The first case corresponds to the classical skin effect for which there is a
local coupling between rf current and electric field within the skin layer given by the complex
conductivity of cold plasma. The second case corresponds to the so-called anomalous skin
effect where electron thermal motion brings spatial dispersion into the relation between rf
current and electric field.

The anomalous skin effect is closely related to the collisionless or stochastic electron
heating in inductive rf discharges and is widely discussed in recent publications.4-12  To
our knowledge there is only one experimental work by Demirkhanov et al.13 done over
thirty years ago where the anomalous penetration of the rf magnetic field into ICP has been
convincingly demonstrated and explained as a result of electron thermal motion dispersing
electron momentum acquired in the skin layer into the neighboring plasma. This experimental
work has triggered the theoretical study of anomalous skin effect in plasma14-19 done in 70s.
A review of classical and recent works on anomalous skin effect in plasma can be found in
ref.( 12)
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The subject of the present work is an abbreviated review of a recent experimental study
of an ICP operating at the lowest pressures where anomalous skin effect and collisionless
electron heating may occur. The external ICP parameters (electrical characteristics of the
primary coil loaded by the plasma), the electron energy distribution function, the basic plasma
parameters and the rf electric field and current distribution have been measured over a wide
range of gas pressure, rf power and driving frequency. Taking advantage of the dramatic
improvement in diagnostic means achieved for the last 30 years, this study has generated a
large experimental data base, which can be used for comparison with the results of ongoing
theoretical and modeling activity. New features in the EEDF, rf field phase velocity reversal,
phase bifurcation, a second current layer and a negative power absorption are found in
these experiments and interpreted as result of a non-local electron dynamics due to electron
thermal motion. For the first time, the existence of electron stochastic heating has been
directly demonstrated in ICP discharges.

EXPERIMENTAL SETUP AND DIAGNOSTICS

Experiments have been carried out in a cylindrical stainless steel discharge chamber
with a Pyrex glass bottom as shown in Fig. 1. The chamber ID was 19.8 cm, its length was
10.5 cm, and the glass thickness was 1.27 cm. A five turn planar induction coil with 12.7 cm
OD and 3.8 cm ID was mounted 1.9 cm below the bottom surface of the discharge chamber.
To achieve a high degree of azimuthal symmetry, each turn of the coil was made concentric
about the center of the discharge chamber with a radial conducting bridge between each turn.
The current return lead from the coil was placed 2mm below the bridges to cancel, as much
as practically possible, the magnetic field created by the radial component of the coil current
along the bridges and thus to minimize perturbation of the coil’s azimuthal symmetry.

An electrostatic shield and an air gap between the glass and the coil has practically
eliminated capacitive coupling between the induction coil and the plasma to the extent that
the rf plasma potential referenced to the grounded chamber was much less than 1 volt. This
has significantly improved quality of the Langmuir probe measurement and allowed detection
of a low energy peak on the measured EEDF. The coil screening has also made it possible
to obtain a large dynamic range (over 60 db) in the magnetic probe measurement and thus
to reveal some new features in the electromagnetic field structure behind the skin layer. An
aluminum kettle covered the induction coil from below and acted as an rf shield preventing
electromagnetic interference on the measurement apparatus and wiring.

Measurements were made at driving frequencies ω/ 2π = 3.39; 6.78 and 13.56 MHz in
an argon discharge at gas pressures of 0.3, 1, 10, and 100 mTorr and at rf power dissipation
in the plasma Pp l ranging between 6 and 400 W. The discharge power Pp l  was determined
by measuring the power transmitted to the discharge (forward minus reflected power) and
subtracting matcher and coil losses which were determined a priori as a function of coil
current and temperature. In what follows all mention of power refers to power dissipated in
the plasma.

Langmuir probes have been used to measure the electron energy distribution function
(EEDF) along the discharge axial direction on the axis and along the radius in the discharge
midplane. 20  Also the measurement were done along discharge axial direction at a fixed radial
position of 4 cm: near the maximum of the azimuthal rf electric field. The magnetic probe
measurements have been done at the same radial position along the axial direction. The
plasma density n, the effective electron temperature Te , the effective electron atom collision
frequency in rf field νen , the effective rf frequency ωeff  21 and the electron mean free path λe

have been found as corresponding integrals of the measured EEDF.
A two-dimensional magnetic probe has been used for measurement of the radial and axial
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Figure 1. Experimental discharge chamber. Figure 2. Two-dimensional magnetic probe.

components of the rf magnetic field magnitude and phase along axial direction at fixed radius
of 4 cm. These data have been used to infer the azimuthal rf electric field and current density,
correspondingly, by spatial integration and differentiation of the magnetic probe signals in
the magnitude and the phase domain.22  The probe has been design to minimize plasma and
rf current distortion around the probe. Detailed probe description, signal processing and
validation of results obtained with this probe are given in Refs.23,24

EXPERIMENTAL RESULTS AND DISCUSSION

EEDF and Plasma Parameters.

The electron energy distributions measured in the maximum of the plasma density
distribution on the discharge axis at f = 6.78 MHz over a wide range of the discharge power
Pp l are shown in Figs. 3 and 4 in terms of the electron energy probability functions (EEPF),
correspondingly, for p = 1 mTorr and p = 10 mTorr. EEPFs in Figs 3 and 4 are given in a
sequence of doubling rf power. For both pressures the EEPF have a three-temperature structure
clearly seen at the lowest discharge power. The EEPFs are depleted at high electron energy
in the inelastic energy range. For p = 10 mTorr depletion starts at the lowest argon excitation
energy ∈* = 11.55 eV since at this pressure argon atom excitation is the major process of
electron energy loss. For 1 mTorr depletion starts at energy ∈w ≈ 25 eV corresponding to the
chamber wall potential Vw , since the hot electron escape to the wall is a major factor in the
electron energy balance at the lowest gas pressure.

The appearance of a low energy peak in EEPF at small discharge power is a natural
consequence of non-local electron kinetics in low pressure rf discharges (capacitive, inductive
or wave driven) where the rf power absorption is localized along the plasma boundary.25-28

Generally, the EEPF structure in a low pressure ICP is similar to and is caused for the same
reasons as a low pressure capacitive coupled plasma (CCP). The ambipolar potential, which
always exists in a bounded plasma, traps low energy electrons within the plasma center
preventing them from participating in the heating process at the plasma boundary (in the skin
layer or in the rf sheath). At relatively high plasma density electron-electron (e-e) interaction
of the middle energy group with the low energy one equalizes their temperatures and the
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Figure 3. EEPF for p = 1 mTorr. r=0, z=52 cm. Figure 4. EEPF for p = 10 mTorr. r = 0, z = 4.0 cm.

EEPF at high power approaches a Maxwellian distribution in the elastic energy range.

The plasma density n and effective electron temperature T e  = 2/3 < ∈ > found as
corresponding integrals of the measured EEPF are shown in Figs. 5 and 6 as a function of
discharge power. There is a nearly linear dependence of the plasma density on the discharge
power with some trend toward saturation at large power. This trend is due to gas heating
from the elastic electron-atom and ion-atom collisions resulting in a reduction in the gas
density. The power dependence of the electron temperature correlates with that of the EEPF.
The growing Te  with power at low power is a result of disappearance of the low energy
hump in EEPF due to e-e interaction. At p = 10 mTorr when plasma density is large and
electron temperature is small, the two-step ionization process via excited state whose rate is
nearly proportional to square of plasma density reduces the electron temperature. These two
competing tendencies result in a maximum Te  at intermediate power.

The axial distribution of the plasma density and the effective electron temperature are
shown in Figs. 7 and 8, respectively, for 1 and 10 mTorr, P = 100 W and f = 6.78 MHz. At
p = 1mTorr the plasma density distribution well matches that given by the Tonks-Langmuir
theory for ion free fall regime with the boundary value being about 40% of its maximum at
midplane. For 1 mTorr the ion mean free path λ i ≈ 4 cm and the electron mean free path
λe ≈ 75 cm. At p = 10 mTorr the maximum in the plasma density distribution shifts out of
midplane and plasma density at the boundary is about 20% of its maximum value.

The effective electron temperature at 1 mTorr is growing at plasma boundaries due to
trapping of low energy electrons within the minimum of the ambipolar potential. This is not
observed at 10mTorr since at this pressure the EEPF is very close to Maxwellian in the elastic
energy range and the ambipolar potential does not affect the EEPF shape.

EEPFs along the axial direction at a fixed radius of 4 cm were also measured to evaluate
plasma parameters along the path of the magnetic probe diagnostics. These parameters
measured at a distance of 1 cm from the glass window (within maximum of the rf current
density distribution) are given in Table1 for the collisionless skin layer (λ e > δ ) at f = 6.78
MHz together with others relevant parameters.
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Figure 5. Plasma parameters for p = 1 mTorr. Figure 6. Plasma parameters for p = 10 mTorr.

Figure 7. Plasma density axial distribution. Figure 8. Electron temperature axial distribution.

Table 1. ICP parameters for f= 6.78 MHz at r= 4cm and z= 1cm.

p Pp l n 1 δn δ E νe n ω e f f νe f f νst

mTorr W 1010 cm – 3 cm cm 10 6 s – 1

v rƒ

10 7 s – 1 107 s –1 107 s – 1 107 c m / s
1 25 1.1 5.1 2.1 7.1 4.4 3.0 1.8 5.5
1 50 2.1 3.6 1.9 6.5 4.4 3.2 2.1 5.6
1 100 4.1 2.6 1.7 5.5 4.4 3.9 2.4 4.9
1 200 8.2 1.9 1.4 4.2 4.4 4.0 2.9 4.6

10 25 2.3 3.5 2.0 52 5.5 5.1 1.6 2.8
10 50 4.8 2.4 1.8 45 5.5 5.3 1.8 2.6
10 100 10 1.7 1.6 36 5.5 5.5 2.0 2.5
10 150 16 1.4 1.4 30 5.5 5.7 2.3 2.5
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Figure 9. EEPF for different frequencies: 3.39; Figure 10. EEPF for different frequencies: 3.39;
6.78 and 13.56MHz, p = 1 mTorr, r = 0, z = 5.2 cm. 6.78 and 13.56 MHz, p = 10mTorr.

Frequency Dependence of EEPF.

Langmuir probe measurements at different frequencies have revealed an essential
EEPF dependence on frequency as shown in Figs. 9 and 10. This dependence is more
pronounced at smaller discharge power and lower argon pressure. At 100 mTorr and higher
pressures no frequency dependence was observed in the measured EEPF.

Integration of the distributions given in Figs. 9 and 10 showed no frequency depen-
dence of the plasma density on the rf frequency at fixed rf power. On the other hand, the
effective electron temperature Te  and the temperature of the low energy group Te l decreases
with rf frequency, while the EEPF shape at high energy (ε ? 10 eV) appears unchanged
although its relative magnitude is smaller at higher frequency. Thus, at 1 mTorr Te  is 5.4;
4.7 and 3.7 eV, while Te l is 2.9; 2.5 and 2.3 eV, respectively, for frequencies: 3.39; 6.78
and 13.56 MHz.

The increase in electron temperature when frequency goes down, seems to be due to
a transition in the electron heating regime in the skin layer from collisional (normal skin
effect) to stochastic (collisionless) electron heating (anomalous skin effect). This notion is
supported by estimation of the so-called non-locality parameter Λ which shows a departure
from the condition of the local collisional electron heating within the skin layer. 14

where:

Here, λ eƒƒ is the effective electron free path accounting for a change of electron mo-
mentum due to collisions and rf field interaction; δ is the characteristic length of rf field
penetration, and v ea is the average electron velocity: v ea = (8Te /πm)1 / 2. The value of δ is
defined not only by skin effect itself (caused by rf current induced in the plasma) but also
by ICP geometry. Note, that in all practical ICP configurations the rf electric field is not
homogeneous even in the plasmas absence. Therefore, δ remains limited even at very low
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Figure 11. Non-locality parameter versus
pressure, r = 4 cm, z = 1cm, Pp l = 100W.

Figure 12. Non-locality parameter versus discharge
power, f = 6.78 MHz.

plasma density, and the stochastic heating and many electron kinetic phenomena typical for
anomalous skin effect may occur even in the absence of skin effect.6

When Λ << 1 the skin effect is normal and rf energy absorption can be adequately
described by conductivity of cold plasma. When Λ ≥ 1 the skin effect is anomalous and at
Λ >> 1 the skin effect is strongly anomalous corresponding to a collisionless heating regime.

The values of Λ calculated using the data obtained with Langmuir probe at r = 4 cm and
z = 1 cm are shown in Fig. 11 as functions of argon pressure for different frequencies. d was
found from an expression similar to that in ref. (7) which is derived for an ICP in a finite
length cylindrical metal chamber but accounting for ω ≠ ωe f f  and the fact that the induction
coil radius is smaller than the chamber radius R.

where: and δ0 ≤ R /3.8 is the
characteristic length of rf field decay in vacuum. When the coil radius is equal to the chamber
radius, δ0 = R/3.8. In the limit of low density plasma (ωp → 0), δ = δ 0 .

As shown in Fig. 11, the non-locality parameter Λ at p =1 mTorr changes from 0.9 at
f = 13.56 MHz to 14 at f = 3.39 MHz clearly showing a transition from a weakly non-local
to a strong anomalous skin effect. It is interest to note, that in commonly used ICPs in the
mTorr pressure range at 13.56 MHz a strong anomalous skin effect can be achieved only at
a very high plasma density (n > 10 12 cm–3 ). An example of the calculated dependence of
A on the discharge power is shown in Fig. 12 for f = 6.78 MHz. At small discharge power
(plasma density) when , Λ is independent on plasma density and is defined
by do. At large discharge power δp  << δ 0 and Λ is proportional to the plasma density. For
higher gas pressure the linear dependence Λ(Ppl ) is achieved at lower discharge power since
plasma density is a growing function of the gas pressure.

Electric Field and Current Density Distribution.

Figs. 13 and 14 show the axial distributions of the azimuthal rf electric field and the
azimuthal current density measured with the magnetic probe at a fixed radial position of 4
cm in an ICP driven at f = 6.78 MHz. All curves in Figs. 13 and 14 are the result of over 40
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measurement points obtained with the 2.5 mm step and are presented here with no smoothing.
In all data given in this work the phase is referenced with respect to the E-field measured in
vacuum, i.e. 900 shifted from the phase of the current in the induction coil.

As shown in Fig. 13 and 14, within the skin layer near the glass window, the rf field decays
exponentially and phase decreases linearly as is found from the classical concept of normal skin
effect in a conducting medium where: The normal skin depth in a collisionless
plasma The values δE and δ p found from Fig. 13 and 14 and probe
measurement in the point r = 4 cm and z = 1 cm are shown in Table 1. As shown in Table 1,
the values of δE  and δp  are essentially different (δE  < δ p). The rf field distribution in vacuum
decays exponentially (with z) over most of the chamber with a characteristic length δ0 = 2.44 cm
which is somewhat less than R/3.8 = 2.58 since the coil radius is less than R. The steeper decay
in field and in phase beyond the skin layer is a natural consequence of the two-dimensional
geometry and non-uniform plasma density distribution in an ICP source with a planar coil. In
this experiment the spatial decay of rf field is considerably affected by the geometry of the coil
and the chamber (δ0 and δE  are comparable).

The rf field and relative phase φ behind the skin layer (z 2 cm) demonstrates anomalous
behavior. Here the rf field decays more rapidly and after reaching its first minimum has one
or two local maxima followed by a sharp fall to the metal boundary. Meanwhile, the phase
either begins to increase, after reaching its minimal value, or sharply falls. This phase evolution
corresponds to a dramatic change in the phase velocity along bounded
plasma. In the skin layer it is found from Figs. 13 and 14 that vph  is larger than the average
electron thermal velocity vth  in the z-direction, vth  = v ea /2 = 8.0 · 10 7 cm/sec for 1 mTorr
and v th  = 6.3 · 107 cm/sec for 10 mTorr. With increasing z, vph  decreases and after reaching
a minimum it starts to grow again with a reversal of the phase velocity as it passes through the
singularity point (v ph = ±∞ at dφ /dz = 0). Generally, phase velocity falls with plasma density.
At the point where the plasma density is large enough (for 1 mTorr at Pp l = 200 W and for 10
mTorr at Ppl  = 120 W) vph  equals v th  at some distance from the window as shown in Figs. 13
and 14. At this point the phase starts decreasing rapidly finally reaching a value close to that at
smaller Pp l but having one more rotation cycle. The phase bifurcation effect is clearly seen in
Fig. 14 for 10 mTorr where a relatively small change in the rf power (from. 100 W to 120 W)
brings about the dramatic change in the phase evolution.

The non-monotonic rf electric field distribution observed here resembles the distribution
of the rf magnetic field in a toroidal inductive rf discharge, first observed by Demirkhanov et.
al13 They have explained a non-monotonic decay of the rf magnetic field away from the plasma
boundary as a result of electron thermal motion transferring rf electron current from the skin
layer to a place deep into plasma (anomalous skin effect). The non-monotonic structure of elec-
tromagnetic field in a semi-infinite collisionless plasma has been also found in the kinetic anal-
ysis of transverse electromagnetic wave penetrating into bounded plasma.14, 15  Accordingly, the
non-monotonic rf electric field decay found outside the skin layer could be interpreted quali-
tatively as a superposition of the electric field due to the coil and the electric field induced by
the plasma discharge currents, where the plasma currents are those in the skin region (due to
skin effect) and those outside this region due to plasma current translated from the skin layer
by electron thermal motion. The difference in the phase propagation velocity and the thermal
one, together with plasma inhomogeneity and dispersion in the electron velocity can result in
a variety of the rf field distribution patterns.

The rf current density J and its phase distribution shown in Figs. 15 and 16 demonstrate
the effect of rf current diffusion out of the skin layer with the formation of a second current
layer (opposite in direction) near the metal wall. The peak current density in the second layer
for p = 1 mTorr at z ≈ 9 cm is just 10 times less than that in the first (skin) layer at z ≈ 1 cm,
while the rf electric fields at these particular points (∆z = 8 cm) differs about 50 times. The
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Figure 13. Rf electric field magnitude and phase
distribution for f = 6.78 MHz and p = 1 mTorr.

Figure 14. Rf electric field magnitude and phase
distribution for f = 6.78 MHz and p = 10 mTorr.
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Figure 15. Rf current density magnitude and phase
distribution for f = 6.78 MHz and p = 1 mTorr.

Figure 16. Rf current density magnitude and phase
distribution for f = 6.78 MHz and p = 10 mTorr.
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phase difference between these points found from Fig. 15 (for different power) is between
180 and 210, which agrees well with the calculated phase of the current transferred by thermal
electrons, = 2400. The similar pattern in the current density distribution is
seen for p = 10 mTorr but the second current layer is not so clearly expressed as it is for 1
mTorr. The reason for this is a considerably smaller electron free path and therefore a shorter
length of rf current diffusion. Some larger phase shift is seen in the second current layer
for p = 10 mTorr since the electron thermal velocity is smaller in this case. Measurements at
different pressures showed that the relative value of the secondary maximum in the azimuthal
current distribution was about 0.22; 0.1 and 0.01, correspondingly, for 0.3; 1.0 and 10 mTorr.

The existence of the second current layer explains the appearance of a hump in the rf
electric field distribution near the wall and its dependence on the rf power. As seen in Fig.
15, the current density in the second layer is proportional to Pp l, and so is the nearby rf field
(induced by this current) which at small power is comparable to, and at high power is larger
than, the rf field penetrated from the skin layer. Note, that the rf field in the skin layer is
practically independent of rf power but it attenuates faster deep in the plasma at higher power
and plasma density. The rf field induced by the secondary current should also cause (and, in
turn, be affected by) rf current in the conductive wall.

The measured rf current density and the plasma density in the skin layer allows one to
evaluate the electron oscillatory velocity vrf there. The results given in Table 1 show that at
argon pressures of 1 and 10 mTorr the rf drift velocity vrf is essentially smaller than electron
averaged velocity vea .

Anomalous RF Power Absorption.

Having measured the rf electric field and current distributions one can identify the rf
power absorption mechanism by comparing the plasma resistivity ρ found in experiment,
(ρ = Ecosψ/J) with that calculated from the conductivity of cold plasma ( ),
where E and J are the magnitude of the rf electric field and current density, and ψ is the
phase difference between them. This procedure is equivalent to comparing the effective
electron collision frequency ν e f f found in experiment (which includes all possible electron
energy dissipative processes) with the electron-atom collision frequency in the rf field νen

determined by integrating the product of the electron-neutral cross section and the measured
EEDF over energy space. 21

The plasma resistivity is: , thus, Calculated
values of ν eff  and ν en  at a distance of 1 cm from glass window (near the maximum in rf current
density distribution) are shown in Table 1. At 1 mTorr the values found for νeff  are much
larger than νe n . This suggests that at this gas pressure rf power absorption is predominantly
collisionless in the skin layer. At 10 mTorr, ν e f f and νen  are close to each other, suggesting
that rf power absorption is primarily collisional.

It is interesting to compare values of νe f f found in experiment at p = 1 mTorr when νe f f >>
νen  with a theoretical expression for the stochastic collisionless frequency, given
in ref(7) for a one-dimensional ICP with an exponential rf field profile. Assuming δ = δE , the
calculated values of νs t shown in Table 1 appear to be about 0.6 νeff  found in this experiment.
The difference between the two can be attributed to the two-dimensional nature of the ICP
where the rf field radial inhomogeneity and the electron thermal motion in the radial direction
can contribute to non-local collisionless rf power dissipation.

The integral rf power absorption along the electromagnetic field propagation is shown in
Figs. 17 and 18 as function of the distance from the window. Here the measured total absorbed
power flux is compared with that calculated from the measured E and J distributions assum-
ing collisional power absorption. These comparison shows that the stochastic collisionless
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Figure 17. Absorbed rf power flux for p = 0.3
mTorr.

Figure 19. Spatial distribution of rf power
absorption for p = lmTorr, f = 6.78 MHz.

Figure 18. Absorbed rf power flux for p = 1 mTorr.

Figure 20. Spatial distribution of rf power
absorption for Pp l = 50 W, f = 6.78 MHz.

process dominates rf power absorption in these particular cases.
The calculation of the spatial distribution of the absorbed rf power P(z) is shown in Fig.

19 for p = 1 mTorr with various discharge powers and in Fig. 20 at a fixed discharge power
of 50 W with various gas pressures. As expected, practically all rf power is dissipated in
the skin layer near the window. Far from the window the power absorption for p = 1 mTorr
oscillates with distance and even becomes negative. The number of negative peaks on the
P(z) space distribution depends on the total rf power absorbed by the plasma: one negative
peak at Pp l = 25 and 50 W and two at Pp l = 100 and 200 W. The negative power absorption
occurs in the second current layer where the current phase differs from the local rf field phase
by more than 900 . Here the electrons arriving from the skin layer transfer the energy they
acquired in the skin layer back to rf field (local electron deceleration).

The negative power absorption depends on plasma density and frequency. It is most
evident at the lowest argon pressure and vanishes at relatively high gas pressure when the
electron mean free path is smaller than the chamber length as shown in Fig. 20.
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Figure 21. Frequency dependence of rf power
absorption for p = 10mTorr, Pp l  = 100 W.

Figure 22. Spatial distribution of rf power
absorption calculated by Kolobov.

The frequency dependence of the rf power absorption along the plasma is shown in Fig.
21 for p = 10 mTorr and Pp l = 100 W. A transit time resonance is clearly seen in the sequence
of the appearance of the first negative power absorption region; the distance d between middle
of the skin layer and first zero crossing point corresponds well with the relation: d = vt h /2ƒ.
Note, that apparently there is no negative power absorption at the lowest frequency of 3.39
MHz where anomalous skin effect (large Λ) and electron ballistic phenomena are expected
to be greatest. This has a simple explanation: for 3.39 MHz: the electron transit time L/ v th

is smaller than half the rf field period (2ƒ) – 1, where L is the chamber length.

Calculation of rf power absorption in our experiment has been performed by Kolobov on
the basis of work 15,18 modified to account for the inhomogeneity of the rf field (δ0 ≠ ∞), and
the results is shown in Fig. 22. This calculation was done assuming: a) homogeneous plasma,
b) Maxwellian EEDF, and c) energy-independent νen . Although none of these assumptions
hold for the experiment, the agreement seems very good.

Another peculiarity in the power absorption at p = 10 mTorr at 6.78 and 13.56 MHz
is that the main rf power absorption in the skin layer is mainly collisionally dominated
(ν e f f ≈ ν e n), while deep in plasma the electrons demonstrate non-local electrodynamics
typical of anomalous skin effect. This can be understood as a result of plasma inhomogeneity
along the propagation of the rf field (see Fig. 7). For dense enough plasma, where δp  < δ0, t he
non-locality parameter Λ is nearly proportional to the plasma density (see Fig. 12), therefore,
rf field interaction with electrons in the skin layer (where Λ is small) is rather local, while
deep in plasma (where Λ is large) the interaction is non-local.

CONCLUSION

Electron kinetic and electrodynamic characteristics of ICP have been measured with
improved diagnostic means over a wide range of argon pressure, discharge power and fre-
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quency. A large data base suitable for comparison with theory and computer experiment
has been generated and some new features in ICP characteristics associated with non-local
electron kinetics and electrodynamics have been revealed. The large population of low energy
electrons (similarly to that in low pressure CCP), the frequency dependence of EEDF and
electron temperature, the rf field phase velocity reversal, the phase bifurcation and the second
current layer with localized regions of negative power absorption are found to take place over
a wide range of gas pressure. These effects are most expressed at the lowest gas pressure
of 0.3 mTorr and vanish at about 100 mTorr and higher gas pressures. These observations
support the notion that the phenomena reported here can be attributed to near-collisionless
electron motion typical for the anomalous skin effect. For the first time, we have demon-
strated collisionless rf power absorption and negative power absorption in an ICP through
direct measurements of the rf electric field and current in the plasma.

Amazingly, the new features in the rf electric field and current distribution in the ICP
observed here were built into the theory of anomalous skin effect15,18 known for over 25
years, but overlooked. Recently, Wu,29  Kolobov,12 Tumer, 30 and Yoon31 have independently
calculated and simulated our experiment and found plausible agreement with our findings.
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INTRODUCTION

Numerous applications of low-pressure gas discharges have recently prompted an
interest in mechanisms of electron heating and power deposition in the plasma main-
tained by radio-frequency (rf) electric fields. A modern trend in plasma technology
aims at decreasing the gas pressures down to the millitorr range. For these low pres-
sures it is easier to maintain uniform plasmas with well controlled parameters. Due to
the large value of the mean free path (MFP) the main mechanism of electron heating
turns out to be a collisionless one rather than the conventional Joule heating dominant
for higher pressures.

Being initially studied for a capacitively coupled plasma¹, this mechanism is now
widely discussed in application to inductively coupled plasmas (ICP), ECR plasmas, etc.
². Initially collisionless heating was studied in a ‘kick’ model: electron obtains velocity
kick in the strong electric field at the discharge periphery, then the phase of velocity
kick is randomized either due to collisions in the bulk or due to non-linear mechanism
of randomization (Fermi acceleration). As a result diffusion in velocity space arises,
and this corresponds to collisionless heating.

In general case the electric field is presented in the whole discharge volume and
the separation on periphery region where electron gains energy and a bulk without
electric field is not applicable. The other subject of investigation is the heating of
trapped in the discharge center electrons in non-uniform plasma buy ambipolar electric
field. These electrons also can be heated by collisionless mechanism by weak electric
field in the plasma field. For this situation kick model is also not applicable. In this
particular situation the use of rigorous quasi-linear theory is necessary. It is based on
well known mechanism of collisionless power dissipation - Landau damping (see e.g.
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3 ). The resonance particles moving with a velocity close to the wave phase velocity
intensively interact with wave fields and receive or lose energy. The result of particle ⇔
wave interaction depends on the shape of the particle distribution function in velocity
space. For Maxwellian distributions the wave amplitude decreases, while the particle
energy increases. If many waves are excited the power dissipation should be summarized
over the spectrum of waves. Such a theory was developed for a weak turbulence in
order to explain the mechanisms of anomalous transport phenomena in hot plasma of
thermonuclear fusion (see e.g.4,5 ).

But it can also be applied to stable plasmas, when small scale fields with a wide
spectrum of wave numbers are excited by an external source. This situation is realized
in the cases of Debye screening of longitudinal electric fields or cases of anomalous skin
effects for transversal fields. A local spectrum of small scale Langmuir waves appears
also in the region of plasma resonances for inhomogeneous plasmas interacting with
electric fields capacitively coupled with plasmas (CCPs).

The only particles which are in resonance with a wave are heated by collisionless
mechanism. It means that in the regime of collisionless dissipation the form of the
electron energy distribution function (EEDF) is sensitive to wave spectrum. If the
wave phase velocities are confined in some interval the plateau in the EEDF can be
formed5 .

The problem of the plateau formation in the EEDF in the quasilinear theory was
investigated first in6 , 7. In8 it is shown that collisionless heating due to localized plasma
oscillations results in plateau formation in the region of high electron energy. Collisions
smooth out the plateau and lead to an increased number of high energy electrons5 . The
effect of collisions on electron heating by local plasma oscillations were investigated in
9 . The numerous investigations of EEDF by using a kinetic equation for electrons of
a plasma slab with oscillating rigid walls have been performed in 10–12 . This treatment
yields a power law energy dependence in the EEDFs. The experimental study of EDF
for CCP have been carried out in 13,14 .

A quasilinear approach to collisionless electron heating in the regions of plasma
resonance in low pressure discharges, sustained by electromagnetic surface waves, is
developed in 15 ,16. In 17  it is demonstrated that — in view of experimental situations —
self-consistent modeling has to account for nonlocal effects18,19  as well as for collisionless
heating. The classification of various regimes of collisionless heating were performed in
20 .

In view of the history of successful use of the quasilinear approach as a well es-
tablished method, particular in hot plasma physics, this paper aims at systematically
applying this method also to study collisionless heating in various low temperature
plasmas and to summarize existing results using a common basis as well as to gain
extended new results. The paper intends to demonstrate that the quasilinear theory is
a powerful and easily applicable method for investigations of these type of problems.

This paper is organized as follows: In section II, the derivation of the diffusion
coefficient in energy space for uniform boundless plasmas, heated by localized high
frequency field is presented. In section III the collisionless heating in inductively coupled
plasmas (ICPs) is analyzed for semi-infinite and slab geometry. Both cases can be
reduced to the boundless problem with specular reflecting walls. The profile of the
electric field under the condition of the anomalous skin effect is found in analytical
form and the electric field is shown to oscillate spatially with zero average value. As a
result the diffusion coefficient of fast electrons is suppressed, but in the low energy region
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it is enhanced in comparison to the case of an exponential profile. For ICPs in slab
geometry (of width L) it is demonstrated that the second boundary plays a similar role.
In this case the corresponding Fourier spectrum of electric field is discrete (kn = π n/L)
in contrast to a continuous one for semi-infinite geometry. In section IV the quasilinear
theory is applied for capacitively coupled plasmas (CCPs). It is shown that the diffusion
coefficient has a clear resonant structure with a main peak at v = ωL /π. An analysis of
the solutions of the kinetic equation for the EEDF in different regimes of plasma heating
is presented. In section V the influence of the ambipolar electric field on the efficiency of
collisionless heating is discussed. The general expression for the diffusion coefficient in
energy space is obtained for cases both of ICPs and CCPs. The presence of ambipolar
electric fields can strongly modify the condition for particle ⇔ wave resonances. As
a consequence the form of diffusion coefficient in energy space is changed, especially
for low energy electrons. In a parabolic potential Φ = ax²/2 the bounce frequency
of trapped electrons is the same for all energies. So the resonance condition

can be fulfilled for one value of a only, and there is no collisionless heating
for other values of a. In the general case of a non–parabolic potential the bounce
frequency is energy dependent. Section VI contains the conclusion and outlook.

KINETIC THEORY OF COLLISIONLESS ELECTRON HEATING
Separation of the Space and Times scales in the Kinetic Description

First we discuss case when collisionless heating occurs in a small region at the dis-
charge periphery of width δ << L , L being the discharge gap. In the ICP, δ corresponds
to the thickness of the skin layer. In a capacitively coupled plasma, this model corre-
sponds to the sheath width smaller then an electron mean free path. For surface wave
discharges it corresponds to collisionless dissipation in the narrow region of plasma res-
onance. In such low pressure discharges the space scale of the electric heating becomes
small in comparison to the MFP λ. Under these conditions it is possible to simplify the
kinetic description of the plasma by separation of the space scales.

The kinetic equation for the electron velocity distribution function F( r, v, t ) is:

(1)

where e and m are the electron charge and mass, respectively, S( F) is the collisional
integral, ε(r, t) is the electric and ß(r, t) is the magnetic field.

The fields can be separated into two parts according to different space scales:

(2)

where E and B have spatial scales large compared to λ, while and have spatial
scales δ small compared to λ (i.e. δ << λ ). An analogous separation can be performed
for the distribution function:

(3)

where F is averaged over a scale in the order of λ and describes the deviations of the
distribution function on scales smaller than λ. Also the usual quasilinear approximation
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<< F is used 4,5 . As a result the kinetic equation (1) can be separated into two parts:

(4)

(5)

In (4) the collisionless term is omitted, since it is small compared to the second term on
the left-hand side: kλ >> 1. The bar in (5) denotes spatial averaging on scales smaller
than λ.

The Form of Quasilinear Integral for Weakly Inhomogeneous Boundless
Plasmas

First the case of weakly inhomogeneous boundless plasmas, when E, B = 0 and
are only RF fields, is considered. It correspond to collisionless dissipation in

narrow region with a gap width larger than a energy relaxation length, so influence of
boundary can be neglected. The electric field is excited at fixed frequency:

(6)

where * denotes the complex conjugation.
Under conditions, when the frequency of inelastic collisions ν* is small compared

to the RF ω ( ν* << ω ), the distribution function does not depend on time 19, i.e. F =
F(r, v), and (4), (5) can be simplified to

(7)

(8)

The first term on the right hand side of (8) is well known in the theory of weak turbulent
plasmas as the quasilinear collision integral, describing interaction of electrons with
waves,

(9)

where the 〈 . . .〉 brackets indicate temporal averaging over the wave period 2π / ω.
Equation (7) can be solved by the Fourier method giving:

(10)

where (k), E (k) and B (k) are the Fourier transformations of the functions (r),
E(r) and B (r), respectively:

By inserting (10) into (9) the quasilinear integral for the one-dimensional geometry
can be written in the form:

(11)
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where the δ–function appears as a result of space averaging and reflects the fact of
localization of the heating electric field in the region x ≈ x0 with a characteristic scale
δ much smaller than λ and

(12)

is the tensor of the diffusion coefficient in velocity space. For excluding the magnetic
field in (12) one can use the Maxwells equations:

(13)

Thus in expression (12) the contribution of the Lorentz force is of the same order of
magnitude as that of the electric field21. After substituting expression (13) for the
magnetic field one gets:

(14)

From (12,14) it can be seen that the role of the Lorentz force is changing the direction
of diffusion in velocity space. Without accounting for the Lorentz force the diffusion is
in the direction of the electric field, but with accounting for the Lorentz force it is in the
direction of wave propagation given by k. The same result in an one-particle approach
was discussed in21 . The formula (14) has a general form: it is valid for longitudinal
waves, too (E × k = o ). This stems from the fact that the electrons receive impulse from
the wave impulse directed along k independent of the type of heating field (transverse
or longitudinal).

The relation

(15)

corresponding to the chase resonance between traveling wave and moving electron, was
used to obtain expression (14).

It should be stressed that Dij  is a nonlocal function of the heating electric field
due to the integral representation

(16)

This type of nonlocality is also discussed in 22 .
The simple physical meaning of expression (14) shall be illustrated by the example

of plasma heating due to the localized field of a longitudinal wave (Ex , 0, 0). In this
case one obtains from (14):

(17)

Expression (17) can be presented in the form

(18)
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where ∆v is the amplitude of the velocity kick after interaction with the wave field:

(19)

with

Kinetic Equations for the EEDF

In gas discharge plasmas the anisotropy of the distribution function in velocity
space is small due to the elastic collision frequency ν being large compared to the
inelastic one (ν*), 19 i.e. ν >> ν * *. In this case the conventional two-term approach is
applicable and for the spherically symmetric part of the EEDF F0 one has the following
equation for one-dimensional geometry:

where

(20)

(21)

(22)

is the averaged (over the velocity angles) quasilinear collision integral Sql ( 1 1 )  a n d
S*(F0 ) is the inelastic collision integral.

Expression (22) like (14) has a general form for all types of fields. The Lorentz force
in (22) for an isotropic EEDF has vanished and the resulting diffusion coefficient (14)
is the same with or without accounting for the Lorentz force. Thus the wave instability
discussed in 3,21 , which is equivalent to electron cooling, is essential only for anisotropic
or non monotonic EEDFs, where the role of the Lorentz force is essential.

Below we summarize the forms of the diffusion coefficients in velocity space for
various types of discharges:

1. For the case of transverse em waves
corresponding to an inductive discharge — (22) yields

After integration over and introduction of one gets

(23)

(24)

*It corresponds to the case, when a localized em field is excited with a broad spectrum of wavenumber
∆k. So the corresponding time of diffusion through the region of wave–particle interaction ( ∆ v ≈

is large compared with the collision time ν t i  >> 1. The steady state condition
is established on a time t ≈ ν *–1. The opposite case corresponds to large anisotropy of the EEDF
and can even lead to current drive 23 .
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2. For the case of a longitudinal electric field (k || E, k = k ex , E = E ex ) —
corresponding to a capacitive discharge and plasma resonance heating in surface
wave plasmas — (22) reduces to

(25)

3. For the case of a circularly polarized electric field
— corresponding to SW sustained discharges

(generally speaking elliptically polarized) — (22) gives

(26)

where k y 0 is the fixed wavenumber of the surface wave and E(k ) corresponds to
the Fourier transformation of the electric field profile E0 (x).

To obtain the EEDF, (20) should be integrated over a small vicinity of the point
x = x 0 . One gets as result:

(27)

In obtaining (27) symmetry of plasma heating and EEDF with respect to the space
position x = x 0 is assumed. Relation (27) should be considered as boundary condition
for the equation

(28)

describing the space evaluation of the EEDF outside the region of RF power input.
By representing the collisional integral S*(F0) in the form

(29)

one obtains from (28):

(30)

where energy relaxation length. Substituting (30) into the
boundary condition (27) now results in the equation for the EEDF:

(31)

Equation (31) has previously been analyzed for the case of localized longitudinal RF
fields in the ionosphere 9 and SW produced plasmas15 . The character of the solutions
of (31) essentially depends on the diffusion coefficient D (v). For its determination the
space spectra of the heating EM fields have to be known.

In contrast to boundless plasmas considered above gas discharge plasmas are always
bounded. Thus, in the next section a procedure of reducing the bounded problem to a
boundless one will be developed.
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SPACE SPECTRA OF HEATING ELECTRIC FIELDS AND DIFFUSION
COEFFICIENTS FOR INDUCTIVELY COUPLED PLASMAS
The Semi–Infinite Plasma

In order to use the results of boundless plasmas, specular reflection of the electrons
from the discharge wall (x = 0) is assumed:

(32)

To reduce the semi-infinite problem to boundless one the continuation of Eq. (7) into
the complete x-range (–∞ < x < ∞ ) can be performed. Now the reflected electron
is represented by one passing to the region x < 0). The kinetic equation is symmetric
with respect to electron reflection if the fields are continued by the following ansatz see
Fig.1:

(33)

and the problem reduces to the case of boundless plasmas *.
Now the possible regimes of shielding the transverse EM field by the semi-space

plasma are addressed. In the case of weak collisions (ω > ν ) the field penetrates into
the overdense plasma over the depth δ0  = c/ωp . For such a
regime the frequency of the electric field should be sufficiently high with
vT being the thermal electron velocity). A regime of collisionless plasma heating is
possible, if the skin length δ0 does not exceed the MFP λ, i.e. if In this
case one should use the following form for the electric field, continued into the complete
x-range to calculate the diffusion coefficient for semi-infinite plasmas:

with the Fourier spectrum given by

(34)

(35)

It should be noted that result (34) corresponds to the absence of power dissipation,
accounting for low power dissipation either due to small collisionality or colisionless
dissipation results in weak spatial field oscillations and a small EM power flux into the
plasma. Substitution of (35) into (22) yields the expression for the diffusion coefficient

D(v):

(36)

*It should be mentioned that the approximation of specular boundary reflection
may not be valid in real plasmas, where electrons reflect from the sheath region and penetrate into
the sheath by a length being the Debye radius). If this length is small (i.e. ∆ (v T ) <

the sheath region is not important and formulae for specular reflection are valid. For the
opposite case the velocity kick (and thus the energy dissipation) is smaller 24 .
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Figure 1. Scheme of electric field continuation: (a) transverse electric field; (b) longitudinal electric
field.

where and

(37)

which should be used in the kinetic equation (31) for obtaining the EEDF F0 (v).
In the region of low electron energy one has

(38a)

(38b)

In the limit of high electron energy one obtains:

For lower frequencies the case of anomalous skin effect³ is realized
independent of the relation between ω and ν . In this situation the

depth of the electric field penetration becomes less than the MFP λ and electrons are
heated in a collisionless manner.

If one uses a description of the electric field in the form

(39)

where is chosen from the condition of a correct representation for the
power deposition into the plasma with the surface impedance
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where is effective skin depth see Eq.(44) the diffusion coefficient D( v) is:

(40a)

(40b)

The function g ( ) has the following approximation in the region of high electron energy

(41a)

and in that of low electron energy ( << 1):

(41b)

The exact Fourier transformation of the electric field obtained from the kinetic
approach³ yields:

(42)

where

In the case of a Maxwellian EEDF one has:

(44)

where n is the electron density and

(43)

(45)

The space dependence of the electric field penetrating into the plasma over the
region 0 < x < v T /ω has the form:

(46)

The last term on the right–hand side of (46) represents the contribution of the
branch point k = 0 and the exponential terms are a result of the poles in the integration
when the inverse Fourier transformation of expression (42) is performed. A plot of Ey (x )
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Figure 2. Plot of the electric field at anomalous skin effect as a function of normalized coordinates
x/δ 0. The solid curve corresponds to the exact profile of the electric field (46), the dashed one to the
exponential profile (34) and the small dashes represent the impedance approximation (39): (a) Real,
(b) imaginary part of the electric field intensity.
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is presented in Fig. 2. The electric field profile has a oscillatory structure which reflects
the existence of power flux into the plasma due to collisionless dissipation. It should
be noted that at large distances from the plasma surface the influence of
electron thermal motion is not important and the electric field penetration becomes
purely exponential with a scale length But this effect of changing the regime
of field penetration can be neglected because at this distance Ey (x) has decreased to a
small fraction of its value at the surface if the frequency w is in the range
where the anomalous skin effect is applicable.

By substituting expression (42) into (22) one obtains:

where

(47)

(48)

In the region of large values of the argument >> 1 the function g( ) decays and
can be approximated by:

(49a)

For small values of << 1 (44) goes to zero by the law:

(49b)

In Fig. 3 plot of g ( ) for different cases of electric field representation is shown.
The difference of the diffusion coefficients (49) to (38,41) (see Fig. 3) is essentially
due to the oscillating structure of the em field penetrating into the plasma, which is
very important for resonant interaction of particles with the field. The reason for this
structure of the electric field is the nonlocality of the conductivity σ(k ). Due to the
plasma conductivity an electron current arises and produces magnetic and electric fields
in a direction opposite to that of the external em fields. In the local case (σ does not
depend on k) this leads to a monotonic decrease of the sum of all em fields, while in
the nonlocal case these em fields are shifted towards the plasma and as a result the
oscillating structure of the em fields appears.

Another feature of exact description is that

(50)

Note that it follows from (46) that the Fourier component E( k = 0) should be
equal to zero, which is in agreement with (42).

The integral of the electric field since the electron current has to
vanish at large x, where the average electron velocity is determined by this integral.

Diminishing of the diffusion coefficient (47) in regions of a high electron velocity
v > ω δ as a transparent physical meaning. To the electron with such a high velocity
the electric field appears as a stationary one. The increase of the electron energy by
interacting with the localized electric field is equal to zero, since the spatial integral
over electric field is zero.
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Figure 3. The normalized diffusion coefficient as a function of the dimensionless
velocity for various models of electric field profile. The solid curve corresponds to the
exact profile of the electric field (46), the dashed one to the exponential profile (34) and the small
dashes represent the impedance approximation (39).

In the region of high electron energy the diffusion coefficients D(v) (36), (40) decays
much less than in the case, when the electric field is described exactly (48). This is a
consequence of the fact that in the former two cases the long wave part of the Fourier
spectrum of the electric field does not vanish and E(k = 0) ≠ 0 .

The Slab Geometry

Now the case of a uniform plasma slab (of width L) bounded by two plane walls
with specular reflection of electrons is considered. For the case L >> λ collisionless
heating of overdense plasmas occurs only in the nearest vicinity of the walls, while
between then the usual Joule heating takes place. By using the method of continuation
considered in the previous section the following solution for the EEDF is obtained

(51)

generalizing the result (30) for the case of plasma slabs with symmetrical heating on
both walls. The kinetic equation for the EEDF F0 (v) instead of (31) now has the form:

(52)

The diffusion coefficient D(v) in (52) is defined by (22). The limit L >> λε , corresponds
to the case of semi–infinite plasmas and (52) changes to (27). In the opposite limit of
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thin slabs (L << 2λε ), on the right-hand side of (52) a large parameter 2 λ ε /L >> 1 arises
corresponding to more effective heating. In this case (52) takes the form:

(53)

Equation (52) expresses the fact that losses of electron energy by inelastic collisions in
the plasma volume balances the collisionless heating. It should be noted that in this
limit the EEDF is spatially uniform and is equal to F0(ε ) in spite of the localization of
energy input regions near the walls. This limit corresponds to the so called “nonlocal”
heating regime of plasmas with space dimensions less than the length of of electron
energy relaxation λε

18,19.
If the slab width does not exceed the MFP (L < λ < λ ε), the kinetic equation for

the EEDF has a form identical to (53) but with the diffusion coefficient

(54)

where

(55)

is the Fourier transformation of the periodically continued—in accordance with (33)—
electric field Ey (x) (with period L ).

Expression (54) shows that only particles being in resonance con-
tribute to the collisionless heating in contrast to semi–infinite geometry, where all par-
ticles contribute to the heating, as can be seen from (14). The reason for such a discrim-
ination lies in the way of stochastization of the em field phase20. In the semi-infinite
case all electrons undergo collisions in the periphery of the heating region, so subse-
quent interactions with the em field region happen after several collisions and randomly.
Thus all electrons participate in the heating. In the slab geometry (L < λ ) electrons
return to the same place in a time much smaller than the time between collisions. So
these interactions are correlated and no diffusion in velocity space occurs. The collision
frequency does not enter in the expressions for the diffusion coefficient (22) and (54),
but the presence of collisions (or other stochastization mechanisms) is necessary for
collisionless heating. The situation is similar to the problem of Landau-damping. The
different ways of stochastization in semi-infinite and slab geometry result in different
diffusion coefficients (22) and (54). For a given velocity v the sum in (54) is over the res-
onance velocities (see Fig. 4). If only higher n contribute
to the integral. For small v the approximation of hard wall and specular reflection
can be not valid and the real profile of the potential sheath should be considered (see
comment after Eq.(33). It can be shown that the spectrum En is always proportional
to 1/n², independent of the form of dependence of Ey(x ). This behavior is connected to
the symmetric continuation of Ey(x) and originates from the jump of the magnetic field
component and is easy to check by twice partially integrating (55). For
such a spectrum the sum in (54) can be changed to an integral for low energy electrons
(v < ω L/π) and the diffusion coefficient takes the form of (22) with the function E(k )
corresponding to the Fourier spectrum of the electric field

(56)
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(58)

Figure 4. (a) Scheme of velocity space, area of averaging and resonance points. Small velocity v1
corresponds to the region of many resonances, medium velocity v2 lies in the region of the second
resonance, and large velocity v3 lies in the region of the first resonance. (b) Scheme of energy space,
area of averaging and resonance points with accounting for the ambipolar electric field; no resonance
points occur at small energies.

In the region of high electron energy v ≥ L/π ) the sum in (54) cannot be transformed
into an integral. To demonstrate this the simple case of an exponential profile of the
penetrating electric field with skin depth δ0 ≤ L is considered. The spectrum En for
this case is

(with n* = L /πδ0) and the diffusion coefficient (54)

is obtained, where

(57)

(59)

For small ( < n *) the main contribution to the sum in (59) stems from large
n so that the sum can be represented by an integral and the result coincides with the
result (36) for the case of semi-infinite plasmas.

For large ( > n*) the sum in (54) yields a smaller diffusion coefficient compared
with that in the case of semi–infinite plasmas. This is connected to the effective cut–off
at small k ≤ π/L for the slab geometry.

From the point of view of the one particle approach formula (54) can be interpreted
as follows. Passing forward and backward through the slab, an electron obtains a
velocity kick. Subsequent kicks are correlated, and the sequence of this kicks leads to
no diffusion. The diffusion in the energy space is only due to resonance electrons which
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Figure 5. Influence of the second boundary on collisionless heating. (a) profile of the inductive
electric field E = E 0  exp(–x/δ) with second boundary at (b) normalized diffusion
coefficient for an inductive exponential electric field , as a function of the normalised
velocity for different slab widths L. Solid curves correspond to the the analytical formulae
(54), symbols to Monte Carlo simulations

2 5
: black squares: L → ∞ (100 δ ); circles: L = π δ; squares:

L = 2π δ.

(60)

randomize the phase of velocity kick due to rare collisions. And the diffusion coefficient
reads:

(61)

It should be noted that (60) is only valid with accounting for collisions. Without
collisions the stochastization for usually does not exist, even due to nonlinear
effects2 0. The collisions play two important roles:

1. They stochastizate the phase of electron motion with respect to the phase of the
electric field and

2. they transfer electrons from non–resonance velocity to resonance and vice versa.

This complex process of electron motion can be considered as diffusion with diffusion
coefficient (60). The identity of this diffusion coefficient with the one from the one
particle approach is fortuitous, but accounting for nonlinear effects, the results are
different 2 0. The plot of the normalized diffusion coefficient function g(v) is shown
in Fig. 5. The reduction of the diffusion coefficient due to the second boundary for

, where correlation effects are important, are clearly seen.
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The vanishing of correlation effects for v > L was proposed first in
26

, but the
conclusion that it can occur without collisions is not correct2 0 , 2 5. The decrease of the
real part of the surface impedance in the slab geometry compared to the semi–infinite
one was found in27  for a case, when the electron density drops exponentially with the
width a and a skin depth much smaller than a. The reduction of collisionless heating
due to the influence of the second boundary was observed in numerical simulations28 .

For a homogeneous electric field (En > 1 = 0) the collisionless heating vanishes2 9 .
In the sum in (54) there is no wave–particle resonance at all for n = 0. This can
also be understood from the one–particle approach. Since the electric field is continued
symmetrically, the motion of the electron in the case of slab geometry can be substituted
by the motion in infinite space with a homogeneous electric field, where no condition for
collisionless heating occurs. This situation is different for a longitudinal electric field.

(62)

CAPACITIVELY COUPLED PLASMAS

CCPs have a more complicated structure than ICPs due to the presence of large
oscillating sheaths. For such a situation the approximation of the sheath potential as
a moving rigid wall has repeatedly been used (see e.g.2 2). In this model the sheath
velocity is The electric field in the plasma bulk is neglected.

When MFP λ < L we can apply Eq. (18) with velocity kick in the sheath
After averaging over velocity angle the diffusion coefficient reads

If the energy relaxation length is larger than discharge gap λ* >> L the kinetic
equation has a form (53). The physical meaning of expression (62) can be explained
as follows. After reflection from the wall an electron obtains a velocity kick 2v sh . If the
next kick can be considered as randomly with respect to the previous one, diffusion in
velocity space and electron heating appear. The randomization can originate from two
mechanisms: collisions, when the mean free path of the electrons λ is smaller than the
slab width (λ ≤ L ), and the nonlinear mechanisms of collisionless stochastization3 0 . In
this case the averaged diffusion coefficient from two sheaths is 12 :

(63)

Therefore is the product of a factor ½, the bounce frequency, the squared velocity
kick averaged in time and a coefficient ¼ resulting from averaging over the velocity
angle.

For λ > L the correlation between two following kicks are important. In this case
Eq. (60) can be applied. After integration the diffusion coefficient reads:

(64)

with

(65)
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(66)

Figure 6. The normalized diffusion coefficient as a function of the dimensionless
velocity for CCPs. The dashed curve represents g = /2.

For small the sum in (64) can be replaced by an integral and g ( ) is
approximated by

so that

(67)

Thus in the low energy region the expression for the diffusion coefficient (62) is identical
to the result obtained in12  with an one–particle approach.

In the high velocity region the main contribution in the sum of (65)
is due to the first resonance and one obtains

and correspondingly the diffusion coefficient decays ~ v–3 :

(68)

(69)

From Fig. 6 the large deviation of the quasilinear diffusion coefficient (solid line)
from the one obtained without account correlation effect (dashed line) in the region
of high electron velocity is evident. It is also possible to transfer the problem into
a noninertial system moving with the sheath velocity vs h . In this system there is a
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stationary specularly reflecting boundary and an alternating electric field connected to
the inertial force:

where

(71)

(72)

(70)

Now the quasilinear approach is easily applied and with the help of the continuation
method described above (32), (33) it yields the same expression for the diffusion coef-
ficient (54) in ICP.

In the case considered here Ex(x) = E 0 = constant and Eq.(71) coincide with Eq.(64).
The interesting difference between capacitively and inductively coupled discharges

is the different influence of the boundary on collisionless heating. For inductively cou-
pled discharges the reflection from the boundary does not change the correlation be-
tween particle motion and electric field, since the influence of the electric field is the
same before and after reflection and vice versa. For capacitively coupled discharges
when the electric field diminishes the absolute value of velocity before reflection, but
increases it after reflection. Consequently there is no collisionless heating with uniform
electric fields for slab geometry in the case of inductively coupled discharges, but it does
occur in the case of capacitively coupled discharges.

The difference in the nature of the heating field for CCPs and ICPs rests also in
the structure of the diffusion coefficient near resonances. In the case of CCPs every
resonance gives a well defined peak near vn  = πω/Ln (see Fig. 6). With increasing v an
additional resonance vn  yields at first a considerable contribution, followed, however,
by a rapid decrease ~ v– 3. As a consequence at v > π ω/3L (i.e., n ≤ 3) the diffusion
coefficient is practically determined by the lowest resonance (n = 1) and its curve
resembles a sequence of peaks (see Fig. 6). For ICPs the peak structure is smoothed
out, since every new resonance results only in a small contribution ~ ( v – v n )² and the
decrease of the resonance contributions is also slower than for CCPs (~ v

– 1
). Therefore

only the peak of the first resonance is pronounced in the net diffusion coefficient compare
Fig.5 and Fig 6.

THE DIFFUSION COEFFICIENTS FOR INHOMOGENEOUS PLASMAS
ACCOUNTING FOR STATIONARY AMBIPOLAR ELECTRIC FIELDS

In inhomogeneous plasmas the stationary ambipolar electric field appears which
tends to trap electrons in the plasma volume. As a consequence low energy electrons
cannot reach the periphery of the discharge, where the RF field is large. Therefore
taking into account the ambipolar potential leads to a decrease in the efficiency of
heating of low energy electrons. The diffusion coefficient for these electrons is small
and the effective temperature of the low energy part of the EEDF can be considerably
smaller than that of the higher energy part. For instance, in CCPs EEDFs resembling
bi–Maxwellian ones have been observed, with a temperature of low energy electrons
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(ε < 2eV) ten times smaller than that of high energy electrons (ε > 2eV)1 3. Trapped
electrons are heated by the bulk rf electric field. If the mean free path is larger than the
plasma slab width (λ > L ), the heating of trapped electrons tends to be collisionless
and thus an appropriate quasilinear theory has to be developed.

The presence of the ambipolar electric field results not only in quantitative effects,
but in qualitative ones, as we will see it changes the distribution of resonance particles
over energy (see Fig. 4b).

First the case of a collisionless slab for CCPs (λ >> L ) will be considered. The
kinetic equation (4) for the fast varying part of the distribution function (x, v ) with
the ambipolar potential Φ (x) takes the form:

(73)

(75)

where

(79)

(80)

Equation (73) can be simplified by introducing new variables: instead of vx and x n o w
εx and x , where

The corresponding boundary condition for the distribution function is

(74)

The solution of (73) is given by (see e.g. 31 )

(76)

- and the turning points x±(εx ) are defined by the relation (see Fig.7)

(77)

Due to isotropization in collisions the main part of the distribution function F =
F(ε ) is the function of the total energy After averaging over both x
and velocity angle the kinetic equation reads:

The bars indicate averaging over the slab width L. The diffusion coefficient averaged
over the angles in velocity space is:

with

(78)
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Thus (78) with the energy diffusion coefficient (79) appears to be a generalized
form of the kinetic equation accounting for collisionless heating. The coefficients En

are generalized Fourier coefficients (80)*.
Resonances occur, if the time of particle motion from one turning point to another

(bounce time) is equal to n T/2, where T = 2 π/ . This is in accordance with the
resonance condition Ω*(εx ) = π n, as follows from (79). If the value of Ω *(ε x ) does
not exceed π, there are no resonances at all and no collisionless heating occurs. It
should be noted that, if the ambipolar potential is approximated by rigid walls, Ω*(εx)
is proportional to and the resonance conditions can always be fulfilled. In the
case of a parabolic potential, which is realized for low energy electrons trapped near
the discharge center and is defined by the potential profile /2, the
dimensionless period does not depend on the electron energy εx
and the resonance conditions can be fulfilled in this case for one value of Φ0 /l ² only.
All plasma electrons are in or out of wave-particle resonance. Thus the “degeneracy”
could be removed by taking into account the deviation of the ambipolar potential from
the parabolic one.

To demonstrate the influence of the ambipolar potential on the energy diffusion
coefficient an example for its calculation is given. Usually at the discharge center both
the density and the potential profile are parabolic. At the periphery a more rapid
decrease of density results in a more rapid increase of ambipolar potential. Therefore
the latter is modeled in the form

(81)

which is parabolic at the center and higher than parabolic at the periphery
(see Fig. 7a). The plot of the dimensionless period

(82)

is shown in Fig. 7b for electrons moving in ambipolar potential (81). In contrast to
the case of no ambipolar potential the function Ω*(ε ) is finite at small ε . For a given
potential (81) e.g. this situation occurs, if > 1. For smaller Φ 0 the bounce
time is larger and a first resonance Ω * = π appears. For example for Φ 0  = 0.82
resonance corresponds to a energy With a given resonance energy the
energy diffusion coefficient (76) can be calculated, its plot is shown in Fig. 8.

In Fig. 8 also the energy diffusion coefficient is presented without accounting for
the ambipolar potential for a slab width the same as distance between turning points
for resonance particles remains the same (i.e. L = 2x +(ε r )) (see Fig. 8) *.

The corresponding energy diffusion coefficient is considerably smaller than that
with account of ambipolar field.

Indeed, for a purely parabolic profile, the function Ω* does not depend on ε a n d
dΩ*/dε = 0, so for a resonance in this situation D ε → ∞. As a consequence the smaller

*Expression (79) for the diffusion coefficient in energy space can also be derived by introducing a new
variable—phase instead of coordinates32 —and then performing a Fourier transformation
on this variable.

*Many resonances exist for small energies, as a result the function Dε ( ε ) has the form of a ladder
function. The value of steps at higher resonances is small ∝ 1/ n5 and, thus, this cannot be recognized
in Fig. 8. The main contribution is due to the first resonance, which corresponds to a energy ε =
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Figure 7. (a) Plot of the ambipolar potential with
are the coordinates of the turning points. Model with no ambipolar field corresponds

to the slab width L, so that the discharge area available for resonance particles is the same as before:
L = 2x+( r ). Resonance occurs at the energy ε = 0.82mω ²l². with and
without accounting for the ambipolar potential. (b) Plot of the phase Ω * /π as function of the
normalised energy For normalized potentials

Figure 8. c) Plot of the dimensionless diffusion coefficient as a function of
the dimensionless energy (see Fig. 7b). Solid curve: with ambipolar normalised potential

corresponds to the absence of resonance particles and g = 0. Small
dashes: no ambipolar field, but smaller slab width L, so that the discharge area available for
resonance particles is the same as before:
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the nonlinearity of the ambipolar potential (the difference to the parabolic profile) the
larger is the diffusion coefficient and, correspondingly, heating.

From kinetic equation (73) the distribution of current in the discharge can be found.
The current in the system is determined by the difference
Substituting the solution (75) gives

(83a)

with the kernel

(83b)

Integrating (83a) over the velocity we get an equation for the current in the discharge:

(83c)

with

(83d)

For small collision frequency the current is shifted by π / 2 in phase compared to the
electric field, since it is determined by electron inertia.

For ICPs the diffusion coefficient averaged in velocity space is not influenced by
the magnetic field, so it can be omitted for calculation. For the inductive electric
field the current is determined by the sum The function
obeys to the integral equation (83a) with a kernel2 7

(84)

the expression for the diffusion coefficient has the form:

where

(85)

(86)

CONCLUSIONS AND OUTLOOK

The quasilinear approach to the description of collisionless electron heating by
given high frequency EM fields has been developed. This approach has been shown to
be an effective method of providing a common basis for a variety of conditions in gas
discharges and obtaining generalized expressions. It was possible not only to summarize
the effects obtained and to compare with results previously obtained by a different
approach, but also to obtain new and extended results: The comparison to results from
the one-particle approach yields agreement in the diffusion coefficient characterizing
heating only for the case of low energy electrons. The expressions derived here are valid
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also for higher energies. For this region of electron energy a cut–off for the long wave
part of the spectrum of heating electric field is required. Accounting for the second
boundary of bounded plasma automatically provides such a cut–off. The generalized
expressions for bounded plasmas given include the effect of ambipolar electric fields,
which can be essential for the effectiveness of collisionless heating.

It should be noted, if the EM in the plasma has also large space scale parts (E ≠ 0,
B ≠ 0), the complete equation (5) has to be used instead of (8). The influence of static
ambipolar fields has been considered. The large space scale and time varying part
of the EM give rise to local diffusion coefficients which should be added to nonlocal
ones. Modeling of microwave discharges with heating due to two space scales and time
varying electric fields has been undertaken in1 7. In general it can be underlined that
knowledge of the energy diffusion coefficient gives a good basis for further developments,
in particular for calculations of EEDFs needed for specific applications.

Finally it should be noted that the theory used in the present article is not a self
consistent quasilinear theory due to neglecting backward influences of the modification
of the EEDF on the electric field profile. For the case of surface wave produced plasmas
this problem has briefly been discussed in1 6 and included in numerical modeling in1 7.
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COLLISIONLESS ELECTRON HEATING IN RF GAS DISCHARGES:
II. THE ROLE OF COLLISIONS AND NON-LINEAR EFFECTS

U. Buddemeier and I. D. Kaganovich¹,
Experimental Physics II, Ruhr–University, 44780 Bochum, Germany

¹ on leave from St. Petersburg Technical University, Physical Technical
Department, Polytechnicheskaya 29, 195251 St. Petersburg, Russia

INTRODUCTION

A new trend in applications of low pressure discharges is to decrease the pressure
below 10 mTorr. For these low pressures the mean free path of electrons (λ) is large
(comparable with discharge slab) and collisionless heating dominates Ohmic one. Being
initially proposed for plasma heating in ¹, it was first explored in gas discharge plasma
for a capacitively coupled plasma (CCP)2 - 4, and is now widely discussed for applica-
tion to inductively coupled plasmas (ICP)5 , 6. The classification of various scenaria of
collisionless heating has been done in7. The similar problem of cyclotron heating were
extensively analyzed for magnetic traps (see for example review8).

Here we concentrate on the effects of stochastization due to collisions and non-linear
effects and investigate theinteraction between them. For a single wave the collisionless
heating corresponds to Landau damping. The role of collisions and non-linear effects
has been investigated in detail for a single finite-amplitude wave9 , 1 0. Recently it has
been shown that collisions play a key role in Landau damping and have to be accounted
for 11. In a gas discharge plasma the rf electric field is strongly inhomogeneous. The
corresponding Fourier spectrum contains many wave vectors. Our aim is to study the
electron heating resulting from the interaction with the whole spectrum of waves.

In common models the collisionless heating does not depend on the collision fre-
quency. We demonstrate in a number of examples that collisions play an important
role and that collisionless heating depends on collision frequency for some cases.

It is known that in low-pressure discharges electron heating may occur without
collisions 1 , 1 2. In absence of collisions the conditions for such a collisionless heating
arise if there exists some other phase randomization mechanism. This stochastic heating
can only occur if an electron “forgets” the field. phase between subsequent interactions
during its dynamic motion. The sequence of non-correlated interactions with the field
results in diffusive electron motion along the energy axis toward high energies, i.e. in
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the electron heating. In a bounded plasma the situation may be quite different. Due
to the presence of plasma boundaries (potential barriers) that specularly reflect the
electrons, the phases of subsequent electron interactions with the field may be strongly
correlated. Also, the picture essentially depends on the direction of the rf field with
respect to the boundaries.

The CCP is sustained by longitudinal — i.e. perpendicular to the boundary —
electric field. The ICP is sustained by the electric field along the plasma boundary. It
results in velocity kicks along the plasma boundary. If the influence of the rf magnetic
field is taken into the account, the kicks are transverse to the boundary1 3. Thus, in
general, a variety of heating scenaria may arise.

We consider different mechanisms of the electron heating using a simple model. Let
L denote the gap length and δ << L the layer thickness where electrons interact with
the localized rf fields, For a CCP such a model corresponds to a strongly asymmetric
discharge with a much larger current density at the powered electrode then at the
grounded electrode. δ is the width of the sheath. In the ICP, δ is the skin depth.
In addition to the rf fields, a static space-charge field is present, which confines the
majority of plasma electrons. We shall approximate its influence in the model by rigid
reflecting walls and neglect the ambipolar potential in the bulk. The influence of the
bulk potential on the electron collisionless heating was analyzed in1 4. In the plasma
bulk electrons experience isotropic collisions, and there shall be no collisions in the δ
layer (δ << λ).

The electron motion is governed by three frequencies: the frequency of the rf field
ω, the collision frequency ν and the bounce frequency Ω (vx) = v x / 2L .

