


Springer Series in

optical sciences

founded by H.K.V. Lotsch

Editor-in-Chief: W. T. Rhodes, Atlanta

Editorial Board: A. Adibi, Atlanta
T. Asakura, Sapporo
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Preface to the Fifth Edition

The aim of this monograph is to outline the physics of image formation,
electron–specimen interactions, and image interpretation in transmission elec-
tron microscopy. Since the last edition, transmission electron microscopy has
undergone a rapid evolution. The introduction of monochromators and im-
proved energy filters has allowed electron energy-loss spectra with an energy
resolution down to about 0.1 eV to be obtained, and aberration correctors
are now available that push the point-to-point resolution limit down below
0.1 nm.

After the untimely death of Ludwig Reimer, Dr. Koelsch from Springer-
Verlag asked me if I would be willing to prepare a new edition of the book.
As it had served me as a reference for more than 20 years, I agreed without
hesitation. Distinct from more specialized books on specific topics and from
books intended for classroom teaching, the Reimer book starts with the basic
principles and gives a broad survey of the state-of-the-art methods, comple-
mented by a list of references to allow the reader to find further details in the
literature. The main objective of this revised edition was therefore to include
the new developments but leave the character of the book intact.

The presentation of the material follows the format of the previous edi-
tion as outlined in the preface to that volume, which immediately follows.
A few derivations have been modified to correspond more closely to modern
textbooks on quantum mechanics, scattering theory, or solid state physics.

A special acknowledgement is due to M. Silder for preparing the new figures
and helping with TeX and to all colleagues who gave permission to publish
their results.

Münster, May 2007 H. Kohl



Preface

The aim of this monograph is to outline the physics of image formation,
electron–specimen interactions, and image interpretation in transmission
electron microscopy. The preparation of this fourth edition has made it
possible to update the text and the bibliography. Meanwhile, the book
Energy-Filtering Transmission Electron Microscopy has been published as
Vol. 71 of the Springer Series in Optical Sciences. Discussion of this rapidly
growing method has therefore been kept brief, and special aspects of energy
filtering are discussed together with their conventional counterparts.

In the introductory chapter, the various electron–specimen interactions
and their applications are summarized, the most important aspects of high-
resolution, analytical, high-voltage, and energy-filtering electron microscopy
are reviewed, and the different types of electron microscopes are compared.
The optics of electron lenses are discussed in Chap. 2 in order to bring out
electron-lens properties that are important for an understanding of the modes
of operation of an electron microscope. In Chap. 3, the wave optics of electrons
and the phase shifts caused by electrostatic and magnetic fields are introduced;
Fresnel electron diffraction is treated using Huygens’ principle. The recogni-
tion that the Fraunhofer diffraction pattern is the Fourier transform of the
wave amplitude behind a specimen is important because the influence of the
imaging process on the transfer of spatial frequencies can be described by in-
troducing phase shifts and wave aberrations in the Fourier plane. In Chap. 4,
the elements of an electron-optical column are described: the electron gun,
the condenser, the imaging and recording system, and equipment for electron
energy-loss spectroscopy and energy filtering.

A thorough understanding of electron–specimen interactions is essential to
explain image contrast. Chapter 5 contains the most important facts about
elastic, inelastic, and multiple scattering. The origin of scattering and phase
contrast of noncrystalline specimens, the introduction of contrast-transfer
functions, and the background of holographic and tomographic methods are
described in Chap. 6. Chapter 7 introduces the most important laws about
crystals and reciprocal lattices. The kinematical and dynamical theories of



VIII Preface

electron diffraction are then developed, and in Chap. 8 different modes and
applications of electron diffraction are presented; convergent-beam electron
diffraction (CBED) is of increasing interest. Electron diffraction is also the
source of diffraction contrast. This type of contrast is important for the imag-
ing of crystalline specimens and their defects and for the high-resolution study
of crystal structure, treated in Chap. 9. Methods of elemental analysis and
the formation of images representing the distribution of chemical elements by
x-ray microanalysis and electron energy-loss spectroscopy are summarized in
Chap. 10. The final chapter contains a brief account of the various specimen-
damage processes caused by electron irradiation.

The author thanks Dr. P.W. Hawkes for thorough correction of the man-
uscript and many helpful comments.

Münster, January 1997 L. Reimer
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9.1.3 Moiré Fringes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 365
9.1.4 The STEM Mode and Multibeam Imaging . . . . . . . . . . . . 367
9.1.5 Energy Filtering of Diffraction Contrast . . . . . . . . . . . . . . 369
9.1.6 Transmission of Crystalline Specimens . . . . . . . . . . . . . . . 370

9.2 Calculation of Diffraction Contrast of Lattice Defects . . . . . . . . 373
9.2.1 Kinematical Theory and the Howie–Whelan

Equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 373
9.2.2 Matrix-Multiplication Method . . . . . . . . . . . . . . . . . . . . . . 375
9.2.3 Bloch-Wave Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 376

9.3 Planar Lattice Faults . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 378
9.3.1 Kinematical Theory of Stacking-Fault Contrast . . . . . . . 378
9.3.2 Dynamical Theory of Stacking-Fault Contrast . . . . . . . . . 379
9.3.3 Antiphase and Other Boundaries . . . . . . . . . . . . . . . . . . . . 383

9.4 Dislocations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 385
9.4.1 Kinematical Theory of Dislocation Contrast . . . . . . . . . . 385
9.4.2 Dynamical Effects in Dislocation Images . . . . . . . . . . . . . 390
9.4.3 Weak-Beam Imaging . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 391
9.4.4 Determination of the Burgers Vector . . . . . . . . . . . . . . . . . 394

9.5 Lattice Defects of Small Dimensions . . . . . . . . . . . . . . . . . . . . . . . 396
9.5.1 Coherent and Incoherent Precipitates . . . . . . . . . . . . . . . . 396
9.5.2 Defect Clusters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 398

9.6 High-Resolution Electron Microscopy (HREM) of Crystals . . . . 400
9.6.1 Lattice-Plane Fringes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 400
9.6.2 General Aspects of Crystal-Structure Imaging . . . . . . . . . 402
9.6.3 Methods for Calculating Lattice-Image Contrast . . . . . . . 405
9.6.4 Simulation, Matching, and Reconstruction

of Crystal Images . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 407
9.6.5 Measurement of Atomic Displacements in HREM . . . . . . 409
9.6.6 Crystal-Structure Imaging with a Scanning

Transmission Electron Microscope . . . . . . . . . . . . . . . . . . . 411



Contents XV

9.7 Imaging of Atomic Surface Steps and Structures . . . . . . . . . . . . . 412
9.7.1 Imaging of Surface Steps in Transmission . . . . . . . . . . . . . 412
9.7.2 Reflection Electron Microscopy . . . . . . . . . . . . . . . . . . . . . . 416
9.7.3 Surface-Profile Imaging . . . . . . . . . . . . . . . . . . . . . . . . . . . . 418

10 Elemental Analysis by X-ray and Electron Energy-Loss
Spectroscopy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 419
10.1 X-ray and Auger-Electron Emission . . . . . . . . . . . . . . . . . . . . . . . . 419

10.1.1 X-ray Continuum. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 419
10.1.2 Characteristic X-ray and Auger-Electron Emission . . . . . 421

10.2 X-ray Microanalysis in a Transmission Electron Microscope . . . 425
10.2.1 Wavelength-Dispersive Spectrometry . . . . . . . . . . . . . . . . . 425
10.2.2 Energy-Dispersive Spectrometry (EDS) . . . . . . . . . . . . . . 427
10.2.3 X-ray Emission from Bulk Specimens and ZAF

Correction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 431
10.2.4 X-ray Microanalysis of Thin Specimens . . . . . . . . . . . . . . 434
10.2.5 X-ray Microanalysis of Organic Specimens . . . . . . . . . . . . 436

10.3 Electron Energy-Loss Spectroscopy . . . . . . . . . . . . . . . . . . . . . . . . 437
10.3.1 Recording of Electron Energy-Loss Spectra . . . . . . . . . . . 437
10.3.2 Kramers–Kronig Relation . . . . . . . . . . . . . . . . . . . . . . . . . . 439
10.3.3 Background Fitting and Subtraction . . . . . . . . . . . . . . . . . 441
10.3.4 Deconvolution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 442
10.3.5 Elemental Analysis by Inner-Shell Ionizations . . . . . . . . . 444

10.4 Element-Distribution Images . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 447
10.4.1 Elemental Mapping by X-Rays . . . . . . . . . . . . . . . . . . . . . . 447
10.4.2 Element-Distribution Images Formed by Electron

Spectroscopic Imaging . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 448
10.4.3 Three-Window Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . 449
10.4.4 White-Line Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 450
10.4.5 Correction of Scattering Contrast . . . . . . . . . . . . . . . . . . . . 450

10.5 Limitations of Elemental Analysis . . . . . . . . . . . . . . . . . . . . . . . . . 452
10.5.1 Specimen Thickness . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 452
10.5.2 Radiation Damage and Loss of Elements . . . . . . . . . . . . . 452
10.5.3 Counting Statistics and Sensitivity . . . . . . . . . . . . . . . . . . 453
10.5.4 Resolution and Detection Limits for Electron

Spectroscopic Imaging . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 456

11 Specimen Damage by Electron Irradiation . . . . . . . . . . . . . . . . . 459
11.1 Specimen Heating . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 459

11.1.1 Methods of Measuring Specimen Temperature . . . . . . . . 459
11.1.2 Generation of Heat by Electron Irradiation . . . . . . . . . . . 461
11.1.3 Calculation of Specimen Temperature . . . . . . . . . . . . . . . . 463

11.2 Radiation Damage of Organic Specimens . . . . . . . . . . . . . . . . . . . 466
11.2.1 Elementary Damage Processes in Organic Specimens . . . 466
11.2.2 Quantitative Methods of Measuring Damage Effects . . . 470



XVI Contents

11.2.3 Methods of Reducing Radiation Damage . . . . . . . . . . . . . 477
11.2.4 Radiation Damage and High Resolution . . . . . . . . . . . . . . 479

11.3 Radiation Damage of Inorganic Specimens . . . . . . . . . . . . . . . . . . 480
11.3.1 Damage by Electron Excitation . . . . . . . . . . . . . . . . . . . . . 480
11.3.2 Radiation Damage by Knock-On Collisions . . . . . . . . . . . 482

11.4 Contamination . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 484
11.4.1 Origin and Sources of Contamination . . . . . . . . . . . . . . . . 484
11.4.2 Methods for Decreasing Contamination . . . . . . . . . . . . . . 485
11.4.3 Dependence of Contamination on Irradiation

Conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 486

References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 491

Index . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 575



1

Introduction

1.1 Transmission Electron Microscopy

1.1.1 Conventional Transmission Electron Microscopy

In a conventional transmission electron microscope (CTEM, or TEM for short)
(Fig. 1.1), a thin specimen is irradiated with an electron beam of uniform cur-
rent density. The acceleration voltage of routine instruments is 100–200 kV.
Medium-voltage instruments work at 200–500 kV to provide better trans-
mission and resolution, and in high-voltage electron microscopy (HVEM) the
acceleration voltage reaches 500 kV–3 MV. Earlier books on the subject are
listed as references [1.1–1.55]. The development of both theory and instru-
mentation as well as the different applications of TEM can be followed by
consulting the proceedings of the International Conferences on Electron Mi-
croscopy [1.56–1.68].

Electrons are emitted in the electron gun by thermionic, Schottky, or field
emission. The latter are used when high gun brightness and coherence are
needed. A three- or four-stage condenser-lens system permits variation of the
illumination aperture and the area of the specimen illuminated. The electron-
intensity distribution behind the specimen is imaged with a lens system, com-
posed of three to eight lenses, onto a fluorescent screen. The image can be
recorded by direct exposure of a photographic emulsion or an image plate in-
side the vacuum, or digitally via a fluorescent screen coupled by a fiber-optic
plate to a CCD camera.

Electrons interact strongly with atoms by elastic and inelastic scattering.
The specimen must therefore be very thin, typically of the order of 5–100 nm
for 100 keV electrons, depending on the density and elemental composition
of the object and the resolution desired. Special preparation techniques are
needed for this; electropolishing and ion-beam etching in materials science and
ultramicrotomy of stained and embedded tissues or cryofixation in the bio-
sciences.
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Fig. 1.1. Schematic ray path for
a transmission electron microscope
(TEM) equipped for additional
x-ray and electron energy-loss
spectroscopy.

The aberrations of the objective lens are so great that it is necessary to
work with very small objective apertures, of the order of 10–25 mrad, to
achieve a resolution of the order of 0.1–0.3 nm. Bright-field contrast is pro-
duced either by intercepting the electrons scattered through angles larger than
the objective aperture (scattering contrast) or by interference between the
scattered wave and the incident wave at the image point (phase contrast).
The phase of the electron waves behind the specimen is modified by the wave
aberration of the objective lens. This aberration and the energy spread of the
electron gun, which is of the order of 0.3–2 eV, limit the contrast transfer of
high spatial frequencies. Dark-field contrast is obtained by tilting the primary
beam or by hollow-cone illumination so that the primary beam falls on the
objective diaphragm.

In crystalline specimens, the use of the primary beam (bright field) or
a Bragg-reflected beam on-axis (dark field) gives rise to diffraction contrast,
which is important for the imaging of crystal defects. When Bragg-diffracted
beams also pass through the aperture, crystal-structure imaging reveals pro-
jections of atomic rows. For the interpretation of these images, digital image
simulation using the dynamical theory of electron diffraction is indispensable.
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A further capability of modern TEM is the formation of nanometer-sized
electron probes, 0.2–10 nm in diameter, by means of a three- or four-stage
condenser-lens system, the last lens field of which is the objective prefield in
front of the specimen. The main applications of such electron probes are in
analytical electron microscopy (see below). This enables the instrument to
operate in the scanning transmission (STEM) mode with a resolution deter-
mined by the electron-probe diameter; this has advantages for imaging thick
specimens and for recording secondary electrons and backscattered electrons.

1.1.2 High-Resolution Electron Microscopy

The wave-optical theory of imaging is necessary to discuss high resolution.
This theory can be expressed in terms of a two-stage Fourier transform. In
the focal plane of the objective lens, the diffraction pattern of the specimen is
formed; each scattering angle θ corresponds reciprocally to a periodic spacing
Λ in the specimen, or in other words is proportional to a spatial frequency
q = 1/Λ since θ � λ/Λ = λq (λ : electron wavelength). The amplitude distri-
bution F (q) of the electron wave in the focal plane is the Fourier transform
of the specimen transparency. The spherical aberration can be represented as
a wave aberration, which is an additional phase shift that depends on scat-
tering angle, the spherical-aberration constant Cs, and the defocusing ∆z.
This phase shift can be introduced as a phase factor applied to F (q). The im-
age amplitude is then the inverse Fourier transform of this weighted Fourier
transform, in which the influences of the diaphragm, the finite illumination
aperture (partial spatial coherence), and the energy spread of the electron gun
(partial temporal coherence) can be included. The result may be expressed
in terms of a contrast-transfer function for the different spatial frequencies.
This transfer function is important because it characterizes the effect of the
instrument on image formation and is independent of the particular specimen
in question.

Transmission electron microscopy can provide high resolution [1.69, 1.70]
because elastic scattering is an interaction process that is highly localized to
the region occupied by the screened Coulomb potential of an atomic nucleus.
The angular distribution of inelastically scattered electrons is concentrated
within smaller scattering angles than that of elastically scattered electrons.
Most of the inelastically scattered electrons normally pass through the objec-
tive diaphragm in the bright-field mode. Inelastically scattered electrons do
not, however, contribute to high-resolution image details because the inelas-
tic scattering is less localized. With increasing energy loss, the localization
becomes narrower for inner-shell ionization, and resolutions of lattice peri-
odicities of about 0.3–0.5 nm are possible with energy-filtering transmission
electron microscopy.

The spherical-aberration coefficients Cs in present-day microscopes are
about 0.5–2 mm. The optimum imaging condition in bright-field mode occurs
at the Scherzer defocus ∆z = (Csλ)1/2, for which a broad band of spatial
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frequencies is imaged with positive phase contrast. This band has an upper
limit at qmax. The value δmin = 1/qmax = 0.67(Csλ

3)1/4 is often used to define
a limit of resolution, though it is not correct to characterize resolution by
one number only. For Cs = 1 mm and E = 100 keV (λ = 3.7 pm), we find
∆z � 60 nm and δmin = 0.32 nm. Narrow bands of higher spatial frequencies
can be imaged if the image is not blurred by imperfect spatial and temporal
coherence. These effects limit the resolution of conventional microscopes to
0.15–0.3 nm and �0.1 nm for crystal-structure imaging has been approached
in a 1 MeV instrument.

The efforts of the last few years to increase resolution have been concen-
trated on using a Schottky or field-emission gun to decrease the damping of the
contrast-transfer function at high spatial frequencies caused by partial spatial
and temporal coherence. Normal TEMs equipped with thermionic cathodes
work with illumination apertures αi of about 0.1 mrad; with a Schottky or
field-emission gun, apertures smaller than 10−2 mrad are possible. The energy
spread ∆E = 1–2 eV of a thermionic gun can be reduced to 0.3–0.6 eV with
a Schottky or field-emission gun.

Using such guns, the resolution can be improved up to the information
limit, which is determined by the spatial and temporal coherence rather than
by the spherical-aberration constant. There are three routes to obtain a res-
olution at the information limit

1. Use a focal series combined with a reconstruction algorithm.
2. Improve holography, which was originally devised by Gabor in 1949 in the

hope of overcoming the resolution limit imposed mainly by spherical aber-
ration. With the development of the laser, a light source of high coherence,
holography rapidly grew into a major branch of light optics. Holography
has attracted renewed interest in electron optics with the development of
field-emission or Schottky guns of high brightness and coherence. Apart
from the attainment of better resolution than in the conventional bright-
field mode, holography is becoming of increasing interest for quantitative
studies of phase shifts [1.71–1.73].

3. Correct the spherical-aberration coefficient Cs by using multipole lens
systems, so that the first zero of the phase-contrast transfer function is
moved to spatial frequencies beyond 10 nm−1 [1.74].

High-resolution micrographs of specimens on supporting films are dis-
turbed by a phase-contrast effect that creates defocus-dependent granularity.
One way of reducing this granularity is to use hollow-cone illumination, which
suppresses the granularity but does not destroy contrast arising from spec-
imen structures containing heavy atoms. Furthermore, the contrast transfer
does not show sign reversal with this type of illumination.

A further obstacle to obtaining high-resolution images of organic speci-
mens is the radiation damage caused by ionization and subsequent breakage of
chemical bonds and finally by a loss of mass. The radiation damage depends on
the electron dose in C cm−2 (charge density) incident on the specimen. A dose
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of 1 C cm−2 corresponds to 6 × 104 electrons per nm2, the value needed to
form an image free of statistical noise at high magnification. Most amino-acid
molecules are destroyed at doses of 10−2 C cm−2, and only a few compounds,
such as hexabromobenzene and phthalocyanine and related substances, can
be observed at doses of the order of a few C cm−2. The deterioration and
mass loss can be reduced in various ways.

1. The specimen may be cooled to liquid-helium temperature. However, the
ionization products are only frozen-in, and the primary ionization damage
will be the same as at room temperature. Only those secondary radiation
effects that are caused by loss of mass are appreciably reduced.

2. The electron dose may be kept very low, which produces a noisy image.
The noise can be decreased by signal averaging, which is straightforward
for periodic structures. Nonperiodic structures have to be aligned and
superposed by correlation techniques. This technique is used especially
for the tomography of biomacromolecules, where a resolution ≥1 nm can
be reached reliably.

1.1.3 Analytical Electron Microscopy

The strength of TEM is that not only can it provide high-resolution images
that contain information down to 0.1–0.2 nm but can also operate with small
electron probes in various microanalytical modes with a spatial resolution of
0.2–100 nm [1.75–1.84].
X-Ray Microanalysis. X-ray microanalysis [1.75–1.77] in TEM mainly re-
lies on energy-dispersive Si(Li) or highly pure germanium detectors, though
instruments have been constructed with wavelength-dispersive spectrometers,
as used in x-ray microanalyzers. The energy-dispersive Si(Li) detector with a
resolution of ∆Ex ≈ 150 eV of x-ray quantum energy Ex = hν has the disad-
vantages that neighboring characteristic lines are less well separated and the
analytical sensitivity is poorer than in a wavelength-dispersive spectrometer;
this is counterbalanced by the fact that all lines with quantum energies Ex

greater than 0.2 keV can be recorded simultaneously, even at the low probe
currents used in the TEM. Reliable quantitative information concerning el-
emental composition is provided because the x-ray signal generated by thin
films needs only small corrections.

X-ray production in thin foils is confined to the small volume excited by the
electron probe, only slightly broadened by multiple scattering. Better spatial
resolution is therefore obtainable for segregation effects at crystal interfaces or
precipitates, for example, than in an x-ray microanalyzer with bulk specimens,
where the spatial resolution is limited to 0.1–1 µm by the diameter of the
electron-diffusion cloud.
Electron Energy-Loss Spectroscopy. An electron energy-loss spectrum
(EELS) can be recorded either with a magnetic prism spectrometer behind
the final image or with an imaging energy filter inside the column of the
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microscope [1.78, 1.79]. With a CCD array, a large range of energy losses
can be recorded in parallel. Because the inelastically scattered electrons are
concentrated in small angles, a large fraction of the inner-shell ionizations can
be collected by the spectrometer, whereas the collection efficiency of x-rays
is much smaller due to the low fluorescence yield, the isotropic emission, and
the small solid angle of the detector. Electron energy-loss spectrsocopy can
therefore be superior for elemental analysis when recording in parallel by
means of a CCD array; a disadvantage is that the background is larger than
in x-ray spectra.

The low-loss region with energy losses ∆E ≤ 50 eV contains the plasmon
losses and interband transitions, which are related by the dielectric theory
to the optical constants. At higher energy losses, the inner-shell ionization
processes result in sawtooth-like or delayed edges, which can be used for ele-
mental analysis.

The ionization edges contain an energy-loss near-edge structure (ELNES)
that contains information about the bonding and band structure of solids
in a range of about 50 eV beyond the edge. An extended energy-loss fine
structure (EXELFS) continuing to a few hundred electron volts beyond the
edge furnishes information about the coordination of neighboring atoms.
Electron Diffraction. Information about crystal structure and orientation
is provided by the electron-diffraction pattern [1.80–1.83]. The possibility of
combining electron diffraction and the various imaging modes is the most pow-
erful feature of TEM for the investigation of the crystal lattice and its defects
in crystalline material. With the selected-area electron-diffraction technique,
it is possible to switch from one mode to another simply by changing the
excitation of the diffraction or intermediate lens and to select the diffrac-
tion pattern from areas 0.1–1 µm in diameter. Other modes of operation that
permit electron-diffraction patterns to be obtained from small areas can be
used when the instrument is capable of forming an electron probe 1–20 nm
in diameter. In most cases, crystals are free of defects in such a small area
and so convergent-beam electron diffraction (CBED) techniques can be ap-
plied. In particular, the appearance of Kikuchi lines in the convergent primary
beam provides much additional information about crystal structure and de-
fects. A high-order Laue zone pattern of large aperture, of the order of 10◦,
can be used for the three-dimensional reconstruction of the lattice because
the Ewald sphere intersects high-order Laue zones in circles of large diam-
eter. Convergent-beam electron diffraction patterns allow the determination
of the space group of the crystal. Furthermore, the lattice constants and the
Fourier coefficients Vg of the lattice potential can be measured accurately, and
these can be used to calculate charge-density distributions inside the unit cell.
Large-angle CBED patterns (LACBED) are used to investigate lattice defects
or strains and misfits in multilayers.
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1.1.4 Energy-Filtering Electron Microscopy

Energy-filtered images or diffraction patterns can be obtained either with an
imaging spectrometer below the final screen or with an energy filter inside
the column [1.84]. Zero-loss filtering allows us to remove the background of
inelastically scattered electrons, which results in a considerable increase of
contrast. Plasmon-loss filtering can be used for the analysis of different phases
and precipitates. The contrast can also be enhanced or reversed by placing
energy windows at a few hundred electron volts; for biological specimens, just
below the carbon K edge at 285 eV. A three-window method with two images
below and one image just beyond the ionization edge of an element allows us
to extrapolate the background and to subtract the background in the third
image pixel per pixel, which results in an element distribution image.

Zero-loss filtering of diffraction patterns allows a better comparison with
the dynamical theory of electron diffraction to be made, and the structure
amplitudes can be measured quantitatively in convergent-beam electron dif-
fraction patterns. The Bragg-diffraction spots become diffuse with increasing
energy loss, and at large energy losses the filtered pattern consists of excess
or defect Kikuchi bands.

The method of angle-resolved EELS shows the intensity distribution as a
function of scattering angle and energy loss along a stripe in the diffraction
pattern. The recorded diagram contains the plasmon losses and their disper-
sion, the Compton scattering (Bethe ridge), and the ionization edges of the
elements.

1.1.5 High-Voltage Electron Microscopy

For acceleration voltages higher than 500 kV, the high voltage must be gener-
ated in a tank on top of the microscope, typically filled with SF6 at a pressure
of a few bars, which decreases the critical distance for electrical breakdown.
The high voltage is applied to a cascade of acceleration electrodes, with only
50–100 kV between neighboring rings. The structure occupies a considerable
space, and the column of an HVEM is also large because the yokes of the
electron lens must be scaled up to avoid magnetic saturation. A building
some 10–15 m high is therefore needed to house an HVEM. For this reason,
the present trend is more toward microscopes with acceleration voltages in the
range 200–400 kV and with high resolution, which can be housed in normal
rooms. In the following, we summarize some advantages of HVEM (for more
details, see the review articles and special conferences on HVEM [1.85–1.91]).
Increased Useful Specimen Thickness. The investigation of thick spe-
cimens is limited by the full width ∆E of the energy-loss spectrum because
the chromatic aberration of the objective lens blurs image points into im-
age patches of width Ccαo∆E/E, where Cc � 0.5–2 mm is the chromatic-
aberration coefficient and αo is the objective aperture. The decrease of the
ratio ∆E/E markedly reduces the effect of chromatic aberration and allows
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thicker specimens to be investigated. Biological sections, for example, which
can be observed in a 100 keV TEM only if their thicknesses are less than
200 nm, can be studied in a 1 MeV TEM with thicknesses as great as 1 µm.
The investigation of whole cells and microorganisms by stereo pairs helps
to establish the three-dimensional structure and the function of fibrillar and
membranous cell components. At 100 kV, such large structures can be recon-
structed only by analyzing serial sections.

Many ceramics and minerals are difficult to prepare in thin enough layers
for 100 kV microscopy but can be studied by HVEM. An increase of useful
thickness is also observed for metal foils, which can additionally show typical
orientations for best transmission (10 µm silicon or 2 µm iron at 1 MV). This
has two important advantages. Normally, areas thin enough at 100 kV are
concentrated at edges; at 1 MV, the transparent area increases to nearly
the whole specimen area. Secondly, the thicker parts of the specimen are
more representative of the bulk material, an important point for dynamical
experiments such as mechanical deformation, annealing, in situ precipitation,
and environmental experiments.
Easier Specimen Manipulation. The polepiece gap of the objective lens is
of the order of millimeters in 100 kV instruments and centimeters in HVEM;
this extra space makes it a great deal easier to install complicated specimen
stages or goniometers for heating, cooling, or stretching. Higher partial pres-
sures of gases at the specimen controlled by using a differentially pumped
system of diaphragms can be tolerated for environmental experiments. Simi-
larly, organic specimens can be investigated in the native state with a partial
pressure of water.
Radiation-Damage Experiments. For threshold energies of a few hundred
keV, depending on the displacement energy Ed � 20–50 eV and the mass of
the nuclei, energy losses greater than Ed can be transferred to the nuclei by
elastic large-angle scattering; the nucleus is then knocked from its position in
the crystal lattice to an interstitial site, for example. High-voltage electron
microscopy thus becomes a powerful tool for the in situ study of irradia-
tion processes and the kinetics of defect agglomeration. In normal operation,
however, the current density can be kept low so that the specimen can be
investigated over a reasonable time without damage.
Incorporation of Analytical Modes. At 100 kV, electron energy-loss spec-
troscopy is restricted to specimen thicknesses of the order of the mean free
path for plasmon losses (10–30 nm) because the ionization edges are blurred
by the low-energy part of the loss spectrum. Although the mean free path
saturates at high energies, an increase of about a factor of 3 can be observed
for 1 MV. In x-ray microanalysis, the x-ray continuum decreases owing to the
pronounced forward bias of the emission of continuous x-ray quanta at higher
energies.

Electron-diffraction analysis can be applied to thicker crystals because
the dynamical absorption distance increases as the square of the velocity.
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Many-beam dynamical theory has to be applied even for thin foils because
the Ewald sphere is now large and many more Bragg reflections are excited
simultaneously when a sample is irradiated near a low-index zone axis.
High Resolution. The relation between voltage (wavelength) and resolution
was already discussed in Sect. 1.1.2. A notable feature is that many-beam
imaging of the crystal structure is used to better advantage. Optimum results
in crystal-lattice imaging are obtained with increasing acceleration voltage,
and 0.1 nm resolution has been achieved with a 1 MV instrument. For organic
material, the decrease of ionization probability (radiation damage) with in-
creasing energy provides a gain of only a factor of 3 between 100 and 1000 kV.
For thin specimens, however, the contrast in the image decreases by the same
factor. The best images of organic crystals such as phthalocyanine have been
obtained with an HVEM in the range 500–700 kV.

1.1.6 Dedicated Scanning Transmission Electron Microscopy

A dedicated STEM consists only of a field-emission gun, one probe-forming
lens, and the electron-detection system, together with an electron spectrom-
eter for electron energy-loss spectroscopy (EELS) and for separating the
currents of unscattered and elastically scattered electron and inelastically scat-
tered electrons (Fig. 1.2) [1.92–1.95]. The specimen is scanned by deflection
coils in synchrony with the imaging TV tube. The whole column including the

Fig. 1.2. Field-emission STEM with an electron energy-loss spectrometer.
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specimen is under an ultrahigh vacuum. Electron-probe diameters of 0.2–0.5
nm can be formed, the spherical and chromatic aberrations of the lens being
the limiting factors.

An advantage of STEM instruments is that the contrast can be enhanced
by collecting several signals simultaneously and displaying differences and/or
ratios of these by analog or digital processing. In particular, single atoms on
a thin substrate can be imaged with a higher contrast than in the CTEM
bright- or dark-field modes. An incoherent dark-field mode allows a high-
resolution image of the crystal lattice to be formed, the contrast increasing
with increasing atomic number. The irradiation of the specimen area can be
reduced to a minimum in order to decrease radiation damage.

1.2 Alternative Types of Electron Microscopy

Although the main concern of this book is transmission electron microscopy,
the function and limits of the other types of electron microscopes are also men-
tioned in this introductory chapter to show the advantages and disadvantages
of their various imaging techniques. Several types of electron microscopes and
analyzing instruments capable of furnishing an “image” can be distinguished.
We now examine these briefly in turn, without considering the historical se-
quence in which these instruments were developed.

1.2.1 Emission Electron Microscopy

In an emission electron microscope [1.96–1.105], the cathode that emits the
electrons is directly imaged by an electrostatic immersion lens, which ac-
celerates the electrons and produces an intermediate image of the emission-
intensity distribution at the cathode. This image can be magnified by further
lenses and is observed on a fluorescent screen or with an image intensifier. The
cathode (specimen) has to be planar and its surface should not be irregular.
The electron emission can be stimulated by

1. heating the cathode (thermionic emission), which means that observa-
tion is possible only at elevated temperatures and for a limited number of
materials, or alternatively, the cathode temperature need not be raised be-
yond 500◦C–1000◦C if a thin layer of barium is evaporated on the surface
because this lowers the work function;

2. secondary-electron excitation by particle bombardment or by irradiating
the cathode surface with a separate high-energy electron beam or an ion
beam at grazing incidence; or

3. irradiation of the cathode with ultraviolet light to excite photoelectrons
(using a photoelectron-emission microscope, PhEEM).

These instruments have a number of interesting applications, but their use
is limited to particular specimens; at present, therefore, scanning electron mi-
croscopes and scanning tunneling microscopes and their variants are the most



1.2 Alternative Types of Electron Microscopy 11

widely used instruments for imaging bulk specimens, especially because there
is no need to limit the roughness of the specimen surface. The final restriction
is the limited number of electrons emitted, which limits the image intensity at
high magnification, and moreover the resolution of the immersion-lens system
is only of the order of 10–30 nm. On the credit side, surfaces can be observed
directly in situ, and each of the processes 1–3 generates a specific contrast.
The photoelectron-emission microscope has the advantage of being applicable
to nearly any flat specimen surface, including biological specimens. The im-
age contrast is caused by differences of the emission intensity (material and
crystal orientation contrast) and by angular selection with a diaphragm that
intercepts electrons whose trajectories have been deflected by variations of
the equipotentials near the surface caused by surface steps (topographic con-
trast), surface potentials (potential contrast), or magnetic stray fields (mag-
netic contrast). Investigations based on photoemission in combination with
Auger-electron spectroscopy in an ultrahigh vacuum [1.100] are of special
interest for surface physics. With improved access to synchrotron-radiation
sources, PhEEM is developing into a versatile analytical tool in surface and
materials science [1.104, 1.105].

1.2.2 Reflection Electron Microscopy

The electrons that emerge from a specimen as a result of primary-electron
bombardment are either low-energy secondary electrons, which can be used
in an emission microscope (see above) or a scanning electron microscope (see
below), or primary (backscattered) electrons with large energy losses, which
cannot be focused sharply by an electron lens because of the chromatic aber-
ration. However, imaging of the surface is possible for a grazing electron in-
cidence below 10◦, the “reflected” electrons being imaged with an objective
lens [1.106–1.109]. The energy-loss spectrum of the reflected electrons has a
half-width of the order of 100–200 eV. With additional energy selection by
means of an electrostatic filter lens, a resolution of 10–20 nm has been at-
tained. Because the angle of incidence is so low, small image steps can be
imaged with high contrast. The angular distribution of the electrons reflected
at single crystals is a reflection high-energy electron diffraction (RHEED) pat-
tern with Bragg-diffraction spots; images exhibiting crystallographic contrast
can be formed by selecting individual Bragg spots. A TEM equipped with
the appropriate specimen holder can be operated in this mode by tilting the
incident beam and with the reflected electrons on the axis of the objective
lens. This reflection electron microscopy (REM) mode in the TEM has be-
come a powerful tool for the investigation of the surface structure of crystals,
especially with additional energy filtering (Sect. 9.7.2) [1.109].

1.2.3 Mirror Electron Microscopy

An electron beam is deflected by a magnetic sector field and retarded and
reflected at a flat specimen surface that is biased a few volts more negative
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than the cathode of the electron gun. The reflected electron trajectories are
influenced by irregularities of the equipotential surfaces in front of the spec-
imen, which may be caused by surface roughness or by potential differences
and specimen charges; magnetic stray fields likewise act on the electron tra-
jectories [1.110]. An advantage of this technique is that the electrons do not
strike the specimen; it is the only method that permits surface charges to be
imaged undisturbed. After passing through the magnetic sector field again,
the electrons can be selected according to their angular deflection. A new
design [1.111] of mirror electron microscope has a resolution of the order
of 4 nm. Single surface steps, 5 nm in height, can produce discernible con-
trast. Such a mirror electron microscope can be combined with an electron
interferometer, which offers the possibility of measuring phase shifts by the
equipotentials or magnetic stray fields with high precision. There are types
of scanning mirror electron microscopes [1.112, 1.113] that allow the relation
between the observed image point and the local deflection to be established
more quantitatively.

1.2.4 Scanning Electron Microscopy

The SEM is the most important electron-optical instrument for the investiga-
tion of bulk specimens [1.114–1.123]. An electron probe is produced by two- or
three-stage demagnification of the smallest cross section of the electron beam
after acceleration. This electron probe, 2–10 nm in diameter, is scanned in a
raster over a region of the specimen (Fig. 1.3). The smallest diameter of the

Fig. 1.3. Schematic ray path for a scanning electron microscope (SEM).
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electron probe is limited by the minimum acceptable probe current, which lies
in the range 10−12–10−11 A. This value is determined by the need to generate
an adequate signal-to-noise ratio and by the spherical and chromatic aberra-
tions of the final probe-forming lens. The image is displayed on a cathode-ray
tube (CRT) scanned in synchrony. The CRT beam intensity can be modu-
lated by any of the different signals that result from the electron-specimen
interactions.

The most important signals are those produced by secondary electrons
(SE) with most probable exit energies of 2–5 eV and by backscattered elec-
trons (BSE) with energies that range from the energy of the primary electrons
to about 50 eV. The secondary-electron yield and the backscattering coeffi-
cient depend on the angle of electron incidence (topographic contrast), the
mean atomic number (material contrast), the crystal orientation (channeling
contrast), and electrostatic and magnetic fields near the surface (potential and
magnetic contrast). A signal can also be produced by the specimen current
and by electron-beam-induced currents in semiconductors. Analytical infor-
mation is available from the x-ray spectrum and Auger electrons or from
light quanta emitted by cathodoluminescence. The crystallographic structure
and orientation can be obtained from electron channeling patterns, electron-
backscattering patterns, and x-ray Kossel diagrams. An environmental SEM
can work with a high partial pressure between the specimen and the objective-
lens diaphragm.

The resolutions of the different modes of operation and types of contrast
depend on the information volume that contributes to the signal. Secondary
electrons provide the best resolution because the exit depth is very small, of
the order of a few nanometers. The information depth of backscattered elec-
trons is much greater, of the order of half the electron range, which is as much
as 0.1–1 µm, depending on the density of the specimen and the electron en-
ergy. The secondary electron signal also contains a large contribution from the
backscattered electrons when these penetrate the surface layer. At higher en-
ergies, the electron range and the diameter of the electron-diffusion region are
greater. Conversely, higher energies are of interest for x-ray microanalysis if K
shells of heavy elements are to be excited. The progress in Schottky and field-
emission gun design has increased the gun brightness at low electron energies,
too, so that low-voltage scanning electron microscopy (LVSEM) [1.123] in the
range 0.5–5 keV is attracting interest because information can be extracted
from a volume nearer to the surface.

Unlike in TEM, special specimen-preparation methods are rarely needed
in SEM. Nevertheless, charging effects have to be avoided by coating a non-
conductive specimen with a thin conductive film, for example, and organic
specimens have to be protected from surface distortions by chemical fixation
or cryo-fixation.
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1.2.5 X-ray and Auger-Electron Microanalysis

By using a wavelength-dispersive x-ray spectrometer (Bragg reflection at a
crystal), we can work with high x-ray excitation rates and electron-probe
currents of the order of 10−8–10−7 A, though the electron-probe diameter is
then larger, about 0.1–1 µm. The main task of an x-ray microanalyzer [1.124–
1.132] is to analyze the elemental composition of flat, polished surfaces at
normal incidence with a high analytical sensitivity. The ray diagram of such an
instrument is similar to that of an SEM, but two or three crystal spectrometers
that can simultaneously record different characteristic x-ray wavelengths are
attached to the column. The surface can be imaged by one of the SEM modes
to select the specimen points to be analyzed.

An SEM or x-ray microanalyzer can be equipped with an Auger-electron
spectrometer of the cylindrical mirror type, for example. It is then necessary
to work with an ultrahigh vacuum in the specimen chamber because Auger
electrons are extremely sensitive to the state of the surface: A few atomic
layers are sufficient to halt them. Special Auger-electron microanalyzers have
therefore been developed in which the 1–10 keV electron gun may, for ex-
ample, be incorporated in the inner cylinder of a spectrometer. This type of
instrument can also work in the scanning mode, or an element-distribution
map can be generated using Auger electrons.

1.2.6 Scanning-Probe Microscopy

The scanning tunneling microscope (STM, Fig. 1.4) [1.133–1.137] uses a tung-
sten tip of small radius like that of a field-emission gun. When the tip, nega-
tively biased by a few tenths of a volt (UT), approaches the conductive surface

Fig. 1.4. Scanning tunneling microscope
(STM) with a mechanical approach to the
specimen, a piezo electric tube for x and y
scanning, a z shift, and a feedback loop to
keep the tunneling current IT at a constant
level.
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in vacuum, air, or even a liquid at a distance below one nanometer, the
quantum-mechanical tunneling effect causes a current IT to flow through
the barrier. The tunneling starts at the atom of the tip that is nearest to
the surface, and it is possible to record the arrangement of single atoms and
monoatomic steps on surfaces. The current depends on the distance between
tip and surface, but it is convenient to maintain the current, and hence the
distance, constant by moving the tip normal to the surface as it scans over the
latter. This vertical movement is achieved by means of a piezoelectric trans-
ducer, that is, by the voltage Uz at the inner electrode of a piezoelectric tube.
The scanning motion in the x and y directions is likewise effected by a crossed
pair of outer electrodes. The voltage Uz is a measure of the local specimen
height and can be used to modulate a CRT tube scanned in synchrony. This
results in a very simple and compact microscope with atomic resolution.

Insulating specimens can be observed in the atomic force mode. The tip is
mounted on an elastic ribbon (cantilever), which is deformed by the force be-
tween tip and specimen. The elastic deformation, on the order of nanometers,
is recorded by a second tip or by reflection of a laser beam at the cantilever.
Related scanning-probe methods are scanning near-field optical, acoustic, and
thermal microscopies as well as capacitance, electrochemical, and micropipette
scanning microscopies.

This wealth of additional modes, the atomic resolution of STM, and the
possibility of direct surface profiling are the striking advantages of scanning-
probe microscopy, which is, however, restricted to the imaging and analysis
of surfaces. On the contrary, TEM mainly gives information about the bulk
structure, including the high resolution of atomic rows in crystals. The analyt-
ical modes of x-ray microanalysis, electron energy-loss spectroscopy, and elec-
tron diffraction supplement this, though the specimens have to be prepared
as thin films. Surface information can also be obtained by various surface-
sensitive methods, though scanning-probe microscopy is superior. The two
techniques, TEM and STM/AFM, should be regarded as complementary, and
scanning-probe microscopists should take more notice of the advantages and
results of TEM.
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Particle Optics of Electrons

The acceleration of electrons in the electrostatic field between cathode and
anode, the action of magnetic fields with axial symmetry as electron lenses,
and the application of transverse magnetic and electrostatic fields for electron-
beam deflection and electron spectroscopy can be analyzed by applying the
laws of relativistic mechanics and hence calculating electron trajectories. Lens
aberrations can likewise be introduced and evaluated by this kind of particle
optics. In the case of spherical aberration, however, it will also be necessary
to express this error in terms of a phase shift, known as the wave aberration,
by using the wave-optical model introduced in the next chapter.

2.1 Acceleration and Deflection of Electrons

2.1.1 Relativistic Mechanics of Electron Acceleration

The relevant properties of an electron in particle optics are the rest mass m0

and the charge −e (Table 2.1). In an electric field E and a magnetic field B,
electrons experience the Lorentz force

F = −e (E + v × B). (2.1)

Inserting (2.1) in Newton’s law

m
··
r= F (2.2)

yields the laws of particle optics.
We start with a discussion of the acceleration of an electron beam in an

electron gun. Electrons leave the cathode of the latter as a result of thermionic
or field emission (see Sect. 4.1 for details). The cathode is held at a negative
potential ΦC = −U (U : acceleration voltage) relative to the anode, which
is grounded, ΦA = 0 (Fig. 2.1). The Wehnelt electrode of a thermionic gun,
maintained at a potential ΦW = −(U + UW), limits the emission to a small
area around the cathode tip. Its action will be discussed in detail in Sect. 4.1.4.
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Fig. 2.1. Electron acceleration, tra-
jectories, and equipotentials (Φ =
const) in a triode electron gun.

The electrode potentials create an electric field E in the vacuum between
cathode and anode, which can also be characterized by equipotentials Φ =
const (Fig. 2.1). The electric field is the negative gradient of the potential

E = −∇Φ = −
(

∂Φ

∂x
,
∂Φ

∂y
,
∂Φ

∂z

)
. (2.3)

The existence of a potential implies that the force F = −eE is conservative
and that the law of energy conservation

E + V = const (2.4)

can be applied, as will be demonstrated by considering the electron acceler-
ation in Fig. 2.1. The kinetic energy at the cathode is E = 0, whereas the
potential energy V is zero at the anode. The potential energy at the cathode
can be obtained from the work W that is needed to move an electron from
the anode to the cathode against the force F :

V = −W = −
C∫
A

F · ds = e
C∫
A

E · ds = −e
C∫
A

∇Φ · ds

= −e(ΦC − ΦA) = eU. (2.5)

In the reverse direction, the electrons acquire this amount eU of kinetic
energy at the anode. This implies that the gain of kinetic energy E = eU of an
accelerated electron depends only on the potential difference U , irrespective
of the real trajectory between cathode and anode.

Relation (2.5) can also be used to define the potential energy V (r) at each
point r at which the potential is Φ(r):

V (r) = −eΦ(r). (2.6)

However, an arbitrary constant can be added to V (r) or Φ(r) without
changing the electric field E because the gradient of a constant in (2.3) is
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zero. We arbitrarily assumed ΦA = 0 in the special case discussed above, and
the results do not change if we assume that ΦC = 0 and ΦA = + U , for
example.

An electron acquires the kinetic energy E = 1.602× 10−19 J if accelerated
through a potential difference U = 1 V because in SI units

1 C V = 1 A V s = 1 W s = 1 J.

This energy of 1 eV = 1.602 ×10−19 J is used as a new unit and is called “one
electron volt”. Electrons accelerated through U = 100 kV have an energy of
E = 100 keV.

Relativistic effects have to be considered at these energies particularly
when acceleration voltages up to some megavolts (MV) are used in high-
voltage electron microscopy. Table 2.1 therefore contains not only the classical
(non-relativistic) formulas but also their relativistic counterparts.

Table 2.1. Properties of the electron.

Rest mass m0 = 9.1091 × 10−31 kg
Charge e = −1.602 × 10−19 C
Kinetic energy E = eU

1 eV = 1.602 × 10−19 J
Velocity of light c = 2.9979 × 108 m s−1

Rest energy E0 = m0c
2 = 511 keV

Spin s = h/4π
Planck’s constant h = 6.6256 × 10−34 J s

Nonrelativistic (E � E0) Relativistic (E ∼ E0)

Newton’s law F =
dp
dτ

F = d
dτ

(mv) (2.7)

Mass m = m0 m = m0/
√

1 − v2/c2 (2.8a)

Energy E = eU = 1
2m0v

2 mc2 = m0c
2 + eU = E0 + E (2.9)

m = m0(1 + E/E0) (2.8b)

Velocity v =
√

2E/m0 v = c
√

1 − 1
(1 + E/E0)

2 (2.10)

Momentum p = m0v =
√

2m0E p =
√

2m0E(1 + E/2E0) (2.11)

= 1
c
√

2EE0 + E2

Wavelength λ = h
p = h/

√
2m0E λ = h/

√
2m0E(1 + E/2E0) (2.12)

= hc/
√

2EE0 + E2
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Fig. 2.2. Increase of electron
mass m and velocity v with
increasing electron energy
E = eU .

The formula (2.8a) for the increase of the electron mass with increasing ve-
locity v can be obtained from the invariance of the conservation of momentum
under a Lorentz transformation, and Newton’s law, in the form F = dp/dτ ,
can also be used for relativistic energies.

The most important law of relativistic mechanics is the equivalence of
energy and mass: E = mc2. The total energy mc2 of an accelerated electron
is the sum of the rest energy E0 = m0c

2 and the kinetic energy E = eU (2.9).
E0 = m0c

2 corresponds to an energy of 0.511 MeV. The relativistic increase
of the mass m can be formulated not only as in (2.8a) but also in terms of
energy as in (2.8b), which follows directly from (2.9). The mass, therefore,
increases linearly with increasing energy E; it reaches three times the rest
mass m0 at E = 2E0 � 1 MeV (Fig. 2.2).

The velocity v (2.10) cannot exceed the velocity of light c (Fig. 2.2) and
can be obtained by comparing the right-hand sides of (2.8a) and (2.8b). At
100 keV, the electron velocity v reaches 1.64 ×108 m s−1; that is, more than
half of the velocity of light. The electron momentum p (2.11) is important
because the conservation of both energy and momentum has to be considered
in electron collisions (Sect. 5.1). The radius of an electron trajectory in a
homogeneous magnetic field B and the de Broglie wavelength λ – (2.12) and
Sect. 3.1.1 – also depend on the value of the momentum.

A further property of the electron is its spin (angular momentum) s =
h/4π, and electrons can be polarized by scattering [2.1]. However, spin polar-
ization does not occur in small-angle scattering, which is responsible for the
image contrast in TEM.

2.1.2 Deflection by Magnetic and Electric Fields

The force generated by the magnetic part of the Lorentz force (2.1) is normal
to both the velocity v and the magnetic field B and has a magnitude |F | =
evB sinθ, θ being the angle between v and B. An electron entering a magnetic
field with velocity v undergoes an acceleration that is everywhere normal to
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the local velocity vector. This causes no change in the magnitude of v but
does alter its direction. In the magnetic field, therefore, energy is conserved.

In a homogeneous magnetic field, the continuous change of direction of v
results in a circular trajectory if v ⊥ B or θ = 90◦. On a circular trajectory,
the centrifugal force F = mv2/r and the centripetal force F = evB are equal,
so that the radius of the circle can be calculated from

r =
mv

eB
=

[2m0E(1 + E/2E0)]1/2

eB

= 3.37 × 10−6 [U(1 + 0.9788 × 10−6U)]1/2B−1 (2.13)

with r (m), U (V), and B (T) (1 T = 1 Tesla = 1 V s m−2).
Large beam deflections through angles of about 90◦ are used in magnetic

prism spectrometers for electron energy-loss spectroscopy and magnetic imag-
ing energy filters (Sect. 4.6).

Small beam deflections produced by transverse electric and magnetic fields
are needed for the alignment of electron microscopes or for scanning and
rocking electron beams (Sect. 4.2.1). An expression for small-angle deflection
ε with sinε � ε can be obtained by the momentum method (Fig. 2.3). An
electron moves in the z direction with an unchanged velocity v = dz/dτ
and with a momentum pz = mv. The electric deflection field is obtained by
applying a voltage ±u to plates d apart. The momenta transferred during the
time of flight T = L/v are as follows:
electric field E

px =
T∫
0

Fdτ = e
T∫
0

|E|dτ =
e

v

L∫
0

|E|dz =
e|E|L

v
, (2.14)

magnetic field B

px = e
T∫
0

vBdτ = e
L∫
0

Bdz = eBL, (2.15)

Fig. 2.3. Small-angle
deflections ε in a trans-
verse electric field (a) and
magnetic field (b).
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and the angles of deflection ε can be obtained from

ε =
px

pz
=

e|E|L
mv2

=
euL

2Ed

1 + E/E0

1 + E/2E0
, (2.16)

ε =
eBL

mv
=

eBL

[2m0E(1 + E/2E0)]1/2
, (2.17)

for the electric and magnetic fields, respectively. The formula (2.17) for the
magnetic deflection will also be obtained in Sect. 3.1.5 by a wave-optical cal-
culation. This formula is important for Lorentz microscopy (Sect. 6.8).

As an example, we calculate the field strengths needed to deflect 100 keV
electrons through an angle ε = 5◦ � 0.1 rad in a field of length L = 1 cm
with a plate or polepiece separation d = 1 mm. The electric field has to be
|E| = 2 × 106 V m−1, which implies a voltage u of ± 1000 V at the plates.
The magnetic field B produced by an electromagnet with a slit width d is
given approximately by B = µ0NI/d (µ0 = 4π × 10−7 Vs/(Am), N : number
of turns, I: coil current). A deflection ε of 5◦ requires B = 10−2 T and can be
achieved with NI = 10 A; e.g. 100 turns and I = 0.1 A.

2.2 Electron Lenses

2.2.1 Electron Trajectories in a Magnetic Lens Field

The physical background of electron-lens optics will be described only briefly
to give a quantitative understanding of the function of an electron lens (see
[2.2, 2.3, 2.4, 2.5, 2.6, 2.7]).

Magnetic lenses with short focal lengths are obtained by concentrating
the magnetic field by means of magnetic polepieces. Figure 2.4 shows the
distribution of a magnetic field produced by a coil enclosed in an iron shield,
apart from an open slit. The magnetic field has rotational symmetry; the
distribution on the optic z axis can be represented approximately by Glaser’s
“Glockenfeld” (bell-shaped field)

Bz =
B0

1 + (z/a)2
, (2.18)

where B0 denotes the maximum field in the lens center and 2a the full-width at
half-maximum [2.9]. Other approximations for the field distribution Bz(z) are
also in use, but the Glaser field offers the advantage that the most important
properties, the positions of foci and principal planes (Sect. 2.2.2), for example,
can be calculated straightforwardly. A knowledge of the magnetic field Bz

on the axis is sufficient for calculating the paraxial rays because the radial
component Br close to the axis can be calculated from Bz(z). For stationary
fields in a vacuum (no currents: j = 0), we can use Maxwell’s equation curl
B = j = 0, which implies that B can be written as the gradient of a scalar
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Fig. 2.4. Concentration of a rota-
tionally symmetric magnetic field in
the gap of an electron lens (ϕ: image
rotation).

magnetic potential [2.8] Ψ(r): B(r) = −gradΨ(r). Inserting this expression
into Gauss’ law div B = 0, we obtain Laplace’s equation

∆Ψ(r) = 0, (2.19)

which can be written in cylindrical coordinates

1
r

∂

∂r
r

∂

∂r
Ψ +

∂2Ψ

∂z2
+

1
r2

∂2Ψ

∂ϕ2
= 0. (2.20)

For cylinder symmetric setups, the solution of this equation can be expanded
in a power series of r as

Ψ(r, z) =
∞∑

n=0
an(z)r2n. (2.21)

Inserting this sum into (2.20), we obtain the recurrence relation

an+1(z) = − 1
4(n + 1)2

a′′
n(z). (2.22)

From the series, we obtain

Bz(z) = −∂a0(z)
∂z

,

(2.23)

and, for small r,

Br
∼= −2a1(z)r =

−r

2
∂Bz

∂z
. (2.24)

From the recurrence relation, we see that the scalar magnetic potential,
and thus the magnetic field, is determined by its values on the optic axis.
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The system of differential equations (Newton’s law) for the electron tra-
jectories can be separated in a cylindrical coordinate system r, ϕ, z:

radial component :
circular component :

longitudinal component :

mr̈ = Fr + mrϕ̇2. (2.25)
d
dt

(mr2ϕ̇) = rFϕ. (2.26)

mz̈ = Fz. (2.27)

The last term in (2.25) can be interpreted as the centrifugal force. Equation
(2.26) represents the change of angular momentum L caused by the torque
M = rFϕ (L̇ = M).

On substituting the Lorentz force F = −ev × B with v = (ṙ, rϕ̇, ż) and
Bϕ = 0 and using (2.24), we obtain

mr̈ = −eBzrϕ̇ + mrϕ̇2, (2.28)

d
dt

(mr2ϕ̇) = eBzrṙ + e
r2

2
ż
∂Bz

∂z
=

d
dt

(e

2
r2Bz

)
, (2.29)

mz̈ = eBrrϕ̇. (2.30)

Integration of (2.29) results in

mr2ϕ̇ =
e

2
r2Bz + C. (2.31)

The constant of integration C becomes zero for meridional rays, and only
a trajectory r(z) need be considered in a meridional plane rotating at the
angular velocity

ωL = ϕ̇ =
e

2m
Bz. (2.32)

This is known as the Larmor frequency, which is half the cyclotron frequency
of an electron on a circular trajectory.

For paraxial rays (small values of r), equation (2.30) can be approximated
by z̈ = 0, which implies that vz is constant. Substitution of (2.32) in (2.28)
results in

mr̈ = −eBzr
e

2m
Bz + mr

( e

2m
Bz

)2

= − e2

4m
rB2

z . (2.33)

The time can be eliminated by writing vz = dz/dτ � v. Using (2.9) and (2.10),
we find

d2r

dz2
= − e

8m0U∗ r B2
z(z) with U∗ = U

(
1 +

E

2E0

)
. (2.34)

This is the equation for the trajectory r(z) in the meridional plane rotating
at the angular velocity ωL.
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2.2.2 Optics of an Electron Lens with a Bell-Shaped Field

Let us now substitute the bell-shaped field (2.18) in (2.34). The solution of
the differential equation can be simplified by introducing reduced coordinates
y = r/a and x = z/a and a dimensionless lens parameter

k2 =
eB2

0a2

8m0U∗ , (2.35)

resulting in

d2y

dx2
= y′′ = − k2

(1 + x2)2
y. (2.36)

This equation can be further simplified by the substitution

x = cotφ; dx = −dφ/sin2φ; 1 + x2 = cosec2φ. (2.37)

The meaning of the angle φ can be seen from Fig. 2.5. The variable φ varies
from π for z = −∞ to φ = π/2 for z = 0 and then to φ = 0 for z = +∞.
Equation (2.36) becomes

y′′(φ) + 2cotφ y′(φ) + k2y(φ) = 0. (2.38)

The solution of (2.38) is a linear combination,

y(φ) = C1u(φ) + C2w(φ), (2.39)

of the two particular integrals

u(φ) = sin(ωφ)/ sin φ,

w(φ) = cos(ωφ)/ sin φ with ω =
√

1 + k2 . (2.40)

The coefficients C1 and C2 can be determined from the initial conditions.
Thus, for a parallel incident ray, the initial conditions are r = r0 for z = −∞

Fig. 2.5. Angular coordinate φ for the calculation of electron trajectories and lens
parameters.
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Fig. 2.6. Electron trajectories incident
parallel to the axis for increasing values
of lens strength ω =

√
1 + k2 [2.2].

or y(π) = r0/a and y′(π) = 0, which results in C2 = 0; the radial component
of the trajectory becomes

y =
r

a
= − r0

aω

sin(ωφ)
sinφ

. (2.41)

Such trajectories are plotted in Fig. 2.6 for increasing values of the strength
parameter ω =

√
1 + k2 of the lens.

For a more general discussion, we assume that the ray passes through a
point P0(y0, φ0) in front of the lens. Substituting y = y0 and φ = φ0 in (2.39)
and solving for C1 yields

C1 =
y0 sinφ0

sin(ωφ0)
− C2

cos(ωφ0)
sin(ωφ0)

. (2.42)

We substitute (2.42) in (2.39), giving

y(φ) =
sin(ωφ) sin φ0

sin(ωφ0) sin φ
y0 +

C2

sin φ

[
cos(ωφ) − cos(ωφ0)

sin(ωφ0)
sin(ωφ)

]
. (2.43)

The coefficient C2 can be determined from the direction (slope) of the ray
at the point P0, and different values of C2 will correspond to different direc-
tions. The image point P1(y1, φ1) conjugate to the object point P0 can be
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obtained from the condition that the last square bracket in (2.43) becomes
zero, which means that P1 has the coordinate

y1 =
sin(ωφ1) sin φ0

sin(ωφ0) sin φ1
y0 = My0, (2.44)

independent of C2 (M : magnification). Multiplying the bracket in (2.43) by
sin(ωφ0) yields the addition theorem for a sine function, and the condition for
a zero bracket can be written

sin[ω(φ1 − φ0)] = 0, (2.45)

which is satisfied by

φ1n = φ0 − n
π

ω
, n = 1, 2, . . . . (2.46)

This means that more than one image point can occur in strong lenses. How-
ever, n = 2 will not be possible until ω =

√
1 + k2 ≥ 2 or k2 ≥ 3.

The positions of the object and image points are

z0 = a cotφ0 ; z1n = a cotφ1n. (2.47)

Substitution of (2.46) into (2.47) gives

z0 = a cot
(
φ1n + n

π

ω

)
=

a cotφ1ncot
(
nπ

ω
)
− a

cotφ1n + cot
(
nπ

ω
) . (2.48)

This equation can be rewritten in the form[
z0 − a cot

(
n

π

ω

)] [
z1n + a cot

(
n

π

ω

)]
= −a2cosec2

(
n

π

ω

)
, (2.49)

which is equivalent to Newton’s lens equation of light optics

Z0Z1 = f0f1, (2.50)

where f0 and f1 denote the focal lengths and the distances

Z0 = z0 − z(F0), Z1 = z1 − z(F1), (2.51)

separate the object and image points from the corresponding foci F0 and F1.
Comparison of (2.49) and (2.50) shows that

f0 = −f1 = a cosec
(
n

π

ω

)
, z(F0) = −z(F1) = a cot

(
n

π

ω

)
. (2.52)

The focal lengths f are not the same as the distances z(F) of the foci from the
lens center at z = 0. This means that electron lenses cannot be treated as
thin lenses. Principal planes can be introduced, as in light optics, to construct
the position of the corresponding image. The positions of the principal planes
are, for n = 1,

z(H0) = z(F0) + f0 = a
cos
(π
ω
)

+ 1
sin
(π
ω
) = a cot

( π

2ω

)
= −z(H1). (2.53)
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Fig. 2.7. (a) Positions of the foci F0, F1 and principal planes H0, H1 as the lens
parameter k2 is increased and (b) example of a geometrical construction for k2 =
1.6 [2.2].

The positions z(F) of the foci and z(H) of the principal planes are plotted
in Fig. 2.7a as a function of the lens parameter k2 (2.35). Figure 2.7b also
shows how the image point can be geometrically constructed for the particular
case k2 = 1.6. A ray parallel to the axis is refracted at H1 and continued as
a straight line through the focus F1; a ray through F0 is refracted at H0,
continuing parallel to the axis. The intersection of these two lines is the image
point. Unlike in light-optical lenses, corresponding foci and principal planes
are situated on opposite sides of the lens center.

The magnification M in (2.44) can be written in terms of f and Z by
substituting φ = φ1n from (2.46) and using (2.49–2.52):

M = f0/Z0 = Z1/f1. (2.54)

In reality, the trajectories are curved, and the coordinate system rotates
with the angular velocity ϕ̇ of (2.32). The total rotation angle ϕ between
image and object (Fig. 2.4) can be calculated by using the substitution dz =
v dτ and (2.35, 2.37, and 2.46):

ϕ =
e

2m

τ1∫
0

Bzdτ =
e

2mv

z1∫
z0

Bzdz =
√

e

8m0U∗

z1∫
z0

B0dz

1 + (z/a)2

= −
√

e

8m0U∗ aB0

φ1∫
φ0

dφ = k(φ0 − φ1) = k
π√

1 + k2
. (2.55)
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The values of the focal lengths and the positions (2.52) of the foci do not
depend on the direction of Bz, whereas the image-rotation angle ϕ is reversed
when Bz or the lens current is reversed.

The image rotation in an electron microscope can therefore be partially
compensated for by changing the sign of the currents in different lenses. The
image rotation does not influence the quality of the image, but its magni-
tude has to be known if directions in the image have to be correlated with
corresponding directions in the specimen or in an electron-diffraction pattern.

The formulas above are for lenses with symmetric polepieces. Lenses with
asymmetric polepiece diameters are often used in practice. If the larger diam-
eter is on the specimen side, more space is available for specimen translation
with top-entry specimen stages. These lenses can be treated in a similar way
by approximating the lens field on the axis by two Glaser fields (2.36) with
different parameters a1 and a2 on the two sides [2.10].

2.2.3 Special Electron Lenses

Objective Lenses with k2 ≥ 3. A lens with an excitation k2 = 3 (single-
field condenser-objective lens) will be optimal in the sense that the focal length
is shortest (Fig. 2.11) [2.11, 2.12] and the spherical-aberration coefficient Cs

is low (Sect. 2.3.2). Figures 2.6 and 2.7 show that the focus of such a lens
is in the center of the lens field at z = 0. The specimen position is at the
lens center, and the prefield of the lens acts as a condenser lens. Figure 2.8
shows the electron trajectories in such a single-field condenser-objective lens
and Fig. 4.14 the corresponding ray diagram, with straight lines and two
separate lenses representing the pre- and postfields. The front focal plane
(FFP) and back focal plane (BFP) are conjugate. A parallel beam in the FFP
is focused at the specimen and is again parallel in the BFP. The lens is thus
operating in the “telefocal condition”. The specimen area illuminated can be
limited by placing a diaphragm in a plane conjugate to the specimen plane.
By focusing the last condenser lens in front of the condenser-objective lens
on this diaphragm plane, a demagnified electron probe of 1–5 nm in diameter
is produced in the specimen plane. All modern microscopes work with such
a lens.

The specimen position is shifted beyond the lens center in a second-zone
lens with k2 > 3 [2.12, 2.13].
Superconducting Lenses. The strength of a given magnetic lens with an
iron core cannot be increased indefinitely owing to the saturation of mag-
netization Ms at about 2.1 T (B = µ0H + M); strong lenses require an
increase of size and power supply. Superconducting hollow cylinders or rings
have the property of screening the inner space from external magnetic fields
and can trap magnetic flux that penetrated the ring in the normal conducting
state. The critical magnetic field that destroys superconductivity is very high
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Fig. 2.8. Electron trajectories and
conjugate planes in a single-field
condenser-objective lens.

(Bc � 5–10 T) in type II superconductors (e.g., Nb-Zr, Nb-Ti, Nb3Sn). Super-
conducting lenses can be designed in three different ways [2.14, 2.15, 2.16, 2.17]
(see also the review in [2.18]):

1. The lens still has ferromagnetic polepieces, which may be of dysprosium
or holmium, for which Ms = 3–3.4 T at low temperatures; it is excited by
a superconducting coil.

2. Superconductors are introduced into the bore of a conventional magnetic
lens in the form of hollow cylinders, thus confining the magnetic flux to a
smaller space by screening.

3. The flux trapped in superconducting rings or discs may be exploited.

Minilenses. Any decrease in the size of magnetic lenses will have the ad-
vantage of decreasing the length of the electron-optical column, thus reducing
the influence of mechanical vibrations and a.c. magnetic stray fields. Small
lenses (minilenses) are also useful in front of an objective lens to decrease and
control the electron-probe diameter. One way of reducing the size is to use
superconducting lenses; alternatively, a stronger excitation may be employed
with a more efficient water-cooling system [2.19, 2.20].
Multipole Lenses. A quadrupole lens can be constructed from four pole-
pieces of opposite polarity (Fig. 2.9). Because the magnetic field is normal
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Fig. 2.9. Construction of a
quadrupole lens.

to the electron beam, a stronger Lorentz force is exerted. A point object is
focused as a line image, as with a cylindrical lens in light optics. In elec-
tron microscopes, quadrupole lenses are used as stigmators for compensating
the axial astigmatism (Sect. 2.4.1) or to correct the focusing distance of an
electron prism for energy analysis (Sect. 4.6.1).

Hexapole lenses consist of six polepieces and octopole lenses of eight pole-
pieces, with alternating polarities. Combinations of hexapole or quadrupole
and octopole lenses can be used to correct lens aberrations (Sects. 2.4.2
and 4.6).

2.3 Lens Aberrations

2.3.1 Classification of Lens Aberrations

There are five possible isotropic aberrations of third order in lenses with ro-
tational symmetry, as in light optics:

1) spherical aberration (Sect. 2.3.2) 4) distortion (Sect. 2.3.4)
2) astigmatism (Sect. 2.3.3) 5) coma (Sect. 2.3.5)
3) field curvature (Sect. 2.3.3)

There are three further anisotropic aberrations (Sect. 2.3.6):

6) anisotropic coma 8) anisotropic distortion
7) anisotropic astigmatism

If the electron beam is not monochromatic, owing to
a) insufficient stabilization of the acceleration voltage,



32 2 Particle Optics of Electrons

b) the energy spread of the electron gun, and
c) energy losses in the specimen,

9) chromatic aberration (Sect. 2.3.7)

also has to be considered. Departure of the magnetic-lens field from exact
rotational symmetry causes an

10) axial astigmatism (Sect. 2.3.3).

The spherical aberration, a distortion associated with this aberration, the
axial astigmatism, the coma, and the chromatic aberration are the most im-
portant aberrations for electron microscopy, and only these on-axis errors will
be discussed in detail. The other aberrations can normally be neglected be-
cause the electron beam necessarily remains close to the optic axis and small
lens apertures are needed for high resolution. After compensation of axial
astigmatism and coma-free alignment, a threefold astigmatism has to be con-
sidered at high resolution.

The aberrations can be calculated by the eikonal method [2.21, 2.22], for
example, where

S(P0,P1) =
P1∫
P0

nds (2.56)

represents the point eikonal as the set of optical path lengths between two
points P0 and P1. The true path makes the eikonal (2.56) an extremum,
which is known as Fermat’s principle in light optics.

The so-called diffraction error is not caused by the lens itself but is a con-
sequence of the presence of diaphragms; this error will therefore be discussed
not in this section but in Sects. 3.3.2 and 6.2, where the wave-optical theory
of image formation is presented.

2.3.2 Spherical Aberration

The spherical aberration has the effect of reducing the focal length for electron
rays passing through outer zones of the lens (Fig. 2.10). Electrons crossing the
optic axis at different angles θ or scattered in the specimen through angles θ
will intersect the Gaussian image plane at a distance

r′s = Csθ
3M (2.57)

from the paraxial image point. The Gaussian image plane is the position of the
image when very small apertures are used (paraxial rays). Cs is the spherical-
aberration coefficient and M the magnification. We use coordinates x, y, or
r in the specimen plane and the corresponding coordinates x′ = −Mx and
y′, r′, respectively, in the image plane.
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Fig. 2.10. Electron trajecto-
ries and wavefronts in a lens
with spherical aberration.

A conical electron beam with angular aperture αo defined by the objec-
tive diaphragm does not produce a sharp image point, but the beam diame-
ter passes through a minimum, d′s,min, in a plane of least confusion; in the
Gaussian image plane, the diameter is d′s,G = 2Csα

3
oM . The correspond-

ing diameters referred back to the specimen plane are ds,G = d′s,G/M and
ds,min = d′s,min/M . It can be shown that the smallest diameter is given by

ds,min = 0.5Csα
3
o. (2.58)

The spherical-aberration coefficients of objective lenses are normally of the
order of 0.5–2 mm. Calculated values of the spherical-aberration coefficient Cs

of magnetic lenses are plotted in Fig. 2.11 as a function of the lens parameter
k2. Cs decreases with increasing lens strength. The minimum focal length
occurs at k2 = 3, and Cs shows a flat minimum at k2 = 7.

The spherical aberration of the objective lens not only influences the res-
olution but can also be observed when imaging crystalline specimens. The
diffracted beams produce shifted twin images if the objective aperture di-
aphragm is removed or if the primary beam and the diffracted beam can both
pass through the diaphragm. The bright bend contours of crystalline foils ob-
servable in the dark-field image are shifted relative to the corresponding dark
contours in the bright-field image. This effect can be used for the measurement
of Cs [2.23, 2.24, 2.25]. The same effect limits the useful area in selected-area
electron diffraction (Sect. 8.1.1).



34 2 Particle Optics of Electrons

Fig. 2.11. Dependence of reciprocal focal length a/f , reduced spherical-aberration
constant Cs/a, and chromatic-aberration constant Cc/a on the lens parameter
k2 [2.2].

A wave-optical formulation of the effect of spherical aberration, which is
important for the discussion of phase contrast, will be presented in Sect. 3.3.1.
Determination of the contrast-transfer functions by optical diffractometry
(Sect. 6.4.7) or a digital Fourier transform and from a defocus series of crystal-
lattice images (Sect. 9.6.4) also allows Cs to be evaluated.

2.3.3 Astigmatism and Field Curvature

A cone of rays of semiangle θ from a specimen point P at a distance x from
the axis is focused in the Gaussian-image plane as an ellipse with its center
at the Gaussian-image point x′. The principal axes of the ellipse are parallel
to x′ and y′, and their lengths are proportional to x2 and θ.

Rays passing through points around a circle of radius R in the lens and
the corresponding points on the ellipse form an astigmatic bundle of rays that
collapses to perpendicular focal lines Fs and Fm for rays in the sagittal and
meridional planes. These foci lie on the curved sagittal and meridional image
surfaces shown in Fig. 2.12. A circle of least confusion is formed in the curved
mean image surface. This error disappears for on-axis specimen points (x = 0),
and this type of astigmatism can in practice be neglected because small aper-
tures are used to decrease the influence of spherical aberration and because
the electron beam is necessarily adjusted on-axis to decrease the influence of
coma and chromatic aberration.

However, astigmatism will be observed even for points on-axis if the lens
field is not exactly rotationally symmetric, owing to inhomogeneity of the
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Fig. 2.12. Astigmatic focal differences be-
tween meridional and sagittal ray bundles.

magnetization of the polepiece, ellipticity of the polepiece bores, or electric
charging of aperture diaphragms. This error is therefore called axial astig-
matism. In consequence, a pair of diametrically opposite zones of a circular
specimen will be focused sharply at one focal point Fs, and the two other
diametrically opposite zones, 90◦ from the first, will be focused at the other
focal point Fm. The difference ∆fA of the focal lengths (Fig. 2.12) will be
small and is only of the order of 0.1 to 1 µm. Nevertheless, the resolution can
be reduced, as is shown by the following estimate.

The diameter of the error disc at the specimen plane will be

dA = ∆fAαo. (2.59)

If a resolution δ = 0.5 nm is wanted for an aperture αo of 10 mrad, dA should
be smaller than δ and, therefore, ∆fA < δ/αo = 50 nm. If we assume that the
polepiece bore is elliptical with semiaxes b0 ±∆b, the relative focal difference
becomes

∆fA

f
= 2

∆b

b0
(2.60)

because the focal length is of the order of the diameter b0. It follows that ∆b
must be less than 25 nm with the estimated value of ∆fA. It is very difficult
to obtain such precision in the diameter of the bore.
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ζ = 1 0 –1 –2 –5

Fig. 2.13. Cross sections through the caustic at different values of the coordinate
ζ of Fig. 2.12 [2.27].

Fig. 2.14. (a) Pin cushion, (b) barrel, and (c) spiral distortion of a square grid.

The simple drawing of Fig. 2.12 is not adequate for calculating the cross
section of the electron beam in an astigmatic image. If all rays, including those
not in the sagittal or in the meridional plane, are considered, a complicated
intensity distribution in the neighborhood of the focus results, the so-called
caustic. Figure 2.13 shows observed intensity distributions [2.26, 2.27] corre-
sponding to cross sections through the caustic at the positions ζ indicated in
Fig. 2.12. The orthogonal focal lines have the coordinates ζ = ±1.

2.3.4 Distortion

Distortion causes a displacement

∆r′ = −CEr′3 (2.61)

in the Gaussian image plane for off-axis points. This results in a geometrical
distortion of a square, which is known as pin cushion distortion for CE > 0
and barrel distortion for CE < 0 (Fig. 2.14a,b).
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Fig. 2.15. (a, b) Examples of distortion caused indirectly by the spherical aberra-
tion of a projector lens.

The spherical aberration may be used to explain an image distortion found
in intermediate and projector lenses operating at low magnifications. These
large-bore lenses magnify an intermediate image in which the angular aperture
at any image point is smaller by a factor 1/M than the objective aperture αo.
Therefore, no further decrease of image resolution by the spherical aberration
is expected. However, Fig. 2.15 shows how a distortion of the image can be
generated indirectly by the spherical aberration. A conical beam coming from
P in the intermediate image of Fig. 2.15a converges to an image point P′

0

in the absence of spherical aberration but to a point P′ if it is present. The
deviation ∆r′ on the image screen increases with r′ as r′3, resulting in a pin
cushion distortion of a square specimen area. The opposite situation is ob-
served when the intermediate image lies beyond the second lens (Fig. 2.15b);
the deviation ∆r′ ∝ r′3 is now directed toward the optical axis, resulting in
a barrel distortion. It is possible to compensate for this type of distortion by
suitably exciting the lens system, and a pin cushion distortion can be com-
pensated for by a barrel distortion in another intermediate image step [2.20].
This compensation of distortion is very important for preliminary exploration
of the specimen at low magnification.

2.3.5 Coma

Coma causes a cone of rays passing through the specimen point P at an off-
axis distance r at angles θ to the axis to be imaged as a circle with radius
proportional to θ2 and r. The center of the circle does not coincide with the
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Fig. 2.16. (a) The effect of coma on the image P′ of a specimen point P at a
distance r = r′/M from the axis for increasing angular apertures. (b) Anisotropic
astigmatism and (c) anisotropic coma [(- - -) magnetic field of the lens reversed].

Gaussian image point r′ = −rM but is shifted in the radial direction by twice
the radius. Circles corresponding to different angles θ therefore lie within a
sector of 60◦ (Fig. 2.16a). Coma-free alignment is necessary for high resolution
(Sect. 2.5.3).

2.3.6 Anisotropic Aberrations

The anisotropic distortion is caused by the dependence of the image rotation
on the off-axis distance r of the object point; the latter is imaged with an
additional rotation angle ϕ proportional to r′2. Straight lines in the specimen
plane become cubic parabolas in the image plane (Fig. 2.14c). Reversal of the
lens current changes the sense of rotation.

The anisotropic astigmatism together with the astigmatism discussed in
Sect. 2.3.3 results in an ellipse, the principal axes of which are not parallel to
the x′ and y′ axes (Fig. 2.16b).

The anisotropic coma differs from the coma (Sect. 2.3.5) in the direction
of the coma sector, which is not perpendicular to the radius r′ (Fig. 2.16c).

2.3.7 Chromatic Aberration

Variations of electron energy and lens current cause a variation of focal length

∆fc

f
=

∆E

E
− 2

∆I

I
(2.62)

because f is proportional to E and B−2 or I−2 (I: lens current). This means
that chromatic aberration can be caused by fluctuations of the acceleration
voltage, by the energy spread of the emitted beam, by energy losses inside
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the specimen, and by fluctuations of the lens current. An energy spread ∆E
causes a point to be imaged as a chromatic-aberration disc of diameter

d′
c = dcM =

1
2
Cc

∆E

E

1 + E/E0

1 + E/2E0
αoM. (2.63)

The chromatic-aberration coefficient Cc is of the order of the focal length f
for weak lenses and decreases to a minimum of about 0.6f for stronger lenses
(Fig. 2.11) [2.28].

The chromatic aberration caused by the energy spread ∆E of the electron
beam limits the resolution. If a resolution δ = 0.2 nm < dc is wanted for αo =
20 mrad and Cc = 2 mm, we must ensure that ∆E/E < 10−5. Owing to the
Boersch effect (Sect. 4.1.2), the half-width of the electron energy distribution
from a thermionic cathode is of the order of 1–2 eV. If the focusing corresponds
to the maximum of this energy distribution, only half of this value should be
used for ∆E in (2.63). This means that Schottky or field-emission cathodes
with ∆E < 1 eV must be used for high-resolution work, that is, not worse than
0.1–0.2 nm. Furthermore, the acceleration voltage and the lens currents have
to be stabilized to better than 10−5. The influence of chromatic aberration
on contrast transfer will be discussed in detail in Sect. 6.4.2. To minimize
the influence of energy losses ∆E inside the specimen, the proportion of the
beam scattered inelastically should be very much smaller than that scattered
elastically or unscattered.

The number of unscattered and elastically scattered electrons is strongly
reduced in thick films, and the energy-loss spectrum is broadened by multiple
energy losses (Fig. 5.34b,c). An operator will focus on the most probable
energy (the maximum of the energy-loss spectrum). The resolution will be
limited by the half-width of the energy-loss spectrum [2.29]. The chromatic
aberration associated with film thickness can be measured from the blurring
of sharp edges [2.30].

Equation (2.63) describes the axial chromatic aberration, which is still
present for electron beams entering the objective lens from the axial point of
the specimen. When the electron beam passes the specimen at a distance r
from the axis, a chromatic error streak δrϕ with two components is observed: a
radial component δr, due to changes of magnification as a function of electron
energy, and an azimuthal component δϕ, due to variation of the image rotation
angle ϕ (2.55). Together, these give (Fig. 2.17a)

δrϕ = Crϕ r
∆E

E
with C2

rϕ = C2
r + C2

ϕ. (2.64)

The constant Cr remains positive whatever the lens excitation, whereas Cϕ

can change sign [2.31]. This chromatic-error streak is illustrated in Fig. 2.17b,
where several exposures of polystyrene spheres corresponding to different val-
ues of the lens current are superimposed.
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Rotation center

a b

Fig. 2.17. (a) Chromatic error streak and (b) demonstration by superimposed focal
series of polystyrene spheres.

Fig. 2.18(a–c). Light-optical
analogue of the action of astig-
matism (L1 + C1) and a stig-
mator C2 [2.32].

2.4 Correction of Aberrations and Microscope
Alignment

2.4.1 Correction of Astigmatism

Axial astigmatism can be compensated for by placing a simple stigmator in
the polepiece bore of a lens. The function of this correction element can be
understood from a light-optical analogue [2.32] (Fig. 2.18). Axial astigmatism
can be simulated by adding a cylindrical lens C1 to the rotationally symmetric
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lens L1 (Fig. 2.18a). The lens C1 acts only on the sagittal bundle, resulting
in a shorter focal length (Fig. 2.18b). The stigmator consists of a cylindrical
lens C2 rotated through 90◦ relative to C1. It acts only on the meridional
bundle (Fig. 2.18c), so that P′

s and P′
m coincide in P′. This means that the

lens astigmatism is compensated for by a perpendicular astigmatism of the
same magnitude. The orientation and strength of C2 therefore have to be
adjustable.

In electron optics, toric rather than cylindrical lenses are employed in the
form of very weak quadrupole lenses (Sect. 2.2.3). Two quadrupoles mounted
with a relative rotation of 45◦ around the axis and excited by different currents
allow the direction and strength of the quadrupole lens system to be varied.

For high resolution, the astigmatic focal difference ∆fA should be smaller
than 10 nm. Sensitive methods of detecting such small focal differences are
required to adjust the stigmator correctly. The following methods can be used.
Fresnel-Fringe Method. Defocusing causes Fresnel diffraction fringes to be
seen at edges (Sect. 3.2.2). These fringes disappear in focus. The distance x1

(3.35) of the first fringe from the edge is proportional to the square root of the
defocus ∆z = R0. If a small hole of about 0.1 µm diameter in a supporting
film is observed, the Fresnel fringes disappear in the presence of astigmatism
only on opposite sides of the hole. They remain visible in a perpendicular
direction as a result of the astigmatic focal difference. The astigmatism is
compensated for when the fringe visibility for small defocusing is the same
around the edge of a hole. This method is capable of revealing values of ∆fA

greater than 0.1 µm by visual observation of the viewing screen and about
half of this value on a micrograph.
Granularity of Supporting Films. Supporting films of carbon exhibit a
granularity caused by phase contrast (Sect. 6.2.2) that is very sensitive to
defocusing. In the presence of astigmatism, the granularity shows preferential
directions that change through 90◦ if the focusing is changed from the sagittal
to the meridional focus. A very high sensitivity can be obtained by record-
ing the image with a CCD camera and observing the granularity on the TV
screen. An improved contrast can be observed when using a thin evaporated
amorphous germanium film.
Fraunhofer Diffraction. The spatial-frequency spectrum of the granularity
can be observed by light-optical Fraunhofer diffraction on developed micro-
graphs (Sect. 6.4.7) or by online digital Fourier analysis of images recorded by
a CCD camera. Spherical aberration and defocusing lead to gaps in the trans-
fer of spatial frequencies, which can be seen as a ring pattern in Fraunhofer
diffractograms (Fig. 6.27). Astigmatism deforms the rings to ellipses or hy-
perbolas.

The latter two methods can detect values of ∆fA greater than 10 nm,
which is sufficient for high resolution. All three methods are based on phase-
contrast effects caused by defocusing. It is necessary to work with a nearly
coherent electron beam to prevent blurring of the fringes and the granularity.
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With an illumination aperture αi of 1 mrad, for example, only one Fresnel
fringe can be resolved, whereas with a very coherent beam produced by a
Schottky emitter or a field-emission gun, hundreds of fringes may be seen
(Fig. 3.9).

2.4.2 Correction of Spherical and Chromatic Aberrations

Because the third-order lens aberrations are observable only for nonparax-
ial rays, aberration correction will be necessary only for lenses working with
larger apertures, α > 1 mrad, such as a probe-forming condenser lens or an
objective lens. In the intermediate and projector lenses, the angular aperture
is decreased to α/M .

The resolution is limited by both the spherical and chromatic aberrations
of the objective lens, and it will hence be of interest to correct both defects
simultaneously. In light optics, spherical aberration is caused by the spherical
shape of the glass-lens surfaces, and chromatic aberration is caused by the
dispersion of the refractive index. Both errors can be corrected by using non-
spherical surfaces and/or a suitable combination of lenses. The magnetic field
of an electron lens cannot be “polished”, and spherical aberration is a conse-
quence of the structure of the rotationally symmetric magnetic field. Thus, in
(2.24), we used the relation div B = 0 to show that the radial component Br

cannot be independent of the axial component Bz. Starting from this relation
and an equivalent one for electric fields, Scherzer has demonstrated that the
spherical- and chromatic-aberration coefficients of a stationary, charge-free
round lens are always positive [2.33].

Scherzer [2.34] proposed that correction of the third-order spherical aber-
ration and first-order chromatic aberration should be possible by introduc-
ing an additional system of multipole lenses behind the objective lens. The
spherical aberration can in principle be compensated for by a combination
of magnetic quadrupole and octopole lenses, whereas a combination of elec-
trostatic and magnetic quadrupoles is necessary for the chromatic aberration
[2.35, 2.36, 2.37]. Koops et al. [2.38] showed experimentally that such a system
works and that the sensitivity to misalignment can be decreased by additional
trim coils.

When using Schottky or field-emission guns with ∆E ≤ 0.3 eV, the chro-
matic aberration at voltages ≥200 kV will be less than the spherical aber-
ration. Correction of the spherical aberration thus permits the extension of
the point-to-point resolution to the information limit, which is determined by
the chromatic aberration and the mechanical and electrical stability of the
instrument. Rose [2.39] has proposed such a Cs-corrector, composed of two
sextupoles and two round lenses. This system has been built for a 200 kV
microscope by Haider [2.40]. This corrector is now commercially available and
has proven its usefulness for materials applications [2.41]. More recent ideas
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for corrector systems include a quadrupole-octupole corrector for a STEM
[2.42] and an “ultracorrector” to correct all primary spherical and chromatic
aberrations in TEM [2.43].

2.4.3 Microscope Alignment

When the acceleration voltage or the objective current is wobbled, specimen
structures move on spirals around the corresponding voltage or current center
(Fig. 2.17b). Both centers should coincide with the center of the final screen.
This correction is sufficient for medium resolution. If the centers do not coin-
cide, preference should be given to the voltage center. Owing to mechanical
limitations, the condenser-, objective- and projector-lens systems are not per-
fectly aligned. An on-axis alignment of the electron beam in the objective lens
is essential for high resolution (coma-free alignment). The microscope can be
aligned with the aid of beam-tilt coils above and image-shift coils below the
objective lens. Three different types of autoalignment methods are in use.
Diffractogram Method. When using an untilted beam and the compen-
sation for astigmatism described in Sect. 2.4.1, the Fraunhofer diffractogram
shows concentric circles from which the defocus and Cs can be determined;
the axial coma and threefold astigmatism cannot be detected. On tilting the
beam by ±θ, the latter aberrations cause noncentrosymmetric differences in
the diffractograms. A useful procedure is to take micrographs of amorphous
carbon or germanium films with a beam tilt θ � 5–10 mrad at 6–20 azimuths
between 0 and 2π and produce a tableau of diffractograms [2.44, 2.45, 2.46].
When the illumination direction is aligned, the tableau of diffractograms is
centrosymmetric. Further alignment is necessary for the voltage and current
centers.
Image-Contrast Method. The image shows minimum contrast when the
beam is aligned, the image focused, and astigmatism corrected [2.47, 2.48].
Accurate settings are obtained by a deliberate variation of defocus, astigma-
tism, and alignment. The method only works efficiently when the parameters
are close to their correct values, and the dose required is high.
Image-Shift Method. This method exploits the beam-tilt-induced displace-
ments of an image [2.49, 2.50, 2.51] and is independent of the particular spec-
imen structure, whereas the two previous methods use amorphous carbon or
germanium test films. Coma-free alignment is based on the nonlinear relation
between displacement and beam tilt. The displacements can be measured by
seeking the maximum of the cross-correlation (Sect. 6.5). For coma-free align-
ment, five images have to be recorded: one without and four with equal but
oppositely tilted beams, for example. The reproducibility of alignment on the
coma-free axis is better than 0.1 mrad and that of focusing and stigmation
better than 3 nm at M = 500 000.
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Wave Optics of Electrons

A de Broglie wavelength can be attributed to each accelerated particle, and
the propagation of electrons can be described by means of the concept of
a wave packet. The interaction with magnetic and electrostatic fields can
be described in terms of a phase shift, or the notion of a refractive index
can be employed, leading to the Schrödinger equation. The interaction with
matter can similarly be reduced to an interaction with the Coulomb potentials
of the atoms.

Many of the interference experiments of light optics can be transferred
to electron optics. The most important are the Fresnel biprism experiment
and Fresnel diffraction at edges. The diffraction pattern far from the speci-
men or in the focal plane of an objective lens can be described by means of
Fraunhofer diffraction. As in light optics, the Fraunhofer-diffraction amplitude
is the Fourier transform of the amplitude distribution of the wave leaving the
specimen where the lens aberrations are incorporated in the wave-aberration
function.

The image amplitude can be described in terms of an inverse Fourier trans-
form, which does not, however, result in an aberration-free image owing to
the phase shifts introduced by the electron lens and the use of a diaphragm
in the focal plane.

3.1 Electron Waves and Phase Shifts

3.1.1 De Broglie Waves

In 1924, de Broglie showed that an electron can be treated as a quantum of
an electron wave and that the relation E = hν for light quanta should also
be valid for electrons. As a consequence, he postulated that the momentum
p = mv is also related by p = hk to the wave vector k, the magnitude of
which (the wave number) may be written |k| = 1/λ (λ: wavelength); this is
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analogous to p = hν/c = hk for light quanta. This implies that λ = h/p
(2.12) with the relativistic momentum p (2.11). Substitution of the constants
in (2.12) results in the formula

λ =
h

mv
=

1.226
[U(1 + 0.9788 × 10−6U ]1/2

(3.1)

with λ (nm) and U (V) (λ = 3.7 pm for U = 100 kV and 0.8715 pm for U =
1 MV).

A stationary plane wave that propagates in the z direction can be described
by a wave function ψ that depends on space and time τ ,

ψ = ψ0exp[2πi(kz − ντ)] = ψ0exp
(

2πi

λ
z − 2πiντ

)
= ψ0exp(iϕ), (3.2)

where ψ0 is called the amplitude and ϕ the phase of the wave. The phase
changes by 2π for τ = const if the difference between two positions (z2 − z1)
is equal to λ (Fig. 3.1a).

When the electron moves in an electrostatic field, we have to distinguish
between the kinetic energy Ekin and the total energy Etot, which is given by
the sum of the kinetic and the potential energies Etot = m0c

2 + Ekin + V (r).
Whereas the frequency is directly related to the energy, E = hν, the definition
of a wavelength or a wave number is more complicated. If we assume that the
potential varies only slowly, we can define a spatially varying wave number
k by dividing the local momentum p by Planck’s constant h. In the one-
dimensional case, we then obtain a wave function

ψ(z) = ψ0exp

{
2πi

[
z∫
z0

k(z)dz − ντ

]}
. (3.3)

Formally, this so-called WKB approximation can be obtained from the
Schrödinger equation (3.21). Details can be found in many textbooks on

Fig. 3.1. (a) Infinite cosine wave with a discrete k-spectrum and (b) a wave packet
of lateral width ∆z and a broadened k-spectrum of width ∆k = 1/∆z.
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quantum mechanics [3.1, 3.2, 3.3]. Due to the fact that an arbitrary constant
can be added to the potential Φ or the potential energy V as shown in (2.6),
the frequency of an electron wave is not a clearly defined quantity. This does
not matter because it is not an observable quantity.

In the presence of fields, the quantities E′ = mc2 − eΦ and p = mv do
not form a relativistic four-vector, whereas that is a necessary condition if the
physical laws are to satisfy the invariance requirements of relativity. An elec-
trostatic field is time dependent if it is seen from a frame of reference moving
with a velocity v relative to the original frame. It is therefore associated with
a magnetic field via Maxwell’s equations. The correct value p′ that must be
used for p in p = hk – the canonical momentum – is

p′ = mv − eA = hk. (3.4)

The magnetic vector potential A is related to the magnetic field by B = ∇×A.
The vector (p′x, p′y, p′z, E

′/c) thus becomes a relativistic four-vector.
In the relation (3.4), the vector potential A is not uniquely defined because

an arbitrary field A′ that satisfies the condition ∇×A′ = 0 can be added to
A without affecting the value of B because B = ∇× (A+A′) = ∇×A. The
arbitrary field A′ therefore has only to be curl-free. Just like the frequency,
then, the wave number k and the wavelength λ are not uniquely defined
quantities for electrons and therefore are not observable quantities.

This is a very strange conclusion for an electron microscopist, who daily
sees electron-diffraction patterns and uses (3.1), but it transpires that electron-
interference effects can be observed even though the wavelength of an electron
is not a clearly defined quantity. Consider the following experiment, which can
serve as a model for all interference and diffraction experiments. A wave from a
source Q (Fig. 3.2) passes through a double slit, beyond which the two partial
waves overlap at P. There will be constructive interference if the difference
between the phases is an integral multiple of 2π or an even integral multiple

P1

P2

Q PS B≠0

Fig. 3.2. Calculation of the phase difference between two partial waves passing the
double slit at P1 and P2.
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of π and destructive interference if the phase is an odd integral multiple of π.
In the presence of an electrostatic and a magnetic field, the phase difference
between QP1P and QP2P becomes

ϕ2 − ϕ1 = 2π

(
P2∫
Q

k · ds +
P∫
P2

k · ds −
P1∫
Q

k · ds −
P∫
P1

k · ds

)

=
2π

h

∮
(mv − eA) · ds. (3.5)

The signs of the last integrals have been changed by interchanging the lower
and upper integration limits, and the four integrals have thus been reduced
to an integral over the closed loop QP2PP1Q in which (3.4) for k has been
used. Stokes’ law can be applied to the integral involving A, and the result
may be expressed in terms of the magnetic flux Φm enclosed within the loop
of area S:

ϕ2 − ϕ1 =
2π

h

∮
mv · ds − 2πe

h

∫
S

(∇× A) · dS

=
2π

h

∮
mv · ds − 2πe

h
Φm. (3.6)

An arbitrary additional vector field A′, such that ∇×A′ = 0, which caused the
trouble in the definition of the wavelength, does not influence the difference
between the phases in (3.6). Equation (3.6) therefore shows that the relation
k = 1/λ = mv/h can be used to calculate phase or wave number differences
for interference and diffraction experiments in the absence of a magnetic field
(Φm = 0) and that if magnetic flux does pass through the loop (Φm �= 0), it
causes an additional phase shift. This phase shift can be measured by means of
a biprism. Consider two rays (Fig. 3.2) from the source Q to the point P of the
interference pattern. The optical phase difference ϕ depends on the enclosed
magnetic flux Φm. A phase shift occurs even if there is no magnetic field at
the trajectory, and hence if no magnetic term of the Lorentz force acts on the
electrons (Fig. 3.2). For the phase shift, only the magnetic flux through the en-
closed area is important. This Aharonov-Bohm effect [3.4] has been verified ex-
perimentally by many authors. A magnetic flux Φm = h/e = 4.135×10−15 Vs
is sufficient to cause a phase shift ϕ = 2π corresponding to a path difference
∆s = λ and to a shift of the interference pattern by one fringe distance. Such
a small flux can be created by an iron whisker with a cross section of 2000 nm2

and a saturation magnetization Bs = 2.1 T [3.5, 3.6] or by a 25 nm permalloy
film evaporated on the biprism wire [3.7]. The theoretical value of the phase
shift was confirmed from two exposures of the fringe system obtained with
Bs in opposite directions. By using three biprism wires, a larger spatial sep-
aration of the electron rays can be achieved and the flux of a coil 20 µm in
diameter can be enclosed [3.8, 3.9]. Lischke [3.10] verified the quantization of
the enclosed flux in superconductors, which is a multiple of the flux quantum
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(fluxon) h/2e. One fluxon corresponds to a shift of the fringe pattern by one-
half of the fringe distance. The fact that the effect occurs even if the electrons
themselves do not experience any magnetic field has been proven by carefully
shielding the magnetic field created in a toroidal magnet by embedding it in
a superconductor [3.11].

The deflection of electrons in a transverse magnetic field of length L
through an angle ε (Sect. 2.1.2 and Fig. 2.3b) means, in wave-optical terms,
that the incident wave is tilted through an angle ε after passing the magnetic
field. With an arbitrary origin at x = 0 in Fig. 2.3, rays at a distance x en-
close a magnetic flux Φm = BLx. Equation (3.6) gives the same value for the
deflection angle ε = ∆s/x, with ∆s = λ(ϕ2 −ϕ1)/2π, as that given by (2.17),
obtained by using classical mechanics.

Because only the time-independent term of the phase in (3.2) is important
for interference experiments, we reduce the wave function (3.2) of a plane
wave to

ψ(z) = ψ0 exp(2πikz). (3.7)

For many applications, it is also of interest to use spherical waves

ψ = AQ
e2πikr

r
. (3.8)

AQ is a measure of the magnitude of the source Q, and r denotes the dis-
tance from the source. The plane-wave function (3.7) and the spherical-wave
function (3.8) are special solutions of the time-independent wave equation
(3.19).

The widely used terms “wavefront” or “wave surface” can be defined as
surfaces of constant phase ϕ. The wavefronts of a plane wave are planes normal
to the direction of propagation. In the case of a spherical wave, they are
concentric spheres. For a vanishing magnetic vector potential A = 0, the rays
of particle optics are trajectories normal to the wavefronts.

3.1.2 Probability Density and Wave Packets

A parallel electron beam with N electrons per unit volume and velocity v
represents a current density

j = Nev (3.9)

in A m−2, where Nv is the flux of particles; that is, the number of electrons
traversing a unit area per unit time. In electron microscopy, we can measure
the current or current density, proportional to Nv, or we can count the number
N by single-particle detection. To combine these possibilities of measuring
with the wave concept, we use the quantum-mechanical formula for a flux of
particles

j = e
ih̄
2m

(ψ∇ψ∗ − ψ∗∇ψ). (3.10)
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When this formula is applied to a plane wave (3.7), the operator ∇ becomes
∂/∂z, and substitution of (3.7) in (3.10) results in

j = e
h̄

m
2πk|ψ0|2 = ev|ψ0|2 (3.11)

by using the relation k = mv/h. Comparison of (3.11) with (3.9) shows that
|ψ0|2 = N , which corresponds to the interpretation of |ψ|2 = ψψ∗ as a prob-
ability density or ψψ∗dV = NdV as the probability of finding N electrons in
the volume element dV . We shall call the quantity

I = |ψ |2 = ψψ∗ (3.12)

the intensity, which can be used to relate the wave amplitude to measurable
quantities.

We have to be careful when substituting |ψ0| = N1/2 because we can
describe only one electron by a de Broglie wave (N = 1); interference effects
between electron waves can occur only within the wave field of one electron
(see also the discussion in Sect. 3.1.4).

Because ψψ∗ means the probability of finding an electron, its integral over
all space should be unity for one electron:∫

V

ψψ∗dV = 1. (3.13)

An infinite plane wave such as (3.7) cannot be normalized by means of (3.13).
The concept of a wave packet is therefore introduced to combine the motion
of a particle of velocity v with the concept of a wave. A monochromatic wave
with a discrete wavelength λ or wave number k = 1/λ represents a plane
wave with an infinite extension (Fig. 3.1a). A limited wave packet moving
with the particle velocity v (Fig. 3.1b) can be obtained by superposing a
broad spectrum A(k) of wavelengths or wave numbers:

ψ =
+∞∫
−∞

A(k)e2πikzdk. (3.14)

The amplitudes in front of and behind a wave packet vanish by destructive
interference. The amplitudes are summed up by constructive interference with
the correct phase only inside the wave packet. The width ∆k of the wave-
number spectrum A(k) and the spatial width ∆z of the wave packet are related
by the Heisenberg uncertainty principle ∆p∆z > h/(4π) or ∆k∆z > 1/(4π)
(compare the Fourier transform of a finite cosine wave in Table 3.2).

In practice, it is inconvenient to use a broad spectrum A(k), which cor-
responds to the superposition (3.14) of many partial waves. Therefore, we
continue to use the expression (3.7). The results obtained for the center of
the k spectrum are not appreciably different from the behavior of the wave
packet, provided that ∆k � k.
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3.1.3 Electron-Optical Refractive Index
and the Schrödinger Equation

An electron-optical refractive index n can be introduced as in light optics,
where it is defined as the ratio of the velocity c in a vacuum to the velocity cm

in matter or by the corresponding ratio of the wavelengths: n = c/cm = λ/λm.
The velocity of electrons in matter is influenced by the attractive Coulomb
potential V (r):

V (r) = −e2Zeff(r)
4πε0r

. (3.15)

The effective number Zeff(r) takes into account the increased screening of the
nuclear charge by the atomic electrons with increased r (Sect. 5.1.3). We have
only to replace the energy in (2.12) by E − V (r) to obtain the dependence of
electron wavelength on r. The refractive index in the absence of a magnetic
field becomes

n(r) =
λ

λm
=

pm

p
=
[
2(E − V )E0 + (E − V )2

2EE0 + E2

]1/2

. (3.16)

This formula can be simplified if it is assumed that V (r) � E and E0,

n(r) = 1 − V (r)
E

E0 + E

2E0 + E
+ . . . ; (3.17)

n ≥ 1 because V (r) in matter is negative.
Figure 3.3 shows schematically the potential energy V (r) along a row of

atoms. The mean value Vi = −eUi, which is the constant term of a Fourier
expansion, is called the inner potential (Table 3.1). This inner potential causes

Fig. 3.3. Potential V (r) of a crystal lattice along a row of Ge atoms with interatomic
spacing 2a and definition of the inner potential Vi = eUi.
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Table 3.1. Values of the inner potential Ui (V) of various elements.

Be 7.8 ± 0.4 [3.12] Au 21.1 ± 2 [3.14]
C 7.8 ± 0.6 [3.13] 22.1 − 27.0 [3.13]
Al 13.0 ± 0.4 [3.13] Si 11.5 [3.16]

12.4 ± 1 [3.14] Ge 15.6 ± 0.8 [3.15]
11.9 ± 0.7 [3.15] W 23.4 [3.16]

Cu 23.5 ± 0.6 [3.13] ZnS 10.2 ± 1 [3.14]
20.1 ± 1.0 [3.15]

Ag 20.7 ± 2 [3.14]
17.0 − 21.8 [3.14]

a phase shift relative to a wave traveling in a vacuum. (The large local vari-
ations of V (r) in the specimen produce elastic scattering of electrons at the
nuclei; see Sect. 5.1.3.)

An optical path difference ∆s = (n − 1) t and hence a phase shift ϕ that
corresponds to a layer of thickness t can be introduced by writing

ϕ =
2π

λ
∆s =

2π

λ
(n − 1) t =

2π

λ

eUi

E

E0 + E

2E0 + E
t. (3.18)

Thus, for carbon films, for example, we have Ui = 8 V, giving n−1 = 4×10−5

for 100 keV electrons, for which λ = 3.7 pm. A film thickness t of 21 nm will
be needed to obtain a phase shift ϕ of π/2.

The electron-optical refractive index or the inner potential Ui can be de-
termined from the shift of single-crystal diffraction spots or Kikuchi lines
in electron-diffraction patterns with oblique incidence (RHEED, Sect. 8.1.4)
[3.16, 3.17]. An interference effect due to double refraction can be observed in
small polyhedral crystals (e.g., MgO smoke); however, this can be explained
completely only by the dynamical theory of electron diffraction [3.18, 3.19].
The phase shift also causes modifications of the Fresnel fringes at the edges of
transparent foils (Sect. 3.2.2). However, the most accurate method of measur-
ing Ui involves the use of electron interferometry (Sect. 3.1.4). Other meth-
ods of measuring Ui are discussed in [3.20]. The inner potential measured by
surface-sensitive methods can be different from the value for bulk material.

Substitution of the wave number km = n(r)k in the time-independent wave
equation

∇2ψ + 4πk2
mψ = 0, (3.19)

which is also valid for electromagnetic waves and light quanta, yields the
quantum-mechanical Schrödinger equation in a relativistically corrected form,

∇2ψ +4π2n2(r)k2ψ

= ∇2ψ + 4π2

(
1 − V

E

2E0 + 2E

2E0 + E

)
2EE0 + E2

h2c2
ψ = 0 (3.20)
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or with h̄ = h/2π,

∇2ψ +
2m0

h̄2

[
E

(
1 +

E

2E0

)
− V (r)

(
1 +

E

E0

)]
ψ = 0, (3.21)

or [
h̄2

2m
∇2 + E∗ − V (r)

]
ψ = 0 with E∗ = E

2E0 + E

2(E0 + E)
. (3.22)

For energies well below the rest energy of the electron E << E0, we obtain
the conventional Schrödinger equation[

−h̄2

2m
∇2 + V (r)

]
ψ = Eψ. (3.23)

3.1.4 Electron Interferometry and Coherence

An electron wave can be split into two coherent waves by an electron-optical
biprism interferometer, the analogue of the Fresnel biprism of light optics as
developed by Möllenstedt and Düker [3.21, 3.22].

Figure 3.4a shows the light-optical Fresnel biprism. The refracted waves
behind the prism are generated by the virtual sources Q1 and Q2. The optical
phase difference (3.18) can be calculated as a function of the coordinate x in
the viewing plane from the path difference ∆s. From Fig. 3.4a, we see that

∆s =
[
L2 +

(
x +

a

2

)2
]1/2

−
[
L2 +

(
x − a

2

)2
]1/2

� ax

L
(3.24)

if x, a � L.
Constructive interference maxima are obtained if ∆s = nλ or ϕ = 2πn, n

being an integer. The distance between the maxima becomes

∆x =
L

a
λ =

λ

2β
. (3.25)

The electric field between a thin wire (diameter � 1µm) and grounded plates
can form such a biprism for electrons (Fig. 3.4b). A shadow of the wire is seen
at the viewing plane if the wire is grounded. As the positive bias of the wire is
increased, the two waves with wave vectors k1 and k2 can overlap, resulting
in an amplitude distribution

ψ = ψ0[exp(2πik1 · r) + exp(2πik2 · r)]
= ψ0{exp[πi(k1 − k2) · r] + exp[−πi(k1 − k2) · r]} exp[πi(k1 + k2) · r]
= 2ψ0 cos[π(k1 − k2) · r] exp(2πikz). (3.26)

The intensity distribution I(x) = ψψ∗ becomes

I(x) = 4I0 cos2(2πβx/λ), (3.27)

in which we have written I0 = |ψ0|2, (k1 + k2) · r � 2kz, and (k1 − k2) · r =
2kx sin β � 2βx/λ (see Curve 1 in Fig. 3.4c).
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Fig. 3.4. (a) Fresnel-biprism experiment of light optics. (b) Electron-optical re-
alization of a biprism experiment with a positively biased wire (c) Curve 1 (left);
intensity distribution of interference fringes for coherent illumination and curves 2
and 3 (right) for partially coherent and incoherent illumination.

If an extended source is used rather than a point source, as assumed above,
the probability (3.27) of observing an electron at any point x will not be
changed. However, electrons from other points of the extended source will
produce shifted interference patterns. The maxima and minima are totally
blurred if the extension ∆a of the source is larger than the distance ∆x be-
tween the maxima. The illumination is said to be “incoherent” (see Curve 3
in Fig. 3.4c). In the center of the overlap, the intensity becomes 2I0, the value
expected if no interference effects occur. Partially coherent illumination, with
∆a < ∆x, leads to a decrease of the maxima, and the minima no longer fall
to zero (Curve 2 in Fig. 3.4c).

When the source size is sufficiently small, ∆a � ∆x = Lλ/a, the radiation
is said to be spatially coherent. The angle, αi = ∆a/2L, can be interpreted
as the illumination angle; that is, the cone angle of the rays from different
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points of the source at the point P in the observation plane. The condition
∆a � ∆x for spatial coherence is thus equivalent to ∆aαi � λ/2, which is
also used as a coherence condition in light optics.

A coherence condition for temporal coherence results from the finite co-
herence length ∆z of the wave packet (Fig. 3.1b). The path difference ∆s
between two interfering waves has to be much smaller than ∆z. The value
of ∆z = c∆τ is related to the emission time ∆τ . In light emission, a normal
dipole transition has an emission time ∆τ � 10−8 s so that with v = c we
have ∆z � 3 m � 6 × 106λ for λ = 0.5 µm. For electrons, ∆τ can be es-
timated from the Heisenberg uncertainty relation ∆E∆τ � h, where ∆E �
1 eV is the energy spread at the electron gun; this gives ∆τ � 4 × 10−15 s.
Thus 100 keV electrons, for which v = 1.64 × 108 m s−1, have a coherence
length ∆z = v∆τ = 600 nm � 2×105λ. Möllenstedt and Wohland [3.23] pro-
duced path differences ∆s of the order of ∆z using a biprism combined with
a Wien filter and confirmed that the biprism interference pattern decreases in
amplitude if ∆s � ∆z.

The influence of spatial and temporal coherence on phase contrast is dis-
cussed in Sects. 6.4.2 and 6.4.3. For further discussion of coherence and the
introduction of coherence functions, see [3.24, 3.25].

The biprism experiments shed light on another important aspect of wave
optics. In particle optics, the concept of a trajectory is used. In our example,
the particle can pass either side of the wire. In wave optics, the wave of a
single electron passes on both sides of the wire simultaneously and we can
observe only the probability of detecting the electron at some position x. It is
therefore nonsense to ask on which side the electron has passed. If we put a
detector on one side of the wire, half of the total number of electrons will be
detected, but we thereby suppress all wave amplitudes on this side and will
observe no interference pattern.

Introduction of a thin foil on one side of the wire causes a phase shift (3.18)
given by the inner potential Ui (Sect. 3.1.3). The phase shift can be measured
accurately by using an electron interference microscope, which images both the
specimen and an interference pattern. It is advisable to use a simple geometry
for measuring, such as evaporated stripes [3.12] or circular areas [3.14].

3.2 Fresnel and Fraunhofer Diffraction

3.2.1 Huygens’ Principle and Fresnel Diffraction

In wave optics, all other wavefronts can be calculated once the shape of one
of them is known by using the Kirchhoff diffraction theory based on the wave
equation (3.19). However, the simpler treatment offered by Huygens’ principle
can also be used in electron optics; this states that each surface element dS
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Fig. 3.5. Illustration of Huygens’ principle and Fresnel zones showing how the wave
amplitude at the point P is obtained by summing the amplitudes of the Huygens
wavelets from a spherical wavefront of radius r.

of a wavefront generates a secondary spherical wave with amplitude

dψ =
A(θ)
iλ

ψ
e2πikR

R
dS, A(θ) = (1 + cos θ)/2, (3.28)

where ψ denotes the amplitude of the incident wave at dS and θ the angle of
emission to the normal of the wavefront. A new wavefront is generated by the
superposition of all of the secondary waves (Fig. 3.5). At a point P in front of
the wavefront, the amplitudes of all the secondary waves have to be summed,
considering their phase shifts. The factor A(θ) is unity in the direction of the
propagating wave and decreases with increasing θ. For the reverse direction, A
is zero. The exact form of A(θ) is not important for the following calculation.
The factor 1/i = exp(–iπ/2) in (3.28) represents a phase shift of −π/2 relative
to the incident wave.

We apply Huygens’ principle to the propagation of a spherical wave
(Fig. 3.5). The known wavefront is thus spherical with radius r and ampli-
tude ψ (3.8). The surface element dS = rdχ · 2πr sinχ by using the spherical
polar coordinates r and χ. The distance R to the point P can be calcu-
lated from R2 = r2 + (r + R0)2 − 2r(r + R0) cos χ, from which we obtain
2RdR = 2r(r+R0) sin χdχ, and it follows that dS = 2π[r/(r+R0)]RdR. The
amplitude ψP at P is obtained by integration over all the secondary waves,

ψP =
∫
S

A(θ)
iλ

AQ
e2πikr

r

e2πikR

R
dS

=
2πAQ e2πikr

iλ(r + R0)

Rmax∫
R0

A(θ)e2πikRdR. (3.29)
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Fig. 3.6. Amplitude-phase
diagram for the integral in
(3.29).

The result can be established by means of an amplitude-phase diagram
(APD) (Fig. 3.6). The term exp(iϕ)dR can be represented in the complex
number plane by a line element dR inclined at an angle ϕ to the real axis.
The integration in (3.29) means adding infinitesimal line elements dR with
increasing ϕ = 2πkR, resulting in a circle. The radius of the circle decreases
because of the decrease of A(θ) with increasing θ. The result is a spiral that
converges to the center of the circle. Starting from the lower limit of integra-
tion, R = R0, the integral reaches its greatest value when ϕ = 2πk(R−R0) = π
or R − R0 = λ/2. The value of the integral then decreases again because the
phase shift of the secondary wave becomes greater than π. This is the basic
idea of the Fresnel-zone construction. If a sphere of radius R = R0 + λ/2
centered at P is drawn, as in Fig. 3.5, the first Fresnel zone is obtained, as
indicated by the hatched area on the wavefront, which contributes to the
amplitude ψP with a positive value. The second Fresnel zone, between the
corresponding radii R0 + λ/2 and R0 + λ, results in a negative contribution,
the next Fresnel zone again gives a positive contribution, and so on with al-
ternating signs. The convergence of the APD to the center of the circle means
that the integral in (3.29) becomes only half of the value ψP of the first Fresnel
zone. This results in the following value for the integral in (3.29):

Rmax∫
R0

A(θ)e2πikRdR =
1
2

R0+λ/2∫
R0

e2πikRdR = − 1
2πik

e2πikR0 . (3.30)

Substituting this value in (3.29) gives

ψP = AQ exp[2πik(r + R0)]/(r + R0). (3.31)

This is the expected formula for the wavefront at a distance r + R0 from
the point source. This simple example demonstrates the power of Huygens’
principle.

We now use Huygens’ principle with another choice of coordinates, which
directly yields Fresnel diffraction at an edge (Sect. 3.2.2). The surface element
dS is placed in an x-y plane normal to the line from the source Q to the point P
(Fig. 3.7). The distance r becomes
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Fig. 3.7. Calculation of wave amplitude at a point P behind an opaque edge.

r = (r2
0 + x2 + y2)1/2 = r0

(
1 +

x2 + y2

r2
0

)1/2

= r0

(
1 +

x2 + y2

2r2
0

+ . . .

)
, (3.32)

with a corresponding formula for R if r0 is replaced by R0. Substitution of
(3.32) into (3.29) results in (3.33); A(θ) has been omitted because the integral
already converges for small values of x and y, for which A(θ) = 1:

ψP =
AQ exp[2πik(r0 + R0)]

iλr0R0

+∞∫
−x0

+∞∫
−∞

exp
(

2πikx2 r0 + R0

2r0R0

)

× exp
(

2πiky2 r0 + R0

2r0R0

)
dxdy. (3.33)

The substitutions u = x

(
2(r0 + R0)

λr0R0

)1/2

and v = y

(
2(r0 + R0)

λr0R0

)1/2

give

ψP =
AQ exp[2πi(r0 + R0)]

2i(r0 + R0)

+∞∫
−u0

exp(iπu2/2)du
+∞∫
−∞

exp(iπv2/2)dv

=
AQ exp[2πi(r0 + R0)]

i(r0 + R0)
1
2
[C(u) + iS(u)]+∞

−u0
[C(v) + iS(v)]+∞

−∞ , (3.34)

where C(u) and S(u) are the tabulated Fresnel integrals and x0 replaces u0.
C(u) + iS(u) produces the Cornu spiral in the APD of Fig. 3.8a. The more
complicated shape of the APD as compared with Fig. 3.6 results only from the
different choice of coordinate system. The point of convergence is –0.5(1+i)
for the limit of integration u → −∞ and 0.5(1+i) for u → +∞. The total
amplitude is obtained by connecting the two points of convergence and is
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Fig. 3.8. (a) Amplitude-phase
diagram (Cornu spiral) for one of
the integrals in (3.34). (b) Inten-
sity distribution of Fresnel fringes
in the Fresnel diffraction pattern
of an opaque edge.

hence 1 + i. Because we have to consider the product of two integrations
in the x and y directions, the two quantities in square brackets in (3.34)
give (1 + i)2 = 2i, and again we obtain the expected value ψP of the wave
excitation at P at a distance r0 + R0 from the source Q.

3.2.2 Fresnel Fringes

The last section has shown that the wave amplitude at a point of a wavefront
and the wave propagation can both be described by Huygens’ elementary
waves and Fresnel integrals. This formalism will now be applied to electron-
opaque obstacles. One important example is the appearance of Fresnel dif-
fraction fringes at opaque half-planes (Fig. 3.9).

At a distance x0 from the shadow of a half-plane (Fig. 3.7), the intensity is
obtained by integration in the x direction from x0 to +∞. In the y direction,
we again consider stripes of width dy from −∞ to +∞, and the integral in the
y direction has the value 1 + i, as before. The amplitude contribution from the
x direction is obtained by connecting the point of convergence 0.5 + 0.5 i for
x0 = u = +∞ to the corresponding point u = −x0[2(r0+R0)/λr0R0]1/2 on the
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Fig. 3.9. Numerous Fresnel fringes around a hole in a carbon foil obtained with a
highly coherent field-emission gun.

Cornu spiral. The coordinate u is the arc length along the Cornu spiral. At the
point (3) of the spiral farthest from the positive-convergence point, we obtain
a maximum of amplitude and intensity. In Fig. 3.8a,b, further corresponding
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points on the Cornu spiral and in the intensity distribution are numbered. In
all practical cases, r0 � R0, a relatively accurate formula can be obtained for
the positions of the maxima un or xn from the condition that the phase in
the integral of (3.34) will be πu2/2 = π(2n− 5/4) for n = 1, 2, . . . or, in other
words, that the tangent to the Cornu spiral is inclined at an angle of –45◦ to
the real axis. This condition results in

un =
√

(8n − 5)/2; xn =
√

λR0(8n − 5)/4. (3.35)

The intensity distribution of these Fresnel fringes in a plane at a distance
R0 below an edge can be imaged by defocusing the objective lens [3.26]. Obser-
vation of these Fresnel fringes is important for the recognition and correction
of astigmatism (Sect. 2.3.4). The number of Fresnel fringes visible is a measure
of the spatial coherence of the electron beam. Figure 3.9 shows many Fresnel
fringes around a hole in a supporting film illuminated with a field-emission
gun. The influence of the spherical aberration of the objective lens on the
intensity and position of Fresnel fringes has to be considered [3.27] for trans-
parent supporting films. The decrease of wave amplitude caused by scattering
and the phase shift due to the inner potential Ui also have an effect [3.28, 3.29].
Fresnel fringes can likewise be used to characterize grain boundaries [3.30].

If the source has a finite size ∆a, the specimen is irradiated with an angular
aperture αi = ∆a/2r0, which causes blurring of the Fresnel diffraction pattern
proportional to 2αiR0. The intensity distribution with such partially coherent
illumination is given by the convolution of the coherent distribution with
the geometric shadow distribution of the source at a distance R0. Because
the distances between the diffraction maxima xn+1 − xn (3.35) decrease with
increasing n, the diffraction maxima of high order disappear first, and only one
Fresnel maximum can be observed with a thermionic cathode when a larger
illumination aperture necessary for visual observation of the viewing screen
at high magnification is used. A small illumination aperture, use of an image
intensifier or CCD camera, and observation on a TV screen are necessary
to see more than one fringe. All of the maxima are blurred when the angular
aperture αi is very large, as in the case of incoherent illumination; the intensity
distribution is then the same as that of the purely geometric shadow of the
edge thrown by an extended source.

3.2.3 Fraunhofer Diffraction

Fresnel diffraction goes over into Fraunhofer diffraction if a plane incident
wave is used and if the diffraction pattern is observed at an infinite distance.
Alternatively, this pattern can be observed in the focal (diffraction) plane of
a lens (Fig. 3.10). A parallel beam inclined at a small angle θ to the optical
axis converges to a point in this plane at a distance fθ from the optic axis.
No further phase shifts occur if the lens is aberration-free. The exit wave
amplitude after passing the specimen can be described by

ψ = ψ0as(r) exp[iϕs(r)] exp(2πikz) = ψs(r) exp(2πikz) (3.36)
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Fig. 3.10. Ray diagram
for image formation by an
objective lens; from the
wavefronts (– – –), the path
differences ∆sg and ∆s′g can
be derived.

(r: radius vector in the specimen plane from the origin on the optic axis,
as(r) ≤ 1: local decrease of amplitude (absorption), and ϕs(r): phase shift
caused by the specimen).

Furthermore, a phase shift ϕg has to be introduced that results from the
geometric path difference of the plane wavefront in the direction θ. Figure 3.11
shows that the two points O and P separated by a distance r correspond to
an optical path difference

∆sg = u0 · r − u · r (3.37)

(u0 = λk0 and u = λk are unit vectors in the direction of the incident and
scattered waves, respectively). The phase difference is given by

ϕg =
2π

λ
∆sg = −2π(k − k0) · r = −2πq · r. (3.38)

Figure 3.11 shows that

|k − k0| = |q| = 2k sin
θ

2
� θ

λ
. (3.39)

A diffraction grating with period Λ (lattice spacing) generates a diffraction
maximum at an angle sinθ � θ = λ/Λ. This implies that q in (3.37)–(3.39) is
equal to Λ−1; it is known as the spatial frequency by analogy with the relation
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Fig. 3.11. Demonstration of the path-
length difference ∆sg caused by scattering
at two points O and P.

ν = T−1 between the temporal frequency and the period T . From now on, we
shall use q as a coordinate in the diffraction plane.

The amplitude F (q) in the diffraction plane can be obtained by integration
over all of the surface elements dS = d2r of the specimen plane,

F (q) =
∫
S

ψs(r) exp(iϕg)dS =
∫
S

ψs(r) exp(−2πiq · r)d2r. (3.40)

This shows that F (q) is the Fourier transform of ψs(r).

3.2.4 Mathematics of Fourier Transforms

This section contains a short review of the mathematics of Fourier transforms,
which are important not only in the description of Fraunhofer diffraction and
electron diffraction at crystal lattices but also in the electron-optical the-
ory of image formation. For simplicity, we normally discuss one-dimensional
functions f(x). There is no difficulty in extending this to two- and three-
dimensional Fourier transforms (see the examples in Table 3.2).

Let f(x) be a real or complex function of the real variable x. The Fourier
transform of f(x) is defined by the mathematical operation F:

F{f(x)} = F (q) =
+∞∫
−∞

f(x)e−2πiqxdx. (3.41)

f(x) can be obtained from F (q) by the inverse Fourier transform F−1, which
has the opposite sign in the exponent:

F−1{F (q)} = f(x) =
+∞∫
−∞

F (q)e+2πiqxdq. (3.42)
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The following relations can be obtained from the definition (3.41) of a Fourier
transform:

1) Linearity

F{af(x) + bg(x)} = aF (q) + bG(q). (3.43)

2) Translation theorem

F{f(x − x′)} = F (q)e−2πiqx′
or F−1{F (q − q′)} = f(x)e+2πiq′x. (3.44)

3) Scale change

F{f(ax)} =
1
|a|F

( q

a

)
or F−1

{
F
( q

a

)}
= |a|f(ax). (3.45)

Table 3.2 contains concrete examples of Fourier transforms. Example 1a,
a rectangular function (the slit in a diffraction experiment), will be calculated
in detail as an example. Because of the Euler relation exp(2πiqx) = cos(2πqx)
+ i sin(2πqx), the last sine term can be omitted in the integration of (3.41)
owing to the antisymmetry of this term:

F1(q) =
+∞∫
−∞

f1(x)e2πiqxdx =
+a/2∫
−a/2

cos(2πqx)dx = a
sin(πqa)

πqa
. (3.46)

If the width of the slit a tends to zero, a δ-function results (the point
source in Example 1b). The width of the diffraction maximum in F1(q) then
goes to infinity. This means that the diffraction amplitude F (q) of a point
source is isotropic in all directions q. The Fourier transform of a δ-function
at the position b relative to the origin (Example 1c) is obtained by using the
translation theorem (3.44).

Further examples are shown in Table 3.2 - a rectangular slit (2), a paral-
lelepiped (3), a circular diaphragm (4) and a sphere (5) - illustrating Fourier
transforms of functions in more than one dimension.

A Gaussian function (Example 6) is again a Gaussian function after a
Fourier transform but with the reciprocal half-width.

The Fourier transform F7(q) of a one-dimensional point lattice with N
points distance d apart shows principal maxima with spacing 1/d if the nu-
merator and denominator of F7(q) simultaneously become zero. There are
N − 1 zeros between these principal maxima, where only the numerator is
zero. The widths of the principal maxima decrease in proportion to 1/Nd,
and the amplitudes of the subsidiary maxima are further decreased. Example
7 becomes Example 11 for N → ∞.

Convolution Theorem for Fourier Transforms. This theorem is of in-
terest for calculating Fourier transforms of a product or a convolution of two
functions each of whose Fourier transforms is known. We first introduce the
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Table 3.2. Examples of Fourier transforms.
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Table 3.2. (continued)
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concept of convolution of two functions f(x) and g(x). Let us consider, for
example, measurements of the intensity distribution f(x) of a photographic
emulsion with a densitometer. Let g(x) be the slit function f1(x) introduced
in Table 3.2 describing the transmission of a slit. The slit moves across the
function f(x), and at a position x all values of the function f(x) between
the limits x − a/2 and x + a/2 will be integrated. The resulting intensity
curve is a convolution of the functions f(x) and g(x), which can be described
mathematically by

C(x) =
+∞∫
−∞

f(ξ)g(x − ξ)dξ = f(x) ⊗ g(x). (3.47)

The symbol ⊗ stands for a convolution. If F (q) and G(q) are the Fourier
transforms of f(x) and g(x), respectively, then the convolution theorem states
that

F{f ⊗ g} = F (q) · G(q), (3.48)

F{f · g} = F (q) ⊗ G(q). (3.49)

The proof of the first relation passes through the stages of reversal of the
order of integration, use of the translation theorem (3.44), and withdrawal of
G from the integral because it no longer depends on ξ:

F{f(x) ⊗ g(x)} =
+∞∫
−∞

[
+∞∫
−∞

f(ξ)g(x − ξ)dξ

]
e−2πiqxdx
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=
+∞∫
−∞

[
+∞∫
−∞

g(x − ξ)e−2πiqxdx

]
f(ξ)dξ

=
+∞∫
−∞

G(q)e−2πiqξf(ξ)dξ = F (q) · G(q). (3.50)

Some applications of this convolution theorem will now be discussed in
detail. The diffraction grating consisting of N slits with spacing a (Example 8)
can be described as the convolution of a discrete point function f7(x) that
coincides with the centers of the slits with the function f1(x) of a single slit.
By using (3.48), the Fourier transform F8(q) is equal to the product of the
Fourier transforms F1(q) of the single slit and F7(q) of the lattice function. The
slit function F1(q) therefore acts as an envelope, modulating the amplitudes
of the principal maxima.

Examples 9 and 10 contain an application of (3.49) to a wave of infinite
extent, as already discussed in Sect. 3.1.2 and illustrated in Fig. 3.1b. The
Fourier transform F9(q) of the infinite sine wave f9(x) has nonzero values
only for q = ±1/Λ. A finite wave can be described by the product f10(x) =
f1(x) · f9(x), which is zero for x < −a/2 and x > a/2. The Fourier transform
is obtained from (3.49) by a convolution of the Fourier transforms of the
individual functions: F10(q) = F9(q)⊗F1(q). This means that the δ-functions
at the positions q = ±1/Λ will be broadened by the function F1(q). If the
sine wave does not decrease abruptly to zero at x = ±a/2 but is multiplied
by a Gaussian function f6(x), the example shown schematically in Fig. 3.1b
is obtained.

An infinite row of points (Example 11), with spacings d, has a Fourier
transformconsistingofaninfinitenumberofδ-functionsatthepositionsqn = n/d
(n integer), whereas only a first-order maximum appears for the function f9(x).
Each δ-function at qn corresponds to a function exp(2πiqnx) (Example 1c). An
infinite periodic function fP(x) with the period d (Example 12) can be described
by a convolution of the infinite point row (Example 11) with a function f(x)
defined in the interval −d/2 < x < +d/2. The Fourier transform of f(x) is
therefore the envelope of the maxima of δ(q − qn). At the positions qn, the
Fourier amplitudes of the periodic function fP become

Fn =
1
d

+∞∫
−∞

f(x) exp(−2πiqnx)dx. (3.51)

The inverse Fourier transform of FP(x) =
+∞∑
−∞

Fnδ(q− qn) gives the description

of a periodic function in terms of a sum of sine and cosine terms (Fourier sum):,

fP(x) =
+∞∑
−∞

Fn exp(2πiqnx)

=
a0

2
+

+∞∑
n=1

[an cos(2πqnx) + bn sin(2πqnx)], (3.52)
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where the coefficients an and bn can be calculated from

an =
2
d

+d/2∫
−d/2

f(x) cos
(
2π

n

d
x
)

dx; bn =
2
d

+d/2∫
−d/2

f(x) sin
(
2π

n

d
x
)

dx. (3.53)

If this formula is applied to a periodic rectangular function, a diffraction
grating of slit width a = d/2, for example, all of the bn become zero because
f(x) is a symmetric function and

a0 =
1
2
, an =

2
πn

sin
nπ

2
,

which means an =

⎧⎨
⎩

0 for n even

2
πn (−1)(n−1)/2 for n odd .

(3.54)

Figure 3.12 shows how the rectangular function can be approximated suc-
cessively by an increasing number of cosine functions of the Fourier sum (3.52)
with the coefficients (3.54) up to the fifth order. The last curve in Fig. 3.12
can be observed experimentally as the intensity distribution of a grid in the
image plane if all diffraction maxima with n > 5 are removed by a diaphragm
in the focal plane of the objective. A pure cosine wave will be observed when

Fig. 3.12(a–c). Approxima-
tion of a step function by an
increasing number of terms of
a Fourier series.
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only the first maximum is transmitted by the diaphragm (the first curve in
Fig. 3.12). The image will then contain only the information that there is a
periodicity d in the specimen but no information about the detailed form of
the periodic function.

Fourier transforms of electron-microscope images can be obtained by
means of an optical diffractometer (Sect. 6.3.6) or by digital computation us-
ing a fast Fourier transform (FFT) algorithm. In the latter case, the Fourier
transform or its inverse will be calculated using a limited number of discrete
image points. The intensity distribution σ(x, y) in the image can be obtained
by digital recording over a square of side length L. The smallest spatial fre-
quency will be q = 1/L. All higher spatial frequencies are multiples of this
frequency: spectral points with the coordinates qxn = n/L and qym = m/L
(m,n integer). The Fourier transform S(q) of σ(x, y) inside the square of area
L2 can be calculated from the sum

S(qx, qy) = F{σ(x, y)}

=
+N∑

n=−N

+N∑
m=−N

Fnm
sin[πL(qxn − qx)]

πL(qxn − qx)
sin[πL(qym − qy)]

πL(qym − qy)
(3.55)

with the coefficients

Fnm =
1

N2

N−1∑
i=0

N−1∑
j=0

σ(xi, yi) exp[−2πi(qxnxi + qymyj)]. (3.56)

If δ denotes the resolution of the electron-microscope image, then qmax =
1/δ = N/L will be the highest spatial frequency when the number of sampling
points is N2 (sampling theorem of Shannon). The area of the densitometer slit
or the electron detector should be of the order of δ2 to ensure good averaging
and to reduce the noise.

3.3 Wave-Optical Formulation of Imaging

3.3.1 Wave Aberration of an Electron Lens

The spherical aberration can be treated in wave optics in the following manner.
An object point P emits a spherical, scattered wave with concentric wavefronts
of equal phase (Fig. 2.10). An ideal lens would introduce the phase shifts
necessary to create a spherical wave beyond the lens, converging onto the
image point P′. The rays of geometric optics are trajectories orthogonal to
the wavefronts, and the wave amplitudes scattered into different angles θ
of the cone with the aperture αo are summed in the image point with equal
phase. A radial decrease is observed in the intensity distribution of the blurred
image point only because of the finite aperture (Airy disc, see Fig. 3.16b).
The spherical aberration reduces the focal length for rays at larger θ. Because
the rays and wavefronts are orthogonal, the wavefronts beyond a lens with
spherical aberration are more strongly curved in the outer zones of the lens;
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Fig. 3.13. Ray diagram for evaluating the angular deviations ε caused by (a) spher-
ical aberration, (b) change ∆a of specimen position, and (c) change ∆f of focal
length.

there is a difference ∆s of optical path relative to the spherical wavefronts
of an ideal lens (Fig. 2.10). The wave amplitudes are therefore not all in
phase at the Gaussian image point. The smallest diameter of the intensity
distribution, similar to an Airy disc, will be observed in front of the Gaussian
image plane (Fig. 3.16c). A phase shift caused by defocusing of the lens also
has to be considered; this can be generated either by a displacement ∆a of
the specimen or by a change ∆f of focal length.

Figure 3.13 will be used to calculate the dependence of the phase shift
W (θ) = 2π∆s/λ, which is known as the wave aberration, on the scattering
angle θ. First, however, a comment on its sign should be added, because
different conventions are found in the literature. By using exp(2πikz) instead
of exp(−2πikz) for a plane wave in Sect. 3.1.1, the convention is made that the
phase increases with increasing z, that is, the direction of wave propagation.
Because the optical path length along a trajectory in Fig. 2.10 is decreased
by ∆s, the phase shift W (θ) is also decreased. This phase shift therefore has
to be represented by a phase factor exp[–iW (θ)] with a negative sign in the
exponent (see also comments in [3.31, 3.32]).

A ray that leaves the specimen point P at a scattering angle θ reaches
the lens at a distance R � aθ (θ � a few tens of mrad) from the optic axis
(Fig. 3.13a). The ray intersects the optic axis in the Gaussian image plane at
P′ if there is no spherical aberration and at P′′, a distance ∆r = Csθ

3M from
P′ in this plane, if the spherical aberration does not vanish; see (2.57). This
causes a small angular deviation,

εs � ∆r/b = Csθ
3M/b. (3.57)
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By using the relation θ = R/a, M = b/a, and a � f , (3.57) becomes

εs = CsR
3/f4. (3.58)

We now assume that there is no spherical aberration and that the specimen
distance a is increased by ∆a (Fig. 3.13b). The focal length f of the lens is
unchanged. The variation ∆b of the image distance can be calculated from
the well-known lens equation

1
f

=
1

a + ∆a
+

1
b + ∆b

=
1
a

(
1 − ∆a

a
+ . . .

)
+

1
b

(
1 − ∆b

b
+ . . .

)
. (3.59)

Solving for ∆b and using 1/f = 1/a + 1/b, we obtain

∆b = −∆ab2/a2. (3.60)

The corresponding angular deviation is obtained from

εa = |∆b|θ′/b = ∆aR/f2 (3.61)

by using θ′ � R/b.
A third case (Fig. 3.13c), where the focal length is changed to f +∆f , can

be treated in a similar way. The lens equation 1/(f +∆f) = 1/a+1/(b+∆b)
gives ∆b = ∆f b2/f2 and so

εf = −|∆b|θ′/b = −∆f R/f2. (3.62)

Adding the three angular deviations of the geometric optical trajectories,
we obtain the total angular deviation

ε = εs + εa + εf = Cs(R3/f4) − (∆f − ∆a)R/f2. (3.63)

Figure 3.14 shows an enlargement of part of the lens between two trajec-
tories and their orthogonal wavefronts, which reach the lens at distances R
and R + dR from the optic axis. The angular deviation causes an optical path
difference ds = εdR between the two trajectories. These path differences ds
have to be summed (integrated) to get the total path difference ∆s or the
phase shift W (θ) relative to the optic axis:

Fig. 3.14. Part of the outer zone
of a lens at a distance R from the
optic axis showing the relation be-
tween the angular deviation ε and
the optical path difference ds =
εdR.
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W (θ) =
2π

λ
∆s =

2π

λ

R∫
0

ds =
2π

λ

R∫
0

εdR

=
2π

λ

[
1
4
Cs

R4

f4
− 1

2
(∆f − ∆a)

R2

f2

]
. (3.64)

With R/f � θ and the defocusing ∆z = ∆f − ∆a, the so-called Scherzer
formula [3.33] is obtained,

W (θ) =
π

2λ
(Csθ

4 − 2∆zθ2), (3.65)

or by introducing the spatial frequency q = θ/λ (3.39),

W (q) =
π

2
(Csλ

3q4 − 2∆zλq2). (3.66)

In more accurate calculations, the change of the positions of the principal
planes of the lens and the variation of Cs when the lens excitation is changed
also have to be considered. Axial astigmatism (Sect. 2.3.3) can be included in
(3.65) by introducing an additional term

WA =
π

2λ
∆fA sin[2(χ − χ0)], (3.67)

which depends on an azimuthal angle χ.
The relation (3.65) is important for the discussion of phase contrast and

for the study, in wave-optical terms, of the formation of a small electron
probe for scanning transmission electron microscopy (STEM). Because the
wave aberration depends on the two parameters Cs and λ, it is convenient to
discuss the wave aberration in terms of reduced coordinates [3.34, 3.35],

θ∗ = θ (Cs/λ)1/4 and ∆z∗ = ∆z (Csλ)−1/2. (3.68)

This results in the reduced wave aberration
W (θ∗)

2π
=

θ∗4

4
− θ∗2

2
∆z∗. (3.69)

Figure 3.15 shows W (θ∗) for different values of reduced defocus ∆z∗ =
√

n
(n an integer), for which the minima of W (θ∗) are −nπ/2.

Defocusing with positive ∆z is called underfocusing and defocusing with
negative ∆z is called overfocusing. Scattered electron waves are shifted with
a phase π/2 relative to the unscattered wave (Sect. 6.2.1). For this reason,
a reduced defocusing ∆z∗ = 1 (Scherzer focus) is advantageous for phase
contrast because W (θ) has the value −π/2 over a relatively broad range of
scattering angles or spatial frequencies in the vicinity of the minimum for
∆z∗ = 1 in Fig. 3.15.

3.3.2 Wave-Optical Theory of Imaging

The rays from an object point P are reunited by the lens at the image point P′

(Fig. 3.10), a distance x′ = −Mx from the optic axis, where x is the off-axis
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Fig. 3.15. Wave aberration W (θ∗) as a function of the reduced scattering angle
θ∗ for various reduced focusing distances ∆z∗. The upper scale shows the values of
Λ = λ/θ for the special case E = 100 keV and Cs = 2 mm.

distance of P (M = b/a: magnification). Rays with equal scattering angles
from different points of the specimen intersect in the focal plane of the lens.
It has already been shown in Sect. 3.2.3 that the wave-amplitude F (q) in
this plane is obtained from the exit wave-amplitude distribution ψs(r) behind
the specimen by a Fourier transform. The wave amplitudes from different
points of this q plane have to be summed at the image point P′, taking into
account differences of the optical path. Just as we defined the geometrical
path difference ∆sg in Sect. 3.2.3, we now formulate the path difference ∆s′g
from Fig. 3.10 using r = fθ, θ′ = x/f ,

∆s′g = rθ′ = +λqx = −∆sg or ∆s′g = +λq · r, (3.70)

for the two-dimensional q plane. This corresponds to a phase shift ϕ′
g = 2πq·r.

As in (3.40), the wave amplitude ψm at the image point P′ is obtained by
integrating over all elements of area d2q of the focal plane

ψm(r) =
1
M

∫ ∫
F (q)e2πiq·rd2q =

1
M

ψs(r). (3.71)

Thus, ψm is obtained as the inverse Fourier transform of F (q). The image
intensity I = ψmψ∗

m decreases as M−2 because the electrons are spread over
an area M2 times as large as the corresponding specimen area.
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For aberration-free imaging, there will be no further phase shift, apart
from ϕ′

g, and the integration in (3.71) will be taken over the whole range of
spatial frequencies q that appear in the specimen. In practice, a maximum
scattering angle θmax = αo (objective aperture) corresponding to a maximum
spatial frequency qmax is used. This limitation on spatial frequencies by an
objective diaphragm can be expressed in terms of a multiplicative masking
function M(q), which would have the values M(q) = 1 for q = |q| < qmax and
M(q) = 0 for |q| > qmax in the normal bright-field mode. Because the wave
aberration W (q) in (3.66) representing the spherical aberration and defocusing
depends only on q, the action of this contribution can be represented by
a multiplication of the amplitudes at the focal plane by the phase factor
exp[–iW (q)]. Equation (3.71) therefore has to be modified to

ψm(r′) =
1
M

∫ ∫
F (q) [e−iW (q)M(q)]︸ ︷︷ ︸

H(q)

e2πiq·rd2q. (3.72)

Fig. 3.16. (a) The limiting rays M and M′, which produce an image of the point P at
the image point P′

0 in the Gaussian image plane G. (b) and (c) show the enlarged
intensity distribution near P′

0 and lines of equal intensity for an aberration-free
lens (b) and for a lens with spherical aberration (c). The curve at the bottom of
(b) represents the cross section I(r) through the Gaussian focus (Airy disc). The
horizontal axis corresponds to the distance to the optical axis and the vertical axis
to the defocus.
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H(q) is known as the pupil function. The convolution theorem (3.49) can be
applied to (3.72) as

ψm(r′) =
1
M

ψs(r) ⊗ h(r) =
1
M

∫ ∫
ψs(r1)h(r − r1)d2r1, (3.73)

where h(r) = F−1{H(q)} is the inverse Fourier transform of the pupil function
H(q). This means that sharp image points will not be obtained. Instead, each
image point will be blurred (convolved) with the point-spread function h(r).
The image of a point source that scatters in all scattering angles with uniform
amplitude [F (q) = const and ψs(r) = δ(0)] would be the function h(r)/M .

We consider now the case W (q) = 0 (no spherical aberration or defocus-
ing). The image amplitude of a point source can be calculated as the Fourier
transform of M(q) (see Example 4 in Table 3.2),

ψm(r) ∝ h(r) ∝ J1(x)
x

with x =
2π

λ
αor. (3.74)

This amplitude distribution, which corresponds to the intensity distrib-
ution I(x) ∝ [J1(x)/x]2, of the blurring function of a point source with an
aberration-free but aperture-limited objective lens is called the Airy distrib-
ution (Fig. 3.16b). The intensity distribution for ∆z �= 0 is symmetrical in
∆z and is plotted in Fig. 3.16b as lines of equal intensity. The same situation
is shown in Fig. 3.16c with spherical aberration present. The distribution is
asymmetric in ∆z; the smallest error disc occurs at underfocus, in agreement
with the geometrical-optical construction of Fig. 2.10. The dashed line is the
caustic of geometrical optics. Further discussion of the wave-optical imaging
theory will be found in Sect. 6.2.
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Elements of a Transmission Electron
Microscope

Not only does the electron gun of an electron microscope emit electrons into
the vacuum and accelerate them between cathode and anode, but it is also
required to produce an electron beam of high brightness and high temporal
and spatial coherence. The conventional thermionic emission from a tungsten
wire is limited in temporal coherence by an energy spread of the emitted
electrons of the order of a few electron volts and in spatial coherence by the gun
brightness. Schottky-emission and field-emission guns are newer alternatives
for which the energy spread is less and the gun brightness higher.

The condenser-lens system of the microscope controls the specimen il-
lumination, which ranges from uniform illumination of a large area at low
magnification, through a stronger focusing for high magnification, to the pro-
duction of an electron probe of the order of a few nanometers or even less
than a nanometer in diameter for scanning transmission electron microscopy
or for microanalytical methods.

The useful specimen thickness depends on the operation mode used and the
information desired. Specimen manipulation methods inside the microscope
are of increasing interest but are restricted by the size of the specimen and
by the free space inside the polepiece system of the objective lens.

The different imaging modes of a TEM can be described by ray diagrams,
as in light optics, which can also be used to evaluate the depth of focus or to
establish a theorem of reciprocity between conventional and scanning trans-
mission electron microscopy. Electron prism spectrometers or imaging energy
filters allow electron energy-loss spectra (EELS) to be recorded and various
operating modes of electron spectroscopic imaging (ESI) and diffraction (ESD)
to be used.

Observation of the image on a fluorescent screen and image recording
on photographic emulsions can be replaced by techniques that allow digital,
parallel, and quantitative recording of the image intensity.
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4.1 Electron Guns

4.1.1 Physics of Electron Emission

Thermionic Emission. The conduction electrons in metals or compounds
have to overcome the work function φw if they are to be emitted from the
cathode into the vacuum. Figure 4.1 shows the dependence of potential energy
on a coordinate z normal to the surface. The potential energy V (z) of an
electron in front of a conducting surface at a distance z larger than the atomic
diameter can be calculated by considering the effect of a mirror charge with
opposite sign behind the surface; with an electric field E, the potential energy
V = −e|E|z is superposed on that of the mirror charge, giving

V (z) = φw − e2

16πε0

1
z
− e|E|z. (4.1)

Increasing the cathode temperature leads to a broadening of the Fermi
distribution f(E) at the Fermi level EF, and for high temperatures, electrons
in the tail of the Fermi distribution acquire enough kinetic energy to overcome
the work function φw. The current density jc (A m−2) of the cathode emission
can be estimated from Richardson’s law [4.1],

jc = AT 2
c exp(−φw/kTc), (4.2)

where k = 1.38 × 10−23 J K−1 is Boltzmann’s constant, Tc is the cathode
temperature, and A � 12×105 A K−2 m−2 is a constant that depends on the
cathode material.

Most metals melt before they reach a sufficiently high temperature for
thermionic emission. An exception is tungsten, which is widely used at a work-
ing temperature Tc of 2500–3000 K (melting point Tm = 3650 K). Lanthanum

Fig. 4.1. Potential energy V (z) of electrons at the metal–vacuum boundary. Elec-
trons with energies beyond the Fermi energy EF have to overcome the barriers φw

and φw−∆φw for thermionic or Schottky emission or can tunnel through the barrier
of width w for field emission.
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Table 4.1. Parameters of thermionic, Schottky, and field-emission cathodes at
E = 100 keV.

Characteristic parameters:
Cathode temperature Tc Tip radius r of pointed cathodes
Work function φw Diameter d of source
Emission current density jc Operating vacuum p
Gun brightness β at E = 100 keV Field strength |E| at cathode
Energy spread ∆E

Thermionic cathodes (field at cathode reduced by Wehnelt electrode)

Tungsten hairpin Pointed LaB6 rod
Tc = 2500–3000 K Tc = 1400–2000 K
φw = 4.5 eV φw = 2.7 eV
jc � (1 − 3) × 104 A/m2 jc � (2 − 5) × 105 A/m2

β = (1 − 5) × 109 A/m2 sr β = (1 − 5) × 1010 A/m2 sr
∆E = 1.5–3 eV ∆E = 1–2 eV
d = 20–50 µm d = 10–20 µm
p ≤ 10−3 Pa (1 Pa = 10−5 bar) p ≤ 10−4 Pa
|E| � 106 V/m

Point-source cathodes

Schottky emission Field emission
(Thermal emission from ZrO/W tip (Tunneling from cold or heated
at 1800 K with high electric field) tungsten tips)
Tc = 1800 K Tc = 300 K or � 1500 K
φw = 2.7 eV φw = 4.5 eV
jc � 5 × 106 A/m2 jc � 109 − 1010 A/m2

β = 2 × 1012 − 2 × 1013 A/m2 sr
∆E = 0.3–0.7 eV ∆E = 0.2–0.7 eV
r = 0.5–1 µm r ≤ 0.1 µm
d � 15 nm d � 2.5 nm
p ≤ 10−6 Pa p ≤ 10−8 Pa
|E| � 2 × 108 V/m |E| � 5 × 109 V/m

hexaboride (LaB6) cathodes with Tc = 1400–2000 K are also employed be-
cause their work function is lower (Table 4.1). The tungsten metal evaporates
continuously during operation, limiting the lifetime of the filament, which de-
creases from � 200 h to 5 h if Tc increases from 2500 K to 2900 K [4.2]. Also,
CeB6 cathodes are now offered commercially.
Schottky Emission. When the field strength E at the cathode is increased,
the overlap of potential energies in (4.1) results in a decrease ∆φw of the
work function (Schottky effect). At the maximum of (4.1), the effective work
function is lowered to [4.1]

φw,eff = φw − ∆φw = φw − e

√
e|E|
4πε0

. (4.3)
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Fig. 4.2. Schottky plot of emission current from a ZrO/W tip at different tip
temperatures [4.2].

This decrease can be neglected in normal thermionic cathodes. When using
a Schottky cathode with a radius r ≤ 1 µm at the tip and a field strength 108

V/m, the decrease is ∆φw � 0.4 eV. In contrast to field emission, discussed
below, the electrons still have to overcome the now lowered work function
φw,eff by their kinetic energy, which is furnished by heating the cathode. This
can be confirmed experimentally by a Schottky plot (Fig. 4.2). Substitution
of (4.3) in (4.2) shows that a semilogarithmic plot of the emission current
log I versus the square root of the electric field strength |E| results in a
straight line when the temperature of the tip is constant and |E| is increased
by increasing the extraction voltage [4.3]. As in a thermionic cathode, the
emission increases with increasing temperature of the tip. Beyond |E| = 4 ×
108 V/m, the stronger increase of emission indicates the onset of field emission;
the latter becomes independent of cathode temperature at higher |E| (4.4)
and a Fowler-Nordheim plot of log I versus 1/|E| then results in a straight
line.
Field Emission. The width b of the potential barrier at the metal–vacuum
boundary decreases with increasing E; for |E| ≥ 109 V m−1, using a tip radius
r ≤ 0.1 µm, the width b becomes less than 10 nm (Fig. 4.1) and electrons at
the Fermi level can penetrate the potential barrier by the quantum-mechanical
tunneling effect. This means that the electron waves near the Fermi energy are
reflected at the potential barrier but penetrate with an exponential decrease
of their amplitude ψ into the barrier. When the width b of the barrier is
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small, the amplitude at the vacuum side of the barrier is still appreciable and
the probability of tunneling across the barrier is proportional to ψψ∗. The
emitted electrons do not need to overcome the potential barrier and it is not
necessary to heat the cathode, whereas this is essential for thermionic and
Schottky emissions. If a field-emission source is heated, it is mainly to prevent
the adsorption of gas molecules.

The current density of the field emission can be estimated from the Fowler–
Nordheim formula (see also [4.4])

j =
k1|E|2

φw
exp

(
−k2φ

3/2
w

|E|

)
. (4.4)

The constants k1 and k2 depend only weakly on |E| and φw.

4.1.2 Energy Spread

The tail of the Fermi distribution f(E) = {1 + exp[(E − EF)/kTc]}−1, which
can overcome the work function φw, results for E > EF in a Maxwell–
Boltzmann distribution of the exit momenta p or energies E = p2/2m,

f(E) ∝ exp(−E/kTc). (4.5)

Electrons are emitted in all directions within the half-space; the electron mo-
tion is characterized by the tangential (t) and normal (n) components of p,
so that (4.5) has to be multiplied by the volume element (density of states)
2πp2dp of the momentum space to get the number of electrons with momenta
between p and p + dp or energies between E = (p2

t + p2
n)/2m and E + dE.

This yields the normalized total energy distribution (Fig. 4.3)

N(E)dE =
E

(kTc)2
exp(−E/kTc)dE, (4.6)

with a most probable energy Ep = kTc,
a mean energy 〈E〉 = 2kTc,
and a half-width ∆E = 2.45kTc.

(4.7)

Fig. 4.3. Maxwellian distribution
of electron energies emitted from a
thermionic cathode (〈E〉: mean en-
ergy, Ep: most probable energy, ∆E:
energy half-width).
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Thus, for a cathode temperature Tc of 2500 K, the half-width ∆E will
be 0.5 eV. This energy spread is superposed on the accelerating energy E =
eU . This theoretical value will occur only when the cathode is operated in
the saturation mode with low current density. In the normal operating mode
with a triode gun (Sect. 4.1.4), an anomalous energy spread is observed (the
Boersch effect [4.5]), with the result that ∆E � 1–2 eV and even worse. This
can be explained by Coulomb interactions of the electrons in the crossover
[4.6, 4.7, 4.8, 4.9]. The energy spread of a thermionic cathode increases with
increasing emission current and depends on the shape of the Wehnelt electrode
[4.10]. The energy spread of Schottky and field-emission guns is of the order
of ∆E = 0.2–0.7 eV; for the dependence on tip orientation and temperature,
see [4.11].

4.1.3 Gun Brightness

The components pt of the initial exit momenta tangential to the exit surface
result in an angular spread of the electron beam and limit the value of the
gun brightness β. This quantity is defined as the current density j = ∆I/∆S
per solid angle ∆Ω = πα2, where α denotes the half-aperture of the cone of
electrons that pass through the surface element ∆S,

β =
∆I

∆S∆Ω
=

j

πα2
. (4.8)

The maximum possible value βmax for a thermionic cathode can be estimated
from the following simplified model (Fig. 4.4) (see [4.12, 4.13] for details). The
components pt and pn are each described by a Maxwell–Boltzmann distribu-
tion (4.5) with mean-square values

〈p2
t 〉 = 〈p2

n〉 = 2m0kTc. (4.9)

The electron acceleration contributes an additional kinetic energy E = eU so
that, in all, using (2.11), we find

〈p2
n〉 = 2m0kTc + 2m0E(1 + E/2E0). (4.10)

The angular aperture α of a virtual electron source behind the cathode surface
can be obtained from the vector sum of pt and pn (Fig. 4.4): α = pt/pn or
〈α2〉 = 〈p2

t 〉/〈p2
n〉. Substituting (4.9) and (4.10) into (4.8) gives

βmax =
jc

π

[
1 +

E

kTc
(1 + E/2E0)

]
� jcE

πkTc
. (4.11)

This formula is valid even for nonuniform fields in front of the cathode.
Numerical values of the gun brightness are listed in Table 4.1. With

thermionic cathodes, the maximum value βmax can be attained by using op-
timum operating conditions (Sect. 4.1.4). Otherwise, lower values, which also
depend on the Wehnelt shape, are found, ranging from 0.1 to 0.5 βmax. The
angular spread is also increased by the Coulomb interactions in the crossover
(the lateral Boersch effect), again decreasing β.
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Fig. 4.4. Evaluation of the angular spread α of electrons emitted; with a transverse
exit momentum pt and a uniform electric field in front of the cathode, the trajectories
are parabolic.

This axial gun brightness β (that is, the brightness for points on the axis of
an electron-optical column) remains constant for all points on the axis, from
the anode to the final image. This invariance of axial gun brightness along
the optic axis will now be demonstrated by considering an aberration-free
lens with a diaphragm in front of it, though the result is true for real lenses
with aberrations. Lenses and diaphragms are typical elements of any electron-
optical system. We assume that an intermediate image of the source is formed
in the plane indicated by the suffix 1 (Fig. 4.5). The electron current density in
this intermediate image may have a Gaussian distribution (4.14). We consider
only the center of this distribution because we are interested only in the axial
brightness. A fraction ∆I1 of the total current passes through the area ∆S1

with an angular aperture α1 corresponding to a solid angle ∆Ω1 = πα2
1. The

gun brightness in this plane is

β1 =
∆I1

∆S1∆Ω1
=

∆I1

∆S1πα2
1

. (4.12)

The diaphragm in front of the lens cuts off a fraction of the current ∆I1, and
only a fraction

∆I2 = ∆I1
πα2

πα2
1

(4.13)
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Fig. 4.5. Demonstration of the conservation of gun brightness on the axis of an
electron-optical system in the presence of apertures and lenses.

will pass the diaphragm. This current is concentrated in an image area ∆S2 =
∆S1M

2, where M = b/a is the magnification, which can be smaller than unity
if the lens is demagnifying. The aperture is decreased to α2 = α/M because
tan α � α = R/a and α2 � R/b so that α2/α = a/b = 1/M . The gun
brightness in the image plane is β2 = ∆I2/∆S2∆Ω2. Substituting for the
quantities with the suffix 2 gives β1 = β2, which demonstrates the invariance
of β for this special case.

The invariance of β means that high values of the current density j at the
specimen can be obtained only by using large apertures of the convergent elec-
tron probe or beam. If it is essential to use very small apertures, for Lorentz
microscopy (Sect. 6.8) and small-angle electron diffraction (Sect. 8.1.5), for
example, correspondingly low values of j must be expected. The gun bright-
ness is therefore an important characteristic of an electron gun. The need
for high gun brightness has stimulated the development of LaB6 thermionic
cathodes and Schottky and field-emission guns.

4.1.4 Thermionic Electron Guns

The most widely used thermionic cathodes consist of a tungsten wire 0.1–0.2
mm in diameter bent like a hairpin and soldered on contacts. The wire is
directly heated by a current of a few amperes.
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LaB6 cathodes consist of small, pointed crystals [4.14, 4.15, 4.16, 4.17,
4.18]. They require indirect heating because their electrical resistance is too
high for direct-current heating. The heating power can be decreased by sup-
porting a small crystal between carbon rods or fibers or binding it to re-
fractory metals (rhenium or tantalum) that have a low rate of reaction with
LaB6. These cathodes need a better vacuum than tungsten cathodes to re-
duce the damage caused by positive-ion bombardment. They provide a higher
gun brightness, and the value of the energy spread is lower (Table 4.1). The
emission current is greatest for (100)-oriented tips, ten times higher than for
the (510) orientation [4.19].

A thermionic electron gun consists of three electrodes (triode structure):

1. the heated filament, which forms the cathode, at the potential ΦC = −U ;
2. the Wehnelt electrode, at a potential ΦW some hundreds of volts more

negative than the cathode; and
3. the grounded anode (ΦA = 0).

The electron optics of a triode electron gun is reviewed in [4.21]. Figure 2.1
shows the equipotentials Φ = const in a cross section through a triode gun
and Fig. 4.6 those near the cathode tip. In Fig. 4.6a, the negative bias of the
Wehnelt electrode is not great enough to decrease |E| at the cathode surface.

Fig. 4.6. Equipotentials φ =
const in front of the cathode
tip for (from a to c) increasing
negative bias −UW of the
Wehnelt electrode; electron
trajectories are shown with
an exit energy of 0.3 eV and
various angles of emission
[4.20].
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The zero equipotential intersects the tip around a circle. All of the electrons
emitted from a large cathode area (nonshaded) are accelerated. Beyond the
circle, the electric field strength is of opposite sign, and no electrons can leave
the shaded area. In Fig. 4.6b, the negative bias is further increased and the
area of emission is thus reduced. In Fig. 4.6c, the zero equipotential reaches
the tip of the cathode. No electrons will leave the cathode if the Wehnelt bias
is increased further.

Figure 4.6 also shows some electron trajectories, with an initial exit ener-
gy of 0.3 eV and different angles of emission. In Fig. 4.6b, the electrons en-
ter a more or less uniform electric field, which exerts small additive radial
force components on the electron trajectories; the cross section of the electron
beam passes through a minimum, known as the crossover, between the cath-
ode and the anode. This crossover acts as an effective electron source for the
electron optical system of the microscope. Large radial components of veloc-
ity (momentum) are produced near the zero equipotentials in Fig. 4.6a. The
corresponding electrons cross the axis and result in a hollow-beam cross sec-
tion. Radial components are also produced in Fig. 4.6c near the cutoff bias.
No further decrease of the crossover is observed, but the emission current
falls. Figure 4.7 shows enlarged images of the crossover and the transition
from hollow beam to optimum cross section as the gun filament current is
increased in an autobiased gun discussed below. A lower energy spread due to
the Boersch effect can be observed at moderate underheating corresponding
to the crossover profile of Fig. 4.7b.

The minimum diameter of the crossover is limited not only by the lens-
like action of the electric field in front of the cathode but also by the radial
components of the electron exit momenta. The Maxwellian distribution of
exit velocities gives the radial current-density distribution in the crossover an
approximately Gaussian shape:

j(r) = j0 exp[−(r2/r2
0)]. (4.14)

In practice, the Wehnelt electrode is biased not by a separate voltage
supply but by the voltage drop UW = IcRW across the resistor RW in the

Fig. 4.7. Enlarged images of the crossover of an autobiased tungsten-hairpin cath-
ode. From (a) to (c), the heating current of the gun is increased.
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high-tension supply line (Fig. 4.8) produced by the emission current Ic. The
resistance RW can be altered by means of a mechanical potentiometer or a vac-
uum diode, the filament heating of which is varied. It will now be shown that
this system is autobiasing. When UW is generated by an independent voltage
supply, the dependence of the emission current Ic on UW shown in Fig. 4.9a

Fig. 4.8(a,b). Generation of Wehnelt bias UW as a voltage drop across a resistance
RW by the total beam current Ic in an electron gun with autobias.

Fig. 4.9. (a) Dependence of the total beam current Ic, (− ·− ·−) Ic = UW/RW for
different RW on Wehnelt bias. (b) Construction of the dependence of Ic on cathode
temperature Tc from the intersection of the dash-dotted line in (a) with the Ic−UW

curves. (c) Dependence of gun brightness β on Wehnelt bias UW for different cathode
temperatures Tc, (– – –) working points for constant RW. [4.20].
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will be observed as the cathode temperature Tc is increased. When Wehnelt
biasing is produced by the voltage drop across RW, the working points shown
in Fig. 4.9a are obtained; these are the points of intersection of the straight
lines Ic = UW/RW, plotted for different values of RW (1–12 MΩ), with the Ic

vs. UW curves. From this diagram, the dependence of Ic on Tc for constant RW

(Fig. 4.9b) can be constructed. This plot shows an emission current Ic that
increases as Tc is raised until it reaches a saturation value beyond which any
further increase of Tc produces little increase of Ic. This has been attributed,
in older publications, to the fact that the gun is running into space-charge-
limited conditions. That this is not so can be seen when this type of biasing
is replaced by a variable, independent bias. The saturation effect does not
result from space-charge limitation but from the shape of the Ic −UW curves.
Space-charge effects can therefore be neglected at normal temperatures, Tc �
2560 K, but can occur at higher values of Tc [4.20].

The optimum value of RW for a given cathode geometry and temperature
can be constructed by dropping a vertical line from the maximum of β in
Fig. 4.9c onto the corresponding Ic −UW curve. The slope of the straight line
from the intersection Q to the origin of Fig. 4.9a determines the optimum
resistance RW. These optimum points are situated just at the onset (knee)
of the saturation of the emission current in Fig. 4.9b. Decreasing RW and
increasing Tc produces higher brightness and larger saturation currents but
shortens the lifetime of the cathode.

The gun-brightness values shown in Fig. 4.9 are for a particular gun geom-
etry. The shape of the Wehnelt electrode (flat or conical, with the cone apex
turned toward or away from the anode) has a large influence on the brightness
and other gun parameters.

4.1.5 Schottky Emission Guns

So-called Schottky emission cathodes are of the ZrO/W(100) type with a tip
radius r � 0.1–1 µm [4.22, 4.23]. Just after etching, the middle of the rod
is coated with ZrH2 powder, which dissociates at �1800 K in UHV and lets
metallic Zr diffuse to the tip. Zirconium oxide is formed at 1600 K for a few
hours at a partial oxygen pressure of 10−4–10−5 Pa and flashed for a few
seconds at 2000 K [4.3]. The work function is lowered by the ZrO coating
from φw = 4.5 eV (W) to 2.7 eV. This allows the electrons to overcome the
work function at a temperature of 1800 K. The cathode is surrounded by a
negatively biased suppressor (Wehnelt) electrode beyond which the tip apex
protrudes �0.3 mm. The electrons are extracted by a voltage of 4–8 kV at an
extractor electrode. The field strength at the cathode is much higher than in
thermionic cathodes but is still ten times lower than in field-emission sources.
This means that the field strength is not sufficient for quantum-mechanical
tunneling. Although the potential barrier is lowered by ∆φw (Fig. 4.1), the
Schottky effect, the electrons have to overcome the barrier with their thermal
energy. It is therefore confusing to call this type of source a field-emission
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gun. The only common feature is emission from a pointed cathode, and it is
more reasonable to regard the Schottky emitter as a field-assisted thermionic
emitter. In contrast to a thermionic cathode, the Schottky emission gun has an
energy spread ∆E � 0.5 eV not widened by the Boersch effect, and its emission
current density jc � 5 ×106 A/m2 is higher by two orders of magnitude.
The size of the virtual source as defined by the intersection of extrapolated
trajectories behind the tip is �15 nm, much smaller than the tip radius r �
0.5–1 µm. Thanks to these properties and to the high gun brightness, this
type of cathode is coming into widespread use.

4.1.6 Field-Emission Guns

Field-emission guns also consist of a pointed cathode tip and at least two
anodes. Tungsten is normally used as the tip material because etching is easy,
but it has the disadvantage of sensitivity to surface layers. Wires of 0.1 mm
diameter are spot-welded on a tungsten hairpin cathode and electrolytically
etched to a radius of curvature of about 0.1 µm. The hairpin can be heated
to eliminate absorbed gas atoms from the tip, to work at higher temperatures
(of the order of 1500 K), or to raise the temperature when the tip requires
remolding. So-called cold field-emission guns work with the cathode at room
temperature. In both cases, the temperature is too low for the work function
to be overcome; the electric field strength at the tip is so high that the emis-
sion occurs by the quantum-mechanical tunneling effect. 〈310〉-oriented tips
are mainly used for cold field emitters and 〈100〉- and 〈111〉-oriented tips for
heated ones.

The electron optics of a field-emission source are discussed in [4.24]. The
positive voltage U1 of a few kV at the first (extraction) anode (Fig. 1.2) gen-
erates a field strength |E| � U1/r of about 5× 109 V m−1 at the cathode tip;
this produces a field-emission current of the order of 1–10 µA. The electrons
are postaccelerated to the final energy E = eU by the voltage U between the
cathode tip and the grounded second anode. The field-emission current (4.4)
depends on the work function φw and on |E|. Both quantities vary during
operation of the gun. The work function changes owing to diffusion of impu-
rities from within the tip material or to surface reactions or the adsorption of
gases. The electric field strength changes as a result of damage to the tip by
ion bombardment. This damage is unacceptable unless an ultrahigh vacuum
≤ 5 × 10−8 Pa is maintained in the field-emission system. Even with a con-
stant emission current, these factors can alter the solid angle of emission. The
current emitted by a field-emission gun therefore drifts over long periods, and
the tip has to be reactivated and remolded from time to time to concentrate
the emitted current within a smaller angular cone.

A focused electron probe with a diameter of about 10 nm is formed as an
image of the source by the action of anodes 1 and 2, which behave as an electro-
static lens. The diameter and the position of the focused probe and aberration
constants Cs and Cc depend on the shape and dimensions of the anodes and on
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the ratio U1/U [4.25, 4.26, 4.27, 4.28, 4.29]. The strong dependence of the po-
sition of the probe on the ratio U1/U for a constant geometry is a disadvantage
when the field-emission gun is combined with the condenser system of a TEM,
whereas the dependence of the position of the crossover of thermionic cath-
odes on the operating parameters can be neglected. Anode 1 can be replaced
by an electrostatic lens to overcome this problem [4.30, 4.31, 4.32, 4.33]; the
electron-probe position can then be adjusted independently of the necessary
voltage U1. Other authors have proposed that a magnetic-lens field should be
superimposed to provide a fully controllable field-emission gun [4.34, 4.35].

Field-emission guns have the advantage of high brightness and low en-
ergy spread (Table 4.1). They are of interest in all work that needs high
coherence, which means low beam apertures and high current densities (high-
resolution phase contrast, electron holography and interferometry, Lorentz
microscopy, and STEM), though these modes can also function satisfacto-
rily with a Schottky emitter. The high coherence of a field-emission gun is
demonstrated in Fig. 3.9 by the large number of resolvable Fresnel fringes.

4.2 The Illumination System of a TEM

4.2.1 Condenser-Lens System

The condenser-lens system of a TEM (Fig. 4.10) performs the following tasks:

1. focusing of the electron beam on the specimen in such a way that sufficient
image intensity is obtainable even at high magnification;

2. irradiation of a specimen area that corresponds as closely as possible to the
viewing screen with a uniform current density, whatever the magnification,
thereby reducing specimen drift by heating and limiting the radiation
damage and contamination in nonirradiated areas;

3. variation of the illumination aperture αi, which is of the order of 1 mrad
for medium magnifications and must be ≤0.1 mrad for high-resolution
and phase-contrast microscopy and ≤10−2 mrad for Lorentz microscopy,
small-angle electron diffraction, and holographic experiments;

4. production of a small electron probe (0.2–100 nm in diameter) for x-ray
microanalysis, electron-energy-loss spectroscopy, microbeam electron-dif-
fraction methods and the scanning mode, and simple switching from the
probe mode to area illumination.

Transmission electron microscopes are equipped with at least two con-
denser lenses to satisfy these requirements; the prefield of a strongly excited
objective lens can act as an additional condenser lens, especially for point 4
(Sect. 4.2.3).

Figure 4.10 shows the most important modes of operation of a two-lens
condenser system. In cases a–c, only the condenser lens C2 is excited. When
focusing (Fig. 4.10b), the familiar lens formula 1/f2 = 1/s2 + 1/s′2 can be
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Fig. 4.10. Operation of a two-lens condenser system for illuminating the specimen.
(a) Underfocused and (c) overfocused and (b) in-focus operation with condenser
lens C2. (d) Additional use of condenser lens C1 to demagnify the crossover, the
demagnified image then being focused on the specimen with condenser lens C2.

applied, and the crossover or virtual source is demagnified by the factor
ds/dc = s′2/s2. The current density js at the specimen and the illumination
aperture αi reach a maximum and the diameter ds of the irradiated area a
minimum (Fig. 4.11). For underfocus (Fig 4.10a) and overfocus (Fig 4.10c)
js and αi increase. A condenser diaphragm (100–200 µm diameter) near the
center of the condenser lens selects only the center of the beam. In focus, ds

has the same value as with no diaphragm because the crossover is imaged
in both cases; the maximum current density js in the center of the beam
and the illumination aperture αi are, however, decreased as the diaphragm is
made smaller. The current density and the aperture are related via the gun
brightness (4.8) β = js/πα2

i .
The size of the final fluorescent screen corresponds to a specimen diameter

of 1 µm at M = 100 000. It is therefore sufficient to illuminate specimen areas
as small as this. This can be achieved by fully exciting the condenser lens C1
(Fig. 4.10d); the strongly demagnified intermediate image of the crossover,
with a diameter d′

c � 1µm in the case of a thermionic cathode, can then be
imaged on the specimen by condenser C2 with M = s′2/s2, resulting in ds �
0.5–1 µm.

Very small values of αi (for Lorentz microscopy or small-angle electron dif-
fraction, for example) can be obtained by exciting condenser lens C1 and using
the demagnified image of the crossover as the electron source (C2 switched
off). The smallest obtainable illumination aperture with thermionic cathodes
will be αi = r′c/(s2 + s′2) � 10−2 mrad. In view of (4.8), this operating mode
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Fig. 4.11. Dependence of the di-
ameter ds of the irradiated area,
the current density js, and the
illumination aperture αi in the
specimen plane on the excita-
tion of condenser lens C2 with no
diaphragm and with a 200 µm di-
aphragm.

only works when very small current densities js are acceptable. These results
for the case of thermionic cathodes can be improved by the use of Schottky
or field-emission guns, which have a higher brightness and a virtual source of
about 10–100 nm diameter.

The condenser lens C1 works with a relatively large entrance aperture and
is therefore equipped with a stigmator to compensate for the astigmatism
and to decrease the diameter d′c of the crossover image. It is usually suffi-
cient to observe caustic cross sections as in Fig. 2.13 for the compensation of
astigmatism.

The electron-gun system of a microscope can be adjusted onto the axis
of the condenser-lens system by tilting and shifting the gun system. Fur-
ther adjustments are necessary to bring the electron beam onto the axis of
the objective-lens and magnifying-lens system. The specimen structures spi-
ral around the image-rotation center if the high voltage, or preferably the
lens current of the objective lens, is varied periodically (wobbled). For easy
observation of this spiral movement during alignment, holey formvar films or
polystyrene spheres on supporting films can be used as specimens (Fig. 2.17b).
The distance of the image-rotation center from the point of intersection of the
objective axis can be calibrated by shifting the condenser-lens system relative
to the objective lens. The point of intersection of the objective-field axis with
the final screen does not necessarily coincide with the center of the final screen
[4.36, 4.37]. Its position can be determined by reversing the objective-lens cur-
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Fig. 4.12. (a) Shift (translation) and (b) tilt (rocking) of an electron beam by a
double deflection-coil system when exciting the coils with a sawtooth current. (c)
Scanning and (d) rocking when working with the prefield of an objective lens as an
additional condenser lens.

rent. Specimen structures at the point of intersection will remain stationary.
Coma-free alignment for high resolution is discussed in Sect. 2.4.3.

The alignment procedure needed to bring the electron beam on-axis in-
volves a mechanical shift and tilt of the condenser-lens system or electromag-
netic deflection of the electron beam by pairs of alignment coils (Fig. 4.12a,b).
Such coils can also be used to generate the dark-field mode (Sects. 4.4.2 and
6.1.2). The incident electron beam is tilted (Fig. 4.12b) so that a cone of scat-
tered electrons or Bragg-reflected electrons is on-axis and can pass the objec-
tive diaphragm. The transition from the bright- to the dark-field mode and
back can easily be achieved by switching the alignment coils off and on, respec-
tively. These coils can also be used for irradiation with a rocking beam at low
and medium magnifications as an additional focusing aid (Sect. 4.4.4) or, to-
gether with the objective-lens prefield, for scanning and rocking (Fig. 4.12c,d)
the electron probe in a scanning mode (Sect. 4.2.3) or for special diffraction
techniques (Sect. 8.1).

A dark-field mode with hollow-cone illumination (Sect. 6.1.2) can be cre-
ated by replacing the circular diaphragm in the condenser lens C2 by an annu-
lar diaphragm. Alternatively, the beam may be deflected successively around
a circle (Sect. 6.4.3).

4.2.2 Electron-Probe Formation

The illumination of specimens with small electron probes of diameter less than
0.1 µm is important for the x-ray microanalysis and energy-loss spectroscopy
of small specimen areas and for microbeam-diffraction methods in TEM as
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well as for scanning transmission electron microscopy (STEM). An electron
probe is formed by two- to three-stage demagnification of the electron-gun
crossover. If the geometrical diameter of the probe is d0, the total probe
current will be given by

Ip =
π

4
d2
0jp. (4.15)

In reality, the intensity is distributed more as a Gaussian distribution (4.14).
This, however, will only change the results of our simple estimation by cor-
rection factors of the order of unity. The conservation of gun brightness (4.8)
on the optic axis implies jp = πα2

pβ (αp is the electron-probe aperture). Sub-
stitution in (4.15) gives

Ip =
π2

4
βd2

0α
2
p. (4.16)

Solving for d0, we find

d0 =
(

4Ip

π2β

)1/2 1
αp

=
C0

αp
, (4.17)

which shows that for a given probe current Ip, small values of d0 can be
obtained only for large values of the gun brightness β and probe aperture αp.

The geometrical diameter d0 is broadened by the action of lens aberra-
tions; chromatic aberration produces an error disc of diameter dc (2.63) and
spherical aberration of diameter ds (2.58). The aperture limitation αp causes
a diffraction disc dd = 0.6λ/αp; that is, the half-width of the Airy distribution
in Fig. 3.16b.

To estimate the final probe size dp, this blurring can be treated approxi-
mately as a quadratic superposition of the error-disc diameters [4.38], though
this is strictly valid only when the error discs are all of Gaussian shape and
independent from one another

d2
p = d2

0 + d2
d + d2

s + d2
c

= [C2
0 + (0.6λ)2]

1
α2

p

+
1
4
C2

s α6
p +
(

Cc
∆E

E

)2

α2
p. (4.18)

For a thermionic cathode, the constant C0 (4.17) will be much greater than
the wavelength. Then the chromatic-error and diffraction terms in (4.18) can
be neglected.

Figure 4.13 shows how the diameters d0 and ds superpose and produce a
minimum probe diameter dmin at an optimum aperture αopt for a constant
probe current Ip. The optimum aperture is obtained by writing ∂dp/∂αp = 0,
giving

αopt = (4/3)1/8(C0/Cs)1/4, (4.19)

and substitution in (4.18) gives

dmin = (4/3)3/8(C3
0Cs)1/4. (4.20)
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Fig. 4.13. Superposition of error discs
shown as a function of probe aperture
αp in a double logarithmic plot. Upper
two curves: superposition of d0 and ds for
Ip = 10−10 and 10−12 A for the probe-
forming and scanning transmission mode
of a TEM. Lower curve: superposition of
dd and ds for a field-emission STEM. E =
100 keV, ∆E = 1 eV, Cs = Cc = 2 mm,
β = 105 A cm−2 sr−1.

For a field-emission gun, the constant C0 will be much smaller than the
wavelength, and the energy spread ∆E is also smaller. Superposition of the
largest terms in (4.18), now dd and ds, again yields a minimum (Fig. 4.13).
For this case, a wave-optical calculation should strictly be used (see, e.g.,
Fig. 3.16c), but this has no influence on the position of the minimum [1.94].
The only difference is that the increase due to spherical aberration for α > αopt

is not so rapid.
It is of practical interest to express the maximum probe current Ip as a

function of the probe diameter dp. For thermionic cathodes, (4.20) can be
solved for Ip, which is included in C0 (4.17):

Ip = (3π2/16)β C−2/3
s d8/3

p . (4.21)

To obtain a formula similar to (4.21) for a field-emission gun, the spherical-
aberration constants Cs1 and Cs2 of the lens system of the field-emission
gun and the objective lens, respectively, have to be considered [4.39, 4.40],
resulting in

Ip =
1.3J

C
1/2
s1 C

1/6
s2

d2/3
p (4.22)

with J = dI/dΩ as the emission current per solid angle. The probe current Ip

increases only as d
2/3
p and reaches saturation at a relatively small value of dp

because Ip cannot become larger than the emission current. Although these
calculations are somewhat oversimplified, they show that the field-emission
gun can have disadvantages if large currents are needed. For the production of
electron probes smaller than 0.1 µm, the field-emission gun has the advantage
of providing larger beam currents for a constant probe diameter, which is
important for increasing the signal-to-noise ratio in STEM.
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The importance of the probe current Ip for achieving a good signal-to-
noise ratio is shown by the following estimate. A signal S is produced by a
number

n = fIpτ/e (4.23)

of electrons, where f denotes the fraction of electrons recorded by the detector
(f < 1) or the number of recorded x-ray quanta per electron (f � 1) and
τ denotes the recording time for one image point (pixel); that is, the frame
time (1/20–1000 s) divided by the number of pixels (105-106). As a result of
statistical shot noise, the noise signal is N =

√
n. The signal-to-noise ratio

must be larger than some value κ, which should be of the order of 3–5 to
detect a signal in a noisy record. If a signal difference ∆S on a background S
is to be detected, then

∆S

S
≥ κ

n1/2

n
=

κ

(fIpτ/e)1/2
(4.24)

and so Ip has to satisfy the inequality

Ip ≥
(

κ

∆S/S

)2
e

fτ
. (4.25)

As a numerical example, for κ = 3, ∆S/S = 5%, f = 0.1, τ = 1 ms (scanning of
a frame with 106 pixels in 1000 s), and e = 1.6×10−19 C, we find Ip ≥ 3.6 pA.

4.2.3 Illumination with an Objective Prefield Lens

A single-field condenser-objective lens (Figs. 2.8 and 4.14) with an excitation
k2 = 3 not only has the advantage of a low spherical-aberration coefficient
Cs but also simplifies the transition from the extended illumination needed
for the TEM bright- and dark-field modes (Fig. 4.14a) to the illumination
required to form a small electron probe for the scanning transmission mode
and for x-ray and energy-loss spectroscopy and electron diffraction of small
specimen areas (Fig. 4.14b).

As discussed in Sect. 2.2.3, this type of lens operates in the telefocal condi-
tion with the specimen at the lens center. The action of the prefield condenser
and postfield objective field can be represented in a ray diagram by two sepa-
rate lenses. The optimum working condition for illumination with an extended
beam (Fig. 4.14a) will be achieved by fully exciting condenser lens C1 and
focusing the crossover on the front focal plane (FFP) with condenser lens C2.
This can be checked by imaging the back focal plane (BFP) on the final view-
ing screen, the BFP being conjugate to the FFP. Furthermore, the specimen
plane and the plane of the condenser C2 diaphragm of diameter d2 are con-
jugate, and the diameter of the irradiated area is thus ds = Md2 with the
demagnification M = f0/s′2. The illumination aperture αi = d′c/2f0 is limited
by the diameter d′c of the crossover image in the FFP. Thus, for f0 = 1 mm,
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Fig. 4.14. Specimen illumination
by an objective prefield: (a) large-
area illumination for TEM, (b)
electron-probe formation and scan-
ning for the scanning transmission
mode of a TEM.

s′2 = 200 mm, d2 = 100 µm, and d′c = 0.5 µm, we find ds = 0.5 µm and αi =
0.25 mrad, which are optimum operating conditions for high resolution.

A very small spot diameter ds can be obtained for the scanning mode
(Fig. 4.14b) by switching off C2 and using a small C2 diaphragm. The geome-
trical diameter d0 of the electron probe in the specimen plane can be estimated
with the demagnification factor M = f0/s′1 � 1/250; if the diameter of the
crossover image in the focal plane of C1 is 0.5 µm, we obtain d0 � 2 nm.
The aperture of the electron probe is determined by the projected diame-
ter of the C2 diaphragm in the FFP. The aperture will be of the order of
5 mrad and therefore one order of magnitude larger than the illumination
aperture αi in the extended-beam-producing mode of Fig. 4.14a. As shown in
Sect. 4.2.2, a large probe aperture αp will be necessary to produce a small
probe diameter dp.

This principle, which has been illustrated with a two-lens condenser sys-
tem, can be optimized by using a three-lens system, which allows illumination
analogous to the Köhler illumination of light microscopes to be achieved; the
condenser diaphragms can likewise be selected automatically for different di-
ameters of the irradiated area [4.41].
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The electron probe can be scanned across the specimen plane by means
of pairs of scanning coils, as in Fig. 4.14b, which rock the incident electron
beam. If the pivot point of this beam rocking is at the FFP, the pivot point
of the rays behind the specimen will be at the BFP because these planes are
conjugate. This means that the position of the first diffraction pattern in the
BFP is stationary, and the BFP can be imaged on the detector plane in the
scanning transmission mode (Sect. 4.5.1).

4.3 Specimens

4.3.1 Useful Specimen Thickness

The maximum useful specimen thickness depends on the type of electron–
specimen interaction used to form the image and on the mode of operation.
For high-resolution imaging (≤1 nm) in the bright-field mode, phase-contrast
effects are important. The image contrast is then due to the interference of the
scattered waves with the unscattered primary incident wave. Phase-contrast
effects therefore decrease with increasing specimen thickness owing to the at-
tenuation of the incident-wave amplitude (Sect. 6.2). For irregular structures,
this limits the useful thickness range to a few tens of nanometers. Typical
specimens for this mode of operation are single atoms or clusters of heavy
elements, organic macromolecules, viruses, phages, etc. This implies that the
specimen must be mounted on a thin supporting film of thickness t ≤ 5 nm.

The imaging of lattice planes of crystals results from the interference of
the primary beam and one or more Bragg-reflected waves and can be observed
for thicknesses of a few tens of nanometers for which sufficient wave amplitude
remains. Directly interpretable high-resolution images of the crystal structure
using several Bragg reflections can only be obtained for thicknesses less than
10 nm because the wave amplitudes of the Bragg reflections are changed by
dynamical electron diffraction; false contrast results, which can be interpreted
only by computer simulations.

For medium and low resolutions (≥1 nm), most work on amorphous speci-
mens relies on scattering contrast. In the bright-field mode, the image intensity
depends on the number of electrons that pass the objective diaphragm. The
decrease in image intensity is caused by the absence of those electrons that
have been scattered outside the cone with aperture αo (objective aperture).
In biological sections, the scattering contrast is increased by staining the tis-
sue or thin sections with heavy atoms. Quantitative examples of scattering
contrast are reported in Sect. 6.1.3. Another example is the negative staining
technique, where microorganisms or macromolecules are embedded in a layer
of a heavy metal compound, such as phosphotungstic acid. The energy lost
by electrons during inelastic scattering and the chromatic aberration of the
objective lens limit the maximum useful specimen thickness to 100–300 nm for
100 kV and about 1 µm for 1 MV. This chromatic error can be avoided in the
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STEM mode of TEM. However, the resolution is limited by the broadening of
the electron probe due to multiple scattering (Sect. 5.4.3). The electron spec-
troscopic imaging mode of an energy-filtering TEM also avoids the chromatic
error resulting from energy losses in thick specimens. The investigation is lim-
ited only by the decrease of transmission below T = 10−3, which means �75
µg/cm2 for amorphous and 150 µg/cm2 for crystalline specimens at 80 keV.

By using the primary beam in the bright-field mode or a Bragg-reflected
beam in the dark-field mode, lattice defects in crystalline specimens can be
imaged. The maximum thickness is limited by the intensity of the primary
or Bragg-reflected beam and by the chromatic error for thick specimens. The
intensities of the beams depend on the crystal orientation, and better penetra-
tion is observed in the case of anomalous transmission near a Bragg condition.
At 100 keV, the useful thickness of metal foils and other crystalline material
is of the order of 50–200 nm. The increase in the useful thickness when the
accelerating voltage is increased from 100 kV to 1 MV is only of the order
of three to five times (see also Sect. 9.1.6). However, a large number of spec-
imens (electropolished metal foils, for example) are some 200–500 nm thick
over most of the thinned specimen area and, in many cases, the only areas that
can be used at 100 keV are the edges of holes in the center of electropolished
or ion-beam thinned discs.

4.3.2 Specimen Mounting

Metals and other materials can be used directly as thin discs of 3 mm diameter
and �0.1 mm thickness if they can be thinned in the center by electropolishing
or chemical or ion etching.

Other specimens for TEM (crystal flakes, surface replicas, evaporated
films, biological sections) are mounted on copper grids with 100–200µm
meshes. Grids of 3 mm diameter are commercially available with different
mesh sizes and orientation marks.

Small particles, microorganisms, viruses, macromolecules, and single mo-
lecules need a supporting film possessing the following properties:

1. low atomic number to reduce scattering
2. high mechanical strength
3. resistance to electron irradiation (and heating)
4. electrical conductivity to avoid charging
5. low granularity (caused by phase contrast) for high resolution
6. easy preparation

For medium magnifications, formvar films of 10–20 nm are in use that are
produced by dipping a glass slide in a 0.3% solution of formvar in chloroform
and floating the dried film on a water surface. A higher mechanical strength
is obtained by evaporating an additional thin film of carbon (�5 nm) on a
formvar or collodion film. Pure carbon films are more brittle but can be used
as 3–5 nm films on plastic supporting films with holes.
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For high resolution, the granularity of carbon (or amorphous germanium)
films is useful for investigating the contrast-transfer function of the TEM
(Sect. 6.4.6), but it obscures the image of small particles, macromolecules,
and single atoms. Numerous attempts have therefore been made to prepare
supporting films with less phase-contrast granularity: amorphous aluminum
oxide [4.42], boron [4.43], single-crystal films of graphite [4.44], or vermiculite
[4.45].

The specimen grids or discs are mounted in a specimen cartridge, which can
be transferred through an airlock system either into the bore of the upper pole-
piece of the objective lens (top entry) or, mounted on a rod, into the polepiece
gap (side entry). The specimen position is near the center of the bell-shaped
lens field for a strongly excited objective lens with k2 � 3. The polepiece gap
also contains the objective diaphragms and the anti-contamination blades
or cold finger (Sect. 11.4.2), which decrease the partial pressure of organic
molecules near the specimen. This decreases the space available for special
specimen manipulations. The gap is only of the order of a few millimeters for
100 kV TEMs and 1–2 cm in an HVEM.

4.3.3 Specimen Manipulation

The principal methods of specimen manipulation are summarized in [4.46,
4.47, 4.48] and the proceedings of the HVEM symposia [1.86, 1.87, 1.88, 1.89,
1.90, 1.91].

Specimen rotation about an axis parallel to the electron beam can be
used to bring specimen structures into a convenient orientation in the final
image. Tilting devices with one axis normal to the electron beam can produce
stereo pairs for quantitative measurement and stereoscopic observation of the
three-dimensional specimen structure. A goniometer can tilt the specimen
with high precision in any desired direction up to ±60◦ or even ±70◦. Side-
entry goniometers are available that cause a specimen shift less than 1 µm
when tilting the specimen ±30◦. The second degree of freedom for angular
adjustment is often exploited as a specimen rotation about an axis normal to
the specimen plane. Top-entry goniometers can often tilt the specimen and
move the specimen normal over a cone around the optic axis. Goniometer
stages can be useful when studying biological tissue sections to bring lamellar
systems or other structures into favorable orientations or for tomography, for
example. Crystalline specimens have to be tilted in a goniometer for

1. observation of lattice fringes and crystal structures,
2. observation of diffraction contrast of lattice defects with distinct Bragg

reflections or known orientation,
3. determination of the Burgers vector of lattice defects, and
4. determination of crystal orientation by electron diffraction.

A large variety of specimen tilting, heating, and straining cartridges
have been developed for 100 kV TEMs. The problem arises of whether the
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phenomena of deformation, annealing, and precipitation are the same in thin
specimen areas that can be studied at 100 kV as in the bulk material. Such
specimen manipulations are therefore of particular interest in HVEM [4.49]
in which there is more space in the polepiece gap and the specimens will be
more similar to bulk material because greater thicknesses can be penetrated.

Specimen-cooling devices operating at temperatures below –150◦C can
be used to reduce the contamination of inorganic material associated with
radiation-induced etching of carbon in the presence of oxygen molecules
(Sect. 11.4.2). Such devices must not be confused with the cooled anti-
contamination blades mentioned above. Specimens that melt at room tem-
perature or due to electron-beam heating or that sublimate in the vacuum
may be observable if the specimen is cooled. A special application is the di-
rect observation of cryosections. The sections have to be transferred from
the cryomicrotome to the cooled specimen cartridge of the microscope via a
cooling chain.

Specimen-cooling devices operating at liquid-helium temperature need
very careful design and construction [4.50, 4.51, 4.52]. The specimen and an
additional storage tube for liquid helium have to be shielded against radia-
tive heat loss by surrounding them in a liquid-nitrogen-cooled trap. Specimen
structures or physical effects that are normally present only at very low tem-
peratures can be observed such as the crystal structure of condensed gases,
magnetic fields around superconducting domains, and ferromagnetic films of
low Curie temperature. The mobility of radiation-induced lattice defects de-
creases at low temperatures. These defects can be generated directly in a
cooled specimen by bombardment with α-particles or high-energy electrons
beyond the threshold energy (Sect. 5.1.2); the coagulation of dislocation loops
or stacking faults can then be observed when the temperature is raised. The
suppression of the radiation damage of organic specimens is another applica-
tion of liquid-helium-cooled stages. However, specimen cooling obviously only
retards secondary radiation effects such as the distortion of the crystal lattice,
which leads to fading of the electron-diffraction pattern, but cannot prevent
primary damage of the individual organic molecules (Sect. 11.2).

Environmental cells in which the partial pressures of inert and reactive
gases up to atmospheric pressure are maintained allow us to observe in situ
reactive processes between a gas and the specimen; with a partial pressure
of water, hydrated biological specimens can be observed [4.53]. Such studies
are limited by electron scattering at the gas molecules. The large gas pressure
in the specimen area can be obtained either by using differentially pumped
systems of diaphragms or by confining the gas between diaphragms covered
with thin films. High-voltage electron microscopy is more suitable for envi-
ronmental experiments because much more space is available in the polepiece
gap and the scattering in the gas atmosphere is less severe. Table 4.2 contains
some further examples of in situ experiments.
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Table 4.2. Specimen manipulations.

Procedure Application

1. Specimen rotation

Rotation on an axis parallel to the electron Orientation of specimen structures or

beam diffraction patterns relative to the

edges of the final screen

2. Specimen tilt

a) Tilt (±5◦ − ±10◦) about an axis in the specimen Stereo pairs

plane

b) Tilt about an axis normal to the beam and Lattice defects

rotation about an axis parallel to the beam Determination of orientation

c) Double tilt (±25◦ − ±70◦) about two perpen- Favorable orientation of biological

dicular axes normal to the beam sections

d) Specimen goniometer (±25 − ±50◦) Lattice defects

Small specimen shift by adjustment of tilt axis Three-dimensional reconstruction by

in height and position (accuracy: ±0.1◦) tomography

3. Straining devices

Straining of the specimen by movement of two Straining of metals and high polymers

clamps by mechanical or piezoelectric effects

4. Specimen heating

Direct heating of a grid Recovery and recrystallization

Indirect heating (�10 W for 1000◦C) Precipitation and transition phenomena

5. Specimen cooling

a) Cooling to between –100◦C and –150◦C Temperature-sensitive specimens

with liquid nitrogen Decrease of specimen contamination

Direct observation of cryosections

b) Cooling with liquid helium (4–10 K) Structure of condensed gases

Decrease of radiation damage

Superconducting states

Magnetic structure in low-Curie-point

ferromagnetics

6. Environmental cells

Gas pressure between diaphragms covered with Biological specimens in wet atmosphere

foils or separated from the microscope Gas reactions on the specimen

vacuum by additional pumping stages Corrosion tests

Spraying the specimen with a gas jet

7. Other in situ methods

Evaporation in the specimen chamber Investigation of film growth

Particle bombardment by an ion source Radiation-damage experiments

or the beam of an HVEM

Magnetization of the specimen by additional Direct observation of movement of

coils (Lorentz microscopy) ferromagnetic domain walls
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4.4 The Imaging System of a TEM

4.4.1 Objective Lens

Alhough the first intermediate image formed by the objective lens has a mag-
nification of only 20–50 times, it is from this lens that the highest performance
will be demanded. The mechanical tolerances necessary have already been dis-
cussed in Sect. 2.3.3. The natural astigmatism of an objective lens must be so
small that the main task of the stigmator is to compensate for the astigma-
tism caused by contamination of the diaphragm and other perturbing effects.
The resolution-limiting errors such as the spherical and chromatic aberra-
tions are important only for the objective lens because a magnification M
decreases the apertures for the following lenses to α = αo/M . The diameter of
the spherical-aberration disc is proportional to α3 (2.58). Even for a modest
magnification M of 20–50 times at the first intermediate image, the aperture
becomes so small that the spherical aberration of the intermediate and subse-
quent lenses can be neglected, even though these lenses normally have larger
values of Cs and Cc than the objective lens. In projector lenses (Sect. 2.3.4),
the dominant aberration will usually be distortion (pin cushion or barrel) at
low magnifications, which distorts but does not impair the sharpness of the
image.

Any of three or four diaphragms of 20–200 µm diameter can be inserted
in the focal plane of the objective lens, thus permitting the objective aper-
ture αo to be changed (Fig. 4.15). We should distinguish between apertures
(angles) and solid diaphragms and not use the word “aperture” for both. The
trajectories in Fig. 4.15 show that a diaphragm introduced in this plane stops

Fig. 4.15. Action of the objective
diaphragm in the focal plane of the
objective lens as an angle-selective
diaphragm.
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all electrons that have been scattered through angles θ ≥ αo. Decreasing the
objective aperture increases the scattering contrast (Sect. 6.1). For high reso-
lution, an aperture as large as possible is used so that high spatial frequencies
can contribute to the image (Sect. 6.2) and so that any contamination and
charging of the diaphragm do not disturb the image.

The objective aperture αo will be given by r/f , where r is the radius of the
diaphragm, only to a first approximation because the electron trajectories in
the thick objective lens are curved (Fig. 4.15). The objective aperture can be
measured accurately by selected-area electron diffraction (SAED, Sect. 8.1.1),
in which the focal plane of the objective lens is imaged on the final image
screen. For the measurement of αo, exposures of the diffraction pattern (of
an evaporated Au film, for example) are taken with and without the aperture
diaphragm. The ratio of the objective aperture αo to the Bragg–diffraction
angle 2θB of a Debye–Scherrer ring is related to the diameter d0 of the shadow
of the diaphragm and the diameter dB of the Debye–Scherrer ring by

αo/2θB = d0/dB. (4.26)

The same procedure can be used to measure the illumination aperture αi,
which corresponds to the radius of the primary beam in a diffraction pattern.
For small values of αi below 0.1 mrad, the magnification (camera length) of
the SAED pattern has to be increased.

The nature of the objective diaphragm is important for the quality of
the image. The diaphragm has to be of a heat-resistant material (Pt, Pt-Ir,
Mo, or Ta) capable of tolerating the largest possible current density in the
focal plane; this may reach 105 A m−2. Dust, fragments of the specimen,
and contamination in general can cause local charging, which generates an
additional astigmatism, especially if small apertures are used. Charging effects
can be delayed by using diaphragms in the form of thin metal foils (1–2 µm)
with circular holes [4.54, 4.55, 4.56].

4.4.2 Imaging Modes of a TEM

The imaging system of a TEM consists of at least three lenses (Fig. 4.16): the
objective lens, the intermediate lens (or lenses), and the projector lens. The
intermediate lens can magnify the first intermediate image, which is formed
just in front of this lens (Fig. 4.16a), or the first diffraction pattern, which is
formed in the focal plane of the objective lens (Fig. 4.16b), by reducing the ex-
citation (selected-area electron diffraction, Sect. 8.1.1). In many microscopes,
an additional diffraction lens is inserted between the objective and interme-
diate lenses to image the diffraction pattern and to enable the magnification
to be varied in the range 102 to 106.

The bright-field mode (BF) (Figs. 4.16a and 4.17a) with a centered ob-
jective diaphragm is the typical TEM mode, with which scattering contrast
(Sect. 6.1.1) and diffraction contrast (Sect. 9.1) can be produced with objec-
tive apertures αo between 5 and 20 mrad. For high-resolution phase contrast
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Fig. 4.16. Ray diagrams for a TEM in (a) the bright-field mode and (b) selected-
area electron diffraction (SAED) mode.

(Sect. 6.2), the aperture should be larger (αo ≥ 20 mrad) to transfer high
spatial frequencies. The only purpose of the diaphragm in this mode is to de-
crease the background by absorbing electrons scattered at very large angles.
The resolution is limited by the attenuation of the contrast-transfer function
(CTF) caused by chromatic aberration (Sect. 6.4.2) and not by the objec-
tive aperture αo. Normally, the specimen is irradiated with small illumination
apertures αi ≤ 1 mrad. For high resolution, an even smaller aperture αi ≤ 0.1
mrad is necessary to avoid additional attenuation of the CTF by partial spa-
tial coherence (Sect. 6.4.2). When unconventional types of contrast transfer
are desired, it is often necessary to change the illumination condition by tilting
the beam or using hollow-cone illumination, for example.
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Fig. 4.17. (a) Bright-field mode with a centered objective diaphragm and produc-
tion of a dark-field mode by (b) a shifted diaphragm, (c) a tilted beam, and (d) a
central beam stop.

In the dark-field mode (DF), the primary beam is intercepted in the focal
plane of the objective lens. Different ways of producing dark-field conditions
are in use. The shifted-diaphragm method (Fig. 4.17b) has the disadvantage
that the scattered electrons pass through the objective lens on off-axis tra-
jectories, which worsens the chromatic aberration. The most common mode
is therefore that in which the primary beam is tilted (Fig. 4.17c) so that
the axis strikes the centered diaphragm. The image is produced by electrons
scattered into an on-axis cone of aperture αo. This mode has the advantage
that off-axis aberrations are avoided. There is thus no increase of chromatic
error. Asymmetries in the dark-field image can be avoided by swiveling the
direction of tilt around a cone, or conical illumination can be produced by
introducing an annular diaphragm in the condenser lens. Another possibility
is to use a central beam stop that intercepts the primary beam in the back
focal plane; for this, a thin wire stretched across a circular diaphragm may be
employed (Fig. 4.17d). DF micrographs need a longer exposure time because
there are fewer scattered electrons. For high resolution, the contrast-transfer
function (CTF) of DF is nonlinear, whereas the CTF of the BF mode is lin-
ear for weak-phase specimens. The DF mode can also be employed to image
crystalline specimens with selected Bragg-diffraction spots.

Increasing the objective aperture in the BF mode allows us to transfer the
primary and one Bragg-reflected beam through the diaphragm. These beams
can interfere in the final image. The fringe pattern is then an image of the
crystal-lattice planes (Sect. 9.6.1). Optimum results are obtained for this mode
when the primary beam is tilted by the Bragg angle +θB. The Bragg-reflected
beam that is deflected by 2θB passes through the objective lens with an
angle −θB relative to the axis.
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In the crystal-lattice imaging mode, more than one Bragg reflection and the
primary beam form a lattice image that consists of crossed lattice fringes, or
an image of the lattice and its unit cells if a large number of Bragg reflections
are used (Sect. 9.6). This mode is most successful for the imaging of large unit
cells, which produce diffraction spots at low Bragg angles so that the phase
shifts produced by spherical aberration and defocusing are not sufficiently
different to cause imaging artifacts.

Further operating modes of a TEM are described in other sections: scan-
ning transmission mode (Sect. 4.5), Lorentz microscopy (Sect. 6.8) and the
analytical modes of x-ray microanalysis (Sect. 10.2), electron energy-loss spec-
troscopy (EELS, Sect. 10.3), and electron diffraction (Chap. 8).

4.4.3 Magnification and Calibration

If structures as small as 0.1 nm are to be resolved, the instrument must be
capable of magnifying this distance until it is larger than the resolution of the
photographic emulsion or the pixel size of the CCD camera (20–50 µm); this
requires a magnification M of at least 250 000−500 000 times, for which more
than two imaging lenses are needed.

The accuracy of magnification depends on the excitation of the objective
lens. If the magnification is to be constant to within about ±1%, the following
precautions have to be taken:

1. The height of the specimen in the specimen cartridge must be repro-
ducible. Depending on the microscope used, a variation of the vertical
position of ±50 µm results in a variation of 2–5% in the magnification
[4.57, 4.58].

2. The lens current and acceleration voltage must be highly stable. The lens
current necessary for focusing is related to the height of the specimen.
Differences of specimen height can therefore be compensated for by read-
ing the lens current and using a calibration curve relating lens current
and magnification. However, accuracies of reading the lens currents of the
order of ±1% are needed [4.59].

3. Hysteresis effects in the iron parts of the objective lens must be avoided
[4.58]. This can be achieved by setting the lens excitation at its maximum
value and then reducing the lens current down to (but not below) that
needed for focusing. This cycle of maximum excitation and focusing has
to be repeated two or three times. It would be better to keep the excita-
tion of the objective lens constant and move the specimen by means of
a mechanical and/or piezoelectric specimen drive [4.60]; this would also
minimize the effort required for microscope alignment (Sect. 2.4.3).

Up to values of about 20 000 times, the magnification can be calibrated by
means of surface replicas of metal gratings, which are commercially available.
Polystyrene spheres should be avoided for magnification calibration because
their diameters are affected by the preparation, by radiation damage, and by
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contamination [4.61]. For magnifications of the order of 100 000 times, images
of lattice planes (Sect. 9.6.1) can be used, provided that the lattice spacings
are not altered by radiation damage. Dowell [4.62] discussed the procedure
and the possible errors (±2%) if the lattice constant is calibrated with a TlCl
standard by electron diffraction; these errors can mainly be attributed to the
distortion of electron-diffraction patterns. For intermediate magnifications,
catalase crystals can be employed; the measured lattice constants are 8.8 ±
0.3 nm [4.63] and 8.6 ± 0.2 nm [4.64].

A magnification standard covering the whole range of magnifications has
been proposed that consists of molecular-beam-epitaxy-grown single-crystal
layers of alternating Si and SiGe (two sets of layer distances at low and medium
resolutions and the Si lattice for high resolution) [4.65].

4.4.4 Depth of Image and Depth of Focus

The depth of image S is defined in Fig. 4.18. A blurring of the image δsM
will be observed at a distance ±S/2 from the final image plane, where δs and
S are related as

δsM = α′S, S =
δsM

α′ =
δsM

2

αo
. (4.27)

Here, α′ = αo/M denotes the aperture in the final image. As a numerical
example, for M = 10 000, αo = 10 mrad, and δs = 5 nm, we find that S > 50

Fig. 4.18. Calculation of the depth of image S
and the depth of focus T .
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cm. Because of this large depth of image, a focused image will be obtained on
the photographic plate or CCD camera even though these are some centime-
ters below the viewing screen, which is normally inclined for focusing; only
the magnification will be different.

Another property of the instrument is the depth of focus. This is the axial
distance ±T/2 within which specimen details on the axis will be focused with
a resolution δs. From Fig. 4.18, we have

T < δs/α0. (4.28)

As a numerical example, for a resolution δsM = 50 µm of the image record-
ing system, a magnification M = 10 000, and an aperture α = 1 mrad, we
find T = 5 µm. Therefore, focusing at low magnifications sometimes becomes
difficult owing to the large depth of focus. For thick specimens, a larger aper-
ture can be used for focusing, which decreases the depth of focus; for thin
specimens, the illumination aperture can be artificially increased by rocking
(wobbling) the electron beam [4.66].

These geometrical estimates of the depth of focus are equivalent to wave-
optical considerations at high resolution because defocusing differences ∆z
change the image-intensity distribution. If the specimen contains a periodicity
Λ or a spatial frequency q = 1/Λ, a diffraction maximum will be formed at
sin θ � θ = λ/Λ. The maxima and minima of the specimen periodicity will
be reversed in contrast when the second term of the wave aberration W (θ) in
(3.65) caused by the defocusing ∆z changes the phase of the diffracted beam
by π. Setting W (θ) = π∆zθ2/λ ≤ π results in

∆z ≤ λ

θ2
=

Λ

θ
. (4.29)

With ∆z ↔ T , Λ ↔ δs, θ ↔ α, this formula corresponds to (4.28). As a
numerical example, for αo = 10 mrad, and Λ = 0.1 nm, we find ∆z ≤ 10 nm.

4.5 Scanning Transmission Electron Microscopy (STEM)

4.5.1 Scanning Transmission Mode of TEM

Unlike the conventional transmission mode of TEM, in which the whole im-
aged specimen area is illuminated simultaneously, the specimen is scanned in a
raster point-by-point with a small electron probe in the scanning transmission
mode.

The prefield of the objective lens is used as an additional condenser lens
(Sect. 4.2.3) to form a small electron probe at the specimen when operat-
ing in the STEM mode (Fig. 4.14b) [4.67]. The objective lens works near
k2 = 3 (condenser-objective lens, Sect. 2.2.3). An electron-probe diameter
of the order of 0.2–5 nm can be produced. No further lenses are needed
below the objective lens. Nevertheless, the later lenses may be excited to
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image the first diffraction pattern in the back focal plane (BFP) through
the small polepiece bores of the subsequent lenses onto the electron-detector
plane, above or below the final image plane. The generator that produces the
saw-tooth currents for the x and y deflection coils simultaneously deflects, in
synchrony, the electron beam of a cathode-ray tube (CRT). The intensity of
the CRT beam can be modulated by any of the signals that can be obtained
from the electron–specimen interactions. The transmitted electrons can be
recorded in the bright- and dark-field modes with a semiconductor detector
or a scintillator–photomultiplier combination. These modes can be selected by
placing large circular or sector diaphragms in front of the detector; we recall
that an enlarged far-field diffraction pattern is produced in the detector plane
by each object element in turn and does not move during scanning if the pivot
point of the primary-beam rocking is at the FFP (Fig. 4.14b).

In conventional TEM, small illumination apertures αi are used in the
bright- and dark-field modes (Sect. 4.4.2). In the STEM mode, a small electron
probe can be obtained only with a large value of αi � 10 mrad (Sect. 4.2.2).
The detector aperture αd has to be matched to this illumination condi-
tion. Thus, in the BF mode it will be necessary to use a detector aperture
αd � αi. Otherwise, a large part of the unscattered electrons would not be
recorded, and the signal-to-noise ratio would be correspondingly decreased.
Details of contrast mechanisms and differences between STEM and the con-
ventional TEM modes are discussed in Sect. 6.1.5 for amorphous specimens
and in Sect. 9.1.4 for crystalline specimens.

An annular semiconductor detector or scintillator can be used below the
specimen to record the electrons scattered through angles θ ≥ 10◦ [4.68]. An-
other detector can be placed above the specimen to record the backscattered
electrons (BSE). Secondary electrons (SE) with exit energies ≤50 eV will move
around the axis in spiral trajectories owing to the strong axial magnetic field
and can be detected by a scintillator–photomultiplier combination situated
between the objective and condenser lenses (Fig. 4.19). This SE mode can be
used to image the surface structure of the specimen.

The effect of chromatic aberration of the objective lens can be avoided in
the STEM mode. This is of interest for thick specimens. However, the gain
in resolution will be limited by the top–bottom effect (Sect. 5.4.3) caused by
broadening the electron probe by multiple scattering. The main advantages of
the STEM mode are the production and positioning of small electron probes
≤0.1µm for the microbeam electron diffraction and convergent-beam diffrac-
tion techniques, x-ray microanalysis, and electron energy-loss spectroscopy
(EELS) of small specimen areas.

The STEM mode can also be used to generate other signals, such as
cathodoluminescence and electron-beam-induced current (EBIC) in semicon-
ductors. The use of cathodoluminescence (CL) is a well-established technique
in scanning electron microscopy (SEM). The CL signal can also be recorded in
a transmission electron microscope equipped with a STEM attachment by col-
lecting the light quanta emitted. An advantage of this mode is the possibility
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Fig. 4.19. Detectors for x-rays, secondary electrons (SE), backscattered electrons
(BSE), and transmitted electrons (TE) in the scanning transmission mode of TEM.

of simultaneously imaging lattice defects in the STEM bright-field mode and
examining their influence on CL; alternatively, additional information about
variations in the concentration of dopants, which act as luminescence centers
or nonradiative recombination centers, can be obtained. A disadvantage is
that the CL intensity is accumulated only in a foil thickness much smaller
than the electron range and, in addition, the film surface acts as a dead layer
due to surface recombinations. The method is restricted to those semicon-
ductors with a high luminescence yield. For these, resolutions of the order of
a few tens of nanometers are obtainable thanks to the reduction of electron
diffusion.

The low intensity requires an efficient light-collection system with a large
solid angle and lateral selection of the irradiated area to shield the signal from
CL contributed by diffusely scattered electrons. An obstacle to the collection
of the light quanta is the narrowness of the polepiece gap. A tapered silver
tube or an elliptical mirror is used to transmit the light to a quartz light pipe
and a photomultiplier [4.69]. X-rays can cause CL in the quartz light pipe
and this signal must be eliminated by placing additional lead-shielded mirrors
between the collection system and the light pipe.

In diamond, for example, almost all of the luminescence is emitted from
dislocations as a result of localized electron states near these defects [4.69,
4.70]. The CL depends on the crystal orientation and exhibits bend contours



112 4 Elements of a Transmission Electron Microscope

that are similar to channeling effects in energy-loss spectroscopy and x-ray
emission; this has been shown for ZnS single-crystal foils [4.71]. In a Ga1−x

AlxAs laser structure, CL can be employed to analyze radiative and nonradia-
tive centers and to record the luminescence spectra from the different parts of
the structure, which may be separated by wedge-shaped etching of the struc-
ture; the CL signal may be compared with that obtained in EBIC experiments
[4.72].

The EBIC mode is also widely used in SEM [4.73]. An electric field must
be present in a p-n junction, or a Schottky barrier must be present to sepa-
rate the electron-hole pairs generated by the electron beam. A current can be
recorded at zero bias or with a reverse bias, which increases the field strength
and the width of the depletion layer. The EBIC signal consists not only of
electron-hole pairs generated in the depletion layer but also minority carriers,
which reach the layer by diffusion. The EBIC signal may decrease at lattice
defects, such as dislocations or stacking faults, which act as recombination cen-
ters. It is thus of interest to image the lattice defects in the TEM or STEM
mode. Combination of the SEM/EBIC and the TEM modes (in different in-
struments) [4.74] has the advantage that the EBIC mode can be applied first
to the bulk semiconductor device, after which a TEM investigation of the same
area after thinning gives information about the faults. Another possibility is
to observe the thin sample in a scanning transmission electron microscope or
a transmission electron microscope with a scanning attachment in the STEM
and EBIC modes simultaneously [4.72, 4.75]. Because the active area and de-
pletion layers are of the order of a few micrometers thick, HVEM offers better
penetration of thick regions. Unlike SEM/EBIC experiments, in which the
electron-hole pairs are generated in the whole volume of the electron-diffusion
cloud a few micrometers in diameter, the generation in STEM/EBIC is con-
centrated in the volume irradiated by the electron probe, which is only slightly
broadened by multiple scattering. This can result in better resolution, though
the latter is ultimately limited by the diffusion of the minority carriers.

Another interesting method is scanning deep-level transient spectroscopy
(SDLTS) [4.72, 4.76], which can provide the profile of the defect concentration
in the direction normal to the junction. The electron probe is switched on and
off so that the deep levels are filled by the injected carriers when the beam
is on. They can be detected by observing the thermally stimulated current
transient that flows when the levels empty during the off time of the beam.
The depth of the levels (activation energy for emission) can be determined
from the temperature dependence of the transient-time constant, which can
be measured by opening two sampling-rate windows at times t1 and t2 after
the electron-beam chopping pulse.

4.5.2 Dedicated STEM

This type of electron microscope is designed to work only in the scanning
transmission mode. Figure 1.2 schematically shows a version introduced by
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Crewe and coworkers [4.77, 4.78, 4.79, 4.80]. A field-emission gun is used to
produce a very small electron source of the order of 10 nm. Only one magnetic
lens with a short focal length, low spherical aberration, and equipped with a
stigmator is needed to demagnify this source to an electron probe of 0.2–0.5
nm on the specimen. The scanning coils are arranged in front of the lens. A
signal Iel of large-angle elastically scattered electrons can be detected by an
annular detector. The cone of small-angle scattered electrons, which enters a
prism spectrometer, can be separated into unscattered (Iun) and inelastically
scattered (Iin) signals.

The diffraction pattern of the illuminated area of the specimen is formed
in the detection plane, and various annular, semiannular, quadrant, or multi-
channel detectors can therefore be used to get optimum contrast. This offers
new possibilities for contrast enhancement that are not available in a conven-
tional transmission electron microscope:

1. Z-contrast of amorphous (especially biological) specimens (Sect. 6.1.5)
2. quantitative determination of mass thickness (Sect. 6.1.6)
3. imaging and contrast enhancement of single atoms (Sect. 6.3.2)
4. methods of differential phase contrast (Sect. 6.4.4)
5. differential phase contrast in Lorentz microscopy (Sect. 6.8.2)
6. imaging of lattice planes and atomic rows by high-angle Z-contrast dark-

field imaging (Sect. 9.6.6).

The scanning transmission electron microscope can also be used for x-ray
microanalysis and electron energy-loss spectroscopy of a selected area or for
energy-filtering microscopy.

The field-emission gun, lens, and spectrometer occupy little space, and the
whole STEM column can be kept at a UHV of 10−8−10−7 Pa. This allows the
gun to operate satisfactorily and drastically reduces specimen contamination.

4.5.3 Theorem of Reciprocity

The reciprocity theorem was first discussed by Helmholtz (1860) in light op-
tics. In geometrical optics, it is known as the reciprocity of ray diagrams.
However, in wave optics it also implies that the excitation of a wave at a
point P by a wave from a source Q is the same as that detected at Q with the
source at P.

The ray diagram of STEM is the reciprocal of that of TEM [4.81, 4.82].
This will be demonstrated with the aid of the ray diagram of Fig. 4.20. The
source in the ray diagram of TEM in Fig. 4.20a is already a demagnified image
of the crossover produced by the condenser lenses. The intermediate image can
be further enlarged by the subsequent lenses, not shown in the diagram. The
specimen is illuminated with an illumination aperture αi of the order of 0.1–1
mrad, which is much smaller than the objective aperture αo = 5–20 mrad. The
ray diagram of STEM (Fig. 4.20b) has to be read in the reverse direction. The
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Fig. 4.20. Demonstration of the theorem of reciprocity for (a) TEM and (b) STEM
in terms of ray diagrams connecting the intermediate source and image.

objective lens now demagnifies a source point on the specimen. A large probe
aperture αp � αo is necessary to obtain the smallest possible spot size (Sect.
4.2.2). A fraction of the incident cone of the electron probe and scattered
electrons are collected by the detector aperture αd. If αd = αi � αo = αp,
the same image contrast is obtained as in TEM. A scanning unit between the
source and the objective lens deflects the electron probe in a raster across
the specimen. Projected backwards, the rays scan over a virtual source plane,
which corresponds to the image plane in TEM in Fig. 4.20a. We can argue
that, in STEM, the CRT is needed to image this virtual plane by modulating
the CRT with the detector signal.

By enlarging the ray diagram near the specimen in Fig. 4.21, we can
demonstrate that the theorem of reciprocity can also be applied to wave-
optical imaging, Fresnel fringes, and phase contrast, for example. The reci-
procity theorem for the imaging of crystal lattices by STEM is discussed in
Sect. 9.6.6. Here, we consider the case of Fresnel fringes. The source and the
detector are assumed to be very distant so that the incident and exit waves
can be regarded as plane waves. The objective lens in TEM enlarges the in-
tensity distribution in the plane at a distance ∆z = z0 (defocusing) behind
the specimen. At one point of this plane, the Huygens elementary wavelets
from each point beside the specimen edge overlap with their corresponding
geometrical phase shifts and form the Fresnel fringes of an edge (Fig. 3.8).
When the diagram is reversed for discussion of the STEM mode, an electron
probe is formed in the focal plane at a distance z0 in front of the specimen
edge. The same geometric phase shifts as in TEM will occur during the wave
propagation to the detector. It should be mentioned that the distance of the
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Fig. 4.21. Demonstration of the theorem of reciprocity of TEM and STEM for
phase contrast (Fresnel fringes at an edge) (z0 = defocusing).

first Fresnel fringe from the edge increases as
√

z0 with increasing defocusing
[4.83], whereas a fringe distance increasing as z0 can be explained by refraction
at the wedge-shaped edge [4.84].

The phase shifts caused by the spherical aberration of the lens also act
in the same manner in TEM and STEM. It was shown in Sect. 3.2.2 that an
increase of the illumination aperture αi causes a blurring of the Fresnel fringes
by ±αi∆z, thus decreasing the number of observable fringes. The same effect
would be obtained when recording a TEM image with a slit width of 2αi∆z.
An analogous blurring is observed in STEM if the detector area or the detector
aperture αi is increased. Therefore, if phase-contrast effects are to be observed
in STEM, a small detector aperture has to be used (αd � αp). It will be shown
in Sect. 6.1.5 that this is an unfavorable operating condition. Exposure of the
specimen to damaging radiation has to be kept low, and all of the unscattered
electrons have to be collected in order to image single atoms, for example.
This means that αd should be approximately equal to αp. This corresponds
to extremely incoherent illumination in TEM. Single atoms are imaged in
STEM mainly by their scattering contrast. In TEM, the optimum condition for
imaging atoms corresponds to phase-contrast operation, for which αi � αo.

4.6 Electron Spectrometers and Imaging Energy Filters

Electron spectrometers of high energy resolution are needed to resolve the rel-
atively low energy losses between ∆E = 0 and 3000 eV for electron energy-loss
spectroscopy (EELS). The energy spread ∆E � 1–2 eV of a thermionic gun is
normally narrow enough to record energy losses by the excitation of plasmons
and inner shells, though in some cases a fine structure can be seen in the
spectrum if the resolution is better. Higher resolution needs a field-emission
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gun (∆E � 0.2− 0.5 eV) or a monochromator (∆E ≥ 0.1 eV). A widely used
postlens spectrometer is the magnetic-prism spectrometer. The Wien filter is
also described below because of its historical importance and its use as the
monochromator for high-resolution electron energy-loss spectroscopy. A new
trend in analytical microscopy is the use of imaging energy filters, which can
record either energy spectra or energy-filtered images with an energy-selecting
slit in the energy-dispersive plane (Sect. 4.6.3).

4.6.1 Postcolumn Prism Spectrometer

Electron prisms consist of transverse magnetic or electric fields. In a transverse
magnetic field, the radius of the trajectories is proportional to the momentum
(2.13). In a radial electric field, the radius is proportional to the electron
energy. A spectrometer should have a high resolution and a large angle of
acceptance, which means a large entrance aperture α = d/2pr (d: diameter of
the entrance diaphragm, pr: distance PH in Fig. 4.22). The two aims can be
reconciled only by designing the sector field to give additional focusing and by
correcting the second-order aberrations. A point source P will then be imaged
by the spectrometer as a sharp line or image point Q, at which a slit can be
placed in front of an electron detector (Fig. 4.22).

The central beam in a magnetic sector field (Fig. 4.22) is bent into the
form of a circle of radius r0 = mv/eB with center C. If the incident and
exit directions are normal to the edges of the sector field with sector angle
φ, focusing occurs for small α (paraxial rays), and the points P, C, and Q
are collinear (Barber’s rule). The distances pr = PH and qr = H′Q (focal
lengths) are given by pr = qr = r0/tan(φ/2) for a symmetric prism. There is
no focusing of the momentum components in the z direction parallel to the
magnetic field.

Fig. 4.22. Radial focusing property of a 90◦ magnetic electron prism with second-
order aberration ∆yA for large α.
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Fig. 4.23. (a) Dou-
ble focusing in a 90◦

electron prism with a
tilt angle ε = 26.5◦ of
the edges, tapered pole-
pieces, and field clamps.
The deflection ∆y of
electrons with energy
loss ∆E is responsi-
ble for the dispersion
∆y/∆E. (b) Correction
of second-order aberra-
tion by curvature of the
edges.

Tilting the magnet edge (ε �= 0) (Fig. 4.23a) has the same effect (in first
order) as adding a quadrupole lens with focal length f = ±r0cotε for compo-
nents of the momenta in the radial (+) and axial (–) directions, respectively.
The focal lengths are therefore

1
pr

=
1
qr

=
1
r0

(
tan

φ

2
− tan ε

)
,

1
pz

=
1
qz

=
1
r0

tan ε. (4.30)

So-called double-stigmatic focusing can be obtained if pr = qr = pz = qz =
r0/ tan ε and tan(φ/2) = 2 tan ε. For φ = 90◦, this gives tan ε = 0.5 or ε =
26.5◦ (Fig. 4.23a).
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Focusing in the z direction is not necessary when a slit is used to record a
spectrum. However, the slit has to be aligned and the line focus may be curved.
Double focusing will therefore be advantageous, though complete focusing in
the z direction is not necessary; indeed, a small width in the z direction can
be desirable to avoid damaging the detector.

It has been assumed in the foregoing that the magnetic field terminates
abruptly at the edges (sharp cutoff fringe field, or SCOFF, approximation).
The real fringe fields influence the focal lengths, and the effective prism angle φ
becomes larger. This can be counteracted by finishing the edge of the magnetic
polepiece plates with a 45◦ taper and by introducing field clamps, which are
constructed from the same high-permeability material as the polepieces and
placed at half the gap length in front of the prism, with a small hole for the
incident and exit rays (Fig. 4.23a) [4.85, 4.86].

The dispersion ∆y/∆E is defined as the displacement ∆y of electrons with
energy E −∆E in the dispersion plane (Fig. 4.23) and becomes (here p is the
electron momentum)

∆y

∆p
=

4r0

p
,

∆y

∆E
=

2r0

E

1 + E/E0

1 + E/2E0
, (4.31)

for a symmetric prism with φ = 90◦. We find ∆y/∆E = 1 µm/eV for E =
100 keV and r0 = 5 cm.

On increasing α, a second-order angular aberration ∆yA = Bα2 becomes
apparent (Fig. 4.22). This aberration can be corrected in the radial direction
by curving the edges of the magnet (Fig. 4.23b) [4.85, 4.86, 4.87, 4.88]. The
total width ∆s of the zone occupied by the zero-loss electrons in the dispersion
plane is determined by the size of the image of the entrance slit or diaphragm,
which is blurred owing to the energy width of the electron gun, and also by
the second-order aberrations. This width and the dispersion (4.31) limit the
resolution ∆Er = ∆s/(∆y/∆E). With a thermionic electron gun at 100 keV,
a resolution of 1–2 eV is obtainable.

A magnetic prism spectrometer is normally situated below the viewing
screen of the transmission electron microscope. The lens system can be used
to adapt the different operating modes of TEM to the spectrometer [4.89,
4.90]. Thus, any corrections needed to focus the beam on the exit slit can be
made by means of a pre-spectrometer lens or a quadrupole lens between the
spectrometer and the exit slit. The point source P is formed at the focus of
the last projector lens by the demagnified diffraction pattern or the image of
a selected area if the entrance plane of the spectrometer contains an image or
a diffraction pattern, respectively.

The resolution of a prism spectrometer can be increased by decelerating the
electrons in a retarding field to an energy of the order of 1 keV. Magnetic [4.91,
4.92] and electrostatic prisms are used in this way. Electrostatic prisms consist
of radial electric fields between concentric cylindrical or spherical electrodes.
An electrostatic prism-spectrometer without retardation is described in [4.93].



4.6 Electron Spectrometers and Imaging Energy Filters 119

4.6.2 Wien Filter

The field strength E of a transverse electric field and the magnetic induction
B of a crossed transverse magnetic field normal to E can be adjusted so that
electrons of velocity v are not deflected. The condition for this is

F = e|E| = ev|B| → v = |E|/|B|. (4.32)

Electrons passing through the filter with other energies are spread out into
a spectrum, or a spectrum is serially recorded by varying one of the field
strengths. This type of filter has the advantage that it is situated on-axis and
there is no overall deflection of the beam. Focusing conditions have to be found
such that the entrance slit is focused on the exit slit. Wien filters with 1 eV
resolution for a commercial transmission electron microscope are described in
[4.94, 4.95].

A deceleration of 10–20 keV electrons to 20–300 eV by an electrostatic re-
tarding lens yields a resolution of 2 meV [4.96]. In order to obtain an energy-
loss spectrum with this resolution in the range ∆E = 0–10 eV (Fig. 5.7),
the electron beam must be monochromatized by placing a further Wien filter
in front of the specimen. This resolution can be realized for EELS experi-
ments only. A resolution of 80 meV with monochromatizing and analyzing
Wien filters has been realized in a scanning transmission electron micro-
scope [4.97] and a transmission electron microscope [4.98, 4.99]. More recently,
monochromators have been developed, that can be incorporated in a regular
transmission electron micrcoscope without impeding its imaging capabilities
[4.100, 4.101, 4.102].

4.6.3 Imaging Energy Filter

To understand the functioning of an imaging energy filter, we regard the filter
as a black box (Fig. 4.24) with the following properties. In the source plane
SP (focal plane of a projector lens), we find either a demagnified image of the

Fig. 4.24. Schematic action of an imaging
energy filter and its important planes.
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focal plane of the objective lens with the diffraction pattern or a demagnified
image of the selector diaphragm in the intermediate lens. The filter entrance
plane then contains an enlarged image or diffraction pattern, respectively. The
imaging filter produces a 1:1 image in the achromatic image plane (AIP) with
the difference that electrons that have lost energy now pass their image point
with an angular deviation that increases with increasing energy loss. This
means that the image is sharp, apart from the chromatic aberration of the
objective lens, of course. Rays of equal energy loss from different points of the
AIP intersect in the energy-dispersive plane (EDP) and form an energy-loss
spectrum (EELS). A further projector lens can magnify either the EDP or the
AIP. The former case results in a magnified EELS on the final image plane
and the latter in an energy-filtered image or diffraction pattern when a slit
in the EDP selects an energy window of width ∆. The final image can be
observed on a fluorescent screen or recorded on a photographic emulsion or
with a CCD camera.
Energy Filtering with a Prism Spectrometer. The 90◦ magnetic sector
field spectrometer (Sect. 4.6.1) can be used as an energy-dispersive imaging
filter (Fig. 4.25) with the properties shown in Fig. 4.24 [4.103, 10.156, 4.105].
The entrance diaphragm with a diameter of 0.6–5 mm contains a magnified
image or diffraction pattern. The prespectrometer optics permit adjustment
of the beam and compensation for some of the aberrations. The spectrum in

to projector
crossover

viewing screen (removable)

entrance aperture

pre-spectrometer optics

magnetic sector

Q1 Q2

slit

quadrupole -
sextupole
imaging unit

detector
(scintillator
+ CCD-Camera)

Fig. 4.25. Schematic diagram of the imaging-filter system consisting of a mag-
netic sector-field spectrometer and a quadrupole-octopole system for magnifying
the energy-selected image.
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the energy-dispersive plane can be enlarged using a pair of quadrupole lenses
Q1 and Q2 just behind the spectrometer. The slit width for selecting the
energy window can be adjusted piezoelectrically, and the slit system can be
removed pneumatically when parallel recording the energy-loss spectrum. By
introducing a quadrupole-sextupole imaging unit after the slit, it is possible
to work in the electron spectroscopic imaging (ESI) or diffraction (ESD) mode
or the parallel-recorded EELS mode. Electron spectroscopic imaging is real-
ized by selecting the desired energy-loss window with the slit. The system of
quadrupoles and sextupoles behind the slit produces a filtered image on the
CCD array, corrected for the most important aberrations and magnified by a
factor ranging from 8 to 20. One therefore has to operate the microscope itself
with a corresponding reduction of the magnification on the viewing screen.

An advantage of this type of imaging filter is that it can be attached below
conventional microscopes up to 1.25 MeV [4.106].
Castaing–Henry and Ω-Filters. Castaing and Henry [4.107, 4.108] com-
bined a retarding-field electrode (electron mirror) and a double magnetic
prism to form an imaging energy filter that can be incorporated in the col-
umn of a transmission electron microscope [4.109, 4.110] between the first
and second projector lenses. The function of such an imaging energy filter
for electron spectroscopic imaging (ESI) and diffraction (ESD) or electron
energy-loss spectroscopy (EELS) can best be understood by considering the
conjugate planes (Fig. 4.26) [4.111, 4.112].

In the ESI mode, the objective lens produces a first diffraction pattern in
its focal plane and a magnified image in the first intermediate image plane. The
primary spot in the diffraction pattern is an image of the crossover. Electrons
scattered through larger angles are absorbed by the objective diaphragm, and
that part of the pattern passing the diaphragm is demagnified by the first
projector system P1 into its focal plane. This “crossover” plane acts as the
source plane (SP) for the energy filter. The plane conjugate to the latter, after
passing the energy filter with 1:1 magnification, is the energy-dispersive plane
(EDP) containing the energy-loss spectrum. The filter entrance plane (FEP)
is conjugate to the achromatic image plane (AIP). Electron spectroscopic
imaging is now realized by magnifying the achromatic image plane with the
second projector P2 onto the final image plane (FIP) and selecting an energy
window of width ∆ = 0.5–50 eV by a slit in the energy-dispersive plane.

In the ESD mode, the objective diaphragm is withdrawn and a selector
diaphragm in the intermediate image plane limits the area contributing to
the “selected-area electron diffraction” (Sect. 8.1.1). P1 produces a conjugate
diffraction pattern in the final image and the achromatic image plane. The
source plane behind the first projector P1 now contains a demagnified image
of the selector diaphragm, which becomes conjugate to the energy-dispersive
plane. Magnifying the achromatic image with the diffraction pattern by P2
and selecting an energy window in the energy-dispersive plane now results in
an energy-filtered diffraction pattern on the final image.
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Fig. 4.26. Castaing–Henry filter between the first and second projector lens systems
of a transmission electron microscope as incorporated in a Zeiss EM902. Conjugate
planes for the electron spectroscopic imaging (ESI) and diffraction (ESD) mode and
the EELS spectrum mode are shown at the right. [4.111].

In the EELS spectrum mode, P2 is more strongly excited to magnify the
energy-loss spectrum in the energy-dispersive plane onto the final image plane
by withdrawing the energy-selecting slit. The energy-loss spectrum can be
recorded either serially, by shifting the spectrum across a slit in front of a
scintillator–photomultiplier combination, or in parallel with a scintillator cou-
pled by a fiber plate to a CCD camera. Because the energy-dispersive plane is
conjugate to the source plane, the observed energy-loss spectrum is convoluted
with the demagnified image of the diffraction pattern (objective diaphragm)
when P1 is excited as in the ESI mode or with the demagnified image of the
selector diaphragm in the ESD mode. Further modes of recording energy-loss
spectra are described in Sect. 10.3.1.

An advantage of incorporating such an imaging energy filter in the TEM
column is that energy-filtered images and the positions of diaphragms and slits
can be observed directly on the fluorescent screen in the final image. However,
the second-order aberration of the Castaing–Henry filter limits the diameter
of the exactly filtered image to about 2–3 cm on the FIP. Furthermore, the



4.6 Electron Spectrometers and Imaging Energy Filters 123

Castaing–Henry filter is limited to an acceleration voltage of 80–100 kV be-
cause the same voltage is applied to the mirror electrode and breakdown may
occur for higher voltages.

Pure magnetic imaging energy filters have been proposed and built
[4.113, 4.114] in order to extend the technique to higher voltages. Rose
and Plies [4.115, 4.116] proposed the first symmetric magnetic equivalent of
the Castaing–Henry filter, which is called an Ω-filter because of the shape
of the trajectories. This filter can be equipped with a system of multipoles
between the magnetic sector fields in order to correct the second-order aber-
ration so that an energy-filtered image can be observed with ∆ = 1 eV over
the whole final screen [4.117, 4.118]. Figure 4.27 shows such a fully corrected
Ω-filter with the adjacent lenses in front of and behind the filter, which has
been built at the Fritz-Haber-Institut in Berlin (see [4.119] for an extensive
discussion of the theory and alignment procedures). Uhlemann and Rose

Fig. 4.27. Cross section through the sextupole-corrected energy filter of the Fritz-
Haber-Institut (Berlin) and the adjacent lenses located in front of and behind the
filter.
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Fig. 4.28. Schematic diagram of the MANDOLINE filter (by courtesy of E. Essers).

[4.120] proposed to use inclined pole faces in the sector magnet to reduce the
residual aberrations. Such a MANDOLINE filter (Fig. 4.28) has an energy
dispersion of �10 eV/µm at 200 keV. Together with an appropriate set of
multipole elements for correcting aberrations, it is particularly suitable for
200–400 kV microscopes [4.121].

4.6.4 Operating Modes with Energy Filtering

Energy-filtering transmission electron microscopy (EFTEM) can be performed
with a dedicated scanning transmission electron microscope (Sect. 4.5.2), or in
a transmission electron microscope equipped with a postcolumn imaging prism
spectrometer or an in-column imaging energy filter (Sect. 4.6.3). The method
of EFTEM is extensively described in [4.112, 4.122]. A dedicated scanning
transmission electron microscope can scan the specimen pixel by pixel and
store the parallel-recorded EELS (PEELS) signal, whereas an imaging filter
can record two-dimensional images at successively increased energy losses. For
both techniques, an image series at many energy losses occupies about several
tens of Mbytes of computer memory [4.123]. The complete information can
be described as a data cube (Fig. 4.29) with the spatial coordinates x and y
and the energy loss E as the third dimension. Whereas in the scanning trans-
mission electron microscope the information is acquired column by column
(Fig. 4.29a), EFTEM permits detection of the data slice by slice (Fig. 4.29b).
When many energy losses are of interest, it is obvious from this scheme that
a scanning transmission electron microscope can operate with a much lower
irradiation dose, whereas for a large number of image points the EFTEM
technique is less time-consuming.
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Fig. 4.29. The data cube depicting the complete information that can be explored
in different ways. (a) A scanning transmission electron microscope acquires spectra
point by point. (b) In EFTEM, the information is obtained energy slice by energy
slice. (c) Using an energy filter, one can obtain a spectrum from a line selected in
the image.

Figure 4.30 describes schematically a classification of the different modes
of electron spectroscopic imaging (ESI) depending on the selected energy-loss
range and the type of information available [4.111, 4.112, 4.124]:

1. zero-loss filtering to remove the inelastically scattered electrons in images
of amorphous and crystalline specimens

2. plasmon-loss imaging for selectively imaging phases with a shift of plas-
mon losses and investigation of the preservation of phase and diffraction
contrast

3. structure-sensitive contrast for biological sections
4. contrast tuning of optimum energy window for imaging biological speci-

mens and polymers
5. elemental distribution images at inner-shell ionization edges
6. most-probable-loss imaging of amorphous and crystalline specimens

In electron spectroscopic diffraction (ESD), the following modes can be em-
ployed:

1. zero-loss filtering of whole diffraction patterns of amorphous, polycrys-
talline, and single-crystal specimens

2. plasmon-loss filtering for analyzing the anisotropy of energy losses
3. high-energy-loss filtering for the imaging of Compton scattering and the

contributions of inelastically scattered electrons to single-crystal diffrac-
tion patterns
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Fig. 4.30. Imaging modes of electron spectroscopic imaging (ESI) with selected
energy windows at different parts of the electron energy-loss spectrum (EELS).

The following modes of electron energy-loss spectroscopy (EELS) can be used:

1. EELS image mode with an image at the entrance plane
2. EELS diffraction mode with a diffraction pattern at the entrance plane;

shifting the pattern across the entrance diaphragm allows energy-loss spec-
tra to be recorded at different scattering angles

3. angle-resolved EELS of a line through the diffraction pattern selected by
a slit in the filter entrance plane with energy dispersion normal to the slit
(see Fig. 5.13)

4. time-resolved EELS for recording radiation damage [4.123]
5. spatially resolved EELS by selecting a line through an image (Fig. 4.29c)
6. “Image EELS” by taking a series of ESIs, digitally selecting an area of

interest, and plotting the integrated intensity versus the selected energy-
loss windows

4.7 Image Recording and Electron Detection

4.7.1 Fluorescent Screens

The final image of a transmission electron microscope can be observed on a
fluorescent screen consisting of ZnS or ZnS/CdS powder, which is excited by
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cathodoluminescence. The color can be varied by adding small concentrations
of activator atoms, such as Cu or Mn. The maximum emission is normally in
the green (550 nm), where the sensitivity of the human eye is at a maximum.

The light intensity of a fluorescent screen is proportional to the incident
electron current density j, usually measured in A m−2. For constant j, the
intensity might be expected to increase in proportion to the electron energy
because more light quanta are generated by high-energy electrons. In fact, a
slower rate of increase is observed owing to the increasing depth of genera-
tion and the subsequent absorption and scattering of the light quanta. The
light-generating efficiency likewise decreases when the electron range exceeds
the thickness of the fluorescent layer; this can be a problem in high-voltage
electron microscopy [4.125].

The decay of intensity with time proceeds in two stages: A fast decrease
with a time constant of the order of 10−5−10−3 s is followed by an afterglow of
the order of seconds. For a faster response, in STEM for example, fluorescent
materials with time constants less than 1 µs are needed (Sect. 4.7.6).

4.7.2 Photographic Emulsions

Photographic emulsions are directly exposed to the electrons inside the micro-
scope vacuum. The gelatin of the emulsion contains a considerable amount
of water, and it is necessary to dehydrate the photographic material in a
desiccator at 1 Pa and to load the microscope camera as quickly as possible
[4.126].

The basic processes that occur in the exposure of photographic emulsions
to electrons will now be discussed; for more details, see [4.127, 4.128, 4.129,
4.130, 4.131, 4.132]. The ionization probability of electrons is so large that
each silver halide particle penetrated is rendered developable and can be re-
duced to a silver grain. High-energy electrons in the MeV range can probably
penetrate some particles without ionization. For light, on the contrary, several
quanta have to be absorbed in a single particle for it to be made developable.
Therefore, unlike light exposure, there is no illumination threshold for expo-
sure to electrons.

The following laws for the photographic density D can be derived with
this exposure mechanism. The density D of a developed emulsion is defined
as the logarithm of the ratio of the light transmission L0 of an unexposed part
and that of an exposed region (L):

D = log10(L0/L). (4.33)

A saturation density Dmax is reached when all of the grains are developed.
Owing to the statistical nature of silver-grain production, the density D of
an unsaturated emulsion exposed to a charge density J = jτ = en in units
C m−2 [j: current density (A m−2), τ : exposure time, n: number of incident
electrons per unit area] will be given by

D = Dmax(1 − e−cJ). (4.34)
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The validity of this law means that a long exposure with low j produces the
same density as a short exposure with high j if the product jτ is constant. This
law of reciprocity is not true for light exposure. For the latter, the relation
can be expressed in terms of the Schwarzschild exponent κ, different from
unity, equal densities being obtained for jτκ = const. All experiments show
that κ = 1 for exposure to electrons. However, for some emulsions, the results
depend on the delay between exposure and development [4.133].