The electron heating is adequately described in terms of the diffusion coefficients
in energy space D ε  or velocity space Dv

1 5
:

2 8 4

(2)

(1)

They determine the microscopic characteristics of the electron ensemble such as the
electron distribution function (EDF) ƒ(ε) and the power deposition rate into a unit
volume of plasma P, which can be expressed in terms of Dε  and ƒ( ε)7 . The principal
part of the EDF ƒ(ε) satisfies the stationary kinetic equation:

where St*f (ε) is the inelastic collision integral. The macroscopic quantities such as the
rate of energy input deposition into the unit volume of plasma, P, can be expressed in
terms of D ε  and ƒ(ε):

(3)

Thus, the energy diffusion coefficient contains all information about the electron
heating. We have performed a Monte Carlo simulation at various ω, δ, L, ν and compare
its results (ƒ(v), D ε  or D v ) with the quasi-linear theory 14 and analyse non-linear effects.



THE COLLISIONLESS HEATING IN THE CASE λ λ < L

(7)

(6)

If λ < L, there are many collisions in the gap and subsequent interactions with
the electric field (δ-layer) are random. The energy diffusion coefficient can be evaluated
as the product of the square of the step of random-walk in energy and the frequency
of such steps Ω , which is the average frequency of electron-field interactions7 . Since
the process of velocity isotropisation is faster then the energy loss mechanism in gas
discharges, the EDF is isotropic

16
. Thus, the energy diffusion coefficient should be

averaged over velocity directions:

(4)

where 〈〈 ...〉 〉 means averaging in time and in direction of velocity, ∆ε = mv · ∆ v is the
change in absolute value of energy and ∆v is the kick in velocity.

For example in a CCP with Averaging in
time and velocity direction gives 3 , 4:

(5)

The expression for the energy diffusion coefficient does not explicitly depend on
ν. The role of collisions is only stochastization of subsequent interactions with the
δ-layer and isotropisation of the EDF. More precisely the disappearance of ν from the
expression for Dε  is the result of averaging over all electrons in a volume. The main
contribution to Dε  corresponds to the particles at a distance of the order of one mean
free path λ = v/ν from the S-layer. They have the largest possible electron–field
interaction frequency which is of the order of ν . The interaction frequency averaged
over all particles is of the order νλ/L = Ω which does not depend on collision frequency.

THE COLLISIONLESS HEATING IN THE CASE λ λ >> L

If λ >> L, collisions in the gap are rare and subsequent interactions with the
electric field are not random (Fig. 1).

Most interactions with the electric field in the δ-layer result in oscillations of the
velocity around a constant average value. Only due to collisions there is decorrelation
and alternation of the average value and as a result diffusion in velocity space. The main
contribution to this diffusion is due to resonances the electrons interact
with the rf field practically always at the same phase, so kicks are summed up. Due
to small divergence from resonance conditions the phase is changing. This results in
large oscillations in velocity (Fig. 1). The quasi-linear theory gives the energy diffusion
coefficient for this case 14 :

where Ω is the solid angle in velocity space and δ is the Direc function, ∆ 0 v is the
amplitude of velocity kick.
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Figure 1. Time evolution of the the velocity v ( t ) and its x -projection vx (t) for a model of ICP,
velocity kicks are in y-direction:

Dashed lines correspond to first and second resonance.

When v << ωL/π there are many resonances enabling the sum to be changed into
an integral and the energy diffusion coefficient (6) coincides with (4) 14.

It should be noted that this result is only valid with accounting for collisions. The
collisions play two important roles:

1. They stochastizate the phase of electron motion with respect to the phase of the
electric field and

2. they transfer electrons from non-resonance velocity to resonance and vice versa.

This complex process of electron motion can be considered as diffusion with a
diffusion coefficient (6). The identity of diffusion coefficient (6) with (4) is not general,
since accounting for nonlinear effects will change the results as shown below.

We also note importance of three dimensional effects. In the one dimensional case
(e.g. in magnetic traps 8 ), the situation is quit different: A single collision is not able
to move the electrons from a non-resonant velocity to a resonant one and vice versa,
since a considerable change of kinetic energy is required. In the three dimensional case,
only the projection of the velocity perpendicular to the wall has to be changed. As
a result the diffusion coefficient is much smaller in one dimensional case compared to
the three dimensional one. More precisely, in one dimensional case the averaging over
region of many resonances is to be performed not over Dε , but over 1/Dε . This is due to
modification of EDF near the resonances, where plateaus are formed Indeed
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if we define the averaged diffusion coefficient as

(8)

where Γ is flux in energy space, and the region ε2  – ε 1 includes many resonances. With
the use of relation we find that 8 :

(9)

As a result the regions of resonances, where D ε is large do not contribute to average
diffusion coefficient (9) and main contribution is due to non-resonant regions with small
D ε . So < D ε  > is small and proportional to collision frequency. Physically this means
that electrons diffuse very fast across the resonance and get stuck in the region between
them. In three dimensional case the scattering of electrons allows them to escape from
this non-resonant region and participate in farther diffusion.

If v > ω L/π the sum in (6) cannot be transformed into an integral. The main
contribution is due to first resonance (n = 1) and the diffusion coefficient according
to (6) is small compared to that from (4) for v > 3v 1 , where v 1  = Lω/π corresponds
to the velocity of first resonance. This is due to the fact that most electron field
interactions result in no heating and compensate each other (Fig. 1). The numerical
example is shown in Fig. 2 for an ICP-type field Ey  = E 0  exp(–x/δ) (without account
for the influence of the rf magnetic field). In the Monte Carlo simulation the diffusion
coefficients were calculated according to their definition (1) as the ratio of the square
of averaged change of energy or absolute value of velocity over some time interval

From Fig. 2 one can see the remarkable influence of a finite gap on the diffusion
coefficient. The diffusion coefficients are characterized by a sharp rise at the velocity of
first resonance A strong suppression of diffusion compared to the “infinite”
gap situation occurs for v > 3v 1 . The vanishing of correlation effects for v < ωL (all
curves coincide) was proposed first in ¹, but the conclusion that it can occur without
collisions is not correct. The reduction of collisionless heating due to the influence of
the second boundary was observed in numerical simulations

5
.

The resonance effect also considerably influences the EDF. Since the flux in energy
space Dε df/dε does not change as rapidly as the diffusion coefficient at the first reso-
nance, the derivative df/dε decreases above the resonance. This leads to the formation
of a sort of plateau on the EDF for Fig. 3 depicts the EDF resulting from
the simulation of a CCP with electron generation (injection) at 0.5eV and loss at 20eV.
The flux is constant between these energies. For a collision frequency of ν = 5·107 s – 1

the mean free path is (MFP) λ ~ 4cm < L and electrons return with random phase.
This corresponds to the diffusion coefficient (5), which gives a smooth growth of Dε .
For and electrons return with correlated phase.
The use of (6) gives

(10)

for Comparing (5) and (10) shows that, the diffusion coefficient of
(5) four times smaller than that of (10). The deviation of simulation results from the
analytical formula (10) is due to a large value of the velocity kick so that
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Figure 2. Influence of the second boundary on collisionless heating. Dimensionless diffusion
coefficient for this field as a function of the normalized velocity for different slab
widths L. Solid curves correspond to the analytical formulae (6), symbols to Monte Carlo simulations.

the sharp rise of D ε is smoothed out. The first resonance appears at ε 5eV, above
this energy the sort of plateau is formed.

It should be mentioned that this mechanism can be responsible for the forma-
tion of a bi-Maxwellian distribution in capacitively coupled discharges as found in
experiments 1 7 . The resonance effects and hence the plateau vanish if λ < 2L (Fig. 3).

INFLUENCE OF NONLINEAR EFFECTS ON COLLISIONLESS HEAT-
ING.

Nonlinear effects are introduced in the case ∆v || x by the fact that the bounce
frequency itself depends on v x . The kicks change the bounce frequency in contrast
to the case ∆ v⊥ x. Thus, electrons move out of the resonance. The amplitude of
the velocity oscillation (see Fig. 1) in the resonances are limited by a resonance width

where θ is characteristic frequency of non-linear oscillations:

(11)

If the resonance width ∆r w v is larger then the distance between resonances δv =
πv²/ωL, diffusion in velocity space can occur even without collisions3 , 4.

Otherwise, collisions are necessary for diffusion. The non-linear effects should be
accounted for by limiting the amplitude of velocity oscillation in resonances. This can
be done by using a modified resonant function ∆ (ω *), approximated as:

(12)

288



Figure 3. The EDFs (upper part) and energy diffusion coefficients (lower part) obtained in a
Monte–Carlo simulation of a CCP with two different collision frequencies. ƒ = 13.56MHz, sheath
length 0.6cm and slab width L = 5cm. The first resonance is marked by a vertical line.
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Figure 4. Dimensionless power dissipation, normalized on for the same conditions as in
Fig. 2 as function of the collision frequency for two slab widths L with and without account for B r ƒ ,

A more detailed calculation is performed in 8 . As a result Dε  is proportional to ν (at
ν < θ ) and tends to zero with ν → 0. This is in contrast to the case of transversal
kicks, where the non-linear effect is absent, and Dε  remains a constant when ν → 0.

The non-linear effect is important for the capacitive discharge and inductive dis-
charge with account of magnetic field, where the kicks are along x. Fig. 4 is a plot
of power dissipation (3) as function of the collision frequency for Maxwell distribution
function with electron temperature 3 eV.

If the gap is small (L = π δ), the diffusion decreases when λ > 2L ( ν < Ω ≈
5·10 7s– 1). There is no decrease in the case of the large gap, because the corresponding
velocity of first resonance ν1 = ωL/π is larger than thermal velocity and decrease of
diffusion coefficient is not pronounced. Accounting for Brƒ  leads to a decrease of the
diffusion coefficient at ν < θ from (11) due to the introduction of the non-linear effect
as described above. As a result the curves for power dissipation with and without
account for induced magnetic field diverge below ν = θ. Increasing L or diminishing E0

decreases θ and hence the critical collision frequency for divergence (see Fig. 4). The
typical numbers for θ are : θ = 2.3·10 7 in case of L = πδ , E0  = 5V/m, and θ = 3.2·106

in case of E0 = 0.1V/m, θ = 2.1·10
6

 in case of L = 25δ, E 0 = 5V /m.

The results presented in Fig. 4 correspond to two values of electric fields. For small
E0  kicks are small (∆v << v 1 ) and D is proportional to ν . For larger value of kicks
(∆v comparable with v1 ) the dependence of D on ν is even more complex. For example
D can have a minimum at some ν and then increase with decreasing ν . The reason for
this effect is that many subsequent interactions with the δ-layer can result in a change
of v. We discuss these effects elsewhere.
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CONCLUSIONS

1. It is shown that when λ > L , only resonance particles contribute
to the heating and as result for large velocities, where the fraction of resonance particles
is small, collisionless heating is suppressed.

2. A plateau in the distribution function in the region of first resonance can be
observed.

3. At smaller collision frequency the nonlinear effects should be accounted for. If
kicks are perpendicular to the discharge boundaries a considerable suppression of col-
lisionless heating appears due to nonlinear effects. In this case collisionless heating is
proportional to collision frequency ( D ~ ν ) .
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THE ANOMALOUS SKIN EFFECT IN BOUNDED SYSTEMS

Vladimir Kolobov

Plasma Processing Laboratory
Department of Chemical Engineering
University of Houston
Houston, TX 77204-4792

I N T R O D U C T I O N

It is known that an alternating electromagnetic field is damped within a conductor,
and both the field and the induced electric current are concentrated near the surface
of the conductor. This is called the skin effect. The skin effect is observed if the field
frequency ω is lower than plasma frequency ωp . In simple cases, the nature of the
skin effect depends on the relative magnitude of three characteristic lengths¹: the skin
depth δ, the electron mean free path λ, and the length v /ω which an electron traverses
during the field period (v is a characteristic electron velocity). If the relationship
between the current density j and the electric field E is local, j = σ E, the skin effect
is called normal. In the nonlocal case, it is said to be anomalaus. The anomalous skin
effect, first discovered and thoroughly explored in metals, has been actively studied in
radiophysics², solid state 3,4 and gaseous plasmas. Recent interest in this problem has
been generated by the advent of low-pressure high-density plasma sources sustained
by radio-frequency electromagnetic fields. Understanding nonlocal electrodynamics in
bounded plasmas is important for the design of these sources.

The high-density plasma sources generate a weakly ionized, non-equilibrium plasma
with electron temperature Te  ≈ 5 eV, and nearly a room temperature of heavy species.
At gas pressures p < 25 mTorr, electron collision frequency ν is lower than the typical
driving frequency ω = 8.5 × 10 7 s –1 (13.56 MHz). For plasma densities 1011 – 10 13 , the
inequality ω < ω p  is satisfied within a large margin. The electron mean free path λ be-
comes smaller than the characteristic size of plasma devices L × 10 cm at p < 5 mTorr.
Under these conditions, the finiteness of the plasma is very important for electron ki-
netics and electrodynamics: the electric current at a point depends on the geometry
of the system and the distribution of electromagnetic fields in the entire device. In
addition, static magnetic field B as weak as 5 Gauss results in electron cyclotron res-
onance at 13.56 MHz. The electron Larmor radius rH  is comparable to λ at B × 1
G. Gaseous plasma is a perfect medium for basic studies of the skin effect, as precise
measurements of spatial distributions of the electromagnetic fields and currents can be
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performed in this plasma. Nevertheless, the anomalous skin effect in gas discharges is
relatively unexplored in comparison to that effect in metals.

Peculiarities of skin effect in metals are caused by Fermi statistics of conducting
electrons and by the complex nature of electron reflection from the boundaries (which
is diffuse to some extent). The calculation of λ , one of the basic problems in the
theory of metals, usually requires considering electron collisions with phonons (lattice
vibrations), other electrons, impurity atoms, and defects of the lattice. The theory
of skin effect in metals is relatively well-developed 3 . The experimental studies are
often limited to measurements of the reflection and transmission coefficients; contrary
to gaseous plasmas, the spatial distributions of the fields inside solid samples are rather
difficult to perform. We draw upon advances in the physics of metals to gain insight
into discharge plasmas.

The gaseous electronics community has witnessed the advance of high-density
plasma reactors for advanced semiconductor manufacturing. The semiconductor in-
dustry calls for a plasma in which collisions among particles occur as rarely as possible.
Newer plasma reactors operate in the near-collisionless regime where the electron mean
free path is comparable to or large than discharge dimensions. The electromagnetic
fields in these devices are spatially inhomogeneous even in the absence of the skin
effect, with plasma conductivity an integral characteristic of the system. Studies of
nonlocal electrodynamics in bounded systems is today’s area of active research and a
subject where basic plasma physics meets the world of semiconductor manufacturing.

The anomalous skin effect in gas discharge plasmas has been studied since the
pioneering works of Demirkhanov et al. 5  and Weibel 6 . A review of classical and
recent works has been given in Ref. 7. Our paper describes the state of the art and
presents results of recent studies of electrodynamic properties of weakly collisional ICPs.

FORMULATION OF THE PROBLEM

Calculation of the field penetration into a plasma requires self-consistent solution
of Maxwell equations for the fields and kinetic equations for the charged carriers that
determine the currents induced in the plasma. In the limit ω < ωp , the displace-
ment current is small compared to the conduction current, and Maxwell equations (in
Gaussian system) have the form of Ampere’s law

(1)

and Faraday’s law

(2)

For the frequency range of interest, the ion contribution to the current density j is
negligible. We confine ourselves to the case of weak fields when a linear relationship is
valid between the electron current density and the electric field.

In calculating the electron current density, we can distinguish two limiting cases.
If the characteristic length δ (skin depth) in which the field changes significantly is
large compared to the characteristic scale l describing the electron motion (the shortest
of λ, rH , and v /ω), the relationship between j and E is given by Ohm’s law

(3)

where is the conductivity tensor. The skin effect is said to be normal when the local
relationship (3) holds true and the frequency dependence of (temporal dispersion) is
weak.
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Another limit corresponds to the extreme anomalous skin effect when δ is small:
δ << l. In this case, the plasma conductivity is a nonlocal integral operator:

(6)

(8)

(4)

The field with a β component at a point r' in the plasma produces a current density
with α component and magnitude at another point r in the plasma. The main
contribution to integral (4) comes from a vicinity of the point r with a size l. In an
infinite plasma, σ is a function of |r – r'| only. In this case, performing a Fourier
transform reduces integral relation (4) into an algebraic relation in Fourier space

(5)

In a bounded plasma, , in general, is a function of r and r' separately, and the in-
tegral (4) extends only over the plasma volume. In this case, the functional dependence
of (r, r', ω ) is determined by the geometry of the system, the nature of electron tra-
jectories, and the configuration of the external fields. Under these conditions, Fourier
methods do not generally simplify the analysis. We confine ourselves here to simple
cases that allow for semi-analytical solutions. The numerical treatment of this problem
by PIC methods 8 , 9 is beyond the scope of this paper.

To determine , one uses the Boltzmann equation for the electron distribution
function 10

Here, ƒ0  is the isotropic part of the EDF and ν is an effective collision frequency.
Equation (6) is linearized by setting ƒ = ƒ0  + ƒ1 , where ƒ1  << ƒ0 is a small anisotropic
addition responsible for dc and rf currents in the plasma:

(7)

Maxwell equations (1) and (2) with the rf current density j found from (6) and (7)
determine electromagnetic fields in the plasma. The steady component of ƒ1  defines
the dc current. The electrostatic field with a potential φ(r) can be found from the
condition of quasi-neutrality.

Consider first an isotropic plasma with no static magnetic field. Since ƒ0  i s  a
function of electron speed, the term with alternating magnetic field
vanishes, and the equation for the oscillating part of ƒ1  ∝ exp iωt takes the form

The electrostatic field is accounted for in (8) by using the total electron energy ε =
mv²/2 – eφ (r) as an independent variable. An important difference exists between the
nonlocal electron kinetics in collisional and near-collisionless plasmas. In both these
cases, the isotropic part ƒ0 (ε) is an integral characteristic of the system 11. However,
in the collisional plasma, the spatial derivative in (8) is neglected, and both ƒ1  and j
become functions of the local rf field (local electrodynamics). In the near-collisionless
plasma, the spatial derivative in (8) is of principal importance, and both ƒ1  and j a r e
integral characteristics of the system (nonlocal electrodynamics).
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SKIN EFFECT IN A SEMI-INFINITE PLASMA IN THE ABSENCE OF
A STATIC MAGNETIC FIELD

Consider the penetration of an electromagnetic wave with Ey  and B z components
into a spatially homogeneous plasma occupying the half-space x > 0. Such a model
corresponds to an ICP sustained by a planar coil, if the radius R and length L of the
chamber are large compared to electron mean free path: R >> L >> λ . The coil is
represented by a surface current Js exp iωt in the plane x = 0. The specular reflection
of electrons is assumed at x = 0 due to the presence of a potential barrier (space charge
sheath) at the boundary.

To calculate the profiles of electromagnetic fields in the plasma, the fields Ey  and
Bz  are continued into the region x < 0 by assuming Ey (–x) = E y (x) and B z (–x) =
–B z (x). According to (1), the magnetic field at the boundary is proportional to the
surface current The complex amplitude of the electric field in the plasma
obeys the equation

(9)

and the boundary condition The current density in the plasma is
²

(10)

where

(11)

and ƒ'0  denotes the first derivative. Performing a Fourier transform on (10) results in
Eq. (5) for Fourier components. The Fourier component of the conductivity is

(12)

We assume an energy-independent collision frequency ν and a Maxwellian EDF ƒ0(ε )
to obtain

(13)

Here Z(u) is the plasma dispersion function 12 , and
is the most probable electron speed. At vT  → 0, when Z (u) → –1/u, Eq.(13) gives the
conductivity of cold plasma, σ0 .

A Fourier transform of (9) yields the following for the Fourier component of the
electric field ε(q):

(14)

(15)

It is accounted that the second derivative contains a delta function The
spatial distribution of the electric field is found from (14) by the inverse transform

The surface impedance of the plasma is defined as *

(16)

*Same name is given to the quantity
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Figure 1. Skin effect in a semi-infinite plasma with no static magnetic field. The solid line, Λ = 1,
corresponds to the boundary of the anomalous skin effect. From Ref. 7.

The real part of ζ , called plasma resistance, determines the energy dissipation in the
plasma. The penetration depth of magnetic and electric fields can be introduced as 13

(17)

(18)

The real and imaginary parts of δB  and δ E  describe the amplitude and phase of the
fields Several regimes of the skin effect can be distinguished (Fig. 1).

Classical Skin Effect

The length defines the distance an electron traverses during
the field period or during the time between-subsequent collisions. If the penetration
depth δ is larger than l, the effect of thermal electron motion is negligible (weak spatial
dispersion of conductivity).. In this case, both electric and magnetic fields are damped
exponentially with the skin depth 6

(19)

where

(20)

At low frequencies, ω << ν , the skin depth is
impedance is

and the surface

(21)

This regime corresponds to normal skin effect (Fig. 1) and collisional energy dissipation.
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Figure 2. The amplitude of the electric field E as a function of normalized depth z for different Λ
and ν /w = 1. From Ref. 6.

In the high-frequency region, ω >> ν, the (collisionless) skin depth is δp  = c /ωp .
The energy dissipation is due to resonant interaction of electrons with velocity vx , = ω /q
and q -th harmonic of the field (Cherenkov resonance). However, the real part of ζ is
small compared to the imaginary part ²

(22)

and the wave is reflected from the plasma with small energy dissipation.
The nature of collisionless energy absorption can be understood considering the

work performed by electromagnetic forces on electrons in the skin layer1 4. Due to
spatial inhomogeneity of the electric field, the electrons change their velocity depending
on the field frequency ω and the time they spend in the skin layer

1 5
. Both

electric and magnetic rf fields contribute to this process. Indeed, the magnetic field does
not work on electrons and produce no energy change. However, without accounting for
the magnetic field, the velocity changes along the direction of the electric field, whereas
with accounting for the magnetic field, the velocity component normal to the boundary
is altered

16
.

Anomalous Skin Effect

Introducing dimensionless coordinate z = x /l, Eqs.(13) and (15) can be cast in
the form 6

(23)

where k = ql is the dimensionless wave number,
i exp (–i∈) and
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Figure 3. a) Plasma resistance Z = 4πζ/c plotted versus for different ∈. The
low-frequency case corresponds to (∈ = 0, the high-frequency case corresponds to ∈ = π /2; b) The real
and imaginary parts of the plasma impedance versus for the collisionless plasma.

The parameter Λ = (l/δ 0)² is a fundamental measure of nonlocality of electromagnetic
phenomena in plasmas 1 7. The nonlocal effects are pronounced if the effective mean
free path l exceeds the classical skin depth δ0  (Λ > 1), and they are small otherwise,
It is important that Λ becomes small for low and high frequencies and has a maximum
a t ω  ≈  ν. That means that in both low- and high-frequency cases, the penetration of
electromagnetic waves into a plasma can be described as a classical skin effect.

The solution E(Λ, s, z) depends on the values of parameters Λ and s. Small values
of Λ correspond to the normal case. Anomalies (such as nonmonotonic field profiles)
begin to be noticeable at Λ > 1 (Fig.2). For the extreme anomalous skin effect, Λ >> 1,
the penetration depths δB  and δ E  are entirely different ²:

(25)

(26)

Notably, the usual expression for the anomalous skin depth corresponds to the char-
acteristic scale of the magnetic field decay. The electric field is damped more rapidly
because Thus, with a decrease of ω, δ H  increases whereas δE  de-
creases compared to the high-frequency skin depth δP . This can be expected because a
constant magnetic field penetrates easily into conductors, whereas a constant electric
field is shielded by the space charge.

Figure 3a shows the plasma resistance as a function of Λ for different ∈. The plasma
resistance does not vanish at ν = 0 (curve ∈ = 0); for the extreme anomalous case, the
dissipation of energy is independent of ν (lines with different ∈ “converge” for Λ >> 1).
At and the surface impedance is ²

(27)

The collisionless energy dissipation under the anomalous skin effect is more efficient in
comparison with the high-frequency skin effect (Fig.3b). Also, thermal electron motion
produces interesting peculiarities in the spatial distribution of the absorbed power.

Figure 4 shows the spatial distribution of the normalized power absorbed in a unit
volume of the plasma. The behavior is quite striking. There are regions outside the
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Figure 4. Spatial distribution of magnitude of the normalized power density for different electron
temperatures. Plasma parameters: ω/2π = 13.56 MHz, argon p = 1 mTorr, plasma density 2 × 1 0 11

cm– 3 .

skin layer where the power density is negative; i.e., the energy is transferred from the
plasma to the wave. This is possible because the current induced by the field at one
point can drift by virtue of thermal electron motion to another point where the field is
of opposite phase. In this situation, the current created by a field at one point can give
up energy to the field at another point. The net energy transfer at a point is determined
by an average over the entire half-space. Although this effect has been known for years
18 , its direct experimental observation has not been obtained until recently1 9.

We have demonstrated that under conditions of the anomalous skin effect ( Λ > 1)
it is impossible to describe the field profile as a damped exponential wave. The compli-
cated distributions of the electromagnetic fields, current density, and power absorption
are caused by the thermal motion of electrons. Electrons that have acquired momentum
from the fields in the skin layer carry this momentum into the interior of the plasma
to a distance of the order of the mean free path. Along the way, they generate a high-
frequency current. Both the current density and the fields in the bulk are considerably
weaker than they are in the skin layer, yet they vanish only at a depth of the order of
the electron mean free path. The profile of the fields at large distances is determined by
the high-energy electrons in the tail of the EDF. In the simplest case, the damping of
the fields is characterized by two quantities (δ and λ ) of different orders of magnitude.

PLANAR PLASMA SLAB

Consider a plasma slab of thickness L with all parameters varying only along the
coordinate x. The electrostatic potential φ( x) confines the majority of electrons in the
plasma. The electrons with axial energy bounce between the two
turning points defined by the equation For a rectangular potential
well with sharp boundaries at x = 0 and x = L, Eq.(8) can be solved by Fourier
method. The electric and magnetic fields are continued into the region –L < x < 0 by
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(32)

Figure 5. The resistance of a planar asymmetric plasma slab as function of the ratio for
different plasma densities calculated from Eqs. (31) and (32) for collisionless plasma with Te  =  5  e V .

assuming that B (–x) = –B ( x ) and E y (–x) = E y (x), and the problem is reduced to
that for an infinite plasma with periodic fields and currents. We seek the electric field
in the form

(28)

where the prime means that the term n = 0 is multiplied by 1/2. Equation (8) gives
the oscillating part of the EDF: 2 0

where is the bounce frequency for an electron with velocity vx . It is seen
that ƒ1  becomes anomalously large at ν << ω for electrons with ω = n Ω . Since Ω is a
function of vx , the resonance frequency ω depends on electron energy.

For a Maxwellian EDF ƒ0  (∈), the rf current density is: 2 0

where k n =  p nl/L. The solution of Eq.(9) with the current density (30) gives the
Fourier coefficients ²

(31)

where D(k ) is defined after (23) and the value of is determined by the
conditions at x = L. For a symmetric slab with two opposite current layers, ξ = 1.
For an asymmetric slab with a metallic boundary at x = L, the boundary condition
Ey (L) = 0 gives 2 , 9

(29)

(30)
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Figure 6. The radial distributions of the amplitude of the magnetic field in a cylindrical argon
plasma. Dotted lines show experimental data for p = 10 mTorr, average plasma density
n = 4.2 × 1 01 2 cm– 3 and T e  = 2.1 eV. Solid lines are calculations according to the Sayasov theory
for n = 3 × 10 1 2 – 3cm ) ν = 4 × 1 07  s– 1. From Ref. 24.

At L → ∞, the magnetic field at x = L vanishes, ξ → 0, the summation over n goes
into an integral

(33)

and expressions (28) and (31) coincide with Eq. (23) for semi-infinite plasma.
The finiteness of the plasma is important at l > L when electrons traverse the slab

without collisions. In this case, successive electron interactions with the fields can be
strongly correlated, and resonance phenomena take place at particular values of plasma
density, driving frequency, and slab thickness2 1. In Fig. 5, the resistance
of an asymmetric slab is plotted versus where is the mean bounce
frequency. One can see an oscillating structure of at low plasma densities
with a pronounced maximum at due to bounce resonance. With increasing
plasma density, the maximum is shifted towards lower and gradually disappear.
At large the maximum of with respect to n takes place at as in a
semi-infinite plasma (see Fig. 3b). The maximum of plasma resistance at certain L
suggests the optimal conditions for the power absorption9 .

The theory of the anomalous skin effect in a plasma slab with an arbitrary profile
of φ(x ) was developed in Ref. 22. The plasma density was assumed as relatively high
so that the alternating field attenuated at a distance δ << L from the boundary. Under
these conditions, it is sufficient to know the profile of φ(x) at the tail of n e (x), since
low-energy electrons do not penetrate into the skin layer. It was found that the surface
resistance is a nonmonotonic function of ω in the region due to the finite size
of the plasma. Indeed, in a plasma bounded on one side, an electron reflected from the
boundary moves into the interior of the plasma until it collides with another particle.
In the presence of a second boundary, the electron bounces between the two boundaries
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Figure 7. The radial distributions of the amplitude (a) and phase (b) of the rf magnetic field for
different driving frequencies in a cylindrical argon plasma. Plasma parameters: p =10 mTorr,
n = 3.6 × 10 1 2 cm– 3, T e = 2.1 eV.  From Ref. 24

and visits the skin layer with a frequency Ω. These phase correlations averaged over
the ensemble of electrons cause the resonance behavior of the plasma resistance.

CYLINDRICAL CASE

Two different field configurations are possible in cylindrical geometry. The one
with azimuthal electric field Eθ and axial magnetic field Bz  corresponds to classical
inductively coupled “ring discharges”

2 3
. The other, with azimuthal magnetic field Bθ

and axial electric field Ez , corresponds to the pinch configuration.
Electromagnetic fields in ring discharges are produced by rf current in a coaxial coil

wrapped around a cylindrical chamber. This current generates a time-varying magnetic
field Bz , which induces solenoidal electric field Eθ  and rf currents in the plasma. The
Eθ field vanishes on the discharge axis due to azimuthal symmetry of the system. In
addition to electromagnetic fields, a radial electrostatic field arises to assure the balance
of charged particle flow to the wall. The electrostatic field confines the majority of
electrons in the plasma. The trapped electrons are reflected by the potential barriers
at the plasma-sheath boundaries. The finiteness of the plasma is particularly important
for electron kinetics when the radius of the chamber is comparable to or less than the
electron mean free path. The finite-size effects and transit-time resonances have been
studied in a number of works.

Blevin et al.2 5 developed the theory of the skin effect in cylindrical ring discharges.
The electrostatic potential was assumed of the form and both
planar and cylindrical geometries have been analyzed. In planar geometry, the electron
bounce frequency in a parabolic potential well is equal to Ω 0 , independent of axial
electron velocity. As a result, strong bounce resonances occur at odd multiples of Ω0 .
In cylindrical geometry, the resonances occur at even multiples of Ω. The parabolic
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Figure 8. The radial distribution of the rf current density (arb. units) in a cylindrical plasma with
a Gaussian profile of the plasma density, n ( r ) α exp (–r²/a²), where a = v T /Ω 0 , for different values
of ω /Ω0 . The rf electric field is directed along the axis of the cylinder 2 6 .

potential corresponds to a Gaussian shape of electron density, n (r) α exp( –r²/a²) with
a width a = vT Ω0 , which is a poor approximation to the real discharges.

Sayasov 1 7developed an analytic theory of the skin effect in a cylindrical plasma
with a rectangular potential profile φ(r ), for the conditions δ << R, λ << R. He has
shown that for Λ > 1 the distribution of electromagnetic fields can be represented as a
superposition of three fundamental modes

(34)

Here, J0  is the Bessel function, k1 , k 2  and k 3  are the three complex roots of the equation
and where prime refers to the first

derivative. The interference of these modes reproduces all the peculiarities in the spatial
distributions of the fields observed in the experiments (see Fig. 6). For instance, the
off-axis minimum of B(r) appears only at a particular value of driving frequency
ω  ≈  ωm a x and vanishes at low and high frequencies. According to Sayasov’s theory,
this is the frequency at which the fundamental parameter Λ reaches a
maximum as a function of ω.

Systematic experimental measurements and comparison with available theories
were performed by Joye and Schneider 2 4 in a cylindrical plasma of radius R = 4.7 cm
at argon pressure of 10 mTorr. The driving frequency varied in the interval 0.32 – 14
MHz, and the plasma density was between 10 12 – 101 3 cm – 3. Typical experimental
results are shown in Fig. 6. It is seen that an off-axis minimum of the magnetic field
amplitude is observed only at a particular driving frequency (Fig. 7a). This local
minimum vanishes both at low and high frequencies. An abrupt change of the field
phase takes place in the position of the minimum (Fig. 7b).

The theory of skin effect in the pinch configuration was developed 2 6 for a parabolic
electrostatic potential φ(r ). Strong bounce resonances were found in this case as well.
Fig. 8 shows the radial distribution of the current density for various values of the
ratio ω/Ω0 . The anomalous current in the center appears at ω/Ω 0  = 1.5. Two current
layers are seen at ω /Ω 0 = 2.0 and ω /Ω0  = 2.5. The phase of the current density at the
center differs from that at the edge by about π; i.e. the current at the center flows in
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Figure 9. Amplitudes and phases of the rf electric field and current density in a plasma slab
calculated from Eqs. (28), (30) and (31) for discharge conditions of Ref. 19. Argon p = 10 mTorr,
ω/2π = 6.78 MHz, T e ≈ 3.2 eV, L = 10.5 cm, plasma densities n = 2,6.5,11,20 × 1 010 cm– 3 . Other
parameters: ν = 3 × 10 7  s – 1, R = 10 cm.

a direction opposite to that of the local rf field.
In the general case, the skin effect in a cylindrical plasma depends on the cylin-

der radius R, the electron mean free path λ , and the thickness of the skin layer δ.
Meierovich 27 analyzed the anomalous skin effect in the pinch configuration for l >> R.
His theory for metal conductors with specular electron reflection at the boundary is ap-
plicable to gaseous plasma with rectangular electrostatic potential φ(r). The equation
for E z is of the form27

(35)

where ρ = r/R, the kernel K (x, x') is given by

(36)

and Notice that in the approximation λ >> R, electron
temperature does not appear in the equations for the field.

The enhanced attenuation of the fields in a cylindrical plasma is observed28 due
to the difference in the dynamics of glancing electrons, which are the ones mainly
responsible for the power absorption. These electrons collide much more frequently
with the walls in cylindrical geometry than they do in a planar slab, and they spend
more time in the skin layer.

PLANAR-COIL GEOMETRY

The ICP sources used for semiconductor processing are usually sustained by a
planar coil placed on top of a cylindrical chamber. Typically, R ≈ L, and the systems
are essentially two-dimensional. Thus far, no reliable calculations of the electromagnetic
phenomena in such systems have been performed for the weakly collisional regime. The
published works have used rather crude approximations that have not been convincingly
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justified. By assuming a homogeneous plasma, one can use the Fourier-Bessel series
to solve the set of Maxwell-Boltzmann equations. Such an approach was employed by
Yoon et al. 29. However, the radial electron motion was neglected in that work by
using an approximation that reduces the calculation of nonlocal conductivity to that
of a plasma slab with a radially inhomogeneous electric field. A similar approach was
used in Ref. 7. In addition, it was assumed7  that higher radial modes can be neglected
and only the first radial mode with α 1 = 3.8 is important. This innocent
assumption makes the formulae look more compact.

With the assumptions of homogeneous plasma, Maxwellian EDF ƒ0, energy-indep-
endent collision frequency, and neglect of radial electron motion, the axial distribution
of the electric field can be described by Eq. (28) with replacing
The magnetic field and current density are given by the equations of the plasma-slab
theory, modified accordingly. In spite of the crude approximations, such a model rea-
sonably describes recent experiments performed by Godyak et al. in weakly collisional
argon ICP. In Ref. 7 the calculated spatial distributions of the electric field and cur-
rent density were compared to the experimental measurements at a pressure 1 mTorr.
Figure 9 presents the results of similar calculations for 10 mTorr. The comparison with
experimental data 19 shows good agreement. In particular, the calculations reproduce
nonmonotonic distributions of electromagnetic fields and current density, bifurcations
of field and current phases with changing discharge parameters, the appearance of neg-
ative power absorption and its dependence on driving frequency (see Ref.19). However,
further advancement of the theory is desirable to relax the used approximations and to
develop a generic approach applicable to the treatment of practical plasma sources.

One main assumption of the present model, the neglect of radial electron motion,
is justified in the presence of a static magnetic field directed along the discharge axis.
When the Larmor radius of electrons is small compared to the chamber radius R, the
radial electron motion is greatly suppressed and the assumption of one-dimensional
electron kinetics serves a good approximation. This model will be used below.

THE EFFECT OF MAGNETIC FIELDS

The application of a static magnetic field gives rise to new physical effects. Electron
motion becomes finite in the plane orthogonal to the magnetic field. When the Larmor
radius r H is smaller than electron mean free path, transverse conductivity is much
lower than longitudinal conductivity, and the plasma behaves as a dielectric in the
plane orthogonal to B. The rf electric field orthogonal to B can easily penetrate into
such a plasma at frequencies ω << ωH .

Consider the static magnetic field directed along the x-axis. The magnetic field
does not affect the longitudinal component of the conductivity, σ || = σ , while the
transverse component in the bulk of the plasma (for ω << ν )

(37)
decreases with increasing B and becomes very small for
Owing to electron collisions with the boundary, the conductivity near the surface may
be quite different from the bulk conductivity (37). Two cases need to be distinguished
with respect to the direction of the magnetic field.

Magnetic Field Parallel to the Boundary

If electrons are scattered diffusively by the boundary (typical for metals), electron
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Figure 10. Radial distributions of the amplitude and phase of the rf magnetic field in a cylindrical
argon plasma for different values of axial static magnetic field. Plasma parameters: p = 10 mTorr
n = 3.4 · 101 2  cm – 3, T e = 2.1 eV, ω /2π = 3.5 MHz. From Ref.24

momentum is lost in each collision with the boundary. Therefore, the effective collision
frequency of electrons in a layer of thickness rH  is equal to the gyro-frequency ω H .
Consequently, within the surface layer,

(38)

The surface conductivity is therefore much larger than the bulk conductivity. High
surface conductivity results in the concentration of the current near the boundary, a
phenomenon known as the static skin effect in metals³. In the case of specular reflection
from the boundary (as in discharge plasma), electron collisions with the surface do not
lead to scattering. The electrons in the boundary layer follow infinite paths and the
surface conductivity is of the order of the bulk conductivity without the magnetic field.
In both cases, the principal contribution to the total current is made by a surface layer
of thickness rH . The current practically vanishes at x > r H , and the field and current
have different depths of penetration.

At high frequencies, ω >> ν , there is no dissipation of energy in the absence of a
boundary. However, if ω > ω H , a specific cyclotron resonance (known as Azbel-Kaner
resonance) may occur. Assume that λ > r H and the skin depth is of the order of c/ω H .
For the magnetic field parallel to the surface, there are some electrons that do not
collide with the surface and return to the skin layer after each revolution. If the return
of these electrons is synchronized with the high-frequency field, and if the frequency
ω is equal to or a multiple of the frequency ωH , the electrons are accelerated in the
skin layer by a factor λ /2π rH . In this case, the skin layer plays a role analogous to the
accelerating gap in a cyclotron.

The damping of a high-frequency field is of special nature. In a layer of thickness
δ , electrons acquire directed velocity and give rise to a current density. Moving into
the plasma bulk, the electrons “congregate” again in a layer of thickness δ at a depth
≈ 2 rH. The current density has a local maximum at that point and has an opposite sign
compared to that in the skin layer. Therefore, if all electrons were to move along orbits
of the same radius, the “glancing” electrons would give rise to peaks of the current and
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Figure 11. The spatial distribution of the rf magnetic field Hz  on the discharge axis for different
values of static magnetic field. a) Experimental data3 0 in argon for the input power 500 W, p=5
mTorr and ω /2π = 13.56 MHz; b) Our calculations for the same conditions with electron temperature
T e = 4.2 eV and plasma densities taken from the experiment 30 .

electromagnetic field at a depth x = 2rH . Such peaks would accelerate new electrons
that have “glanced” in the layer at a depth 2rH , and this would be repeated at 4r H ,
etc. Due to the presence of orbits of different radii rH , only a small fraction of electrons
“congregates” at any given depth, and the amplitude of field spikes decreases rapidly
at each ((stage.” The appearance of such field and current peaks gives rise to several
macroscopic effects that have been unambiguously proven in metals³. The physical
origin of the field (current) peaks implies that they should be observed anytime when
there is a mechanism selecting a small fraction of electrons whose orbit-diameter scatter
is of the order of or less than the skin depth. However, no experimental observation of
the field and current splashes in gas discharges has been reported so far.

The influence of a static magnetic field, B0 , was studied for a ring discharge in
argon. Fig. 10 shows experimental results for a frequency of 3.5 MHz. The off-axis
minimum of |B(r)|, observed without static magnetic field, gradually disappears with
an increase of B 0 . A field as weak as 3G already modifies the position of the local
minimum (this field corresponds to ωH /2π = 8.4 MHz, r H = 1.6 cm). The off-axis
minimum disappears at B0 = 9G when r H  = 0.53 cm. The effect of the static magnetic
field is mostly pronounced when the fundamental parameter Λ has a maximum.

Magnetic Field Perpendicular to the Boundary

When the static magnetic field is perpendicular to the plasma boundary, the in-
cident wave breaks into a sum of right and left circularly polarized components which
propagate independently of one another. The interaction of the right-hand polarized
wave with electrons exhibits a resonance at the field frequency close to the Larmor
frequency of the electrons. In the frequency range ω << ωH , weakly damped helicon
waves can penetrate into the plasma.

Lee et al. 3 0  have recently studied the effect of static magnetic fields on a planar
ICP. Fig. 11a shows the spatial distribution of the H z  component of the rf magnetic
field in argon at a pressure of 5 mTorr, driving frequency 13.56 MHz, and input power
500 W, for different values of static magnetic field B0 . It is seen that static fields of only
a few Gauss completely modify the nature of the rf field penetration into the plasma.

Figure 11b presents results of our calculations for the discharge conditions of Ref.
30. Thermal effects parallel to the magnetic field (such as the Doppler shift) are retained
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in the calculations, while thermal effects perpendicular to the magnetic field (such as
finite Larmor radius) are neglected. In other words, electrons are allowed to move only
along the lines of the static magnetic field. The electromagnetic field profiles correspond
to azimuthally symmetric, right-hand polarized helicon waves in a cylindrical waveguide
31 . Both Eθ and E z  are zero at the conducting wall. The radial profile of Bz  is given by
the Bessel function J 0, and the axial profile is found by using the plasma slab theory
with σ calculated from Eq. (13)) using ω – ωH  in place of ω .

The enhanced penetration of the rf magnetic field into the plasma is due to exci-
tation of helicon waves. The power absorption in ICP under these conditions can be
due to Landau damping, cyclotron and Cherenkov resonances, and collisional damp-
ing, similar to helicon discharges 31 . A thorough analysis of excitation, conversion and
damping of waves in a helicon plasma source driven by azimuthally symmetric anten-
nae was given for the cold plasma 32 . However, the helicon sources usually operate at
magnetic fields 20-200 G when ω << ωH . The thermal electron motion is important
at frequencies below the cyclotron frequency31 . Lee’s experiments 30  give direct evi-
dence of drastic changes produced by weak static magnetic fields in inductively coupled
plasmas. It seems that the role of static magnetic fields in ICPs has not been appre-
ciated thus far. The fields of only a few Gauss can greatly enhance the penetration of
electromagnetic energy into high-density plasmas and improve characteristics of ICP
sources.

The Role of RF Magnetic Fields

Although the question about possible influence of the rf magnetic field on the skin
effect in inductive discharges was raised more than 30 years ago5 , clear understanding
of the effect is still absent. Most currently used ICP models have ignored the rf magnetic
field. Analyzing a single particle motion, Cohen and Rognlien have recently shown 16 the
importance of the rf magnetic field on electron dynamics in the collisionless skin layer
In a planar geometry, for instance, the canonical momentum is a
strict invariant of the electron motion (Ay  is the vector potential of the magnetic field).
Therefore, the Lorentz force transforms a vy  velocity kick produced by the rf electric
field Ey  into a v x  kick orthogonal to E y. In a planar slab, the electron bounce frequency
changes after each interaction, which can be of great importance for the collisionless
electron heating 33 . However these nonlinear effects disappear in the linear models we
have considered and are slured by collisions which are present in any discharge. In the
linear approximation, the EDF is calculated by integration along unperturbed electron
trajectories, and the effect of the rf magnetic field vanishes in isotropic plasmas. Monte
Carlo simulations 34  have revealed a small influence of the rf magnetic field on electron
heating in weakly collisional ring discharges. It was pointed out 34 that magnetic field
effect may be more important for gas breakdown by inductive fields where nonlinear
analysis seems to be necessary.

The effect of the rf magnetic field on the skin effect becomes more important
with a decrease of the field frequency ω. Tuszewski 35  has measured the penetration
of the rf magnetic field in a low-pressure (5-50 mTorr) cylindrical ICP (R=16.5 cm)
driven by a coaxial coil at the relatively low frequency of ω /2π = 0.46 MHz. He
found enhanced penetration of the magnetic field compared to the predictions of linear
models He described the influence of the rf magnetic field on electron motion by
introducing an effective collision frequency where ωH (r) is the amplitude
of oscillating gyro-frequency. This approach results in an effective skin depth δ eƒƒ =

exceeds the angular frequency ω and collision frequency ν .
However, no quantitative calculations of this effect have yet been reported. The analysis
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of nonlinear effects in nonlocal electrodynamics of plasmas remains a subject for further
studies.

CONCLUSION

We have described the state of the art of nonlocal electrodynamics of bounded
discharge plasmas. We revived classical works on the anomalous skin effect to ana-
lyze peculiarities of the electromagnetic phenomena in weakly collisional ICPs. Our
calculations corroborated nonmonotonic distributions of the electromagnetic fields and
electron current density, the existence of negative power absorption, and other interest-
ing phenomena recently observed in experiments. We have analyzed the effect of weak
static magnetic fields on the penetration of rf fields into weakly-collisional ICPs.

The elaboration of nonlocal electrodynamics in bounded systems is important for
the development of novel plasma reactors operating at gas pressures below 10 mTorr.
Currently used models designed for collisional plasmas do not contain the nonlocal
effects we have discussed. Our treatment was based on simple models. Further devel-
opment of theory and numerical tools is required for simulation of practical devices.
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COLLISIONLESS HEATING IN CAPACITIVELY-COUPLED RADIO
FREQUENCY DISCHARGES

M. M. Turner

Plasma Research Laboratory
Dublin City University
Dublin
Ireland

INTRODUCTION

Most readers of this volume will be acquainted with the idea of a capacitive dis-
charge, and some will be familiar with ideas about collisionless heating in such dis-
charges. If not, there are several good introductions to the field, and to the focus
of contemporary research 1, 2, 3, 4, 5 . These make superfluous any general introduction
here. Therefore we turn at once to our theme, which is the origin of the collisionless
heating that is generally agreed to occur in capacitive discharges. This collisionless
heating becomes an important effect only under restricted circumstances, when the
electron collision frequency, ν e , is comparable to or less than the angular frequency
of the discharge current, ωrƒ , and the electron mean free path λ e is comparable with
the other characteristic dimensions of the discharge, such as the electrode separation L
or the maximum sheath width s m . When these conditions are satisfied, the discharge
plasma does not behave in every way as a classical fluid, and effects such as collisionless
heating can be expected. As is sometimes remarked, “collisionless” heating is slightly a
misnomer, since we usually are dealing with situations where collisions are present, as
they must be in a discharge that must sustain itself by ionization, and the relaxation
of the electron energy distribution function by these collisions is an important part of
the process. A more accurate but also more cumbrous term is “non-Ohmic” heating,
meaning heating that cannot be described by a local relationship between the electric
field E and the current density J, such as the classical expressions

(1)

with

(2)

where m e is the electron mass, n e  the electron density; this expression for σ is the
Langevin or Lorentz conductivity. In this chapter we assume that “collisionless” heat-
ing is non-Ohmic heating in the sense that eqn. (1) does not hold, so that “collisionless
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Figure 1. The electron density n e  during a single period of the radio frequency
current, showing the flow of electrons in and out of the sheath regions. (Discharge
current density J = 1 mA cm – 2, ω r ƒ = 2π × 13.56 MHz, and pressure p = 20 mTorr.)

heating” and “non-Ohmic heating” are synonyms. The evidence that collisionless heat-
ing can be important comes in the first case from experiments, such as those of Godyak
and his collaborators 4, 6, 7, 8, that attempt to estimate independently the power dissi-
pated in the electrons and the electron collision frequency and density. From the latter
parameters the Ohmic heating can be estimated, whence an estimate of the collision-
less heating component can be derived. These experiments are inherently difficult, and
open to the objection that the Ohmic heating may be underestimated in peripheral
parts of the discharge plasma where no measurements are made, but they justify fur-
ther enquiries. These enquiries have been either theoretical or computational. The
computational studies take one of two approaches. The most general make practically
no physical assumptions. These are in the spirit of computer experiments, and are
generally more or less direct solution of the Boltzmann equation. The results reported
in this chapter were obtained from such a simulation based on the particle in cell with
Monte Carlo collisions method. Most theoretical studies, and the remaining computa-
tional ones, have emphasized the “hard wall” model of the collisionless heating process,
the idea of which is as follows. The basic structure of the radio frequency capacitive
sheath is indicated in figs. 1 and 2. At any given time the discharge is clearly differ-
entiated into quasi-neutral regions where electrons are present and conduction current
dominates, and other regions where there are no electrons and displacement current
dominates. The electron-free regions of net positive space charge are referred to as the
sheaths, which cyclically expand and collapse as the radio frequency phase advances
and the polarity of the current changes. There is a narrow interface region between
the sheaths and the quasi-neutral plasma, which can be abstracted to a point s and
called the sheath edge. This point oscillates back and forth with velocity us . Since the
electron temperature is normally small relative to the potential that appears across the
sheath, an electron cannot penetrate far beyond the sheath edge without being reflected
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Figure 2. The electric field E during one cycle of the discharge current. (Conditions
as in fig. 1.)

back into the plasma. The “hard wall” model represents the sheath edge as an infinite
potential barrier that specularly reflects incident electrons. Since this barrier moves at
velocity us , an electron striking it with an incident velocity ui  is reflected with a change
of speed, so that the reflected velocity ur = – ui  + 2u s. This may or may not lead to a
net transfer of energy from the sheaths to the electrons, depending on the assumptions
that govern the distribution of ui . Or, for an individual particle, we may say that the
energy exchanged at each collision depends on the phase of the sheath motion where
the particle arrives, and the net effect over a long time depends on how this phase
changes between sheath reflection events. However although it is certain that there is
an electron heating mechanism associated with the oscillatory motion of the sheaths,
as fig. 3 shows, there are difficulties with the “hard wall” model. Chief amongst these
is the difficulty of demonstrating that there is a non-zero effect. Assuming a partic-
ular model of the sheath, which gives a specific form to us (t), and assuming that the
electron velocity distribution function is a drifting Maxwellian with mean speed ut a n d
drift velocity ue , Lieberman9 shows that average power delivered to the electrons is

(3)

where Trƒ  is the period of the driving frequency and ne (s ) is the electron density at the
sheath edge s. Lieberman makes ue  the drift velocity at the maximum extent of the
sheath, s m , but this choice does not conserve conduction current between s and sm .
The current conservation condition in fact imposes ue = u s , whereupon the integral in
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Figure 3. The power deposited in electrons during an rf period, showing the largest
effect occuring at the plasma periphery, with heating during expansion of the adjacent
sheath and cooling during collapse. (Conditions as in fig. 1 and 2.)

eqn. 3 vanishes identically*. This is reasonable enough, as the movement of the electrons
and the motion of the sheath edge are one and the same. It seems to be difficult to
construct a “hard wall” model along these lines that predicts a non-zero result for
the collisionless power, conserves current everywhere, and avoids difficult assumptions
about the electron velocity distribution function. There is an alternative strategy, which
is to express the interaction in terms of an energy space diffusion coefficient which can
be used in a solution of a simplified (e.g. non-local) Boltzmann equation10, 11. This
procedure usually (but not necessarily) entails the use of some simplified model of the
electron-sheath interaction along the lines discussed above. In the remainder of this
chapter we take issue with this aspect of such models of the electron heating process.
We investigate a periodic model system in which the electron dynamics resemble a
capacitive radio frequency discharge in every way except for the absence of a sheath
edge. The net heating effect in this model system, however, remains, which we take
to be evidence that the sheath edge is not the source of the primary effect12, 13. The
implications of this result are discussed in a final section.

*If the electric field is zero at x = s m , the electrode is at at x = 0, the plasma is neutral for s < x < sm ,
and the ion density in the sheath is n i(x ), then

for x < s and zero otherwise, and the displacement current

and since the conduction current at the sheath edge is ue (s)ni (s), we must have u s  = u e (s).
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SIMULATION PROCEDURE
Particle in Cell Simulation with Monte Carlo Collisions

The basic simulation approach is a fully kinetic procedure using the particle in
cell method with Monte Carlo collisions14, 15. This technique represents the plasma
particles by a tractably small number of computer particles, whose equations of motion
are integrated forwards in time using a finite difference procedure with time step ∆t. I n
this work we used an explicit leap-frog algorithm. The field equations, in this case only
Poisson’s equation, are solved at every time step using a charge density constructed
by projecting the contributions of individual particles onto a finite spatial mesh with
mesh interval ∆x. Bilinear weighting is used for mapping particle data onto mesh
points, and vice versa. These well-known techniques are fully explained elsewhere. The
finite difference parameters ∆t and ∆ x are constrained by the stability and accuracy
conditions

(4)

(5)

which have been carefully respected in the present work. We used typically many tens
to a few hundred computer particles per mesh cell in the computations reported here.

Collisions between the plasma particles and the neutral gas were handled using an
orthodox null collision Monte Carlo method 16, 17. For electrons, the collision processes
included were elastic scattering 18 , two lumped excitation processes 19 and ionization;
for ions, elastic scattering and charge exchange scattering20. The cross sections were
obtained from the indicated references. All scattering was assumed to be isotropic. The
collision handling procedure introduces a further constraint on the time step relating
to the assumption that there is only one collision per particle per time step, so that
the probability of a collision in each time step must be small. This is normally a less
important restriction than eqn. (5).

Bounded Model System

The bounded model plasma was formed between a pair of plane parallel electrodes
separated by 5 cm. Both electrodes were assumed to absorb all the particles that strike
them, and the system was driven by a sinusoidal current source with amplitude J0 =
1 mA cm–2 . We reduced the ion mass to that of helium to accelerate the convergence
of the simulation, which was initiated from essentially arbitrary initial conditions and
integrated forward in time to a harmonic steady state, in which all quantities may vary
over a radio frequency cycle, but are essentially invariant from one cycle to the next.
This converged state was typically attained in a few hundred cycles.

Periodic Model System

The aim of the periodic model used here is to isolate the effect of sheath edges by
constructing a system that resembles closely the bounded model plasma discussed in the
previous section in every way except for the presence of sheaths. This is accomplished
by adopting a periodic model which is filled with a quasi-neutral plasma everywhere,
but in which the distribution of plasma resembles the envelope of the plasma density in
the bounded system. The current density in this periodic model is then forced with the
same amplitude as in the bounded system. Only the electron dynamics are of interest
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in this case, so the ions are fixed (their mass is infinite), and ionizing collisions are
treated as excitation, so, there being no loss mechanisms, the total number of particles
in the system is preserved.

Distinguishing Ohmic from Non-Ohmic Heating

It is necessary to make a precise distinction between Ohmic and non-Ohmic heat-
ing. The quantity directly calculated by the simulation is an aggregate of several
processes that we can distinguish as Ohmic heating, non-Ohmic heating and, in the
bounded system, diffusion (or evaporation) cooling. We want to define Ohmic heat-
ing as the heating that would be produced if there were a local relation between the
electric field and the current density. The simplest such relationship is eqn. 2 but that
expression cannot be used in the bounded model system because a large proportion of
the heating of interest occurs in the sheath regions where the electron density varies
with time. We instead defined the Ohmic heating as the heating that would occur if
the plasma satisfied the Langevin equation

(6)

which has the same physical content as the Langevin conductivity mentioned above,
but involves no assumptions about the time variation of the quantities involved, all of
which except the effective electric field Elocal in eqn. (6) are know from the simulation.
We define the Ohmic heating by using eqn. (6) to compute Elocal , the electric field that
would be needed to produce the local drift velocity ue , and 〈 JE local〉 is then defined as
the Ohmic heating. There is a third component of the gross electron heating, which
is the energy lost by electrons to the fields as they escape to the walls – under normal
circumstances there is always a positive potential between the plasma and the adjacent
wall, even when the rf sheath is fully collapsed21, so that an electron that leaves the
plasma must climb this potential and be cooled in the process. (This accounts for the
region of net negative heating commonly appearing in simulations next to electrodes,
see fig. 9 below.) We have estimated this contribution to the net electron power balance
as

(7)

where for this computation φ(L/2) = 0.
We can do better in the periodic system. The Langevin equation assumes νe

independent of ∈, the electron energy, which is not true for electrons at low energies
in argon. An expression for the conductivity that allows for arbitrary electron energy
distribution functions ƒ(∈) and arbitrary variation of νe with energy is 22, 23

(8)

This expression is certainly more accurate than eqn. (2), but it can only be applied
conveniently to the periodic model, for the reasons noted above in connexion with the
Langevin conductivity.
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Figure 4. The electron energy distribution function in the bounded model system at
the extrema of the pressure range under consideration, 20 mTorr (bi-Maxwellian) and
200 mTorr (Druyvesteyn-like). The dashed lines indicate the temperatures used to
characterize these distribution functions in fig. 5, which clearly are crude but serve to
emphasize the change in the form of the distribution function.

RESULTS

Bounded Model

As the pressure is changed, the bounded model exhibits a heating mode transition
similar to those several times reported in the past 8, 7, 24 . At low pressure, less than
30 mTorr in this context, the heating is dominantly collisionless. As the pressure is
increased above 50 mTorr, Ohmic heating displaces collisionless heating as the most
important effect, and this is accompanied by characteristic changes in the shape of
the electron energy distribution function, as shown in figs. 4 and 5. It is also relevant
that the spatial distribution of the effective temperature changes across this range
of pressure. At the low end of the pressure range, the temperature is lowest in the
bulk plasma and elevated in the sheaths, whereas at high pressure the reserve is the
case, as fig. 6 shows, and as experiments confirm, as least so far as the bulk plasma
is concerned25 . This may seem surprising, since it is sometimes suggested that at
low enough pressure the thermal conductivity becomes so large as to eliminate any
temperature gradients, but this is assuming that the classical expression for the thermal
conductivity may be applied, which is not the case (see below). Fig. 7 shows the
fraction of the power deposited in the electrons that can be attributed to collisionless
heating, using the definition of the collisionless heating given above. Fig. 8 shows an
example of the distribution of the heating, showing that both Ohmic and collisionless
heating are concentrated at the plasma boundaries.
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Figure 5. The effective temperatures of the bulk and tail electrons as a function of
pressure in the bounded model system, c.f fig. 3. Solid line – bulk electrons. Dashed
line – tail electrons.

Figure 6. The effective temperatures of the electrons as a function of position at the
extrema of the pressure range – 20mTorr (left half of the figure) and 200mTorr (right
half of the figure) – showing the marked change in the distribution of temperature.
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Figure 7. The fraction of the electron heating attributable to collisionless heating, as a
function of pressure, using the definitions of different classes of heating mechanism
discussed in the text.

Figure 8. An example showing the low-pressure distribution of the net heating (solid
line) and the Ohmic heating (dashed line) for the bounded model system at a pressure
of 20 mTorr.
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Figure 9. Comparison of the net electron heating in the bounded model system (left
half of figure) and the periodic model system (right half of figure), for a gas pressure of
10 mTorr. The solid lines show the electron heating, while the dashed lines are the
envelopes of the plasma density, in arbitrary units. To facilitate the comparison, the
data for the periodic system have been modified by discarding heating that occurs at
times and in places which are electron-free in the bounded system.

Periodic Model

As remarked above, the aim of the periodic model is to represent a system that is
similar to the bounded model in every respect except for the presence of sheaths. Figs. 9
and 10 show that this is achieved in a high degree, since both the magnitude and spatial
distribution of the electron heating and the mid-plane electron energy distribution
functions are closely similar in each case. The mid-plane electron energy energy
distribution functions are also remarkably similar, as fig. 10 shows.

DISCUSSION

The comparison of the bounded and periodic model systems shows that the col-
lisionless electron heating is not intimately associated with the sheath edge, but is
instead produced by the relatively small fields at the periphery of the plasma. It is
obvious that the electric field in the plasma must be non-uniform, because the con-
duction current density is constant but the plasma density changes, so that the radio
frequency electric field amplitude varies as E ~ 1/ne . In any situation where an elec-
tric field changes in space and time, there is the possibility of kinetic effects under
the general rubric of “transit time heating” 26 (the anomalous skin effect is another
example). But it is also useful, and consistent with recent work on kinetic or Landau
fluid equations 27, to describe this effect in fluid language as an acoustic or pressure
effect, in the following way. The physical basis of this argument is the observation
that during the radio frequency cycle, electrons flow in and out of the sheath region,
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Figure 10. Comparison of the time averaged electron energy distribution functions
from the mid-planes of the bounded system (solid line) and the periodic system (dashed
line), for the same conditions as fig. 8.

as shown in fig. 1. Since the plasma density in the sheath regions is much less than in
the bulk, this flow involves a cyclic expansion and compression of the electron fluid. If
the electrons have a finite temperature, then work must be done by the electric field
on the plasma during the compression cycle (while the sheath is expanding), and this
work will be reversed during the subsequent expansion (when the sheath is contract-
ing). In the absence of dissipative processes, this will not lead to any net work, but
only an instantaneous electric field different from that obtained from eqn. (6). If there
are dissipative processes, though, the net effect may not be zero. In this connexion the
most important dissipative effect is thermal diffusion – the temperature perturbations
produced acoustically can decay by diffusion, and in this case the exchange of energy
between the fields and the plasma is not reversible. In principle this could be either a
net heating or cooling effect, but if the time averaged electron temperature decreases
from the sheaths towards the center of the plasma, then this is a heating mechanism.
A relatively simple analytical model illustrates the basic effect. The time variation of
the electron temperature is governed by the energy balance equation

(9)

where is some relaxation time associated with e.g. inelastic collisions, qe is the heat
flux, and we have assumed the ratio of specific heats Γ = 5/3† , which is reasonable
when there are several collisions per electron per period of the driving frequency, and
terms involving the drift energy have been neglected. We further assume that all time
variation is at the driving frequency, ωr f , so that each quantity can be written as the sum
of a steady state component (e.g. T (0)

e ), which is given, and a time varying component

†Probably in a more accurate treatment one should solve separate equations for the temperature
parallel and perpendicular to the field28

323



with a complex amplitude (e.g. T (1)
e ) that is to be determined. It is convenient to

eliminate the electric field from eqn. (9) using the momentum balance equation

and to express the heat conduction term as

(10)

(11)

where is the space-averaged classical electron free diffusion coeffi-
cient, so that the thermal conductivity . It is analytically convenient and
qualitatively reasonable to choose T (0)

e (x ) = T 0 cosh( x /x 1) and ne(x) = n 0 sech (x/x 0)
then with these expressions and using the current continuity equation the equation for
Te

(1) becomes

(12)
where and J 0 is the current density
amplitude. This equation can be solved rather easily for Te

(1) , subject to the boundary
conditions that
29

The solutions are essentially “thermal waves”
– thermal disturbances that originate in the “sheath” regions penetrate into the

bulk plasma. The solutions for Te
( 1 ) can be used to construct the electric fields using

eqn. (10), and thereby an approximate expression can be found for the time averaged
power delivered to the electrons

(13)

where the first term represents the non-Ohmic heating and the dimensionless parameter
measures the importance of thermal conduction effects. This expres-

sion illustrates only certain aspects of the relevant scaling relations that apply to real
discharges, because the time independent parts of the spatial distributions are assumed
fixed and independent of e.g. pressure, but it is notable that the collisionless term is
small in the limits and and, if is given by the classical expression
mentioned above, these correspond to the high and low pressure limits respectively.
However, in the low pressure limit the classical expression is not appropriate because
there comes a point where the free diffusion rate becomes transit time limited, so that
the diffusion coefficient does not increase indefinitely but is cut off, with an upper limit
given by

(14)

where ν th  is the electron thermal speed and Λ = L/π is the free diffusion length. This
truncation of the thermal conductivity accounts for the presence of large temperature
gradients in the low pressure limit of the bounded model, the absence of which is one of
the more striking differences between particle and fluid models of low pressure capacitive
discharges. These gradients also appear in the periodic model. Fig. 11 isolates the
temperature perturbations. The analytic model is in reasonable agreement with the
kinetic simulation, as figs. 12 and 13 show. Since n0 , T 0 , x 0 and x 1 are parameters in
the analytic model, there are just chosen to fit in these comparisons, which therefore
test only the computation of Te

( 1 ) and the total heating. This model is consistent with
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Figure 11. The time varying part of the temperature, T e
(1), for one period of the radio

frequency.. The conditions expressed in terms of the parameters of the analytic model
are n 0 = 6 × 10 8 cm– 3, J 0 = 10 mA cm – 2, T 0 = 3 eV, x 0 = 0.8 cm, x 1 = 0.9 cm,
ωr f = 2π × 13.56 MHz, ν e = 60 MHz, and L = 2.5 cm. The origin of phase for the
current is at t = 0.

the interpretation of the negative heating effect in the bulk plasma as an acoustic effect
by Surendra and Graves 30 , the association of the non-Ohmic heating with the pressure
term in the fluid equations given by Surendra and Dalvie 28, the connexion between the
collisionless heating and the near-sheath bulk plasma field established by Surendra and
Vender 31, and the interpretation of Landau damping as an acoustic effect by Hammett
and Perkins 27.