For small values of J , equation (4.34) leads to the proportionality

D = cDmaxJ = εJ, (4.35)

where ε is known as the sensitivity. This is valid for D ≤ 0.2Dmax, which
means, in practice, D ≤ 0.6 − 1.5 (Fig. 4.31a).

If N grains are developed per unit area with a mean projected area a, the
density D can be written for small J as

D = 0.46Na = 0.46 pJa/e, (4.36)

where p denotes the number of particles exposed by one electron. This gives
for the sensitivity

ε = 0.46 pa/e. (4.37)

The mean number of particles exposed depends on the electron energy and the
following parameters of the emulsion: quantity of silver per unit area (0.4–0.6
mg cm−2), mean density ρ = 1 − 2 g cm−3, thickness of emulsion t = 1–50
µm, and grain diameter (0.5–2 µm). The electron energy and the mean density

Fig. 4.31. (a) Density curves for a photographic emulsion exposed to 60 keV elec-
trons (full lines) and to light (dashed lines) for the developing times indicated. (b)
Double logarithmic plot for various values of γ = dD/d(log10J) at D = 1.
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determine the electron range R, which lies between 75 and 120 µm for 100
keV electrons. The sensitivity increases as E increases if R < t and decreases
if R > t because the ionization probability per unit path length of an electron
trajectory decreases with increasing energy. Photoemulsions therefore exhibit
decreasing sensitivity with increasing energy in HVEM.

It is usual to plot D versus log10J (Fig. 4.31b). This curve has a straight
part with slope γ for medium densities. This slope is used to characterize the
photographic emulsion because high values of γ correspond to high-contrast
recording. A relative variation of current density ∆j/j or charge density ∆J/J
produces a relative variation of light transmission ∆L/L = −γ∆J/J . During
exposure to light, the value of γ can be high even at low density owing to the
existence of a threshold (see exposure to light with dotted lines in Fig. 4.31a).
Because the density curve for electron exposure does not show a threshold,
γ cannot increase beyond a certain limit. The proportionality (4.35) can be
written as

D = ε J = ε 10log10J , (4.38)

and the maximum possible slope γ is given by

γ =
dD

d(log10J)
= ε ln10 · 10log10J = 2.3D. (4.39)

With electron exposure, it is therefore impossible to obtain a value of γ greater
than 2.3 for a density of unity. γ can increase as long as the density increases
with J . No further increase is observed when D approaches the saturation
value Dmax. A further increase of contrast can be obtained by a suitable
choice of the photographic material used for printing the micrograph.

The resolution of an emulsion is limited by two effects: the diameter of the
electron-diffusion cloud and the granularity of the emulsion. When exposed
to light, a halo is formed by scattering at the silver halide grains, the radius
of which depends on the grain size. The diffusion halo in electron exposure
depends only on electron energy and the mean density of the emulsion. If a
slit of width d is illuminated with unit intensity, a density distribution (edge
spread function)

S(x) =
2.3d

xk
10−2|x|/xk (4.40)

(d � xk) is obtained [4.128]. The quantity xk, typically 30–50 µm, is the
width over which the intensity falls to 10% of the central value. Figure 4.32a
shows the intensity recorded by an emulsion for which xk = 50µm exposed to
a slit of width d = 10µm.

Suppose now that the density varies periodically with a spacing corre-
sponding to a spatial frequency q = 1/Λ : D = D0 + ∆D cos(2πqx). This
function has to be convoluted with S(x), which results in a decrease of the
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Fig. 4.32. (a) Edge-spread function and (b) contrast-transfer function C(q) repre-
senting electron diffusion in the photographic emulsion.

density amplitude from ∆D to ∆D′. The contrast-transfer function,

C(q) =
∆D′

∆D
=
[
1 +
(πqxk

ln10

)2
]−1

=
1

1 + (1.36qxk)2
, (4.41)

is plotted in Fig. 4.32b.
The granularity can be considered in the following manner. The number

p of neighboring developed grains is greater when an electron passes through
the emulsion than when it is stopped by it. Depending on the grain size, the
thickness of the emulsion, and the electron energy, p lies between 6 and 50.
For light (p = 1), the mean-square deviation of the density with a photometric
slit of area A is

∆D2
L =

1
2.3

a

A
D. (4.42)

An emulsion exposed to a homogeneous current density j appears more gran-
ular than one exposed to light because, during electron exposure, clusters of
neighboring silver grains are rendered developable by single electrons. The
observed mean-square deviation ∆D2

E will lie between the limits

∆D2
L < ∆D2

E < (p + 1)∆D2
L. (4.43)

In order to detect a periodicity, the amplitude ∆D′, already decreased by
electron diffusion, must be approximately five times greater than the noise,

∆D′ ≥ 5
√

∆D2
E . (4.44)

Furthermore, the shot noise caused by the statistical variation ∆N = N1/2 of
the number

N = nδ2 =
jτ

e
δ2 (4.45)

of electrons incident on a small area δ2 (δ: resolution of the emulsion) must
be less than the noise caused by granularity. The necessary charge density
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jτ for a density D = 1 in Fig. 4.31a is of the order of 10−11 C cm−2. For a
resolution δ of 30 µm, this results in N = 350 electrons and a noise-to-signal
ratio ∆N/N = N−1/2 = 4%. The human eye can detect relative intensity
variations of the order of 5%. This means that the sensitivity of photographic
emulsions to electron exposure is of just the right order, and emulsions are
optimum for the recording of electron micrographs. A film size of A = 6 × 9
cm2 contains A/δ2 = 6 × 106 image points, which corresponds to a very high
storage capability.

4.7.3 Imaging Plate

The imaging plate (IP) was first developed for x-ray radiography to have a
higher sensitivity and better image quality than conventional x-ray films. The
IP is also an interesting image recording system for TEM [4.134, 4.135, 4.136].

The IP is a flexible sheet with a thickness of 0.3–0.5 mm that is composed
of a transparent protective layer, a phosphor layer (50–100 µm thick), and a
plastic support. The main part is the photostimulatable phosphor BaFX:Eu
(X = Cl, Br, I). The phosphor, with a grain size of �5 µm, is spread over the
plastic support together with an organic binder. The IP is directly exposed
to electrons in the vacuum in the same way as for photographic emulsions.
Part of the electron energy dissipated is stored in luminescence centers. When
such an exposed IP is scanned in air with a small spot of He-Ne laser light,
the stored energy is emitted as blue light with an emission maximum at λ =
390 nm; the reading time is about 1000 s. About 100 photons are generated
by a single electron. The emitted light is detected by a photomultiplier. This
allows a digitized image with 3760 × 3000 pixels to be recorded directly with
a reading pixel size of 25–50 µm and 214 grey levels (14 bits). The image can
equally well be printed directly on photographic printing paper. The dissipated
energy remaining in the phosphor is erased by irradiating it with light, so that
the plate is reusable.

The IP has a total reading range of charge density from 2 × 10−10 to
2×10−5 C/m2; the sensitivity is about three orders of magnitude higher than
for a Fuji FG film, which needs 5 × 10−7 C/m2 for a density S = 1 when
irradiated with 200 keV electrons. The thickness of the phosphor layer is such
that the sensitivity is approximately constant over the range 100–400 keV.

The contrast-transfer function C(q) of an IP with a 50 µm layer falls to
50% at Λ = 1/q � 200 µm compared with �60 µm for a 50µm photographic
emulsion (Fig. 4.32b). The resolution can be increased by decreasing the thick-
ness of the phosphor layer, but this will of course also decrease the sensitivity.

The high dynamic range allows both the central and the outer parts of
diffraction patterns to be recorded under conditions in which the central region
would be overexposed on a photographic emulsion.
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4.7.4 Detector Noise and Detection Quantum Efficiency

Not only do the primary electrons show shot noise, which means that the
number of electrons hitting a detector during a given pixel time is statistically
distributed, but the statistics also increase the noise in the different steps
of the detector system; the signal-to-noise ratio SNRout behind the detector
system is lower than SNRin. The squared ratio of these is called the detection
quantum efficiency,

DQE =
SNR2

out

SNR2
in

≤ 1. (4.46)

It will be unity for an ideal detector that produces no further noise. The choice
of definition of this quantity for electronics is historical; the square, not very
intuitive for particle detectors, is associated with the power spectrum of noise.

For the calculation of the DQE, we have to evaluate the variances in the
different steps. We assume that one particle (electron or photon) can randomly
generate i = 0, 1, 2, . . . particles in the subsequent step with a probability
Px(i), where

∑
i

Px(i) = 1. The mean yield of this step will be

x =
∑
i

iPx(i), (4.47)

and the variance of x, which is the square of the standard deviation σ, becomes

var(x) = σ2 =
∑
i

(i − x)2 =
∑
i

i2Px(i) − 2x
∑
i

iPx(i)
︸ ︷︷ ︸

= x

+x2∑
i

Px(i)
︸ ︷︷ ︸

= 1
=
∑
i

i2Px(i) − x2. (4.48)

Whereas Px(i) has been introduced as the probability that one incident parti-
cle generates i particles, the probability Px(n, i) is defined to be the probability
that n incident particles will result in a total number i of particles:

Px(n, i) =
∑
j

Px(j)Px(n − 1, i − j). (4.49)

Px(i) is called a binomial or binary distribution if only the values i = 0,
1 are possible. This means that the particles are either absorbed (i = 0) or
transmitted, backscattered or ejected (i = 1), and

Px(0) = 1 − x, Px(1) = x, (4.50)

with the mean yield x and the variance

var(x) = x(1 − x). (4.51)

For a binomial distribution, the relation (4.49) gives

Px(n, i) =
n!

i!(n − i)!
xi(1 − x)n−i (4.52)
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with a mean yield y = nx and the variance

var(nx) = nx(1 − x). (4.53)

For example, Px(2, 0) = (1 − x)2, Px(2, 1) = 2x(1 − x), Px(2, 2) = x2.
The binomial distribution degenerates to a Poisson distribution for y = nx

if x � 1 and n is very large:

Py(i) =
yi

i!
e−y, var(y) = y. (4.54)

The following equations are relevant to the statistics of cascade processes. If
one particle generates i particles in the first stage with a probability Px1(i),
and if these i particles enter the second stage and generate j particles with
a probability Px2(i, j) per incident particle, then the probability Py(k) of
generating k particles in the second stage per incident particle in the first
stage is given by

Py(k) =
∑
i

Px1(i)Px2(i, k) (4.55)

with mean yield y and variance

y = x1x2, var(y) = var(x1)x2
2 + x1var(x2). (4.56)

For m statistical processes, the cascade has the mean yield y = x1x2 . . . xm,
and variance

var(y) = y2

(
var(x1)

x2
1

+
var(x2)
x1x2

2

+ . . .
var(xm)

x1x2 . . . xm−1x2
m

)
. (4.57)

A cascade of two binomial distributions again results in a binomial distri-
bution with y = x1x2 and var(y) = y(1 − y). If a Poisson distribution with
mean value x1 is followed by a binomial distribution, we get a Poisson distri-
bution with y = x1x2 and var(y) = x. However, two Poisson distributions in
cascade do not result in a Poisson distribution.

We first apply these general laws to the statistics of the primary electrons.
The mean number of incident electrons per pixel is

N = Ipτ/e. (4.58)

The shot noise, may be analyzed by the following argument. The time τ for
one pixel can be divided into a large number n of time intervals, so that the
probability x of observing one electron in one of these time intervals is much
less than unity and the probability of observing more than one electron per
time interval is negligible. We then expect the mean value of the number
of electrons y in the time interval τ to follow a Poisson distribution (4.54),
y = nx = N and var(N) = N .

The electron current consists of pulses of charge e and can be Fourier
analyzed, from which we obtain the rms current of the a.c. or noise component

In,rms =
√

I2
n =
√

2e∆fIp, (4.59)
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where ∆f is the bandwidth of the detection system. Furthermore, (4.58) gives
the noise amplitude

In,rms =
e

τ

√
var(N) =

e

τ

√
N =

√
eIp/τ (4.60)

of the primary current, and the last two equations become identical for τ =
1/(2∆f). The signal-to-noise ratio of the primary electrons will be SNRin in
(4.46):

SNRin = Ip/In,rms = N/
√

var(N) =
√

N =
√

Ip/2e∆f. (4.61)

These laws of statistics are used below to calculate the DQE of scintillators
coupled by a fiber plate to a CCD.

4.7.5 Low-Light-Level and Charge-Coupled-Device
(CCD) Cameras

For digital image processing and for electron microscope alignment (Sect.
2.4.3), it is of interest to record two-dimensional arrays of pixels directly,
avoiding the darkroom work required for photographic emulsions or the read-
out for imaging plates. In the first attempts, the image on a fluorescent screen
was captured by a low-light-level TV camera. Several commercial TV tubes
were tested and employed for electron microscopy; see [4.137] for a comparison
of their sensitivities and DQEs. Of these, it was the SIT camera (silicon inten-
sifier target) that was mainly used. However, CCD cameras have come into
increasingly widespread use; see [4.138] for a comparison of a frame-transfer
CCD and a SIT camera.

A CCD image sensor consists of an array of 10242 to 40962 silicon-based
photodiodes (pixels), each typically about 20 × 20 µm2. Absorbed light quanta
generate electron-hole pairs, which are separated in the depletion layer of
the diodes, and the electrons are accumulated in the potential wells of the
diodes during storage. By applying sequences of different biases to neighbor-
ing diodes, the charges can be transferred to a serial shift register, after which
a built-in amplifier and ADC transfers the signal to an external buffer store.
Charge-coupled devices in light-optical TV cameras can be read at TV fre-
quency, but the read-out (accumulation) time can be varied and increased to
100 s when the CCD is cooled to –30◦C using a Peltier element. This de-
creases the background dark current of the diodes and considerably increases
the signal-to-noise ratio.

The CCD cannot be irradiated with electrons directly owing to the genera-
tion of defects, which cause a long-time fading of the sensitivity. Furthermore,
the large number of electron-hole pairs created by each incident electron would
limit the number of recordable electrons per diode to only about a hundred.
The electrons are therefore converted to photons in a thin scintillator (powder
layer or YAG single crystal with a thickness of 50 µm) and transferred through
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Fig. 4.33. (a) Tandem optics and (b) fiber plate for coupling the light excited in a
fluorescent layer to a charge-coupled device (CCD).

a fiber plate with fiber diameters of 6 µm or a light-optical tandem objective
to the CCD array (Fig. 4.33) [4.138, 4.139, 4.140, 4.141, 4.142, 4.143, 4.144].

The fiber-plate coupling has the advantage of better light-collection ef-
ficiency. A disadvantage is the honeycomb pattern, which can be seen as a
Moiré pattern between the gratings of the diodes and fibers. Digital gain nor-
malization of the recorded signal is hence necessary using an “image” recorded
without any specimen with a uniform incident current density.

The light-collection efficiency and the DQE are less good with light-optical
coupling. Otherwise, it has the advantages that the optics and cooled CCD
are outside the microscope, there is no honeycomb structure, and only some
shading from the center to the corner. It can be used for HVEM [4.145, 4.146],
although the transparency of the fiber plate decreases because of formation
of color centers. Also, the generation of bright spots excited by x-rays in the
CCD can be reduced.

With n = j/e incident electrons per unit area and N = nd2 per diode area
d2, the three different conversion stages (scintillator, fiber plate, and CCD)
result in the mean value

Ne = Nne = N ε
E

Eph︸ ︷︷ ︸
nph

· ηoptηCCD︸ ︷︷ ︸
η

(4.62)

of stored electrons per diode, where, for example,

E = (1 − ηc)E : energy dissipated in phosphor,
ηc � 0.1 : energy fraction lost by backscattering,
ε = 5% : energy conversion coefficient,

Eph = 2.21eV : mean photon energy,
ηopt = 0.06 : optical efficiency of the fiber plate,

ηCCD = 35% : quantum efficiency of the CCD.

This results in a mean number nph � 2000 of emitted photons and
ne � 40 accumulated electrons in the CCD per incident 100 keV electron on
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the phosphor layer. The saturation charge (full-well capacity) is � 2.5 × 105

e /pixel, which means 5000 incident electrons can be recorded per pixel. This
is far superior to a photographic emulsion and provides a dynamic range of
12 bits.

Application of (4.57) to (4.62) results in

SNR2
out =

var(Ne)
N2

e

=
var(N)

N2
+

var(nph)
Nn2

ph

+
η(1 − η)
Nnphη2

. (4.63)

The third term is the variance of a binomial distribution (4.51), and the first
term (Poisson distribution) becomes 1/N (4.54). Using the definition (4.46)
of the DQE, (4.63), and (4.61) results in [4.142]

DQE =

[
1 +

var(nph)
n2

ph

+
1 − η

ne
+

1
N

∆n2
r

n2
e

]−1

. (4.64)

The last term is included to represent the readout noise with ∆nr = 20e−.
When the values above are inserted, the last two terms in (4.64) are very
small so long as ne � 1; the DQE is then determined by var(nph), which can
be calculated from a measured or Monte Carlo simulated pulse-height distri-
bution (Fig. 4.34a). With increasing electron energy E, the maxima of the
distribution are broadened and shift to higher pulse heights. However, when
the electrons penetrate the phosphor, the maxima decrease strongly and a new
maximum appears at low pulse heights caused by electrons backscattered at
the fiber plate. This results in the decrease of the DQE with increasing E
shown in Fig. 4.34b for different thicknesses t of the single-crystal YAG disc.

As in Fig. 4.32 for a photographic emulsion, an edge- or point-spread
function can be measured for a CCD (Fig. 4.34c); this shows that the signal
is spread over more than one pixel as a consequence of electron diffusion and
light scattering in the phosphor.

The relation between the point-spread function p(x, y) and the edge-spread
function e(x, y) can easily be deduced from the equation

g(x, y) =
∫

f(x′, y′)p(x − x′, y − y′)dx′dy′ (4.65)

for the image intensity g(x, y) for an object described by the transmission
function f(x, y). For a small slit, the transmission function is given by

f(x, y) = δ(x), (4.66)

yielding the line-spread function

l(x) =
∞∫
−∞

δ(x′)p(x − x′, y − y′)dx′dy′ =
∞∫
−∞

p(x, y′)dy′. (4.67)

Correspondingly, for a sharp edge, we insert the transmission function

f(x, y) =
{

1 for x > 0
0 otherwise (4.68)
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Fig. 4.34. (a) Pulse-height distribution of a 50 µm YAG single crystal irradiated
with different electron energies, (b) the DQE calculated from the measured pulse-
height distribution and Monte Carlo simulations as a function of electron energy
and different thicknesses t of the YAG single crystal, and (c) point-spread function
of the CCD for 100 and 300 keV electrons [4.142].

and obtain

e(x) =
∞∫

x′=0

∞∫
−∞

p(x − x′, y − y′)dx′dy′ =
∞∫
−x

l(x̃)dx̃. (4.69)

The last identity shows that the line-spread function can be obtained from
the edge-spread function by a simple differentiation,

l(x) =
d

dx
e(x). (4.70)

Alternatively, the transfer properties of the camera can be described by a
modulation transfer function defined by

M(q) =
∫

p(r)e2πiqrd2r. (4.71)

Assuming rotational symmetry, we obtain

M(q) =
∞∫

r=0

2π∫
ϕ=0

p(r)e2πiqr cos ϕdϕrdr = 2π
∞∫
0

p(r)Jo(2πqr)rdr. (4.72)
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The modulation transfer function can also be obtained from the line-spread
function via

M(q) =
∞∫
−∞

l(x)e2πiqxdx. (4.73)

In practice, one often measures the edge-spread function, from which the other
functions can be easily obtained.

4.7.6 Semiconductor and Scintillation Detectors

The following detectors can be used for the recording of signals in STEM or
for sequentially recording electron energy-loss spectra or diffraction patterns,
for example.
Semiconductor Detector. This type of detector consists of a p-n junction
diode below a conductive surface layer; optimally the thickness of the depletion
layer should be of the order of the electron range R. High-energy electrons
of energy E create n = E/Ei electron-hole pairs. The mean energy Ei for
creating one pair is 3.6 eV in silicon. The electron-hole pairs created in the
depletion layer are separated and produce a charge-collection current

Icc = Ip(1 − ηc)
E − Eth

Ei

εc, (4.74)

where ηc takes into account the loss of ionization by backscattering, which is
only of the order of 10% for silicon; Eth = 1–5 keV is the threshold energy for
the incident electrons arising from absorption in an evaporated gold contact
layer and/or from an increased surface recombination rate (dead layer); and
εc is the charge-collection efficiency of the depletion layer.

Because of the relatively large capacitance of the depletion layer, a low-
impedance current amplifier has to be used to convert Icc to a video voltage
of a few hundred meV. The time constant τ0 = RC decreases with decreasing
area of the depletion layer and increasing current Ip. The capacitance and
the background noise can be further decreased by employing reverse biasing
of the p-n junction. Currents of 10−11 A can be recorded in about 10−5 s,
which corresponds to a cutoff frequency of 100 kHz of the video signal. By
decreasing C, it is possible to observe backscattered electrons at TV scan rates
[4.147, 4.148]. With the high electron energies used in TEM, single-electron
counting is also possible when the single pulses are higher than a threshold
that exceeds the noise level.
Scintillation Detector. Scintillator materials emit light quanta (photons)
under electron bombardment. Zinc sulfide (ZnS), which is used for fluorescent
screens in TEM, has a high efficiency, but its light-intensity decay time is of
the order of one millisecond and the afterglow persists for several seconds;
it therefore cannot be used for fast recording. Plastic scintillators (NE102A
of Nuclear Enterprises Ltd., for example), P-47 powder, or single crystals
(yttrium silicate doped with 1% cerium) have become standard scintillator
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materials for TEM, STEM, and SEM because their time constants are of the
order of 10−8 s and their efficiency is not worse than one-tenth that of ZnS.

A conductive and light-absorbing Al coating about 100 nm thick is evap-
orated on plastic scintillators. The light emission decreases with increasing
irradiation time owing to radiation damage of the organic material. However,
the thin damaged layer can be removed by polishing. P-47 powder layers ex-
hibit a much longer radiation resistance. Methods of preparing P-47 layers
with optimum thickness are reported in [4.149, 4.150]. Single-crystal scintilla-
tors consisting of cerium-doped yttrium aluminum garnet (YAG) can be used
for the detection of transmitted and backscattered electrons in STEM [4.151]
and as thin polished slices in front of fiber plates connected to a CCD.

The photons emitted are collected by a light pipe in front of the photo-
multiplier, which reflects the light by total reflection with a transmission T .
The photons are converted to photoelectrons at the photocathode of the mul-
tiplier with a quantum efficiency qc that is between 5% and 20%. The pho-
toelectrons are accelerated by a potential of about +100 V to an electrode of
high secondary-electron yield δPM = 8–15. The total gain of the multiplier is
obtained by successive acceleration and secondary-electron emission at n =
8–10 electrodes (dynodes), resulting in a total gain gPM = δn

PM. The pulse of
gPM electrons or the current induced by a higher rate of incident electrons
causes a voltage drop U across a resistor R = 100 kΩ, which can be amplified
by operational amplifiers. For an incident probe current Ip and a detector
collection efficiency f , which depends on the signal generated (transmitted,
secondary, or backscattered electrons) and on the solid angle of collection, the
signal is

U = fIp
E

Eph

Tqcδ
n
PMR, (4.75)

where Eph denotes the mean energy needed to produce one photon in the
scintillator. Such a scintillator–photomultiplier combination can be operated
with a large bandwidth ∆f , up to some MHz, and low noise. It is possible
to achieve an rms noise amplitude that is only a factor of 1–2 larger than
the shot noise., The latter is the noise amplitude (4.59) associated with an
electron current Ip caused by statistical fluctuations of the number of electrons
incident during equal sampling times.

4.7.7 Faraday Cages

Direct measurement of electron currents is of interest for determination of
electron-current densities and electron-beam currents. Quantitative measure-
ments require a Faraday cage, which consists of a grounded shield that con-
tains a hole somewhat smaller than that of the inner cage (Fig. 4.35). The
hole has to be small enough to ensure that the solid angle of escape for elec-
trons backscattered at the bottom of the cage is negligible. The backscattering
coefficient of the bottom material must be low (η = 6% for carbon and 13%
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Fig. 4.35. Construction and input circuit of a Faraday cage for measuring electron
currents.

for Al). Furthermore, the secondary electrons produced at the inner walls of
the cage must remain inside the cage. The low currents can be measured with
a commercial electrometer, which makes use of the voltage drop U = RI
of the order of 1 mV to 1 V across a high resistance R = 106 − 1010Ω. A
low-impedance output signal can be obtained by using a field-effect transistor
(FET) or a vibrating-reed electrometer. The high resistance R and the by no
means negligible capacitance C of the cage, the cables, and the electrometer
input result in a time constant τ0 = RC, which may reach a few seconds for
very small currents. A Faraday cage therefore cannot be used to record fast
variations of low electron currents.

Some microscopes are equipped with an insulated fluorescent screen to
measure the incident current for an automatic exposure system. This cannot
be used for quantitative measurements because the large backscattered frac-
tion of the electrons travel like bouncing balls through the chamber and an
unknown fraction hit the screen again.



5

Electron–Specimen Interactions

The elastic scattering of electrons by the Coulomb potential of a nucleus is the
most important of the interactions that contribute to image contrast. Cross
sections and mean-free-path lengths are used to describe the scattering process
quantitatively. A knowledge of the screening of the Coulomb potential of the
nuclei by the atomic electrons is important when calculating the differential
cross sections at small scattering angles.

The inelastic scattering is concentrated within smaller scattering angles,
and the excitation of energy states results in energy losses. The dominant
mechanisms are plasmon and interband excitations, which can be described
by the dielectric theory. These inelastic scattering processes are less localized
than elastic scattering and cannot contribute to high resolution. Inner-shell
ionizations result in edge-shaped structures in the electron energy-loss spec-
trum (EELS), on which are superposed a near-edge structure (ELNES) and
an extended energy-loss fine structure (EXELFS), which can be used for an-
alytical electron microscopy at high spatial resolution.

Even quite thin specimen layers, of the order of a few nanometers, do
not show the angular or energy-loss distribution corresponding to a single
scattering process. Multiple-scattering effects have to be considered as the
specimen thickness is increased, and this can also result in electron-probe
broadening.

5.1 Elastic Scattering

5.1.1 Cross Section and Mean Free Path

The most convenient quantity for characterizing the angular distribution of
scattered particles is the differential cross section, which is introduced in
Fig. 5.1a using the Coulomb model for the scattering of an electron by a
nucleus. The electrons travel on hyperbolic trajectories due to the attractive
Coulomb force (3.15) between the electron and the nucleus. If there were no
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Fig. 5.1. (a) Elastic electron scattering in the particle model and explanation of
the differential cross section dσ/dΩ (a: impact parameter). (b) Scattering in the
wave model with the superposition of a plane incident wave of wave number k0 and
a spherical scattered wave of amplitude f(θ), depending on the scattering angle θ.

interaction between them, the electron would travel straight past the nucleus;
the shortest distance between them, the impact parameter, is denoted by a.
Increasing a decreases the scattering angle θ. Electrons that pass through an
element of area dσ of the parallel incident beam will be scattered into a cone
of solid angle dΩ. The ratio dσ/dΩ is known as the differential cross section
and is a function of the scattering angle θ.

This cross section dσ/dΩ cannot be calculated exactly from the classical
particle model; quantum mechanics has to be used (Sect. 5.1.3) [3.1, 3.2,
3.3, 5.1]. Far from the nucleus, the total wave field can be expressed as the
superposition of the undisturbed plane incident wave of amplitude ψ = ψ0

exp(2πik0z) and a spherical scattered wave of amplitude

ψsc = ψ0f(θ)
e2πikr

r
(5.1)

depending on the scattering angle θ (Fig. 5.1b).
The current density j0 = eNv of a parallel beam has been introduced in

(3.9); Nv is the flux of particles that pass through a unit area per unit time.
Scattering into the solid angle dΩ is observed when the electron hits the
fraction dσ of the unit area. The scattered current dIsc that passes through
the area dS = r2 dΩ will be

dIsc = jscr
2dΩ = j0dσ, which implies jsc =

j0
r2

dσ

dΩ
. (5.2)

Substituting the scattered-wave amplitude ψsc (5.1) in the quantum-mecha-
nical expression for the current density (3.10) yields

jsc = ev|ψ0|2
|f(θ)|2

r2
= j0

|f(θ)|2
r2

. (5.3)

Comparing (5.2) and (5.3), we find

dσ

dΩ
= |f(θ)|2 . (5.4)
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The total number of scattered electrons can be calculated by dividing the
corresponding solid angle into small segments dΩ = 2π sin θ dθ (Fig. 5.1b)
and integrating over θ from 0 to π. This gives the total elastic cross section

σel =
π∫
0

dσ

dΩ
2π sin θdθ. (5.5)

This quantity can be used to calculate the number of unscattered electrons,
for example. Whether or not scattering occurs is determined by the total
(elastic and inelastic) cross section σt = σel + σinel (σinel is the total inelastic
cross section, Sect. 5.2.2).

Suppose that n unscattered electrons are incident on a thin layer of a solid
film with a mass thickness dx = ρdz in units g cm−2. There will be Nρdz
atoms per unit area in a layer of thickness dz with N = NA/A atoms per gram
(NA is Avogadro’s number and A the atomic weight). Scattering occurs when
the electrons hit a small area σt in the vicinity of each atom. A scattering
event will be recorded when the electrons strike a fraction Nσtdx of the unit
area, and a fraction

dn

n
= −Nσtdx (5.6)

will be scattered in the layer of thickness dx. The negative sign indicates that
n is decreased by scattering.

Integrating (5.6), we find

lnn = −Nσtx + ln n0, (5.7)

where the constant of integration, ln n0, is determined by the initial number
n = n0 of incident electrons per unit area at x = 0. This shows that the
number of unscattered electrons decreases exponentially with increasing mass
thickness,

n = n0 exp(−Nσtx) = n0 exp(−x/xt). (5.8)

The lengths

xt = ρΛt = 1/Nσt and Λt = xt/ρ (5.9)

are both known as the total mean-free-path length (in units g cm−2 and cm,
respectively) between scattering events.

5.1.2 Energy Transfer in an Electron–Nucleus Collision

An elastic collision is defined as a collision in which the total kinetic energy and
momentum are conserved. The laws of conservation of energy and momentum
before and after the collision can be written without any detailed knowledge
of the interaction process between the particles. We characterize quantities
after the collision by a dash and those of the nucleus by the suffix n. From
Fig. 5.2, the conservation of momentum can be expressed as
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Fig. 5.2. Conservation of momentum in elastic scattering.

p = p′ + p′
n =

⎧⎨
⎩

p = p′ cos θ + p′n cos ψ

0 = p′ sin θ − p′n sin ψ,
(5.10)

and the conservation of kinetic energy requires that

E = E′ + E′
n. (5.11)

Equation (2.11) has to be used for the relativistic momentum of the elec-
tron, whereas the nonrelativistic formula

p′n = (2ME′
n)1/2 (5.12)

can be used for the momentum of the nucleus because its rest mass M = Amp

is very large (mp: atomic mass unit). Solving the lower equation in (5.10) for
sinψ and (5.11) for E′ and substituting these quantities in the upper equation
in (5.10), we obtain

1
c

[E(E + 2E0)]1/2 =
1
c

[(E − E′
n)(E − E′

n + 2E0)]1/2 cos θ

+
[
2ME′

n

(
1 − (E − E′

n)(E − E′
n + 2E0)

2Mc2E′
n

sin2 θ

)]1/2

. (5.13)

The energy transfer E′
n to the nucleus will be small compared with E, so

E − E′
n � E. Transferring the first term on the right-hand side of (5.13) to

the left-hand side, squaring the equation, and using the relation 1 – cos θ =
2 sin2(θ/2), we find

E′
n =

2E(E + 2E0)
Mc2

sin2 θ

2
=

E(E + 1.02)
496A

sin2 θ

2
, (5.14)

with E′
n, E, and E0 in MeV.

From the conservation of energy (5.11), this energy E′
n transferred to the

nucleus must be equal to the energy loss ∆E of the primary electron. Table 5.1
shows typical values of E′

n. This energy loss is negligible for small scattering
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Table 5.1. Energy transfer E′
n to a nucleus, which is equal to the energy loss ∆E

of the primary electron of energy E in an elastic scattering process with a scattering
angle θ for 100 keV and 1 MeV electrons.

E 100 keV 1 MeV
C Cu Au C Cu Au

θ (A = 12) (A = 63.5) (A = 197)

0.5◦ 0.5 meV 0.1 meV 0.03 meV 9 meV 1.7 meV 0.54 meV
10◦ 0.15 eV 29 meV 9 meV 2.7 eV 0.5 eV 0.17 eV
90◦ 10 eV 1.9 eV 0.6 eV 179 eV 34 eV 11 eV
180◦ 20 eV 3.8 eV 1.2 eV 359 eV 68 eV 22 eV

Fig. 5.3. Comparison of total cross
sections σ for elastic scattering (σel),
inelastic scattering (σinel), K-shell
ionization (σK), backscattering into
angles θ ≥ π/2 (σπ/2), and an
atomic displacement with a displace-
ment energy Ed = 20 eV (σd) as
functions of electron energy E.

angles owing to the presence of the factor sin2(θ/2). Therefore, in elastic
electron-nucleus small-angle scattering, we can say that effectively no energy
is lost by the primary electron, though very small energy losses of the order
of meV are possible in solids by electron–phonon scattering (Sect. 5.2.1).

However, the energy losses are not negligible for higher electron energies
and scattering angles. If the energy transfer E′

n is greater than the displace-
ment energy Ed � 10–30 eV, nuclei can be displaced from their lattice points
to interstitial sites, resulting in radiation damage, which has to be considered
in high-voltage electron microscopy (Sect. 11.3.2). Carbon atoms can also be
knocked out of organic compounds by this direct transfer of momentum. How-
ever, the cross section σd for such knock-on processes is smaller by orders of
magnitude than the cross sections σel and σinel (Sect. 5.1.4 and 5.2.2) for elas-
tic and inelastic scattering (Fig. 5.3). The displacement cross section σd for
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an energy transfer ∆E = E′
n ≥ Ed can be calculated by first determining the

minimum scattering angle θmin for which E′
n = Ed using (5.14). We expect

E′
n ≥ Ed for all θ ≥ θmin and

σd =
π∫

θmin

dσel

dΩ
2π sin θdθ, (5.15)

in which we use the differential elastic cross section for large-angle scattering
and relativistic energies. The threshold primary electron energy Ec for transfer
of the minimum energy Ed to a nucleus can be obtained by setting E′

n = Ed

and θ = 180◦ in (5.14).

5.1.3 Elastic Differential Cross Section for Small-Angle Scattering

The elastic cross section dσel/dΩ or the scattering amplitude f(θ) can be
calculated from the Schrödinger equation (3.21). The asymptotic solution far
from the nucleus can be represented by a plane, unscattered wave and a scat-
tered, spherical wave (5.1) with an amplitude f(θ) depending on the scattering
angle θ (Fig. 5.1b),

ψs = ψ0

[
exp(2πikz) + f(θ)

e2πikr

r

]
. (5.16)

The scattering amplitude

f(θ) = |f(θ)|eiη(θ) (5.17)

is complex.
For scattering angles θ ≤ 10◦, which are important for TEM, the scattering

amplitude f(θ) can be calculated by the so-called WKB method (Wentzel,
Kramer, Brillouin) in the small-angle approximation of Molière [5.2], also
associated with the name of Glauber [5.3], and by the Born approximation.
The latter only gives real values of f(θ) and fails for atoms of high atomic
number. An exact solution of the Schrödinger equation (3.22) resulting in
complex scattering amplitudes can be obtained by the partial-wave analysis.
These three methods will be described in the following.
WKB Method. The scattering amplitude f(θ) is the amplitude of the spher-
ical wave far from the scattering event (Fig. 5.1b) and is therefore identical
with the diffraction amplitude in Fraunhofer diffraction. We need to calculate
the wavefront behind the atom (Fig. 5.4) in the form (3.36). We can assume
that as(r) = 1 because there is no absorption of electrons, and the phase
shift ϕs(r) can be obtained from the optical path difference ∆s relative to the
wavefront in vacuum,

ϕs(r) =
2π

λ

+∞∫
−∞

[n(r) − 1]dz ≈ − 2π

λE

E + E0

E + 2E0

+∞∫
−∞

V (r)dz. (5.18)

Equation (3.17) has been used for the electron-optical refractive index
n(r); this contains the potential energy, which involves not only the Coulomb
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Fig. 5.4. Phase shift ϕ of a plane incident wavefront passing the Coulomb potential
V (r) of an atom.

potential of the nucleus but also that of the atomic electrons. The latter cause
a screening of the nuclear charge +Ze. The charge distribution ρ(rj) inside an
atom can be described by a δ-function at the nucleus (r = 0) together with the
charge density −eρe(rj) of the electron cloud with probability density ρe(rj);
ψ0s denotes the wave amplitudes of the Z atomic electrons at the position rj ,

eρ(rj) = eZδ(0) − eρe(rj) = eZδ(0) − e
Z∑

s=1
ψ0s(rj)ψ∗

0s(rj). (5.19)

The probability density ρe(rj) can be calculated from the Thomas–Fermi
model or by the Hartree–Fock method. An element of volume d3rj at a
distance rj from the nucleus contributes −e2ρ(rj)(4πε0|ri − rj |)−1 to the
Coulomb energy of a beam electron at a distance ri. The total Coulomb en-
ergy becomes

V (ri) = − e2

4πε0

∫ ρ(rj)
|ri − rj |

d3rj . (5.20)

If ρe(rj) is assumed to be rotationally symmetric (5.20), V (ri) can be derived
from the elementary law of electrostatics

E(ri) = − Q(ri)
4πε0r2

i

er, (5.21)

where Qri
is the charge inside a sphere of radius ri. It is advantageous in

the calculation that follows to approximate the screening action in (5.21) in
various ways:

1. One exponential term (Wentzel atom model)

V (r) = − e2Z

4πε0r
e−r/R with R = aHZ−1/3 (5.22)

aH = ε0h
2/πm0e

2 = 0.0529 nm is the Bohr radius.



148 5 Electron–Specimen Interactions

2. A sum of exponentials [5.4, 5.5, 5.6]

V (r) = − e2Z

4πε0r

k∑
i=1

bi exp(−air),
k∑

i=1

bi = 1. (5.23)

To distinguish between the unscattered and the scattered parts of the
wave, it is useful to rewrite (3.36) in the form

ψs(r) = ψ0 + ψ0{exp[iϕs(r] − 1}, (5.24)

where the first term describes the unscattered part of the wave. From the
second term one obtains the scattering amplitude [3.1, 3.2]

f(θ) = −ik
∫
{exp[iϕs(r)] − 1} e2πiq·rd2r

= −ik
∫
{exp[iϕs(r)] − 1}e2πiqr cos χrdrdχ

= −2πik
∞∫
0

{exp[iϕs(r)] − 1}J0(2πqr)rdr. (5.25)

Here we have used q · r = qr cos χ (r, χ are polar coordinates in the spec-
imen plane) and d2r = rdrdχ. The integral over χ for constant r yields the
Bessel function J0. Figure 5.5 shows calculated scattering amplitudes f(θ) for
C and Pt atoms with the muffin-tin model [5.8]. The value of f(θ) increases
with increasing electron energy for small θ but decreases for large θ. In con-
sequence, the total elastic cross section σel decreases with increasing energy
(see Fig. 5.3 and Sect. 5.1.4). The additional phase shift η(θ) is very much less
for C than for Pt. Complex scattering amplitudes have also been reported in
[5.7, 5.9, 5.10].
Born Approximation. The Born approximation can be used only for weak-
phase specimens, for which ϕs � 1 and the Taylor series exp[iϕs(r)] = 1 +
iϕs(r) + . . . can be truncated after the first two terms. Substituting this in
(5.25), we obtain the Born approximation

f(θ) = 2πk
∫

ϕs(r)e2πiq·rd2r. (5.26)

By writing ϕs = (2π/λ)
∫

(n− 1)dz with the refractive index n (3.17), f(q) in
(5.26) becomes

f(θ) = − 2π

λ2E

E0 + E

2E0 + E

∫
V (r)e2πiq·rd3r, (5.27)

where F (q) has been transformed to f(θ) by multiplying by the factor λ−1.
The factor in front of the integral in (5.27) is written in various ways in the
literature, which are connected by the identities

πe2

ε0λ2E

E0 + E

2E0 + E
≡ e2m0(1 + E/E0)

4πε0h̄
2 ≡ 1 + E/E0

aH
, (5.28)

where aH = 0.0529 nm is the Bohr radius.
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Fig. 5.5. Values of the scattering amplitude |f(θ)| and phase shift η(θ) of the
complex scattering amplitude (5.17) calculated by the WKB method using a muffin-
tin model for (a) carbon and (b) platinum.
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The scattering amplitude for atoms f(θ) is a real quantity in the Born ap-
proximation, and the additional phase shift η(θ) is zero. The Born approxima-
tion therefore cannot be used for atoms of high atomic number because these
are never “weak-phase objects”. The difference between the WKB method
and the Born approximation is shown in Fig. 6.3 for the total elastic cross
section σel or xel = A/(NAσel) (see the discussion in Sect. 6.1.1). The Born
approximation has the advantages that an analytical solution can be obtained
for simple potential models and that the dependence of f(θ) on the various pa-
rameters can be comprehended more readily. Substitution of (5.20) in (5.27),
with the coordinate rj describing the atomic charge density and ri the beam
electrons, gives

f(θ) =
2π

λ2E

E0 + E

2E0 + E

e2

4πε0

·
∞∫
0

ρ(rj)e−2πiq·rj d3rj

︸ ︷︷ ︸
Z − fx

·
∞∫
0

exp[−2πiq · (ri − rj)]
|ri − rj |

d3ri

︸ ︷︷ ︸
1/πq2

, (5.29)

where fx is the scattering amplitude for x-rays. This quantity is dimensionless,
whereas f(θ) has the dimension of a length. This may be written

f(θ) =
λ2(1 + E/E0)

8π2aH
(Z − fx)

1
sin2(θ/2)

, (5.30)

in which we have used (5.28) and (3.39). The differential cross section for
large-angle scattering can be obtained by setting fx = 0 in (5.30). This yields
the Rutherford cross section

dσR

dΩ
=
(

Ze2

8πε0E

)2(
E0 + E

2E0 + E

)2 1
sin4(θ/2)

=
(

Ze2

8πε0mv2

)2

cosec4 θ

2
. (5.31)

Writing sin(θ/2)� θ/2, we obtain the small-angle elastic cross section

dσel

dΩ
= |f(θ)|2 =

λ4(1 + E/E0)2

4π4a2
H

(Z − fx)2

θ4
. (5.32)

This unscreened cross section and the Rutherford cross section (5.31) have
a singularity at θ = 0. However, the numerator also goes to zero as θ → 0
because fx tends to Z =

∫
ρe(rj)d3rj as θ or q tends to zero; f(0) therefore

takes a finite value, which is sensitive to the choice of the screening model.
This influence of screening on f(0) can be better understood if we substi-

tute (5.22) for V (r) in (5.27) and consider small scattering angles for which
sin θ � θ [5.11, 5.12]. We have

fx =
Z

1 + 4π2q2R2
. (5.33)
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Substitution in (5.30) gives

dσel

dΩ
=

4Z2R4(1 + E/E0)2

a2
H

1
[1 + (θ/θ0)2]2

with θ0 =
λ

2πR
; R = aHZ−1/3. (5.34)

At the characteristic angle θ0, the differential cross section (5.34) falls to
a quarter of the value at θ = 0. Calculations of the elastic differential cross
section or f(θ) in the Born approximation using electron-density distributions
ρe(rj) given by relativistic Hartree–Fock calculations have been published in
[5.13, 5.14, 5.15, 5.16].

Differential scattering cross sections can only be measured for gas targets
if the concentration of atoms is so low that multiple scattering does not occur.
Figure 5.6 shows measurements of the elastic and inelastic differential cross
sections of argon atoms [5.17] that confirm the dependence (5.34) on the scat-
tering angle θ predicted by the Wentzel model (5.22). The angular intensity
distribution resulting from scattering in thin films is influenced by multiple
scattering even when the films are very thin (Sect. 5.3.1). The results can
be compared with calculated values of dσ/dΩ only after applying a deconvo-
lution procedure to the measured data; alternatively, the transmission T (α)
through thin films into a cone of aperture α (Sect. 6.1.1) may be compared
with calculated partial cross sections σ(α) as defined in (6.1).
Partial Wave Analysis. For a spherically symmetric potential V (r), the
scattering amplitude can be expanded in an infinite series of Legendre poly-
nomials,

Fig. 5.6. Angular dependence of
elastic and inelastic differential cross
sections dσ/dΩ (resonance energy
loss at ∆E = 11.7 eV) for 25 keV
electrons scattered at an argon gas
target [5.17].
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f(θ) =
1

4iπk

∞∑
l=0

(2l + 1)[exp(2iδl) − 1]Pl(cos θ), (5.35)

where l denotes the quantum number of angular momentum. The phase shifts
δl are positive for an attractive Coulomb potential, and these phase shifts can
be calculated from [3.1, 3.2, 3.3, 5.1]

sin δl = −
∞∫
0

jl+1/2(2πkr)
2m

h̄2 V (r)ul(r)dr, (5.36)

where the jl+1/2 are spherical Bessel functions and the ul(r) are solutions of
the radial Schrödinger equation

d2ul

dr2
+
[
4π2k2 − 2m

h̄2 V (r) − l(l + 1)
r2

]
ul(r) = 0. (5.37)

Of the order of a hundred partial waves have to be calculated to decrease
the error at low scattering angles to less than 1% for 100 keV electrons (about
a thousand partial waves are necessary for 1 MeV). A computer program
is available that uses the muffin-tin model of V (r) [Fig. 3.3] and can also
calculate deviations from Rutherford cross sections (Mott cross sections) at
large scattering angles [5.18].

5.1.4 Total Elastic Cross Section

The total elastic cross section σel can be calculated by applying (5.5) to the
differential cross section. Because of the fast decrease of f(θ) with increasing θ,
an exact knowledge of the large-angle scattering distribution is not necessary.

When a complex scattering amplitude (5.17) or (5.35) given by the WKB
or partial-wave method is available, substitution of (5.35) in (5.5) using the
orthogonality of the Legendre polynomials results in

σel =
1

πk2

∞∑
l=1

(2l + 1) sin2 δl. (5.38)

Comparison with (5.35) gives the optical theorem of quantum-mechanical scat-
tering theory

σel =
2
k

Im{f(0)} = 2λ|f(0)| sin η(0), (5.39)

which shows that the imaginary part of the forward scattering amplitude for
θ = 0 determines the total cross section.

Substituting the expression dσel/dΩ given by (5.34) and R = aHZ−1/3 in
(5.5), we obtain (β = v/c)

σel =
Z2R2λ2(1 + E/E0)2

πa2
H

=
h2Z4/3

πE2
0β2

. (5.40)

The absolute value of σel or its reciprocal xel = A/(NAσel) does not agree
well with experiments (Fig. 6.3) because the Wentzel screening model (5.22)
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is too simple and the Born approximation fails for high Z. However, the cross
section σel is observed to be proportional to β−2 for low-Z material, and the
predicted saturation for energies larger than 1 MeV is found for all elements
(Figs. 5.3 and 6.3). Also, the proportionality with Z4/3 is a typical result
of the Wentzel model and the Born approximation. Calculations of the total
elastic cross section for Hartree–Fock–Slater or Dirac–Slater atoms [5.19] lead
to the approximate formula

σel =
1.5 × 10−6

β2
Z3/2

(
1 − 0.23

Z

137β

)
for

Z

137β
< 1.2, (5.41)

where σel is measured in nm2.

5.2 Inelastic Scattering

5.2.1 Electron–Specimen Interactions with Energy Loss

Whereas an elastic collision preserves kinetic energy and momentum, an in-
elastic collision conserves the total energy and momentum, a part of the kinetic
energy being converted to atom–electron excitation. The primary electron is
observed to lose energy even at small scattering angles. The following excita-
tion mechanisms may be distinguished:

1. Excitation of oscillations in molecules [5.20] and phonon excitations in
solids [5.21, 5.22]. These energy losses (Fig. 5.7) are of the order of 20

Fig. 5.7. Energy-loss spectrum of an evaporated Ge film due to phonon excita-
tion, excitation of the GeO bonding and intraband transitions for energy losses
∆E ≤ 500 meV [5.22]
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Fig. 5.8. Energy-loss spectrum of an
Ag film and comparison with the dielec-
tric theory (dotted line) [5.23].

meV–1 eV and can be observed only after monochromatization of the
primary electron beam, which has an energy width of the order of 1 eV
when a thermionic electron gun is used. These interaction processes are
also excited by the infrared part of the electromagnetic spectrum. The
observed energy losses would be of considerable interest for molecular and
solid-state physics but, owing to the low intensity of a monochromatized
beam, high spatial resolution is scarcely possible. At the moment these
processes are therefore of little interest in electron microscopy.

2. Intra- and interband excitation of the outer atomic electrons and exci-
tation of collective oscillations (plasmons) of the valence and conduction
electrons (Sect. 5.2.4). Most of the plasma losses show relatively broad
maxima in the energy-loss range of ∆E = 3–25 eV (Figs. 5.8 and 5.20).
The plasmon losses depend on the concentration of valence and conduc-
tion electrons and are influenced by chemical bonds and the electron-band
structure in alloys. There are analogies with optical excitations in the vis-
ible and ultraviolet.

3. Ionization of core electrons in inner atomic shells (Sect. 5.3). Atomic elec-
trons can be excited from an inner shell (I = K,L,M, . . .) of ionization
energy EI to an unoccupied energy state above the Fermi level; such a tran-
sition needs an energy transfer (energy loss) ≥ EI. The energy-loss spec-
trum dσ/dE shows a steep increase for energy losses ∆E ≥ EI (Fig. 5.9).
A structure is observed in the loss spectrum a few eV beyond ∆E = EI

caused by excitation into higher bound states. In organic molecules, the
fine structure of the loss spectrum depends on the molecular structure
[5.25]. This type of inelastic scattering is also concentrated within rela-
tively small scattering angles θ < θE = EI/2E, though part of the inelastic
scattering extends to larger scattering angles. Energy-loss spectroscopy is
therefore the best method for analyzing elements of low atomic number
(e.g., C, N, O) in thin films with thicknesses smaller than the mean free
path for inelastic scattering. When the electron gap in the inner shell is
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Fig. 5.9. Differential cross section dσ/dE measured on 15 nm films of C, Al and
Cu with 80 keV electrons (full curve: without an aperture diaphragm, dotted curve:
using an objective aperture αo = 4.5 mrad). The arrows indicate the positions of
different shell energies [5.24].

filled by an electron from an outer shell, the excess energy is emitted as an
x-ray quantum or transferred to another atomic electron, which is emitted
as an Auger electron (Sect. 10.1).

The inelastic interactions therefore form the basis for several analytical
methods in electron microscopy (Chap. 10). However, low-loss inelastic scat-
tering is not favorable for high resolution because the inelastic-scattering
process is then less localized than the elastic one. An electron can be in-
elastically scattered even when passing the atom at a distance of a few tenths
of a nanometer. This is also illustrated by the fact that inelastic scattering is
concentrated into smaller scattering angles than elastic scattering (Fig. 5.6).
In order to resolve a specimen periodicity of Λ, scattering amplitudes are
needed out to an angle θ = λ/Λ; there are too few inelastically scattered elec-
trons at large θ for the imaging of small spacings Λ or high spatial frequencies
q = 1/Λ.

The total inelastic cross section σinel is larger than the elastic cross section
σel for elements of low atomic number and smaller for high Z (Sect. 5.2.3).
The energy losses in thick specimens decrease the resolution as a result of the
chromatic aberration.



156 5 Electron–Specimen Interactions

The largest part of the excitation energy is converted to heat (phonons)
(Sect. 11.1). Excitations and ionizations in organic specimens cause bond rup-
tures and irreversible radiation damage (Sect. 11.2). Color centers and other
point defects and clusters are generated in ionic crystals (Sect. 11.3).

Inelastic scattering can be described by a double-differential cross sec-
tion d2σinel/d(∆E)dΩ, depending on the scattering angle θ and the energy
loss ∆E. It becomes difficult to establish accurately such a two-dimensional
cross section from theory or experiment for several reasons: the complexity of
the energy-loss spectrum, its dependence on foil thickness (e.g., excitation of
surface plasmon losses), and the occurrence of multiple elastic and inelastic
scattering.

5.2.2 Differential Cross Section for Single-Electron Excitation

During an inelastic scattering event, an excitation energy ∆E = En − E0

may be transferred to an electron of the atom that is excited from the ground
state (0) with energy E0 and wave function a0s (s = 1, . . . , Z) to the excited
state (n) with energy En and wave function ans. For small scattering angles,
selection rules, such as ∆l = ±1, govern the allowed excitations, similar to
those for optical excitation.

The total energy and the momentum after the collision remain the same
as before. We introduce the scattering vector q′ = kn − k0 (Fig. 5.10) with
|kn| < |k0| instead of q = k−k0 with equal magnitudes of k and k0 as used for
elastic scattering. Using the relations p = hk and E = p2/2m (nonrelativistic),
the conservation of momentum

k2
n = k2

0 + q′2 − 2k0q
′ cos η, (5.42)

and the conservation of energy

∆E =
h2

2m
(k2

0 − k2
n), (5.43)

Fig. 5.10. Conservation of momentum in inelastic scat-
tering.
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we obtain the relation

∆E =
h2k0q

′

m
cos η. (5.44)

Furthermore, from Fig. 5.10, the relation

q′2 = (k0θ)2 + (q′ cos η)2 = k2
0(θ

2 + θ2
E) (5.45)

can be read off, in which θE = ∆E/2E or in relativistic form

θE =
∆E

E

E + E0

E + 2E0
=

∆E

mv2
. (5.46)

Quantum-mechanical scattering theory tells us that the inelastic cross sec-
tion can be calculated [5.26, 5.27] by the golden rule,

dσ0n

dΩ
=

4π2m2

h4

kn

k0︸︷︷︸
�1

|〈ψn|V (r)|ψ0〉|2. (5.47)

The wave functions ψ0 = a0s exp(2πik0 · ri) and ψn = ans exp(2πikn · ri) are
products of the plane incident and scattered waves with wave vectors k0 and
kn, respectively, and the atomic wave functions a0s and ans; the bracketed
expression in (5.47) thus becomes (rj : coordinate of atomic electrons)

|〈ψn|V (r)|ψ0〉|2 =
∣∣∫ ∫ exp(−2πikn · ri)a∗

ns(rj)V (ri, rj)a0s(rj) exp(+2πik0 · ri)d3rid3rj

∣∣2 .

(5.48)

On substituting the Coulomb interaction potential

V (ri) = − e2Z

4πε0ri
+

Z∑
j=1

e2

4πε0|ri − rj |
(5.49)

into (5.48), the first term representing the Coulomb potential of the nu-
cleus cancels because of the orthogonality of the atomic wave functions:∫

ansa
∗
0sd

3rj = δn0. The two exponential functions in (5.48) representing
the incident and scattered waves can be combined to form exp(–2πiq′ · ri).
Making use of the last integral in (5.29), we obtain [5.26]

dσ0n

dΩ
=
(

me2

2πε0h2

)2 |ε(q′)|2
q′4

(5.50)

with the atomic matrix element

|ε(q′)|2 =
∣∣∫ a∗

ns exp(−2πiq′ · rj)a0sd3rj

∣∣2
=
∣∣∫ a∗

ns(1 − 2πiq′ · rj + . . .)a0sd3rj

∣∣2
≈ 4π2q′2|〈ans|u · rj |a0s〉|2 = 4π2q′2|x0n|2. (5.51)
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The expansion of the exponential term has been truncated because of the
small scattering angles of interest. The term with unity in the round bracket
cancels because of the orthogonality of the atomic wave functions. The unit
vector u is parallel to q′. For small q′, the atomic matrix element is determined
by the dipole matrix element. This dipole approximation has been introduced
by Bethe [5.26]. Substitution of (5.45) and (5.51) in (5.50) results in

dσ0n

dΩ
=

λ2

π2a2
H

|x0n|2
1

θ2 + θ2
E

. (5.52)

The characteristic angle θE (5.46) for inelastic scattering, typically 0.1 mrad
for ∆E = 20 eV and E = 100 keV, is much smaller than the characteristic
angle θ0 (5.34) for elastic scattering. Inelastic scattering is therefore concen-
trated within much smaller scattering angles than elastic scattering, though
(θ2 + θ2

E)−1 also has a long tail for larger θ. Figure 5.6 shows the decrease as
θ−2 resulting from (5.52) when θ � θE in the case of the ∆E = 11.7 eV loss
of argon. (In a gas target, the influence of multiple scattering can be kept low
enough.)

When a generalized oscillator strength (GOS)

f0n(q′) =
2m∆E

h2

|ε(q′)|2
q′2

=
8π2m∆E

h2
|x0n|2 (5.53)

is introduced, (5.50) and (5.52) can be written

dσ0n

dΩ
=

e4

(4πε0)2E∆E

f0n(q′)
θ2 + θ2

E

. (5.54)

Whereas (5.50), (5.52), and (5.54) describe the transition between the elec-
tronic states 0 and n with a discrete energy loss ∆E, the final states form
a continuum in the case of ionization. With a GOS per unit energy loss
df0n(q′,∆E)/d(∆E), (5.54) becomes the double differential cross section

d2σ

dΩ d∆E
=

e4

(4πε0)2E∆E

1
θ2 + θ2

E

df0n(q′,∆E)
d∆E

. (5.55)

The GOS is identical with the optical oscillator strength for q′ → 0, which
means that electron energy-loss spectra and the absorption spectra of light
and x-ray quanta are related. The GOS satisfies Bethe’s sum rule:
∑
n

f0n = Z or
∫ df0n

d∆E
d∆E = Z. (5.56)

5.2.3 Bethe Surface and Compton Scattering

A plot of df0n/d(∆E) is called the Bethe surface [5.27]. Figure 5.11 shows
the Bethe surface for the ionization of hydrogen or for K-shell ionization when
the atomic electrons have hydrogen-like wave functions. The calculation uses
hydrogen wave functions a0s and plane waves ans for the ejected electron
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Fig. 5.11. Generalized oscillator
strength (GOS) per unit energy loss
as a function of scattering parameter
q′ and energy loss ∆E/EK for K-shell
ionization (EK = ionization energy)
with the Bethe ridge [5.27].

[5.26, 5.27]. At ∆E = EK and q′ → 0, the GOS jumps to a maximum and
then decreases with increasing ∆E. This can be observed experimentally either
as the K-edge of the energy-loss spectrum (Fig. 5.9 and Sect. 5.3.1) or as a
jump of the x-ray absorption coefficient when the quantum energy Ex = hν
exceeds EK (Fig. 10.6). The GOS decreases with increasing q′ for constant
∆E, but shows a “Bethe ridge” at larger q′ (Fig. 5.11). This is caused by
direct electron–electron impact. When the energy of the ejected electron is
much larger than the ionization energy (weakly bound electron), the collision
can be treated by classical mechanics, making use of the conservation of energy
and momentum. By analogy with x-ray scattering, this process is therefore
also called Compton scattering. When an electron at rest is hit by an electron
of energy E, the scattering angle θC is strongly related to the energy loss by

sin2 θC =
∆E

E

[
1 +

E − ∆E

E0

]−1

� ∆E

E
. (5.57)

This angle corresponds to the maximum of the Bethe ridge in Fig. 5.11 and
increases with the square root of ∆E. The width of the Bethe ridge is caused
by the momentum distribution of the atomic electrons on their orbits or of
the valence electrons at the Fermi level [5.28]. The GOS of Fig. 5.11 has to
be divided by ∆E(θ2 + θ2

E) (5.55) to become proportional to d2σ/dΩd(∆E).
The Bethe surface can be imaged directly with an electron spectroscopic

diffraction (ESD) pattern. For example carbon film shows a diffuse ring at
the Compton angle θC at high energy losses shown for increasing ∆E in
Fig. 5.12a–d. Angle-resolved EELS (Sect. 4.6.4) is another mode that pro-
vides an image of the Bethe surface. With the diffraction pattern of an
amorphous carbon film at the filter entrance plane (Fig. 4.26) and a nar-
row slit in this plane, the energy-dispersive plane (EDP) contains a super-
position of lines across the patterns (variable θ) at different energy losses
∆E perpendicular to the θ-axis. The recorded pattern is digitized and the
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Fig. 5.12. Electron spectroscopic diffraction pattern of a graphite foil at (a) ∆E
= 0 eV, (b) 200 eV, (c) 400 eV, and (d) 800 eV showing a diffuse ring (Bethe
ridge) caused by Compton scattering, which increases in diameter proportional to
the square root of the energy loss ∆E.

intensity distribution emphasized by isodensities, which clearly show the plas-
mon losses, the parabolic Bethe ridge, and the carbon K edge (Fig. 5.13) [5.29].

The intensity profile of the Bethe ridge is proportional to the momentum
distribution of atomic electrons in the scattering direction (z),

J(pz) =
∫ ∫

n(px, py, pz)dpxdpy, (5.58)

where n(p) is the momentum probability distribution. The Fourier transform

B(z) =
∫

J(pz) exp(−i pzz/h̄)dpz (5.59)

of a recorded intensity profile (e.g., across the diffuse rings in Fig. 5.12) is
the autocorrelation function of the ground-state wave function. The analo-
gous Compton scattering for x-rays [5.30, 5.31] is in common use for testing
calculations of atomic orbitals in solids and this method has also been tried
for electron diffraction [5.28, 5.32, 5.33, 5.34]. Advantages compared with
x-ray Compton scattering are that the exposure time is much shorter and
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Fig. 5.13. Angle-resolved EELS of a 2.8
µg cm−2 carbon film in a θ–∆E plane
with exposures that increase from (a) to
(c) by a factor of 16 at each step. The
isodensities clearly show (a) the plasmon
loss, (b) and (c) the K-shell ionization
edge and the parabolic Bethe ridge.

nanometer-sized specimens can be studied. A disadvantage is that the infor-
mation is contained in small deviations of the Compton profile from an ap-
proximately Gaussian shape. Electron diffraction has a stronger background,
and, in crystalline specimens, Bragg diffraction and Kikuchi lines can disturb
the profile.
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5.2.4 Approximation for the Total Inelastic Cross Section

In Sect. 5.2.2, we discussed inelastic scattering in terms of a single transition
0 → n. In order to calculate the inelastic scattering from a complete atom, the
cross sections of all allowed transitions 0 → n for the s = 1, . . . , Z atomic elec-
trons have to be summed. The following treatment of inelastic scattering does
not consider the details of the energy-loss spectrum discussed in Sects. 5.2.5
and 5.3 and yields only a mean energy-loss value (mean ionization energy J).
Nevertheless, this treatment gives a correct description of some important as-
pects of inelastic scattering, such as the concentration of inelastic scattering
within smaller angles than for elastic scattering and the dependence of the
ratio of the total inelastic and elastic cross sections on atomic number.

Using (5.50), this summation over n and s results in

dσinel

dΩ
=

(1 + E/E0)2

4π4a2
Hq′4

∑
n�=0

∣∣∣∣
Z∑

s=1

∫
a0sa

∗
ns exp(−2πiq′ · rj)d3rj

∣∣∣∣
2

. (5.60)

In the inner summation, products of terms containing different values of the
suffix s = 1, . . . , Z (exchange terms) can be neglected. The summations over
n and s can thus be interchanged, giving
Z∑

s=1

∑
n�=0

|
∫

a0sa
∗
ns exp(−2πiq′ · rj)d3rj |2

=
Z∑

s=1
[
∑
n
|
∫

a0sa
∗
ns exp(−2πiq′ · rj)d3rj |2

︸ ︷︷ ︸
+1

−|
∫

a0sa
∗
0s exp(−2πiq′ · rj)d3rj |2︸ ︷︷ ︸

f2
x/Z2

]

= Z − f2
x/Z. (5.61)

The first term in the brackets is equal to unity, as can be shown using the com-
pleteness relation for the wave functions ans. The last term is the contribution
of one electron to the x-ray scattering amplitude fx. The approximation in
which this is set equal to fx/Z is strictly valid only if the electron-density
distributions of the atomic electrons are equal (H and He atoms only). When
(5.61) is substituted into (5.60) for other atoms, the resulting approximation
permits us to obtain analytical formulas using the Wentzel model (5.22). The
quantity q′ in (5.60) contains the energy loss ∆E. Koppe [5.35] suggested sub-
stituting the mean value ∆E = J/2, where J is the mean ionization energy
of the atom �13.5 Z in eV. Taking fx from (5.33), this gives [5.11]

dσinel

dΩ
=

(1 + E/E0)2

4π4a2
Hq′4

Z

[
1 − 1

(1 + 4π2q′2R2)2

]
, (5.62)

or with q′2 = (θ2 + θ2
E)/λ2,

dσinel

dΩ
=

λ4(1 + E/E0)2

4π4a2
H

Z

{
1 − 1

[1+(θ2+θ2
E)/θ2

0 ]2

}
(θ2 + θ2

E)2
. (5.63)
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This formula for the inelastic differential cross section may be compared with
its elastic counterpart (5.34). The characteristic angle θ0, which is responsible
for the decrease of the elastic differential cross section dσel/dΩ, is of the order
of 10 mrad and the angle θE, responsible for the decrease of dσinel/dΩ with
increasing θ, of the order of 0.1 mrad. This confirms that inelastic scattering
is concentrated within much smaller angles than elastic scattering (Fig. 5.6),
though with a long tail for very large scattering angles, θ � θ0 and θ � θE =
J/4E. For such large scattering angles, the ratio

dσinel/dΩ

dσel/dΩ
=

1
Z

(5.64)

depends only on the atomic number, whereas for small θ, dσinel/dΩ > dσel/dΩ
for all elements (Fig. 5.6).

A total inelastic cross section σinel can be defined in the same way as the
elastic one σel, by using (5.5). Integration of (5.63) gives [5.11]

ν =
σinel

σel
=

4
Z

ln
(

h2

πm0JRλ

)
� 26

Z
, (5.65)

and experimentally [5.36, 5.37] it is found that

ν � 20
Z

. (5.66)

5.2.5 Dielectric Theory and Plasmon Losses in Solids

Only the most important theoretical and experimental results concerning
energy losses in solids will be discussed. Extensive reviews have been pub-
lished [5.23, 5.38, 5.39, 5.40, 5.41, 5.42].

A number of interaction processes have to be considered to explain the
characteristic energy losses of a material. An atomic electron can be excited to
a higher energy state by an electron–electron collision. Indeed, energy losses
are found in scattering experiments on gases that can be explained as the
energy differences between spectroscopic terms. Thus, a 7.6 eV loss in Hg
vapor corresponds to the optical resonance line [5.44]. The electrons in the
outer atomic shells of a solid occupy broad energy bands. Excitations from
one band to another (interband excitation) must be distinguished from those
inside one band (intraband excitation). Nonvertical interband and intraband
transitions can also be observed [5.45, 5.46]. Exact information about the band
structure above the Fermi level is not available for most materials, and the
energy-loss spectrum is related to the light-optical constants in the visible and
ultraviolet spectra by means of the so-called dielectric theory. In this theory,
plasma oscillations are considered as longitudinal density oscillations of the
electron gas [5.47].

The underlying idea of the dielectric theory can be understood in the
following manner [5.38, 5.43]. The optical constants of a solid can be de-
scribed either by a complex refractive index n + iκ, where κ is the absorp-
tion coefficient, or by a complex permittivity ε = ε1 + iε2 = (n + iκ)2. In
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general, the complex permittivity ε(k, ω) is a function of the wave vector k
and the frequency ω. Electrons that penetrate into the crystal with veloc-
ity v represent a moving point charge and can be described by a δ-function
ρ(r, t) = −eδ(r−vt). Fourier-transforming this relation with respect to space
and time, we obtain ρ(k, ω) = −eδ(kv − ν), where ω = 2πν. To determine
the energy loss of the electron, we have to calculate the electric field acting on
it. This is most easily done using Poisson’s equation ε∆Φ(r, t) = −ρ(r, t) in
Fourier space 4π2k2ε(k, ω)Φ(k, ω) = ρ(k, ω). Here we have neglected the rel-
ativistic retardation effects. The electric field is given by E(r, t) = −∇Φ(r, t)
or, equivalently, by E(k, ω) = −2πikΦ(k, ω). The energy loss per unit length
is given by

−dW

dz
= −eEv

v
= e2 v

v

∫ ikδ(kv − ν)
2πk2ε(k, ω)

exp[−2πi(kv − ν)t]d3kdν. (5.67)

Assuming that the electron moves in the z-direction, we integrate over kz and
obtain

−dW

dz
=

+ie2

2πv2

∫ νdνd2k⊥
k2ε(k⊥, ω)

, (5.68)

where dk⊥ denotes an integration over the coordinates perpendicular to the
incident beam direction. As the energy loss is a real quantity, we have to take
the real part of (5.68),

−dW

dz
=

−e2

2πv2

∫
Im
(

1
ε(k, ω)

)
νdνd2k⊥

k2
, (5.69)

where we have used

Re
(

i

ε(k, ω)

)
= −Im

(
1

ε(k, ω)

)
. (5.70)

Equation (5.69) shows that the inelastic scattering is related to the imaginary
part of the inverse of the dielectric function. The differential cross section is
obtained from (5.55) using the relation [5.48]

df(∆E)
dE

=
−4mε0∆E

e2h
Im
(

1
ε(k, ω)

)
, (5.71)

d2σ

d∆EdΩ
=

1
π2aHE

E + E0

E + 2E0

Im{−1/ε(∆E, θ)}
θ2 + θ2

E

=
1

π2aHmv2

Im{−1/ε}
θ2 + θ2

E

. (5.72)

For a free (f) electron gas with Ne electrons per unit volume, the conduc-
tion electrons of a metal or the valence electrons of a semiconductor, for ex-
ample, the dependence of εf(ω) on frequency or the energy loss ∆E = h̄ω
may be calculated using the Drude model. The alternating electric field
E = E0 exp(−iωt) exerts a force on an electron given by Newton’s law,
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m∗ d2x

dt2
+ m∗γ

dx

dt
= −eE. (5.73)

This expression contains a friction term proportional to v = dx/dt, which
represents the deceleration due to energy dissipation; m∗ denotes the effective
mass of the conduction electrons. The solution of this equation has the form

x =
e

m∗ω2

ω2 − iωγ

ω2 + γ2
E. (5.74)

The displacement x of the charge −e causes a polarization P = −eNex =
ε0χeE, where χe is the dielectric susceptibility, ε = ε0(1 + χe). Substituting
for x from (5.74), we obtain

ε(ω) = ε1,f + i ε2,f = ε0

(
1 − Nee

2

m∗ε0

1
ω2 + iωγ

)
with (5.75)

ε1,f = ε0

(
1 −

ω2
pl

ω2

1
1 + (γ/ω)2

)
, ε2,f = ε0

γ

ω

ω2
pl

ω2

1
1 + (γ/ω)2

, (5.76)

in which ωpl is the plasmon frequency

ωpl =

√
Nee2

ε0m∗ . (5.77)

The dependence of ε1,f and ε2,f on frequency is shown in Fig. 5.14. The factor
Im{−1/ε} = ε2/|ε|2 that appears in (5.72) passes through a sharp maximum
when the denominator reaches a minimum, which means that ε1,f = 0 at ω =
ωpl for small values of the damping constant γ. This plasmon loss ∆Epl = h̄ωpl

excites longitudinal charge-density oscillations in the electron gas, which are
quantized and are known as plasmons [5.49]. For a large number of materials,
the observed energy loss ∆Epl agrees with that predicted by (5.77) (see Table
5.2), in which n is the number of valence or conduction electrons per atom.

Fig. 5.14. Components of the com-
plex dielectric permittivity ε1 + iε2
for the free electron gas (f) and for
a bound state (b). Shift of the plas-
mon frequency ωpl at ε1,f = 0 to
ω′

pl.
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Table 5.2. Comparison of experimental and theoretical values of plasmon energy
∆Epl and the half-width (∆E)1/2 in eV, the constant a of the dispersion law (5.80),
and the cutoff angle θc in mrad at 40 keV (n: number of electrons per atom) (see
[5.41] for further tabulated values).

∆Epl (∆E)1/2 a θc

n exp. theor. exp. theor. exp. theor.

Al 3 15.0 15.8 0.6 0.40 ± 0.01 0.44 15 13
Be 2 18.9 18.4 5.0 0.42 ± 0.04 0.42 – –
Mg 2 10.5 10.9 0.7 0.39 ± 0.01 0.37 12 11
Si 4 16.9 16.6 3.2 0.41 0.45 – –
Ge 4 16.0 15.6 3.3 0.38 0.44 – –
Sb 5 15.3 15.1 3.3 0.37 ± 0.03 0.38 – –
Na 1 3.7 5.9 0.4 0.29 ± 0.02 0.25 10 9

However, the position of the plasmon losses can be influenced considerably
by interband excitations (bound electrons: b). Extending (5.73) to include
bound electrons, we obtain the Lorentz model

m∗
(

d2x

dt2
+ γ

dx

dt
+ ω2

bx

)
= −eE, (5.78)

where ωb is the resonance frequency, resulting in

ε(ω) = ε0

(
1 +

Nee
2

m∗ε0

1
ω2

b − ω2 − iωγ

)
. (5.79)

In the ε1,b-curve, the bound states show a typical anomalous dispersion near
the resonance frequency. In the special case of Fig. 5.14 with ωb < ωpl, the
superposition of ε1,b and ε1,f (Drude–Lorentz model) causes a shift of the
plasmon loss to a higher frequency ω′

pl, for which ε1,b + ε1,f = 0. When ωb >
ωpl, the plasmon loss may be shifted to a lower frequency. Thus, the agreement
between the calculated and measured values of the 15 eV plasmon loss in Al
(Fig. 5.20) in Table 5.2 is accidental. The optical constants indicate that
ε1,f = 0 for ∆E = 12.7 eV. An oscillator contribution at 1.5 eV (interband
transition) shifts the loss to 15.2 eV. For silver, there is a transition of 4f
electrons to the Fermi level at 3.9 eV, and further interband excitations occur
at ∆E > 9 eV. These shift the energy at which ε1 = 0 to 3.75 eV. This sharp
energy loss (Fig. 5.8) is therefore a plasmon loss, which cannot be separated
from the 3.9 eV interband loss. Figure 5.8 shows, as an example, a comparison
of a measured energy-loss spectrum (full curve) with one calculated using the
dielectric theory with optical values of ε (dotted curve). Two further maxima
are also in agreement with the optical data.

These classical models can describe the most important features of plas-
mon excitation. A quantum-mechanical model should predict the dielectric
behavior from first principles. The dielectric function of the free electron gas
was calculated in the random-phase approximation by Lindhard [5.53]. This
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approach is not capable of calculating half-widths and results only in a δ-peak
for the plasmon loss. In improved theoretical models, correlation, the periodic
lattice potential, and the core polarizability must be considered (see [5.42] for
further details).

One application of EELS for low energy losses is the measurement of band
gaps in semiconductors and insulators [5.50, 5.52]. Furthermore, the optical
constants in the ultraviolet can be determined [5.39]. The dielectric theory
showed that the intensity in energy-loss spectra is proportional to Im{–1/ε}.
The Kramers–Kronig relation (Sect. 10.2.2) allows us to calculate Re{1/ε},
and hence ε1 and ε2 can be obtained. These optical constants for 1–50 eV
photons are mainly measured with synchrotron radiation. Electron energy loss
spectroscopy has the additional advantage that measurements in the nanome-
ter region are possible [5.51].

The loss spectra of different substances show characteristic differences.
However, the spectra are not so specific that they can be used for elemental
analysis. Furthermore, the spectra contain multiple losses and surface-plasmon
losses, which depend on the foil thickness. Nevertheless, EELS can be used
in many cases as an analytical tool to distinguish different phases (SiC [5.54],
glass [5.55], or organic molecules [5.25, 5.56], for example).

The dependence of ∆Epl = h̄ωpl ∝
√

Ne on the electron density Ne (5.77)
results in a weak decrease of ∆Epl with increasing temperature because of
the thermal expansion [5.57, 5.58]. Changes of ∆Epl in alloys, due to the
change of electron concentration, are of special interest because these shifts
can be used for the local analysis of the composition of an alloy by EELS.
Figure 5.15 shows, as an example, the shift of the plasmon energy in an Al-
Mg alloy [5.59], the different phases of which can be identified by their energy
losses. The plasmon energy ∆Epl depends linearly on the concentration in
the α, γ, and δ phases, which allows the local concentration to be measured
with a spatial resolution of the order of 10 nm. In this way, the variation of
Mg concentration was measured near large-angle boundaries after quenching
of an Al-7wt% Mg alloy [5.60], and the variation of Cu in the Al-rich phase

Fig. 5.15. Variation of the
plasmon-loss energy ∆Epl with
composition in the Al-Mg system
[5.59].
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near CuAl2 precipitates in a eutectic CuAl2 alloy [5.61]. The plasmon losses
of Al-Zn alloys have also been investigated [5.62]. The position of a plasmon
loss can be determined with an accuracy of 0.1 eV, even if the full-width of
half-maximum (FWHM) is about 1–4 eV [5.63]. However, the background of
the energy loss spectrum caused by contamination can produce spurious shifts
of the same order [5.64], and strains in inhomogeneous alloys can cause shifts
relative to calibrations made with a homogeneous alloy [5.65]. Shifts of ±0.1
eV have been observed at distances ±20 nm from a dislocation [5.66].

Plasmon losses show a dispersion in the sense that the magnitude of ∆Epl

depends on the momentum transferred and therefore on the scattering angle

∆Epl(θ) = ∆Epl(0) + 2Eaθ2 with a =
3
5

EF

∆Epl(0)
, (5.80)

where EF is the Fermi energy. This dispersion can be directly imaged by angle-
resolved EELS as a parabolic extended plasmon loss (Fig. 5.13a). The plasmon
dispersion can also be seen in a series of electron spectroscopic diffraction pat-
terns as small diffuse rings surrounding the primary beam. For single-crystal
Sn films with a plasmon loss at ∆E = 21 eV, these rings increase in diam-
eter with increasing ∆E and disappear beyond ∆E = 28 eV because of the
existence of a cutoff angle θc (see below) [5.67]. In addition, the half-width
(∆E)1/2 of the plasmon-loss maxima increases with increasing θ (Fig. 5.16b)

Fig. 5.16. (a) Dispersion of the plasmon loss of Mg with increasing scattering angle
θ and the unshifted line due to elastic large-angle scattering and inelastic small-angle
scattering. (b) Verification of the dispersion relation (5.80) by plotting ∆Epl versus
θ2 for the Al and Mg plasmon losses [5.73] and the broadening (∆E)1/2 of the
plasmon loss of Al with increasing θ [5.69, 5.70].
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Fig. 5.17. Intensity contours (digital isodensities) in ESD patterns of a graphite
foil showing the azimuthal anisotropies for the interband transitions at (a) ∆E = 7
eV and (b) ∆E = 13 eV and no anisotropy for (c) the plasmon loss at ∆E = 31 eV.

[5.68, 5.69, 5.70, 5.71, 5.72, 5.73, 5.74, 5.75]. The plot of ∆Epl versus θ2 in
Fig. 5.16b demonstrates the validity of this dispersion law. The constant aexp

in (5.80) (Table 5.2) can be obtained from the slope of the curve. Interband ex-
citations show no dispersion and normally have a larger half-width. However,
a dispersion with a = 0.15 has been observed for the 13.6 eV loss of LiF, which
is an exciton excitation [5.76]. If the energy loss is observed at a scattering
angle θ, not only is the shifted value ∆Epl(θ) observed but also the unshifted
∆Epl(0), which results either from primary small-angle plasmon scattering
and secondary elastic large-angle scattering or vice versa (Fig. 5.16a). The val-
ues of the plasmon losses and their dispersion are anisotropic in anisotropic
crystals such as graphite [5.77, 5.78] and also in cubic crystals (Al, for ex-
ample) for large scattering angles [5.79]. This anisotropy can be imaged by
electron spectroscopic diffraction as shown for a graphite foil in Figs. 5.17a–c
by drawing isodensities around the primary beam. The anisotropy of the in-
terband transition at ∆E = 7 eV in Fig. 5.17a can be seen as a hexagon with
corners directed towards the surrounding Bragg spots, whereas at ∆E = 13 eV
(Fig. 5.17b), the corners are directed between the Bragg spots. The plasmon
loss at ∆E = 31 eV (Fig. 5.17c) shows no anisotropy (circular isodensities).

Integration of (5.72) over ∆E gives the contribution of a plasmon loss to
the differential cross section

dσpl

dΩ
=

∆Epl

2πaHNeE

E + E0

E + 2E0

1
θ2 + θ2

E

G(θ, θc), (5.81)

in which we have used
∞∫
0

Im{−1/ε(ω)}h̄dω = π∆Epl/2. (5.82)

The cross section decreases as θ−2 for medium scattering angles θE < θ < θc

(Fig. 5.18). The correction function G(θ, θc) introduced by Ferrell [5.80] takes
into account the fact that dσpl/dΩ has to become zero at a cut-off angle
θc, which implies that plasmon wavelengths shorter than the mean distance
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Fig. 5.18. Angular dependence of the
volume-plasmon loss cross section for ∆E =
15.6 eV [5.73] and the surface-plasmon loss
(∆E = 6.3 eV) of Al [5.69, 5.70].

Fig. 5.19. Mean-free-path length Λpl for Al and C plasmon losses as a function of
electron energy [5.81].

between valence electrons are damped more strongly. There is thus a maximum
momentum that can be transferred in the inelastic collision, and scattering
angles greater than θc are not possible.

Integration over the solid angle Ω in (5.81), using the approximation
G(θ, θc) = 1 for θ < θc and vanishing for θ > θc, yields the total cross section
for plasmon excitation

σpl �
θE

NeaH
ln(θc/θE) (5.83)

assuming that θE � θc, and the corresponding mean free path becomes Λpl =
1/Neσpl. Figure 5.19 shows calculated and measured values of Λpl in the range
E = 100–1000 keV.
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Fig. 5.20. Multiple characteristic plasmon losses of 20 keV electrons passing through
a 208 nm Al film and comparison of the areas of the loss maxima (•) with a theo-
retical Poisson distribution [5.82].

Multiple inelastic scattering is observed in thick specimens (Sect. 5.4.2),
which means that multiples of the plasmon losses appear in the loss spectrum.
This can be seen, in particular, in the loss spectrum of Al, which shows one
sharp plasmon loss at 15.2 eV (Fig. 5.20). The probability Pn(t) for the ap-
pearance of an energy loss ∆E = n∆Epl in a specimen layer of thickness t
can be described by a Poisson distribution (n = 0 corresponds to an elastic
scattering event with no energy loss)

Pn(t) =
(

t

Λpl

)n exp(−t/Λpl)
n!

. (5.84)

The integrated intensities of the loss maxima agree well with this distribution
(see, e.g., Fig. 5.20 for Al [5.82] and [5.83] for the 16.9 eV loss of Si). However,
deviations from Poisson statistics can occur when a fraction of the multiple
plasmon loss is scattered through angles larger than the aperture used. The
convolution with the background intensity in the loss spectra of carbon and
aluminum films is considered in [5.84, 5.85]. The multiple-loss spectrum can be
calculated for increasing thicknesses by a double convolution over energy loss
∆E and scattering angle θ by a Fourier method using theoretical formulas for
the inelastic single scattering with plasmon losses, Compton scattering, and
inner-shell ionizations [5.86].

5.2.6 Surface-Plasmon Losses

The plasmon losses discussed above are so-called volume losses. Surface-
plasmon losses, with lower energy-loss values, are also observed; these can
be explained by the generation of surface-charge waves [5.87]. Figure 5.21
shows the distribution of the electric field for a symmetric ω− (Fig. 5.21a)
and an antisymmetric (Fig. 5.21b) ω+ surface oscillation mode and for a sin-
gle boundary in a thick layer (Fig. 5.21c). Both modes of oscillation show
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Fig. 5.21. Distribution of the
electric-field strength for (a) ω−

and (b) ω+ oscillation modes of
a surface-plasmon wave and (c)
for a single boundary.

Fig. 5.22. Dispersion of the surface-plasmon modes ω− and ω+ versus kx = θ/λ
for a 16 nm Al film covered on each side with a 4 nm oxide film. The dashed curve
corresponds to ε for amorphous Al2O3 and the full curve for α-Al2O3 [5.91].

strong dispersions [5.73, 5.90, 5.91, 5.92] that depend not only on the wave
number kx of the surface waves but also on the specimen thickness t (see the
example in Fig. 5.22).

The mode ω+ is excited with a lower probability than ω−. Figure 5.23
shows how the ω+ and ω− losses move together with increasing film thickness
to a saturation value

ω± =
ωpl√
1 + ε

, (5.85)
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Fig. 5.23. Dispersion of the two
surface plasmon losses h̄ω− and
h̄ω+ as a function of film thickness
t and increase of the plasmon-loss
intensity of h̄ωpl with increasing t
[5.92].

where ε is the relative permittivity of the neighboring medium, typically vac-
uum, oxide, or supporting film. If both boundaries of the layer are limited by
vacuum (ε = 1), equation (5.85) gives ω± = ωpl/

√
2 for large thicknesses; for

an oxide-coated aluminum layer, we have ∆E = h̄ω± = 6.25 eV with εoxide =
4.7, for example (Fig. 5.22).

The differential cross section of surface-plasmon losses decreases as
θθE/(θ2 + θ2

E)2 for increasing θ and hence as θ−3 for θ � θE [5.88, 5.89]
(Fig. 5.18). At nonnormal incidences of the primary electrons, the exci-
tation of surface-plasmon losses has an asymmetric angular distribution
[5.87, 5.91, 5.92, 5.93, 5.94].

If the electron velocity v is greater than the velocity of light in the specimen
layer (e.g., for Si), energy losses ∆E = 3.4 eV are observed due to the gen-
eration of Čerenkov radiation [5.95, 5.96]. Guided-light modes can be excited
in thin dielectric films, such as graphite [5.96].

Surface-plasmon losses can also be excited by the polarization caused
by the Coulomb field of electrons when the electron probe of a scanning
transmission electron microscope passes close to a crystal without striking
it [5.97, 5.98]. Correspondingly, an electron spectroscopic image with surface-
plasmon loss shows a bright rim extending exponentially to about 10 nm out-
side a cubic MgO crystal [4.111]. The local excitation of surface plasmons can
be used to determine the dielectric properties of nanotubes or nanoparticles
[5.99, 5.100, 5.101].
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5.3 Energy Losses by Inner-Shell Ionization

5.3.1 Position and Shape of Ionization Edges

The shells K, L, M, N, and O correspond to the main quantum numbers n =
1–5, respectively. Electrons on these atomic levels have energies of the order
of

En = −R(Z − σn)2/n2, (5.86)

where R = 13.6 eV is the ionization energy of hydrogen and Z − σn denotes
an effective atomic number, decreased by screening.

There l = 0, 1, . . . , n − 1 are possible values of the azimuthal quantum
number, resulting in angular momenta L =

√
l(l + 1)h̄ and denoted by the

symbols s, p, d, f , and g for l = 0, 1, 2, 3, and 4, respectively. The electron
spin is described by the quantum number s = ±1/2 with an angular mo-
mentum S =

√
s(s + 1)h̄. The corresponding vectors L and S couple by

spin-orbit interaction to form the total angular momentum J = L + S with
J =
√

j(j + 1)h̄. Thus, for a 2s electron with l = 0, only j = 1/2 occurs, while
for a 2p electron with l = 1, j can take the values 1/2 and 3/2. This results
in the splitting of the L shell into three sublevels, L1, L2, and L3 (Fig. 10.3).
The magnetic quantum number m = −j, . . . ,+j describes the 2j + 1 possible
z-components of the angular momentum Lz = mh̄ and tells us that 2j + 1
electrons can be accommodated in the corresponding subshell of quantum
number j.

Following Pauli’s exclusion principle, these configurations of quantum
numbers are filled consecutively as the atomic number increases, though the
sequence is often interrupted; in the transition metals, for example, the 3d
shell is being filled, as is the 4f shell of lanthanides.

The ionization energy that is observed as an edge in electron energy-loss
spectroscopy (EELS) is the energy difference between the first unoccupied
energy state beyond the Fermi level and the ionized subshell. The edges ob-
served in EELS are therefore labeled according to the ionized subshell, L2 or
L3, for example, and L23 if the corresponding edges cannot be resolved.

Figure 5.24 shows the edge energy losses ∆E = EI (I = K, L, M, . . .)
versus the atomic number. Because EI increases as Z2 (5.86), the K-edge can
be observed within the useful interval ∆E = 0 – 2 keV only up to Si (Z = 14).
However, Fig. 5.24 shows that higher shell ionizations occur in each element
within this range of ∆E. Collections of the electron energy-loss spectra of all
elements have been published [5.102, 5.103]; these also contain information
about the profile of the edges discussed below.

The differential cross section of inner-shell ionizations decreases over orders
of magnitude with increasing energy loss (Fig. 5.9). Energy losses beyond 2000
eV are therefore rarely used in EELS microanalysis. Beyond the edges follows
a long tail of energy losses that result from the excitation of core electrons to
unoccupied states of the continuum beyond the Fermi level. The plasmon and
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Fig. 5.24. Position of the
ionization edges within the
energy-loss interval ∆E =
0–2.5 keV as a function of
the atomic number

interband transitions also show a background that extends to a few hundred
electron volts. The decrease beyond an edge can be approximated by

dσ(α)
d∆E

∝ ∆E−s. (5.87)

The exponent s depending on α can be determined from the slope in a double-
logarithmic plot of the number of counts versus ∆E (Fig. 5.9), and s is found to
be of the order of 3.5–4.5. The law (5.87) can also be applied to the background
in front of the edge to permit extrapolation of the background beyond the edge
(Sect. 10.3.3).

The shapes of ionization edges can be classified into groups [5.104] listed
and indicated in Fig. 5.24 and discussed below with examples of recorded
spectra (see also the review in [5.105]).
K Ionizations. K edges can be used from Li to Si and show a typical sawtooth
shape, as shown for carbon and aluminum in Figs. 5.25a,b. Hydrogen has been
investigated in metal hydrides and can be detected as a shift of the plasmon
loss [5.106, 5.107]. Helium can be analyzed as condensed gas bubbles after He
implantation in solids and shows a weak peak at 21–23 eV from atomic-like
1s → 2p transitions [5.108, 5.109, 5.110].
L23 Ionizations. Whereas the profiles of K edges are nearly independent
of atomic number, the L23 edges of elements of the third group of the peri-
odic table (Si–Cl) show a delayed maximum 10–15 eV above the threshold as
shown for Si in Fig. 5.25c. This is a consequence of the centrifugal potential
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Fig. 5.25. Examples of recorded energy-loss spectra [5.103] demonstrating the dif-
ferent shapes of ionization edges: (a, b) K edges of C and Al; (c, d) L23 edges of Si
and Cr [5.103].

barrier in (5.89) when 2p electrons are excited to final states with l′ ≥ 2. The
probability of exciting the 2s electron to the L1 subshell is much lower, and
the corresponding maximum is often buried within the energy-loss near-edge
structure (Sect. 5.3.3). In the elements of the fourth group (K–Cu), on the
other hand, 2p electrons can be excited not only to the continuum but also to
unoccupied bound d states; “white lines” are then seen at the threshold, as
shown for Cr in Fig. 5.25d, where the two narrow white lines are caused by
spin-orbit splitting of the 2d subshell. In the elements Cu–Br, no white lines
occur because the d shell is filled and only rounded delayed maxima caused by
transitions to the continuum are observed. Whereas Cu alone shows no white
lines, the electron transfer from Cu to O in copper oxide produces unfilled d
levels, and white lines appear (Fig. 5.27, Sect. 5.3.3).
M45 Ionizations. Elements Rb–I show edges similar to the 3d-filled L23

edges. The delay of the maximum can reach 60–80 eV, as shown for a
background-subtracted (stripped) M45 edge of Mo in Fig. 5.26a. For Cs to
Yb (including the rare earths), the f shell contains bound states and white
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Fig. 5.26. Examples of recorded energy-loss spectra [5.103] demonstrating the dif-
ferent shapes of ionization edges: (a, b) M45 edge of Mo and Gd, (c) plasmon-like
M23 edge of Ti, and (d) N45 edge of Sm [5.103].

lines again appear as shown for Gd in Fig. 5.26b. From Lu to Au, the f shell
is filled and again strongly delayed maxima and no white lines are observed.
M23 Ionizations. The edges of K–Zn lie between 30 and 100 eV and show
plasmon-like peaks superposed on the background of the valence electrons as
shown for Ti in Fig. 5.26c.
N45 Ionizations. The elements Cs, Ba, and the lanthanides show character-
istic profiles in the range 80–120 eV resulting from the excitation of 4d3/2 and
4d5/2 electrons to f states as shown for Sm in Fig. 5.26d.

5.3.2 Inner-Shell Ionization Cross Sections

The calculation of the GOS and d2σ/dΩd(∆E) for inner-shell ionization has
been discussed in Sect. 5.2.2. The wave functions a0 and an of the initial and
final states of the atomic electrons are solutions of the Schrödinger equation[

h̄2

2m
∇2 + En + V (r)

]
an = 0. (5.88)
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After substituting anlm = Rnl(r)Ylm(Ω)/r, where Ylm is the spherical func-
tion, and separating the variables, the following equation for the radial part
is obtained:{

h̄2

2m
∇2 + En +

[
V (r) +

l(l + 1)h̄2

2mr2

]}
Rnl(r) = 0. (5.89)

The quantum number l modifies the Coulomb potential V (r) by a term
that can be interpreted as a centrifugal barrier. The transitions from an initial
state with quantum number l to the final state with l′ obey the selection rule
∆l = ±1 for q′ → 0 (optically allowed transitions), whereas, for large q′, all
transitions can contribute to the energy-loss spectrum.

For the calculation of K shell ionization cross sections, hydrogenic atomic
functions are widely used, and they can also be used for higher Z by con-
sidering screening of the nuclear charge +Ze by Z–1 electrons [5.111]. These
calculations are included in the SIGMAK program for elements Li to Si [5.112].

For L shells, the centrifugal barrier (5.89) has to be considered. In the
SIGMAL program, photoabsorption data [5.113] and EELS measurements
[5.114] have been used to correct hydrogenic calculations [5.115, 5.116]. Hy-
drogenic model calculations of the M45 and M23 shells based on photoabsorp-
tion data have also been published [5.117]. These calculations are all based on
the Schrödinger equation for the incident electron and thus confined to the
non-relativistic case. The validity of the resulting formulas can be extended
up to about 120 keV electrons by replacing the expressions for the energy and
momentum transfer by their relativistically correct counterparts. For higher
electron energies, a fully relativistic treatment should be used [5.119].

The use of atomic Hartree–Slater wave functions for the initial and final
states [5.118, 5.120] allows us to predict the characteristic shapes of the edges,
such as the sawtooth shape of the K edge and the delayed edge for L shell
ionizations, but not the white lines that occur in M and L edges by transitions
to unoccupied bound states. The generalized oscillator strength for the white-
line components can be calculated separately [5.121].

When the objective diaphragm or the entrance slit or diaphragm of the
spectrometer acts as a limiting aperture, the double differential cross section
has to be integrated between 0 and α as well as between EI (I = K, L, M, . . .)
and EI + ∆ to get a partial cross section σ(α,∆). The width ∆ of the energy
window beyond the ionization edge at EI has to be limited to 50–100 eV
because of the long tail of the edges and uncertainties when subtracting the
extrapolated background in front of the edge in order to extract the cross
section dσ(α)/d∆E, which can be compared with experiments.

The difficulties of the absolute measurement of ionization cross sections
can be avoided by measuring ratios of partial cross sections of elements a and
a standard element b = O, B, or C, which is present in an oxide, boride, or
carbide of a,

kab =
σb(α,∆)
σa(α,∆)

=
Ib(α,∆)
Ia(α,∆)

Na

Nb
, (5.90)
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where Na and Nb are the numbers of atoms per unit area. This ratio is analo-
gous to the Cliff–Lorimer ratio of x-ray microanalysis (Sect. 10.2.4). For these
light standard elements, absolute partial cross sections can be calculated ac-
curately.

Experimental k-factors have been determined for K, L23, M45, M23, and
N45 shells [5.114, 5.122, 5.123, 5.124, 5.125]; see also [5.126, 5.127]). These
data can also be represented by integrated oscillator strengths f(∆) (parame-
trization), which are independent of α and E [5.128, 5.129, 5.105].

5.3.3 Energy-Loss Near-Edge Structure (ELNES)

The energy-loss near-edge structure is concentrated within a region of about
50 eV and results from the unoccupied density of states (DOS) beyond the
Fermi energy, which may be regarded as a multiplicative envelope applied to
the corresponding edge. Energy resolutions of less than 1 eV are necessary to
resolve details.

One effect in ELNES is the so-called chemical shift of an edge, which can
be observed when elements occur in different crystal structures or compounds;
for example, the Al L23 edge shifts from 73 eV in the metal to 77 eV in Al2O3

and the Si L23 edge from 99.5 eV in Si to 103 eV in SiO and 106 eV in
SiO2. The shift of the K edge from 284 eV in graphite to 289 eV in diamond
can be attributed to the 4 eV band gap. The chemical shift of amorphous
silicon alloys is linearly related to the electronegativity of the ligand, which is
a measure of the charge transfer from Si to the ligand [5.130].

The following examples demonstrate how the fine structure can be inter-
preted (see [5.105] for further details). The L23 edge in Cu does not show
white lines, unlike the spectrum of CuO (Fig. 5.27). In the metal, the 3d band
is filled and lies just below the Fermi level, whereas in CuO an electron ex-
change between Cu and O atoms produces vacant states in the 3d band; the
Fermi level shifts into the 3d band with the result that pronounced white lines
are seen in the CuO specimen [5.131]. Figures 5.28a,b show the C K edges

Fig. 5.27. Comparison of the L23 edges of Cu and
CuO [5.131].
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Fig. 5.28. Differences in the energy-loss spectrum at the K ionization edge for
carbon in (a) amorphous carbon films and (b) graphite films [5.132].

Fig. 5.29. Fine structure in the energy-
loss spectrum near the carbon K ioniza-
tion edge for (a) adenine, (b) uracil, and
(c) thymine [5.25].

for amorphous carbon and graphite [5.132]. The weak preionization peaks are
attributed to π∗ bound states below the ionization threshold. The number
of peaks and their energies observed in the C K edges of different organic
compounds (Fig. 5.29) can be explained in terms of a chemical shift because
the carbon atoms present at different sites within the molecule carry different
charges [5.25, 5.133]. As another example, Fig. 5.30 shows the B K edge, the
N K edge, and the density of free π∗ and σ∗ states beyond the Fermi level
in hexagonal boron nitride [5.134]. The dotted areas are caused by convolu-
tion with the plasmon-loss spectrum. Such transitions to π∗ and σ∗ states
also form the loss spectrum of graphite in Fig. 5.28b. They show different
angular distributions in the EELS, and their intensity changes when differ-
ent scattering angles are selected. Tilting of anisotropic crystals also alters
the ELNES because π∗ and σ∗ orbitals are parallel and perpendicular to the
c-axis, respectively [5.135, 5.136].
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Fig. 5.30. Boron and nitrogen K-edge
profiles of boron nitride with transitions to
the π� and σ� bands (differently hatched
areas) and convolution due to plasmon
losses (dotted areas) [5.135].

Energy-loss near-edge structures can be used to identify elements in sim-
ilar compounds or environments when reference spectra are available (“fin-
gerprint” method) [5.137, 5.138]. As examples, we mention the use of the
difference between graphite and diamond (Fig. 5.28) to identify interstellar
diamond [5.139] and the use of the intensity ratio of the L3 and L2 white lines
to determine the Fe2+/Fe3+ ratio [5.140].

For more detailed studies, it is of interest to compare ELNES with theo-
retical calculations [5.141] using the band structure and the unoccupied DOS.
The augmented plane-wave method [5.142] has been used to interpret ELNES
for transition metals and their carbides, oxides, and nitrides [5.143, 5.144].
A pseudopotential band theory [5.145] is suitable for semiconductors and ce-
ramic materials [5.146, 5.147]. A multiple-scattering calculation [5.148] con-
siders the influence of nearest-neighbor shells. The excited electron wave is
backscattered and interferes with itself, thus influencing the excitation proba-
bility. This is analogous to the model (Fig. 5.32) also used for EXELFS. This
method is particularly suitable for large unit cells [5.149, 5.150] or oxygen
compounds [5.151]. An alternative method is a molecular orbital calculation
applied to transition metal ions in solids, for example [5.150, 5.152]. The
details in the region of the white lines of the transition metals can be de-
scribed using an atomic model and entering the crystal field as a perturbation
[5.153].
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5.3.4 Extended Energy-Loss Fine Structure (EXELFS)

In contrast to the strong effects in ELNES, EXELFS can be observed only
as weak oscillations in the tail of an edge up to energy losses of about 100–
200 eV beyond it (Fig. 5.31) [5.134, 5.154, 5.155, 5.156, 5.157, 5.158, 5.159,
5.160]. This fine structure is also observed in x-ray absorption spectra [5.161],
where it is called EXAFS (extended x-ray-absorption fine structure). Both are
generated by interference between the outgoing spherical wave of the excited
electron with an excess energy ∆E−EI beyond the Fermi level and the waves
backscattered at the nearest-neighbor atoms (Fig. 5.32). The variation of the
cross section can be described by

∆σ(k) =
∑
j

fj(k)
nj exp(−2rj/Λ)

2πkr2
j

exp(−8π2σ2
j k2

j ) sin[4πkrj + ηj(k)], (5.91)

Fig. 5.31. Energy-loss maxima (ex-
tended fine structure) of Al and Al2O3

films above the K ionization edge of
Al due to interactions with the neigh-
boring atoms [5.134].

Fig. 5.32. Excitation and backscatter-
ing of secondary waves at neighboring
atoms and interference with the pri-
mary wave excited by inner shell ex-
citation to explain EXELFS. In the
example, the excited and backscattered
waves interfere constructively at the
central atom, resulting in a maximum
of ∆σ(k).
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where

k = [2m(∆E − EI)/h2]1/2 is the wave number of the excited electron;
rj = distance of the nj neighboring atoms in the jth coordination shell;
fj(k) = elastic scattering amplitude of neighboring atoms for deflection

through 180◦;
Λ = mean free path for inelastic scattering of the excited electron as

measured by Auger electron spectroscopy, for example, with a
minimum of 1 nm at 100 eV;

σj = Debye–Waller factor arising from thermal vibrations and/or
statistical disorder of the neighboring atoms.

The first term, 4πkrj , in the sine function is the geometric phase shift of
the backscattered wave corresponding to the distance 2rj , and ηj(k) is a phase
shift associated with backscattering.

Equation (5.91) shows that the cross section is the Fourier transform of
the radial density distribution nj/r2

j of the nearest-neighbor atoms. After
subtracting the continuous tail beyond the edge, the density distribution can
be derived by an inverse Fourier transform of the oscillatory part. Thus, the
main maxima indicated by arrows in Fig. 5.31 and split by the influence of
second-nearest neighbors give the value r1 = 0.28±0.01 nm for Al and r1 =
0.20±0.01 nm for the oxide, in agreement with crystallographic x-ray data.
The EXELFS spectrum of crystalline specimens also depends on the direction
of q′ of the momentum transfer [5.165].

5.3.5 Linear and Circular Dichroism

On several occasions, we have discussed the dependence of the energy-loss
spectrum on the orientation of the scattering vector q′. For small scattering
angles (dipole approximation), the double differential cross section (5.51) is
related to the photoabsorption cross section for a photon energy ∆E = hν,

σPh = 2πhα|〈ans|e · rj |a0s〉|2. (5.92)

Here α ≈ 1
137 is the fine-structure constant and e the polarization vector

of the photon. A comparison of (5.51) with (5.92) shows that the direction
of the scattering vector q′ corresponds to the polarization vector e of the
photon. In optics, the dependence of the photoabsorption on the direction
of e is called dichroism. This term is also used in energy-loss spectroscopy.
Instead of talking about the dependence of the spectra on the orientation of
the scattering vector, we can state that we can detect the linear dichroism in
our specimen.

In optics, one can also measure the absorption of circularly polarized light.
In some cases, particularly for magnetic materials, photoabsorption then de-
pends on the helicity (right or left) of the incident photon. As the polarization
vector e of a circularly polarized photon traveling along the z-direction is given
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by e = ex±iey, equation (5.92) for the photoabsorption cross section has to
be generalized correspondingly [5.163].

Recently Hébert and Schattschneider have shown that this effect can also
be measured in EELS if a coherent superposition of two plane waves is
used as an incident wave instead of a single plane wave [5.162]. The scat-
tered intensity then contains an interference term [6.118] 〈ans|exp(−2πiq′ ·
rj)|a0s〉〈a0s|exp(2πiq · rj)|ans〉. If the two scattering vectors are small and
perpendicular to each other, these matrix elements correspond to equivalent
terms in the photoabsorption cross section. First experiments on Fe demon-
strate that this effect can indeed be detected in energy-loss spectra [5.164].

5.4 Multiple-Scattering Effects

5.4.1 Angular Distribution of Scattered Electrons

The angular distribution of transmitted electrons consists of the peak of
unscattered primary electrons of intensity I and illumination aperture αi

together with the angular distribution of scattered electrons, which can be
measured by recording the current ∆I(θ) with a detector or Faraday cage
having a solid angle ∆Ω of collection; the result is normalized by dividing by
the incident current I0. The relation

1
I0

∆I(θ)
∆Ω

=
NAρt

A

dσ

dΩ
=

x

xt
s1(θ), (5.93)

where x = ρt is the mass thickness, is valid only for very small values of x;
xt denotes the mean-free-path length of (5.8), and s1(θ) is the normalized
single-scattering distribution (

∫
2πs1(θ)θdθ = 1).

The intensity I of the unscattered primary beam decreases exponentially
with increasing mass thickness x according to (5.8), i.e., I/I0 = exp(−x/xt)
with

1
xt

=
1

xel
+

1
xinel

=
NA

A
(σel + σinel) =

NAσel

A
(1 + ν) =

1 + ν

xel
, (5.94)

where the ratio ν = σinel/σel is defined in (5.66). Values of xel are listed in
Table 6.1.

For E = 100 keV, a value xt = 12 µg/cm−2 or t = 120 nm is found for
organic material of density ρ = 1 g/cm3, but for evaporated Ni and Fe films
the same mass thickness is obtained for t � 15 nm [5.166]. The corresponding
decrease of primary-beam intensity is important for the visibility of phase-
contrast effects, which are generated by interference between the primary and
scattered electron waves. In Lorentz microscopy (Sect. 6.8), the domain con-
trast is created by using a primary beam of very small illumination aperture,
αi ≤ 10−2 mrad; elastically and inelastically scattered electrons cause a blur-
ring of the domain contrast in the Fresnel mode.
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Fig. 5.33. (a, b) Angular distribution of the elastic and inelastic scattering in-
tensities of 100 keV electrons in carbon films of increasing thickness t = 5–100 nm
[5.169].

The angular distribution for multiple scattering can be obtained by eval-
uating a multiple-scattering integral [5.11] or by superposition of multiple-
scattering distributions sn(θ), which are calculated by an n-fold convolution
of s1(θ) defined in (5.93),

sn(θ) = sn−1(θ) ⊗ s1(θ). (5.95)

These are then weighted with the coefficients of a Poisson distribution [5.167]

1
I0

∆I(θ)
∆Ω

= exp
(
− x

xt

) ∞∑
n=1

(
x

xt

)n
sn(θ)

n!
. (5.96)

A procedure is available whereby the two-dimensional integration necessary
for the convolution in (5.95) is reduced to a one-dimensional integration by
using projected distributions [5.168].

Figure 5.33 shows the contributions of elastic and inelastic scattering cal-
culated from (5.96) for different carbon-film thicknesses [5.169]. For thin films
(5 nm), the angular distribution can be assumed to be approximately propor-
tional to the differential cross section dσ/dΩ for single atoms. The intensity
distribution is modified by multiple scattering as the thickness is increased.
The elastic contribution at small scattering angles θ increases up to 50 nm but
decreases for greater thicknesses due to elastic multiple scattering into larger
angles and to inelastic scattering, which dominates for greater thicknesses.

These calculations neglect all interference effects. In crystalline specimens,
destructive interference decreases the scattered intensity between the primary
beam and the Bragg-diffraction spots; the scattered intensity is caused by
thermal diffuse scattering (electron–phonon scattering) and inelastic scatter-
ing. In amorphous specimens, the short-range order corresponds to a radial
distribution function of neighboring atoms that causes diffuse maxima and
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minima in the scattered intensity distribution (Sect. 7.5.1). However, this
distribution oscillates around the distributions calculated here, in which in-
terference effects were neglected.

5.4.2 Energy Distribution of Transmitted Electrons

Figure 5.34 shows the variation of the energy-loss spectrum with increasing
thickness for 1.2 MeV electrons [5.81]. Analogous results are obtained with
100 keV electrons only for correspondingly thinner films because the mean
free path is shorter (Fig. 5.19). In a very thin film (Fig. 5.34a), a large frac-
tion of the electrons pass through the film without energy loss. The three
multiples of the Al plasmon loss at ∆E = 15.2 eV follow a Poisson distribu-
tion (5.84). The intensity of higher energy losses is very low, and an increase
caused by L-shell ionization appears at ∆E = 80 eV. At medium thicknesses
(Fig. 5.34b), the zero-loss peak is strongly reduced, and seven plasmon losses
can be detected. The plasmon losses are superposed on a broad maximum
due to overlapping of the L-ionization edge and the multiple plasmon losses.
The plasmon losses disappear in very thick specimens (Fig. 5.34c), and only
a broad energy distribution with a most probable energy loss ∆Ep and a
full-width at half-maximum ∆EH is observed.

For the value of the most probable energy loss, a theory of Landau [5.170]
can be used that considers the atomic structure only in terms of a mean
ionization energy J = 13.5Z (see also modifications in [5.171, 5.172]):

∆Ep =
NAe4Zx

8πε20AE0β2

[
ln
(

NAe4Zx

4πε20J
2A(1 − β2)

)
− β2 + 0.198

]
(5.97)

Fig. 5.34. (a-c) Energy-
loss spectra of 1200 keV
electrons in Al foils of
increasing thickness t
[5.81].
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Fig. 5.35. Most probable energy Ep = E − ∆Ep and mean energy Em of 20 keV
electrons in (a) Al and (b) Au films of increasing mass thickness x = ρt calculated
with (5.97) and (5.100) and comparison with measured values [5.173].

(E0 = m0c
2, β = v/c, and x = ρt is the mass thickness). The validity of

this formula has been confirmed at 20 keV for Ag and Al (Fig. 5.35) [5.173]
and recently at 80 keV using an energy-filtering electron microscope [4.124].
However, the observed values of the full-width at half-maximum ∆EH of the
energy distribution are greater than the value

∆EH = 4.02
NAe4ZX

8πε20AE0β2
(5.98)

derived from the Landau theory. The Fourier algorithm of the Landau theory
can be extended to the calculation of both angular and energy distributions si-
multaneously when single-scattering cross sections containing plasmon losses,
their dispersion and cutoff, the Compton scattering, and ionization cross sec-
tions are used. This allows the influence of multiple scattering on energy-loss
spectra to be calculated for different apertures and compared with experi-
ment [5.86].

For many applications, it is not sufficient to characterize the energy dis-
tribution by the most probable energy loss Ep and the half-width ∆EH; it is
also of interest to know the mean energy, which can be calculated from

(a) Em =

E∫
0

EN(E)EdE

∫ E

0
N(E)dE

or (b) Em = E −
x∫
0

∣∣∣∣dEm

dx

∣∣∣∣
B

dx (5.99)

by using a measured energy-loss spectrum or from the theoretical Bethe for-
mula for the mean loss per unit path length measured in terms of mass
thickness [5.26],
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Fig. 5.36. Experimental value of the half-width x0.5 of an edge (see Fig. 5.39a
for definition) caused by the chromatic aberration as a function of objective aper-
ture αo for different thicknesses of polystyrene spheres. Solid points: Monte Carlo
simulations [5.174].

∣∣∣∣dEm

dx

∣∣∣∣
B

=
e4NAZ

4πε20AE0β2
ln
(

E0β
2

2J

)
. (5.100)

This formula can also be used to calculate the specimen heating (Sect. 11.1)
and the radiation damage caused by ionization (Sect. 11.2). Values of the mean
energy Em obtained from measured energy distributions N(E) by applying
(5.99a) agree with calculations using (5.99b) and (5.100) (Fig. 5.35). The
stronger decrease of the experimental values for large mass thicknesses of gold
can be attributed to an increase of the effective path length caused by multiple
scattering.

The energy losses impair the resolution as a result of chromatic aberra-
tion (2.63). Measurements of the width x0.5 of the blurred intensity spread
(Figs. 5.38c and d) at the edges of indium crystals placed below polystyrene
spheres of different thicknesses (see Fig. 5.39a for a definition of x0.5) are
plotted in Fig. 5.36 as a function of objective aperture. The reason why the
measured values of x0.5 do not increase in proportion to αo (2.63) is that the
step intensity distribution consists of a steep central and a flat outer part.
Monte Carlo simulations that take into account the plural scattering of the
carbon plasmon-loss spectrum, from which x0.5 can be obtained by the same
method, predict the same dependence on aperture and agree with experimen-
tal results. Figures 5.38c and d at E = 100 and 200 keV, respectively, show
that the effect of chromatic aberration decreases with increasing E.

5.4.3 Electron-Probe Broadening by Multiple Scattering

The angular distribution of scattered electrons in thick films (0.1–1 µm) pro-
duces a spatial distribution that in turn broadens the incident electron probe
normal to the beam direction. This effect limits the resolution of the scanning
transmission mode, although the chromatic aberration of the conventional
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Fig. 5.37. Specimen structure and electron-beam broadening in the two cases in
which the polystyrene spheres are (a) below and (b) above the evaporated indium
layer.

transmission mode shown in Fig. 5.36 is avoided. It likewise limits the lateral
resolution of x-ray microanalysis of thick specimens.

The multiple scattering can be observed as a top–bottom effect in the scan-
ning transmission mode and is illustrated in Figs. 5.37 and 5.38. The specimen
consists of a thin formvar supporting film onto which indium, which condenses
as small flat crystals on the substrate, has been evaporated. This specimen is
coated with polystyrene spheres of 1 µm diameter to simulate a thick spec-
imen of known thickness. The indium layer is scanned by an unbroadened
electron probe with the polystyrene sphere below the layer (Figs. 5.37a and
5.38a). The image of the indium crystals is sharp, and the subsequent scatter-
ing in the polystyrene sphere and the broadening of the beam merely decrease
the intensity recorded with the STEM detector without affecting the resolu-
tion. With the polystyrene spheres uppermost, the indium layer is scanned
by a broadened probe, the edges of the indium crystals are blurred, and the
resolution is reduced (Figs. 5.37b and 5.38b).

A resolution parameter can be obtained by measuring the intensity distri-
bution across the edge of the indium crystals and the width x0.5 between the
points at which the step reaches 0.25 and 0.75 of its total intensity (Fig. 5.39).
Measured values of x0.5 behind polystyrene spheres of thickness t are plotted
in Fig. 5.39 for different electron energies.

A value of x0.5 � 10 nm is found for E = 100 keV and t = 1 µm. The order
of magnitude is the same for the chromatic aberration using objective aper-
tures αo ≥ 10 mrad (Fig. 5.36). Whereas the blurring of specimen structures
by chromatic aberration is approximately the same over the whole specimen
thickness, structures at the top of a 1.1 µm layer are imaged in the scanning
mode with a better resolution. It has therefore been suggested that the chro-
matic aberration of a conventional TEM mode should be avoided in this way
[4.67]. However, the top–bottom effect sets a limit on the improvement that
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Fig. 5.38. Images of indium crystals and the same polystyrene sphere of 1.1 µm
diameter in the 100 keV STEM mode with the polystyrene sphere (a) below and
(b) above the indium layer to demonstrate the top–bottom effect. (c) and (d) are
normal TEM images of the same area at E = 100 and 200 keV, respectively, blurred
by the chromatic aberration and the energy losses in the polystyrene spheres [5.175].

can be achieved [5.175]. The advantages of the scanning mode can be seen in
other applications (Sect. 4.5.1).

The effect of chromatic aberration decreases with increasing energy, and
in high-voltage electron microscopy, multiple scattering can also cause a top–
bottom effect in the conventional bright-field TEM mode. Here, however,
structures at the bottom of the specimen are imaged with a better resolu-
tion [5.174]. Such a top–bottom effect is also experimentally proved at 100
keV when the chromatic aberration is avoided by zero-loss filtering with an
energy-filtering transmission electron microscope [5.176].
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Fig. 5.39. Measurements of x0.5 in the STEM mode caused by beam broadening
for specimens below polystyrene spheres of thickness t [5.175]. (Inset: Densitometer
recording across an edge of an indium crystal and definition of x0.5).

This spatial broadening of the electron probe can be calculated from the
differential cross section dσ/dΩ by evaluating a multiple-scattering integral
[5.177], by solving the Boltzmann transport equation [5.178, 5.179], or by
Monte Carlo simulations [5.180]. A disadvantage of all of these methods is
that they do not lead to analytical formulas.

An approximate formula for estimating the beam broadening can be ob-
tained if we return to a multiple-scattering theory proposed by Bothe [5.181]
(see also [5.182]). The differential cross section (5.34) can be approximated
by a two-dimensional Gaussian function of the form exp[–(θ2

x +θ2
y)/θ2

0], where
θ2 = θ2

0. This function has the advantage that convolutions can be evaluated
straightforwardly thanks to the following property of Gaussians:

exp(−x2/a2) ⊗ exp(−x2/b2) ∝ exp[−x2/(a2 + b2)]. (5.101)

Bothe obtained the projected probability function that expresses the likeli-
hood of finding an electron at a depth z, a distance x from the axis, and with
a projected scattering angle θx (Λ: mean-free-path length):

P (z, x, θx) = exp
[
−4Λ

θ2
0

(
θ2

x

z
− 3xθx

z2
+

3x2

z3

)]
. (5.102)

Integration over x gives the projected angular distribution for a film of thick-
ness z = t

f(t, θx) ∝ exp(−θ2
x/θ2) with θ2 = θ2

0t/Λ. (5.103)

This means that the width of the angular distribution increases as t1/2. Inte-
gration over θx results in the projected lateral distribution



192 5 Electron–Specimen Interactions

I(t, x) = exp(−x2/x2
0) with x2

0 =
θ2
0

3Λ
t3. (5.104)

Substitution of θ0 from (5.34) and Λ = A/NAρσel from (5.40) yields

x0 =
λ2

2πaH

(
NAρ

3πA

)1/2

Z(1 + E/E0) t3/2

= 1.05 × 105
( ρ

A

)1/2 Z

E

1 + E/E0

1 + E/2E0
t3/2 (5.105)

with x0 and t in cm, and E in eV.
With the exception of the numerical factor and the relativistic correction,

this formula is identical with one derived in [5.183]. For polystyrene spheres
(ρ = 1.05 g cm−3), t = 1 µm, and E = 100 keV, equation (5.105) gives x0.5 =
0.96x0 = 20 nm, which is larger than the measured value of 10 nm (Fig. 5.39).
However, the blurred image of an edge in the scanning mode is produced only
by small-angle scattering θ ≤ αd, which reduces the beam broadening actually
observed.

5.4.4 Electron Diffusion, Backscattering,
and Secondary-Electron Emission

Electron diffusion in bulk material is more important for scanning electron
microscopy. In TEM, the specimens normally have to be thin enough to avoid
the multiple-scattering effects that occur in thick films. However, a knowledge
of electron interactions with solids is necessary for recording by photographic
emulsions, scintillators, and semiconductors. Walls and diaphragms in the
microscope are struck by electrons, and backscattered electrons (BSE) and
secondary electrons (SE) from the specimen can be used as signals in the
STEM mode. The most important facts about electron diffusion and BSE and
SE emission from thin films will therefore be summarized here (see [1.122] for
details).