CONCLUDING REMARKS

The aim of this chapter has been to show that the “hard wall” approximation is
not an adequate description of the collisionless electron heating found in low-pressure
capacitive discharges. Rather, we have suggested that this heating should be associated
with the inhomogeneous fields in the quasi-neutral plasma, and understood as a transit-
time effect at the particle level, or as an acoustic effect in fluid terms. This is consistent
with the outcome of other recent simulation-based studies 28, 31. It is therefore difficult
to see how the heating effect can be quantitatively described without a self-consistent
description of the fields inside the plasma. A corollary is that it ought to be possible
to construct fluid equations that include the collisionless heating component. These
would be kinetic or Landau fluid equations 27, which connect Landau damping with
the heat conduction term in the fluid equations. Evidently this view of the collisionless
heating process connects with the main body of plasma kinetic theory, indeed with the
very first work on plasma kinetic theory: Landau was the first to discuss the response
of a plasma in the inhomogenous field near a boundary 32, 33.
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Figure 12. Comparison of the amplitude of Te
(1) from the analytic model (solid line)

with the particle simulation result (dashed line). Conditions as in fig. 11.

Figure 13. Comparison of the time averaged heating from the analytic model (right
half the figure) with the particle simulation result (left half of the figure). The dashed
line in the right half of the figure is the Ohmic part of the heating from the analytic
model. Conditions as in fig. 11.
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INTRODUCTION

The new generation of plasma etching tools used in semiconductor processing is based
on low-pressure high-density plasma tools. Different concepts have been developed such
as electron cyclotron resonance discharges,1,2 plasmas produced by helicon waves3, 4, 5 or
surface waves, and inductively coupled plasmas (ICP).6, 7 Advantages of these low-pressure
high-density tools are high plasma densities at simultaneously low controllable ion energies.

The large scale uniformity of the plasma is an issue of increasing importance. Future
plasma tools have to provide a plasma density uniform to within a few percent over areas of
300 mm or 400 mm in diameter. Even larger uniform plasmas are needed for the processing
of flat panel displays. The design of such plasma tools is still mostly performed empirically.
However, plasma models are approaching a state, where they can be considered valuable
design tools.

The necessity of using kinetic plasma models for low pressure discharges has been
widely recognized. A number of approaches have been developed to attack this problem such
as Monte-Carlo techniques,8, 9 the particle in cell with Monte Carlo collision method, 10, 11

and the convected scheme method. 12, 13 However, these methods are computationally very
expensive and they largely contribute to the overall computation time of kinetic models.
Hence, since kinetic models were frequently considered to be too slow for engineering
design studies, also fluid models have been applied to low-pressure high-density discharges.
However, a number of experimental results indicate that fluid models may be inappropriate to
describe low-pressure plasmas. A main criticism of fluid models is the inherent pronounced
coupling of energy input and energy dissipation, i.e., heating in the RF electric field and
energy loss in excitation and ionization. Experiments have shown that under low pressure
conditions a strong spatial decoupling of these mechanisms can occur exemplified by the
observation of maxima in the light emission on the axis of ICP’s, where the electric field
strength is close to zero.14 Such effects and others discussed in the further course of this paper
can be recovered correctly only from kinetic models.

In this paper we will demonstrate that a kinetic plasma description and fast computer
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modeling are not necessarily exclusive items. We will exemplify the technique of fast kinetic
modeling for a low pressure ICP system. However, the strategy described in the following
can easily be adapted to other plasma situations as has been demonstrated in numerous
examples. One key aspect of the plasma model presented below is the use of the “Nonlocal
Approximation” (NLA), which was first formulated by Bernstein and Holstein15  and by
Tsendin. 16 We will demonstrate the applicability and accuracy of models based on this
approximation by a number of comparisons to experimental results. At the end of this paper,
we will also point out some of the shortcomings of the classical NLA and discuss ways to
overcome these problems.

The paper is organized as follows: In the next section we give a brief outline of the
kinetic plasma model for the low-pressure ICP based on the classical NLA. Then we compare
results of this model with experimental results. In the subsequent section extensions of the
classical NLA are discussed. Conclusions are presented in the last section.

THE NONLOCAL 2D-KINETIC MODEL OF THE ICP

The plasma model presented in this chapter mainly consists of three modules which are
coupled in an iterative numerical scheme to achieve a self-consistent plasma description. The
electron kinetics is treated in a module in which the Boltzmann equation is solved within
the classical NLA. For the ions a simple fluid model is used. The model is complemented
by an electromagnetic module for the determination of the RF induced electric field. We
assume that the discharge considered is azimuthally symmetric which implies a spatially
two-dimensional treatment.

In a model involving two space dimensions, the electron kinetics module is usually the
most tedious part since in addition to the two space dimensions the energy “dimension” has
to be considered, too. The assumption that the consideration of one energy dimension is
sufficient to describe the electron distribution function (EDF) implies that the EDF is mostly
isotropic and that the well-known two-term Legendre approximation can be used.17 This
approximation is usually well applicable in glow discharges, since in most gases the elastic
electron–atom collisions are much more frequent than inelastic collisions. An additional
simplification in low pressure RF discharges is that quite often the typical time for energy
relaxation of the electrons is long compared to the RF period. In this case, the isotropic
part of the EDF will be mainly time-independent and the “effective field approximation”
can be used. 18, 19  The validity of the NLA relies on a similar argument, namely that the
spatial scale of the energy relaxation of electrons in collisions and due to heating is larger
than the discharge dimensions.15, 16  This argument is most restrictive in the energy range
where inelastic collisions are possible. The energy relaxation length in this range can be
approximated as 16

(1)

with λ m, the transport mean free path and λ* the mean free path for inelastic collisions. If
λ ε is larger than the typical discharge dimension, the total energy of electrons (kinetic plus
potential energy in the space charge potential is an (approximate) constant of
motion. The total energy ε is a suitable variable for the formulation of the kinetic equations.

Bernstein and Holstein15 and Tsendin 16 have shown that under these conditions the
isotropic main part of the EDF F 0 , expressed in total energy, is spatially almost constant:

This spatial uniformity of the EDF as
a function of total energy has been demonstrated in a number of theoretical 20, 21, 22 and
experimental investigations.23, 24, 25, 26 Furthermore, the authors demonstrated that the spatially
constant main part of the EDF F 0 (ε ) can be obtained from a spatially averaged kinetic0
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equation. For our particular case, this equation reads:

(2)

where ε = m v2 /2e – Φ(r) is the total electron energy expressed in volt, v is the electron
velocity, νm is the momentum transfer collision frequency,
is the effective field strength for Joule electron heating by the RF field with angular frequency

is the collision integral, and C0, w is the term accounting for the wall losses. The
overlined quantities represent averages performed over the part of the volume Va c which can
be accessed by electrons with a given total energy, i.e. for which ε ≥ – Φ (r). The collision
integral C 0 (F0 ) includes elastic, inelastic, and Coulomb collisions. The inclusion of the latter0
is mandatory for the treatment of high-density discharges.

The elastic collision term

(3)

(4)

is simplified by neglecting the recoil term, since the gas temperature is usually small compared
to the electron energies of interest. The symbol V 0 represents the total volume of the discharge,
κ = 2me /Ma  is the energy transfer coefficient for elastic collisions.

The collision term for excitation collisions is given by

(5)

with

(6)

The averaging is performed over the region where the k-th excitation process is possible, i.e.
where the kinetic energy exceeds the excitation threshold energy of the k-th
process uk. Ionization is treated like an excitation process which means that the production
of low energy electrons is neglected.

The collision term for electron-electron collisions is given by a spatially averaged
Fokker-Planck term: 27

(7)

with

(8)

(9)

(10)

ε 0 is the dielectric constant and In Λ C is the Coulomb logarithm.
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The escape of energetic electrons to the wall has a similar effect on the EDF as inelastic
collisions. It leads to a depletion of the high energy part of the EDF. In the total energy
picture, only those electrons can be lost to the wall which have a total energy higher than the
potential energy at the wall. In order to reach the wall the electrons must have a sufficient
amount of energy stored in the motion normal to the wall, which requires that their velocity
vector is inside a loss cone with the cone axis pointing normally towards the wall. The loss
cone has a solid angle of

(11)

Φw denotes the potential at the wall, which can be space dependent for insulating walls or
which is constant for conducting walls. The existence of this loss cone has recently been
demonstrated by Monte Carlo simulations.28

The wall loss term in Eq. (2) can be written in terms of an effective wall loss frequency
ν w  or in terms of a typical life-time of electrons with a given total energy in the discharge:

(12)

The life-time has different components. At higher pressures, when the electron motion
is collisional, the time for diffusion of an electron to the plasma boundary is the main
contribution. At very low pressures, when the electrons almost perform a free flight motion,
their life-time in the discharge is determined by the typical free-flight time and the time
to be scattered from outside the loss cone into the cone by elastic collisions. As a useful
approximation, all these times may simply be added to obtain an expression which covers the
entire pressure range. The typical life-time can be written as:

(13)

with the diffusion length Λ given by and D e the electron
diffusion coefficient. A detailed derivation of this expression and a demonstration of its
accuracy can be found in Ref. 21.

From the EDF of total energy F 0 (ε ) one can determine the spatially resolved EDF of0
kinetic energy F0 (u, r) (expressed in volts) using a “generalized Boltzmann relation”:

(14)

Knowing F0 (u, r), excitation and ionization frequencies can be computed spatially resolved.
The electron kinetics model is complemented by an ion fluid model and the wave equation

for the RF electric field. The space charge potential in the plasma is found from a fluid model
for the ions. For a high-density plasma the assumption of a quasineutral plasma bulk is well
fulfilled. If one limits the consideration to a description of the quasineutral plasma bulk up
to the sheath boundary, the solution of the Poisson equation may be avoided and be replaced
by using the quasineutrality conditions n i  = n e = n. For pressures of several mTorr and
discharge dimensions of several tens of centimeters, the ion motion is usually dominated by
collisions. Thus, assuming mobility-limited ion motion the ion momentum and continuity
equation can be combined to

(15)
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where bi  denotes the field-dependent ion mobility (cf. Ref. 23) and νi(r) denotes the local ion-
ization frequency. This equation is solved subject to the boundary condition that the Bohm cri-
terion is fulfilled at the sheath boundary Here λi is the ion mean
free path, kB  denotes the Boltzmann constant and is
the so called screening temperature.2 9

The RF electric field for an azimuthally symmetric ICP has only an azimuthal component,
E = E θ eθ, which can be determined from the complex wave equation. Assuming a harmonic
time-dependence of the electric field we get:

(16)

Here c is the vacuum speed of light, µ0 is the vacuum permeability. The symbol jcoil  is the
coil current density and σ(r) is the kinetic conductivity of the plasma.23  The solution of this
equation is strongly simplified by the assumption that the plasma is surrounded by metallic
walls so that a zero boundary condition can be used.

This set of equations is closed by the normalization condition of the EDF which defines
a relation between the plasma density n and the space charge potential Φ (r ) ,

(17)

The wall potential, which appears in the definition of the loss cone solid angle Eq. (11)
has to be determined by additional, considerations. The restriction of the above model to the
quasineutral plasma bulk eliminates the need of solving the Poisson equation. In fact, it is
also possible to determine the wall potential without solution of the Poisson equation. In the
simpler case that the walls are assumed to be conducting they define an equipotential surface.
The. wall potential can be found from the general particle balance that the total ionization I
has to be equal to the total wall loss rate W:

(18)

In the slightly more complicated case of dielectric walls the constant wall potential in
Eq. (18) has to be replaced by a variable potential Φw (r) which can be determined from the
requirement of locally balanced electron and ion current densities to the walls. The wall loss
frequency used in the kinetic equation (2) has to be replaced by an average frequency, where
the average is performed over the plasma boundaries using the respective space dependent
wall potential. Results of this procedure have recently been discussed in Ref. 30.

The iterative numerical scheme used to approach a self-consistent solution of this set of
equations was described in great detail in Ref. 23. The use of the various approximations
detailed above enables a very efficient modeling of the discharge. Typical computation times
for a given set of parameters are of the order of a few minutes on Pentium class computers.

EXPERIMENTAL SET-UP

Predictions of the model presented above have been compared to numerous parameters of
an ICP experiment. In the following space resolved measurements of bulk plasma parameters
(EDF, plasma density and potential) as well as of particle fluxes from the plasmas will be
presented. All measurements have been performed on the experiment sketched in Fig. 1.
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Figure 1. Experimental set–up of the inductively coupled plasma. The height of the discharge vessel is 6 cm,
its diameter 15 cm. (Figure from Ref. 23.)

The discharge vessel has a height of L= 6 cm and a radius R = 7.5 cm. The side wall and
the top plate of the vessel were made of glass, the bottom plate was constructed of aluminum.
For some measurements presented below, also a dielectric bottom plate can be used. The RF
field is induced via a spiral coil with four turns of a bent copper tube. Care was taken to
avoid capacitive coupling from the coil by using a Faraday shield. We used a radially slitted
copper sheet placed below the coil on the top glass window of the chamber. At the other
sides the coil was screened with a solid copper cylinder. A maximum RF power of up to
400 W was coupled to the discharge via a matching network. The RF current to the coil is
measured with a current transformer placed close to the induction coil. The RF voltage at
the coil is measured with a capacitive voltage divider. The whole system was evacuated by a
turbo molecular pump to a base pressure of less than 10– 6 mbar. During the active plasma
phase the system was operated with a constant gas flow.

The EDF measurements were performed using a pulsed probe technique.31 32 Due to the
use of the Faraday shield an RF compensation of the probe was not necessary. Initially, a
shunt electrode to increase the plasma–probe capacitance and inductors self-resonant at the
excitation frequency have been used.33, 34, 32 However, in the course of the experiments these
measures turned out to be unnecessary. Radial resolution of the measurements was achieved
by using a linear, radially movable probe. Axially resolved measurements were performed
using a bent probe which was rotated around the discharge center in a plane containing the
axis.

The measurements of the IEDs were performed with a standard retarding field analyzer
(see e.g. Refs. 35, 36, 37), which is mounted in the grounded bottom plate. The analyzer
which is sketched in Fig. 1 consists of three plane parallel grids of 100 mesh (i.e., 100 holes
per inch) with 80% transparency, which were produced by an electrogalvanic method. The
grids are insulated and mounted with a distance of 7 mm between the adjacent grids. The
entrance orifice, which is lying in the electrode plane, has a diameter of 100µm. The entrance
diaphragm is also 100 µm thick so that the ion energy analyzer admits ions impinging under
angles up to about 45° from the normal direction. The two outer grids are put to a fixed
negative potential, and the middle grid provides the variable positive, ion retarding potential.
The collector, which is made of polished stainless steel, is at ground potential like the entrance
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plane. The whole analyzer is differentially pumped up to pressures ranging between 10– 6-
10 –4 mbar to avoid charge exchange collisions in the analyzer as much as possible. The ion
current is measured using a programmable low input impedance picoamperemeter which is
equipped with a programmable bipolar voltage source to scan the retarding voltage.

Measurements of the particle current densities flowing to the bottom plate were per-
formed with a probe array mounted into the plate. This array consists of 12 plane stainless
steel electrodes with polished surfaces. The diameter of the probe surfaces is 5 mm. The
electrodes are arranged on a radius of the discharge with a spacing of 6mm between the
centers of two adjacent probes. This array allows the measurement of the total (electron
plus ion) current flowing to the probes with a low impedance picoammeter. For the radially
resolved measurements of ion impact energies an array of identical ion energy analyzers was
used. The design is different from the gridded retarding field analyzer, since the performance
of this kind of analyzer depends slightly on the mutual grid alignment. Each analyzer consists
of two metal tubes in line and a Faraday cup at its bottom. These elements are separated by
a 1 mm thick insulator. The entrance orifice of the analyzer has a diameter of 200 µm and
a depth of 1.3 mm. The acceptance angle of the analyzer is 8 degrees with respect to the
analyzer axis. It has been shown by Woodworth et al. 38 that in the range of gas pressures
considered the majority of ions fall within this limit. The major part of the electrons is lost
to the walls of the orifice. Each analyzer has a diameter of 3 mm and a length of 14 mm. The
analyzer array is differentially pumped. The first tube of each analyzer (length 2 mm) is set to
the ion retarding potential. The second tube (length 7 mm) has a constant potential of -64 V
to repel the remaining plasma electrons as well as secondary electrons that can be released at
the Faraday cup. More details on these analyzers can be found in Ref. 39.

COMPARISON OF EXPERIMENTAL AND THEORETICAL RESULTS

One of the main simplifications which enables the rapid kinetic discharge modeling is
the use of the NLA to the solution of the Boltzmann equation. Hence, a comparison of
measured and calculated EDFs may give reassurance on the validity and accuracy of this
approximation. Figure 2 presents such a comparison for EDFs measured in the discharge
center. The working gas is argon. A convincing quantitative agreement over about three
orders of magnitude of the EDF can be observed. In particular, for the lower pressures the
agreement of experiment and theory is excellent. For higher pressures some deviations occur,
in particular, at low kinetic energies where the experimental EDF does not exhibit such a
pronounced peak as has been predicted by the theory. However, it is well-known that the
largest problems of the EDF measurements manifest close to zero kinetic energy.

In Fig. 3 the measured axial and radial variation of the EDF is depicted. The EDFs are
plotted as functions of total energy. This means that the position of the steep drop of the EDFs
on the left of the diagram corresponds to the zero of kinetic energy at a particular position.
The shift of this zero of kinetic energy towards higher total energy reflects the increase of
the potential energy (decrease of the plasma potential) towards the wall. It is obvious that
the different EDFs, when plotted against total energy, almost lie on top of each other. This
means that the EDF of total energy is indeed spatially constant, as it is assumed as one basic
prerequisite for the validity of the NLA. The results presented in Fig. 3 thus confirm the
applicability of the nonlocal approximation. Moreover, the quantitative agreement with the
theoretical results (thick curves) is very convincing. These results give good reassurance on
the validity of the applied kinetic approach.

Measured and calculated profiles. of the space charge potential and of the electron
density are presented in Fig. 4. The electron densities have been obtained by integration
of the measured EDF; the space charge potential profile is obtained from the shift of the
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Figure 2. Comparison between measured EDFs and results of the 2D–model in the center of the discharge.
(Figure from Ref. 23.)

Figure 3. Axial (left) and radial (right) variation of the EDF in the ICP discharge. The thick lines represent the
theoretical results. (Figure from Ref. 23.)

Figure 4. Profiles of the space charge potential and of the electron density for p = 0.9 Pa: (a) axial and (b)
radial variation. The solid lines represent the results of the 2D–model. The circles represent the experimental
electron density profile, the squares the measured potential profile. (Figure from Ref. 23.)
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Figure 5. Measured IEDs in an argon ICP for
different pressures with an electrostatic screen at a
RF power of 200 W. (Figure from Ref. 41.)

Figure 6. Comparison between measured and
calculated peak energies of the IEDs in the ICP
discharge. The symbols represent the
measurements. Theoretical results: (A): present
kinetic model, (B): assuming a Maxwellian EDF
with kTe  = 2〈 u〉 /3, and (C): assuming a
Maxwellian EDF with the screening temperature.
(Figure from Ref. 41.)

zero crossing of the measured second derivatives. Good agreement of the experimental and
theoretical results is observed for the radial as well as the axial direction. It is noteworthy that
the profiles of the plasma density n(r, z) and of the plasma potential Φ(r, z) are maximal in
the discharge center. The maximum of the energy input is clearly displaced from the center
due to the geometry of our discharge and due to the skin effect of the RF field. Actually,
the maximum of the RF electric field is located at the position of the coil and the RF field is
close to zero on axis. The decoupling of energy input and maxima of density and potential
is obvious. The same holds for the light emission. In all our experiments, the light emission
was maximal on axis for sufficiently low pressures up to 9 Pa. This is a direct consequence
of the nonlocal behavior of the EDF. Even though the electric field is maximal in the plasma
periphery, the kinetic energy of the electrons is maximal on axis of the discharge, since the
electrons are accelerated by the space charge electric field towards the axis. However, a
slight shift of the maximum of the light emission, of the plasma density, and of the potential
towards the coil is observed at higher pressures. As will be discussed below, this shift can be
correlated to a slight deviation from the fully nonlocal behavior of the EDF.

It is necessary to stress here that all these phenomena cannot be described properly within
the framework of a fluid approach, when all the electrons are characterized by the average
values of the directed velocity and of the mean energy.40  In fact, interesting effects become
obvious when the fluxes of electrons with a given total energy are discussed. The growth of
the accessible volume Va c  with increasing total energy corresponds to an outward-directed
electron flux as long as ε is less than the excitation threshold energy. At higher energies,
however, strongly energy reducing inelastic collisions can occur. Since these are maximum
close to the chamber center, an inward–directed flux of the fast electrons with ε larger then
the excitation threshold energy arises.

In the following we discuss various aspects of particle fluxes from the plasma. In
Fig. 5 ion energy distribution functions measured with the gridded retarding field analyzer
are shown. The ion energy distributions are bell-shaped functions with mean ion energies
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ranging between 10-15 eV over a wide range of pressures. The absence of low energy ions
to the left of the peak suggests that the sheath region, in which the ions experience additional
acceleration after the presheath, is collisionless. The mean ion energy is thus given by the
potential drop within the sheath plus the energy obtained in the presheath region, which is
about half the electron temperature following the Bohm criterion. The present kinetic model
allows calculation of these quantities easily. The ion fluid model yields at least a rough value
for the potential at the sheath boundary. The wall potential is determined by equating total
ionization and wall loss of electrons as described by Eq. (18). Thus the potential drop in
the sheath can be determined without solving the Poisson equation in order to find the exact
potential profile within the sheath region. Figure 6 shows a comparison of measured mean
ion energies to the ion energies found from the above model. Obviously, the agreement
is satisfactory. The drop of the mean ion energy can be understood qualitatively as being
caused by two effects. The increasing pressure leads to a stronger potential variation and
thus more negative potentials at the sheath boundary. However, the increasing pressure
also causes a stronger drop of the EDF in the inelastic tail region, which leads to a smaller
differential temperature The decreasing differential temperature
in the tail leads to more positive wall potentials. The overall potential drop in the sheath
thus decreases. For comparison, the wall potentials assuming a Maxwellian EDF are given.
Curve B assumes that the temperature can be determined as 2/3 of the mean kinetic energy
of the EDF at the sheath boundary, curve C assumes the differential temperature at the total
energy corresponding to the potential at the plasma sheath boundary (screening temperature).
Obviously, the agreement with the experimental data is poor. The reason is that the assumption
of a Maxwellian EDF overestimates the population in the EDF tail, requiring a larger sheath
potential drop to sufficiently reduce the electron flux.

Recently, we have also studied the radial variation of fluxes of electrons and ions to the
wall of the ICP.39, 30  It turned out that these fluxes are conceptually different for conducting
and insulating walls. Figure 7 shows measurements of the total current, i.e. electron plus ion
current, to a conducting bottom wall performed with the flat probe array. The mere fact that
the total current is different from zero shows that electron and ion fluxes to the conducting wall
are not ambipolar. Of course, a conducting wall allows such locally unbalanced electron and
ion fluxes as long as the total electron and ion currents to the conducting walls of the discharge
vessel are equal. The positive total current in the central part of the bottom wall indicates that
the ion current exceeds the electron current. The electron current dominates in the periphery
of the circular wall. This interesting effect can well be understood within the framework of
the above model. It is based on the fundamentally different physical mechanisms governing
the electron and the ion motion. The ions perform a convective motion driven by the space
charge electric field. The shape of the space charge electric field is determined by the plasma
density profile so that a strong correlation between the ion flux density and the plasma density
profile exists. The ion flux density is determined by the plasma density at the sheath boundary
times the Bohm velocity. Since the plasma density profiles for the aspect ratio and the coil
configuration of our experiment always peak in the discharge center, the ion current density is
maximal on the discharge axis and decreases in radial direction. On the contrary, the electron
motion is diffusive and the total energy is a constant of motion, at least approximately. The
spatial constancy of the EDF of total energy implies that everywhere within the accessible.
volume the density of electrons with a given total energy is the same. In particular, since the
wall potential along the conducting bottom wall is constant, the density of electrons with a
total energy exceeding the wall potential is also (almost) constant along the wall. This effect
leads to an electron current which is radially much more uniform than it has to be expected
from the actual plasma density profile. The electron and ion current density obtained from
the above model are depicted in Fig. 8.
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Figure 7. Measured radial profile of the total
current (electron plus ion current) flowing from the
plasma to a conducting bottom wall. (From Ref. 39)

Figure 9. Comparison between theoretical and
measured radial profiles of the ion impact energy
along a conducting wall. (From Ref. 39)

Figure 8. Calculated radial profiles of the electron
(full line) and ion current density (dashed line)
along a conducting bottom wall. (From Ref. 39)

Figure 10. Surface charge profile on an insulating
bottom wall. The symbols represent the
measurements, the lines show the theoretical results.
(From Ref. 30)

The conducting, equipotential wall also causes a radial dependence of the ion impact
energies. For the aspect ratio of our discharge, we usually find a considerable drop of the
plasma density in radial direction connected to a radial drop of the plasma potential (see
Fig. 4). The radial drop of the potential at the sheath boundary and the radially constant
wall potential at the conducting wall lead to a radially decreasing sheath potential drop. This
effect is supported by the measurements shown in Fig. 9. Since both the potential at the
sheath boundary and the wall potential as well as the potential drop in the presheath can be
determined from the above model, the radial ion energy profile can also be obtained from the
above model. The agreement between theory and measurement is reasonable.

For a nonconducting wall electron and ion current have to be balanced locally. The wall
has to develop a surface charge potential profile in order to enforce locally balanced currents.
The ion current density is not significantly affected by the wall potential distribution. Thus,
the balancing of the currents is achieved by adjusting the electron current. The electron
current has to increase on axis in order to match the ion current and it has to decrease in the
periphery. Thus the wall has to charge more positively on axis and more negatively in the
periphery compared to the equipotential wall. Exactly this effect is seen in the experiment
as shown in Fig. 10. On the first glance, it might seem surprising that the potential profile
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Figure 11. Radial variation of the potential at the sheath boundary Φsb  and at the wall Φ w . (Figure from
Ref. 30.)

is almost independent on the pressure even though this changes from 0.5 Pa to 9.0 Pa. This
slight variation is caused by the counteraction of two effects, which are demonstrated by the
theoretical results in Fig. 11. On the one hand, the plasma density decreases more rapidly
in the radial direction for increasing pressure, since the plasma becomes more collisional.
This stronger decrease of the density is related to a stronger radial variation of the potential
at the sheath boundary. At lower pressures, when the EDF is still close to a Maxwellian,
a radially almost constant sheath potential drop is added to this to determine the profile of
the wall potential. For higher pressures the magnitude of the sheath potential drop decreases
in the radial direction. The stronger radial decrease of the potential at the sheath boundary
combined with the radially decreasing sheath potential drop lead to the comparable profiles
of the wall potential. This effect is explained in more detail in Ref. 30.

MODELING OF ICP IN THE REGIME WITH MODEST DEVIATIONS FROM NON-
LOCALITY

Even though models based on the classical NLA have been successfully applied to a
number of laboratory plasmas, such as the example given above, their actual practical use
for plasma modeling of industrial discharges seems at least questionable. Many modern low
pressure plasma processing tools are geared towards providing large scale uniform plasmas.
This requirement, however, is principally incompatible with operation in the purely nonlocal
regime. For instance, operation in the purely nonlocal regime usually implies a pronounced
insensitivity of the discharge characteristics to the configuration of the electric field, since
the nonlocal EDF is only determined by spatial averages. However, a certain sensitivity of
the plasma to the actual field configuration is definitely desirable in order to tailor the plasma
density profiles for maximum uniformity. Discharge operation in the purely nonlocal regime
usually implies a plasma density maximum close to the geometric center of the discharge, as it
was found in our laboratory system. Hence we conclude that modem industrial discharge are
explicitly designed to operate in a regime in which the EDF shows at least slight deviations
from the purely nonlocal EDF.

In this chapter we present preliminary results of an improved two-dimensional kinetic
model which also applies to the regime in which the EDF is no longer a spatially uniform
function of total energy. The model uses a hybrid approach to the determination of the EDF
from the Boltzmann equation, which was first proposed by Kolobov and Hitchon.42 However,
to our knowledge this method has not yet been implemented in a self-consistent plasma
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model.
For many gases, the energy relaxation length usually depends strongly on the energy

range considered. For instance, in rare gases electrons with low kinetic energy are only
capable of performing elastic collisions, while electrons at high energies are able also to
perform inelastic collisions. The energy relaxation length in the “elastic” energy range thus
highly exceeds the energy relaxation length in the “inelastic” range. As a consequence,
the NLA may still be a good approximation to describe the “elastic” energy range but a
poor approximation for the “inelastic” range. Deviations from the nonlocal behavior in the
inelastic range are caused by two effects: A strong local electric field strength may locally
enhance the energy diffusion of electrons. This effect leads to an elevation of the actual
EDF over the level of the nonlocal EDF. Inelastic collisions lead to a local depression of the
actual EDF compared to the nonlocal EDF. Exactly this hybrid behavior has been observed in
experiments.25 Thus it seems reasonable to split the solution of the Boltzmann equation into
tow steps: At first, the classical NLA is applied to obtain the spatially homogeneous EDF
of total energy. In a second step, a more accurate solution for the inelastic energy range is
calculated by solving the complete spatially dependent kinetic equation for F0 only for the
high energy, inelastic part of the EDF:42

(19)

This equation is solved subject to the boundary conditions, which have been described by
Busch and Kortshagen. 20 Only at the wall for energies higher than the wall potential we
currently use the simplified boundary condition that the EDF has to be equal to the EDF in
the nonlocal limit. This assumption seems quiet reasonable, since slight deviations (i.e. F 1)0
from the fully nonlocal EDF (F0) vanish when averaged over the discharge cross-section. In0
the periphery the EDF is elevated over the level of the nonlocal EDF F0

0 . Thus the choice of
using F 0

0 at the wall approximately accounts for the drop of the EDF towards the wall due
to the electron wall escape. (However, variation of this boundary condition shows that the
density and ionization profiles presented below are not significantly affected by this boundary
condition.) Since we expect only slight deviations from the fully nonlocal EDF, we use the
nonlocal EDF as a starting point for the iterative solution. Equation (19) is then solved in three
dimensions — radial and axial direction as well as total energy. The solution is accelerated
using a multi-grid algorithm.43

The hybrid approach offers a number of advantages for the numerical solution of the
problem. First, the domain of integration is much simpler than in the case that the nonaveraged
kinetic equation is solved for the entire energy range. The formulation of the problem in
total energy leads to an irregular boundary of the domain of integration at the boundary
ε = –Φ (r), i.e. u(r) = 0.20 In the hybrid approach this problem usually does not occur since
the accessible volume of electrons with a total energy above the excitation threshold usually
includes the entire discharge volume up to the sheath boundaries. Thus the total energy
formulation can be used in a domain with only straight boundaries. Moreover, the use of the
hybrid method enables the inclusion of Coulomb collisions. It is well-known that Coulomb
collisions affect the EDF in the elastic range already at much lower degrees of ionization than
in the inelastic range.44 Thus the elastic energy range of the EDF in a high density plasma tool
is frequently close to a Maxwellian while significant deviations from a Maxwellian persist in
the tail. To include the nonlinear Coulomb operator into the multi-dimensional solution of the
nonaveraged kinetic equation (19) is an extremely difficult problem, which to our knowledge
has not yet been addressed. To neglect the Coulomb collisions in the elastic energy range
of the EDF also appears to be inappropriate. Thus the hybrid approach offers a practical
alternative, since it is easy to include Coulomb collisions in the classical NLA which is used
to determine the EDF in the elastic range.
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We use the hybrid approach within the framework of the above self-consistent model.
The main difference is that the ionization profile is now determined from the inelastic part of
the EDF calculated from Eq. (19). We use this model to study a planar inductive RF discharge
with a height of 6 cm and a radius of 15 cm. We assume that the electric field is induced by
a one turn coil with an inner radius of 10 cm and an outer radius of 12 cm.

Figure 12 demonstrates the transition of the density profile found with the above model.
On increasing the pressure, the density profile changes from a profile with on-axis maximum
to a profile with a maximum close to the induction coil. Such a transition in the density
profile has recently been observed by Stittsworth and Wendt.45 This transition is induced by
a transition from nonlocal to local behavior. However, the ionization profiles shown on the
right side of Fig. 12 demonstrate that even for 1.0 Pa deviations from the purely nonlocal
behavior exist.

The actual transition from an on-axis density maximum to an off-axis maximum occurs
even faster than shown in Fig. 12. Figure 13 demonstrates that only a 10% increase of the
pressure is necessary to initiate the transition. From this rapid transition behavior observed
in our model we conclude that the transition is enhanced by a positive feedback mechanism.
We interpret this transition behavior as follows: In the completely nonlocal regime usually
the maximum of the space charge potential is found close to the geometric center of the
discharge. This implies that in the nonlocal regime the maximum of the electron density, of
the optical emission, and of the ionization rate are also found at the same position, even if
the heating electric field is close to zero at this position. The physical reason is that electrons
gain energy in the heating electric field and redistribute it across the discharge. However, in
approaching the maximum of the potential their kinetic energy increases at the expense of
their potential energy, since their total energy is constant. Since the kinetic energy is relevant
for ionization processes the ionization rate is maximum at the maximum of the potential. If
the pressure is increased, the high energy part of the EDF starts to deviate from the completely
nonlocal behavior. In particular it is elevated in regions of high electric field strength which
leads to a local increase of ionization as compared to the nonlocal limit. As long as this
increase is slight, the potential maximum remains in the discharge center and electrons still
gain kinetic energy when they approach the center. However, if the off-center ionization
increases such that the maximum of the potential starts to shift off center, the kinetic energy
now decreases as the electrons approach the center and it increases as they approach the new
off-center maximum of the potential. Thus the ionization is not only increased by the locally
high electric field, but this increase is enhanced by the electron’s gain of kinetic energy when
they fall down the potential hill. This effect has yet to be verified experimentally. It is not
clear if effects such as local gas heating, which have been neglected here might counteract
this effect. However, the above picture also suggests that a hysteresis might exist, i.e. that the
transition occurs at a higher pressure when the pressure is increased and at a lower pressure
when the pressure is decreased. However, it should be stressed again that these results are
only theoretical and they still have to be supported by experiments.

It should be mentioned that the observed transition cannot be obtained from a classical
nonlocal plasma model. The classical NLA tends to always produce on-axis maximum density
profiles. In order to reproduce the transition numerically, deviations from the nonlocal EDF
have to be included. Finally, it should be mentioned that the occurrence of the transition in
the density profile depends strongly on the aspect ratio of the discharge. For the aspect ratio
of our experiment (7.5 cm radius and 6 cm height) and our coil configuration, we were not
able to find the transition even for the highest pressures of 10 Pa. However, the maximum
of the density profile was shifted towards the coil at higher pressures, which is in agreement
with experimental observations. For a radius of 15 cm and a height of 5 cm with a one turn
coil between 10 cm and 12 cm radius the off-center maximum of the density profile appeared
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Figure 12. Electron density (left) and ionization frequency (right) for p=1.0 Pa (upper figures), p=1.5 Pa
(middle figures), and p=2.0 Pa (lower figures).
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Figure 13. Transition in the density profile for increasing pressure. top: 1.1 Pa, middle: 1.2 Pa, bottom: 1.3 Pa.
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already for the lowest pressure considered of 0.5 Pa.

Conclusions

In the present paper we have presented an efficient, two-dimensional kinetic model based
on the nonlocal approximation to the solution of the Boltzmann equation. The computational
efficiency of the model was achieved by making use of various physically motivated ap-
proximations, which are well justified for our laboratory scale plasma. The treatment of the
electron kinetics was strongly simplified by making use of the nonlocal character of the EDF
and of its time–independence. The problem was essentially reduced to a one-dimensional
problem in total energy by the use of the spatially averaged kinetic equation. By taking ad-
vantage of the strict division of the discharge volume into the quasineutral plasma and space
charge sheaths in high density discharges, we were able to avoid the complicated solution
of the Poisson equation. The model allowed a self-consistent plasma description on a usual
personal computer within a few minutes.

In spite of the approximations used, the good quantitative accuracy of the model was
demonstrated by a number of comparisons to various experiments. The spatial uniformity of
the EDF, which is used in the nonlocal model of the electron kinetics, was confirmed in the
experiment. Good quantitative accuracy between measured and calculated EDFs was found.
The simple model also yields a reasonable description of the ion energies of ions leaving the
plasma. The radial distribution of electron and ion fluxes from the plasma to the discharge
walls and the development of charging profiles could be explained reasonably with the model
presented. The ion motion is driven by the space charge electric field and the ion flux is thus
strongly correlated to the plasma density profile. For conducting walls the electron flux from
the plasma can be strongly uncorrelated to the plasma density profile. As a consequence,
nonambipolar fluxes of electrons and ions occur which are closed by wall currents in the
conducting walls. A nonconducting wall enforces locally balanced electron and ion fluxes
which can be only achieved by a surface charge profile on the wall.

Finally, we pointed out that in order to address technically relevant industrial discharges,
new developments of efficient electron kinetic methods are required. The reason for this is
the explicit design of recent high-density discharges to work in a regime with slight deviations
from the fully nonlocal regime. Operation in this regime is mandatory in order to achieve
large scale uniformity of the plasma. We have implemented a hybrid approach into our
self-consistent model in which the elastic part of the EDF is determined using the classical
nonlocal approximation and the inelastic part is calculated by the solution of complete kinetic
equation formulated in two spatial dimensions and in total energy. This approach also seems
to be a practical way to account for the effect of Coulomb collisions on the low energy
part of the EDF. This model was successfully applied to describe the transition from on-axis
maximum density profiles to off-axis maximum density profiles. This effect is due to the
beginning transition from the nonlocal behavior of the EDF to the regime with a slightly local
behavior of the EDF if the gas pressure is increased. Our model results indicate that this
transition may occur very rapidly due to a positive feedback mechanism.

In conclusion, the hybrid approach seems to be a promising method to achieve rapid
kinetic modeling for large-scale low-pressure discharges, which operate in the regime with
modest deviations from the full nonlocality. The hybrid model is admittedly more computer-
extensive than fully nonlocal models but it still can be solved within several minutes on fast
personal computers. Finally, we want to stress again that a number of effects which we have
described above are difficult to explain by fluid models such as the nonambipolar electron
and ion fluxes to the conducting wall.
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INTRODUCTION

An important application of low pressure plasma modeling and simulation is in the
design, optimization and control of plasma material processing tools for semiconductor
fabrication. In this context, one must be concerned with developing physically and chemically
accurate models of the dominant thin film processing characteristics. In addition, to be most
useful, the simulation schemes based on the chosen model should be as computationally
efficient as possible. Although plasma and surface chemistry often play dominant roles in
plasma processing, these chemical process are activated and heavily influenced by discharge
physical processes. Among the most important of these physical processes is electron kinetics.

Electrons play several well-known key roles in plasma processing tools, perhaps the
most important of which are the various inelastic collisions with neutrals that sustain the
discharge through ionization and that create chemically active free radicals that are vitally
important in surface processing. The plasma spatial uniformity is often controlled by ion
creation and transport. However, since electrons are responsible for ionization, the spatial
profiles of power deposition into electrons and electron energy losses usually strongly affect
the ultimate plasma spatial uniformity. Similar comments apply to neutral radicals. This is
of the first order of importance in surface processing in which spatial uniformity is essential
for proper operation of the tool.

In addition to the indirect effects listed above concerning the importance of electron
kinetics in processing plasma, there are increasingly important direct effects as well. For
example, in the semiconductor etching applications, the electron energy distribution func-
tion (EEDF) at the wafer surface has been identified as a key element in a certain type of
charging damage 1, 2, 3. The proposed mechanism involves electrons charging the insulating
photo-resist, resulting in differential electron and positive ion fluxes to feature bottoms, and
ultimately leading to charging damage to the device being processed. There is evidence
suggesting that this mechanism scales with electron energy: hotter electrons exacerbate the
problem. Practical questions regarding ways to minimize this problem revolve around strate-
gies to lower electron energy near the wafer, and inevitably require understanding and control
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of electron heating and electron transport.

Relatively recently, a powerful and efficient approach to modeling electron kinetics in
low pressure discharges has been reintroduced and applied to a variety of current problems
of importance in applications. This method, generally referred to as the “nonlocal” model,
was apparently first proposed by Bernstein and Holstein4 in a study of electron kinetics in
the positive column. Tsendin5 , and more recently, Kortshagen and co-workers 6, 7, 8, 9, 10, 11

Kolobov et al.12 , Kolobov and Hitchon 13, Kolobov and Godyak 14 , and Tsendin 15 have applied
this approach to various problems in gas discharge physics. Under conditions in which the
electron energy relaxation length exceeds the system dimensions for all electrons, a very
significant simplification of the problem becomes possible if one treats electrons in terms
of total energy (kinetic plus electrostatic potential) rather than kinetic energy alone, then
performs a spatial average of the spatially dependent electron Boltzmann equation. Given
several relatively mild assumptions regarding electron velocity anisotropy, time independence
of the isotropic part of the distribution function and the role of stochastic heating, one can
obtain the EEDF through the solution of a single ordinary differential equation. This approach
offers the promise of kinetic accuracy coupled with striking computational efficiency.

The dramatic increase in computational efficiency, coupled with full spatial kinetic
information for electrons, makes the nonlocal approach the obvious technique of choice, but of
course only when the assumptions are valid. The major issue appears to be the electron energy
relaxation length compared to the system dimensions. Bush and Kortshagen9 , and Kortshagen
et al.11 determined that one can specify the regime of validity of the nonlocal method by
examining the product of neutral gas number density (N,m –3) and system characteristic length
(R, cm). For argon, if NR < 3 × 10 21 ( m –3 cm), then the nonlocal scheme should be valid. For
NR > 3 × 1 0 23 (m – 3cm), a purely local approach is appropriate. The intermediate regime
must be described with either the inhomogeneous Boltzmann equation,9, 11 or with some
other self-consistent electron kinetic scheme. Unfortunately, it appears that most applications
of greatest interest industrially are in this intermediate regime. For discharges in use for
processing microelectronics materials or for flat panel display manufacture, characteristic
discharge length scales are on the order of 15 cm or more. Indeed, much discussion in
industry currently concerns scaling up existing plasma tools to handle large area substrates,
including 300 mm diameter wafers and flat panel display substrates that may exceed 500 mm
on a side. Most etching applications generally employ gas number densities between about
3 × 10 19 m – 3 to 3 × 10 21 m –3(or 1-100 mtorr for room temperature neutral gas). For even the
lowest length scale of R = 15 cm, this translates into ~ 5 × 10 20 m –3cm < NR < 5 × 1 0 22

m–3 cm, significantly overlapping the range of the difficult intermediate “transition” regime
between conditions such that the nonlocal scheme can be used, and conditions in which a
purely local approach will be valid. It would appear that the nonlocal approach, while very
powerful indeed when it can be used, has significant limitations when discharges of interest
in the major industrial applications are considered.

Other approaches to this problem have been to assume some form for the electron ve-
locity distribution function (generally, but not necessarily, Maxwell-Boltzmann), then solve
an electron energy balance equation for mean electron energy.16 Rate coefficients for various
electron-neutral collisions, including the all-important inelastic processes, are then expressed
in terms of the generally time- and space-dependent electron mean energy. Closely re-
lated approaches that rely on electron swarm data and parameterizations in terms of either
mean electron energy or reduced electric fields, have also been used and reported in the
literature. 17, 18, 19 These approaches, while well understood to be only approximations (some-
times relatively crude approximations) of electron kinetics, have nevertheless proven their
value in helping explain and rationalize experimental observations, including in particular
the ability to predict spatial gradients in electron rate coefficients. 18, 19 Nevertheless, concerns
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persist about the accuracy of models that assume some form for the electron energy distribu-
tion function. One alternative is to use either a pure kinetic, self-consistent particle-in-cell /
Monte Carlo (PIC/MC) method, or the convective scheme, or some form of hybrid scheme,
combining elements of fluid and kinetic treatments for electrons.20, 21, 22, 23, 24, 25In this paper,
we report on a hybrid fluid-kinetic scheme. A similar scheme, in which the electron kinetic
information is obtained from an electron Monte Carlo model has been used by Kushner and
co-workers. 2 5

To illustrate the model, we examine a typical inductively coupled plasma chamber, with
radial side coils and with a pure chlorine gas introduced into the chamber. The chosen
system has a cylindrical, axisymmetric geometry with 15 cm radius and 6 cm height. The
gas pressure is 20 mtorr. No etching occurs in the model, so the distribution of species, while
based on a gas in common industrial use, is relative simple. Not all of the database for even
this relatively simple system is known, but it serves as a good test case to compare various
treatments of electron kinetics. Under the conditions chosen in this example, relatively strong
spatial gradients in the EEDF are expected.

Our general strategy is to begin with a solution of conventional fluid equations, obtaining
a self-consistent solution of the sustained discharge, including the spatial profiles of the neutral
and charged species. Next, the electrostatic and electromagnetic fields and the neutral density
profile from this solution are used to recompute the spatial profiles for all electron inelastic
rate coefficients and electron transport coefficients. The fluid model is then resolved, except
for the electron energy equation (since electron temperature is no longer used). This results
in new profiles for all model quantities: electron and ion densities, electrostatic potential and
neutral number densities. The electromagnetic field profile is recomputed (since the plasma
dielectric properties have changed), then the inhomogeneous Boltzmann equation is resolved.
Iterations proceed until convergence has been obtained.

In addition to comparing the solutions based on the pure fluid equations with the fluid-
kinetic hybrid model, we have also used another treatment of electron kinetics. We have used
a “test particle” electron Monte Carlo method. Kinetic information from the Monte Carlo
electrons is obtained from averages over several rf periods. In the Monte Carlo simulations,
we use the electrostatic and electromagnetic field profiles and the neutral gas density profiles
from the converged hybrid model results.

MODEL DESCRIPTION
Simulation Conditions

The discharge geometry is illustrated in Fig. 1. The plasma is sustained through inductive
coupling to electrons. The frequency of the applied rf current is 2 MHZ. No capacitive
coupling is applied or is allowed to develop from the coils. The system is cylindrical and
axisymmetric (r, z coordinates), and we assume all surfaces are conducting and grounded.
The chamber has a 15 cm radius and is 6 cm in axial (z) height. Gas (Cl2) flows into the
chamber along the top walls at r = 13 cm, and is pumped out along the chamber bottom
(z = 0) and from r = 10 to r = 15 cm. The results reported in this paper were obtained
with a spatial grid with 45 equally spaced nodes radially and 18 equally spaced nodes axially.
Pressure is maintained at the approximate desired value by adjusting the effective pumping
speed. Inlet gas flow is maintained at 100 sccm. The total power deposition into the discharge
was set at 1000 W and the neutral gas pressure was 20 mtorr. The fluid model was initially
run to convergence, and the period-averaged electrostatic field (Es(r, z )) and the magnitude
of the azimuthal electromagnetic field (Eθ (r, z)) are used as the input for other models. Note
that it is assumed that In addition, the spatial profiles of
Cl and Cl2  are taken from the converged fluid model as input to the other models. For the
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Figure 1. Sectional view of the simplified ICP reactor geometry. The coordinates ( r, z) of the examined points
are A(0,1.2), B(0,2.2), C(0,3.0), D(9.0,3.0), E(12.2,3.0), F(14.2,3.0), G(14.2,1.2) and H(14.2,5.2) cm.

conditions we have chosen, the gas is about 90% dissociated, and the Cl concentration profile
is nearly flat spatially. Of course, the same collision cross sections are used for each model. 26

Fluid Model Description

The fluid model we employ for the various species in the discharge has been described
in detail elsewhere, so our description here will be brief.26, 27 In essence, the fluid model
assumes that each charged and neutral species (electrons, positive and negative ions, and
all neutrals) can be described with a velocity distribution function assuming a (separate)
shifted Maxwell-Boltzmann form. The directed component of velocity for each species
is obtained from species momentum balance equations, and these incorporate terms for
interspecies momentum transfer. The mean thermal energy (or “temperature”) for each
species comes from the solution of a species energy balance equation. For the neutral
species, we generally assume that there is a single temperature characterizing these species,
although this assumption can be relaxed. Finally, the species number density results from
solution of a species continuity equation. Appropriate boundary conditions are developed and
applied for each of the equations. Except for the provision for separate species temperature,
this approach is formally identical to a conventional reacting flow model.

Equations for electrostatic and electromagnetic fields are formulated and solved. As
described in detail elsewhere26, 27 , we solve Poisson equation for the electrostatic field in the
plasma, and the Helmholtz equations for the rf period-averaged electric field (“θ” or azimuthal
component only) resulting from inductive coupling from the external coil. Electron heating is
assumed to be resistive (stochastic effects are neglected), and the effects of the rf B-field have
not been included. It is known that stochastic heating can play a significant role in inductively
coupled plasmas, especially at lower pressures. However, by adjusting the rf current in the
external coils until the predicted rf power deposition attains the desired value, the effects of
this assumption on the plasma profiles should be minimal.

Electron Kinetics Model

We have chosen to employ the inhomogeneous Boltzmann equation model7, 10, 11, 14. It
is assumed that electrons can be described with a two-term expansion in spherical harmonics,
that the isotropic part of the distribution function is time-independent, and that inductive
power deposition can be described using an ohmic model. The latter two assumptions are
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also made in the fluid model.
The inputs into the model are the spatial profiles of electrostatic potential, the magnitude

and frequency of the inductive electric field, and the effective cross sections for electron-
neutral collisions as a function of position and electron energy. Additional details concerning
this method, and a summary of the equations, boundary conditions, and numerical solution
strategy are included in the Appendix.

Electron Monte Carlo Model

The electron Monte Carlo model begins with the electrostatic potential profile, the
electromagnetic field profile and the concentration profiles of Cl and Cl2 . Linear interpolation
is used to define the values of the electric fields at locations between nodal grid points. A group
of 20,000 (or more) electrons are released at various positions throughout the plasma, with
an initial position proportional to the electron density distribution from the hybrid model,
and with a Maxwell-Boltzmann distribution at the temperature from the fluid model. We
verified that the starting conditions had no effect whatsoever on the steady state solution by
choosing many different initial conditions and observing that the final result did not depend
on the choice of initial condition. The Monte Carlo technique has been described in detail
elsewhere. 28 Briefly the technique uses the free flight time method, in which electrons are
advanced a small fraction of mean free path at each time step, and the electron equation of
motion is solved explicitly in time. Collisions are considered between electrons and neutral
species (Cl and Cl 2), the spatial density profiles for which are determined by the hybrid model.
All other collision types have been neglected. These include electron-electron, electron-ion
Coulomb collisions, and all superelastic collisions. New electrons are created by electron-
impact ionization of neutral species, and are lost on the radial and axial walls. Electrons are
also lost to attachment to Cl2 via the dissociative attachment process.

The results are obtained from sampling this population every 10 time steps (∆t =
0.01 × 10 –9  s, where one period T = 0.5 × 10 – 6 s), at each of the 45 × 18 = 810 mesh
points in the discharge domain. The electron energy distribution function, rate coefficients
for all collisional processes, and the power deposited per electron in the inductive field were
collected and averaged. The frequencies of electron gain and loss through collisional and wall
processes, and the total number of electrons in the system were recorded through 5 periods
that results were averaged.

Hybrid Model Strategy

The self-consistent hybrid model consists of a two-dimensional fluid model described
elsewhere27 for electrons, positive and negative ions, and atomic and molecular neutrals,
an electromagnetic field model for the inductive electromagnetic field to solve the Maxwell
equations (EM solver), and a electron kinetic model. The electron kinetic model is used to
determine the space-dependent EEDF by solving the inhomogeneous Boltzmann equation
(two dimensions in space r and z, one dimension for energy). A schematic of the hybrid
model is shown in Fig. 2 and described as follow. (1) The self-consistent fluid model (elec-
tron continuity and energy equations; ion and neutral continuity and momentum equations;
Poisson equation for the plasma potential; and the Helmholtz equations for the inductive
electromagnetic field), is run to steady state. (2) The plasma potential φ( r, z), the magnitude
of the inductive electric field intensity Eθ( r, z), and the neutral density profiles n neu (r, z)
are used to determine the EEDF by solving the inhomogeneous Boltzmann equation. After
solving for the EEDF spatial profile, new values of electron mobility (µ e ( r, z)), diffusivity
(D e(r, z )), electron flux to the reactor boundary (Γ wall

e (r, z )), and all electron-neutral inelastic
collision rate coefficients (k j(r, z)) are obtained. (3) These new parameters are used when
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(2)

Figure 2. Scheme of the hybrid model strategy

the fluid model is restarted. At this stage, we solve all the fluid equations except the electron
energy equation. (4) After some time B , (typically from 0.25 to 2 µs), a convergence test
is performed. (5) If the solution is not converged, we calculate the time-averaged plasma
potential, neutral and electron density profiles within B  and use them in the Boltzmann
equation solver and EM solver. Next, steps (2)-(5) are repeated until a converged solution is
obtained. The convergence criteria for the simulation are: (a) The oscillations of the peak
density of each charged species and the plasma potential within 100 rf cycles are smaller than
0.1%; (b) The total creation and loss of each species, including charged species and neutrals
in the reactor balance to within 10– 2%.

Generally, the electron mobility µe (r, z) and electron diffusivity De (r, z) could be ob-
tained directly from the integration of EEDF by 29

(1)

Equation (2) is used to compute D e , but Eq. (1) results in unacceptable noise, and we resort
to the approximate expression,

(3)

where ν en (r, z) is the total collision frequency between electrons and neutrals. It can be
obtained by the expression,

(4)
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The electron flux to the wall is approximated as

(5)

where n e and F 0 are evaluated at the sheath edge adjacent to the particular-boundary point.
Inelastic electron-neutral rate coefficients are evaluated from,

(6)

The goal of the hybrid model iteration scheme is to obtain the converged, steady-state
solution. The fluid equations are formulated as transient equations, and are integrated in time
until the solution stops changing significantly. After the fluid equations have been integrated
for time B , we use a time average of the variables over that increment of time in the next call
to the Boltzmann equation and EM equation solvers. This is, in effect, a relaxation scheme,
and was found to improve the convergence characteristics of the solution strategy.

(7)

Variations of the peak values of the plasma potential and charged species density during
the iteration for the hybrid model are shown in Fig. 3. Time t = 0 corresponds to a converged
fluid model solution. All the peak values of the plasma potential and charged species density
are unchanged after about 100 µs, and this is taken to be the steady state solution.

RESULTS AND DISCUSSION
Results

A summary of the results from the two models is shown in Figs. 4 and 5 in the form
of contour plots. Profiles predicted from the fluid model are plotted on the left half of the
figures and the results from the hybrid model are plotted on the right half of the figures.
Power deposition profiles are illustrated in Fig. 4a. As expected with the coils at the sides
of the chamber, inductive power is localized near the outer radial boundaries. In both cases,
1000W is deposited into electrons. Figure 4c is the corresponding set of plots of the electron
density. There is a difference of about a factor of two in the peak density, but the shapes of
the profiles from the two models are in reasonable agreement. A difference of about 2V is
seen in the plasma potential profiles, but again, the general shapes of the profiles are similar.
Ion profiles are shown in Fig. 5, and it can be seen that the results are similar.

The most important comparisons of the models are shown in Figs. 6 and 7. In these
figures, the EEDF is plotted from the fluid model (denoted “Maxwellian”), the hybrid model
(denoted “Boltzmann”) and from the electron Monte Carlo simulation (denoted “Monte
Carlo”). Recall that the electron Monte Carlo simulation was run after the hybrid model was
converged. Each of the individual plots corresponds to one spatial location in the plasma, as
illustrated in Fig. 1. Points A, B, C, and D are farther from the coils. The Boltzmann solution
and the Monte Carlo simulation results are in good agreement. Poorer statistics due to fewer
simulated electrons are the cause of the scatter in the EEDF from the Monte Carlo results near
the center of the chamber. Nevertheless, the generally good agreement between the Monte
Carlo and Boltzmann results helps to justify the assumptions made in the Boltzmann equation
formulation. The Maxwellian assumption clearly overestimates the magnitude of the tail of
the EEDF. Similar comments can be made for points E-H shown in Fig. 7. Examination of
the EEDF at point F and point A illustrates the significant gradient from the zone of electron
heating to the center of the chamber.
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Figure 3. Peak value variations of the plasma potential and all charged species density vs. time for the hybrid
model. The operating conditions are 20 mtorr, 1000 W, and Tn e u  = 0.05 eV.
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Figure 4. Comparisons the plasma profiles of (a) power deposition, (b) plasma potential, and (c) electron
density from the fluid model results (left) with the hybrid model solutions (right). The operating conditions are
20 mtorr, 1000 W, and Tn e u  = 0.05 eV.
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Figure 5. Comparisons the plasma profiles of (a) Cl +  density, (b) Cl +
2  density, and (c) Cl – density from the

fluid model results (left) with the hybrid model solutions (right). The operating conditions are the same as
Fig.   4.
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Discussion

Major concern with regard to a fluid model is usually directed towards the assumption
that the EEDF is Maxwell-Boltzmann, or more exactly, that the distribution function can
be specified in advance. There is no doubt that the EEDF is not strictly Maxwellian under
essentially all conditions of practical interest. This is confirmed in the available measurements
of EEDF, usually made with electric probes, as well as simulations that predict distribution
functions. 21, 22, 23, 24, 30, 31 Electron-electron collisions are far too infrequent, except for the
lowest energy electrons (less than a few tenths of an eV), for anything resembling a Maxwell-
Boltzmann distribution to exist for electrons. Of course, collisions with the much colder
neutrals are too infrequent to equilibrate electrons with these species either. Since electrons
travel in the discharge virtually completely independently of each other, one might imagine
that the assumption that electrons equilibrate with one another to single “temperature” at
every point in time and space would be very crude approximation indeed. Given the fact
that the very important electron-neutral inelastic collisions such as ionization, excitation and
molecular dissociation depend on the details of the high energy tail of the EEDF, it could
be thought that a fluid model for electrons would have little chance of even qualitatively
describing the discharge structure.

In fact, it turns out the electron fluid model is usually not nearly as inaccurate as
the foregoing reasoning would suggest, at least if one is concerned primarily with overall
discharge structure, predictions of inelastic electron-neutral collision frequencies, etc. Of
course, if one is explicitly interested in the EEDF itself, then clearly the Maxwell-Boltzmann
assumption is completely inadequate, and recourse must be made to a kinetic description for
electrons.

One factor that makes the fluid electron model reasonable accurate is that a self-
consistent, self-sustained discharge solution must satisfy the ion balance. Positive ions
(ignoring strongly electro-negative gases) that are created throughout the discharge must be
lost at boundaries at the same rate, under steady state conditions. Positive ions are usually
created by electron impact ionization of neutrals, and are lost by diffusion to the wall bound-
ing the discharge. Both the rate of creation and the rate of wall loss of ions are controlled by
electron temperature in a fluid model. Ions are accelerated to their sound speed (the Bohm
velocity) at the plasma sheath boundary, and this sound speed is a function of the EEDF.32

The ionization rate coefficient depends sensitively on electron temperature (generally expo-
nentially), and the Bohm velocity in a fluid model varies as the square root of the electron
temperature. Since the fluid description of ion transport to walls is reasonable accurate,
the fluid model is constrained to create ions at the same rate, on a volume averaged basis.
This constraint forces the electron temperature in a fluid model to generate an ionization rate
coefficient that is consistent with the ion loss rate. This value of the electron temperature
usually results in a general discharge structure that is reasonable accurate.

CONCLUDING REMARKS

We have presented an iterative hybrid scheme to self-consistently couple a fluid treatment
of electron and ion transport, and neutral transport and chemistry, with the inhomogeneous
Boltzmann equation for electrons. The EEDF from the Boltzmann equation is used to
determine electron transport and rate coefficients and the electron flux to the walls. These
quantities are used in the fluid model. The fluid model provides the electron and ion density
profiles and the neutral density profiles, to be used by the Boltzmann equation. In the
comparison made in this paper, a considerable difference was seen between the assumed
Maxwellian EEDF in the fluid model and the results from the Boltzmann solution. In
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Figure 6. Comparisons of the electron energy distribution function for different electron kinetic treatment:
fluid model, inhomogeneous Boltzmann equation, and Monte Carlo simulation at points A, B, C and D in the
reactor. The operating conditions are the same as Fig. 4.
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Figure 7. Comparisons of the electron energy distribution function for different electron kinetic treatment:
fluid model, inhomogeneous Boltzmann equation, and Monte Carlo simulation at points E, F, G and H in the
reactor. The operating conditions are the same as Fig. 4.
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spite of this difference, the spatial profiles of the plasma density and plasma potential were
qualitatively similar. However, we would not necessarily expect similar agreement in general.

The scheme reported here provides one way to account for the practically important
spatial gradients in the EEDF, while keeping the overall computational cost reasonable for a
chemically active plasma. It is not difficult to imagine a similar strategy that would include
a Boltzmann equation treatment for electron kinetics as one option, and a treatment based
on mean electron energy as another option. Depending upon the situation, the trade-off
between accuracy and computational cost would dictate which choice is preferred. Another
option would be to use an electron Monte Carlo simulation to provide kinetic information
for electrons, although our preliminary results suggest that convergence is much slower
using a Monte Carlo approach. In any case, a fluid treatment for ions and neutrals seems
a likely choice for most simulations that include significant chemistry, and therefore some
type of fluid-kinetic hybrid will be common to many simulations of low pressure plasmas use
industrially.

INHOMOGENEOUS BOLTZMANN EQUATION

The inhomogeneous Boltzmann equation for the isotropic part of the EEDF have been
derived and the complicated collision integrals have been discussed and documented in the
literature.33, 34, 29 At steady state, the inhomogeneous Boltzmann equation with pure electron
inductive heating reads:

where

(8)
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The first and second term of Eq. (8) stand for the diffusion of electrons in the physical
space, the third term is for the heating and diffusion of electrons in the energy space, the
fourth term indicates the contribution of elastic collisions, the fifth term is for the local cooling
effect of electrons (energy loss) caused by the inelastic collisions at total energy, the sixth
and seventh terms are the energy gain of electrons created by the inelastic collisions at higher
energy of ε + E k

th  for general inelastic collisions and ε + u + E ioniz.
th  for ionization. In the

above equations, E k
th is the threshold energy for the kth inelastic electron-neutral collision

type. Symbols ν denotes the collision frequency (s – 1); and ω is the angular frequency of the
applied RF field; collision cross section is σ(m²); n is neutral species number density (m – 3);
r is the radial coordinate (m); z is the axial coordinate (m); e is elementary unit of charge
(C); m is mass (Kg); and Eθ is inductive electric field (V/m). The subscripts ‘e’ denotes
electrons, ‘m’ denotes momentum transfer, ‘j’ denotes the index of the chemical species, and
‘k’ denotes the index of inelastic collisions.

The lower boundary conditions for Eq. (8) in energy space, which is the minimum total
energy with zero kinetic energy, are limited by the local plasma potential. It is hard to know
the exact value of (r, z, ε = Φ) in advance, therefore we solve the equation of ƒ0 ( r, z, ε)
instead of (r, z, ε) by setting Then the boundary conditions
for ƒ0(r, z, ε) in energy space can be easily given by

(9)

On the axis, due to the symmetric character, the boundary condition is

(10)

On the other reactor walls, we take the similar boundary conditions as (10), which means the
electron loss to the walls are neglected.

(11)

NUMERICAL TECHNIQUE FOR SOLVING THE INHOMOGENEOUS BOLTZ-
MANN EQUATION

Mathematically, we use the same grid as the fluid model in physical space, and an energy
interval of 0.6 eV with the maximum total energy 30 eV in energy space. A line-by-line
TDMA iteration scheme which was developed by Patankar and Spalding35, 36, was adopted
to solve the inhomogeneous Boltzmann equation. For the first few calls of the Boltzmann
equation solver (2-5 times), a few hundred iterations are needed to obtain convergence. After
that, only a few tens or even a few iterations are needed. The line-by-line TDMA technique
is described below. The inhomogeneous Boltzmann equation can be written in the form

(12)

As an example, the one-dimensional TDMA method is briefly described. The one-dimensional
elliptical equation + S = 0 can be discretized as for
1 ≤ i ≤ N with c 1  = 0 and bN = 0. For the recurrence relation,

(13)
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Figure 8. A typical variation of the maximum relative error (solid line) and the residual (dashed line) for the
inhomogeneous Boltzmann equation solver.

we have

PN =  0 , yN = Q N i f  i = N

P1 = b1 /a1, Q1 = d 1 /a 1 i f  i = 1

where

(16)

(14)

(15)

Then the iteration can be carried out as follows: (1) calculate P1  and Q 1 from Eq. (15);
(2) calculate Pi and Qi (i = 2, N) from Eq. (16); (3) set y N  = Q N according to Eq. (14); (4)
calculate yi from i = N – 1 to i = 1 according to Eq. (13). Steps 1 and 2 are the forward
process (from i = 1 to i = N ) in which the boundary condition of the first point at one end
comes to the calculation of Pi and Qi . Steps 3 and 4 are the backward process (from i = N
to i = 1) in which the boundary condition information of the last point at the other end is
gotten in the calculation of yi .

For multidimensional equations, we use the line-by-line method to get the value of y in
each dimension alternatively. In the inhomogeneous Boltzmann equation solver, when the
maximum relative error of the EEDF in the physical and energy space between two iteration
is smaller than 10 – 4, we say the EEDF calculation converged.

A typical variation of the maximum relative error

and the residual with the iteration step for the initial
calculations of EEDF is shown in Fig. 8.
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TRANSPORT AND REACTION IN INDUCTIVELY COUPLED
PLASMAS FOR MICROELECTRONICS

D. J. Economou, J. Feldsien, and R. S. Wise

Plasma Processing Laboratory
Department of Chemical Engineering
University of Houston
Houston, TX 77204-4792

INTRODUCTION

Low pressure (0.1 mtorr to 10 torr), cold (gas temperature 300-500 K), weakly
ionized (degree of ionization 10–6 – 10 –1 ) glow discharge plasmas are used extensively
in the processing of electronic materials, especially for etching and deposition of thin
films 1, 2 . Such plasmas also find application in surface modification (e.g., hardening,
corrosion resistance), lighting, and even environmental remediation. In reactive gas
plasmas, electrons are ”heated” by an electric field and acquire high enough energies
to decompose a flowing feedstock gas into radicals and ions. In plasma deposition,
radicals adsorb on the wafer surface where they react to deposit a thin film. The
film microstructure and properties (e.g., density, stress) can be influenced by energetic
ion bombardment which occurs naturally on all surfaces exposed to the plasma. In
plasma etching, radicals adsorb and react on the wafer to form volatile products which
desorb and are pumped away by a vacuum system. Again, the surface chemistry can be
strongly modified by energetic ion bombardment. Ions bombard the wafer preferentially
along the vertical direction, enhancing the reaction rate and inducing anisotropy which
is critical for delineating sub-half micron patterns in advanced microelectronic device
manufacturing. Controlling the flux, energy distribution, and angular distribution of
ions and neutrals bombarding the wafer is of paramount importance in plasma systems.
Also, the uniformity of these fluxes over large area (diameter > 200 – 300 mm) wafers
is critical for the success of industrial plasma processing equipment.

Up until recently, relatively high pressure (p > 50 mtorr), low plasma density
(ne  < 1010cm –3 ) capacitively-coupled systems were used almost exclusively for achiev-
ing anisotropic etching. The drive for delineating finer features over larger diameter
wafers, however, has resulted in the development of high density plasma (HDP) sources
². These reactors operate at low gas pressures (p < 50 mtorr) to improve uniformity
and reduce contamination, and high plasma density (ne  > 1011cm –3 ) to deliver a high
flux of ions and radicals to the wafer surface, thereby maintaining a high throughput.

Electron Kinetics and Application of Glow Discharges
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Figure 1. Inputs and outputs (left) and time-length scales (right) in plasma simulation.

Also, low pressure helps anisotropy since the ion mean free path is greater than the
sheath dimensions, making ion flow to the wafer directional. There exists a variety of
HDP sources including inductively coupled plasmas (ICP), electron cyclotron resonance
(ECR), helicon, and helical resonator sources. Practical reactors have relatively large
dimensions (10s of cm) and operate with (complex) molecular gas chemistries.

This paper provides a review of recent works on the modeling and simulation of
transport and reaction in inductively coupled plasma reactors of the type used for
microelectronics manufacturing. An experimentally-verified fluid simulation approach
developed by the authors is used to study transport and chemistry effects in a dome-
shaped plasma reactor. Multidimensional simulations are emphasized and the impor-
tance of making judicious approximations, based on the physics of the system, to reduce
the complexity of the problem is stressed.

PLASMA SIMULATION

Problem Statement

The problem statement can be summarized by Figure 1, left. Given a reactor type
and configuration, geometrical dimensions and materials of construction, as well as a
set of operating parameters (inputs), including feedstock gas composition and flow rate,
gas pressure, coil current (or power), excitation frequency, and substrate voltage (or
power), determine the following key plasma properties: The electron energy distribution
function, the space and time variation of electron, ion, and neutral species densities
and velocities, the flux and energy distribution of ions and neutrals bombarding the
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electrodes and their uniformity across the electrodes, the power distribution in the
plasma, and the potential and current distribution in the system. These variables and
their spatiotemporal variation provide insight into the plasma reactor behavior. If the
reactor is loaded with a wafer to etch, one is in addition interested in the outputs
(figures of merit) including the etch (or deposition) rate, uniformity, anisotropy (shape
of microscopic features etched into the wafer), selectivity (rate of etching the film vs.
the mask or underlying substrate), radiation damage, and wafer temperature. The
level of detail one can obtain depends on the type of simulation used. For example,
fluid simulations can’t provide the species distribution functions but only averages
over the distribution. One can also pose the inverse problem which is much more
difficult to solve, that is: given a material to be etched and specifications on the rate,
uniformity, anisotropy, and selectivity, determine the reactor configuration, dimensions,
and operating parameters to achieve the task.

The problem of plasma simulation is extremely challenging owing to the vast dis-
parity in length and time scales involved (Figure 1, right). Length scales range from
atomistic, to microscopic (film thickness, linewidth), to the reactor (wafer) scale. Even
if one focuses on reactor scale simulations, as is done in this paper, the presence of the
extremely thin sheath in high density plasmas introduces a formidable range of length
scales from 10s of µ to 10s of cm. The range of time scales is also extremely wide, from
the ns response time of electrons, to 10-100s of ms of heavy species chemistry and gas
residence times, to mins for the duration of etching processes.

Plasma Simulation Approaches

Glow discharge plasmas are extremely complex systems in which a plethora of in-
terdependent parameters can influence the process, often in a subtle way. Modeling and
simulation of these systems has emerged as a tool for enhancing one’s intuition about
the physiochemical processes occurring in the plasma, for understanding the complex
spatiotemporal plasma dynamics, and for assisting in the design of new reactors or the
optimization of existing ones ³. Simulations of plasma reactors of the type used in
the microelectronics industry started to appear only in the 1980s. A number of two-
dimensional plasma reactor simulations were reported 4, 5 focusing on the transport and
reaction of neutrals only (neutral transport and reaction models). The electron density
was assumed to have a uniform or Bessel function profile, and the electron energy was
not calculated as a function of space and time in the reactor. These studies did not solve
the problem of neutral radical transport and reaction in a self-consistent manner. The
radical source terms (by electron-impact dissociation, for example) were estimated and
the conservation equations for mass, momentum, and energy transport were solved to
obtain the fluid velocity profiles, neutral gas temperature and the concentration distri-
bution of radicals; this is a standard computational fluid dynamics problem. Charged
particle transport was not considered, and the effect of plasma gas composition (differ-
ent than the feedstock gas composition) on the plasma properties was not accounted
for.

Up until the early 1990s simulations that solved for the radio frequency (RF)
plasma dynamics (so-called glow discharge models) were confined to one spatial di-
mension (1-D) 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21. In addition most of these sim-
ulations did not solve for the transport and reaction of neutrals. Self-consistent RF
plasma simulations which solve for the coupled effects of charged and neutral species
transport have only been reported within the past several years in 1-D 16, 18, 19 and
2-D 22, 23, 24, 25, 26, 27, 28, 29 and even 3-D 30 . Multidimensional simulations are particu-
larly useful since they can address the important issue of plasma uniformity and the
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spatiotemporal plasma dynamics along both the radial and axial direction. However,
most 2-D simulations still do not include neutral transport and chemistry and consider
noble gases (argon and helium) 31, 32, 33, 34, 35, not reactive gas plasmas. Several 2-D
and one 3-D plasma simulations, however, couple the neutral transport and chemistry
with the glow discharge in a self-consistent manner 22, 23, 24, 25, 26, 27, 28, 29, 30. In view of
the above discussion, multidimensional self-consistent plasma reactor simulation is of
very young age.

There are three kinds of glow discharge simulations: fluid, kinetic and hybrid.
Fluid simulations use moments of the Boltzmann equation describing species density,
momentum and energy conservation 3, 25, 27, 37. They require some assumptions re-
garding the species distribution function to achieve closure of the equations. Kinetic
simulations, including Particle-In-Cell with Monte Carlo Collisions (PIC-MCC) 38 or
Direct Simulation Monte Carlo (DSMC) 39 yield the particle distribution functions as
an output of the simulation. They are considered more accurate than fluid simulations
at low pressures when the species mean free path is comparable to or longer than a
characteristic length scale (Knudsen number Kn = λ/L) or for highly non-equilibrium
situations. However, there is evidence that fluid simulations can perform well even at
low pressures for which their assumptions must be scrutinized 40 . Kinetic simulations
are computationally intensive as compared to fluid simulations. Hybrid simulations
have been developed 16, 18, 28, 41 in an attempt to preserve the accuracy of kinetic sim-
ulations and at the same time reduce the computational burden.

When dealing with multidimensional geometries and complex chemistries, ”full-
blown” self-consisted plasma simulations pose a very challenging task. While ”brute
force” simulations (for example ones that solve the complete set of conservation equa-
tions for all particles) are feasible, they are also labor and time consuming. Judicious
approximations, based on the physics of the problem, can reduce the simulation times
dramatically. Examples are the space-time averaging used in the non-local approach,
or the approximations used to construct rapid plasma simulation tools 4 1 ,  4 2 ,  4 3 ,  4 4 ,  45 .
(see below).

The Non-Local Approach

A promising approach to calculating the electron distribution function (EDF) in
low pressure plasmas is the so-called non-local approach to electron kinetics. This was
proposed by Bernstein and Holstein 46, and popularized by Tsendin 47 , who initially
suggested this approach for the positive column of a DC discharge. Since then, the
non-local approach has been applied to a variety of low pressure gas discharge systems
48 . Lately the non-local approach was applied to inductively coupled plasma (ICP)
reactor simulation by several authors 41, 49, 50.

For many gas discharges, especially those in monatomic gases, the electron mo-
mentum relaxation frequency is much larger that the electron energy relaxation fre-
quency. Under these conditions, the conventional two-term (ƒ0 and ƒ1) approximation
to the distribution function can be applied, where ƒ0 and ƒ1  are the isotropic and
anisotropic parts of the distribution function, respectively. Furthermore, for typical
conditions, the applied excitation frequency is much larger than the electron energy
relaxation frequency. It follows that the isotropic part of the distribution function is
time-independent. The Boltzmann equation is then reduced to a time-invariant but
space dependent equation for ƒ0; ƒ1 is recovered as a derivative of ƒ0 . For the majority
of electrons in the discharge, which are trapped by the self-forming electrostatic field,
a further simplification is applicable. At low enough pressures, the energy relaxation
length for these electrons is large compared to the reactor dimensions. Since electron
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Figure 2. Schematic of an inductively coupled plasma reactor.

heating is a slow process compared to the time scale of electron spatial displacement,
the total energy of the electrons (kinetic plus potential) is approximately constant in
space. One can then space-average the Boltzmann equation and derive an equation for
ƒ0 as a function of the total electron energy, that does not depend explicitly on the
spatial coordinates. This is a tremendous simplification of the Boltzmann equation in
multidimensional plasmas. However, the spatial dependence has to be retained for the
electrons which have high enough energy to overcome the wall potential and reach the
walls (free electrons), or for electrons that have an energy relaxation length smaller
than the reactor dimension. For monatomic gases (e.g., argon) this includes electrons
with energy above the first excitation potential of the atom.

In molecular gases (e.g., chlorine, sulfur hexafluoride, carbon tetrafluoride) the
electron energy relaxation length of trapped electrons is much shorter that in atomic
gases because of a plethora of relatively low threshold energy (few eV) collisions (e.g.,
vibrational excitations). Therefore, as the gas pressure increases, the non-local ap-
proach is expected to break down much sooner for molecular gases as compared to
atomic gases. Also, for molecular gases, the traditional two-term approximation of the
EDF may not be applicable because the inelastic collision cross sections are comparable
to or even exceed the elastic collision cross sections.

In addition to spatial non-locality, temporal non-locality of the EDF may be im-
portant in low pressure RF plasmas. Temporal non-locality means that the EDF is not,
determined by the instantaneous value of the RF field. Instead, different parts of the
EDF exhibit various delays with respect to the field. The frequency ranges of interest
to temporal evolution of the EDF were studied by Tsendin 79 . Numerical solutions
to the time-dependent Boltzmann equation in a uniform electric field have also been
performed 52, 53. The temporal non-locality of the EDF may be important for the op-
erating conditions specific to high density RF plasmas, for which spatial non-locality is
also present.
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INDUCTIVELY COUPLED PLASMA REACTORS

Inductively coupled plasma (ICP) reactors are particularly attractive because their
design is relatively simpler and they are easily scalable to large diameter substrates,
2, 54, 55 . In ICPs the plasma is excited in a cylindrical chamber (r, z, θ) by a solenoidal or
planar (stovetop-type) coil powered at radio frequencies, for example 13.56 MHz (Figure
2). The coil current induces a magnetic field which in turn induces an azimuthal (in
the θ-direction) electric field that couples power to the plasma, i.e., heats the plasma
electrons. For common excitation frequencies (less than the plasma frequency), the
electromagnetic fields are absorbed by the plasma within the skin depth. For typical
conditions, fields penetrate a few cm into the plasma. The power is deposited non-
uniformly in the shape of a toroid. Because of the low pressure, however, species
diffusion is facile and the plasma fills the whole reactor. In the absence of any capacitive
coupling from the coil, the plasma potential is relatively low (≈ 20 V) thus minimizing
unwanted sputtering of the reactor walls. Capacitive coupling from the coil can result
in large time-dependent plasma potentials. Similarly, when the wafer platen is biased
independently by a separate RF power supply in order to control the energy of ions
bombarding the wafer, large time-dependent plasma potentials can be achieved.

Literature Review

Most ICP simulations are for 2-D geometries, although 1-D simulations have also
been reported 56, 57 . Recently the first 3-D ICP simulation was published by Kushner
et al. 30 . Table 1 gives a sample of published multidimensional ICP reactor scale
simulations. The second column indicates the type of electron energy distribution
function (EEDF) used in the simulation; Max. is for a Maxwellian distribution, N-L
and M-C stand for an EEDF calculated using the non-local approach or a Monte Carlo
simulation, respectively, and BE is for a simulation that used an off-line Boltzmann
equation solver to calculate the EEDF and the resulting rate coefficients of electron
impact reactions. All works in Table 1 except for Kolobov et al. 58 and Economou et
al. 39 incorporated a self-consistent solution of the Maxwell equations for the power
deposition profiles (third column). The electron heating mechanism (fourth column)
was assumed to be either ohmic (i.e., the plasma current is proportional to the local
electric field), or hybrid (i.e., anywhere in the range from collisional to collisionless).
Most simulations solved Poisson’s equation for the electrostatic field (fifth column)
although several works assumed electroneutrality in the bulk plasma thus avoiding the
need to solve Poisson’s equation. Plasma species (electrons, ions, and neutrals, sixth
column) were treated either as fluid (F), or kinetically (K), or they were not included
in the simulation (n/a).

Stewart et al. 59 used a fluid model to simulate an ICP argon plasma. They
used the full momentum equation for ions and the drift-diffusion approximation for
electrons. They examined the effect of reactor aspect ratio on ion flux uniformity. A
more detailed study of aspect ratio effects on uniformity was conducted by Wainman
et al 60 .The simulation results compared favorably with experimental measurements.
In a more recent work, the fluid model of Stewart et al. 59 was extended to include the
mass, momentum, and energy continuity equations for the neutral gas 27. A chlorine
ICP sustained in a GEC reference cell was simulated. The simulation results were in
reasonable agreement with measurements. All these simulations assumed Ohmic (col-
lisional) power deposition and neglected non-linear effects such as the ponderomotive
force 61. Also, a Maxwellian EEDF was assumed. Vahedi et al. 62 developed a model
for non-collisional electron heating that can be incorporated in ICP simulations using
an effective collision frequency approximation.

372



Kushner et al. have developed a modular approach to simulating ICPs 28,  29,  30 .
The simulation consists of an electromagnetics module (EMM), an electron energy mod-
ule (EEM), and a self-consistent charged species transport and chemistry module. The
EEM module has two options. A “fluid” equation for electron energy coupled with an
off-line Boltzmann solver which is used to parameterize the electron transport proper-
ties and reaction coefficients in terms of the mean electron energy 30, or a Monte Carlo
simulation of the electron properties 28, 29. In the latter case, non-ohmic heating and
non-linear effects (e.g., ponderomotive force) are implicitly accounted for. The electric
fields are computed using Ohm’s law, relating the azimuthal electron current to the az-
imuthal electric field with the cold plasma conductivity. This limitation was removed
later 63. In the approach of Kushner et al., a neutral hydrodynamic flow module can
also be incorporated’ to calculate the neutral gas velocity profiles. All these simulations
did not resolve the sheath due to the high spatial stiffness. Later, Grapperhaus and
Kushner proposed a semi-analytic sheath model that was incorporated into their 2-D
hybrid plasma equipment model 64 .

Di Peso et al. 61 used the full momentum equation for the electron transport
to calculate the azimuthal velocity component of the electrons in an argon ICP. The

Table 1. A sample of published multidimensional inductively coupled plasma simula-
tions. Number next to the author(s) shows reference.

EMAuthors

Bukowski et al., 27

Dai and Wu, 67

DiPeso at al., 61

Economou et al., 39

Kolobov et al., 58

Kortshagen et al., 41

Kushner et al., 30

Lymberopoulos
et al., 26
Paranjpe, 43

Rauf & Kushner, 63

Stewart et al., 59

Vahedi et al., 62

Wise et al.,44

Yang & Wu,36

EEDF

Max.

N-L

Max.

Max.

N-L

N-L

BE

Max.

Max.

M-C

Max.

Max.

Max.

N-L

Yes

Yes

Yes

Yes

No

Yes

Yes

Yes

Yes

Yes

Yes

Yes

Yes

Yes

Heating

Ohmic

Hybrid

Ohmic

Ohmic

Ohmic

Ohmic

Ohmic

Ohmic

Ohmic

Hybrid

Ohmic

Hybrid

Ohmic

Ohmic

Poisson

Yes

Yes

No

Yes

Spec.

No

Yes

Yes

No

Yes

Yes

Yes

No

Yes

e

F

K

F

F

K

K

F

F

F

H

F

F

F

K

i

F

F

F

K

n / a

F

F

F

F

F

F

F

F

F

Treatment of Species
n

F

n/a

n / a

K

n / a

n/a

F

F

n / a

F

n/a

n/a

F

n / a

Remarks

ponderomotive

DSMC

specified
EM field

rapid,
trapped e

3-D

resolved
sheath
rapid,

local approx.

rapid

Legend: EEDF = electron energy distribution function, EM = electromagnetics model, e = electrons, i =
ions, n = neutrals, Max. = Maxwellian EEDF, M-C =Monte Carlo, N-L = non-local, BE = of-line
Boltzmann equation, F = fluid,, H = hybrid, K = kinetic, n/a = not applicable, Spec. = specified.
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authors assumed electroneutrality in the bulk, and ambipolar charge flow in the r and z
directions. They neglected electron inertia in the r and z directions, but they included
the Lorentz force acting on the electrons due to the RF magnetic field. The effect of
this ponderomotive force (also called radiation pressure) is to push charged particles,
regardless of sign of charge, against the gradient of the azimuthal electric field, i.e.,
towards the reactor center. The authors noticed that the ion flux uniformity at the
wafer at 5 mtorr was not affected substantially when including the ponderomotive force
compared to when that force was neglected; the uniformity was noticeably affected,
however, at a pressure of 2 mtorr. They explained this result by noting that as the
pressure is lowered, the azimuthal electron velocity component is more out of phase with
Eθ and more in phase with the RF magnetic field, making the Lorentz force larger.

Kortshagen et al. 41 used the non-local approach to solve for the self-consistent
EEDF in a 2-D argon ICP. They assumed electroneutrality in the bulk plasma and
drift-dominated flow of ions, thus turning the ion density continuity equation into an
equation for the electrostatic potential. The authors solved a spatially homogeneous
Boltzmann equation in terms of the total electron energy. They did not account for the
spatial dependence of the EEDF due to the presence of free electrons or due to elec-
trons with energy above the excitation threshold that have a short energy relaxation
length. Yang and Wu 36 extended the simulation of Kortshagen et al. by solving the
space dependent Boltzmann equation, accounting for both trapped and free electrons.
Kolobov et al. 49, 58 also solved the space-dependent Boltzmann equation using speci-
fied electromagnetic and electrostatic fields to calculate electron kinetics in a 2-D ICP
reactor.

Lymberopoulos and Economou 26 solved the fluid conservation equations for elec-
trons, ions and neutrals for an electronegative (chlorine) plasma to calculate polysilicon
etching profiles in an ICP. They made the drift-diffusion approximation to the momen-
tum equations, and assumed a Maxwellian EEDF. They solved for the whole reactor
with a refined finite element grid near the walls to resolve the sheaths.

All simulations discussed so far assumed Ohmic heating of electrons by the RF
electric field, i.e., the plasma current is proportional to the driving field, the propor-
tionality factor being the (local) plasma conductivity. As the gas pressure is lowered to
below some 10 mtorr however (for argon), non-local effects start influencing the power
absorption and electron kinetics 65, 66 . In fact, as pointed out by Rauf and Kushner
63, treating the electrons kinetically (e.g., using Monte Carlo simulation or otherwise
solving the Boltzmann equation to find the EEDF), and at the same time assuming
Ohmic power deposition, can give erroneous results. This inconsistency was rectified by
Rauf and Kushner by calculating the plasma current from the Monte Carlo simulation
(instead of using Ohm’s law) and using this current into Maxwell’s equations to calcu-
late the EM fields self-consistently. This way the whole range (from collisional through
hybrid 65 to collisionless) of heating regimes and non-local kinetics giving rise to the
anomalous skin effect 66 can be captured by the simulation. This approach for studying
electron kinetics was also reported by Dai and Wu 67 , except that these authors solved
the linearized Boltzmann equation for the EEDF and employed an analytic solution of
the EM field equations. They also used measured electron temperature and density as
input values.

Rapid ICP simulations As mentioned before, judicious approximations based
on the physics of the problem can reduce the simulation times dramatically. Paranjpe
43 reported a rapid ICP simulation based on several simplifying approximations. The
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author, (a) solved only for the bulk plasma using ambipolar diffusion; (b) applied
electroneutrality in the bulk to avoid solving the Poisson equation, and (c) assumed
that the electron-impact rate coefficients are a function of the local electric field. He
considered an argon plasma without long time scale neutral (metastable in this case)
chemistry. These approximations resulted in an extremely fast simulation. However,
the ambipolar assumption has been questioned 68 , and the local electric field assumption
is not applicable at the low pressures of interest. Kortshagen et al. 41 also made use of
several simplifying approximations based on the physics of the problem. For example,
(a) only the bulk plasma was treated applying a boundary condition at the sheath
edge which, due to the thinness of the sheath, essentially coincides with the reactor
wall; (b) electroneutrality was applied in the bulk, and (c) the Boltzmann equation
was space- and time-averaged resulting in a greatly simplified equation for the EEDF.
Again, an argon discharge was employed without metastable chemistry. Both Paranjpe
and Kortshagen et al. employed a Maxwell equation solver for the EM fields. Wise
et al. 44 and Economou et al. 45 extended these works to include complex chemical
reactions in complicated reactor geometries as described below.

A RAPID 2-D SELF-CONSISTENT ICP FLUID SIMULATION

The two-dimensional self-consistent ICP reactor simulation of Wise et al. 44 and
Economou et al. 45 employs a modular approach similar to that used for capacitively-
coupled 25 and inductively-coupled 26, 29 systems. The simulation begins by solving
Maxwell’s equations to determine the electromagnetic fields and power deposition for
a specified coil current (Figure 3). The power deposition profile is used as input to
the electron energy equation to calculate the electron energy or ”temperature” and
hence the rate coefficients for electron-impact reactions. In turn these are used in
the source terms of the neutral and charged species modules. The former is used to

Figure 3. Modular approach used for ICP simulation.
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Bukowski et al. 27 , the problem has an analog in fluid mechanics, where one couples
a (viscous) thin boundary layer solution near the wall to a potential flow (no viscos-
ity) solution extending to much larger distances away from the wall. Fortunately, the
sheath in HDPs is collisionless, since the species mean free path at 10 mtorr is on the
order of 1 cm, much larger than the sheath thickness. Thus, if one knows the ion (or
electron) distribution function at the sheath edge, and the spatiotemporal distribution
of the sheath electric field, one can obtain the ion distribution function at the wall.

In order to be consistent with the Bohm criterion for ions, the sheath edge is defined
as the point where the ions have been accelerated (presumably by the presheath electric
field) to the Bohm velocity, i.e., the presheath is included as part of the bulk plasma.
The Bohm flux also provides a boundary condition (applied at the wall because of
the thinness of the sheath) for the positive ion continuity equation. The negative ion
density was assumed zero at the walls.

Electroneutrality in the bulk plasma If one is not interested in resolving
length scales of the order of the Debye length, the electroneutrality constraint in the
bulk plasma is applicable.

(1)

where z i is the charge on ion i. This is an excellent assumption for the plasmas
of interest since the Debye length is exceedingly small (10s of µm) compared to the
reactor dimensions. Of course the electroneutrality constraint can’t be applied in the
sheath, where the Poisson equation has to be solved. Solving Poisson’s equation in the
whole reactor domain introduces numerical difficulties. When using the electroneutral-
ity constraint, the electron continuity equation is not necessary. The electron density
is obtained directly from Equation (1), having solved for all ion densities.

Boltzmann electrons If the Poisson equation is used instead of electroneutrality
in the bulk, the electrostatic field can be recovered without recourse to any additional
calculate the neutral gas composition. The latter is used to calculate the charged
particle densities and the self-consistent electrostatic fields. The calculation is repeated
in a cyclic fashion until ”convergence”. From the converged solution, the self-consistent
power deposition, electrostatic potential, electron temperature, charged and neutral
species densities and flux, etch rate and uniformity along the wafer radius can be
calculated. This modular approach is essentially an equation splitting approach, in
order to overcome the disparate time scales of electron, ion, and neutral transport and
chemistry. Each of the species is solved in its natural time scale.

In the case of a RF biased substrate (assuming that the bias power is much less
than the coil power), a circuit simulation of the plasma which includes the non-linear
impedance of the sheath, executed as a post-processing step, can provide the time-
dependent plasma potential and information on the energy distribution of ions bom-
barding the wafer.

The simulation employs a number of simplifying assumptions as described below:

Separation of bulk plasma from sheath In high density plasmas, the sheath
thickness is on the order of 10-100s of µ. In contrast, the reactor dimension is typically
10s of cm. This disparity in length scales requires, for any numerical method, a much
denser grid near the walls compared to the bulk plasma. The high degree of spatial
stiffness (10³ – 104) introduces numerical difficulties and results in excessive computa-
tion times. For this reason it has become customary to separate the bulk plasma from
the sheath 41, 44, 45, or to avoid resolving the sheath 27, 30, 36 . It then becomes necessary
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to device a procedure for “splicing” the sheath to the bulk plasma 64. As mentioned by
assumptions. Since the Poisson equation is not solved in the bulk, the fields are obtained
by assuming Boltzmann electrons 2.

(2)

This expression results from the electron momentum balance equation by assuming
inertialess electrons (neglecting the left hand side of the momentum equation) and also
dropping the frictional force term. Equation (2) simply states that the electric field
force balances the electron pressure force.

Di Peso et al. 61 included the non-linear effect of Lorentz force acting in the
direction of B x uθ. This force becomes more important as the pressure and/or the
excitation frequency are lowered. It can be included in the electron momentum balance
and therefore end up as an additional term in Equation (2).

Specified EEDF The Boltzmann equation is not solved to compute the EEDF.
Instead, the EEDF is specified, normally assumed Maxwellian. The electron energy
balance is solved assuming an adiabatic condition for electron temperature at the wall.
The Maxwellian assumption is very common in the literature 26, 27, 31, 37, 43. Measured
EDFs in ICPs, however, have a Maxwellian bulk (due to electron-electron collisions),
and a depleted tail due to inelastic losses and escape of fast electrons to the walls. Thus
a bi-Maxwellian distribution may be more appropriate. A Maxwellian distribution is
not expected to have a great effect on ion densities since the ionization rate is self-
adjusted to balance the loss rate of ions to the walls; and the latter depends only
very weakly on the EEDF. The good agreement with experimental data shown below
is an indirect evidence that the Maxwellian EEDF is reasonable for obtaining species
densities and their distributions. Other forms of the EEDF may also be used, e.g.,
Druyvesteyn. The best approach, of course, is to solve the Boltzmann equation for
the EEDF. Approximations such as the non-local approach (when applicable), offer
tremendous advantages, especially for complex multidimensional geometries. Work
along these lines is in progress.

Drift-diffusion for ions The drift-diffusion approximation is made for ions, e.g.,
ion inertia was neglected. This appears to be a good approximation for Kn < 0.1. Eq.
(2) provides the field that drives ions in the plasma. Also, a constant mobility was
assumed for ions.

Diffusive Flow for Neutrals The importance of convective vs. diffusive flow of
neutrals is determined by the Peclet number Pe = u L / D, where L is a characteristic
dimension of the system. Away from inlet and exit ports, the characteristic length will
be on the order of the reactor dimension. The system will be primarily diffusive when
Pe << 1. For C l 2 gas in a reactor with L ≈ 0.1 m and a neutral species diffusivity
of D ≈ 5 m 2 s–1  at 20 mTorr, the Peclet number will be Pe ≈ 1 when u = 50 m s .–1

Convective gas velocities are not likely to be that high, except for a small region near the
gas inlet ports. It follows that gas flow can be approximated as diffusive; this obviates
the need for solving the full Navier-Stokes equations which adds to the computational
burden. It should be noted that both the diffusivity and the convective velocity scale
inversely with gas pressure, so the Pe number is independent of pressure. However, as
the pressure is lowered to the point of free molecular flow, the gas diffusion coefficient
has no meaning any more. Direct Simulation Monte Carlo (DSMC) can then be applied
to solve for the fluid velocity profiles. The boundary condition for neutrals was that
the flux at the wall was equal to the reaction rate of neutrals.
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Figure 4. Schematic of the GEC-ICP reference cell.

In summary the following equations, which are listed in reference 26, were used
for the ICP reactor model: (a) density continuity for each and every ion and neutral in
the system, (b) the drift-diffusion equation for the ion fluxes and diffusion alone for the
neutral fluxes, (c) electroneutrality to calculate the electron density, Equation (1) above,
(d) Boltzmann relation, Equation (2) above, to calculate the electrostatic fields, (e) an
electron energy equation to calculate Te , and (f) the Maxwell’s equations, reduced to
one equation for the azimuthal electric field. The cold plasma approximation was used
to calculate the power deposition profiles. This system of equations was supplemented
with a table of values for the reaction rate coefficients of electron impact reactions as a
function of Te . Analytical approximations can also be used for this purpose, but table
interpolation is generally faster. These equations were incorporated into a simulation
code named MPRES (Modular Plasma Reactor Simulator 45) which can be used as
a Technology Computer-Aided Design (TCAD) tool for inductively coupled plasma
systems.

RESULTS AND COMPARISON WITH EXPERIMENTAL DATA

Application to a GEC Reference Cell and Experimental Validation

The rapid ICP simulation approach was validated against experimental data. The
reactor used for comparison of model predictions to data is the Gaseous Electronics
Conference reference cell, modified for inductive operation69 . The 2-dimensional (2-D)
cell structure studied here is shown in Figure 4. A quartz plate separates the 5-turn
planar inductive coil from the plasma. In practice the gas flow is three dimensional,
but the flow rates (10-20 sccm) are quite small for the flow to be diffusive. In the
simulation, gas injection was provided as a ring directly below the quartz plate, and
the exhaust was located azimuthally below the wafer level.

Except when noted otherwise, all experimental data shown below were obtained
by researchers at Sandia National Laboratories in Albuquerque 69, 70 . Line-integrated
electron densities were measured by microwave interferometry, spatially resolved elec-
tron densities by Langmuir probes, negative ion densities by laser photodetachment
and simultaneous detection of the resulting electrons by microwave interferometry, and
metastable argon atoms by absorption measurements. Langmuir probes were also used
to measure the electron temperature and the plasma potential.
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Figure 5. Atomic (left) and molecular (right) chlorine ion number densities under base case
conditions.

Chlorine Plasma

The chemistry set used for chlorine is identical to that used earlier2 6 . Base case
conditions were 20 mTorr pressure (nominal), 180 W deposited in the plasma, 20 sccm
flow of pure Cl2, 13.56 MHz excitation frequency, and no wafer present (i.e. no etching)
to allow comparison to available measurements. Heavy species temperatures were not
solved for. The ion and neutral gas temperatures were assumed constant at 0.12 eV
and 500 K, respectively. The probability of Cl recombination on the walls was taken
as 0.1. These parameter values were not “optimized” or “fit” in anyway to the data.
They were chosen based on previous experience with calculations or measurements in
chlorine plasmas.

Figure 5 shows the Cl + and Cl 2
+  densities, which are depleted near the walls of the

chamber by losses to the walls. The peak density of Cl + is 3.4x10 17 m –3 , slightly less
than the molecular ion (Cl 2

+ ) peak density (3.8x1017 m –3 ). Although the Cl2 density
was lower than that of Cl, the corresponding ions are of comparable magnitude. This is
because the ionization threshold for Cl2 is lower (hence the production rate coefficient
is higher) than that of Cl, and also the losses of Cl 2

+ to the walls are lower than those
of Cl + due to the higher mass of the former ion. The atomic chlorine ion is produced
off axis (not shown) but diffuses inwards to peak on axis, where the atomic chlorine
neutral density is also highest. Because the molecular chlorine neutral density peaks
away from the reactor axis, and Cl2

+ production also peaks off axis, the established
Cl 2

+ profile has a maximum off axis, under the coil where the power deposition is also
maximum.

Figure 6, left, shows comparisons of radial profiles of electron density, tempera-
ture, and plasma potential measured by a Langmuir probe 69. A simple one dimensional
Langmuir Probe theory was applied due to the small Debye length, and the Langmuir
probe measurements were calibrated using microwave interferometry. The plasma is
well confined, as evidenced by the drop off in electron density by one order of magni-
tude by r=10 cm. Given the inevitable uncertainty in the reaction rate coefficients and
in the probe measurements, the agreement between predictions and measurements is
thought to be good. Notice that there were no adjustable parameters that were varied
to fit the data. The trend of predicted electron temperature is very similar to experi-
ment, capturing a slight peak at a radial position corresponding to the centroid of the
toroidal power deposition profile. Of interest here is the substantial drop off in electron
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Figure 6. Comparison of simulation predictions (lines) with data (points) for chlorine (left) and
argon (right) plasmas.

temperature with position. This is due to the rather small electron energy relaxation
length in the 20 mtorr chlorine plasma (see below), which results in a somewhat “local”
behavior of the molecular gas discharge.

Figure 7 shows a comparison of the line integrated electron density at the central
plane of the discharge, and the Cl – density at the reactor center versus power. The
line integrated electron density was measured by a microwave interferometer; the Cl –

density was measured by photodetachment of Cl – and subsequent detection of the elec-
trons produced. The simulated electron density increases linearly with coil input power,
as expected for a system in which most of the coil power is deposited in the plasma
as opposed to the sheaths. The measured electron density increases superlinearly. The
agreement with the data is within experimental error. The trend for Cl- increasing with
power is in quantitative agreement with experiment to within a factor of two, which
is the estimated uncertainty in the photodetachment cross section 70. Comparison of
the measured radial profile of Cl – was also made for the base case chlorine plasma
in the GEC cell. The measured Cl – density was close to that obtained numerically,
approximately 3x10 17 m –3 , at the plasma center. However, there were differences in the
shape of the profile. The experiment showed a rather flat profile at the center with a
slight increase with radius. The simulation also showed a flat profile at the center, but
the negative ion density decreased substantially as a function of radius. The simulation
predicted that the negative ions will tend to be confined by the ambipolar fields. We
do believe that the negative ion density has to start dropping at some radial position
away from the center of the reactor since the plasma is rather well confined (Fig. 7).
At this point we can’t explain the differences between measurement and simulation.
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Figure 7. Comparison of predicted (lines) line-integrated electron density and negative ion density
at the center of the plasma with experimental data (points).

Figure 8. Comparison of predicted (line) plasma emission profile to measurement (points).

Comparisons of optical emission intensity profiles with data taken at the UH-ICP
reactor are shown in Figure 8 71 . The pressure was 15 mtorr and the gas mixture
was 80%/20% Cl2 /Ar. The data show some scatter near the centerline due to the
method (Abel inversion) used to extract the radial profiles from side-on observations
of emission intensity. There is qualitative agreement with the data. However, there
is a radial shift in the off-axis maximum between predictions and data. The off axis
maximum occurs close to the maximum in power deposition, again signifying some
degree of local behavior of the molecular gas plasma.

Argon Plasma

For the Ar plasma, we used the same chemistry as before 72 , with the radiative
relaxation of the resonant state corrected for the reduced operating pressure in the
high density source. Comparison of the Ar plasma density, electron temperature, and
electrostatic potential are shown in Figure 6, right. The electron density is predicted
to be more diffuse compared to the measured profile, possibly due to the drift-diffusion
assumption for ions. Correspondingly, the plasma potential is predicted to be flatter
that the measured values (remember that the space charge fields are recovered from the
electron density profiles, see Equation 2). The electron temperature gradients are much
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Figure 9. Dome-shaped ICP used for simulations. The finite element grid is also shown.

smaller than in the case of chlorine, due to the much larger electron energy relaxation
length (see below).

Comparison of the line-integrated Ar* density (measured by absorption) was also
made for a 10 mtorr, 200 W argon plasma. The simulation considered one (lumped)
metastable state and one resonant state, while the data were for the dominant 1S5

state 73 . The absolute value of the metastable density was captured by the simulation.
The predicted profiles were qualitatively similar with the measured profiles, except that
the measurements showed very small values of the integrated density near the bottom
electrode. This might be in part due to blocking by the window edge of the probing
beam used to do the metastable absorption measurements.

Application to a dome-shaped ICP reactor

The experimentally verified simulation tool was then used to predict plasma trans-
port in a dome-shaped reactor that can accommodate 300 mm-diameter wafers, i.e., an
industrial-size reactor (Figure 9). This is an inductively coupled reactor powered by a
four-turn solenoidal coil wound around the quartz dome. The coil can be positioned in
one of four different locations designated in Figure 9 as high, middle, low, and bottom
positions, in descending order from the top of the dome (for each position only half of
the coil is shown in Figure 9).

The chosen base case conditions were a total pressure of 10 mtorr, a plasma power
of 1000 Watts, no substrate bias, the middle coil position, an excitation frequency of
13.56 MHz, a neutral gas temperature of 500 K, an ion temperature of 0.12 eV, and an
inlet gas feedrate of 30 sccm.

The predicted plasma potential and ion (electron) density distributions for argon
are shown in Figure 10. The scales for the contour values are shown on the top of the
figure. The potential difference in the bulk of the plasma is a few kTe , as expected.
The sheath potential drop over the grounded electrode is about 13 Volts. The ion
density peaks on axis and shows a smooth gradient towards the walls, where the density
drops by about an order of magnitude at the bottom corner of the reactor. Note the
ion density gradients along the electrode surface signifying a non-uniform ion flux to
the electrode. The potential and ion density distributions shown in Figure 10 are
qualitative similar to those measured in a similar reactor by Tuszewski and Tobin
74 . Quantitative comparison cannot be made because these authors used mixed gas
Ar/O2 / H 2 discharges.
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Figure 10. Plasma potential (left) and ion density (right) in an argon plasma.

The electron temperature distribution in argon and chlorine discharges under the
same (base case) conditions are shown in Figure 11, for the middle coil position. The
striking feature of this plot is the rather weak gradient of electron temperature in argon
and the strong gradient in chlorine. This is in part due to the different electron impact

Figure 11. Electron temperature in chlorine (left) and argon (right) plasmas.

reactions occurring in these two kinds of discharges: a noble gas and a molecular gas
discharge. A cross section set for molecular chlorine is shown in Figure 12, left 75.
A set for argon is shown on the right side of the same figure 2. The magnitude of
the cross section of low threshold processes is substantial in chlorine, approaching the
elastic collision cross section for some energy range. In addition, these processes have
a threshold comparable to the electron temperature, i.e., they are inelastic and not
quasi-elastic (as for example rotational excitation) collisions. Thus the electron energy
relaxation length ( λe) is expected to be much shorter in chlorine compared to argon.
For a pressure of 10 mtorr, λe is estimated to be a few cm in chlorine. Therefore,
for a reactor length of 20 cm, a strong electron temperature gradient is reasonable.
Another reason for the stronger temperature gradients in chlorine compared to argon
is the electron density being lower in chlorine (and the electron thermal diffusivity is
proportional to the electron density). The strong temperature gradients lead to much
more localized plasma production and molecular dissociation (Figure 13, left) near
the power deposition zone (near the coils) in the chlorine plasma. Also, the strong
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Figure 12. Cross section set for molecular chlorine (left) and argon (right).

Figure 13. Dissociation rate in chlorine (left) and excitation rate in argon (right) plasmas.

temperature gradients in the chlorine discharge lead to substantially lower electron
temperatures over the wafer. This is due to the large distance of the wafer from
the power deposition zone. The lower electron temperature may be advantageous for
minimizing charging damage of thin film structures on the wafer 76.

In contrast, the first inelastic threshold for argon is around 11.5 eV (ionization
of argon metastables with a threshold of 4.2 eV is not shown in the cross section
set of Figure 12, right). Hence the electron energy relaxation length for low energy
electrons is greater than the reactor dimensions, assuming that metastable collisions
do not play a substantial role. The result is much more uniform electron temperature,
and an excitation rate peaking on the reactor axis and not near the power deposition
zone (Figure 13, right). From the above discussion one concludes that, under these
conditions, the chlorine discharge is closer to exhibiting local behavior, while the argon
discharge is closer to exhibiting non-local behavior.

The effect of coil location on ion flux uniformity is shown in Figure 14, left, for
the argon discharge. Four positions were studied; in addition to the default middle
position used in the preceding results, top, low, and bottom coil positions (also shown
in Figure 9) were tested. The peak values of the ion flux were 4.20x1020m–2 s –1,
4.23x10 20m –2 s –1 , 4.56x10 20 m –2 s –1 , and 4.64x1020 m –2s – 1 , respectively. Pressure was
kept at 10 mtorr and power was set at 1000 W for all the runs involving the different
coil positions. The ion flux uniformity improves steadily and dramatically in going
from the upper to the lowest coil positions. This is a result of altering the location of
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the plasma generation zone and the ion diffusion length as the coil position is varied.
Under the conditions of Figure 14, left, the ion density always peaks on axis. However,
having the plasma production zone near the wafer edge (when the coil is at its lowest
position), results in more uniform ion density profiles.

In general, the ion flux uniformity depends on the ion production rate, ion dif-
fusion length (this depends not only on the geometry of the system but also on the
location of plasma production), reactor aspect ratio, and pressure (which determines
the value of diffusivity). These parameters can be lumped into two dimensionless
groups (Damkohler number and aspect ratio) that characterize the system behavior.
The Damkholer number 77 Da = kp ne L2 / D, shows the relative importance of species
production (or loss) by gas-phase mechanisms relative to their ability to diffuse away
from the source. When Da > 1, large concentration gradients may be expected. The
Da number in these systems varies depending on the power level (which affects electron
density ne and degree of dissociation) and pressure (which affects neutral density, dif-
fusivity and the rate coefficient for electron impact reactions kp). The effect of aspect
ratio is shown schematically in Figure 15. Given a localized source of species (e.g.
radicals), the spatial distribution of these species at steady state will depend on the
reactor aspect ratio. Low aspect ratio reactors (tall, small radius) yield a distribution
that peaks on axis, while large aspect ratio systems (short, large radius) yield a distri-
bution that peaks off axis. This is because, as the species diffuse radially away from
the localized source to try to fill in the central regions of the reactor, they also diffuse
towards and lost onto the axial end walls. The final profile is dictated by the relative
magnitude of the diffusion lengths, i.e., the aspect ratio. Actually it is the square of the
aspect ratio that governs behavior since the diffusion loss ”rate coefficient” is inversely
proportional to the square of the diffusion length.

The etch rate of polysilicon in a chlorine discharge is a complex convolution of the
ion (atomic and molecular) and neutral (atomic and molecular) fluxes bombarding the
wafer. Using the surface chemistry model for polysilicon etching proposed by Bailey
et al. 78 , we calculated the etch rate distribution for the base case conditions. The
result is shown in Figure 14, right, for two coil positions. The etch rate is much more
uniform for the case of chlorine even for the standard (middle) coil position. Moving
the coil to the low position improves uniformity substantially. The corresponding plot
for the argon ion flux (Figure 14, left) is still very non-uniform. This demonstrates that
chemistry plays a critical role in reaction uniformity across the wafer. These results
also demonstrate that reaction uniformity across a wafer can be tailored by optimizing
the position of the coils.

Figure 14. Ion flux uniformity in argon plasma (left) and etch rate uniformity in chlorine plasma
(right) across the wafer surface.

385



Figure 15. Effect of aspect ratio on flux uniformity along the substrate electrode.

Summary

Modeling and simulation of plasma systems, combined with well-defined exper-
iments, are essential for furthering our understanding of the transport and reaction
phenomena occurring in these systems. The problem is exceedingly complicated due to
the disparate length and time scales involved, especially when complex chemistries and
multidimensional geometries are of interest. Direct solution of the governing equations,
or large scale particle simulations are time consuming and are not suitable for rapid
turn-around parametric investigations. Judicious approximations, based on the physics
of the system, can reduce the complexity of the problem to yield rapid simulation tools.
This is particularly important for complex chemistries and complex multidimensional
geometries found in practical systems.

We have developed a two-dimensional self-consistent rapid simulation tool for in-
ductively coupled high density plasma reactors. Simulations of complex chemical sys-
tems in arbitrary geometries can be performed in a matter of hours on desktop (125
MHz) workstations. Experimental validation of the tool was performed with Lang-
muir probe, microwave interferometry, laser photodetachment, optical emission, and
absorption measurements.

The simulation tool was then used to conduct a parametric study of radial plasma
uniformity in a domed-shaped ICP reactor. Using a uniformly spaced four turn solenoidal
coil, the ion flux uniformity in the case of argon was steadily improved by moving the
coil away from the dome top towards the reactor bottom. Sharper temperature and
ionization profiles in the chlorine plasma, however, led to large gradients towards the
sides of the substrate if the coils are placed too low on the side of the reactor, so a
mid-range coil position produces the best uniformity results. Also, the stronger elec-
tron temperature gradients in the case of chlorine (or in the case of any molecular gas)
resulted in very low electron temperatures near the wafer when the latter was placed
far enough from the power deposition zone. This may be advantageous regarding wafer
damage.

DISCUSSION

Improvements to Fluid Model

The following improvements can be made to the fluid model described above to
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extend its range of validity to lower pressures. First, a field-dependent ion mobility
is more accurate for low collisionality systems. Dropping the drift-diffusion approxi-
mation and using the full momentum equation for ions is expected to be even better.
This should result in more confined ion density profiles and better agreement with the
experimental data, especially for pressures of 10 mtorr and below for argon (see Figure
7, right).

Ohm’s law breaks down at low enough pressures where electron kinetics is non-
local 6 6 . An improvement in the electromagnetics module, used to calculate the power
deposition profiles, can be made by replacing Ohm’s law with a more accurate expres-
sion for the electron current flowing in the plasma. Several options come to mind:
(a) the electron current can be calculated by using the azimuthal component of the
momentum balance equation as done by DiPeso et al. 61 (b) The Boltzmann equation
can be solved to calculate the electron current. In general, the spatially dependent
equation must be solved. When applicable, the spatially independent equation with
constant total energy 41, or a combination of spatially independent and spatially de-
pendent parts of the EEDF 36 can provide significant computational savings. (c) A
Monte Carlo simulation can be used to calculate the EEDF and the resultant electron
current 29, 63; this is a computationally intensive proposition.

Of course, incorporating any of the above improvements will increase the time
required for the simulation to converge. Careful comparisons with analytic or semi-
analytic models, fully kinetic simulations, and especially with experimental data need
to be made to ascertain the range of validity of the fluid simulation as the pressure is
lowered to below 10 mtorr.

Will fluid models become unusable in the future as pressure decreases?

The tendency in the microelectronics industry is to go to even lower pressures.
However, it should be kept in mind that it is not pressure, p, alone but the product
of pressure and length scale, pL, that determines the range of applicability of a fluid
model. (actually the quantity that determines system behavior is NL, where N is the
gas density; alternatively one can speak in terms of the Knudsen number.) There is a
practical lower limit to pressure in etching and deposition systems, determined by the
reaction rate. Let’s consider this simple example: polysilicon etching on a 200 mm-
diameter wafer at a practical rate of 0.5 µ /min, to generate product SiCl 4 , requires 56
sccm of Cl 2 flow. Of course one must have a higher flow of chlorine to avoid having
a reactor filled with product; let’s say 112 sccm. This flow would require a pumping
speed of 1400 1/s at the wafer surface to maintain a pressure of 1 mtorr. Due to
conductance limitations, the required pumping speed at the pump may be a few times
higher, i.e., a huge pump! When the wafer size becomes 450 mm around year 2005, the
corresponding figures will be 560 sccm of chlorine flow and 7,000 1/s pumping speed at
the wafer. These figures show that an operating pressure less than 1 mtorr is highly
unlikely for a practical system. Now, since the pressure is approaching a lower limit but
the wafer size keeps increasing, it appears that the product pL will reach a minimum
some time in the near future and then it will start increasing. Therefore fluid models
are not to become obsolete in the future! On the other hand, kinetic models will always
be useful to provide the species distributions functions, i.e., the EEDF of electrons or
the energy and angular distributions of ions and neutrals bombarding the wafer.

Ending notes

During the past several years, multidimensional self-consistent plasma simulations
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example, how low in pressure can the fluid approximation be used, and what is the
window of pressure and frequency for which the drift-diffusion approximation is correct?

For complex chemical systems the accuracy of the simulation is limited by the lack
of knowledge of cross sections for electron-impact reactions and plasma chemistry. In
etch or deposition plasmas, knowledge of surface chemistry is viewed as an even more
important limitation. This becomes more acute as the operating pressure decreases.
Experiments in well characterized systems, in combination with plasma simulation, will
continue to enhance our fundamental knowledge about the plasma dynamics. Many
more comparisons with experimental data are needed to ”tune” chemically complex
models and provide simulation tools with predictive capabilities over a wider range of
operating parameters. Considering that multidimensional self-consistent RF plasma
simulations are only several years old, such activity is expected to be more vigorous in
the near future.

which account for the coupled effects of charged and neutral species transport and
chemistry have been developed. These simulations vary in their degree of detail from
fluid to kinetic to hybrid simulations. Also, different degrees of approximation are
used within the same group (e.g., fluid) of simulations. Detailed comparisons with
experimental data are necessary to decide which degree of approximation is adequate
for accurate determination of some important quantities such as the species density
profiles, and the radical and ion flux and energy uniformity along the electrodes. For
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INTRODUCTION

(A

 mixtures are currently employed in plasma chemical treatment of
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The non-equilibrium kinetics of low pressure plasmas in molecular gases, such as
nitrogen, oxygen, hydrogen and their mixtures, is an active field of research in order to
understand the processes occurring in a variety of modern plasma technologies, and also
in the atmosphere and the ionosphere. In particular, the knowledge of the volume and the
surface kinetics of active species such as N and O atoms, N ( ²D), O2 (a¹∆), and N2 ³∑)
metastables, and NO molecules is important to understand the workings of plasma reactors
used for chemical synthesis, air pollution cleaning, or surface treatments of various materials.
Such knowledge is also important to understand the reentry heating of the Space Shuttle
(surface recombination of O and N atoms) and the emissions near the surface of space vehicles
in stationary orbits (surface production of gas phase NO and NO2 excited molecules).
Discharges in N2  – H 2

materials and can also be used for the chemical synthesis of such molecules as NH, NH3 ,
and N2 H2 .

In this paper we survey and discuss the main results of recently developed self-consistent
models for bulk and surface kinetic processes in low pressure flowing discharges in N2  – O 2
[1-3] and N2  – H2  [4] mixtures. Detailed comparisons with experimental data are carried
out. These models include a large number of physico-chemical reactions enabling one to
determine the concentrations of different neutral and ionic species, excited electronic states,
and N2 (X, v) and H2 (X, v) vibrational levels, the density Ne of free electrons, their average
kinetic energy and transport properties, the electric field, the average (across the tube) gas
temperature and the wall temperature.

KINETIC MODEL FOR BULK PLASMA PROCESSES

The models above referred to are one-dimensional, self-consistent and designed to apply
to DC flowing glow discharges and post-discharges. The input parameters are the usual
externally controlled ones, that is: pressure p (Torr), radius R (cm) and length L (cm) of the

Electron Kinetics and Application of Glow Discharges
Edited by U. Kortshagen and L. D. Tsendin, Plenum Press, New York, 1998



Figure 1. Flow chart of the model.

discharge tube, electric current I (mA), gas flow rate Q (sccm), and initial gas temperature and
composition (i.e., the relative oxygen or hydrogen concentration X(%) in a binary mixture
with N2  at the entrance of gas into the discharge zone). The model for N2  – O 2 mixtures gives
the possibility to calculate, as a function of the axial coordinate z, the following properties
of the bulk plasma: concentrations of N2 , O 2 , O 3 , NO, N2 O, NO2 , NO3 , N 2 O5  molecules
and N, O atoms in the ground electronic states, the populations of electronically excited
states
concentration of ions populations of vibrational levels
of N 2 molecules in the ground electronic state X¹ Σ+

g , density of electrons (Ne ), their average
kinetic –32 kT e and characteristic energy uk , electron drift velocity vd , discharge maintaining
electric field E, average gas temperature across the discharge tube, T, and temperature
Tw  of the tube walls. For N 2 – H2 mixtures, the model predicts the concentrations of
N2 , H2 , NH, NH2 , NH3  molecules and N, H atoms in the electronic ground states, nitrogen
ions and excited states as above, an effective high-lying Rydberg state H2 (R), and ions
H +

2 , H +
3 , HN +

2 , H – , in addition to the same electrical and thermal quantities as for N2 – O2 .

All the above properties are derived from a system of coupled equations for the plasma
bulk describing the kinetics of free electrons (homogeneous Boltzmann equation), the vibra-
tional kinetics of N2  (and H 2 ) molecules, the kinetics of electronic states of molecules and
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Table 1. List of Surface Processes

atoms, the chemical kinetics of heavy neutrals and charged particles, the energy balance of
the gas and the charged particle balance determining the maintaining reduced electric field.
Empirical formulas have been derived and used for the calculation of the wall temperature
Tw . Further, a set of equations for the surface kinetics of N and O (or H ) atoms is coupled
to the gas phase chemical kinetic equations, which renders the models fully self-consistent.

Figure 1 shows a flow chart of the numerical algorithm used to solve the model equations.

KINETIC MODEL FOR SURFACE PROCESSES

Here, we shall refer only to the model for surface processes in N2  – O 2 mixtures. Details
of the model for N2  – H 2 , which is quite similar, can be found elsewhere [4]. The basic
mechanisms taken into account are the following:

a) Physical adsorption and desorption of N and O atoms at vacant sites F;
b) Chemical adsorption and desorption of both types of atoms and NO, NO2  molecules

at vacant chemically active sites S on the surface;
c) Surface diffusion of physisorbed Nƒ  and Oƒ  atoms;
d) The reactions of chemisorbed NS  and OS  atoms with gas phase N, O atoms and NO

molecules (Eley-Rideal mechanism); and with physisorbed Nƒ  and O ƒ atoms (Langmuir-
Hinshelwood mechanism).

These reactions lead to the formation of gas phase N2 ,O2  and chemisorbed (NO) S ,
(NO2 ) S molecules. (NO) S molecules can either be desorbed or react with O, Oƒ  to produce
(NO2 ) S , which by desorption produce gas phase NO 2 molecules. The list of surface processes
is given in Table 1.

From the master equations for the surface and gas phase particle concentrations depend-
ing on the processes (S1)-(S19), one obtains:

( 1 )

( 2 )

( 3 )

( 4 )
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Herein, the second terms on the right-hand-side describe the surface production of
species due to chemical desorption; ∈ is the surface roughness factor; and γM  is the wall loss
probability of the species M. For M = N, O this probability is given by, respectively,

( 5 )

( 6 )

( 7 )

( 8 )

( 9 )

(10)

(11)

The dimensionless probabilities Kl
j  and K l for processes involving gas phase species

j
are determined by the following formulas:

(12)

where i=S3,S5,S7,S9,S11,S13,S15,S16,S17,S19; M = N for j=S1, M = O for j =S2. The
ratio [S]/[F] is the fraction of the surface covered by chemically active sites. K0

i , K 0
M are the

steric factors; Ei , E 0
M are the activation energies.

The dimensionless probabilities Pi  for surface processes involving physisorbed Nƒ  and
O ƒ atoms (i=S4,S6,S8,S10,S12,S14,S18) are determined by the following formulas:

(13)

(14)

(15)

(16)

Here, ν 0 and E DM , ν 0
dM and E d M are, respectively, the frequency factor and theDM

activation energy for surface diffusion and desorption of species M; the factors Ψ N a n d Ψ O
describe the influence on the lifetime of N  of the surface chemical processes (inƒ  and O ƒ
addition to desorption).

(17)

(with M = N, O, NO, NO2 ).
The values α M determine the coverage θM = α Mδ of chemically active sites by the

species M:

(18)

(19)

(20)
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Figure 2. Variation of the probability of wall losses for N atoms vs. the ratio X = [O ]/[N]. I = 30 mA. The

curves are calculations using the surface reaction model: γ
N

(1 )
a n d γ

N

( 2 )  are the contributions of the first and the
second systems of active sites, respectively, and γ

N
 is their sum.

(21)

Here, are the fluxes of gas phase atoms or molecules M = N, O, NO,
NO2  to the surface.

Note that the units of and are cm– 2 sec– 1. These quantities
are proportional to the chemical desorption fluxes.

The curves shown on Figures 2 to 4 are calculations from the surface kinetic model of the
wall loss probabilities for N, O, H atoms, respectively, for the discharge conditions indicated
in the captions, using estimated values for the activation energies and parameters [S]/[F] ,

in equations (12)-(14). Such values have been given in [2,3] for N2  – O 2

discharges and in [4] for N2  – H 2 discharge. The data points on Figure 3 are derived from a
fit of the populations predicted from the gas phase kinetic model to the measured ones, using
the wall loss probabilities as adjustable parameters. It can be seen that the surface kinetic
model provides a satisfactory explanation for the values of these wall loss probabilities.

VIBRATIONAL LEVEL POPULATIONS

Populations of N2(X, v) Levels

The populations of N2(X, v) vibrational levels are controlled by the processes:

(22)

(23)

(24)
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Figure 3. Wall loss probability of O atoms in N2 – O 2  discharge vs. O2  percentage, for different currents.
Pressure 2 Torr, tube radius 0.8 cm, gas flow rate 100 sccm, distance from gas entrance in discharge 43 cm.
Points - from fit to measurements [2]; curves - calculations from surface reaction model.

Figure 4. Probability γH  for wall losses of H atoms on pyrex glass as a function of the wall temperature Tw .
Points and 1,2 - different experimental data (see [5]); curves 3,4 - calculations for pure H2  – H system (curve
3) and for [H]/[N] = 1 (curve 4). Curve 5 - calculations from present model but for ∈ × [S]/[F] five times
larger than the value adopted in our model.
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Figure 5. Vibrational distribution of N2( X, v ) molecules calculated for O2 percentages of 0.1, 0.5 and 2%.
Solid and dashed lines are for discharge currents of 80 mA and 30 mA, respectively. The other conditions are
the same as in Fig.3

N2(v) + O → NO + N (chemical reaction) (25)

(26)N + N O → N2( = 3.4) + O (chemical reaction)

Figure 5 shows calculated N2 (X, v) vibrational distributions for various O2 percentages
in N 2 – O 2 mixtures. The fast decrease observed in the populations for v≥ 12 is due to the
chemical reaction (25).

Populations of O2( X, v) Levels

For the O2 (v) populations it was assumed that

because the e – V rate coefficients are small and the V-T processes

(27)

(28)O2(v) + O O2(v' ) + O

are very fast.

Populations of H2( X, v) Levels

Investigation of the H2 vibrational kinetics is particularly important due to its effects on
the H – concentration through the dissociative attachment reaction

e + H 2 (v) → H + H – (29)

The vibrational populations H2 ( X, v) are controlled by the processes:

e + H2 (v) e + H2 ( w ) ( v , w ≤ 6; |w – v | ≤ 3 ) (e-V processes) (30)
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(one-quantum V-V’ processes)

(two-quantum V-V’ processes)

(V-T energy exchanges)

(cascade processes)

POPULATIONS OF ELECTRONICALLY EXCITED STATES

(31)

(32)

(33)

(34)

(35)

(36)

(37)

Metastable and Radiative States

The main processes controlling the N2 (B) population are the following :

(radiative decay; 1st positive system)

(electron excitation)

(E-VE exchange)

Deactivation of the N2 (A) + N 2 (B) system takes place mainly through the following
processes:

N2 (A) + wall → N2 (X ) (38)

N2 (A ) + N → N 2 (X) + N ( 2 P) (39)

N2 (B) + N2 → N2 (X) = N 2 (X ) (40)

N2 (A ) + O → N2 (X ) + O (41)

N 2 (A ) + H → N2 (X ) + H (42)

As to the N2 (C) state, the main processes controlling its population are the following:

(radiative decay; 2nd positive system) (43)

(electron excitation) (44)

(E-VE exchange) (45)

Metastables and

The N2 (a′) state plays a very important role in N2  discharges with a small impurity of
O2 or H2  due to the associative ionization processes:

(46)

(47)

The main processes controlling the N2 (a′) population are the following:

(electron excitation) (48)

(49)

(50)

(51)

(52)

(53)
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(54)

The rate coefficients for processes (46), (47), (54) and the probability for wall losses of
N2(a' ) have been estimated from our model.

Due to the fast deactivation process

(55)

the N2( a") population is small so that stepwise ionization via this state is unimportant.

Radiative Ionic State N2
+ ( B)

The main processes controlling the N2
+ (B ) population are the following:

(radiative decay; 1st negative system) (56)

(V-E resonance process) (57)

The importance of processes (57) was first noticed in [6]. This has been confirmed in
our work by comparing calculated and measured relative intensities of the 1st negative system
versus the O2 (or H2) percentage in N2  – O 2 (or N2  – H2 ) discharges as shown in Figures 6
and 7.

The fast decrease in the 1st negative system intensity with addition of O2 (or H2) is
mainly due to a fall down of the pumping via process (57) as the N2( v ≥ 12) populations are
quenched through the fast processes

for N2 – O2 discharge (58)

for N2 – H2 discharge (59)

Radiative State NO ( A)

The main processes determining the NO(A ) population are the following:

NO(A ) → NO (X ) + h v (radiative decay; γ band)

N2 (A) + N O(X) → N2 (X) + N O(A ) (E-E energy exchange)

(60)

(61)

The importance of reaction (61) is demonstrated in Figure 8 where a comparison is given
of experimental NO(A) relative populations with calculations taking into account either (61)
or direct electron excitation

e + N O(X ) → e + NO ( A ) (direct electron excitation) (62)

The maximum in [NO(A)] results from the combined effects of an increase in [NO(X )]
and a decrease in [N2 (A)] as the O2  percentage in the mixture grows up.

CHARGED PARTICLE BALANCE AND MAINTAINING FIELD

The main processes determining E/N under the present conditions are the losses of
electrons and positive ions by ambipolar diffusion to the wall

e ; M + + wall → M ; M = N 2 , O 2 , H 2 , N O, O , H ,

volume ionization by electron collisions

(63)

(64)e + M → 2e + M +; M + N2 , O 2 , H 2 , N O, O , H

and the associative ionization processes (46) and (47).
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Figure 6. Population of N2
+ ( B ) state in arbitrary units versus the O 2 percentage for I = 15, 30 and 80 mA.

Experimental (points) [1] and theoretical (curves) values were adjusted for pure N2 and I = 30 mA. The solid
and the dashed lines represent calculations with a rate constant kv  = 10 – 11 and k v = 10 – 1 3  cm 3 s – 1 ,
respectively, for all levels v ≥ 12 in the process (58). The other conditions are the same as in Fig.3.

Figure 7. Relative intensity of N 2 1st negative system versus H2 percentage in N2  – H2  discharge.
Measurements [7] are represented by symbols: triangles- 1 Torr; circles - 2 Torr; squares - 3 Torr. Calculations
are represented by curves: solid - 1 Torr; chain - 2 Torr; broken - 3 Torr, for two values of the rate coefficient
for processes (59): curves 1,2,3 - k v  → 4 × 10 – 1 0 ( T /300) 0 . 5 (cm 3/s), asymptotically for v ≥ 23; curves
1’,2’,3’ - kv = 0. These data are for a distance L = 30 cm from gas entrance in discharge tube, R = 1 cm, Q =
120,340 and 600 sccm, and I = 50 mA.
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Figure 8. Relative population of NO (A ) versus O 2 percentage, for I = 15, 30 and 80 mA. Full lines represent
the excitation rate of NO (A ) by reaction (61) while dashed lines are for direct electron excitation (62). The
calculated and experimental values were adjusted for a O2 percentage of 50% and I = 30 mA. Data points are
measurements; triangles: 15 mA; circles: 30 mA and diamonds: 80 mA. Calculations are represented by solid
lines. A: 15 mA; B: 30 mA; C: 80 mA. The other conditions are the same as in Fig.3.

Reduced Electric Field E /N in N2 – O2 Discharge

Figure 9 shows calculated and measured values of the reduced maintaining field in a
N2 – O2 discharge as a function of the O2 percentage.

The maximum in E /N is related to the importance of associative ionization (46, 47)
for very low O2 percentages. As the latter increases the rate of associative ionization sharply
decreases, since the involved excited states are then destroyed by
O, O2, and thus E /N has to rise in order to sustain the discharge. For larger O2 percentages
( > (5 ÷ 10)%) associative ionization is negligible and the decrease in E /N is due to increased
contributions of electron ionization of O, O2 and NO which have lower ionization thresholds
than N2.

Behavior of E in N2  – H2 Discharges

Figure 10 shows the relative variation in the maintaining field as a small amount of H2

is admixed to a N2 discharge.
The deactivation of upper vibrational N2 (v ≥ 16) levels by the process

(65)

decreases the pumping of N2(a') via (49) and, thus, the rate of associative ionization (46),
(47). As a result, E has to increase in order to sustain the discharge.

The rate coefficients for processes (46), (47), (49), and (54) could be more accurately
determined in present work from the comparison between calculated and experimental E
values.

For X ( H 2 ) > 10%, E/N decreases due to the increase in gas density ( T decreases due
to a higher thermal conductivity) and in the electron ionization rate (due to an enhancement
in the EEDF tail).
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Figure 9. E /N vs. O2  percentage, for I=80 mA, p = 2 Torr, Q = 100 sccm. Points - experiment [1], line -
calculations. The other conditions are the same as in Fig.3.

Figure 10. Relative variation of the electric field E as a function of H 2  percentage in N2  – H 2  discharge, for
I=50 mA; R=1 cm. Symbols are measurements [7]: triangles - 1 Torr; circles - 2 Torr; squares - 3 Torr.
Curves are calculations: solid - 1 Torr; chain - 2 Torr; broken - 3 Torr. Curves 1,2,3 - calculations with process
(10), 1’,2’,3’ - without (10). Data shown are for L = 30 cm from gas entrance into discharge, flow rates 120,
340 and 600 sccm and pressures 1, 2 and 3 Torr, respectively.
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Figure 11. Relative concentration of O atoms versus O2 percentage. Data points are measurements [2]. Lines
are calculations from the surface reaction model using, respectively, two systems of surface chemically active
sites (solid) and only one ordinary system (dotted). The other conditions are the same as in Fig.3.