Electron trajectories in a solid are curved by large-angle elastic-scattering
processes. The mean electron energy decreases along the trajectory as a result
of energy losses. This decrease can be described by the Bethe stopping power
(5.100). Integration of (5.100) using (5.99b) yields Em(x) (Fig. 5.40). Setting
Em = 0 gives the Bethe range RB, which increases with increasing atomic
number Z. However, the trajectories become more strongly curved with in-
creasing Z owing to the presence of the factor Z2 in the Rutherford cross
section (5.31). In practice, the range R is approximately independent of Z if
it is measured in units of mass thickness (e.g., µg cm−2) and is of the order of
RB only for small Z. The range can be estimated from the empirical formula

R � 20
3

E5/3 (5.106)

in the range 10 ≤ E ≤ 100 keV with R in µg cm−2 and E in keV.
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Fig. 5.40. Decrease of mean energy Em along the electron trajectories for differ-
ent elements and definition of the Bethe range RB is shown along with the depth
distribution of ionization density Q(z) (dashed curves) and practical range Rmax.

Fig. 5.41. Increase of the backscattering coefficient η with increasing film thickness t
plotted as η/NZ2 versus thickness (N = NAρ/A: number of atoms per unit volume)
[5.185].

The depth distribution Q(z) of energy dissipation by ionization describes
the probability of producing electron-hole pairs in semiconductors, or photons
in scintillators, and the generation of heat. In Fig. 5.40, Q(z) curves are plotted
for C and Au. These have a maximum below the surface and also demonstrate
the existence of a range Rmax approximately independent of Z.

A fraction η of the incident electrons can leave the specimen as backscat-
tered electrons (BSE) with energies reduced by inelastic scattering; η is known
as the backscattering coefficient. Integration of the Rutherford cross section
(5.31) from θ = π/2 to θ = π (backscattering) gives

η =
e4Z2

16πε20E
2

(
E + E0

E + 2E0

)2

Nt, (5.107)
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where N = NAρ/A is the number of atoms per unit volume. Plots of η/NZ2

against the film thickness t are indeed approximately independent of the ma-
terial (Fig. 5.41). The linear increase of η with increasing film thickness can
be used to measure the latter by placing a small Faraday cage in front of
the specimen [5.184, 5.185, 5.186]. For a more accurate comparison of theory
and experiment, it is necessary to consider Mott instead of Rutherford cross
sections [5.187]. Monte Carlo simulations are suitable for these calculations
[5.188, 5.189]. The backscattering coefficient may be influenced by channeling
effects and also depends on the orientation of the crystal foil relative to the
electron beam. These effects can be used to record channeling patterns with
BSE by rocking the incident electron beam (Sect. 8.1.2).

Electrons excited by inelastic collisions with an energy sufficiently far
above the Fermi level to overcome the work function can leave the speci-
men as secondary electrons (SE); by convention, these have an energy ESE ≤
50 eV and emerge from a small exit depth of the order of tSE = 0.5–10 nm
[5.190, 5.191]. The secondary-electron yield δ is proportional to the Bethe loss
|dEm/dx| (5.100) in the surface layer and to the path length tSE sec φ inside
the exit depth; φ is the angle between the incident direction and the surface
normal. The total SE yield is the sum of the SE generated by the primary
beam (δPE) and by the backscattered electrons or the transmitted electrons
on the bottom surface (δBSE),

δ = δPE + δBSE = δPE(1 + βη). (5.108)

The fraction β is greater than unity and can increase to values of 2–3 for
compact material [5.192]. This indicates that the number of SE per BSE is
greater than δSE owing to the decreased BSE energy and the increased path
length of BSE in the exit depth. The SE yield at the top and bottom of a thin
foil can also be explained in these terms [5.193].
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Scattering and Phase Contrast
for Amorphous Specimens

Elastic scattering through angles larger than the objective aperture causes
absorption of the electron at the objective diaphragm and a decrease of trans-
mitted intensity. This scattering contrast can be explained by particle optics.
The exponential decrease of transmission with increasing specimen thickness
can be used for quantitative determination of mass thickness or the total mass
of an amorphous particle, for example. The zero-loss mode of electron spec-
troscopic imaging allows us to increase the contrast by removing inelastically
scattered electrons; alternatively, the contrast can be increased by energy fil-
tering at higher energy losses.

The superposition of the electron waves at the image plane results in in-
terference effects and causes phase contrast, which depends on defocusing and
spherical aberration, on the objective aperture, and also on the particular
illumination conditions.

It is possible to characterize the imaging process independently of the spec-
imen structure by introducing the contrast-transfer function, which describes
how individual spatial frequencies of the Fourier spectrum are modified by
the imaging process. The contrast-transfer function of the normal bright-field
mode alternates in sign and decreases at high spatial frequencies owing to the
partial temporal and spatial coherence. Methods of suppressing the change in
sign, by hollow-cone illumination, for example, have been proposed.

The idea of holography as an image-restoration method, originally pro-
posed by Gabor for electron microscopy, was for many years impeded by
the imperfect coherence of the electron beam. With the introduction of field-
emission guns, holography can now be employed in electron microscopy for
the quantitative measurement of phase shifts at the atomic scale.

Many different methods can be employed for analog or digital image
restoration and for the alignment of image structures in a series of micro-
graphs. A tilt series can be used for tomography, especially for low-dose ex-
posures of biomacromolecules.
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The phase shift caused by magnetic fields inside ferromagnetic domains can
be exploited to image the magnetic structure of thin films or small particles;
this is known as Lorentz microscopy.

6.1 Scattering Contrast

6.1.1 Transmission in the Bright-Field Mode

We assume in this section that the electrons move as particles through the
imaging system. All electrons that do not pass through the objective dia-
phragm are stopped by it; this results in scattering contrast. This means that
we shall be considering the intensity and not the wave amplitude, even in
the focal plane of the objective lens, and that we shall sum intensities and
not wave amplitudes in the image plane. In the purely wave-optical theory
of imaging (Sect. 3.3.2), we always sum over wave amplitudes and obtain the
image intensity by squaring the wave amplitude in the final image plane. The
resulting phase contrast will be considered in Sect. 6.2. (It will be shown in
Sect. 6.2.6 in (6.25)–(6.28) that the scattering contrast can be incorporated in
the more general phase-contrast theory if complex scattering amplitudes are
used.) The scattering contrast therefore describes the image intensity at low
and medium magnifications, where phase-contrast effects do not normally have
to be considered unless a highly coherent electron beam and large defocusing
are employed.

In the bright-field mode, the diaphragm in the focal plane of the objective
lens acts as a stop (Fig. 4.15) that absorbs all electrons scattered through
angles θ ≥ αo (objective aperture). Only electrons scattered through θ < αo

can pass through the diaphragm. We can thus define a transmission T (αo) that
depends on the objective aperture αo and also on the electron energy E, the
mass thickness x = ρt (ρ: density, t: thickness) and the material composition
(atomic weight A and atomic number Z). We assume that the illumination
aperture αi of the incident beam is appreciably smaller than αo (αi � αo),
which is usually the case in normal TEM work, whereas in STEM the two
apertures are normally comparable (Sect. 6.1.5).

Scattering contrast is typically observed with amorphous specimens, sur-
face replicas, or biological sections (see quantitative examples in Sect. 6.1.3).
Even for amorphous specimens, the assumption that the waves scattered at
single atoms add incoherently is not fully justified because the angular distri-
bution of the scattered intensity (diffraction pattern) shows diffuse maxima
(Sect. 7.5.1). However, the total number of electrons scattered into a cone
of half-angle αo is very insensitive to such diffuse maxima in the diffraction
pattern because the angular distribution oscillates about that corresponding
to completely independent scattering (Fig. 7.22). Polycrystalline films with
very small crystals, platinum for example, can also be treated by the theory
of scattering contrast [6.1]. Evaporated films that contain larger crystals, Ag
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or Au for example, may deviate from this simple theory owing to dynamical
diffraction effects, and their mean transmission averaged over a larger film
area cannot be described exactly by the formulas of scattering contrast.

Equation (5.5) can be used to calculate the number of electrons scattered
through angles θ ≥ αo and intercepted by the diaphragm in the focal plane
of the objective lens. Substituting the small-angle approximation (5.34) for
elastic scattering gives the partial cross section [5.11]

σel(αo) = 2π
∞∫
αo

dσel

dΩ
θdθ = 2π

4Z2R4(1 + E/E0)2

a2
H

∞∫
αo

θ

[1 + (θ/θ0)2]2
dθ

=
Z2R2λ2(1 + E/E0)2

πa2
H

1
1 + (αo/θ0)2

. (6.1)

The total cross section σel (5.40) is obtained by setting αo = 0. According to
(5.9), the mean free path xel between elastic scattering events becomes

xel =
1

Nσel
=

πAa2
H

NAZ2R2λ2(1 + E/E0)2
, (6.2)

where N = NA/A denotes the number of atoms per gram. If complex scatter-
ing amplitudes f(θ) are available, say from WKB or partial wave calculations,
σel can be obtained from the optical theorem (5.39); subtracting the number
of electrons passing through the diaphragm then gives

σel(αo) = 2λIm{f(0)}︸ ︷︷ ︸
σel

−2π
α0∫
0

|f(θ)|2θdθ. (6.3)

This means that the complex scattering amplitude needs to be known only in
the region 0 ≤ θ ≤ αo.

A formula for the cross section σinel(αo), analogous to (6.1), can be calcu-
lated by using the differential inelastic cross section (5.63). The term θE that
contains the mean ionization energy J can be neglected in q′ because it will
be important only for very small scattering angles. We find

σinel(αo) = 2π
∞∫
αo

dσinel

dΩ
θdθ (6.4)

= 2π
λ4Z(1 + E/E0)2

4π4a2
H

∞∫
αo

1
θ4

(
1 − 1

[1 + (θ/θ0)2]2

)
θdθ

=
4ZR2λ2(1 + E/E0)2

πa2
H

[
− 1

4[1 + (αo/θ0)2]
+ ln
√

1 + (θ0/αo)2
]

.

The decrease of transmission T (αo) through the aperture αo with increasing
mass thickness x = ρt can be obtained as in (5.6),

dn

n
= −NA

A
[σel(αo) + σinel(αo)] dx. (6.5)
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Fig. 6.1. Semilogarithmic plot of the transmission T of carbon films as a function
of mass thickness x = ρt for different objective apertures αo (E = 100 keV). The full
curves were calculated using a multiple-scattering integral [5.11] with the constants
xel = 47.6 µg cm−2 and θ0 = 28.4 mrad, obtained from a best fit of the initial slopes
at small x. The straight lines Tfil correspond to measurements of zero-loss-filtered
transmission. The straight lines Tunf correspond to unfiltered transmission.

Integration gives

T (αo) = n/n0 = exp[−x/xk(αo)], (6.6)

where the contrast thickness xk(αo) is given by

1
xk(αo)

=
4

Zxel

[
Z − 1

4[1 + (αo/θ0)2]
+ ln
√

1 + (θ0/αo)2
]

(6.7)

and xel is defined in (6.2).
The exponential decrease (6.6) of transmission with increasing mass thick-

ness x can be checked by a semilogarithmic plot. The expected linear decrease
of log10T is observed for small mass thicknesses (Fig. 6.1) [6.2, 6.3, 6.4, 6.5].
The agreement is less good for larger mass thicknesses, owing to multiple scat-
tering. A higher transmission is observed than that predicted by (6.6) because
electrons first scattered through large angles can be scattered back toward the
incident direction and can hence pass through the objective diaphragm. For
high energies and large apertures, the situation can be reversed; T then shows
a lower increase than expected from the value of xk because electrons are
scattered out of the cone with aperture αo by multiple scattering. The full
curves in Fig. 6.1 were calculated on the basis of a multiple-scattering inte-
gral [5.11] and show good agreement with the experimental results. The curves
were calculated with the values xel and θ0 of Table 6.1, which were obtained
by fitting the initial slopes of log10T versus x curves. The limits of linearity
of these curves are discussed in [6.5, 6.6, 6.7]. For very large mass thicknesses
(x ≥ 100 µg cm−2 in Fig. 6.1), the transmission T is proportional to the solid
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Table 6.1. Experimental values [6.5] of mean free path xel and characteristic angle
θ0. Mean-free-path length Λel = 10xel/ρ with Λ (nm), xel (µg cm−2) and ρ (g cm−3).

C Ge Pt
E xel θ0 xel θ0 xel θ0

(keV) [µg cm−2] (mrad) (µg cm−2) (mrad) (µg cm−2) (mrad)

17.3 10.1 92.4 – – 6.5 53.8
25.2 14.4 69.9 6.8 50.6 8.1 52.4
41.5 22.4 46.6 10.6 42.6 11.65 50.8
62.1 31.8 37.8 14.4 38.2 14.1 43.2
81.8 39.7 32.4 17.8 34.4 16.8 40.2
102.2 47.6 28.4 21.0 30.8 19.2 38.4
150 70.6 21.6 28.0 23.4 23.4 25.8
300 114.0 17.8 42.0 19.0 31.6 16.2
750 139.2 10.2 58.7 11.5 50.7 13.2
1200 168.0 6.5 62.1 6.8 46.8 8.0

Fig. 6.2. Contrast thickness xk of (a) carbon and (b) platinum for E = 40 and 100
keV, respectively [6.5]. (- - -) Theoretical values considering elastic scattering only
and (—) considering both elastic and inelastic scattering [6.8].

angle πα2
o of electrons passing through the objective aperture αo. This is a

consequence of the broadened angular distribution of the scattered electrons,
which decreases slowly with increasing θ for the range of apertures used. How-
ever, this thickness range is of no interest for conventional TEM because of
the large energy losses and probe broadening due to multiple scattering. The
transmission for zero-loss filtering is discussed in Section 6.1.4.

Values of contrast thickness xk obtained from the initial slope of log10T (x)
in Fig. 6.1 are plotted in Fig. 6.2 for different apertures αo and electron
energies; for comparison, calculated values using (6.3) and complex scatter-
ing amplitudes f(θ) given by the WKB method (Sect. 5.1.3) (pure elastic
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scattering), modified to take account of the inelastic contribution [6.8], are
also plotted. The calculation of f(θ) assumed dense atomic packing, repre-
sented by the muffin-tin model.

The mean free path xel for elastic scattering (6.2) and the characteristic
angle θ0 = λ/2πR (5.34) should depend on only one parameter, the screening
radius R, when the Wentzel potential model (5.22) is used. However, this is a
consequence of the Born approximation, which fails for high Z. Nevertheless,
(6.7) can still be used when the parameters xel and θ0, which appear in (6.7),
are fitted to the measured values of xk(αo). Values of these quantities are
tabulated in Table 6.1, and the dependence of xel on electron energy is shown
in Fig. 6.3. The values for carbon differ from those given in (6.2) by only
a constant vertical shift in the logarithmic scale of Fig. 6.3, which means
a constant factor. The theory is thus confirmed, so far as the dependence
on electron energy is considered, apart from this constant factor, which is
determined by the scattering potential V (r) of the atoms.

For all elements, xel attains a saturation value at high electron energies
(Fig. 6.3), whereas the contrast thickness xk(αo) continues to increase for
a fixed value of αo (Fig. 6.4). The increase can be understood from the fact
that, with increasing energy, the electrons are scattered through smaller angles
(Fig. 5.5). For this reason, smaller apertures are normally used in high-voltage
electron microscopy.

An empirical law [6.4, 6.5]

log10T = −b
Za

A
x (6.8)

Fig. 6.3. Variation of electron mean free path xel for C, Ge, and Pt films with
electron energy E. (- - -) Calculations based on the Lenz theory [5.11] (Born ap-
proximation) and (—) calculations by the WKB method [6.5].
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Fig. 6.4. Dependence of the con-
trast thickness xk of carbon films on
the electron energy for different ob-
jective apertures αo.

can be used to describe the dependence of T on the atomic number Z for
a constant αo and electron energy E; a and b are aperture- and energy-
dependent constants. Measurements on gases, which are ideal examples of
amorphous specimens, can also be approximated by the same power law as
for amorphous and polycrystalline films. The Wentzel atomic model (5.22)
with R = aHZ−1/3 leads to a = 4/3 for purely elastic scattering if (6.2) is
used. Rutherford scattering would give a = 2. In reality, none of these ex-
ponents of Z is valid. The case in which E = 60 keV and αo = 4 mrad is
of special interest because a = 1.1 for these values and the slow decrease of
Z/A with increasing Z is thus compensated. In consequence, the value of T
is nearly constant for equal mass thicknesses x of different elements; this is
of interest for the determination of mass thickness from measurements of the
transmission (Sect. 6.1.6).

6.1.2 Dark-Field Mode

The bright-field mode is not convenient for specimens with very small mass
thicknesses such as DNA molecules or virus particles because a decrease of
transmission of at least 5% is needed for visual detection. Better contrast can
be expected in the dark-field mode if a thin supporting film is used (see the ex-
ample in Sect. 6.1.3). However, the requisite electron charge density in C cm−2

and the exposure time are greater for the dark-field mode. Dark-field imaging
is also advantageous if structures with high and low mass thicknesses are to
be imaged simultaneously; bacteria with cilia provide a striking example [6.9].

Dark-field images can be formed in the various ways described in Fig. 4.17.
To decrease the effect of lens aberrations, the tilt method (Fig. 4.17c) is widely
used, and the transition from the bright- to the dark-field mode can be effected
by switching on the current in the tilt coils [6.10]. Another way of distributing
the intensity of the primary beam around the circular diaphragm is to work
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Fig. 6.5. Example of dark-field intensity I/I0 [I0: intensity of the incident electron
beam] as a function of carbon mass thickness x = ρt for different objective apertures
αo in the tilted-beam mode; the distance of the primary beam from the periphery
of the centered objective diaphragm is 1 mrad (E = 100 keV).

with an annular diaphragm in the condenser lens [6.11, 6.12] or to deflect
the electron beam electronically on a cone by means of the tilt coils between
condenser and objective lens (hollow-cone illumination) [6.13].

The dark-field intensity I/I0 is plotted against mass thickness x in Fig. 6.5
for the tilted-beam mode and various centered apertures; the primary beam
is at a distance of 1 mrad from the periphery of the centered diaphragm. The
intensity passes through a maximum because the number of electrons scat-
tered through the dark-field aperture first increases with mass thickness and
subsequently decreases with increasing mass thickness as a result of multiple
scattering to larger angles.

6.1.3 Examples of Scattering Contrast

The following quantitative examples of scattering contrast (Fig. 6.6) illustrate
how the scattering contrast affects different imaging problems and how this
contrast can be calculated with the aid of experimental data; they also indicate
how the measured transmission can be quantitatively evaluated. The xk values
used have been calculated from (6.7) using the experimental xel and θ0 values
of Table 6.1.

(a) Shadow-Casting Film (Fig. 6.6a). Shadowing surface replicas with
evaporated films of heavy metals increases the contrast and resolution
(Fig. 9.37). A shadow such as that shown in Fig. 6.6a is clearly recog-
nizable. Denoting the intensity without a specimen by I0, the intensity with
the carbon supporting film by IC, and the intensity with the evaporated Pt
film by IPt, the following relations are found:
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Fig. 6.6. Examples of scattering-
contrast calculations.

IC = I0 exp
(
−ρCtC

xk,C

)
; IPt = I0 exp

[
−
(

ρCtC
xk,C

+
ρPttPt

xk,Pt

)]
. (6.9)

The ratio of the platinum and carbon intensities

IPt

IC
= exp

(
−ρPttPt

xx,Pt

)
(6.10)

is observed in the image. If tPt is small, so that the exponential law of trans-
mission (6.6) is obeyed, the thickness of the carbon supporting film has no
influence on the ratio IPt/IC in (6.10). For a given value of IPt/IC, the thick-
ness of the shadowing film must be at least

tPt =
xx,Pt

ρPt
ln

IC

IPt
. (6.11)

As a numerical example, for E = 80 keV, αo = 4 mrad, xk,Pt = 17.5 µg cm−2,
and ρPt = 21 g cm−3, we find tPt = 0.9 nm for IPt/IC = 0.9.

(b) Stained Membrane in a Biological Section (Fig. 6.6b). Measure-
ments at E = 60 keV and αo = 5 mrad of the transmission of a thin section
of an OsO4-stained mitochondrial membrane embedded in Vestopal result in
mean values of TS = IS/I0 = 0.765 for the embedding medium and TM =
IM/I0 = 0.67 at a membrane. The thickness of the section can be calculated
from the first value by assuming that the main contribution to the contrast
comes from carbon (xk,C = 14.6 µg cm−2); this gives xS = xk,C ln(1/TS) = 3.9
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µg cm−2, so that with ρS = 1.1 g cm−3, the section thickness tS = 35.5 nm. For
more accurate quantitative measurements, the mass loss by radiation damage
(Sect. 11.2) has to be considered.

Assuming xk,Os � xPt = 13.0 µg cm−2, the second value TM implies
xOs = xk,Ptln(TS/TM) = 1.7 µg cm−2 for the equivalent mass thickness of
the incorporated osmium. The relative fraction of Os atoms becomes

number of C atoms
number of Os atoms

=
xS

xPt

AOs

AC
= 36.

The same ratio TM/TS = 0.88 would be observed at E = 1 MeV and αo =
1.5 mrad for a membrane in a section of thickness tS = 120 nm. For a section
as thick as this, the resolution is already reduced at E = 60 keV by the effect
of chromatic aberration.

(c) Organic Particle on a Supporting Film (Fig. 6.6c). This case is
described by a formula similar to (6.10),

IP

IC
= exp

(
−ρPtP

xk,C

)
. (6.12)

In bright-field mode, an unstained particle with tP = 10 nm and ρP = 1 g cm−3

generates an intensity ratio IP/IC = 0.97 for E = 100 keV, αo = 10 mrad,
and xk,C = 32 µg cm−2, which is beyond the limit of visibility. However, such
a particle can be seen in phase contrast at optimum defocusing (Sect. 6.2).

If the same particle of 10 nm diameter (xP = 1 µg cm−2) on a carbon
support film of xC = 1 µg cm−2 (tC = 5 nm) is observed in the dark-field
mode, the ratio I ′P/I ′S increases to 2 because the dark-field intensities are
proportional to x for small thicknesses. From Fig. 6.5, the ratio I ′S/I0 can
be seen to be 0.01. A 30–50-fold longer exposure time than for a bright-field
mode is therefore needed.

(d) Negatively Stained Particle (Fig. 6.6d). The same particle, 10 nm in
diameter, is now negatively stained by embedding it in a thin layer of phos-
photungstic acid, PWO4 (ρN = 4 g cm−3). For the same imaging conditions
as in c), the contrast thickness for PWO4 will be approximately the same as
that for Pt: xk,N � xk,Pt = 19 µg cm−2. Where the particle is situated, an
increase of the transmitted intensity ratio

IP

IN
= exp

[(
ρN

xk,N
− ρP

xk,C

)
tP

]
= 1.19 (6.13)

can be expected, which means a considerable gain of contrast in comparison
with the decrease IP/IS = 0.97 for an unstained particle in the bright-field
mode.
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6.1.4 Improvement of Scattering Contrast by Energy Filtering

Zero-Loss Filtering. The exponential decrease of transmission (6.6) in the
conventional bright-field mode depends on the contrast thickness xk(αo) and is
a sum T = Iun +Iel +Iin of unscattered, elastically scattered, and inelastically
scattered electrons, respectively, that pass the objective diaphragm. By zero-
loss filtering, the part Iin can be removed and the transmission becomes [6.14]

Tfil = Iun + Iel = exp
[
− x

xel

(
1

1 + (αo/θ0)2
+ ν

)]
, (6.14)

where ν (5.66) is the ratio of inelastic-to-elastic total cross sections. In the
semilogarithmic plots of T (x) in Fig. 6.1 measurements of the zero-loss trans-
mission Tfil are compared with unfiltered values (Tunf) for carbon at E = 80
keV. Whereas carbon shows a much stronger decrease of the transmission Tfil

and a weak dependence on aperture αo, the differences are much less for evap-
orated platinum films [6.14]. This is a consequence of the difference between
the values ν � 3 for carbon and ν � 0.25 for platinum. The gain of contrast
for zero-loss filtering by the higher sensitivity to small variations in mass
thickness and by the avoidance of chromatic aberration is therefore largest
for carbon-containing specimens. The resolution and contrast of membrane
structures in biological sections, for example, are much better with zero-loss
filtering, and it is possible to investigate section thicknesses up to 0.5 µm
where the zero-loss transmission Tfil falls below 10−3 (Fig. 6.1), which is a cri-
terion for the practical limit of observation (see also Sect. 9.1.6). An example
of the improvement of contrast and resolution by zero-loss filtering is shown
in Fig. 6.7 for a section of a copolymer of polyethylene and polypropylene
stained with ruthenium oxide.

Although the chromatic aberration can be avoided by zero-loss filtering,
the resolution of 0.5–1µm thick organic specimens can be limited by the

Fig. 6.7. Comparison of (a) an unfiltered and (b) zero-loss filtered image of a thin
section of a copolymer of polyethylene (PE) and polypropylene (PP) stained with
ruthenium oxide (E = 80 keV, bar = 0.5 µm).
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Fig. 6.8. Demonstration of structure-
sensitive contrast in an electron spec-
troscopic image (ESI) at ∆E = 250
eV of a 60 nm liver section (OsO4-
gluaraldehyde fixed, uranyl-acetate
stained, and epon embedded).

top–bottom effect, as described for the STEM mode in Sect. 5.4.3 with the
difference that structures at the bottom show a better resolution than those
at the top [5.176].
Structure-Sensitive Contrast. With an energy-loss window just below the
carbon K edge at ∆E = 285 eV (Fig. 4.30), the contribution of carbon to
an electron spectroscopic image will be at a minimum. Superposed contribu-
tions to the EELS intensity from the tail of plasmon losses and ionization
edges below the carbon K edge of other elements give a brighter image of
these components, as in a dark-field image, with a better contrast than in the
conventional dark-field mode (Sect. 6.1.2) [5.37, 6.15]. This structure-sensitive
contrast can be seen in an ESI image of a 60 nm liver section recorded at ∆E
= 250 eV (Fig. 6.8). At ∆E � 50 eV, the EELS of the stained part inter-
sects that of the unstained material and the contrast changes from bright to
dark field.
Contrast Tuning. The EELS from different parts of a specimen can in-
tersect several times owing to differences in the decrease of the background
intensity with increasing energy loss and overlapping of the ionization edges
of different elements. This causes contrast reversals when the selected energy
is tuned over a larger range of selected energy-loss windows. This technique of
contrast tuning [6.16, 6.17] can be applied to thicker biological sections when
the stained areas become very dark and cannot be recorded together with
much brighter areas. Contrast tuning can reveal an optimum energy window
in which both parts are imaged with comparable intensities. Another example
is shown in Fig. 6.9 for the same copolymer as in Fig. 6.7, but the specimen
is now thicker and more lightly stained. Whereas the unfiltered image and an
ESI at ∆E = 50 eV show no strong difference in contrast and the boundaries
between PE and PP cannot be clearly distinguished, maximum contrast is



6.1 Scattering Contrast 207

Fig. 6.9. Demonstration of contrast tuning for the example of a section of a
copolymer of polyethylene (PE) and polypropylene (PP) stained with ruthenium
oxide; the section is thicker than that of Fig. 6.9 and more lightly stained. (a) Un-
filtered, (b) ∆E = 50 eV, (c) ∆E = 200 eV, and (d) ∆E = 350 eV (E = 80 keV,
bar = 5 µm).

observed at ∆E = 200 eV, which can be used for a stereological measurement
of relative fractions. At ∆E = 300 eV beyond the carbon K edge, the contrast
decreases again.
Most-Probable-Loss Imaging. When the intensity of the zero-loss trans-
mission falls below 10−3 (e.g., T � 10−4 for a 1 µm thick biological section at
80 keV), the EELS shows a broad maximum between 100 and 300 eV (e.g.,
∆E = 270 eV for t = 1 µm). This most probable energy loss can be calcu-
lated by the Landau formula (5.97), which is in agreement with experiments
[4.124, 5.173]. The intensity at the most probable loss is large enough to record
an image either in a dedicated scanning transmission electron microscope
[6.18] or by EFTEM with an imaging energy filter [6.16, 6.19]. Whereas zero-
loss filtering is limited to mass thicknesses x ≤ 70 µg/cm2, most-probable-loss
imaging allows us to investigate organic films up to x � 150 µg/cm2. The res-
olution will be limited by the broad energy window of 10–20 eV and the
large aperture necessary to obtain sufficient intensity. Electron spectroscopic
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images of 0.7 µm sections at 80 keV are comparable with micrographs in a
conventional transmission electron microscope at 200 keV, though there are
differences in contrast: The ESI image shows more details [6.16].

6.1.5 Scattering Contrast in the STEM Mode

It is a characteristic of the bright-field transmission mode in TEM that the
illumination aperture αi is much smaller than the objective aperture αo

(Fig. 6.10a). In consequence, the transmission T = I/I0 depends only on
the objective aperture. Small shifts of the objective aperture or small incli-
nations of the incident beam hardly alter the intensity I that goes through
the diaphragm. It was shown in Sect. 4.2.2 that the smallest possible spot
size of an electron probe for STEM can be obtained only with a relatively
large probe aperture αp � 10 mrad. The theorem of reciprocity (Sect. 4.5.3)
indicates that the same transmission can be expected if the electron-probe
aperture αp is approximately equal to αo, whereas the detector aperture is
small: αd � αi (Fig. 6.10b). In fact, a lower intensity I0 is recorded in the
absence of a specimen because I0 is a fraction α2

d/α2
p of the intensity of the

incident electron probe with aperture αp. The intensity I with a specimen
present is determined by the decrease of I0 due to scattering through larger
angles together with the increase due to scattering from the other directions
of incidence back into the detector aperture. The same ratio T = I/I0 can
therefore be expected as in the TEM mode if we normalize with respect to the
intensity I0 that actually passes through the detector aperture. In practice,
however, the electron irradiation must be minimized and the signal-to-noise
ratio must be made as high as possible; it thus becomes more convenient to
work with αd � αp in the STEM mode (Fig. 6.10c), so as to collect all of the
electrons of the incident beam when no specimen is present.

Figure 6.11a shows calculated lines of equal transmission T = I/I0 for
a relatively thin carbon film (t = 320 nm) in an αp − αd diagram. The full
curves are those for which I0 represents the intensity going through the detec-
tor aperture. The dashed lines for αp < αd are those for which I0 is the total

Fig. 6.10. (a) Apertures in the
TEM mode, (b) reciprocal apertures
in the STEM mode, and (c) opti-
mum STEM mode with αp � αd.
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Fig. 6.11. Lines of equal transmission T in an αp −αd diagram (αp: electron-probe
aperture, αd: detector aperture) for (a) t = 320 nm and (b) t = 1.28 µm carbon
films (E = 100 keV). The hatched areas indicate the ranges of the conventional (C)
and scanning transmission (S) modes of TEM.

current in the electron probe. When thicker films are used (t = 1.28 µm in
Fig. 6.11b), the angular width of the electron-scattering distribution becomes
broader than the apertures used. The transmission then becomes less depen-
dent on the aperture and is determined by the larger of the two apertures αp

and αd [6.20, 6.21].
If αd is increased while αp is kept constant (corresponding to motion along

a line parallel to the abscissa of Fig. 6.11a), the transmission decreases for
small mass thicknesses x. The decrease of T with increasing mass thickness is
still exponential, but the value of xk for αd � αp is larger in the STEM mode
than it is for αi � αo = αd in the TEM mode.

As shown in Fig. 1.2, the signals Iel for electrons scattered elastically
through large angles, Iun for unscattered electrons, and Iin for inelastically
scattered electrons with energy losses can be recorded simultaneously. A dis-
play of the ratio Iel/Iin provides a Z-contrast image with enhanced contrast
of stained and unstained biological sections [6.22, 6.23], though the ratio sig-
nal is only thickness-independent as long as both signals are proportional to
the mass thickness [6.24]. Another way of discriminating between different
elements is to use two annular detectors or a set of ring detectors to collect
elastically scattered electrons at different scattering angles [6.25, 6.26].

6.1.6 Measurement of Mass Thickness and Total Mass

The exponential law of transmission (6.6) in the conventional TEM bright-
field mode and the STEM mode can be used for a quantitative determi-
nation of the mass thickness of amorphous specimens, such as supporting
films, biological sections, and microorganisms (see the examples in Sect. 6.1.3)
[6.27, 6.28, 6.29]. The method can also be used to measure the loss of mass
by radiation damage (Sect. 11.2). It is only necessary to know the contrast
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thickness xk for the operating conditions in question (electron energy, objec-
tive aperture, material). Calibration of this value with films of known mass-
thickness, established by microbalance or interferometric measurements, is
preferable to theoretical calculations. If t is measured by an interferometric
method (two-beam or Tolansky multiple-beam interferometry), care must be
taken to ensure that the film has the same density ρ as the bulk material
for the calculation of the mass thickness x = ρt. The mass thickness will be
directly proportional to log10(1/T ) = log10(I0/Is). The intensities Is and I0

with and without the specimen, respectively, can be obtained by placing a
Faraday cage in the image plane, by measuring the photographic density D
of a developed emulsion with a densitometer, or by using the signal from a
CCD camera.

In the STEM mode, the signal provided by a scintillator–photomultiplier
combination is directly proportional to the intensity. A signal proportional to
the mass thickness can be obtained online by means of a logarithmic ampli-
fier [6.30] and can be displayed as a Y-modulation trace on the cathode-ray
tube (CRT). This method can also be used to plot lines of equal transmis-
sion (mass thickness) directly, and these can be superposed on the CRT im-
age. Isodensity curves can be produced from photographic records by special
reproduction techniques [6.31]. The proportionality of the dark-field signal
to very small local mass thicknesses (Fig. 6.5) can also be used to provide
a digital record of mass thickness in a dedicated STEM [6.32, 6.33, 6.34].
The backscattering coefficient of thin films is proportional to the thickness
(Fig. 5.37). A backscattered electron signal can be recorded by placing a
semiconductor or scintillation detector in front of the specimen (Fig. 4.19)
and can be used in the STEM mode for the determination of the local mass
thickness of biological sections [6.35].

These methods yield the local mass thickness of a specimen. The total
mass of a particular particle can be evaluated by numerical integration over
the projected area, which is straightforward with digital integration of a log-
arithmic STEM signal. A special photometric method has been employed for
the bright-field [6.36, 6.37] and dark-field modes [6.12], but the methods dis-
cussed above are preferable when the microscope is linked to a computer.

These methods for the quantitative measurement of mass thickness are
applicable only to amorphous specimens; in the crystalline state, a film of the
same mass thickness will show a decrease of the diffuse scattering depending
on specimen temperature (thermal diffuse scattering, Sect. 7.5.3), and the
intensities of the Bragg reflections depend strongly on the specimen thickness
and orientation. Polycrystalline films with large crystals (Cu, Ag, and Au
evaporated films, for example) show an averaged transmission that can be
twice the value found for an amorphous film. For films with very small crystals
(such as Al, Ni, Pt), however, the transmission is of the same order as that
of amorphous films of equal mass thickness, provided that the crystals are so
small that their diffraction intensity is within the limits of the kinematical
diffraction theory [6.1].
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6.2 Phase Contrast

6.2.1 The Origin of Phase Contrast

We have shown that there is a phase shift of 90◦ (π/2 radians) between the un-
scattered and scattered waves (Sect. 5.1.3). The complex scattering amplitude
of the atom creates an additional phase shift η(θ), which can be neglected for
low-Z material. If ψi is the amplitude of the incident wave in the final image
(I0 = ψiψ

∗
i = |ψi|2) and ψsc that of the scattered spherical wave that passes

through the objective diaphragm, there will be a phase shift of π/2 if we as-
sume that the imaging lens introduces no additional phase shift. We examine
the 90◦ phase shift by plotting ψi + i ψsc as a complex amplitude. Figure 6.12a
shows that, for ψsc � ψi, the resulting amplitude has approximately the same
absolute value as ψi, so that I = |ψi + iψsc|2 does not differ significantly from
I0 = |ψi|2; this means that the phase object is invisible. If the phase of the
scattered wave could be shifted by a further 90◦ (Fig. 6.12b), the superposi-
tion would become ψi−ψsc and hence I = |ψi−ψsc|2 = ψ2

i −2ψiψsc + . . . < I0.
This is called positive phase contrast. If ψsc were shifted by 3π/2 or –π/2, the
superposition would be ψi + ψsc (Fig. 6.12c) so that I > I0; this is called neg-
ative phase contrast. In light microscopy, these phase shifts can be produced
by inserting a Zernike phase plate in the focal plane of the objective lens;
such a plate shifts the scattered wave by an optical-path-length difference of
λ/4 and has a central hole through which the primary beam passes unmod-
ified. In electron microscopy, a path difference λ/4, which corresponds to a
phase shift of π/2, can be produced by passing 100 keV electrons through
a 23 nm thick carbon foil with inner potential Ui = 8 V (Sect. 3.1.3). This
possibility has been investigated in attempts to create the desired phase shift
by means of a carbon foil with a central perforation (Sect. 6.4.6). However,
practical difficulties arise with such phase plates because, in continuous op-
eration, the foil becomes charged and contaminated by electron irradiation.
Recently, microscopic electrostatic elements have been built, that allow ap-
plication of a well-defined phase-shift to the primary beam. These will be
discussed in Sect. 6.4.6.

Fig. 6.12. (a) Vector addition of
the image amplitude ψi and the scat-
tered amplitude ψsc phase shifted
by π/2 or 90◦, (b) positive phase
contrast produced by an additional
phase shift of +π/2; (c) negative
phase contrast produced by an addi-
tional phase shift of −π/2 or +3π/2.
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The effect of spherical aberration and defocusing may be expressed in
terms of the wave aberration W (θ) (Fig. 3.15). The shape of the wave-
aberration curve for different values of defocusing shows that a phase shift
ϕ = −W (q) = π/2 cannot be obtained simultaneously for all scattering an-
gles; only for a limited range of scattering angles or their corresponding spa-
tial frequencies q will W (θ) produce the desired phase shift. Defocus values
for which W (θ) takes a minimum value of −π/2 are particularly favorable
(∆z∗ = 1 in Fig. 3.15).

6.2.2 Defocusing Phase Contrast of Supporting Films

Supporting films (especially carbon) show a characteristic granular struc-
ture at high resolution, the appearance of which changes with the defocus
(Figs. 6.14); this granularity was first reported by Sjöstrand [6.38] and dis-
cussed as a phase-contrast effect by von Borries and Lenz [6.39]. Carbon
films show statistical fluctuations of local mass thickness and therefore of
the electron-optical phase shift. The two-dimensional Fourier transform of
the phase shift contains a wide range of spatial frequencies. For this reason,
carbon (or better, amorphous germanium) films are ideal test specimens for
investigating the transfer characteristics of an electron-optical imaging system
for different spatial frequencies.

A single spatial frequency q that corresponds to spacing or periodicity
Λ = 1/q creates a diffraction maximum at a scattering angle θ = λ/Λ = λq.
Those spatial frequencies for which the wave aberration is an odd multiple of
π/2, and thus

W (θ) = (2m − 1)
π

2

{
m = even: maximum negative phase contrast
m = odd: maximum positive phase contrast, (6.15)

will be imaged with maximum phase contrast. Wave aberrations (phase shifts)
for which W (θ) = mπ, where m is an integer, generate no phase contrast
and thus leave gaps in the spatial-frequency spectrum observed at the image.
Substituting for W (θ) from (3.65) in (6.15) and writing θ = λ/Λ, we obtain
an equation for those values of Λ for which maximum positive or negative
phase contrast is to be expected. Solving for Λ gives

Λ = λ

[
∆z

Cs
±
(

∆z2

C2
s

+
(2m − 1)λ

Cs

)1/2
]−1/2

. (6.16)

This formula of Thon [6.40] is an extension of the earlier expression of Lenz and
Scheffels [6.41]. In the latter, only those terms of W (θ) caused by defocusing
were considered, W (θ) = π∆zθ2/λ = π/2. This led to

Λ =
√

2∆zλ . (6.17)

This is valid for large Λ and defocusing ∆z. In these conditions, it relates a
specimen periodicity Λ to the optimum defocusing ∆z at which the periodicity
will be imaged with optimum phase contrast.
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Fig. 6.13. Comparison of measured spatial frequencies q with maximum positive
and negative phase contrast obtained by laser diffraction on micrographs of carbon
films and theoretical curves based on (6.16) [6.40].

The periodicities Λ that are imaged with maximum positive or negative
phase contrast can be measured in light-optical Fraunhofer diffraction patterns
of the developed photographic emulsion or by digital two-dimensional Fourier
transform (Sect. 6.4.7); typical curves are plotted in Fig. 6.13 as functions of
defocusing ∆z. The full curves were calculated from (6.16) and show excellent
agreement. Even in focus, the granularity of the carbon film does not disap-
pear owing to the term in W (θ) that contains the spherical aberration. The
resolution is limited in this experiment (horizontal dashed line in Fig. 6.13)
by the attenuation of contrast transfer caused by chromatic aberration and
the finite illumination aperture (Sect. 6.4.2).

The transfer of spatial frequencies as a function of the defocus can be illus-
trated by calculating a linear Fourier transform of the phase-contrast image
of a tilted specimen [6.42]. An example is shown in Fig. 6.14.

Crystalline areas with periodic structures have been observed in carbon
foils [6.43] by using a tilted primary beam, as used for the imaging of lattice
planes (Sect. 9.6.1). However, when such structures are seen in amorphous
specimens with this mode of imaging, they may equally well be caused by
selective filtering of spatial frequencies. This selective filtering results from
modification of the contrast-transfer function caused by a tilt of the illumi-
nating beam (Sect. 6.4.3). Bright spots of 0.2–0.5 nm diameter have been
observed in dark-field imaging with an annular aperture [6.44] that were most
intense in overfocus. These spots were attributed to Bragg reflections on small
crystallites (see also [6.45]).
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Fig. 6.14. (a) Bright-field electron micrograph of tilted carbon film [6.42]. A 1000 Å
distance in the horizontal direction corresponds to a defocus range of 2145 Å.
(Cs = 1.35 mm, λ = 0.037Å). (b) “One-dimensional” light optical Fourier transform
of a tilted film. (c) Match between the theoretical defocusing dependence (solid lines)
and experimental transform (vertcal bars). The vertical bars indicate the approxi-
mate width of the bright bands from the experimental “one-dimensional” transform.
(b) and (c) can be directly compared since their horizontal and vertical scales are
identical and a vertical line will pass through the same defocus.

As we have seen, the granularity of carbon foils is very useful for investi-
gating the contrast transfer of TEM but degrades the image of small particles,
macromolecules, and single atoms by adding a noisy background. Numerous
attempts have therefore been made to prepare supporting films with less gran-
ularity in phase contrast (Sect. 4.3.2).

An electron-optical method of decreasing the phase contrast of the sup-
porting film relative to the contrast of single atoms and structures with
stronger phase contrast involves using hollow-cone illumination (Sect. 6.4.3).
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6.2.3 Examples of Phase Contrast

Figure 6.14 shows a through-focus series of ferritin molecules on a carbon
supporting film 5 nm thick. In focus (third image in second row), the mole-
cules show weak scattering contrast due to the iron-rich core of the molecules
(�5 nm in diameter). This contrast is caused by the loss of electrons that
have been scattered through large angles and intercepted by the objective
diaphragm. The part of the electron wave that passes through the objective
aperture is phase shifted by 90◦. An increase of contrast caused by phase con-
trast can be observed for underfocus (∆z > 0). The image of the molecules
becomes darker at the center. Normally, the operator instinctively focuses for
maximum contrast, which means underfocusing. In overfocus (∆z < 0), the
phase shift W (θ) becomes positive and the molecules appear bright in the
center. For a quantitative interpretation of the dependence of image intensity
in the center on defocusing, see [6.46].

Reversed phase contrast may occur in some specimens, for example mole-
cules of o-phenanthroline incorporated in electrodeposited nickel films [6.47].
The molecules are imaged as bright spots in underfocus and as dark spots
in overfocus. This confirms that there really are vacancies in the nickel film
(�1 nm in diameter) that contain the organic molecules. Because of the lower
inner potential Ui of the vacancies, the wavefront behind the inclusions will
exhibit an opposite phase shift. Phase contrast can also be observed in defo-
cused images of crystal foils with vacancy clusters [6.48].

In phase contrast, the number of electrons that pass through the objective
diaphragm will be constant and all will reach the image. This means that
if the intensity at some points of the specimen is increased by summing the
amplitudes with favorable phase shifts, the intensity at neighboring image
points will be decreased so that the mean value of the intensity is reduced
only by scattering contrast. If the image of a particle is darker in the cen-
ter as a result of positive phase contrast, it will be surrounded by a bright
rim and vice versa (Fig. 6.15). Beyond this bright ring, further rings follow
with decreasing amplitudes. In complex structures, and especially in periodic
structures, these bright and dark fringes can interfere and cause artifacts.
Figure 6.16 demonstrates such an effect for myelin lamellae. The contrast of
the membranes can be reversed by overfocusing (∆z < 0). The width of the
dark stripes increases with increasing overfocus, and at ∆z = –4.8 µm, twice
the number of dark lines can be seen. In underfocus, an increase of the dark
contrast of the membranes can again be observed.

The two examples of Figs. 6.15 and 6.16 show that the phase-contrast
effects in a defocus series can be interpreted when the specimen structure is
known from a focused image or from the method of preparation. For struc-
tures smaller than 1 nm, however, this becomes difficult because the spherical
aberration term of W (θ) also has to be considered. In this case, more com-
plicated image-reconstruction methods have to be used (Sect. 6.6) to extract
information about the specimen from a single micrograph or a series.
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Fig. 6.15. Defocus series of ferritin molecules on a 5 nm carbon supporting film
and changes in the granulation of the carbon film (E = 100 keV).

6.2.4 Theoretical Methods for Calculating Phase Contrast

The wave-optical theory of imaging has already been described in Sect. 3.3.2.
We set out from formula (3.36) for the modified plane wave behind the spec-
imen. The amplitude ψ0 will be normalized to unity. The local amplitude
modulation as(r) is assumed to differ little from one: as(r) = 1− εs(r), where
εs(r) is small. If the phase shift ϕs(r) is also much less than one, then the
exponential term in (3.36) can be expanded in a Taylor series

ψ(r) = 1 − εs(r) + iϕs(r) + . . . . (6.18)

With this approximation, the specimen is said to be a weak-amplitude, weak-
phase object. In practice, electron-microscope specimens thinner than 10 nm
and of low atomic number do behave as weak-phase objects. The amplitude
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Fig. 6.16. Defocus series of an ultramicrotome section through myelin lamellae
(stained with OsO4, embedded in Vestopal).

modulation εs(r) can then be neglected. When the phase contrast of particles
with high atomic number, such as colloidal gold particles, is calculated, the
decrease εs(r) of amplitude, however, must be considered [6.46, 6.49, 6.50].
For low spatial frequencies the influence of the amplitude leads to an ex-
tended peak in a regime, where the phase-contrast transfer function is almost
zero [6.51].

Equations (3.72) and (3.73) contain the complete mathematical treatment
of phase contrast. Depending on the information required and the nature of
the phase contrast, the following procedures can be used:

1. If the scattering amplitude F (θ) of a specimen is known, the image am-
plitude ψ′

m(r) is given approximately by (3.72). For high resolution, F (q)
is related to the scattering amplitude f(θ) of a single atom (Sect. 5.1.3)
by F (q) = λf(θ). Examples are discussed in Sect. 6.3.1.

2. For constant conditions and variations of the specimen structure, it can
be advantageous to use the convolution (3.73) of the object function ψs(r)
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with the Fourier transform h(r) of the pupil function H(q) because in this
case, intermediate calculation of F (q) would be a waste of computation
time.

3. If more general information is wanted about the contrast transfer – which
spatial frequencies q are imaged with positive or negative phase contrast
for a given electron lens or how the contrast transfer is influenced by a
finite illumination aperture or by the energy spread of the incident electron
beam – then the pupil function or the contrast-transfer function can be
used (Sect. 6.4).

6.2.5 Imaging of a Scattering Point Object

For a further discussion of phase contrast, we consider an idealized point spec-
imen that scatters isotropically into all scattering angles. It is the source of a
spherical wave of amplitude f(θ), independent of the scattering angle θ. As
shown in Sect. 3.3.2, the amplitude-blurring or point-spread function h(r) is
obtained as the image. The scattering amplitude of a single atom decreases
with increasing θ. Nevertheless, to a first-order approximation, this point spec-
imen can be pictured as a single atom, though in most cases the scattering
amplitude f(θ) of single atoms already begins to decrease within θ ≤ αo. The
resulting phase contrast of single atoms will be discussed in Sect. 6.3.

We introduce polar coordinates r′ and χ in the image plane and normalize
the magnification to unity (M = 1). The scalar product in (3.72) becomes
q · r = qr′ cos χ = θr′ cos χ/λ; we have d2q = θdθ/λ2 and F (q) = λf(θ). For
the bright- and dark-field modes (1 and 0, respectively, for the first term), we
obtain

ψm(r′) =
1
0

}
+

i
λ

αo∫
0

2π∫
0

f(θ)e−iW (θ) exp
(

2πi
λ

θr′ cos χ

)
θdθ. (6.19)

The difference between the bright- and dark-field modes is that, in the former,
the primary incident wave (normalized in amplitude to unity) contributes
to the image amplitude, whereas in the dark-field mode, it will be absorbed
by a central beam stop or by a diaphragm. The factor i indicates that there
is a phase shift of 90◦ between the primary and scattered waves.

If the specimen and the scattering amplitudes are assumed to be rotation-
ally symmetric, the integration over χ in (6.19) gives the Bessel function J0.
The term involving W (θ) can be rewritten, using the Euler formula, as follows:

ψm(r′) =
1
0

}
+

2πi
λ

αo∫
0

f(θ)[cos W (θ) − i sin W (θ)]J0

(
2π

λ
θr′
)

θdθ

=
1
0

}
+ εm(r′) + iϕm(r′). (6.20)
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In the absence of the wave aberration [W (θ) = 0], the real part εm(r′) of (6.20)
becomes zero and the same result is obtained as in Fig. 6.12a, namely that
the 90◦ phase-shifted imaginary part ϕm(r′) makes no contribution to bright-
field image contrast because ϕm(r′) � 1. With nonvanishing wave aberration
W (θ), the real part of (6.20), which contains sin W (θ), is non-zero: εm(r′) �= 0.
The image intensity is obtained by squaring the absolute amplitude; i.e.,

I(r′) = ψm(r′)ψ∗
m(r′) =

[
1
0

}
+ εm(r′)

]2
+ ϕ2

m(r′)

=

⎧⎨
⎩

1 + 2εm + ε2m + ϕ2
m � 1 + 2εm(r′) + . . . bright field

ε2m + ϕ2
m dark field.

(6.21)

Because both εm and ϕm are very much smaller than unity, the quadratic
terms can be neglected in the bright-field mode. If we consider the intensity
variation

∆I(r′) = I(r′) − I0 = 2εm(r′)

=
4π

λ

αo∫
0

f(θ) sin W (θ) J0

(
2π

λ
θr′
)

θdθ (6.22)

for the bright-field mode relative to the background I0 = 1, the integrand
in (6.22) can be split into three factors, which are plotted in Fig. 6.17. The
factor θf(θ) expresses the fact that the area of an annular element 2πθ dθ
increases as θ. The factor sin W (θ) passes through a broad maximum when
the minimum of the wave aberration in Fig. 3.15 takes the value −π/2; this

Fig. 6.17. Plot of the three fac-
tors (a) θf(θ), (b) – sin W (q) and
(c) J0(2πθr′/λ) in the integrand of
(6.22).
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occurs for a reduced focusing ∆z∗ = 1. The Bessel function J0 is unity at the
center (r′ = 0) of the atom. The reduced optimum aperture will be that for
which W (θ) is again zero, that is, α∗

opt =
√

2 for ∆z∗ = 1. The subsequent
rapid oscillations of W (θ) with increasing θ will give no further contribution
to the integral in (6.22). From (3.68), the values

αopt = 1.41(λ/Cs)1/4, ∆zopt = (Csλ)1/2, (6.23)

are obtained for the so-called Scherzer focus with maximum positive phase
contrast [3.33] and the corresponding optimum aperture.

As the distance r′ from the center of the point source is increased, the
oscillations of the Bessel function J0 in (6.22) are shifted to smaller values of
θ (Fig. 6.17c), which decreases the value of the integral and can even change
its sign. The image amplitude (3.74) is obtained for F (θ) = const and for sin
W (θ) = –1 at all scattering angles. At the Scherzer focus, the half-width of
the image-intensity distribution passes through a minimum:

δmin = 0.67(Csλ
3)1/4. (6.24)

This quantity δmin is often used to define the resolution of TEM. However,
a single number proves to be insufficient to characterize the resolution. Thus
specimen details closer together than δmin can be imaged by shifting the min-
imum of the wave aberration toward higher spatial frequencies by defocusing.
However, this better resolution will be obtained only for a limited range of
spatial frequencies. Furthermore, the influences of the chromatic aberration
and of the finite illumination aperture have to be considered. It is therefore
more informative to characterize the objective lens of a transmission electron
microscope by its contrast-transfer function (Sect. 6.4).

6.2.6 Relation between Phase and Scattering Contrast

We now demonstrate that the phase and scattering contrast will both emerge
from the wave-optical theory of image formation if complex scattering am-
plitudes (5.17) are substituted in (6.20) [6.46, 6.54, 6.55]. The phase shift
η(θ) has to be added to the existing phase shift of 90◦ between primary and
scattered wave; it causes a decrease of the amplitude in Fig. 6.12a even if
the lens introduces no additional phase shift. To demonstrate this, we assume
that W (θ) = 0 and replace f(θ) by |f(θ)| exp[iη(θ)] in (6.20) for the bright-
field mode. When the Euler formula is applied to exp[iη(θ)], equation (6.20)
becomes

ψm(r′) = 1 +
2πi
λ

αo∫
0

|f(θ)|[cos η(θ) + i sin η(θ)]J0

(
2π

λ
θr′
)

θdθ. (6.25)

If we assume that |f(θ)| sin η(θ) � |f(0)| sin η(0) = const for all scattering
angles θ ≤ αo, the relation

∫ x

0
yJ0(y)dy = xJ1(x) can be used and (6.25)

becomes
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ψm(r′) = 1 − |f(0)| sin η(0)
αo

r′
J1

(
2π

λ
αor

′
)

+ i |f(0)| cos η(0)
αo

r′
J1

(
2π

λ
αor

′
)

= 1 + εm(r′) + iϕm(r′). (6.26)

The radial variation ∆I(r′) of the intensity distribution is obtained as in
(6.22), but all the terms in (6.21) are now retained:

∆I(r′) = 2εm + ε2m + ϕ2
m. (6.27)

The dominant first term is negative, which means that a decrease of intensity
is observed in the bright field. Integrating the intensity variation ∆I(r′) over
the whole image disc, we obtain

2π
∞∫
0

∆I(r′)r′dr′ = −4π|f(0)| sin η(0)αo

∞∫
0

J1

(
2π

λ
αor

′
)

dr′

+ 2π|f(0)|2[sin2 η(0) + cos2 η(0)]α2
o

∞∫
0

J2
1

(
2π

λ
αor

′
)

r′
dr′

= −2λ|f(0)| sin η(0) + πα2
o|f(0)|2. (6.28)

The first term is identical with σel, as the optical theorem (5.39) shows. The
last term is the elastically scattered intensity that goes through the objective
diaphragm; the last integral takes the value 1/2. The whole integral is equal
to −σel(αo); see (6.3). This is none other than the contribution of one atom to
the decrease of intensity caused by scattering contrast. Formula (6.5) for the
decrease of intensity caused by a layer of atoms is obtained by multiplying
σel(αo) by the number of atoms NAdx/A per unit area of a film of mass
thickness dx. If the individual atoms cannot be resolved, an average over the
intensity decrease of all atoms is observed, as in (6.28).

6.3 Imaging of Single Atoms

6.3.1 Imaging of Single Atoms in TEM

One of the reasons for calculating atomic images is to study the behavior of
the radial intensity distribution when different parameters are varied. Most
of the calculations of the image contrast of single atoms have used real values
of f(θ) in (6.19) [6.52, 6.53, 6.54, 6.55, 6.56, 6.57].

Figure 6.18 shows the calculated decrease of intensity ∆I/I0 at the center
of a platinum atom (E = 100 keV, Cs = 1 mm) in the form of lines of equal
∆I/I0 with defocus ∆z and objective aperture αo as coordinate axes. If the
objective aperture is varied at the Scherzer optimum defocus, along the line
BB′, the upper curve of Fig. 6.18 shows that an increase of αo beyond the opti-
mum aperture does not improve the image because of the rapid oscillations of
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Fig. 6.18. Calculated decrease of intensity ∆I/I0 in the center of platinum atoms
as a function of defocus ∆z and objective aperture αo for E = 100 keV and Cs =
0.5 mm. Sections along the lines AA′ and BB′ are shown at the bottom left and
top right, respectively. The radial intensity distribution of a platinum atom at the
Scherzer focus M for ∆zopt and αopt is seen at the top left corner.

W (θ) (see also the contrast-transfer function in Sect. 6.4.1). In practice, large
diaphragms should be used because a smaller diaphragm that corresponds
to the optimum aperture at the Scherzer focus can become charged around
the periphery, thereby causing additional phase shifts. If the defocus is varied
through the Scherzer focus at constant aperture αo along the line AA′, the
left curve in Fig. 6.18 shows that the phase contrast oscillates with increasing
defocus ∆z. The atom is alternately imaged in positive and negative phase
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contrast. Positive phase contrast is observed not only at the Scherzer focus,
at ∆z∗ = 1 (∆z = 43 nm), but again at ∆z∗ =

√
5 (∆z = 96 nm), where a

broad interval of spatial frequencies is transferred with the phase shift W (θ) =
–5π/2 (Figs. 3.15 and 6.21c). The inset in the top left corner of Fig. 6.18 con-
tains the radial distribution of I(r′) for a platinum atom at the Scherzer focus
M. Once again, a bright annular ring is observed around the central darker
region (Sect. 6.2.2), which reconciles the larger decrease of the intensity in
the central region with the fact that the number of electrons transmitted is
constant.

Figure 6.19 shows the influence of various parameters on the radial in-
tensity distribution I(r′) of a single bromine atom [6.58]. A decrease of
the spherical-aberration constant Cs (full curves in Fig. 6.19a) increases the

Fig. 6.19. Calculated radial intensity distribution of Br atoms (a) for different
values of the spherical-aberration constant Cs and the reduced defocus ∆z∗ at E =
100 keV, (b) for a range of electron energies, and (c) for three modes of dark-field
imaging.
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positive phase contrast at the center (r′ = 0), strengthens the bright annu-
lar ring, and reduces the half-width. For ∆z∗ =

√
5 (dotted line), stronger

oscillations are observed at large distances r′. If the sign is changed (phase
shift of 180◦ in the region in which – sin W (θ) is negative), as in an optical
reconstruction scheme proposed by Maréchal and Hahn (Sect. 6.5.4), a result
is obtained for Cs = 2 mm that is comparable with that for Cs = 0.5 mm at
the Scherzer optimum defocus (dashed curve in Fig. 6.19a).

Figure 6.19c contains calculated dark-field intensity distributions for three
different modes of dark-field imaging (Sect. 6.1.2). The advantage of using a
central beam stop (1) or tilted illumination with a centered diaphragm (2)
rather than a shifted diaphragm (3) can be seen clearly (see also [6.59]). In
modes (2) and (3), the radial intensity distributions are somewhat asymmetri-
cal. Illumination with a hollow cone (Sect. 6.4.3) corresponds to an incoherent
superposition of images obtained with mode (2); this averages the weak asym-
metry of the image discs (see also [6.60, 6.61]).

The intensity of dark-field images is much lower and is smaller than the
decrease of intensity in the bright-field mode. Nevertheless, the dark-field
mode has the advantage of higher contrast. Single atoms appear as relatively
bright spots against the weak background intensity of the supporting film
[6.63, 6.64, 6.65, 6.66]. However, longer exposure times are needed than in the
bright-field mode. Furthermore, the contrast transfer of the dark-field mode
is nonlinear [6.60, 6.61, 6.67]. In (6.21), εm(r′) appears as a linear term in the
bright-field mode but as a quadratic term in the dark field mode. The Fourier
spectrum of a specimen periodicity Λ with spatial frequency q = 1/Λ consists
of the central beam and two diffracted beams of order ±1. Removal of the
central beam in the dark field mode will result in twice the spatial frequency
between the two diffracted waves so that a periodicity Λ/2 will be observed
in the dark field.

The presence of neighboring atoms leads to a superposition of the im-
age amplitudes of the individual atoms that can produce parasitic structures
in bright- and dark-field imaging. Consider, for example, the dotted curve
in Fig. 6.19a, which corresponds to the image of a Br atom at a defocus
∆z∗ =

√
5. If two neighboring atoms are separated by a distance of 0.4 nm, the

second minimum of I(r′) for one atom will coincide with the central decrease
of the other, thus causing an increase in the contrast of both. If, however,
they are separated by 0.8 nm, the secondary minimum at r′ = 0.4 nm will
increase; a third atom will apparently be seen, though this in fact will be an
image artifact.

Hitherto we have discussed only the contribution of elastic scattering to
phase contrast. The image amplitudes of the inelastically scattered electrons
also have to be considered. However, elastic scattering is more concentrated
within smaller scattering angles than elastic scattering and already decreases
strongly with increasing θ within the objective aperture. We know that the
image amplitude is the Fourier transform of the scattering amplitude f(θ).
A narrow scattering distribution results in a broader image disc [6.59, 6.68].
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It can also be argued that there are many fewer inelastically scattered electrons
at high spatial frequencies, where they would be needed for high resolution.
In a classical model of scattering, we can say that inelastic scattering is less
localized than elastic scattering. An electron that passes far from an atom
can nevertheless excite an atomic electron by Coulomb interaction. Inelastic
scattering at low energy losses is therefore useless for obtaining high-resolution
information.

Images of single heavy atoms have been observed in molecules of known
structure: triangles of mercury atoms separated by distances of the order
of 1 nm in triacetomercuryaurin [6.69], uranium-stained mellitic acid [6.70],
monolayers of thorium-hexafluoracetylacetonate [6.71], and single W atoms
and clusters [6.72]. These confirm that the calculated contrast and resolution
in the bright-field mode are of the right order of magnitude. In the dark-field
mode, single-atom images have been obtained for U, Os, Ir, Pd [6.10], Th
[6.63], Rh [6.73], and, at high voltages (200 and 3000 keV), for U, Ba, Sr, and
Fe (Z = 26) [6.74, 6.75]. The dark-field mode with hollow-cone illumination
was employed to observe Hg [6.66] and U and Ba atoms [6.74].

These experiments merely show that single atoms can indeed be imaged
in principle; they also clearly demonstrate that high resolution is limited not
by the lack of contrast but by the background noise of the supporting film or
organic matrix and by radiation damage.

6.3.2 Imaging of Single Atoms in the STEM Mode

It was shown in Sect. 4.2.2 that small electron probes can be obtained only
with large probe apertures αp. The theorem of reciprocity (Sect. 4.5.3) indi-
cates that phase-contrast effects can be observed also with αp � αd. In the
normal STEM mode with αp � αd � 10 mrad, however, the illumination is
incoherent, which blurs phase-contrast effects (see also Sect. 6.4.4). Never-
theless, the contrast of atoms can be increased by using the following three
signals, all of which can be obtained with a dedicated STEM equipped with
an electron spectrometer (Fig. 4.25):

(1) The signal Iel generated by the elastically scattered electrons. All elec-
trons scattered through angles larger than the detector aperture αd, which
is of the same order as the electron-probe aperture αp, are collected by an
annular scintillator or semiconductor detector. This signal contains a few in-
elastically scattered electrons, but these can be neglected because inelastic
scattering is concentrated at small scattering angles. At large angles, the ra-
tio of the elastic and inelastic differential cross sections is proportional to Z−1

(5.64). Similarly, some of the elastically scattered electrons remain inside the
detector cone and pass into the spectrometer, where they contribute to the
signal Iun of unscattered electrons. From (6.1), which is strictly valid only
for parallel illumination, we can assume that about 50% of the electrons are
scattered inside a cone of aperture θ0. This characteristic angle of elastic scat-
tering is tabulated in Table 6.1 and αd should be appreciably smaller than θ0.
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For calculating Iel, the total elastic cross section σel (e.g., the approximation
(5.41)) can be used.

(2) The signal Iun = Ip − (Iel + Iin) that corresponds to the unscattered
electrons, which pass through the specimen and spectrometer with no energy
loss (Ip: probe current).

(3) The signal Iin is generated by all of the inelastically scattered elec-
trons with the exception of those scattered through angles larger than αd; the
approximation (5.52) can be used for the total inelastic cross section σin.

A homogeneous supporting film (suffix s in 6.29) containing N = NAρ/A
atoms per unit volume and of thickness t will produce the signals

Iel,s = σel,sNtIp, Iin,s = σin,sNtIp. (6.29)

The probe current Ip is concentrated within the probe diameter dp. The cur-
rent density is therefore jp � Ip/d2

p. The image of a single heavy atom (suffix
a in 6.30) will also take the form of an error disc of diameter dp. At its center,
a signal contribution

Iel,a = σel,a jp � σel,a Ip/d2
p (6.30)

will be observed. This relation was verified experimentally for single U, Hg,
and Ag atoms [6.76]. The contrast of single atoms can be increased by exploit-
ing the fact that only this signal contributes to the high-resolution informa-
tion. The inelastic scattering of a heavy atom is distributed over a larger area
([6.77] and Sect. 10.5.4) owing to the delocalization of inelastic scattering. The
signal Iel (Fig. 6.20b) from a supporting film with varying mass thickness to-
gether with isolated individual heavy atoms (Fig. 6.20a) contains a long-range

Fig. 6.20. Schematic variation of STEM
signals of single heavy atoms on a supporting
film (a), (b) elastic signal Iel, (c) inelastic
signal Iin, (d) ratio Iel/Iin, and (e) differ-
ence signal (Iel − kIin)/I0.
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contribution that depends on the local mass thickness, in which the contri-
butions of the single atoms of the supporting film overlap and their images
are not resolved. In addition, there exists a short-range fluctuation associated
with the higher spatial frequencies of the supporting film and with the local
increase of elastic scattering at the individual heavy atoms. The inelastic sig-
nal Iin (Fig. 6.20c) also contains the long-range variation of mass thickness,
but the image of the higher spatial frequencies of the supporting film and that
of the single atoms are blurred on account of delocalization. The contrast of
single atoms can be increased and filtered by combining the various signals
online by means of analog techniques [6.78, 6.79] as follows:

1. The ratio Iel/Iin renders the contrast due to the long-range variations of
mass thickness of the supporting film uniform (Fig. 6.20d).

2. The difference signal (Iel −kIin)/I0 can also be used to suppress the long-
range variations of mass thickness (Fig. 6.20e). Division by the emission
current I0 eliminates effects due to fluctuations of this current.

3. If two annular detectors are used, the scattering angle between the two
detectors can be chosen in such a way that heavy atoms scatter mainly on
the outer annular detector. It is now possible to eliminate the short-range
fluctuations of mass thickness from the supporting film.

The following quantitative values for Hg atoms (Z = 80) on a carbon
(Z = 6) substrate [6.78] give an idea of the number of electrons per unit area
needed to record a high-resolution STEM micrograph at E = 40 keV. The
supporting film (t = 2 nm, ρ = 2 g cm−3) contains NAρt/A = 200 nm−2

carbon atoms, and the electron-probe area is taken to be d2
p = 0.05 nm2. This

gives

Iel,s/Ip = 2.9 × 10−2,

Iin,s/Ip = 4.4 × 10−2,

Iel,a/Ip = 0.13,
Iin,a/Ip � 0,

and the ratio signals become

Iel,s/Iin,s = 0.65, Iel,a/Iin,s = 3.3.

The first ratio will be observed for the pure supporting film and the second
when an Hg atom is present. The ratio of these two ratios is the increase of
the signal inside the image disc of an Hg atom relative to the background
of the supporting film: Iel,a/Iel,s = 4.6. It will be necessary to record about
ten electrons per atom in order to form an image disc that can be separated
from the background, for which about two electrons are needed per the same
area. This implies that n = 10Ip/Ield

2
p = 1.5 × 103 electrons nm−2 or a

charge density of J = jτ = ne = 2.5 × 102 C m−2. This charge density is
already high enough to cause severe damage to organic material; most organic
molecules will be destroyed at such large densities by irreversible radiation
damage (Sect. 11.2).
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The positions of atoms on carbon substrates are seen to change in a se-
quence of micrographs [6.80, 6.81, 6.82], whereas clusters of two or more atoms
remain stationary. Examination of biological molecules stained with heavy
atoms will be possible in STEM only if the atoms stay at their reaction sites.

6.4 Contrast-Transfer Function (CTF)

6.4.1 The CTF for Amplitude and Phase Specimens

The method whereby the imaging properties of an objective lens are described
by a contrast-transfer function, independent of any particular specimen struc-
ture, was first developed in light microscopy and subsequently applied to elec-
tron microscopy by Hanszen and coworkers [6.62, 6.83, 6.84, 3.34].

For a specimen with a single spatial frequency q, εs(r) and ϕs(r) in (6.18)
can be replaced by εq cos(2πqx) and ϕq cos(2πqx), respectively, giving

ψs(x) = 1 − εq cos(2πqx) + iϕq cos(2πqx) + . . . . (6.31)

Apart from the central peak, the Fourier transform F (q) of ψs(x) consists of
two diffraction maxima of order ±1:

F (±q) =
1
2
(−εq + iϕq). (6.32)

Equation (6.19) simplifies to a sum over the amplitudes of the primary beam
and the two diffracted beams:

ψm(x′) = 1 +
∑
±q

1
2
(−εq + iϕq)e−iW (q)e2πiqx′

= 1 + (−εq + iϕq)e−iW (q) cos(2πqx′) . (6.33)

The image intensity becomes

I(x′) = |ψm(x′)|2

= 1 − 2 cos W (q) εq cos(2πqx′) + 2 sinW (q)ϕq cos(2πqx′) + . . .

= 1 − D(q)εq cos(2πqx′) − B(q)ϕq cos(2πqx′). (6.34)

The factor of the term εq is the CTF of the amplitude structure of the
specimen:

D(q) = 2 cos W (q). (6.35)

Similarly, the factor of the term containing ϕq is the CTF of the phase
structure:

B(q) = −2 sin W (q) = −2 sin
[π
2

(Csλ
3q4 − 2∆zλq2)

]
. (6.36)

The sign of B(q) is chosen so that B(q) > 0 for positive phase contrast.
Equation (6.36) can be written in terms of the reduced coordinates (3.68)
and (3.69):
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Fig. 6.21. (a-c) Phase-contrast-transfer functions B(θ∗) = −2 sin W (θ∗) for weak-
phase specimens in reduced coordinates θ∗ = (Cs/λ)1/4θ for various values of
reduced defocus ∆z∗ = (Csλ)−1/2∆z. The arrows indicate the main transfer
intervals.

B(θ∗) = −2 sin W (θ∗) = −2 sin
[π
2
(
θ∗4 − 2θ∗2∆z∗

)]
. (6.37)

We discuss only the more important case of the CTF for phase structures.
Figure 6.21 shows the CTF B(θ∗) for three values of the reduced defocus
∆z∗ = 1,

√
3,

√
5, and for the neighboring values of ∆z∗ = (Csλ)−1/2∆z

indicated in the figure as a function of the reduced angular coordinate
θ∗ = (Cs/λ)1/4θ (3.68). The ideal CTF would take the value B(q) = 2 for
all q. The CTFs shown in Fig. 6.21 pass through zero at certain points,
around which there are transfer gaps; for the corresponding values of θ∗ or q,
no specimen information reaches the image. Other spatial-frequency transfer
intervals are seen with negative values of B(q), which means imaging with
negative phase contrast for the corresponding range of q. With negative phase
contrast, the maxima and minima in the image of a periodic structure are
interchanged relative to those seen with positive phase contrast. Broad bands
of spatial frequencies (main transfer bands) with the same sign of the CTF are
expected when the minima of W (q) in Fig. 3.15 are odd multiples of −π/2.
The main transfer bands are indicated in Fig. 6.21 by arrows. The transfer
bands become somewhat broader if the underfocus is increased slightly be-
yond the values ∆z∗ =

√
n (see dashed CTFs with a central dip in Fig. 6.21).
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In focus (∆z∗ = 0), there is no main transfer band. This is also the case for
overfocus (∆z∗ < 0), for which the oscillations of the CTF are more frequent.

For a corrected electron microscope, the spherical aberration Cs can be
adjusted at will. The wave aberration is then given by

W (q) = 2π
(

C5

6
λ5q6 +

C3

4
λ3q4 +

C1

2
λq2

)
. (6.38)

Here we have used C5 for the constant of the fifth-order spherical aberra-
tion, C3 = Cs for the third-order spherical aberration, and C1 = −∆z for
the defocus. With the additional flexibility to adjust C3, one can extend the
transfer band up to spatial frequencies beyond 10 nm−1 for phase as well as
for amplitude contrast [1.74, 6.86].

6.4.2 Influence of Energy Spread and Illumination Aperture

We assumed in Sect. 6.4.1 that the electron beam is monochromatic (temporal
coherence) and the incident wave is plane or spherical (point source = spatial
coherence). In reality, the electron-emission process gives a beam with an
energy width of ∆E = 1–2 eV for thermionic guns and 0.3–0.5 eV for Schottky
and field-emission guns (Sect. 4.1.2), and the electron source (crossover) has
a finite size corresponding to an illumination aperture αi. So long as αi � αo,
the illumination is said to be partially spatially coherent; when αi and αo

are of the same order, the illumination becomes incoherent. The variations of
electron energy ∆E as well as those of the accelerating voltage and the lens
currents ∆U and ∆I, respectively, result in variations ∆f of the defocusing
(2.62). The influence on the CTF has been investigated in [6.87]. The energy
spread can be approximated by a Gaussian distribution

j(∆f) =
2
√

ln2√
πH

exp

[
−ln2

(
∆f

H/2

)2
]

, (6.39)

which is normalized so that
∫ +∞
−∞ j(∆f)d(∆f) is equal to unity and has the

full-widths at half maxima

H = Cc
∆E

E
fr, H = Cc

∆U

U
fr, or H = 2Cc

∆I

I
fr,

where fr =
1 + E/E0

1 + E/2E0
. (6.40)

The contributions from electrons with different values of ∆f are superposed
incoherently at the image. We thus have to average over the image intensities.
By using (6.34), the contribution from a phase object becomes

I(x′) =
+∞∫
−∞

I(x′)j(∆f)d(∆f) = 1 − ϕq cos(2πqx′)
+∞∫
−∞

B(q)j(∆f)d(∆f)

= 1 − B(q)Kc(q)ϕq cos(2πqx′). (6.41)
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Fig. 6.22. Envelope Kc(θ
∗) of the

contrast-transfer function B(θ∗) for differ-
ent values of the parameter H. Values of
H = 5, 10, 20 nm correspond to ∆E = 1,
2, and 4 eV, respectively, for E = 100 keV,
Cs = Cc = 0.5 mm.

The value of ∆z in B(q) = −2 sin W (q) in (6.36) is the mean defocus ∆z = ∆f ,
and the result of the integration (averaging) in (6.41) is to multiply B(q) by
the function

Kc(q) = exp

[
−
(

πλq2H

4
√

ln2

)2
]

, (6.42)

which depends only on q and not on B(q). The function Kc(q) therefore
acts as an envelope function; it damps the CTF oscillations for increasing q
(Fig. 6.22). The contrast transfer of low spatial frequencies will not be affected
because the spatial frequency appears in the exponent of (6.42) to the power
of 4. We can define a limiting spatial frequency qmax = 1/Λmin for which
Kc(q) = 1/e = 37%. The exponent in (6.42) then becomes unity. Solving for
Λmin gives

Λmin =
(

πλH

4
√

ln2

)1/2

. (6.43)

As a numerical example, for E = 100 keV, Cc = 1 mm, ∆E = 1 eV, or
∆I/I = 5 × 10−6, we find Λmin = 0.2 nm (qmax = 5 nm−1). To obtain this
resolution, the half-widths of the energy spread, the accelerating voltage or the
objective lens current must not exceed these values. A Gaussian distribution
is only an approximation to the true energy-spread distribution. In reality, an
asymmetric distribution similar to a Maxwellian distribution should be used.
Calculations show that this asymmetry has little effect [6.87].

If a finite electron-source size and hence a finite illumination aperture is
used, many of the electrons in a supposedly parallel beam in fact travel at
an oblique angle to the optic axis; this angle is characterized by an angular
coordinate s = θ/λ. The action on the CTF is discussed in [6.88, 6.89, 6.90].
Each spatial frequency q produces diffraction maxima of order ±1 on either
side of the primary beam. The diffraction maxima with angular coordinates
q+s will pass through the objective lens with phase shifts different from those
of the central beam, for which s = 0. For small values of s, the phase shift
can be described by the first term of a Taylor series,

W (q ± s) = W (q) ±∇W (q) · s + . . . , (6.44)
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where ∇ is the gradient. Equation (6.34) now becomes

I(x′) = 1 − ϕq cos(2πqx′)[sin W (q + s) + sin W (q − s)]
= 1 − ϕq cos(2πqx′){2 sin W (q) cos[∇W (q) · s]}. (6.45)

If a two-dimensional Gaussian distribution is assumed for the s values, so that

j(s) =
ln2
πH2

exp
[
−
( s

H

)2

ln2
]

: H =
αi

λ
; 2π

∞∫
0

j(s)sds = 1, (6.46)

then averaging over all s as in (6.41) again results in an envelope function

Ks(q) = exp
(
− [∇W (q)]2H2

4 ln2

)
= exp

[
− (πCsλ

2q3 − π∆zq)2α2
i

ln2

]
. (6.47)

Unlike the envelope Kc(q) (6.42), which depends only on q, Ks(q) depends
also on the illumination aperture and defocusing. After first decreasing, Ks(q)
passes through a minimum and rises again to unity where W (q) reaches a
minimum and hence ∇W (q) = 0. The main transfer bands, in which ∇W (q)
is small over a wide range of spatial frequencies, will therefore be influenced
least (Fig. 6.23, curves with α∗

i = 0.09). The attenuation of the CTF by
the envelope Ks(q) can be confirmed by laser diffraction or digital Fourier
transform of the micrograph (Sect. 6.4.7) [6.91, 6.92].

Under usual conditions of TEM in the presence of both energy spread and
finite source size (∆E ≤ 2 eV, αi ≤ 1 mrad), the effective envelope can be
approximately written as a product of the envelope functions Kc(q) and Ks(q),
which describe the effects of energy spread and illumination spread separately
[6.90]. For larger values of αi or the reduced aperture α∗

i = αi(Cs/λ)1/4,
Fig. 6.23 shows the numerical results for ∆z∗ = 1 and

√
2 [6.87]. An envelope

Fig. 6.23. Contrast-transfer func-
tions for phase contrast at the de-
focus values (a) ∆z∗ = 1 and (b)
∆z∗ =

√
2 and increasingly large re-

duced illumination apertures α∗
i =

(Cs/λ)1/4αi [6.87].
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representation is no longer possible; B(θ∗) is now damped inside the main
transfer intervals as well. For ∆z∗ =

√
2, for example, and a large illumination

aperture, B(θ∗) has a broad interval of equal sign but with reduced amplitude,
of the order of 1 instead of 2 for the maxima. A full analysis of these effects
is given in Vol. 3 of [2.6].

6.4.3 The CTF for Tilted-Beam and Hollow-Cone Illumination

In the axial illumination mode, each spatial frequency contributes to the dif-
fraction maxima of order ±1 (double-sideband transfer). The superposition
of the primary beam and the two sidebands is responsible for the gaps in
the CTF. Tilted-beam illumination with the primary beam near the centered
objective diaphragm cuts off one sideband (single-sideband transfer); in one
direction (across the aperture), twice the maximum spatial frequency for axial
illumination can be transferred. If this extended transfer is to be achieved in
more than one direction, several micrographs must be recorded with different
azimuths of the tilted beam. The superposition of several exposures with a
range of tilted-beam-illumination azimuths is of special interest because this
is equivalent to hollow-cone illumination. Single-sideband transfer can also
be achieved with axial illumination by using a shifted circular diaphragm or
a specially designed half-plane diaphragm (see single-sideband holography in
Sect. 6.5.2). A disadvantage of all these modes is that the primary-beam spot
passes near the diaphragm, which can introduce unreproducible phase shifts
due to local charging. Tilted-beam or hollow-cone methods that do not require
a physical diaphragm or can function with one of a larger diameter will there-
fore be of interest. Some important properties of these nonstandard modes
will now be discussed in detail.

In the tilted-beam illumination mode, an extended range of spatial fre-
quencies is transferred without a transfer gap but with a variable phase dif-
ference between the primary beam and the diffracted beam caused by the
difference between W (|θ|) for θ = α corresponding to the direction (tilt)
of the primary beam and for θ = α + q/λ corresponding to the diffracted
beam. In axial illumination, the images of single atoms and small particles
are surrounded by concentric Fresnel fringes of Airy-disc-like intensity distri-
butions (Fig. 3.16 and 6.19). With tilted-beam illumination, the fringe system
is asymmetric, with bright and dark central intensities depending on defocus
and aberrations. The different phase shifts W (θ) create different lateral shifts
of the corresponding specimen periodicities or Fourier components in the im-
age. Thus, particles typically show an asymmetric contrast with bright and
dark intensities on opposite sides, which resembles oblique illumination with
light (pseudo-topographic contrast).

The contrast transfer of tilted-beam illumination is linear for weak ampli-
tude and phase objects. The appropriate CTFs have been calculated and dis-
cussed in [6.87, 6.93, 6.94, 6.95, 6.96, 6.97, 6.98, 6.99], among others. The effect
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of partial spatial coherence (finite illumination aperture) can be expressed as
an envelope function only to a first approximation. For partial temporal co-
herence (energy spread of the electron gun), an important finding with tilted-
beam illumination is the existence of an achromatic circle [6.100]. Whereas the
envelope Kc(q) for axial illumination shows a rapid decrease at the resolution
limit, the envelope function for tilted-beam illumination increases again to a
maximum for q values around twice the resolution limit for axial illumination.

Hollow-cone illumination can be produced with an annular condenser dia-
phragm. However, a large fraction of the electron beam is absorbed, and it is
better to move a beam of low aperture around a cone by exciting a two-stage
deflection system [6.99]. This can, in practice, be reduced to superposition of
a limited number of exposures; for example, eight different azimuths around
a cone with a half-angle (tilt) of 10 mrad for an illumination aperture of
�0.1 mrad [6.101, 6.102]. The asymmetric fringe systems of the tilted-beam
illumination are canceled and the granular contrast of supporting films also
decreases, whereas the central contrast of stronger-phase objects will be the
same for all the different azimuths.

The theory of hollow-cone illumination is discussed in more detail in [6.88,
6.103, 6.104, 6.105, 6.106, 6.107, 6.108]. Figure 6.24a shows calculated CTFs
for phase structures at a reduced defocus ∆z∗ = 1 and different values of
α∗

o = αo(Cs/λ)1/4 [6.88]. The dashed line Bid is the CTF for an ideal lens
without aberrations, calculated on the assumption that the directions around
the hollow cone or the discrete number of tilt angles superpose incoherently. A
given spatial frequency with the scattering angle θ∗ ≤ 2α∗

o can be transferred
only by beams on the arcs ABC and A′B′C′ of the hollow cone (Fig. 6.24b),
and the CTF becomes proportional to the ratio of these arcs to the total arc
length 2π of the hollow beam

Bid(θ∗) =
4 arccos(θ∗/2α∗

o)
2π

=
2
π

arccos
(

θ∗

2α∗
o

)
. (6.48)

In the presence of a wave aberration, the phase shift W (θ∗) is not uniform
over the arcs ADC and A′D′C′. Because | sin W (θ∗)| ≤ 1, all the CTFs clearly
lie below Bid(θ∗). The curve for α∗

o = 1.49 in Fig. 6.24a shows that the ideal
Bid is approached very closely for ∆z∗ = 1 with q∗max = 2α∗

o = 2.98. This CTF
may be compared with that for axial illumination in Fig. 6.21a. The CTFs
of hollow-cone illumination in Fig. 6.24a do not show any contrast reversals.
The only disadvantage is that B(θ∗) in Fig. 6.24a reaches a maximum value
of only 0.8 as compared with 2 for axial illumination.

Figure 6.25 shows that hollow-cone illumination can also be used without
an aperture-limiting diaphragm [6.105]. The defocusing is ∆z∗ =

√
π and

the quantities α∗
1 and α∗

2 are the inner and outer apertures of the cone of
finite width. This optimum condition differs from that of Fig. 6.24a mainly in
that narrow regions of negative sign occur for small and large θ∗ and by the
presence of ripple oscillations on the CTF. The optimum conditions are those
in which the phase contrast reinforces the scattering contrast.
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Fig. 6.24. (a) Phase-contrast-transfer function for hollow-cone illumination for
different values of α∗

o = (Cs/λ)1/4αo and a reduced defocus ∆z∗=1; (– – –) ideal
CTF, which is proportional to the lengths of the segments ABC and A′B′C′ in (b).
Electrons scattered through angles θ∗ can pass through the diaphragm only within
the segments ABC and A′B′C′ [6.87].

Fig. 6.25. Example of the phase CTF with hollow-cone illumination and with no
objective diaphragm for a reduced defocus ∆z∗=

√
π and a broad cone of illumination

of inner and outer diameters α∗
1 and α∗

2 [6.105].
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6.4.4 Contrast Transfer in STEM

As discussed in Sect. 4.5.3, the phase-contrast effects in the STEM mode
will be the same as in TEM if the corresponding apertures are interchanged:
αd = αi � 0.1 mrad and αp = αo � 10 mrad (Figs. 6.10a,b). However, only
a small fraction of the incident cone would be collected by the detector if
these conditions were employed. There are two collection possibilities: either
the electrons inside the cone of aperture αd ≈ αp are all detected or an
annular detector, which collects only the mainly elastically scattered electrons,
is used (Sect. 6.3.2). These modes can be described as bright and dark field,
respectively. A detector that collects the whole illumination cone produces
an incoherent bright-field image if interference effects between the scattered
and unscattered waves need not be considered. Figure 6.26 shows the various
current-density distributions in the detector plane. The dashed curve would
be obtained with no specimen, whereas the full curve shows the modification
caused by scattering. This implies that

2π
αd∫
0

(j0 − jDF)θdθ = 2π
∞∫
αd

jdθdθ. (6.49)

However, the current density for θ ≤ αd is modulated by phase effects.
Each point (direction) of the unscattered cone with direction θu(|θu| < αd)
corresponds to an angle of incidence in the cone of the electron probe, but
the probe-forming lens shifts the phase by W (θu). These phase shifts are
responsible for the shape of the electron probe and the deviations from an
Airy-disc-like probe profile. The intensity at each point of the detector plane
is the result of interference between the unscattered wave of direction θu

and a wave elastically scattered into this direction with a scattering angle
θs. The elastically scattered wave experiences a phase shift of π/2 during
the scattering process (Sect. 5.1.3) and an additional phase shift relative to
the unscattered wave: W (|θu − θs|) − W (θu). For a fixed direction θu, the
result of superposing all possible waves with scattering angles θs with the
condition |θu−θs| < αd has to be evaluated. This leads to a modulation of the

Fig. 6.26. Schematic current-
density distribution in the
detector plane of a scanning
transmission electron microscope
without a specimen (- - -), in the
incoherent mode (—–) and in the
phase-contrast mode (- · - · -).
The electron probe is assumed
to be centered on a rotationally
symmetric specimen (e.g., a single
atom) (αi = αd).
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current-density distribution inside the illumination cone, drawn schematically
as the dash-dotted line in Fig. 6.26 and consisting of zones of decreased and
increased intensity.

Phase contrast can therefore be produced by dividing the detector plane
into annular zones [6.109], which collect electrons with mainly constructive or
mainly destructive interference. A single narrow annular detector is the coun-
terpart of hollow-cone illumination in TEM. Hence, the CTF of this STEM
mode has a triangular shape, modified by phase-contrast effects similar to
those in Fig. 6.24a.

Another possible phase-sensitive detector consists of two semicircular
discs, separated by a narrow gap, normal to the scan direction [6.105, 6.110,
6.111, 6.112]. This is capable of giving differential phase contrast, which rep-
resents the gradient of the object parallel to the scan direction. An obvious
extension from semicircles to quadrants gives the two components of the gradi-
ent [6.113, 6.114]. To exploit these possibilities, versatile, software-configurable
multichannel STEM detectors with 16 detector areas [6.115] or 30 rings split
into quadrants [6.116] have been developed and tested; such detectors can also
be optimally used for phase contrast in the STEM mode [6.117].

6.4.5 Phase Contrast by Inelastically Scattered Electrons

The incident and elastically scattered waves are coherent, whereas waves of
inelastically scattered electrons are incoherent relative to the incident and
elastically scattered waves and also to inelastic waves that differ in the final
object states [6.118]. The latter are, for example, the excitation of plasmons
or single electrons with different transferred momenta hq′ = h(kn−k0). Plas-
mon excitation also shows some dependence of energy loss on the scattering
angle (dispersion), and inelastic electron waves with different kn will also be
incoherent.

To a good approximation, the CTF can thus be calculated, including the
partial spatial coherence of the primary beam represented by a Gaussian dis-
tribution with a half-width of about αi, by an additional convolution with the
angular distribution of inelastic scattering [5.37]. Although many inelastically
scattered electrons are concentrated at low scattering angles θ = λq, the num-
ber N(q)dq with spatial frequencies between q and q + dq shows a long tail
because the angular distribution ∝ (θ2 + θ2

E)−1 is Lorentzian. The fraction
concentrated at high q totally blurs the CTF just like incoherent illumina-
tion and only the fraction with an angular width of about θE can be seen as
a damped oscillation of CTF, with a decreased amplitude. Qualitatively, this
expected decrease of phase contrast can be observed for the granularity of car-
bon films by comparing the zero-loss and plasmon-loss filtered images [5.37].
Phase-contrast structures with the carbon plasmon loss at lower defocusing
and a width of 4 eV for the selected energy window have also been observed
in the ESI mode [6.119] and in a dedicated scanning transmission electron mi-
croscope [6.120]. The counterpart of this decrease of phase contrast caused by
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inelastically scattered electrons is that all phase-contrast effects are enhanced
by zero-loss filtering. The quantitative measurement of the phase contrast of
colloidal gold particles on carbon films [6.121] likewise shows that phase con-
trast of the colloids can be observed with zero-loss filtering for carbon films
up to a mass thickness 40 µg/cm2 (t = 200 nm), whereas the phase contrast
is invisible in unfiltered images because of the large fraction of inelastically
scattered electrons.

6.4.6 Improvement of the CTF Inside the Microscope

The transfer gaps and changes of sign caused by spherical aberration
render the electron-optical CTF very different from the ideal CTF with
B(q) = +2; the latter can be attained in the light-optical phase-contrast
method in which a Zernike plate shifts the phase by +π/2 in the focal plane
of the objective lens. Similar methods have been proposed for the transmission
electron microscope.

An objective diaphragm consisting of a plate with rings alternatively
transparent and opaque to electrons could be used to suppress spatial fre-
quencies or scattering angles that are transferred with a negative sign in B(q)
[6.122, 6.123]. Calculations show that no significant improvements can be
expected because of the broad gaps in the CTF that correspond to spatial fre-
quencies transferred with the wrong sign and consequently suppressed [6.53].
Two complementary zone plates have been proposed, which would cover the
whole CTF without gaps for two different values of defocus [6.85].

Correcting phase shifts can be generated by means of profiled phase plates
of variable thickness that can be produced by electron-beam writing or by
growing a contamination layer with the required local thickness on a carbon
film supported by the diaphragm [6.124]. The transfer gaps in the CTF do
indeed vanish, as shown by laser diffraction [6.125]. However, no practical
examples of image improvement have yet been reported.

All of these interventions in the focal plane, including single-sideband
holography (Sect. 6.5.2), have the disadvantage that the diaphragm, some
100 µm in diameter, has to be adjusted precisely on-axis in the focal plane and
that, whenever the electron beam strikes the transparent film or the opaque
part of the diaphragm, charging can occur, which influences the phase shift
unpredictably. For these reasons, none of these techniques remains in use.
The present tendency is to apply a posteriori restoration methods to the final
micrographs (Sects. 6.6.2 and 6.6.3).

Just recently, experiments with microfabricated electrostatic minilenses in
the focal plane have demonstrated, that a π/2 phase plate can be used to
obtain phase contrast for small spatial frequencies [6.126, 6.127].

6.4.7 Control of the CTF by Optical or Digital Fourier Transform

For a weak-phase specimen, a specimen periodicity Λ or spatial frequency
q = 1/Λ is linearly transferred to the image as a periodicity ΛM with an
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amplitude proportional to |B(q)|. The periodicities in the micrograph can be
analyzed by light-optical Fraunhofer diffraction of the photographic record
[6.129, 6.128] or by fast Fourier transform (FFT) of digitally recorded images.

The laser-diffraction technique will be advantageous for the a posteriori
investigation of photographic emulsions. In practice, it is better to record a
diffractogram a priori before recording and developing a photographic emul-
sion. This is possible by digitally recording an image with a CCD or SIT
camera (Sect. 4.7.5), after which a fast Fourier transform (FFT) algorithm
allows us to compute a Fraunhofer diffractogram in a few seconds or less. The
digital image can alternatively be used to modulate a liquid crystal display,
which allows the diffractogram to be observed online with an optical bench
placed beside the microscope [6.130].

The CTF can be controlled and measured with the aid of a specimen for
which the spatial frequency spectrum is like that of white noise; this implies
that the amplitudes ϕq in (6.31) should be independent of q. If the spatial
frequency is not too small, this is nearly true for thin carbon supporting films,
as already shown in Sect. 6.2.2. A stronger granularity caused by phase con-
trast can be obtained with thin amorphous germanium films evaporated from
heated tungsten on a glass slide and floated on water as for carbon films. The
variation of the image intensity I(x′) is then proportional to |B(q)|ϕq (6.34).
A typical diffractogram (Fig. 6.27a) shows the transfer gaps (zero points) of
|B(q)|2. However, diffraction maxima that belong to regions of B(q) of dif-
ferent sign cannot be distinguished. This requires comparison with formulas
such as (6.36).

The following information can be obtained from a diffractogram:
(1) The q values that correspond to the minima in the diffractogram can be

measured and plotted for a defocus series, as in Fig. 6.13. A diffractogram thus
contains information about the defocusing ∆z and the spherical-aberration
constant Cs. The diffractogram shows maxima of |B(q)|2 when W (q) = nπ/2
and n is odd. The gaps of contrast transfer correspond to even values of n.
By using (3.66) for W (q), the relation W (q) = nπ/2 can be transformed to

Csλ
3q2 − 2∆zλ = n/q2. (6.50)

Plotting n/q2 versus q2 results in a straight line if the numbering of n
is correct. Cs can be read from the slope and ∆z from the intercept of the
straight line [6.131]. A tilted carbon film contains a whole range of defocus
values, and it is possible to deduce the dependence on ∆z in Fig. 6.13 from a
single micrograph [6.42]. It is also possible to determine defocusing distances
∆z as large as a few millimeters if a small illumination aperture αi ≤ 10−2

mrad is used, as in Lorentz microscopy (Sect. 6.5) [6.132, 6.133]. In this case,
the term that contains the spherical aberration in (6.36) can be neglected
and the relation ∆z = |2m − 1|/(2λq2), where m = 1, 2, . . ., can be used to
determine ∆z from the q-values of the maxima in the diffractogram.

(2) Astigmatism can be included in the wave aberration W (q) or CTF
B(q) = −2 sin W (q) by adding a term (3.67) to (3.65). This results in an
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Fig. 6.27. Diffractograms of micrographs of carbon foils showing (a) the gaps in
the contrast and a weak astigmatism (elliptical diffraction rings), (b) stronger astig-
matism, which results in hyperbolic diffraction fringes, (c) detection of a continuous
drift, and (d) a sudden jump in the specimen position during the exposure. The
fringe pattern is caused by the doubling of the image structure (overlapped Young
fringes).



6.5 Electron Holography 241

elliptical distortion of the diffraction rings for small astigmatism (Fig. 6.27a)
and a hyperbolic distortion for stronger astigmatism (Fig. 6.27b).

(3) A continuous drift of the image during exposure results in a blurring
of the diffractogram parallel to the direction of drift (Fig. 6.27c). A sudden
jump of specimen position during exposure duplicates the entire structure,
so that a pattern of Young interference fringes is superimposed on the main
pattern (Fig. 6.27d) (see also item 4 below).

(4) The envelopes Kc(q) (6.42) and Ks(q) (6.47) can be determined from
the decrease of the diffraction-maxima amplitude for large q. The largest spa-
tial frequency transferred is inversely proportional to the resolution limit and
can be read from a diffractogram of two superposed micrographs by the follow-
ing procedure [6.134, 6.135]. When the two micrographs are shifted through
a small distance d, every resolved structure appears twice in the transmitted
light amplitude, which means that each structure is convolved with a double
source that consists of two points a distance d apart. Using the Fourier con-
volution theorem (3.49), we see that the diffractogram of a single micrograph
will be multiplied by the Fourier transform of a double-point source. The
intensity in the diffractogram is hence multiplied by cos2(πqd). The diffrac-
togram of the superposed micrographs is therefore overprinted with a pattern
of Young’s interference fringes with a spacing ∆q = 1/d as in Fig. 6.27d. The
limit of contrast transfer can be seen from the limit of recognizable fringes.
It is important to use two successive micrographs and not two copies of one
micrograph. In the latter case, fringes can also be produced by clusters of
silver grains generated by a single electron and reproduced in both copies.
In SEM and STEM, it is necessary to shift the image on the cathode-ray
tube between the two exposures by about 1 cm. Otherwise, the fringe pattern
may be caused by the granularity of the CRT screen, continuing out to larger
spatial frequencies [6.136].

5) The correction methods of the CTF discussed in Sect. 6.4.6 can also be
controlled by studying diffractograms.

These examples of the application of laser diffraction or digital Fourier
transforms show the importance of this technique for the control of the imag-
ing process; such as the correction of astigmatism and also an exact coma-free
alignment (Sect. 2.4.3).

6.5 Electron Holography

6.5.1 Fresnel and Fraunhofer In-Line Holography

The idea of holography was first introduced by Gabor [6.137] to improve the
resolution of the electron microscope by (a posteriori) light-optical processing
of micrographs to cancel the effect of spherical aberration. The recording of
a hologram and the reconstruction of the wavefront will be described for the
case of in-line holography, proposed originally by Gabor. The unscattered part
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Fig. 6.28. (a) Recording and (b) reconstruction of an in-line hologram.

of an incident plane wave acts as a reference wave (Fig. 6.28a). A specimen
(object) point P produces a spherical, scattered wave. The superposition of
the two waves on a photographic emulsion at a distance ∆z is an interference
pattern, which consists of concentric fringes. The same pattern will be seen
if we insert a magnifying-lens system between the object and the micrograph
and record with a defocusing ∆z. If the lens is not free of aberrations, the
interference pattern will be modified by the additional phase shifts.

In the reconstruction (Fig. 6.28b), the micrograph is illuminated with a
plane wave and acts as a diffraction grating or Fresnel-zone lens. The fringe
distance decreases with increasing distance from the center, and the corre-
sponding diffraction angle (±θ) increases. The two diffracted waves (side-
bands) form spherical waves centered at Q and Q′. We see that we reconstruct
the spherical wave from P at Q behind the hologram. However, we also see
that in-line holography has the disadvantage of producing a twin image at Q′.
If we are looking from the right, the distance between Q and Q′ has to be so
large that one of the twin images is in focus while the other is blurred. The
latter is a Fresnel diffraction pattern with a defocusing 2∆z relative to the
focused twin image, and a single object point is imaged as a weak concen-
tric ring system with a large inner radius r1 �

√
∆zλ. A specimen structure

smaller than this radius and situated in a larger structure-free area can be
reconstructed without any disturbance from the twin image.

Off-axis points will create an asymmetric fringe system, and points in front
of or behind the object plane behave like Fresnel-zone lenses with smaller or
larger fringe diameters, respectively. Each of these fringe systems reconstructs
a point source at the correct position relative to P. A hologram can therefore
store and reproduce a full three-dimensional image of the specimen.
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Fig. 6.29. (a) Plane incident wave and diffracted waves of order ±1 in the Fresnel
and Fraunhofer regions. (b) Overlap of the waves in the image plane. (c) Avoidance
of the transfer gaps at A, B, C, . . . by absorbing one sideband (single-sideband
holography).

In-line holograms can be further classified into Fresnel, Fraunhofer,
and single-sideband holograms (Sect. 6.5.2). The difference is explained
in Fig. 6.29, in which a periodic object of lattice constant or spatial frequency
q = 1/Λ is used as an example. Figure 6.29a shows the superposition of
the diffracted waves of order ±1 (sidebands) and the incident plane wave.
In Fresnel holography (small defocus ∆z), the three waves overlap. In the
planes A, B, C,. . ., the three-wave field results in zero intensities for defocus
values ∆z = nΛ2/λ (n integer). These defocus values correspond exactly to
the zeros of the CTF B(q) = −2 sin W (q) if only the defocus term of W (q) is
considered. Near the Gaussian image plane, the three waves overlap to form
a magnified image (Fig. 6.29b). A magnification M decreases the scattering
of the sidebands to ±θ/M and increases the fringe (lattice) spacing to ΛM .
Spherical aberration in the imaging system creates an additional phase shift
between the plane incident wave and the two sidebands. The photographic
emulsion is placed in the Fresnel region for small defocusing. Such Fresnel
in-line holograms were originally proposed by Gabor.

For the light-optical reconstruction of an in-line hologram, an objective
lens is needed with an appropiately scaled spherical aberration to allow for
the difference between the wavelengths of the electrons used for recording and
that of the light employed for reconstruction [6.138]. The reconstructed image
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shows a contrast-transfer function B2(q) because CTFs have to be multiplied
in such a twofold imaging process. This means that the intervals corresponding
to spatial frequencies with a negative sign of B(q) in the original electron-
optical image are reproduced with the correct sign. However, the information
gaps in the CTF cannot be avoided, so that if the photographic emulsion is
placed at A, B, . . . in Fig. 6.29b, the Fresnel in-line hologram cannot contain
any information about the corresponding spatial frequency.

In Fraunhofer in-line holograms, a larger defocusing is used so that the
sidebands do not overlap and no transfer gaps occur (Fig. 6.29). This method
has been tested in electron microscopy [6.139, 6.140]. It was found that gold
particles smaller than 1 nm can be reconstructed, but these are also visible in
the normal bright-field mode.

If a specimen area of diameter d0 is to be recorded and reconstructed, the
spatial frequencies present in the spectrum will lie between qmin = 1/d0 and
qmax corresponding to the resolution limit; qmin corresponds to a diffraction
angle θmin = λ/d0 so that a defocus value

∆z =
d0

θmin
=

d2
0

λ
(6.51)

will be necessary to separate the primary beam and the sidebands (Fig. 6.29).
This defocusing is large even if the diameter of the specimen area d0 is quite
small. A large defocusing causes a blurring of the hologram due to the finite
illumination aperture αi, which sets a limit on the minimum periodicity Λmin

or maximum spatial frequency qmax:

1
qmax

= Λmin =
αid

2
0

λ
. (6.52)

The following numerical example, Λmin = 0.2 nm, λ = 3.7 pm (100 keV), d0 =
100 nm, αi = 7.5× 10−8 rad, shows the limitation of in-line holography. Only
a small area of diameter d0 can be imaged, and an extremely low aperture αi

is necessary, which can be obtained only with a field-emission gun.
The influence of nonaxial aberrations (coma, Seidel astigmatism, field

curvature, and distortion) renders the image formation anisoplanatic [6.141,
6.142, 6.143]. These aberrations cause a shift and rotation of a transferred
specimen sine wave of period Λ. If shifts and rotations of Λ/8 can be toler-
ated, the radius of the isoplanatic patch can be estimated to be about 100 nm.

6.5.2 Single-Sideband Holography

Figure 6.29c shows that the large defocusing needed to separate the side-
bands and hence to avoid the contrast-transfer gaps (transition from Fresnel
to Fraunhofer in-line holography) is not required if one of the sidebands is
suppressed by a diaphragm [6.144, 6.145, 6.146, 6.147]. The best way of doing
this is to insert a half-plane diaphragm in the focal plane of the objective
lens with a small opening for the primary beam. Charging effects can disturb
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the image if the primary beam passes too close to the diaphragm; these can
be reduced either by preparing the diaphragm in a special way [6.148] or by
heating it [6.149].

The influence on contrast transfer can be seen from (6.33), retaining only
one diffraction order (sideband) instead of both (of order ±1). The alternative
signs in the following formulas correspond to the two possible single-sideband
images with complementary half-plane diaphragms; we find

ψb(x′) = 1 − 1
2
εqe−iW (q)e±2πiqx′

+
1
2
iϕqe−iW (q)e±2πiqx′

(6.53)

and hence

Ib(x′) = ψbψ∗
b

= 1 − εq cos[2πqx′ ∓ W (q)] ∓ ϕq sin[2πqx′ ∓ W (q)] + . . . . (6.54)

This means that there are no transfer gaps, a result that can also be
inferred from Fig. 6.29c. The wave aberration produces only a lateral shift of
the lattice image. The image of the phase component is shifted by π/2 or λ/4
even when W (q) = 0. The resulting contrast is asymmetric. This is typical
of single-sideband imaging. Thus edges appear bright on one side and dark
on the other. This asymmetry is reversed when the complementary half-plane
diaphragm is used [reversal of the sign of the last term in (6.54)].

The sign of the amplitude component in (6.54) remains unchanged. This
can be used to separate the amplitude and phase components. The sum of
two single-sideband holograms recorded with complementary half-plane di-
aphragms increases the amplitude component and cancels the phase compo-
nent, whereas the difference between them cancels the amplitude and increases
the phase component. The sum or difference of the holograms can be com-
puted digitally or obtained by superposition of the micrographs; a positive
and a negative copy are used for the difference [6.150]. The wave aberration
W (q) can be corrected in the light-optical reconstruction by using an objec-
tive lens with the appropiate spherical aberration and defocusing (Sect. 6.4.4).
The focal plane of this lens again contains two sidebands. With a half-plane
diaphragm complementary to that used earlier in the electron-optical imag-
ing, the corrected intensity distributions (6.54) can be obtained free of the
lateral shift caused by W (q).

6.5.3 Off-Axis Holography

Off-axis or out-of-line holography, proposed by Leith and Upatnieks [6.151],
uses a separate reference beam for recording the phase in the interference pat-
tern. The superposition of a reference wave (wave vector k1), which may for
example pass through a hole in the support film, and a wave (k2), which trans-
mits the specimen structure off-axis and is modified in amplitude and phase
(3.36), can be performed by means of an electrostatic biprism (Sect. 3.1.4)
(k1 and k2 include an angle ±β with the axis) [6.140, 6.152, 6.153, 6.154].
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In the narrow region of overlap of the two beams, the wave amplitude is
(Fig. 6.28a)

ψ = ψ0

[
as(r)eiϕs(r)e2πik2·r + e2πik1·r

]
. (6.55)

The hologram is a record of the resulting biprism interference fringes, which
have the intensity distribution

I(r) = I0{1 + a2
s (r) + 2as(r) cos[2πx/d + ϕs(r)]}

= I0

{
1 + a2

s (r) + as(r)
[
eiϕs(r)e2πix/d + e−iϕs(r)e−2πix/d

]}
, (6.56)

with x ‖ k1 − k2, and d = λ/2β is the fringe spacing. The fringes contain the
amplitude modulation as(r) of the specimen wave and the phase shift ϕs(r)
as a local shift of the interference fringes. This allows the phase and amplitude
components of an image to be separated.

The technique can be put into practice in a conventional transmission
electron microscope with a field-emission or Schottky-emission source. The
biprism filament of �350 nm in diameter is mounted perpendicular to the rod
axis of the holder for the selected-area diaphragms in front of the intermediate
lens. The holder can still contain conventional diaphragms for the routine
operating modes of the transmission electron microscope. A voltage up to
300 V can be applied to the filament [1.72]. The intermediate lens has to be
focused a few millimeters below the biprism in the hologram plane and a few
hundred fringes with a spacing of 0.02 nm and an overlap of 30 nm can be
recorded. This type of holography can also be employed in the STEM mode
[6.155] and in reflection electron microscopy (Sect. 9.7.2) where surface steps
result in a phase shift [6.156, 6.157].

By means of reconstruction methods described in the next section, spec-
imens with amplitude and phase structures can be resolved with a lateral
resolution of three times the fringe spacing, or twice for weak amplitude struc-
tures, which means 0.15 nm and 0.1 nm, respectively, for a fringe spacing of
0.05 nm [1.72].

Applications of off-axis holography are shown for the imaging of magnetic
structures (superconducting vortices, Sect. 6.8.2f, Fig. 6.43), the imaging of
electric fields (Sect. 6.8.3), and the reconstruction of phase and amplitude
from holograms of the crystal structure (Sect. 9.6.4, Fig. 9.34).

6.5.4 Reconstruction of Off-Axis Holograms

Although digital reconstruction methods are often advantageous, various
light-optical reconstruction methods will be discussed here because they bring
out the principles in terms of optical hardware, which may be easier to ap-
preciate than computer software.
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The hologram is reconstructed by illuminating it with a coherent light wave
(Fig. 6.28b). The light amplitude behind the hologram can also be represented
by (6.56), but the amplitude factors are now modified by the γ-value (Sect.
4.7.2) of the emulsion. Thus, the factor exp(2πix/d) in the third term of (6.56)
is equivalent to a phase shift by a prism with a deflection angle θ = λL/d (λL

denotes the wavelength of the reconstruction light wave); for the last term,
the angle would be −θ. This means that the specimen wave as(r) exp[iϕs(r)]
is completely reconstructed in the deflected wave (first diffraction order). This
first order can be selected by placing a diaphragm in the focal plane of the
lens in Fig. 6.30b, thereby suppressing the twin image. Although the wave
amplitude is fully restored with the correct phase and its amplitude only
modified by the γ of the recording process, the phase will again be lost in the
recorded reconstruction.

However, the phase can be recovered by splitting the reconstruction wave
with a Mach–Zehnder interferometer (see also Fig. 6.32) placed in front of the
hologram in Fig. 6.30b [6.158]. The resulting two reconstruction waves are
inclined at ±θ to the axis, and the central beam selected by the diaphragm
(aperture stop) contains the superposition of diffracted waves of orders ±1
from the two reconstruction waves, while their primary spot is absorbed at
the diaphragm. The amplitude in the reconstructed image is thus

ψ ∝ as(r){exp[iϕs(r)] + exp[−iϕs(r)]} ∝ as(r) cos[ϕs(r)]. (6.57)

This merely represents an intensity distribution proportional to cos2[ϕs(r)]
or fringes of equal phase (Fig. 6.31c). These fringes may be lines of equal
specimen thickness produced by the phase shift corresponding to the inner

Fig. 6.30. (a) Recording and (b) reconstruction of an off-axis hologram.
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Fig. 6.31. Interference image of a decahedral Be particle: (a) reconstructed image,
(b) hologram, (c) contour map of lines of equal phase shift (thickness) [6.158].

Fig. 6.32. Mach–Zehnder interferometer for recording the phase structure of
holograms.

potential Ui (Sect. 3.1.3 and Table 3.2), for example, or magnetic field lines
parallel to B caused by the phase shift of the magnetic vector potential
(Sect. 3.1.1 and 6.8.2f) [6.160, 6.161, 1.73].

A Mach–Zehnder interferometer can also be used in another arrangement,
shown in Fig. 6.32 [6.162], and there are other more compact and disturbance-
free interferometers [6.163]. If only the hologram H1 is used, the wave behind
H1 is superposed on a parallel reference wave. The tilt of this wave can be
changed by means of the mirror M, its amplitude by a filter F2, and the phase
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by a pressure cell. In the reconstruction, this superposition results in a new
interference fringe system in which the direction, spacing, and phase can be
changed. Using a copy H2 of a hologram H1 in the second beam, a small shift
in the holograms produces a fringe shape that contains information about
the gradient of the phase distribution; alternatively, the phase value can be
doubled if diffraction orders of opposite sign are used for the reconstruction.
A further interesting application is the study of phase shifts in crystals de-
pending on the tilt angle relative to the exact Bragg position [6.163]. For a
detailed study of electron holography, see [1.73, 6.164, 6.165].

6.6 Image Restoration and Specimen Reconstruction

6.6.1 General Aspects

We have seen in the last sections that the exit wave function ψs(r) just behind
the specimen is modified in the imaging process mainly by spherical aberration
and defocusing and shows contrast-transfer gaps. The aim of image restoration
is to recreate the exit wave function. This involves changing the sign of the
contrast transfer, filling the transfer gaps, and extracting the amplitude and
phase of ψs(r). The best way of doing this is electron holography; otherwise,
a series of micrographs at different defocuses may be used, perhaps with the
additional use of a diffraction pattern.

In the case of organic specimens, low-dose exposures (noisy and highly un-
derexposed with <103 e/nm2) have to be used to avoid as far as possible the
loss of resolution by radiation damage. A large number of specimens (separate
identical copies) should be imaged with the same orientation on one or more
micrographs to allow 2D averaging; this is particularly suitable for biomacro-
molecules and macromolecular structures. This is easier when the molecules
form a 2D array (crystalline or quasi-crystalline), but more effort is necessary
in the case of random orientations. In the latter situation, pattern-detection
procedures are needed for the alignment of the molecular images before av-
eraging, and misalignments in 2D arrays also have to be taken into account.
The alignment is achieved by cross-correlation methods. Inorganic crystals are
usually so stable that micrographs can be recorded with normal exposures.
The imaging of crystal lattices is discussed in Sect. 9.6.

A 3D reconstruction of a macromolecular structure can be made by tomo-
graphic methods; views of the structure in different directions are obtained
from a tilt series or from a single tilt if the molecules are randomly oriented.
The methods can be applied to native or positively or negatively stained
macromolecules on supporting films or cryosections of ice-embedded speci-
mens. This kind of 3D tomography is thus on the way to becoming superior
to x-ray crystallography.

Many of the methods for restoration and reconstruction were developed
more or less successfully in earlier times, where the exposure of photographic
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emulsions was the usual method of image recording. Recording by CCD arrays
now allows a series of micrographs to be recorded within a few seconds. Not
only is it advantageous to obtain the image in digital form directly, but changes
in specimen structure between exposures are also decreased. Autofocusing and
autotuning likewise become realistic (Sect. 2.4.3). With modern microscopes
connected directly to a workstation, it is also possible to display restored
images online on the TV monitor.

6.6.2 Methods of Optical Analog Filtering

Although digital image processing is widely used now that micrographs can
be digitized directly by means of image plates or CCD arrays, it is still useful
to have a look at optical analog methods. Figure 6.33 shows the principal
ray path of an optical filtering process. As for optical diffraction (Sect. 6.4.7),
the micrographs can be immersed in a fluid with the same refractive index
as the gelatin of the emulsion to compensate for any phase shift caused by
thickness variations of the gelatin layer. Only the optical density of the silver
grains will then influence the incident wave. A 1 : 1 imaging with the lenses
L2 and L3 can be used to obtain a diffraction pattern in the focal plane of
L2, where the optical filter is situated. The diameter of the diffraction pattern
can be increased to a few millimeters by making the focal length of L2 large
(30–50 cm). Filtering processes are easier to implement in the focal plane than
in the electron microscope, where the diameter of the diffraction pattern in
the back focal plane of the objective lens is only a few tenths of a millimeter
and any filter in the form of zone plates (Sect. 6.4.6) disturbs the imaging
process.

If the sole aim is optical filtering in the focal plane of L2, then L2 and L3

must be free of spherical aberration within the aperture used. If the Gabor
reconstruction method is to be used or if the electron-optical transfer is being
simulated by light optics [6.166], the following relations between the spa-
tial frequencies q, the objective apertures α, and the reduced defocusings
∆z∗ (3.68) have to be respected (subscript L: light-optical, E: electron-optical
quantities):

Fig. 6.33. Ray path of a light-optical image-processing system using a Fourier filter.
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λ3
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λECs,L

)1/4

;
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∆z∗E

=
(

λLCs,L

λECs,E

)1/2

. (6.58)

Various imaging modes (e.g., bright-field, dark-field, and hollow-cone illumi-
nation) and their contrast-transfer characteristics can be simulated with the
aid of these relations [3.35, 6.166, 6.167].

The filtering that will now be discussed applies to weak-phase objects, for
which we can set ψ(r) = 1− iϕs(r) in (6.18); this will give an indication of the
optimum design of a Fourier filter in the focal plane of L2. The image intensity
I(r′) can be expressed in terms of the blurring or point-spread function h(r)
introduced in (3.73), which is essentially the inverse Fourier transform of the
pupil function H(q),

I(r′) = 1 + 2ϕs(r′) ⊗ h(r′) = 1 + 2
∫ ∫

ϕs(r)h(r′ − r)d2r. (6.59)

Behind the micrograph (negative), the light amplitude for γ = 1 will be

A(r) = 1 − 2ϕs(r) ⊗ h(r). (6.60)

The diffracted light amplitude in the focal plane of L2 can be represented by

F (q) = F{A(r)} = δ(q) − 2Fs(q) · H(q), (6.61)

where δ(q) represents the primary beam at q = 0 and Fs(q) is the Fourier
transform of ϕs(q). The convolution theorem (3.48) maps the convolution in
(6.60) into a multiplication in (6.61). If an optical filter 1/H(q) is present in
the focal plane of L2, the amplitude in the reconstructed image will be

A(r′) = 1 − 2ϕs(r′) ⊗ F−1

{
H(q)

1
H(q)

}

= 1 − 2ϕs(r′) ⊗ δ(r′) = 1 − φs(r′), (6.62)

and the light intensity hence becomes L(r′) = A(r′) · A∗(r′) = 1 − 2ϕs(r′).
The originally blurred image [convolved with h(r)] is deblurred by the optical
filter with a transmission 1/H(q). However, this deblurring cannot restore
information lost at gaps in the contrast transfer; spatial frequencies are re-
constructed only if they are present in the micrographs and are larger than
the noise.

The filter can be divided into an amplitude and a phase part:
1

H(q)
=

1
|H(q)| exp(−iϕq). (6.63)

A negative sign of H(q) can be included in the phase factor by recalling that
exp(iπ) = exp(–iπ) = –1.

The use of a light-optical filter with |H(q)| = 1 and exp(–iϕq) = –1 was
proposed to correct those spatial-frequency intervals for which the sign of
the CTF is negative. This method generates the image that would have been
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produced by a system with |B(q)| as CTF [6.168, 6.169]. If a more complicated
amplitude filter of the form 1/|H(q)| ∝1/| sin W (q)| is used, the CTF in the
transfer bands can be equalized in magnitude. However, small gaps around
the zeros of sin W (q) have to be tolerated [6.170].

A phase filter can also be created by means of an amplitude grating. The
distance between the slits of the grating must be so small that the twin images
in the first-order diffracted beams are separated from those produced by the
transmitted und undiffracted wave with no overlap. In the transfer intervals
with a negative sign of B(q), the grating is shifted by half of the slit separation.
This causes a phase shift π of the twin images, whereas the phase of the
transmitted wave remains unchanged. This phase shift is a direct consequence
of the translation theorem (3.44) for Fourier transforms. It is also possible
to construct a combined amplitude and phase filter from a two-dimensional
grating of transparent rectangles that vary in size (amplitude) and position
(phase). Such binary filters can be calculated and plotted by a computer
[6.171].

The noise amplitude in periodic structures can be decreased by introducing
in the Fourier plane a mask that contains holes at the diffraction maxima
[6.172, 6.173, 6.174]. Thus, if structures from the back and front of negatively
stained particles, for example, are superimposed, these can be separated by
selecting the corresponding maxima [6.175]. Care will be needed to avoid
introducing artificial periodicities by this filtering method [6.176].