NEUTRAL PARTICLE POPULATIONS

Discharges in N2 – O 2 Mixtures

Oxygen Atoms. The main processes determining [O] are the following:

(66)

(67)

O + wall → O2 with γo depending on [O]/[N] (68)

N + NO → N2 + O

(69)

(70)

It is to be noted that the rates of processes (69) and (70) nearly balance each other.
Figure 11 shows a comparison of predicted and measured relative concentrations of O

as a function of the O2 percentage in a N2  – O2  discharge.
The increase in [O] as the the amount of O2  increases is due, first (sharp variation range),

to the increase of E /N for small O2 percentages and, then (smooth variation range), to that
of [O2 ]. For O2  percentages ≥ 90%, [O ] falls down due to an increase in γO .

Nitrogen Atoms. The main processes determining [N] are (69), (70) and the following
ones:

e + N2 →  e + 2N (71)

N + O2 → NO + O

N + wall → N2 or N O, with γN depending on [O]/[N ]

(72)

(73)
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Figure 12. Relative N concentration versus O 2  percentage. Data points are measurements [1] and lines are
calculations. The conditions are the same as in Fig.3.

Figure 12 shows a comparison between predicted and measured relative N concentrations
as a function of the O2  percentage.

The maximum of [N] at O 2  percentages of ~ 0.5% results from the balance between
the increase in the rates of N2  dissociation (due to the increase in E/N) and of N losses via
processes (70) and (72).

Molecules NO. The main processes determining [NO] are (72)-(75).
Figure 13 shows a comparison between predicted and measured relative NO concentra-

tions as a function of the O2  percentage.
The main reason for the increase in [NO] as 2% ≤ X (O 2 ) ≤ 50% is the decrease in [N] .

The [NO] decrease for X(O2) ≥ 50% is due to the decrease in the pumping rate via reaction
(69).

It is important to note that agreement with experiment could only be obtained assuming
large γ N = γN (O / N ) values.

Discharges in N2 – H2 Mixtures

Hydrogen and Nitrogen Atoms. The main processes determining [H] are the follow-
ing:

e + H2  → e + 2H (74)

H + wall → H2 or ( NH )S with γH depending on [H]/[N ] (75)

In what concerns [N], the main creation and destruction processes are:

e + N2  → e + 2N

e + N e + N (2D)

N ( 2D ) + H2  → NH + H

(76)

(77)

(78)

N + wall → N2 or (NH)S with γ N depending on [H ]/[N] (79)
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Figure 13. Relative NO density versus O2 percentage. Data points are measurements [1,2]. Solid lines are
calculations using the surface reaction model. Dotted lines are calculations with small γ N ≤ 1 0 – 4  (only with
one system of surface chemically active sites). The other conditions are the same as in Fig.3.

Figure 14. Relative H and N densities versus H2 percentage in N2 – H2 post-discharge. Points -
measurements [8]; curves - our calculations, for I = 50 mA, R = 0.8 cm, p = 2 Torr, Q = 200 sccm.
Measurements and calculations at 20 cm from discharge end. Calculations are normalized to maximum
relative experimental values.
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Figure 15. Relative NH 3  density vs. H2  percentage in N 2  – H2  discharge, for I = 50 mA, R = 0.8 cm,
p = 2 Torr, Q = 200 sccm. Points - experiment [9]; curves - calculations. Measurements and calculations at
20 cm from discharge end.

Figure 14 shows a comparison between predicted and measured [8] relative concentra-
tions of H and N as a function of the H2  percentage.

The reasons for the maximum observed in [N] are the maximum in E /N for X (H2 )  ~
5 ÷ 10%, the decrease in [N2 ] and the increase of losses due to processes (77)-(79). Note that
the decrease of [N] is quite smooth as compared to the situation observed in N2  – O 2 . This
is due to the absence, in the present case, of a fast reaction similar to (72) and the fact that
γN does not increase.

The reason for the fast decrease of [H] for X(H2 ) ≥ 80% is an increase in γ H (H/N)
by a factor of ~ 2.

Molecules NH3 . The concentration of NH3  is determined by:

Volume processes:

H + N H2 + M → N H3 + M

H2 + NH + M → N H3  + M

N H3  + N2 (A ) → N2 (X ) + N H2  + H

NH3  + N ( 2 D ) + M → NH2  + N H

(80)

(81)

(82)

(83)

(84)

(85)

(86)

(87)

Surface processes:

H + (NH2 )S  → (NH3 )S  → NH 3  + S

H F  + (NH2 )S  → F + (NH3 ) S  → N H3  + F+ S

NH2  + (H)S  → (NH3 ) S  → NH 3  + S

H2  + (NH)S  → (NH3 ) S  → NH 3  + S

Figure 15 shows a comparison between predicted and measured [9] relative NH3  con-
centrations in a N2  – H2  discharge as a function of the H2  percentage. It is important to
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stress that the volume processes for NH3  production cannot explain the large NH3  densi-
ties (~ 1012 cm– 3) measured in low pressure (~2 Torr) N2 – H 2  discharges. The surface
processes (84)-(87) play therefore a crucial role in the production of this molecule.

CONCLUSIONS

Self-consistent kinetic models combining volume and surface processes are a new step
in the numerical modelling of nonequilibrium plasmas in molecular gases. The developed
surface kinetics for dissociated atoms enables one to obtain the dependence of the corre-
sponding wall loss probability γM  on the relative concentration of gas phase atoms and to
explain the changes in γ M  with the composition of the gas mixture.

An important peculiarity of present models is the small number of input parameters –
only those externally controlled in real experiments: R, I, Q (sccm), p, initial gas temper-
ature and composition. This self-consistent approach provides quantitative interpretation of
different experiments and an understanding of the role of different processes. It also enables
one to estimate or define more accurately some important rate coefficients and parameters.
This was achieved in the present work for rate coefficients and parameters determining (see
[1]-[4] for details):

– the surface kinetics of O and N atoms;
– the surface kinetics of H and N atoms;
– associative ionization of N molecules from N (A, a ) metastables;2 2 ′
– excitation of N2 (a′ ) from 2N2(v ≥ 16);
– deactivation of N2 (a′ ) on walls;
– deactivation of N2 (a′ ) by H atoms;
– V-T relaxation of N2(X, v) molecules by N2(X, v) – H collisions;
– chemical reaction N2 (X, v ≥ 12) + O → NO + N ;
– V-E resonant exchanges via N2 (X, v ≥ 12) + N 2

+ (X) → N 2 (X, v – 12) + N 2
+(B ).

Acknowledgments

This work was supported by the Programme PRAXIS XXI of the Portuguese Ministry
of Science and Technology, partly funded by the EU FEDER.

REFERENCES

1.

2.

3.

4.

5.
6.

7.

8.

9.

B. Gordiets, C. M. Ferreira, V. Guerra, J. Loureiro, J. Nahorny, D. Pagnon, M. Touzeau, and M. Vialle,
Kinetic model of a low-pressure N2 – O 2 flowing glow discharge, IEEE Trans. Plasma Sci., 23:750, 1995.
B. Gordiets, C.M. Ferreira, J. Nahorny, D. Pagnon, M. Touzeau, and M. Vialle, Surface kinetics of N and
O atoms in N2 – O 2 discharges, J. Phys. D: Appl. Phys., 29:1021, 1996.
B. Gordiets and C. M. Ferreira, Self-consistent modelling of volume and surface processes in air plasma,
AIAA Paper, N 97-2504, 1997.
B. Gordiets, M. Pinheiro, C. M. Ferreira, and A. Ricard, Self-consistent kinetic model for volume and

surface processes in low-pressure N2 – H 2 flowing discharges, J. Phys. D: Appl. Phys. (in press).
J. Lede and J. Villermaux, J. de Chimie Phys., 71:85, 1974.
B. Massabieaux, A. Plain, A. Ricard, M. Capitelli, and C. Gorse, Excitation of vibrational and electronic
states in a glow discharge column in flowing N2 , J. Phys. B: Atom. Mol. Phys., 16:1863, 1983.
S. D. Popa, L. Hochard, and A. Ricard, Production of N2 radiative states in N2 – H 2 flowing d.c.

discharge, J. Phys. III France, 7:1331, 1997.
J. Amorim, G. Baravian, and A. Ricard, Production of N, H and NH active species in N2  – H 2  dc

flowing discharges, Plasma Chemistry and Plasma Processing, 15:721, 1995.
J. Amorin, G. Baravian, S. Bockel, A. Ricard, P. Stratil, and G. Sultan, (private communication, to be

published).

407



This Page Intentionally Left Blank
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Polytechnicheskaya 26.

INTRODUCTION

During the past two decades there has been intensive investigation of H – high
current volume-plasma ion sources. In these sources, H – ions are created in the gas-
discharge plasma, mainly due to the dissociative attachment (DA) of thermal electrons
to vibrationally excited levels 1 - 3 .

Interest in low-voltage (LV) cesium-hydrogen discharge is stimulated by the prospect
of utilizing this kind of the discharge as a volume-plasma source of vibrationally excited
H2  molecules and H–  ions. In this paper we shall briefly discuss the results of theoret-
ical investigations of electron-vibration kinetics in Cs-H2  discharge. In the discharge,
the plasma is created by means of a strong ionization of a small cesium additive only,
the H2  vibrational excitation is due to e-v exchange between thermal electrons and H2

molecules.
The typical potential distribution in a LV discharge is shown in Fig. 1. Here

qϕ is an electron potential energy, ϕ1 and ϕ 2 are the near-electrode voltage drops in
narrow Langmuir sheaths.. The typical parameters of the discharge are as follows:
interelectrode distance L ~ several mm, molecular hydrogen concentration NH2  (10 15-
10 17 ) cm – 3; whole cesium concentration ; thermal electron concentra-
tion ne  < 10 14cm– 3 ; cathode voltage drop ϕ1 < E d /q , where E d ≈ 8 . 8  e V  i s  t he
threshold of H2  direct dissociation by electron impact.

Two limit modes of LV discharge are essential for further theoretical discussion.
The first mode is the discharge in a dense, collisional plasma, where the paths of the
beam and thermal electrons are smaller than the gap and the length of the beam
energy relaxation due to pair collisions is also less than the gap. In this kind of the
LV discharge the fast (beam) electrons and slow (thermal) electrons have a common
distribution function (DF), which is the Maxwellian one. In this discharge, the plasma
heating mechanism is the pair Coulomb collisions: the energy of a cathode beam is
transfered by pair Coulomb collisions from fast electrons to thermal ones.

The second mode is so called Knudsen discharge, where the free paths of beam
electrons and their Maxwellization length are greater than the gap. Therefore, the
DF of fast electrons is non-Maxwellian. In this kind of the LV discharge, the plasma
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heating mechanism is the collisional damping of Langmuir waves, excited by plasma-
beam interaction. Usually, this heating mechanism is preferable for the creation of the
thermal electron temperature Te , which is needed for H 2  vibrational excitation and
H – generation by means of DA ³. In the Knudsen discharge, the needed Te  value may
be achieved at a lower cathode emission current density j1  than in a dense plasma.

CATHODE BEAM RELAXATION IN A DENSE PLASMA OF CESIUM-HYDROGEN
DISCHARGE.

The typical hierarchy of the characteristic lengths in near-cathode layer of LV
discharge is a follows: L 0  << l 1 < <  L ∈ << L. Here L 0  is the thickness of the
Langmuir sheath, is the free path of fast electrons in molecular hydrogen gas,

is the fast electron energy relaxation length due to collisions between
fast and slow electrons, i.e. the length of beam Maxwellization, L is the interelectrode
distance, τ p is the momentum relaxation time; is the diffusion coefficient
of fast electrons and is the energy relaxation time for electron-
electron (ee) collisions, is the fast electron energy, ne  is the slow electron
concentration, Λ is the Coulomb logarithm and q is the absolute electron charge. In the
near-electrode layer of a weakly ionized molecular gas plasma, the energy relaxation
of fast electrons occurs not only due to collisions between fast and thermal electrons
but also due to the electron-vibration (e-v) and partly to electron-rotation (e-r) and
electron-translation (e-t) exchanges. An important feature of these collisions is the
fulfillment of the inequality where is the respective total energy relaxation
time. As a result, the fast electron DF is approximately spherically symmetric during
the energy relaxation. The kinetic equation for electron DF of fast electrons has the
form

(1)

where ƒ0 (w, x) is a spherical part of the fast electron DF in a velocity space. Here the
DF is defined as the function of the total electron energy w = ε + qϕ, the zero potential
being at the cathode surface (see Fig. 1). In (1) the collision terms correspond to
electron-electron (e-e), electron-vibration (e-v), electron-rotation (e-r) and electron-
translation (e-t) exchange. These terms are expressed in the following manner. Iee ,
Ie r  and I e t collision terms are written in the Fokker-Planck approximation as

(2)

Here Teff = T e  and for e-e Coulomb collisions; Te f f = T a n d
( l1 /v1 )(M/2me ) for e-t collisions with heavy particles, M and T being the mass and the
translation temperature of heavy particles. T e f f = T r  a n d

(3)

are the rotational temperature of H2 molecules and the energy relaxation time for
e-r exchange 4. In (3) NH2 is the molecular hydrogen concentration, Tr ~ T is the
rotational temperature,σ j, j +2 is the cross-section of H2 rotational excitation, E j,j+2 is
the corresponding energy difference between rotational H2 levels, symbol <...> denotes
the average value over all rotational levels.
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Figure 1. Potential distribution in low voltage discharge. Near-electrode Langmuir layers (regions

I and II) and quasi-neutral plasma (region III).

Figure 2. Fast electron energy distribution function (full curves) and the Maxwellian one (broken

curves) at various distances from the emitter: x = 0 (curve 1), x = 0.1 L ε
( e e)

 (curve 2), x = 0.25 Lε
( e e )

(curve 3). Cathode emission current j1  = 30 A/cm². Plasma parameters in the near-electrode layer:

pH 2  = 10 Torr, T 1  = T = 0.15eV, ne / N H 2  = 2·10 – 2 , L ε
( e e )

= 0.025cm, q ϕ1 = 9eV, ς = 2 .  Broken

curves correspond to the Maxwellian energy distribution function at the respective distance from the

emitter.

Now we shall consider the collision term Ie v  , which corresponds to e-v exchange.
The variation of the electron DF due to e-v exchange is caused only by interaction of
fast electrons with low vibrational levels, which populations are sufficiently high. These
levels may be considered in harmonic approximation and may be described approxi-
mately by means of Boltzmann distribution with vibrational temperature Tv . If

the corresponding Iev term may be written as

(4)

where symbol <...> denotes the average value over all
electron-vibrational excitations In (4) the 1-st term corresponds
v → v + 1 molecule excitation and electron transition, the 4-th term
corresponds to reverse transition the 2-nd term corresponds

transition, and the 3-rd term - to reverse process (v + 1 →

The boundary conditions for equation (1) on the cathode-plasma boundary are
written in the form

(5)

(6)

where T1  and T e  are the cathode temperature and the thermal electron temperature in
the near-cathode region of plasma, ε1 = q ϕ 1 .
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The mathematical solution of the problem and the main results concerning the
near-electrode layers of a weakly ionized hydrogen plasma are described in 6-14 . The
typical calculated fast electron DF is shown in Fig.2 4. Calculations are performed
for near-electrode plasma parameters, that are usual for the near-cathode layer of a
LV Cs-H2 discharge, at various distances from the emitter: the results are given in
dimensionless units. The near-electrode layer was taken to be inhomogeneous with a
linear dependence of the slow electron concentration ne on the distance x from the
cathode sheath-plasma boundary. The parameters correspond to the plasma-sheath
boundary, T1 and T being the emitter and heavy particle temperatures. The parameter
ζ denotes the value

Figure 3a. Figure 3b.

The broken curves correspond to the Maxwellian electron DF ƒM (w). The fast
cathode beam relaxation in the near-cathode layer of quasi-neutral plasma of a LV Cs-
H 2 discharge is largely due to e-e collisions, the corresponding relaxation length L(e e)

ε
being about 10 –2 cm.

Because of quick energy relaxation of fast electron DF in the near-electrode layer
of LV cesium-hydrogen discharge, it may be usually proposed that all the electrons have
a Maxwellian DF in the main part of the gap of LV Cs-H2 discharge.

One of the significant results of the calculations is presented in Fig.3, which shows
the energy transformation coefficients α i , which are the proportions of energy trans-
ferred from the cathode beam to the various degrees of freedom of molecular hydrogen
14  The curves labelled 4 are very important because they correspond to the electron
heating due to pair Coulomb collisions between fast and slow electrons. It is very sig-
nificant that the e-e collisions (e-e exchange) dominate in LV Cs-H2 discharges, where
ϕ 1 < 8.8 V and n e / N H2  > 10– 3 ., This means that nearly the total beam energy is
transfered to slow plasma electrons. Thus, in the near-cathode layer the total beam
current and nearly the total beam energy are transferred to the core of the Maxwellian
electron DF. This current and energy are transferred further along the gap via the
respective current and energy fluxes, which can be described by a set of hydrodynamic
plasma equations.

Figure 3. Coefficients of energy transformation — the proportions of energy lost by the cathode

beam through various collisional mechanisms: e-t exchange (curves 1, e-r exchange (curves 2), e-v
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exchange (curves 3), e-e exchange (curves 4), direct H2 dissociation due to excitation (curves 5),
total energy losses due to excitation of states (curves 6). pH2  =
10 Torr, T e = 1 eV, T = 0.1 eV. (a) Dependence on the cathode voltage drop ( ne / NH2  = 1.2·10–3 ).
(b) Dependence on the degree of ionization (ϕ1 = 7 V).

THE ELECTRON FLOW AND THE KINETIC REFLECTION COEFFICIENTS AT
THE PLASMA-ELECTRODE INTERFACE

Having calculated ƒ0(w, x ), we can find the electron current

at the plasma boundary. Since the equation (1) and the boundary conditions (5) and
(6) are linear with respect to ƒ0(w, x ), we can find the solution in the form of the sum
of ƒM (w) and two other components: ƒ1(w , x) and ƒ2( w , x):

(7)

(8)

Each of component ƒ1 and ƒ2  satisfies equation (1) with boundary condition (6) at x=0.
The other boundary condition has the form:

where j1  and

(9)

(10)

(11)

are the cathode emission current density and the equilibrium emission current density
from plasma to the electrode, n e (0) is the electron concentration at the electrode-plasma
boundary. In (8) the term ƒ1( w, x) describes the increase of fast electron DF due to the

to electrode. Substituting (8) in (7) and using (9) and (10), the electron current at the

ƒ2 (w, x) describes the

electrode-plasma boundary can be represented in the form of the difference

injection of fast electrons from electrode to plasma. The term
decrease of fast electron DF because of the emission of the fast electrons from plasma

where

(12)

(13)

(14)

Here r 1 and r 2 are so called kinetic coefficients of reflection for cathode emission and
for the electron emission from plasma to the electrode6 ,9 .
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The kinetic coefficients of reflection satisfy the inequalities: 0 < r1 < 1 and 0 <
r 2 < 1. The physical meaning of the coefficients r1  and r 2 is as follows. If
both the thermal electron emission from plasma, which really reaches the electrode
surface, and electrode emission, which really penetrates into the plasma, are depleted
as compared with jTe  and j 1. The depletion of thermoemission current from plasma
to cathode, which is described by r2 , is caused by the escape of fast electrons from
plasma and by the corresponding diminution of fast electron DF in comparison with
equilibrium one in near-electrode plasma layer. The range of values of electron kinetic
energy ε and coordinate x , in which the number of fast electrons is less than equilibrium
one, is shown qualitatively in Fig. 4.

The depletion of the effective current from cathode to plasma in comparison with
cathode emission current j1  is caused by the return of the part of the fast electrons,
injected from cathode to plasma, back to the cathode surface due to the frequent
momentum relaxation in near-cathode plasma layer.

Figure 4. Figure 5.

Figure 4. Range of values of ε and x, in which the distribution function ƒ2 (w, x ) differs appreciably
from the Maxwell-Boltzmann distribution (I). Lε

*  is the distance, at which energy of the order of Te has
been lost. The hatched part of the diagram (II) corresponds to undisturbed distribution. w = ε + qϕ.
Figure 5. Cathode beam relaxation in a Knudsen LV discharge. Beam electron distribution function at
the cathode-plasma boundary ƒ1(vx , 0) (curve 1) and after completion of the plasma-beam interaction
ƒ1( vx , ∞ ) (curve 2). The hatched part of the electron DF corresponds to the beam electrons captured

into the potential well.

If the main mechanism of the fast electron energy relaxation is the e-e Coulomb
collisions in near-electrode layer, the coefficients r1 and r 2 are the functions of the
cathode temperature T1 and thermal electron temperature
= r 2 (Te ). These coefficients satisfy the relation: which is the
consequence of the principle of detailed balance: the right side of (12) is equal to zero,
if thermodynamical equilibrium exists between the cathode and the plasma, i.e. if T 1
= T e and j 1 = j Te .

In the limit cases, where 1 – r1 << 1 or r 1 << 1, the following expressions are
valid 6

(15)

(16)
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where Ψ was calculated in 6, Ψ (1) = 1. The intermediate case, when r1 ~ 1, is
considered in 12 , the main results being summarized in 6.

If the degree of ionization is small enough (see Fig. 3b) and the e-v exchange is
the main mechanism of the fast electron energy relaxation in plasma, the results are
more complicated. Here we shall consider only the expression of 1 – r1 in the limiting
case, where 1 – r1 << 1:

(17)

and the expression of r2 in the limiting case, where r 2 << 1

( 1 8 )

where is calculated in
, the expression (17) leads to

(19)

and the expression (18) leads to

(20)

Here is the energy relaxation time for e-v exchange:

(21)

(compare with relaxation time in (3)). Of course, the expressions (19) and (20) are
absolutely identical with (15) and (16) , being substituted by and T 1 being
substituted by Te in (16). As it was mentioned above, if an electron beam is injected
into plasma from cathode, than an excess of fast electrons with an energy of the order
of the height of the potential barrier, qϕ1 , forms near the cathode. If the atomic,
i.e. cesium, ionization or excitation energy is close to qϕ1 , the excitation or ionization
processes are accelerated as a result of an increase of inelastic collisions of the first kind.
This phenomenon was discussed in 6,7,15, where the review of the problem was made.

CATHODE BEAM RELAXATION IN THE KNUDSEN PLASMA OF CESIUM-
HYDROGEN DISCHARGE

It was mentioned above that the Maxwellization length of fast (cathode beam)
electrons in the Knudsen LV discharge is greater than the interelectrode distance L.
Therefore, thermal electrons, captured into the potential well, cannot be heated by
means of pair Coulomb collisions between them and fast electrons. The details of the
thermal electron heating mechanism in a Knudsen LV discharge and its mathematical
modelling were described in 16-20 . It was shown that the process of cathode beam
relaxation can be described by a quasi-linear theory 21-23 . A quantitative comparison
16-20 showed good agreement between experimental results and theoretical calculations
made with one-dimensional quasi-linear equations

(22)
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(23)

Here ƒ1 (vx ,x) and are the one-dimensional distribution function of the cath-
ode beam electrons and Langmuir plasmons22 , k is the plasmon wavevector,

is the quasi-linear diffusion coefficient. The increment 2γ i s
equal to

(24)

Here and 2γ coll are the quasi-linear increment and the collisional decrement which
occurs due to the collisions between thermal electrons and heavy particles. Averaging in
(24) was made over the Maxwellian electron DF of thermal electrons and

Equations (22) and (23) lead to the energy conservation law:

(25)

where S 1(0) is the initial energy flux of fast (beam) electrons, S1(x) and are the
energy fluxes of electrons and plasmons at a distance x from the cathode surface, and
∆S(x) is the energy transmitted from the Langmuir waves to thermal electrons by
means of collisional damping of the waves:

(26)

We can introduce the energy transformation coefficient, which would be equal to the
energy lost by the beam due to the Langmuir wave excitation:

(27)

The following hierarchy of lengths usually takes place in a LV Knudsen Cs-H2

discharge: Here is the length of quasi-linear relaxation
is the Debye radius, is the

length of the collisional Langmuir wave damping, I1 is the cathode emission current.
Because the asymptotic form of the beam electron DF ƒ1 (vx, ∞ ) is achieved
in the gap at a distance x > . The corresponding asymptotic value α0  ≡ α(∞) is
equal to the share of initial beam energy that was transmitted from the cathode beam
to the Langmuir waves. This energy is eventually transmitted to slow electrons largely
because of the collisional wave damping or via several other mechanisms 16-20,24-27 . The
DF of fast electrons is depicted qualitatively in Fig. 5. Here curve 1 is the initial beam
electron DF ƒ1 (vx ,0) at the plasma-cathode sheath boundary, curve 2 is the beam
electron DF ƒ1 (vx , ∞) after the quasi-liner relaxation was completed. The results of
α (x) calculations are shown in Fig.6 20, where is the collisional frequency divided by
the quasi-liner increment Because of the comparatively small
value of a large proportion of the initial beam energy is transmitted to
thermal electrons via the Langmuir wave excitation and their subswquent damping in
the plasma.

In addition, the thermal electrons are heated because of the fast electron cap-
ture into the potential well. The beam electron DF that corresponds to the captured
electrons is shown hatched in Fig. 5, where and ϕ2  is the near-
anode potential drop. The corresponding energy transformation coefficient is equal to
α1 = S 1/Se (O), where S1  is the energy flux transported by the beam electrons which
are captured into the potential well.
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CALCULATION OF LOW-VOLTAGE Cs-H2  DISCHARGE PARAMETERS AND
COMPARISON OF THEORY AND EXPERIMENT

417

In the LV Cs-H2  discharge, the heated thermal electrons carry out three func-
tion in one discharge volume: they ionize Cs atoms, vibrationally excite H2  molecules
and create H – ions due to DA to rovibrationally excited H2  molecules, as it was men-
tioned previously. According to the theoretical calculations ³ and many experimental
investigations, the electron temperature Te  ≈ 1 eV should be attained in the hydrogen
plasma for the maximum rate of DA. It is significant that, according to the theoretical
predictions, just the same Te  value may be really obtained in a LV Cs-H2  discharge.
The theory of a LV Cs-H2  discharge in a dense plasma was created in 28-31 . A review of
the main theoretical and experimental works is presented in 32 . For the calculation of
low-voltage Cs-H2  dense plasma discharge parameters, the set of hydrodynamic equa-
tions was solved with the balance equations to determine the populations Nv (x ) of vi-
brational H2  levels. The following processes of vibrational level excitation-deexcitation
were taken into account: vibration-vibration (v-v) exchange, vibration-translation (v-t)
exchange with H2  molecules and H atoms, e-v exchange, direct dissociation of hydro-
gen molecule by electron impact from v-levels, DA and inverse associative detachment.
Explicit expressions for the rates of these processes were given in 29 . The exchange of
excitations between Cs atoms and H2  molecules, and the stripping of a H–  ions by a
vibrationally excited H2  molecule were also considered. For sufficiently rarefied plasma
an additional term for the determination of a vibrational level distribution function was
introduced in the balance equations. It corresponds to the surface H2  de-excitation.

Some results of the calculations are depicted at Fig. 7. One can see that very high
value of H – concentration may be obtained in a LV Cs-H2  discharge in a dense plasma.
But thus H – concentration corresponds to comparatively high values of emission cur-
rent density j1 .

Contrary to it, in a rare,Knudsen, plasma the optimum Te  value for H–  generation
may be obtained at comparatively low value of emission current density. The theory
of a LV Cs- H2  discharge in Knudsen plasma was created in 33-34 . In this kind of the
discharge, plasma is homogeneous. It is first covinient to calculate the parameters of a
homogeneous Knudsen Cs-H2  plasma as a function of thermal electron temperature Te

. For this, the electron-vibration kinetic equations must be solved simultaneously with
the balance equations for neutral and charged particles. The calculation procedure was
described in  28-29,  33-34 including surface vibration de-excitation .

The calculated negative ion concentration, NH —(Te ) is shown in Fig. 8. One
can see that maximum value of NH –(Te ) corresponds to Te  ≅ 1.5 eV and  N (0)

Cs
~ (2-

3)1014 cm–3 . It is essential that in this kind of the LV discharge the optimum electron
temperature for H – generation and corresponding high value of negative ion concen-
tration NH – ≅ 101 3 cm –3  are obtained at a moderate value of cathode emission current
density j1  ≤ 10 A/cm2 , which may be easily achieved in the experimental device. The
dependences of the calculated electron temperature Te  and the cathode voltage drop ϕ1

upon the anode voltage U are shown in Fig. 9. One can see that the needed optimum
value of electron temperature Te  ≅ (1-1.5) eV may be really obtained in a low-voltage
mode of operation (corresponding value of a cathode voltage drop ϕ1  < 9 V).



Figure 6. Figure 7a.

Figure 7b. Figure 7c.

Figure 6. Coefficient of the electron beam energy transformation in a Knudsen plasma - the

share of the beam energy which is lost via Langmuir wave excitation,

Figure 7. LV discharge plasma parameter distribution for various hydrogen pressures pH 2
.

L =0.1cm. Numbers at the curves give the values of pH 2
in Torr. ϕ1 = 7 V, j 1 = 30 A/cm²,

N (0)
C s  = 1. 5·10 14 cm –3 . Full and broken curves are for the results obtained with and without surface

vibrational de-excitation, respectively. < Ev > - mean vibrational energy of H 2 molecule.
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Figure 8. Figure 9.

Figure 8. Dependence of the negative ion concentration on thermal electron temperature Te . L
= 0.1 cm. Total concentration of molecular hydrogen Total

cesium concentration N( 0 )
Cs is shown at the curves in units of 1014 cm– 3.

Figure 9. Dependence of the cathode voltage drop ϕ 1  and electron temperature T e u p o n  t h e

anode voltage. L = 0.1 cm, N (0)
H2

 = 1016 c m– 3. Full curves: j1  = 10 A/cm², N(0)
Cs =1.2•1014cm–3.

Broken curves: j1  = 8 A/cm², N (0)
Cs = 0 .8 ·10 14cm–3.

The experimental investigation of LV cesium-hydrogen discharge was fulfilled in
35-39. A comparison between the theoretical and the first experimental data 35-38 is
shown in Fig. 10-12. The experimental data were obtained by a probe method in a
plane diode, the cylindrical probe being parallel to the electrode plane. The probe was
shifted by 1 mm with respect to anode in Fig. 10-11 and by 2 mm with respect to
anode in Fig.12. For a LV discharge in a dense plasma (Fig. 11-12), the comparison
was done at comparatively high current densities: j1  = 10 A/cm² and j1  = 18 A/cm².
For a LV discharge in a Knudsen plasma (Fig. 12) the comparison was fulfilled at a
small current density: j1  = 2 A/cm².

The dependence of Te  on hydrogen pressure pH2
in strongly ionized plasma is given

in Fig. 10 together with the calculations. The experimental and theoretical curves for
similar discharge parameters are very close to one another.

The experimental results and theoretical parameter distributions are compared in
Fig. 11, which shows a satisfactory agreement for the plasma concentration and the
potential values. The measured Te  coincides qualitatively with the theoretical values,
but the experimental curves are slightly below the theoretical values (see Fig. 11),
because of the boundary effects in the plasma energy balance. A similar effect was
observed in a pure Cs LV discharge 6 .

For a Knudsen mode of a LV discharge, the data from the probe investigations
and the respective theoretical results are given in Fig. 12 for ϕ1 and for T e . We have
obtained a good qualitative and nearly quantitative agreement between theory and ex-
periment. The slight difference may be due to the boundary effects, as it was pointed
out above.

It is clear from the experimental data that the optimum Te  value for negative
hydrogen ion generation in a Knudsen discharge (Te  > 1 eV), indeed, can be easily
achieved in an experimental device at comparatively low cathode emission current.
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Figure 10. Figure 11a.

Figure 11b Figure 12.

Figure 10. Experimental and theoretical dependences of electron temperature on hydrogen pres-

sure in a dense plasma LV discharge. 1, theory: j1  = 10 A/cm², L = 0.5 cm, N
(0)
Cs =  1 . 5 • 1 01 4cm–3 ,

ϕ 1 = 7 V. 2, experiment: j1 = 10 A/cm², L = 0.3 cm, N (0)
Cs

= 1.5•101 4cm– 3, ϕ1  = 7 V.

Figure 11. Comparison between experimental and theoretical plasma parameter distributions in

a dense plasma LV discharge. j1 = 18 A/cm², L = 0.3 cm, pH2
 = 3 Torr, N (0)

C s =  5 • 1 01 4cm–3, ϕ 1

= 4.5 V.

Figure 12. Comparison between experimental (points) and theoretical plasma parameter dis-

tributions in a Knudsen LV discharge. j1 = 2 A/cm², L = 0.3 cm, N ( 0 )
H2

=  1 015cm– 3, N (0)
C s

 =

3•1013cm– 3.
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The good fit between the theoretical and experimental plasma parameters allows the
suggestion to be made that real NH – will fit the theory too. Direct measurement of
H– concentration in LV Cs-H2 discharges will be the subject of experimental research
in the near future.
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INTRODUCTION

A selfconsistent modeling of discharges obviously aims at a full description without
requiring prior knowledge or diagnostic determination of any parameter beyond those
actually chosen by an operator in the laboratory, i.e. beyond gas type and pressure,
geometry and material of discharge tube, electric field frequency and voltage setting
of power supply (for simplicity assumed to possess negligible internal resistance). This
setting of power supply can be considered here in the case of surface wave (SW) sus-
tained discharges as equivalent to the knowledge of electric field strength right at the
beginning of the discharge column.

The electric field strength and its spatial structure throughout the discharge is
expected to be provided by the model as well as value and spatial structure of elec-
tron density. Actually simultaneous determination and (nonlinear) interdependence of
electron density and electric field strength is a particular feature of truly selfconsistent
modeling. This implies to go beyond the well known Schottky approximation for the
electric field strength which may provide simple estimates, but is degenerate in the
electron density and requires prior knowledge of its value.

A model on the basis of ion and electron fluid equations can be condensed to
two equations: the electron energy and the electron particle balance equation. The
former connects electron temperature and electric field intensity (nonlocally in case
of sufficient heat conductivity). The latter, balancing diffusion losses and ionization,
should contain nonlinear contributions such as stepwise ionization or at high density
recombination in order to avoid the above mentioned degeneracy in electron density. For
selfconsistency these two equations of discharge physics have to be augmented by two
equations of electrodynamical character: by the proper SW dispersion relation and wave
power equation connecting Poynting flux with power transfer to the plasma. Here SW
sustained discharges are chosen, which possess well defined electrodynamic boundary

Electron Kinetics and Application of Glow Discharges
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conditions essentially given by field continuity relations at interfaces and which may
be considered as simple prototype discharges giving some guidance also for cases with
more complicated boundary situations.

For the low degree of ionization encountered in the discharges considered, the
electron energy distribution function (EEDF) cannot be expected to be Maxwellian,
since energy losses by inelastic processes lowers the tail of distribution with electron–
electron interactions being unable to completely counterbalance this effect. Therefore
a kinetic model basing the treatment of electron component on numerical solutions of
the Boltzmann equation is more accurate than the (in some respect more transparent)
electron fluid approach. Moreover more details of atomic (and molecular) processes can
be incorporated. The kinetic approach also facilitates the treatment of radial and axial
density inhomogeneities which pose a difficult problem and in many situations can be
responsible for even qualitative changes in discharge description and behavior.

Below basis and procedure of the model employed will be outlined, before numerical
results as well as pertinent observations are discussed. Approximations still used are
pointed out and potential improvements are discussed.

KINETIC NUMERICAL MODELING

The density nonuniformity unavoidably present complicates the modeling. Rela-
tively weak axial density gradients are expected and the axial diffusion losses may be
considered minor as compared to the radial diffusion, which is essential for the particle
losses of a steady state plasma. Therefore, with respect to the axial dimension z, at first
local solutions are sought and the selfconsistency between local (cross–section averaged)
electron density and z is turned to below in the electrodynamical part of the problem
as well as complications arising there in cases.

Thus for the basic equation of kinetic description of the electron component, the
Boltzmann equation, two–dimensional solutions should be found (in electron energy u
and radial coordinate r). The present development in numerical work aims at using
appropriate procedures, such as multi–grid schemes, and at incorporating them into a
selfconsistent model. The numerical effort involved is unavoidable for accurate solutions
in particular towards higher gas pressures, as will be commented on below. However,
when interest is restricted to rather low pressures, an approximation and simplification
may be employed. This can be expected to provide reasonable accuracy and correct
description of essential trends for sufficiently low products p · a (with p being the gas
pressure, a tube radius).

Nonlocal approximation

For rather large ratios of energy relaxation length λε  to a the nonlocal approx-
imation has been used to good effect¹, by formulating the problem in total energy
ε = u – Φ (r) (u being the electron energy in eV, Φ (r) the ambipolar space charge
potential), employing averaging procedures and simplified boundary conditions. Thus,
the problem is reduced to a one–dimensional one. The Boltzmann equation for the
symmetric zero part of the distribution function F0

(0) (ε ) reads then (with bars denoting
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averaging within the discharge cross section):

where

(2)

(7)

with

(1)

(3)

The νk ’s stand for inelastic collision frequencies and νm  for the electron–neutral collision
frequency. is r*(ε) the turning point radius of electrons travelling in the space charge
potential, rk (ε) the maximum radius for which the k t h inelastic process is possible.
χ is the portion of energy transferred at one electron–atom collision. is obtained
analogously. The retransformed F (0)

0 (u) has now a specific r–dependence due to u =
ε + Φ (r). The diffusion coefficient in energy space is defined by

(4)

(5)

(6)

ω is the wave frequency.

Transit–time heating

As also pointed out in another contribution to this workshop², there is noncolli-
sional heating in addition to the collisional one. A corresponding (two–dimensional)
diffusion coefficient for energy space is included for the case of SW sustained discharges.
As evaluated in some detail previously 1 , 3, the diffusion coefficients (5) and (6) describing
the Joule heating of the plasma by the high frequency electric field can be augmented by
a term which is derived from a quasilinear approach based on separation of small/large
space scales (similar to the one employed some time ago in treatments of plasma tur-
bulence):

In essence expression (7) describes a transit–time heating important here when peaks
of the radial high frequency field component |Er| appear due to strong radial density
nonuniformity allowing ω p(r) to match the wave frequency ω. Then the transit time
of electrons passing radially through such peaks acts similar to the collision time in
causing phase decorrelation. The exponential factor in (7) accounts for the fact that the
noncollisional heating is effective only for electrons passing quickly as compared to the
wave period T = 2π/ω. Since contributions from expression (7) modify the attenuation
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of the SW, the effective damping of the E r–component is treated differently from that
of the E z –component, but the field calculations are performed in a way that no more
power is taken from the wave as is required for discharge maintenance¹. It should be
stressed that aside from outright field peaks also steep radial ascents of field strength
towards the wall contribute and are accounted for. The noncollisional channel of high
frequency heating does not provide automatically much enhanced or noticeably changed
total heating, since the selfconsistency calls only for as much field intensity as required
to cover the plasma losses. It rather provides some redistribution in the heating channels
and in the energy distribution function.

Complementation of system

For selfconsistent modeling a closed set of equations has to be considered simulta-
neously by iterative numerical procedures: in addition to the Boltzmann equation (5)
the normalization condition for the electron density n e (r), connecting the distribution
function F ( 0 )

0 (ε) with Φ , the electric field equations and the fluid equations have to
be solved. The dispersion relation is obtained from the field equation to which the
electrodynamic continuity conditions at the plasma–glass (r = a ) and glass–vacuum
(r = b ) interface are applied. The fluid equations contain the ambipolar potential Φ (r) ,
the ion drift velocity, the ionization frequency and the ion–neutral collision frequency.
The effect of stepwise processes in the ionization is an approximation accounted for by
carrying one (effective) excited level with the population density

(8)

where N is the neutral gas density, ne0 the electron density in the center, ν0  and ν L  are
the frequency for ground state ionization and for losses by excitation, respectively, and
Dex  is the diffusion coefficient of metastables¹.

Electrodynamical part of the model

The comparatively strong radial density nonuniformity can be taken care of by
numerical (Runge–Kutta) integration of the field equations for the components Ez  a n d
Er assumed to vary

(9)

(10)

with and the index n representing plasma, glass and vacuum. In
the plasma is given by the cold plasma permittivity in good approximation
as

(11)

or somewhat more general by4 , 5

(12)
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with ωp (r) the plasma frequency.
The radial density profile in ωp (r) is obtained by simultaneous (iterative) solution

of the other equations of the system. The sheath thickness is usually taken to be small,
and Bohm’s criterion is used. The above equations (9) and (10) neglect axial density
nonuniformity, i.e. the zero order local approach is used and the comparatively slow axial
change of the cross–section averaged electron density on is derived thereafter by
integrating the Poynting flux relation:

(14)

(13)

over a plane across the discharge. q indicates the power loss per unit volume plasma.
The validity and accuracy of the above approach to axial density nonuniformity

may call for checking and justification by two– or three–dimensional field calculations
including x-dependencies. Especially the complications introduced into dispersion and
field structure by strong radial density inhomogeneities and in particular situations
when a pronounced “system resonance” arises towards the end of discharge and should
be investigated. Details to this are reported elsewhere6,7 . Moreover some results of such
field calculations 7 are discussed below in a separate section.

NUMERICAL RESULTS

Power loss per average electron

The selfconsistent electric field strengths resulting from the above numerical mod-
eling are closely connected to the averaged power loss per electron Θ . This loss av-
eraged over the discharge cross section, required to maintain the discharge (to cover,
for instance, the main losses by inelastic atomic processes), can be obtained via energy
conservation from the balance to the power input by the high frequency electric field:

The sum is over the input channels of the Ez , and E r –field components. Thus the
maintenance electric field intensity, averaged over the discharge cross section, is con-
tained in the diffusion coefficients in energy space. From the above mentioned Schottky
approximation for diffusion dominated regimes, equating ground state ionization and
diffusion particle losses, simple—usually reasonable—estimates of the field intensity can
be obtained. However, they are independent of the electron density, what is in contra-
diction to daily experience when the discharge turned on chosen selfconsistent electric
field strength, electron density and power values and their spatial distributions. The
discharge formation is obviously a strongly nonlinear phenomenon and for full selfcon-
sistency processes nonlinear in electron density have to be taken into account, even
though their contributions may appear, for instance in particle balance considerations,
to be small compared to the linear ones.

As relevant nonlinear atomic processes already previously8 stepwise ionization has
been pointed out, as well as its tendency to saturation towards higher electron densities
and the influence of recombination which arises finally at very high densities. Another
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Figure 1. Example of versus in the microwave
range. Dotted curves are without the collisionless effect: Θc l  =  0 .

(weak) nonlinear effect, accessible in kinetic treatment, is the influence of electron-
electron collisions. In addition to these general effects there can be effects more specific
to the particular discharge type, here to plasmas maintained by travelling surface waves
and their dispersion properties. They are basically contained in a previous fluid ap-
proach8 , but elaborated on below in numerical kinetic treatment. In particular the
radial penetration of the electric field is changing with the axially varying electron den-
sity (cross section averaged) along the discharge. This in turn can effect changes
in the electron energy distribution function with , conceivably also of the radial
density profile. The resultant variation of Θ may be small, but significant enough for
the aspect of selfconsistency pointed out.

Fig. 1 gives an example in the microwave range showing indeed reasonable con-
stancy of 0 as a function of The calculations are performed for argon
as always in the following. The behavior without inclusion of the noncollisional term
according to expression (7) is demonstrated by the dotted curves and conforms to the
comments given above. To point out the influence of step–ionization, its role is exag-
gerated by increasing its excitation rate by a factor. A case at lower frequency is chosen
in Fig. 2. Towards low values of a decrease of 0 is to be seen as expected.

For the situation considered both in Fig. 1 and Fig. 2, however, another effect is
dominant: At higher a slight decrease of Θ towards discharge end shows up, even
when low ω and small radius a are chosen. It is correlated with a noticeable change
in the distribution of θ on the Ez – and E r –contributions and can indeed be traced
to the changes of radial field distributions along the discharge. Fig. 3 depicting |E|
for three values of for conditions similar to those in Fig. 2 demonstrates that
along the discharge (with growing the field intensity gets more concentrated near
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Figure 2. Example of Θ total versus at lower frequency. Dotted line
with ionization via excited levels, solid without, dashed augmented by
factor 5. d radius of metal shielding.

Figure 3. Radial field profiles of total field strength |E| for three values of
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Figure 4. EEDFs F (0)
0 at different

Figure 5. Radial profiles of n e (r) at different
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Figure 6. Examples for 0 versus - - - with the electron–electron
term in eq. (1) reduced by a factor 2.

to the discharge wall. This enters into the formation process of the energy distribu-
tion function F

(0)
0 through the diffusion coefficients (in energy space) Di , weakly, but

predictably—within the nonlocal approximation used—altering with changing
Fig. 4 for the distribution function and three values of indeed shows a

situation where F (0)
0 towards the discharge end has more particles concentrated at low

energies, but with less particles in the range of inelastic losses leading to somewhat
reduced Θ at lower . A case in the GHz range is considered, but a similar behavior
can be found at lower frequencies. Thus there is a nonlinear mechanism via changing
radial field distributions and resultant distribution functions with . Variations also
in the (diffusion dominated) radial profiles of electron density ne (r) with are usually
small, as shown in Fig. 5.

Changes in F (0)
0 with can also be—partially—caused by electron—electron col-

lisions which have basically a smoothing–out effect in the EEDF. As to the resultant
effect on Θ , Fig. 6 (with linear scale) demonstrates from calculations with reduced
electron–electron collisions that there is a small influence, but only a partial one and
not of the type sought. At low ω the influence of electron–electron collisions is similar
and even decreased.

The variation of field distribution with affecting the energy distribution function
in cases causes the main influence responsible for small variations in Θ . This is sup-
ported by the fact that the above effect is weaker for small radii and more pronounced
for large radii, which is in line with the concept of changing radial field profiles. Also
for higher ω the effect is larger.
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EXPERIMENTS ON SPECIFIC FEATURES

Main characteristics of the described modeling are use of the nonlocal approxima-
tion and inclusion of even strong radial density inhomogeneities in this approach. So
far there are some experimental indications on some specific results of this modeling.
They have previously been addressed 9–11 and are only briefly pointed out here.

Measurements of electron energy distribution functions (EEDFs) by probe methods
(employing compensation techniques) confirm that in good approximation there is a

(0)unique function of total energy as expected for F0 (ε) from the nonlocal approximation,
constituting an envelope to the EEDF’s for different radial positions which are shifted
in the ε –scale by the corresponding value of ambipolar potential Φ (r), as e.g. shown
and discussed in some detail by Kortshagen 12,13

. Of course, also the expected non–
Maxwellian character of the EEDFs, with lowered tail in the inelastic range, is born
out by such observations. Since the requirements of nonlocal approximation become
strongest towards higher electron energies, systematic studies in this range (for different
products p · a ) will be of great interest.

A rather strong point for the usefulness of the nonlocal approach is gained from
comparisons 13 to tomographic measurements of radial line emission profiles14. At low
p · a results of a nonlocal model are much closer to experimental findings than those of a
local model which tends to produce a pronounced maximum in the emission profile be-
fore the final drop at the wall due to increased electric field intensities. Such a maximum
in the radial emission profile is not or barely observable at low p · a, the EEDFs being
obviously not drastically affected locally by the field intensities. However, there is still
room for improvements in the nonlocal approach suggested by observations, e.g. in the
treatment of metastable and step processes. Moreover, towards higher p · a doubtlessly
a transition to a local scenario becomes evident in experiment—as expected-and a
generalized truly two–dimensional (in u, r) treatment becomes desirable.

As to contribution of noncollisional heating in the presence of strong gradients and
even peaks in the radial electric field strength, there is some evidence for the expected
bump at the transition to the inelastic range in measured EEDFs at appropriate values
of p · a, which become apparent towards the end of discharge as predictable 10,11,15 .

A direct measurement of peaks in the radial electric field by means of a probe/
antenna possesses reduced spatial resolution, but at slightly increased p · a maxima in
measured |Er |–contours shifting slightly away from the discharge wall towards the dis-
charge end could be reported, as to be expected for strong radial density inhomogeneity
9–11,15.

There is also support for a change from a linear axial density profile to a steeper
axial descent towards discharge end1,8 from density determinations by microwave in-
terferometry 9,15. The analysis of perturbations due to the finite ratio of wavelength to
radius allows to consider the findings as relevant. There are also supporting observations
on this in recent microwave radiometry work 16 .

THEORETICAL CHECKS AND IMPROVEMENTS

There are two aspects of the model open to immediate check or improvement.
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Figure 7. R e ( E r) versus z and r for a linear axial density profile with scale length L = 2.74 cm,
radial profile with µ = 2, 220 MHz, ν en  /ω = 0.2, a =5 mm, b = 6 cm, d = 45 mm, shown
from z = –44 cm (left) to z = 1 cm (right) with z = 0 at /ω = 2. r runs from 2.4 mm in the
plasma (front) to d = 45 mm at the metallic shield (back).

Influence of (z) on field calculations

The assumption of weak influence of axial density variations through ( r )in
the field and dispersion calculations can be checked by three-dimensional numerical
studies including both radial and axial density inhomogeneities. This has been recently
performed on the basis of numerical solutions of the field equations in integral form,
the wave excitation given by a “numerical” surfatron7. The required numerical effort is
reduced by the use of magnetic boundary conditions suited to the considered azimuthal
symmetry and by the use of appropriate variable grids.

Fig. 7 shows an example of a two–dimensional representation (in the r, z plane of
Re(E r )) for a surface wave calculated in this way. In Fig. 8 |Er | and in Fig. 9 |Ez | are
depicted. Calculations of this type confirm that the assumption in the above modeling
on the usually weak influence of axial density inhomogeneity is sufficiently warranted
even in the case of strong changes brought about by pronounced radial density inhomo-
geneity and by absorption. This is demonstrated by radial cuts in Fig. 10 for a radially
inhomogeneous case and in Fig. 11 for an also radially homogeneous situation. Compar-
isons are made to simplified calculations neglecting z–dependencies. Differences become
only noticeable when a system (“quasistatic”) resonance at the discharge end is present
and z-positions close to it are considered. They are more pronounced in the radially
inhomogeneous case. Even in a situation of rather strong radial density variation (pro-
file parameter µ = 2.4), but with increased damping of νen /ω = 0.6 (suppressing the
formation of a system resonance connected to axial nonuniformity), field peaks due to
radial plasma resonances (ωp( r ) = ω) appear clearly resolved towards the discharge end
and are satisfactorily described in both cases, as to be seen in Fig. 12. By Fig. 13 axial
cuts of |Er |-field strength are shown when a (modest) radial inhomogeneity (µ = 2.0
as in Figs. 7–10) is present: As compared to calculations with a radially homogeneous
density of averaged value the field distribution plasma–vacuum is of course changed.
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Figure 8. Conditions as for Fig. 7: |Er | is depicted.

Figure 9. Conditions as for Fig. 7: | E z | is depicted.
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Figure 10. Radial cuts for conditions of Fig. 7 comparing full solutions (2d,
solid lines) to one–dimensional ones (1d) neglecting z-dependencies. µ = 2

Figure 11. As in Fig. 10, but the radially homogeneous situation ( µ = 0)
is considered.
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Figure 12. Radial cut at z = –20 cm for conditions as before, but µ = 2.4
and ν e n /ω = 0.6.

Figure 13. Axial cuts for | Er | near the wall in plasma (p, r = a ) and in
vacuum (v, r = b ), both for the case µ = 2 and ν e n /ω = 0.2 with system
resonance and for µ = 2.4 and ν e n / ω = 0.6 without system resonance.
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Figure 14. Radial profile of total field |E | selfconsistently calculated with
(solid) and without (dashed) ponderomotive potential for a relatively low
frequency and = 0.4.

Moreover the position of the system resonance present starts being affected, since to-
wards discharge end the density values near the wall become more relevant than the
simply cross–section averaged value. Included in Fig. 10 is a situation of stronger radial
inhomogeneity (µ = 2.4) and larger damping (ν en / ω = 0.6) when no system resonance
shows up.

The occurrence of relative strong radial field changes reminds of the potential in-
fluence of ponderomotive effects. Estimates are possible following previous studies17 by
using a ponderomotive potential |e||E|²/ 4m(ω² + ν ²) and comparing it to the ambipo-
lar potential, predicting usually minor influence. Indeed calculations where the total
energy ε is extended in its definition to include this ponderomotive potential confirms
the expected small difference within the framework of a nonlocal treatment on this basis
as demonstrated in Fig. 14 for a resultant selfconsistently calculated radial |E|–profile
for a low frequency case. Fig. 15 shows radial density profiles calculated both ways for
a case in the GHz range. Fig. 16 demonstrates (in linear scale) corresponding small
changes in the Θ–values.

Influence of ponderomotive effects

SUMMARY AND OUTLOOK

The modeling outlined for the prototype case of SW allows a selfconsistent descrip-
tion in the microwave and also low frequency range. In particular even strong density
inhomogeneities could be facilitated and simplified by the use of a nonlocal approxima-
tion. Some specific features resulting from density inhomogeneities and inherent result-
ing field inhomogeneities, including noncollisional transit–time–type damping, can thus
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Figure 15. Resulting radial density profiles with (solid) and without
(dashed) ponderomotive potential in the GHz regime. = 0.2 and 0.4.

Figure 16. Conditions as in Fig. 15: Θ in linear scale versus
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be predicted. Relevant experimental observations so far available seem to bear out or
at least to be consistent with predictions.

Doubtlessly more observations are desirable. For instance concerning the validity
of a nonlocal scenario, more studies on EEDFs towards higher energies seem to be
meaningful. Also detailed studies of radial emission profiles appear to promise sensitive
checks on this aspect.

As to theoretical improvements required, there is of course always the need for
refined incorporation of atomic/molecular physics data, even in the case of inert gases.
Of most promise presently are investigations of generalization of the nonlocal approach,
e.g. using multi–grid methods and improved boundary conditions on energy fluxes.
After all the nonlocal approach is an approximation even in the regime of present use,
particularly towards the inelastic energy range, and there are signs for the need of
improvement at least in detail. Moreover the transition to the local regime has to be
solved quantitatively in a completely selfconsistent way. An interesting detail aspect
seems to be the detailed radial structure of energy fluxes for various conditions.
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MOMENTUM TRANSFER THEORY OF ELECTRON TRANSPORT IN
× FIELD
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Zoran Lj. Petrovi  and Slobodan B. Vrhovac

INTRODUCTION

Requirements for an electron transport theory which can serve as the basis for rf
discharge modeling are increasingly complex and represent the main obstacle in achiev-
ing global plasma processing device modeling. In case of inductively coupled plasma
(ICP) modeling¹, additional complication arises from the need to describe the effect of
magnetic field and it requires non-linear equations of motion. Development of a simple,
reasonably accurate kinetic theory, which on the other hand can describe all the relevant
processes, is a desirable option to numerically intensive models. A very good example
of great benefits from a simple analytical or semi-analytical theory is application of
the non-local theory of Tsendin and Kortshagen². In this paper we develop another
aproach to developing a simple kinetic theory which can be used universally. It is the
Momentum Transfer Theory (MTT) which has been used in physics of electron and
ion swarms to provide physical insight into kinetic phenomena through development
of analytical relations³. In this paper we restrict ourselves to application of MTT to
charged particle transport, electrons in particular.

MTT basically consists of applying Taylor expansion to the rate coefficients at
the appropriately determined value of the mean energy. Regardless of its simplicity it
allows a reasonably small uncertainty of the calculated data of the order of 10%. While
early developments relevant to MTT date back to the work of Wannier 4, 5 and Mason 6

the MTT has been mostly developed by Robson and coworkers.
MTT has been applied to test the validity of Blanc’s law for charged particle

transport in mixtures of gases having only elastic processes6, 7, 8. Inelastic collisions
have been included in the single gas MTT and corresponding equations for energy,
drift velocity and relationship between the mobility and components of the diffusion
tensor were developed9. Reactive collisions were included in addition to inelastic and
the corresponding effects of attachment, annihilation10 and ionization 11 on t ranspor t
coefficients were discussed. MTT was also applied to electron transport in crossed
electric and magnetic fields for a case of a single gas with non-reactive collisions12.

Recently, however, MTT has been developed for a general case of gas mixtures that
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Edited by U. Kortshagen and L. D. Tsendin, Plenum Press, New York, 1998 441



include elastic, inelastic and reactive collisions13 . This theory was applied to study the
development of negative differential conductivity (NDC)13 , the validity of Blanc’s law
at high E /n0

14 , the higher order transport coefficients15 , electron transport in
fields 16 and also a time dependent MTT was developed14 .

In this paper we give a summary of the theory in purely electric field and some
phenomena that were studied. Usefulness of MTT in developing analytical formulae is
illustrated by the analysis of some of the processes supporting the development of NDC
and in calculation of the higher order transport coefficients. We proceed to describe the
steady state theory and finally we summarize the MTT procedure and possible
applications in gas discharge modeling including the development of the time dependent
and spatially dependent theory and development of a non-local beam-equation theory17 .

(1)

THEORETICAL EVALUATION- ELECTRIC FIELD ONLY

A swarm of particles of charge e and mass m is moving with velocity through neu-
tral gas mixtures under the influence of an applied electric field . We limit ourselves
to electron swarms but most of the results presented here may be directly applied or
easily extended to ion swarms, even to neutral swarms. There may be several different
(l) constituents of the gas mixture. Let m α and be mass and velocity of molecules of
the αth neutral gas, respectively. Let be the number density of swarm particles
and let be the number density of the αth neutral gas. We introduce a standard
notation:

(number density of the gas mixture),
µα = m mα / (m + m + α) (reduced mass),
Mα = m α / (m + m α), M 0

α = m / ( m + m α ),
(relative velocity) and

(energy measured in the center-of-mass reference frame).
The remaining notation is the same as in the paper by Vrhovac and Petrovi 13 where
a detailed developoment of the theory may be found. The theory presented here is a
generalization of the MTT developed by Robson 7, 9, 10, 18 .

The Boltzmann equation for a swarm of particles moving through a gaseous mul-
ticomponent medium is3 :

where J mix
α is the collision operator which represents the rate of change of the distribu-

tion function ƒmix due to collisions between the swarm particles and molecules of the
neutral gas α . All velocity distribution functions are normalized to number densities.

The collision processes included in our analysis are limited to elastic, inelastic and
reactive (both attachment and ionization) collisions of individual swarm particles with
normal gas molecules. Both momentum and energy loss of swarm particles in elastic
collisions arising from the finite mass of gas molecules are taken into account. The gas
particles have a non-zero temperature. Momentum exchange in inelastic processes is not
ignored and we also include the superelastic terms associated with inelastic processes.
The dynamics of ionization collisions is more complicated than that of attachment We
ignore the motion of the molecule after ionization, so that the available energy and
momentum are divided between the two electrons. Only single ionization is taken into
account but the resulting ion can be left in any one of its internal excited states.

442



Formulation of Moment Equations

The chain of moment equations is derived by multiplying both sides of Eq. (1) by
various powers of swarm particle velocity and integrating over velocity space. What
we obtain is basically an extention of the moment equations derived by Robson10 and
Robson and Nessr 18 to include gas mixtures by taking appropriately weighted sums of
collision terms in momentum equations. In addition a more detailed representation of
collisional events is provided including the momentum transfer in inelastic collisions.
The starting moment equations are:
Equation of continuity:

(2)

Momentum balance equation:

(3)

Energy balance equation:

(4)

Momentum - Transfer Approximation

If we replace the variables in expressions for collisional frequencies,
and apply Taylor series expansion in the vicinity of

ε0
α we obtain the MTT balance equations. We assume that Taylor expansion converges

rapidly in the neighborhood of ε0
α. The extended momentum - transfer approximation

consists of retention of several terms in Taylor expansion. Momentum and energy loss
rates for attachment are calculated using the first two terms and the assumption that
the distribution function of swarm particles is shifted Maxwellian. We also assume
that the background gas is in the thermal equilibrium (characterized by Maxwellian
distribution and temperature T mix ). Using momentum - transfer approximation we
obtain the equation of continuity

(5)
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and a more useful form of the momentum and energy balance equations:

(6)

(7)

where is the pressure tensor and is the heat conductivity vector. Attachment
collision rate appears in the form of the first derivative denoted by

Hydrodynamic Limit and Transport Coefficients

We assume that the swarm has evolved to its hydrodynamic limit (HDL). In HDL,
the space - time dependence of all properties is carried by the number density and the
swarm can be characterized by time - independent transport coefficients.

The starting point of the hydrodynamic description is the continuity equation for
the number density which can be developed by applying gradient expansion to take the
form of the diffusion equation:

(8)

(9)

(10)

The functions ψ 1 and ψ α
2 , α ∈ I l, of Eqs. (9) and (10), respectively, are defined as

follows:

(11)
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which can be used to define the transport coefficients: reaction rate α , drift velocity
, diffusion tensor

such as skewness
and, depending on truncation, the higher order coefficients

. Following a procedure similar to that developed by Robson 10

momentum and energy balance equations can be written as:



where we use the notations:

(12)

(13)

(14)

(15)

(16)

(17)

(18)

and

If functions , satisfy the following system of
equations:

(19)

we can write

(20)

(21)

(22)

(23)

The calculations in MTT proceed by using (19) and (20) to determine the values of
mean velocity and mean energy, which are subsequently used to determine the collision
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rates from (23). The actual drift velocity in the presence of reactive collisions can be
obtained from:

while the components of the diffusion tensor are determined from:

where the effective reaction rate α* is determined from:

(24)

(25)

(26)

Equation (25) is a generalized Einstein relation (GER) appropriate to reacting parti-
cle swarms in gas mixtures. It is thus a generalization of the GER available in the
literature 19, 10 .

APPLICATIONS OF ANALYTICAL FORMULAE

Negative Differential Conductivity

Negative differential conductivity (NDC) may be, rather narrowly, defined as a
decrease of the drift velocity with an increasing normalized driving field E/ n0 . NDC
is a kinetic phenomenon which is both of fundamental interest20, 21, 22 and of interest
for a number of applications such as determination of accurate electron scattering cross
sections 23 24and diffuse discharge switches . A specific form of time dependent NDC was
found to exist in rf discharges25, 26 which may affect power deposition efficiency.

Several explanations of NDC were available in the literature prior to 1984. Those
were mostly based on the condition that the Ramsauer Townsend minimum is present20

and even that the conditions for the NDC and for the breakdown of the two term theory
coincide27. Earlier theories have included most of the correct ideas20, 21 in explanation
of the NDC but were limited by the accepted assumptions and thus could not cover all
its basic aspects. Petrovi et al.28 (PCH) have made a series of model calculations that
led them do develop a set of conditions for the shapes of the cross sections that favour
NDC. Robson9 has put the NDC criterion on a much firmer ground by applying MTT.

The conditions developed by PCH and Robson for NDC as summarized by Petrovi
et al. are:

1. Inelastic processes are necessary;
2. Increasing momentum transfer cross section favours NDC;
3. Decreasing inelastic cross section favours NDC;
4. Occurrence of NDC depends on magnitudes of the factors 2 and 3;
5. Superelastic processes will have a tendency to reduce the NDC.

The above conditions represent what can be regarded as the standard NDC, i.e. the
NDC that is induced by the shape of the cross sections under non-reactive swarm
conditions. It turned out that the condition 1. was valid only for pure gases9. For
mixtures it is possible to use two different atomic gases in the mixture under conditions
when only elastic collisions are important and still observe NDC29, 30, 13, 31 . The NDC
criterion may be obtained in an analytic form from Eqs. (9) and (10) applied to a
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mixture of gases having elastic collisions only. The resulting criterion for a binary
mixture 13  is:

(27)

In case of a pure gas with inelastic and reactive collisions the criterion for the
development of NDC may be written in the form13 :

L.h.s. of Eq. (27) is less than zero when collisional frequency of elastic collisions
increases rapidly while the mass normalized term describing the energy transfer in
elastic collisions should be dominated by the collisional frequency that has a different
energy dependence to the dominant cross section. NDC will not occur for low mean
energies close to the thermal equilibrium because of the first bracket in the second
term. For binary mixtures when m1 << m2 and ≈ const a rapid increase of
with E / n 0 will tend to induce a negative slope of drift velocity provided that n01 /n02  i s
sufficiently small. In case that mean energy dependences of collisional frequencies are
similar or masses of atoms of the two constituent gases are similar no NDC will develop.
What basically occurs in this case is that energy losses in collisions of electrons with
lighter atomic gas play the role of the energy contolling inelastic process 13, 30, 31 .

(28)

where

(29)

If we neglect the reactive collisions, the equation (28) becomes identical to the criterion
developed by Robson9 . It is possible to predict easily the effect of superelastic colisions
on NDC. In all criteria superelastic collision rates appear with symmetry to the inelastic
losses i.e. only the sign is changed. That means that exactly the opposite conditions,
i.e. an increase with the mean energy, will be valid for superelastic collisions. While
it is difficult to find exact conditions when the shape of cross sections will be such
that superelastic process will contribute more to the NDC than the negative effect of
inelastic collisions, it may not be impossible. In any case superelastic collisions will
reduce the NDC effect as can be seen in Fig. (1) for the case of methane.

The basic difference between Robson’s criterion and that of Vrhovac and Petrovi
is in the first term on the 1.h.s. (See Eq. (28)). That term can be written explicitely
as:

(30)

One should note that attachment and ionization are not equivalent in this criterion,
i.e. attachment collision rate is present through it’s first derivative . NDC will be
supported by decreasing ionization collision frequency, a condition that is not likely
to occur for realistic conditions. However, for the attachment, collision frequency may
have a shape that is required to induce the NDC, may even have it for two different
E / n0 below and above the maximum. The requirement is that the rate of change of
the slope changes sign to negative values which is commonly realized. One should be
warned that this effect promoting the NDC is purely due to the reactive nature of
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Figure 1. 1. NDC in methane as a function of E /n0 and non-equilibrium vibrational temperature2 5:
a) Drift velocities calculated from the Boltzmann equation; b) The NDC criterion from equation (28)
- negative values correspond to NDC and the results are in excellent agreement with calculations.
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collisions and should be added to the standard cause of the NDC due to the shape
of cross sections. If we make a set of cross sections that gives the mean velocity of
electrons just on the verge of NDC then NDC may be induced by changing the nature
of one of the inelastic processes into reactive- ionization or by adding attachment. This
is shown in Fig. (2).

When reactive collisions are present the drift velocity is different from the mean
velocity of electrons 32 and thus the condition for the NDC for drift velocity chages to:

(31)

(32)
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which contains the first term due to the NDC in the mean velocity and the second two
terms due to correction for reactive collisions which will affect greatly the occurence
and the position of the NDC. If we neglect ionization and all inelastic collisions from
Eq. (28) we obtain:

The NDC can thus be indeced by the basic shape of the cross sections (collisional
rates) as a function of the energy, by reactive corrections and by reactive collision term
as well. It was also discovered that electron-electron collisions may induce the NDC33

though the effect may be reduced due to the thermalizing effect of electron- electron
collisions. We may expect additional causes of NDC due to different kinetic processes
and this effect may prove to be one of the most interesting targets for fundamental
studies of gas discharge kinetics, with some possible applications34 .

which indicates that in the presence of elastic collisions only, even in a single gas,
attachment may induce the NDC.

Higher Order Transport Coefficients

Momentum-transfer theory will also be used here to derive approximate expression
for higher order transport coefficients of reacting particle swarms in mixtures of gases.
Higher order transport coefficients may not be yet required for plasma modeling but can
be useful in obtaining the cross section data and removing the discrepancies between
the existing sets35 . Our basic aim is to derive relationships between experimentally
measurable quatities. In particular, the aim is to obtain semi-quantitative relations
between skewness and lower-order transport coefficients.

In the hydrodynamics regime | | is small. We expand functions [Eq. (21)]
and α* [Eq. (23)] to the second and third order in , respectively. Substituting these
expansions into the equation of continuity [Eq. (2)] leads, after some algebra, to a
diffusion equation [Eq. (8)], where

(33)

is the skewness.
In Eq. (33) is the effective reaction rate (attachment) coefficient.I

Equation (33) establishes the relationship between skewness , drift velocity 



Figure 2. The effect of attachment on drift velocity. A basic set of model cross sections giving a
constant drift velocity but no NDC is used 28 . A constant attachment cross section is added with
three different values of the cross section: 0.001 ·10– 1 6cm 2 -solid curve; 0.0016 ·10 – 1 6cm 2  - dashed
curve and 0.0024 · 10 – 1 6 cm 2 - dotted curve. We show the mean velocity (a), the drift velocity (b)
and the criterion for NDC (c), all calculated by MTT. The ranges of E /n 0 where NDC occurs are in
excellent agreement.
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(36)

The heat flux in the energy balance equation was neglected in derivation of Eqs.
(21). One may thus expect that Eqs. (25) and (33) are not correct in cases where mass
of swarm particle is comparable to the mass of gas atoms and that GER should contain
an additional factor proportional to the heat flux 19 .

When E /n0’s are low enough the mean electron energies are well below the first
inelastic threshold and in that case, distribution of electron velocities is nearly isotropic.
Hence,

and reaction rate α*. This equation has the same role that GER play for diffusion. From
measurements of drift velocity and reaction rates α* as a function of the reduced
electric field E /n0 , it is possible to predict diffusion coefficients and skewness, as long
as the temperature tensor can be estimated. In general, k-th order transport
coefficients ( k ≥ 2) depend on (k – 1)-th derivate of the drift velocity and k -th
derivate of the reaction rate α* with respect to the electric field.

(34)

where ε mix ≈ (1/2) m 〈v 2〉mix. Using the above assumptions, we can simplify Eq. (33),

(35)

If we neglect inelastic and reactive processes and assume a constant elastic cross
section, σ (el) = σ0/(4π) = const (hard-sphere model) the well known analytical forms
for the drift velocity:

and skewness:

(37)

may be obtained.
These formulae are explicitely given in Huxley and Crompton36 . Results for skew-

ness S L versus E / n0 for He, Ne and Ar, calculated on the basis of MTT (i.e. according
to Eq. (35)) are in reasonably good agreement with the Boltzmann equation solutions35.

ELECTRON TRANSPORT IN FIELDS

Momentum transfer theory for electrons in a single gas with non-reactive collisions
has been first developed by Robson 12 . Independently of his work we have developed
MTT which has been extended to include mixtures of gases and reactive collisions.
When magnetic field is included the Boltzmann equation has an additional term due
to the force. This term affects explicitely the momentum balance equation (3)
which takes the form:

(38)
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However, all other equations are affected implicitly including the collision terms. After
application of the momentum transfer approximation (MTA) and the hydrodynamic
expansion the equations for the mean energy and velocity reduce to:

(41)

where

(39)

(40)

is the mobility tensor and

(42)

All equations presented here are given for the coordinate system where electric field
is along the y-axis, while magnetic field is along the x-axis. It is possible to develop
equations for an arbitrary angle between the electric and magnetic fields but in this
paper we shall only discuss the situation when the two fields are perpendicular.

It is also possible to establish the analytic equations for the components of the
diffusion tensor but the number of these components will depend on the magnitude of
the off-diagonal terms of the temperature tensor which is not necessarily diagonal when
magnetic field is present.

When reactive collisions are present the mean and the drift velocity are not
identical

32
but in the case of the crossed electric and magnetic fields the correction

is required only for the drift along the direction of the electric field. Both components
of the drift are affected by the reactive collisions indirectly through the value of the
mean drift velocity.

While much more complex and difficult to obtain, the analytic MTT forms can be
established for fields and used to calculate the transport coefficients. It is also
possible to establish a numerical procedure on the basis of the balance equations. The
main difficulty in completing the MTT for fields is the requirement to establish
separately the form of the temperature tensor.

In this section we shall only show some of the results of calculations obtained with
simple model cross sections

28
.

Figure (3) shows the influence of normalized magnetic field B/n 0 on drift velocities
(Figure 3a), mean energy (Figure 3b) and inelastic collision rate (Figure 3c). Increasing
field B/N reduces the mean energy at low values of E/n 0 . The influence on the in-
ealstic rate coefficient is similar. Increasing the magnetic field to very high values will
completely diminish both components of the drift velocity as well as the mean energy.

In Fig. (4) we show how changing of the nature of one of the collisional processes
from inelastic (dashed line) to ionization (solid line) affects the mean velocity and
consequently the drift velocity (see Figure 4b). One should note that there is no
difference between the mean and the drift velocity of the perpendicular (z) component
while the longitudinal and therefore the total drift velocity are both affected by the
correction for the reactive collisions. This effect should not be confused with the effect
of reactive collisions on the mean velocity which exists for both components.
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Figure 3. The influence of normalized magnetic field B /N on transport coefficients: a) drift
velocity, b) mean energy and c) inelastic collision rate.
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Figure 4. The effect of changing of the nature of one of the inelastic processes from number
conserving inelastic (dashed) to reactive (solid). We show the results for the average velocity (a) and
drift velocity (b).
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POSSIBLE APPLICATION OF MTT IN GAS DISCHARGE MODELING

First we should discuss how one applies the MTT for numerical calculations. On
the basis of available cross sections the equations (19) and (20) are solved, i.e. the mean
velocity and energy are determined. These values are used to establish the effective rate
coefficients (23) from the specific cross sections. In principle MTT should be applied
only at the mean energy. Such procedure is not adequate when energy is below or
close to the thresholds of inelastic processes. Robson has proposed to use a modified
cross section which is equivalent to convolution of the cross section by a Maxwellian
distribution function. This procedure allows one to apply MTT when the mean energy
is below the threshold for ionization which is usually the case in gas discharges. Yet
it appears that for different conditions a far reaching tails of distribution functions are
generated37 which can provide the necessary ionization for maintaining the discharge
even when mean energy is well below the ionization threshold.

One should have in mind that analytical formulae and balance equations developed
by applying MTT should be applicable regardless of some of the approximations that
are used in developing them. Those formulae represent relations between collisional
frequencies and driving fields with transport coefficients. Approximations were neces-
sary in order to develop the analytic forms but we may use more accurate collisional
frequencies in those formulae. In fact we may also use the experimental data without
any loss of generality. In other words the implicit approximations may limit the scope
of the formulae and some kinetic phenomena may not be represented but they do not
prevent us from using more accurate input data. When such data are applied MTT
gives final results of a much higher accuracy which is not surprising, the main source
of inaccuracy of MTT results is due to the poor representation of collision frequencies
especially close to the threshold. Thus our proposal is to use collision frequencies cal-
culated by other more accurate but numerical methods or measured and renormalize
them to effective cross sections. Under such conditions applying a procedure to estab-
lish the collision frequency at a single energy will give more accurate final results. Even
without such precautions MTT results are usually within 10% of the accurate swarm
data, which may be sufficient for gas discharge modeling.

More serious problems arise from the requirement to establish the results for time
varying fields. We were able to develop MTT equations for infinite swarms with rf
fields, even including the magnetic field. In that case, however, ordinary differential
equations have to be solved, but the results are in good agreement with those obtained
by other techniques.

In real discharges spatially variable fields leading to non-local electron kinetics
have to be taken into account. It is, however, possible to use the MTT to develop
equations without the hydrodynamic approximation, which would be partial differential
equations. We have been able to derive beam equations from the basic MTT balance
equations that are equivalent to beam equations developed by Phelps and coworkers17 .
It means that the non-local electron kinetics can be preserved in MTT.

CONCLUSION

In this paper we describe the development of MTT for electron transport in mix-
tures of reactive gases. MTT can be extended to time varying and spatially non-uniform
fields. The previous work of Robson

9
has been limited to the transport in a single re-

active gas and some extensions to mixtures are not trivial.
In order to illustrate the usefulness of the analytic forms derived by MTT we
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discuss the negative differential conductivity and higher order transport coefficients for
electron swarms. The increasingly popular ICP reactors require modeling of electron
transport in crossed electric and magnetic fields. Therefore we describe the development
of the MTT for fields. This theory can be used to analyze electron transport
phenomena but also to calculate the transport coefficients.

Modeling of gas discharges may banefit from MTT in different ways. Analytic
forms can help elucidate the relations between various transport coefficients and also
the effect of cross section profiles on electron transport. One particularly interesting
application of MTT, (not discussed in this paper due to the lack of space) is in deriving
corrections for Blanc’s law, which gives transport coefficients for mixtures as a function
of the coefficients for pure constituent gases. While it has been regarded as inapplicable
for electron transport at moderate E/ n 0 , Blanc’s law may become an option for very
high E /n0 . Under such conditions the energy distribution functions and scattering cross
sections in different gases may be more similar in shape. The values of mean energies
would also differ by a lesser degree. At the same time elastic collisions may have an
increasing importance in energy transfer which would be dominated by ionization. The
reasons for the breakdown of Blanc’s law beyond reasonably applicable corrections are
diminishing at high E/n0 . On the other hand the data for transport coefficients for
such conditions are lacking so a corrected form of Blanc’s law would become useful.

It is also proposed here that MTT equations may be used as the basis for faster yet
adequately accurate modeling of rf plasmas38 . The requirement is that the space-time
dependence is allowed, while at the same time it should be necassary to maintain the
physics necessary to describe the non-locality in space and time. Some developments in
our laboratory indicate that it is possible to develop such a theory with some additional
effort. Whether it would be useful or not remains to be seen.

In any case MTT, as applied to swarm parameters and in understanding of various
kinetic phenomena, is a technique that has contributed significantly to gas discharge
modeling. At the moment it has been developed to cover mixtures of reactive gases, to
include time dependence and to include the magnetic field in all its aspects13 .

ACKNOWLEDGEMENTS

Authors are grateful to Prof. R. E. Robson for numerous useful discussions and
continuous support. We would also like to acknowledge discussions with Dr. K. F.
Ness, Prof. T. Makabe, Dr. S. A. Bzeni and many other colleagues.

This work was supported to a small degree by the Ministry of Science and Tech-
nology of the Republic of Serbia.

REFERENCES

1. A. Okigawa, Z. Lj. Petrovi , M. Tadokoro, T. Makabe, N. Nakano and A. Itoh, “Diagnostics of
a non-equilibrium inductively coupled plasmas in argon”, Appl. Phys. Lett. 69:2644 (1996).

2. U. Kortshagen and L. D. Tsendin, ”Fast two-dimensional self-consistent kinetic modeling of
low-pressure inductively coupled RF discharges”, Appl. Phys. Lett. 65: 1355 (1994).

3. K. Kumar, H. R. Skullerud and R. E. Robson, “Kinetic theory of charged particle swarms in
neutral gases”, Aust. J. Phys. 33:343 (1980).

4. G. H. Wannier, “Motion of gaseous ions in strong electric fields”, Bell Syst. Tech. J. 32:170
(1953).

5. G. H. Wannier, “On a conjecture about diffusion of gaseous ions”, Aust. J. Phys. 26:897 (1973).
6. E. A. Mason and H. Hahn, “Ion drift velocities in gaseous mixtures at arbitrary field strengths”,

Phys. Rev. A 5:438 (1972).

456



7.

8.

9.

10.
11.

12.

13.

14.
15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

H. B. Milloy and R. E. Robson, ”The mobility of potassium ions in gas mixtures”, J. Phys. B:
Atom. Molec. Phys. 6:1139 (1973).
J. H. Whealton, E. A. Mason and R. E. Robson, ”Composition dependence of ion - transport
coefficients in gas mixtures”, Phys. Rev. A 9:1017 (1974).
R. E. Robson, ”Generalized Einstein relation and negative differential conductivity in gases”,
Aust. J. Phys. 37:35 (1984).
R. E. Robson, ”Physics of reacting particle swarms in gases”, J. Chem. Phys. 85:4486 (1986).
R. E. Robson and K. F. Ness, ”Physics of reacting particle swarms. III Effects of ionization
upon transport coefficients”, J. Chem. Phys. 89(8):4815 (1988).
R. E. Robson, ”Approximate formulas for ion and electron transport coefficients in crossed
electric and magnetic fields”, Aust. J. Phys. 47:279 (1994).
S. B. Vrhovac and Z. Lj. Petrovi ”Momentum transfer theory of nonconservative particle
transport in mixtures of gases: General equations and negative differential conductivity”, Phys.
Rev. E 53:4012 (1996).
S. B. Vrhovac, Ph.D. thesis, Faculty of Physics, University of Belgrade (1996) (unpublished).
S. B. Vrhovac and Z. Lj. Petrovi ”Higher order electron transport coefficients from momentum
transfer theory”, Europhysics conference abstracts 20E: 103 (1996).
S. B. Vrhovac and Z. Lj. Petrovi ”Momentum Transfer Theory of Non - Conservative Charged
Particle Transport in Crossed Electric and Magnetic Fields”, Proc. XXII ICPIG (International
Conference on Phenomena in Ionized Gases), Editors. K. Becker, W. E. Carr and E. E. Kunhardt,
Hoboken, 2:39 (1995)
A. V. Phelps, B. M. Jelenkovi  and L. C. Pitchford, ”Simplified models of electron excitation
and ionization at very high E/N", Phys. Rev. A 36:5327 (1987).
R. E. Robson and K. F. Ness, “Velocity distribution function and transport coefficients of
electron swarm in gases. I Spherical decomposition of Boltzmann equation”, Phys. Rev. A
33:2068 (1986).
R. E. Robson, ”On the generalized Einstein relation for gaseous ions in an electrostatic field”,
J. Phys. B: Atom. Molec. Phys. 9:L337 (1976).
W. H. Long, W. F. Bailey and A. Garscadden, ”Electron drift velocities in molecular-gas-rare
gas mixtures”, Phys. Rev. A 13:471 (1976).
G. B. Lopantseva, A. F. Pal’, I. G. Persiatsev, V. M. Polushkin, A. N. Starostin, M. A. Timofeef
and E. G. Treneva, Sov. J. Plasma Phys, 5:767 (1979).
K. F. Ness and R. E. Robson, ”Transport properties of electrons in water vapor”, Phys. Rev.
A 38:1446 (1988).
D. L. Mosteller Jr., M. L. Andrews, J. D. Clark and A. Garscadden, “Electron drift velocities
in argon - boron tricholoride gas mixtures”, J. Appl. Phys. 74:2247 (1993).
S.R. Hunter, J.G. Carter and L.G. Christophorou, “Electron transport studies of gas mixtures
for use in e-beam controlled diffuse discharge switches”, J. Appl. Phys. 56:3001 (1985).
A. Jelenak, J. V. Jovanovi , S. A. Bzeni , S. B. Vrhovac, S. S. Manola, B. Tom ik and Z. Lj.
Petrovi “The influence of excited states on the kinetics of excitation and dissociation in gas
mixtures containing methane”, Diamond and Related materials 4:1103 (1995).
S. A. Bzeni and Z. Lj. Petrovi “Negative differential conductivity for electrons in rf fields”,
Europhysics conference abstracts 20E:101 (1996).
P. Kleban and T. H. Davis, “Electron transport in methane gas”, Phys. Rev. Lett. 39:456
(1977).
Z. Lj. Petrovi ,R. W. Crompton and G. N. Haddad, “Model Calculations of Negative Differential
Conductivity in Gases”, Aust. J. Phys. 37:23 (1984).
B. Shizgal, “Negative Differential Conductivity of Electrons in He-Xe and He-Kr mixtures”,
Chem. Phys. 147:271 (1990).
R. Nagpal and A. Garscadden, “Electron transport in helium-rare gas mixtures”, Appl. Phys.
Lett. 64:1626 (1994).
R. V. Chiflikyan, “Negative differential electron conductivity in He-Kr and He-Xe gas discharge
plasmas”, Fiz. Plazmi 22:71 (1996).
R. E. Robson, “Transport phenomena in the presence of reactions: Definition and measurement
of transport coefficients”, Aust. J. Phys. 44:685 (1991).
N. L. Aleksandrov, N. A. Dyatko, I. V. Kochetov, A. P. Napartovich and D. Lo, “Negative
differential conductivity in pure rare gases”, Phys. Rev. E 53:2730 (1996).
N. L. Aleksandrov, A. M. Konchakov, A. I. Napratovich and A. N. Starostin, “Novel mechanism
of sound amplification in a weakly ionized gas”, Sov. Phys. JETP 68:933 (1989).

457



35. B. M. Penetrante and J. N. Bardsley, Higher - order electron transport in gases, in: “Nonequi-
librium Effects in Ion and Electron Transport”, edited by J. W. Gallagher et al. (Plenum Press,
New York, 1990).

36. L. G. H. Huxley and R. W. Crompton, “The Diffusion and Drift of Electrons in Gases”, Wiley,
New York, (1974).

37. V. D. Stojanovi B. M. Jelenkovi and Z. Lj.Petrovi “Excitation by electrons and fast neutrals
in nitrogen discharges at very high electric field to gas number density ratios”, J. Appl. Phys.
81:1601 (1997).

38. N. Nakano, N. Shimura, Z. Lj. Petrovi and T. Makabe, “Simulations of rf glow discharge
in SF6 by the relaxation continuum model: Physical structure and function of the narrow-gap
reactive-ion etcher”, Phys. Rev. E 49:4455 (1994).

458



HOT ELECTRONS IN AN EXPANDING MAGNETIZED HYDROGEN
PLASMA

D. K. Otorbaev,¹ Zhou Qing, G. J. H. Brussaard, M. C. M. van de
Sanden and D. C. Schram

¹Institute of Chemistry and Chemical Technology
Kyrgyz National Academy of Sciences
Chui prospect 265 A, Bishkek, 720071, Kyrgyz Republic
Department of Physics
Eindhoven University of Technology
P. O. Box 513, 5600 MB Eindhoven, The Netherlands

1. INTRODUCTION

Nonequilibrium hydrogen plasma have been widely used in different research and
application fields and have become a promising research subject. In microelectronics
hydrogen containing plasmas have been utilized in the thin film deposition,¹ surface
cleaning and passivation techniques.² It has been shown that high quality diamond films
are grown in a hydrogen diluted plasma, and that the atomic hydrogen present in these
plasmas is essential for the quality of the films.³ The research of hydrogen plasmas has
also a direct bearing to controlled thermonuclear fusion project. Heating of the fusion
plasma by injection of neutral beams produced by neutralization of negative ions from
a negative deuterium (hydrogen) ion source has been suggested as a key technology to
reach the plasma conditions needed for energy production by thermonuclear fusion.4

Hydrogen plasmas can be generated in different kinds of gas discharges, e.g. in
DC glow discharges, RF plasmas, microwave plasmas, in a hollow cathode arcs, etc. 5 – 8

To obtain a high enthalpy flow, it can be also created at higher pressures, e.g. by a
so-called cascaded arc, 9 which is a kind of wall stabilized high electron density plasma,
and which is the subject of this paper. Previous research shows that the cascaded arc
is an ideal design to create a stable arc plasma with high electron density as well as
an expanding plasma for both plasma studies and applied research. 10, 11 I t  has been
shown that the expanding cascaded arc plasmas have potential prospect in different
application fields; e.g. using a cascaded arc as a light source for spectroscopy, 12 as a
particle source for surface modification, 10 silicon and carbon thin film deposition. 13, l4

Mostly noble gases are used to feed the arc plasma, but exceptionally molecular gases
like H2  and SF6  are added.15, l6

The aim of this research is to develop a hydrogen radical source for the rising
interest in hydrogen plasma applications. The plasma is first created in a cascaded
arc. The treatment plasma is obtained by the expansion of the arc plasma into a low
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background pressure vessel. In this paper the low pressure range ( 5 Pa) is explored in
order to reduce plasma recombination. At these lower pressures collisional confinement
is not effective and magnetic confinement of electrons and ions is needed to obtain a
high electron density expanding plasma. Therefore this work focuses on magnetized
expanding hydrogen plasmas at low pressure.

2.  PLASMA SOURCE AND EXPANSION

2.1. Cascaded Arc Set Up

The cascaded arc used in. this work consists of three main parts, namely cathode
section, cascade plates section and anode section. In this type of arc a plasma is
generated in a cylindrical channel consisting of a number of plates. The arc discharge
is stabilized by the water cooled channel walls. The power dissipation is relatively
high, typically of the order of 5 kW, and the carrier gas (argon, nitrogen, hydrogen) is
flowing at a rate typically between 5 and 100 standard cm³s–1  (sccs). 10, 17 The plasma
is initiated by the application of a high voltage pulse to the cathode (Vpulse 1 kV,
t pulse 1 s), and the arc plasma is sustained by drawing a high current (30–100 A)
between the cathode tips and the anode at a lower voltage (80–150 V). The arc plasma
is always started using pure argon since lower power is needed to generate an argon
plasma. By this procedure the lifetime of the cascaded arc set up can be significantly
extended. After the argon arc becomes stable, the hydrogen concentration in the flow is
slowly increased from 0" until 100", and a pure hydrogen arc plasma is obtained through
a transition from an argon arc to a hydrogen arc. The power needed to generate and
sustain an arc is determined by arc length, or the number of the cascade plates. The
longer the arc, the more the input power is needed. In this experiment, a four plate
arc is used.10, 17

2.2. Different Regimes of an Expanding Plasma

The arc plasma is first generated in the cascaded arc and then expands into a low
pressure vessel (P 5 Pa) (Figure 1). At moderate pressures in the vessel ( 100
Pa) an expanding hydrogen plasma shows a strong recombination of hydrogen atomic
ions.18 This strong recombination can not be explained by atomic processes. In pure

Figure 1. Expanding cascaded arc plasma and the spectroscopy set up, with the geometry, used for
the local excitation of the Ar and He spectral lines.
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argon plasmas, recombination has been shown to be a relatively weak process. 11 The
anomalous recombination of H2 containing plasma is due to charge exchange of the
atomic ion H +wi th  H2 molecules to form the molecular ion H

+
2 , which recombines

fast by dissociative recombination. In order to avoid the recombination, the charge
exchange between the primary H + ions and H2  molecules has to be reduced which can
be achieved by decreasing the hydrogen molecule density. However, then the mean free
paths become larger the fast diffusion starts to reduce the charged particle density.
Therefore a magnetic field is applied to confine the expanding plasma and by this
to reduce outward diffusion and thus to increase the plasma density. To obtain a
magnetized expanding plasma beam, a magnetic field coil is mounted in front of the
cascaded arc.

Two regimes of an expanding plasma can be distinguished depending on the applied
magnetic field, which we define as the “atomic” regime and the “molecular” regime. The
two regimes can also be reached by varying the pressure suggesting that confinement
of the plasma plays an important role. The main feature of the regime at relatively
large magnetic fields is that the plasma emits strong hydrogen Balmer lines. There
is no observable molecular spectrum in the measured wavelength range. Therefore
we name this regime the “atomic” one.19 The main characteristic of the regime at
relatively small magnetic field is that not only hydrogen Balmer lines, but also strong
hydrogen molecular lines are observed. We name this regime the “molecular” one.
This regime is reached by decreasing the magnetic field (by lowering the coil current I B

from 250 A to 50 A) continuously from the atomic regime. In this paper the results of
diagnostics of the molecular regime of an expanding magnetized hydrogen plasma jet
will be presented.

3. DIAGNOSTICS

3.1. Optical Emission Spectroscopy

Figure 1 shows the line intensity measuring system used in the experiment. The
system consists of a computer controlled two dimensional translation set up, a computer
controlled monochromator, a photomultiplier, a quartz fibre, a signal discriminator,
TTL converter and a digital counter. The signal is first focused on the detection
surface of the quartz fibre by an optical system. Through the fibre, the light signal is
transmitted to the monochromator. Behind the exit slit a photomultiplier is positioned.
The resulting current pulses are converted into TTL pulses which are counted by the
computer. The optical system was calibrated positioning a tungsten ribbon lamp in the
vessel, and recording the spectrum at a known true temperature of the ribbon. Figure
2 gives an example of a hydrogen spectrum which is typical for an expanding plasma
in the molecular regime.

It can be shown that the plasma under study is optically transparent for the studied
atomic and molecular spectral lines. It is known that the optical depth of a plasma
is the value, which determines the transparency of the plasma. The optical depth can
be expressed through the following formula:

in which k is the absorption coefficient, n q is the population density of the lower state
of radiative transition, Apq is the absolute radiative transition probability, λ pq is  the
wavelength of the transition between state p and state q, R is the effective radius of

(1)
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Figure 2. Part of the Fulcher-α spectrum of molecular hydrogen in an expanding plasma. Experi-
mental conditions Q = 8 scc/s, Ia r c  = 50 A, IB  = 50 A, P = 5 Pa, z = 18 cm.

the plasma beam, ∆λpq is the half width of the emission profile and µ a geometrical
factor (for a cylindrical plasma beam, µ 1.2).20

For the spectral lines under investigation, λpq is in the range of 360 nm to 660
nm, Apq is in the range of 10³ to 107s – 1 . In this experiment, the density of the state
H(p = 2) is about 1016 m–3 as will be discussed later, the radius R is about 10–2 m
and the line width ∆λpq is on the order of 10–11 m. The calculated optical depths for
the hydrogen atomic and molecular lines for the present experimental conditions are in
the range of 3. 10

–3
 to 10

–6
, i.e. much less than 1. Therefore all discussed transitions

between the hydrogen excited states can be considered as optically thin.

3.2. Langmuir Probes

A Langmuir double probe set up was used to determine electron temperature ( Te )
and density (ne ). A potential difference is applied between the two floating probes.
The current passing through the probes is measured (cf. Ref. 21):

with Ip the current trough the probes at applied potential difference Vp , I
+,—
i the satu-

ration currents at large positive and negative potentials, and S p1 ,p2 the surfaces of the
probes. After plotting the left hand side of equation (2) on a semi-logarithmic scale,
the slope at Vp  = 0 will yield the electron temperature. The electron (ion) density ne

can be determined from the saturation currents (cf. Ref. 22):

(2)

(3)
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where ki ( 0.6) is a geometrical factor for the ion flow towards the probe,23 and mi

the ion mass.
Although the electron current to the probe is significantly reduced by the pres-

ence of a magnetic field, it is still proportional to the Boltzmann factor exp(eV/kTe ). 24

Therefore equation (3) remains valid. In Figure 3 the results of Te a n d ne in the mo-
lecular regime of an expanding hydrogen plasma, determined by the Langmuir double
probe measurements are given. The assumption made in the calculations that H

+
2 i s

the dominant positive ion in the plasma. In principle it is necessary to verify some
requirements of the use of the Langmuir probe theory in a magnetized plasma, since
in the magnetic field the trajectories of the charged particles can be disturbed, so the
collection efficiency of the charged particles by a probe will be influenced.22 However, it
can easily be shown, that for the particular experimental conditions the basic require-
ment of the probe theory is still valid, since the Larmor radii both for electrons and for
ions are much larger than the Debye length.

4. EMISSION OF FULCHER-α α BAND OF H 2 AND GAS
TEMPERATURE

Analysis of the relative intensity distribution of the rotational spectral lines of
electronically-excited molecules are widely used as a method of determination of the
gas temperature of low-temperature plasmas.5 The parameter to be measured is the
rotational excitation temperature T *

r o t , which is associated with the molecular distribu-
tion over the rotational levels of the excited electronic-vibrational (vibronic) states. The
rotational distributions of the electronically-excited molecules were usually similar to a
Boltzmann distribution. Therefore it is often assumed that the rotational temperature
coincides with the translational gas temperature Tg .25 However, since at low densities
the radiative lifetimes of excited molecules are usually shorter than the characteristic
time for rotational relaxation,26, 27 the relation between rotational temperature and gas
temperature requires special attention.

In order to determine the temperature of the neutral particles in an expanding
hydrogen plasma (the gas temperature), we measured the rotational distribution of hy-
drogen molecules of the electronically-excited state For this purpose we used
the radiative transitions, which correspond to Fulcher-α system of H2 . The Fulcher-α
system is the result of radiative transition and has been chosen for
two reasons. First, the lines of this system in the red part of the visible spectrum are
fairly far apart from one another and dominate over the spectral lines associated with
other transitions. Second, for the Fulcher-α system all necessary molecular constants
have been studied most thoroughly.28–30 In this section we will discuss the properties of
the radiative state the excitation mechanism of this state in the conditions of
an expanding plasma, and the method of gas temperature determination from analysis
of the rotational spectrum of H2 .

4.1. The Fulcher-α α Spectrum

For a hydrogen molecule, both the electronic ground state and the
considered electronically excited states and belong to Hund’s case
(b).31 The triplet splitting in the and states are negligible.30 For the

state the rotational levels split into two components due to A-type doubling,
where one is symmetric and applies to para-hydrogen, and the other is antisymmetric
and applies to ortho-hydrogen. This results into two distinguishable series of rotational
levels denoted as the II+ a n d  II

–
components.
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Since vibrational and rotational interaction is insignificant in then state,
the line strengths can be calculated with the Hönl–London formula25,32 :

with t = 0 for even J ′ values, and t = 1 for odd J ′ values.
Figure 2 shows an example of a part of the hydrogen Fulcher-α spectrum measured

in an expanding hydrogen cascaded arc plasma in the molecular regime.

4.2. Determination of Rotational Temperature

In general the intensity of the radiation between the rotational levels of the elec-
tronic-vibrational excited states can be expressed:

(4)

(5)

Figure 3. Axial dependencies of the electron temperature ( Te ) and electron density (ne ) in the
molecular regime of an expanding hydrogen plasma, measured by a Langmuir double probe.
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in which n p ' v ' J ' is the population of an electronically excited state p', with vibra-
tional quantum number v', and rotational quantum number J', v'→"  and A '→" are the
wavenumber and the transition probability for the given spectral line, ∆Ω is the solid
angle of observation, h and c are known constants. In the adiabatic approximation, the
corresponding transition probability A' →" is a product of electronic, vibrational and
rotational fractions and can be expressed as25, 32 :

where q v',v" is the so called Franck–Condon factor, which determines the distribution
over the vibrational transitions.25, 32

In the case that the rotational distribution of the upper state of a molecular radia-
tive transition is a Boltzmann distribution, the intensities of the rotational lines I'→"

are directly linked to the rotational temperature through:

in which F(J') is the energy of the upper level in cm- 1 , k is the Boltzmann’s constant.
The plot of the ln versus the rotational term values F (J') gives a
so-called Boltzmann plot. The rotational temperature can be obtained from the slope
of this plot.

4.3. Determination of Gas Temperature

In a low pressure plasma, the radiative lifetimes of the molecules in the electroni-
cally excited states are often much shorter than the characteristic time of rotational
relaxation . The only exceptions are the ground state and the metastable states of
the molecules. Therefore, the mechanism of excitation of rotational levels in the elec-
tronically excited states is important in plasma diagnostics since the determination of
the gas temperature is based on the analysis of the relative intensities of the rotational
lines in the electronic-vibrational (vibronic) bands of the molecular spectra.

(6)

(7)

Figure 4. Example of the experimental and radial profiles of the Q1 spectral line of the Fulcher-α
transition in an expanding plasma. Experimental conditions Q = 8 scc/s, Iarc = 50 A, I B  = 50 A,
P = 5 Pa, z = 18 cm.  represents the experimental data, - - - represents the Gaussian profile, —
represents it after Abel inversion.
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The previous investigation27 shows that in a broad range of plasma conditions a
Boltzmann rotational distribution in the ground electronic state of the molecules im-
ages to a Boltzmann rotational distribution in the excited electronic states despite the
substantial change of angular momentum of a molecule during a direct electron im-
pact. However, due to the fact, that the rotational constants of the ground state B

0

and excited state B' are different, and the difference is especially large for the hydro-
gen molecule, the rotational temperature of the ground state T 0

rot and the rotational
temperature of the excited state T *

rot will in general be different. From Eq. (7) and
the expression for the rotational term it is easy to obtain a relation between the two
temperatures with good accuracy:

Therefore to determine the gas temperature of a hydrogen plasma from a rotational
spectral line intensity distribution, it is necessary to assume that the hydrogen mo-
lecular excited state is excited from the hydrogen molecular ground state

by direct electron impact and decay to occurs spontaneously.
These two assumptions will be discussed in more detail in the next section.

4.4. Excitation Mechanism and Gas Temperature in an Expanding
Hydrogen Plasma

To determine the rotational temperature of an expanding hydrogen plasma in the
molecular regime, the first five lines belonging to the Q-branch of the first three diagonal
vibrational states of (0–0), (1–1) and (2–2) transitions in the Fulcher-α spectrum have
been measured. The measurements were carried out by a lateral scanning of these
Q-branch lines at axial positions. from 18 to 30 cm downstream of the arc nozzle.

Figure 4 shows an example of a lateral profile measurement. The procedure of Abel
inversion was applied to derive local values of the emission coefficients, and the relative
densities of rotational levels of state. As can be seen from the measurements,
the expanding plasma is strongly confined to a narrow beam with a width approximately
equal to 1.5 cm.

The Boltzmann plot for Q (0–0), (1–1) and (2–2) series measured at the center
of the beam for z = 18 cm are given in Figure 5. As can be seen the Boltzmann

Figure 5. Boltzmann plot of the first five lines of Q-branch in the (0–0) (� ), (1–1) (•) and (2–2) (◊ )
rotational bands of the Fulcher-α system of H2 . Plasma parameters are the same as in Figure 4.

(8)
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plots give straight lines. This fact indicates that the rotational levels of the excited
hydrogen molecules follow a Boltzmann distribution. Therefore the rotational
temperature T *

rot can be derived from the slope of the Boltzmann plot. The three Q
bands are measured independently and T*rot  can be obtained from each of the measured
bands. The relatively small difference in the T*rot values determined from different
Boltzmann plots show that the T *rot value determined in the experiment is accurate
(the error is estimated to be smaller than 20").

To draw conclusions for the ground state molecules from the measurements of
electronically excited molecules, it is important to know the excitation and de-excitation
mechanisms of the radiative excited states. In principle a more detailed analysis of
excitation of state in an expanding hydrogen plasma is required since both
heavy particles and electrons can be involved in the collisional processes. Generally
speaking it is a complicated kinetic problem especially for a non-equilibrium molecular
plasma, However, in this experiment, the measured rotational excitation temperature
of the state is very low, T *rot 260 K (cf. Figure 5). We can conclude that
the collisions between the heavy particles are not responsible for the excitation of the
hydrogen molecules. The only possible mechanism of the excitation of the hydrogen
molecules in this regime is the direct electron impact from the ground state. Such
statement can be made because a in low-temperature plasma all effective inelastic
collisional processes between heavy particles are exothermic (see, for example, Refs. 5,
34). With that the excess of energy should be distributed among the various degrees of
freedom (internal and translational) of the products after the reaction. As a result it
should inevitably lead to the nonthermal molecular rotational population.5, 35, 36 Thus
the rotational temperature of excited molecular states should be higher (and often
much higher), than the gas temperature. Numerous examples of appearances of “hot”
rotational distribution of diatomic molecules, produced by heavy particles interactions
in low-temperature plasma have been given in literature.5, 35, 36 However, for direct
electron excitation of the molecules from the ground state, the resulting rotational
excitation temperature of the excited molecules should be low (comparable to the gas
temperature). Electrons are rather ineffective in rotational (de)excitation because of
their small mass.5, 26, 27

In the conditions of an expanding plasma the characteristic time between the heavy
particle collisions  col  is in the order of 10 – 6 s (the total cross section for the collisions

is equal to σ col  = 2.3 · 10 – l 8 m 233 ). This characteristic time is much
longer than the radiative lifetime of hydrogen molecules in the state, which
is only about rad = 31 ns.33 Therefore to determine the gas temperature we can use
the method mentioned earlier, which is based on the fact that a Boltzmann rotational
distribution in the ground electronic state of the molecules images to a Boltzmann
rotational distribution in the excited electronic state. According to equation (8), the
ratio of the rotational temperatures of the ground state molecules and the rotational
temperature of the excited molecules equals the ratio of the rotational constants of the
two states. As the ground state rotational constant is twice as large as that
of the state,25  the gas temperature is approximately twice the
rotational temperature T *

r o t of the state. Therefore the gas temperature in
the molecular regime is found to be approximately 520 K.

5. LOCAL EXCITATION OF THE Ar AND He SPECTRAL LINES

It is important to mention the experiments with a local excitation in an expanding
hydrogen plasma of the Ar and He spectral lines. In this case the transportation of Ar
and He to a particular local point in the plasma has been done through a thin cylindrical
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ceramic tube (Figure 1). In the molecular regime of an expanding plasma we observed
the appearance of the spectral line of neutral argon Ar I (7d → 4 p)λ = 4876.26 Å and
λ = 4887.95 Å, and of ion argon Ar II (4p² D → 4 s²D)λ = 4879.86 Å. The excitation
potential of these lines ∆E2  = 15.45 eV, and ∆ E3 = 19.68 eV, respectively. An
appearance of the spectral lines with even higher excitation potentials has been observed
in the case of helium, namely the spectral lines of He I (3d → 2 p)λ = 5875.70 Å (∆E4 =
23.07 eV), and He I (5d → 2 p)λ = 4026.20 Å (∆E5 = 24.04 eV). These experimental
facts together with the Langmuir probe measurements, observation of the Fulcher-α
system of H2  (excitation potential ∆E = 13.87 eV), with a low rotational temperature
( T *

rot 260 K) of the excited molecules, provide a strong evidence of presence
of the “hot” electrons in an expanding plasma.

6. CONCLUSION

The rotational temperature of hydrogen molecular excited state has been
determined by analyzing the relative intensity distribution of the rotational spectral
lines of the Fulcher-α system of H2. A strong hydrogen molecular spectrum, and an
estimated low rotational temperature of molecules (260 K) indicate that in
the molecular regime of an expanding hydrogen plasma the electronic quantum state

(excitation potential ∆E = 13.87 eV) is excited by a direct electron impact
from the ground electronic state The gas temperature in the plasma is
twice the value of the rotational temperature, i.e. approximately 520 K.

Several clear indications of presence of the “hot” electrons have been observed at
the axial position of 24 cm from the nozzle of the arc. Among them: 1) Langmuir
probe measurements (Te 1.4 eV), 2) appearance of the Fulcher-α system of H2
(excitation potential ∆E = 13.87 eV), 3) low rotational temperature (T*

rot 260 K) of
the excited molecules, 4) local excitation in the plasma of Ar I (∆E = 15.45
eV), and Ar II (∆E = 19.68 eV) spectral lines, 5) local excitation in the plasma of He
I (∆ E = 23.07 eV and ∆ E = 24.04 eV) spectral lines.
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RESONANCE RADIATION TRANSPORT IN GLOW DISCHARGE PLASMAS

J. E. Lawler and J. J. Curry

Department of Physics
University of Wisconsin
Madison, WI, 53706

I. INTRODUCTION

The energy balance of many glow discharge plasmas in atomic gases is dominated by
resonance radiation. This is especially true for low pressure Hg and Na plasmas used in
lighting applications, e.g., the standard Hg-Ar plasma used in fluorescent lamps releases
about 70% of its input power as 254 nm and 185 nm Hg resonance radiation (Jack, 1986).
The low pressure Na lamp produces the highest luminous efficacy (200 lumen/Watt) of any
commercially available light source (Jack, 1986). Typically this resonance radiation is trapped
or imprisoned in the plasma. The use of gas pressures in the mTorr, or higher, range causes a
photon to be emitted, reabsorbed, and emitted again many times before it reaches the plasma
wall and escapes or is absorbed by the phosphor.

The modeling of this resonance radiation trapping or transport is a fascinating part
of plasma modeling. In the remainder of the introduction we will briefly review some of
the highlights in the development of realistic resonance radiation transport models. We
refer the reader to an excellent and more comprehensive review published by Vermeersch
and Wieme (1991) for a more detailed description of historical developments. The second
section of this article describes recent progress using the propagator function method for
resonance radiation transport simulations (Lawler, Parker, and Hitchon, 1993). The third
section describes the recent development of an efficient and highly realistic Monte Carlo
code (Anderson et al., 1995) based on the J. S. Lee (1974, 1977, 1982) algorithm for partial
frequency redistribution. The algorithm for angle resolved partial frequency redistribution
presented by J.S. Lee is sometimes described as “exact” because it is the most realistic
available. The Monte Carlo code developed by Anderson et al. (1995) is particularly efficient
because it exploits the method of rejection (J. von Neumann, 1951) to eliminate all numerical
integration and eliminate the use of ‘look up’ tables. The fourth section of this manuscript
reports the use of this efficient Monte Carlo code over a vast region of parameter space.
The emphasis is on cylindrical geometry and on resonance radiation from an atomic gas in
which the lineshape is determined by a combination of natural or radiative broadening, of
Doppler broadening, and of resonance collisional broadening. Results from these highly
realistic Monte Carlo simulations are used to construct and test a simple analytic expression
for the ratio of the fundamental mode decay rate to the vacuum decay rate of resonance
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radiation. This expression is a function of three dimensionless parameters. The expression
is shown to be accurate in the low absorbing gas density regime where Doppler broadening
dominates the radiation transport, in the intermediate absorbing gas density regime where
partial frequency redistribution is important, and in the high absorbing gas density regime
where a collision-broadened Lorentz lineshape dominates the radiation transport. In most
cases the simple analytic expression agrees with the Monte Carlo results to better than 10%.
The analytic formula is accurate to 5% for the most important part of parameter space. The
last section of the manuscript is a summary.

Early attempts to model resonance radiation transport were based on modification of the
standard equation for diffusive transport (Compton, 1923; Milne, 1926). The ‘modified dif-
fusion’ approach, proposed by Milne (1926), and improved by Blickensderfer, Breckenridge,
and Simons (1976), is reasonably accurate at very low opacity or extremely low absorbing gas
density (Romberg and Kunze; 1988). We mention these early attempts to emphasize a key
concept: resonance radiation transport is, with the exception of the very low opacity regime,
a non-diffusive transport problem. At modest absorbing gas density the mean-free-path of a
photon emitted at the spectral line center becomes extremely short and the opacity becomes
quite large. Most of the transport occurs when a photon is emitted in the spectral line wings.
The correct physical picture at high opacity is that the photon is repeatedly emitted and reab-
sorbed within a very small volume (often comparable to a cubic wavelength) until the photon
is emitted in the spectral line wings. Once the photon is emitted in the spectral line wings it
will then have a very much longer mean-free-path and then may ‘jump’ across, or even out of
the discharge tube. This physical picture led Biberman (1947) in Russia and Holstein (1947
and 1951) in the USA to construct an integral transport equation. This integral transport equa-
tion is ‘nonlocal’ in real space whereas the older and very limited diffusive transport model
is based on a differential equation which is ‘local’ in real space. Plasma modellers may at
first find the concept of nonlocal transport quite unusual until they realize that kinetic theory
modeling of particle transport based on the Boltzmann equation is local in real space but
nonlocal in velocity space. Essentially all elastic and inelastic collisions, with the exception
of those described by Fokker-Planck diffusion, cause particles to ‘jump’ in velocity space.
Integral terms are introduced in the collision terms of the Boltzmann equation to described
these jumps. Radiation transport has integral terms to describe real space transport and thus
is nonlocal in real space.

Most of the modeling work in the decades after Holstein’s and Biberman’s seminal 1947
papers was based on the approximation of complete frequency redistribution (CFR). In the
CFR approximation it is assumed that the frequency of a reemitted photon is uncorrelated with
the frequency of the previously absorbed photon, and the frequency of the reemitted photon
is randomly chosen from a probability distribution function given by the emission lineshape.
The CFR approximation is usually used with the approximation that the emission lineshape
and absorption lineshape are the same. The CFR approximation works quite well over
an extended range of absorbing gas density where Doppler broadening dominates transport.
Changes in the direction of a photon during an absorption-reemission cycle tend to randomize
Doppler shifts. The CFR approximation is extremely realistic at high gas density where a
collision-broadened Lorentz lineshape dominates the radiation transport. Work by van Trigt
(1969, 1970, 1971, 1976a, 1976b) and by Irons (1979a; 1979b; 1979c) provided solutions
to the Holstein-Biberman equation with CFR over a range of geometries, lineshapes, and
opacities. As mentioned earlier, a more thorough review and more complete list of references
can be found in Vermeersch and Wieme (1991).

Payne et al. (1974) demonstrated the existence of a range of absorbing gas density where
the CFR approximation produces significant error. Partial frequency redistribution (PFR) is
important in this regime. Payne introduced a modified Holstein-Biberman equation which
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allows for the possibility of correlation between the frequency of the previously absorbed
photon and the frequency of the reemitted photon. This modified equation is, of course, a
more general and more complex equation than the original equation. Various approximations
for the PFR function in the modified transport equation have been developed. One of the
most popular and simple PFR functions is the Jefferies-White (1960) approximation. A
highly realistic PFR algorithm was presented by J. S. Lee (1974, 1977, 1982). Work by Post
(1986) provided fundamental mode solutions to the modified Holstein-Biberman equation
with a PFR function based on the Jefferies-White (1960) approximation. Post et al. (1986)
compared these fundamental mode solutions to experimental results in mercury. Earlier work
by Payne et al. (1974) provided specialized transient, or early time solutions for particular
excitation sources and geometry. Again we refer the reader to a more thorough review and
more complete list of references in Vermeersch and Wieme (1991).

We close this introduction with a discussion of various types of solutions to the reso-
nance radiation transport equation. Plasma modellers working on steady state problems in
a simple cylindrical, plane parallel, or spherical geometry are typically interested only in
the fundamental mode solution and especially the trapped decay rate for this mode. For
example, the radial distribution of electrons in a cylindrical positive column discharge will
excite resonance atoms with a similar radial distribution. The steady state radial distribution
of resonance atoms will often be indistinguishable from the fundamental mode solution of
the original or modified Holstein-Biberman equation. The plasma modeller or diagnostician
may be satisfied with simply replacing the natural or vacuum decay rate of the resonance
atoms with a trapped decay rate for the fundamental mode (e.g., Phelps, 1959; Doughty and
Fobare, 1995). Only an accurate trapped decay rate for the fundamental mode is desired
in these problems. There are other classes of problems such as those with localized and/or
transient excitation sources or unusual geometries requiring a more sophisticated approach.
In some problems of this type it is desirable to compute the temporal and spatial dependence
of the density of resonance atoms in a self-consistent fashion with other transport equations.
We argue that the propagator function method is most advantageous in such problems. The
computational speed of the propagator function method is typically 100 times greater than
Monte Carlo methods.

II. PROPAGATOR FUNCTION METHOD IN CYLINDRICAL GEOMETRY
Propagator Function Method with CFR

The propagator function method was introduced by Lawler, Parker, and Hitchon (1993).
They used the CFR approximation with a Lorentz lineshape and derived analytic expressions
for the propagator function matrix elements in an infinite plane parallel geometry and a
hollow spherical geometry at high opacity. The hollow spherical geometry was of interest in
modelling the ‘ball’ of plasma around the hot cathode in a typical fluorescent lamp (Wamsley,
Mitsuhashi and Lawler, 1993). The propagator function method was further developed to
include PFR and additional geometries by Parker, Hitchon, and Lawler (1993). In this work
we shall emphasize results for an infinite cylindrical geometry which are most useful in
modelling positive column plasmas. This infinite cylinder has an absorbing boundary at
radius ρ = h.

In describing the propagator function method with CFR it is useful to start from the
Holstein-Biberman equation. The Holstein-Biberman equation may be written as

where n(r, t) is the density of resonance (excited) atoms, p(r, t) is the production rate per

(1)
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unit volume, is the vacuum radiative lifetime, R = r – r ′ , and the Holstein transmission
factor is

The normalized lineshape g(ν – ν0 ) is defined in the usual fashion such that

(2)

(3)

where ν is the frequency of the radiation, ν0 is the line center frequency, and k0 is defined as
the line center absorption coefficient. The Holstein transmission function for a pure Lorentz
lineshape is very simple

(4)

The large k0 R or high opacity limit of this expression is even simpler

(5)

A propagator function

(6)

is most conveniently defined as used by Parker, Hitchon, and Lawler (1993). This propagator
is actually slightly different from the propagator defined in the original work by Lawler,
Parker, and Hitchon (1993) in that it does not include the radiative decay term. This is to
make the spatial propagator similar for the CFR and PFR treatments. The next step is to
introduce a real space mesh (with a total of ns cells numbered by j or i) to vectorize the
transport equation. In an infinite cylindrical geometry a set of concentric cylindrical shells
uniformly spaced in radius is most convenient. The density of excited atoms n(r, t) is now
approximated as

where Ni( t) is the number of excited atoms per unit length in the z direction in the spatial
cell i, the production rate per unit volume is approximated as

(7)

(8)

and Q is represented by a matrix. The simulation is advanced in time using

(9)

with the usual choice for ∆t of The matrix elements Qj,i can be expressed, assuming a
Lorentz lineshape and high opacity, in terms of the integral

(10)
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where R² = u ² + b ² – 2ub cos φ + z ². If u > b this integral represents the probability of
the photon escaping to the region outside the cylindrical surface ρ = u after emission at

(i.e. along Cartesian axis ). If u < b the absolute value of this
integral represents the probability of the photon being absorbed inside the cylindrical surface
at ρ = u.

The z integral is analytic using trigonometric substitutions and is done first. The
remaining φ integration leads to the derivative of a Gaussian hypergeometric function yielding

(11)

where for n ≥ 1 and = 1 and where
= 3.625 609 91. Both sums can be shown to converge absolutely, though numerous

terms must be taken when u ~ b. Alternatively, Press et al. (1989) give efficient and
accurate routines for evaluating derivatives of hypergeometric functions with u ~ b using
path integrals.

The actual matrix elements are

(12)

where h is the radius of the absorbing cylindrical wall. Note’ that which is
equivalent to a statement that the propagator conserves photons during a time step.

The propagator function matrix elements with a Lorentz lineshape and CFR are even
simpler in an infinite plane parallel geometry and in a (hollow) spherical geometry (Lawler,
Parker, and Hitchon, 1993).

A few points should be stressed here. First, a natural choice for the time step ∆t is the
vacuum lifetime which is accurate if the density is much greater than p(r, t) and changes
slowly in a vacuum lifetime. This choice of ∆t is inaccurate under some circumstances. One
example requiring a smaller ∆t would be the study of ‘early time’ behaviour after an
abrupt turn-on of p(r, t). This is because when the above equation assumes all the
excited atoms emit a photon after one vacuum lifetime. Early time behaviour can be studied,
provided the time step is a small fraction of Fractional errors are found at time t of ~ ∆t/t
in the studies of early time behaviour after an abrupt turn-on of p(r, t). Secondly, other effects
can be included between iterations of the above equation. For example, collisional quenching
could be included in a straightforward manner.

Propagator Function Method with PFR

In describing the propagator function method with PFR it is useful to start from the
modified transport equation of Payne et al. (1974)

(13)
where x is the reduced frequency difference from the line center at ν0 given by

(14)
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In the expression for x, the quantity c is the speed of light, k B is Boltzmann’s constant T is
the absolute temperature, and M is the atomic mass. The change from real frequency, ν, to
reduced frequency, x, is desirable because typically the Voigt lineshape is used in the transport
equation with PFR. In the equation for radiation transport, n(r, x, t) is the number of resonance
or excited atoms per unit volume and per unit unit frequency, is the
number of resonance (excited) atoms per unit volume, p(r, x, t) is the production rate per unit
volume per unit frequency, is the production rate per unit volume,

is the vacuum lifetime as defined earlier, is the absorption coefficient
integrated over reduced frequency, and H(x , x ′ ) is the angle-averaged frequency redistribution
function. The reader is advised that other authors have used different definitions for k0. We use
k0 for the line center absorption coefficient and note that Typically,
the Voigt lineshape is used in defining k(x) for a simulation with PFR, with

and

(15)

(16)

This lineshape leads to the equation in the limit of small Doppler contribution to the
Voigt lineshape, where aν is the Voigt parameter (half-width at half-maximum of the Lorentz
contribution to the Voigt lineshape divided by It is relatively simple to
recover the original Holstein-Biberman equation from the modified transport equation with
PFR by taking this limit with CFR.

Propagators

(17)

and

(18)

are defined, yielding

(19)

This allows one to calculate the radiation transport by considering two distinct processes. The
first is a spatial movement of the radiation. That is, once the photon is emitted, it travels a
distance described by Q(x′ , R ). Once the radiation is reabsorbed, the excited atom will emit
another photon with, generally, a different frequency given by J(x, x′ ) .

Actual implementation requires that a mesh be defined in real space (with a total of ns

cells, numbered by i or j) and in reduced frequency space (with a total of nx cells, numbered
l or m ). Let ri and xl denote the centers (or suitable means) in cell i and l respectively. The
density of excited atoms n(r, x, t) is now approximated as
where Ni,l is the total number of excited atoms in cell (i, l), or the number per unit length in
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the z direction for infinite cylindrical geometry. Analogously, the total production rate P i,l in
this cell is now assumed to be concentrated at ri, xl as well. Substitution of these expressions
in equation(19), and integration over a ‘final’ cell (j, m) results in a set of nsnx differential
equations,

(20)

where the operators Q and J are now represented by matrices.
The integral over the final cell (j, m) which isolates the time derivative of Nj,m also

serves to define the matrix elements of the propagators J and Q. The matrix element
Ql,j,i is essentially the probability that a photon emitted from the location r ' i with reduced
frequency x' l will be absorbed in the spatial cell j. Certain mesh errors are introduced by the
approximation that all the photons from the spatial cell i are emitted from r ' i at the center of the
cell. Under most circumstances these mesh errors are negligible. Under some circumstances
it is desirable to reduce these mesh errors by either slightly modifying the definition of r' i or
by defining Ql,j,i in terms of an average over several points in the source cell i. On the other
hand, numerical diffusion is decreased by emitting photons from the cell centers. Similar
comments apply to the matrix element Jm,l of the propagator for frequency redistribution.
A formal derivation of propagators in terms of averages over source cells follows from a
slightly different approximation for vectorizing the radiation transport equation. Sums of
‘box’ functions rather than delta functions are used to approximate n(r, x, t) and P(r, x, t).

These coupled equations are to be advanced in time with time step ∆t ,

(21)

The matrix describing radiation transport, followed by the matrix describing frequency redis-
tribution, are used to advance the number of excited atoms in each cell in time. The resulting
number of excited atoms in each cell is then augmented by the production of new excited
atoms during the time step.

A simple conservation condition requires

Similarly,

(23)

(22)

The difference from unity, as in the CFR case, is simply the fraction of photons that have
hit a boundary, and thus escaped from the system. In a simulation for a geometry with only
one absorbing boundary, the matrix element Ql,j,i with j = ns + 1 represents the probability
that a photon emitted from location r′ with reduced frequency x¢l will escape to the absorbing
boundary. With only one absorbing boundary, equation (23) becomes

(24)

Expressions for the spatial propagator matrix elements in cylindrical, plane parallel,
and spherical geometries are derived by Parker, Hitchon, and Lawler (1993). A method for
generating the frequency space propagator matrix elements using a Jeffries-White (1960)
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approximation for PFR is also presented by Parker, Hitchon, and Lawler (1993). The
generation of frequency space propagator function matrix elements using a more realistic
algorithm for PFR is discussed by Molisch et al. (1995). The full power of the propagator
function method is demonstrated in a simulation with time dependent localized excitation on
the axis of a cylinder (Parker, Hitchon, and Lawler, 1993). The density of excited atoms is
seen to evolve in time after the localized source is turned on, until a steady state distribution
is reached. The spatial distribution of excited atoms is not a fundamental mode in steady
state due to the localized excitation. The density of excited atoms decays after the localized
excitation source is turned off. The spatial distribution approaches a fundamental mode at
late times.

III. ADVANCED MONTE CARLO SIMULATIONS IN CYLINDRICAL GEOMETRY

Monte Carlo simulations are attractive because such simulations are easy to code and
because they are free from all, except statisitical, errors within the framework of a particular
model. The J. S. Lee (1974, 1977, 1982) algorithm for PFR is the most realistic available.
The Monte Carlo code developed by Anderson et al. (1995) using the Lee approximation is
more efficient than the original codes developed by Lee (1974, 1977, 1982) in that it uses the
method of rejection (von Neumann, 1951) to avoid any numerical integration or ‘look up’
tables. This more efficient code is described in the following paragraphs.

The initial radial coordinate, pi, of the excited atom is chosen using a random number so
that a desired production rate per unit volume or initial density of excited atoms is reproduced
on the average. The position is recorded, and the frequency of the emitted photon is chosen
from the Voigt profile. Let the reduced frequency x be as defined in the preceding section.
Parker et al. (1991) described an efficient random frequency generator for a Voigt profile.
Specifically, a normally distributed random number, xDoppler , with a variance of one is chosen
in the range of –∞ to +∞ . Many computer software packages have a library function
for generating normally distributed random numbers with a variance of one. This random
number divided by corresponds to a randomly chosen reduced frequency in a Doppler
profile. Random numbers w1 through w7 uniformly distributed in the range 0 to 1 are chosen.
The first of these is used to determine the reduced frequency in the Lorentzian profile:

where av is the Voigt parameter defined earlier (Lorentzian half-width at half-maximum

divided by is a reduced frequency. This analytic integral
yields

(25)

(26)

The resultant randomly chosen reduced frequency from a Voigt lineshape is given by

The distance the photon goes before being absorbed is given by

(27)

(28)

where Lv(xvoigt) is the normalized Voigt profile, ∫ Lv(y)dy = 1, which is evaluated using
an analytic approximation based on a complex error function. In the preceeding equation N0
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is the density of the ground state atoms, re is the classical radius of the electron, ƒlu is the
absorption oscillator strength, and  λ 0 is the resonance transition wavelength. Emission of
radiation is assumed to be isotropic, so the cosine of the polar angle is given by µi = 2w3 – 1
and the azimuthal angle is given by φi = 2πw4. The new radial position of the resonance
atom is then found using

(29)

Note that the φ = 0 axis is oriented along the direction of If the pi+1 radius is outside
the cylinder, the frequency and time taken (or number of steps) since the initial production of
the photon are recorded. A new resonance atom is generated. If the photon did not escape,
then the new position pi+1 of the resonance atom is recorded. The probability of a dephasing
collision during a radiative lifetime is

This equation is based on Corney’s (1977) expression for resonance collisional broaden-
ing. The expression for the Voigt parameter including natural, or radiative, broadening and
resonance collisional broadening is

Similarly,

(30)

(31)

(32)

If w5  is less than Pc the photon is reemitted using a random reduced frequency from a
Voigt profile as described above. Otherwise the resonance atom did not have a dephasing
collision and the frequency in the lab frame of the reemitted photon must be determined using
appropriate Doppler shifts. The direction of the photon which excited the resonance atom at
pi+1 is updated using

(33)

This information is used in a Doppler shift calculation if no dephasing collision occurs.
The Doppler shift determination is one of the more intricate parts of the code. First, the

axial velocity of the absorbing atom along the absorbed photon’s trajectory must be randomly
selected from the distribution

(34)

where ua  is the reduced axial velocity (axial velocity divided by , and where Lv
is a normalized Voigt profile. The operator used to select a random ua  from this distribution
depends on xvoigt. The code uses the same approximation used by Jong-Sen Lee (1977) for
xVoigt  > 5. The distribution for these large x Voigt is approximated

(35)

and the normally distributed random number generator is called, the result is divided by
and then shifted by adding 1.0/xVoigt . Von Neumann’s (1951) method of rejection is used
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for The trial function for this range of xVoigt  is different from that used
by Jong-Sen Lee in order to avoid numerical integration and look up tables. A trial function

where

(36)

(37)

is used. Note that the indefinite integral

is analytic in each region. Furthermore, the function Ft  is easily inverted so that a trial ua can
be chosen using

This ua is accepted if

(38)

(39)

otherwise it is rejected and the two preceding steps are repeated. When a ua is accepted, it
is multiplied by the sign of xVoigt . The trial function used by Anderson et al. (1995) has a
significant advantage over that used by Jong-Sen Lee (1982) in that it avoids any numerical
integration and any look up tables. Finally for xVoigt < 1.5 the method of rejection is used
with the same trial function used by Jong-Sen Lee (1982)

(40)

Equations 37, 38, and 39 are used with this trial function.
After the axial velocity of the absorbing atom is determined, the normally distributed

random number generator is used with appropriate scaling to determine the transverse
component ut of the reduced velocity of the absorbing atom. The frequency of the photon
is then Doppler shifted into the rest frame of the atom. The reemitted photon direction

is chosen from an isotropic distribution and the frequency of the reemitted
photon in the lab computed using a Doppler shift from the rest frame of the atom,
specifically

where

(41)

(42)

Fundamental mode decay rates are determined by recording the ‘late time’ escape rate
(after the initial density has decayed more than a factor of ten) using a spatially uniform
initial density of resonance atoms. Anderson et al. (1995) used the Monte Carlo code
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Pressure (Torr)

Figure 1. Trapped decay rate of the fundamental mode for the xenon 147 nm resonance radiation as a function
of pressure at 40°C. The line is from the Monte Carlo simulations of Anderson et al. (1995). The symbols are
from the experiment of Vermeersch et al. (1991).

with an improved experimental oscillator strength for the resonance line of Xe to compare to
experimental measurements on the fundamental mode trapped decay rates of the Xe resonance
level. Quite good agreement with experiment was found as shown in Figure 1. The second
dip in the trapped decay rate near 3 Torr (N0  ≈ 1017 cm–3) is not due to PFR. Vermeersch et
al. (1991) suggest that it is due to quasistatic resonance collisional broadening and this seems
very likely correct. This highly realistic Monte Carlo code made it possible to determine
the 147 nm resonance line output of low pressure Xe positive column discharges and surface
wave discharges by measuring the population of the Xe resonance level using absorption
spectroscopy (Doughty and Fobare, 1995; Gibson, Kortshagen, and Lawler 1996).

IV. ANALYTIC EXPRESSION FOR THE FUNDAMENTAL MODE DECAY RATE

It is desirable to have a simple analytic expression for the fundamental mode decay rate
in cylindrical geometry which is accurate for all absorbing gas densities. Toward that end we
have run a large number of Monte Carlo simulations using the code developed by Anderson
et al. (1995). These simulations cover a factor of 100 in column radius, a factor of 100 in
Doppler width, and a factor of 10,000,000 in gas density. Results from these Monte Carlo
simulations are presented in this section and compared to a simple analytic formula for the
fundamental mode decay rate in cylindrical geometry.

A careful inspection of the original (CFR) and modified (PFR) Holstein-Biberman
equations indicates that the ratio of the fundamental mode decay rate over the vacuum
radiative decay rate can be parametrized in terms three dimensionless parameters. This
ratio of the fundamental mode decay rate, At, over the vacuum radiative decay rate, i s
sometimes called the escape factor (Irons 1979a; 1979b; 1979c). The first dimensionless
parameter we choose is the reduced density,
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(43)

which is the number of absorbing gas atoms per cubic wavelength. This parameter is
contained in the expressions introduced earlier for the probability of a dephasing collision
during a radiative lifetime. The second dimensionless parameter,

(44)

is the Voigt parameter at the limit of low gas density. This Voigt parameter has been introduced
earlier. In the limit of low gas density the Lorentz half-width at half-maximum in the Voigt
parameter is the vacuum radiative decay rate, divided by 4π. The third dimensionless
parameter is the reduced radius,

(45)

of the cylinder which is defined to be the radius divided by the wavelength of the resonance ra-
diation. By expressing the analytic formula in terms of these three dimensionless parameters,
it becomes simpler and more easily applied to other gases besides Xe.

In constructing the analytic formula we focus on a ν 0 = 0.0160 which is appropriate
for the Xe I resonance line at 147 nm and a typical discharge lamp operating temperature of
40°C. This value of aν 0  is not too different than the value for the resonance lines of other rare
gases, for example the 58.4 nm line of He I has aν 0  = 0.0185 at a temperature of 40°C. We
have also run Monte Carlo simulations for an order of magnitude larger and smaller values
of aν 0 . Simulations are run for three values of reduced radius: Hr  = 1.22 × 1 05 , H r  =
1.22 × 104 , Hr  = 1.22 × 103. These reduced radii correspond to physical radii of 18 mm,
1.8 mm, and 0.18 mm respectively for the Xe I resonance line. Simulations are run for many
values of reduced density ranging from Nr  = 9.79 × 10 –7  to Nr  = 4.90 × 10 ²  in steps of
×2, ×5, and ×10. These reduced densities correspond to gas pressures of 1 × 10–7  Torr to
5 Torr at 40°C. This range of gas densities produces ratios of the trapped decay rate of the
fundamental mode over the vacuum decay rate, ranging from approximately 0.9 to the
asymptotic solution for high gas density. Monte Carlo results for aν 0  = 0.0160 are presented
in Table 1 with the ratio of the analytic formula over the Monte Carlo results in brackets. All
Monte Carlo results are from runs with 10,000 or more late decays and thus have statistical
errors no larger than a few percent. Monte Carlo results for aν 0  = 0.160 and a 0 = 0.00160
are presented in Tables 2 and 3, respectively.