Another simpler method for decreasing the noise in periodic images is to
produce a suitable multiple exposure of a photographic copy of the image
by moving the negative or the copy by multiples of the specimen periodicity
[6.177, 6.178] or by an n-fold rotation of the micrograph by multiples of 2π/n
if the structure shows n-fold rotational symmetry [6.179]. This method is
sometimes known as stroboscopy because the same effect can be obtained
by mounting the micrograph on a turntable that rotates at a frequency f
and illuminating it with a source that flashes at a frequency nf . An n-fold
rotational symmetry will then be detected by the eye. Artificial structure may
be produced if the correct n is established by varying n in the stroboscopic
superposition. It is often more useful to superimpose different micrographs,
which can be done more accurately digitally because objective criteria for
alignment can be applied (Sect. 6.6.4).

6.6.3 Digital Image Restoration

All of the optical analog techniques described in Sect. 6.6.2 can equally well
be exploited on a digital computer if the image intensity is first stored in a
matrix array. Image plates (Sect. 4.7.3) and CCD cameras (Sect. 4.7.5) allow
electron micrographs to be recorded directly in digital form. It is not possible
to describe all of the various digital procedures in detail here. Our aim in
this section is to give some idea of what is, in principle, possible (see [6.180]
for a review). The basic routines of digital image processing are incorporated
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in the diverse commercial programs (see the survey in [6.181]). Digital image
simulation for crystal-structure imaging is discussed in Sect. 9.6.

Digital processing becomes of special interest if two or more micrographs of
a series are used for restoration of the exit wave function. The amplitude and
phase distribution of the specimen can then be separated (see below). Near
the resolution limit, each micrograph requires a two-dimensional restoration
procedure. For this, the methods of Sect. 6.6.2 can be recast in digital form.
A two-dimensional fast Fourier transform using the Cooley–Tukey algorithm
provides the diffraction pattern of the micrograph, which contains information
about the contrast-transfer gaps, the defocus, spherical aberration, paraxial
astigmatism, and other parasitic aberrations. Filtering in Fourier space can be
applied, followed by an inverse Fourier transform, to improve the image. The
resulting image amplitude is complex; phase information will not be lost, as
it is when the Fourier transform is performed by optical means. The ultimate
aim of restoration is to acquire knowledge about the specimen amplitude and
phase, ψs(r) = as(r) exp[iφs(r)], without transfer gaps. Except in the case of
weak-phase, weak-amplitude objects, this problem is nonlinear; it is reviewed
in detail in [6.182, 6.183, 6.184]. Procedures that set out from various sets of
initial data have been investigated:

1. Use of the diffraction pattern ∝ |F (q)|2 and a bright (or dark) field image
∝ |ψ|2 (Gerchberg–Saxton algorithm) [6.185, 6.186]. This method requires
a periodic specimen [6.187] and has been applied to negatively stained
catalase [6.188] and periodic magnetic structures [6.189], for example.

2. Two (or N) micrographs recorded at different values of defocus ∆zn [6.190,
6.191]. Schiske’s original description of this procedure for restoring the exit
wave function ψs(r) of the specimen with its Fourier transform Ψs(q) can
be written [6.192]

Ψs(q) =
1
N

N∑
n=1

F{In(q)} exp[iW (q)]

=
1
N

exp(iπCsλ
3q4/2)

N∑
n=1

F{In(q)} exp(−iπλ∆zq2), (6.64)

where F{In(q)} is the two-dimensional Fourier transform of the intensity
distribution in the nth micrograph and W (q) is substituted from (3.66).
Inside the sum, the phase-correction factors only depend quadratically
on q. With the exception of the phase factor containing Cs, this method
has been rediscovered as the focus variation or paraboloid method [6.193].
Practical difficulties arise from the need to align the micrographs to within
about one-half of the desired resolution (see below) and from the contri-
bution of inelastic scattering.

3. Bright- and dark-field micrographs taken under identical electron-optical
conditions [6.187, 6.194].
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4. Two micrographs with complementary half-plane diaphragms. The basic
idea of this method has already been discussed as single-sideband holog-
raphy in Sect. 6.5.2.

Methods 1–3 are iterative methods in which an initial approximation for
amplitude and phase is guessed. Considerable thought has been given to the
problem of achieving rapid convergence and a unique solution for the phase,
especially in the presence of unavoidable noise; see [6.195] and Vol. 3 of [2.6].

6.6.4 Alignment by Cross-Correlation

The first step in any digital computation involving a series of micrographs
with the same or different defocus is to align the individual micrographs in
orientation and position. A preliminary adjustment can be made by using
characteristic image details. For exact alignment, cross-correlation is needed
[6.196]. The cross-correlation of two functions f1(r) and f2(r) is the integral

CCF(r) = f1(r) � f2(r) =
∫ ∫

f1(r′)f2(r′ + r)d2r′

= F−1{F1(q) · F ∗
2 (q)}. (6.65)

Setting f1 = f2 gives the autocorrelation function. This integral will have a
maximum at r = 0 for two similar, exactly aligned images because the in-
tegrand is then positive-definite over the whole area. The integral will show
regularly spaced maxima for periodic structures. If two otherwise similar mi-
crographs are not exactly aligned, the position of the maximum indicates
the necessary shift (see the example in Fig. 6.34). Two micrographs taken
at different values of defocus may give a very broad correlation maximum,

Fig. 6.34. Example of the cross-correlation of electron micrographs of carbon foils:
(a) autocorrelation of one micrograph with a correlation peak at x = 0, y = 0, (b)
cross-correlation of two successive micrographs, indicating an image shift between
the two exposures of x = –0.35 nm, y = 0.17 nm [6.196].
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which makes determination of the shift vector r more difficult [6.197]. Sharper
maxima can be obtained by calculating the mutual-correlation function MCF
[6.198]:

F{fj(r)} = Aj(q) exp[iΘj(q)], φj = F−1{A1/2
j (q) exp[iΘj(q)]},

MCF(r) = φ1(r) � φ2(r), (6.66)

where φj(r) (j = 1, 2) are versions of the input images f1(r) and f2(r) for
which the transform amplitudes have been replaced by their square roots, thus
attenuating the strongest Fourier components.

For determination of the defocus, spherical aberration, and astigmatism, it
is necessary to calculate the Fourier transforms F1(q) and F2(q) of f1(r) and
f2(r), respectively. It is therefore of interest to note that the cross-correlation
is the inverse Fourier transform of the Wiener spectrum W12(q) = F1(q)·F ∗

2 (q)
[see the end of (6.65)].

This method of aligning two micrographs with equal defocus can also be
used in an image-difference method designed to provide information about
radiation damage in the specimen between two exposures or to subtract from
a macromolecular image the image of a clean supporting film obtained be-
forehand [6.197, 6.199]. However, successive micrographs of a clean carbon
film can show variations in structure caused by contamination and radiation
damage.

6.6.5 Averaging of Periodic and Aperiodic Structures

Averaging by Fourier Filtering. The signal-to-noise ratio can be improved
by the following scheme [6.200]. If we consider the amplitude distribution in
the image to be the specimen function ψs(r) convolved with the blurring
(point-spread) function h(r) (3.53) superimposed on an additive noise distri-
bution n(r),

a(r) = ψs(r) ⊗ h(r) + n(r), (6.67)

the Fourier transform becomes

A(q) = F (q) · H(q) + N(q) (6.68)

with H(q) = −M(q) sin W (q) (3.72) and F (q) = F{ψs(r)}. Instead of ap-
plying only the filter function H−1(q) as in (6.62), the filter is multiplied by
a further weighting function HW(q); after inverse Fourier transformation, we
obtain

a′(r) = ψs(r) ⊗ hW(r) + n(r) ⊗ hW(r) ⊗ h(r) (6.69)

with hW = F−1{HW} and h = F−1{H−1}.
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The convolution of ψs(r) with hW(r) in the first term inevitably decreases
the resolution. Resolution will not be lost only if HW = const and hW = δ(0).
We therefore conclude that each noise-filtering operation will be a compromise
between a loss of resolution (blurring of the image points) and a reduction of
the noise amplitude.

The signal-to-noise amplitude can be calculated from the Wiener spectra
W0 = |F (q)|2 and Wn = |N(q)|2 and takes the following values:

before filtering after filtering
S

N
=
∫ ∫

W0(q)|H(q)|2d2q∫ ∫
Wn(q)d2q

;
S

N
=

∫ ∫
W0(q)|HW(q)|2d2q∫ ∫

Wn(q)|H(q)|−2|HW(q)|2d2q
.

(6.70)

Weighting functions that have been tested [6.200, 6.201] include:

HW(q) = exp
[
α

(
1 − 1

| sin W (q)|

)]
,

HW(q) =
H∗(q)

|H(q)|2 + Wn(q)/W0(q)
(Wiener’s optimum filter). (6.71)

Rotational Symmetry. For the detection of n-fold rotational symmetry the
following method can be used [6.202]. The image intensity I(r, ϕ) in polar
coordinates is expanded in a Fourier series

I(r, ϕ) =
+∞∑
−∞

gn(r)einϕ, (6.72)

and the strength of an n-fold component can be calulated from

Pn =
∫
|gn(r)|2rdr. (6.73)

The presence of unique n-fold symmetry will be indicated by pronounced
maxima of Pn for one value of n and its multiples.
Periodic Structures. Electron microscopy of biomacromolecules needs low-
exposure techniques and averaging of as many individual molecules as pos-
sible. Averaging is best performed with two-dimensional crystalline arrays,
and the techniques for the 2D crystallization of membrane and water-soluble
proteins have therefore been extensively developed [6.203]. For 2D arrays that
are imperfectly ordered, displacement vectors can be calculated to prevent the
averages from being degraded [6.204, 6.205].

The Fourier coefficients F (θ, ϕ) of a two-dimensional periodic specimen
with a unit cell characterized by two translation vectors vary in a defo-
cus series, the Fourier coefficients of a micrograph being proportional to
|F (θ, ϕ) sin W (θ)|. The value of |F (θ, ϕ)| and the amplitude component trans-
ferred, if any, can be evaluated from the series by the method of least squares.
These corrected Fourier coefficients can be used to calculate a periodic image
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that represents an average over all unit cells and micrographs. There is an op-
timum increase of the signal-to-noise ratio because noise due to the electron
statistics, the grain of the photographic emulsion, and the inhomogeneities
of the specimen is scattered diffusely over the whole Fourier plane (diffrac-
tion pattern). This method has been applied to catalase crystals, for example
[6.206]. It can also be employed to sharpen micrographs taken at very low
electron exposures to reduce radiation damage [6.207, 6.208].

Images of periodic arrays of macromolecules can be obtained by using
various heavy-metal stains, negative staining, freeze-drying, freeze-fracturing,
and thin shadow-casting films of Ta/W, for example. They provide informa-
tion about the internal structure, the external shape, and the surface relief
[6.209]. The optical diffraction method (Sect. 6.4.7) can also be employed to
investigate differences between shadowed periodic arrays of macromolecules
using different types of thin shadowing films [6.210].
Aperiodic Structures. Noise-reduced images of aperiodic structures similar
in appearance but randomly distributed over the micrograph (e.g., macromole-
cules or virus particles with a site of preferential attachment to the supporting
film) can be obtained by averaging over a sufficiently large number of parti-
cles after alignment in position and orientation. For this, the computer must
be furnished with a motif-detection capability [6.211]. The method becomes
reasonably practicable when applied interactively on an image-analyzing com-
puter [6.212, 6.213, 6.214]. The particles are selected by eye and centered by
the cross-correlation methods described above. This means that the cross-
correlation maxima for different shifts and rotations have to be calculated.
If a low-dose exposure is employed to reduce radiation damage, a subsequent
high-dose picture can be used for prealignment and selection of particles that
have the most satisfactory appearance.

Figure 6.35 shows an application of noise reduction to ribosomes [6.215].
The latter are randomly distributed and can be separated into left- and right-
oriented particles (Fig. 6.35a). Figure 6.35b shows a series of left-oriented
images after alignment: 77 particles were used for averaging. Figures 6.35e
and f show the averages of 38 and 39 arbitrarily selected particles, respec-
tively, and Fig. 6.35c the average of all 77 particles at a resolution of 1.4 nm.
Figure 6.35d shows the result of further averaging over neighboring image
points with a resolution of 3.3 nm. Van Heel [6.216] has introduced a method
that allows single particles to be detected automatically against an extremely
noisy background. Each image element is replaced by the image variance in
its environment. The method based on correspondence analysis also permits
particles to be classified into groups, such that the members of each group
bear a close resemblance to one another (multivariate statistical analysis). An
objective and critical selection of particles can then be made before averaging
by superposition [6.217, 6.218, 6.219].
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Fig. 6.35. (a) Micrograph showing left-oriented (L) and right-oriented (R) 40 S
ribosomal subunits of HeLa cells. (b) Gallery of 16 L particles after alignment. (c)
Average obtained from all 77 particles displayed at 1/1.4 nm−1 resolution and (d)
at 1/3.2 nm−1 resolution. (e) and (f) Averages from independent sets of 38 and 39
particles, respectively [6.215].

6.7 Three-Dimensional Reconstruction

6.7.1 Stereometry

This technique is based on two tilted micrographs. Two specimen points A and
B with a height difference ∆z = zB−zA are imaged with different separations
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Fig. 6.36. Basis relation for stereomet-
ric reconstruction.

∆x1 and ∆x2 at tilt angles ±γ (Fig. 6.36). In this simple case of parallel
projection, the parallax

p = (xB2 − xA2) − (xB1 − xA1) = ∆x2 − ∆x1 = 2M∆z sin γ (6.74)

is directly proportional to the height difference ∆z if the tilt axis passes
through the center of the image area observed. For further details of stereom-
etry, see [6.220, 6.221].

The method can be applied to surface replicas, thick biological sections,
aggregates of small particles, and lattice defects in crystal foils. It is essential
that the two micrographs contain sharp image details, recognizable in both
micrographs; otherwise the parallax cannot be determined accurately. The
accuracy for tilt angles γ = ±10◦ is of the order of ∆z = ±3 nm for p/M =
±1 nm.

6.7.2 Electron Tomography

Unlike stereometry, 3D reconstruction by tomography does not necessarily
need sharp image details. The aim is to reconstruct the specimen density
distribution ρ(x, y, z) from a series of projections. Two types of methods are
employed, one of which operates in Fourier space [6.222, 6.223] and the other in
real space [6.224, 6.225, 6.226, 6.227, 6.228, 6.229]. The formal equivalence and
the differences are explained in [6.230]. The Fourier method will be discussed
in more detail, because the information content and the information gaps can
be evaluated more satisfactorily.

The specimen is represented by its mass-density distribution ρ(x, y, z), the
three-dimensional Fourier transform of which is

F (qx, qy, qz) =
∫ ∫ ∫

ρ(x, y, z) exp[−2πi(qxx + qyy + qzz)]dxdy dz. (6.75)

For specimens with cylindrical symmetry, it is better to use cylindrical polar
coordinates. The Fourier transform then becomes a Fourier–Bessel transform.
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A micrograph with the electrons incident parallel to z corresponds to a
central section through the Fourier space in the qx, qy plane, for example, and
the transform reduces to

F (qx, qy, 0) =
∫ ∫

[
∫

ρ(x, y, z)dz]︸ ︷︷ ︸
σ(x, y)

exp[−2πi(qxx + qyy)]dxdy. (6.76)

The integral σ(x, y) is a projection in the z direction (mass thickness distri-
bution) of the mass-density distribution ρ; this produces an image intensity
I(x, y) = I0 exp[−σ(x, y)/xk], applying (6.6) for scattering contrast. Equation
(6.76) tells us that a two-dimensional Fourier transform of σ(x, y) yields a
central section through Fourier space. If F (qx, qy, qz) is known from a tilt se-
ries, which is equivalent to a bundle of central sections through the Fourier
space, ρ(x, y, z) can be calculated by an inverse Fourier transform. One of
the difficulties of 3D reconstruction is immediately obvious: the maximum
tilt angle that can be attained using a specimen goniometer is ±40◦ − ±70◦

so that a double cone of the Fourier space remains vacant (“missing cone”).
This can result in a deterioration of resolution or the creation of artifacts;
elongation of the particle shape normal to the specimen plane, for exam-
ple. Recovery routines for filling this vacant Fourier space are introduced in
[6.231, 6.232, 6.233]. Single-axis rotation in which the specimen is mounted at
the tip of a microneedle or micropipette has been proposed for HVEM [6.234].

For many specimens, symmetry relations can be used to reduce the neces-
sary number n of micrographs. Thus, for a specimen with helical symmetry, a
single micrograph is sufficient (T4 phage tail); for icosahedral symmetry (e.g.,
tomato bushy stunt virus), we find n = 2. In the absence of symmetry, n =
30 (e.g., ribosomes). The rule of thumb n = πD/d has been proposed, where
D is the diameter and d the resolution [6.222].

In principle, any specimen can be 3D reconstructed from a tilt series
(single-axis tomography), where, however, the necessary dose and radiation
damage must be kept low to preserve the biomolecular structure. The ra-
diation damage can be reduced when macromolecules are embedded in ice
and being observed in cryosections on holey carbon films. Figure 6.37 shows
the 3D reconstruction of thermosomes (16-meric complexes of thermosomal
α-subunits from Thermoplasma acidophilum, expressed in Escherichia coli)
from a tilt series in a range ±54◦ with 6◦ increments. The total magnification
was 40 000× at the CCD camera; thus the pixel size was 0.48 nm at the spec-
imen. The total dose used for recording a tilt series containing 19 projections
was kept as low as 2000 e−/nm2 � 300 C/m2. A 2D image of the particle
in top-view orientation is obtained by 2D alignment and averaging 1292 indi-
vidual particle images (Fig. 6.37a) and in side-view orientation obtained from
450 particles (Fig. 6.37b). The image contrast has been reversed so that the
particles (protein) appear in positive contrast relative to the surrounding ice
film. After 3D reconstruction of the tilt series by means of weighted backpro-
jection, volume data of 307 individual particles could be selected. These were
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Fig. 6.37. 3D tomography of thermosomes embedded in a cryosection: (a) 2D image
of the averaged particle in top-view and (b) side-view orientations, (c) set of xy slices
and (d) xz slices 1 nm apart, (e) surface-view representation of the reconstructed
particle; particle diameter 16 nm, length 17 nm (courtesy of D. Typke).

aligned in several cycles with respect to three positional and three angular
parameters. Finally, a 3D reconstruction was calculated by weighted backpro-
jection using an appropiate weighting function for the full data set. Figure
6.37c shows a set of xy slices 1 nm apart through the 3D reconstructed and
averaged particle and Fig. 6.37d the same for xz slices; Fig. 6.37e shows a
surface-view representation of the reconstructed particle.

When averaging over randomly oriented biomolecules in a single micro-
graph (Sect. 6.6.5), we again assume that identical particles lie in preferred
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orientations parallel to the specimen plane but in random orientations (az-
imuthal angles) in that plane. A micrograph at normal incidence can be used
for averaging but contains no tomographic information because the images
are identical. However, when the specimen is tilted through γ = 45◦ − 60◦,
images of particles with different azimuths are not identical and their direc-
tions of view lie on a cone of semiangle γ. This is the idea of random coni-
cal tilting or the single-exposure conical reconstruction technique (SECReT)
[6.235, 6.236, 6.237]. An additional untilted micrograph is used to determine
the azimuthal angle and the position on the cone. Cryosections contain mole-
cules in random orientations, and more sophisticated recognition methods
have to be applied to determine their orientations [6.238]. A further step to-
ward automatic electron tomography is to refine the low-dose technique by
using three to five different specimen areas for compensating the specimen
displacement during tilt, autofocusing, and refocusing before recording the
tilt series [6.239, 6.240].

More recently, electron tomography has also been applied to inorganic
specimens using either dark-field images to determine the structure or ele-
mental maps to quantify the 3D composition of the specimen [6.241, 6.242].

6.8 Lorentz Microscopy

6.8.1 Lorentz Microscopy and Fresnel Diffraction

It was shown in Sects. 2.1.2 and 3.1.1 that the angular deflection ε (2.17)
of an electron beam by a transverse magnetic field can be calculated either
by evaluating the Lorentz force on the electron or by introducing the phase
shift (3.6) caused by the magnetic vector potential or the enclosed magnetic
flux Φm. With an arbitrary origin (x = 0) in the specimen plane, the phase
shift caused by a magnetic field parallel to the specimen plane can be written

ϕm(x) = −2πe

h
Φm = −2πe

h
Bs t x, (6.77)

where t is the film thickness and x the coordinate in the object plane normal
to the magnetic induction Bs. Thus, for a ferromagnetic film of iron with a
thickness t = 50 nm and a spontaneous magnetization Bs = 2.1 T, (2.17)
gives a deflection angle ε = 0.1 mrad for 100 keV electrons. A phase difference
ϕm = π corresponding to a path difference λ/2 is found for x = 20 nm.
A ferromagnetic film is therefore a pure but not necessarily weak phase object
and can be studied with the theory of phase contrast.

As in (3.36), the wave amplitude behind the specimen is modified from
ψ0 exp(2πikz) to

ψ(x) = ψ0 exp[iϕm(x)] exp(2πikz). (6.78)

In the focal plane of the objective lens, the amplitude distribution is given by
the Fourier transform
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F (qx) = ψ0

+∞∫
−∞

exp[iϕm(x)] exp(−2πiqxx)dx. (6.79)

From the translation theorem of Fourier transforms (3.44), this has the form of
a δ-function at qx = ϕm/2πx = eBt/h. Substituting mv = h/λ and recalling
that q = θ/λ, we obtain the same angular deflection ε = θ for t = L as in
(2.17).

Because F (qx) is concentrated within a very small range of values of qx,
only the defocusing term of the wave aberration W (q) in (3.66) need be con-
sidered, and (3.72) gives

ψm(x′) =
ψ0

M

∫
F (qx) exp(iπλ∆zq2

x) exp(2πiqxx′)dqx. (6.80)

Substituting for F (qx) from (6.79), we find

ψm(x′) =
ψ0

M

∫
{
∫

exp[iϕm(x)] exp(−2πiqxx)dx}

× exp(iπλ∆zq2
x) exp(2πiqxx′)dqx

=
ψ0

M

∫
(
∫

exp{iπ[2qx(x′ − x) + λ∆zq2
x]}dqx) exp[iϕm(x)]dx. (6.81)

Introducing q′2 = 2λ∆z[qx + (x′ − x)/(λ∆z)]2, we can rewrite (6.81)

ψm(x′) =
ψ0

M

1√
2λ∆z

+∞∫
−∞

[
+∞∫
−∞

exp(iπq′2/2)dq′

]

︸ ︷︷ ︸
1 + i

× exp
{

i
[
ϕm(x′) − π

(x′ − x)2

λ∆z

]}
dx. (6.82)

The inner integral is one of the Fresnel integrals of (3.34). A further substitu-
tion u =

√
2/λ∆z(x′ − x) gives

ψm(x′) =
ψ0

M

1 + i
2

+∞∫
−∞

exp(iϕm) exp(−iπu2/2)du. (6.83)

This is none other than Fresnel diffraction from the phase distribution caused
by the magnetization. This can also be seen at ϕm = 0; the integral contributes
a further factor 1 + i, and we have |ψm|2 = |ψ0|2/M2. For uniform magneti-
zation (Bs = const), ϕm is a linear function of x (6.77). This again results in
a uniform intensity distribution in the image, but the specimen coordinates
are shifted by εM∆z, which can also be deduced from particle optics by con-
sidering a plane at a distance ∆z behind the specimen (Fig. 6.39). Contrast
effects will be seen in the image only for nonuniform distributions of Bs, such
as magnetic domain walls, across which the direction of Bs changes, or mag-
netization ripple, in which the magnetic field exhibits periodic or aperiodic
small-angle deviations from the mean value of Bs.
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6.8.2 Imaging Modes of Lorentz Microscopy

All modes of Lorentz microscopy (for reviews, see [6.243, 6.244, 6.245, 6.246,
6.247]) require the illumination aperture αi to be smaller than the deflection
angle ε; otherwise, the illumination would become incoherent. Apertures αi �
10−2 mrad can be obtained by forming a small image of the crossover at a
large distance in front of the specimen by strongly exciting the first condenser
lens, for example. Because the gun brightness is conserved (4.12), the current
density at the specimen plane is reduced; hence long exposure times are needed
for large magnifications. However, in most applications of Lorentz microscopy
(the imaging of domains, for example) a magnification of 10 000 is sufficient.
The holographic method (Sect. 6.5.3) requires the higher brightness of a field-
emission gun. Furthermore, the magnetic distribution must not be disturbed
by the magnetic field of the objective lens.

The original magnetization of the specimen and the components Bx and
By parallel to the film or foil can only be analyzed if the z component of
the magnetic lens field is small enough. The magnetic field of the objective
lens at the specimen can be reduced by switching off this lens and using the
intermediate lens, by lifting the specimen some millimeters and reducing the
lens excitation, or by using a specially designed objective lens of long focal
length and small bore to ensure that B falls off rapidly [6.248].

Coils can be used to produce a magnetic field parallel to the film and to
observe the movement of ferromagnetic domain walls [6.249]. The presence
of such a field normal to the electron beam also causes a deflection. Two
further coils are therefore inserted above and below the specimen with opposite
excitation to compensate for the deflection and maintain the beam on-axis.
(a) Small-Angle Electron Diffraction. In small-angle electron diffraction
(Sect. 8.1.5a), a diffraction pattern is recorded with αi � 10−2 mrad and a
large camera length. A ferromagnetic layer with uniaxial anisotropy consists
of domains with antiparallel directions of Bs separated by 180◦ walls. The
primary beam splits into two spots with an angular separation ±ε [6.250].
Four different distributions of Bs parallel to 〈100〉 are possible in a [100]
epitaxial iron film, causing splitting into four spots (Fig. 6.38); the central
spot is the primary beam passing through holes in the film. In polycrystalline
films with varying directions of magnetization, the splitting of the primary
beam results in a circular or sickle-shaped diffraction pattern. The splitting
2ε can be used to determine the specimen thickness by means of (2.17) [6.251].
However, the angle of divergence may be decreased since the value of Bs can
be lower in thin films.

Periodic domain-wall spacings (25 µm in a cobalt film, for example) can
create diffraction maxima, which can be interpreted quantitatively in terms
of diffraction at a phase grating [6.252, 6.253].
(b) Foucault Mode. In the case of a 180◦ domain wall, the antiparallel
magnetization directions produce two spots in the focal plane of the objective
lens; these are separated by a distance �2εf . If the objective diaphragm is



6.8 Lorentz Microscopy 265

Fig. 6.38. Small-angle electron diffraction pat-
tern of a (100) oriented epitaxially grown iron
film on NaCl. The primary beam splits into four
beams, corresponding to the 〈100〉 directions of
spontaneous magnetization.

moved, one of the spots can be suppressed, and the corresponding domain
becomes dark in the image [6.254, 6.255]. In this mode, the domain wall is
imaged as a boundary between dark and bright areas (Fig. 6.40c,d). The
objective lens then operates in focus, so that the specimen is imaged on the
final screen without any defocusing [6.256]. A special lens with a long focus
has to be used so that the specimen is in a nearly field-free region.

Some means of ensuring that the objective diaphragm is situated in the
focal plane should be provided. Any displacement decreases the area in which
the Foucault contrast can be observed. A thin-foil diaphragm (Sect. 4.4.1) is
preferable; this also reduces charging of the diaphragm.

The Foucault mode can also be used to study much larger extended mag-
netic stray fields around thin wires or small, compact specimens [6.257, 6.258].

In another version of the Foucault mode [6.259], the small-angle deflection
caused by the inner potential (refractive index) is exploited. Small crystals
act like prisms, resulting in a splitting of the electron-diffraction spots and
the primary beam if the illumination aperture is very small. One or more
of these deflected beams can be halted by the diaphragm and can cause a
contrast difference that depends on the inclination of the crystal faces. For
more complex specimens, the contrast is caused by the local gradient of the
optical path length; thus a dark contour for a positive gradient and a bright
contour for a negative gradient lead to pseudo-topographic contrast similar to
that observed in single-sideband holography (Sect. 6.5.2).
(c) Fresnel Mode. The intensity distribution at a distance ∆z below or
above the specimen is imaged by under- or overfocusing, respectively [6.260].
The principle of this mode will first be explained in terms of the particle
model (geometric theory), in which the electron trajectories are deflected by
an angle ε proportional to the local value of

∫
Bdz. Figure 6.39 shows that the

electron trajectories either converge (left) or diverge (right) at a distance ∆z
below a specimen with antiparallel domain walls. The left domain wall will
appear as a bright line and the right one as a dark line in the defocused image.
Defocusing in the opposite direction reverses the contrast (Fig. 6.40a, b). The
width of the gap or the overlap b � 2ε∆z of the divergent and convergent
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Fig. 6.39. Deflections of electron trajectories in a magnetic film with 180◦ domain
walls that form a convergent (left) and divergent (right) wall image at a defocus ∆z
(Fresnel mode).

Fig. 6.40. Micrographs that show a 180◦ domain wall of a polycrystalline iron film
in the Fresnel mode with (a) under- and (b) overfocusing and in the Foucault mode
absorbing the left (c) and the right (d) deflected beams.

wall images, respectively, should be large enough to be detectable at medium
magnifications, so that with b = 0.1 µm and ε = 0.1 mrad, for example, a
defocusing of 0.5 mm is needed.

The geometric theory cannot be used for detailed image analysis; the wave-
optical theory has to be invoked. The most striking effect is the appearance
of biprism fringes in the convergent image (Fig. 6.41), in which two coherent
waves overlap with a convergence angle 2ε [6.261]. The fringe spacing can be
calculated from (3.25) with β = ε. Using (2.17), mv = h/λ, and L = t gives

∆x =
h

2eBt
. (6.84)
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Fig. 6.41. Fresnel mode, showing biprism
interference fringes in the convergent
domain wall image (top to bottom) and a di-
vergent wall image (horizontal) of a (100)
oriented single-crystal iron film.

This means that the fringe spacing remains constant for constant film thick-
ness, and the number of fringes can be increased only by increasing the overlap
(defocusing ∆z). Inside the zone of width ∆x, the magnetic flux

Φm = ∆xBt =
h

2e
(6.85)

is enclosed between two interference fringes. This quantity is just the
magnetic-flux quantum (fluxon, Sect. 3.1.1). This fluxon criterion [6.262]
can be used to estimate the spacing and number of fringes observable.

Figure 6.42 shows a comparison of the intensity profile across a 180◦ do-
main wall of width w = 80 nm in a t = 20 nm Fe foil at a defocusing ∆z = 4
mm calculated by using the geometric theory (left) and wave optics (right).
The differences for a very coherent beam (zero illumination aperture αi) are
obvious. An aperture of 10−2 mrad already blurs the biprism fringes of the
wave-optical theory, and geometric theory and wave optics result in similar
intensity profiles.

The intensity profile of the divergent wall image is scarcely affected by
the use of the wave-optical theory (Fig. 6.42, bottom) [6.245, 6.263]. In the
geometric theory, the width b of the divergent wall image is enlarged, in the
first-order approximation, by the wall width w, whereas in the convergent
image it is decreased by w (b � 2ε∆z ±w). Differences between the widths of
divergent and convergent wall images can be used to estimate the wall thick-
ness [6.249, 6.264, 6.265, 6.266, 6.267]. This method also requires a knowledge
of the influence of elastic and inelastic small-angle scattering on image contrast
[6.263]. Thicker films are better studied in a high-voltage electron microscope,
in which small-angle scattering has less effect [6.265, 6.274]. The contrast can
also be increased by zero-loss filtering [6.275].
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Fig. 6.42. Calculated intensity profiles of convergent and divergent domain-wall
images across a 180◦ wall of width w = 80 nm in a 20 nm Fe foil at a defocus ∆z =
4 mm (αi: illumination aperture).

Comparison of convergent wall images that contain biprism fringes with
wave-optical calculations based on models of the magnetization distribution
inside the domain wall can be used to test the model and to distinguish
between Néel walls and Bloch walls [6.268, 6.269, 6.270, 6.271]. A tilt of the
specimen by ±45◦ allows the Bz component to be determined as well [6.272].

Besides domain walls, periodic fluctuations in the magnetization (ripple)
can be observed. A ripple structure is not seen in single-crystal films or in elec-
trolytically polished foils but is mostly observed in evaporated, polycrystalline
films. The contrast of the ripple depends strongly on the length of the peri-
odicities and on the defocusing. For quantitative determination of the ripple
spectrum, therefore, the contrast-transfer characteristic has to be considered
[5.166, 6.273, 6.274].

The sensitivity of the Fresnel mode increases with increasing defocus.
When planes a few centimeters below the specimen are imaged (by switching
off the objective lens and imaging with the intermediate lens, for example),
the relation between object and image can be regarded as a projection, with
the demagnified crossover below the first condenser lens as the projection cen-
ter. The projected shadows are shifted by the Lorentz force in the specimen
plane. This has been used to image magnetic stray fields at the surface of su-
perconductors during the transition from the normal to the superconducting
state [6.276, 6.277].
(d) Diffraction Contrast. The deflection by the Lorentz force also changes
slightly the excitation error of Bragg reflections. This can result in a lateral
shift of any bend contours that cross a domain wall in a single-crystal film
[6.278].
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(e) STEM Modes. The theorem of reciprocity (Sect. 4.5.3) tells us that
all modes of Lorentz microscopy can also be used in the STEM mode. For
the Fresnel mode, it will be necessary to use a very small detector aperture
[6.279, 6.280]. The advantage of STEM is that a direct record of the intensity
profiles across domain-wall images is available even if the image intensity
is too low for direct viewing. Contamination marks can be printed on the
specimen, and the deflection by the Lorentz force can be read directly in terms
of the change of the spacing of these marks. An additional mode, applicable in
STEM, involves the use of two half-plane detectors or a quadrant detector; the
difference signal produces differential contrast similar to that of the Foucault
mode [6.281, 6.282].
(f) Reconstruction and Holographic Methods. Because each defocused
image may also be regarded as a hologram, the phase and the magnetization
distribution can be reconstructed [6.283, 6.284]. For example, an inversion
method can be used to obtain information about the magnetization in a do-
main wall from a divergent-wall image [6.285], or the Gerchberg–Saxton algo-
rithm (Sect. 6.6.3) may be employed to reconstruct the distribution in stripe
domains [6.189]. Another holographic recording and reconstruction method is
off-axis holography [6.160, 6.161, 1.73]. Figure 6.43 shows a micrograph of a
vortex lattice (quantized magnetic flux lines of magnetic flux h/2e) in a 70
nm superconducting niobium foil. The specimen on one side of the biprism
was inclined at 45◦ in a 300 kV transmission electron microscope to record the
normal component of B. Using a Mach–Zehnder interferometer (Fig. 6.32) for
the reconstruction and a 16× amplification of phase, the projected magnetic

Fig. 6.43. Reconstructed hologram of vortices (magnetic flux lines with Φm = h/2e)
in a superconducting 70 nm niobium foil inclined by 45◦ in a 300 kV transmission
electron microscope [6.286].
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lines of force are directly observed as contour fringes. The lines are concen-
trated locally within the circled regions, becoming narrowly spaced. A bend
contour runs diagonally through the micrograph.
Stroboscopic Methods. The dynamic properties of domain walls in high-
frequency magnetic fields (1–30 MHz) can be investigated by stroboscopy. The
short strobe pulses of the stroboscopic illumination must be synchronized with
the a.c. magnetic field applied to the specimen but with a variable time shift
(phase angle). This is achieved by chopping the electron beam; the electron
beam is deflected by the static electric field of a parallel-plate condenser and
returned on-axis by applying a voltage pulse of a few nanoseconds duration
[6.287, 6.288]. The technique can be used to investigate the forced and free
oscillations of domain walls and Bloch lines, with a time resolution of the
order of nanoseconds. The method allows the “mass” and relaxation times of
domain walls and Bloch lines to be determined quantitatively.

6.8.3 Imaging of Electrostatic Specimen Fields

The Fresnel mode of Lorentz microscopy can also be used for the investigation
of electrostatic fields caused by charging of the specimen, by ferroelectric
domains, or by the electric field in the depletion layer of p-n junctions.

Electrostatic fields are generated by electron bombardment in noncon-
ducting specimens. In a shadow projection (Fresnel mode with a very large
defocusing) of collodion, formvar, and SiO supporting films, a fluctuating gran-
ulation can be observed in TEM by strongly exciting the first condenser lens
and switching off the second condenser and the objective lens [6.289, 6.290].
This fluctuating charging occurs only if the beam also hits the specimen grid;
otherwise a stronger charging of uniform magnitude causes a larger deflection
[6.291]. From the deflection of the electron beam, local field strengths of the
order of 108 V/m can be estimated. This fluctuation disappears when a con-
ducting film of metal or carbon has been deposited by evaporation or when
the specimen is simultaneously bombarded with low-energy electrons of a few
hundred eV [6.290]. The fluctuations can be explained in terms of a statistical
charge-compensation mechanism due to the secondary electrons produced at
the specimen grid.

Small particles, such as MgO, NaCl, or polystyrene spheres, on a carbon
or metal film become charged relative to the supporting film [6.292, 6.293].
This charging acts like a lens, focusing the electron rays some 3–6 cm below
the specimen. The charge on NaCl crystals can be estimated to be equivalent
to a potential of +2 V, corresponding to a field strength at the surface of the
order of 106 − 107 V/m. A positive charging by secondary-electron emission
can also be observed from insulating layers on a conductive support [6.294].

Ferroelectric polarization is associated with a larger lattice deformation
than that caused by magnetostriction in ferromagnetics. Ferroelectric domains
in ferroelectrics can therefore be distinguished by diffraction contrast and
edge fringes on oblique domain boundaries [6.295, 6.296, 6.297, 6.298, 6.299].
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The action of the internal electric field in boundaries with a head-to-head
polarization can be demonstrated by defocusing (Fresnel mode); however, the
deflection angle is smaller than 10−2 mrad [6.300].

The electric field strength inside the depletion layer of a p-n junction has
been imaged with the Foucault mode [6.301], the Fresnel mode [6.302, 6.303],
and by holography [6.304, 6.305]. The latter records the phase shift

ϕ(x0, y0) =
πe

λE

+∞∫
−∞

Φ(x0, y0, z)dz (6.86)

caused by the local potential Φ.
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Theory of Electron Diffraction

The theoretical treatment of electron diffraction on crystals needs the con-
cepts of lattice planes and the reciprocal lattice, as in x-ray diffraction. More
detailed descriptions of these matters can be found in standard textbooks on
solid-state physics or crystallography [4.1, 7.1, 7.2, 7.3]. Kinematical theory
leads to the Bragg condition and to a description of the influence of the struc-
ture of a unit cell and the external size of a crystal on the diffracted amplitude
in terms of structure and lattice amplitudes, respectively. The observed dif-
fraction pattern is equivalent to the points of intersection of the Ewald sphere
of radius 1/λ with the reciprocal-lattice nodes.

The dynamical theory considers the interaction between the primary and
reflected waves. For example, when the Bragg condition is satisfied, examina-
tion of the two-beam case reveals a complementary oscillation of the primary
and reflected intensities with increasing thickness. On taking into account the
boundary condition at the surface and the crystal periodicity of the wave field
inside the crystal, the solution of the Schrödinger equation takes the form of
a Bloch-wave field. An example of the effect of inelastic scattering is the dif-
ference between the interaction probability for Bloch waves with nodes and
antinodes at the nuclei. This results in the effect known as anomalous absorp-
tion. The critical-voltage phenomenon is a typical dynamical effect that can
cancel the intensity of Bragg reflections at a voltage that depends sensitively
on the structure amplitude.

Inelastic scattering between the Bragg reflections is also influenced by the
crystal periodicity and results in Kikuchi lines and bands. Diffraction by amor-
phous specimens produces diffuse diffraction maxima, which depend on the
density distribution of atoms. Polycrystalline specimens can generate Debye–
Scherrer rings. Energy filtering of diffraction patterns (electron spectroscopic
diffraction) makes it possible to reduce the inelastic background between dif-
fraction spots and to investigate the contribution of electrons with different
energy losses to the diffraction pattern.
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7.1 Fundamentals of Crystallography

7.1.1 Bravais Lattice and Lattice Planes

A crystal lattice consists of a regular array of unit cells, which are the small-
est building blocks of the lattice. Each unit cell is a parallelepiped, built
up from three noncoplanar, fundamental translation vectors a1,a2,a3. The
whole crystal lattice can be generated by translation of the unit cell through
multiples of the ai (Fig. 7.1). The origins of the unit cells therefore can be
described by a translation vector

rg = ma1 + na2 + oa3 (m,n, o integers). (7.1)

The end points of these vectors form the Bravais lattice. This Bravais
lattice may also be characterized by the values of |ai| = a, b, c and the angles
α, β, γ between the axes (Table 7.1). The unit cell is said to be primitive if
one single atom in the unit cell is sufficient to describe the positions of all
other atoms by translations rg. The unit cell normally contains more than
one (k = 1,...,n) atom at the positions

rk = uka1 + vka2 + wka3, (7.2)

r1 = (0,0,0), and r2 = (1
2 , 1

2 , 1
2 ) in a body-centered cubic lattice, for example

(Table 7.1). All other lattice points (open circles) belong to neighboring unit
cells. Table 7.1 lists the unit cells of the most important crystal structures and
the coordinates (uk, vk, wk). The position of an atom in a Bravais translation
lattice is defined by the vector sum rg + rk.

Fig. 7.1. Construction of a crystal by translation of the unit cell with fundamental
vectors a1, a2, a3. Example of lattice directions [100], [010], [001], and [312] and
lattice planes with Miller indices (312).
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Table 7.1. List of the most common crystal types (Bravais translation lattices).
Structures of the unit cell, lattice-plane spacings dhkl and structure factors Fcell

A) Lattices

1. Cubic lattices a = b = c; α = β = γ = 90◦; d = a√
h2 + k2 + l2

a) Simple cubic lattice (sc, e.g. Po)

b) Body-centered cubic lattice (bcc, e.g. Cr, Fe, Mo, W)
The unit cell consists of atom at
(0,0,0) and

(
1
2
, 1

2
, 1

2

)

Fcell = 0 if (h + k + l) odd
Fcell = 2f if (h + k + l) even

c) Face-centered cubic lattice (fcc, e.g. Al, Ni, Cu, Ag, Au, Pt)
The unit cell consists of atom at
(0,0,0),

(
1
2
, 1

2
, 0
)
,
(

1
2
, 0, 1

2

)
,
(
0, 1

2
, 1

2

)

Fcell = 0 if h, k, l mixed (even and odd)
Fcell = 4f if h, k, l all even or all odd

2. Hexagonal Lattices, a = b 	= c, α = β = 90◦, γ = 120◦

d = a√
4

3
(h2 + k2 + hk) + (a/c)2l2

3. Tetragonal lattices, a = b 	= c, α = β = γ = 90◦

d = a√
h2 + k2 + (a/c)2l2

4. Orthorhombic lattices, a 	= b 	= c, α = β = γ = 90◦

d = 1√
(h/a)2 + (k/b)2 + (l/c)2

5. Trigonal lattices, a = b = c, α = β = γ = 120◦

d = a

√
1 − 3 cos2 α + 2 cos3 α

B sin2 α + 2C(cos2 α − cos α)
;

B = h2 + k2 + l2

C = hk + kl + hl
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Table 7.1 (continued)

6. Monoclinic lattices, a 	= b 	= c, α = γ = 90◦, β 	= 90◦

d = 1√
A/ sin2 β + k2/b2

; A = h2

a2 + l2

c2 − 2hl
ac cos β

7. Triclinic lattice, a 	= b 	= c, α 	= β 	= γ 	= 90◦

d = abc

√
1 − cos2 α − cos2 β − cos2 γ + 2 cos α cos β cos γ
q11h

2 + q22k
2 + q33l

2 + q12hk + q13hl + q23kl

q11 = b2c2 sin2 α; q22 = a2c2 sin2 β; q33 = a2b2 sin2 γ
q12 = 2abc2(cos α cos β − cos γ)
q13 = 2ab2c(cos α cos γ − cos β)
q23 = 2a2bc(cos β cos γ − cos α)

B) Structures

1. Cubic structures

a) Diamond structure (e.g. C, Si, Ge)
The unit cell consist of two fcc lattices shifted by

(
1
4
, 1

4
, 1

4

)

|Fcell|2 = 0 if h,k,l mixed
|Fcell|2 = 64 f2

Ge if h,k,l all even and (h+k+l) = 4n
|Fcell|2 = 32 f2

Ge if h,k,l all odd
|Fcell|2 = 0 if h,k,l all even and (h+k+l) = 4n+2

b) Caesium chloride structure (e.g. CsCl, TlCl)
The unit cell consist of two primitive cubic lattices
shifted by

(
1
2
, 1

2
, 1

2

)
Cs: (0,0,0); Cl: ( 1

2
, 1

2
, 1

2
)

|Fcell|2 = (fCs+fCl)
2 if h+k+l even

|Fcell|2 = (fCs–fCl)
2 if h+k+l odd

c) Sodium chloride structure (e.g. NaCl, LiF, MgO)
Unit cell consits of two fcc Na and Cl sublattices shifted by ( 1

2
, 1

2
, 1

2
)

|Fcell|2 = 0 if h,k,l mixed
|Fcell|2 = 16 (fNa–fCl)

2 if h,k,l all odd
|Fcell|2 = 16 (fNa+fCl)

2 if h,k,l all even
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d) Zincblende structure (e.g. ZnS, CdS, InSb, GaAs)
Unit cell consists of two fcc Zn and S sublattices
shifted by ( 1

4
, 1

4
, 1

4
)

|Fcell|2 = 0 if h,k,l mixed
|Fcell|2 = 16 (f2

Zn+f2
S ) if h,k,l all odd

|Fcell|2 = 16 (fZn+fS)2 if h,k,l all even and (h+k+l) = 4n
|Fcell|2 = 16 (fZn–fS)2 if h,k,l all even and (h+k+l) = 4n+2

2. Hexagonal structures

a) Hexagonal close-packed
structure (hcp, e.g. Mg, Cd, Co, Zn)
Unit cell consists of atoms at (0,0,0), ( 1

3
, 2

3
, 1

2
)

|Fcell|2 = 0 if l odd, (h+2k)=3n
|Fcell|2 = 4f2 if l even, (h+2k)=3n
|Fcell|2 = 3f2 if l odd, (h+2k)=3n+1 or 3n+2
|Fcell|2 = f2 if l even, (h+2k)=3n+1 or 3n+2

b) Wurtzite structure (e.g. ZnS, ZnO)
Unit cell consists of two hcp Zn and S sublattices shifted by ( 1

3
, 1

3
, 1

8
)

The cubic lattices have the advantage that their structure can be described
by a Cartesian coordinate system. However, it is worth mentioning that the
face- and body-centered cubic lattices can also be described by a primitive
unit cell that is, however, trigonal in shape (Table 7.1).

Direction in crystals is expressed as a vector that connects the origin O to
the origin Q of another unit cell; the components of the vector are scaled so
that all are integers, as small as possible (e.g., [312], [100], etc., in Fig. 7.1).

Lattice planes are parallel, equidistant planes through the crystal with the
same periodicity as the unit cells. Examples of three equidistant lattice planes
are shown in Fig. 7.1; one further plane goes through the origin O. Such a set
of lattice planes can be characterized by Miller indices. The plane closest to



278 7 Theory of Electron Diffraction

the one that passes through the origin intercepts the fundamental translation
vectors ai at points that may be written a1/h, a2/k, a3/l (h, k, l integers);
otherwise, the system of parallel planes could not have the same periodicity
as the lattice because this requirement implies that there must be an integral
number h, k, l of interceptions of parallel planes that divide the translation
vectors ai of the unit cell into equal parts. The triplet (hkl) is the set of
Miller indices that are the reciprocal intercepts in units of |ai|. The intercepts
in Fig. 7.1 are a1/h = a1/3, a2/k = a2/1, a3/l = a3/2, and so the Miller indices
are (312). Miller indices are always enclosed in parentheses to distinguish them
from directions, which are always denoted by square brackets. Only in cubic
lattices is the [hkl] direction normal to the (hkl) lattice planes.

If a lattice plane intersects one or two axes at infinity, which means that
the plane is parallel to one or two of the ai, then the corresponding Miller
indices are zero (Fig. 7.2). If the plane cuts one of the axes on the negative side
of the origin, the corresponding Miller indices are negative. This is indicated
by placing a minus sign above the index; for example, (111) in Figs. 7.2, which
shows further examples of indices in a cubic lattice.

For hexagonal lattices, four indices (hkil) are often used; these are obtained
from intercepts with the c axis and the three binary axes inclined at 120◦ to
one another. The indices h, k, and i satisfy the relation i = –(h+k).

If we wish to refer to a full set of equivalent lattice planes, such as all
six cubic faces of a cubic crystal, (100), (010), (001), (100), (010), (001), we
enclose the Miller indices in braces (curly brackets): {100}. Thus we might
say that the {111} planes in a face-centered cubic lattice are close-packed
planes. A full set of crystallographically equivalent directions or axes with
all directions parallel to one of the fundamental vectors ai, for example, is
denoted by angle brackets: 〈100〉.

Close-packed structures such as the face-centered cubic and the hexagonal
close-packed structures are of special interest. Figure 7.3 shows that there are
two possible sets of positions, B and C, at which a second close-packed plane
can be stacked above the plane with atoms at positions A. The face-centered
cubic lattice can be characterized by the sequence ABCABC..., and the {111}

Fig. 7.2. (a-c) Examples of lattice planes in a cubic crystal: (a) cubic {100}, (b)
dodecahedral {110}, and (c) octahedral {111}.
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Fig. 7.3. Close-packed atoms in a
layer A and positions of the atoms in
neighboring layers B or C. Ri (i = 1,
2, 3) are the displacement vectors of
the layers in a close-packed lattice.

Fig. 7.4. Construction of reciprocal-lattice vectors g parallel to the normal of the
crystal-lattice planes with indices (hkl) and length 1/dhkl.

planes are then close-packed, whereas the closed-packed hexagonal structure
follows the sequence ABAB... and the close-packed planes are now (0001).
This corresponds to a ratio c/a =

√
8/3 = 1.63. However, the measured value

of this ratio for hexagonal crystals is slightly different as a result of binding
forces depending on the crystallographic directions parallel and normal to the
close-packed planes.

7.1.2 The Reciprocal Lattice

The reciprocal-lattice concept is important for the understanding and inter-
pretation of electron-diffraction patterns. There are different ways of intro-
ducing the reciprocal lattice, which will be shown to be equivalent.

We start with an intuitive, graphical construction. Each point of the recip-
rocal lattice will be related to a set of lattice planes of the crystal lattice with
Miller indices (hkl). Such a point can be constructed by plotting a vector n
normal to the (hkl) planes and of length 1/dhkl from the origin O of the recip-
rocal lattice. The procedure is illustrated in Fig. 7.4 for a two-dimensional
projection of a lattice (built up from the vectors a1 and a2 with a3 normal
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to the plane). The lattice planes (hk0) = (320) intercept this plane in paral-
lel straight lines dhk0 apart. Figure 7.4 shows that all points of a reciprocal
lattice can be described by the reciprocal translation vectors a∗

1 and a∗
2 with

|a∗
1| = 1/d100 = 1/a1 and |a∗

2| = 1/d010 = 1/a1 and that g = ha∗
1 + ka∗

2 is a
reciprocal-lattice vector.

The next method is a more abstract mathematical construction. If the
ai are the fundamental translation vectors of a primitive unit cell, the lattice
vectors ai and the translation vectors a∗

i of the reciprocal lattice are related by

ai · a∗
j = δij =

{
0 if i �= j
1 if i = j

(i, j = 1, 2, 3). (7.3)

This system of nine equations has the solution

a∗
1 =

a2 × a3

Ve
, a∗

2 =
a3 × a1

Ve
, a∗

3 =
a1 × a2

Ve
. (7.4)

This shows immediately that the vector a∗
1 is normal to a2 and a3. (Ve =

a1 · (a2 × a3) is the volume of the unit cell.)
The reciprocal lattice of a primitive cubic cell with lattice constant a is

again a primitive cubic; the lattice constant of the reciprocal unit cell is 1/a.
The reciprocal lattice of a face-centered cubic (fcc) lattice can be deduced by
considering the primitive trigonal cell of Table 7.1; we see that any fundamen-
tal vector of the primitive trigonal unit cell of the body-centered cubic (bcc)
lattice is normal to two fundamental vectors of the primitive trigonal unit cell
of the fcc lattice. The condition (7.4) for the fcc lattice therefore is satisfied
by a reciprocal bcc lattice. Conversely, the reciprocal lattice of a bcc lattice
is fcc (Fig. 7.5).

Fig. 7.5. Body-centered cubic crystal (b) as the reciprocal lattice of a face-centered
cubic lattice (a) and vice versa. Only the full circles in (b) are reciprocal-lattice
points. The open circles are forbidden by the extinction rules for the structure
amplitude F . The shaded planes are used in Sect. 7.1.3 to construct the Laue zones
(Fig. 7.7).
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Not all of the reciprocal lattice points predicted by (7.4) can in fact be
observed when the fundamental vectors of a nonprimitive unit cell are used.
Some points will disappear. In the reciprocal lattice of the nonprimitive fcc
structure (Fig. 7.5b), for example, the reciprocal lattice points 200, 220 etc.
are allowed, but 100, 210, etc., are “forbidden”. The reasons for this will
become clearer when we meet the zero rules (F = 0) of the structure am-
plitude F in Sect. 7.2.2 or the interpretation of the reciprocal lattice as the
three-dimensional Fourier transform of the crystal lattice (see the end of this
section).

Let us now consider some important laws that can be derived from the
definitions (7.3) and (7.4) of the reciprocal lattice:

(1) The reciprocal-lattice vector g = ha∗
1+ka∗

2+la∗
3 (h, k, l integers) is normal

to the (hkl) planes.

Proof: Figure 7.1 shows that two nonparallel vectors on the (hkl) plane can be
obtained as differences between the points at which the fundamental lattice
vectors intersect this plane: r1 = a1/h − a2/k, r2 = a1/h − a3/l. The scalar
products of these vectors with g are zero, which means that g ⊥ r1, r2; g is
therefore also normal to all other vectors that lie in the (hkl) plane.

(2) The length of the reciprocal-lattice vector g is equal to the reciprocal
lattice-plane distance 1/dhkl.

Proof: Let un be the unit vector normal to the (hkl) plane and hence parallel
to g, which means that we can write un = g/|g|. From Fig. 7.1, we see that
dhkl is equal to the projection of a1/h, a2/k, or a3/l on the unit vector un:

dhkl = un · a1/h =
g

|g| ·
a1

h
=

1
|g| . (7.5)

(3) The solution of the system of (Laue) equations

ai · g = hi (i = 1, 2, 3; h1,2,3 = h, k, l) (7.6)

is

g = ha∗
1 + ka∗

2 + la∗
3. (7.7)

Proof: Substitute (7.7) into (7.6) and use (7.3).

The third way to introduce the reciprocal lattice is to define it as the
Fourier transform of the crystal lattice. The Fourier integral (3.40) of a three-
dimensional crystal lattice with δ-functions at the origins of the unit cells
becomes a sum over the discrete lattice points rg (7.1),

G(q) =
∑
g

exp(−2πi q · rg)

=
∑

m,n,o
exp[−2πi q · (ma1 + na2 + oa3)], (7.8)
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where m,n, o are integers. This sum will be nonzero only if the products q ·ai

in the exponent are all integers. If we call these integers hi, we recover the
system of equations (7.6) and have nonvanishing values of G(q) for q = g.

7.1.3 Construction of Laue Zones

The product of a translation vector rg (7.1) of the crystal lattice and a
reciprocal-lattice vector g (7.7),

g · rg = mh + nk + ol = N, (7.9)

is an integer. If N = 0, all the g for a given value of rg lie in a plane through
the origin of the reciprocal lattice and are normal to the zone axis rg. The
system of lattice planes that belongs to these values of g forms a bundle of
planes that have the zone axis as a common line of intersection (Fig. 7.6a).
The reciprocal-lattice plane that contains the corresponding g is called the
zero-order Laue zone. For N = 1, 2, ... the first- (FOLZ), second-, and higher-
order (HOLZ) Laue zones, respectively, are obtained, which are parallel to the
zero-order Laue zone (Fig. 7.6b). This means that the Laue zones are parallel
sections through the reciprocal lattice.

The construction of Laue zones is very useful for the indexing and
computation of electron-diffraction patterns. Either triplets of integers hkl
are sought that fulfill the condition (7.9) and have nonzero structure ampli-
tude (Sect. 7.2.2) or a model of the reciprocal lattice like that of Fig. 7.5b can
be used.

Fig. 7.6. (a) Bundle of lattice planes with the common zone axis [mno]. (b) Position
of the zero- and higher-order Laue zones in the reciprocal lattice. The angles θ1 and
θ2 at which the Ewald sphere cuts the higher-order zones are discussed in Sect. 8.3.4.
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Fig. 7.7. Examples of the construction of zero- and first- or second-order Laue zones
for the [100], [110], and [111] zone axes of a face-centered cubic lattice.

From Fig. 7.5b, for example, the reciprocal-lattice points for an fcc lattice
can be read off; these are situated on the Laue zones for the zone axes [mno]
= [100], [110], and [111]. Figure 7.7 shows indexed zone patterns for the zero-,
first-, and second-order Laue zones.

7.2 Kinematical Theory of Electron Diffraction

7.2.1 Bragg Condition and Ewald Sphere

The Laue conditions q · ai = hi (integers), which result from the Fourier
transform (7.9) of the crystal lattice, guarantee that the scattered plane waves
with wave vectors k do indeed overlap and interfere constructively, so that
their amplitudes sum. With q = k−k0 (3.39) and q = g from (7.9), the Laue
conditions can be solved for q = k − k0 by using (7.6) and (7.7), which gives

k − k0 = g = ha∗
1 + ka∗

2 + la∗
3. (7.10)

This is the Bragg condition in vector notation. The vector g = k − k0 is
normal to the bisector of the angle between k0 and k (Fig. 7.8). On the right-
hand side of (7.10), we have the reciprocal-lattice vector g, which is normal to
the lattice planes (hkl). It follows that k − k0 is parallel to this normal. The
angles of incidence and scattering θB relative to the lattice planes (Fig. 7.8)
must be equal. Although this is strictly an interference phenomenon, the result
can be interpreted as a reflection at the lattice planes. It differs from light-
optical reflection in that only a fixed angle θB is allowed. This Bragg angle
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Fig. 7.8. Ewald sphere of radius k = 1/λ
in a reciprocal lattice. A Bragg reflection is
excited if the sphere intersects a reciprocal-
lattice point, such as H.

θB can be calculated by examining the magnitude of (7.10). Figure 7.8 shows
that |k − k0| = 2 sin θB/λ and |g| = 1/dhkl (7.5). Thus (7.10) results in the
well-known Bragg condition

2dhkl sin θB = λ. (7.11)

The Bragg condition is valid for x-rays and electrons. Typical back reflections
with 2θB close to 180◦ can be obtained with x-rays, whereas the same lattice
planes typically give forward reflection for electrons since the wavelength is so
much smaller. The scattering amplitude for x-rays is approximately isotropic
for all scattering angles, and back reflection can be observed, whereas the
scattering amplitude for electrons decreases with increasing angle and the
Bragg reflections are limited to a cone with an aperture of the order of 50 mrad.

Equation (7.10) can be used to generate a construction first employed by
Ewald. A vector k0 = MO is drawn with one end at the origin O of the
reciprocal lattice and with a length |k0| = 1/λ (Figs. 7.6 and 7.8). The other
end M (excitation point) of k0 is taken as the center of a sphere of radius 1/λ.
Diffraction will be observed only if this Ewald sphere intersects one or more
points g of the reciprocal lattice (e.g., H in Fig. 7.8). The direction k = MH
will be the direction of the scattered wave, and k − k0 = g is the vector that
connects the end points of k and k0.

The Ewald sphere in Fig. 7.8 has been drawn with a small radius, as for
x-rays. In electron diffraction, the radius of the Ewald sphere, 1/λ = 240
nm−1 for 80 keV electrons, is much larger than the distances between the
reciprocal-lattice points; e.g. 1/a = 2.8 nm−1 for copper (Fig. 7.6b).

If the incident beam is parallel to a zone axis, the diffraction pattern (e.g.,
Fig. 7.26a) contains Bragg reflections near the primary beam from the zero-
order Laue zone; at larger Bragg angles, circles of reflections occur where
the Ewald sphere cuts the first- and higher-order Laue zones (see also the
discussion of HOLZ patterns in Sect. 8.3.4).
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7.2.2 Structure Amplitude and Lattice Amplitude

The amplitude of the scattered wave in the direction k can be obtained
from the Fourier transform of the crystal lattice. Consider the kth atom
(k = 1, . . . , n) inside one unit cell; this atom scatters with an amplitude fk(θ),
which can be calculated by one of the methods described in Sect. 5.1.3 if a
screened Coulomb potential modified by close packing of atoms in a solid
(e.g., the muffin-tin model) is used. Furthermore, the crystal is assumed to be
parallelepipedal in shape, with edge lengths Li = Miai (i = 1, 2, 3) parallel
to the fundamental vectors ai. The Fourier sum (7.9) becomes

F (q) =
M1∑

m=1

M2∑
n=1

M3∑
o=1

n∑
k=1

fk exp[−2πi(k − k0) · (rg + rk)]. (7.12)

The summation over k, which corresponds to the different atoms of the unit
cell, can be extracted, and (7.12) becomes

F (q) =
n∑

k=1

fk exp[−2πi(k − k0) · rk]
︸ ︷︷ ︸

Fcell

·
∑
m

∑
n

∑
o

exp[−2πi(k − k0) · rg]
︸ ︷︷ ︸

G

. (7.13)

The first factor, Fcell, is called the structure amplitude and depends only on
the positions and type of atoms inside the unit cell. The second factor, G,
is called the lattice amplitude and depends only on the external shape of the
crystal.

The structure amplitude will be of interest only for the Bragg condition.
It will not be altered by small deviations from the geometry of the Bragg
condition, unlike G, as our later calculations will show. Substituting for rk

from (7.2), we find

Fcell =
n∑

k=1

fk exp(−2πig · rk) =
n∑

k=1

fk exp[−2πi(ukh + vkk + wkl)]. (7.14)

The value of Fcell will now be calculated for some typical examples.

(a) Body-Centered Cubic Lattice

Even though the body-centered cubic lattice is a Bravais lattice, it can be
described as a simple cubic lattice with two atoms in the unit cell (Table 7.1)
at r1 = (0, 0, 0) and r2 = (1

2 , 1
2 , 1

2 ). Substitution in (7.14) gives

Fcell = f{1 + exp[−πi(h + k + l)]}.
Using the relation

exp(−iπn) =
{

1 if n is an even integer
−1 if n is an odd integer,
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we find

Fcell =
{

2f if h + k + l is even
0 if h + k + l is odd.

(b) Face-Centered Cubic Lattice

The face-centered cubic lattice can be described as a simple cubic lattice with
four atoms in the unit cell at the positions
r1 = (0,0,0), r2 = (1

2 , 1
2 , 0), r3 = (1

2 , 0, 1
2 ), r4 = (0, 1

2 , 1
2 ).

Hence

Fcell = f{1 + exp[−πi(h + k)] + exp[−πi(h + l)] + exp[−πi(k + l)]}.
The rules odd + odd = even, etc., show that

Fcell =
{

4f if h, k, l, are either all even or all odd
0 if h, k, l, are mixed (odd and even).

(c) NaCl Structure

The unit cell consists of two sodium and chlorine face-centered sublattices
that are shifted by one half of the body diagonal (1

2 , 1
2 , 1

2 ) of the unit cell.
This shift can be considered by introducing a common phase factor for the
chlorine sublattice,

Fcell = {fNa + fCl exp[−πi(h + k + l)]}
×{1 + exp[−πi(h + k)] + exp[−πi(h + l)] + exp[−πi(k + l)]},

which results in

Fcell =

⎧⎨
⎩

4(fNa + fCl) if h, k, l, are all even
4(fNa − fCl) if h, k, l, are all odd

0 if h, k, l, are mixed.

Similar calculations can be made for other crystal structures (Table 7.1).
The three types of cubic lattices exhibit different zero rules; i.e., different sets
of (hkl) for which F = 0. These exclude some of the g values of the reciprocal
lattice that would be found if a primitive unit cell with only one atom at the
origin of each unit cell were used. The two atoms in the body-centered cell and
the four atoms in the face-centered cell all scatter either in phase (constructive
interference) or in antiphase, leading to F = 0 (destructive interference).

For more complicated structures (e.g., NaCl), the nonzero reflections can
have different structure amplitudes. In the case of KCl, the difference (fK−fCl)
for h, k, l odd becomes very small. It is zero for x-rays because both the K+
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Fig. 7.9. Introduction of the ex-
citation error s and a convolution
of the reciprocal-lattice points
with the needle-shaped square of
the lattice amplitude |G|2 for a
thin foil of thickness t.

and the Cl− ions have the same electron configuration as argon. In electron
diffraction, there is a small residual difference in the nuclear charges Ze.

We now consider the triple sum of the lattice amplitude G in (7.13) and
allow small deviations from the exact Bragg condition k − k0 = g. This
deviation is described by the excitation error s = (sx, sy, sz); this vector
connects the lattice point g in the reciprocal lattice to the Ewald sphere in
the direction parallel to the incident beam (Fig. 7.9). The magnitude and the
tilt angle ∆θ out of the Bragg condition are related by

s = g∆θ =
∆θ

dhkl
=

2 sin θB

λ
∆θ. (7.15)

Substituting k − k0 = g + s in (7.13) and recalling that g · ai = n (integer)
and exp(−2πin) = 1, we obtain an expression for the lattice amplitude

G =
M1∑

m=1

M2∑
n=1

M3∑
o=1

exp[−2πi(g + s) · rg] =
∑

m,n,o
exp(−2πis · rg). (7.16)

The phase 2πis ·rg varies very slowly as we move through the crystal from one
unit cell to another. The triple sum can therefore be replaced by an integral
over the crystal volume V = L1L2L3 (Ve: volume of the unit cell),

G =
1
Ve

+L1/2∫
−L1/2

+L2/2∫
−L2/2

+L3/2∫
−L3/2

exp[−2πi(sxx + syy + szz)]dxdydz. (7.17)

Setting Ve = a1a2a3 (cubic lattice) and integrating with respect to x, we find

Gx =
1
a1

+L1/2∫
−L1/2

exp(−2πisxx)dx

=
1

πsxa1

exp(πisxL1) − exp(−πisxL1)
2i

=
sin(πsxM1a1)

πsxa1
(7.18)
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and correspondingly for the y and z directions. This is the typical formula,
well known in light optics, for the diffraction at a grating with M1 slits with
spacing a1. The total diffracted intensity becomes

Ig ∝ |Fcell|2|G|2 =

|Fcell|2
sin2(πsxM1a1)

(πsxa1)2
sin2(πsyM2a2)

(πsya2)2
sin2(πszM3a3)

(πsza3)2
. (7.19)

The form of |G|2 will now be discussed for some simple crystal shapes.

(1) Thin Crystal Foils (Discs) with the z direction of electron incidence nor-
mal to the surface (Fig. 7.10a). The last factor in (7.19) reaches a maximum
value of M2

3 for sz = 0; it first falls to zero when the numerator becomes
zero, which occurs when πszM3a3 = π or sz = 1/M3a3 = 1/L3 = 1/t.
Corresponding values are found for the x and y directions. However, the
intensity first becomes zero at much lower excitation errors, sx = 1/L1

and sy = 1/L2 (L1, L2 = 1/D). The function |G(sx, sy, sz)|2 therefore has a
needle-like shape in the z direction (Fig. 7.10a). The length of the needle in the
reciprocal lattice is inversely proportional to the foil thickness L3 = t. Each
reciprocal-lattice point will be convolved with this |G|2 function (Fig. 7.9). The
needle-like extension of the lattice points provokes simultaneous excitation of
a large number of Bragg reflections because the Ewald sphere can intersect

Fig. 7.10. Shape of the square
of the lattice amplitude |G|2 with
which reciprocal-lattice points
have to be convolved for (a) a
crystal disc (thin foil of thickness
t), (b) a needle of length t, and
(c) a sphere of diameter L.
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more needles than points (Figs. 7.6b and 7.9). Such needles in the reciprocal
lattice can also be observed for plate-like precipitates in alloys. If the plates
are inclined to the foil, this can cause elongations of the Bragg spots or the
latter may appear to be shifted (Fig. 8.12).

(2) Needle-like Crystals with the long axis in the z direction (Fig. 7.10b). The
first zero for |G|2 is reached for small sz and larger sx and sy. |G|2 is thus a
disc normal to the z axis.

(3) Small Cubes (Spheres) with edge (diameter) L. The extension of |G|2 is the
same in all directions: sx = sy = sz = 1/L (Fig. 7.10c). If the Ewald sphere
intersects a reciprocal-lattice point, a broadened diffraction spot is observed.
Debye–Scherrer rings will be broadened by

∆r

r
=

1/L

1/d
=

d

L
. (7.20)

This relation can be used to estimate particle dimensions in the range L =
0.3–5 nm from the broadening ∆r of the rings.

Finally, we can arrive at the concept of convolution of each reciprocal-
lattice point with |G|2 by reasoning based on the Fourier transform and in
particular on the convolution theorem (3.48), which transforms a convolution
of two functions into a product of their Fourier transforms; likewise a product
is transformed into a convolution.

A crystal can be described by the expression [p(r) ⊗ f(r)] · g(r), which
involves the three functions p(r), f(r), and g(r); p(r) denotes a set of
δ-functions at the origin of the unit cells, while f(r) describes the potential
within a single unit cell. The convolution [p(r) ⊗ f(r)] represents an infinite
lattice in which each origin is convolved with the potential of a unit cell.
Finally, g(r) = 1 inside and 0 outside the crystal defines the finite crystal
volume.

The Fourier transform yields

F{[p(r) ⊗ f(r)] · g(r)} = [P (q) · Fcell(q)] ⊗ G(q), (7.21)

in which P (q) denotes a set of δ-functions at the reciprocal-lattice points;
Fcell(q) is the structure amplitude. The presence of points at which Fcell = 0
reduces the number of reciprocal-lattice points if the unit cell contains more
than one atom. G(q) is the lattice amplitude. Each reciprocal-lattice point is
convolved with this function.

7.2.3 Column Approximation

In discussions of the contrast of defects in crystalline specimens, it is useful to
consider not only the amplitude F (q) in the Fraunhofer diffraction plane but
also the intensity at a point P just below the specimen (Fresnel diffraction).
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Fig. 7.11. (a) Column approximation for calculating the amplitude ψg of a dif-
fracted wave at a point P on the bottom of a crystal foil of thickness z = t (2ρ1

= diameter of the first Fresnel zone). (b) Amplitude-phase diagram for calculating
Ig = ψgψ∗

g .

We assume r → ∞ in the formula for Fresnel diffraction (Sect. 3.2.1),
which means that the point source is at infinity and hence that we have a plane
incident wave of amplitude ψ0. There are dz/Ve unit cells per unit area in an
element of thickness dz, each of which scatters with the structure amplitude
F (θ). We use the scattered wavefront with a scattering angle θ = 2θB to
calculate the contribution dψg of the layer dz to the diffracted amplitude at
the point P (Fig. 7.11a). Strictly, ψ0/ cos θ should be used instead of ψ0 to
correct for the cross section of the wavefront. This correction can, however,
be neglected because cos θ � 1 for the small values of θ in question. Equation
(3.28) becomes

dψg = ψ0
dz

Ve

∫
S

F (θ)
e2πikR

R
dS = ψ0

2πdz

Ve

R∫
R0

F (θ)e2πikRdR

= iψ0
λF (θ)

Ve
e2πikR0dz =

iπ
ξg

ψ0e2πikR0dz (7.22)

with dS = 2πR dR. We have introduced the extinction distance ξg (Table
7.2), defined by

ξg =
πVe

λF (θ)
. (7.23)

It was shown in Sect. 3.2.1 that the main contribution to the integral in
(7.22) comes from the first Fresnel zone of radius ρ1 =

√
λR0 (Fig. 7.11a). For

a distance (foil thickness) R0 = 100 nm and λ = 3.7 pm (100 keV electrons),
we find ρ1 = 0.6 nm. This means that only a column with a diameter of
1–2 nm is contributing to the amplitude at the point P, and the method is
therefore called the column approximation.
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Table 7.2. Extinction distances ξg [nm] for E = 100 keV. (Th: Thomas et al. [7.16],
H: Hirsch et al. [7.17]

Face-centered cubic lattice and NaCl structure
hkl 111 200 220 311 222 400 331

Al 56.3 68.5 114.4 147.6 158.6 202.4 235.7 Th
Cu 28.6 32.6 47.3 57.9 61.5 76.4 88.1 Th
Ni 26.8 30.6 44.6 54.7 58.1 72.0 82.9 Th
Ag 24.2 27.2 38.6 47.4 50.4 63.0 73.0 Th
Pt 14.7 16.6 23.2 27.4 28.8 34.3 38.5 H
Au 18.3 20.2 27.8 33.6 35.6 43.5 49.5 Th
Pb 24.0 26.6 35.9 41.8 43.6 50.5 55.5 H
LiF 117.7 64.5 94.2 219.9 121.0 146.3 335.2 H
MgO 272.6 46.1 66.2 1180 85.2 103.3 1075 H

Body-centered cubic lattice
hkl 110 200 211 220 310 222 400

Cr 28.8 42.3 55.5 68.6 81.6 94.7 121.9 Th
Fe 28.6 41.2 53.5 65.8 78.0 90.4 116.2 Th
Nb 26.1 38.3 49.9 61.4 72.9 84.6 108.5 Th
Mo 22.9 33.6 43.2 52.7 62.0 72.3 89.7 Th
Ta 20.2 27.5 33.9 40.0 45.9 51.8 63.8 Th
W 18.0 24.5 30.2 35.5 41.0 46.2 55.6 Th

Diamond structure
511

hkl 111 220 311 400 331 333 400

C 47.6 66.5 124.5 121.5 197.2 261.3 215.1 H
Si 60.2 75.7 134.9 126.8 204.6 264.5 209.3 H
Ge 43.0 45.2 75.7 65.9 102.8 127.3 100.8 H

Hexagonal lattice
hkl 1110 1120 2200 1101 2201 0002 1102

Mg 150.9 140.5 334.8 100.1 201.8 81.1 231.0 H
Co 46.9 42.9 102.7 30.6 62.0 21.8 70.2 H
Zn 55.3 49.7 118.0 35.1 70.4 26.0 76.2 H
Zr 59.4 49.3 115.1 37.9 69.1 51.7 83.7 H
Cd 51.9 43.8 102.3 32.4 60.8 24.4 68.3 H

The amplitude ψg of a Bragg reflection is obtained by integrating (7.22)
over the thickness. Using k = k0 + g + s, R0 = t − z, and |ψ0| =1 [1.26],

ψg = i
π

ξg
exp(2πik0t)

t∫
0

exp[−2πi(g + s) · z]dz

= i
π

ξg
exp(2πik0t)

t∫
0

exp(−2πisz)dz. (7.24)
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The integral may be evaluated as for (7.18), and the diffraction intensity at
the point P (I0 = 1) becomes

Ig = ψgψ
∗
g =

π2

ξ2
g

sin2(πts)
(πs)2

. (7.25)

Substituting for ξg from (7.23), we obtain the same dependence on the exci-
tation error s as in (7.19).

The last integral in (7.24) can also be solved graphically by using an
amplitude-phase diagram (Sect. 3.2.1) in which lengths dz are added vec-
torially with slope 2πsz in the complex-number plane (Fig. 7.11b); the result
is a circle of radius r. The length of the circular segment QQ′ is t. The circle
is closed when the phase factor exp(2πisz) reaches unity, which occurs for
sz = 1 and so the perimeter 2πr of the circle is equal to 1/s. It follows that
r = 1/2πs. The amplitude ψg is proportional to the square of the length of the
chord QQ′. For foil thicknesses t = n/s (n integer), Q and Q′ coincide and the
diffraction intensity Ig becomes zero; when the thickness is further increased,
Ig = R again increases and subsequently oscillates as shown in Fig. 7.14b.

7.3 Dynamical Theory of Electron Diffraction

7.3.1 Limitations of the Kinematical Theory

The kinematical theory is valid only for very thin films for which the reflection
intensity Ig is small and the decrease of the primary-beam intensity I0 can
be neglected. If the Bragg condition is exactly satisfied (s = 0), we obtain
from (7.25) Ig = π2t2/ξ2

g and I0 = 1. The intensity Ig increases as t2, and the
condition Ig � 1 will be satisfied only for t < ξg/10. If s �= 0, the intensity Ig

oscillates with increasing t and reaches maximum values of 1/ξ2
gs2 (Fig. 7.14b).

The condition Ig � 1 will be satisfied when s � 1/ξg. In Sect. 7.3.4, we
shall see that, in this case, the kinematical and dynamical theories lead to
identical results.

Furthermore, it must not be forgotten that the case in which only one
Bragg reflection is excited, which is called the two-beam case (including the
primary beam with g = 0), is unusual; normally, a larger number n > 2 of
reflections must be considered (n-beam case). Numerous small reflection in-
tensities Ig can reduce the intensity of the primary beam more strongly than in
the two-beam case. The n-beam case therefore restricts the validity of the kine-
matical theory to even smaller thicknesses. In the Bragg condition (s = 0), the
dynamical theory predicts an oscillation of the intensities I0 and Ig. A strong
Bragg reflection will excite neighboring reflections with a larger amplitude
than the primary beam. Therefore, in many practical situations the interac-
tion of 30–100 Bragg reflections has to be considered. Furthermore, the in-
tensity does not remain localized in the Bragg reflection. The diffuse electron
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scattering between the Bragg diffraction spots by inelastic and thermal dif-
fuse scattering causes a decrease of intensity in the Bragg spots themselves
(Sect. 7.4.2).

7.3.2 Formulation of the Dynamical Theory as a System
of Differential Equations

This formulation of dynamical theory was first used by Darwin [7.4, 7.5] for
x-ray diffraction and transferred by Howie and Whelan [7.6] to electron dif-
fraction.

We first discuss the two-beam case [1.26]. An incident wave of amplitude
ψ0 and a diffracted wave of amplitude ψg fall on a layer of thickness dz
inside the crystal foil. After passing through this layer, the amplitude ψ0 will
be changed by dψ0 and ψg by dψg. These changes can be calculated from
Fresnel diffraction theory using the column approximation. The contributions
of ψ0 and ψg to dψ0 and dψg can be obtained by using (7.22)–(7.24) with
the extinction distances (7.23) ξ0 = πVe/λF (0) and ξg = πVe/λF (2θB). The
result is a linear system of differential equations (Howie–Whelan equations):

dψ0

dz
=

iπ
ξ0

ψ0 +
iπ
ξg

ψge2πisz,

dψg

dz
=

iπ
ξg

ψ0e−2πisz +
iπ
ξ0

ψg. (7.26)

The second term of the first equation results from the scattering of the dif-
fracted wave back into the primary beam; the sign of the excitation error s is
the reverse of that for scattering in the opposite direction (first term in the
second equation). This system of equations can be extended to the n-beam
case by introducing the relative excitation errors sg−h and extinction distances
ξg−h:

dψg

dz
=

gn∑
h=g1

iπ
ξg−h

ψh exp(2πisg−hz) for g = g1, ..., gn; g1 = 0. (7.27)

In the final result, we are interested only in the reflection intensity Ig and we
can therefore use the transformation

ψ′
0 = ψ0 exp(−iπz/ξ0); ψ′

g = ψg exp(2πisz − iπz/ξ0). (7.28)

These new quantities contain only an additional phase factor, which cancels
out when we multiply by the complex conjugate. Substituting (7.28) into
(7.26) yields the simpler formulas

dψ′
0

dz
=

iπ
ξg

ψ′
g,

dψ′
g

dz
=

iπ
ξg

ψ′
0 + 2πisψ′

g. (7.29)
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The boundary conditions for these differential equations at the entrance sur-
face of the foil (z = 0) are |ψ0| = 1 and |ψg| = 0. We discuss a solution of
(7.29) together with the solution of the eigenvalue problem in Sect. 7.3.4.

The system of differential equations for the n-beam case can be solved
by the Runge–Kutta method or a similar numerical method. The multislice
method (Sect. 9.6.3) uses elements of finite thickness ∆z and projects the
potential inside the layer ∆z onto the lower boundary of the layer element.
The space between the layers is treated as a vacuum and the wave propagates
by Fresnel diffraction.

7.3.3 Formulation of the Dynamical Theory
as an Eigenvalue Problem

This formulation was first used by Bethe [7.7] for electron diffraction. The
Schrödinger equation (3.21) is solved with a potential V (r) that is the su-
perposition of all the atomic potentials (Fig. 3.3) and therefore has the
same periodicity as the lattice. This means that V (r) can be expanded as
a Fourier sum:

V (r) = −
∑
g

Vg exp(2πig · r) = − h2

2m

∑
g

Ug exp(2πig · r). (7.30)

A value Vg can be attributed to each point g of the reciprocal lattice. The Vg

(eV) and Ug (cm−2) are related to the structure amplitude F (θ)(θ = 2θB) of
the kinematical theory because, in the Born approximation, F (θ) is also the
Fourier transform of the scattering potential V (r) (Sect. 5.1.3):

Vg =
λ2E

2πVe

2E0 + E

E0 + E
F (θ) =

h2

2πmVe
F (θ); Ug =

F (θ)
πVe

. (7.31)

The extinction distance ξg introduced by (7.23) can be written as follows,
where ξg,100 denotes the extinction distance at E = 100 keV:

ξg =
πVe

λF (θ)
=

λE

2Vg

2E0 + E

E0 + E
=

h2

2mλVg
=

1
λUg

, (7.32)

ξg = ξg,100
m100λ100

mλ
= ξg,100

v

v100
. (7.33)

Equation (7.33) allows us to transfer tabulated values of ξg for E = 100 keV
(Table 7.2) to other electron energies. The influence of lattice vibrations (see
the Debye–Waller factor exp(−2M) in Sect. 7.5.3) and the thermal expansion
of the lattice cause a slow increase of ξg with temperature [7.8, 7.9].

If (7.30) for V (r) is substituted in (3.21), the solutions will also reflect the
lattice periodicity. Such solutions of the Schrödinger equation are called Bloch
waves,

b(j)(k, r) =
∑
g

C(j)
g exp[2πi(k(j)

0 + g) · r]. (7.34)
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The summation runs over the infinite number of reciprocal-lattice vectors g.
As an approximation, we confine the sum over n excited points g = g1, ..., gn

of the reciprocal lattice, including the incident direction (g1 = 0). The number
j = 1,. . . ,n of different Bloch waves is needed to represent the propagation
of electron waves in a crystal and to satisfy the boundary condition at the
vacuum–crystal interface. This requires a superposition of n2 different waves
with wave vectors k

(j)
0 + g and amplitude factors C

(j)
g .

We substitute (7.30) and (7.34) into (3.21) and introduce the abbreviation

K = [2m0E(1 + E/2E0) + 2m0V0(1 + E/E0)]1/2/h (7.35)

for the wave vector inside the crystal, which is obtained from the sum of the
kinetic energy and the coefficient V0 = eUi (inner potential) (Sect. 3.1.3) of
the Fourier expansion (7.30). This gives

4π2
∑
g

[
K2 − (k(j)

0 + g)2 +
∑
h�=0

Uh exp(2πih · r)

]

· C
(j)
g exp[2πi(k(j)

0 + g) · r] = 0 (7.36)

for all g. This system of equations can be satisfied if the coefficients of identical
exponential terms simultaneously become zero. After collecting up terms con-
taining the factor exp[2πi(k(j)

0 + g) · r], we obtain the fundamental equations
of dynamical theory,

[K2 − (k(j)
0 + g)2]C(j)

g +
∑
h�=0

UhC
(j)
g−h = 0; g = g1, ..., gn. (7.37)

The k(j)
g = k

(j)
0 +g are the wave vectors of the Bloch waves, the magnitudes of

which are not identical with K. As in kinematical theory (Fig. 7.8), we obtain
the excitation points Mj as the starting points of the vectors k

(j)
0 , which end

at the origin O of the reciprocal lattice. For calculation of the position of Mj ,
we recall that K � g and

K + |k(j)
0 + g| � K + k(j)

z � 2K. (7.38)

Introducing the difference (Fig. 7.12)

K − |k(j)
0 + g| � sg − (k(j)

z − K) = sg − γ(j), (7.39)

we find that the first factor of (7.37) becomes

[K2 − (k(j)
0 + g)2] = (K + |k(j)

0 + g|)(K − |k(j)
0 + g|) � 2K(sg − γ(j)). (7.40)

sg is negative when the reciprocal-lattice point g is outside the Ewald sphere,
as in Fig. 7.12. By using (7.40), the system of equations (7.37) can be written
in matrix form after dividing by 2K, and we have [7.10, 7.11, 7.12, 7.13]⎛
⎜⎜⎝

A11 A12 ... A1n

... ... ... ...
A21 A22 ... A2n

An1 An2 ... Ann

⎞
⎟⎟⎠

⎛
⎜⎜⎜⎝

C
(j)
1

C
(j)
2

...

C
(j)
3

⎞
⎟⎟⎟⎠ = γ(j)

⎛
⎜⎜⎜⎝

C
(j)
1

C
(j)
2

...

C
(j)
3

⎞
⎟⎟⎟⎠ for j = 1, ..., n (7.41)
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Fig. 7.12. Branches j = 1 and 2 of the dispersion surface for the two-beam case with
a least distance ∆kz,min = 1/ξg in the Bragg condition (kx = 0). Construction of the
excitation points M1 and M2 on the dispersion surface for the tilt parameter kx and
the four wave vectors k

(j)
0 and k

(j)
g = k

(j)
0 + g (j = 1, 2) to the reciprocal lattice

points O and g. K0 is the wave vector of the incident wave and M its excitation
point.

with the matrix elements

A11 = 0, Agg = sg, A∗
hg = Agh = Ug−h/2K =

1
2ξg−h

.

This is the equation for an eigenvalue problem. A given matrix [A] has n
different eigenvalues γ(j) (j = 1,. . . ,n) with the accompanying eigenvectors
C

(j)
g (g = g1, . . . , gn). If we introduce the matrix [C], the columns of which

are the eigenvectors, so that Cgj = C
(j)
g and the diagonal matrix {γ} with the

eigenvalues γ(j) as diagonal elements, (7.41) can be written

[A][C] = [C]{γ}. (7.42)

A matrix [A] is thus diagonalized by a linear transformation of the form
[C−1][A][C].

In general, the matrix [A] is Hermitian. For centrosymmetric crystals it
is symmetric. Programs exist for defining the matrix and calculating the
eigenvalues and eigenvectors. It is suggested that the Bloch waves should be
numbered in order of decreasing k

(j)
z [7.14]. The Bloch wave with the largest

γ(j) has the index j = 1, etc.
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The eigenvectors are orthogonal and satisfy the orthogonality relations∑
g

C(i)∗
g C(j)

g = δij ;
∑
j

C(j)∗
g C

(j)
h = δgh. (7.43)

Changing the direction of the incident wave from k
(j)
0 to k

(j)
0 − h alters the

sequence of the column vectors in the matrix [C], which imposes a periodicity
condition on the C

(j)
g ,

Cg(k
(j)
0 ) = Cg+h(k(j)

0 − h). (7.44)

The n eigenvalues γ(j) correspond to n Bloch waves (7.34) with wave
vectors k

(j)
0 + g. Their starting points do not lie on a sphere of radius K

around O but at modified points Mj , given by (7.40). For different tilts of the
specimen – equivalent to varying values of sg in (7.40) or kz in Fig. 7.12 –
the points Mj(kx) lie on a dispersion surface. The starting points of the wave
vectors k

(j)
0 + g on this dispersion surface can be obtained by the following

construction. The K0 vector parallel to the incident direction determines the
point M in Fig. 7.12. Through M a straight line is drawn parallel to the
crystal normal. The points of intersection with the n-fold dispersion surface
are the excitation points Mj , which lie above one another in the case of normal
incidence. This geometrical construction results from the boundary condition
that the tangential components of the waves have to be continuous at the
crystal boundary. For nonnormal incidence, the excitation points Mj are no
longer above one another (see, e.g., [7.15]).

The total wave function (Bloch-wave field), the solution of (7.41), will be
a linear combination of the Bloch waves b(j)(k, r) (7.34) with the Bloch-wave
excitation amplitudes ε(j); i.e.,

ψtot =
∑
j

ε(j)b(j)(k, r) =
∑
j

ε(j)
∑
g

C(j)
g exp[2πi(k(j)

0 + g) · r]. (7.45)

The amplitude ψg of a particular reflected wave can be obtained by summing
over all j = 1,...,n waves from the excitation points Mj to the corresponding
reciprocal-lattice point g,

ψg =
∑
j

ε(j)C(j)
g exp[2πi(k(j)

0 + g) · r], (7.46)

or

ψg =
∑
j

ε(j)C(j)
g exp(2πiγ(j)z), (7.47)

if a phase factor is omitted. The excitation amplitudes ε(j) of the Bloch waves
can be obtained from the boundary condition at the entrance of the incident
plane wave into the crystal. The phase factors in (7.47) are all equal to unity
for z = 0, and a plane wave in a vacuum and the Bloch-wave field in the
crystal must be continuous. This requires

ψ0(0) =
∑
j

ε(j)C
(j)
0 = 1,

ψg(0) =
∑
j

ε(j)C(j)
g = 0 for all g �= 0, (7.48)
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or in a matrix formulation for the two-beam case(
C

(1)
0 C

(2)
0

C
(1)
g C

(2)
g

)(
ε(1)

ε(2)

)
=
(

ψ0(0)
ψg(0)

)
=
(

1
0

)
, (7.49)

which can be readily extended to the n-beam case

[C]ε = ψ(0), (7.50)

where ε and ψ(0) are column vectors of n components.
Comparison with the first of the orthogonality relations (7.43) shows that

the boundary conditions (7.49)–(7.50) can be satisfied by writing ε(j) = C
(j)∗
0

for normal incidence. In a more general formulation, the ε(j) can be calculated
from (7.50) by multiplying with the inverse matrix [C−1], which is identical
with the adjoint matrix [

∼
C] because of the unitarity of the C

(j)
g :

ε = [C−1]ψ(0). (7.51)

7.3.4 Discussion of the Two-Beam Case

In order to bring out the most important results of the dynamical theory,
we now solve and discuss the two-beam case in detail, though it will be a
poor approximation in practice. For high electron energies, the curvature of
the Ewald sphere is so small that a large number of reflections (30–100) are
excited simultaneously.

In kinematical theory, the centers M of the various Ewald spheres (Fig. 7.8)
lie on a sphere of radius k = 1/λ around the origin O of the reciprocal lattice if
the direction of the incident wave is varied. When the intensity of the diffracted
beam is increased by increasing the thickness and becomes larger than the
intensity of the primary beam, the former can be treated as the primary wave
and a sphere of radius k can also be drawn around the reciprocal-lattice point
g as the geometrical surface that describes all possible values of the excitation
points M (Fig. 7.12). As will be shown below, the two spheres do not intersect
each other but withdraw from one another in a characteristic manner.

For the two-beam case, the fundamental equations of the dynamical theory,
(7.37) and (7.41), are

−γ(j) C
(j)
0 +

Ug

2K
C

(j)
g = 0,

Ug

2K
C

(j)
0 + (−γ(j) + s) C

(j)
g = 0.

(7.52)

Such a homogeneous linear system of equations for the C
(j)
g has a nonzero

solution if and only if the determinant of the coefficients is zero:∣∣∣∣ −γ(j) Ug/2K
Ug/2K (−γ(j) + s)

∣∣∣∣ = γ(j)2 − sγ(j) − U2
g /4K2 = 0. (7.53)

This is a quadratic equation for the eigenvalues γ(j). In the n-beam case this
characteristic equation is of order n. Before discussing the solution, it will
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be shown that the Howie–Whelan equations (Sect. 7.3.2) lead to the same
characteristic equation. If we substitute for ψ′

g and dψ′
g from the first equation

of (7.29) into the second, we obtain

d2ψ′
0

dz2
− 2πis

dψ′
0

dz
+ (π/ξg)2ψ′

0 = 0. (7.54)

A similar equation is obtained for ψ′
g. If we look for a solution of the form

ψ′ = A exp(2πiγ(j)z), the same equation (7.53) is found for the γ(j) because
ξg = K/Ug (7.32). This shows that the two different ways of treating the
dynamical theory lead to the same solution.

Solving the quadratic equation (7.53) gives

γ(j) =
1
2

[
s − (−1)j

√
(Ug/K)2 + s2

]
=

1
2

[
s − (−1)j

√
1/ξ2

g + s2
]

=
1

2ξg

[
w − (−1)j

√
1 + w2

]
, (7.55)

in which the parameter w = sξg characterizes the tilt out of the Bragg con-
dition (w = 0). This solution is plotted in Fig. 7.13a as a function of w and
in Fig. 7.12 for a Ewald sphere of a relatively small radius. The two circles
around O and G in Fig. 7.12 correspond to the straight lines (asymptotes
of the hyperbola) in Fig. 7.13a. The two Ewald spheres (asymptotes) do not
intersect but approach most closely for the Bragg condition w = 0; their sep-
aration is then

Fig. 7.13. Dependence of the Bloch-wave parameters of the two-beam case on the
tilt parameter w = sξg out of the Bragg condition (w = 0). (a) γ(j); γ(1) − γ(2)

is the distance between the two branches of the dispersion surface (Fig. 7.12). (b)
Absorption parameters q(j) and (c), (d) wave amplitudes of the four excited waves.
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∆kz,min = γ(1) − γ(2) = Ug/K = 1/ξg. (7.56)

By using the eigenvalues γ(j), the linear system of equations (7.52) can be
solved for the C

(j)
g . For the amplitudes ε(j)C

(j)
g = C

(j)
0 C

(j)
g of the four Bloch

waves with wave vectors k
(j)
0 + g for normal incidence, we obtain

C
(j)
0 C

(j)
0 =

1
2

[
1 + (−1)j w√

1 + w2

]
; C

(j)
0 C(j)

g = −1
2

(−1)j

√
1 + w2

. (7.57)

In the Bragg condition w = 0, all four waves have the amplitude 1/2
(Fig. 7.13c,d).

Sometimes the substitution w = cotβ is used for the two-beam case. The
matrix [C] of the eigenvectors then becomes

[C] =

(
C

(1)
0 C

(2)
0

C
(1)
g C

(2)
g

)
=
(

sin(β/2) cos(β/2)
cos(β/2) − sin(β/2)

)
. (7.58)

In order to calculate the intensity I0 = ψ0ψ
∗
0 of the primary beam, which

we call the transmission T , and the intensity of the reflected beam Ig = ψgψ
∗
g

or reflection R, we use (7.47) and substitute the specimen thickness t for the
z component of the vector r:

ψ0(t) =
2∑

j=1

C
(j)
0 C

(j)
0 exp(2πik(j)

z t),

ψg(t) =
2∑

j=1

C
(j)
0 C(j)

g exp(2πik(j)
z t) exp(2πigx). (7.59)

Substituting the values given in (7.55) and (7.57) and omitting the common
phase factor exp(2πiKzt)exp(πiwt/ξg), we find

ψ0(t) = cos
(

π
√

1 + w2
t

ξg

)
− iw√

1 + w2
sin
(

π
√

1 + w2
t

ξg

)
,

ψg(t) =
i√

1 + w2
sin
(

π
√

1 + w2
t

ξg

)
exp(2πigx). (7.60)

The intensities (transmission T and reflection R) become

ψgψ
∗
g︸ ︷︷ ︸

R

= 1 − ψ0ψ
∗
0︸ ︷︷ ︸

1 − T

=
1

1 + w2
sin2

(
π
√

1 + w2
t

ξg

)
. (7.61)

Recalling that w = sξg, we see that for w � 0 (large tilt out of the Bragg
condition) (7.61) is identical with the solution (7.25) of the kinematical the-
ory. Otherwise, however, the kinematical theory predicts that for w = 0, R
increases as t2 and becomes larger than one, which is in contradiction with
the conservation of intensity T + R = 1. The formula (7.61) given by the dy-
namical theory results in R = 1−T = sin2(πt/ξg) for w = 0. This means that,
even in the Bragg condition, the electron intensity oscillates between the pri-
mary and the Bragg-reflected beam with increasing film thickness (Fig. 7.14a)
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Fig. 7.14. Dynamical two-beam case without absorption. Thickness dependence of
the transmitted (T ) and Bragg-reflected intensity (R) (a) in the Bragg condition
w = 0 and (b) for a tilt parameter w = sξg = 1.5; (c) and (d) tilt dependence
(rocking curve) of R for the different relative thicknesses t/ξg (between 0.25 and 1).
(- - -) comparison with the kinematical theory.

(“pendellösung” of the dynamical theory). We now clearly see the meaning
of the extinction distance ξg (Table 7.2); it is the periodicity in depth of this
oscillation. There are thicknesses t = (n + 1/2)ξg for which the intensity is
completely concentrated in the Bragg reflection and others, t = nξg, for which
the whole intensity returns to the direction of incidence. These oscillations re-
sult from the superposition of the two waves with wave vectors k

(1)
0 + g and

k
(2)
0 + g, which are somewhat different in magnitude: |k(1)

z − k(2)
z | = 1/ξg

(7.56).
For w �= 0, the amplitude (7.61) of the oscillation decreases as (1 + w2)−1

and the depth of the oscillations can be described by a reduced effective ex-
tinction distance (Fig. 7.14b)

ξg,eff = ξg/
√

1 + w2 . (7.62)

The dependence of T and R on the tilt angle ∆θ of the specimen or the
excitation error s or tilt parameter w for a fixed thickness t is called a rocking
curve (Fig. 7.14c,d). In the absence of absorption, the condition T + R = 1 is
everywhere satisfied, and T and R are, as can be seen from (7.61), symmetric
in w. (This will cease to be the case for T when we consider absorption in the
next section.) Figures 7.14c and d show R for t/ξg = 0.25–1. We observe that
R = 0 for w = 0 and t/ξg = 1 (Fig. 7.14a). If the specimen is tilted (w �= 0),
R increases again (Fig. 7.14d), reaching a maximum at w � 1. The distances
∆w between the minima (R = 0) of the rocking curve become narrower with
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increasing t. Figure 7.14c also contains the results of the kinematical theory
(dashed lines). Deviations from the kinematical theory are observed for larger
values of t/ξg, especially when w is small.

The relation E = h2k2/2m between energy and momentum p = hk can
be used to reveal an analogy between the dispersion surface as a function of
kx (Fig. 7.12) and the Fermi surface of low-energy conduction electrons. If
there is no interaction between the electrons and the lattice (no excitation of
a low-order reflection), the dispersion surface degenerates to a sphere around
the origin of the reciprocal lattice (Fermi surface of free electrons). In the
theory of conduction electrons, the Fermi surface also splits into energy bands
with forbidden gaps if there exists an interaction with the lattice potential,
and dE/dk becomes zero at the boundary of the Brillouin zone for which the
Bragg condition is satisfied. The same behavior can be seen in Fig. 7.12;
the Brillouin zone is the midplane between O and G. The splitting ∆kz,min of
the energy gap is directly proportional to Vg and therefore to the interaction
with the crystal lattice.

7.4 Dynamical Theory Including Absorption

7.4.1 Inelastic-Scattering Processes in Crystals

If the energy of the electron falls from the initial value Em to the final value En

during a scattering process with an energy loss ∆E = Em−En, the dispersion
surfaces for these two energies are different (Fig. 7.15). The surfaces have the

Fig. 7.15. Shift of the dispersion surface caused by electron excitation m → n
with energies Em and En, respectively, and interband (1, 3) and intraband (2, 4)
transitions.
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same shape because ∆E � Em but are shifted by ∆kz = |km−kn|z = ∆E/hv
[7.18]. The excitation point P corresponds to the excitation of a Bloch wave
of type j = 2. The transitions 1–4 are called

1. Elastic
3. Inelastic

}
interband transition

2. Elastic
4. Inelastic

}
intraband transition.

The symmetry (type) of Bloch waves is changed in an interband transition
and preserved in an intraband transition. The vector PQ corresponds to q′ in
Fig. 5.10 and, according to (5.45),

q′2 = PQ
2

= RQ
2

+ PR
2

= K2(θ2 + θ2
E). (7.63)

The shift ∆kz of the dispersion surface for En and Em depends on the
scattering process. For thermal diffuse scattering (electron–phonon scatter-
ing), the difference can be neglected. For the Al 15 eV plasmon loss, the shift
becomes ∆kz = ∆E/hv = 2 × 10−2 nm−1 at E = 100 keV, whereas the dis-
tance AB = CD between the branches of the dispersion surface is 1/ξg =
1/56.3 = 1.8×10−2 nm−1. The distance and the shift are thus of the same
order of magnitude.

Inelastic scattering by a single atom was treated in Sect. 5.2.2 in terms of
a model in which the incident wave is plane and the scattered wave is also
plane far from the scattering atom. In a crystal, the primary wave function
ψm (m = 0) as well as the scattered wave function ψn are Bloch waves that
are solutions of the Schrödinger equation (3.22) for the complete system of
the incident electron (coordinate r) and atomic electrons (coordinates rj) and
nuclei (Rk) [7.18, 7.19, 7.20]:[

− h2

2m
∇2 + Hc + H ′

]
Ψ = EΨ. (7.64)

The first term of the Hamiltonian represents the propagation of free electrons,
the term Hc the interaction of the bound electron and ions, and

H ′ =
1

4πε0

(∑
j

e2

|r − rj |
−
∑
k

e2Zk

|r − Rk|

)
(7.65)

the interaction energy between the incident electron and the crystal.
The total wave function Ψ can be expanded as a series

Ψ(r, rj ,Rk) =
∑
n

an(rj ,Rk)ψn(r), (7.66)

where the an are the wave functions of the crystal electrons in the nth excited
energy state εn determined by

Hcan = εnan. (7.67)

ψ0(r) is the wave function of the incident and elastically scattered electron
and ψn(r) that of the inelastically scattered electron of energy En = E − εn

for an energy loss ∆E = E − En = εn.
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Substitution of (7.66) into (7.64), multiplication by a∗
n, and integration

over the coordinates rj and Rk (crystal volume) lead to a set of equations for
the ψn,[

− h2

2m
∇2 − En + Hnn

]
ψn = −

∑
m�=n

Hnmψm, n = 0, 1, ..., (7.68)

with the matrix elements

Hnm(r) =
∫
V

a∗
n(rj ,Rk)H ′(r, rj ,Rk)am(rj ,Rk)d3rjd3Rk

= 〈an|H ′|am〉. (7.69)

The diagonal elements

Hnn(r) = H00(r) = −
∑
g

Vge−2πig·r (7.70)

represent the usual potential V (r) in (7.30). The off-diagonal elements, which
appear on the right-hand side of (7.68), characterize the probability of an
inelastic transition from am ·ψm to an ·ψn caused by the Coulomb interaction
H ′ and are small compared with Hnn. It can be seen that the normal case
of elastic electron scattering with the Bloch-wave solution is obtained if all of
the off-diagonal elements Hnm are zero and no inelastic scattering occurs.

The Hnm have the same periodicity as the lattice and can be expanded in
a Fourier series,

Hnm(r) = exp(−2πiqnm · r)
∑
g

Hnm
g exp(2πig · r), (7.71)

where qnm is the wave vector of the crystal excitation created in the transition
m → n.

If all of the Hnm(r) with n �= m are small compared with H00(r) and the
amplitudes ψn of the inelastically scattered waves are small compared with
ψ0, the set of equations (7.68) can be written [7.19][

− h2

2m
∇2 − E0 + H00

]
ψ0 = −

∑
n�=0

H0nψn,

[
− h2

2m
∇2 − En + Hnn

]
ψn = −Hn0ψ0. (7.72)

Yoshioka [7.19] also omitted Hnn in (7.72) and solved the system with
the aid of the Green’s function for scattered spherical waves. However, in a
crystal, both the incident and scattered waves can propagate only as Bloch
waves. The solution with a Green’s function constructed of Bloch waves is
discussed in [7.21, 7.22]. As the crystal potential is hardly influenced by the
transition, Hnn can be approximated by H00. Howie [7.18] considered a long-
range interaction potential H ′ for the excitation of plasmons. Single-electron
excitation is discussed in [7.23, 7.24, 7.25] and electron–phonon scattering in
[7.26, 7.27]. Solutions ψn of (7.72) in the form of a series of Bloch waves b(i)
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(7.34) can be sought. These Bloch waves are solutions of [−(h2/2m)∇2−En +
Hnn]ψn = 0 but have z-dependent amplitudes ε

(i)
n (z)

ψn(r) =
∑
i

ε(i)n (z)b(i)(k(i)
n , r)

=
∑
i

ε(i)n (z)
∑
g

C(i)
g (k(i)

n ) exp[2πi(k(i)
n + g) · r]. (7.73)

Substituting (7.73) into (7.72), neglecting the small terms d2ψn/dz2, mul-
tiplying both sides by b∗(j), and integrating over the x, y plane containing
the reciprocal-lattice vectors g, we obtain the following relation between the
Bloch-wave amplitudes ε(j) of the incident wave and ε(i

′) of the scattered wave
(the latter indicated by a dash):

dε(i
′)

dz
=
∑

m�=n

∑
j

ci′j
mnε(j)m . (7.74)

The matrix elements

ci′j
mn = − im

h2[k(i′)
n ]z

exp[2πi(k(j)
m − k(i′)

n − qi′j
nm)z]

∑
h,g

C(i′)
g Hmn

g−hC
(j)
h (7.75)

describe the transition probabilities between branches j and i′ of the disper-
sion surfaces (i′ = j: intraband transition; i′ �= j: interband transition).

It can be seen from (7.75) that the scattering in a crystal depends on both
eigenvector components C

(i′)
g and C

(j)
h . This is none other than a reciprocity

theorem [7.28], which means that if a primary wave travels in the reverse
direction along the path of the scattered wave, it will be scattered with the
same probability in the former primary direction. In a crystal, the interaction
is inevitably a scattering from one Bloch-wave field into another because inci-
dent and scattered waves have to exhibit the lattice periodicity. The scattered
intensity therefore depends not only on the scattering angle θ, as for a single
atom or for amorphous material, but also on the excitation probabilities of
the Bloch waves in the incident and scattered directions. This observation
will be used in the discussion of the intensities of Kikuchi lines and bands
(Sect. 7.5.4).

Plasmon scattering is not concentrated at the nucleus but within a rela-
tively large volume of 1–10 nm diameter. This process is therefore limited to
small scattering angles, and therefore the term Hmn

0 dominates in (7.75). The
sum over the matrix elements in (7.75) can thus be approximated by∑

g
C(i′)

g Hmn
0 C(j)

g = Hmn
0 δi′j , (7.76)

which is nonzero only for i′ = j. This means that plasmon scattering causes
predominantly intraband scattering. Image contrast by Bragg reflection is
consequently preserved [7.18]. The same is true for the ionization processes in
inner shells, so long as Hmn

0 � Hmn
g [7.23].
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Interband scattering can be observed for large scattering angles, which is
equivalent to a narrower localization of the scattering process near the nu-
cleus [7.23]. On the other hand, electron–phonon scattering (thermal diffuse
scattering) is predominately interband scattering for small scattering angles
and intraband scattering for large scattering angles between the Bragg reflec-
tions [7.27]. It therefore contributes mainly to the absorption parameters of
the Bloch-wave field.

7.4.2 Absorption of the Bloch-Wave Field

The transition from the initial state m = 0 to any n �= m and i′ in (7.74)
results in an exponential decrease of ε

(j)
0 , with the value ε

(j)
0 (0) = C

(j)
0 at the

entrance surface of the crystal (z = 0) being determined by the boundary
conditions discussed at the end of Sect. 7.3.3.

This exponential decrease can also be incorporated in the Schrödinger
equation (3.21) and in the fundamental equations of dynamical theory (7.37)
by introducing an additive imaginary lattice potential V ′

g : Vg → Vg + iV ′
g

or by replacing Ug by Ug + iU ′
g [7.19]. The V ′

g values can be converted to
U ′

g as in (7.30). Returning to (7.32), Vg + iV ′
g obliges us to replace 1/ξg by

1/ξg+i/ξ′g, where ξ′0 is the mean absorption distance and the ξ′g are anomalous
absorption distances. Values of the imaginary Fourier coefficients V ′

g are listed
in Table 7.3; see also [7.29, 7.30] for relative values of ξg/ξ′g and [7.31, 7.32,
7.33, 7.34] and [7.35] for contributions to V ′

g by thermal diffuse scattering and
inner-shell ionization, respectively.

The Vg are assumed to be independent of electron energy because they
are defined as Fourier coefficients of the lattice potential V (r). The V ′

g are
proportional to v−1. In view of (7.33), this implies that ξg ∝ v and ξ′0, ξ

′
g ∝ v2,

which can be confirmed experimentally [7.36, 7.37, 7.38].
Replacing 1/ξg by 1/ξg + i/ξ′g in (7.26), we obtain the form of the Howie–

Whelan equations in which these absorption effects are considered. In the
formulation of the dynamical theory as an eigenvalue problem (Sect. 7.3.3),
the matrix [A] in (7.41) now contains the elements

A11 = iU ′
0/2K, Agg = sg + iU ′

0/2K, Agh = (Ug−h + iU ′
g−h)/2K,

with the result that the eigenvalues become complex: Instead of γ(j), we write
γ(j) + i q(j). The characteristic equation (7.53) for the complex eigenvalues
becomes more complicated. Assuming that ξ′0, ξ

′
g � ξg, approximately the

same values are obtained for the real part γ(j) (7.55), and for the two-beam
case the imaginary absorption parameters become

q(j) =
1
2

[
1
ξ′0

− (−1)j

ξ′g
√

1 + w2

]
, (7.77)

which are plotted in Fig. 7.13b.
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Table 7.3. Imaginary Fourier coefficients V ′
g (eV) for different substances at E

= 100 keV and room temperature (and in a few cases at 150 K). The absorption
distance ξ′0 is equal to 340/V ′

0 nm and µ0 = V ′
0/54 nm−1.

hkl
Substance V ′

0 V ′
g Ref.

Al – 111 220 311
theor. 0.85 0.18 0.14 0.13 – [7.39]

0.58 0.16 – – – [7.40]
exp. 0.37 0.23 – – – [7.36]

0.6 – 0.11 0.13 – [7.41]
0.54 0.17 – – – [7.40]

Si 220 331 422 –
theor. 0.70 0.11 0.07 0.08 – [7.39]
exp. 0.68 0.11 0.08 0.08 – [7.42]

0.62 0.14 0.08 – – [7.41]

Cu 111 200 220 311
theor. 3.48 0.83 0.79 0.68 0.63 [7.39]
exp. 1.48 0.81 0.92 – – [7.43, 7.44]

1.35 – – 0.49 0.45 [7.41]

Ge 220 400 422
theor. 1.56 0.54 0.48 0.43 [7.39]
exp. 1.25 0.52 – 0.36 [7.42]

1.35 – 0.32 –

Au 220 331 440
theor. 7.57 2.8 2.3 1.87 [7.39]
exp. 2.64 2.0 – 1.5 [7.45]

– – 1.62 – [7.41]
150 K 6.71 – 1.81 – [7.39]

2.5 – 1.12 – [7.46]

MgO 200
theor. 1.8 0.16 [7.39]
exp. 1.5 0.13 [7.47]

NaCl 220 420
theor. 1.63 0.20 0.14 [7.39]
exp. – 0.21 0.15 [7.48]

PbTe(150 K) 422
theor. 4.7 0.98 [7.39]

exp. 1.8 0.67 [7.46]
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The q(j) can also be calculated for the n-beam case. If, in the additional
elements of the matrix [A], the U ′

g are smaller than 0.1 Ug, then the familiar
first-order perturbation method of quantum mechanics can be applied, giving

q(j) =
〈

b(j)(k, r)
∣∣∣∣ U

′

2K

∣∣∣∣ b(j)(k, r)
〉

=
1

2K

∑
g

∑
h

U ′
g−hC

(j)
h C(j)

g , (7.78)

in which the C
(j)
g are the components of the eigenvectors of the unperturbed

matrix without the imaginary components, corresponding to the situation in
which absorption is disregarded. The Bloch-wave formula (7.34) has to be
modified to

b(j)(k, r) = exp(−2πq(j)z)
∑
g

C(j)
g exp[2πi(k(j)

0 + g) · r]. (7.79)

The first factor with q(j) in the real exponent describes an exponential
decrease of the Bloch-wave amplitude with increasing depth z below the sur-
face. From the first term of (7.77), we know that all Bloch-wave amplitudes
decrease as exp(−πz/ξ′0). Differences of the q(j) due to the second term of
(7.77) can be understood from the following Bloch-wave model. Let us com-
bine the four possible waves of the two-beam case (Fig. 7.12), but not as we
did in (7.47), when we calculated the amplitudes of the primary and Bragg-
reflected beams. Now, the waves with wave vectors k

(1)
0 and k(1)

g form “Bloch

wave 1” and k
(2)
0 and k(2)

g “Bloch wave 2”, where k(1,2)
g = k

(1,2)
0 + g. The

superposition of two inclined waves propagates in the direction of the angle
bisector, which is parallel to the reflecting lattice planes hkl. The superpo-
sition results in interference fringes in the x direction, perpendicular to the
direction of propagation, with a periodicity equal to the lattice-plane spacing
dhkl. From (7.57), we see that all of the C

(j)
0 C

(j)
h (j =1, 2; h = 0, g) take

the values ±1/2 in the Bragg condition (w = 0). The C
(j)
h are symmetric for

j = 1 (equal signs) and antisymmetric for j = 2 (opposite signs). Substitution
in (7.34) and (7.79) results in

|b(1)| ∝ cos(πg · r) = cos(πx/dhkl),
|b(2)| ∝ sin(πg · r) = sin(πx/dhkl), (7.80)

because the q(j) are equal for the same branch (j) of the dispersion surface.
The probability densities |b(j)|2 of the Bloch waves 1 and 2 are therefore

proportional to cos2(πx/dhkl) and sin2(πx/dhkl), respectively. This results in
minima (nodes) at the lattice plane for the antisymmetric wave (j =2) and
in maxima (antinodes) for the symmetric wave (j = 1) (Fig. 7.16). This is
important for the absorption of these Bloch waves. In particular, thermal
diffuse scattering is caused by the deviations from the ideal lattice structure
due to thermal vibrations of the lattice. Because the amplitude of lattice
vibrations is small, the symmetric Bloch wave 1 with maxima at the nuclei
will be scattered more strongly than the antisymmetric wave, the values of the
absorption parameters q(j) will be larger, and the Bloch-wave amplitude will
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Fig. 7.16. Squared amplitudes (interaction probabilities) ψψ∗ ∝ |b(j)|2 of Bloch
waves of type 1 and type 2 in the two-beam case (independent Bloch-wave model)
with antinodes and nodes at the nuclei and lattice planes, respectively.

decrease more rapidly with increasing z; the antisymmetric Bloch wave 2 with
nodes at the nuclei interacts less strongly (q(2) < q(1), see also Fig. 7.13b).
A consequence of thermal diffuse scattering is that ξ′0 and ξ′g depend strongly
on temperature.

There are tilt angles out of the Bragg position for which the antisymmet-
ric Bloch waves show a large transmission (low q(2)) and a large excitation
amplitude ε(2) (anomalous transmission). As shown in Fig. 7.13, this is the
case for positive excitation parameters w for which the squared amplitude
|ε(2)|2 = |C(2)

0 |2 is large and q(2) < q(1).
The following analytical formula for T and R can be derived for the two-

beam case [7.49]. Using the abbreviations

µg = 2πU ′
g/K = 2π/ξ′g and µ0 = 2π/ξ′0,

we find

T =
e−µ0z

2(1 + w2)

[
(1 + 2w2)cosh

µgz√
1 + w2

+ 2w
√

1 + w2 sinh
µgz√
1 + w2

+ cos

(
2π

√
1 + w2

ξg
z

)]
, (7.81)

R =
e−µ0z

2(1 + w2)

[
cosh

µgz√
1 + w2

− cos

(
2π

√
1 + w2

ξg
z

)]
. (7.82)

Certain characteristic differences are found when the expressions above are
compared with the two-beam case without absorption (7.61). The rock-
ing curve of the transmission is not symmetric about the Bragg position
(Fig. 7.18). This asymmetry is a consequence of the second term in the square
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Fig. 7.17. Thickness dependence of the transmitted (T ) and Bragg-reflected (R)
intensities in the Bragg condition (w = 0) with absorption.

Fig. 7.18. Tilt dependence (rocking
curve) of the transmitted (T ) and
Bragg-reflected (R) intensities for the
dynamical two-beam case with absorp-
tion for foil thicknesses (a) t = 1.5ξg

and (b) t = 5.5ξg.

brackets of (7.81). The reflected intensity R still remains symmetric [there are
no terms in odd power of w in (7.82)]. The relation T + R = 1 is no longer
valid. The amplitude of the pendellösung fringes decreases with increasing
thickness (Fig. 7.17). Only a broad transmission band (anomalous transmis-
sion) with extremely weak pendellösung fringes is observed for very thick
specimens (Fig. 7.18b).

In the case of anomalous transmission, only the antisymmetric Bloch wave
2 with low q(2) remains after passage through a thick specimen layer. This ob-
servation might seem to imply that the Bloch waves can be regarded as approx-
imately independent. However, this independent Bloch-wave model cannot
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satisfy the boundary condition at the entrance plane of the crystal and ex-
periments show that there are situations in which the whole Bloch-wave field
(dependent Bloch-wave model) has to be considered – in the study of the
probability of large-angle scattering, for example [7.50].

7.4.3 Dynamical n-Beam Theory

The n-beam case must normally be treated numerically by solving the eigen-
value problem (7.41) for a large number of excited reciprocal-lattice points g
near the Ewald sphere or by applying the Howie–Whelan equations. The dis-
persion surface splits into n branches, and j = 1,. . ., n absorption parameters
q(j) of the n Bloch waves have to be considered.

A special case of the n-beam theory is the systematic row, where the
reflections −ng, . . . ,−2g,−g, 0,+g,+2g, . . . ,+ng are excited. The overlap of
−g and +g reflections in the rocking curve forms reflection bands, which
can be seen in Kikuchi diagrams, channeling patterns, and images of bent
crystal foils (bend contours, Sect. 9.1.1). As an example, Fig. 7.19a shows the
absorption parameters q(j) of a three-beam case for Cu at E = 100 keV with
g = 220, 0, 220 excited. The tilt parameter kx/g is now zero for the symmetric
incidence and +0.5 for the excitation of g = 220. For a thickness t = 40 nm,
Fig. 7.20a shows the rocking curve for the intensity I0 of the primary beam
and I220 of one Bragg reflection. I220 will show a similar curve with its center

Fig. 7.19. Dependence of (a) absorption parameters q(j) and (b) the squared am-

plitudes |C(j)
0 |2 of the Bloch waves on the tilt parameter kx/g for a 220 band in Cu

at E = 100 keV (three-beam case with excitation of 220, 0, 220).
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Fig. 7.20. Dependence of (a) the primary-beam intensity I0 and Bragg-reflected
intensity I200 (rocking curve) and ΣIg (defect band) and (b) the large-angle scat-
tering probability

∫
ψψ∗dz (excess band) as a function of the tilt parameter kx/g

for the three-beam case in Cu at E = 100 keV.

at kx/g = –0.5. The rocking curve for I220 is symmetric about the Bragg
condition (see also the discussion of the two-beam case in Sect. 7.4.2), whereas
I0 exhibits the asymmetry associated with anomalous absorption. This can be
seen from Fig. 7.19. For kx/g < 0.5, the Bloch-wave intensity |C(1)

0 |2 with a
large value of q(1) is larger than |C(2)

0 |2, which results in stronger absorption.
For kx/g > 0.5, the intensity |C(2)

0 |2 is larger for the lower parameter q(2),
leading to a higher value of the transmission. (The intensity |C(3)

0 |2 is so low
in this special case that it is not included in Fig. 7.19b.). Tilting to negative
values of kx/g results in anomalous absorption for kx/g > −0.5 and anomalous
transmission for kx/g < −0.5.

In the sum of intensities ΣgIg = I−g + I0 + I+g, the pendellösung fringes
cancel. However, the sum is not constant, as it is in the dynamical theory
without absorption, but varies with kx/g and a defect band of reduced in-
tensity is created (Fig. 7.20a). This cancellation of the pendellösung fringes
can be shown analytically by using (7.47) and (7.79) for the ψg, changing the
order of summation and employing the orthogonality relations (7.43) for the
eigenvector components∑
g

Ig =
∑
g

ψgψ
∗
g

=
∑
g
|
∑
j

C
(j)∗
0 C

(j)
g exp(−2πq(j)z) exp[2πi(k(j) + g) · r]|2

=
∑
g

∑
i,j

C
(i)
0 C

(j)∗
0 C

(i)∗
g C

(j)
g exp[−2π(q(i) + q(j))z] exp[2πi(k(j) − k(i)) · r]
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=
∑
i,j

[
∑
g

C(i)∗
g C(j)

g

︸ ︷︷ ︸
δij

]C(i)
0 C

(j)∗
0 exp[−2π(q(i) + q(j))z] exp[2πi(k(j)

0 −k
(i)
0 ) ·r]

and hence∑
g

Ig =
∑
i

|C(i)
0 |2 exp(−4πq(i)z). (7.83)

Inside the defect band, only the Bloch-wave intensity |C(1)
0 |2 with a large value

of q(1) is excited, and the intensity therefore decreases.
Scattering effects that are strongly localized at the nuclei (e.g., scatter-

ing through large angles and backscattering or excitation of an inner shell or
x-ray emission) are proportional to the probability density ψψ∗ at the atom
positions. For a finite thickness t, the scattering probability is therefore pro-
portional to

∫
ψψ∗dz. Inside the defect band, the intensity |C(1)

0 |2 of the Bloch
wave with its antinodes at the nuclei is large, which causes increased large-
angle scattering or an increased probability of inner-shell ionization, resulting
in an excess band (Fig. 7.20b).

For high electron energies, a semiclassical method can be used to calcu-
late the Bloch-wave amplitude distribution in the lattice and the correspond-
ing q(j). If the electrons travel along an atomic row, the interaction can be
expressed approximately in terms of a projected potential valley. Quantum
mechanics tells us that the electrons occupy quantized states in such a valley,
e.g. 1s, 2s, 2p, . . . . Branch 1 of the dispersion surface corresponds to the most
strongly bound state 1s with the largest probability density at the nuclei.
The 1s state therefore shows a strong absorption (blocking) and a 2p state
(branch 2) with a low probability density a weak absorption (channeling). Cal-
culations can be based on a semiclassical approach, particularly for shorter
values of electron wavelength, and there is an analogy with the classical theory
of channeling for ion beams with the difference that, owing to the opposite sign
of the charge (the same is also true for positrons), ion channeling is observed
when electrons are blocked and vice versa. This model is especially suitable
for calculating the parameters of the dispersion surface and the amplitude
distribution of Bloch waves at high electron energies [7.51, 7.52, 7.53].

7.4.4 The Bethe Dynamical Potential and the Critical
Voltage Effect

In the following discussion, an n-beam case with one strongly excited low-order
reflection (g1 = 0 and g2 = g) and a number of weakly excited reflections
gn (n > 2) is considered (Bethe’s approximation [7.7]). In the fundamental
equations (7.37), the first equations are the same, and in those for gn (n > 2),
only terms with the largest amplitude factors C

(j)
0 and C

(j)
g need be considered

in a first-order approximation:



314 7 Theory of Electron Diffraction

[K2 − (k(j)
0 + g)2]C(j)

g +
∑
h�=0

UhC
(j)
g−h = 0 for g1 = 0 and g2 = g

[K2 − (k(j)
0 + h)2]C(j)

h + UhC
(j)
0 + Uh−gC

(j)
g = 0 for h = g3, . . . , gn. (7.84)

The second set of equations is not coupled and can be solved for the C
(j)
h ;

these can then be substituted in the first equations for g1 = 0 and g2 = g.
This yields a two-beam case analogous to (7.52) but with a corrected potential
coefficient Ug,dyn or dynamic potential

Vg,dyn = Vg − 2m0

h2
(1 + E/E0)

∑
h�=0

VgVg−h

K2 − (k + h)2
= Vg − Vg,corr. (7.85)

Depending on the sign of the denominator in (7.85), Vg,dyn may be larger
or smaller than Vg. The latter will be decreased when the reciprocal-lattice
point is inside the Ewald sphere. From the relation ξg = (λUg)−1 (7.32), the
extinction distances will also be changed by this dynamical interaction.

The value of Vg,dyn in (7.85) decreases with increasing electron energy and
can vanish for a certain critical voltage Vc or energy Ec = eVc if the excitation
error is positive (reciprocal-lattice point inside the Ewald sphere). At this
voltage, ξg → ∞, which means that the corresponding reflection will not be
excited. This effect was first observed in electron-diffraction patterns [7.54,
7.55]. The minimum distance ∆kz,min between the branches of the dispersion
surface falls to zero and the branches intersect.

The use of (7.85) alone can explain the existence of a critical voltage
but is not sufficient for an accurate calculation. With increasing energy, first
the dynamical potential Vg,dyn of a systematic row (0, ±g, ±2g, . . .) vanishes
because the two terms in (7.85) cancel for the second-order reflection (e.g., 400
in a 200 row) when the 2g reflection is fully excited. We therefore assume a
three-beam case 0, g, 2g [7.56] with s2g = 0 and sg = K−

√
K2 − g2 � g2/2K.

The eigenvalue equation (7.41) can be rewritten⎛
⎝−2Kγ Ug U2g

Ug (g2 − 2Kγ) Ug

U2g Ug −2Kγ

⎞
⎠
⎛
⎝ C0

Cg

C2g

⎞
⎠ = 0. (7.86)

The solution can be simplified by considering the symmetry of the matrix,
which leads us to distinguish the two cases

(a) C0 = C2g, Cg �= 0 and
(b) C0 = −C2g, Cg = 0.

On substituting in (7.86), we obtain the reduced system of equations

(a) (U2g − 2Kγ)C0 +UgCg = 0,
2UgC0 + (g2 − 2Kγ)Cg = 0,

giving Kγ(1,2) =
1
4

[
U2g + g2 ±

√
8U2

g + (U2g − g2)2
]
,

(b) − 2K∆kzC0 − U2gC0 = 0, giving Kγ(3) = −1
2
U2g.
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The values of γ for case (a) are obtained by setting the determinant equal to
zero. The difference

γ(2) − γ(3) =
1

4K

[
3U2g + g2 −

√
8U2

g + (U2g − g2)2
]

(7.87)

vanishes when the quantity in the square brackets is zero. This yields

U2
g = U2

2g + U2gg
2. (7.88)

When Ug is replaced by using (7.30), the critical energy E = Ec appears in
the factor m = m0(1 + E/E0) and solving for E results in

Ec = eVc =

[
h2g2V2g

2m0(V 2
g − V 2

2g)
− 1

]
E0. (7.89)

The critical voltage can also be obtained by calculating the Bloch-wave am-
plitudes C

(j)
0 because the symmetry of Bloch waves 2 and 3 changes for the

second-order reflection when the electron energy exceeds the critical energy
[7.16]. We find

V < Vc V > Vc

j = 2 symmetric antisymmetric
j = 3 antisymmetric symmetric

and

1. V < Vc when |C(2)
0 | > |C(3)

0 | or V > Vc when |C(2)
0 | < |C(3)

0 |
for the second-order reflection at kx = 0
(symmetrical incidence of the electron beam)

2. V < Vc when |C(3)
0 | > |C(4)

0 | or V > Vc when |C(3)
0 | < |C(4)

0 |
for the third-order reflection at kx = 0.5g
(Bragg condition for the third order).

In Table 7.4, some experimental values of the critical voltage are listed.
Most of the values of Vc are much greater than 100 keV and hence in the
HVEM range. Vanishing of the reflection 2g in the Bragg condition can be
observed with Kikuchi lines in electron-diffraction patterns [7.57], with bend
contours in electron micrographs or in convergent-beam diffraction patterns
[7.58, 7.59]. Figure 7.21 shows the rocking curve near the 220 Bragg condition
for a 300 nm Cu foil. The critical voltage Vc can be determined with an
accuracy of a few kilovolts.

The following applications of the critical voltage effect are of interest:
(1) Accurate measurement of Vc and study of the excitation of other

reflections predicted by the dynamical theory allow us to measure the co-
efficients Vg of the lattice potential and to calculate the structure ampli-
tude F (θ) at the corresponding scattering angle θ = 2θB by using (7.31)
[7.56, 7.59, 7.60, 7.61, 7.62, 8.9, 7.64, 7.65]. The differences between F (θ)
and the calculated values of f(θ) for free atoms can be used to obtain in-
formation about variations in the electron-density distribution caused by the
packing of atoms in a solid (e.g., for Ge and Si [7.66]). Another possibility is to
evaluate F (θ) from convergent-beam electron diffraction using energy-filtering
microscopy (Sect. 8.3.3).
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Table 7.4. Examples of experimental critical voltages Vc [kV] at room temperature
[7.16].

Face-centered cubic metals
hkl 111 200 220 331

Al 425, 430 895, 918 – –
Co 276 555 1745 2686
Ni 295, 298 588, 587 1794 2730
Cu 310, 325 600, 605 1750 2700
Ag 55 225 919 1498
Au (<0) 108 726 1266
AuCu3 175 425 – –

Body-centered cubic metals
hkl 110 200 211

V 230, 238 – –
Cr 259, 265 1238 –
Fe 305 1249 –
Nb 35 749 1595
Mo 35 789 1729
Ta – 6651 –
W – 660 >1100

Diamond cubic crystals
hkl 111 220 400

Si 1113 >1150 –
Ge 925 1028 >1100
GaP 1026 1098 >1100

Fig. 7.21. Calculated rocking curves near the 222 Bragg condition (a) 50 kV below
the critical voltage, (b) at Vc = 393 kV with the critical-voltage effect at kx/g111 = 1,
and (c) 50 kV beyond the critical voltage of copper (t = 300 nm) [7.58]. The sharp
dip at the center of (b) is a computation artifact.

(2) The critical voltage depends on the composition of an alloy. It decreases
from Vc = 590 kV for pure Ni to Vc � 450 kV for a Ni-10 mol% Au alloy, for
example [7.67]; this can be used for local measurements of concentration.
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(3) Measurements of Vc at different temperatures give F (θ)exp(−Mg)
(Sect. 7.5.3) and can be used to obtain an accurate value of the Debye temper-
ature θD [7.56] and its dependence on orientation in noncubic crystals (e.g.,
Zn, Cd [7.68]) or alloys (e.g, Cu-Al, Cu-Au [7.69]).

(4) The study of Vc can shed light on ordering in solids. Thus, an increase
of Vc from 166 kV to 175 kV is observed during the transition from a dis-
ordered to an ordered state in AuCu3 [7.16]. Ordered states of short range
in Fe-Cr and Au-Ni alloys act like frozen-in lattice vibrations and make a
temperature-independent contribution to the Debye temperature. By mea-
suring the temperature dependence of Vc, the contributions from distortion of
the long-range order and thermal vibrations can be separated if it is assumed
that the corresponding 〈u2〉 can be added [7.67, 7.70].

These few examples show how the critical-voltage effect offers interesting
possibilities for the quantitative analysis of metals and alloys. The critical-
voltage effect and the intersecting Kikuchi-line technique [7.71, 7.72] are
closely related and both need at least a three-beam diffraction condition. In
the second technique, distances between intensity anomalies in intersections
in either Kikuchi or convergent-beam diffraction patterns are measured. Such
intersections can be found for high-order reflections at any voltage and also
allow the potential coefficients Vg to be determined.

7.5 Intensity Distribution in Diffraction Patterns

7.5.1 Diffraction at Amorphous Specimens

The diffraction pattern of amorphous films – carbon supporting films, poly-
mers, silicon and aluminum oxides, glass, and ceramics – consist of diffuse
rings (Fig. 7.22a). Each amorphous structure contains a nearest-neighbor or-
dering, which can be described by a radial distribution function ρ(r). The
probability of finding the centers of neighboring atoms inside a spherical shell
between r and r + dr is 4πr2ρ(r)dr (Fig. 7.22b).

The observed intensity distribution Iexp in the diffraction pattern oscillates
about the intensity distribution N |f(θ)|2 that would be seen if all of the N
atoms scattered independently, without interference [7.73, 7.74],

1
I0

dIexp

dΩ
= N |f(q)|2

[
1 +

∞∫
0

4πr2ρ(r)
sin(2πqr)

2πqr
dr
]

+
1
I0

dIinc

dΩ
, (7.90)

with the incident electron current I0, the spatial frequency q = θ/λ, and an in-
coherent background dIinc/dΩ caused by inelastic scattering. After producing
a normalized function

i(q) =
1

I0N |f(q)|2
[(

dIexp

dΩ
− dIinc

dΩ

)
− I0N |f(q)|2

]
(7.91)
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Fig. 7.22. (a) Measured intensity distribution of the diffuse diffraction rings of an
amorphous Ge film (E = 60 keV) and fits of the background. (b) Calculation of the
radial density distribution 4πr2ρ(r) oscillating about a mean value 4πr2ρ0. Values
obtained by x-ray diffraction (– – –) for comparison [7.73].

from the experimentally observed distribution, the transformation (7.90) can
be reversed, giving the reduced density function

4πr2[ρ(r) − ρ0] = 8π
∞∫
0

i(q) sin(2πqr)qdq. (7.92)

Zero-loss filtering of an amorphous diffraction pattern can remove the
inelastic and incoherent background [7.74, 7.75], whereupon the maxima and
minima become more pronounced and it is easier to fit the elastic contribu-
tion N |f(q)|2; this will not, however, be exactly proportional to the differential
elastic cross section because of multiple elastic scattering, which also occurs in
thin films. This action of zero-loss filtering is demonstrated in Fig. 7.23, which
shows the recorded radial intensity distribution of a 27 nm amorphous ger-
manium film, whereas the oscillations between maxima and minima are much
lower for inelastically scattered electrons with an energy loss ∆E = 17 eV.

7.5.2 Intensity of Debye–Scherrer Rings

Polycrystalline specimens with random crystal orientations produce diffrac-
tion spots distributed randomly in azimuth. If the irradiated area is large
and/or the crystal size is small, the high density of diffraction spots forms a
continuous Debye–Scherrer ring for each allowed set of hkl values with non-
vanishing structure amplitude F (Fig. 8.11).
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Fig. 7.23. Radial intensity dis-
tribution of the diffraction pat-
tern of an evaporated amorphous
27 nm germanium film: unfil-
tered, zero-loss, and plasmon-loss
filtered at ∆E = 17 eV.

The intensity of the rings is obtained by averaging over all crystal orienta-
tions, that is, by integrating over s in (7.19) or (7.61). The kinematical theory
gives the following expression for the integrated intensity Ihkl of the total ring
with Miller indices hkl [7.76]:

Ihkl = js
2π2m2e2

h4
KNVephkl|Vg|2 exp(−2Mg)λ2dhkl, (7.93)

where js denotes the current density in the specimen plane, K the number
of crystals with on average N unit cells, Ve the volume of the unit cell, phkl

the multiplicity of the hkl planes (e.g., p100 = 6 since there are six possible
cubic planes, p110 = 12, p111 = 8, etc.), and Vg the lattice potential with the
Debye–Waller factor exp(−Mg) (Sect. 7.5.3).

This implies that the ring intensity depends only on the total number KN
of unit cells in the electron beam and not on the shape and dimensions of the
crystals. The intensity ratios of various rings are independent of wavelength
and crystal dimensions and depend on phkl, Vg, and dhkl.

If dynamical two-beam theory is employed, the following differences rela-
tive to kinematical theory are found [7.77]:

Idyn

Ikin
=

1
Ahkl

Ahkl∫
0

J0(2x)dx, (7.94)

where J0 is the Bessel function and Ahkl = 2πem0 t Vg/h2.
The dynamical theory predicts the same results as the kinematic theory

(Idyn/Ikin � 1) if Ahkl is small either because the crystal diameter t is small
or the wavelength λ is short. The intensity ratios of different rings do not
remain independent because they also depend on Ahkl. The curves in Fig. 7.24
show the decrease of Idyn/Ikin with increasing Ahkl and measurements of the
ratio for evaporated Al films with small and large crystals [7.76]. The ratio
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Fig. 7.24. Comparison of the
diffracted intensity Iexp of De-
bye–Scherrer rings of evaporated
Al films of thickness (a) t = 11
nm and (b) t = 26 nm with
the value Ikin calculated by the
kinematical theory. The decrease
of Iexp/Ikin for large Ahkl and
high-order systematic reflections
(e.g., 222, 400) indicates devia-
tions from the kinematical the-
ory. (——) Calculations of the
intensity ratio with the dynam-
ical theory (7.94).

Idyn/Ikin is close to unity for crystals of the order of 10 nm (Fig. 7.24a). The
intensities of Bragg reflections with low indices are the first to decrease for
larger crystals (Fig. 7.24b), whereas the kinematical theory still holds for high
indices. Reflections of higher order (e.g., 400 or 222) do not lie on the curves
because reflections of low order are also excited. The two-beam theory is no
longer valid, and many-beam theory has to be used.

The laws governing Debye–Scherrer ring intensities assume that the ori-
entation of the crystals is random, with no preferential orientation (texture).
A texture causes strong changes of the ring intensities and also an azimuthal
variation of ring intensity for oblique electron incidence to the fiber axis of
the texture (Sect. 8.2.2).

Zero-loss filtering of diffraction patterns with Debye–Scherrer rings consid-
erably increases the contrast [7.78, 7.79, 7.80, 7.81, 7.82], as shown for an evap-
orated aluminum layer (t = 230 nm) in Fig. 7.25. The background between
the rings can be attributed to thermal diffuse scattering. This is important
for the investigation of thick films and the detection of weak ring intensities.
The gain of contrast (e.g., of the ratio of a (111) ring-to-background ratio) is
largest for low atomic number (�25×), as for the example in Fig. 7.25, and
low for high atomic number (e.g., platinum films).
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Fig. 7.25. Normalized radial intensity distributions (note the different scales) of (a)
unfiltered and (b) zero-loss filtered diffraction patterns of an evaporated aluminum
film (x = 62 µg/cm2, t = 230 nm, E = 80 keV) [7.82].

7.5.3 Influence of Thermal Diffuse Scattering

Thermal vibrations of the atoms (nuclei) cause a distortion of the lattice
periodicity and produce the following effects:

1. decrease of the effective potential Vg by the Debye–Waller factor with
increasing temperature, thus influencing the extinction distances ξg and
the critical voltage Vc,

2. increase of the absorption parameters q(j) of the dynamical theory and de-
crease of the absorption distances ξ′0 and ξ′g with increasing temperature,

3. thermal diffuse scattering in the background between and near the Bragg
spots and formation of Kikuchi lines and bands.
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These interactions can be treated as electron–phonon scattering because the
lattice vibrations are quantized (phonons of momentum p = hk and energy
E = h̄ω).

The influence of lattice vibrations on the potential coefficients Vg can
be understood from the following simplified model. If the atoms are shifted
through a distance u(r) from their equilibrium positions r, the potential is
changed in first order only by a translation V (r) → V (r + u(r)). Using the
Fourier expansion (7.30) of the lattice potential, each Fourier coefficient Vg

contains the following factor (〈 〉: mean value):

〈e2πiu·g〉 = 〈1 + 2πiu · g − 2π2(u · g)2 + . . .〉
= 1 − 2π2〈(u · g)2〉 + . . . � e−2π2〈u2〉g2

= e−Mg . (7.95)

The mean value 〈u〉 in the Taylor series becomes zero and only the
quadratic term in 〈(u · g)2〉 has a nonzero value. It can be demonstrated
that this can be written as an exponential Debye–Waller factor exp(−Mg)
[7.83]. The Debye–Waller factor results formally in a reduction of the Fourier
coefficient Vg to Vg exp(−Mg), and the reflection amplitudes of the kinemat-
ical theory will be decreased by the same factor; the diffraction intensities
are thus attenuated by exp(−2Mg). An increase of ξg is also expected due to
(7.23) and is observed experimentally [7.9].

The mean-square value 〈u2〉 of the lattice vibrations depends on the
phonon spectrum of the crystal. The Debye model for a monoatomic cubic
crystal gives

〈u2〉 =
3h2

4π2MkθD

(
1
4

+
T 2

θ2
D

θD/T∫
0

xdx

ex − 1

)
, (7.96)

where M is the atomic mass and θD the Debye temperature. The term in
brackets is tabulated (International Tables for X-Ray Crystallography, Vol. II).
The term 1/4 results from the zero-point vibrations, which are present even at
T = 0, as the quantum-mechanical treatment of a harmonic oscillator shows.
The quantity 〈u2〉 will also depend on the direction of g for noncubic crystals.
It differs for different types of atoms in the unit cell.

The absorption parameters q(j) or imaginary parts V ′
g of the lattice po-

tential (Sect. 7.4.2) contain a large contribution from thermal diffuse scat-
tering and depend strongly on temperature (see, for example, calculations
[7.39, 7.84, 7.85] and experiments [7.43]).

Scattering between the Bragg spots cancels the destructive interference in
ideal crystals. That part of the background caused by thermal diffuse scat-
tering between the spots increases with increasing temperature, as does the
background near strongly excited Bragg spots. The scattering is inversely
proportional to the square of the phonon frequency ν(q). Diffuse streaks con-
necting Bragg spots [7.86, 7.87, 7.88, 7.89, 7.90, 7.91] are therefore mainly
generated by transverse acoustic phonons of low frequency with wave vectors
k perpendicular to one of the atomic-chain directions and polarization vectors
parallel to it.
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The influence of lattice vibrations is small at large scattering angles. An ex-
ception is the contrast of the excess Kikuchi bands in electron back-scattering
patterns (EBSP, Sect. 8.1.4), which decreases with increasing temperature.
Temperature-independent large-angle scattering is found as a result of sum-
ming the scattering processes at individual nuclei, which means that the scat-
tering process is concentrated near a nucleus.

The background of electron diffraction patterns of polycrystalline films
depends more strongly on temperature than the Debye–Waller factor predicts
[7.92, 7.93]. The influence of thermal diffuse scattering on the background has
been investigated for Al [7.94], Ag [7.95], and Au [7.96]. The intensities of
the primary and reflected beams also depend more strongly on temperature
than would be expected from the influence of the Debye–Waller factor (7.95)
[7.97, 7.98, 7.99, 7.100]. These effects can be explained by the dependence of
the absorption parameters q(j) on temperature.

7.5.4 Kikuchi Lines and Bands

The background between the Bragg-diffraction spots of a diffraction pattern
contains a structure that can be characterized as excess and defect Kikuchi
lines and bands (Fig. 7.26).

Excess and defect Kikuchi lines are formed by the following mechanism.
Electrons scattered diffusely by thermal diffuse or inelastic scattering can be
Bragg-reflected at lattice planes with reciprocal lattice vector g if the Bragg
angle is ±θB or if the direction of incidence k′

0 lies on one of the Kossel
cones, which have an aperture of 90◦ − θB and the g direction (normal to the
lattice planes) as cone axis (Fig. 7.27). The Bragg-reflected beam also lies on
the opposite cone in the plane defined by g and k′

g and results in a bright
excess Kikuchi line along the hyperbola in which the Kossel cone intersects
the plane of observation (diffraction pattern). The lines are approximately
straight owing to the low values of θB. On the other side, the Bragg reflection
decreases the intensity of the incident direction k′

0, and the intersection of
the incident Kossel cone with the plane of observation results in a dark defect
Kikuchi line. This mechanism therefore generates a set of corresponding excess
and defect Kikuchi lines separated by an angular distance 2θB. The system
of Kossel cones behaves as though fixed to the crystal, which means that the
Kikuchi lines move if the crystal is tilted, whereas the position of the Bragg-
reflection spot is fixed at the plane of observation (angle 2θB with the primary
beam), and the Bragg spots are visible only for a limited tilting range around
the Bragg position of the primary beam. In the Bragg position (excitation
error s = 0), the excess Kikuchi line coincides with the diffraction spot and
the defect line with the primary beam. The displacement between the Bragg
spot and the corresponding Kikuchi line can be used to measure the excitation
error.

Excess Kikuchi bands are formed in each scattering process between
the Bragg-reflection spots. As discussed in Sect. 7.4.1, the inelastically and
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Fig. 7.26. Electron-diffraction patterns of Si foils at E = 100 keV with increasing
thickness (a) t = 80 nm, (b) 800 nm, and (c) 1500 nm with the electron beam
parallel to [111]. Pattern (a) shows diffraction spots of the zero- and first-order
Laue zones; (b) shows defect and excess Kikuchi lines at medium angles and defect
Kikuchi bands at low angles. In (c), the center shows only Kikuchi bands, and the
region of excess and defect Kikuchi lines is shifted toward larger angles.

thermal diffusely scattered electrons are scattered again as Bloch waves, so
that a theorem of reciprocity can be established. A primary Bloch-wave field
has a larger scattering probability if there are antinodes at the nuclei. The
scattered intensity becomes proportional to

∫
ψψ∗dz and depends on the

tilt parameter kx, which means that the whole intensity of large-angle scat-
tering including backscattering varies, as shown in Fig. 7.20b, if the direc-
tion of incidence is changed. If the rocking beam forms a raster, the signal
from a large-solid-angle detector designed to collect backscattered electrons
or forward-scattered electrons with scattering angles θ ≥ 5◦ − 10◦ generates
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Fig. 7.27. Generation of excess
and defect Kikuchi lines by Bragg
scattering of diffusely scattered
electrons regarded as the intersec-
tion of the Kossel cones of angular
aperture 90◦ − θB with the plane
of observation.

an electron channeling pattern (ECP), well-known in scanning electron mi-
croscopy (SEM), with excess-band intensity distributions as in Fig. 7.20b.

When we observe a stationary electron-diffraction pattern, the direction
of the primary beam is fixed. The scattering of electrons into larger angles
depends on the Bloch-wave intensity at the nuclei, but the scattering prob-
ability will be large only when the Bloch-wave field of the scattered Bloch
wave also shows antinodes at the nuclei. The scattered intensity depends on
the observation angle and the Bloch-wave intensity that would appear if the
scattered Bloch wave struck the crystal opposite the direction of observation.
The whole angular distribution of scattered electrons is therefore not uniform
but modulated by a system of excess Kikuchi bands. These can be seen at
large scattering angles in diffraction patterns of thin single crystals and can
also be observed as electron backscattering patterns (EBSP) recorded on a
screen near the specimen in a scanning electron microscope (Sect. 8.1.4).

The excess Kikuchi bands can also show a contrast reversal that apparently
converts them into defect bands (Fig. 7.26b,c) by the following mechanism
[7.17, 7.101]. A set of excess and defect Kikuchi lines can be observed so long
as more electrons hit the lattice planes from one side than from the other (Fig.
7.26b). With increasing foil thickness, this will be the case for large scattering
angles, for which the scattered intensity distribution decreases more rapidly
with increasing angle (Fig. 7.26c). For small scattering angles, however, the
angular distribution is so diffuse and uniform that equal numbers of electrons
hit the lattice planes from both Kossel cones, and cancellation of the pattern
of excess and Kikuchi lines is to be expected. However, the resulting intensity
distribution will be a defect Kikuchi band due to the influence of anomalous
absorption. For a direction of observation near the Kossel cone, the intensity
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will be the sum of the intensities of the incident and Bragg-reflected beams;
that is, T +R for the two-beam case and ΣIg for the n-beam case. The depen-
dence of this sum on the tilt angle has already been discussed in Fig. 7.20a and
results in a defect band. Only in kinematical theory is T + R = const, which
results in the cancellation of Kikuchi-line contrast without the formation of
defect Kikuchi bands.

These are the basic mechanisms – in a somewhat simplified presenta-
tion – whereby excess and defect Kikuchi lines and bands are formed; their
appearance in diffraction patterns depends on the distribution of the diffusely
scattered electrons. With increasing foil thickness, the central region shows
Bragg spots, pairs of excess and defect Kikuchi lines, and excess Kikuchi bands
extending to large scattering angles. This central region expands with increas-
ing thickness to larger scattering angles for thin films [7.102, 7.103, 7.104],
and excess and defect Kikuchi lines are observed in only that angular region
for which the scattered intensities decrease strongly and different intensities
hit the two sides of the lattice planes. This is also the region in which the
central excess bands show a contrast reversal, which converts them to de-
fect Kikuchi bands, produced by the mechanism discussed above. More de-
tails about the attempts to describe this phenomenon quantitatively are to
be found in [7.28, 7.101, 7.105, 7.106, 7.107, 7.108, 7.109, 7.110, 7.111]. The
study of Kikuchi-line patterns from high-order Laue zones (HOLZ patterns)
is described in Sect. 8.3.4.

7.5.5 Electron Spectroscopic Diffraction

An electron spectroscopic diffraction (ESD) pattern can be obtained with a
diffraction image at the entrance plane of an imaging energy filter (Sect. 4.6.4).
The advantages of energy filtering of diffraction patterns from amorphous and
polycrystalline specimens have already been described in Sects. 7.5.1 and 7.5.2.
At high energy losses, amorphous and crystalline specimens show a diffuse ring
caused by Compton scattering (Sect. 5.2.3). The method of angle-resolved
EELS allows us to image a two-dimensional map of diffraction intensity in
an ∆E–θ plane by selecting a line across a diffraction pattern with a slit
in the filter entrance plane (Figs. 5.12). The zero-loss filtering of CBED and
LACBED patterns (Sects. 8.3 and 8.4) allows a better quantitative analysis to
be made. Here, some typical effects and applications of ESD on single-crystal
specimens are reported.

Zero-loss filtering can increase the contrast of weak reflections, such as
superlattice reflections, by removing the inelastic background. This makes it
easier to adjust dark-field images on axis. The streaks caused by electron-
phonon scattering (Sect. 7.5.3) are increased in contrast. With increasing
thickness, these streaks also appear in multiple plasmon losses as a result
of elastic-inelastic multiple scattering; they become more diffuse because of
the convolution with the angular distribution of plasmon losses. The back-
ground of plasmon and other low-energy losses near the Bragg spots can be
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Fig. 7.28. Series of electron spectroscopic diffraction (ESD) patterns of a 111-
oriented 50 nm Si foil: (a) unfiltered, (b) ∆E = 0 eV, (c) 16 eV, (d) 100 eV,
(e) 1800 eV, and (f) 2000 eV.

particularly harmful if the intensities and positions of the reflections are to be
analyzed quantitatively or if weak reflections surround very strong reflections,
as is the case in large-unit-cell crystals.

The various contributions of inelastically scattered electrons to the in-
tensity of single-crystal diffraction patterns can be seen in a series of elec-
tron spectroscopic diffraction (ESD) patterns at increasing energy losses
[4.112, 7.81, 7.112, 7.113]. Figure 7.28a shows the unfiltered diffraction pat-
tern of a 50 nm 111-oriented Si foil. The zero-loss filtered pattern (Fig. 7.28b)
sharpens the Bragg spots and enhances the excess Kikuchi lines through
the 220 reflections and the thermal diffuse streaks. This shows that Kikuchi
lines will also be produced by quasi-elastic thermal diffuse scattering. In the
plasmon-loss filtered pattern (Fig. 7.28c) the Bragg spots become diffuse as a
result of the convolution with the angular distribution of inelastic scattering.
The increasing broadening with increasing energy loss (Fig. 7.28d) results in
a strong decrease of high-order diffraction for ∆E = 100 eV; the low-order
diffraction spots are totally blurred at energy losses of a few hundred elec-
tron volts. The ESD patterns at 1800 eV below (Fig. 7.28e) and at 2000 eV
beyond the K edge (Fig. 7.28f) of silicon show excess Kikuchi bands. These
are generated by the same mechanism as described in Sect. 7.5.4 for large-
angle elastic scattering. Also, these high-energy losses are concentrated near
the nuclei. A large scattering intensity is observed only in directions where
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the Bloch wave of the inelastically scattered electron shows antinodes at the
nuclei. Beyond the Si K edge, the ESD pattern (Fig. 7.28f) not only shows
the expected jump in intensity compared with Fig. 7.28e but sharper Kikuchi
lines and dark HOLZ lines are also seen in the central region. Below the edge,
the background of the EELS contains a mixture of multiple high-energy losses,
whereas just beyond the edge the largest fraction comes from a single ioniza-
tion process. A further increase of foil thickness decreases the jump ratio of
the K edge; both the background and the region beyond the edge are pro-
duced mainly by multiple scattering. Both patterns then show defect Kikuchi
bands.



8

Electron-Diffraction Modes
and Applications

Electron-diffraction methods are employed for the identification of substances
by measuring the lattice-plane spacings and for the determination of crys-
tal orientations in polycrystalline films (texture) or single-crystal foils. Extra
spots and streaks, caused by antiphase structures or plate-like precipitates,
for example, may also be observed when imaging a selected area.

The selected-area diffraction technique, in which an area of the order of
0.1–1 µm across is selected by a diaphragm in the first intermediate image, is
a standard method. The introduction of additional scan and rocking coils into
an instrument capable of producing an electron probe of the order of a few
nanometers renders micro-area diffraction techniques feasible. In particular,
convergent-beam electron diffraction (CBED) and the observation of high-
order Laue zone (HOLZ) lines inside the primary-beam spot provide further
information about the crystal structure. The charge-density distribution in
unit cells can be obtained by a best fit of CBED intensities. Lattice defects can
be analyzed by their influence on HOLZ lines. The overlap of convergent-beam
Bragg spots can be avoided by the technique of large-angle CBED (LACBED).

8.1 Electron-Diffraction Modes

8.1.1 Selected-Area Electron Diffraction (SAED)

The cone of diffracted electrons with an aperture of the order of a few tens of
mrad can pass through the small polepiece bores of the final lenses only if the
back focal plane of the objective lens that contains the first diffraction pattern
is focused on the screen. Figure 4.16 shows the ray diagram of this technique
[8.1, 8.2, 8.3]. A selector diaphragm of diameter d situated in the intermediate
image plane (magnification M � 20 − 50) in front of the intermediate or
diffraction lens selects an area of the specimen of diameter d/M . This area can
be chosen in the normal bright-field mode (Fig. 4.16a), in which the primary
beam passes through the objective diaphragm. When the excitation of the
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Fig. 8.1. Example of a selected-area electron diffraction (SAED) from a thin section
of an Al-Cu eutectic cut with a microtome. (b) (Al matrix) and (c) (AlCu2) contain
the SAED pattern of the circles indicated in (a).

intermediate lens is decreased, its focal length is increased and the diffraction
pattern in the focal plane of the objective lens can be focused on the final
screen after removing the objective diaphragm (Fig. 4.16b). The excitations
of the later projector lenses are unchanged. These lenses magnify either the
intermediate image or the diffraction pattern behind the intermediate lens.
Figure 8.1 shows an example of SAED from 1 µm diameter areas of Al and
Al2Cu in a section of an Al-Cu eutectic alloy cut with a diamond knife.

The diameter of the area selected cannot be decreased below 0.1–1 µm
owing to the spherical aberration of the objective lens. The intermediate im-
ages of the Bragg reflections (dark-field images) are shifted relative to the
bright-field image [8.4, 8.5] by a distance

∆s = (Csθ
3
g − ∆zθg)M, (8.1)

as can be seen from (3.63), which depends on the defocusing ∆z and the
constant Cs (θg = 2θB and θB is the Bragg angle). It is of course possible
to compensate for the shift by a suitable choice of the defocus ∆z, but only
for one Bragg reflection, not for the whole diffraction pattern simultaneously.
The consequence is that Bragg reflections of high order with large θg do not
come from the area that was selected in the bright-field mode. Thus, for
2θB = 50 mrad and Cs = 1 mm, the shift is 0.125 µm. The diffraction angle θg

decreases linearly with λ as the electron energy is increased. A further selection
error can result if the position of the intermediate image is shifted when the
intermediate lens changes over from the imaging to the diffraction mode.
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Diffraction patterns from smaller areas can only be obtained by using the
rocking-beam technique (Sect. 8.1.2) or by producing a small electron probe
(Sect. 8.1.3).

The resolution d/∆d of an SAED pattern can be defined in terms of the
smallest lattice-spacing difference ∆d that can be resolved and may be esti-
mated from the ratio ∆r/r. Here r denotes the distance from a diffraction
spot to the center of the diffraction pattern in the focal plane of the objective
lens, r = 2θBf = λf/d (f : focal length), and ∆r is the diameter of the spot,
which is equal to the diameter 2αif of the primary beam (αi: illumination
aperture):

d

∆d
=

r

∆r
=

λ

2αid
. (8.2)

Thus, for λ = 3.7 pm (100 keV), d = 0.1 nm, and αi = 0.1 mrad, we find
d/∆d = 200. The resolution can be increased only by reducing αi, but this
reduces the pattern intensity.

The spherical aberration of the objective lens can cause barrel and spiral
distortion of the SAED pattern [8.6, 8.7, 8.8] but this is, however, smaller than
1%; an elliptic distortion can arise due to astigmatism of the intermediate lens.
The most severe distortion is caused by the projector lens. For the accurate
determination of lattice spacings d, the diffraction (camera) length L (Sect.
8.2.1) must be calibrated by using a diffraction standard.

8.1.2 Electron Diffraction Using a Rocking Beam

A rocking beam with varying angle of incidence γ in the specimen plane can be
generated by means of scanning coils situated between the specimen and the
final condenser lens. The following two diffraction techniques can be employed.

In the first technique, described by Fujimoto et al. [8.9], the specimen
area (0.2–4 µm) that contributes to the electron-diffraction pattern (EDP)
is defined by a selector diaphragm at the first intermediate image, as in the
SAED mode (Sect. 8.1.1). The lenses below the objective lens produce a mag-
nified image of the first EDP, formed in the focal plane of the objective lens.
When the incident beam is rocked, the primary beam and all of the diffrac-
tion spots shift, so that the diffraction pattern is scanned bodily across the
final screen plane. A small fixed detector diaphragm selects the direction in
the EDP that just coincides with the microscope axis. The detector signal
measures the electron intensity and is then fed to the intensity modulation
of a cathode-ray tube, which is scanned in synchrony with the rocking. The
theorem of reciprocity tells us that the intensity of the on-axis beam is the
same as in a stationary SAED technique [8.10].

The angular resolution of the recorded ECP can be varied by altering
either the diameter of the detector diaphragm or the magnification camera
length (L) of the EDP in the final screen plane, but it can never be smaller
than the illumination aperture of the rocking beam.
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This technique has the advantage that the EDP is recorded in the scanning
mode and that the spot intensities can therefore be displayed directly, by the
Y-modulation technique, for example [8.11, 8.12]. Furthermore, the selection
error of SAED is avoided because all the beams recorded pass through the
microscope on-axis. The diameter of the selected area is, however, limited by
the diameter of the selector diaphragm, which cannot be smaller than 5 µm,
owing to charging and contamination.

In a second technique, described by van Oostrum et al. [8.13], a highly
magnified image (M ≥ 100 000) is formed on the final screen (detector plane).
The diameter d of the detector diaphragm selects a small area of the image,
which, back-projected into the specimen plane, can be much smaller than the
selected area in SAED (e.g., 3–10 nm for M = 100 000 and d = 0.3–1 mm as
in [8.14, 8.15]).

The angular resolution is provided by the diaphragm in the focal plane of
the objective lens, which again cannot be smaller than 5 µm. If the primary
beam passes through this diaphragm, a bright-field image appears in the de-
tector plane. The primary beam is intercepted by the diaphragm if the beam
is tilted. A diffraction spot passes through the diaphragm if the tilt angle
γ = 2θB and can then generate a dark-field image in the detector plane. This
means that, during the rocking, a bright-field image is seen followed sequen-
tially by a series of dark-field images that correspond to different diffraction
spots. The dark-field images are not shifted toward the bright-field image as
they are with the SAED technique because all the beams recorded are on-axis.

In conclusion, we see that the Fujimoto technique can give a better angular
resolution but the area selected is limited by the diameter of the selector
diaphragm, whereas the van Oostrum technique can select smaller areas but
the angular resolution is limited by the size of the objective diaphragm.

8.1.3 Electron Diffraction Using a Stationary Electron Probe

The selection error of SAED can also be avoided by using small electron
probes. It was shown in Sect. 4.2.3 that electron-probe diameters of 2–5 nm
can be produced with a thermionic electron gun, whereas diameters less than
1 nm require a Schottky or field-emission gun. The smallest possible probe
diameter will be obtained with a large probe aperture αp of the order of
about 10 mrad. Decreasing this aperture increases the probe diameter. It is
therefore impossible to obtain EDPs with sharp diffraction spots from areas as
small as 2–10 nm because apertures less than 1 mrad would be needed [8.16,
8.17]. However, the convergent-beam diffraction patterns described below are
in many points even more informative than conventional EDPs.

Figures 8.2a–c and 8.3a–c show how the EDP changes, from a spot pattern
to a convergent-beam and a Kossel pattern, as the electron-probe aperture αp

is increased. A spot pattern as obtained by SAED requires αp � θB (Figs. 8.2a
and 8.3a), so that the primary beam and the Bragg-reflection spots are sharp.
The system of Kikuchi lines and bands will not be affected by the illumination
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Fig. 8.2. Electron-diffraction techniques that use a small electron probe. (a)
A Bragg-diffraction spot pattern as obtained by SAED, (b) a convergent-beam
electron-diffraction (CBED) pattern, (c) a Kossel pattern in which the intensity
at a point P is proportional to ΣIg, and (d) large-angle convergent-beam electron
diffraction (LACBED) obtained by raising the specimen a distance ∆z and selecting
the primary spot by a virtual diaphragm conjugate to a selected-area diaphragm.

aperture because they are normally generated by the cone of electrons diffusely
scattered inside the specimen, and the necessary angular divergence can also
be aided by any initial divergence (convergence) of the incident beam.

Increasing the aperture (αp < θB, Figs. 8.2b and 8.3b) increases the Bragg-
spot diameter. The primary beam and the diffraction spots are extended to
circular discs with sharp edges if the cone of the illumination aperture is
sharply limited by a condenser diaphragm inside which the current density is
uniform. However, each point in the discs corresponds to one distinct direction
of incidence in the illumination cone. The intensity within the discs of the
primary beam and the diffraction spots varies owing to the variation of the
excitation errors, and the intensity distribution inside the discs corresponds
to a two-dimensional index rocking curve of the dynamical theory of electron
diffraction. This convergent-beam electron-diffraction (CBED) technique was
introduced by Kossel and Möllenstedt [8.19, 8.20] and has become a routine
method for electron diffraction of small areas with an electron probe. The
information obtainable from a CBED pattern will be discussed in Sect. 8.3.

An undisturbed CBED pattern can be expected only if there is no strong
lattice distortion or crystal bending inside the irradiated area. For this reason,
CBED patterns can normally be recorded only with a small electron probe. A
limitation can be the rapid growth of a contamination needle on the irradiated
area, which can be reduced either by specimen heating [8.21] or specimen
cooling [8.22]; see also the discussion of contamination in Sect. 11.4.2.
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Fig. 8.3. Stationary-probe electron-diffraction patterns of the same specimen area
of a 150 nm thick Cu foil with the three illumination conditions of Figs. 8.2a–c. (a)
αp � θB, primary beam (left) and 220 Bragg-diffracted spot (right). (b) αp < θB,
CBED pattern with the spot circles of the primary beam (left), showing the anom-
alous absorption, and that of the Bragg reflection (right), showing the symmetric
pendellösung fringes. (c) αp > θB, Kossel pattern with an intensity distribution
proportional to ΣIg [8.18].

When a highly coherent field-emission source is used, interference fringes
can be observed where neighboring convergent discs [8.23, 8.24, 8.25, 8.26]
overlap. The phase difference between diffracted waves can be read from the
relative positions of the fringes. Energy filtering increases the contrast.

A further increase of probe aperture, αp > θB (Fig. 8.2c), increases the
overlap of the extended diffraction spots [8.27, 8.28]. The intensity at a point
P of the Kossel pattern does not consist only of the contribution from the
primary-beam direction P0. In addition, the directions Pg contribute with
the corresponding Bragg-diffraction intensities. The intensity IP = ΣgIg,
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including g = 0, is a multibeam rocking curve. According to Fig. 7.20a, there
is cancellation of the pendellösung fringes, but an intensity distribution in
the form of defect Kossel bands persists (Figs. 8.3c and 8.6a), caused by the
dependence of anomalous transmission on the excitation error, see also (7.83).
Residual pendellösung-fringe contrast in Fig. 8.3c can result from buckling of
the Cu foil inside the irradiated area.

The following nomenclature is proposed [8.29] to distinguish between
Kikuchi and Kossel bands. In EDPs with Kikuchi bands, the angular di-
vergence is caused by scattering in directions between the diffraction spots,
whereas Kossel bands are produced by the convergence of the external probe
aperture. Kossel patterns without diffraction spots can be obtained for all film
thicknesses, whereas Kikuchi bands appear only in thicker specimens.

In the standard CBED method, the maximum angle of the central circu-
lar disc corresponds to the value of 2θB for the nearest low-indexed reflection
so as to prevent any overlap of the discs. For large unit cells especially, this
is a major handicap. To get two-dimensional rocking curves over a large an-
gular range without overlap of the discs of Bragg reflections, the technique
of large-angle convergent-beam diffraction (LACBED) introduced by Tanaka
[8.30] can be employed (Fig. 8.2d). When a stationary electron probe is fo-
cused on the specimen plane with a large convergence angle, an image of
this spot can be seen in the normal imaging mode. When the specimen is
raised by a distance ∆z, additional spots are generated by Bragg reflection
and form a small spot-diffraction pattern, not as is usually the case in the
focal plane of the objective lens but now in the specimen plane. One of these
spots can be selected in the image mode by a diaphragm, which is best placed
in the conjugate intermediate image by adjusting a 5 µm selector diaphragm
normally used for SAED. On switching the intermediate (diffraction) lens
to the diffraction mode, the large-angle convergent-beam (LACBED) pattern
appears with the angular width of the primary cone. Figure 8.4a shows an
energy-filtered LACBED pattern obtained from Si along the 〈331〉 zone axis
and Fig. 8.4b a computer simulation of the pendellösung fringes of the FOLZ
reflections and the location of the HOLZ lines matched to the experimental
pattern in Fig. 8.4a for an acceleration voltage 121.7 keV.

If a small selector diaphragm and a large ∆z are used, the diaphragm
selects only small scattering angles (down to � 0.1 mrad) around the selected
spot. A much smaller fraction of the elastic and inelastic diffuse background
then contributes to the LACBED. This can be seen as a kind of energy filtering
[8.31], though real zero-loss filtering generates a further significant increase of
contrast.

This geometry has the consequence that a larger area of 100–1000 nm
diameter contributes to the LACBED. This can be an advantage for radiation-
sensitive specimens because the current density is orders of magnitude lower
than for CBED with the electron probe focused on the specimen. Otherwise,
the pattern is an overlap of real and reciprocal space information. Each point
in the LACBED pattern corresponds simultaneously to a distinct specimen
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Fig. 8.4. (a) Energy-filtered LACBED pattern from Si along the 〈331〉 zone axis. (b)
Computer simulation matched to the experimental pattern (a) for an acceleration
voltage of 121.7 keV.

point and distinct excitation error sg. Applications of this technique will be
discussed in Sect. 8.3.

These results show that information about the crystal structure does not
necessarily require the use of small electron-probe apertures αp for a diffrac-
tion pattern with Bragg spots; small electron probes with large apertures
are more suitable for CBED, LACBED, and Kossel pattern studies. A con-
ventional spot pattern does not always provide the fullest information about
crystal structure and symmetry as shown in Sect. 8.3.

8.1.4 Electron Diffraction Using a Rocking Electron Probe

Electron-probe diffraction patterns can be displayed on a CRT by post-
specimen deflection of the diffraction pattern across a detector diaphragm
or by rocking the electron probe by means of scan coils placed in front of
the specimen (Fig. 8.5a). However, it is not easy to avoid shifting the elec-
tron probe during rocking. The spherical aberration of the probe-forming lens
causes an unavoidable shift, and the electron probe moves along a caustic
figure. This shift can be partially compensated for by adding a contribution
to the deflection-coil current proportional to θ3 [8.32], and the shift can be
kept below 0.1 µm in TEM. The rocking causes the EDP to move across the
detector plane, like the rocking beam in the Fujimoto technique (Sect. 8.1.2).
If a small probe aperture αp � θB is used, a spot pattern will be recorded by
a small detector aperture (αd � θB) as the theorem of reciprocity shows; with
αd < θB, a convergent-beam pattern is obtained, and with αd > θB, a Kossel
pattern. However, to avoid the shift caused by spherical aberration, it is bet-
ter to use a stationary probe and postspecimen deflection. The advantage of
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Fig. 8.5. Electron-diffraction techniques that use
a rocking electron probe. (a) A rocking probe of
small aperture produces a spot, CBED, or Kossel
pattern, depending on the detector aperture αd.
(b) Double-rocking technique.

rocking the electron probe is that types of information not available from a
conventional EDP become accessible. Figure 8.6a shows a stationary electron-
probe Kossel pattern of the 111 pole of a Si foil. Using a rocking probe and
a large detector aperture, a similar pattern can be recorded with the cone
of electrons scattered through the detector aperture (Fig. 8.6b). These dia-
grams contain defects due to anomalous electron transmission. Suppose now
that the annular detector is placed below the specimen [4.68]. Electrons scat-
tered through large angles, normally not used in TEM, will be collected, and
a contrast reversal is observed (Fig. 8.6c). The diagram now contains excess
Kikuchi bands generated by direct scattering of electrons out of the Bloch-
wave field into larger angles. The pattern is the same as that recorded with
backscattered electrons (BSE) (Fig. 8.6d) known as an electron channeling
pattern (ECP) in SEM. The only difference is that the noise is larger in the
BSE pattern (Fig. 8.6d) than in the pattern recorded with (Fig. 8.6c) be-
cause many fewer electrons are backscattered than forward scattered through
large angles; we recall that the Rutherford cross section varies with angle as
cosec4(θ/2).

If two semiconductor detectors are used, one annular in shape, the other
occupying the central region, the first will record a Kossel pattern and the
second a spot pattern [8.33, 8.34]. The two signals can be added or subtracted
to obtain a Kossel pattern on the CRT with superposed bright or dark dif-
fraction spots. This facilitates accurate determination of orientation because
the position of the Kossel bands relative to the spots and the position of the
central beam in the diagram can be established with high accuracy.

Another interesting variant is the double-rocking method [8.35, 8.36, 8.37]
(Fig. 8.5b). A second postspecimen scan-coil system is arranged in such a way
that the primary beam falls on the detector at all rocking angles. A convergent-
beam pattern can be obtained for the primary beam over a very much larger
angular range undisturbed by the overlap of other Bragg reflections. In a
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Fig. 8.6. Electron diffraction patterns near the 111 pole of an Si foil. (a) Stationary-
probe Kossel pattern recorded with the transmitted electrons. (b) Rocking-probe
diffraction pattern with the transmitted electrons, (c) with the transmitted electrons
scattered through large angles (θ > 10◦), and (d) with the backscattered electrons
(θ > 90◦) [8.18].

similar fashion, a convergent-beam pattern can be obtained from a Bragg
reflection if the detector diaphragm is shifted and only the diffracted intensity
Ig recorded (see also zone-axis pattern in Sect. 8.1.5e). This technique is the
rocking variant of LACBED.

8.1.5 Further Diffraction Modes in TEM

(a) Small-Angle Electron Diffraction Small-angle x-ray diffraction is suc-
cessfully used for the investigation of periodicities and particles of the order of
10–100 nm. This method can also be used with electrons [8.38]. Diffraction at
spacings of d = 100 nm requires a primary beam with an illumination aperture
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Fig. 8.7. Small-angle electron-diffraction patterns (b and c) of a shadow-cast col-
lagen specimen (a) showing the periodicities of the collagen fibers [8.38].

smaller than the diffraction angle: αi < λ/d = 0.03 mrad for E = 100 keV.
With a double-condenser system, αi = 0.01 mrad can be achieved (Sect. 4.2.1)
and the neighborhood of the primary beam can be magnified by the projector
lens (thereby increasing the effective camera length to several meters). An
extensive account of small-angle electron diffraction has been given in [8.39].

A typical application of this method is the study of evaporated films with
isolated crystals, showing diffuse rings with diameters inversely proportional
to the mean value of the crystal separation [8.40]. Further applications involve
periodicities in collagen (Fig. 8.7), conglomerates of latex spheres and virus
particles [8.41, 8.42], catalase [8.43], and high polymers [8.44]. Organic spec-
imens have to be coated with a metal conductive layer to prevent charging,
which would perturb the primary beam. Periodicities can also be resolved in
a micrograph, and the same information is obtainable by laser (Fraunhofer)
diffraction on the developed film or plate (Sect. 6.4.7) or by Fourier transfor-
mation of digitized images. Small-angle diffraction can also be used in Lorentz
microscopy (Sect. 6.8.2a) because the primary beam is split by the Lorentz
force inside the magnetic domains.

(b) Scanning Electron Diffraction For the quantitative interpretation of
EDPs, it can be useful to record the intensities directly by scanning the dif-
fraction pattern across a detector diaphragm (Grigson mode). The detector
may be a Faraday cage, a semiconductor, or a scintillator–photomultiplier
combination [7.79, 8.45]. This method also can be used for energy filtering of
an EDP [7.80] by means of a retarding-field filter [7.79, 8.47] or a magnetic
prism spectrometer and is of special interest for ultrahigh-vacuum experi-
ments [8.48]. The EDP can also be recorded digitally by means of a CCD
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Fig. 8.8. (a) Schematic ray diagram for recording a high-energy reflection of an
NaF film evaporated on a (100) NaF cleavage plane of 270◦C (H. Raether).

camera or an image plate; the beam-rocking methods described in Sect. 8.1.2
can likewise be employed [8.49].

(c) Reflection High-Energy Electron Diffraction (RHEED) Bulk ma-
terial can be investigated by allowing the electron beam to fall obliquely on the
specimen at a glancing angle θ < θB (Fig. 8.8). The electrons penetrate only a
few atomic layers into the material. Because the interaction volume is so thin,
the reciprocal-lattice points will be drawn out to needles normal to the surface,
and the Bragg spots will be elongated. Plane surfaces also show Kikuchi lines
and bands (Fig. 8.9). The influence of refraction, which shifts the Bragg spots
to smaller Bragg angles, has to be considered. The method is as sensitive to
surface layers as low-energy electron diffraction (LEED). The surface can be
cleaned by heating or by electron and/or ion bombardment [8.50]. Charging
effects can cause problems with insulating materials. They can be avoided by
irradiating the specimen with 200–1000 eV electrons from a separate source,
which increases the secondary-electron production and avoids the buildup of
a large negative charge, or by heating (increasing electrical conductivity).

Imaging of the surface by selected Bragg-diffraction spots is used in re-
flection electron microscopy (REM, Sect. 9.7). Micro-area diffraction can be
achieved by employing a nanometer probe in a STEM [8.51], and this tech-
nique can also be used at low electron energies (0.5–20 keV) [8.52].

(d) Electron-Backscattering Pattern and Electron-Channeling
Pattern Increasing the angle θ between beam and specimen (Fig. 8.8a)
to 5◦–30◦ and increasing Φmax to 20◦–30◦ yields electron-backscattering pat-
terns (EBSP) [8.53] that contain excess Kikuchi bands (Fig. 8.9). Increasing
θ still further causes contrast reversal in defect bands for small take-off angles
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Fig. 8.9. Electron-backscattering pattern (EBSP) with excess Kikuchi bands of a
germanium single crystal recorded with 100 keV electrons striking the crystal with
an angle of 10◦ (see Fig. 8.8a).

[8.54, 8.55]. This is analogous to the extension of defect bands in the central
area of a transmission EDP with increasing thickness (Sect. 7.5.4, Fig. 7.26).

Electron-backscattering patterns can be obtained in TEM by positioning
the specimen about 10 cm above the final screen and photographic plate and
deflecting the electron beam on the specimen by means of coils situated below
the projector lens [8.55].

The formation of an electron-channeling pattern (ECP) [8.56, 8.57] by
backscattered or forward-scattered electrons (Fig. 10.66c,d) is related to that
of EBSP by the theorem of reciprocity [8.55, 8.58].

(e) Zone-Axis Pattern (ZAP) In convergent-beam electron diffraction
(CBED) (Sect. 8.3), each point corresponds to a particular direction of elec-
tron incidence inside the convergent electron probe. If a crystal foil is bent
two-dimensionally by distortion and the electron beam hits the foil nearly
parallel to a low-indexed zone axis, then each point of the foil in a bright-field
image corresponds to another direction of incidence of the parallel electron
beam relative to the lattice planes (Fig. 9.3). If the two main radii of curva-
ture of the foil have the same sign and equal order of magnitude (dome- or
cup-shaped), the bend contours (Sect. 9.1.1), which form a zone-axis pattern
(ZAP), exhibit the same intensity distribution as a CBED pattern. There is
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also a resemblance to the double-rocking technique (Sect. 8.1.3 and Fig. 8.5b)
because the tilt of the foil can be larger than the Bragg angles, resulting in
overlap of the reflection circles in CBED but not in the ZAP.

Unlike CBED, which produces a two-dimensional rocking curve in Fourier
space (diffraction plane), the ZAP is a real-space phenomenon. Whereas a
pattern is formed by an electron probe of a few nanometers in diameter, a
ZAP extends over a few micrometers. Zone axis patterns contain a lot of
information about the crystal symmetry [8.59, 8.60, 8.61] and can be used to
determine the space group [see also discussion of the high-order Laue-zone
patterns (HOLZ) in Sect. 8.3.4]. If the incident electron energy is varied, the
intensity distribution near the zone axis changes and gives information about
Bloch-wave channeling and the critical voltage [8.61, 8.62, 8.63].

8.2 Some Uses of Diffraction Patterns
with Bragg Reflections

8.2.1 Lattice-Plane Spacings

Calculations of the lattice-plane spacing dhkl from the Bragg condition (7.11)
require a knowledge of the electron wavelength λ (3.1) and the Bragg angle θB.
Since θB is small, the sine that occurs in the Bragg condition can be replaced
by the tangent in a first-order approximation,

λ

d
= 2 sin θB � tan(2θB) =

r

L
, d � λL

r
, (8.3)

where r is the distance of the diffraction spot from the primary beam or the
radius of a Debye–Scherrer ring, and L is the diffraction (or camera) length.
For higher accuracy, a further term of the series expansion can be included,
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+ . . .

]
. (8.4)

However, this formula is valid only if the diffraction pattern is magnified
without any barrel or pin cushion distortion. The pin cushion distortion of
the projector lens (Sects. 2.3.4 and 8.1.1) contributes a further term in r2 so
that a value larger than 3/8 may be found for the constant in (8.4) during
calibration [8.8].

The diffraction (or camera) length L cannot be measured directly. The
product λL must therefore be determined by calibration with a substance of
known lattice constant. Only substances with the following properties should
be used for calibration:

1. many sharp rings with known dhkl;
2. chemically stable and no change of lattice parameters under electron ir-

radiation;
3. correspondence with x-ray lattice constant;
4. easy preparation.
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Table 8.1. Calibration standards for electron diffraction.

Standard Lattice type Lattice constant (nm) Ref.

LiF NaCl a = 0.4020 [8.69]
TlCl CsCl a = 0.3841 [8.64, 8.70]
MgO NaCl a = 0.4202 [8.70]
ZnO Wurtzite a = 0.3243 [8.71]

c = 0.5194
Au fcc a = 0.40783
Si Diamond a = 0.54307 [8.68]

Table 8.1 contains some suitable calibration substances and their lattice
parameters. The value for TlCl has been compared with the x-ray data in a
high-precision experiment (∆d/d = ±3 × 10−5) [8.64].

When single-crystal standards are used, the reciprocal-lattice points have a
needle-like shape parallel to the surface normal (Figs. 7.9 and 7.10a). If the
crystal normal is inclined to the electron beam, the intersections of these
needles with the Ewald sphere can alter the positions of Bragg-diffraction
spots [8.65].

Tilt coils for the electron beam can be used for the calibration of diffraction
patterns because the deflection angle θ is proportional to the coil current. The
diffraction pattern is shifted by Lθ [8.66, 8.67]. Double exposures with known
and previously calibrated θ allow the distortion of the EDP to be determined.
Alternatively, the lattice spacing can be measured directly in the microscope
with an accuracy of 0.1% by recording the x and y coil currents needed to
bring the diffracted beam on-axis [8.68].

8.2.2 Texture Diagrams

For many polycrystalline specimens, the distribution of crystal orientations is
not random; instead, one lattice plane may lie preferentially parallel to the
specimen plane. In this plane, however, the crystals are rotated randomly
around a common axis F = [mno], the fiber axis of the fiber texture.

The existence of this fiber axis means that the reciprocal-lattice points are
distributed around concentric circles centered on the fiber axis (Fig. 8.10a).
(They would lie on a sphere for a totally random distribution.)

If the electron beam is parallel to the fiber axis, the Ewald sphere intersects
the circles and a Debye–Scherrer ring pattern is observed that does not show
all possible hkl but only those that fulfill the condition

(hkl)[mno] = hm + kn + lo = 0. (8.5)

The limitation of the number of observable rings can mimic extinction
rules |F |2 = 0. As a consequence, wrong conclusions may be drawn about
the crystal structure. In a weak fiber texture, the fiber axis will be no more
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Fig. 8.10. (a) Distribution of the g vectors of the crystallites in reciprocal space
for foils with a fiber texture with [mno] as fiber axis. (b) Intersection of the Ewald
sphere (– – –) with these rings resulting in sickle-shaped segments of the Debye–
Scherrer rings. (c) Relations between the angles (E: electron-beam direction, N:
intersection of Ewald sphere and reciprocal lattice, F: fiber axis).

Fig. 8.11. (a) Electron-diffraction pattern at normal incidence of an evaporated
Au film with a weak (111) fiber texture and (b) the same specimen tilted 45◦ to the
electron beam showing a weak dependence of the ring intensities on the azimuth.
(c) Strong fiber texture of an evaporated Zn film tilted at 45◦ to the electron beam.

than a preferential direction; all possible rings now appear but with the wrong
intensity ratios. The diffraction pattern of an evaporated gold film (Fig. 8.11a),
for example, shows a 220 ring that is more intense than would be expected
from a random distribution.

A fiber texture can be recognized clearly if the direction of electron inci-
dence E is tilted through an angle β relative to the fiber axis F; in practice, the
specimen normal is tilted relative to the electron beam in a goniometer stage.
The intersections of the Ewald sphere with the concentric circles then become
sickle-shaped (Fig. 8.10b), as can be seen for the weak fiber texture of a gold
film in Fig. 8.11b and for the stronger texture of a zinc film in Fig. 8.11c. The
sickles become narrower for a larger tilt angle β = 45◦ − 60◦. The texture
should be most clearly detectable with β = 90◦, but this is possible only in a
RHEED experiment (Sect. 8.1.5).
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Quantitative results about the fiber axis can be obtained by measuring the
azimuths δ of the centers of the sickle-shaped ring segments [8.72, 3.17]. The
intersection of the plane that contains the directions E and F with the Ewald
sphere defines a direction F′ in the diffraction pattern that gives the origin
of δ (Fig. 8.10b). The angle ρ between (hkl) and [mno] can be calculated by
evaluating their scalar product. The hkl are obtained from the ring diameter.
For the spherical triangle FEN in Fig. 8.10c, with γ = 90◦, we have

cos ρ = cos β cos γ + sin β sin γ cos δ = sinβ cos δ. (8.6)

For known values of the tilt angle β and azimuth δ, the value of cos ρ can
be calculated and compared with theoretical values for different possible fiber
axes. A procedure for noncubic crystals is described in [8.74, 8.75]. Measure-
ment of the azimuthal distribution of the ring intensities can be used for the
quantitative characterization of a texture [8.45].

8.2.3 Crystal Structure

The method described for measuring lattice-plane spacings dhkl can be used
for direct comparison of different substances. If the chemical composition is
known or has been established by x-ray microanalysis or EELS, the crystal
structure can be identified by comparing the spacings with tabulated x-ray
values of the dhkl A.S.T.M. Index or using the search/match programs de-
veloped for electron diffraction listed in [8.46]. However, a problem is that
the dhkl cannot be measured with an accuracy better than about 1% and the
results may fail to coincide with the tabulated data. Only in the case of a
standard (evaporated film or small particle, Table 8.1) at the same position
in the specimen plane can accuracies of 0.1% be achieved. In single-crystal
EDPs, the symmetry of the spot diagram, the extinction rules, and the angles
between the diffraction spots can be used for a further identification of the
structure.

The complete determination of crystal structure by Fourier synthesis us-
ing electron-diffraction patterns is superior to x-ray analysis if the material
under investigation exists in only small quantities or produces diffuse x-ray
diffraction because the particles are small. In x-ray crystal-powder diffrac-
tion patterns, the Debye–Scherrer rings already begin to broaden for crystals
smaller than 100 nm. This broadening can be detected in EDPs only when
the crystals are smaller than 5 nm.

However, Fourier synthesis requires exact values of the reflection intensi-
ties, and the following difficulties are encountered when using conventional
electron-diffraction patterns with Bragg spots:

1. The transition from the kinematical to the dynamical theory is significant
for thicknesses or dimensions as small as 5 nm.

2. Forbidden and weak reflections can be excited by multiple diffraction.
3. In small particles or small irradiated areas, only a few reflections, for which

the reciprocal-lattice points are near the Ewald sphere, are excited.
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4. Foils of large area are often bent and exhibit Bragg-spot intensities that
depend randomly on the fraction of the irradiated area that contributes
to the Bragg reflection.

Methods have been described for obtaining quantitative values of the struc-
ture factors |F (θ)|2 from polycrystalline ring and texture patterns for subse-
quent Fourier synthesis of the atomic positions in the unit cell [3.17, 8.74, 8.75].
These methods assume that the kinematical theory is completely valid and
that there is no influence on the intensity of high orders of a systematic row
(see, e.g., Fig. 7.24). In consequence, the results have to be interpreted with
care [8.76]. A correction using the Blackman formula (7.94) has been applied
to Ni3C, for example [8.77]; see also [8.78].

The problems in determining crystal structure from electron-diffraction
patterns with Bragg spots is discussed in [8.79, 8.80], and a method is de-
scribed for measuring the integrated intensity of Bragg spots. Each diffrac-
tion spot is expanded to a square by a pair of deflection coils, which allows
the integrated intensity to be determined more easily by photometry. It has
also been suggested that the specimen should be oscillated around an axis in
the specimen plane to average over the reflection range of a reciprocal-lattice
point [8.81]. Vincent and Midgley have proposed to rock the beam conically
around the optic axis with a double-rocking technique [8.82]. Recent progress
is discussed in [8.83].

Thin crystal lamellae are often parallel to the specimen plane. The Bragg
spots around the primary beam are an “image” of the zero-order Laue zone
(HOLZ) of the reciprocal lattice. If the Bragg spots in high-order Laue zones
(HOLZ) are regarded as a two-dimensional net, this net can be continued to
the origin of the reciprocal lattice. This results in an overlap like that seen in
Fig. 7.7. The diameters of the high-order Laue zones (Sect. 8.3.4) can be used
to extract information about the lattice-plane spacings normal to this plane.
A goniometer that provides tilt angles up to ±45◦ and adjustment of the tilt
axis with an accuracy of 0.1–1 µm permits us to explore the three-dimensional
structure of the reciprocal lattice [8.84, 8.85, 8.86]. It will be useful to rotate
the crystal around the specimen normal, so that a systematic row is parallel to
the tilt axis. In most cases, the unit cell can be reconstructed with only a few
tilts, for which the electron beam is again parallel to a zone axis. If necessary,
a further tilt around another row can be performed [8.87, 8.88, 8.89].

For complete structure analysis, not only should a goniometer be used but
also convergent-beam diffraction (Sect. 8.3) to get information about the point
and space group and to measure the lattice-potential coefficients Vg and the
crystal thickness from the spacing of the pendellösung fringes (Sect. 8.3). An
electron micrograph contains information about the crystal size and lattice
defects that can be included in the analysis of EDP. For thin crystals (t ≤ 5
nm), it may be possible to resolve the projected lattice structure directly
(Sect. 9.6).
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X-ray diffraction is influenced by the electron-density distribution of the
atomic shell and electron diffraction by the screened Coulomb potential of
the nuclei. The scattering amplitudes of single atoms are proportional to Z
for x-rays (5.33) and to Z2/3 for electrons (5.34). The difference between light
and heavy atoms is smaller for electrons than for x-rays. Light atoms can be
localized better in the presence of heavy atoms [8.90, 8.91].

The different scattering mechanisms for x-rays and electrons can be ob-
served with KCl, for example. Both elements have the electron configuration
of argon, and the scattering amplitudes for x-rays are equal; the structure
amplitude 4(fK − fCl) therefore vanishes for all hkl odd (Sect. 7.2.2). In elec-
tron diffraction, the nuclear charges are different, so that for odd values of
hkl, the amplitude is weak but not zero, whereas the amplitude for hkl even,
4(fK + fCl), is strong [8.92].

8.2.4 Crystal Orientation

A knowledge of the exact orientation of crystals is important for investigating
lattice defects and for establishing the relative orientations of different phases
of the matrix and precipitates.

Many diffraction spots are observed if the foil is very thin, so that the
reflection range of the reciprocal-lattice points is enlarged, or if the foil is
bent. Both effects limit the accuracy of orientation determination. For this,
the diffraction spots R1, R2, . . . at the distances rn from the central beam O
are used to calculate dn by taking the product λL from a calibration pattern
(Sect. 8.2.1). When the lattice structure and lattice constant are known, the
corresponding reciprocal-lattice points gn = (hn, kn, ln) can be indexed. For
cubic crystals, the ratio method can be applied by using

r2
1

r2
2

=
h2

1 + k2
1 + l21

h2
2 + k2

2 + l22
. (8.7)

From a table of values of this ratio for all possible combinations of |g1| and
|g2|, the indices of both reflections can be identified without knowing λL.
To be sure that spots have been indexed with the correct signs, agreement
between the observed angle α12 between OR1 and OR2 and the theoretical
value,
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g1 · g2

|g1||g2|
=
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1 + l21)1/2(h2
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, (8.8)

must be checked. There may be small differences between measured and cal-
culated α12 [8.93]. The direction of the electron incidence (normal to the foil)
is parallel to the vector product of two reciprocal-lattice vectors

n ‖ g1 × g2 = (k1l2 − k2l1, l1h2 − l2h1, h1k2 − h2k1). (8.9)

The needle-like extension of the reciprocal-lattice points (Sect. 7.2.2) widens
the tilt range, which can be ±10◦ for low-order reflections [8.94]. The orienta-
tion therefore becomes more accurate if a large number of reflections is used,
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especially high-order reflections at the periphery of the EDP. An accuracy of
±3◦ can then be achieved [8.95, 8.96]. Further improvements can be made by
considering the intensities of the diffraction spots [8.94].

The orientation determination becomes unique and more accurate if three
reflections g1, g2, g3 are employed [8.97, 8.98]. A circle is drawn through the
three spots to establish the correct numbering of the sequence. If the central
beam O is inside the circle, the reflections are numbered counterclockwise;
otherwise they are numbered clockwise. With this convention, the determinant

g1 · (g2 × g3) =
1
V

∣∣∣∣∣∣
h1 k1 l1
h2 k2 l2
h3 k3 l3

∣∣∣∣∣∣ (8.10)

should be positive. If it is not, the signs of the hkl must be reversed so that
for combinations of two gi, (8.8) is also obeyed. The direction of the normal
antiparallel to the electron beam is then given by the mean value

n ‖ |g1|2(g2 × g3) + |g2|2(g3 × g1) + |g3|2(g1 × g2). (8.11)

However, the orientation is not unique if all of the reflections happen to belong
to a single zone with odd symmetry [8.93, 8.99, 8.100]. After rotation of the
crystal through 180◦, the same diffraction pattern is obtained. The orientation
can be established uniquely from a second EDP obtained after tilting the
specimen. A goniometer should also be used if the EDP does not contain two
or three diffraction spots convenient for calculation. With these precautions,
an accuracy of ±0.1◦ can be attained.

A high accuracy is also obtained if the Kikuchi lines are used [8.93, 8.98,
8.101, 8.102]. A reflection is in the exact Bragg condition if the excess Kikuchi
line goes through the diffraction spot. If the distance from the line to the
reflection gn is an, the tilt out of the Bragg position or the excitation error sg is

∆θ =
λ

d

an

rn
, sg = g∆θ =

λ

d2

an

rn
. (8.12)

Equation (8.11) implies exact Bragg positions. If the three terms are multi-
plied by an = (rn + 2an)/rn, an accuracy of ±0.1◦ is obtained [8.98]. For
determination of the relative orientation of two crystals from the Kikuchi
pattern, see [8.103].

The relative orientation between a matrix and coherent or partially coher-
ent precipitates can be determined by means of a transfer matrix that relates
the coordinate systems of the two phases [8.104, 8.105, 8.106].

The orientation can be checked by using specimen details that are visible
in the micrograph, provided that precipitates, stacking faults, or dislocations
are recognizable in different planes and show traces with measurable relative
angles. The traces of structures in octahedral planes can be used, for exam-
ple, to analyze the accuracy and uniqueness of the orientation determination
[8.107, 8.108].

In older microscopes, the diffraction pattern of a specimen area is rotated
relative to the image of the same area because of image rotation by magnetic
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lenses. This rotation angle can be calibrated by using MoO3 crystal lamellae.
These are prepared as smoke particles by heating an Mo wire in air with a
high a.c. current in an open high-vacuum evaporator and collecting the vapor
on a glass slide. After floating the crystal film on water and collecting it
on a formvar-coated grid, crystal lamellae parallel to the specimen plane are
obtained. The long edge of these crystals is parallel to [100]. The rotation angle
can be read from a double exposure of an image and the SAED pattern [8.109].

If the orientation of the diffraction pattern relative to the specimen is of
interest, the angle of rotation between specimen and micrograph also has to be
measured [8.110]. Kikuchi lines can again be used for this purpose [8.111]. The
system of Kossel cones is fixed to the crystal so that the Kikuchi lines move if
the specimen is tilted about an axis of known orientation. This direction can
be compared with the direction of shift of the Kikuchi lines.

8.2.5 Examples of Extra Spots and Streaks

Electron-diffraction patterns contain not only the Bragg-diffraction spots that
are expected from the structure of the unit cell of a perfect crystal but also ad-
ditional spots and streaks. Not every effect can be discussed here because they
vary from one specimen to another. A few typical examples will be described
that should provide some guidance in the discussion of particular diffraction
patterns.

Forbidden Reflections In dynamical theory, the intensity of a beam dif-
fracted at hkl lattice planes can be equal in magnitude to the primary beam.
A second Bragg reflection at lattice planes h′k′l′ can therefore produce re-
flections with indices h − h′, k − k′, l − l′. Spots that are forbidden by the
extinction rules for the structure amplitude F (Sect. 7.2.2) may therefore be
seen: an 00l spot (l odd) in FeS2 [8.112], a 222 spot in Ge by double exci-
tation at the allowed (111) and (311) lattice planes [8.113, 8.114], or a 00.1
spot in hexagonal cobalt coming from (h0.1) and (h0.0) [8.81]. This explana-
tion of forbidden reflections is restricted to particular crystal orientations with
relatively low values of sg (accidental interaction). In other situations, more
Bragg reflections can be excited simultaneously in dynamical theory, resulting
in more intense forbidden-reflection spots (systematic interaction).

Twins and Precipitates Twinning results from a mirror reflection of the
crystal structure about special lattice planes. For example, face-centered cubic
crystals show a twin formation with a mirror reflection about the {111} planes,
and Ag films evaporated on [100] cleavage planes of NaCl or Ni films electrolyt-
ically deposited on copper show an epitaxy with frequent twin lamellae. The
reciprocal lattice of these twin lamellae can be obtained from the reciprocal
lattice of the matrix by mirror reflection about the {111} planes, and addi-
tional reciprocal lattice points occur on one-third of the neighboring points in
the 〈111〉 directions. Extra spots are seen (Fig. 9.4), which are strongest if the
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foil is tilted through about 16◦ out of the [100] orientation [8.115]. Precipitates
with a fixed orientation to the matrix cause similar effects. In order to identify
the origin of extra spots, the specimen must be imaged in the dark-field mode,
selecting these extra spots only; the parts of the image that contribute to the
spot will then appear bright (Sect. 9.1.2).

Stacking Faults and Planar Precipitates The finite extension of a crys-
tal plate results in a needle-shaped extension of the reciprocal-lattice points
normal to the plate (Sect. 7.2.2). If the electron beam is parallel to this nor-
mal, the diffraction pattern is not changed and reflections will appear over a
larger tilt range. However, small shifts in the position of diffraction spots can
result from the intersection of the Ewald sphere with the needles (Fig. 7.9).
The needles at the reciprocal-lattice points create diffuse streaks in the dif-
fraction pattern if the angle between the normal to the crystal plates and
the electron beam is near 90◦. The streaks can extend from one Bragg spot
to another and are normally sharper than streaks caused by electron–phonon
scattering (Sect. 7.5.3). The existence of streaks indicates that the specimen
contains planar faults such as high density, precipitate lamellae, or Guinier–
Preston zones, for example. Figure 8.12 shows an example of {111} stacking
faults in Fe4N particles (fcc, a = 0.378 nm) extracted from an Fe-0.1wt.%N
alloy heat-treated to 370◦C. In Fig. 8.12a, the {111} planes are inclined more
parallel to the foil, and in Fig. 8.12b their normals are inclined at an angle of
nearly 90◦ to the electron beam [8.116].

Ordered Alloys with a Superlattice Structure The most important ef-
fects will be discussed for the example of Cu-Au alloys. The alloy AuCu3 is
not ordered at temperatures T ≥ 399◦C, where it consists of a solid solution
with a random distribution of Au and Cu atoms at the sites of an fcc lattice.

Fig. 8.12. Selected-area electron-diffraction patterns of plate-like Fe4N precipitates
with stacking faults in the {111} planes in two different orientations: (a) {111}
oblique to the electron beam and (b) one of the planes parallel to the electron beam
[8.116].
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The diffraction pattern contains the reflections allowed by the extinction rules
for this lattice type (Table 7.1). Below the transition temperature, the alloy
acquires an ordered structure with the Au atoms at the corners and Cu atoms
at the face centers of the cubic unit cell. In this situation, F = fAu +3fCu for
all even and all odd hkl and F = fAu−fCu for mixed hkl; for the latter, F = 0
in the nonordered structure. Additional Bragg spots therefore appear below
388◦C, and this can be used for calibration of the specimen temperature, for
example (Sect. 11.1.1).

In an Au-Cu alloy (50:50 wt%), the transition from the random phase to
the ordered CuAu II phase, in which alternate (002) planes consist wholly
of Cu and wholly of Au atoms, occurs at 410◦C. Every 2 nm, the Cu and
Au atoms change places, and the consequence is a domain structure with
antiphase boundaries (Fig. 9.17). The resulting unit cell is elongated with
a spacing of 4 nm, and the Bragg-diffraction spots are split in the 〈100〉
directions by this increased spacing (Fig. 8.13) [8.117]. The antiphase structure
can be imaged in the dark-field mode in which one Bragg-reflected beam
and the surrounding superlattice reflections contribute to the image intensity.
Similar superlattice reflections can be observed in the EDPs of other alloys
(see, for example, [8.118]).

Below 380◦C, the phase CuAu I is stable; this consists of a face-centered
tetragonal lattice (c/a = 0.92), again with alternating (002) planes of Au and
Cu atoms but without the closely spaced antiphase boundaries of the CuAu
II phase. These boundaries are planar faults and can be identified by their
fringe pattern in electron micrographs (Sect. 9.3.3).

Fig. 8.13. Electron diffraction pattern of an ordered CuAu II film [8.117].
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8.3 Convergent-Beam Electron Diffraction (CBED)

8.3.1 Determination of Point and Space Groups

Symmetries in CBED patterns allow the point and space groups to be deter-
mined in defect-free regions not buckled inside the contributing area. Thirty-
one different diffraction groups can be distinguished by using the ten possible
two-dimensional point groups for the determination of the point symmetries of
the whole pattern, the dark Holz-line pattern inside the primary-beam CBED
disc, or mirror lines in Bragg reflections and in ±g. Tables are published that
list these symmetries for the different diffraction groups, relate the 31 diffrac-
tion groups to the 32 crystal point groups, and give the expected diffraction
symmetries at any particular zone axis of each of the 32 crystal point groups
[8.119, 8.120, 8.121, 8.122, 8.123].

In x-ray crystallography, the crystal space group can be obtained from for-
bidden reflections whenever the structure factor F (Sect. 7.2.2) vanishes for a
crystal structure containing screw axes or glide planes. In electron diffraction,
forbidden reflections can often appear quite strongly due to multibeam dy-
namical theory. However, in well-aligned zone-axis CBED, dynamic extinction
conditions exist that appear as dark bars or crosses (Gjønnes–Moodie lines)
[8.124] and can be used to determinate the space group [8.123, 8.125].

8.3.2 Determination of Foil Thickness

The generation of CBED patterns has been described in Sect. 8.1.3. The in-
tensity distribution inside the circles of a convergent-beam diffraction pattern
(Fig. 8.3b) is none other than a stationary, two-dimensional rocking curve
(Sect. 7.3.4, Figs. 7.18 and 7.20), which contains information about the lo-
cal thickness t, and the extinction and absorption distances ξg and ξ′g, which
are reciprocal to the lattice potentials Vg and V ′

g , respectively. A necessary
condition for CBED is that the circles do not overlap, which restricts the
range of rocking. A larger rocking angle can be employed without overlap by
the double-rocking technique (Sect. 8.1.4), by studying ZAP patterns (Sect.
8.1.5), or by large-angle CBED (LACBED, Sect. 8.3.6).

The thickness can be obtained from the positions of the subsidiary minima
of the pendellösung fringes. The two-beam rocking curve (7.61) has minima if
the argument of the sine term is an integral multiple n of π. The corresponding
excitation errors sn are then given by

(a) s2
n =

n2

t2
− 1

ξ2
g

or (b)
(sn

n

)2

=
1
t2

− 1
n2ξ2

g

. (8.13)

Plotting s2
n against n2 [8.126] gives us t from the slope and ξg from the in-

tercept with the ordinate; alternatively, plotting (sn/n)2 against 1/n2 gives t
from the intercept with the ordinate [8.127]. In both cases, the correct start-
ing number n1 of the first minimum has to be known. For a foil thickness
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between mξg and (m + 1)ξg, the appropriate value is n1 = m + 1. If a wrong
value of n1 is used, the plot does not give a straight line. Errors arising from
the two-beam case can be decreased by exciting reflections equal to or higher
than 200, 220, and 311 for Al, Cu, and Au, respectively [8.128].

However, the two-beam case can never be perfectly realized, and many-
beam calculations are necessary. Using rough values of t and ξg given by the
two-beam method, many-beam fits must be computed in which t, ξg, and ξ′g
are allowed to vary (see also the next section).

The CBED pattern also contains a diffuse background with Kikuchi bands.
This background has to be subtracted before seeking a best fit with many-
beam calculations. A photometric record of the background very near the
selected trace through the CBED pattern can be obtained by placing a thin
wire across the circular diaphragm in the condenser lens, which casts a shadow
across the CBED circles and allows the diffuse background inside the shadow
to be measured [8.129]. The background intensity can be decreased by zero-
loss filtering of electron spectroscopic diffraction patterns (Sect. 7.5.5).

8.3.3 Charge-Density Distributions

X-ray crystallography allows us not only to determine the position of atoms
in the unit cell but also to obtain charge-density maps. Familiar examples
are NaCl and the diamond structure. In NaCl the resulting charge density
around the nuclei has an approximate spherical symmetry because the Na+

and Cl− ions have the closed shells of a noble gas. In a diamond structure,
the tetrahedral bonds, regarded as overlaps of the sp3 hybrid wave functions,
result in bridges in the charge density. In x-ray diffraction, the scattering am-
plitude fx (5.33) is influenced only by the charge distribution ρe of the jellium
and tends to Z when θ → 0; for electrons, on the other hand, the structure
factor may even show an enhanced sensitivity to bonding effects for low-order
Bragg reflections because the structure amplitude (Fourier coefficient Vg) is
proportional to Z − fx (5.30). Small changes in the scattering amplitudes fx

have a large effect on Z−fx. Many difficulties with the x-ray method, such as
crystal defects and dispersion correction, can be avoided with electrons, and
CBED allows defect-free small areas or even nanometer-sized crystals to be
investigated [8.130].

Measurements of Vg have been based on three-beam dynamical theory in
the analysis of three-phase structure invariants [8.131], the critical-voltage
method (Sect. 7.4.4), and the analysis of degeneracies in centrosymmet-
ric [8.132] and noncentrosymmetric crystals [8.133, 8.134]. For accounts of
structure-factor determination, see [1.81, 8.135].

Modern methods record CBED patterns by CCD arrays and apply energy
filtering [7.82] to reduce the inelastic background. Line scans across the pen-
dellösung fringes of a CBED pattern are fitted by varying the thickness and
the Vg and V ′

g for a large number of reflections (about 30) in the first- and
high-order Laue zones. For noncentrosymmetric crystals, both the real and
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the imaginary (absorptive) parts of the crystal potential are complex, which
requires the introduction of additional phase factors φg:

V (r) =
∑
g

[
|Vg|eiφg + i |V ′

g |eiφ′
g

]
exp(−2πig · r). (8.14)

The parameter space for the best fit can contain 12–16 nonseparable para-
meters, which can be divided into geometrical and physical parameters. The
first are the starting and end points of the line scan, the incident beam di-
rection, and the radius of the CBED discs, for example, and the last are
the wanted thickness and Fourier coefficients. Different iterative procedures
[8.136, 8.137, 8.138, 8.139] have been developed to find the minimum of

χ2 =
n∑

i=1

wi(cf
exp
i − f theo

i )2

σ2
i

, (8.15)

where fexp
i and f theo

i are the experimental and theoretically calculated values
of the intensities at the points i within the line scan. Examples of results have
been published for GaAs [8.130], MgO [8.137], and BeO [8.140], for example.

8.3.4 High-Order Laue Zone (HOLZ) Patterns

A high-order Laue zone (HOLZ) diffraction pattern is obtained when the
electron beam is incident on the specimen parallel to a low-index zone axis.
The Ewald sphere intersects the needles of the zero-zone reciprocal-lattice
points, producing the convergent-beam circles of the Bragg reflections around
the primary beam; at larger angular distances, sin θn = λRn, the next higher
Laue zones of order n are intersected in the reciprocal lattice with radii Rn

(Figs. 7.6b and 8.14). These radii can be evaluated from Fig. 7.6b using the
result given by elementary geometry,

R2
n = gn

(
2
λ
− gn

)
, gn =

n

a
√

m2 + n2 + o2
, (8.16)

where 2/λ is the diameter of the Ewald sphere and gn denotes the distance be-
tween the nth Laue zone and the zero-order Laue zone for the zone axis [mno].
Quantitative measurement of Rn gives information about the third dimension
of the reciprocal lattice, especially for materials with layer structures such
as ZrSe2, TaSe2, NbS2, TaS2, and MoS2 [8.141, 8.142, 8.143]. For different
crystal structures, the HOLZ rings appear with different relative intensities
(Fig. 8.14). Laue zones may disappear completely if the structure amplitude
F is zero for them, but these forbidden reflections can reappear with weak
intensity as a result of many-beam systematic interactions. Higher-order Laue
zone reflections correspond to low values of Vg and hence to large values of ξg,
and their intensities seem to be directly related to the structure factor |F |2 for
these beams, even for thicker specimens, so that first-order perturbation the-
ory is usually applicable [8.144]. However, for crystal thicknesses greater than
a few tens of nanometers, dynamical interaction effects can occur, and these



8.3 Convergent-Beam Electron Diffraction (CBED) 355

Fig. 8.14. High-order Laue zone (HOLZ) diffraction patterns of 2 H polytypes
of (a) MoS2 and (b) MoSe2 with structure amplitudes (fMo − 1.4fC), fMo, and
(fMo + 1.4fC) (C: chalcogen) for the first- to third-order Laue zones, respectively,
showing that the first-order Laue zone (FOLZ) of MoSe2 is practically invisible
owing to the very small contribution from (fMo − 1.4fSe)[8.145].

furnish information about the crystal potential and the dispersion surface
[8.145, 8.146, 8.147, 8.148]. The high-order reflections decrease more strongly
with increasing temperature due to the Debye–Waller factor (Sect. 7.5.3), so
that specimen cooling increases the intensity of HOLZ rings and HOLZ lines
in the CBED of the primary beam (see below).

8.3.5 HOLZ Lines

In a CBED pattern, the HOLZ reflections become bright HOLZ lines, and
each bright line in the outer HOLZ rings appears inside the primary-beam
circle as a dark line because there is a relationship between excess and defect
Kikuchi lines and the HOLZ lines. Figure 8.15b shows the central (000) disc
with the six surrounding {220} discs for a 111-oriented Si foil. The central disc
is filled with crossing dark (defect) HOLZ lines and pendellösung fringes; these
are not straight as they would be for two-beam excitation but concentric, due
to the interaction with the six strongly excited 220 reflections.

Whereas Kikuchi lines are hard to observe for thin specimens and become
clearer as the thickness is increased, HOLZ lines are narrower (∆θ ≤ 0.1 mrad)
and are most readily visible at thicknesses for which the Kikuchi lines are still
weak. The angular width of a HOLZ line can be estimated from the first zero
of the sine term in the two-beam approximation (7.61) to be

∆θ = 2/gξg for t � ξg and ∆θ = 2/gt for t � ξg. (8.17)

We have the first case for zero-order (HOLZ) reflections with ξg � 20 −
50 nm and the second case for high-order reflections with ξg ≥ 1000 nm.
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Fig. 8.15. HOLZ lines in the primary circle of a CBED pattern [six neighboring 220
reflections are visible in (b)] from (111) Si at three different electron energies: (a) E
= 96.5 keV, (b) 100.5 keV, (c) 103.5 keV. The bright rings are pendellösung fringes
that depend on film thickness and result from the interaction with the neighbored
220 reflections of the zero-order Laue zone [8.149].

Thicker specimens should therefore be used to decrease the detrimental effect
of thin-film relaxations. Because of the Debye–Waller factor exp(−2Mg) =
exp(–4π2〈u2〉g2) (7.95), cooling of the specimen, which is essential to suppress
contamination (Sect. 11.4.2), increases the contrast of HOLZ lines with high g;
these decrease more strongly at room temperature due to g2 in the exponent.

The pattern of overlapping HOLZ lines (Fig. 8.15) in the (000) CBED
disc depends very sensitively on the electron energy E (accelerating voltage
U) [8.149] and/or the lattice constant a. This is shown in Fig. 8.15a–c for
small increments in electron energy. The HOLZ lines from the third Laue zone
move faster than those from the second zone when the acceleration voltage U is
varied. Lines from the same side of the HOLZ ring move in the same direction,
and those from the diametrically opposite side move in the opposite direction.

The lattice dimension can be evaluated with high precision once the beam
voltage has been calibrated with a lattice of known dimensions, such as Si;
alternatively, a relative change ∆a of the lattice constant due to a change of
composition or to electron-beam heating [8.150] can be obtained from a shift
of the HOLZ line when the pattern of crossing lines is compared with a set of
computer maps.

The accuracy is ∆a/a = ∆E/2E = 2× 10−4 at E = 100 keV. Thus, local
concentrations of Al in Cu-Al alloys can be measured with an accuracy of
1 at% [8.142] or strains at planar interfaces can be determined in a fashion
similar to the chemical changes [8.151]. The symmetry of HOLZ lines in the
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center of a convergent-beam pattern can be used for determination of the
crystal space group. [8.152, 8.153, 8.146, 8.154]

The relative shift of HOLZ lines can be detected very sensitively at points
where three HOLZ lines intersect simultaneously (see the center of Fig. 8.15c,
for example). Such a situation can be created by using a suitable acceleration
voltage. However, the positions of the HOLZ lines are influenced by the crystal
potential for electrons because the HOLZ lines arise from intersections of
their dispersion spheres with the zero-order dispersion surface. This can cause
deviations of a few keV in the effective acceleration voltage or a few percent in
the lattice parameter when calculating the HOLZ line positions kinematically
[8.155]. A fully dynamical calculation is thus needed to reduce the errors below
10−4 in acceleration voltage or lattice parameters [8.156, 8.157, 8.158].

The dark high-order Kikuchi lines in the central spot of a CBED can be
converted to bright lines of higher contrast by tilting the primary beam and
moving it around a hollow cone with an angle θn equal to that of the nth
Laue zone. Only the (now excess) HOLZ lines, which are not disturbed by
low-order reflections of the zero-order Laue zone, appear at the cone center
[8.159, 8.160].

8.3.6 Large-Angle CBED

As shown in Sect. 8.1.3, the LACBED pattern is a two-dimensional rock-
ing curve containing FOLZ and HOLZ contour lines without any overlap of
the CBED discs from neighboring reflections, each point corresponding to
an image point as well as a distinct excitation error. Crystal boundaries, for
example, show two LACBED patterns to the left and right of the projected
boundary image, while strain fields cause a bending of the LACBED lines.

An important advantage of LACBED is that lattice defects can be investi-
gated [8.161, 8.162]. As a typical example to illustrate the method [8.163], we
discuss dislocations crossing the contributing area parallel to the x axis; the
pattern of a crossing Bragg contour parallel to the y axis is then the intensity
as a function of the distance y from the dislocation core and the excitation
error sg(x). If we are dealing with high-order reflections, the extinction dis-
tances are much larger than 100 nm and the kinematical approach (9.4) can
be applied to calculate the local intensity 1 − |ψg|2 for a black contour line
of reciprocal-lattice vector g in the x direction, for example. This results in
a characteristic splitting when the contour line approaches and intersects the
dislocation core. In the example of Fig. 8.16, dislocation lines cross five dif-
ferent contours with indicated indices. For a product g · b = n (b = 1

3 [1210]:
Burgers vector of dislocation), we find n − 1 subsidiary maxima. The line
will of course be unaffected by the dislocation when the invisibility criterion
g · b = 0 (Sect. 9.4.1) holds. Unlike the conventional Burgers vector determi-
nation from two invisibility criteria as described in Sect. 9.4.4, several g ·b = n
products can be read in one LACBED when several contour lines cross the
core line, and the solution for b can be directly correlated to the vector parallel



358 8 Electron-Diffraction Modes and Applications

Fig. 8.16. Splitting of dark contour lines in a
bright-field LACBED pattern crossed by dislo-
cations in a quartz sample with different prod-
ucts g ·b = n resulting in n−1 subsidiary max-
ima [8.163].

to the dislocation to distinguish edge and screw dislocations, for example. The
problem of establishing the rotation of a diffraction pattern relative to the im-
age, an inconvenience of the conventional method, does not arise. The image
of the defect moves inside the LACBED pattern if the specimen is slightly
shifted, and a position can be selected for which no other contour lines cross
the core line nearby. In contrast to the imaging mode, where the dislocation
core line can be seen over a large range of excitation errors, a dislocation can
be seen in LACBED only near the intersection of a defect and a core line. In
the case of low-order defect lines, dynamical calculations are necessary. Large-
angle CBED patterns have the advantage that a whole pattern is visible as in
Fig. 8.16, whereas a splitting of the contour lines is seen in CBED patterns
only when the probe approaches a dislocation [8.164].

A further application is the determination of the displacement vector R of
stacking faults [8.162]. Splitting of the contour lines allows strains and periods
in bicrystals and multilayers with the boundaries parallel to the surface (plane
view) to be investigated even when cross-sectional samples cannot be easily
prepared [8.165, 8.166, 8.167, 8.168, 8.169]. The ability to display rocking
curves over a wide angle enables us to analyze complex multilayers in plane
view such as a thin GaAs quantum well between thicker layers of AlGaAs.
The kinematical theory of rocking curves results in a periodic variation of the
magnitude of the rocking curve maxima from which the depth and thickness of
intermediate layers can be analyzed. In principle, such rocking-curve profiles
can also be obtained in bend contours in imaging; these are, however, more
or less accidental since the local sg is not known exactly.

Otherwise, the structure of Bragg contours crossing multilayers in cross-
section samples can also be used for strain measurements [8.170].
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Imaging of Crystalline Specimens
and Their Defects

A crystal can be imaged with the primary beam (bright field) or with a Bragg
reflection (dark field). The local intensity depends on the thickness, resulting
in thickness (or edge) contours, and on the tilt of the lattice planes, resulting
in bend contours, which can be described by the dynamical theory of electron
diffraction. In certain cases, the intensity of a Bragg reflection depends so
sensitively on specimen thickness that atomic surface steps can be observed.
The most important application of diffraction (Bragg) contrast is the imaging
of lattice defects such as dislocations, stacking faults, phase boundaries, pre-
cipitates, and defect clusters. The contrast depends on the Bragg reflection
excited and its excitation error, the type of the fault, and its depth inside
the foil. The Burgers vector of a dislocation or the displacement vector of a
boundary can thus be determined quantitatively. The resolution of the order
of 10 nm when a strongly excited Bragg reflection is used can be reduced to
the order of one nanometer by the weak-beam technique, which allows us to
measure the width of dissociated dislocations, for example. Different types of
contrast for precipitates are associated with coherent and incoherent precip-
itates, which can hence be distinguished. Electron spectroscopic imaging can
remove the inelastically scattered electrons in the background of a diffraction
pattern and increase the contrast and resolution of defect images.

With crystalline specimens, the interference of the primary and a Bragg-
reflected wave in the final image creates images of lattice planes. When the
objective aperture is large and includes a large number of Bragg reflections,
the exit distribution of electrons can be imaged. Irradiation along zone axes
produces a projection-like image of the crystal lattice with a resolution of
0.1–0.2 nm. For reliable interpretation, such images must be compared with a
computer simulation that takes into account the thickness, the potential coef-
ficients, and the wave aberration. The high resolution of the crystal-structure
image can be exploited to investigate lattice defects and interfaces. By using
electrons scattered through large angles, contrast increasing with atomic num-
ber can be superposed on the crystal-structure image. Atomic surface steps
and surface-reconstruction structures can be investigated by special methods,
notably by reflection electron microscopy (REM).
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9.1 Diffraction Contrast of Crystals Free of Defects

9.1.1 Edge and Bend Contours

The diffraction angle θg = 2θB between the primary beam and reflected beams
is often larger than the objective aperture αo; for Cu, for example, the 111
lattice spacing d is 0.208 nm and so at E = 100 keV (λ = 3.7 pm) we find θg �
λ/d = 18 mrad. This means that then the Bragg-diffracted beams are halted
by the objective diaphragm in the bright-field mode and do not contribute to
the image intensity. The image intensity thus becomes equal to that of the
primary beam (transmission T ), which depends on the excitation error sg or
tilt parameter w = sξg of the Bragg reflection and on the specimen thickness t.
Furthermore, contributions to the image can also come from electrons that
have been scattered elastically or inelastically into the diffuse background of
the diffraction pattern and pass through the objective diaphragm. Like the
scattering at amorphous specimens, this contribution depends on the objective
aperture αo [9.1, 9.2]. Crystals show a higher transmission in regions without
strong Bragg reflections than do amorphous films of equal mass thickness
because the diffuse scattering between the Bragg reflections is reduced by
destructive interference [9.3, 9.4].

We now use the results of the dynamical theory of electron diffraction
(Figs. 7.17 and 7.18) to discuss diffraction contrast. The pendellösung of the
dynamical theory (Fig. 7.17) can be seen as edge contours (Fig. 9.1) in the
images of specimen edges of electropolished metals or of small cubic crys-
tals (MgO), for example. A high intensity will be observed for thicknesses
(Fig. 9.2a) at which the Bragg-reflected intensity is scattered back to the
primary beam; maximum transmission thus occurs at a thickness equal to
integral multiples of the extinction distance ξg,eff ; see (7.62) and Fig. 7.14.
The spacing of the edge contours is greatest in the Bragg position (w = 0)
and decreases with increasing positive or negative tilt, owing to the decrease
of the effective extinction distance ξg,eff . This dependence on the tilt can be
seen in Fig. 9.1 on a bent crystal edge. With the aid of a tilting stage or
specimen goniometer, the specimen can be brought into the Bragg position,
where the largest spacing is observed. The extinction distances can be mea-
sured when the edge profile is known, or the local thickness can be estimated
by using tabulated values of ξg (Table 7.2). However, the extinction distance
for w = 0 can also be influenced by the excitation of other Bragg reflections
(see dynamical Bethe potentials in Sect. 7.4.4). A quantitative measurement
of the intensity of edge contours can be used to determine the absorption
distances ξ′0 and ξ′g [9.1]. A large number of contours can be observed in high-
voltage electron microscopy [9.5, 9.6] because ξg increases as v and ξ′0, ξ′g are
proportional to v2 (Sect. 7.4.2).

Edge contours can also be observed at crystal boundaries that are oblique
to the foil surface (Fig. 9.2b). When the orientation of the second crystal is
such that it does not show strong Bragg reflections, the diffraction contrast of
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Fig. 9.1. (a) Bright- and (b) dark-field micrographs of edge contours at a bent Al
foil of increasing thickness (top to bottom) with a maximum extinction distance ξg

at the Bragg position and smaller ξg,eff for positive and negative tilt.

Fig. 9.2. Oscillations of T = |ψ0|2 in a crystal foil and generation of edge contours
at (a) a crystal wedge and (b) a boundary. (c) Formation of bend contours in a bent
foil.
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the first crystal at the local depth of the boundary will not be changed much
by the second crystal and will suffer only the exponential absorption.

Bent crystal foils of constant thickness show extended and curved bend
contours (Figs. 9.2c and 9.3) caused by the local variation of the excitation
errors. Lines of equal intensity represent lines of equal inclination of the lattice
planes to the electron beam. In some cases, it will be possible to reconstruct
the three-dimensional curvature of a crystal (e.g., for lenticular cavities in
PbI2 crystals [9.7]). When the bend contours are nearly straight, the image
intensity across the contour is a direct image of the rocking curve (Figs. 7.18
and 7.20a). A bending radius R of the crystal corresponds to a tilt ∆θ = x/R
at a distance x from the exact Bragg position. The width of the bend contour is
therefore proportional to R, and the contours move when the specimen is tilted
in a goniometer. Bending and tilting can also be induced by specimen heating
caused by intense electron irradiation or by mechanical stresses generated by
the buildup of contamination layers.

Broad dark bands are normally superpositions of low-index hkl and h k l
reflections for which the regions of diffraction contrast overlap (Figs. 7.20a
and 9.3). Subsidiary maxima of the rocking curve and high-order reflections
can be observed for medium foil thicknesses. For large specimen thicknesses
(t � ξ′0), only a narrow zone of anomalous transmission on each side of the
extinction band shows sufficient transmission.

If the foil is bent two-dimensionally and the foil normal is near a low-
index zone axis, the system of bend contours forms a two-dimensional zone-
axis pattern (ZAP) (Fig. 9.3) that is comparable to the zone-axis pattern of
convergent-beam electron diffraction (Sects. 8.1.4e and 8.3).

9.1.2 Dark-Field Imaging

A dark-field image can be formed by allowing one Bragg-diffracted beam to
pass through the objective diaphragm. Only those specimen areas that con-
tribute to the selected Bragg-diffraction spot appear bright (Fig. 9.1b). Ei-
ther the objective diaphragm is shifted (Fig. 4.17b) or the primary beam is
tilted (Fig. 4.17c), in which case the diffracted beam is on-axis. With the
first method, a chromatic error streak (Sect. 2.3.6) decreases the resolution.
With the second method, only the axial chromatic aberration is present. The
position of the objective diaphragm and the direction of the primary and
diffracted beams can be controlled with the aid of the selected-area electron-
diffraction pattern (SAED, Sect. 8.1.1). For a well-adjusted microscope, the
transition from the bright-field to the dark-field mode can be effected simply
by switching on the currents in the deflection coils used for beam tilting. The
theorem of reciprocity indicates that the intensities of the primary and dif-
fracted beams should not be changed if the directions of the two beams are
interchanged.

When the focal length of the intermediate lens is changed in order to
pass from SAED to the image mode, the Bragg reflections are broadened to



9.1 Diffraction Contrast of Crystals Free of Defects 363

Fig. 9.3. Bend contours in a NIMONIC75 thin foil, forming a [100] zone-axis pattern
(courtesy of P. Tambuyser).

shadows of the selector diaphragm containing the dark-field contours. This
makes it possible to determine the Miller indices of an edge or bend contour.
The excitation error sg can be measured by observing the relative positions
of Kikuchi lines and Bragg-reflection spots (Sect. 8.2.4). Such information
about the crystal orientation is needed to determine the Burgers vector of
dislocations and other defects (Sect. 9.4.4).

Crystal phases with different crystal structures or orientations and hence
with different diffraction spots can be separated in the dark-field mode by
selecting the corresponding diffraction spots in the SAED pattern. If nec-
essary, the diameter of the objective diaphragm can be decreased to 5 µm,
but this will not be favorable for high resolution owing to contamination and
charging of such a small diaphragm. Figure 9.4 shows an example in which
microtwins in Ni layers, electrolytically deposited on a copper single crystal,
are identified [9.8]. Double reflection at the matrix and the microtwins pro-
duces typical twin reflections such as a and b in Figs. 9.4c and f. Dark-field
micrographs obtained with these twin reflections indicate the different orienta-
tions (Figs. 9.4a,b) of the twin lamellae that are superposed in the bright-field
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Fig. 9.4. Example of dark-field micrographs obtained by selecting diffraction spots
in the diffraction patterns (c) and (f) of an electrolytically deposited nickel film on
a copper substrate. (a) and (b) Selection of two sets of microtwins. (e) Bright-field
and (d) dark-field micrographs with the 200 Bragg reflection.

micrograph (Fig. 9.4e). Figure 9.4d shows the contribution of the 220 Bragg
reflection to the dark bend contour across the imaged area.

The dark-field images of different phases or crystal orientations with differ-
ent Bragg angles are shifted parallel to the g vector by an amount proportional
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to Csθ
3
gM − ∆zθgM with defocus ∆z. When two micrographs with different

defocus are examined with a stereo viewer, the specimen structures appear
to have different heights. This method can be useful for separating different
phases or orientations [9.9, 9.10].

Dark-field imaging of lattice defects with weak beams is the most effective
way of obtaining highly resolved micrographs of lattice defects (Sect. 9.4.3).

9.1.3 Moiré Fringes

When two crystal foils overlap and are rotated through a few degrees rela-
tive to one another or when their lattice constants are different, a pattern of
interference fringes is observed. These are known as moiré fringes and were
first observed on graphite lamellae [9.11]. The generation of these patterns
will be discussed for the example of two crystal foils with different lattice
constants. Such specimens can be prepared by epitaxy (e.g., palladium with
d220 = 0.137 nm on a single-crystal gold film with d220 = 0.144 nm; Fig. 9.5
[9.176]). However, the two crystal foils need not be in direct contact. We ex-
pect to see a double electron diffraction pattern with Bragg reflections at
different distances OP and OQ from the origin O (primary beam) (Fig. 9.6a).

Fig. 9.5. Moiré effect in separately prepared and superposed single-crystal films of
palladium and gold; parallel and rotation moiré fringes are seen (courtesy of G.A.
Basset et al.).
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Fig. 9.6. Steps in the construction of the diffraction pattern of superposed crystals
with different lattice-plane spacings d1 and d2. (a) Double diffraction pattern pro-
duced by the primary beam O only. (b) The beam P in the first crystal is diffracted
in the second and produces a spot S near O. (c) All six diffraction spots equivalent
to P act as a primary beam in the second crystal.

The diffracted beam in the first layer can be further diffracted in the sec-
ond. This results in a shifted diffraction pattern, with the direction P as the
new primary beam (Fig. 9.6b). For all strong Bragg reflections, this produces
the diffraction pattern of Fig. 9.6c. The diffraction spots around the primary
beam O can pass through the normal objective diaphragm and contribute to
the image contrast. These diffraction spots can formally be attributed to a
material with a larger lattice-plane distance dM. If K denotes a diffraction
constant proportional to the camera length, the distance OS becomes

OS = PS – OP = OQ – OP =
K

d2
− K

d1
=

K

dM
(9.1)

and the moiré fringes have the apparent lattice constant

dM =
d1d2

d1 − d2
(9.2)

(dM = 2.9 nm for the example of the Pd-Au double layer).
When one crystal is rotated relative to the other by a small angle α with

the foil normal as axis, the moiré-fringe spacing becomes

dM =
d1d2

(d2
1 + d2

2 − 2d1d2 cos α)1/2
. (9.3)

A two-dimensional moiré pattern as in Fig. 9.6 is formed when several Bragg
reflections show double reflections. A rotation moiré can also be formed with
the rotation axis parallel to the foil [9.13]. This effect can be observed in
lenticular cavities of crystal lamellae. For an exact discussion of the image
contrast, it is necessary to use the dynamical theory of electron diffraction
[9.14, 9.15].

The generation of moiré fringes can also be understood in terms of a more
intuitive model in which the imaging of lattice planes is regarded as a projec-
tion. Figures 9.7a and b contain two parallel lattices, with that in Fig. 9.7a
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Fig. 9.7. Optical analogue that demonstrates the imaging of dislocations with the
moiré effect. Lattices with lattice-plane spacings d1 (a) and d2 (b) superpose to form
(c). Two lattices (d) and (e) of equal d2 superpose to give a rotation moiré (f).

having a lattice constant d1 while that in Fig. 9.7b having a lattice con-
stant d2 and an additional edge dislocation. The superposition of transparent
foils [9.16] results in Fig. 9.7c. Dark and bright areas of width dM alternate
when the effect of the dislocation is neglected. The narrow lines with the
lattice-plane spacing will be resolved only in high resolution; normally, only
the fringes with the larger period dM are resolved. In light optics, the same
impression is obtained by looking at Fig. 9.7 from a larger distance. Figures
9.7d–f represent the optical analogue of a rotation moiré of two lattices with
equal lattice constants (d1 = d2). In this case, the dislocation is also imaged
but with the wrong orientation. Care is therefore necessary when interpreting
the moiré patterns of lattice defects.

The moiré effect can be successfully used not only for the investigation of
epitaxy [9.17, 9.18] but also for UHV in situ experiments [9.19] and measure-
ments of the lattice displacement across boundaries [9.17]. Moiré fringes also
can be observed between a matrix and precipitates (Sect. 9.5.1).

9.1.4 The STEM Mode and Multibeam Imaging

As shown in Sect. 4.5.3, the ray diagram of the STEM mode is the recip-
rocal of that of the TEM mode (Fig. 4.20). The illumination aperture αi of
the TEM mode corresponds to the detector aperture αd of the STEM mode.
For high-resolution STEM, the electron-probe aperture αp must be large, of
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Fig. 9.8. Comparison of 100 keV TEM and STEM micrographs of a polycrystalline
copper foil (�100 nm). (a) TEM mode with αi � αo, (b) similar contrast in the
STEM mode with αd < αp � αo, and (c) blurring of the bend contours with
αd � αp.

the same order as the objective aperture αo of a TEM (Sect. 4.5). The same
contrast would be seen in the TEM and STEM modes if a small detector
aperture αd were used in STEM (Fig. 9.8a,b). However, a large fraction of
the incident cone of aperture αp would then not pass through the detector
aperture αd even in the absence of a specimen. It is therefore better to work
with αd � αp (see also the discussion of the contrast of amorphous specimens
in the STEM mode in Sect. 6.1.4). By collecting all the incident electrons in
this way, the angle of incidence (excitation error) to the lattice planes varies
widely and the image contrast is a superposition (averaging) of images with a
broad spectrum of excitation errors sg. This superposition is incoherent when
interference between the different rays of the incident electron probe does not
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occur. The contrast of the edge contours at thicker parts of an edge is thus
reduced owing to the variation of ξg,eff for different values of sg. Bend con-
tours are also blurred, and contributions from high-order reflections disappear
(Fig. 9.8c) [9.20, 9.21, 9.22, 9.23, 9.24]. The diffraction contrast of a polycrys-
talline specimen becomes more uniform inside a single crystal, and differences
in anomalous transmission can be seen mainly for different crystal orienta-
tions; the contrast of lattice defects (e.g., dislocations) is, however, preserved,
though with reduced contrast (Figs. 9.8 and 9.18).

If the detector aperture αd is comparable to or larger than the Bragg- dif-
fraction angle θg = 2θB, the primary beam and one or more Bragg-diffracted
beams can pass through the detector diaphragm and the image contrast will be
a superposition of these beams. In this multibeam imaging (MBI) mode [9.25],
the subsidiary maxima of the rocking curve vanish (see ΣIg in Fig. 7.20a)
and the image intensity is influenced only by the dependence of the anom-
alous transmission on the excitation error. A STEM image of a crystalline
specimen will normally be a mixture of MBI and the blurring caused by the
presence of a broad spectrum of excitation errors [9.23]. The MBI mode can
be of advantage for the imaging of lattice defects (Sects. 9.3.2 and 9.4.1). If
the intensities in the bright- and dark-field images are complementary, the
contrast will be canceled, whereas it is enhanced if the images are anticomple-
mentary. This allows us to decide how an extended defect is situated relative to
the top and bottom of the foil. This technique was first proposed for HVEM
[9.38]. In HVEM, the diffraction angle θg decreases with increasing energy
and, because the spherical aberration has less effect at smaller angles, a sharp
image can be obtained with an objective aperture capable of transmitting the
primary and the diffracted beams, whereas in a 100 keV transmission electron
microscope the spherical aberration for a Bragg-reflected beam is large enough
to shift the dark-field image. Although defocusing may cause the dark- and
bright-field images to overlap, this will be possible for only one Bragg reflec-
tion, not for all simultaneously. Multibeam imaging in the STEM mode can
also be employed at 100 keV because the spherical aberration has no influence
behind the specimen.

9.1.5 Energy Filtering of Diffraction Contrast

The diffraction (Bragg) contrast of crystalline specimens is a result of the
dynamical theory of electron diffraction and caused mainly by the elasti-
cally diffracted electrons in Bragg reflections; intraband inelastic scattering
(Fig. 7.15) with plasmon losses or inner-shell ionizations of low ionization en-
ergy, for example, also preserve the initial elastic Bloch-wave field and conse-
quently the diffraction contrast, whereas interband scattering (thermal diffuse
electron–phonon scattering, for example) does not (Sect. 7.4.1). Zero-loss fil-
tered images formed by thermal diffuse scattering of the electrons with the
objective diaphragm between Bragg spots show no thickness and bend con-
tours but only a structure due to anomalous absorption, and the intensity is
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proportional to ΣgIg in (7.83). These theoretical results [7.18, 9.26] have been
confirmed experimentally [9.27, 9.28, 9.29, 9.30, 9.31, 9.32]. In the case of intra-
band scattering, the inelastically scattered electrons around the primary beam
and the Bragg spots belong to Bloch-wave fields that differ from the elastic
Bloch-wave field only in their wave vectors k(j)

g . The Bragg contrast observed
is nearly the same as in zero-loss imaging and therefore thickness fringes,
bend contours, and images of lattice defects also appear in the plasmon-loss
image. However, the angular distribution of inelastically scattered electrons
represents a spectrum of excitation errors sg. This causes a blurring of edge
and bend contours with increasing energy loss [9.33, 9.34, 9.35]. Incoherent
superposition of thickness and bend contours with the spectrum of sg and
consideration of the Poisson distribution of multiple plasmon losses can qual-
itatively describe the observed blurring effects [9.32]. This blurring has less
influence on stacking-fault fringes, which can be observed up to energy losses
of 300 eV [9.31].

The inelastically scattered electrons are not only of less value because of
these contrast effects but also because of the chromatic aberration, which
increases with increasing thickness. No useful diffraction contrast will be ob-
served when the number of inelastically scattered electrons that contributes
to the image becomes much larger than the number of elastically scattered
electrons. Whereas the practical limit of transmission T = 10−3 is reached for
amorphous specimens at mass thicknesses x � 70 µg/cm2, zero-loss filtering
of crystalline specimens can be applied up to 150 µg/cm2 [9.32] with 80 keV
electrons. The reason for this is that the Bloch waves with minima at the
atomic positions experience a lower mean attenuation (see also differences in
T (αo) for amorphous and crystalline sections in [6.1]). Even thicker specimen
areas can be investigated for orientations showing anomalous transmission
[9.36].

Just as for amorphous specimens, the increase of contrast by zero-loss
filtering is large for low atomic numbers with a large ratio of total inelastic-
to-elastic cross section ν (5.66). Figure 9.9 shows a comparison of unfiltered
and zero-loss filtered images of a cleaved graphite foil with moiré structures
in bright-field mode and of microtwins in an epitaxially grown silver film on
rock salt in dark-field mode. Zero-loss filtering can also increase the contrast of
other crystal defects. Weak-beam dark-field images (Sect. 9.4.3) likewise show
a gain in contrast after elimination of the incoherent inelastically scattered
background [9.37].

9.1.6 Transmission of Crystalline Specimens

Crystalline specimens can be prepared as thin foils by cleavage, deposition as
epitaxially grown films on single-crystal substrates, or by thinning metals, al-
loys, minerals, and other materials by chemical etching, electrolytic polishing,
or ion-beam etching. It is necessary to prepare specimens with thicknesses in
the range 0.1–0.5 µm for imaging crystal defects at 100 keV but less than
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Fig. 9.9. Comparison of unfiltered (a,c) and zero-loss filtered (b,d) images of a
cleaved graphite foil (top) with moiré structures in bright-field mode (bar = 1 µm)
and an epitaxially grown Ag film on NaCl (bottom) with microtwins in dark-field
mode (bar = 0.5 µm, E = 80 keV).

10 nm for high-resolution studies of the crystal structure (Sect. 9.6). These
thinning methods yield sufficiently thin areas only in wedge-shaped foils near
holes. For many applications – observation of dislocation structure and in situ
experiments, for example – the question arises whether such thin foils are
representative of the bulk material. Dislocations can be rearranged and/or
migrate to the foil surface, and in situ precipitation and electron irradiation
experiments are influenced by the surface, which plays the role of a sink for
mobile point defects.

The useful specimen thickness is limited by the decrease of the Bragg-
diffraction intensities and by the chromatic aberration associated with en-
ergy losses. Absorption of the Bloch-wave field and the probability of energy
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Fig. 9.10. Bright-field rocking curves for a 5 µm Al foil at 1 MeV, 3 MeV, and 5
MeV [9.41]

losses decrease with increasing electron energy; larger thicknesses can hence
be used in HVEM. A very important consequence of this increase of the useful
thickness is that a very much larger specimen area can be examined at high
voltage than at 100 keV, for which the transmission is mostly limited to very
small zones near holes.

The many-beam dynamical calculations show that the anomalous trans-
mission depends strongly on the excitation condition and varies from element
to element [9.39, 9.40]. Thus the transmission curves for a 111 row of alu-
minum (Fig. 9.10) reach a maximum at 1 MeV; for tilts on the positive side of
the 111 Bragg position, it occurs at 5 MeV, whereas, at 3 MeV, the maximum
occurs at the symmetric excitation (the pendellösung oscillations drawn for
1 MeV are smoothed out at 3 and 5 MeV). These effects are caused by dif-
ferences in the Bloch-wave channeling [9.41, 7.30, 9.42]. Figure 9.11 indicates
the foil thicknesses of Al, Fe, and Au for which the transmission T is 10−3

of the incident beam at the beam tilts of maximum transmission. This shows
that optimum transmission can be obtained for Al at about 3 MeV, for Fe
at 5 MeV, and for gold at 10 MeV, though the increase is modest beyond 3
MeV. It is therefore useful to be able to vary the accelerating voltage of a
high-voltage electron microscope and to match the voltage to the specimen
orientation or to tilt the specimen into an optimum orientation. The definition
of a maximum useful thickness depends on the criterion adopted and the type
of contrast. The T = 10−3 criterion of Fig. 9.11 is arbitrary but agrees rather
well with experience.

In the Kikuchi patterns of MoS2 lamellae, the Bragg spots disappear when
t ≥ 2.7β2 [9.43] (β = v/c, t measured in µm), and the anomalous transmission
near low-order Bragg positions vanishes for t ≥ 5.7β2; dislocations are visible
up to these thicknesses. Stacking faults in Si and Fe have been observed for
thicknesses below 9 and 2 µm, respectively, at 1 MeV [9.44] (see also further
experiments in [1.26, 9.45, 9.46, 9.47]).
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Fig. 9.11. Specimen thickness t that corresponds to a transmission T = 10−3 for
three different orientations [symmetric (000) position and on the positive side of the
indicated (hkl) positions at the maximum of the rocking curve] for (a) Al, (b) Fe,
and (c) Au [9.41].