Our analytic formula is constructed from analytic solutions to the Holstein-Biberman
equation with CFR in two limiting cases. The first case corresponds to the limit of low
absorbing gas density where Doppler broadening dominates the transport. The high opacity
analytic solution for the fundamental mode decay rate as derived by Holstein (1947b) and
refined by van Trigt (1976) and others is

This expression can be rewritten as

where

(46)

(47)

(48)

4 8 2
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Table 1. Monte Carlo results for the ratio of the trapped decay rate of the fundamental mode
over the vacuum decay rate, with aν0 = 0.0160 for the three values of the reduced
radius Hr. The number in brackets is the ratio of the analytic formula, over the Monte
Carlo result,

Nr

9.79 × 10–5

1.96 × 10–4

4.90 × 10–4

9.79 × 10–4

1.96 × 10–3

4.90 × 10–3

9.79 × 10–3

1.96 × 10–2

4.90 × 10–2

9.79 × 10–2

1.96 × 10 –l

4.90 × 10–1

9.79 × 10–1

1.96
4.90
9.79

1.96 × 101
4.90 × 101
9.79 × 101
1.96 × 102
4.90 × 102

Hr = 1.22 x 105

8.61 × 10–1 [1.04]
7.61 × 10–1 [1.04]
5.59 × 10–1 [1.02]
3.68 × 10–1 [0.99]
2.06 × 10–l [0.96]
7.88 × 10–2 [0.98]
3.57 × 10–2 [1.01]
1.63 × 10–2 [1.04]
6.09 × 10–3 [1.04]
3.04 × 10–3 [1.04]
1.58 × 10–3 [1.04]
7.86 × 10–4 [1.02]
5.33 × 10–4 [1.01]
4.41 × 10–4 [0.99]
4.38 × 10–4 [0.97]
4.69 × 10–4 [0.97]
5.10 × 10–4 [0.97]
5.29 × 10–4 [1.00]
5.45 × 10–4 [1.00]
5.52 × 10–4 [1.00]
5.62 × 10–4 [0.99]

Hr = 1.22 × 104 Hr = 1.22 × 10³

8.64 × 10–1 [1.03]
7.62 × 10–1 [l.04]
5.52 × 10–1 [1.03]
3.70 × 10–1 [0.98]
2.06 × 10–1 [0.97]
7.84 × 10–2 [0.99]
3.60 × 10 –2 [1.01]
1.65 × 10– 2 [1.03]
6.17 × 10–3 [1.05]
3.22 × 10–3 [1.02]
1.91 × 10–3 [0.99]
1.40 × 10–3 [1.00]
1.44 × 10–3 [0.98]
1.56 × 10–3 [0.97]
1.70 × 10–3 [0.96]
1.72 × 10–3 [0.99]
1.77 × 10–3 [0.98]
1.77 × 10–3 [0.99]

8.64 × 10 –l  [1.03]
7.65 × 10–l  [1.04]
5.56 × 10 –l  [1.02]
3.66 × 10 –l  [0.99]
2.07 × 10 –1  [0.96]
7.91 × 10 –2  [0.98]
3.58 × 10 –2  [1.01]
1.69 × 10 –2  [l.00]
7.28 × 10–3  [0.95]
4.80 × 10 –3  [1.01]
4.42 × 10 –3  [1.05]
5.11 × 10 –3  [0.98]
5.53 × 10 –3  [0.95]
5.51 × 10 –3  [0.98]
5.64 × 10–3  [0.98]

483



Table 2. Monte Carlo results for the ratio of the trapped decay rate of the fundamental mode
over the vacuum decay rate, with aν 0 = 0.160 for the three values of the reduced
radius Hr . The number in brackets is the ratio of the analytic formula, over the Monte
Carlo result,

N r
Hr = 1.22 × 105 Hr = 1.22 × 104 Hr = 1.22 × 103

9.79 × 10– 6

1.96 × 10– 5

4.90 × 10– 5

9.79 × 10– 5

1.96 × 10– 4

4.90 × 10– 4

9.79 × 10– 4

1.96 × 10– 3

4.90 × 10– 3

9.79 × 10– 3

1.96 × 10– 2

4.90 × 10– 2

9.79 × 10– 2

1.96 × 10– l

4.90 × 10– 1

9.79 × 10– l

1.96
4.90
9.79

1.96 × 101

4.90 × 101

9.79 × 101

1.96 × 102

4.90 × 102

8.78 × 10– 1 [1.02]
7.91 × 10– 1 [1.02]
6.04 × 10– 1 [0.99]
4.15 × 10– l[0.98]
2.44 × 10– 1 [0.96]
9.67 × 10– 2 [0.99]
4.72 × 10– 2 [0.97]
2.29 × 10– 2 [0.95]
9.46 × 10– 3 [0.89]
5.03 × 10– 3 [0.86]
2.71 × 10– 3 [0.88]
1.23 × 10– 3 [0.99]
6.81 × 10– 4 [1.16]
4.32 × 10– 4 [1.22]
3.15 × 10– 4 [1.17]
3.33 × 10– 4 [1.10]
3.63 × 10– 4 [1.11]
4.41 × 10– 4 [1.04]
4.67 × 10– 4 [1.05]
5.11 × 10– 4 [1.01]
5.34 × 10– 4 [1.01]
5.48 × 10– 4 [1.00]
5.54 × 10– 4 [1.00]
5.61 × 10– 4 [0.99]

8.79 × 10– 1 [1.02]
7.90 × l0– 1 [1.02]
6.09 × 10– 1 [0.98]
4.11 × 10– 1 [0.99]
2.41 × 10– 1 [0.98]
9.87 × 10– 2[0.98]
4.68 × 10– 2 [1.00]
2.26 × 10– 2 [1.00]
9.39 × 10– 3 [0.95]
5.12 × 10– 3 [0.92]
2.88 × 10– 3 [0.92]
1.60 × 10– 3 [0.93]
1.25 × 10– 3 [0.97]
1.22 × 10– 3 [1.02]
1.35 × 10– 3 [1.04]
1.51 × 10– 3 [1.01]
1.58 × 10– 3 [1.03]
1.70 × 10– 3 [1.00]
1.74 × 10– 3 [1.00]
1.75 × 10– 3 [1.00]
1.77 × 10– 3 [1.001

8.81 × 10– l [1.02]
7.94 × 10– l  [1.01]
6.02 × 10– 1  [0.99]
4.10 × 10– 1  [0.99]
2.40 × 10– l  [0.98]
9.85 × 10– 2  [0.99]
4.73 × 10– 2  [1.00]
2.30 × 10– 2  [1.00]
1.04 × 10– 2  [0.89]
6.27 × 10– 3  [0.86]
4.76 × 10– 3  [0.87]
4.46 × 10– 3  [0.96]
4.68 × 10– 3  [l.00]
5.04 × 10– 3  [1.00]
5.34 × 10– 3  [1.00]
5.43 × 10– 3  [1.00]
5.60 × 10– 3  [0.99]
5.53 × 10– 3  [1.01]
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Table 3. Monte Carlo results for the ratio of the trapped decay rate of the fundamental mode
over the vacuum decay rate, with aν 0 = 0.00160 for the three values of the
reduced radius Hr . The number in brackets is the ratio of the analytic formula, over
the Monte Carlo result,

Nr
Hr = 1.22 × 105 Hr = 1.22 × l04 Hr = 1.22 × l03

9.79 × 10–4

1.96 × 10–3

4.90 × 10–3

9.79 × 10–3

1.96 × 10–2

4.90 × 10–2

9.79 × 10–2

1.96 × 10–1

4.90 × 10–l

9.79 × 10–l

1.96
4.90
9.79

1.96 × 101

4.90 × 101

9.79 × 101

1.96 × 102

4.90 × 102

8.63 × 10– 1 [1.03]
7.62 × 10– 1 [1.04]
5.48 × 10– 1 [1.02]
3.60 × 10– 1[0.97]
2.03 × l0 – l[0.92]
7.71 × 10– 2 [0.92]
3.47 × 10– 2 [0.95]
1.56 × 10– 2 [0.98]
5.45 × 10– 3 [1.02]
2.59 × 10– 3 [1.03]
1.24 × 10– 3 [1.07]
5.52 × 10 – 4 [l.14]
3.95 × 10– 4 [1.23]
3.98 × – 4 [1.17]
4.99 × 10– 4 [0.99]
5.40 × 10– 4 [0.95]
5.58 × 10– 4 [0.96]
5.60 × 10– 4 [0.98]

8.68 × 10– 1 [1.03]
7.60 × 10– 1 [1.04]
5.54 × 10 – 1 [l.01]
3.63 × 10– 1 [0.96]
2.01 × 10– 1 [0.93]
7.56 × 10– 2 [0.94]
3.46 × 10– 2 [0.95]
1.58 × 10– 2 [0.96]
5.70 × 10– 3 [0.96]
2.84 × 10– 3 [0.96]
1.58 × 10– 3 [1.09]
1.25 × 10– 3 [1.23]
1.46 × 10– 3 [1.08]
1.68 × 10– 3 [0.98]
1.74 × 10– 3 [0.98]

8.64 × 10– l  [1.03]
7.60 × 10– 1  [1.04]
5.55 × 10– l [1.00]
3.67 × 10– 1  [0.95]
2.03 × 10– 1  [0.92]
7.76 × 10– 2  [0.90]
3.62 × 10– 2  [0.88]
1.70 × 10– 2 [0.86]
6.93 × 10– 3  [0.90]
4.61 × 10– 3 [1.08]
4.50 × 10– 3  [1.11]
5.30 × 10– 3  [0.99]
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The second case corresponds to the limit of high absorbing gas density where resonance
collisional broadening dominates the lineshape and the transport. The high opacity analytic
solution derived by Holstein (1951) and refined by others (including van Trigt, 1976) is

In order to reproduce the Monte Carlo results we modify the opacity function, Z, by
using

(50)

The formula for the case where Doppler broadening dominates transport is modified as

The formula for the case where resonance collisional broadening dominates transport is also
modified as

Finally, these formulae are combined as

(53)

This analytic formula is accurate within ±5% for av 0 = 0.0160. It is accurate to ±23% for
values of av0 which are an order of magnitude larger and smaller as shown in Tables 2 and 3.

V. SUMMARY

Methods for calculating resonance radiation transport in glow discharge plasmas are
reviewed. Emphasis is given to the recently developed propagator function method, and to
a recently developed Monte Carlo code which is both efficient and highly realistic. The
Monte Carlo code is used to determine the resonance radiation trapped decay rate for the
fundamental mode in cylindrical geometry over a vast region of parameter space. An analytic
formula is devised to approximate the Monte Carlo results.

(49)

(51)

(52)
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INTRODUCTION

RF inductively-coupled plasmas (ICP) provide a rich resource for studying elec-
tron kinetics in low pressure discharges. Coupling of rf power to the electrons results
from interaction with some combination of inductive and capacitive electric fields, and
is spatially nonuniform. Power is absorbed by the electrons through both collisional
(ohmic) and collisionless (stochastic) heating. Depending on operating conditions, elec-
tron energy may be expended locally, near where heating took place, or non-locally.
Creation of plasma may be dominated by single-step electron impact ionization from
ground state neutrals, or through a two-step process involving metastables. These are
just a few examples of factors affecting discharge operation, and this study of these
phenomena is framed in the context of identifying factors that govern the spatial uni-
formity of the plasma density, an issue of great importance in the use of ICP discharges
in plasma processing applications [1, 2].

The focus of this investigation is argon discharges in a planar rf ICP system. The
discharge is confined to a cylindrical volume bounded by grounded walls and at one
end, a flat quartz window through which rf power is coupled. Power is delivered at
13.56 MHz through a flat spiral or circular antenna flush against the quartz window
outside of the vacuum. For many of these experiments, a spoked Faraday shield was
inserted between the antenna and the quartz window to minimize the contribution of
capacitive coupling to the discharge power.

Discharge properties have been characterized over a range of operating conditions.
Specifically, we have varied discharge pressure and power, as well as the dimensions of
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the cylindrical plasma volume. Discharge characterization consists of detailed spatial
maps of optical emission intensity and plasma parameters measured with Langmuir
probes, as well as absorption spectroscopic measurements of argon metastable concen-
trations. These measurements are consistent with “non-local” electron heating in ICP
discharges, and raise new questions about the details of ICP discharge dynamics. The
latter is most dramatically illustrated in the azimuthal striations in discharge intensity
reported in the last section of this chapter.

Experimental observations are examined through a two dimensional model of the
ICP discharge that has been developed based on non-local kinetic theory. By taking
advantage of slow electron energy diffusion at low pressures, a simplified kinetic model
is possible by approximately treating the electron energy as a constant of the motion.
This approach provides improves improved accuracy over fluid models[3] and improved
speed over other kinetic approaches for electron motion, such as Monte Carlo[4].

R-Z SPATIAL PROFILES OF OPTICAL EMISSION

Spatially resolved optical emission spectroscopy (OES) has been employed to ex-
amine electron impact excitation in a planar ICP argon discharge. Because of the short
lifetimes of the excited argon states probed, emission profiles can be considered an
accurate reflection of spatial profiles of excitation rate. These measurements may also
be considered a qualitative probe of the ionization rate spatial distribution. Although
total ionization rates and excitation rates may differ dramatically, the two may be ex-
pected to have similar spatial structure, as both will be sensitive to spatial variation of
the tail of the electron energy distribution function (EEDF).

Two-dimensional maps of emission in the r-z plane of the cylindrical chamber have
been constructed through Abel inversion of the line-integrated emission measurements.
The plasma was generated in a cylindrical volume 14 cm long by 23 cm diameter. A
1.27 cm thick quartz window and a Faraday shield separate the plasma from the four-
turn aluminum antenna, powered at 13.56 MHz. Emission intensity was measured for
parallel chords through 1 cm slots at three axial locations centered at 4.2, 8.8 and 13.1
cm from the quartz window. Measurements at axial positions closer to the window
were impossible because the line of sight was mechanically obstructed. For each axial
position, emission intensity was recorded for four chords, with the first intersecting the
discharge axis and separated by 2 cm in the transverse direction.

Measurements shown in Figure 1 were made at 10 and 50 mTorr, and 200 watts
rf power. Optical transitions at 912.5 and 867.1 nm were observed. Both cases show
an off-axis peak below the antenna, in the region of maximum heating, the 10 mTorr
case shows a secondary local maximum on-axis near the discharge center. Langmuir
probe measurements made under identical operating conditions[5] in the same reactor
show a single maximum in electron density near the discharge center, and a maximum
in average electron energy off-axis near the antenna. In all cases, the location of peak
emission (and thus peak excitation rate) corresponds to the location of peak average
electron energy found by Mahoney et al.[5], rather than the location of maximum
electron density. This maximum is attributed to localized electron heating.

In the 10 mTorr case, a secondary peak is observed on-axis, suggesting the effect
of non-local electron kinetics. This feature appears in the 10 and 20 mTorr cases, and
in the 100 mTorr, 200 W case. This peak is thought not to be associated with localized
electron heating, but with three other possible factors. First, the secondary peak in
emission intensity coincides with the location of peak plasma potential[5]. As a result,
we may expect an enhancement at low pressures. Collisionless trapped electrons have
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Figure 1. Contour plots of relative optical emission intensity in the r-z plane of argon ICP
discharges for (a) 10 mTorr, 200 watts, and (b) 50 mTorr, 200 watts. While both cases exhibit
maxima near the antenna, the 10 mTorr case shows a second maxima near the discharge center.

a minimum in potential energy there, and therefore a maximum in kinetic energy and
excitation probability[6]. Second, measurements of electron density also show a peak
in this location[5]. Since the excitation rate is proportional to electron density, this
may also be a factor in the observed peak. Finally, if excitation to the emitting states
is dominated by a two-step process, the argon metastable concentration is another
contributing factor.

NON-LOCAL ELECTRON KINETICS-BASED DISCHARGE MODEL

A self-consistent model of ICP electron kinetics capable of describing the spatially-
resolved electron distribution function and the relevant energy transfer processes has
been developed. In particular, the electron energy balance is described by Coulomb
collisions between electrons as well as heating, spatial diffusion and inelastic collisions.
Excitation rate spatial profiles are captured in this model and can be attributed to
non-local effects and explained in terms of the spatial scale lengths and, in particular,
the energy loss lengths for the main collision processes.

The non-local approach to electron kinetics provides an appropriate description
for weakly collisional plasmas, approaching the accuracy of kinetic techniques with the
simplicity of fluid methods. This is achieved by reducing the kinetic equation to an
ordinary differential equation in a single variable. Rather than following electron tra-
jectories of individual electrons, the non-local approach represents the electron density
distribution in the aggregate. More specifically, non-local models resolve the spatial
and energy dependence of the isotropic electron energy distribution function F0 . Phys-
ically, due to the low frequency of collisions at low pressure (less than 50 mTorr in Ar),
electrons traverse a large part of the reactor vessel before losing energy. This permits
the non-local approximation that electron total energy depends only weakly on distance
from the heating region. In the collisionless limit, total electron energy ∈ = ∈k  – e φ(r, z)
is a constant of the motion for confined electrons.

The electron energy distribution function is calculated using the non-local kinetics
technique that was developed by Bernstein and Holstein[7] and Tsendin et al.[8, 9], and
which has recently been used for discharges at moderate and low neutral pressure[6, 10].
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Figure 2. Since electron total energy is approximately conserved, electrons can be categorized by
total energy. Cold trapped electrons are not heated by the rf electric field, as they are confined away
from the strong field region by the ambipolar potential well. Fast trapped electrons are also confined
by the ambipolar field, but can reach the high-field region. Only free electrons, which have energy
greater than the plasma potential, can escape from the discharge.

Many previous model assumed that the electron velocity distribution is nearly isotropic,
and that the electron total energy ∈ is an approximate constant of the motion. This
assumption is relaxed in this study in order to resolve the spatial distribution of the
hot electrons. Spatial variation in the energy distribution of the hot electrons is likely
to have significant implications for discharge uniformity for conditions under which the
electron mean free path for inelastic collisions can be smaller than the discharge dimen-
sions, as is the case here. This approach enables an accurate treatment of Coulomb
collisions between electrons, which are a vital part of the electron energy balance.

Since conservation of total electron energy is the premise of the non-local approach,
we categorize classes of electrons according to this parameter, as shown in Figure 2.
The lowest energy electrons in the system are trapped electrostatically and are unable
to reach the rf electric field heating the plasma, thus the name “cold trapped” electrons.
Electrons that are confined electrostatically but are energetic enough that their range of
motion reaches to within a skin depth of the quartz window are heated by the rf fields,
distinguishing these “fast trapped” electrons from the cold trapped electrons. Finally,
the “free” electrons have sufficient energy that they are not confined electrostatically
and can escape to the chamber walls.

The organization of the simulation is illustrated in Figure 3. SimGen©, a partial
differential equations solver[11], is used to solve all finite difference equations. The
solver is based on the multidimensional Newton’s method for solving non-linear equa-
tions.

Electron Energy Distribution Function

For electrons below the 11.5 eV threshold energy for electron-neutral inelastic
collisions, the total electron energy ∈ is approximately conserved, as electron-electron
and quasi-elastic collisions change their energy very slowly.

For both cold and hot trapped electrons in low pressure argon discharges, the
inelastic mean free path λ ∈ , is large compared to the dimensions of the chamber used
in this study (~ 10 cm). Because electrons carry energy gained from the rf field
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Figure 3. The simulation is organized into three modules.

throughout their accessible volume, the Boltzmann equation is equivalent, to a good
approximation, to its spatially averaged form. The method used for spatial averaging
involves averaging over the volume V∈  accessible to an electron with total energy ∈.

A time-averaged version of the Boltzmann equation is solved in the case of near-
isotropic electron energy distribution function ƒe . The velocity dependence of ƒe  i s
approximated using the first two terms of the Legendre polynomial expansion:

(1)

In the following discussion F0 (∈, r, z) is the zero order isotropic term of the expansion,
where the independent variable has been changed from velocity to total energy ∈ =

Electron kinetic energy is ∈k  and potential energy
The space-averaged kinetic equation is:

(2)

where ∈*  is the inelastic threshold, D ee  and Vee  are Coulomb coefficients, described
below, vwall  is the approximate wall loss frequency described by Kortshagen et al.[10],
DE , D N  and VN , and V *  are associated with electron energy diffusion due to heating
by the rf electric field, elastic collisions, and inelastic collisions, respectively, and an
overline represents a spatial average. At low energy this reduces to:

(3)

Heating and cooling of electrons through Coulomb collisions are accounted for in
the kinetic equation through Dee  and Vee , respectively, defined as

(4)

and
(5)
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where ve e  is the Coulomb collision frequency[12]. Though weak in absolute magnitude
as compared to heating by rf fields, energy diffusion by Coulomb collisions is significant
because they provide the only heating mechanism for cold trapped electrons. The power
is initially deposited in the more energetic electrons, since they are the only ones that
can reach the high-field region. At a pressure of 10 mTorr and typical observed electron
densities on the order of ne  = 10 11 cm – 3, Coulomb collisions keep the distribution nearly
Maxwellian. Once electrons have sufficient energy to reach the heating region, heating
from the electric field becomes dominant.

For the highest energy electrons, the approximation that the inelastic collision
length is long compared to the chamber length is no longer valid. These “fast” electrons
constitute less than 5% of all electrons in this model. The spatial averaging procedure is
not correct for fast electrons. These electrons have a significant effect on the ionization
rate profile and provide the entire electron flux to the walls. The model described here
includes these effects, representing an improvement over other self-consistent non-local
models.

The kinetic equation for fast electrons must be written as a function of spatial
coordinates:

(6)

Here the spatial diffusion coefficient is and

(7)

is termed the energy diffusion coefficient. S represents the net number of electrons per
unit time scattered in a unit phase space volume by collisions. Included are momen-
tum transfer electron-neutral collisions, inelastic electron-neutral collisions, Coulomb
collisions and electron loss to the chamber walls.

Care must be taken in matching the distribution function in the energy range where
the space-averaged equation is solved for trapped electrons to the region where the local
(non-averaged) equation is solved for the free electrons. The matching is carried out by
equating the distribution functions at the energy boundary. The boundary is placed at
an energy which is sufficiently low that the spatial diffusion term dominates the energy
diffusion term. At this boundary in energy, there is a discontinuous change in Eθ, as
the spatially averaged electric field is used at lower energies and the local field is used
at higher energies. This discontinuity in E θ does not produce a significant non-physical
discontinuity in F0  if the spatial diffusion term in the kinetic equation dominates over
the electric field term.

Fluid Formulation for Ions

A fluid description is used to model ion behavior in the ICP discharge. The
ion equation of motion used includes electric field and quasi-elastic terms:
eE – Mυ vmi . Here v mi is the ion-neutral collision frequency. For ions in thermal
equilibrium, this can be recast as an ion drift-diffusion equation:

(8)

with the diffusion term arising from averaged behavior over many collisions. Here
Γi  is the ion flux, D i  is the ion diffusion coefficient and µ i (E) is the electric field
dependent ion mobility.  The ion inertia is neglected in this simulation, leading to
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inaccuracies in the sheath region for low-pressure, high-density plasmas. Ion motion
in the sheath region is approximated by using a a velocity dependent mobility derived
from experimental measurements [13].

Potential ø throughout the discharge is determined by solving Poisson’s equation,

(9)

simultaneously with the drift-diffusion equation. The inclusion of Poisson’s equation
allows us to rigorously calculate the wall potential.

A straightforward central difference approach is used to solve Poisson’s equation si-
multaneously with the ion continuity equation. Unfortunately, using a standard central
difference scheme is not advisable for solving for the ion flux Γi . Due to the approx-
imately exponential dependence of the plasma density on the potential, very small
mesh spacing would be required to solve the ion continuity equation with standard
finite difference methods. The finite difference technique of Scharfetter and Gummel
is employed instead[14]. This method, which uses an exponential interpolation be-
tween mesh points, is stable on a coarser mesh than the conventional method used
elsewhere[4, 10].

RF Electric Field

The rf electric field responsible for electron heating is determined by currents both
in the planar antenna and in the plasma. In this simulation, we assume azimuthal
symmetry, so that the rf electric field, Eθ , is oriented in the azimuthal direction. Eθ i s
determined from the complex wave equation

(10)

It is assumed that the plasma responds linearly to the field, and that time-dependence
of all quantities is sinusoidal. The current density in the plasma is defined by Je  =

determined by integrating over the distribution function calculated in the
electron kinetic module. Power deposition is modeled by Ohmic heating, i. e.,

(11)

Model Predictions of Excitation Rate Profiles

The ICP system simulated was the same as that for which optical emission spatial
maps were made experimentally. The dimensions of both the plasma volume and the
ICP antenna are given in the section describing optical emission experiments above.
Simulations were run at 10 mTorr and 50 mTorr argon for comparison with optical
emission data. Results showing r-z contour plots of electron impact excitation rate
of argon are depicted in Figure 4. Since the observed emitting states are short-lived,
spatial maps of excitation rate should be strongly correlated with optical emission
profiles. It can be seen in Figure 4 that the model reproduces the experimentally
observed shift in location of the excitation rate maximum as the pressure is increased
from 10 mTorr to 50 mTorr. The shift in excitation rate toward the antenna can be
attributed to the reduction in thermal conductivity for the electrons as the pressure is
increased.
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Figure 4. Spatial maps (r-z) of relative excitation rates in argon ICP discharges, for pressures of a)
10 mTorr and b) 50 mTorr. Excitation exhibits a peak near the center of the discharge in the
low-pressure, diffusion-dominated “regime,” but reaches a maximum closer to the antenna at higher
pressures. This reproduces the qualitative features seen in the optical emission measurements.

ARGON METASTABLES

Argon metastables potentially play an important role in plasma production and
plasma uniformity in argon ICP discharges. Spatial profiles of ionization rate may be
quite different depending on whether ionization is dominated by single-step or two-step
processes. Since metastables are long-lived and not confined electrostatically, they may
diffuse throughout the volume, even if they are produced locally. In addition, their ion-
ization energy is significantly lower than that for ground state argon, so that ionization
is possible in regions where energetic electrons are absent. Therefore, depending on the
concentration of argon metastables, they may have an impact on plasma uniformity.

To address this question, measurements of argon metastable concentrations have
been compared with predictions of the model described above, and we conclude that
under some conditions, metastable concentrations are high enough to have an effect.

Argon metastable concentrations were measured in the same system as the optical
emission measurements described previously. Optical absorption spectroscopy in the
visible range of the electromagnetic spectrum was used to measure line densities of Ar
metastables. When a plasma is probed in transmission by the light from a broadband
light source (in this case, a xenon arclamp), traversal of the discharge introduces ab-
sorption features into the otherwise smooth arclamp spectrum. The result is a modified
arclamp spectrum where intensity is reduced only at certain wavelengths, characteristic
of the absorber species. Each peak in the absorption spectrum reflects the absorption
of photons by individual atoms at a wavelength corresponding to the energy of an al-
lowed electronic transition for that atom. In this mode, the signal reaching the detector
is a superposition of the arclamp intensity distribution along with the emission spec-
trum of the plasma itself. Although in the optical emission experiments the plasma
line emission was the desired signal, in absorption spectroscopy this portion must be
subtracted out to isolate the absorption features. The subtraction is accomplished by
placing a mechanical chopper wheel in front of the xenon arclamp to selectively block
the arclamp signal at periodic intervals. By gating the detector appropriately, signals
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can be recorded with and with out the arclamp, and subtracted. An absorption spec-
trum is obtained by subsequently subtracting the spectrum of the lamp in the absence
of plasma.

The height of each spectral peak is a direct function of the concentration of the
absorbing species, and can be used to infer its line density, integrated along the path
of the beam. The absorption coefficient is determined from the reduction in spectral
intensity I (v ), as described (for a homogeneous medium) by:

where v is optical frequency and L is the path length. In turn, the absorber volume
concentration is directly related to the absorption coefficient, according to

In this expression, N is the volume density of a particular species (in this case argon
atoms) and ƒi is the fraction in the absorbing state i (such as a particular metastable
level). The values gi and g k are the statistical weights for the lower and upper states of
the transition, respectively, and Bik is the Einstein coefficient for the transition, with
an associated centerline frequency, v0 (in Hz). Einstein coefficients for the transitions
investigated here were obtained from Wiese et al.[15]. Finally, G ( v ) is the normal-
ized lineshape function characterizing the spread of the absorption feature about the
centerline frequency.

Optical absorption spectroscopy is applied here to determine argon metastable
concentrations in an ICP discharge for pressures ranging from 5 mTorr to 50 mTorr
and discharge powers from 50 to 400 watts.

System Description

The optical absorption system makes use of a xenon arc lamp as a light source[16,
17, 18]. A block diagram of the optical system is shown in Figure 5. The absorption
spectrum is imaged on a multichannel detector (EG&G Park Model 1812 photodiode
array) at the output of the 0.5 m Jarell Ash spectrometer (Model 82020), configured
with an Echelle grating with a blaze angle of 63 degrees.

The area under the curve of an absorption feature determined from the absorp-
tion spectrum is referred to as the equivalent width of the feature, Wv (Hz), and is a
function of the absolute concentration of the absorbing species. The exact functional
relationship between the equivalent width and the absorption coefficient is called the
curve-of-growth:

Results

The concentration of each of the four sublevels in the argon 4s manifold were
measured as a function of pressure and discharge power. The argon flow rate was held
constant at 12.5 sccm for all experiments. Experiments were conducted at 50,100,150,
200, 300 and 400 watts of rf net forward power, measured with a Bird Electronics Model
43 inline watt meter located between the rf supply and matching network. Thus, these
power levels include power dissipated in the matching network and antenna, and are
greater than the power delivered to the plasma.  Argon pressures examined were 5,
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Figure 5. Two-pass xenon arc lamp based optical absorption spectroscopy system for measurement
of argon metastable concentrations.

Figure 6. Pressure dependence of argon metastable concentration for various power levels.
Concentrations represent a sum of measured contributions of the 1s2 , 1s3 , 1s4 and 1s5 levels.

10, 20, 30, 40 and 50 mTorr. Results are shown in Figure 6. The concentrations
plotted are discharge averages calculated from the measured line densities by dividing
by the path length of the beam through the plasma. Spatial variation in the metastable
concentration is expected due to diffusion and loss at the walls. Thus peak densities
near the chamber center are expected to be somewhat higher than the average values
reported here.

The steady-state concentration of metastables results when creation and loss rates
exactly balance. As pressure is increased, changes in electron density and temperature
are likely to affect the metastable concentration in opposite ways. The production rate
of metastables is proportional to the electron density, which increases with pressure, but
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Figure 7. Effect of metastables on excitation rate spatial profiles, for 200 watts rf power and 50
mTorr argon pressure. Profiles were calculated for a uniform metastable concentration of (a) 0 cm – 3,
(b) 1.5 × 10 1 0  cm– 3  and (c) 101 1  cm – 3.

also decreases as the electron temperature decreases with increasing pressure. Although
a detailed accounting of all the reactions contributing to creation and loss of metastables
is nontrivial (see, for example, Kannari et al.[19]), these two factors may be sufficient
to provide a qualitative explanation for the pressure dependence observed. Namely,
at low pressures, the rise in metastable production with increasing pressure outweighs
the-decrease associated with the reduction in electron temperature. However, at higher
pressure, decreased production due to decreasing electron temperature wins out, and
metastable concentration decreases.

Simulation - Effect of Metastables on Excitation Rate

The model described above was used to evaluate whether the measured metastable
levels are sufficient to have a significant effect on excitation and ionization rate spatial
profiles. An ad hoc approach was used to get a qualitative estimate of the effect of
metastables. A uniform metastable population of specified concentration was superim-
posed on the system, and the simulation was run to equilibrium with the inclusion of
excitation and ionization of metastables. Spatial maps of excitation rate obtained in
the simulation are shown in Figure 7.

The range of metastable concentrations imposed on the simulation was chosen to
approximately match those observed experimentally. The simulation results suggest
that the observed metastable concentrations, on the order of 1010 to 1011 cm–3 , are
sufficient to have a significant effect on discharge spatial structure.

AZIMUTHAL STRIATIONS

Azimuthal striations in planar rf inductively coupled plasmas are another phe-
nomenon that may shed light on the electron kinetics in these discharges[20]. Specifi-
cally, we have observed strong azimuthal variation in the visible optical emission from
a planar rf inductively coupled plasma, corresponding to azimuthal modulation in neu-
tral excitation due to electron impact collisions. Observations were made in an argon
discharge generated with a single-turn loop antenna in a cylindrical volume with a
relatively high aspect ratio. A comparison to positive column striations in a dc glow
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Figure 8. Geometry of plasma volume and discharge structure when striations are present.

discharges shows some similarities, although a complete explanation will require con-
sideration of rf effects.

The argon plasma observed in this study was confined to a cylindrical volume 36
cm in diameter by 2.5 cm high, inside a much larger vacuum chamber. The volume is
bounded at one end by a quartz vacuum window and at the other by an aluminum plate
with a 1 cm wide radial slot for diagnostic access. The radial boundary is defined by
a cylindrical tube made of perforated aluminum sheet. The antenna used for inductive
power coupling to the plasma is a 28 cm diameter single-turn circular loop that rests on
the quartz window. The antenna was driven at 13.56 MHz at 85 mTorr argon pressure
and power of 300 watts measured with a Bird wattmeter between the power supply and
matching network.

Azimuthal structure was observed visually through the quartz window separating
the induction antenna from the plasma, with a line of sight almost parallel to the system
axis. A gap of several centimeters is present in the circular antenna at the location of
the connection point for the external leads. The discharge glow was always restricted
to a ring-shaped region with radius slightly smaller than that of the antenna, and with
a large dark region in the center. Ten striations around the ring were observed, with
an approximate spatial period of 7.5 cm, as illustrated in Figure 8. The striations
were stationary for as long as minutes at a time, but were also observed to move
at random intervals, and completely faded away after 20-30 minutes of continuous
discharge operation, suggesting that heating of the chamber walls by the discharge,
and the associated outgassing of contaminants, may have an important impact on the
striations.

Electrostatic trapping of electrons both axially and radially in this discharge is
likely to contribute to formation of azimuthal striations. The electron density, ne ,
at and in the vicinity of the discharge axis has been found to be negligible [20, 21],
and both ne and the plasma potential have peak values off-axis glowing ring. Thus,
electrons are confined in the region of strong azimuthal rf electric field and their motion
is channeled electrostatically into the azimuthal direction. Striations were not observed
in lower aspect ratio systems, in which the plasma potential typically has a maximum
on the discharge axis. Electron collisions are also likely play a role the formation
of striations, as striations were not observed at pressures less than 30 mTorr, below
which inelastic mean free paths become significant compared to the system length and
striation spatial period.
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∈
that once an electron has reached the excitation threshold energy it travels a relatively

There are both similarities and differences between the conditions under which
striations are observed in the ICP system and the glow discharge positive column.
Field magnitudes in ICP discharges under similar conditions have been found to have
peak values of 4 to 5 V/cm, so the requirement that λ* >> λ∈ is satisfied. However, the
temporal oscillation of the ICP induction fields at the rf frequency suggest a signifi-
cant departure from the positive column. In electric fields of this magnitude, electrons
cannot accelerate to the inelastic threshold energy in a single rf cycle. Thus, while
the observed ICP striations are likely to arise from ionization waves as in the positive
column, there are differences in the mechanism associated with the time oscillation
of the rf ICP fields. We therefore conclude that positive column theory, while possi-
bly providing a partial explanation, does not provide a complete description of ICP
striations.

Although striations in planar rf ICP discharges are not yet well understood, stria-
tions have been studied extensively in other types of discharges in a pressure range that
includes the pressure of the case reported here[22, 23]. These include axial striations
in the positives columns and azimuthal striations in the anode glow (anode spots) of
dc glow discharges. Although both the anode spots observed in dc glow discharges
and the ICP striations show structure in the azimuthal direction, the mechanisms are
probably quite different. The cause of the ICP striations is more likely to be similar to
that of striations observed in positive columns of glow discharges. In the case of the
positive column, striations are the result of ionization waves, with feedback between
axial modulations in plasma density, axial dc electric field, electron energy distribution
function and ionization rate. The spatial period of the striation in the positive column
corresponds approximately to the distance λ* in the dc electric field electrons must ac-
celerate to acquire kinetic energy equal to the excitation energy. Striations occur when
λ* >> λ , the energy relaxation length for electrons in the inelastic energy range, so

short distance before giving it up in an inelastic collision.
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EXPERIMENTAL STUDIES OF RF SHEATHS
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Belfast BT7 1NN
Northern Ireland

INTRODUCTION

The sheath is of paramount importance in rf-driven plasmas. It is critical to the funda-
mental nature of the plasma in acting as a conduit for energy input to the plasma, determining
energy and particle flux to and from surfaces and thus controlling plasma-surface interactions.
In rf-driven plasmas the electrode sheaths are dynamic, responding to the time-varying elec-
trode voltage. In a simple model of a capacitive discharge, while the electric field strength
may change, it is considered to always point away from the plasma and at all times to decrease
in strength monotonically with distance from the driven electrode.

Electrons in the sheath are accelerated towards the plasma in these electric fields and
subsequently reach energies sufficiently high to excite gas atoms and so produce regions
of bright emission generally associated with the sheath edge. Therefore excitation studies,
derived from optical emission measurements, can provide information about electric fields
and sheath dynamics. There have been many reports of time-resolved emission measurements
for 13.56 MHz driven plasmas, some for the gases used here [1-13].

The electrode and plasma potentials have both dc and ac components. As will be dis-
cussed later these can be measured by appropriate electrostatic probe and voltage monitoring
techniques so that the time dependent behaviour of the electrode potential relative to the
plasma can be determined. Here rf driving voltage and the plasma potential measurements
have been correlated with spatially and temporally resolved emission measurements to pro-
vide an additional insight into the sheath dynamics of a 13.56 MHz asymmetric capacitively
driven plasma. In particular the sheath behaviour with different operating gases, namely H2 ,
D 2 ,  He and Ar has been contrasted and compared.

EXPERIMENTAL DETAILS

The present measurements were made in the UK GEC (Gaseous Electronics Conference)
rf reference reactor [14]. This is a parallel plate device with two 102 mm diameter electrodes
separated by 25.4 mm. The upper, aluminium electrode and the stainless steel vacuum vessel
were grounded. The plasma was created by capacitively coupling rf voltages at 13.56 MHz,
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Table 1. Wavelengths, transitions and
radiative lifetimes of the atomic states
observed. Also shown is the central
wavelength and the FWHM bandwidth of the
filters used.

V Ep (t) = V Edc  + VErf – V pdc  – Vprf

H2 , D2 H e Ar
Wavelength (nm) 656 587 750

Transition 3p-2s 2p-3d 4s-4p
Lifetime (ns) 7.6 14.1 21.5
Filter (nm) 657±11 587±7 750±20

to the lower, stainless steel electrode. In the present measurements peak-to-peak rf voltages
of up to 700 V were applied producing plasma input powers of up to 120 W and discharge
currents of up to 3 A. The operating pressures, ranging from 6.7 to 133 Pa (50 to 1000 mTorr),
were measured using a capacitance manometer.

At any time during the rf cycle the electrode potential relative to the plasma is given by

(1)

The terms and how each was measured are discussed below.
The power input to the plasma was measured as specified for GEC reactor reference

conditions [14]. Time resolved plasma currents and electrode voltages (V E r f) were recorded
using standard derivative probes. A reference output from the rf matching unit was used to
trigger and so synchronize all the time-resolved measurements. The dc component of the
electrode potential (V Edc ), the dc bias, was recorded directly from the rf matching unit display.
The ac component of the plasma potential (V p r f) was measured using a capacitive probe
technique [13,15,16]. A standard passively compensated Langmuir probe technique was
used to measure the time-averaged plasma potential (V p d c ) and other time-averaged plasma
parameters. The measured time-averaged electron energy distribution functions (eedf) are
complex, depend on the gas pressure and input power and are generally not described by a
single Maxwellian. The mean energy of the electrons derived from the measured eedfs varies
from 0.1 to 10 eV.

Over the present operating conditions the measured electron densities varied ranged
from 1 × 10 9 to 5 × 10 10 cm –3 , the electron plasma frequencies calculated from these density
measurements varied from 300 MHz to 2 GHz. The ion plasma frequencies, calculated from
the electron density range for each gas, varied in Ar from 1 to 7 MHz and in H2 (assuming
the dominant ion is H3

+
) from 7 to 17 MHz. Thus the assumption that the ions do not respond

to the rf driving frequency, while valid in the present Ar, He and D2  plasmas may not be valid
under all conditions in H2 . The temporal behaviour of fast electrons, i.e. those with sufficient
energy to excite the gas atoms to the electronic state from which emission is observed (see
Table 1), was determined from time and space resolved emission spectroscopy. The emission
intensity depends on electron and gas atom densities, their energy distributions and excitation
cross sections. Assuming the gas density is spatially and temporally uniform then emission
is indicative of the fast (typically greater than at least 10 eV) electron behaviour.

Measurements were made using an Oriel Instruments Instaspec V (ICCD) with a spatial
resolution of about 1 mm and time resolution < 2 ns. A 30 mm wide vertical section through
the centre of the plasma was imaged onto the front plane of the ICCD. The optical arrangement
produced a depth of field of 18 mm. Filters selected the appropriate emission lines (Table 1).

The time variation of the light emission intensity I(t) was measured, generally over two
rf cycles at 2 ns intervals. It is the time dependence of the optical excitation E(t) which
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reflects the time-dependent behaviour of the electrons. This was found from the measured
emission signal I(t) by deconvolution with the effective lifetime of the observed states

(2)

where is the radiative lifetime of the excited state (Table 1), kq  the collisional quenching
rate constant and N the neutral gas number density. In the present analysis quenching effects
were ignored. We believe this analysis to result in an uncertainty of less than 1 ns [13].

RESULTS AND DISCUSSION

The space and time resolved excitation data for Balmer-alpha excitation shown in Fig.
1 are typical of those for hydrogen. Results in D2 are similar. Figs. 2 and 3 show typical
excitation results for Ar and He. The most obvious difference in the excitation data from the
three gases is the close-to-electrode excitation observed in H2 . Such regions of excitation
have previously been reported in H2  and H2 -containing gas mixtures [6,7,10,12,13,17-19].
The double emission structure is observed through all the present operating conditions in pure
hydrogen and quantitatively identical structure is observed when operating with deuterium.

As has been discussed in more detail previously [13], the near electrode excitation can
be seen to occur when the electrode is at its least negative with respect to the plasma. In fact
the present measurements (Fig. 1) show that, in contrast to He and Ar, in H2 the electrode
goes positive with respect to the plasma. This observation supports the proposal that the near
electrode emission in H2 is associated with electric field reversal for a portion of the rf cycle
[10], i.e. there is a period during the rf cycle when electrons are accelerated towards the
electrode, causing excitation of, and so emission from, gas atoms near the electrode.

All the gases exhibit a region of excitation at a greater distance from the driven electrode
than the close-to-electrode emission in H2 (Figs. l-3). This is often referred to as the bulk
emission. The location of the excitation maximum is different for each gas (Figs. l-3).
However for all gases at the same input power the distance of the maximum from the driven
electrode is found to vary with pressure (P) as P – 0 . 5 ± 0 . 1. The dependence on input power at
constant pressure is much less pronounced.

The bulk excitation maximum occurs as the electrode voltage becomes increasingly
negative with respect to the plasma. At constant power the phase at which the excitation
occurs remains relatively constant for H2  and He. In Ar the excitation occurs later and the
phase at which it occurs changes with pressure. At the excitation maximum the electrode-
plasma potential difference is always greater than 150 V. However there appears to be no
simple relationship between the two.

In Ar there is some preliminary evidence for a discontinuity in the excitation behaviour
between 100 and 250 mTorr, where the measured eedfs indicate the transition from a stochastic
to ohmic heating mechanism occurs [20]. Presently there is insufficient data in H2 and He to
confirm this.

CONCLUSIONS

The correlation between the temporal variation in plasma excitation and electrode and
plasma potential measurements through the rf driving voltage period have been investigated.
The near electrode emission observed here and by others in capacitively coupled 13.56 MHz
driven H2 plasmas is correlated with sheath field reversal. The distance of the bulk excitation
maximum from the electrode is found to vary systematically with pressure for all gases. The
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Figure 1. (a) and (b) spatially and temporally resolved Balmer alpha (653.3 nm) excitation from a hydrogen
plasma operating with a forward directed rf power of 30 W and gas pressures of 250 and 1000 mTorr
respectively. (Note that the full electrode spacing is 25 mm.) (c) The temporal dependence of the driven
electrode potential relative to the plasma, calculated from VE p (t ) = V E g (t) – V p ( t ) under the same conditions.
(See text.)
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Figure 2. (a) and (b) spatially and temporally resolved 750.4 nm excitation from an argon plasma operating
with a forward directed rf power of 30 W and gas pressures of 100 and 1000 mTorr respectively. (Note that the
full electrode spacing is 25 mm.) (c) The temporal dependence of the driven electrode potential relative to the
plasma, calculated from VEp ( t) = VE g (t) – V p (t) under the same conditions. (See text.)
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Figure 3. (a) and (b) spatially and temporally resolved 587 nm excitation from an helium plasma operating
with a forward directed rf power of 30 W and gas pressures of 100 and 1000 mTorr respectively. (Note that the
full electrode spacing is 25 mm.) (c) The temporal dependence of the driven electrode potential relative to the
plasma, calculated from VE p ( t) = V Eg ( t) – V p (t) under the same conditions. (See text.)
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dependence on input power at constant pressure is much less pronounced. The bulk excitation
occurs as the electrode voltage relative to the plasma becomes increasingly negative. In Ar
there is some preliminary evidence for a discontinuity in excitation behaviour where the
measured eedfs indicate the transition in heating mechanism occurs.

Acknowledgements

The authors wish to acknowledge the assistance of Caith McGrath and Declan McSherry
and Jill McFarland in obtaining the capacitive probe and Langmuir probe data respectively.
This work is supported by the Engineering and Physical Sciences Research Council.

REFERENCES

1.

2.

3.

4.

5.

6.

7.

8.

9.

10.

11.

12.

13.

14.

15.
16.

17.

R. M. Barnes and R. J. Winslow, Spatial and temporal emission spectroscopy of a radio-frequency
capacitively coupled low pressure oxygen plasma. J. Phys. Chem. 82: 1869, 1978.
G. de Rosny, E. R. Mosburg, J. R. Abelson, G. Devaud and R. C. Kerns, Evidence for a time dependent

excitation process in silane radio frequency glow discharges. J. Appl. Phys. 54:2272, 1983.
V. M. Donnelly, D.L. Flamm and R.H. Bruce, Effects of frequency on optical-emission, electrical, ion

and etching characteristics of a radio- frequency chlorine plasma. J. Appl. Phys. 58:2135, 1985.
P. Bletzinger and C. A. De Joseph Jnr,Structure of rf parallel-plate discharges, IEEE Trans. Plasma Sci.

PS-14:124, 1986.
D. L. Flamm and V. M. Donnelly, Time-dependent excitation in high- and low- frequency chlorine

plasmas. J. Appl. Phys. 59: 1052, 1986.
F. Tochikubo, A. Suzuki, S. Kakuta, Y. Terazono and T. Makabe, Study of the structure of rf glow

discharges in SiH4 /H 2 by spatiotemporal optical emission spectroscopy: influence of negative ions. J.
Appl. Phys. 68:5532, 1990.
F.Tochikubo, T. Kokubo, S. Kakuta, A. Suzuki and T. Makabe, Investigation of the high-frequency glow

discharge in Ar at 13.56 MHz by spatiotemporal optical emission spectroscopy., J. Phys. D 23: 1184,
1990.
W. E. Koehler, R. J. Seeboeck and F. Rebentrost, Time resolved study of the bulk plasma of a 13.56 MHz
discharge in argon. J. Phys. D 24:252, 1991.
M. Shimozuma, G. Tochitani and H. Tagashira, Optical emission diagnostics of H2 +CH 4 5 0  H z -

13.56 MHz plasmas for chemical vapor deposition. J.Appl. Phys. 70:645, 1991.
F. Tochikubo, T. Makabe, S. Kakuta and A. Suzuki, Study of the structure of radio frequency glow

discharges in CH4  and H2 by spatiotemporal optical emission spectroscopy. J. Appl. Phys. 71:2143,
1992.
S. Djurovic, J. R. Roberts, M. A. Sobolewski and J. K. Olthoff, Absolute spatially- and temporally -

resolved optical emission measurements in rf glow discharges in argon. J. Res. Natl. Inst. Stand. Technol.
98:159, 1993.
O. Leroy, P. Stratil, J. Perrin, J. Jolly and P. Belenguer, Spatiotemporal analysis of the double layer

formation in hydrogen radio frequency discharges. J. Phys. D 28:500, 1995.
C. M. O. Mahony, R. Al Wazzan and W. G. Graham, Sheath dynamics observed in a 13.56 MHz-driven

plasma. Appl. Phys. Lett. (to be published).
P. J. Hargis Jr. , K.E. Greenberg, P.A. Miller, J.B. Gerardo, J.R. Torczymski, M.E. Roley, G.A. Hebner, J.R.
Roberts, J.K. Olthoff, J. R. Whetstone, R.J. Van Brunt, M.M. Sobolewski, H.M. Anderson, M.P. Splichal,
J.L. Mock, P. Bletzinger, A. Garscadden, R.A. Gottscho, G. Selwyn, M. Dalvie, J.E. Heidenreich, J.
W. Butterbaugh, M.L. Brake, M. L. Passov, J. Pender, A. Lujan, M.E. Elta, D.B. Graves, H.H. Sawin,
M.J. Kushner, J. T. Verdeyen, R. Horwath and T.R. Turner, The Gaseous Electronics Conference radio-
frequency reference cell: A defined parallel-plate radio-frequency system for experimental and theoretical
studies of plasma-processing discharges. Rev. Sci. Instrum. 65:140 1994.
S.E. Savas and G. Donohoe, Capacitive probes for rf process plasmas. Rev. Sci. Instrum. 60:3391, 1989.
E.Y. Wang, D. Diebold, P.Nonn, J. Pew, W.Q. Li, P. Probert, R. Breun, R. Majeski, S.L. Wan, and N.

Hershkowitz., An improved capacitive divider probe for plasma potential measurements in the Phaedrus
tokamak. Rev. Sci. Instrum. 62:1494, 1991.
N. Mutsukara, K. Koyabashi and Y. Machi, Monitoring of a radio- frequency glow-discharge plasma. J.

Appl. Phys. 66: 468, 1989.

509



18. S. Kakuta, T. Kitajima, Y. Okabe and T. Makabe, Experimental study of very- high-frequency plasmas in
H2 by spatiotemporally resolved optical emission spectroscopy. Jpn. J. Appl. Phys. 33: 4335, 1994.

19. S.B. Radovanov, K. Dzierzega, J.R. Roberts and J.K. Olthoff, Time - resolved Balmer-alpha emission
from fast hydrogen atoms in low pressure, radio-frequency discharges in hydrogen. Appl. Phys. Lett. 66:
2637, 1995.

20. V.A. Godyak and R.B. Piejak, Abnormally low electron energy and heating-mode transition in a low-
pressure argon rf discharge at 13.56 MHz. Phys. Rev. Lett. 65:996, 1990.

510



TIME RESOLVED MEASUREMENTS OF PULSED DISCHARGES:
THE ROLE OF METASTABLE ATOMS IN THE AFTERGLOW.
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Richardson, TX 75083-0688

ABSTRACT

The electron and ion densities, electron temperatures, and electron energy proba-
bility functions (EEPF) of modulated-power glow discharges through argon and helium
in the Gaseous Electronics Conference reference reactor have been measured using an
RF compensated Langmuir probe and microwave interferometer. RF power was capaci-
tively coupled to the glow and square wave amplitude modulated with a 50% duty cycle
and 100% modulation depth. The time resolution of the probe was approximately 10
µs and of the interferometer better than 1µs. We found that a metastable-metastable
ionization reaction can produce hot electrons in the EEPF. In addition this reaction
can cause the electron density to increase in the afterglow rather than decrease as one
might first expect. By moving the Langmuir probe along the diameter of the cham-
ber it was determined that the electron density decreases more quickly between the
electrodes by diffusion. This gives rise to a plasma density in argon which becomes
somewhat donut shaped during the afterglow and causes the glow to re-ignite from the
edges into the center. The electron temperature at re-ignition in helium discharges can
become larger than that at steady state in the active glow. It quickly relaxes to the
steady state value. This effect is not nearly as pronounced in argon.

MOTIVATION AND BACKGROUND

Modulated power discharges (also called pulsed discharges) have exhibited advan-
tages over continuous glows in a wide variety of circumstances. Researchers have found
that the discharge chemistry can be altered,1-4 the properties of deposited films can
be altered,5 , 6 the processing rate can be maintained despite the lower average power,7 - 9

dust particle formation can be reduced6 , 1 0 and trenching notching and charging damage
can also be reduced.1 1 - 1 4 At least some of these advantages are derived from how the
plasma turns on and off.
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We wanted to examine the reasons why pulsed discharges could act so differently
from their continuous glow counterparts and so we began to study how the glows ignite
and decay in simple chemistries. We started by investigating noble gas discharges
(since they exhibit as little chemistry as possible in a glow discharge) and measured:
the electron density by both microwave interferometer and Langmuir probe, the floating
potential, plasma potential, electron temperature, electron energy probability function,
RF current, voltage, power and plasma impedance as well as the ion flux to a grounded
electrode.

What we found is that metastable excited state atoms, ”metastables,” play an
important role in the turn off of inert gas plasmas affecting both the electron density
and the Electron Energy Probability Function (EEPF). We also found that diffusion
effects in the Gaseous Electronics Conference (GEC) reference reactor are significant
during the afterglow period. Diffusion effects cause the electron density to remain large
outside the electrode edges for a longer time than inside the electrode radius because the
effective diffusion length, Λ, is larger there. This can force the discharge to re-ignite at
the electrode radial edges first. We will demonstrate that these effects can be modeled
and understood using data from a time resolved Langmuir probe (LP) and microwave
interferometer (MWI) in conjunction with one another and that the electrons produced
from metastable-metastable ionization reactions could be found in the measured EEPF.

EXPERIMENTAL APPARATUS

The experiments were all performed in a Gaseous Electronics Conference (GEC)
reference reactor. 15 Our reactor has 4” diameter steel electrodes, approximately a 12”
chamber diameter and a 1” inter-electrode spacing. The upper electrode is the shower-
head gas inlet and also acts as the driven electrode. RF power at 13.56 MHz is supplied
by a Hewlett Packard 3314A function generator and ENI A300 power amplifier through
a matching network. The output of the function generator was square wave amplitude
modulated with a period of 2 ms, a 50% duty cycle and 100% modulation depth. The
power amplifier (and matching network) can follow the amplitude modulated signal
from the function generator reasonably well. It introduces a rise time to full power
from zero of approximately 0.3 µs and from full power to zero of approximately 0.5 µs
when connected to a precision 50 W load. 16 Our experience with this reactor indicates
that both plasma initiation and decay require at the very least a two order of magnitude
longer time than this. We shall define t = 0 to be the time when the function generator
signal turns on and the plasma first begins to ignite; as a consequence, the RF power
to the plasma is turned off and the afterglow period begins at t = 1000 µs.

The Langmuir probe system used to obtain these results has been described in de-
tail elsewhere. 17 It is a single cylindrical probe made of either tungsten or platinum with
a length of approximately 1 cm, and a radius of between 0.1 and 0.2 mm. The probe
tip is forced to float with the RF fluctuations of the plasma potential by a second ca-
pacitively coupled electrode in close proximity because the probe to plasma impedance
is much smaller than the probe to ground impedance at RF frequencies. (This elec-
trode takes the form of a sleeve for our LP.) The LP is capable of a time resolution
of approximately 10 µs (measured FWHM) and a spatial resolution of approximately
the length of its tip. The LP electronics can be triggered to measure at certain times
during the cycle of the square wave amplitude modulation by using a delay generator.
In addition to the LP measurements, a microwave interferometer is used to measure
the plasmas time-varying density. 18, 19 The MWI measures a volume-averaged electron
density and its results generally agree with those of the LP near the glow center for
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Figure 1. The definitions of various positions for the LP. The circle represents the electrode outer
radius for the GEC reactor. The thin line represents the LP tip and is about 1 cm long. The glass
body of the probe is the larger dimension rectangle and the smaller rectangle between the glass body
and probe tip represents a metal sleeve used for passive RF compensation of the probe. (This is
required by the RF fluctuations of the plasma potential.)

active discharges. 18 The MWI is noninvasive, but, it can not give us spatially resolved
results.

Glow discharges in argon, helium or argon-helium mixtures at pressures between
100 and 500 mTorr and flow rates of approximately 20 to 30 sccm were generated in the
GEC cell with RF voltages between 50 and 700 V zero to peak across the electrodes.
The MWI was used to measure the time-varying electron density and the LP was used
to measure the plasma potential (V p ), floating potential (V ƒ ), electron density (ne ), ion
density (np), and electron effective temperature (k Te ) at up to 48 points during the
2 ms cycle. The majority of the data points were concentrated early in the plasma
turn-on and turn-off. It was difficult to measure plasma parameters with the LP at
very early times in the plasma ignition and at very late times in the afterglow when the
plasma density was very small. The dc bias voltage generated by the unequal electrode
areas likely caused the plasma sheath to touch the LP in this instance causing the
difficulty. The LP was also used to measure the EEPFs when the plasma was first
ignited, at steady state in the active glow, and in the afterglow. While the LP was
centered axially between the reactor electrodes, the measurements were repeated for
five radial positions: at the electrode center, at the radial edges of the electrodes, and
0.5”, 1.5”, and 2” away from the edges of the electrodes. (See Fig. 1.) EEPFs were
not obtained 2” away from the edges of the electrodes.

RESULTS AND DISCUSSION

The normalized electron densities of pulsed discharges in argon and helium as
measured using the MWI are shown in Figs. 2 and 3. The electron densities were
normalized to that during the RF on period in order to facilitate comparison. In
addition, the helium results were obtained using a 10 ms pulsing period while the
argon results had to be taken using a 50 ms period. Noting this difference in the time
scales allows one to clearly see how much faster the helium processes are compared to
those in argon. There are a couple of points to note. First, the electron density rise at
plasma turn-on in helium is much faster than that in argon, reaching steady state within

513



Figure 2. The normalized electron density in a helium discharge. The electron density rises rather
than decreasing when the RF excitation is turned off at 5 ms. The electron density does decrease
after first rising in the afterglow and is nearly zero by 10 ms.

Figure 3. The normalized electron density in an argon discharge. When the RF excitation is turned
off at 25 ms the electron density first decreases momentarily then rises rather than decreasing. The
electron density does decrease to less than 10% of the on-time value by 50 ms.

0.7 ms, while the same rise requires nearly 7 ms in argon. Second, the electron density
overshoot immediately following turn-off in helium is much larger than that for argon
and occurs on a much shorter time scale. Finally, while the electron density in helium
increases immediately at discharge turn-off, the argon glows electron concentration first
decreases, then increases before finally decreasing to zero. The reasons for the electron
density rise in the afterglow as well as the differences between argon and helium can
be explained by comparing the results from a LP and MWI.

This is done for helium first and is plotted in Fig. 4. There is one item to note
about Fig. 4 before making these comparisons. The time scale of the measurements
has been changed to a 2 ms period from 10 ms. The LP collected data too slowly if
the pulse period was 10 ms, so we used a 1 ms on-time and off-time. This causes the
electron density to be non-zero at the end of the RF-off period.

In Figure 4, one can see three important differences as well as a few similarities
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Figure 4. The plasma parameters measured by LP (plasma potential, floating potential, electron
density (Ne(LP)), ion density (Np(LP)), and electron ”temperature”) and MWI (electron density
(MWI)) as a function of time in a helium discharge at 500 mTorr, 30 sccm and 200 Volts RF
amplitude. The LP was placed in the radial and axial centers of the glow.

between the electron and ion densities estimated using the LP and the MWI. For exam-
ple, both the LP and the MWI indicate that the electron density increases at plasma
turn-off (indicated as ”RF-OFF” on the figure). On the other hand, the ion density
estimated from the LP indicates a decrease at plasma turn-off. We believe that the
ion density estimation is in error. The ion density should also rise in the afterglow
because plasma neutrality has to be maintained and the ion density measurement is
less reliable than the electron density measurement. There are two reasons why the ion
density measurement is less reliable early in the afterglow. First, the electron tempera-
ture is changing rapidly during this period and causes the Debye length to be changing
rapidly as well. This causes problems in estimating the ion density from the ion sat-
uration current using Laframboise theory. Second, the floating and plasma potentials
decrease rapidly as the electron temperature drops and can cause a transient current to
flow between the RF compensation electrode and ground. This current is large enough
to affect the ion saturation current measurement (because of its small magnitude) but
is too small to seriously impact the electron saturation current. These effects make the
ion density estimate less reliable and consequently it will not be discussed further.

There must be net ionization resulting from a source other than energetic electrons
in the moments after the RF excitation is turned off since both the LP and MWI
indicate that the electron density is increasing rather than decreasing (requiring net
electron production) and the LP indicates that the electron temperature is decreasing
extremely quickly during the same time. The only energy source that makes reasonable
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sense is metastable excited state atoms.20,21 Metastables have enough stored energy
that an electron-ion pair can be produced when they collide and react. In addition,
the resulting electron is ejected with a reasonably well defined kinetic energy. The
electron will be produced with between 15 and 16.7 eV for a reaction between two
helium metastables, between 7.3 and 7.9 eV for two argon metastables and between
4.1 and 4.9 eV if a helium metastable collides with an argon ground state atom. These
reactions are written below.

2He(M) ⇒ He+  + He + e –(15.05, 15.85, 16.65 eV )

2Ar(M) ⇒ Ar+  + Ar + e–(7.3 – 7.9eV )

Ar + He(M) ⇒ Ar+  + He + e–(4.06, 4.86 eV )

(1)

We should be able to find the signature of metastable reactions in the Electron
Energy Probability Function (EEPF) during the afterglow period because these reac-
tions produce well defined electron kinetic energies. This signature was found and is
shown in Fig. 5. One can clearly see that the EEPF at the end of the RF-on period
(1000 µs in Fig. 4) extends out to very large energies for helium and is reasonably
Maxwellian in form. There is a significant deviation from Maxwellian near low energies
that may be a result of the plasma sheath resistance, or the probe having missed the
actual plasma potential by a few volts. The large numbers of high energy electrons dur-
ing the active glow mask the electrons produced by metastable-metastable ionization
reactions; however, the electron average energy has dropped dramatically within 20 µs
of RF turn-off due to the light mass of helium atoms, and as a result, a peak around 15
eV becomes clearly visible in the EEPF. This peak has to be the result of two helium
metastables colliding to produce an electron-ion pair and is gone by 200 µs into the
afterglow (for the probe positioned between the electrodes.) One should note that there
is no peak in the EEPF near 20 eV. Superelastic collisions between helium metastables
and electrons could cause a peak around this energy, but, it should be more difficult
to identify for two reasons. First, this peak in the EEPF is smoothed both by electron
elastic collisions (after the superelastic collision) and by the low energy spread of the
EEPF. The latter spreading occurs because the 20 eV energy in the metastable atom
is added to the kinetic energy already possessed by the electron. As a consequence, the
kinetic energy of the electron after a superelastic reaction is not as well defined as after
a metastable-metastable ionization reaction. Second, it is probable that superelastic
electrons would simply create another metastable atom in a second inelastic collision
and thereby ”help” in metastable atom diffusion. Electrons produced in metastable
ionization reactions (at 15 eV) can not do this. In any case, there is no evidence of
superelastic collisions in the EEPF and as a consequence, we will ignore this process in
our modeling to follow.

A second difference, that is evident in Fig. 4, is that the LP electron density is
always smaller than that indicated by the MWI. The electron density results do not have
to agree between the LP and MWI since the LP measurements are spatially resolved
while the MWI measurements are spatially averaged. The LP results correspond to a
small region around the probe tip, while the MWI gives results that are averaged over
the length between the transmit and receive horns. This includes the region where the
LP sits as well as the regions outside the electrodes, which we will call “ballast” regions
since the volume there is quite large compared to the volume between the electrodes.
In this case however, the discrepancy between the two techniques is partly because the
pressure was 500 mTorr and causes the LP results to have problems with self shielding.
(The ion mean free path and probe radius are becoming too close in magnitude. 18 ) It
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Figure 5. The Electron Energy Probability Functions (EEPF) measured using the LP in a helium
discharge at 500 mTorr, 30 sccm and 200 Volts RF amplitude. The RF source is just about to be
turned off at 1000 µs. The high energy electrons produced in metastable ionization reactions are
clearly visible at 20 and 100 µs into the afterglow, but, are gone by 1200 µs (200 µs into the
afterglow).

may also be due to some sheath resistance effects on the probe. 17 Finally, the MWI
calibration is set for steady state plasmas in the GEC reactor, but changes in the
electron density distribution of the afterglow could cause the MWI to overestimate the
electron density.

The third difference between the LP and MWI measurements, evident in Fig. 4,
is a matter of timing. The LP indicates that the electron density maximum occurs ap-
proximately 200 µs earlier in the afterglow than the MWI indicates. This is a significant
difference between the two techniques because both have much better time resolution
than 200 µs and the plasma parameters change slowly after the first 20 µs indicating
that both techniques should be accurate. In particular, the electron temperature drops
extremely quickly at the start of the afterglow, but kTe has become small and nearly
constant within a few tens of microseconds and the LP results should no longer be af-
fected by its initial rapid decrease (and the rapid changes in the associated plasma and
floating potentials.) The solution to this apparent discrepancy lies in the limitations
of the two measurement techniques. The MWI is a spatially averaged technique, while
the LP is spatially resolved. We will start with a simple model of the electron density
time dependencies in order to make the importance of these limitations clearer.