9.2 Calculation of Diffraction Contrast
of Lattice Defects

9.2.1 Kinematical Theory and the Howie–Whelan Equations

The most simple theory for the investigation of the image contrast of disloca-
tions, stacking faults, and other defects uses the kinematical column approx-
imation (Sect. 7.2.3) [1.26, 9.48, 9.49]. A unit cell at depth z near a lattice
defect is assumed to be displaced by a vector R(z) relative to an ideal lat-
tice without a defect (Fig. 9.12). Equation (7.24) for the reflected amplitude
becomes

ψg =
iπ
ξg

t∫
0

exp{−2πi(g + s) · [z + R(z)]}dz

=
iπ
ξg

t∫
0

exp{−2πi[sz + g · R(z)]}dz, (9.4)

in which we have written exp(–2πig·z) = 1 because the product of a reciprocal-
lattice vector g and a translation vector z = r is always an integer; s ·R has
been neglected because it is the product of two quantities that are small
relative to g and z. The integral of exp(–2πisz) was analyzed graphically in
Sect. 7.2.3 with the aid of an amplitude-phase diagram (APD) and resulted
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Fig. 9.12. A crystal foil of thickness t contains a screw dislocation parallel to the foil
surface at a depth z1 (z1 + z2 = t). The column AA′ of the ideal lattice is deformed
to BB′ by a displacement vector R(z). A stacking fault displaces the lower part of
the lattice by a constant displacement vector R relative to the upper part.

Fig. 9.13. Influence of a stacking fault at Q at a depth z1 on the amplitude-phase
diagram (phase shift by −2π/3 equivalent to a kink of 120◦).

in a circle of radius r = (2πs)−1. The phase and hence the radius of curvature
of the APD are changed by the additive term –2πig ·R(z) in the exponent of
(9.4). Examples of such modified APDs are shown in Fig. 9.13 for a stacking
fault and in Fig. 9.19 for a dislocation. Equation (9.4) furnishes the important
rule that the scalar product g ·R has to be nonzero for the imaging of lattice
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defects. Bragg reflections g for which the contrast of lattice defects disappears
because g · R = 0 can be used to determine the direction and magnitude of
the displacement R.

A local lattice distortion can be included in the dynamical theory by adding
a term 2πg · R(z) to the phase in (7.26), and (7.27) becomes [1.26]

dψg

dz
=

gn∑
h=g1

iπ
ξg−h

ψh exp[2πish−gz + 2πi(h − g) · R(z)]. (9.5)

By using the transformations

ψ′
0 = ψ0 exp[−iπz/ξ0],

ψ′
g = ψg exp[2πisz − iπz/ξ0 + 2πig · R(z)], (9.6)

analogous to those employed in the two-beam case (7.28), which do not affect
the intensities because |ψ′

g|2 = |ψg|2, (9.5) becomes

dψ′
0

dz
=

iπ
ξg

ψ′
g,

dψ′
g

dz
=

iπ
ξg

ψ′
0 + [2πi(s + β)]ψ′

g with β =
d
dz

[g · R(z)], (9.7)

or when the absorption terms are considered,

dψ′
0

dz
= − π

ξ′0
ψ′

0 + π

(
i
ξg

− 1
ξ′g

)
ψ′

g,

dψ′
g

dz
= π

(
i
ξg

− 1
ξ′g

)
ψ′

0 +
[
− π

ξ′0
+ 2πi(s + β)

]
ψ′

g.
(9.8)

This linear system of differential equations is especially useful for calcu-
lating the contrast of dislocations and similar strain distributions but cannot
be used for stacking faults because the constant phase shift between the two
regions above and below such a fault is lost with the transform (9.6).

Equation (9.8) shows that a strain field modifies the excitation error s
to s + β and alters the deviation from the Bragg condition because the lat-
tice planes are locally bent more into or out of the Bragg position (see also
Fig. 9.21). The column approximation can be used for strongly excited Bragg
reflections. For the weak-beam method in which the excitation errors are large
and a resolution better than 2–5 nm is required, the Schrödinger equation has
to be solved directly (Sect. 8.4.3).

9.2.2 Matrix-Multiplication Method

The amplitude ψg of a Bragg reflection at a depth z in a single-crystal foil
can be calculated by using (7.47) when the eigenvalues γ(j), the components
C

(j)
g of the eigenvectors, and the Bloch-wave excitation amplitudes ε(j) are

known. Like (7.42) and (7.49), this equation can be written in matrix form
[1.26]. Using (7.50), we have
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ψ(z) = [C]{exp(2πiγ(j)z)}ε = [C]{exp(2πiγ(j)z)}[C−1]ψ(0) = [S]ψ(0)

with ψ(0) =
(

1
0

)
. (9.9)

The matrix [S] = [C]{exp(2πiγ(j)z)}[C−1] is called the scattering matrix,
where {exp(2πiγ(j)z)} is a diagonal matrix with the elements exp(2πiγ(j)z).
The anomalous absorption of Bloch waves can be introduced by replacing γ(j)

by γ(j) + iq(j). This method can be used for the calculation of lattice-defect
contrast by dividing the foil into distinct layers; the kth layer is between
zk−1 and zk. The amplitude at the exit surface can be calculated from the
amplitude at the entrance surface by using (9.9):

ψ(zk) = [Sk]ψ(zk−1) and ψ(t) = [Sn][Sn−1] . . . [S1]ψ(0). (9.10)

Lattice defects are considered by replacing Ug by Ug exp(2πig · R) in the
off-diagonal elements of the matrix [A] (7.41) or by defining a fault matrix
[F ] = {exp(2πig · R)} and replacing [A] by [F−1][A][F ]. This modifies [C] to
[F−1][C] and [S] to [Sk] = [F−1][S][F ]. This method is of interest for cases
in which the foil contains large undisturbed regions or volumes of constant
displacement vector R [9.50, 9.51]. Thus planar faults can be described by
shifting the lower part of the foil, of thickness t2, relative to the upper part,
of thickness t1, by a constant displacement vector R. For the two-beam case,
the fault matrix then takes the form

[F ] =
(

1 0
0 exp(2πig · R)

)
; [F−1] =

(
1 0
0 exp(−2πig · R)

)
. (9.11)

The amplitudes behind the foil are

ψ(t) = [S2][S1]ψ(0) = [F−1][S(t2)][F ][S(t1)]ψ(0). (9.12)

The matrix formulation can also be used to obtain the following symmetry
rule for lattice-defect contrast [9.52]. Friedel’s law for centrosymmetric crystals
implies that the matrices [A] and [S] are symmetric. If the displacement in
a column at depth z is R(z) in one foil, and if the R(z) of a second foil is
obtained by inversion with respect to a point at the center of the column, equal
contrast in bright-field images results when R(z) = −R(t−z). Symmetry rules
for dark-field images are discussed in [9.53].

9.2.3 Bloch-Wave Method

For some applications in which a better understanding of the alterations of
the Bloch-wave field caused by lattice defects may be helpful, it is useful to
rewrite the Howie–Whelan equations (9.7) for the reflection amplitude ψg as
equations for the Bloch-wave excitation amplitudes ε(j) (7.45) [9.54]. The ψg

and ε(j) are related by (7.47) or ψ(0) = [C]ε at the entrance surface and
ψ(t1) = [F−1][C]{exp(2πiγz)}ε directly below a planar fault at a depth t1.
Substitution in (9.12) gives the Bloch-wave amplitude ε′(j) at the depth t1:
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ε′ = {exp(−2πiγt1)}[C−1][F ][C]{exp(2πiγt1)}ε(0). (9.13)

The ε(j) and ε′(j) are constant inside an undisturbed lattice volume.
Each Bloch wave has to be multiplied by the exponential absorption term

exp(−2πq(j)z) of (7.79). The fault matrix [F ] is equal to the unit matrix [E]
in a fault-free crystal, and in this case ε(j) = ε′(j); there is thus no interband
scattering (Sect. 7.4.1), and the Bloch waves propagate independently. When
defects are present, the fault matrix [F ] �= [E] and, in the two-beam case,
the excitation amplitude ε′(j) becomes a linear combination of ε(1) and ε(2)

so that interband scattering does occur. In Sect. 9.3.2, this reasoning will be
used to discuss stacking-fault contrast.

If the defect is not a planar fault but varies continuously in depth, the
following alteration of the Bloch-wave amplitude across a depth element ∆z
is obtained:

ε′ = ε +
d
dz

ε

= {exp(−2πiγz)}[C−1]
(

[E] +
d
dz

[F ]∆z

)
{exp(2πiγz)}ε. (9.14)

If the terms of [F ] can be expanded as exp(iαg) = 1 +iαg+. . ., with αg =
2πg · R and βg small, (9.7) gives

d
dz

ε = {exp(−2πiγz)}[C−1]{2πiβg}[C]{exp(2πiγz)}ε. (9.15)

This equation for the Bloch waves is equivalent to the Howie–Whelan equa-
tions (9.7). Multiplying the matrices and using the abbreviation ∆γij =
γ(j) − γ(j), we find

d
dz

ε(j) =
∑
i

ε(i)(z) exp(2πi∆γijz)
∑
g

C(j)
g C(i)

g 2πiβg (j = 1, . . . , n). (9.16)

For weak interband scattering by a lattice defect, the initial value
ε(j)(0) = C

(j)
0 can be used at the entrance surface, and integration over a

column in the z direction gives

ε′(j)(t) = ε(j)(0) + 2πi
∑
i

∑
g

C
(i)
0 C(j)

g

t∫
0

βg exp(2πi∆γij)dz. (9.17)

If, for small defects, βg decreases strongly inside the foil, the limits of inte-
gration in (9.17) can be extended to ±∞, and the integral becomes a Fourier
transform [9.55, 9.56, 9.57].

If ∆γij is large or, in other words, the extinction distance ξij = 1/∆γij

responsible for the transition i → j is small, then only those columns for
which βg changes appreciably inside one extinction distance will contribute.
This means that only the core of the defect will be imaged. This is the situation
in weak-beam imaging (Sect. 9.4.3).
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9.3 Planar Lattice Faults

9.3.1 Kinematical Theory of Stacking-Fault Contrast

The structure of a stacking fault will be illustrated by two examples, the
face-centered cubic (fcc) lattice and the close-packed hexagonal lattice.
A close-packed plane can be positioned on sites B or C of a layer A (Fig. 7.3).
The fcc lattice with the {111} planes as close-packed planes can be described
by the layer sequence ABCABC. . . and the hexagonal lattice by the sequence
ABAB. . . . The lattice contains a stacking fault if one part of the crystal
is shifted relative to the other by the displacement vector Ri (i = 1, 2, 3)
of Fig. 7.3. The displacement vector R1, for example, transfers an A layer
into a B layer and the new sequence is ABCABC|BCABC. . . . The line (|)
indicates the position of the stacking fault. This fault can also be generated
by removing an A layer from the crystal. It is then called an intrinsic stacking
fault. An extrinsic stacking fault arises when an additional layer is introduced,
a B layer in the sequence ABCABC|BABC, or when intrinsic faults occur in
two neighboring planes.

In the kinematical theory of image contrast, the integral in (9.4) can be
solved with the aid of the amplitude-phase diagram (APD) (Fig. 7.11), which
gives a simple graphical solution of the contrast effects to be expected [9.49].
In Fig. 9.12, an inclined stacking fault crosses the foil, and the part below the
fault is displaced by a constant vector R = a(u, v, w) (a: lattice constant). In
(9.4), this lower part contributes with an additional phase shift

α = 2πg · R = 2π(hu + kv + lw) (9.18)

because in an fcc lattice R = 〈112〉a/6 and the hkl are all even or all odd
(to satisfy the extinction rules of the structure amplitude F ; see Table 7.1).
This gives α = 2πn/3 with n = 0,±1,±2, . . . . The phase shift α is normally
limited to the interval −π ≤ α ≤ π so that only the values α = 0,±2π/3
need be distinguished when considering the influence on image contrast. The
stacking fault becomes invisible for α = 0 because there will be no difference
between (9.4) and the equation (7.24) for a perfect crystal. In some crystal
structures (hexagonal AlN or rutile, for example) and in antiphase boundaries
of ordered alloys (Sect. 8.3.3), stacking faults with α = π also have to be
considered [9.58, 9.59].

A nonzero value of α has to be added to all phases below the stacking fault.
This means that at the point Q of the APD corresponding to an α = 2π/3
fault, a kink of 120◦ has to be introduced for a 220 reflection, for example
(Fig. 9.13). The intensity of the Bragg-reflected beam is proportional to PP′2

and will be greater than that of an undisturbed crystal, which is proportional
to PP′′2, for the example shown in Fig. 9.13. The stacking fault will then be
brighter in the dark-field image. The total curve length in the APD is equal
to the foil thickness t and therefore the 120◦ kink moves for an inclined fault
in such a way that t = t1 + t2 and t1 is the depth of the fault in the column
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considered. The kinematic theory therefore predicts that the contrast will be
symmetric about the foil center.

If Ig = ψgψ
∗
g is calculated from (9.4), the integral can be split into two

parts, with the limits 0, z1 and z1, t. By introducing the distance of the fault
from the foil center z′ = z1 − t/2, formula (9.19) can be obtained [9.60],

Ig =
1

(ξgs)2
[sin(πts + α/2) + sin2(α/2)

−2 sin(α/2) sin(πts + α/2) cos(2πsz′)], (9.19)

and the symmetry relative to the foil center can be seen from the fact that,
for a fixed value of foil thickness t and tilt parameter s, the position z′ of the
fault appears only in the last term of (9.19).

A stacking fault is imaged as a pattern of parallel equidistant fringes if
the foil thickness is larger than a few extinction distances ξg,eff (Fig. 9.15).
The number of fringes increases with increasing foil thickness, near edges for
example, and the fringes split in the foil center. Intermediate thicknesses for
which the term sin(πts + α/2) in (9.19) becomes zero show vanishing fringe
contrast. If (9.18) leads to α = 0, the stacking-fault contrast vanishes for all s
and t, as mentioned above. This will be the case for R = [121]a/6 and g = 311
or 113, for example. The direction of the displacement vector R can thus
be determined if, by tilting the specimen, two excitations of different g can
be found for which the stacking-fault contrast vanishes. Further information
about the type of the fault can be obtained from the intensity laws of the
dynamical theory (Sect. 9.3.2).

The number of fringes also increases with increasing tilt parameter s owing
to the decrease of ξg,eff , and the contrast difference between the dark and
bright fringes is less.

For two overlapping stacking faults, the phase α = 2π/3 of one fault is
doubled in the region where the projected images of the faults overlap. The to-
tal phase α = 4π/3 is equivalent to −2π/3 and the contrast is correspondingly
modified; dark and bright fringes are interchanged. The total α becomes zero
for three overlapping faults and the contrast vanishes in the overlap region
for all g.

9.3.2 Dynamical Theory of Stacking-Fault Contrast

The dynamical theory has to be used near a Bragg position [9.51, 9.60]. The
contrast in the two-beam case can easily be calculated by the matrix method
of Sect. 9.2.2 using (9.12). The matrices [F ] and [F−1] are defined in (9.11)
and [S] is given by (9.9) with the [C] matrix of (7.58). The abbreviation
∆k = γ(1) − γ(2) = 1/ξg,eff is used, and a common phase factor exp(πi∆k t),
unimportant for the calculation of intensity, is omitted:

ψ0(t) = cos(πkt) − i cos β sin(π∆kt)

+
1
2

sin2 β(eiα − 1)[cos(π∆kt) − cos(2π∆kz′)]
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ψg(t) = i sin β sin(π∆kt) +
1
2

sinβ(1 − eiα)

×{cos β [cos(π∆kt) − cos(2π∆kz′)] − i sin(π∆kt)
+ i sin(2π∆kz′)}. (9.20)

β becomes equal to π/2 in the exact Bragg position w = 0. This results in
the following values of the bright-field intensity I0 = ψ0ψ

∗
0 :

for α =
2π

3
: I0 =

3
4

cos2
(

2πz′

ξg

)
+

1
4

cos2
(

πt

ξg

)
,

for α = π : I0 = cos2
(

2πz′

ξg

)
.

(9.21)

The image intensity remains symmetric about the foil center because z′ ap-
pears only in the cosine terms and, as absorption has been neglected, we have
I0 + Ig = 1. However, the cosine term containing z′ is quadratic in (9.21) so
that the number of fringes is double that found for large w in the kinemati-
cal theory [linear cosine term in (9.19)]. The fringe spacing now corresponds
to alterations of ξg/2 with the stacking-fault depth. The transition from the
pure kinematical theory (w � 1) to the dynamical theory in Bragg position
(w = 0) proceeds by the formation of subsidiary fringes. The amplitude of
these fringes increases with decreasing w, resulting in equal amplitudes and
twice the number of fringes in the Bragg position.

The influence of anomalous absorption has been calculated [7.49], and the
results are confirmed in experiments with larger specimen thicknesses. The
following effects can be observed for an α = 2π/3 stacking fault.

(1) The dark-field fringe pattern becomes asymmetric but the bright-field
pattern remains symmetric about the foil center (Fig. 9.14). At the electron

Fig. 9.14. Intensity of the primary beam T and the Bragg reflection R (bright- and
dark-field intensities) across an inclined stacking fault. Note the complementarity of
bright- and dark-field intensities at the bottom and anticomplementarity at the top.
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Fig. 9.15. Imaging of stacking faults in a Cu-7wt.% Al alloy in the STEM and
TEM modes (top and bottom, respectively) with the indicated values of the electron
probe aperture αp = αi, the Bragg angle θB, and the detector aperture αd = αo.
(a) Bright field, (b) dark field obtained by selecting only the primary and reflected
beams, respectively, and (c) T + R multibeam image with vanishing fringe contrast
at the bottom due to the complementarity of bright- and dark-field intensities.

entrance side (top), the dark- and bright-field fringes are anticomplementary;
that is, maxima and minima appear at the same places for the same depths of
the stacking fault. At the exit side (bottom), the bright- and dark-field fringes
are complementary; maxima occur in bright-field fringes where minima are
seen in the dark field and vice versa (Fig. 9.15a,b). This contrast effect can
be used to decide how the stacking fault is inclined in the foil. In multibeam
imaging (MBI, Sect. 9.1.3), the fringes persist at the top of the foil but are
canceled at the bottom (T + R in Figs. 9.14 and 9.15c).

(2) The fringe contrast decreases in the central region of the foil in the
bright- and dark-field modes and completely vanishes in thick foils. Although,
in the Bragg position, twice as many fringes are seen in the central part for
medium thicknesses, only the normal number of fringes is observed at the top
and the bottom.

(3) The first fringe in the bright field is bright for α = +2π/3 (Fig. 9.15a)
and dark for α = −2π/3. If the direction of g is known, this can be used to
establish the stacking-fault type [7.49, 9.61, 9.62].
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Fig. 9.16. Explanation of the complementarity of dark and bright field intensity
at the bottom (A) and the anti-complementarity at the top (C) of a stacking fault
and the vanishing stacking-fault contrast in the center (B) of a thick foil due to the
differences in absorption of the Bloch waves.

Observations 1 and 2 can be understood in terms of the dynamical theory
including absorption from the following model (Fig. 9.16). In the top part of
the foil, first the Bloch waves with the excitation amplitudes ε(1) and ε(2) are
present. In the region A, only the Bloch wave ε(2) with decreased absorption
(anomalous transmission) survives at the bottom of the foil. When the stack-
ing fault is penetrated, a further division into ε(2) and ε′(1) occurs to satisfy
the boundary condition at the fault plane; this can also be interpreted as in-
terband scattering (Sect. 9.2.3). These Bloch waves create a complementary
fringe pattern in dark and bright field images, analogous to the edge contours
found in thin layers when absorption is neglected. In region C, the Bloch waves
exist with nearly unaltered amplitudes ε(1) and ε(2) at the boundary. They
are split and form additional waves ε′(1) and ε′(2). The waves ε′(1) and ε(1)

are strongly absorbed in the lower part of the foil. The superposition of ε′(2)

and ε(2) results in an anticomplementary fringe pattern in bright and dark
field images. Correspondingly, only ε(2) remains at the bottom in the central
region B and the fringe contrast vanishes.

The following differences can be observed for π stacking faults. There is
no difference of contrast for ±π. Bright- and dark-field images are always
symmetric about the foil center and anticomplementary. The central fringe is
invariably bright in the bright field image and dark in the dark field image.
The fringes are parallel to the central line and not to the intersection of the
fault with the surface. Only two new fringes per extinction distance appear
at the surface when the thickness is increased.
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In contrast to Fig. 9.16, these effects can be explained by the fact that
α = π corresponds to a displacement vector R of half the lattice-plane spacing.
Bloch waves of type 1 with antinodes at the lattice planes become Bloch waves
of type 2 with nodes below the fault plane. This means that the fault causes
complete interband scattering ε(1) → ε(2) and ε(2) → ε(1) and there is no
splitting into twice the number of Bloch waves, as there was for a 2π/3 fault.

Stacking faults limited by partial dislocations of dissociated dislocations
are discussed in Sect. 8.4.4.

9.3.3 Antiphase and Other Boundaries

Stacking-fault-like contrast with α = 0,±π, or ±2π/3 can also be observed
at antiphase boundaries in ordered alloys [9.63, 9.64, 9.65]. Figure 9.17 shows
an example of the geometry of an antiphase boundary in an AuCu alloy.
The imaging of periodic antiphase boundaries (AuCu II phase) by the extra
diffraction spots has been discussed in Sect. 8.2.5 (Fig. 8.13). Here we consider
only the contrast of single boundaries such as those present in the AuCu I
phase generated by the primary beam and a single Bragg reflection.

The contrast is influenced by the displacement vector R, and the Bragg
reflection g of the ordered structure and its structure amplitude F (θg). The
antiphase boundaries can be imaged with the superlattice reflections but not
with the fundamental reflections, which are also present in the disordered
state with a random distribution of the atoms on the lattice sites. This is a
possible way of distinguishing antiphase boundaries from stacking faults.

Fig. 9.17. Atomic positions at an antiphase boundary in the fcc lattice of an Au-Cu
alloy.
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The contrast of π and 2π/3 boundaries can be analysed in the same way
as that of stacking faults, and R can be derived from the condition g ·R = 0
of nonvisibility. Unlike those of stacking faults, the structure amplitude of the
superlattice reflections are smaller owing to the differences listed in Table 9.1.
The extinction distances are consequently two to three times larger than those
of the fundamental reflections, which means that fewer fringes are seen.

Stacking-fault-like α-fringes can also be observed in noncentrosymmetric
crystals at the boundary between enantiomorphic phases [9.66, 9.67, 9.68,
9.69]. Domain contrast is also observed for some orientations.

So-called δ-fringes are observed when the boundary cannot be described by
a displacement vector R but instead either the two phases have different lattice
constants or there is a tilt of the lattice with ∆g = g1−g2 �= 0. We then have
δ = s1ξg1 − s2ξg2 [9.70, 9.71, 9.72, 9.73]. This contrast can also be interpreted
as moiré fringes (Sect. 9.6.1); such effects are observed at ferroelectric domain
boundaries [6.296] and antiferromagnetic domain boundaries in NiO [9.74].
δ-fringes can also be observed at precipitates when the active Bragg reflections
of matrix and precipitate are almost the same [9.75]. If ∆g is larger and a
single reflection is strongly excited, only thickness (edge) contours (Sect. 9.1.1)
are observed.

The following characteristic differences between δ-fringes and α-fringes can
be used to distinguish the two types. The spacing of δ-fringes can be different
at the top and bottom if ξg1 �= ξg2. The dark-field image becomes symmetric
for ξg1 = ξg2. The fringes are parallel to the surface so that, with increasing
thickness, new fringes are generated in the center. The contrast of the outer
fringes is dark or bright, depending on the sign of δ. Further differences can
occur in the magnitude of the contrast modulation and in the background at
the top and bottom of the foil.

Twin boundaries are also of interest because they are frequently encoun-
tered. Whereas single nonoverlapping boundaries show edge contours in one
part of the crystal for large differences of s1 and s2, many-beam excitation
can cause complicated fringe patterns [9.76]. In thin twin lamellae, for which
no separation of the top and bottom boundary is seen in the projected image,
the regions above and below the lamellae are displaced by a vector R, which
depends on the number of lattice planes in the lamellae; R therefore can also
become zero whereupon the contrast vanishes for all Bragg reflections of the
matrix.

Large cavities also cause strong diffraction contrast [9.77]; the resulting
contrast may be brighter or darker than that of the matrix, depending on the
excitation of the matrix reflection and the depth in the foil.

Other applications are the imaging of boundaries in minerals [1.33] and
martensitic transformations [9.78].
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Table 9.1. Examples of observable phase shifts α = 2πg ·R at antiphase boundaries
in different crystal systems.

1) AuCu I phase (tetragonal distorted fcc lattice)

Cu: r1 = (0, 0, 0), r2 =
(

1
2 , 1

2 , 0
)

; Au: r3 =
(

1
2 , 0, 1

2

)
, r4 =

(
0, 1

2 , 1
2

)

Fundamental reflections: F = 2(fAu + fCu) hkl mixed (odd and even)
Superlattice reflections: F = 2(fAu − fCu) hkl even, even, odd or odd, odd, even

R = a
2 (011), a

2 (011), a
2 (101) a

2 (101)

α =

{
0 Fundamental reflections
0,±π Superlattice reflections (hkl)mixed

2) B2 structure (CsCl-type, FeAl, β-CuZn)

A: r1 = (0, 0, 0); B: r2 =
(

1
2 , 1

2 , 1
2

)

Fundamental reflections: F = fA + fB h + k + l even
Superlattice reflections: F = fA − fB h + k + l odd

R = a
2 〈111〉

α = π(h + k + l) =

{
0 Fundamental reflections
0,±π Superlattice reflections

3) L 12 structure (Cu3Au, Ni3Al, Ni3Mn)

B: r1 = (0, 0, 0); A: r2 =
(

1
2 , 1

2 , 0
)

, r3 =
(

1
2 , 0, 1

2

)
, r4 =

(
0, 1

2 , 1
2

)

Fundamental reflections : F = 3fA + fB hkl odd or even
Superlattice reflections : F = fA − fB hkl mixed

R = a
2 〈110〉, α =

{
0 Fundamental reflections
0,±π Superlattice reflections

R = a
6 〈112〉 α =

{
0,±2π/3 Fundamental reflections (stacking faults)
0,±π/3,±2π/3 Superlattice reflections

9.4 Dislocations

9.4.1 Kinematical Theory of Dislocation Contrast

Dislocations parallel to the foil surface can be imaged as dark lines in bright-
field images and bright lines in dark-field images; inclined dislocations are
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Fig. 9.18. Dislocations in an Al foil imaged in (a) the 100 keV TEM mode and (b)
the STEM mode. Dislocations parallel to the surface show uniform contrast, inclined
dislocations alternating contrast in the TEM mode and blurring of the alternating
contrast in the STEM mode.

seen with a dotted-line or zig-zag contrast if t � ξg (Fig. 9.18). Most of the
contrast effects observable with large excitation errors can be explained on the
basis of the kinematical theory, whereas the dynamical theory (Sect. 9.4.2) is
necessary near the Bragg position and for weak-beam excitation.

The local displacement vector R(z) must be known before the contrast can
be calculated. A simple analytical formula for R can be established for a screw
dislocation (Fig. 9.12) with a Burgers vector b parallel to the unit vector u
along the dislocation line. The column AA′ of a perfect crystal is bent to BB′

by a screw dislocation in the y direction. The unit cells are displaced in the
y direction parallel to the Burgers vector b. A circle around the dislocation
line on a lattice plane does not close, its end being shifted by b relative to
the origin. Assuming that the isotropic theory of elasticity is applicable, the
displacement vector of a screw dislocation becomes

R = b
α

2π
=

b

2π
arctan(z/x). (9.22)

This displacement of a general dislocation, for which b is not parallel to u
and the glide plane is parallel to the foil surface, becomes

R =
1
2π

(
bα +

1
4(1 − ν)

{be + b × u [2(1 − 2ν) ln|r| + cos(2α)]}
)

, (9.23)

where ν is Poisson’s ratio and be is the edge component of the Burgers vector.
Isotropic elasticity is again assumed to be valid, and relaxation of elastic strain
at the free foil surfaces is neglected.

When (9.22) is substituted into (9.4), the scalar product g · b is an integer
n because it is the product of a reciprocal-lattice vector and a crystal vector;
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Fig. 9.19. Amplitude-phase diagram (ADP) for a column through the crystal close
to a screw dislocation with g · b = n = 1 for (a) 2πsx = −1 and (b) 2πsx = +1
[9.49].

g ·b = n = 1 for g = 111 and b = [110]a/2 in an fcc lattice, for example. This
yields

ψg =
iπ
ξg

−z2∫
−z1

exp
[
−i
(
2πsz + n arctan

z

x

)]
dz =

iπ
ξg

−z2∫
−z1

eiϕdz. (9.24)

The origin of the z coordinate is placed at the depth of the dislocation line
(z1+z2 = t). The phase ϕ, the slope of the element of arc length dz in an APD,
becomes smaller or larger than the phase 2πsz of a perfect crystal, depending
on the signs of s and x. If sx < 0, the curvature at z = 0 becomes smaller than
the curvature 1/r = 2πs for the perfect crystal (Fig. 9.19a). If sx > 0, the
curvature becomes greater (Fig. 9.19b). The value of arctan(z/x) saturates to
a constant value π/2 for large z. The APD again tends asymptotically to a
circle with the same radius r = 1/2πs for large z. The scattered amplitude ψg

is proportional to the length PP′. The arc length between P and P′ is equal
to z1 + z2 = t. If such ADPs are plotted for all values of 2πsx, the intensity
distribution I(x) = ψgψ

∗
g = (π/ξg)2PP ′2 normal to the dislocation line can be

obtained for the dark-field mode and different values of g · b = n (Fig. 9.20).
In this figure, only the distance AB between the centers of the asymmetric
circles is plotted, which cancels oscillations caused by the particular depth z1

of the dislocations and gives an average kinematical image.
Analogous calculations can be made for edge dislocations or for mixed

dislocations with the glide plane parallel to the foil surface [9.79]. Apart from
the width of the intensity maximum, no other important differences occur.

This simple kinematical theory predicts the following characteristics con-
cerning the position and the width of the dislocation image. The image of
the dislocation is not at the core (x = 0), but the maximum in the dark-field
mode is shifted to one side by a distance of the same order as the half-width.
Figure 9.21 demonstrates schematically that the maximum will be on the side
of the dislocation on which the lattice planes are bent nearer to the exact
Bragg position. The position of the dislocation image therefore changes to the
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Fig. 9.20. Intensity profiles proportional to AB
2

in Fig. 9.19 across the dark-field
images of edge and screw dislocations with different values of g · b = n. The center
of the dislocation is at x = 0 [9.49].

Fig. 9.21. Diagram showing on which side of its core the dislocation image is
situated.

opposite side when a dislocation crosses the bend contour of the Bragg reflec-
tion (shaded in Fig. 9.22a), which changes the sign of x. For g · b = n = 2,
the dynamical theory indicates that a double image can arise in the Bragg
position. Dislocation loops change their size for different signs of s (in-line
and out-line contrast, Fig. 9.22b).

The half-width x0.5 of the dislocation image is of the order of 1/2πs but de-
pends also on the type of dislocation. The half-width of an edge dislocation is
approximately twice that of a screw dislocation for equal values of s (Fig. 9.20).
For low excitation errors, the width will be of the order of a few tens of
nanometers and, in the Bragg position, of the order of ξg/π � 10−20 nm (dy-
namical theory). Increasing s reduces x0.5 and also the shift of the dislocation
image relative to its core, but it also reduces the dark-field intensity. This is the
principal reason why dislocation lines are much narrower (x0.5 � 1 nm) with
the weak-beam technique, which is, however, characterized not only by the
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Fig. 9.22. (a) Behavior of a dislocation image crossing a bend contour and (b) of
a dislocation loop image for positive and negative values of the product (g · b)s as
seen by an observer looking from below the foil.

Fig. 9.23. Demonstration of the g · b = 0
rule for an edge dislocation. Only the lattice
planes that belong to g1 are strongly bent, so
that g1 · b 	= 0, whereas g2 · b = g3 · b = 0.

dark-field imaging with a Bragg reflection of high excitation error but also by
the simultaneous strong excitation of another Bragg reflection. Weak-beam
contrast (Sect. 9.4.3) thus becomes more of a dynamical contrast effect.

As shown in Sect. 9.2.1, the contrast of a lattice defect vanishes for Bragg
reflections for which g ·R = 0, which is equivalent to g ·b = 0 for a dislocation.
Figure 9.23 shows schematically that, in the presence of an edge dislocation,
the lattice planes are bent for g1 but not for g2 and g3. This g · b = 0 rule
is therefore important for the determination of the Burgers vector, which will
be discussed in detail in Sect. 9.4.4.
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9.4.2 Dynamical Effects in Dislocation Images

If strong low-order reflections or many beams are excited, the dynamical the-
ory with absorption has to be used to analyze the image contrast of dislo-
cations. The contrast and intensity profiles strongly depend on the depth of
the dislocation, as can be seen in images of inclined dislocations [9.52]. Sim-
ilar effects can be observed with stacking faults, as discussed in Sect. 9.3.2
and shown in Fig. 9.15. Thus the bright-field image is symmetrical about the
foil center, whereas the dark-field image is asymmetrical and similar (anti-
complementary) to the bright-field image near the top surface of the foil and
complementary at the bottom. This asymmetry can be used to attribute the
ends of an inclined dislocation to the top and bottom surfaces. In the multi-
beam image (MBI) that can be formed in the STEM mode (Sect. 9.1.3) or
a high-voltage electron microscope, the sum of the dark- and bright-field in-
tensities cancels at the bottom surface [9.23]. For thicker foils, the contrast
in the foil center becomes more uniform, which can be explained in terms of
anomalous absorption, rather like the vanishing of the middle region of the
fringes of a stacking fault (Fig. 9.16).

For g · b = n = 1, the image of a screw dislocation at the foil center
consists of a sharp dark peak of width ξg/5 for both DF and BF. Because the
extinction distance ξg is between 20 and 50 nm for most metals, the width
ranges from about 4 to 10 nm. The splitting of the dislocation image for
n = 2 in the Bragg position has already been discussed in Sect. 9.4.1. Typical
contrast effects for partial dislocations are also discussed in [9.52].

Although g · b vanishes for a screw dislocation normal to the foil and
parallel to the electron beam, the dislocation can be seen as a black and
white spot near the Bragg position. This contrast effect can be explained by
considering surface relaxation and changes in the lattice parameter caused by
the foil surface [9.80]. The same contrast for edge dislocations is very weak.

Dark dislocation lines often show an asymmetry in the longe-range back-
ground intensity. Thus, if this contrast alternates between nearly parallel dislo-
cations, the signs of the g ·b product of the dislocations alternate. As shown by
calculations using the Bloch-wave method [9.81], this is an intrinsic-contrast
phenomenon rather than a consequence of stress relaxation at the foil surfaces
as was once believed [9.82].

Owing to the complexity of dynamical effects, comparison with a simulated
image is indispensable; the image parameters must be known as accurately
as possible, and the micrographs are compared with a set of computed fault
images. Inclined defects need two-dimensional simulation. Calculations of line
profiles across a dislocation, for example, is not sufficient. The computation
time can be considerably reduced by using symmetries and the fact that the
Howie–Whelan equations (9.7) are linear. This means that there can be only
two independent solutions of these equations and that, once these are known,
all other solutions (e.g., for different depths of the defect) can be obtained by
forming a linear combination with the initial condition ψ0 = 1 and ψg = 0 at
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the top surface. Such computation methods are described in [9.83, 9.84, 9.85,
9.86].

9.4.3 Weak-Beam Imaging

The Bragg contrast of dislocations using g vectors with low values of hkl and
a small excitation error sg creates broad images (Fig. 9.24a) with a half-width
x0.5 � 5–20 nm. Dense dislocation networks or weakly dissociated dislocations
consisting of two partial dislocations on either side of a stacking fault cannot
be resolved. Because the product of s and x appears in the abscissa (2πsx) of
Fig. 9.20, the width of dislocation images falls to 1.5–2 nm if large excitation
errors are employed: sg ≥ 0.2 nm−1 (Fig. 9.24b).

The basic principle of this weak-beam imaging technique [9.87, 9.88, 9.89]
is demonstrated in Fig. 9.25 for a two-beam case. In Fig. 9.25a, the lattice
planes are in the Bragg position (s = 0), giving the usual depth oscillation
of I0 and Ig with a repeat distance ξg. In Fig. 9.25b, a large excitation error
s causes a decrease of the amplitude of the oscillation and the periodicity
drops to ξg,eff � 1/s � ξg [see also Fig. 7.14b and (7.61)]. The strain field on
one side of a dislocation is idealized in Fig. 9.25c by regions (columns) AB
and CD without distortion, and in the region BC the lattice planes are tilted
into the Bragg position. The corresponding intensity Ig initially follows the
low-intensity oscillation of periodicity ξg,eff = 1/s, but below the depth B,

Fig. 9.24. (a) Dislocations in heavily deformed silicon imaged with a strong 220
diffracted beam. (b) Weak-beam 220 dark-field image of the same area showing
the increase of the resolution of dislocation detail. The insets show the diffraction
conditions used to form the images [9.90].
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Fig. 9.25. Schematic explanation of weak-beam contrast. (a) Oscillation of the
transmitted T and reflected-beam intensity R in the Bragg position (s = 0), (b)
reduction of ξg,eff and the oscillation amplitudes of T and R for s < 0, and (c)
reflected intensity in the presence of a lattice-plane tilt to s � 0 between B and C.

the intensity increases as in Fig. 9.25a. Beyond C, the decreased intensity will
again show the low-intensity oscillations of Fig 9.25b. A region BC with s � 0
is found only near the core of the dislocation. The model also explains why
inclined dislocations show profile oscillations that correspond to ξg, which
results in the alternating contrast seen in Fig. 9.24a, whereas in the weak-
beam image of Fig. 9.24b, the repeat distance is much shorter because ξg,eff

is so much smaller.
This principle can also be applied to the two-beam Howie–Whelan

equations (7.29) and (9.7) without and with a lattice defect, respectively.
The Bragg position in (7.29) corresponds to s = 0, and the last term in
the second equation becomes zero. The same condition for (9.4), which is
equivalent to s = 0 in the region BC of Fig. 9.25, will be s + β = 0. The tilt
parameter s can be compensated for by an opposite tilt of the lattice planes
caused by the displacement field R(z) of the defect. The image peak occurs
for those columns in which

s + g · dR

dz
= 0 (9.25)

at a turning point of g ·dR/dz, where g ·d2R/dz2 = 0. When the displacement
fields R(z) of screw and edge dislocations (9.22) and (9.23) are substituted,
the image maximum is found to be at

xW = −g · b
2πs

(
1 +

ε

2(1 − ν)

)
with ε =

{
1 edge
0 screw dislocation, (9.26)

whereas, for g · b = 2, the average kinematical image in Fig. 9.20 (distance
between the centers of the initial and final circles in the APD of Fig. 9.19)
reaches a maximum at

xK = − a

2πs
with a =

{
2.1 edge
1.0 screw dislocation. (9.27)
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Fig. 9.26. Computed weak-beam-
image profiles of an undissociated edge
dislocation in copper at various depths
(g · b = 2, g = 220, t = 2ξg, E = 100
keV, isotropic elasticity). W, K: image
positions predicted by (9.26) and (9.27),
respectively [9.89].

Values of xW and xK are indicated in Fig. 9.26, which shows a six-beam
calculation of the image profile of an undissociated edge dislocation in copper
at various depths. Dynamical effects influence the image profiles, especially if
another reciprocal lattice vector g is strongly excited: A double-image line may
appear, the lines may change their positions for different depths of inclined
dislocations, or the contrast may disappear even if g · b �= 0. Such effects
have to be considered for quantitative measurement of the size of dissociated
dislocations or dislocation dipoles [9.90], and it will also be necessary to check
the results against computed images based on the assumed model and the
excitation parameters.

The column approximation is of limited validity for the high-resolution
conditions of weak-beam imaging and can predict incorrect line profiles. The
direct method of solving the Schrödinger equation assumes that the wave func-
tion ψs(r) and the Vg vary very slowly over distances equal to the dimensions
of the unit cell [9.91]. Thus, the maxima of the weak-beam dislocation profile
can shift to the opposite side with increasing foil thickness [9.92].

The strong excitation of another g vector together with the positions of
Kikuchi lines can be used to reach a value sg ≥ 0.2 nm−1 necessary for the
weak-beam diffraction condition to be satisfied. In copper, for example, a 2 2 0
or 600 reflection has to be strongly excited to get sg � 0.2 nm−1 for g = 220
[g(g) or g(3g) condition, respectively]. Conditions for other materials can be
established using the Ewald sphere construction.

Whereas the bright-field mode is normally used when imaging with low
excitation errors, it is necessary to use the dark-field mode for the weak-beam
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technique, which has the advantage that the dislocation image is narrow and
well-contrasted but the disadvantage that a long exposure time, of the order
of 10–30 s, is needed, compared with 1–2 s for a bright-field exposure.

The weak-beam technique has been applied to many problems, the quan-
titative measurement of stacking-fault energy by the separation of Shockley
partial dislocations, for example, in Ag and Cu [9.93], Au [9.94], Ni [9.95],
and stainless steel [9.96]. Dislocations in Ge and Si are generally found disso-
ciated, and the dependence of the dissociation width on orientation is in good
agreement with the anisotropic theory of elasticity [9.97]. Dissociations of the
order of 0.5–1 nm can be measured in high-resolution lattice images of the
dislocation core (Sect. 9.6.5).

9.4.4 Determination of the Burgers Vector

A knowledge of the direction and magnitude of the Burgers vector b is im-
portant for the interpretation of dislocation images for distinguishing between
edge and screw dislocations, with Burgers vectors normal and parallel to the
dislocation line, respectively. The sign of b allows us to distinguish between
right-hand and left-hand screw dislocations. The image contrast depends on
s, b, and g, and their signs and directions relative to the image must be
known. Methods of recognizing the top and bottom of inclined dislocations
are discussed in Sect. 9.4.2.

The first step is to align the diffraction pattern correctly relative to the
image because the angle of rotation ϕ is not the same for both, the excitations
of the intermediate lens being different in the imaging and SAED modes. In
Sect. 8.2.4, methods for performing this alignment and for determining the
crystal orientation are described.

The direction of the Burgers vector can be calculated if the dislocation
contrast disappears for the Bragg excitations of two nonparallel vectors g1

and g2 due to the g ·b = 0 cancellation rule of Sect. 9.4.1. The Burgers vector
will then be parallel to g1 × g2. For example, hhl reflections with h �= 0, l
are needed to distinguish the invisibility of a [110]a/2 dislocation from that
of other 〈110〉a/2 dislocations in an fcc crystal. The magnitude of b can be
obtained from the behavior of the dislocation image when crossing the cor-
responding bend contour (e.g., g · b = 1 or 2 in Fig. 9.22a). The sign of the
Burgers vector is obtained from the sign of s and the position of the disloca-
tion image relative to the dislocation center. The direction can be evaluated
geometrically by using Fig. 9.21. The position of the dislocation center can
be established by tilting the specimen to an opposite s and changing the dis-
location image to the opposite side [9.98]. The sign of s can be determined
by observing the position of the Kikuchi line relative to the correlated Bragg-
diffraction spot because the system of Kikuchi lines (Kossel cones) remains
fixed relative to the crystal foil during tilt, whereas the Bragg-diffraction spots
do not change in position but only in intensity. The excitation error is defined
as positive (see also Sect. 7.3.3) if the reciprocal lattice point is inside the
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Fig. 9.27. Hexagonal network of stacking faults in graphite bounded by partial dis-
locations, imaged with different Bragg reflections excited (see insets). (a) Stacking-
fault contrast only; (b), (c), and (d) vanishing contrast for one of the three types
of partial dislocations with different Burgers vectors [9.99].

Ewald sphere and the Kikuchi line outside the diffraction spot. Kikuchi line
and spot coincide for s = 0. The shift ∆x of the Kikuchi line is directly propor-
tional to the tilt ∆θ of the Bragg position (∆x = L∆θ, L: diffraction camera
length), and s and ∆θ are related by (7.15).

Partial dislocations that enclose a stacking fault can result from dissocia-
tion of a dislocation; e.g.,

a

2
[1 0 1] → a

6
[1 1 2] +

a

6
[2 1 1]. (9.28)

They become invisible if g ·b = ± 1/3 [9.50, 9.52]. An example of a dissociated
dislocation network is shown in Fig. 9.27. In Fig. 9.27a, g · b = ±1/3 for all
partial dislocations and only the stacking-fault contrast (dark) can be seen.
On tilting the specimen and imaging with the g excitations (indicated in the
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diffraction patterns of Figs. 9.27b–d), the stacking-fault contrast and one of
the three partial dislocations vanish. The size or width of the stacking-fault
area can be used to determine the stacking-fault energy [9.99]. With large
stacking-fault energy, the width is of the order of a few nanometers, which
can only be resolved by the weak-beam technique.

In practice, difficulties can arise in finding a second g for which the con-
trast disappears. Complexities in the form of residual contrast may appear if
the edge component of the Burgers vector is large, and g · (b×u) should also
be zero if the displacement R(z) can be described by (9.23). Furthermore,
elastic anisotropy and displacement relaxation at the foil surface have to be
considered. Ambiguities can be associated with the determination of b from a
disappearance condition with large g, such as g ≥ 311 in copper [9.100]. Any
detailed investigation of Burgers vectors must therefore be accompanied by
computation of defect images. Asymmetries in the image of inclined disloca-
tions related to the sign of g · b or g · (b × u) can then be exploited [9.101].

This sometimes tedious method for the determination of b can be avoided
by using LACBED patterns (Sect. 8.3.6).

9.5 Lattice Defects of Small Dimensions

9.5.1 Coherent and Incoherent Precipitates

Three types of precipitates can be distinguished, which depend on the fit be-
tween the lattice of the precipitate and the matrix: coherent, partially coherent
and incoherent (Fig. 9.28). The resulting types of contrast can be separated
into the following effects; these normally appear superposed but one of them
often dominates.

(1) Scattering Contrast. For materials of large density and high atomic num-
ber, many electrons are scattered through large angles and intercepted by the
objective diaphragm. A precipitate of larger density therefore appears darker
in the bright-field image. On this scattering contrast, however, stronger dy-
namical contrast is superimposed.

Fig. 9.28. (a-d) Schematic view of lattice distortions near coherent, partially co-
herent, and incoherent precipitates.
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(2) Structure-Factor Contrast is caused by differences between the extinction
distances ξg of the matrix and ξ�

g of the precipitate. This contrast dominates in
coherent precipitates without misfit. Coherent precipitates with misfit create
a lattice strain field around the particle. This causes strain contrast, see point
6 below. For w = sξg = 0 (Bragg position), the structure-factor contrast acts
like a formal change of the specimen thickness (t: foil thickness, ∆t�: thickness
of the precipitate):

teff = t + ξg∆t�
(

1
ξ�
g

− 1
ξg

)
= t + ∆t. (9.29)

Differentiating Ig = R = sin2(πt/ξg) given by (7.61) and multiplying by ∆t,
we obtain the intensity variation [9.102]

∆Ig = −∆I0 =
dIg

dt
∆t = π∆t∗

(
1
ξ�
g

− 1
ξg

)
sin
(

2πt

ξg

)
, (9.30)

provided that ∆t� � ξg. Maximum visibility with uniform bright contrast
occurs where t/ξg = 1/4, 5/4,. . . and with dark contrast where t/ξg = 3/4,
7/4,. . . if ξ�

g > ξg. This structure-factor contrast will clearly be most effective
in thin areas of the foil because the Bloch-wave absorption (not considered in
(9.30)) decreases the effective contrast produced by small changes in thickness.

(3) Orientation Contrast can be observed for partially coherent and incoherent
precipitates if they show a strong reflection and the matrix a weak reflection,
or vice versa. In the dark-field image, the corresponding precipitate appears
bright; this condition favors the determination of particle size and number.
Large precipitates show edge fringes analogous to crystal boundaries if the
Bragg reflection is excited strongly in only one part (matrix or precipitate).
The spacing of edge fringes corresponds to the value of ξg,eff (7.62) for the
matrix or the precipitate, depending on which crystal is strongly excited.

(4) Moiré Contrast (Sect. 8.1.3), regarded as a special type of orientation
contrast, will be seen if double reflection in the matrix and the precipitate
results in extra diffraction spots near the primary beam, producing moiré
fringes when superposed in the image.

(5) Displacement-Fringe Contrast is observed if, for example, a plate-like
precipitate causes a normal displacement vector in a partially coherent
precipitate,

Rn = δ∆tun − nbn. (9.31)

This displaces the matrix lattice planes in opposite directions on either side of
the precipitate, where δ = 2(a1 − a2)/(a1 + a2) is the misfit parameter and n
is the number of dislocations in the peripheral interface with a Burgers vector
component bn parallel to the normal. A phase shift α = 2πg ·Rn is generated
as for the stacking-fault contrast, but Rn is not necessarily a lattice vector.
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Fig. 9.29. Calculated bright-field
intensity contours in the upper half-
plane around a spherical, symmetri-
cal strained precipitate of radius r0 =
0.25ξg in the center of a foil of thick-
ness t = 5ξg and a distortion εgξg =
10.2. The figure is reflected at the line
of no contrast, resulting in “butterfly”
contrast.

Otherwise, many characteristics of stacking-fault contrast are observed when
the plates are inclined to the foil surface. This contrast becomes most marked
if the matrix is excited strongly and the precipitate weakly.

(6)MatrixStrain-FieldContrast.Coherentprecipitates often create large strains
in thematrix:Guinier–Preston zones II inAl-Cu, for example, orCoprecipitates
in Co-Cu alloys. Besides scattering, structure-factor, and displacement-fringe
contrast, a long-range strain contrast can be observed [9.102]. The displacement
vector of the strain field of a precipitate of radius r0 is

R = εr for r < r0 and R =
εr3

0

r3
r for r > r0, (9.32)

with ε = 3Kδ[3K + 2E(1 + ν)]−1, where K denotes the bulk modulus of
the precipitate and E and ν are Young’s modulus and Poisson’s ratio for the
matrix. Small cubic or tetrahedral precipitates also provoke such a symmetric
strain field over a larger distance. Substitution of the radial displacement field
R in (9.4) shows that a line exists along which g ·R = 0 and there is hence no
contrast (Fig. 9.29), with the result that a butterfly or coffee-bean contrast
is seen. The no-contrast line is normal to g and changes direction if other g
are used by tilting the specimen. Plate-like precipitates create an anisotropic
strain field, and the no-contrast line does not change much if g is varied. The
width of the zone of equal contrast is proportional to εgr0/ξg and can be used
to calculate the misfit of a precipitate [9.102, 9.103].

9.5.2 Defect Clusters

Frenkel defects (pairs of vacancies and interstitials) can be produced by bom-
bardment with high-energy radiation. Single vacancies or interstitials cannot
be resolved. The elastic strain of the lattice is too small and the phase con-
trast is insufficient. The defect clusters must be 1–2 nm in size for the strain
field to give observable diffraction-contrast effects that can be used to analyze
the type of cluster. Large clusters result in dislocation loops, stacking-fault
tetrahedra, or cavities.
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The symmetry of the strain field, the orientation and the Burgers vector b
of the loops, and the distinction between interstitial and vacancy clusters and
their depth and size distributions are of interest.

Kinematical image conditions result in black spots [9.104]. In the Bragg
position, alternating black–white contrast is observed if the faults are near the
top or bottom regions of the foil [9.105]. In the center of the foil, Bloch-wave
absorption (see stacking-fault contrast, Sect. 8.2.2) leads to black points only
[9.106].

As an example, typical contrast effects of small edge-dislocation loops of
the vacancy type will now be described. A vector l from the dark to the bright
spot of a bright-field image is introduced, and the following contrast effects
result [9.107, 9.108, 9.109].

(1) l is parallel to the projection of b onto the foil plane and with only
a few exceptions is independent of the direction of the excited g. (For strain
fields with spherical symmetry, l is always parallel or antiparallel to g, see
also Sect. 9.5.1.)

(2) The sign of g · l depends on the depth of the loop in the foil and
differs for loops of vacancy and interstitial type. The diagram of Fig. 9.30
shows the typical contrast behavior. The zone L1, for example, has a length
ξg/3 � 5–10 nm. As for stacking faults and dislocations, dark- and bright-field
micrographs are complementary only at the bottom surface of the foil. It is
therefore necessary to know the sign of g · l and the depth before clusters of
vacancies and interstitials can be distinguished. The depth can be measured
with a high accuracy of ± 2 nm by recording a stereo pair [9.106, 9.107, 9.108,
9.109].

Fig. 9.30. Schematic plot of the depth oscil-
lation of the black–white contrast from small
dislocation loops of vacancy type in the dark-
field (DF) and bright-field (BF) modes at the
top and bottom surfaces of a thick foil. The
direction of g must be reversed for loops of in-
terstitial type [9.106].
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(3) Loops with g · b = 0 can exhibit weak residual contrast. The g · b = 0
rule for dislocations has to be used with care for these defects, too. Computer
simulation is essential for a detailed analysis [9.110, 9.111].

Disordered zones in displacement cascades in irradiated ordered alloys can
be successfully investigated by examining dark-field superlattice reflections,
which reveal the disordered regions as dark spots [9.112, 9.113].

Small cavities in irradiated material (diameter � 1–2 nm) show a depen-
dence on depth like that discussed as structure-factor contrast in Sect. 9.5.1
but can be best observed with slight defocusing because a phase-contrast con-
tribution has to be considered [9.114].

9.6 High-Resolution Electron Microscopy (HREM)
of Crystals

9.6.1 Lattice-Plane Fringes

The crystal-lattice planes can be imaged and resolved, provided that the in-
formation about the lattice structure – that is, the primary and the Bragg-
reflected beam – can pass through the objective diaphragm and that the
contrast is not destroyed by insufficient spatial and temporal coherence.
The primary beam and Bragg reflection are inclined at an angle θg = 2θB

(2d sin θB = λ). The plane waves interfere in the image plane with smaller
angular separation θg/M (M : magnification) between the primary and re-
flected waves. The distance between the maxima of the resulting two-beam
interference fringes is Md. In the first such observation, lattice fringes in cop-
per phthalocyanine (d = 1.2 nm) were resolved [9.115]. Today it is possible
to resolve lattice-plane fringes with d � 0.1 nm. Figure 9.31a shows lattice-
plane fringes from an evaporated gold film with a 20◦ crystal boundary (d220

= 0.204 nm) [9.116]. Diffraction contrast from the dense dislocations at the
grain boundary is superposed on the lattice-fringe image.

For more extensive calculations and discussion of the contrast of lattice
fringes in the two-beam case [9.14, 9.117], we use (7.60) for the amplitudes ψ0

and ψg. These equations can be rewritten

ψ0 = |ψ0|e−iφ with |ψ0|2 = T and

tanφ = w√
1 + w2

tan
[
π
√

1 + w2

ξg
t

]
,

ψg = i|ψg|e2πigx with |ψg|2 = R.

(9.33)

The superposition of the two waves in the image plane results in an image
amplitude

ψ = ψ0 + ψge−iW (θg) (9.34)
including the wave aberration W (θg) (3.65) in the diffracted beam. With
|g| = 1/d, the image intensity becomes
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Fig. 9.31. High-resolution image of 20◦ [001] tilt boundaries in epitaxially grown
Au films on NaCl bicrystals. (a) 0.204 nm lattice fringes in common [110] direction.
(b) Crossed lattice image at a boundary in [010] orientation [9.116].

I(x) = ψψ∗ = |ψ0|2 + |ψg|2 − 2|ψ0||ψg| sin
[
2πx

d
+ φ − W (θg)

]
. (9.35)

This means that the image contrast depends on the thickness t and the
tilt parameter w of the crystal foil. The highest contrast will be observed
for thicknesses t = ξg/4, 3ξg/4, 5ξg/4, etc., where |ψ0| = |ψg| in the Bragg
position (w = 0); for intermediate thicknesses with |ψ0| = 0 or |ψg| = 0, the
contrast vanishes. It also decreases with increasing tilt parameter w because
the maximum possible value of |ψg| decreases.

The phase contribution φ in (9.35) can vary with x in edge contours (vary-
ing t) and/or bend contours (varying w) and causes a shift of the lattice-fringe
positions. The local variation of the observed lattice-fringe spacing d′ can be
calculated [9.118] by writing

2π

d′
=

d
dx

(
2πx

d
+ φ

)
=

2π

d
+

dφ

dx
. (9.36)

In edge and bend contours, dφ/dx is normally so small that this correction can
be neglected. It must, however, be taken into account if an accurate value of d
is being determined by counting a large number of fringes for the investigation
of spinodal alloys, for example, which exhibit modulations in composition with
a wavelength of the order of 10 nm [9.119, 9.120].

With the primary beam on-axis and the diffracted beam at an angle
θg = 2θB � λ/d to the axis, the wave aberration W (θg) in (9.35) causes
a shift of the fringe pattern by one lattice-plane spacing if W (θg) = 2π. This
defocusing shift does not affect the visibility (resolution and contrast) of the
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fringes. However, the contrast of closely spaced lattice planes or large spatial
frequencies is influenced by the attenuation characterized by the contrast-
transfer envelope Kc(q) in (6.42) caused by the chromatic aberration and by
the energy spread of the electron gun. The resolution can therefore be in-
creased by using tilted illumination with the primary beam tilted at an angle
θB to the axis [9.121]. The wave aberration W (θg) will be the same for both
waves, and the contrast-transfer envelope Kc(q) decreases the fringe contrast
to the same value for half the spatial frequency. In this way, lattice-plane
spacings down to 0.1 nm can be resolved.

In a homogeneous material, the lattice spacing d can be determined more
accurately by electron diffraction and the fringe distance can be used for cal-
ibration of magnification. As discussed in Sect. 4.4.3, this method is accurate
to within ±2% and the limited reproducibility of the magnification contributes
a further error of ±1%.

Another application is the imaging of lattice planes in and near crystal
defects, which complements the information given by the contrast effects dis-
cussed in Sects. 9.3 and 9.4. The latter are caused by the lattice displacements,
which affect the amplitude of the primary and diffracted beams. Transla-
tional antiphase boundaries, for example, cause a fringe shift [9.122]; Guinier–
Preston zones of Al-Cu consisting of single atomic planes enriched in Cu in
the Al lattice can be imaged [9.123].

The imaging of lattice planes only requires coherent superposition of the
primary beam and a reflected beam (or a systematic row) in the image plane.
If several nonsystematic reflections are used, a cross-grating of lattice planes
can be resolved (Fig. 9.31b); in the first version of this method, four reflections
(000, 200, 020, and 220) entered the objective lens, with the optic axis in the
center of the square defined by the four diffraction spots [9.124].

9.6.2 General Aspects of Crystal-Structure Imaging

For thin crystals, the amplitude of the Fourier transform of the crystal poten-
tial can be determined by electron diffraction. However, the phase information
is completely lost, so that a reconstruction by a mere inverse Fourier trans-
form is not possible. For crystal-structure imaging by high-resolution TEM
(HREM), the inverse Fourier transform – from the diffraction pattern to the
image – takes place directly inside the microscope without any loss of phase
even though additional phase shifts are introduced by the wave aberration.
Imaging of the crystal structure therefore becomes a special case of phase-
contrast image formation.

One of the first examples of imaging larger unit cells in Nb22O54 (Fig. 9.32)
illustrates the problems that arise on increasing the thickness (from left to
right) and the defocusing (top to bottom) [9.125]. A good demonstration that
the crystal images correspond to a projection of the crystal structure is the
fact that tunnels in the 3 × 3 and 3 × 4 block structures of ternary oxides
of Nb, W, or Ti and other materials are seen as bright spots (top left of
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Fig. 9.32. Crystal-structure imaging of Nb22O54 containing octahedra of NbO6,
which form 3× 3 and 3× 4 blocks (see inset for dimensions), and its change with
increasing specimen thickness (from left to right) and defocusing (from top to bot-
tom). The crystal structure is imaged correctly at the top left. A recurrence of the
same structure can be seen at the bottom right [9.125].

Fig. 9.32). The channels that contain Nb atoms are imaged as white dots,
the regions where the octahedra have common edges, or shear planes, exhibit
grey contrast, and the region near each tetrahedrally coordinated metal atom,
surrounded by eight metal atoms in the nearest octahedra, is black.

With increasing thickness, the Bragg-diffraction intensities vary with thick-
ness and excitation errors (dynamical theory), and the intensity distribution in
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the image of the lattice shows drastic changes, which can result in imaging ar-
tifacts and even contrast reversals of the main structure. If the thickness is still
further increased, to �50 nm, the structure that is observed for thicknesses
below 5 nm may reappear (bottom right of Fig. 9.32) [9.126, 9.127].

The following instrumental conditions are essential for efficient HREM of
crystal structures:

1. high electronic stability of acceleration voltage and lens currents,
2. vibration-free mechanical stability,
3. medium acceleration voltages of 200–400 kV (or high resolution 1 MV),
4. high gun brightness using a field-emission or Schottky electron gun,
5. low spherical-aberration constant Cs � 0.5 mm of the objective lens (or

a Cs corrector for sub Å resolution),
6. low energy spread ∆E ≤ 0.7 eV of the electron gun and low chromatic-

aberration constant Cc for good temporal coherence,
7. “parallel” beam illumination (low illumination aperture αi ≤ 0.1 mrad)

for good spatial coherence,
8. coma-free on-axis alignment of the electron beam (Sect. 2.4.3),
9. precise alignment of crystal foils parallel to a low-index zone axis with a

drift-free goniometer of high precision and an accuracy better than 0.25
mrad [2.47],

10. image control and recording by a CCD camera, and a
11. computer workstation for measurement of Cs and defocus ∆z, autotuning,

and online image simulation.

For the imaging of crystal structure, it is necessary to ensure that as many
Bragg reflections as possible contribute to the image. The ideal image will be
a projection of atomic rows, which appear as black dots when the irradiation
is exactly parallel to a low-index zone axis.

The main limitations of crystal-structure imaging with a large number
of reflections are the additional phase shifts W (θg) introduced by the wave
aberration of the objective lens, which are different for the various reflections,
and the attenuation of the contrast-transfer function by lack of spatial and
especially temporal coherence (Sect. 6.4.2).

The present-day standard 200–400 kV HREMs allow a point-to-point res-
olution of about 0.15–0.2 nm to be attained, and �0.1 nm has been reached
with a 1 MV instrument [9.128]. More recently, aberration correctors have
been developed (Sect. 2.4.2, [2.40, 9.129]) that allow the spherical aberra-
tion of the objective lens to be chosen at will. Then the main limitation is
the partial temporal coherence caused by the energy spread of the electron
gun. The latter can be reduced with a monochromator below the cathode.
Zero-loss filtering of unscattered and elastically scattered electrons by imag-
ing energy filters (Sect. 4.6) can remove the contribution from inelastically
scattered electrons, and the fit with simulated images should be better. Com-
bining an HREM with an electron monochromator unit and an imaging energy
filter is not just futuristic but is now technically realizable [9.130] and allows
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subangstrom resolution to be obtained with 200 kV microscopes [9.131]. Using
such a microscope, one can enhance the contrast of light atoms by setting the
contrast to a negative value [9.132, 9.133].

9.6.3 Methods for Calculating Lattice-Image Contrast

Phase-Grating Approximation. For thin crystals, the phase-grating the-
ory can be applied to simulate images of crystal lattices. By using (3.17) for
the refractive index, the exit wave function behind the specimen is found to be

ψs(x, y) = ψ0 exp
[
−2πi

λE

E + E0

E + 2E0

t∫
0

V (x, y, z)dz

]

= ψ0 exp[−iσ(x, y)]. (9.37)

In the weak-phase-grating approximation, appropriate for very thin crystals,
only the first two terms in the series expansion of the exponential are retained,

ψs(x, y) = ψ0

[
1 − 2πi

λE

E + E0

E + 2E0

t∫
0

V (x, yz)dz + . . .

]
, (9.38)

and the phase-contrast theory of Sect. 6.2.4 can be applied, except that the
integration over the Fourier plane now becomes a summation over the limited
number of diffraction spots.
Bloch-Wave Method. For the simulation of crystal-lattice images when the
unit cells are not too large, the exit wave function can also be determined
by calculating the eigenvalues γ(j) + iq(j) and eigenvector components C

(j)
g of

Bloch waves by solving the fundamental equations of the dynamical theory
(Sect. 7.3.3). The image intensity distribution is found to be

I (r) =
∑
g,h

∑
i,j

C
(i)∗
0 C

(j)
0 C(i)

g C
(j)∗
h exp[−2π(q(i) + q(j))t] (9.39)

× exp{i[2π(γ(i) − γ(j))t + 2π(g − h) · r − W (θg,∆z) + W (θh,∆z)]}.
The phase shift W (θg,∆z) contains the defocusing ∆z and the spherical-
aberration coefficient Cs; it is hence impossible to image a large number of
hkl Bragg reflections around an [mno] zone axis with mh + nk + ol = 0 with
the same phase shifts, so that the superposition of the reflection amplitudes
in the image becomes incorrect. These difficulties are less severe for specimens
with very large unit cells ≥1 nm with a large number of reflections at low θg.
The practical implementation of this technique and some typical applications
are summarized in [1.69, 9.126, 9.134]. Experiments and calculations for very
thin specimens confirm that, for thicknesses less than 5 nm, the crystal can
be regarded as a weak-phase specimen, which is equivalent to saying that the
weak-phase-grating approximation is valid. The maximum allowable thickness
increases with increasing size of the unit cell. Model calculations (e.g., com-
parison with the multislice or Bloch-wave methods) are necessary for each
particular structure to check whether the weak-phase-grating approximation
is indeed valid.
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For high-resolution imaging, the value of the defocusing ∆z that gives a
broad main transfer band of the contrast-transfer function (CTF; Sect. 6.4.1)
will be most satisfactory, just as for amorphous specimens. Once again, the
limiting factor will be the decrease of the CTF at large q caused by the
finite illumination aperture and energy spread (spatial and temporal partial
coherences, respectively). The phase shift W (θg) due to spherical aberration
decreases as θ4

g/λ ∝ λ3 with increasing energy, and the attraction of using
higher acceleration voltages for crystal-structure imaging is clear.

For a Cs-corrected microscope, the resolution is limited by envelope due
to the energy spread. Therefore, to improve the resolution, these instruments
are equipped with a monochromator.
Multislice Method. For large unit cells, lattice defects and interfaces, the
multislice many-beam dynamical theory of Cowley and Moodie [9.135, 9.136,
9.137, 9.138, 9.139] is in widespread use. The crystal foil is cut into a larger
number of thin slices of equal thickness ∆z perpendicular to the incident elec-
tron beam. Just as in the phase-grating approximation (9.37), the projected
potential and phase shift σ(x, y) is determined for each slice by integrating
V (x, y, z) between the limits (n − 1)∆z and n∆z for the nth slice. After ap-
plying this phase shift at the center or bottom of the nth slice to the wave
function of the preceding slice by multiplying by exp[−iσ(x, y)], the wave
propagates in a “vacuum” by Fresnel diffraction to the center or bottom of
the next slice. This Fresnel propagation over a distance ∆z is equivalent to
convolving the wave function with

p(x, y) =
1

iλ∆z
exp
[
πi

x2 + y2

λ∆z

]
, (9.40)

which is obtained from (3.33) for r0 → ∞ (plane-wave approximation) and
R0 = ∆z. It is therefore convenient to perform the calculation in Fourier space
and make use of the convolution theorem of Fourier transforms. We write

Ψn(qx, qy) = Ψn(q) = F {ψn(x, y)},
P (qx, qy) = F{p(x, y)} = exp[iπ∆zλ(q2

x + q2
y)], (9.41)

where ψn(x, y) is the wave function just above the nth slice. The Fourier
transform of the exit wave function (diffraction amplitude) is given by the
recursion

Ψ ′
n−1(x, y) = exp[−iσ(x, y)]Ψn−1(x, y),

Ψn(q) = P (q)Ψ ′
n−1(q). (9.42)

This formalism can also be applied to nonperiodic and even to amorphous
specimens when the positions of individual atoms are stored. In the case of
periodic crystal structures, only the reciprocal-lattice points g need to be
considered. For the calculation of the influence of high-order Laue zones, it is
necessary to select multiples of ∆z smaller than the size of the unit cell. Dis-
tribution of inelastically and thermal diffusely scattered electrons between the
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Bragg reflections can also be calculated by the multislice method [7.20, 7.91].
A real-space multislice theory has been presented in [9.140, 9.141]. Various
applications of the multislice method are shown in [1.19].

9.6.4 Simulation, Matching, and Reconstruction of Crystal Images

We have seen that defocus ∆z and specimen thickness t influence the contrast
of lattice images. Not only can contrast reversals occur as in Fig. 9.32 but
the positions of black rows can shift at interfaces or boundaries and other
imaging artifacts can occur due to the phase shifts caused by the wave aber-
ration. When the imaging parameters (Cs, Cc, αi, αo) are known, the simplest
approach is to compare visually one micrograph or a series with simulated im-
ages at different ∆z and t calculated by the multislice method (see Fig. 9.35).
A more objective comparison can be made by plotting in a ∆z − t plane
the values of cross-correlation maxima between the experimental image and a
large number of simulated images in Fourier space covering the whole defocus-
thickness range near the expected value [9.142]. The method also enables
the ∆z and t values belonging to an experimental through-focus series to be
established.

Nonlinear least-squares methods seek to minimize the residual image over
all the pixels (label i) in a high-dimensional parameter space [9.143]:

k∑
i=1

fi(x)2 = min with fi(x) = [fexp
i − bfit − f calc

i (x)]/Wi. (9.43)

x refers to the s parameters x1, x2, . . . , xs used in the image simulation, which
can be not only the imaging parameters but also the locations of atomic
rows projected along the viewing direction (e.g., a limited number of atomic
columns surrounding an interface); bfit takes into account any background
caused by amorphous layers on the top and bottom surfaces, and Wi = σexp

i +
0.05fexp

i allows for the uncertainty of the ith pixel value. In an iterative digital
imaging matching program (IDIM) [9.144], parameter subspaces are separably
optimized.

Another approach is to reconstruct the exit-surface wave function ψ(r)
from a series of micrographs. The method using a defocus series and described
for amorphous specimens in Sect. 6.6.3 is the easiest way to reconstruct the
amplitude and phase of the exit wave function [9.145]. In another proposal
[9.146], free of assumptions about the specimen, the micrographs of a defocus
series first have to be aligned by cross-correlation because image shifts of the
order of a few nanometers cannot be avoided during defocusing when voltage-
center alignment has been used and mechanical shifts are superposed. The
intensities Iexp(g,∆z) of different reflections g in the digital diffractograms of
the micrographs at different defocusings ∆z are fitted to theoretically calcu-
lated intensities Itheor(g,∆z). All amplitudes and phases of the object wave
function, as well as all the imaging parameters, contribute to the latter. A suit-
able measure of the goodness of fit may be the sum of the squared differences
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between experiment and theory, and the optimum values of the parameters
are obtained by a method called “survival of the fittest” (see also “genetic
algorithm” in [9.147]). The comparison of experimental and theoretical re-
flection intensities as a function of defocus can be used to check the result.
Nonlinear relationships between the clicks of the defocus knob and the actual
defocus can probably be attributed to temperature variations of the objective
coil (amplitude of 0.1 K with a period of 5 min).

An important application of HREM is the imaging of heterostructures
of semiconductor devices in thinned cross sections. Special procedures are
proposed for extracting information about composition profiles and interfacial
roughness with a resolution of 1–2 monolayers by matching routines. The
contents of unit cells in the micrograph are compared either by coding them
as vectors containing m × n pixel intensities [9.148, 9.149] or by using the
Fourier coefficients of unit cells [9.150]. For Si/SixGe1−x interfaces, the latter
method yields local composition value

x =
J − JGe

JSi − JGe
, (9.44)

where J is the measured Fourier coefficient for a reciprocal lattice vector g in
each unit cell and JSi and JGe are values of J from reference unit cells of pure
Si and Ge, respectively. Figure 9.33a shows a 7-beam [110] cross-section lattice
image of a Si/Ge strained-layer superlattice and Figure 9.33b the quantitative
grey-level representation of the local Ge content.

Single-sideband holography (Sect. 6.5.2) shows no transfer gaps or sign
reversals of the CTF and can also be applied to a crystalline specimen
[9.151, 9.152]. The objective diaphragm is shifted off-axis so that only the pri-
mary beam and one sideband of the diffracted beams are transmitted. A new
alignment of the microscope is necessary after shifting the diaphragm, which
indicates that the edge of the diaphragm influences the primary beam.

Off-axis holography (Sect. 6.5.3) can also be employed to reconstruct the
phase and amplitude of the exit wave function with a resolution approach-
ing 0.1 nm [6.153, 6.154, 9.153]. Figure 9.34a shows a hologram with fringe
spacings of 0.05 nm of a Si foil; the so-called dumbbell structure, which is
a projection of the unit cell with diamond structure in the direction of the
[110] zone axis, can be seen [9.153]. The digital diffractogram shows the cen-
tral primary beam surrounded by the spatial frequencies of the contributing
Bragg reflections (central band) and two sidebands [one of these is shown
in Figure 9.34b], which are caused by diffraction on the fringes; both bands
show reflections up to 004. Digital reconstruction of the hologram, including
the elimination of the aberrations, allows us to calculate the phase (Figure
9.34c) and amplitude (Figure 9.34d) contributions to the exit wave function.
The small asymmetry visible in the amplitude and phase of the corrected wave
suggests that there is a residual crystal or beam tilt away from the zone axis.

A simulated thickness-defocus tableau for Cs is shown in Fig. 9.35 for
different specimen thicknesses. It reveals that already small deviations of
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Fig. 9.33. (a) 7-beam [110] cross-section lattice image of an Si/Ge strained-layer
superlattice and (b) the quantitative grey-level representation of the local Ge content
[9.150].

about 5 nm in defocus drastically change the image contrast of amplitude
and phase. Comparing the corrected object wave amplitude and phase from
Fig. 9.34 with the defocus tableau reveals a good agreement with the simu-
lations. With a Cs-corrected microscope, amplitude-contrast images can be
obtained by choosing a small defocus and Cs to minimize the phase shift of
the lenses [6.86].

9.6.5 Measurement of Atomic Displacements in HREM

In well-aligned lattice images parallel to a zone axis, the displacements of
(black) lattice row images can be directly related to lattice strains. If compo-
nents of a multilayer system show a misfit, strains can be measured in HREM



410 9 Imaging of Crystalline Specimens and Their Defects

Fig. 9.34. Electron hologram (a) of an Si foil in the [110] zone axis and one sideband
of the digital diffractogram (b). Reconstruction of the phase (c) and amplitude (d)
contributions of the exit wave function [9.153].

Fig. 9.35. Simulated thickness-defocus tableau of Si [110] for a correction to Cs = 0.
Comparison with Figs. 9.34c and d reveals a good agreement for ∆z = 0 [9.153].
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micrographs near the boundaries, as has been shown, for example, for 1–4
monolayers of Ni embedded between 5nm Au layers [9.154]; alternatively, the
displacements can be used to determine the grain boundary volume expansion
[9.155]. The positions of atomic rows can be determined with an accuracy of
about one-sixth of the resolved atomic row distance [9.156], better than 0.03
nm [9.157]. Nevertheless, the results must always be simulated by multislice
calculations using a range of values of the imaging parameters (defocus and
tilt) near the assumed values, taking into account dynamically forbidden re-
flections if necessary because they can also influence the image [9.158]. The
core structure of grain boundaries can be compared with a molecular static
computation of atomic structure [9.159].

The displacements near the core of dislocations have been measured for ex-
ample in semiconductors [9.160, 9.161, 9.162, 9.163] and metals [9.164, 9.165,
9.166] and showed a remarkable agreement with the elastic theory outside the
core. Dissociations of dislocations of the order of 0.5–1 nm can be measured,
which allows larger stacking-fault energies to be determined than with the
weak-beam method (Sect. 9.4.3).

9.6.6 Crystal-Structure Imaging with a Scanning Transmission
Electron Microscope

To demonstrate the principle of crystal-structure imaging with a scanning
transmission electron microscope, we again make use of the reciprocity theo-
rem (Sect. 4.5.3) for a three-beam case (Fig. 9.36). In a conventional trans-
mission electron microscope (bottom to top), an electron beam of aperture αi

incident on the specimen at P produces two Bragg-diffracted beams at angles
±2θB to the primary beam. These beams are focused by the objective lens

Fig. 9.36. Imaging of crystal lattices in the STEM bright-field (BF) mode reciprocal
to the TEM bright-field mode and in the high-angle annular dark-field (HAADF)
mode with Z-dependent contrast.
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and form a lattice-fringe image in the image plane. In the STEM bright-field
(BF) mode (top to bottom), the source is focused in the electron probe at P
with a cone angle (probe aperture) ≥2θB. Directions in the cone correspond-
ing to the primary beam BP and the diffracted beams AP and CP form three
discs (convergent-beam electron-diffraction patterns), which overlap at D in
the detector plane. The interference between these three discs at D produces
the lattice image when the electron probe scans across the specimen [9.167].

Another way of imaging crystal lattices is the high-angle annular dark-field
(HAADF) method (Fig. 9.36); the inner diameter then excludes the ZOLZ
convergent-beam discs. This STEM mode with a probe diameter less than
the dimension of a unit cell results in bright images of atomic rows for a
zone-axis orientation of the crystal foil and shows an intensity increasing with
atomic number Z [9.168, 9.169]. The contrast is caused by thermal diffuse elec-
tron scattering, and no reversals are seen when the thickness and/or defocus
are varied. It can be interpreted as an incoherent contrast transfer. Simula-
tions based on a “frozen-phonon” version of the multislice method agree with
experimental results [9.170, 9.171, 9.172, 9.173].

9.7 Imaging of Atomic Surface Steps and Structures

9.7.1 Imaging of Surface Steps in Transmission

When investigating crystal growth and surface structures, it is of interest to
resolve surface steps of atomic dimensions. By the replica technique (shadow-
ing with a platinum film about 1 nm thick, using a carbon supporting film
about 10 nm thick), steps of 1–2 nm can be resolved (Fig. 9.37) [9.174, 9.175].
Another possibility is the decoration technique, in which small crystals, of
silver or gold for example, nucleate on alkali halides mainly at atomic surface
steps (Fig. 9.38) [9.176, 9.177, 9.178]. The surface is coated with a thin layer
of carbon, and the crystals and carbon layer are stripped off together. These
are thus preparation methods for bulk specimens.

Normally, the contrast in bright- and dark-field images arising from the
change in the transmission is too faint to reveal thickness differences d of one
atomic step because d � ξg. However, weak-beam excitations with a large sg

[9.179] or forbidden reflections [9.180] correspond to a much smaller extinction
distance, ξg,eff , and can be used for dark-field imaging of atomic steps. For
example, surface steps on MgO become visible when the image is formed with
a weakly excited 200 reflection and a strongly excited 600 reflection or with
400 and 200 reflection [9.179]. With so-called forbidden reflections, steps on
Au and Si foils can be detected by contrast differences [9.180], though it will
be shown below that this case can also be interpreted as weak-beam excitation
of a reciprocal-lattice point in a first-order Laue zone.

The principle of the method will now be discussed by considering the
example of a [111]-oriented gold film. Figure 9.39a shows the unit cell with
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Fig. 9.37. Surface replica of a deformed copper single crystal (8% stretched). The
mean step height is 1.8 nm. The carbon film is reinforced with a collodium backing
and shadowed with a palladium film (courtesy of S. Mader).

Fig. 9.38. Gold decoration
of surface steps (0.28 nm) on
NaCl generated by a screw dis-
location after sublimation for
6 h at 350◦C (courtesy of
H. Bethge).
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Fig. 9.39. (a) “Hexagonal” unit cell of an fcc lattice. (b) Reciprocal lattice in cubic
notation showing that the excitation error sg is (

√
3/a)/3 for the 111 reflection.

the ABC packing sequence (Fig. 7.3) in a hexagonal notation. The structure
amplitude (7.14) becomes

F = f{1 + exp[2πi(h + k + l)/3] + exp[4πi(h + k + l)/3]}
= 0 if h + k + l = 3n + 1 or h + k + l = 3n + 2 . (9.45)

This is the condition for a forbidden reflection in hexagonal notation. These
reflections are situated between the primary beam and 220 Bragg spots (cubic
notation). However, F is zero only if the number of close-packed layers N is
a multiple of 3: N = 3m. This means that there must be an integral number
of complete unit cells in hexagonal notation. With one layer more or less
(N = 3m±1), F does not vanish because F = 0 is a consequence of destructive
interference between the scattered waves for all of the atoms of a unit cell.
These additional or missing layers therefore lead to nonzero values of F and
are imaged as bright contrast in a dark-field micrograph if this weak Bragg
spot is selected.

In another equivalent explanation, this contrast may be interpreted as a
weak-beam effect with a large excitation error sg. In the reciprocal lattice
shown in Fig. 9.39b, the first-order Laue zone contains a 111 reflection, which
is allowed (hkl odd in cubic notation) but normally not excited owing to the
large excitation error sg, which denotes the distance from the Ewald sphere in
the zero-order Laue zone if the electron beam is parallel to the [111] zone axis.
This means that sg is equal to the distance between the first- and zero-order
Laue zones, sg = (

√
3/a)/3. Substituting for sg in (7.25) or (7.61) gives the

same result because w = sgξg � 1 and

Ig ∝ sin2(πtsg) = sin2(π
√

3t/3a) (9.46)

so that Ig becomes zero if t = 3m× (a
√

3/3). The last factor in the bracket is,
however, just the distance between the close-packed layers, namely one-third
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Fig. 9.40. Bright-field image of a 3.4 monolayer Au(111) film with a direction of
incidence near 〈315〉. In addition to the contrast from different thicknesses due to
the short extinction length, the steps are imaged by Fresnel-like black–white fringes
due to phase contrast (courtesy of M. Klaua and H. Bethge).

of the space diagonal a
√

3 in the cubic unit cell, which is the same result as
that given by (9.45).

Large variations in contrast are also found for strongly excited reflections.
For example, a contrast maximum is found for incidence near the 〈111〉 zone
axis of MgO with a tilt of about 0.4 of the Bragg angle at a thickness of 7 nm;
under these conditions, 20% contrast is seen for an additional step of 0.12 nm
[9.181]. This is confirmed by dynamical n-beam calculations. An advantage is
the short exposure time of a few seconds compared with the long exposures
necessary for the weak-beam method discussed above, while a disadvantage is
the limited thickness range and the necessary adjustment of the orientation
for optimum contrast. Up to six intensity levels for surface layers of different
height have been observed (Fig. 9.40) when imaging ultrathin gold films in
the exact [111] direction of incidence [9.182], and other orientations can be
found that also increase the contrast for a special thickness range. In all these
transmission modes for imaging surface steps, contributions from steps at the
top and the bottom overlap, which is not the case in the reflection mode
discussed in the next section.

Apart from these diffraction-contrast modes, which yield areas of different
grey levels for surface terraces of constant thickness, the position of the step
edge and its sign can be determined by phase contrast, slightly under- or
overfocused [9.183, 9.184]. It is necessary to avoid low-index reflections, and
the crystal has to be freely mounted on a microgrid.

The so-called reconstructed surface layers, in which the equilibrium con-
figurations of atoms are different from the positions of atoms in the bulk
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Fig. 9.41. DAS model of the Si(111) 7×7 reconstructed surface in (a) top and (b)
side view containing (D) dimers (small open circles), and (A) adatoms (large open
circles). Atoms in the bulk surface are shown as small full circles on the top layer
and (S) a stacking-fault layer (medium open circles).

crystal owing to the modification of the binding forces at the surface, are
of special interest. A typical example is the Si(111) 7×7 structure, top and
side views of which are shown in Fig. 9.41 [9.185], containing 98 atoms in
the two-dimensional unit cell in the double top layer. Such a structure and
other planar superstructures different from 7×7 have been detected by LEED
(low-energy electron diffraction) and result in superstructure reflections be-
tween the primary beam and the main reflections of the bulk crystal. Using
specially designed TEM specimen chambers with an ultrahigh vacuum, these
superstructure reflections can also be observed in the transmission diffrac-
tion mode, and the periodicity of the 7×7 structure can be imaged as 2.8
nm superlattice fringes in the dark-field mode using one main reflection and
the surrounding superlattice reflections [9.185]. The intensity of these reflec-
tions can be calculated using the kinematical approach [9.186]. The surface
topography of the 7×7 structure can also be recorded by scanning tunneling
microscopy [9.187].

9.7.2 Reflection Electron Microscopy

In the reflection electron microscope (REM) mode, the incident electron beam
is tilted by 1◦–2◦ to strike the specimen surface at glancing incidence. Elec-
trons scattered at low glancing angles can pass through the objective di-
aphragm. Attempts to use REM were made in the early years of electron
microscopy [9.188, 9.189, 9.190, 9.191] to image surface topography. Owing to
the strong foreshortening of the image by a factor of 20–50 and the limitation
of the resolution (10–20 nm) by the chromatic error of the objective lens,
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this mode attracted little interest because better images of surfaces could be
obtained by using surface replicas and later by scanning electron microscopy.

The revival of REM and the corresponding scanning technique (SREM) in
the 1970s can be attributed to the improved vacuum and higher performance
of the modern transmission electron microscope and to the possibility of using
the objective diaphragm to select single Bragg-reflection spots, which consist
mainly of elastically scattered electrons in the reflection high-energy electron-
diffraction (RHEED) pattern (Sect. 8.1.4c) by the objective diaphragm; the
resulting resolution is about 1 nm. Further progress will be made when REM
is used in an energy-filtering transmission electron microscope; this will allow
a further reduction of the contribution of inelastically scattered electrons and
an increase in contrast [9.192].

Important applications (see also [9.193]) are the imaging of reconstructed
surface structures such as the Si(111) 7×7 structure of Fig. 9.41, which can be
imaged either with the (444) diffracted beam as nucleated dark regions relative
to a 1×1 structure when the specimen is cooled below the transition temper-
ature at 830◦C (Fig. 9.42) or as 2.3 nm lattice fringes [9.194, 9.195, 9.196].
Surface atomic steps can be imaged as a result of both phase-contrast and
strain-contrast effects. The interference between waves reflected from the top
and bottom monoatomic steps produces dark or bright Fresnel-like fringes
in defocus from which the sense of a step (up or down) can be determined
[9.197, 9.198, 9.199, 9.200]. If there is a strain field in the crystal associated
with the surface step, varying the lattice-plane orientation will give diffrac-
tion contrast. Double images of steps can be observed under surface-resonance

Fig. 9.42. Reflection electron microscope (REM) image of the (111) face of an
Si crystal obtained with the (444) diffracted beam and showing the nucleation and
growth of 7×7 structures (dark regions) at surface steps when the specimen is cooled
from the transition temperature at 830◦C, where it shows the 1×1 structure (bright
regions) (courtesy of H. Yagi).
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conditions [9.198]. The intensities in the RHEED pattern can be calculated
by a modified multislice method, which also explains surface-resonance effects
of particular diffraction spots [9.201, 9.202]. The dynamics of domains and
superlattice structures of submonolayer deposits of Ag and Au on (111) sil-
icon can be followed, for example, as the temperature is varied [9.203]. An
ultrahigh vacuum is essential for quantitative work, though the typical image
structures of steps and layers can also be observed in normal TEM conditions
[9.204]. A scanning reflection mode [8.51] can also be employed, which has the
additional advantage of providing RHEED patterns from microareas [9.205].

9.7.3 Surface-Profile Imaging

Progress in crystal-structure imaging (Sect. 9.6) and the imaging of atomic
rows seen end-on as black spots allows us to observe the faceting and config-
uration of atomic rows about 2–5 nm long at an edge; a projected profile of
the surface at the atomic scale is seen [9.206], provided the specimen is thin
and that optimum defocus and crystal alignment are guaranteed. Other es-
sentials are a good vacuum (better than 10−5 Pa) to avoid contamination and
the possibility of insitu cleaning and annealing. Carbon contamination layers
deposited outside the vacuum can be removed by electron bombardment with
a high current density of about 2 × 105 A/m2 [9.207].

As an example, we mention the 2×1 gold (110) surface for which a missing
row model has been confirmed and a first-layer expansion of 20±5% has been
measured [9.208, 9.209, 9.210]. Further examples are the detection of a novel
1×1 structure on a silicon (113) surface [9.211], the observation of surface
dislocations [9.207, 9.212], decoration of the surface of FeZnCrO4 with ZnO
after a catalytic reaction [9.213], and the observation of oxidation processes.
As in crystal-lattice imaging, great care is necessary because the image spots
do not necessarily coincide with the atomic rows. Comparison with calculated
images is therefore indispensable [9.208, 9.214]; the positions of the rows can
then be determined with an accuracy of 0.01–0.02 nm.

With the aid of an image intensifier with a TV camera, the reconstruc-
tion of the surface after different treatments – e.g., removal of contamination
layers, oxidation or annealing – and the dynamical internal and surface re-
arrangement of atoms can be observed in real time [9.206, 9.215, 9.216].

The electron-current density necessary for profile imaging is high, about
1−4×105 A/m2, and so electron-beam-stimulated processes have to be taken
into account. For example, growth of a metallic layer by radiolysis has been
observed on some transition-metal oxides but not on rare-earth oxides [9.217].
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Elemental Analysis by X-ray
and Electron Energy-Loss Spectroscopy

The inner-shell ionization of atoms results in an emission of characteristic
x-ray quanta or Auger electrons. A wavelength- or an energy-dispersive x-ray
spectrometer can be coupled to a transmission electron microscope to record
x-ray quanta emitted from the specimen. The quantitative methods devel-
oped for the x-ray microanalysis of bulk materials can be transferred to the
investigation of thin specimens.

Electron energy-loss spectroscopy (EELS) gives information about the
electronic structure and the elemental composition of the specimen. This
technique is more efficient than x-ray analysis for low-Z elements because
the spectrometer can collect a large fraction of the inelastically scattered elec-
trons, which are concentrated within small scattering angles. By deconvolution
and background subtraction, a net signal can be obtained from the ionization
edge of an element for subsequent quantitative analysis.

An imaging electron-energy filter makes it possible to work in the electron
spectroscopic imaging modes, which can be used for mapping the elemental
distribution.

10.1 X-ray and Auger-Electron Emission

10.1.1 X-ray Continuum

The x-ray continuum is a result of the acceleration of electrons in the Coulomb
field of the nucleus. It is well-known from electrodynamics that an accelerated
charge can emit an electromagnetic wave. If the acceleration a(τ) is periodic, a
monochromatic wave will be emitted (dipole radiation). Because the spectral
distribution emitted is proportional to the square of the Fourier transform of
a(τ) [2.8, 10.1] and the interaction time τ is very short, the spectrum resulting
from the passage of an electron is very broad, and the x-ray quanta can be
emitted with energies Ex in the range 0 ≤ Ex ≤ E = eU , in which Ex = eU is
the maximum x-ray energy of the spectrum (Duane–Hunt law) (see [10.2, 10.3]
for reviews).
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A semiclassical formula of Kramers [10.4] gives the cross section dσx/dEx

for the generation of quanta in the x-ray energy range between Ex and Ex +
dEx. From this the number of continuous x-ray quanta generated in a thin
layer of mass thickness x = ρt with NA/A atoms per gram is found to be

N(Ex)dEx =
NAx

A

dσx

dEx
dEx =

NAx

A
a

Z2

β2Ex
dEx, (10.1)

where β = v/c and a = 5.54 × 10−31 m2 is the Kramers constant. More
accurate quantum-mechanical calculations [10.5, 10.6] give an improved value
of the Kramers constant a as a function of E, Ex, and Z, and experiments
then show a better agreement with (10.1) ([10.7], for example).

The angular distribution of the x-ray continuum is very anisotropic
(Fig. 10.1). The number dNx of quanta emitted per unit time, with energies
between Ex and Ex + dEx, into a solid angle dΩ at an angle θ relative to the
forward direction of electron incidence inside a film of thickness t and density
ρ (no multiple scattering) with NAρt/A atoms per unit area can be described
by [10.6, 10.8, 10.9]

dNx =
I(θ)
Ex

NAρt

A

Ip

e
dExdΩ, (10.2)

where Ip is the probe current and

I(θ) = Ix
sin2 θ

(1 − β cos θ)4
+ Iy

(
1 +

cos2 θ

(1 − β cos θ)4

)
. (10.3)

Fig. 10.1. Angular characteristics (polar diagram) of the x-ray continuum emitted
by a thin Cu foil irradiated with E = 100 keV electrons for three quantum energies
Ex = 90, 50, and 10 keV. The curves are normalized to the same maximum value.
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Analytical formulas for the coefficients Ix and Iy have been published [10.9]
that approximate the exact value with an accuracy of 2%. To a first-order
approximation, Ix and Iy are proportional to Z2/E. The polar diagrams of
emitted x-ray intensities in Fig. 10.1 are based on (10.3).

The x-ray continuum can be used to calibrate the film thickness in the mi-
croanalysis of biological sections, for example (Sect. 10.2.5). It also contributes
to the background below the characteristic x-ray lines, thereby decreasing the
peak-to-background ratio. The forward characteristics of the continuous x-ray
emission illustrated in Fig. 10.1 increase with increasing electron energy. The
x-ray emission in analytical TEM is observed at an angle θ between 90◦ and
135◦ relative to the incident electron beam. As a result, the line-to-continuum
ratio increases with increasing energy because the emission of characteristic
x-ray quanta is isotropic.

10.1.2 Characteristic X-ray and Auger-Electron Emission

Ionization of an inner shell results in an energy loss ∆E of the incident electron
(Sect. 5.3.1) and a vacancy in the ionized shell (Fig. 10.2a). The electron
energy E has to be greater than the ionization energy Enl of a shell with
quantum numbers n and l. Enl is the energy difference to the first unoccupied
state above the Fermi level (e.g., Enl = EK in Fig. 10.3).

The ionization cross section can be calculated from a formula given in
[3.2, 5.26, 10.10],

σnl =
πe4Znl

(4πε0)2EEnl
bnl ln

(
4E

Bnl

)
, (10.4)

Fig. 10.2. Schematic representation
of (a) the ionization process, (b) x-
ray emission, and (c) Auger-electron
emission.



422 10 Elemental Analysis by X-ray and Electron Energy-Loss Spectroscopy

Fig. 10.3. Energy levels of the atomic subshells with quantum numbers n, l, j and
ionization of the K shell; possible transitions of electrons to fill the vacancies in inner
shells and nomenclature of emitted x-ray lines are shown. Example of the emission
of a KLL Auger electron and a Coster–Kronig transition.

where bnl and Bnl are numerical constants [e.g., bK = 0.35, BK = 1.65 EK for
the K shell (n = 1)] and Znl denotes the number of electrons with quantum
numbers n, l (Znl = 2 for the K shell). The ratio u = E/Enl ≥ 1 is called the
overvoltage ratio. An empirical formula

BK = [1.65 + 2.35 exp(1 − u)]EK (10.5)

has been proposed [10.11], which gives BK = 1.65EK for large u but BK =
4EK for u near unity. The use of u leads to the following formula for K-shell
ionization:

σK =
2πe4

(4πε0)2E2
Ku

bKln
4uEK

BK
. (10.6)

The product σKE2
K should therefore depend only on u. This is confirmed for

low and medium atomic numbers, as is shown for the K-shell ionization of C,
N, O, Ne, Al, Ni, and Ag in Fig. 10.4 with EK = 283, 401, 532, 867, 1560,
8330, 25 500 eV, respectively, using (10.6) and a formula of Gryzinski [10.12]

σK =
πe4Znl

(4πε0)2E2
Ku

(
u − 1
u + 1

)2

×
{

1 +
2
3

(
1 − 1

2u

)
ln[2.7 + (u − 1)0.5]

}
. (10.7)
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Fig. 10.4. Plot of σK/E2
K (σK: ionization cross section of the K shell, EK: ionization

energy) versus the overvoltage ratio u = E/EK for (a) C, N, O, Ne and (b) Ni and
Ag atoms. Comparison of formulas of Worthington and Tomlin (WT) (10.6) and
Gryzinski (G) (10.7) [10.13].

For high atomic numbers, σK becomes larger [10.15]. Cross sections σK for
some elements are also plotted in Fig. 5.3 for comparison with other important
cross sections of electron–specimen interactions. The theoretical and experi-
mental cross sections of the K and L shells are reviewed in [10.13, 10.14].

The vacancy in the inner shell is filled by electrons from outer shells
(Fig. 10.2b). The energy difference, EK − EL for example, can be emitted
as an x-ray quantum of discrete energy Ex = hν = EK − EL. Because of the
quantum-mechanical selection rules, ∆l = ±1 and ∆j = 0,±1, the Kα lines
that result from the transition of an L (n = 2) electron to the K shell (n = 1)
consist of only a doublet (Kα1 and Kα2 in Fig. 10.3).

To a first approximation, in which the subshells are disregarded, the quan-
tum energies Ex,K of the K series can be estimated from modified energy terms
(5.86) of the Bohr model (E1 = EK),

Ex,K = En − E1 = −R(Z − 1)2(1/n2 − 1/12), n = 2 : Kα, n = 3 : Kβ, (10.8)

where R = 13.6 eV denotes the ionization energy of the hydrogen atom. The
reduction of Z by 1 represents the screening of the nuclear charge Ze by the
remaining electron in the K shell. Likewise, for the L series (E2 = EL),

Ex,L = En − E2 = −R(Z − 7.4)2(1/n2 − 1/22), n = 3, 4, . . . . (10.9)

Exact values of x-ray wavelengths are tabulated [10.16, 10.17]. The x-ray
wavelength λ and the quantum energy Ex are related by the formulas hν = Ex

and νλ = c, giving
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λ =
hc

Ex
=

1.24
Ex

(10.10)

with λ in nm and Ex in keV.
The ratio Kα1/Kα2 of the intensity of the Kα1 line from the transition

L2 →K to that of the Kα2 line (L3 →K) is proportional to the number of
electrons in the corresponding subshells, which is 4/2 = 2 (sum rule). The
ratio Kα1/Kβ1 decreases from 10 for Al (Z = 13) to 3 for Sn (Z = 50). The
reason for this variation of the transition probability is the gradual filling of
the N and M subshells. Strong deviations from the sum rule are observed for
the L series, which can be attributed to Coster–Kronig transitions, in which a
vacancy in an L1 or L2 subshell is filled by an electron from another subshell
(L3). The energy is transferred to an electron near the Fermi level (Fig. 10.3).
The lines with L3 as the lowest sublevel are relatively enhanced by this effect.
For experimental values of the intensity ratios, see [10.3].

Unlike the x-ray continuum, the angular emission of the characteristic
quanta is isotropic. The half-widths of the emitted lines are of the order of
1–10 eV.

However, not every ionization of an inner shell results in the emission
of an x-ray quantum. This process occurs with a probability ω, the x-ray
fluorescence yield. Alternatively, the energy EL − EK, for example, may be
transferred to another atomic electron without emission of an x-ray quantum.
The latter electron leaves the atom as an Auger electron with an excess energy
EA = (EL − EK) − EI; EI is the ionization energy of this electron in the
presence of a vacancy in one subshell, taking relaxation processes into account.
An Auger electron is characterized by the three electronic subshells that are
involved in the emission (e.g., KLL in Fig. 10.2c or L2M1M1 in Fig. 10.3).
The probability of this process is the Auger-electron yield a = 1 − ω. The
quantities ω and a are plotted in Fig. 10.5 as a function of atomic number Z
[10.18, 10.19, 10.20].

Because the value of ωK is very low for light elements, detection of these
by x-ray microanalysis is inefficient. Electron energy-loss spectroscopy here
becomes more attractive (Sect. 10.3). The other alternative, Auger electron
spectroscopy, cannot be used in a conventional transmission electron micro-
scope, though instruments have been developed using a specially designed
spectrometer [10.21].

The continuous and characteristic x-ray quanta emitted interact with the
solid by the following three processes.

1. Photoionization. The quantum is totally absorbed and the energy is used
to ionize an atom in an inner shell if Ex ≥ Enl. Filling this shell results in
the emission of an x-ray quantum of lower energy (x-ray fluorescence) or
an Auger electron.

2. Compton effect. The quanta are elastically scattered by single atomic elec-
trons (conservation of kinetic energy and momentum). The x-ray energy
decreases by an amount equal to the energy of the ejected electron.
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Fig. 10.5. Auger-electron yield a and fluorescence yield ω = 1 − a as a function of
atomic number Z.

3. Thomson scattering. X-rays are scattered without energy loss at the elec-
tron shell of the atom. This effect is responsible for x-ray diffraction.

The first process dominates for Ex < 100 keV and results in an exponential
decrease of x-ray intensity as the mass thickness x = ρt increases:

N = N0 exp(−µt) = N0 exp[−(µ/ρ)x] . (10.11)

The mass-attenuation coefficient µ/ρ = NAσx/A (g−1 cm2) is related to a
single-atom fluorescence cross section σx and decreases as E−n

x (n = 2.5–3.5)
with increasing Ex, apart from abrupt increases when Ex ≥ Enl, the ionization
energy for an atomic shell (Fig. 10.6). Numerical values and formulas for µ/ρ
are to be found in International Tables for X-Ray Crystallography (Kynoch
Press, Birmingham) and in [10.22, 10.23, 10.24, 10.25, 10.26].

10.2 X-ray Microanalysis in a Transmission Electron
Microscope

10.2.1 Wavelength-Dispersive Spectrometry

A wavelength-dispersive spectrometer (WDS) makes use of the Bragg reflec-
tion of x-rays by a single crystal (2d sin θB = nλ). Better separation of narrow
characteristic lines and a larger solid angle of collection, ∆Ω � 10−3 sr, can
be obtained by focusing. The electron-irradiated spot on the specimen acts
as an entrance slit, while the analyzing crystal and the exit slit are mounted
on a Rowland circle of radius R (Fig. 10.7). The lattice planes of the crystal
are bent so that their radius is 2R, and the surface of the crystal is ground to
a radius R. Behind the slit, the x-ray quanta are recorded by a proportional
counter. The detection efficiency of the Bragg reflection and the proportional
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Fig. 10.6. Dependence of mass attenuation
coefficient µ/ρ on quantum energy Ex (lower
scale) and x-ray wavelength λ (upper scale).

Fig. 10.7. Incorporation of a wavelength-dispersive x-ray spectrometer with large
takeoff angle in a transmission electron microscope.
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counter is about 10–30%. The number of electron–ion pairs generated and the
resulting current pulse created by charge multiplication in the high electric
field near the central wire of the counter are proportional to the quantum en-
ergy Ex = hν. Bragg reflections of higher order (n > 1) can be eliminated by
pulse-height discrimination because such reflections are caused by quanta of
lower wavelength or higher quantum energy. For the recording of a spectrum
or for altering the focusing condition to another wavelength, the exit slit, the
proportional counter, and the analyzing crystal can be moved by means of a
pivot mechanism. X-ray microanalyzers are equipped with two or three spec-
trometers, which permit different wavelengths to be recorded simultaneously.
Crystals with different lattice spacings have to be used so that the whole wave-
length range can be analyzed. Special proportional counters with very thin
mylar windows are available for analyzing the weak Kα radiation of low-Z
elements; the lower limit is beryllium.

Exact adjustment of the specimen height is necessary to satisfy the focus-
ing condition. Small variations of height or a shift of the electron beam can
cause large variations of the x-ray intensity recorded. Wavelength-dispersive
spectrometers are therefore used mainly in x-ray microanalyzers; they can also
be mounted in transmission or scanning electron microscopes, though energy-
dispersive spectrometers are more commonly used with these instruments.

Thanks to the preselection of the radiation by the analyzing crystal, WDSs
can work with a high count rate for a particular characteristic line, of the order
of 100 000 c.p.s. when using electron-probe currents of the order of 10−8−10−7

A in conjunction with a proportional counter. This implies lower statistical
errors and more accurate determination of low elemental concentrations.

Figure 10.7 shows a cross section through the objective lens and one of
the two crystal spectrometers that used to be employed in the AEI/Kratos
EMMA instruments (electron-probe size: 0.1 µm, probe current: 2–5 nA at
100 keV, x-ray takeoff angle: 45◦) [10.27, 10.28].

10.2.2 Energy-Dispersive Spectrometry (EDS)

Either lithium drifted silicon [Si(Li)] detectors [10.29, 10.30, 10.31] or high-
purity intrinsic germanium detectors (HPGe, or IG for short) [10.32] are used.
These consist of a reverse-biased p-i-n junction (p-type, intrinsic, and n-type)
2–5 mm in diameter (Fig. 10.8). In silicon, the intrinsic zone is generated by
the diffusion of Li atoms. X-rays absorbed in the active detector volume cre-
ate electron–hole pairs. The number of charge carriers is proportional to the
x-ray quantum energy Ex and the possibility of analyzing the pulse height
of the charge collected form the physical basis of the energy-dispersive spec-
trometer [10.30]. If the x-ray quantum is absorbed by photoionization of an
inner shell, any residual x-ray energy contributes to the kinetic energy of an
excited photoelectron. Any remaining energy is transferred either to an Auger
electron or to an x-ray quantum of energy E′

x characteristic of the detector
atoms (x-ray fluorescence). If this x-ray quantum is again absorbed in the
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Fig. 10.8. Creation of electron–hole pairs in an Si(Li) energy-dispersive x-ray de-
tector coupled to a charge-sensitive preamplifier with an optical feedback circuit.
The latter switches the output signal to zero by means of a light-emitting diode
(LED), which irradiates the field-effect transistor (FET) if U ≥ Umax.

detector, the whole quantum energy Ex serves to create charge carriers. If,
on the other hand, this fluorescence x-ray quantum leaves the detector, its
energy E′

x does not contribute to the number of charge carriers created. This
can cause a weak escape peak of energy Ex −E′

x in the pulse-height spectrum
recorded. For an Si(Li) detector, the escape peak energies E′

x are 1.739 keV
(Si Kα) and a weaker contribution of 1.836 keV (Si Kβ). In IG detectors,
more and stronger escape peaks corresponding to Ge Kα and Kβ (9.876 and
10.983 keV) and also to Ge Lα and Lβ (1.188 and 1.219 keV) are observed,
as are Kα + Lα (10.974 keV) and Kβ + Lβ (12.202 keV).

The electron–hole pairs created by x-ray photoabsorption in the active
volume can be separated by applying a reverse bias of the order of 1 kV.
The charge pulse collected is proportional to the quantum energy Ex and is
converted to a voltage pulse by means of a field-effect transistor (FET), which
acts as a charge-sensitive amplifier. The detector crystal and the FET are
continuously cooled by liquid nitrogen, the first to avoid diffusion of Li atoms
and the second to reduce noise. Further reduction of noise and an improvement
of the preamplifier time constant are provided by charge accumulation. The
output signal of the preamplifier consists of voltage steps proportional to Ex.
When the voltage reaches a preset value (�10 V), a light-emitting diode (LED)
is switched on and the leakage current induced in the FET by the emitted
light returns the output voltage to zero (pulsed optical feedback, Fig. 10.8).
Another alternative is RC feedback with a high feedback resistance, which
results in exponential decay of the pulses.

The main amplifier not only amplifies the output of the preamplifier but
also shapes the pulses. The corresponding time constant is of the order of
5–10µs and is longer than the rise time of a voltage step in the preamplifier.
A pulse-pileup rejector cancels the pulses when the time between two voltage
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steps is equal to or shorter than the processing time constant of the main
amplifier. Otherwise, pulse pileup can result in artificial lines of 2 FeKα or
Fe Kα + Fe Kβ, for example. A live-time corrector prolongs the preset count-
ing time by one processing time constant per pulse-pileup rejection. Without
control of the linearity, the number of counts per second should not exceed
2000–5000. By electron-beam blanking shortly after recording a pulse and un-
blanking after processing the pulse, the linearity can be extended to about
8000 cps [10.33, 10.34].

The shaped pulses from the main amplifier are collected, sorted, stored,
and displayed by a multichannel analyzer (MCA). Pulse amplitudes from 0 to
10 V are linearly converted to numbers between 0 and 1024 by analog-to-
digital conversion.

The collection solid angle can be calculated from the active detector area
and the specimen–detector distance. It is of the order of ∆Ω = 0.1 to 0.01 sr
but can be increased to 0.2–0.3 sr by special design [10.34]; this value is one
to two orders of magnitude larger than for WDS. In SEM, it is necessary to
place a permanent magnet in front of the detector to deflect the backscattered
electrons for electron energies above 25 keV [10.35, 10.36], but in TEM the
lens field acts as an electron trap.

The resolution δEx can be characterized by the FWHM of a characteristic
x-ray line, which will be broadened by the statistical nature of electron–hole
pair creation and by the electronic noise of the detector and preamplifier.
A mean ionization energy Ei = 3.86 eV (Si) and 2.98 eV (Ge) is necessary for
each electron-hole pair created. The average number N = Ex/Ei of electron–
hole pairs forming charge pulses has a standard deviation

σx =
√

FN =
√

FEx/Ei. (10.12)

This value would be σx =
√

N if the number of pairs created obeyed Poisson
statistics. The Fano factor F = 0.087 (Si) and 0.06 (Ge) takes into account
departures from the Poisson distribution caused by the gradual deceleration
of the photoelectrons. Denoting the standard deviation of the electronic noise
by σn, the FWHM of a line becomes

δEx = 2.35
√

σ2
x + σ2

n . (10.13)

Values of δEx � 140–160 eV (Si) and ≤ 125 eV (Ge) can be obtained for
Ex = 5.893 keV (Mn Kα), depending weakly on the processing time of the
main amplifier. Incomplete charge collection can result in a tail on the low-
energy side of a characteristic peak.

The resolution of EDS is thus more than ten times worse than that of WDS
and not all overlapping lines can be separated, especially those of the L series
of one element and the K series of another. Furthermore, an energy window
of the order of the FWHM is necessary to ensure that all the characteristic
quanta of a given line are counted and more background counts are recorded
than by WDS.
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Fig. 10.9. Detection efficiency η(Ex) of an Si(Li) energy-dispersive spectrometer
for various thicknesses of the Be window and the detector; transmission (dashed
lines) for a 20 nm Au coating and a 0.1 µm Si dead layer.

The detection efficiency η(Ex) of an Si(Li) detector is nearly 100% in the
range Ex = 3–15 keV (Fig. 10.9). The decrease at low Ex is caused by the ab-
sorption of x-rays in the window material and the conductive coating of the
crystal. The old generation of Si(Li) detectors were protected by a Be window
(≥6µm) that strongly absorbed x-ray quanta with energies below Al K. Win-
dowless detectors [10.37, 10.38] have the disadvantage of contamination, and
nowadays ultrathin windows of � 500 nm of diamond-like carbon or boron
compounds, or metal-coated plastic films (e.g., 300 nm pyrolene + 20–40 nm
Al capable of withstanding atmospheric pressure) are in use; with these, quan-
tum energies as low as a few hundred eV can be analyzed. Maxima produced
by Kα quanta from C, N, O can be recorded, but the lines may overlap with
the L lines from Z = 16–30 since their FWHM is large. Figure 10.9 shows as
dashed lines the transmission of a 20 nm Au contact layer and a 0.1 µm Si dead
layer caused by surface recombination; this is the ultimate limit of an Si(Li)
detector. The decrease of efficiency at high quantum energies is caused by the
increasing probability of traversing the crystal without photoionization. For
example, a 3 mm thick detector crystal shows 10% transmission for 23 keV
in Si and 74 keV in Ge [10.39, 10.40]. IG detectors are thus especially suit-
able for high-voltage microscopes. Figure 10.10 shows the x-ray spectrum of a
hard metal of the type WC-TaC-TiC-Co recorded with an ultrathin-window
IG detector fitted on a 200 kV microscope; x-ray lines from C K to W Kβ can
be seen [10.41].

Unlike WDS, for which the irradiated point has to be adjusted on the
Rowland circle, EDS does not need any mechanical adjustment and can hence
be used when the specimen is large and/or rough. EDS is therefore commonly
used in SEM. In TEM, an energy dispersive spectrometer has the advantage
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Fig. 10.10. Energy-dispersive x-ray spectrum of a hard metal (WC-TaC-TiC-Co)
recorded with an ultrathin-window IG detector in a 200 kV microscope [10.41].

of occupying little space; it is merely necessary to design the cryostat tube and
the objective lens in such a way that the x-ray quanta from the transparent
specimen in the polepiece gap are collected with as large a solid angle of
collection and takeoff angle as possible (Fig. 4.19). A further advantage of
EDS is that all lines are recorded simultaneously.

Recently, x-ray microcalorimeters have been developed that use the tem-
perature rise caused by the absorbed photon to determine its energy [10.43].
These detectors provide a high energy resolution of better than 10 eV.
Unfortunately, they cannot accommodate high count rates. In order to keep
the specific heat of the absorber low, they have to be cooled with liquid He.
It will be interesting to see if they can be developed into a TEM attachment
for routine use.

10.2.3 X-ray Emission from Bulk Specimens and ZAF Correction

In TEM, x-ray microanalysis (XRMA) is applied only to thin foils and small
particles. It is therefore sufficient to discuss the count rate N of characteristic
x-ray lines from thin films. Nevertheless, the so-called ZAF correction (atomic
number Z – Absorption – Fluorescence) for the XRMA of bulk material will
be described briefly (for details, see [1.117, 1.119, 1.120, 1.121, 1.122, 1.124,
1.130]) because certain corrections of the formula are important for x-ray
emission from thin foils.
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The XRMA of a bulk material relies on two measurements of the counts of
a characteristic x-ray line for equal incident electron charge: Na, the number
of quanta emitted from the element a with a concentration ca in the speci-
men under investigation, and Ns, the number of quanta emitted from a pure
standard of the element a. The ratio k = Na/Ns leads only to a first-order
approximation of the concentration ca.
Atomic Number Correction. The number of x-ray quanta dNa generated
by n0 = Ipτ/e incident electrons along an element of path length dx = ρds of
the electron trajectory can be calculated using the ionization cross section σa,
the x-ray fluorescence yield ωa, and the ratio pa of the observed line intensity
to the intensity of all lines of the series, pKα = NKα/(NKα+NKβ), for example.
With the notation na = ρcaNA/Aa for the number of atoms of element a per
unit volume (ρ is the density of the material and Aa is the atomic weight
of a), dNa becomes

dNa = n0ωapaσanads = n0ωapa
caNA

Aa

σa

dE/dx
dE, (10.14)

in which dx denotes the mass-thickness element, dx = ρ ds. The stopping
power is given by

S =
∣∣∣∣dE

dx

∣∣∣∣ = NAe4

8πε20E

∑
i

ci
Zi

Ai
ln(E/Ei), (10.15)

which is a modified form of the Bethe formula (5.100) for i = a, b, . . . elements
in the specimen with mean ionization energies Ei. X-ray quanta can be gen-
erated along the whole trajectory so long as the decreasing electron energy
E′ is greater than the ionization energy EI of the I = K, L, or M shell and
the electron does not leave the specimen by backscattering or transmission.
Integrating (10.14) then gives

Na = n0ωapaca
NA

Aa
R

E∫
EI

σa

S
dE′, (10.16)

where R is the backscattering correction factor :

R =
total number of quanta actually generated in the specimen

total number of quanta generated if there were no backscattering
.

This quantity depends on the energy distribution of backscattered or trans-
mitted electrons.

The ratio k = Na/Ns becomes

k = ca
Ra

Rs

E∫
EI

σa

Sa
dE′

E∫
EI

σa

Ss
dE′

= ca
1
kZ

. (10.17)

The values of R for the specimen and the standard will in general be different,
and kZ also depends on differences between the stopping powers S.
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For thin films of mass thickness x = ρt, (10.14) simplifies to

Na = n0ωapaσaca
NA

Aa
x. (10.18)

The atomic number correction kZ is not very different from unity and can be
neglected if the following conditions are satisfied:

1. The ionization cross section σa does not significantly increase because of
a decrease of the mean electron energy in the specimen caused by energy
losses.

2. The path lengths are not increased by multiple scattering.
3. Differences in the backscattering and transmission of specimen and stan-

dard do not influence the ionization probability.

Absorption Correction. The absorption correction is necessary because of
the depth distribution n(z) of x-ray emission and the absorption of x-rays
inside the specimen. If the x-ray detector collects x-rays emitted with a take-
off angle ψ relative to the foil surface, x-ray quanta emitted at a depth z below
the surface are attenuated along an effective length z cosecψ and the fraction
of quanta leaving the specimen is

f(χ) =

∫ x

0
n(z) exp(−χz)dz∫ x

0
n(z)dz

with χ = (µ/ρ)cosecψ, (10.19)

and (10.17) becomes

k = ca
1
kZ

f(χa)
f(χs)

= ca
1

kZkA
. (10.20)

Assuming that x-ray quanta are generated uniformly in a foil of mass thickness
x = ρt, (10.19) becomes

f(χ) =
1

χx
[1 − exp(−χx)] � 1 − 1

2
χx + . . . . (10.21)

For thin specimens, the absorption therefore can be neglected only if χx � 1.
The correction is essential for thick specimens and low quantum energies,
especially if Ex,a is just above EI,b for a matrix of atoms b; that is, just
beyond the jump of µ/ρ in Fig. 10.6 [10.42, 10.44, 10.45, 10.46]. When the
x-ray quanta are detected through the polepiece at an angle of 90◦ to the
electron beam, the specimen has to be tilted to increase ψ. With a takeoff
angle ψ = 20◦–30◦, the specimens can be investigated at normal incidence.
Care must be taken with specimens that are severely bent. The influence
of the absorption correction can be measured quantitatively by varying the
thickness and/or the tilt of the specimen [10.47].
Fluorescence Correction. If characteristic quanta of an element b are gen-
erated with an energy Ex,b ≥ EI,a, these quanta and also the fraction of the
continuum that satisfies this condition can be absorbed by photoionization
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of atoms of element a, thus causing an increase of Na by x-ray fluorescence.
Equation (10.20) becomes

k =
Na

Ns
= ca

1
kZkA

1 + ra

1 + rs
= ca

1
kZkAkF

, (10.22)

where the ratio r = Nf/Nd denotes the ratio of the quanta generated by
fluorescence (Nf ) and directly by the electron beam (Nd). The contribution
Nf from fluorescence is generated in a much larger volume than Nd and can
normally be neglected in thin films [10.48]; it can, however, be significant in
FeCr alloys, for example, where the Cr Kα fluorescence is excited by Fe Kα
[10.49]. Formulas for parallel-sided and wedge-shaped foils are discussed in
[10.50].
Influence of Crystal Orientation. Electron waves in single crystals are
Bloch waves with nodes and antinodes at the nuclear sites depending on the
crystal orientation (Sect. 7.4.2). Any x-ray emission is therefore anisotropic
(depending on the tilt angle) because the ionization of an inner shell is lo-
calized near the nuclei. The number of x-ray quanta emitted can vary by
as much as 50% when the specimen is tilted through a few degrees near a
zone axis [10.51, 10.52, 10.53, 10.54]. The Cliff–Lorimer factor kab (see below)
is almost independent of orientation in nonaxial orientations of the incident
beam. However, even in this nonaxial case, the k-factor can decrease when the
takeoff direction of the x-rays is oriented along a low-index zone axis as a re-
sult of the anomalous absorption (Bormann effect) of emitted x-rays [10.55].
Quantitative results on single-crystal foils are therefore reliable only if the
measurement is insensitive to a small specimen tilt.

In compounds, the maxima of antinodes of Bloch waves can appear at
different tilt angles for different atomic sites in a crystal lattice. This is
the basis for ALCHEMI (Atom Location by CHanneling Enhanced MIcro-
analysis). The method can be used to determine which sites are occupied
by substitional impurity atoms by measuring the dependence on tilt of the
characteristic x-ray emission [10.56, 10.57, 10.58, 10.59, 10.60, 10.61, 10.62].
The tilt can be determined exactly from the location of Kikuchi lines in a
simultaneously recorded diffraction pattern. The method can also be applied
in electron energy-loss spectroscopy by measuring the EELS signal intensity
at ionization edges [10.63, 10.64].

10.2.4 X-ray Microanalysis of Thin Specimens

An important problem for XRMA of thin films in TEM is the unwanted con-
tribution from continuous and characteristic quanta generated not in the ir-
radiated area but anywhere in the whole specimen and specimen cartridge
by electrons scattered at diaphragms above and below the specimen and
from x-ray fluorescence due to x-ray quanta generated in the column. Ad-
ditional diaphragms have to be inserted at suitable levels to absorb scattered
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electrons and x-rays, whereas the objective diaphragm should be removed
during XRMA. The number of unwanted quanta can be further reduced by
constructing the specimen holder from light elements such as Be, Al, or high-
strength carbon [10.65].