The simplest differential equations for fitting the electron density in the afterglow
using metastables as an ionization source and neglecting superelastic collisions (or more
accurately assuming that superelastic collisions only contribute to metastable diffusion)
are:

(2)
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for the electron density as a function of time and

for the metastable atom density as a function of time. Here ne is the electron density,
nm is the metastable atom density, Λ is the effective diffusion length, and β is the
metastable atom reaction rate constant. Dm is the metastable atom diffusion coefficient
and D a(Te) is the ambipolar diffusion constant for electrons which depends upon the
electron temperature. We estimate that the effective diffusion length, Λ , of a lowest
order diffusion mode will vary as a function of position due to the geometry of the
GEC reactor, and as a consequence will have to be a fitting parameter. (A should be
smallest between the electrodes and largest in the center of the ballast regions.) Dm a n d
Da(Te) were estimated as 960 and 810 cm ²/s.20 Further the exact values of D a(Te) and
Dm are not particularly important since they are always divided by Λ ² (an adjustable
parameter.) We also assumed that Da (Te) is a constant since the measured electron
temperature decreases very fast in the afterglow and has reached a small, nearly steady
state value before the LP can begin to measure the electron density increase. Finally,
β has been measured by Kolokolov and Blagoev,22

The metastable atom density equation can be solved analytically and the electron
density equation is easiest to solve numerically using the initial metastable atom density,
nm(0), and A as fitting parameters. The result of this fitting procedure is shown in
Fig. 6. The fitting parameters were nm (0) = 2.95 × 1 0 11 cm –3 and Λ = 0.5 cm. The
fit to the LP data taken at the center of the electrodes is reasonably good as well as
precise. The latter is demonstrated by the fact that a variation in A of only 10% causes
a very noticeable degradation in the fit. Greenberg and Hebner measured a metastable
concentration of 2.6 × 10 11 cm –3 under similar conditions which has to be considered
very good agreement.20

The same measurements can also be taken with the LP situated outside the edge
of the electrodes (in the ballast region). These are shown in Fig. 7 where it becomes
immediately evident that the peaks in the electron densities measured by the LP and
MWI now occur at the same time position. (The MWI measurements are nearly identi-
cal with those in Fig. 4 since it does not depend upon the LP position.) Fitting the LP
measured electron density again results in the fit parameters nm (0) = 1.47 × 1 0 11 cm –3

and Λ = 0.63 cm. Note that the initial metastable atom density is smaller and that
the effective diffusion length is larger than before. It is expected that the diffusion loss
of electrons in the ballast regions is slower because the volume is larger, the walls are
further away and as a consequence, the effective diffusion length should be larger than
that between the electrodes. Therefore, electron production by metastable atoms can
dominate losses and ensure net production for a longer period of time in the afterglow
even though the initial metastable atom density is smaller. As the metastable density
decreases, a time is inevitably reached when metastable ionization can no longer pro-
duce more electrons than are lost and the peak is reached. It is also clear that the
spatial averaging of the MWI is significantly affected by the electrons in the ballast
regions and that this is why it indicates an electron density peak later than that of the
LP in Fig. 4.

This diffusion effect also carries over to the end of the off-period. There is a slightly
larger electron density remaining in the ballast regions at the end of the off period than
there is in the region between the electrodes. This can be noted by comparing the
LP results for the electron density at 2 ms between Figs. 4 and 7. There are fewer
than 1 × 10 9 cm –3 electrons at 2 ms in Fig. 4 and slightly greater than that in Fig.
7. As a consequence, the discharge ignites from both the ballast and inter-electrode

(3)

518



Figure 6. The fit to the LP electron density measurements using the simple differential equation
formulation in the text. The result of the fit is an effective diffusion length and the metastable
density as a function of time in the afterglow. The fit is clearly degraded by a variation in the
effective diffusion length of only 10%. The initial metastable density is also determined with good
precision, however, the accuracy of both is probably not as good.

regions and eventually concentrates in the central electrode region. This also helps to
explain the final characteristic difference between the LP and MWI results displayed
in Fig. 4 and occurring at discharge turn-on. The electron density measured by the
MWI is decreasing while that measured by the LP is increasing initially. The MWI sees
electrons being driven out of the ballast regions by the RF heating. As the electron
temperature increases, the electron loss rate increases in the ballast regions and the
MWI catches this behavior. Interestingly, the LP also catches this behavior to some
extent in Fig. 7.

Argon discharges can be investigated in the same fashion which can help to explain
why these pulsed glows act significantly differently than those through helium. These
measurements are presented in Fig. 8 for an argon discharge at 100 mTorr, and an
RF voltage amplitude of 105 Volts. Please note again that the modulation period
is 2 ms rather than the 50 ms period used in Fig. 3 because of the LP. There are
two inaccuracies in the data of this figure to discuss before we begin the comparisons.
First, The LP sometimes had difficulties obtaining the plasma and floating potentials
at very early times in the turn-on. This could cause the results to be inaccurate
and in particular the electron temperature to be overestimated. An example of this
problem occurs at 40 ms into the turn-on in Fig. 8. The electron temperature there was
estimated from the LP to lie between 4.8 and 6.5 eV but is bounded by Te measurements
at 10 µs and 50 µs in the range of 2 to 3 eV. The electron temperature should not have
such a wild dependence, as a consequence, the measurements at 40 µs are likely to
be erroneous and have only been included in this graph for completeness. Likewise,
the LP has increasing difficulty in determining floating and plasma potentials as the
plasma decays in the afterglow and the electron density vanishes. This also can cause
the electron temperature measurements to become erroneous. This overestimation can
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Figure 7. The plasma parameters measured by LP (plasma potential, floating potential, electron
density (Ne(LP)), ion density (Np(LP)), and electron “temperature”) and MWI (electron density
(MWI)) as a function of time in a helium discharge at 500 mTorr, 30 sccm and 200 Volts RF
amplitude. The LP was placed in the axial center of the glow, but was displaced from the radial
center by 3.5”. (1.5” outside the electrodes.)

be compounded by the fact that the dc bias voltage remains on the driven electrode
late into the afterglow and causes the sheath in front of that electrode to expand and
even touch the LP as the electron density decreases. The result can be seen in Fig. 8 at
times greater than 1200 µs. There the LP indicates that Te is increasing, but, in reality
the electron density has become too small for the probe to make reliable measurements.
Again, we kept these results simply for completeness.

What is good to note in Fig. 8 is the large discrepancy between the electron density
behaviors measured by the LP and MWI at the beginning of the afterglow. While the
LP indicates an electron density that is clearly decreasing quickly, the MWI indicates
that the spatially averaged electron density decreases some initially and then begins
to increase. This is very similar to what was found in Fig. 3. We noted there that
while the electron density in helium increased immediately at discharge turn-off, the
argon glows electron concentration first decreased, and then increased. The reason for
this difference is now clearly found in the LP measured electron density between the
electrodes. That density decreases to zero quickly in the case of argon, but, increased
in the afterglow for helium. The reason why is found in the electron temperature of
the early afterglow. The electron temperature decreases extremely quickly at the start
of the afterglow for helium, but, decreases much slower for argon. The 10x larger mass
of the argon atom prevents it from cooling the electrons through elastic collisions as
quickly as the helium atoms can cool them. The loss rate of electrons in the afterglow,
which depends upon Da (Te ), remains large in the argon afterglow longer than in the
helium afterglow and as a consequence it takes time before the electron temperature
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Figure 8. The plasma parameters measured by LP (plasma potential, floating potential, electron
density (Ne(LP)), ion density (Np(LP)), and electron “temperature”) and MWI (electron density
(MWI)) as a function of time in an argon discharge at 100 mTorr, 20 sccm and 105 Volts RF
amplitude. The LP was placed in the radial and axial center of the glow.

decreases enough for the production rate by metastables to overcome the loss rate.
When it does, the electron density begins to rise.

We can see that metastable ionization is occurring during the afterglow and be-
tween the electrodes, even though the electron density measured by the LP simply
decreases to zero there, by examining the EEPFs. These are shown in Fig. 9. 23 The
RF excitation is on for the first EEPF at 900 µs and the large numbers of energetic
electrons mask the contribution to 7.3-7.9 eV electrons from metastable ionization.
Even though the electron temperature has not decreased nearly as much in argon in
the first 50 to 100 µs of the afterglow as it does in helium (see Fig. 5) a clear peak
in the EEPF indicates that metastable ionization is occurring. It became difficult to
measure the EEPF after 1150 µs because the LP could not accurately measure the
plasma potential as discussed earlier. One other phenomenon is explained with the
information obtained from Fig. 8. We had noted on Figs. 2 and 3 that the electron
density rises faster in the helium glow at discharge turn-on. Looking at the electron
temperature as a function of time during the turn-on for both argon and helium glows
helps to show why this occurs. There is a large increase in the electron temperature
in the helium discharge at turn-on which did not occur in the argon discharge. The
increased electron energy causes increased ion production in the helium glow at ignition
and therefore the electron density increases more quickly than that in argon.

CONCLUSIONS

We have demonstrated that a combined diagnostic approach to examining plasma
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Figure 9. The Electron Energy Probability Functions (EEPF) measured using the LP in an argon
discharge at 100 mTorr, 20 sccm and 105 Volts RF amplitude.[ref. 23] The RF source is on at 900
µs. (It is turned off at 1000 µs.) The high energy electrons produced in metastable ionization
reactions are just barely visible at 50 µs into the afterglow (1050 µs). They are clearly visible at 100
and 150 µs into the afterglow.

ignition and turn-off could provide information that is not available with either tech-
nique alone. In particular, we found that metastable excited state atoms play an
important role in the turn-off of helium and argon plasmas in the GEC reactor. They
can cause the electron density to increase in the afterglow rather than decrease, they
can significantly impact the electron energy probability function (EEPF) and they can
cause the glow to remain larger in the ballast regions outside the electrode radial edges
longer than between the electrodes.
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Plasma Physics Department, St.Petersburg State Technical University,
Polytechnicheskaya 29, St.Petersburg, 195251, RUSSIA

INTRODUCTION

Widespread application of diode type reactors in modern semiconductor technology
has stimulated an extensive study of low-pressure capacitively coupled RF discharges.
This type of discharges has been studied experimentally, theoretically (by analytical
and semi-analytical methods) and by numerical simulation. The main purpose of these
efforts is to understand the physical processes involved, and the mechanisms of the
discharge conditions which influence the plasma chemistry and the plasma-surface in-
teraction. However, this problem is still far from solution. On the one hand, it can be
attributed to a lack of proper correlation between theoretical and experimental results.
Theoretical models are usually based on the assumptions which can not be tested di-
rectly by experiment. Simulation results are strongly affected by the values of cross
sections of different processes which are not known with sufficient accuracy. On the
other hand, experimentally measured parameters (such as loaded power, voltage drop,
electron density, particle fluxes to electrodes, electron distribution function, etc.) are
usually integral characteristics, averaged over time and/or space. Different theories
may predict close coincidence of integral parameters and very precise measurements
are needed to distinguish between them. To improve situation time resolved local pa-
rameters must be measured and compared with the theoretical predictions.

Time-resolved energy distribution of charged particles impinging on the electrodes
is an important characteristic of RF-discharge plasma. Electron and ion bombardment
can strongly affect surface processes, such as film growth, etching, etc. Since charged
particles in low pressure discharges are produced in the plasma column and acceler-
ated in the sheaths, time-resolved energy distribution functions provide an important
information about physical processes in positive column and electrode sheaths. Multi-
grid retarding field analyzers were widely used for energy distribution function (EDF)
measurements of the ions¹ electrons 2,3 impinging on electrode in RF-discharge. Un-
der the experimental conditions the particle fluxes are actually being averaged over
large number of the electric field periods, though all theoretical models4,5 predict that
plasma electrons can be impinging on electrode only during the small part of period
when plasma-sheath boundary is close to the electrode. Modulation of the ion and
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Figure 1. Experimental setup. l-grounded electrode, 2-grid, 3-electronic gate, 4-slits, 5-energy
analazer, SEM-secondary electron multiplier.

electron flux by the driving frequency and harmonics was observed in6 . In these works,
time and energy spectra were obtained in separate experiments, so it is impossible to
know in which phase the particles of a definite energy are born and come to electrode,
though all the inferences are based on such effects. In this paper, we report the results
of time resolved measurements of electron EDF by 130° cylindrical electrostatic energy
analyzer.

EXPERIMENTAL SETUP

The sketch of the experimental setup is presented in fig.1. Discharge was burned
between parallel plate electrodes 20 cm in diameter separated by 2-6 cm. Energy
analyzer was placed in high vacuum chamber behind the grounded electrode. Electrons
from plasma were extracted through the 1 mm diameter orifice. After accelerating up
to 200 eV by positively charged grid retarding ions kept moving through electronic
gate to energy analyzer. Particles which passed energy analyzer were detected by the
secondary electron multiplier. A voltage of 400 V applied to the gate plates were
deflected electrons with energies less than 1500 eV. For the EDF measurements, gate
was tuned by 10 ns strobe, which was synchronized with the RF voltage. Varying the
strobe delay we could measure the EDF in different electric field phases. The second
pair of gate plates was used to compensate particle displacement in residual voltage
when the gate was opened. Energy resolution was 4%. Experiments were carried out in
Argon 13.56 MHz RF discharge in pressure range 3-50 mTorr and power range 15-90 W.
Gas pressure in discharge and high vacuum chamber, loaded power, discharge current
and voltage oscillograms and dc self-bias voltage were controlled.

526



RESULTS AND DISCUSSION

Electron distribution function is reported earlier³ to correspond to the two groups
of electrons. The first one is a group of low energy, “thermal” plasma electrons,
which are impinging on electrode when space-charge sheath vanishes. Plasma electrons
have a Maxwellian-type distribution³ with temperature of about 9 eV. A distribution
of the fast electrons proves to be more interesting. The typical fast electron EDF in
different current phases for Argon discharge are presented in fig.2. In fig.3 time-resolved
spectra are compared with that obtained with long duration gate pulse covering ½ of
the current circle. In these figures, one can see two specific features of the spectra.
The first one is an asymmetry of the spectra obtained in phase when electrons move to
the electrode (t<65ns in fig.2) and when electrons move from the electrode (t<70ns in
fig.2). This asymmetry results from the klystron-effect occurring on the electron path
through the positive column 7. The second one is a rather complex structure of the
energy spectra, which is more pronounced in low pressure (fig.3). We will discuss these
features independently.

For analysis of the fast electron spectra let us consider the simplest model based
on the following assumptions: (i) the fast electrons are γ - electrons which are emitted
from the powered electrode and accelerated in the sheath; (ii) γ - electron flux from
the powered electrode is independent of time; (iii) the electron plasma frequency in
the sheath is much larger than the driven frequency, hence the time of electron flight
through the sheath is much smaller than the RF period and independent of the phase;
(iv) the electron energy is equal to the sheath voltage at the moment when electron is
crossing the sheath boundary; (v) scattered electrons are not detected; (vi) discharge
current is sinusoidal.

Under these assumptions, if we know sheath voltage, we know the energy distrib-
ution of the electrons started at any time from the sheath boundary. Hence, the time
and the energy distribution for the electrons reached the grounded electrode can be
calculated. The results of the calculations are presented in fig.2. It could be seen that
calculations provide a correct form of the energy distributions.

All these calculations were made under the assumption that the sheath voltage is
proportional to (1 + cos (ω t)). Any other choice of voltage-time dependence produced
the electron energy spectra essentially different from those recorded in the experiment.
Since electron scattering cross-section decreases with the energy increase 8 , the intensity
of electron flux decreases with energy. To take this into account, the calculated spectra
were normalized as to scattering probability.

Let us consider the structure of the fast electron energy spectra. Electron disrib-
ution function ƒ is given by

can be transformed to
where N is the number of electrons detected, e is electron energy. This expression

At low pressure and short electrode gap scattering and klystron-effect can be ne-
glected. Thus, N equals to the number of electrons ejected from the electrode surface
and dN is constant (assumptions ii, iii). Since, electron energy is determined by thedt
sheath voltage U :

(1)

(2)
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Figure 2. Time-resolved fast electron energy distribution function. Ar, p=40mTorr, U=525V,
W=52Watt. Circles-experiment, solid line-calculation.
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Figure 3. Fast electron energy distribution function. Dashed lines-time resolved measurements, solid
lines-measured over of 1/2 RF period.

∈ = eU. (3)

we can obtain

(4)

where C is a constant. By integrating (4) we obtain the sheath voltage-time

dependence:

Results of these calculations together with the curve (1 + cos (ω t))are presented
in fig.4. Evidently, the calculated voltage can be approximated by (1 + cos(ω t))with
reasonable accuracy. The higher harmonics (up to n=8) of the driven frequency can be
easily seen. Peaks on electron distribution function are the result of these harmonics.

CONCLUSIONS

Time resolved fast electron energy spectra were measured. Asymmetry of the spec-
tra was observed for the phases, when the plasma boundary moves towards the electrode
and in the opposite direction. This effect is interpreted as convergence and divergence
of the electron trajectories in x-t plane (klystron-effect). Effect of electron scatter-
ing was manifested by the decreasing of the electron flux with energy. Modulation of
electron energy spectra resulting from the higher harmonics in the sheath voltage was
observed.. Sheath voltage wave-form was calculated from the electron energy spectra.
Sheath voltage can be approximated by (1 + cos (ωt)). Sheath voltage contains higher
harmonics (up to n=8). These harmonics may be related to the temporal and spatial
modulation of the ion profile in the sheath.

(5)
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Figure 4. Sheath voltage waveform. Bold line-calculated from fast electron EDF, narrow
line-(1+cos(wt)).
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PROBE METHOD FOR INVESTIGATION OF ANISOTROPIC
PLASMA

A. P. Mezentsev, A. S. Mustafaev, and V. L. Fedorov

Department of Physics
St. Petersburg Mining Institute
St. Petersburg Russia

1. I N T R O D U C T I O N

Anisotropic plasma is rather a rule than exclusion in the practice of plasma in-
vestigations. Actually, the existence of plasma created either by electric current pho-
toexcitation, or by any other methods means conveyance of energy or particles to it.
Consideration for this factor only causes local fluxes that determine some direction in
space, which, in the first approximation, is the local axis of axial symmetry.

Also, any actual plasma object is spatially limited, and the boundary conditions
cause withdrawal of particles from plasma, which also tells on the local direction of the
symmetry axis. Thus, for example, axially symmetric plasma is realized in a positive
column of an electric discharge with the symmetry axis, in the first approximation
coinciding with the local direction of the electric field strength. In beam plasma, the
predominant direction of particles motion will be the symmetry axis too. Thus, axially
symmetric description takes into account some important specific features of plasma,
and this description may be considered as the next approximation after the spherically
symmetric one.

In this paper we consider the possibilities of the probe technique in investigations
of axisymmetric low-temperature plasma. The greatest attention is paid to determina-
tion of the electron velocity distribution function, which is the main dependence that
determines many important plasma parameters.

2. REPRESENTATION OF THE ELECTRON VELOCITY
DISTRIBUTION FUNCTION IN AXIALLY SYMMETRIC PLASMA

The electron velocity distribution function in an axisymmetric plasma, specified
in a spherical co-ordinate system with the polar axis directed along the local axis of
plasma symmetry, can be expressed as a Legendre-polynomial expansion¹:

(1)
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where v and θ are the magnitude of velocity and the polar angle, respectively;
Pj (cos θ) is the j-th Legendre polynomial.

The series converges absolutely and uniformly if ƒ(v, θ ) is twice continuously dif-
ferentiable. The first two coefficients of the series are of particular interest. Indeed,
the orthogonality of the Legendre polynomials implies that (apart from a multiplica-
tive factor) the coefficient ƒ0 (v) uniquely determines the distribution of the electrons
with respect to the velocity modulus, and is responsible for excitation and ionization
processes. The coefficient ƒ1 (v ) is uniquely related to the convective velocity of the
electrons and to the density of the electron current in the plasma. Together with the
first two coefficients, the rest of the expansion coefficients specify the detailed angular
dependence of the distribution function and may be of interest in studies of electron
scattering in collisions, and in analyzing specific features of population of Zeeman
atomic levels in excitation acts. The indicated properties of the Legendre components
of the distribution function make the expansion (1) preferable as compared with ex-
pansions in other known orthogonal polynomials. Also note that the representation
of the distribution function (1) with only the first two terms is known as the Lorentz
approximation and is often employed to analyze currents flowing through plasmas.

3. PROBE MEASUREMENTS OF THE LEGENDRE COMPONENTS
OF THE ELECTRON VELOCITY DISTRIBUTION FUNCTION 2 – 4

3.1. Plane One-Sided Probe

One surface of a plane one-sided probe collects electrons, while the opposite side
is insulated. We can use such probes to approximate small surface elements of probes
of arbitrary shape, and this is the primary reason for our interest in them.

We assume that all the conditions for the applicability of the Langmuir probe
method are satisfied, except that the distribution function is anisotropic, i. e., we
will assume that the Debye screening radius is much less than the characteristic probe
dimension, and that the latter is less than the electron free path; the probe surface
absorbs all of the electrons that reach it, and there are no secondary processes connected
with emission of charged particles on the surface. Then, if the probe potential U is
negative relative to the local potential of the surrounding plasma, the electron current
density is given by:

(2)

where e, m, and e are the electron charge, mass, and kinetic energy, respectively; θ 1
and ϕ1 are the polar and azimuthal angles in a spherical co-ordinate system with polar
axis z along the outer normal to the collecting plane of the probe; The distribution
function ƒ(ε, θ 1 , ϕ 1) is normalized to the electron concentration.

Differentiating expression (2) twice with respect to the parameter U, we find that:

(3)
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The subsequent analysis depends on the specific location of the probe and on
the plasma symmetry. We will consider a plane one-sided probe oriented so that the
plasma symmetry axis has the polar and azimuthal angles Φ 0  and ϕ 0 , respectively, in
the spherical co-ordinate system with the polar axis coinciding with the outer normal
to the probe surface; and the chosen direction of electrons motion is characterized by θ 1

and ϕ1 , as above. The angle between the indicated directions will be θ (in our previous
notations), and the Legendre polynomials for it are determined by the known addition
theorem4 :

(4)

(6)

where P m
j (cos θ1 ) are the associated Legendre functions.

Using the representation of the distribution function in the form of expansion in
Legendre polynomials and the addition theorem, we find upon integrating over the
angular co-ordinate in expression (3) that:

(5)

where x = eU; U is the probe potential with respect to plasma.
In the particular case of isotropic plasma, only the first term in sum (5) is nonzero.

Consideration for this term leads to the known Druyvesteyn formula that connects the
second derivative of the probe current density with respect to the probe potential with
the distribution function.5 Relations (5) and (6) can be used to calculate the first
coefficients in representation (1). Indeed, suppose that the upper limit ∞ in the sum
(1) can be replaced by some finite j = N. If we then measure j"U (eU) for N different
angles Φ 0 , relation (5) will give a system of algebraic equations for the Fj (x ).

To make the set of equations (5) well-posed, orientation angles for the probe in
plasma should be specially chosen. One can show that the set will be sufficiently well-
posed in the case, when the angles Φ0 are determined by the following relation:

cos Φ 0 k  = 1 – 2k/l, k = 0, 1, 2, . . . , l . (7)

Now we consider integral equations (6). Note two facts that make them different
from the well studied Volterra equation: (1) the integral entering the equation has the
infinite limit of integration; (2) the kernel of the integral equation has singularity at
x = 0. Consequently, it is necessary to introduce the corresponding limitations, in
order to use the known theory of the Volterra equations.6

Note that the infinite value of the upper integration limit in expressions (6) may
be replaced by the finite value E, if the distribution function is close to zero for the
energies above E. The point of singularity of the equation kernel at x = 0 and its
vicinity should be excluded from the domain where the solution is sought.
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With consideration for the made limitations, one can determine analytical solutions
for equations (6). Indeed, for Volterra integral equations, a solution can be specified
by means of resolvent kernels. For equations (6), under made limitations, we obtain:

(8)

One can show that the resolvent kernels have the form3 :

(9)

(10)

where j = 0, 1, 2, . . .; [ j/2] = j/2 for even, and [j/2] = (j – 1)/2 for odd j.
The first three resolvent kernels are

(11)

Thus, the problem of determination of Legendre components of the electron ve-
locity distribution function can be solved by means of measurements made by a plane
Langmuir probe.

3.2. Cylindrical Probe

Because of their simplicity, cylindrical probes are the ones most often used in
plasma diagnostics. We consider a cylindrical probe with arbitrary orientation in ax-
isymmetric plasma. Let the axis of the cylinder make an angle λ with the axis of
plasma symmetry, and choose an auxiliary spherical co-ordinate system with the polar
axis normal to the plane containing the symmetry axes of the plasma and the cylin-
der. The direction of the plasma symmetry axis in the auxiliary co-ordinate system is
specified by polar and azimuthal angles θ = π/2 and ϕ = 0, while the direction of the
normal to some element of the probe surface — by angles θ2  and ϕ 2 = (λ ± π /2). As
above, the angle between the normal and the plasma symmetry axis is Φ 0 , and

cos Φ 0  = sin θ2  cos ϕ2 . (12)

Using the relation for Φ 0 , we integrate expression (5) over the surface S of the
cylindrical probe:

(13)

The terms with odd indices integrate to zero because the corresponding Legendre
polynomials are odd functions of their argument.

As before, if the upper limit ∞ in the sum (1) can be replaced by some finite j
= N, then measurements of the corresponding number of angles form an algebraic set
of equations from (13) which permits to determine only even coefficients in series (1)
by means of the method described above. However, the matrix of coefficients is less
well-posed than for the case of a plane probe, and it is preferable to use plane probes
in order to find ƒ2 j more accurately.
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Figure 1. Principal scheme of experimental setup for measurements of the second derivative of the
probe current with respect to its potential. 1 — oscillator of the differentiating signal, 2 — narrow-band
amplifier, 3 — synchronous detector, 4 — analogous recorder.

4. EXPERIMENTAL TECHNIQUE

Presently, there are several methods for experimental determination of the second
derivative of the probe current with respect to the probe potential.7, 8, 26 These methods
are based on modulation of the probe potential by a small-amplitude signal of some
time structure, and subsequent analysis of harmonic components of the probe current.
Paper Ref. 9 presents sufficiently complete review of the methods.

Along with a constant bias U0 , an alternating voltage ∆U with a small amplitude
(the differentiating signal) is introduced in the probe circuit.

We used the differentiating signal with the profile

∆ U = a(1 + cos ω1 t) cos ω 2 t (ω2  » ω 1 ) (14)

proposed earlier in Ref. 7. In this case, expanding the probe current in powers series
with respect to the small parameter ∆U, we obtain the following expression for the
amplitude of the harmonic of the probe current at the frequency ω 1 :

(15)

For a sufficiently small “a,” one may neglect the second term, and the harmonic
amplitude Aω1  of the probe current coincides with the second derivative of the probe
current with respect to the probe potential, with the accuracy up to a constant multi-
plier.

Figure 1 gives the experimental setup we used.
The differentiating signal was introduced in the probe circuit by means of a trans-

former with small interwinding capacitance. The transformer was made without a
ferromagnetic core. The voltage proportional to the probe current was taken off at the
small resistor included in the probe circuit and was amplified by a narrow-band ampli-
fier. Separation of the harmonic component of the probe current with the frequency
ω1  was performed by means of a synchronous detector. The reference voltage was fed
to the detector from the master oscillator. The signals proportional to I"

U
and U 0 were

fed to an analogue recorder.
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To calibrate the installation and obtain the absolute values of I"U we used a tho-
riating signal with the frequency ω1 of a known amplitude fed to the input of the
amplifier.

Recently, a scheme for determination of the second derivative of the probe cur-
rent with respect to the probe potential was proposed, in which the volt-ampere probe
characteristic is recorded with subsequent numeric differentiating by means of a com-
puter . 10, 26 However, noise stability of the proposed scheme was not analyzed, and its
advantages over the modulation schemes were not shown.

The probe measurements were performed both in plasma of the positive column,
12–14 and in a plasma-beam discharge in helium. 4, 15—18 Plasma of the positive column
was produced in a glass discharge tube of round cross-section 3 cm in diameter and
25 cm in length. Plasma of the beam discharge was produced in the volume limited
by a metal cylinder 11 mm in diameter; the length of the discharge gap varied in the
range 10–15 mm. The source of electrons was heated impregnated cathode 10 mm in
diameter.

The devices were thoroughly pumped out down to the residual gas pressure of
10– 8 Torr, and then were filled with spectrally pure helium. Training of discharge tube
provided high stability of the discharge parameters during time periods up to 5 hours.
Variations of the value of the discharge current did not exceed 1 mA for the 500 mA
current, variations of the voltage drop across the discharge gap did not exceed 0.1 V in
this case. These measure provided reproducibility of results not worse than 0.5 percent.
The signal/noise ratio was about 200.

The measurements were performed by means of a plane one-sided probe 0.5 mm
in diameter produced of tantalum foil 25 µm thick. One side of the probe was coated
with aluminum oxide layer baked in vacuum. The probe could be moved along the
discharge axis by means of a micrometric drive and change its orientation by the angles
from 0 to 180º. The error of the probe initial setting was ±05º. The range of helium
pressures was 0.1–2.5 Torr and of the discharge currents — from 100 to 500 mA.

5. MEASUREMENTS OF LEGENDRE COMPONENTS OF
ELECTRON VELOCITY DISTRIBUTION FUNCTION IN A
POSITIVE COLUMN OF DISCHARGE IN HELIUM

12—14

Theoretical estimations of the role of collisional processes in the positive column
of an electric discharge performed with consideration for the value of the electric field
strength lead to the conclusion about high degree of isotropy of the electron distribution
function. 1, 11

This conclusion is indirectly confirmed by measurements of the probe character-
istic for different orientations of a cylindrical probe and very weak dependence of this
characteristic on the probe orientation.14 However, apparently no direct investigations
of the anisotropy degree of the distribution function were performed. Below we present
results of experimental determination of the distribution function Legendre components
obtained by means of a plane probe and confirming the conclusion about isotropy of
the electron velocity distribution function in the positive column of electric discharge in
the first approximation. We recorded the second derivatives of the probe current with
respect to the probe potential I"U under discrete orientations of the normal to the probe
surface with respect to the axis of the discharge tube, corresponding to the angles 0,
45, 90, 135, and 180º.

Figure 2 presents the Legendre components of the distribution function determined
on the basis of the measured values of I"U . Numeric values of the Legendre component
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Figure 2. Energy dependence of Legendre components of the electron velocity distribution function
ƒ j in plasma of a discharge positive column in Helium; p H e = 0.5 Torr, the discharge current I = 0.5
A.

ƒ1 are considerably less than the corresponding values of ƒ0 . Also, the values of the
Legendre components ƒ2 , ƒ3 , and ƒ4 are small. This fact indicates high degree of
isotropy of the electron velocity distribution function in the positive column of the
electric discharge. Thus, the electron distribution function may be assumed isotropic
at least in the first approximation. To control the accuracy of determination of the
Legendre component ƒ1 , we compared the directly measured value of the discharge
current with the value of the discharge current calculated on the basis of experimentally
measured values of ƒ1 with relation¹:

(16)

Table 1 gives the comparison results. It is easily seen that the values of the dis-
charge current calculated and determined in the way described above differ no more
than by 10 percent. Satisfactory agreement between calculated and experimental val-
ues of the discharge current indirectly indicates the reliability of determination of the
Legendre component ƒ1 of the electron velocity distribution function.

6. INVESTIGATION OF THE ELECTRON VELOCITY
DISTRIBUTION FUNCTION IN BEAM DISCHARGE PLASMA IN
HELIUM 4,15—18

Near the cathode of the discharge tube, the conditions are realized, under which
the electron velocity distribution function is highly anisotropic. Usually, this domain of
the dark cathode space and plasma in this domain are called beam ones, thus underlying
the fact that the group of electrons with directed motion is observed here.

Table 1. Comparison of Experimental and Cal-
culated Values of the Discharge Current for Dif-
ferent Helium Pressures
P, Torr I, mA (experiment) I, mA (calculation)
1 590 565
1 500 470
0.5 514 454
0.5 236 258
0.5 110 110
0.2 404 355
0.2 252 240
0.2 102 119
0.2 50 52
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Sj (v, z, t) and ƒ1 (v, z, t) depend only on the modulus of the electron velocity v, co-
ordinate z along the symmetry axis, and time t. The Legendre components Sj and ƒ j
are related by the system of kinetic equations19:

(17)

where E is the electric field strength; j = 0, 1, 2, . . . .
It is easy to see that the set of kinetic equations permits to determine the Legendre

components of the collision integral Sj , if ƒj and E have been measured.
Moreover, if measurements are carried out in a positive column of axisymmetric

stationary electric discharge, additional and considerable problem simplifications are
possible. Indeed, in this case 13 and when the density of discharge current is small,
we find that ƒ0  » ƒ1 » ƒ2 . Thus, sufficient accuracy is reached when only two first

equations are left in the system of kinetic equations (assuming ƒj >2 = 0). Besides, note
that, as a rule, the field term in the kinetic equations is considerably greater than the
diffusion term at the symmetry axis of the discharge in a positive column, i. e.:

(18)

This also permits to simplify the kinetic equations. Thus, in these conditions the
set of kinetic equations is reduced to two comparatively simple equations:

(19)

(20)

These equations show that it is sufficient to measure ƒ0 , ƒ 1 and E in order to calculate S 0

and S 1. Above we showed that the Legendre components ƒ0 and ƒ1 may be determined
by using a plane probe. The probe method also permits to determine the electric field
strength E.

11 Thus, all values necessary for calculation of the Legendre components S0

and S 1  of the collision integral may be experimentally determined.
Figure 4 presents the results of determination of the Legendre components S0  and

S1  of the collision integral for helium pressures 0.5 and 1.0 Torr.
First of all, it is necessary to note that the Legendre component S 0 is close to

zero at least with the accuracy reached in the performed experiments (Figure 4a). The
obtained values of the Legendre component of the collision integral S 0 agree with the
conception that elastic electron-atom collisions in the positive column of the electric
discharge make the dominating contribution in the collision integral. It is known20 that
the Legendre component S0  of the collision integral should be equal to zero exactly in
the approximation of immovable atoms and only elastic electron–atom collisions.

Now we consider the Legendre component S1  of the collision integral. It is seen
from Figure 4b that the component S1  substantially depends on the gas pressure, and
its value increases with the pressure growth. Also note that the value of the Legen-
dre component S 1 is determined with comparatively small errors. This is connected
with the fact that this component is simply related to the electron velocity distribution
function, and with considerable value of S1 . Thus, in the positive column of the elec-
tric discharge, it is possible to measure Legendre components of the collision integral,
and the component S 1 is determined with the highest accuracy. Measuring the Leg-
endre components of the collision integral permits to study collisional processes with
participation of electrons directly in plasma conditions.
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Figure 3. Legendre components of the electron velocity distribution function ƒ
j
 in Helium plasma-

beam discharge; p H e = 2 Torr, the discharge current I = 0.128 A.

Figure 3 presents the Legendre components of the distribution function determined
in the beam plasma at the distance of 2.5 mm from the cathode, under the pressure of
2 Torr and the discharge current of 0.128 A.

It can be easily noticed that the Legendre components differ from zero for two
energy ranges, 0–5 eV and 24–26 eV. At low energies, the Legendre component ƒ0
dominates over the rest ones (Figure 3a), and this indicates isotropy of the distribution
function (in the first approximation). In the energy range 24-26 eV (Figure 3b,c), the
Legendre components of indices up to 6 inclusively have the same order of magnitude,
this indicating anisotropy connected with the, beam of electrons of this energy not
scattered from the moment of the beginning of their motion from the cathode. Study
of the processes of the electron beam decay depending on the discharge conditions in
works Refs. 15–18 permitted to find the criteria that determine the relaxation length
of the distribution function separately in energies and momenta, and to find out the
role of walls of the discharge gap and the near-wall potential drop on formation of the
electron velocity distribution function.

7. MEASUREMENT OF LEGENDRE COMPONENTS OF
ELECTRON–ATOM COLLISION INTEGRAL13

Both the integral of electron–atom collisions in axisymmetric plasma and electron
velocity distribution functions can be represented by Legendre series, whose coefficients
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Figure 4. Energy dependence of Legendre components of the electron-atom collision integral ( a —
S 0 , b —S1 ) in a discharge positive column for different Helium pressures and electron concentrations:
pH e = 0.5 Torr and ne = 1.5 × 10 1 1  cm – 3; p H e = 1 Torr and n e  = 1.9 ×101 1  cm – 3 .

8. DETERMINATION OF ENERGY DEPENDENCE OF THE
TRANSPORT CROSS-SECTION OF ELECTRON-ATOM
COLLISIONS13, 17

Measurements of Legendre components of the collision integral and of the electron
distribution function open the opportunity to determine the energy dependence of
transport cross-section of electron-atom collision. Presuming that the conditions are
actually realized in the positive column of electric discharge, under which the major
contribution to S1 is made by elastic electron-atom collisions, then in the approximation
of immovable atoms the expression for S1  is 2 0:

(21)

where σt
ea is the transport cross-section of electron-atom collisions, N a is the atom

concentration.
Relation (21) shows that measurement of S 1, ƒ1 , and N a  makes possible the deter-

mination of the value of the transport cross-section σ t . The determination of the σ t
e a e a

dependence on the electron energy is simpler apart from a multiplicative factor. It can
be performed by measuring S 1 and ƒ1  only, and was carried out in the present work.
Figure 5 shows the σ t

e a, dependence on the electron energy and the results obtained by
other authors. Our measurements are fixed by the value of the cross-section for 4 eV
obtained in paper Ref. 21. The obtained dependence of the cross-section on energy
agrees with results of other researchers22, 23 within the accuracy of experimental errors.

9. MEASUREMENT OF ELECTRON CONVECTIVE VELOCITY 24

Electron convective velocity is formed in plasma due to the action of electric field or
to gradient of electron concentration. It determines many plasma electrical parameters.

The electron convective velocity is formed in electron collisional processes and in
collective interactions between charged plasma components. Therefore, experimental
determination of the electron convective velocity provides a way to study relative rates
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Figure 5. Transport cross-section of elastic scattering of electrons on Helium atoms.

of these processes. If one of these processes dominates in specific plasma conditions,
its separate study becomes possible.

The Legendre component ƒ1  is known¹ to determine the asymmetry of the distri-
bution function and is responsible for the electron convective velocity averaged over the
motion directions:

(22)

If the positive-column electric discharge plasma is homogeneous along the discharge
tube axis (which is generally the case) and if the dominating way of relaxation of sta-
tionary electron velocity distribution function is pair collision processes, the Legendre
components ƒ0  and ƒ1  are related comparatively simply20 :

(23)

where ν is the transport frequency of collisions, m is the electron mass, E z  is the electric
field strength at the discharge tube axis.

Analysis of equations (22) and (23) shows that it is possible to determine not only
the convective electron velocity, but also to estimate the role of pair collision processes
in formation of the distribution function.

Indeed, the convective velocity may be determined with relation (22), in which
experimental values of the Legendre components ƒ0  and ƒ1 are used. On the other hand,
it is possible to measure the value of ƒ0  only, and to calculate ƒ1 on the basis of relation
(23). Information on the transport frequency of electron–atom collisions is necessary
in this case. 21 Figure 6 presents the dependences of the electron convective velocity
on energy, obtained by the described methods. One can easily see that the values of
the electron convective velocity, experimentally determined and calculated with the
use of the data on the cross-section of elastic electron–atom collisions, coincide for the
helium pressure of 0.5 Torr , i. e., collisional processes dominate under this pressure.
Considerable differences beyond experimental errors are observed for the pressure of
0.2 Torr. It is also necessary to note that the transport free path of electrons for
elastic electron–atom collisions becomes comparable with the radius of the discharge
tube at the pressure of 0.2 Torr. The observed differences in the values of the electron
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Figure 6. Dependence of the convective velocity on electron energy in plasma of the positive column
of a Helium discharge for different discharge currents I and Helium pressures pH e . a–p H e = 0.5 Torr,
b –pH e  = 0.2 Torr.

convective velocity in this regime may be connected with the influence of collective
interelectron interactions, which have comparable or even higher intensity than pair
collisional processes.

10. COMPARATIVE ANALYSIS OF INTENSITY OF COLLISIONAL
AND COLLECTIVE INTERACTIONS IN FORMATION OF
ELECTRON DISTRIBUTION FUNCTION 25

Collisional processes are taken into account in the kinetic equation by means of
the collision integral. The processes of collective interaction of charged particles enter
the kinetic equation as the term that includes the electric field strength. Indeed, if
the plasma charged components move correlatively, then the volume charge created by
them causes the electric field, which in its turn influences the motion of the charged
particles. Consider the kinetic equation (17) for the Legendre component S1 . In this
equation, it is necessary to consider the values E, ƒ1 and S  as sums of constant and1

time-dependent parts:

(24)

Besides correlated components, the time-dependent parts take into account ran-
dom fluctuations, which are necessarily present in plasma. As above, we assume that
ƒ  << ƒ1 in the discharge positive column. Also, let the varying components be small2

equation and averaging over time, for a stationary positive column spatially homoge-
neous along the discharge axis we obtain:

(25)

The right-hand side of this equation includes the values and averaged over time.
They may be determined within the probe method. The left-hand side is the sum
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of the Legendre component of the collision integral and the correlation expression
responsible for collective interactions of charged particles in plasma. The correlation
expression may be assumed as the measure of intensity of the collective interactions of
charges particles. The Legendre component of the collision integral in the left-hand
side of equation (25) can be calculated, if electron–atom collisions are the dominating
process of its formation. This is generally the case for a positive column of an electric
discharge. The expression for with consideration for elastic collisions only was
presented above (21). It is clear from this relation that information about the transport
cross-section of electron–atom collisions, the concentrations of atoms in the normal
state, and the Legendre component of the distribution function are sufficient for
determination of the Legendre component of the collision integral.

Thus, there is a principal possibility for comparison of intensity of collisional and
collective processes that take place in plasma of an electric discharge positive column.
Below, we show, using a discharge in helium as an example, that the intensity of the
collective interaction processes of electrons substantially depends on the gas pressure,
and these processes are switched on with decrease of pressure within a narrow pressure
interval. After switching on, the collective interactions have dominating influence on
the processes in the positive column.

Figure 7a presents the results of determination of the value
under the discharge current of 260 mA and helium pressure of 0.7 Torr. The same figure
gives calculated values for the value It can be easily seen that, for the conditions
used in the experiment, the difference of the presented dependences is small and does
not exceed the measurement error. Therefore, we can conclude that the correlation
term in the kinetic equation is negligibly small. Thus, collisional processes
dominate in formation of the positive column plasma parameters under the indicated
experimental conditions.

Figure 7b presents similar dependences for the helium pressure 0.2 Torr. Compar-
ison of the dependences presented here permits to conclude that no even qualitative
agreement between experimental and calculated values is observed under the specified
discharge conditions. This indicates the dominating role of collective processes in for-
mation of parameters of the discharge positive column. It is interesting to note that the
influence of collective interactions is especially significant in the range of small electron
energies, and the contribution of collective interactions is considerably lower for the
electron energies above 12 eV.

Thus, in dependence on the discharge conditions, two regimes of the electric dis-
charge are realized: the collisional regime and the regime of collective interactions.
Transition from one regime to the other takes place in a narrow range of discharge
conditions.

11. CONCLUSIONS

The electron velocity distribution function in axisymmetric plasma is completely
determined by functional coefficients of the expansion in Legendre polynomials. Ex-
perimental determination of finite number of the expansion coefficients is possible by
means of the probe method, and measurements for a number of specified orientations
of a plane one-sided probe in plasma is necessary to do this.

Measurements by means of a plane two-sided and cylindrical probes permit to
determine the expansion coefficients with even indices. Measurements by a spherical
probe permit to determine the distribution function in the velocity modulus, and are
insensitive to plasma anisotropy.
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Figure 7. Energy dependence of calculated and experimental values of the electron–atom collision
integral S 1 in plasma of a Helium positive column for the discharge current I = 0.26 A and different
Helium pressures: a–p H e  = 0.7 Torr, b –p He = 0.2 Torr.

In a positive column of an electric discharge, the Legendre components of the
electron velocity distribution function ƒ0  and ƒ1 may be determined with sufficient
accuracy, and the components with higher indices are small. This indicates isotropy
of the distribution function. The Legendre component ƒ0 determines distribution of
electrons in the velocity modulus, and is responsible for the processes of ionization and
excitation. The Legendre component ƒ determines the process of electron current.1

In plasma of low-voltage beam discharge, electrons are represented by two energy
groups: isotropic with low energy and anisotropic with substantially higher energy. For
anisotropic group of electrons, the Legendre components of the distribution function
with indices up to six and higher can be determined. Investigations of the Legendre
components of the distribution function open the possibility to study the processes of
relaxation of electron beams in plasma separately in energies and momenta.

Application of the probe method and of the Boltzmann kinetic equation to a
stationary positive column permits to find the Legendre components S 0 and S1 of the
collision integral. The highest accuracy of the determination is reached for the Legendre
component S 1. Its measurements permit to find the energy dependence of the transport
cross-section of elastic electron–atom collisions.

Comparison of experimentally determined and calculated values of the Legendre
component S1 of the collision integral permits to judge about the relative contribution
of collective interactions of charges particles in formation of discharge parameters. The
collective processes of interaction are switched on, if the electron transport free path
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INDEX

0D Boltzmann calculation, 101
1D Boltzmann equation, 102
1D model, 367

bounded, 60
steady state, 92
transient, 95

2D model, 64, 367, 488
kinetic, 328

3D model, 367, 431

Abel inversion, 488
Absorption spectroscopy, 488
Accelerator mode, 221
Active species, 393
Adiabaticity, 217
Adsorption, 393

chemical, 391
physical, 391

Afterglow, 509
Air, 22, 184
Ambipolar diffusion, 14, 82, 172
Ambipolar drift, 173
Ambipolar electric field, 275
Ambipolar potential, 284
Angular momentum, 79
Anisotropic distribution function, 120, 138

vectorial, 122
Anisotropic plasma, 529
Anisotropic scattering, 163
Anode

dark space, 148
region, 87, 137

Anomalous skin effect, 241, 265, 293
Anti-loss cone, 12
Arc, cascaded, 458
Argon, 47, 68, 184, 335, 379, 466, 501, 524
Argon / Helium, 114
Associative ionization, 396
Attachment, three body, 24
Avalanche, 201
Axially symmetric description, 534

Ballistic motion, 79
Beam plasma, 529
Bi-Maxwellian, 50, 288
Black wall boundary condition, 6, 139
Bo hm

anomalous diffusion, 91
conductivity, 88
criterion, 142
diffusion, 88

Boltzmann equation, 3, 37, 41, 121, 161, 295,
312, 390

1D, 102
generalized, 330
inhomogeneous, 349

Boltzmann plot, 465
Bounce frequency, 273
Boundary condition, 125
Bounded model, 315
Breakdown, 200

diffuse spreading, 24
runaway, 19
threshold electric field, 34

Bremsstrahlung, 20, 204
Bunching effect, 153

C F4 , 43, 369
CO, 184
CO / Argon, 184
Cascaded arc, 457
Capacitive probe, 501
Capacitively coupled plasma, 14, 284, 227, 237,

257, 311, 523
Cathode

beam, 413
dark space, 162
fall, 78, 162
hollow, 161
plane, 161
potential fall, 162
region, 15, 86, 161
sheath, 410

Cesium / Hydrogen, 407
Chaos, 216

extrinsic, 225
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Charge, average, 22
Chemically active plasma, 360
Chemoionization, 140
Child law, 235
Child-Langmuir law, 228
Chlorine, 349, 369, 377
Circuit, external, 62
Coefficient

energy diffusion, 4, 275, 285
inelastic electron-neutral collision, 353
quasilinear transport, 221
secondary emission, 51

Coil, see Planar-coil geometry
Collective interaction, 538
Collision

Coulomb, 491
elastic electron-atom, 122
elastic, 101
electron-atom

Legendre components, 536
transport cross section, 536

electron-electron, 357
exciting electron-atom, 122
inelastic, 5, 101
ionizing electron-atom, 122
Monte Carlo, 315
probability, 68
reactive, 440

Collision integral, 183
quasilinear, 260

Collisional effects, 229
Collisional interaction, 538
Collisionless dissipation, 268
Collisionless energy absorption, 298
Collisionless heating, 259, 285, 311
Collisionless mapping, 231
Conductivity

anomalous, 88
Bohm, 88
Lorentz, 311
negative differential, 440
nonlocal, 268
plasma, 295
wall, 90

Continuous energy loss model, 162
Convected scheme, 75
Correlation, 221, 538
Correlation effect, 274
Cosmic rays, 215
Coulomb collision, 491
Coulomb logarithm, 157
Current

density, 104, 248
azimuthal, 247

diffusion, 248
second layer, 251

Cylindrical probe, 417, 532

DC discharge, 38
DC glow discharge, 119
DC positive column, 38, 101
Debye sheath, 90
Decay rate

fundamental mode, 469
trapped, 478
vacuum, 469

Dense gas, 200
Density

azimuthal current, 247
current, 104, 248
energy current, 123
heat current, 104
ion, 511
metastable, 515
nonuniformity, 422
particle, 123

Deposition plasma, 365
Desorption, 391

chemical, 391
physical, 391

Deuterium, 501
Diffusion, 219

ambipolar, 14, 82, 172
anomalous Bohm, 91
coefficient, 284, 231, 423

averaged, 287
in energy space, 284, 423
in space, 261
in velocity space, 231, 284

electron, 352
ions, 375
neutrals, 375
numerical, 76
surface, 391
tensor, 439

Discharge, see also Plasma
abnormal, 165
capacitive, see Capacitively coupled plasma
DC, see DC discharge
dynamic, 211
glow, 1, 75, 119, 161
low voltage, 407
inductive, see Inductively coupled plasma
pulsed, 509
RF, see RF discharge

Discharge in
Argon, 47, 68, 184, 335, 379, 466, 501, 524
Argon / Helium, 114
CF 4, 43, 369
CO, 184
CO / Argon, 184
Cesium / Hydrogen, 407
Helium / Oxygen, 47
Helium / Xenon, 126
Krypton, 126
N 2 / CO2 , 184
NH 3 , 404
Neon, 105, 126, 142
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Discharge in, continued
Nitrogen, 22, 389, 401
Oxygen, 22, 39, 71, 389
SF 6 , 369
Xenon, 87, 478
Xenon / Neon, 51

Divergent collision integral, 181
Drift-diffusion

approximation, 92
calculation, 54
equation, 492
for ions, 375

Drude-Lorenz model, 8
Druyvesteyn equation, 531
Dynamical chaos, 216

EDF, see Electron distribution function
EEDF, see Electron distribution function
EVDF, see Electron distribution function
Effective energy of cold bulk electrons, 174
Effective field approximation, 328
Eigenfunction, 23
Einstein formula, 42
Elastic angular scattering, 231
Electric field

alternating, 32
ambipolar, 275
circularly polarized, 263
DC, 7
longitudinal, 263
reduced, 53, 399
reversal, 503
RF, 247
space-time varying, 179
thunderstorm, 19

Electrode
emission close to, 503
excitation close to, 503
potential, 501
RF discharge, 523

Electrodynamics
local, 295
nonlocal, 253, 295

Electromagnetic field, 2
profile, 349

Electron distribution function, 2, 37, 78, 119,
161, 180, 220, 228, 242, 258, 284, 328,
349, 368, 408, 422, 509, 529

anisotropy, 38
bunching, 13
energy dependence, 246
growth rate, 26
isotropy, 540
low energy peak, 243
nonlocality, 10, 38
plateau formation, 258, 291
temporal nonlocality, 369
time resolved, 523

Electron kinetic, 2, 120, 161, 489
nonlocal, 243, 489

Electron temperature, 169, 173, 509
effective, 31, 242
effective axial, 43
effective transversal, 43

Electron
γ , 425, 525
-atom collision, 4, 89

Legendre components, 536
transport cross section, 536

-atom momentum transfer, 101
-electron collision, 78, 157, 357, 426
-electron interaction, 243
-neutral collision, 88
-rotation exchange, 408
-translation exchange, 408
-vibration exchange, 408
anisotropic beam, 536
anomalous energy, 206
bulk, 4,
cold, 14
convective velocity, 536
cooling by radial field, 40
cyclotron frequency, 88
density, 509
density balance equation, 181
density overshot, 512
diffusion coefficient, 170
diffusivity, 352
dynamics, 169
energy distribution function, see Electron

distribution function
energy relaxation, 170
energy relaxation distance, 38, 101
escape rate, 235
fast, 9, 407, 424

trapped, 490
isotropic, 163

flux, 524
free, 158, 490
friction coefficient, 170
high energy, 4
hot, 457, 466
hydrodynamic description of, 189
impinging on electrode, 525
mobility, 87, 351
nonrelativistic, 19
power loss, 425
relativistic, 19
resonance, 270
runaway, 10, 19, 199
slow, 169, 407
subcycling, 66
swarm, 179, 440
three body attachment, 24
total energy, 295, 329, 369
trajectories, 89
transport, 440

in ExB field, 439
theory, 439

trapped, 139, 158, 490
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Electron, continued
velocity distribution function, 350
wall collision, 91

Electronegative gas, 39
Electrostatic energy, 524
Eley-Rihdeal mechanism, 391
Energy

absorption collisionless, 298
analyzer, 332
average, 104
balance equation, 441
budget of electrons, 132
current density, 123
diffusion coefficient, 4, 277, 284
effective to cold bulk electrons, 174
electrostatic, 524
excitation threshold, 40
kinetic, 122
loss rate, 123
relativistic, 19
scale, characteristic, 140
total, 40, 79, 124, 138, 295, 329, 369

Energy loss model, continuous, 163
Energy relaxation length, 140, 162, 273, 328
Equation

averaged kinetic, 232
drift-diffusion, 492
energy balance, 441
inhomogeneous kinetic, 121
kinetic, 170, 258, 284
momentum, 441

Equilibrium conditions, 235
Escape rate

electrons, 235
ions, 235

Etching
anisotrope, 367
polysilicon, 383
rate, 367
selective, 367
uniformity, 367

ExB field, 85, 90, 194, 449
electron transport, 439

Exchange
electron-rotation, 408
electron-translation, 408
electron-vibration, 408
vibration-translation, 415
vibration-vibration, 415

Excitation, 457
rotational, 183
vibrational, 183

Excited states, 396
Explicit coding, 66
External circuit, 62
Extrinsic chaos, 225
Extrinsic stochasticity, 225

Faraday dark space, 14, 162
Faraday shield, 332
Fe rmi

acceleration, 227, 257, 215
acceleration mapping, 229
map, 216

Field
ExB, 90, 194
maintaining, 397
nonmonotonic decay, 248
nonuniform electric, 122
phase stochiastization, 270
radial space charge, 104
reversal, 172, 503
reversal criterion, 172
RF-electromagnetic, 293
self-consistent electric, 171
stochastic, 32
variation of field distribution, 431

Fluctuation random, 538
Fluid

code, 59
formulation for ions, 492
model, 373, 347
simulation approach, 366

Fokker-Planck, 217, 329, 408
Frequency redistribution

complete, 470
partial, 470

Fulcher-α system, 461

GEC reference cell, see Gaseous Electronics
Conference reference cell

Gaseous Electronics Conference reference cell,
366, 503, 509

Glow discharge, 1, 75, 119, 161

Hamiltonian
mapping, 229
system

diffusion coefficient, 219
friction coefficient, 2 19

Hard wall, 313
Harmonics, 524
Heat

current density, 104
diffusion current, 115

Heating, 232
collisional, 246
collisionless, 246, 257, 283, 311
Joule, 101, 257
nonlocal, 270
ohmic, 12, 312
stochastic, 227, 232, 241
transit time, 423

Helium / Oxygen, 47
Helium / Xenon, 126
Helium, 47, 77, 143, 466, 501, 509, 534
Helium/Hg, 114
Helmholtz equation, 351
High density plasma source, 293
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Hollow cathode, 161
discharges, 161
effect, 164

Holstein-Bibermann equation, 470
Hybrid quasineutral model, 92
Hybrid model, 338, 347, 350

self consistent, 52
Hydrodynamic description, 179, 189
Hydrodynamic limit, 442
Hydrogen, 389, 407, 457, 501

Impact
elastic, 139
inelastic, 139

Implicit coding, 66
Inductively coupled plasma, 241, 327, 347, 364,

487
dome shaped reactor, 380
fluid model, 373

Inelastic region, 141
Instability, 191

ionization, 12
nonequilibrium plasma, 191
thermocurrent, 191

Interaction
collective, 538
collisional, 538
frequency, 285
plasma-beam, 408

Inversion of polarity effect, 210
lon

bombardment, 166
diffusion, radial, 42
distribution, 228
drift-diffusion, 375
energy analyzer, 332

array, 332
escape rate, 235
flux, 383
light, 67
motion, mobility limited, 330
negative, 42
subcycling, 71
swarm, 440
thruster, 86

Ionization
instability, 12
metastable, 514
stepwise, 12, 421

Isotropic distribution function, 119, 138
Isotropic scattering, 163

Jefferies-White approximation, 417

KAM curves, 230
Kick model, 257
Kinetic energy, 122
Kinetic equation, 170, 259, 284

nonlocal electron, 489
spatially averaged, 232
time averaged, 232

Kinetics
electron-vibration, 407
electronic states of molecules, 390
nonequilibrium, 389
vibrational, 390, 390

Klystron effect, 525
Krypton, 126

Kinetic model, 229, 327, 347, 422, 439

Landau damping, 257, 270, 285
Landau fluid equation, 320
Langevin equation, 318
Langmuir

probe, 39, 242, 332, 376, 457, 488, 502, 509,
529

double, 457
time resolved, 510

wave, 258, 408
Langmuir-Hinshelwood mechanism, 391
Larmor radius, 293, 461
Lee approximation, 476
Legendre

components, 534
expansion, 491, 529
expansion, two term, 103
polynomial, 4
two term approximation, 328

Line broadening
Doppler, 469
natural, 469
radiative, 469
resonance collision, 469

Lineshape, 469
Lorentz, 470
Voigt, 476

Local approach, 56, 102
Local approximation, 171
Local electrodynamics, 295
Local moment method, 104
Local regime, 101
Lorentz conductivity, 311
Lorentz force, 261
Lorentz lineshape, 470
Lorentz-factor, 26
Loss cone, 330

MTT, see momentum transfer theory
Magnetic probes, 242
Magnetic field, 31, 87, 290, 306

parallel to boundary, 306
perpendicular to boundary, 307
RF, 308

Mapping, 229
collisional effects, 232
collisionless, 231
dynamics, 216, 227’
Fermi acceleration, 229
Hamiltonian, 229
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Mapping, continued
standard, 220

Markov process, 219
Maxwell equation, 294
Maxwell-Boltzmann distribution, 350, 407
Maxwellian EEDF, 101
Mean electron energy method, 48
Mesh,  80
Metastable, 396, 509

-metastable ionization, 514
Argon, 494
ionization, 517
molecules, 39
reaction between, 514

Microwave interferometry, 376, 509
Mobility, 439

electron, 351
limited ion motion, 330

M o d e l
1D steady state, 92
1D transient, 95
bounded, 315
divergent collision integral, 181
fluid, 347, 373
hybrid, 92, 347, 350
kinetic, 327, 347, 422

nonlocal, 200
periodic, 60, 315
quasi-linear, 257, 284
quasineutral, 92
selfconsistent, 421
surface process, 391
Ulam, 216

Molecular gas, 5, 183, 369, 467
Molecules metastable, 39
Momentum

angular, 79
equation, 441
transfer theory, 441

Monte Carlo, 38, 59, 89, 284, 312, 351
collision, 315
direct simulation, 368
null collision method, 315

local, 102

Moving cells, 76

N 2 , 22, 389, 401
N 2  / CO 2, 184
N H3 , 404
Negative glow, 15, 78, 162
Neon, 105, 126, 142
Neutral particle population, 401
Nitrogen glow, 203
Non-Maxwellian EEDF, 101
Non-Ohmic, 311
Nonequilibrium, 3
Nonequilibrium kinetics, 389
Nonequilibrium molecular plasma, 467
Nonequilibrium plasma, 119
Nonequilibrium plasma instability, 191
Nonequilibrium radial, 115

Nonlinear effects, 274, 288
Nonlinear mechanism of collisionless

stochiastization, 273
Nonlocal EDF, 171
Nonlocal approach, 368, 422

Nonlocal approximation, 102, 328, 422
Nonlocal electrodynamics, 253, 293
Nonlocal electron kinetics, 243, 489
Nonlocal kinetic method, 102
Nonlocal model, 145, 200, 228
Nonlocal moment method, 102
Nonlocal power dissipation, 251
Nonlocality

first order correction, 179

modest deviation, 338
parameter, 246, 253
parameter, 298

Nonambipolar flux, 343
Nonuniform density, 442
Numerical diffusion, 76

Ohmic, 283
One-particle approach, 279
Opacity, 471

Optical absorption spectroscopy, 494
Optical depth, 460
Optical emission spectroscopy, 457, 488, 501
O r b i t

locally stable, 224
locally unstable, 224
stochastic, 224

Overshot, electron density, 512
Overvoltage, 201

Oxygen, 22, 39, 71, 389

PIC, see Particle in cell
Parameterization of transport coefficient, 108
Particle density, 123
Particle in cell, 38, 59, 66, 312
Particle wave interaction, 258
Particle-sheath interaction, 227
Paschen curve, 165, 209

minimum, 209
Pendulum effect, 165
Periodic model, 60, 315
Permittivity, 424
Perturbation theory, 181
Phase

randomization, 237
resonance, 261
stochiastization, 286

Photodetachment, 378
Planar-coil geometry, 304
Plane cathode, 161
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Plasma, see also Discharge
-beam interaction, 408
-electrode interface, 411
anisotropic, 529
beam,  529
bounded,  293
capacitively coupled, see capacitively

coupled plasma
chemically active, 360
column, 125
conductivity, 295
DC, see DC discharge
dense,  407
density, 487
deposition, 365
diagnostic, 457
display panel, 51
expanding, 457
inductively coupled, see inductively coupled

plasma
instability, 191
Knudsen, 407
low-pressure, high-density, 293
low-pressure, molecular gas, 389
magnetized, 85, 457
for microelectronics, 365
nonequilibrium, 119, 191
nonequilibrium molecular, 467
nonisothermal, 119
nonuniform, 120
permittivity, 424
planar slab, 300
potential, 151, 501
pulsed, 501
resistance, 301
semi-infinite, 264
sheath, 3, 53, 90, 144, 229, 259, 284
slab, 269
source, high density, 293
turn-off process, 512
turn-on process, 511
weakly turbulent, 260

Poisson equation, 41, 91, 105, 144, 350, 493
Polarity effect, inversion, 210
Polarized electric field, 263
Ponderomotive effects, 435
Population

neutral particle, 401
vibrational level, 393

Positive column, 10, 39, 78, 101, 119, 125, 137,
534

stratified, 137
Potential

ambipolar, 284
electrode, 501
plasma, 151, 501
ponderomotive, 435
sheath, 144
wall, 142

P o w e r
dissipation, 257, 268
dissipation, nonlocal RF, 251
loss per electron, 425
negative, 300
negative absorption, 252

Poynting flux, 425
Primary streamer, 200
Probe

array, 333
capacitive, 501
cylindrical, 417, 532
Langmuir, 39, 242, 332, 376, 457, 488, 502,

509, 529
double, 457
time resolved, 510

magnetic, 242
plane one-sided, 530
potential modulation, 533
second derivative, 534
spherical, 538
technique, 151, 529

Propagator
algorithm, 78
function, 471

Quasi-accelerator mode, 221
Quasi-linear relaxation, 414
Quasi-linear theory, 257, 284, 423
Quasi-neutral hybrid model, 92
Quasi-static resonance, 431

RF discharge, 60, 227, 501
Radiation

damage, 367
lineshape, 469
transport, 469

Radiative states, 396
Ramsauer minimum, 49
Random phase approximation, 218
Rate coefficient, 181
Reactive collision, 439
Recombination, 458
Reduced electric field, 399
Reflection, specular. 270
Regime

atomic, 459
molecular, 459
anode, 137
cathode, 15, 161
inelastic, 141
stochastic, 218

Relaxation, quasilinear, 414
Resonance, 279, 287

electron, 272
particle, 258
phase, 261
quasistatic, 431
radial plasma, 435
radiation transport, 469
transit time, 253
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Resonance, continued
width, 288

Ring discharge, 302
Rotational excitation, 183
Rotational spectral line, 461
Runaway

electron, 10, 19, 199
spherical-symmetrical mechanism, 21
thermal mechanism, 21

Rutherford cross section, 10

S F6 , 369
SPT, see Thrusters, stationary plasma
Scattering

Coulomb, 9
anisotropic, 163
elastic angular, 231
isotropic, 163
pitch-angle, 21
strong angle, 24

Screening temperature, 336
Second current layer, 251
Secondary avalanche, 201
Secondary electron emission coefficient, 51, 165
Self-consistent analysis, 235
Self-consistent electric field, 171
Self-consistent hybrid model, 52
Self-consistent inductively coupled plasma, 489
Semi-analytical solution, 161
Semiconductor manufacturing, 294
Separatrices, 217
Sheath

-particle interaction, 227
cathode, 53, 410
collisional, 144
collisionless, 144
Debye, 90
dynamics, 229
potential, 144
RF, 501
space charge, 3, 144
voltage, 525
width, 259, 284

Silicon, 383
etching, 383

Skin
depth, 284
effect

anomalous, 241, 265, 293
classical, 241, 293, 297
semi-infinite plasma, 296
static, 306

layer, 241
collisionally dominated, 253
thickness, 259

Specular reflection, 270
Spherical probe, 538
Standard mapping, 220
Stochastic flux, 233
Stochastic heating, 227, 241
Stochastic orbits, 224

Stochastic parameter, 221
Stochasticity, 217

dynamic, 237
extrinsic, 222
global, 217
strong, 217

Stochastization
collision, 283
electron motion, 21
nonlinear effects, 283
nonlinear mechanism of collisionless, 273
phase, 286

S t r eamer
apex point, 200
axis, 201
channel, 200
primary, 200
propagation, 195

Striation, 12, 488
P, 137
P, in Anode Region, 155
S, 137
S, in Anode region 155
azimuthal, 497

Superelastic reaction, 514
Surface

chemistry, 383
diffusion, 391
process model, 391
wave, 421

TDMA, 361
Temperature

gas, 457
rotational, 457, 461
screening, 336
translation, 461
wafer, 367

Thermal waves, 322
Thermocurrent instability, 191
Thermodiffusion flux, 181
Thermoemission current, 412
Thruster

closed drift, 87
electromagnetic, 86
electrothermal, 86
Hall, 87
ion, 86
stationary plasma, 85

Thunderstorm electric field, 19
Tonks-Langmuir theory, 243
Trajectory electron, 89
Transit regime, 348
Transit time, 217

heating, 423
resonance, 253
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Transport
coefficients, 181, 442

higher order, 447
free path, 537
radiation, 469
resonance radiation, 469

Transverse electromagnetic waves, 262
Trapped decay rate, 478
Trapped electrons, 139, 158, 490
Turbulent plasma, 260
Two term Legendre expansion, 5, 38, 120, 180,

211, 262, 328

Ulam model, 216
Uniformity, 487

Variation
of distribution function, 429
temporal, 501

Velocity
drift, 450
electron convective, 536
mean, 450

Vibration-translation exchange, 415

Vibration-vibration exchange, 415
Vibrational excitation, 183
Vibrational kinetics, 390
Vibrational level population, 393
Vlasov equation, 93
Voigt lineshape, 476
Volumetric diffuse discharge, 208

Wafer temperature, 367
Wall

conductivity, 90
hard, 313
loss, 330, 391
potential, 142

Wave
Langmuir, 408
surface, 421
thermal, 322
transverse electromagnetic, 262

X-ray emission, 202
X-ray, 20
Xenon, 87, 478
Xenon / Neon, 51
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