The procedure involving the use of bulk pure-element standards for the
XRMA of bulk specimens, as described in Sect. 10.2.3, can, in principle, be
adapted for the XRMA of thin films [10.66, 10.67]. However, in many ap-
plications, it is the ratio ca/cb of the concentrations that is of interest, so
that only the ratio Na/Nb of the counts of the peaks of elements a and b
is needed. Equation (10.18) has to be multiplied by the collection efficiency
η(Ex)∆Ω/4π and the absorption correction (10.21) to correct the count ratio
[10.42, 10.44, 10.68, 10.69]

Na

Nb
=

ωapaσaη(Ea)Aa

ωbpbσbη(Eb)Ab

ca

cb

1 − 1
2χax

1 − 1
2χbx

=
1

kab

[
1 − 1

2
(χa − χb)x

]
ca

cb
, (10.23)

where kab denotes the Cliff–Lorimer ratio. This ratio method is independent
of the local mass thickness x of the specimen if the absorption correction
can be neglected. In work on an Al-Zn-Mg-Cu alloy using the ratio method,
the NCu/NAl ratio was found to depend on the foil thickness, which could
be interpreted by assuming that a Cu-rich surface layer about 15 nm thick
was present, probably formed during electropolishing [10.70, 10.71]. The local
thickness of a specimen can be measured by allowing contamination spots to
form on the top and bottom of the foil. Tilting the specimen separates the
two spots, and the thickness can be calculated from the tilt angle and the
separation [10.44].

The Cliff–Lorimer factor kab in (10.23) is commonly determined experi-
mentally by measuring the count rates of pure-element films reduced to equal
thickness and incident electron charge Ipτ . Further ka,Si values for the K, L,
and M lines are reported in [10.74] and ka,Fe ratios in [10.75]. The factor can-
not be calculated very accurately (Fig. 10.11) because accurate values of the
ionization cross sections σ and fluorescence yields ω are not known. Attempts
to fit these quantities to polynomials are reviewed in [10.72]. A method for
the parametrization of cross sections can be used to calculate kab-factors for
other electron energies [10.73].

The diameter of the smallest possible area that can be analyzed is limited
by the superposition of electron-probe size and the spatial broadening of the
electron probe by multiple scattering (Sect. 5.4.3). Probe diameter dp and
probe current Ip are related by Ip ∝ d

8/3
p (4.21). The spatial broadening in

foils of different composition can be calculated by Monte Carlo simulations
[10.76]. Resolutions of 1–10 nm can be achieved in the STEM mode of a
transmission electron microscope; this is sufficient for measuring segregation
and composition profiles at grain boundaries or quantum-well layer structures,
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Fig. 10.11. Cliff–Lorimer factor ka,Si relative to Si as a function of x-ray quantum
energy Ex of the Kα lines, measured at 100 keV and calculated for 40, 100, and 200
keV [10.46].

for example [10.77, 10.78, 10.79]. When the counting time is long, there is a
danger of specimen or electron-probe drift, and this can limit the number of
points in a line scan [10.80].

10.2.5 X-ray Microanalysis of Organic Specimens

For biological specimens, either the volume concentration in mmol/l or the
mass concentration in mmol/kg is of interest. The latter can be considered per
total mass using hydrated cryosections or per dry mass using freeze-dried
sections. The Cliff–Lorimer ratio method (Sect. 10.2.4) can rarely be applied
to organic specimens because the characteristic peak of carbon shows a low
fluorescence yield ω and a low detection efficiency and the absorption inside
the specimen is strong.

In the Hall method [10.81, 10.82, 10.83], it is suggested that the counts NB

of the continuous background should be used to provide a signal proportional
to the mass inside the irradiated volume and to eliminate the effect of local
mass thickness, which can show large variations in biological specimens, espe-
cially in freeze-dried preparations. The Kramers formula (10.1) shows that the
continuum background intensity is proportional to Z2/A and so the numbers
of counts for element a and the background (B) become (k1, k2 are constants)

Na = k1ma and NB = k2Gm (10.24)

with

G = Z2/A =
1
m

(
∑
a

maZ2
a/Aa +

∑
i

miZ
2
i /Ai), (10.25)
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where mi are the masses of elements not seen in the spectrum and m =∑
ma +

∑
mi the total mass. After measuring the values of Na and NB for a

standard (s), the desired concentration will be given by

ca =
ma

m
= ca,s

(Na/NB)Object

(Na/NB)Standard

GStandard

GObject

= kH(Na/NB)Object
GStandard

GObject
. (10.26)

This method can be used iteratively by first neglecting the first term in (10.25)
and then calculating a more accurate value of G with the approximate value of
ca obtained by (10.26). The constant kH can be measured by using a standard
of similar composition and having a known concentration ca,s; the thickness
of the specimen and the standard need not be known. The only requirements
are that both be “thin” and that the analytical conditions be the same for
specimen and standard. The energy window of the continuum should be near
the characteristic peak to achieve similar absorption conditions.

Standards can be prepared by different methods [10.84, 10.85]. Known
concentrations of elements can be embedded in resins by adding a salt solu-
tion or organometallic compounds to epoxy resins [10.86, 10.87, 10.88, 10.89]
or to aminoplastic resins [10.90, 10.91]. Chelex biostandard beads with cali-
brated concentrations can also be embedded and sectioned [10.92]. In order
to ensure that the sections have the same thickness, the tissue can be freeze-
frozen together with a surrounding solution of albumin containing known
concentrations of salts [10.93, 10.94, 10.95]. Similar standards can be used for
freeze-dried or frozen hydrated specimens.

Any change in concentration by extraction and shrinkage during the prepa-
ration can be avoided by using only cryomethods for quantitative work.
However, a severe problem is the radiation damage suffered by biological
specimens, especially the loss of mass of the organic material (Sect. 11.2.2)
[10.83, 10.86]. A high current density is needed for XRMA, and most of the
mass is lost in a few seconds. Owing to the nonuniform composition, the mass
loss can vary locally, thereby perturbing the standardization based on the Hall
method.

10.3 Electron Energy-Loss Spectroscopy

10.3.1 Recording of Electron Energy-Loss Spectra

The instrumentation for recording an electron energy-loss spectrum either by
a prism spectrometer or an imaging energy filter is described in Sect. 4.6. We
distinguish between serial [10.96, 10.97] and parallel recording [10.98, 10.99,
10.100] of an electron energy-loss spectrum.
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Serial Recording. The energy-loss spectrum in the energy-dispersive plane
is scanned across a slit in front of a scintillator–photomultiplier combination
or a semiconductor detector (Sect. 4.7.6). These detector systems have a low
noise and a high recording speed. A scintillator or semiconductor detector
can be used either in the analog-signal mode with an analog–digital (ADC) or
voltage–frequency (VFC) converter or in the single-electron counting mode.
The P-46 or P-47 powder scintillators or YAG (cerium-doped yttrium alu-
minum garnet) single crystals have a time constant of 75 ns, and pulse rates
up to 106 cps are possible. The scintillation light pulses or the charge-collection
pulses in semiconductor detectors are high enough for it to be possible to sep-
arate and discriminate pulses of 100 keV electrons from the noisy background.
A disadvantage is that only one energy window is recorded at a time. This
implies that the recording time is far longer in serial recording than in parallel
recording, by some two orders of magnitude. This may be unacceptable for
beam-sensitive organic materials and some inorganic ones. The high-intensity
low-loss part of the spectrum (plasmon losses) can be scanned in a shorter
time, with a dwell time per pixel of a few milliseconds, whereas 50 ms and
more are necessary for higher energy losses. Photomultipliers exposed to a
high light level can show a transient increase in dark current, which can in
turn result in a tail of the zero-loss peak, for example. Recording should there-
fore start at high energy losses where the intensity is low. The intensities range
over several orders of magnitude, and the gain must hence be changed when
a whole spectrum is being recorded. This can be achieved by altering either
the gain of the photomultiplier or the dwell time. Better quantitative fit of
the gain jump can be achieved by overlapping regions with different gains.
Parallel Recording. Parallel recording can be realized by means of a linear
array of photodiodes or two-dimensionally with a CCD camera (Sect. 4.7.5).
The latter is coupled optically or better with a fiber-optic plate to a powder-
scintillator layer or a thin YAG single-crystal disc. For low intensities, the
exposure time of a CCD array can be increased to 10–1000 s when cooling the
device to about –30◦C to –50◦C by means of a Peltier element; this reduces
the background noise.

The advantages of EELS become fully apparent only when such parallel
recording of the spectrum is used. The gain due to the larger probability
of detecting an inner-shell ionization by EELS than by an energy-dispersive
x-ray analysis with low fluorescence yield and small solid angle of collection
is lost if the inner-shell loss spectrum cannot be recorded in parallel.

Whereas the strong zero-loss peak is suppressed in serial recording by the
slit, for larger energy losses, the backscattering of the zero-loss beam can
become a problem in parallel recording; this can be solved by incorporat-
ing a beam-stop aperture when the beam falls outside the array. The point-
spread function of the CCD (Fig. 4.34c) shows a full-width at half-maximum
(FWHM) of about three channels and extended tails. This can be removed
by deconvolution [10.100].
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10.3.2 Kramers–Kronig Relation

The electron energy-loss spectrum intensity gives information about

Im{−1/ε(ω)} = ε2/(ε21 + ε22), (10.27)

and the Kramers–Kronig relation then allows us to calculate Re{1/ε} =
ε1/(ε21 + ε22) and hence the dependence of the complex dielectric function
ε = ε1 + iε2 on h̄ω [5.23, 5.39, 5.41]. Another application of the Kramers–
Kronig relation in EELS is the determination of the foil thickness, the mean
free path, the effective number of electrons per atom contributing to an energy
loss and the Bethe stopping power. We now summarize the mathematics of
this relation using a derivation presented in [10.101].

We consider the frequency-dependent inverse complex dielectric function
ε−1(ω) − 1, for which the temporal function

ε−1(τ) − δ(τ) = p(τ) + q(τ) (10.28)

is obtained by the inverse Fourier transform of ε−1(ω) − 1, split into an even
part p and odd part q. Since the dielectric function is causal,

ε−1(τ) − δ(τ) = 0 for τ < 0. (10.29)

By considering positive and negative τ separately and recalling that p(τ) is
finite for all τ , (10.28) and (10.29) yield

p(τ) = sgn(τ)q(τ), (10.30)

where sgn(τ)= –1, 0, +1 for τ <,=, > 0, respectively.
The temporal and frequency functions are related by the following Fourier

transforms:

F{ε−1(τ) − δ(τ)} = ε−1(ω) − 1 where ε−1(ω)=Re[ε−1(ω)] + iIm[ε−1(ω)],
F{p(τ)} = Re[ε−1(ω)] − 1 and − iF{q(τ)} = Im[ε−1(ω)],

F{sgn(τ)} = i/πω. (10.31)

We now Fourier transform (10.30); the right-hand product becomes a convo-
lution (3.47) of the Fourier transforms of the individual functions:

Re[ε−1(ω) − 1 =
1
π

Im

[
0∫

−∞

ε−1(ω′)
ω′ − ω

dω′ +
+∞∫
0

ε−1(ω′)
ω′ − ω

dω′

]
. (10.32)

In the first integral, we replace ω′ by −ω′ and make use of the assumption
that q(ω) is odd, which means that q(−ω) = −q(ω). This yields

Re[ε−1(ω)] − 1 =
1
π

Im
[∞∫

0

ε−1(ω′)
ω′ + ω

dω′ +
∞∫
0

ε−1(ω′)
ω′ − ω

dω′
]

(10.33)

or

1 − Re{1/ε(ω)} =
2
π

∞∫
0

ω′Im{−1/ε(ω′)}
ω′2 − ω2

dω′. (10.34)



440 10 Elemental Analysis by X-ray and Electron Energy-Loss Spectroscopy

The real part can thus be calculated directly from the imaginary part
Im{−1/ε(ω)}, which is proportional to the electron energy-loss spectrum in-
tensity at ∆E = h̄ω. Although the integrals in (10.33) and (10.34) have a
singularity at ω′ = ω, the integral converges because the singularity is anti-
symmetric in ω′ − ω. A small zone around ω′ can therefore be excluded from
the integral, and the result is hence the Cauchy principal part of the integral.

For ω = 0, (10.34) yields the Kramers–Kronig sum rule

1 − Re{1/ε(0)} =
2
π

∞∫
0

Im{−1/ε(ω′)}dω′

ω′ . (10.35)

The left-hand side of (10.35) becomes 1 − 1/n2 from the Maxwell relation
ε = n2 (n = optical refractive index). For metals, n is very high and the
left-hand side becomes equal to unity.

Using (5.72), integrating between 0 ≤ θ ≤ α results in a single-scattering
electron energy-loss spectrum intensity distribution that can be defined by

s1(∆E) =
I0t

πaHmv2
Im{−1/ε(ω)} ln[1 + (α/θE)2], (10.36)

where I0 is the zero-loss intensity and t the foil thickness. Combining of (10.35)
and (10.36) gives

t =
2aHmv2

I0(1 − 1/n2)

∞∫
0

s1(∆E)
∆E ln[1 + (α/θE)2]

d∆E. (10.37)

This formula can be used to estimate the foil thickness only if t ≤ Λ [10.102]
or s1(∆E) is obtained by a deconvolution.

The multiple scattering already present in this thickness range can be
approximately considered by including a correction factor C � 1+0.3(t/Λ) in
the denominator of (10.37). The formula can also be corrected for the surface-
plasmon-loss contributions to s1(∆E) [1.78]. The mean free path Λ can be
obtained from

Λ =
2aHmv2

(1 − 1/n2)
1∫

s1(∆E)d∆E

∞∫
0

s1(∆E)
∆E ln[1 + (α/θE)2]

d∆E. (10.38)

Bethe’s sum rule (5.56) together with (5.55) and (5.72) can be used to esti-
mate an “effective number” of electrons contributing to energy losses between
zero and ∆E,

neff =
2ε0m

πh̄2e2na

∆E∫
0

∆E′Im{−1/ε(∆E′)}d∆E′, (10.39)

where na is the number of atoms or molecules per unit volume. This integral
increases with ∆E to a saturation value neff = 4 for carbon, for example,
indicating that all four valence electrons contribute to the plasmon losses.
With the definition

dEm

ds
= na

∫ ∫ d2σ

d∆EdΩ
∆E d∆E dΩ, (10.40)
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the mean energy dissipation per unit path length (Bethe’s stopping power,
Sect. 5.4.2) can also be calculated from the energy-loss spectrum by writing
the differential cross section in terms of Im{−1/ε}.

10.3.3 Background Fitting and Subtraction

For quantitative EELS (Sect. 10.3.5) and for the determination of partial cross
sections (Sect. 5.3.2), it is necessary to extrapolate the background in front
of an ionization edge to energy losses beyond the edge and then subtract the
extrapolated background (Fig. 10.12) to get a net signal sI(α,∆E), which can
be attributed to the ionization of the I = K, L, M shells. The background is
formed by the tails of the low-loss region and any preceding ionization edges,
multiple energy losses, and any instrumental background. According to the
theory, the background should satisfy a power law (5.87)

s(∆E) = A∆E−r =⇒ lns = lnA − r ln∆E. (10.41)

The exponent −r can vary between the extreme values –2 and –6.5 [10.103]
and depends not only on the background contributions mentioned above but
also on the aperture α, and the composition and thickness of the specimen.

The background is normally linearly least-squares fitted by a straight line
in a double-logarithmic plot (e.g., Fig. 5.9) of the recorded electron energy-
loss spectrum intensity versus the energy loss over a large energy window
of width ∆ below the edge of interest; the slope of the line is −r. Such a
plot can also be used to test the validity of the power law. The logarithmic
transformation makes the use of a weighted least-squares fit preferable to an
unweighted one [10.104]. In order to circumvent the logarithmic transforma-
tion, a ravine-search technique [10.105], a maximum-likelihood approximation

Fig. 10.12. Principle of background extrapolation and subtraction and of the
Fourier-ratio method. s(∆E): EEL spectrum; sLL(∆E): low-loss part; sK(EK+∆E):
background-subtracted net signal of K ionizations; ∆: width of energy window; α:
spectrometer acceptance angle.
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[10.106], a simplex optimization method [10.107], or an iteration method
[10.108] can be employed to search for a minimum of the error function in A–r
space.

When investigating ionization edges below �100 eV, the power law often
fails. Polynomials and exponentials can be used to describe the background
more accurately [10.109, 10.110], or a model for the valence-loss intensity can
be included [10.111, 10.112].

Procedures for fitting the background have the disadvantage that a best
fit can only be obtained over an interval ∆ below the edge, and a best fit over
this region is not necessarily a good fit for the region beyond the edge. The
fitting can therefore be improved across the edge by fitting the spectrum with
a function

F (∆E) = A∆E−r + k SI(∆E), (10.42)

where SI(∆E) is a standard edge profile, which can be either a calculated cross
section dσ/d∆E [10.113] or a measured and background-subtracted reference
spectrum from the element of interest [10.114]. A least-squares fit gives values
for A, r, and k; the latter can be a direct measure of the concentration of
the element. However, the superposed ELNES structure (Sect. 5.3.3) may be
different when the atoms in the specimen and the reference differ in their
coordinations.

10.3.4 Deconvolution

Even in thin specimens, multiple scattering falsifies an electron energy-loss
spectrum. Multiple plasmon losses show a Poisson distribution (5.84); the
mean free path Λpl between plasmon excitations is the characteristic thick-
ness parameter. Although the mean free path between subsequent inner-shell
ionizations is orders of magnitude larger, Λpl is also responsible for the convo-
lution of the structure of an ionization edge (including ELNES and EXELFS)
with the electron energy-loss spectrum in the plasmon-loss region. In addition,
the spectrum is convolved with an instrumental broadening r(∆E) caused
by the energy spread of the electron gun, the aberration of the spectrometer,
the width of the energy slit, and the point-spread function of the detector.
These influences can be recognized in the shape and half-width of the zero-loss
peak. Assuming that the instrumental function has been normalized so that∫

r(∆E)d∆E = 1, the measured spectrum s∗(∆E) is obtained by a convolu-
tion of the ideal spectrum s(∆E) with r(∆E):

s∗(∆E) =
+∞∫
−∞

r(∆E − ∆E′) s(∆E′) d∆E′ = r(∆E) ⊗ s(∆E). (10.43)

For deconvolution of the instrumental broadening and the influence of multiple
scattering, the Fourier-log method [1.78, 10.115, 10.116, 10.117], the Fourier-
ratio method [1.78, 10.117, 10.118], and a matrix method [10.119] have all been
used. The first two methods have been widely used and will be described in
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more detail. A Fourier convolution method can also be used to calculate the
angle-resolved electron energy-loss spectrum with increasing thickness [5.86]
and to deconvolve measured angle-resolved spectra [10.120].
Fourier-Log Method. We introduce a reduced thickness p = t/Λ, where
the total mean free path of all inelastic scattering processes is Λ < Λpl. The
total intensities In of all n-fold inelastically scattered electrons obey Poisson
statistics (5.84),

In = IPn = I
pne−p

n!
, (10.44)

where I is the incident electron current. The index n = 0 corresponds to
unscattered and elastically scattered electrons with no energy loss, which are
concentrated in the exponentially attenuated zero-loss peak of the spectrum
with an intensity distribution

s0(∆E) = r(∆E)I0 = r(∆E)I e−p. (10.45)

Single scattering (n = 1) is described by the distribution s1(∆E), which
satisfies with (10.44) the condition∫

s1(∆E)d∆E = I1 = I p e−p = pI0. (10.46)

The distribution s2 for double scattering (n = 2) is proportional to s1 ⊗ s1.
From (10.46), we have

∫
s1 ⊗ s1d∆E = p2I2

0 and, using (10.44), we find that

s2(∆E) =
1

2!I0
s1 ⊗ s1 and I2 =

∫
s2d∆E = I0p

2/2! . (10.47)

Likewise,

s3(∆E) =
1

3!I2
0

s1 ⊗ s1 ⊗ s1 (10.48)

and so on. The total measured electron energy-loss spectrum can now be
described by

s∗(∆E) = r(∆E) ⊗ s(∆E) (10.49)
= r(∆E) ⊗ [I0δ(∆E) + s1 + s2 + s3 + . . .]

= r(∆E) ⊗ I0[δ(∆E) +
s1

I0
+

s1 ⊗ s1

2!I2
0

+
s1 ⊗ s1 ⊗ s1

3!I3
0

+ . . .] .

In order to extract s1(∆E) from s∗(∆E) (by deconvolution), we use the con-
volution theorem (3.48) of Fourier transforms. Using capitals for the Fourier
transforms of the functions appearing in (10.50) and expressing the “loss fre-
quency” Ω in units of eV−1, we have

S∗(Ω) = R(Ω)I0

[
1 +

∞∑
n=1

Sn
1 (Ω)
n!In

0

]
= S0(Ω) exp[S1(Ω)/I0], (10.50)

which can be solved for S1(Ω):

S1(Ω) = I0ln[S∗(Ω)/S0(Ω)]. (10.51)
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The single-scattering distribution s1(∆E) is then obtained by an inverse
Fourier transform of (10.51). We should mention one problem, however, that
is related to an ambiguity of the phase. By definition, the logarithm yields
a phase between −π and π. When an increasing phase exceeds π, it jumps
back to −π. This jump is a mathematical artifact and leads to spurious oscil-
lations in the inverse Fourier transform. Therefore these phase jumps have to
be removed before using the inverse Fourier transform.

When the Fourier-log method is applied to a spectrum containing ion-
ization edges, multiple-scattering effects are removed from the plasmon-loss
region, the ionization edge, and the background. However, this Fourier-log
method can create artifacts. At large energy losses, the spectrum should not
be abruptly truncated but tend smoothly to zero. The experimental spectrum
s∗(∆E) is limited in the scattering angles recorded by the acceptance aper-
ture α of the spectrometer with the result that part of the intensity is cut
off, depending also on the energy loss. The plasmon losses, for example, fail
to follow a Poisson distribution because the width of the angular distribution
also increases with increasing energy loss. Multiple losses are more attenuated
than single losses. The spectrum should therefore be recorded with as large an
aperture as possible, α � 10 mrad; the resulting error should then be less than
10% for E = 80 keV and ∆E ≤ 1600 eV. Elastic scattering also attenuates
the spectrum by scattering through angles larger than α. This contribution
can be assumed to be approximately the same for all energy losses; for de-
viations, see Sect. 10.3.5. The narrow instrumental distribution r(∆E) has a
broad Fourier transform R(ω). The division by S0(ω), the Fourier transfrom
of r(∆E)I0, in the logarithmic term of (10.51) can also increase the noise
at high-loss frequencies ω. This means that we cannot expect to resolve fine
structures that were not visible in the original spectrum; only maxima and
minima will become more pronounced.
Fourier-Ratio Method. This method only deconvolves inner-shell ioniza-
tion edges from the influence of low-loss electrons. A background-subtracted
signal sI(EI + ∆E) (I = K, L, M) (Fig. 10.12) is convolved with the low-loss
part sLL(∆E) of the spectrum including the zero-loss peak:

s∗I (EI + ∆E) = sI(EI + ∆E) ⊗ s∗LL(∆E). (10.52)

A Fourier transform yields

S∗
I = SI · SLL → SI(Ω) = S∗

I (Ω)/S∗
LL(Ω), (10.53)

from which the deconvolved spectrum sI(EI + ∆E) can be obtained by an
inverse Fourier transform.

10.3.5 Elemental Analysis by Inner-Shell Ionizations

The basic laws of inner-shell ionization are summarized in Sect. 5.3. Elec-
tron energy-loss spectroscopy can be used for elemental analysis using the
ionization edges in the range 0 < ∆E < 3 keV or even up to 5 keV [1.78].
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The information obtainable from the energy-loss near-edge structure (ELNES)
and the extended energy-loss fine structure (EXELFS) has been discussed in
Sects. 5.3.2 and 5.3.3.

For quantitative EELS, the numbers of electrons N0(α,∆) and Na(α,∆)
with an energy window of width ∆ and in the ranges 0 ≤ ∆E ≤ ∆ and
EI ≤ ∆E ≤ EI + ∆ (I = K, L, M), respectively, are measured (shaded areas
in Fig. 10.12). Most of the n0 incident electrons are concentrated in the low-
energy window, and any decrease caused by multiple scattering and by the
use of a limited acceptance angle acts on both N0 and NI. We can therefore
write

N0(α,∆) � n0 exp[−x/xk(α)], (10.54)

where x = ρt is the mass thickness, and the exponential attenuation charac-
terizes the loss by elastic and inelastic scattering through angles θ ≥ α using
the contrast thickness xk(α) (6.7). This attenuation factor becomes important
for high-Z elements in a low-Z matrix, for example. The formula (10.18) for
x-ray microanalysis has to be modified to

Na(α,∆) = n0σa(α,∆)ca
NA

Aa
x exp[−x/xk(α)]. (10.55)

na = caNAx/Aa is the number of atoms of element a per unit area and σ(α,∆)
the partial cross section for those ionizations that result in scattering of the
primary electrons within 0 ≤ θ ≤ α and the energy-loss region EI ≤ ∆E ≤
EI + ∆. Equations (10.54) and (10.55) can be combined to give the formula

na =
1

σa(α,∆)
Na(α,∆)
N0(α,∆)

(10.56)

for quantitative analysis if the partial cross section σa(α,∆) is known.
These cross sections can be measured using oxides or nitrides of an element

as a standard (see Sect. 5.3.2). For an estimation of the influence of α and ∆,
we write σa(α,∆) = σaηαη∆, where ηα and η∆ are corresponding collection
efficiencies. Although it is possible to estimate the total number of energy
losses and to measure the total cross section σa by using large values of ∆
and α (Sect. 5.3), only a small window, of the order of ∆ = 50 eV, is needed
for quantitative analysis; the power law (10.41) indicates that this contains a
fraction

η∆ = 1 −
(

1 +
∆

EI

)1 − r
� (r − 1)

∆

EI
+ . . . for ∆ � EI. (10.57)

The angular distribution of the scattered electrons is concentrated within
a cone of semiangle θE = EI/mv2 (5.46); a spectrometer with an acceptance
angle α receives the fraction
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ηα =
ln(1 + α2/θ2

E)
ln(2/θE)

(10.58)

for apertures smaller than the Compton angle α < θC = (EI/E)1/2 [see (5.57)
for the meaning of the Compton angle θC].

A fraction η(α,∆) = ηαη∆ of 0.1–0.5 can readily be collected under opti-
mum conditions. This is orders of magnitude more than the fraction of x-ray
quanta collected, and moreover the low fluorescence yield ωa for low Z does
not appear in (10.55).

In these calculations, multiple elastic and inelastic scattering in the foil
has not been considered. Increasing the foil thickness broadens the angular
distribution because the mean-free-path lengths Λel and Λin for elastic scat-
tering and plasmon losses, respectively, are orders of magnitude smaller than
ΛK for K-shell ionization. The influence of elastic scattering on quantitative
electron energy-loss spectrum analysis using the formulation of elastic scatter-
ing proposed by Lenz ([5.11], Sect. 5.1.3) and a Poisson distribution results in
a stronger decrease for high energy losses. The intensity ratio of the O K to Al
K edges in Al2O3 decreases by about 20% for t = 2Λin, for example [10.121].
If this scattering occurs before and/or after a K-shell ionization, for exam-
ple, the number of electrons with K-shell losses inside the acceptance angle α
decreases; this is partly counterbalanced by the initial increase proportional
to the foil mass thickness x (10.55). A maximum of K-loss electrons inside
an aperture α is observed for t � Λpl because, for low-Z elements, Λpl < Λel

[10.122, 10.123]. This means that EELS is firmly confined to thin films, and
EELS of thicker films is possible only in a high-voltage electron microscope,
the thickness being proportional to the increase of Λpl with energy (Fig. 5.19).
A further advantage of EELS in HVEM is that θE decreases with increasing E
[10.124]. Observation of the ratio of the zero- and first-plasmon-loss intensities
is important to ensure that the limits of the useful thickness range have not
been exceeded.

As in x-ray microanalysis (Sect. 10.2.4), a ratio method can be applied
[10.125] if the relative number na/nb of two elements is required, and (10.55)
gives

na

nb
=

Na

Nb

σb(α,∆)
σa(α,∆)

. (10.59)

Just as x-ray emission depends on crystal orientation (Sect. 10.2.3), so,
too, does the number of K-loss electrons depend on the orientation of the
incident electron beam relative to the lattice planes. However, the inelastic
interaction also has to be highly localized near the nuclei, and a small illumi-
nation aperture must be used to observe any influence of crystal orientation.
This is barely detectable for the C K edge [10.125], shows a weak influence
on the O K edge [10.64, 10.126], and differs by a factor of 2 for Mg and Al
K edges [10.127]. A high localization requires that the average impact pa-
rameter 〈b〉 � λ/4πθE be smaller than the lattice-plane distance d [9.31].
When the collection aperture is decreased and Bragg spots are excluded, the
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Fig. 10.13. K-loss signal and background in car-
bon (E = 80 keV) as a function of acceptance
aperture α [10.123].

ratio Na(α,∆)/N0(α,∆) should be constant even at the dark bend contours if
Bragg contrast is preserved. However, the high energy losses show a stronger
broadening by inelastic scattering than the low losses. This results in an in-
crease of the effective aperture for high losses, and the ratio can be changed
by about 10% near Bragg positions [10.125] when normal apertures are used
and even more for small illumination apertures. Otherwise, a large illumina-
tion aperture as used in a focused electron probe nearly cancels all of these
orientation effects.

The background below the excitation edge increases with α, ∆, and t, and
the signal of the K-shell ionization decreases with decreasing concentration ca

and saturates when ∆ and α are increased sufficiently (Fig. 10.13) [10.123].
The conditions for maximum signal-to-background ratio do not coincide with
those for optimum signal-to-noise ratio, as shown by an analysis of oxygen
and boron in B2O3, for example [10.128]. A small acceptance angle α is de-
sirable for a large signal-to-background ratio (Fig. 10.14a) because the K-loss
electrons are concentrated at low scattering angles, whereas the background is
spread over larger angles. The use of a low value of α, however, decreases the
number of electrons detected and increases the statistical noise. The signal-to-
noise ratio reaches a maximum for α = 10–20 mrad (Fig. 10.14c); this value
of the spectrometer acceptance angle can just be used without too strong a
decrease of the energy resolution by aberrations.

10.4 Element-Distribution Images

10.4.1 Elemental Mapping by X-Rays

Elemental analysis with x-rays can be performed with the scanning mode
of a transmission electron microscope or in dedicated STEM, by using a
stationary electron probe and counting times of the order of a hundred
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Fig. 10.14. Signal-to-background ratios (a, b) and signal-to-noise ratios (c, d) of
the electron energy-loss spectrum of oxygen and boron in B2O3 as a function of
acceptance aperture α and width ∆ of the energy window [10.128].

seconds or by scanning the electron probe and generating elemental maps
[10.129, 10.130, 10.131]. A simple and fast method is to record a dot on the
screen when a quantum is recorded within a selected window of a characteristic
line during a scan. The density of dots is a measure of the concentration. How-
ever, such images are very noisy and contain many unspecific dots from the
continuum in areas not containing the element of interest. With longer dwell
times of seconds, it is possible either to count in a few windows containing the
continuum or to record the whole spectrum and then subtract an extrapolated
background from the characteristic counts. For organic specimens, the Hall
method can be used to produce elemental concentrations corrected for local
thickness. However, even with a dwell time per pixel of only a few seconds,
the recording time for elemental maps with 64×64 or 128×128 pixels extends
over many hours. The unavoidable drift has to be compensated by digital
computation of image shifts.

10.4.2 Element-Distribution Images Formed by Electron
Spectroscopic Imaging

The generation of element-distribution images from electron spectroscopic im-
ages is superior to x-ray mapping because only short exposure times of the
order of seconds are needed and the images can be recorded directly by a CCD
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camera. The rapid progress of this method is documented in the proceedings
of the European Workshops on Electron Spectroscopic Imaging and Analysis
Techniques (Vol. 32 of Ultramicroscopy and Vols. 162, 166, 174, and 182 of the
Journal of Microscopy) and the proceedings of the International EELS work-
shops (Vol. 2 of Microscopy, Microanalysis and Microstructures and Vols. 59,
78, 96, and 106 of Ultramicroscopy). The most frequent application in biology
concerns the element-distribution images of P, Ca, and S. It was shown in
Sect. 10.3.3 how the background below an ionization edge can be fitted and
extrapolated by measuring the decrease of the electron energy-loss spectrum
intensity below the edge. A similar method is used to process element distribu-
tion images pixel by pixel. In a scanning transmission electron microscope, we
record an energy-loss spectrum for every pixel. These spectra can be treated
as discussed before. The STEM method is particularly useful for the detection
of low concentrations of an element. Furthermore, it allows the local bonding
states to be determined via the near-edge structure of the relevant edges.

For a series of ESI images obtained with an imaging filter, the number
of images can be reduced to a minimum of three using energy windows ∆ =
5–50 eV. Often a larger number of windows is used to obtain a more reliable
background subtraction. The two-window method (subtracting one scaled im-
age below from the image beyond the edge) should be avoided because large
spurious signals can be generated that are not characteristic for the element of
interest. If the concentration of the element is sufficiently high, one can obtain
a jump-ratio image by dividing the image beyond the edge by an image below
the edge. This image delivers a map of the elemental distribution but cannot
be quantified to obtain the concentration of the element.

10.4.3 Three-Window Method

Two images at energy losses ∆E1 and ∆E2 are recorded below the edge and
one at ∆Emax at the maximum of the electron energy-loss spectrum beyond
the edge (Fig. 10.15a), each with a width ∆ = 5–20 eV. If the background
distribution is assumed to have the form S(∆E) = A∆E−r, the net signal
becomes

SN = S(∆Emax) − A∆E−r
max (10.60)

with

r =
log[S(∆E1)/S(∆E2)]

log(∆E2/∆E1)
and A = ∆Er

1S(∆E1). (10.61)

Figure 10.16 shows as an example the imaging of the elemental distri-
bution of oxygen in amorphous grain boundary films in a sintered Si3N4

ceramic [10.132]. The bright-field image (Fig. 10.16a) shows the grain bound-
aries at low magnification and the high-resolution image (Fig. 10.16b) a single
grain boundary with a 0.7 nm amorphous intergranular layer. The elemental
distribution image for oxygen (Fig. 10.16c) is obtained with three electron
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Fig. 10.15. Signals and energy windows used for (a) the three-window method
and (b) the white-line method to subtract the background for element distribution
images.

spectroscopic images at 484±15, 514±15, and 547±15 eV. The concentration
of oxygen at the boundaries corresponding to approximately two monolayers
of oxygen is clearly visible.

10.4.4 White-Line Method

This method can be used when the three-window method cannot be applied
because of convolutional effects coming from low-loss electrons or edge super-
positions and the element of interest shows a white line at the edge [10.133]
(e.g., a Ca L white line superposed on the ELNES of C K, Fig. 10.15b). The
background is then linearly extrapolated from signals at ∆E1 below and ∆E2

beyond the line, and the net signal becomes

SN = S(∆Emax)

−
{

S(∆E1) +
∆Emax − ∆E1

∆E2 − ∆E1
[S(∆E2) − S(∆E1)]

}
. (10.62)

Optimal window energies ∆E1, ∆E2, ∆Emax are given in [5.103].

10.4.5 Correction of Scattering Contrast

Structures that already appear darker in the unfiltered and zero-loss filtered
images due to stronger elastic scattering through angles θ ≥ α, caused by
a larger thickness or higher atomic number than the matrix, also attenuate
the intensity of the ionization edges by the same amount because of elastic–
inelastic multiple scattering. When, for example, epon-embedded calcium-
containing apatite crystals in the early stages of bone formation appear dark
in the bright-field image because of stronger elastic scattering, the white lines
of the Ca L edge are also weaker. In the elemental-distribution image obtained
by the white-line method, an apparently lower concentration of Ca is indicated
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Fig. 10.16. (a) Bright-field image of an Si3N4 material containing grain boundaries.
(b) High-resolution image of a grain boundary with a 0.7 nm layer containing oxygen.
(c) Oxygen-distribution map of grain boundaries [10.132].

and the nonspecific noise of the matrix is relatively high (Fig. 10.17a). In quan-
titative EELS, this attenuation of the edge intensities can be compensated for
by dividing by the low-loss intensity N0(α,∆) in (10.56). The same result can
be achieved for elemental-distribution images by recording a low-loss image
of signal S0(α,∆) for 0 ≤ ∆E ≤ ∆ and performing a pixel by pixel division
SN/S0 [10.134, 10.135, 10.136]. The value of this method is demonstrated in
Fig. 10.17b. The noisy nonspecific background is decreased by the division by
the bright transmission of the matrix, whereas the Ca-containing parts are
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Fig. 10.17a,b. Elemental distribution image of Ca in apatite crystals formed in the
early stage of bone formation and embedded in epon. (a) Net image with the signal
SN of the white-line method and (b) the ratio signal SN/S0 for correction of elastic
large-angle scattering.

divided by the more strongly attenuated transmission. Normalizing the total
image to full scale suppresses the nonspecific signals and increases the contrast
of the apatite-containing parts, which are also seen with better resolution.

10.5 Limitations of Elemental Analysis

10.5.1 Specimen Thickness

An important condition for EELS and ESI is that the thickness must be
smaller than the mean free path Λpl for plasmon losses, which is about 80 nm
in biological sections and about 40 nm in aluminum foils for 80 keV electrons.
Deconvolution methods make it possible to investigate specimens of 3–5 times
this thickness by EELS but not by ESI because the whole loss spectrum is
then needed. In the case of inorganic material, EELS and ESI are often pos-
sible only at the edges of thinned foils, which may not be representative of
the bulk material and can have a different composition. This restriction to
thin specimens is a handicap of EELS and ESI not shared by x-ray micro-
analysis and elemental mapping. An increase of the mean free path by using
higher electron energies will therefore become important for the investiga-
tion of thicker specimen areas, though the mean free path of plasmon losses
saturates at electron energies of a few hundred keV (Fig. 5.19).

10.5.2 Radiation Damage and Loss of Elements

A major problem with biological material is the accidental elimination of
elements during chemical fixation, dehydration, embedding, and sectioning
(contact with water during floating). Although such elimination is less serious
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with the newer embedding resins such as Nanoplast [10.137], only by cry-
ofixation, cryosectioning and cryotransfer to a cryostage in the microscope
can element loss be avoided completely. The zero-loss mode of electron spec-
troscopic imaging can be used to increase the contrast of unstained frozen-
hydrated cryosections [10.138, 10.139] because the ratio of inelastic-to-elastic
total cross sections (5.66) increases to ν � 4 for ice.

The mass loss of organic material by radiation damage (Sect. 11.2) results
in a nearly complete removal of H, O, and N atoms and some volatile carbon
molecules, and after about one second the specimen consists of a cross-linked
carbon-rich polymer. A fraction of any phosphorus, sulfur, and sodium, for
example, can also leave the specimen, though mass loss of these elements
may saturate at two to three orders of magnitude higher charge densities of a
few tens or hundreds of C/cm2. Although the mass loss by radiation damage
is reduced at low specimen temperatures, and embedding in ice can protect
against the mass loss of organic material, the irradiation of ice can cause
other artifacts by radiolysis (Sect. 11.2). An alternative is the freeze-drying of
specimens followed by transfer to the microscope at room temperature. This
also makes it possible to observe thicker sections, but the strong variations in
the mass thickness after drying are an obstacle to analysis by EELS and ESI,
whereas the Hall method of x-ray microanalysis (Sect. 10.2.5) can be applied
without hesitation.

Inorganic specimens are normally more resistant because most of the
damage processes caused by ionization are reversible (Sect. 11.3). For ex-
ample, irradiation of alkali halides causes additional maxima to appear in the
plasmon-loss region, which can be attributed to the formation of alkali col-
loids [10.140], while NiO2 loses oxygen at very high doses larger than 108–109

C/m2 [10.141].

10.5.3 Counting Statistics and Sensitivity

X-Ray Microanalysis. The sensitivity of XRMA is limited by the counting
statistics. If a quantity that is subject to statistical variations is measured n
times, giving a set of values Ni(i = 1, . . . , n) with mean value N , the standard
deviation σ will be given by

σ2 =
1

n − 1

n∑
i=1

(Ni − N)2. (10.63)

For Poisson statistics and large n,

σ2 = N. (10.64)

There is a probability of 68.3% that a measured value Ni will lie in the con-
fidence interval N ± σ and a probability of 95% that it lies in N ± 2σ. The
analytical sensitivity and the minimum mass fraction will now be estimated
as examples.
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The analytical sensitivity is the smallest difference ∆c = c1− c2 of concen-
trations that can be detected. N1 and N2 denote the expected mean values
of counts for the two concentrations. We assume that N1 � N2 = N � NB,
where NB corresponds to the background. The two values N1 and N2 are
significantly different at the 95% confidence level if

N1 − N2 ≥ 2
√

σ2
1 + σ2

2 � 2
√

2N, (10.65)

and the analytical sensitivity becomes [10.142]

∆c

c
=

N1 − N2

N
� 3√

N
. (10.66)

Thus, a sensitivity ∆c/c of 1% requires N ≥ 105 counts. The mean value N is
proportional to the product of electron-probe current and counting time; the
counting time should not exceed about 10 min.

If the concentration of an element is as low as about 1 wt.%, N is no
longer much larger than NB and it ceases to be clear whether an element is
present in the sample. The question then arises as to what minimum-detectable
mass fraction (MMF) will be detectable within a certain confidence interval.
Equation (10.65) becomes

N − NB ≥ 2
√

σ2 + σ2
B � 2

√
N + NB . (10.67)

When a standard with concentration cs of the element being investigated is
used, the MMF becomes, with N � NB,

MMF =
N − NB

Ns − NB,s

cs � cs

Ns − NB,s

3
√

NB . (10.68)

Estimates based on (10.68) and especially comparisons of EDS and electron
energy-loss spectroscopy (EELS) have the disadvantage that certain assump-
tions have been made that are not valid in all practical cases (e.g., concerning
the magnitude NB of the background). For example, a calculated value of
3–5% for the MMF is found for elements in a 100 nm thick Si foil irradiated
at E = 100 keV with j = 2×105 A/m2, a spot size of 10 nm diameter, and a
counting time of 100 s, whereas the minimum detectable mass is of the order
of 0.5–1×10−19 g [10.143].

Typical values for WDS in an x-ray microanalyzer are � 100 ppm for
MMF and �10−15 g for the minimum detectable mass. The MMF is thus more
favorable in an x-ray microanalyzer with WDS, but the minimum detectable
mass is greater due to the larger probe size.
Electron Energy-Loss Spectroscopy. Estimates of EELS sensitivities can
be found in [1.78, 10.122, 5.104, 10.144]. The number Na of electrons collected
as a result of an ionization of shell I = K,L,... in the energy interval EI ≤ ∆E ≤
EI + ∆ (10.55) and the number NB of those from the background due to the
other nt atoms per unit area with a mean cross section σB are
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Na = ηn0naσa exp(−x/xk), NB = n0ntσB exp(−x/xk), (10.69)

where n0 = Ipτ/e (Ip: electron-probe current, τ : counting time, η: detector
collection efficiency). The standard deviation of the recorded signal N = Na +
NB becomes

σ =
√

varN =
√

Na + hNB, (10.70)

where h � 2 − 10 depends on the width of the energy interval used to fit the
background and allows for the risk that the background noise below the edge
will be “amplified” in the process of extrapolation beyond the edge.

If it is assumed that Na � NB for a small number of detectable atoms
and that Na is greater than κσ (κ = 3 − 5), the minimum detectable atomic
fraction (MAF) and the corresponding minimum detectable number (MDN)
of atoms inside the probe of diameter d will be

MAF = na/nt =
κ

σa

[
ehσB exp(x/xk)

ηIpτnt

]1/2

, (10.71)

MDN =
πd2

4
nt MAF. (10.72)

MAF and MMF are related by MMF = (ntAa/ΣiniAi) MAF.
As a numerical example for the detection of iron atoms on (or in) a 10

nm carbon film [10.144], with h = 8, η = 1 (ideal parallel detection), κ = 3,
E = 100 keV, and hydrogen-like cross sections, the detection of 100 Fe atoms
within d = 1 nm needs 106 e−/nm2, corresponding to a dose of q � 1.6 ×105

C/m2 (see Tables 11.4 and 11.6 for the terminal doses for the destruction of
organic compounds).

The minimum detectable mass in EELS has been estimated to lie between
10−22 and 10−18 g and the lowest concentration to be 10−4 − 10−3 [10.122,
10.145]. Thus, a signal from the M-ionization loss of Fe can be easily recorded
from a single ferritin molecule with an electron probe 50 nm in diameter; it
indicates the presence of about 5 × 10−19 g Fe, corresponding to some 4000
iron atoms.

Leapman and Rizzo [10.146] and Suenaga [10.147] have demonstrated that
under favorable conditions the detection limit is close to one atom.
Spatial Resolution. The spatial resolution is not necessarily identical with
the electron-probe diameter in the STEM mode or with the instrumental res-
olution. The practical resolution will often be worse due to electron–specimen
interactions and/or the choice of detection mode.

In thick specimens, the electron-beam broadening discussed in Sect. 5.4.3
has to be considered for x-ray microanalysis. The distribution of scattered
electrons can show a broad tail; in low-Z material, few electrons scattered
through �90◦ can travel distances of the order of a micrometer in thicker
sections of biological material before leaving the specimen. This can mimic
the presence of a low concentration of calcium near a high concentration in
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a calcified tissue, for example. This effect can show a higher probability than
x-ray fluorescence, but it is not observed in EELS analysis [10.151].

10.5.4 Resolution and Detection Limits for Electron Spectroscopic
Imaging

For inner-shell losses in the STEM mode, the spatial resolution is almost equal
to the electron-probe diameter [10.152]. In thicker specimens, it is broad-
ened due to the electron–specimen interactions. In energy-filtering TEM,
the efficiency of the detector is an important factor. The introduction of
slow-scan CCD cameras (Sect. 4.7.5) has led to a great improvement com-
pared with the early work using photographic plates for image recording
[10.148, 10.149, 10.150]. Furthermore, the resolution and detection limits are
strongly influenced by the imaging conditions. It is therefore important to se-
lect optimized imaging conditions to obtain a good signal-to-noise ratio. The
influence of illumination angle, objective aperture angle, defocus, and energy
width on the image can be described by an inelastic transfer function (ITF).
These parameters can then be optimized to obtain the maximal signal-to-noise
ratio [10.153]. We can only give a qualitative account of the essential results.
Illumination Angle. Contrary to the phase-contrast transfer function
(Sect. 6.4.2), the inelastic transfer function depends only slightly on the
illumination angle. It is therefore helpful to maximize the current density on
the specimen as much as possible. This can be done by increasing the illumi-
nation angle up to about the objective aperture angle. Any further increase
still increases the current and thus the beam damage. The corresponding sig-
nal, however, would not improve because most of the additionally scattered
electrons are then intercepted by the objective aperture.
Magnification. As the intensity in an inner-shell loss image is very low, the
influence of the noise of the detector has to be considered. To maximize the
signal-to-noise ratio, we therefore choose the magnification so as to obtain a
current density as high as possible in the detector plane without limiting the
resolution. The magnification should therefore be set to a value that ensures
that the desired value of the resolution limit corresponds to about 2–4 pixels
of the camera system. Therefore the magnifications are often rather small
compared with what one is used to in high-resolution electron microscopy.
Position of the Energy Windows. If we assume a power-law model AE−r

for the background, we can visualize the essential results of a tedious calcula-
tion [10.153] in a double-logarithmic plot (Fig. 10.18). The background yields
a straight line with a negative slope. In the three-window method, we use
two windows below the edge. To avoid a long range for the extrapolation, we
should choose one energy window E1 as close as possible to the edge energy.
The second window E2 should be chosen as far away as possible to obtain a
good estimate for the slope −r of the curve. It is obvious that a lower limit
for E2 is given by the energy of any preceding edge. The optimum position
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Fig. 10.18. Schematic diagram showing the influence of the choice of the energy
windows on the extrapolation error (a) and on the signal-to-noise ratio (b). (a) The
extrapolation error is illustrated by lines passing through the extreme values of the
error bars. It can be significantly reduced by choosing E2 far away from the edge. (b)
The choice of Es for a delayed edge is a compromise between a small extrapolation
error and a small signal (close to the edge) and a larger extrapolation error and a
large signal at the maximum of the edge. In this logarithmic plot, the geometric
length of the error bar is given by the relative error.

for the energy window Es beyond the edge depends strongly on the shape
of the edge. For a sawtooth-like shape, common for K edges, Es should be
chosen as close to the edge as possible. For a delayed edge, one has to find a
compromise between the smallest extrapolation error (close to the edge) and
the delayed maximum. A detailed investigation of the choice of optimum edge
positions starting from measured spectra has been performed by Kothleitner
et al. [10.154]. Often it is advantageous to use more than two windows for the
extrapolation of the background. It has been shown that in the four-window
method, using three windows below the edge, two of them should be close to
the edge and one far apart [10.155].
Objective Aperture Angle, Defocus, Width of the Energy Windows
and Pixel Size. Unfortunately, in the optimization procedure, the remaining
imaging parameters are closely linked with one another. It is therefore diffi-
cult to give any general rules for the choice of parameters. Any increase of the
objective aperture angle increases the detected signal but also increases the
influence of the spherical and chromatic aberrations and thus limits the reso-
lution. Therefore one needs to find a compromise between the resolution and
the signal-to-noise ratio. The defocus is used to partly counterbalance the in-
fluence of the spherical aberration. Increasing the width of the energy window
again increases the signal but also the influence of the chromatic aberration,
thus deteriorating the resolution.

For a rough estimate, approximate expressions have been proposed to
describe the degradation of the resolution in electron spectroscopic imaging
[1.78, 10.156, 10.157, 10.158]. The principle of exact calculations is described
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Fig. 10.19. Radial-intensity distribution of the image of an oxygen atom formed
(a) by elastic dark-field imaging and (b) by electron spectroscopic imaging with the
O K edge. Dashed curves: ideal lens (Cs = Cc = 0), solid curves: Cs = Cc = 2.7 mm,
dotted curve in (b): αi = α = 7.8 mrad [10.153].

in [6.112, 6.118, 10.159, 10.160, 10.161, 10.162, 10.163]. As an example, for
120 keV electrons, Fig. 10.19a shows the radial intensity distribution for an
elastic dark-field image of an oxygen atom and Fig. 10.19b that for an image
with the oxygen K loss at ∆E = 540 eV. The dashed curves are for an ideal
lens and the solid curves for Cs = Cc = 2.7 mm with a width ∆ = 20 eV
of the energy window and an optimum defocus ∆z = 0.82

√
Csλ = 78 nm in

Fig. 10.19a and 9.5 nm in Fig. 10.19b. The dotted curve in Fig. 10.19b results
from a calculation with αi = α = 7.8 mrad [10.153].

The definition of a figure of merit to compare different instruments with
one another is very difficult because the definition of an object resolution
includes the energy loss and a parameter defining the statistical accuracy
of the background subtraction [10.162]. In practice, one has to distinguish
between the attainable resolution and the detection limit. An object detail
(e.g., a sphere) may be detected, but under optimal detection conditions it
appears as a large spot in the image. Using these conditions, the exact size
and shape of the object cannot be determined from the image.

Experimentally the object resolution limit has been determined from pe-
riodic specimens, such as oxygen planes in an AlON ceramic [4.119] or multi-
layers such as Cr layers in Ni80 Fe20 [10.164] or SiGe heterostructure systems
with a spatial resolution of �1 nm [10.165]. Likewise, crystals have been im-
aged looking down an appropriate direction [10.166]. To interpret such images,
one has to take care to make sure that the contrast is due to a single inelastic
scattering process and not the elastic contrast due to multiple elastic, plus one
inelastic, scattering processes [10.167, 10.168], which is also true for STEM
imaging [10.169].
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Specimen Damage by Electron Irradiation

Most of the energy dissipated in energy losses is converted into heat. The
rise in specimen temperature can be limited by keeping the illuminated area
small.

The electron excitation of organic molecules causes bond rupture and loss
of mass and crystallinity. The damage is proportional to the charge density
in C m−2 at the specimen. This limits the high-resolution study of biological
specimens.

Inorganic crystals can be damaged by the formation of point defects, such
as color centers in alkali halides, and defect clusters. High-energy electrons
can transfer momentum to the nuclei, which results in displacement onto an
interstitial lattice site when the energy transferred exceeds a threshold value
of the order of 20–50 eV.

Hydrocarbon molecules condensed from the vacuum of the microscope
or deposited on the specimen during preparation and storage can form a
contamination layer by radiation damage and cross-linking. When only a small
specimen area is irradiated, the hydrocarbon molecules are particularly likely
to diffuse on the specimen and be cracked and fixed by the electron beam.

11.1 Specimen Heating

11.1.1 Methods of Measuring Specimen Temperature

The specimen temperature can be calculated only for simple geometries such
as a circular hole covered with a homogeneous foil (Sect. 11.1.3). In practice,
therefore, methods of measuring the specimen temperature during electron
irradiation are necessary. These can also be used for the calibration of spec-
imen heating and cooling devices. Table 11.1 summarizes the methods that
have been proposed. The continuous methods (I) can be employed in the
whole temperature range indicated, while the other methods (II) use a fixed
transition temperature as reference.
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Table 11.1. Methods of measuring specimen temperatures (TC: thermocouple, ED:
electron diffraction, DF: dark-field mode, BF: bright-field mode).

The first group of methods allows us to measure the increase of temper-
ature continuously. Evaporated thermocouples can only be applied to special
geometries owing to the difficulty of ensuring proper contact between the evap-
orated films. Furthermore, the electromotive force of a thermocouple depends
on the thickness and structure of the evaporated layers [11.17, 11.18]. Another
possibility is to use the thermal expansion of a crystal lattice since the Bragg
angle in Debye–Scherrer ring patterns or single-crystal diffraction diagrams
decreases with increasing temperature. (As a numerical example: for an evapo-
rated Pb film, a temperature rise of ∆T = 100◦C results in ∆d/d = 1.8×10−3.)
The temperature of a small specimen area can be determined by selected-area
electron diffraction [11.4]. The variation of critical voltage (Sect. 7.4.4) [11.5]
or the shift of HOLZ lines in CBED patterns [8.150] with temperature provide
other methods for small areas.

The methods (II) using phase transitions can be divided into those for
which the modification is reversible and those for which it is irreversible.
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Those of the first kind have the advantage that the transition temperature can
be crossed repeatedly. This makes it easier to determine the current density
necessary to bring the specimen to the fixed transition temperature. If the
excitation of the condenser lens is not changed, the temperature rise due to
electron bombardment is proportional to the incident electron current, which
can be changed by means of the Wehnelt bias. This enables us to estimate the
temperature for other values of the electron current. However, large variations
of specimen temperature ensue when the diameter of the irradiated area is
changed (Sect. 11.1.3).

A very simple and straightforward method is based on the behavior of
evaporated indium layers with an island structure in the vicinity of the melt-
ing point. The melting or solidification of the small crystals is indicated by
the vanishing or reappearance of the Bragg reflections in the dark-field mode.
However, the presence of an evaporated film can alter the rate of heat gener-
ation and the thermal conductivity of the specimen. The method can be used
for local measurement of temperature without greatly affecting the generation
of heat and the thermal conductivity if a 10 µm-diameter spot is evaporated
through an optically aligned 10 µm diaphragm [11.9, 11.10].

The specimen temperature in a liquid-helium-cooled stage can be esti-
mated from the condensation of gases (Xe, Kr, O2, A, N2, Ne) in the range
10–70 K [11.19]. The gas-sublimation temperatures depend, however, on the
gas pressure, which is not known accurately because of the cryopumping effect
of the cold shield. This temperature increases from 58 K to 68 K for xenon
and from 8.5 K to 10 K for neon in the pressure range 10−4 − 10−2 Pa, for
example [11.20].

Another method of measuring the rise of temperature uses the known tem-
perature dependence of the climb rate of Frank dislocation loops in materials
with high stacking-fault energy [11.21]. An average local rise of 6◦C is found
when an Al-1.5wt% Mg alloy is irradiated under normal bright-field operation.

11.1.2 Generation of Heat by Electron Irradiation

A knowledge of the mean contribution ∆Q/∆x of one electron per unit mass
thickness (∆x = ρ∆t) to specimen heating is required for a theoretical dis-
cussion and calculation of the specimen temperature.

If it is assumed that only plasmon energy losses ∆Epl with a mean-free-
path length Λpl contribute to heat generation, ∆Q/∆x can be calculated with
the aid of (5.84):

∆Q

∆x
=

∞∑
n=1

n∆EplPn(t)

ρt
=

e−t/Λpl∆Epl

ρΛpl

∞∑
n=1

(t/Λpl)n−1

(n − 1)!
=

∆Epl

ρΛpl
. (11.1)

Thus, for Al with a plasmon loss at ∆Epl = 15.3 eV and a mean free path
Λpl = 70 nm for E = 60 keV, we find ∆Q/∆x = 0.83 eV µg−1 cm2. This value
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Fig. 11.1. Dependence of energy dissipated per unit mass thickness ∆Q/∆x (eV
µg−1 cm2) on the atomic number Z for 60 keV electrons. Full curve calculated
with the Bethe formula (11.2) [11.24]. The calculations of Leisegang [11.12] and the
measurements of Cosslett and Thomas [11.26] at E = 10–20 keV and transferred to
60 keV, respectively, under- and overestimate the value of ∆Q/∆x.

is much smaller than the experimental value of 2.3 eV µg−1 cm2 (Fig. 11.1).
This means that Bethe losses, which appear in Fig. 5.20 as a continuous
background to the energy-loss spectrum, also contribute strongly to specimen
heating.

It therefore seems more reasonable to use the Bethe formula (5.100) to
estimate the rate of heat generation. This model has been applied to the
problem of specimen heating [11.22] and yields for nonrelativistic energies

∆Q

∆x
=
∣∣∣∣dE

dx

∣∣∣∣ = 7.8 × 104 Z

A

1
E

ln
E

J
, (11.2)

where E (eV) and ∆Q/∆x (eV µg−1 cm2), and J � 13.5Z denotes the mean
ionization energy in eV. Figure 11.1 shows values calculated from this for-
mula for E = 60 keV. The dependence on the atomic number Z is con-
firmed by experiment [11.23, 11.24]. In these experiments, the energy loss
converted into heat was measured directly by irradiating a large transparent
thermocouple on a supporting film of 1 cm diameter. The energy loss was
calibrated by measuring the heat generated by an electric current passing
through the film and producing the same temperature. The values calcu-
lated by Leisegang [11.12] underestimate ∆Q/∆x; the experimental values of
Cosslett and Thomas [11.26] obtained at E = 10–20 keV and transferred to 60
keV overestimate ∆Q/∆x since multiple scattering is frequent at low energies.
For relativistic energies E > 60 keV, ∆Q/∆x becomes proportional to β−2

according to the Bethe formula (5.100).
The heat generated is proportional to the mass thickness of electron-

transparent films. There is a stronger increase for greater thicknesses due to
multiple scattering and to the increase of the inelastic scattering probability
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with decreasing electron energy [11.24]. When bulk specimens such as
specimen-grid bars or diaphragms are irradiated, the generation of heat P per
unit time saturates for thicknesses of the order of the electron range at a value

P = fP0 = fIU, (11.3)

where P0 = IU denotes the total beam power. Some electrons are lost
by backscattering, with the result that only a fraction f = 0.7 for copper
contributes to P .

11.1.3 Calculation of Specimen Temperature

The specimen temperature becomes stationary when the heat generated is
equal to the heat dissipated by radiation and thermal conduction. This prob-
lem of thermal conduction can be solved only for simple geometries such as a
circular hole covered with a uniform foil [11.22] or for rod-shaped specimens
(needles) [11.14].

The power dissipated by radiation can be estimated using the Stefan–
Boltzmann law

Prad = SAσ(T 4 − T 4
0 ), (11.4)

where S denotes the specimen surface area (both surfaces must be counted for
foils), A the absorptive power of the blackbody radiation, which is the same
as the emissivity (Kirchhoff’s law), σ is the Stefan–Boltzmann constant, and
T is the temperature of the specimen and T0 that of the surroundings. The
absorptive power A is equal to unity only for a blackbody and is of the order
of 0.01–0.05 for bulk metals. For thin transparent films, A is still smaller:
A = 9× 10−4 for a 10 nm collodion film, for example [11.28]. The influence of
radiation loss can therefore be neglected for thin-foil specimens and has to be
considered only if the heat dissipation by thermal conduction is reduced by
the presence of a large self-supporting area and/or if the temperature is high
because the radiation loss increases with the fourth power of T in (11.4). This
can be seen from the following example [11.10]. An SiO foil was placed over a
400 µm-diameter hole, and indicator spots of Ge (melting point Tm = 958◦C)
and In (156◦C) were deposited near the center. The current densities necessary
for melting were in the ratio 9.3 : 1. A ratio 6.9 : 1 would be expected for
pure thermal conduction and 82 : 1 for pure radiation loss. The increase of the
rate of dissipation of heat in Ge relative to the value for pure conduction is
just detectable, whereas the same experiment with a 200 µm diaphragm gave
the ratio expected for pure conduction. The irradiation of small particles with
a diameter of the order of micrometers on a supporting film of low thermal
conductivity produces another extreme case. The temperature then increases
to a value at which the radiation loss becomes dominant, with the result that
the current density required to melt the particles (e.g., small crystals of alkali
halogenides) is proportional to T 4

m [11.16].
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The heat transfer by conduction through an area S caused by a gradient
∇T of the specimen temperature is described by

Pc = −λS∇T, (11.5)

where λ is the thermal conductivity. Two extreme irradiation conditions for a
foil over a diaphragm of radius R will now be discussed: uniform illumination
and highly localized (small-area) illumination.
Uniform Illumination. The whole foil is irradiated with a uniform current
density j (A m−2) by means of the strongly defocused condenser-lens system.
The thermal power generated inside a circle of radius r and area πr2 with the
foil center at r = 0 has to be transferred by thermal conduction through an
area S = 2πrt (t: foil thickness). This results in the equilibrium relation

Power dissipated = power transferred by thermal conduction

πr2 j

e

∆Q

∆x
ρt = −λ2πrt

dT

dr
→ dT

dr
= − jρ

2eλ

∆Q

∆x
r. (11.6)

The stationary temperature distribution T (r) of (11.6) has a parabolic
form (Fig. 11.2, curve a) with the maximum temperature

Tmax = T0 +
jρ

4eλ

∆Q

∆x
R2 (11.7)

at the center (r = 0) of the diaphragm.
The rise of the temperature with time can be determined from the time-

dependent equation of heat conduction

λ∆T (r, τ) +
jρ

e

∆Q

∆x
= cpρ

∂T

∂τ
, (11.8)

cp being the specific heat of the foil. The solution of (11.8) for the boundary
condition T = T0 at r = R can be expressed as an eigenfunction series [11.27]

T (r, τ) = T0 +
∞∑

n=1
bnJ0(anr)

[
1 − exp

(
λa2

nτ

cpρ

)]
. (11.9)

Fig. 11.2. Temperature distribu-
tion in a formvar film irradiated
with 60 keV electrons for (curve
a) uniform current density j and
(curve b) small-area illumination.
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Table 11.2. Thermal conductivity λ, density ρ, specific heat cp, and time constant
τ1 for R = 50 µm.

Substance λ [J/K cm s] ρ [g/cm3] c [J/g K] τ1 [ms]

Carbon film 1.5×10−2 [11.29] 2.0 – –
Formvar film 2.4×10−3 [11.29] 1.2 2.0 4.3
Glass (SiO) 10−2 2.2 0.8 0.8
Metal (Cu) 4 8.9 0.36 3.5×10−3

The coefficients an are determined by the condition that at the bound-
ary r = R the temperature stays constant. This can be achieved only
if xn = anR is the nth zero of the Bessel function J0(x). The quantity
τn = (cpρ)/(λa2

n) describes the decay time of the nth term. The largest decay
time τ1 = cpρ/(a2

1λ) = cpρR2/(5.78λ).
Inserting realistic values, we find that the temperature of an electron mi-

croscope specimen rises so rapidly that the stationary value will be attained
immediately after the irradiation conditions are changed (see Table 11.2).
However, the thermal conductivity of organic specimens can be altered by
radiation damage and normally increases with increasing irradiation as a re-
sult of cross-linking. This causes a decrease of temperature with increasing
irradiation time and constant illumination conditions. This damage process
requires a much higher electron dose jτ than does the mass loss of organic
films, for example (Sect. 11.2). The thermal conductivity of pure carbon and
SiO films is not affected by irradiation [11.10].

Small-Area Illumination. Equation (11.6) has to be modified when a
smaller area is irradiated by using a more strongly focused condenser lens. If
only a small area of radius r0 is irradiated with a current density j (r0 � R),
the heat-transfer equation becomes, for r ≥ r0,

πr2
0

j

e

∆Q

∆x
ρt = −λ2πrt

dT

dr
→ dT

dt
= − jρ

2eλ

∆Q

∆x

r2
0

r
. (11.10)

With T = T0 for r = R, the stationary temperature becomes

T (r,∞) = T0 +
jρ

2eλ

∆Q

∆x
r2
0 ln

R

r
for r ≥ r0. (11.11)

Inside the irradiated area (that is, for r ≤ r0), the temperature distribution
is again parabolic, provided that the current density j inside the radius r0

is uniform. At r = r0, the solution must take the value T (r0,∞) given by
(11.11). However, the small increase of temperature from r = r0 to r = 0 can
be neglected in comparison with the increase from r = R to r = r0, and the
temperature in the foil center becomes

Tmax = T0 +
jρ

2eλ

∆Q

∆x
r2
0 ln

R

r0
. (11.12)
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Table 11.3. Rise of temperature ∆T in the center of a circular diaphragm (R = 50
µm) covered with a supporting film and irradiated with 100 keV electrons.

Uniform illumination Small-area illumination

Substance R = 50 µm, j = 100 A m−2 r0 = 0.5 µm, j = 104 A m−2

Formvar 62◦C 6◦C
Glass (SiO) 27◦C 2.5◦C
Metal (Cu) 0.3◦C 0.03◦C

This is a much smaller temperature rise ∆T = Tmax − T0 than that pre-
dicted by (11.7) even for larger current densities. (Thus for a tenfold increase
of current density in Fig. 11.2, ∆T reaches only half the value for uniform
illumination; see also the numerical examples of Table 11.3.)

For more exact calculations, the current density distribution within
the electron beam, typically Gaussian, has to be considered [11.10, 11.13].
If the electron beam hits the diaphragm or the specimen-grid bars, the tem-
perature T0 in (11.7) can be increased sharply owing to the greater generation
of heat (11.3) in bulk material. In practice, therefore, irradiation of bulk parts
of the specimen support should be kept as low as possible to limit specimen
heating. The estimated values in the last column of Table 11.3 show that
under these conditions, the rise of temperature due to electron irradiation
can be kept small.

Whereas an increase of specimen temperature of a few kelvins has no
significant effect with the specimen at room temperature (300 K), this can
become a large relative increase at liquid-helium temperature (4 K). The
radiation damage depends very sensitively on temperature (Sect. 11.2.3), and
most of the discrepancies in experimental results at low temperatures may be
attributed to a temperature rise [11.30]. The thermal conductivities of most
substances decrease by one or more orders of magnitude when the temperature
is decreased from 300 K to 4 K [11.31]. It is very important that there be a good
thermal conductivity of the supporting film (carbon), good thermal contact
between film and grid and support, and good cryoshielding of parts of the
microscope at high temperature. The special problems of examining frozen-
hydrated biological specimens in a cold stage are discussed in [11.32, 11.33].

The temperature increase caused by a moving electron probe is of interest
for scanning transmission electron microscopy [11.34, 11.27].

11.2 Radiation Damage of Organic Specimens

11.2.1 Elementary Damage Processes in Organic Specimens

Radiation damage in organic material is caused by all kinds of ionizing radia-
tion. The damage depends on the energy dissipated per unit volume, which is
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proportional to the number of incident electrons n = jτ/e per unit area, where
τ is the irradiation time in seconds. The incident charge density q = jτ = en
(C m−2) can thus be used to compare different irradiation conditions. The
quantity q is called the electron dose, although, in radiation chemistry, dose
is defined as energy dissipated per unit mass [measured in grays: 1 gray
(Gy) = 1 J/kg]. A dose of 1 C m−2 corresponds to a number of electrons
n = 6 × 1018 m−2 = 6 nm−2 and at E = 100 keV to a transferred energy
density nρ|∆E/∆x| = 1.4×1027 eV m−3 � 2.2×108 J m−3 = 2.2×105 Gy if
we insert the values ρ = 1 g cm−3 and |∆E/∆x| = 2.4 eV µg−1 cm2 that cor-
respond to carbon (Fig. 11.1) and are converted to 100 keV. This last value is
given by the Bethe formula (5.100) and (11.2). Most of this energy density is
consumed in ionization processes. From (5.100), we see that this contribution
decreases as v−2 with increasing electron energy (see also Sect. 11.2.3).

Current densities of the order of j = 100 A m−2 are necessary at magnifi-
cations M � 10 000, which corresponds to an energy density of 160 eV nm−3

in 1 s. High-resolution micrographs require an electron dose of q = 5 × 103

C m−2 to expose a photographic emulsion with a density S = 1, which means
an energy density of 104 eV nm−3! Table 11.4 contains a scale of physical
and biological damage effects (see reviews in [1.43, 11.35–11.45]). The energy
dissipated in an electron microscope specimen after a brief irradiation there-
fore corresponds to conditions that, outside a microscope, occur only near
the center of a nuclear explosion! Results from radiation chemistry, where the
energy densities are much lower, of the order of 106−107 J m−3 [11.35, 11.36,
11.46–11.52], are relevant only to the very early stage of radiation damage.

The primary damage process is inelastic scattering, which causes mole-
cular excitation or ionization or collective molecular excitations (similar to
plasmon excitations of a free-electron gas). The energy dissipated is either
converted to molecular vibrations (heat) or causes bond scission; for example,
a loss of hydrogen and production of radicals (R: residual organic molecule,
∗: molecular excitation, •: radical)

RH∗ → R• + H•

(the bonding energy of H to C atoms is of the order of 4 eV) or a bond break
in a carbon chain:

R–CH2–CH2–CH∗
2–R → R–CH3 + CH2=CH–R.

C–H bonds break more frequently in aliphatic chains than in aromatic com-
pounds owing to the spread of energy dissipation by the π-electron system
of benzene rings [11.53]. Bond scission also leads to the production of low-
molecular-weight molecules and radicals. These primary processes are unaf-
fected by temperature and cannot be avoided by specimen cooling.

A quantum-mechanical calculation has been performed for radicals pro-
duced by cleaving hydrogen from the DNA bases adenine, guanine, cytosine,
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Table 11.4. Scale of radiation-damage processes with 100 keV electrons.
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and thymine [11.54]. These results can be used to discuss the change of the
fine structure of the carbon edge in electron energy-loss spectra [11.43].

The loss of hydrogen atoms would not noticeably affect the molecular
and crystal architecture, but the scission of carbon chains and side groups
and the secondary processes cause great damage. Secondary processes are, for
example, the diffusion of hydrogen atoms to other molecules and the formation
of additional radicals at unsaturated bonds or a hydrogen molecule:

R–H + H• → R–H•
2 or R–H + H• → R• + H2.

Other typical secondary processes are cross-linkings of molecular chains,
such as

R − CH2 = CH − R R − CH2− CH − R
→ | +H• .

R − CH2 − CH∗
2 − R R − CH2− CH − R

There may also be reactions with radicals and thermal diffusion and evap-
oration of fragmented atoms and molecules of low atomic weight, such as
H2, CH4, CO2, and NH3. The generation of H2 by electron irradiation was
demonstrated by mass spectroscopy of H2 released from specimens irradiated
at low temperature (10 K) and warmed to room temperature [11.55]. These
processes, which involve loss of mass, can be diminished by specimen cooling.
The resulting cage or frozen-in effect is the most important way of reducing
secondary processes at low temperatures (Sect. 11.2.3). In some cases, the
probability that the scission products recombine or cross-link before leaving
the specimen can be increased [11.56]. A typical consequence of secondary
processes is the collapse of crystal structure and molecular architecture due
to mass loss. The ultimate stage is a cross-linked, carbon-rich, polymerized
cinder. The continuing increase of the thermal and electrical conductivities at
very high doses >104 C m−2 indicates that the carbonization of the material
proceeds and that the rearrangement of atoms and molecules does not stop
[11.35].

The decay curves of fluorine in PTFE and chlorine in PVC measured by
x-ray microanalysis saturate at 1–5 × 106 C m−2, and the amount of Os from
OsO4 stain acting as a reagent for double bonds shows a maximum at 5 ×
105 C m−2 [11.58].

The mean number of specific reactions (e.g. bond rupture, cross-linking,
or disappearance of original molecules) that are produced by an energy loss
of 100 eV is known in radiation chemistry as the G value. Typical values are
shown in Table 11.5: G−M corresponds to the disappearance of molecules,
GH2 to the appearance of H2, etc. These figures show that G−M decreases in
the following order: unsaturated and saturated hydrocarbons, ethers, aldehy-
des, carboxylic acids, and aromatic compounds. The very low value of GH2

for aromatics is of special interest, as is the higher value for saturated hy-
drocarbons, which is of nearly the same order as the G−M value. Thus, for
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Table 11.5. Principal bonds broken by radiation damage in pure organic com-
pounds and some G values [11.47, 11.57].

Compounds and G−M GH2 GCO2 GCO GH2O GCH4

sites of attack

Hydrocarbons,
saturated
C–H, C–C 6–9 3.8–5.6 0.2–0.7
unsaturated
C–H, C–C 11–10 0.8–1.2 0.13
aromatic
C–H, side chain C–C 0.2–1 0.01–0.18
Alcohols
HC–OH, C–COH 3–6 3.5–4.5 0.04–0.23 0.3–0.9
Ethers
C–H, C–OR 7 2.0–3.6 0.06–0.13
Aldehydes and ketones
C–H, C–C=O 7 0.8–1.2 0.6–1.6 0.1–2.6
Esters
C–H, O=C–OR 4 0.5–0.9 0.3–1.6 0.15–1.6 0.4–2.0
Carboxylic acids
C–H, C–COOH 5 0.5–2.3 0.5–4.0 0.1–0.5 0.1–2.2 0.5–1.4

Amino acids G−M GH2 GCO2 GNH3

Leucine
C–H, C–NH2, C–COOH 14 0.5 2.8 5.1
Valine
C–H, C–NH2, C–COOH 8 0.2 0.6 4.1

a high-resolution micrograph, G = 1 with 104 eV nm−3 provokes 102 nm−3

damage processes! This estimate gives an idea of the demands that electron
microscopists make on their organic specimens.

11.2.2 Quantitative Methods of Measuring Damage Effects

Our knowledge of the individual damage processes is very poor. Even for a
particular molecule, the scale of primary and secondary processes is very broad
and complex, and it is impossible to describe the whole damage process in de-
tail. For practical electron microscopy, damage processes that can be observed
in the final image or in a diffraction pattern and that can be used directly for
quantitative measurement of damage are of greatest interest [11.59].
(a) Loss of Mass. The transmission T of an amorphous specimen layer de-
creases as exp(–x/xk) (6.6) up to mass thicknesses x = ρt = 30–50 µg cm−2 at
E = 100 keV. The quantity – log10T is proportional to x (Fig. 6.1) and can be
used to measure the loss of mass during irradiation [11.16, 11.61, 11.62, 11.63,
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Fig. 11.3. Mass thickness of polymetha-
crylate foils (methyl : butyl = 20 : 80)
of different initial mass thicknesses as
a function of electron dose q = jτ ob-
tained from measurements of electron
transmisssion (E = 60 keV).

11.64]. For high-molecular-weight polymers, collodion, formvar, methacrylate,
epon, and other embedding media, the mass thickness shows an approximately
exponential decrease down to a residual value (Fig. 11.3) that for many sub-
stances corresponds roughly to the carbon content. This confirms that many
noncarbon atoms can leave the specimen after bond scission. A fraction of
the carbon atoms can also leave the specimen as volatile fragments, and some
of the noncarbon atoms will be bound more strongly. It is necessary to mea-
sure the transmission with low current densities, of the order of j = 1 A
m−2, because the dose that corresponds to the terminal mass loss is of the
order of qmax = jτ = 100 C m−2 for polymers. The percentage of mass lost
by polymethacrylate films shows a systematic decrease with increasing film
thickness (Fig. 11.3). This is by no means the rule, however, and protective
evaporated carbon films (see also Sect. 11.3.3e) do not decrease the mass loss
for all substances. The mass loss and other damage effects are proportional to
the dose so long as the irradiation conditions do not cause appreciable spec-
imen heating. Some substances, such as methacrylate, lose more mass when
the temperature is increased by a higher current density [11.65]. The elastic
dark-field signal of a scanning transmission electron microscope can be used
to measure the mass loss of TMV, HPI layers, or freeze-dried phages [6.33].

In practice, it is prudent to preirradiate and stabilize a biological section
with a low current density to avoid any increase of mass loss by specimen
heating. For high resolution, the tendency is to irradiate the specimen with a
dose as low as possible (Sects. 6.6.5 and 11.2.4).

The mass lost by organic single or polycrystalline films cannot be de-
termined by measurement of the transmission because they show diffraction
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contrast, which depends on the accidental excitation error and film thickness.
Normally, a crystalline film shows a greater averaged transmission T than an
amorphous film of equal mass thickness [6.1], and the transmission may even
decrease in the early stage of irradiation [11.66].

Another way of determining the mass loss is to weigh the specimen be-
fore and after irradiation, but for such experiments a reasonably large mass
(10–20 µm films of about 1 cm2 in area) is necessary [11.35, 11.62, 11.67].
The change of optical density nt (n: refractive index, t: specimen thickness)
can also be measured by interferometric methods or by analyzing interference
colors [11.68, 11.69].
(b) Fading of Electron-Diffraction Intensities. Damage to single mo-
lecules also distorts the crystal lattice, which results in a decrease of the
electron-diffraction intensity of Debye–Scherrer rings or single-crystal spots
[11.70, 11.71] and in some cases in a shift and broadening of the reflections as
well [11.72].

Most evaporated films of organic compounds are crystalline. This method
is therefore widely used to investigate the influence of chemical structure
on resistance to radiation damage and the dependence on electron energy
and specimen temperature (Sect. 11.2.3). The dose necessary for complete
disordering of the lattice is also of interest for estimation of the irradiation
conditions in which diffraction contrast can be observed or lattice planes in
organic crystals resolved. Figure 11.4 shows examples of decreasing intensity of
Debye–Scherrer rings with increasing charge density. Whereas the lattice of
aliphatic compounds is destroyed at low qmax � 10 − 100 C m−2 after irra-
diation with 100 keV electrons, the extrapolated terminal dose qmax � 1000
C m−2 for tetracene in Fig. 11.4, for example, increases considerably if the
compounds contain benzene rings (aromatic compounds). The cross section
for the damage of aromatic compounds corresponds to the ionization cross

Fig. 11.4. Decrease of the electron-diffraction intensity of the d = 0.46 nm lattice
planes in tetracene films with increasing electron dose q = jτ for different elec-
tron energies E = 40–100 keV (Ip: peak intensity of the Debye–Scherrer ring, Ib:
background intensity of the diffraction pattern).
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section of the carbon K shell, and indeed measurement of the dose needed to
destroy molecules shows that the probability of damage decreases rapidly for
electron energies below 2 keV as the carbon edge is approached [11.73].

Crystals of molecules of phthalocyanine and its metal derivatives, which
were used by Menter [9.115] to resolve lattice-plane fringes of the order of 1.2
nm for the first time, have a very large value of qmax = 1–2 × 104 C m−2

for these lattice planes. However, a larger lattice-plane spacing is less affected
by lattice distortions than a smaller one. If we assume that the damage can
be described by frozen-in lattice vibrations, although this is a rather crude
model, the first decrease of intensity can be described in terms of a Debye–
Waller factor (7.95) [11.74],

Ig = Ig0 exp(−4π2〈u2〉g2). (11.13)

This equation can be used to estimate an average displacement 〈u2〉. When
the dose q required to obtain the same value of 〈u2〉 = (0.05 nm)2 is calcu-
lated, the values for phthalocyanines are found to be no larger than for other
aromatic compounds. Only the halogen-substituted phthalocyanines (e.g.,
CuCl16C32N8) show an exceptionally large resistance with qmax = 1.5–4 ×105

C m−2 (see also [11.75]). They can be used for high-resolution study of crystal
lattices [11.76, 11.77], and the damage effects can be observed directly in the
image at molecular dimensions [11.78]. The collapse of phthalocyanine crystals
is initiated locally; thus parts of the crystal with exposed edges damage pref-
erentially relative to the perfect bulk crystal. For further models describing
the fading of electron-diffraction patterns, see [11.56, 11.79, 11.80, 11.81].

The decrease of the diffraction intensities with increasing dose has to be in-
terpreted with care because the shape of the fading curve can depend strongly
on the film structure; for example, the texture in polycrystalline films. So-
called latent doses (ranges of q in which the fading curve shows very little
decrease, see Fig. 11.3 for example) can be artifacts caused by the specimen
structure and by the transition between the conditions in which the dynam-
ical and kinematical theories of electron diffraction are applicable. However,
the extrapolated terminal doses qmax (Table 11.6) are in agreement with the
results of other methods.
Spectroscopic Methods. Changes in the structure of molecules can be de-
tected by their influence on the photon-absorption and electron energy-loss
spectra. The absorption spectrum of evaporated dye films can be measured in-
side one irradiated mesh of the supporting grid (0.1 × 0.1 mm2) [11.35, 11.86].
The terminal dose for the damage, as indicated by the absorption maxima
(Fig. 11.5), coincides with the value given by electron diffraction (Table 11.6).
Photoconductivity and cathodoluminescence are very sensitive to radiation
damage; the photoconductivity of phthalocyanine, for example, is lost for
qmax � 0.5 C m−2 [11.35].

Infrared absorption spectra need a larger specimen area, and the specimen
has to be irradiated in the final image plane. The absorption maxima in the far
infrared caused by vibrations and rotations of the molecules disappear first,
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Table 11.6. The electron dose q needed at 300 K for complete destruction of organic
compounds, measured by different methods (ML: mass loss, C: contrast, ED: electron
diffraction, LA: light absorption, EELS: electron energy-loss spectroscopy, XRMA:
x-ray microanalysis).
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Fig. 11.5. Light-absorption spectra of
a 560 nm thick tetracene film for var-
ious electron doses q (E = 60 keV)
[11.86].

Fig. 11.6. Infrared absorption spectra of a polymethacrylate foil (14 µm thick) (a)
not irradiated and (b) irradiated with a dose of q = 0.4 C m−2 at E = 60 keV
[11.35].

at relatively low doses (Fig. 11.6) [11.35, 11.62, 11.67]. This indicates that
cross-linking and scission of molecules occur. Absorption maxima in the near
infrared can be attributed to typical groups such as –CH3, –CH2–, =CH2–,
=C–, –COOH, and OH–. Figure 11.6 shows the decrease of the maxima and
the arrival of new maxima beside the –COOR maximum, which can be at-
tributed to >C=CH3 and confirms that double bonds are generated by the
loss of H atoms.
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Infrared spectra recorded during a single transmission need 5–10 µm thick
specimens (the electron range for 100 keV electrons is about 100 µm). (With
modern infrared spectrometers, much thinner and smaller areas can be inves-
tigated.) The infrared technique can be applied to monomolecular layers by
using the multiple internal reflection technique [11.89, 11.88]. An amino acid
analyzer has also been used to investigate the radiation products in detail.
This technique was applied to catalase, for example, and some 0.2–0.4 mg of
material were required [11.90]. Irradiation with n = 0–100 electrons per nm2

produces a more or less rapid decay of the amino acids Asx, Glx, Arg, His,
Lys, Thr, Ser, Met, Cys, Pro, and Tyr (e.g., –40% for Lys); the amounts of
Val, Leu, Ile, and Phe remain nearly constant, whereas the amounts of Gly,
Ala, and Abu increase (e.g., +25% for Ala). This is an indication of possible
transformations of amino acids, confirmed by the appearance of Abu (α-amino
butyric acid), which does not occur in the native, unirradiated catalase. These
experiments show that transformations are important in irradiated homo- and
heteropolypeptides and that secondary and tertiary chemical reactions can be
observed that are not found when single amino acids are irradiated.

The application of electron energy-loss spectroscopy (EELS) to the study
of radiation damage has the advantage of providing direct elemental analysis
of C, N, or O atoms, among others, and the decrease of their contribution to
the EEL spectrum can be followed during electron irradiation [11.91, 11.92,
11.93, 11.94] (Fig. 11.7). Energy- or wavelength-dispersive x-ray microanalysis
can also be used to investigate the loss of heavy atoms, such as F and Cl
[11.58] (Table 11.6) or S and P [11.95], whereas the decrease of the background
intensity indicates the loss of mass [11.96].

Investigation of irradiated organic films with a laser microprobe mass an-
alyzer (LAMMA) [11.97] shows that the (M+H)+ peak in the positive ion
spectrum decreases with increasing dose of electron preirradiation. The termi-

Fig. 11.7. Amounts of carbon (�), nitrogen (�), and oxygen (©) per unit area of a
thin collodion film, depending on the incident electron dose q at (a) T = 300K and
(b) T = 80 K (liquid-nitrogen cooled), measured by electron energy-loss spectroscopy
at E = 80 keV [11.92].
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nal doses agree with those found by electron-diffraction fading. Some smaller
molecular fragments first increase and are therefore scission products. A disad-
vantage of this method is that the mass spectrum already contains molecular
fragments in the unirradiated state. Other sensitive methods are electron-spin
resonance [11.51] and nuclear magnetic resonance [11.98].

A further method for the investigation of radiation damage is inelastic-
tunneling spectroscopy [11.99]. This technique has been used to reveal the
vibrational modes of organic compounds that are included in the insulating
layer of a metal-insulator-metal (MIM) tunnel diode. The COH functional
group in β-D fructose is disrupted and the –C=C– bond increases, for example.

11.2.3 Methods of Reducing Radiation Damage

(a) High-Voltage Electron Microscopy. One way of reducing the damage
rate is to use high-voltage electron microscopy (HVEM). The reduction in en-
ergy dissipation with increasing energy, |dE/ds| ∝ v−2, that results from the
variations of the inelastic cross section (Sect. 5.2.2) and the Bethe loss formula
(5.100) has been confirmed by experiments [11.71, 11.84, 11.87, 11.100, 11.101]
that use the electron-diffraction method. A gain of two in the terminal dose
qmax that causes complete fading of the electron-diffraction pattern can be ob-
tained if E is increased from 100 to 200 keV, but when E is further increased
to 1 MeV, the gain is only about three. We have to keep in mind, however,
that the image contrast for weakly scattering objects is reduced by the same
factor.
(b) Cryoprotection. Another possibility is to reduce the specimen temper-
ature. Siegel [11.66] reported experiments at 300, 70, and 4 K on paraffin and
tetracene with gains of two and four, respectively. If, however, the temper-
ature of the specimen initially irradiated at 4 K is raised to 300 K without
further irradiation, the fading of the electron-diffraction pattern is the same
as would have been observed if the specimen had been irradiated with the
same electron dose at 300 K.

Measurements of the number of C, O, and N atoms by EELS (Fig. 11.7)
also show that mass loss is strongly reduced at liquid-nitrogen temperature
[11.92, 11.93]. Mass loss has also been observed by quite a different method
[11.102]; 14C-labeled T4 phages and E. coli bacteria were irradiated at 4 K
and 300 K. The residual 14C content was measured by the autoradiographic
method (deposition of a photographic emulsion on the specimen grid and
development of the grains exposed by the β-emission of 14C). Exposures up
to 104 C m−2 show no significant loss when irradiated at 4 K, whereas the
loss at 300 K is of the order of 30%.

All experiments confirm that the primary process of ionization and bond
rupture is not influenced by the temperature, whereas the secondary processes
of loss of mass and crystallinity require migration and diffusion of the reac-
tion products, which decrease as the specimen temperature is reduced. This
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confirms that the mobility of fragments is strongly reduced at 4 K. Radiation-
induced recombination processes cannot be excluded, but these do not nec-
essarily recreate the original structure. However, the degree of improvement
varies from one substance to another. Discrepancies among the reported gains
on cooling to liquid-helium temperature can be attributed to uncertainties
about the exact specimen temperature.

All electron-diffraction experiments [11.44, 11.56, 11.66, 11.82, 11.83,
11.103, 11.104] show that the critical doses (1/e fading or terminal dose)
are improved by a factor of at most 5 to 7, and reported gains larger than
100 [11.105] have not been confirmed. Also, the terminal doses at 4 K are
not noticeably better than those at 80 K. Arrhenius plots of the logarithm of
extinction dose against reciprocal temperature reveal two activation energies
for the degradation, the higher activation energy dying out at � 80 K [11.112].
(c) Hydrated Organic Specimens. Biological material is normally ob-
served in the dehydrated state. For ultramicrotomy, the specimens are dried,
usually in a series of baths of increasing concentration of the dehydrating agent
(e.g., alcohol), after which the intermediate dehydrating fluid is replaced by a
resin, which can be polymerized. Material not prepared in this way loses water
in the vacuum of the microscope. There is, however, an ever-increasing interest
in observing biological material in the native state. One way of achieving this
is to use an environmental cell in which a partial pressure of water is main-
tained [11.106]; alternatively, the specimen may be frozen and cryosections
cut by means of a cryoultramicrotome [11.107, 11.108, 11.109].

It is known from the radiation chemistry of aqueous systems that the G
value for the formation of H and OH radicals and H2O2 is high [G(–H2O)
�4.5 for the liquid state] and that these products cause strong secondary
reactions with the biological material. However, this G value decreases to 3.4
in ice at 263 K, to 1.0 at 195 K, and to 0.5 at 73 K; this can be attributed to
an increase of the molecular recombination of the water molecule fragments.
Model experiments in different states have been done with catalase crystals.
The outer diffraction spots that correspond to higher resolution faded away
first. The electron dose required for complete fading was 300 electrons per nm2

for frozen catalase at �150 K, which is ten times greater than the value for wet
catalase at 300 K [11.44]. No significant difference in the dose for 1/e fading,
which is about 200–300 electrons per nm2, has been found for crystalline and
vitreous ice even when the specimen temperature is decreased from 110 K to
4 K [11.44]. This confirms that, at low temperatures, the effect of radiolysis
in the presence of water can be neglected, and the damage rate shows the
same magnitude in the frozen and dried states. After complete fading of the
diffraction pattern, voids and bubbles are formed in frozen-hydrated catalase,
which do not appear in thin, dried samples or inside pure ice. These bubbles
can be detected at doses larger than 1000 electrons per nm2 at 110 K and
20 000 electrons per nm2 at 4 K [11.110]. Embedded organic material may
show shrinkage or swelling effects that are different from those seen in the
absence of ice [11.111].
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(d) Elemental Substitution. The replacement of the H atoms by Cl or
Br in benzene or phthalocyanine, for example, increases the terminal dose of
the electron-diffraction pattern by more than one order of magnitude [11.69,
11.74, 11.87] (Table 11.6). Terminal doses considerably larger than 104 C
m−2 allow crystal-structure imaging of these substances with high resolution
[11.77, 11.87]. This can be explained by the reduced mobility of halogen atoms
(cage effect) and the ability to recombine. Halogens are reagents for carbon
double bonds, for example.
(e) Conductive Coatings. Coating with a thin evaporated layer of car-
bon can reduce the mass loss, especially in substances with a high fraction of
volatile scission products, such as polymethacrylate [11.16]. Gold-sandwiched
coronene crystals were found to have increased radiation resistance by a fac-
tor of 5 [11.113], and carbon encapsulation increases the terminal dose by a
factor of 3–12 [11.114]. However, these results are not the rule and must be
checked.

11.2.4 Radiation Damage and High Resolution

High resolution is possible only by elastic scattering. As shown in Table 11.4,
a mean electron dose of the order of 100 C m−2 is necessary at E = 100 keV
for one elastic-scattering process per atom. The fraction of scattered electrons
that can be used to provide image contrast depends on the operating mode
used (e.g., bright- or dark-field TEM or STEM). Exposure of a photographic
emulsion to a density S = 1 at M = 100 000 needs a dose of 103–104 C m−2.

In order to estimate the minimum dose qmin, we consider that n0 = jτ =
q/e electrons are incident per unit area. A fraction f contributes to the image
background (e.g., f = 1 − ε, ε � 1 for the bright-field or f = 10−3 − 10−2

for the dark-field TEM mode). The number N = nd2 = fn0d
2 forms the

image element of area d2. We assume that the image contrast C is caused by
a difference ∆n in the number of electrons,

C =
∆n

n
=

∆n

fn0
, (11.14)

and hence

∆N = ∆n d2 = fn0d
2C. (11.15)

The shot noise of the background signal (Poisson statistics) is N1/2. For the
signal to be significant, the signal-to-noise ratio κ must be larger than 3–5;
this is known as the Rose condition [11.115]:

Signal
Noise

=
∆N

N1/2
= Cd(fn0)1/2 = Cd(fq/e)1/2 > κ. (11.16)

Solving for q, we find that

qmin =
eκ2

fd2C2
(11.17)
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is the minimum dose with which a specimen detail of area d2 can be detected.
As a numerical example, assuming a bright field image (f � 1), κ = 5, d = 1
nm, C = 1%, we obtain qmin = 400 C m−2.

These examples demonstrate that the squares of d and C in the denomina-
tor of (11.17) can have a considerable influence on qmin and that the minimum
dose is of the same order of magnitude as the dose required for the exposure
of a photographic emulsion.

These doses are so high that severe damage to biological specimens is
inevitable, especially because taking a micrograph consists of three steps –
searching, focusing, and recording – and the first two need a larger dose
than the third. Minimum exposure techniques have therefore been developed
in which the grid is scanned at low magnification with a strongly reduced
electron dose; the microscope is focused on a different specimen region, after
which the beam is switched to the area of interest by means of deflection coils
and a shutter is opened for exposure [11.116, 11.117, 11.118, 11.119].

Another way of further decreasing the electron dose involves the low-
exposure averaging technique, in which the noise is reduced by averaging over
a large number of identical structures. This technique is therefore particularly
suitable for periodic specimens [6.207, 11.120]. If R denotes the number of
repeated unit cells, the Rose equation (11.16) becomes Cd(fRq/e)1/2 > κ
and the minimum dose qmin is then reduced by a factor 1/R. The fog level
of the photographic emulsion becomes a serious limitation for low exposure.
Nuclear track emulsions and nowadays CCD arrays have been found better
than the emulsions normally used at 100 keV [11.120, 11.121]. With the aid
of cross-correlation methods, the technique can also be employed for non-
periodic specimens (see also Sect. 6.6.4 and Fig. 6.35) [11.122]. From a series
of low-exposure micrographs with an increasing number of electrons per nm2,
the evolution of the damage with time can be followed either by calculating
crystal-structure projections, by Fourier transforming the measured intensi-
ties of a selected-area electron-diffraction pattern with assumptions about the
phase based on crystal symmetry [11.123], or by averaging low-dose exposures
with cross-correlation methods [11.124].

11.3 Radiation Damage of Inorganic Specimens

11.3.1 Damage by Electron Excitation

Electron excitations in metals and in most covalent semiconductors are re-
versible and cause no damage. Only electron–nucleus collisions (knock-on
processes, Sect. 11.3.2) can cause atomic displacements. However, it should
be recalled that the formation of defect clusters can also be observed during
prolonged irradiation in a 100 keV TEM. This damage may be attributable
to negative ions accelerated between cathode and anode [11.125].
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Fig. 11.8. Radiolysis sequence in alkali halides having the NaCl structure: (a) for-
mation of a Cl−2 bond; (b) intermediate state leading to the final state (c) consisting
of an interstitial Cl−2 cation (H center) and an anion vacancy with a trapped electron
(F center).

In ionic crystals (e.g., alkali halides), the most important excitations are:

1. inner shell ionization,
2. plasmon losses as collective oscillations of the valence electrons,
3. ionization of valence electrons, and
4. creation of locally bound electron–hole pairs (excitons).

The probability of inner-shell ionization (1) is low, and the energy is lost
in x-ray or Auger-electron emission. Plasmons (2) are the most probable exci-
tations but are much too delocalized to cause any localized transfer of energy;
they may, however, decay into more localized single-electron excitations of
exciton character. Mobile electrons (3) excited into higher states of the con-
duction band recombine with the less mobile holes (of large effective mass)
via intermediate exciton states. These secondary and primary excitons (4)
are responsible for the radiolysis. Figure 11.8 shows as an example a possible
radiolytic sequence in NaCl [11.126]. A localized hole behaves like a chlorine
atom and, in some exciton states with energy around 7 eV, this neutralized
anion is tightly localized in a Cl−2 bond between neighboring anions while
the excited electron stays in hydrogen-like orbitals of large diameter near the
surrounding Na+ cations (Fig. 11.8a). The Cl−2 moves by hole tunneling and
interstitial propagation (Fig. 11.8b,c), which results in formation of a Frenkel
pair that consists of an interstitial (H center) and an anion vacancy with a
trapped electron (F center).

Similar processes also cause radiolysis in other alkali halides and alkali-
earth fluorides (CaF2, MgF2). In MgO, however, radiolysis cannot be observed
because the displacement energy for the ions is greater than the available
energy of the excitons.

Radiolysis is strongly dependent on temperature if the transition to a
Frenkel pair requires an activation energy, which is of the order of 0.1 eV
in KI, NaCl, and NaBr. This causes a strong decrease of radiolysis at low
temperatures, which allows defects to be observed in specimens cooled below
50 K [11.127, 11.128].

Other processes consist of either recombination of the Frenkel pairs or
defect accumulation of interstitial halogen atoms, resulting in interstitial
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dislocation loops even at 50 K. The kinetics of these processes depends on
the mobility of the defects (temperature) and their concentration. As shown
in Sect. 11.2.1, the energy dissipated by electron bombardment in a transmis-
sion electron microscope is very much greater than in irradiation experiments
with x-rays or UV quanta. Results obtained with these radiations are there-
fore not directly comparable with those observed during electron irradiation
in a transmission electron microscope.

Radiolysis and secondary processes are not proportional to the dose q = jτ ,
unlike damage in organic material. Some secondary processes may not be
observed at low current densities but only at greater j, for which the rate of
Frenkel pair formation is greater. At high temperatures, the enhanced mobility
of anion vacancies and halogen molecules leads to the formation of colloidal
metal inclusions and halogen bubbles, whereas the dislocation loops grow
and form a dense dislocation network [11.129, 11.130]. Thus, in CaF2, voids
about 10 nm in diameter condense into a superlattice [11.131, 11.132]. Loss
of interlayer sodium has been observed in mica [11.133].

Irradiation of quartz causes a radiolytic transformation into an amor-
phous state (vitrification). The mechanism is not understood in detail, but
rupture of Si–O bonds causes rotations of [SiO4] tetrahedra in the silicate
structure [11.134]. Amorphization has also been observed in natural zeolites,
for example [11.135].

Some decomposition products can be identified by electron diffraction,
and degradation by electron-beam heating may not lead to the same result as
thermal decomposition, owing to the additional action of excitation processes.
For example, dolomite (Ca0.5Mg0.5CO3) decomposes in different stages to
CaO and MgO [11.136].

High-resolution electron microscopy in either the crystal-structure or the
surface-profile imaging modes (Sects. 9.6.3 and 9.7.3) needs very high cur-
rent densities (1–4 × 105A m−2), and electron-beam-induced radiolysis and
decomposition effects can be observed, especially by surface-profile imaging
[11.137].

Damage effects can also be analyzed by EELS experiments. For example,
in LiCl, an O K edge appears as a result of oxidation of Li, and a loss of Cl
can be observed after irradiating NaCl [11.138]. The ELNES of hydroxybo-
rate minerals (rhodizite, colemanite, howlite) indicates that a BO4 to BO3

transformation occurs, leading to a structure damage [11.139]; a reduction of
Mn4+ in manganese oxides has been revealed by parallel EELS [11.140].

11.3.2 Radiation Damage by Knock-On Collisions

Besides the damage produced by ionization (Sects. 11.2 and 11.3.1) and spec-
imen heating (Sect. 11.1), radiation damage by knock-on collisions has to be
considered in HVEM; for reviews, see [11.141–11.145].

It was shown in Sect. 5.1.2 that, during an elastic collision between a beam
electron and a nucleus, the energy transferred can become greater than the
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Table 11.7. Mean displacement energy Ed and electron thereshold energy Eth for
direct knock-on of atoms (for carbon, Ed = 5 eV corresponds to molecules and 10 eV
for graphite). Displacement cross sections σd and maximum energy transfer Emax

for a head-on impact (θ = 180◦) at E = 1MeV.

Element C Si Cu Mo Au

Ed (eV) 5 (10) 13 19 33 33
Eth (keV) 27.2 (54.4) 145 400 810 1300
σd (10−24cm2) 89 (43.6) 69 59 7.2 −
Emax (eV) 366 155 68 45 22

mean (polycrystalline) value of the displacement energy Ed (Table 11.7). As
a result of such a displacement, a Frenkel pair that consists of a vacancy and
an interstitial atom is produced. Similarly, an atom can be pushed into a
neighboring vacancy, or an interstitial atom can be moved to another intersti-
tial site. Neighboring knocked-on atoms can transfer momentum to a mobile
(thermally activated) atom. These processes result in radiation-induced or
radiation-enhanced diffusion. The displacement energies are greater than for
similar processes caused by thermal activation because an atom is pushed to
an interstitial position across the saddle point of neighboring atoms so quickly
that the lattice cannot relax by exciting lattice vibrations.

With increasing electron energy E, the energy transfer ∆E first becomes
greater than Ed for a scattering angle θ = 180◦ at the threshold energy Eth.
With increasing atomic mass A, the values of Eth become greater (Table 11.7)
but the cross sections σd for displacement increase more rapidly for greater A
at high energies (Fig. 5.3). The threshold energy also depends on the direction
of the knock-on momentum and is least in the close-packed directions 〈110〉,
〈100〉 and, 〈1120〉 for fcc, bcc, and hexagonal close-packed metals, respectively.
Thus, for Cu, Ed is 20 eV near 〈110〉 and increases to 45 eV near 〈111〉 but
can be as low as 10 eV for a narrow angular region about 10◦ away from 〈110〉
[11.146, 11.147, 11.148].

The concentration of displacements cd = nd/n (n: number of atoms per
unit volume) is proportional to the current density jn at the nuclei and the
irradiation time τ :

cd = σdjnτ/e. (11.18)

Irradiation of copper for 1 min with a 5 µm spot and a current of 0.2 µA gives
cd = 0.25% at E = 600 keV and cd = 1.25% at E = 1 MeV. However, unlike
the case of ionization damage, the cross sections σd are so small that the
damage can be avoided even when working at high resolution. Alternatively,
the damage can be exacerbated by increasing the current density and the
irradiation time, and a high-voltage electron microscope becomes a powerful
tool for investigating radiation-damage effects in situ because the production
of Frenkel pairs can be three to four orders of magnitude greater than with
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electron accelerators or in a nuclear reactor. Very high electron energies will
be useful for studying damage in materials of high atomic number (e.g., 2.5
MeV for Au [11.149]).

The dependence of cd on the current density jn at the nuclei enhances the
production rate up to a factor of 4 if the Bloch-wave intensity is greatest at
the nuclei. There is thus a sensitive dependence of cd on crystal orientation,
with a maximum near the Bragg position, where cd becomes proportional to
the intensity of excess Kikuchi bands (Fig. 7.20b) [11.147, 11.150].

Defect clusters are observable by TEM only as secondary damage products.
The diffusion of vacancies and interstitials depends strongly on temperature.
Whereas interstitials are highly mobile during irradiation at all temperatures,
vacancies need higher temperatures (room temperature in Cu, for example)
to become mobile. A decrease of specimen temperature to 4 K can be used to
stabilize a defect structure obtained at high temperature, or the accumulation
of defects generated at 4 K can be observed as the temperature is increased.

If the thermally activated diffusion of point defects does not lead to a
recombination of Frenkel pairs, then defect clusters, interstitial-dislocation
loops, stacking-fault tetrahedra, or voids may be formed. Surfaces, disloca-
tions, and grain boundaries are sinks for point defects, which decrease the
defect concentration over distances of 100–150 µm.

In alloys, atomic displacements can cause radiation-enhanced diffusion;
in Al-Cu or Al-Zn alloys, for example, radiation-enhanced precipitation may
result. Disordering can be observed in ordered alloys (e.g., Ni3Mn), but or-
dering may occur simultaneously as a result of radiation-enhanced diffusion
(e.g., Fe-Ni, Au4Mn).

11.4 Contamination

11.4.1 Origin and Sources of Contamination

Radiation damage of adsorbed hydrocarbon molecules on the specimen sur-
face causes a carbon-rich, polymerized film to form; this grows on electron-
irradiated areas of the specimen by cross-linking. In competition with this
contamination, reactions with activated, adsorbed H2O, O2 or N2 molecules
cause etching of carbonaceous material. Depending on specimen preparation,
partial pressures, specimen temperature, and irradiation conditions, growth of
either sign (positive for contamination and negative for etching) may prevail.
It is not easy to work at equilibrium (zero growth) (see [11.152] for a review).

Various sources of hydrocarbon molecules are

1. adsorbed layers on the specimen, introduced during preparation or by at-
mospheric deposition,

2. vacuum oil from the rotary and diffusion pumps, and
3. grease and rubber O-rings and adsorbed layers (e.g., fingermarks) on the

microscope walls.
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These contributions to contamination can be kept small by taking the
following precautions.

Even pure specimens become contaminated by hydrocarbon molecules if
exposed to air for a period of a day. This type of contamination cannot be re-
duced by the liquid-nitrogen-cooled anticontamination blades (or cold finger)
inside the microscope. It is certainly the most important source of contamina-
tion, especially when small electron probes <0.1µm are used. Contamination
of this kind will be introduced even with the specimen under ultrahigh vac-
uum conditions. Washing the specimen cartridge and the specimen in methyl
alcohol is the simplest way of eliminating this contaminant [11.153].

The partial pressure of vacuum-oil molecules can be reduced by using oil
of low vapor pressure and a good baffle between the diffusion pump and the
column, and by switching over from the rotary to the diffusion pump at a
pressure of about 10 Pa to avoid back streaming of the rotary-pump oil. The
best solution is to use an oil-free turbomolecular pump.

Grease must be avoided or be used very sparingly. Vacuum leaks can never
be cured by heavy greasing but only by careful polishing of the sealing surfaces.
Viton rings should be used in preference to rubber. All surfaces should be
washed with methyl alcohol, which evaporates completely in air. Finger-marks
should be avoided by wearing gloves when opening the microscope.

The etching process is affected by the composition of the residual gas
and by the partial pressure of water that comes from photographic materials.
Emulsions should be pre-evacuated in the presence of water-absorbing mater-
ial (e.g., P2O5) and raised to atmospheric pressure for only a very short time
[4.126]. Photographic emulsions are a very uncertain source of water vapor.

11.4.2 Methods for Decreasing Contamination

The precautions mentioned in the preceding section are essential if the con-
tamination rate is to be effectively reduced. Further improvements can be
obtained by the following methods.

(1) Specimen Heating to 200–300◦C increases the desorption of hydrocar-
bon molecules and decreases the contamination [11.155]. When small electron
probes are employed, it is, however, necessary to heat the specimen initially
to 400–500◦C.

(2) Specimen Cooling [11.156]. The specimen cartridge and additional
components act as a cryoshield and decrease the adsorption of hydrogen
molecules by decreasing their partial pressure near the specimen. At low tem-
peratures, the contamination changes over to etching of carbon or organic
material (Fig. 11.9a). This is attributed to a radiation-induced chemical reac-
tion with adsorbed residual gas molecules (H2O, N2, O2, CO, H2), resulting
in volatile compounds with carbon. The observed spread of experimental re-
sults in Fig. 11.9 is a consequence of the variable composition of the residual
gas. When metal or inorganic specimens are cooled below –100◦C, there is no
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Fig. 11.9. Rate of carbon deposition by contamination (positive sign) and removal
by etching (negative sign) as a function of temperature T for (a) specimen cooling
with the specimen and the cryoshield at the same temperature and (b) the anti-
contamination blades at the temperature T and the specimen at room temperature
[11.157, 11.158].

contamination. If the cryoshield is not sufficient, an ice film may grow on the
specimen, but this will vanish if a small electron probe is being employed.

(3) Anticontamination Blades cooled with liquid nitrogen surround the
specimen and act as cryoshields, but the specimen is still at room tempera-
ture. Cooling first causes a decrease of the partial pressure of hydrocarbons,
and etching of the specimen predominates (Fig. 11.9b) [11.157, 11.158]. Fur-
ther cooling also reduces the partial pressure of the residual gas molecules
that are responsible for etching. At low temperatures of the blades, contami-
nation or etching continues at a very low rate. The precautions of Sect. 11.4.1,
together with anticontamination blades, are mostly sufficient for routine use
of a transmission electron microscope with illuminated areas larger than one
micrometer in diameter. A much higher contamination rate is, however, ob-
served when small electron probes are employed for STEM, microdiffraction,
or microanalysis. The main source of trouble is then the surface diffusion of
adsorbed hydrocarbon molecules to the irradiated area (see Sect. 11.4.3).

11.4.3 Dependence of Contamination on Irradiation Conditions

Three types of irradiation conditions may be distinguished.

(1) Uniform Irradiation of a Reasonably Large Area (Fig. 11.10a).
The growth rate of contamination is proportional to the current density and
the irradiation time or proportional to the charge density q = jτ . The growth
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Fig. 11.10. Buildup of (a) a uniform contam-
ination layer by uniform irradiation of a larger
area, (b) a contamination ring by uniform ir-
radiation of a small area, and (c) a contamina-
tion needle by irradiation with a small electron
probe.

rate in the central part of the irradiated area is mainly determined by adsorp-
tion of molecules from the gas phase. Adsorbed hydrocarbons introduced into
the microscope with the specimen are damaged in the first stage of irradiation
and are fixed by cross-linking.

(2) Irradiation of a Small Area with Uniform Current Density
(Fig. 11.10b). If the diameter of the area illuminated is reduced to a few
micrometers by imaging the condenser diaphragm on the specimen, an an-
nular contamination spot can be observed with more contamination at the
periphery of the irradiated area than at the center. This phenomenon can
be explained by surface diffusion of adsorbed hydrocarbons, which are cross-
linked when they are struck by the electron beam and have little opportunity
to diffuse to the center of the illuminated area. The contamination rate is
higher than that found with uniform illumination of a larger area because the
whole foil is a source, which supplies molecules by surface diffusion. There
is no reason to assume that the electric fields caused by secondary electron
emission have any influence, as claimed in [11.159]. The model calculations
of Müller [11.160] discussed below in detail are fully adequate to explain the
generation of contamination rings (see the end of this section).

(3) Irradiation with an Electron Probe (Fig. 11.10c). The diameter of
the annular zone of higher contamination rate (described above) decreases if
the electron-probe diameter is less than 0.1 µm, and a needle-shaped contam-
ination spot is formed. This spot can be broadened at its bottom by multiple
scattering of electrons at the top of the contamination needle. The contami-
nation cone on the bottom of the foil is also normally broadened by multiple
scattering [11.161]. It is very difficult to combat this type of contamination.
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An excellent vacuum, washing the specimen with methyl alcohol, and speci-
men heating or cooling are necessary precautions. A cold finger, which helps to
decrease the partial pressure and the contamination under irradiation condi-
tion 1, is normally not sufficient for this illumination mode. It has been found
that the growth of contamination needles increases the longer the specimen
stays in the microscope vacuum. If a larger area (grid mesh) is subsequently
irradiated, the contamination rate again decreases, which indicates that the
adsorbed molecules from the vacuum are fixed by irradiation and cannot dif-
fuse further to the irradiated spot.

The higher contamination rate with small electron probes can be exploited
for microwriting [11.160, 11.162]. The local foil thickness can be determined
by tilting the irradiated specimen through 45◦ to separate the top and bottom
cones (needles) of contamination [10.44].

All of these processes and different illumination conditions can be de-
scribed by a single differential equation [11.160]. The number k of molecules
that are cross-linked to the surface per unit time and per unit area is propor-
tional to the density n of the adsorbed molecules and to the current density j:

k = nσ
j

e
. (11.19)

The number ν of molecules incident on a unit area in a unit time can be
calculated from the partial pressure p:

ν =
p

(2πmkT )1/2
. (11.20)

These molecules are adsorbed and desorbed again with a time constant τ0.
The equilibrium concentration will be

n∞ = ντ0. (11.21)

Four mechanisms can change the concentration n:

(1) adsorption of molecules (∂n/∂τ)1 = ν.
(2) desorption (∂n/∂τ)2 = −n/τ0.
(3) diffusion (∂n/∂τ)3 = λ∇2n.
(4) contamination (∂n/∂τ)4 = −(j/e)σn.

This may be expressed by the partial differential equation
∂n

∂τ
= ν − n

τ0
+ λ∇2n − j

e
σn. (11.22)

Applying the equilibrium condition ∂n/∂τ = 0 and imposing rotational sym-
metry, we obtain

ν − n

τ0
+ λ

(
d2n

dr2
+

1
r

dn

dr

)
− j

e
σn = 0. (11.23)

With the abbreviations ρ = (τ0λ)1/2, α = σ/eλ, ν/λ = n∞/ρ2, this equation
can be written as
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d2n

dr2
+

1
r

dn

dr
− 1

ρ2
n(r) − αj(r)n(r) +

n∞
ρ2

= 0. (11.24)

If uniform irradiation j0 is assumed in the area r ≤ R, the equation can be
solved in this inner area,

n2 = n∞

[
ρ2
0

ρ2
+ C2I0

(
r

ρ0

)]
with ρ0 = ρ(1 + α2ρ2j0)−1/2, (11.25)

and in the outer, nonirradiated area r ≥ R,

n1 = n∞

[
1 − C1K0

(
r

ρ

)]
. (11.26)

The constants C1 and C2 can be determined from the boundary conditions
at r = R: n1(R) = n2(R) and dn1(R)/dr = dn2(R)/dr. I0 and K0 are the
modified Bessel (Hankel) functions. An example of the resulting distribution
n(r) and the thickness tc = σn(r)jτ/e of the contamination layer is plotted in
Fig. 11.11. It shows how the irradiated area acts as a sink for hydrocarbons.
The contamination rate is proportional to n(r), and the contamination ring
discussed earlier is predicted. On increasing the current density j by a factor
of 2 (a → b) and (c → d), the density n(r) decreases to approximately half
the value observed at low j. This results in a growth of contamination of
thickness tc, which will be proportional only to the irradiation time τ [n(r)j =
const] and not to the charge density q = jτ . For constant j, increasing the
radius R of the irradiated area (a → c) and (b → d) results in a decrease
of n(r) that is approximately proportional to r−2. The proportionality of
n(r) to (jR2)−1 = I−1

p results in the formation of a constant total mass
of contamination per unit time. There is thus a saturation effect caused by
the delayed diffusion of hydrocarbon molecules from the unirradiated part of
the foil.

Fig. 11.11. Equilibrium of the concentration n(r) of adsorbed organic molecules.
The irradiated area r ≤ R acts as a sink for mobile molecules, so that a contamina-
tion layer of thickness tc ∝ n(r)jτ is formed (n∞ is the equilibrium concentration
at a large distance). The irradiated area shows in (c) and (d) twice the diameter
2R as in (a) and (b), and the current density in (b) and (d) is a factor of 2 larger
than in (a) and (c) [11.160].
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Scanning a larger area in the STEM mode will result in a uniform con-
tamination layer for fast scans when n � n∞. For slow scans, the discussion
of the contamination rate is more complicated because the decrease of n is
asymmetrical and the contamination trails behind the moving electron probe.
This nonstationary case can be calculated by solving of the time-dependent
equation (11.23) numerically [11.163].
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[2.28] J. Dosse: Über optische Kenngrößen starker Elektronenlinsen. Z. Phys. 117,

722 (1941)
[2.29] V.E. Cosslett: Energy loss and chromatic aberration in electron microscopy.

Z. Angew. Phys. 27, 138 (1969)
[2.30] L. Reimer, P. Gentsch: Superposition of chromatic error and beam broad-

ening in TEM of thick carbon and organic specimens. Ultramicroscopy 1,
1 (1975)

[2.31] S. Katagiri: Experimental investigation of chromatic aberration in the elec-
tron microscope. Rev. Sci. Instr. 26, 870 (1955)

[2.32] O. Rang: Der elektronenoptische Stigmator, ein Korrektiv für astigmatische
Elektronenlinsen. Optik 5, 518 (1949)

[2.33] O. Scherzer: Z. Phys. 101, 593 (1936)
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[5.22] B. Schröder, J. Geiger: Electron-spectrometric study of amorphous Ge and
Si in the two-phonon region. Phys. Rev. Lett. 28, 301 (1972)

[5.23] H. Raether: Solid State Excitations by Electrons, Springer Tracts in Modern
Physics, Vol. 38 (Springer, Berlin, 1965) p. 84

[5.24] R.D. Leapman, V.E. Cosslett: Energy loss spectrometry of inner shell ex-
citations, in Electron Microscopy 1976, Vol. 1, ed. by D.G. Brandon (Tal
International, Jerusalem, 1976) p. 431

[5.25] M. Isaacson: Interaction of 25 keV electrons with the nucleic acid bases
adenine, thymine and uracil. J. Chem. Phys. 56, 1803 (1972)

[5.26] H. Bethe: Zur Theorie des Durchganges schneller Korpuskularstrahlen
durch Materie. Ann. Phys. 5, 325 (1930)

[5.27] M. Inokuti: Inelastic collisions of fast charged particles with atoms and
molecules – The Bethe theory revisited. Rev. Mod. Phys. 43, 297 (1971)

[5.28] B.G. Williams, T.G. Sparrow, R.F. Egerton: Electron Compton scattering
from solids. Proc. Roy. Soc. London A 393, 409 (1984)

[5.29] L. Reimer, R. Rennekamp: Imaging and recording of multiple scattering
effects by angular-resolved EELS. Ultramicroscopy 28, 258 (1989)

[5.30] B.G. Williams: Compton Scattering: The Investigation of Electron Momen-
tum Distribution (McGraw-Hill, London 1977)

[5.31] M.J. Cooper: Compton scattering and electron momentum distribution.
Rep. Progr. Phys. 48, 415 (1985)



References 511

[5.32] P. Schattschneider, P. Jonas, M. Mändl: Electron Compton scattering on
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Hg. Z. Phys. 169, 252 (1962)

[5.45] E. Petri, A. Otte: Direct nonvertical interband and intraband transitions
in Al. Phys. Rev. Lett. 34, 1238 (1975)

[5.46] C.H. Chen, J. Silcox: Direct nonvertical interband transitions of large wave-
vectors in aluminum. Phys. Rev. B 16, 1246 (1977)

[5.47] D. Pines: Collective energy losses in solids. Rev. Mod. Phys. 28, 184 (1956)
[5.48] H. Kohl: Spatially Sensitive Electron Energy Loss Spectroscopy. in: Fun-

damental Electron and Ion Beam Interactions with Solids for Microscopy,
Microanalysis and Microsltihography J. Schou. P. Kruit, and D. Newbury
(eds.) Scanning Microsc. Suppl. 4 (1989) 17

[5.49] D. Bohm, D. Pines: A collective description of electron interactions. III.
Coulomb interactions in a degenerate electron gas. Phys. Rev. 92, 609
(1953)

[5.50] B. Rafferty, S.J. Pennycook, L.M. Brown: Zero loss peak deconvolution for
bandgap EEL spectra. J. Electron Microsc. 49, 517 (2000)

[5.51] S. Pokrant, M. Cheynet, S. Jullian, R. Pantel: Chemical analysis of nano-
metric dielectric layers using spatially resolved VEELS. Ultramicroscopy
104, 233 (2005)

[5.52] W. Sigle, L. Gu, V. Srot, C. Koch, P. van Aken: Low-loss EELS with mono-
chromatized electrons. Microsc. Microanal. 13 Supplement 3, 54 (2007)



512 References

[5.53] J. Lindhard: On the properties of gas of charged particles. Danske Vidensk.
Selsk. Mat.-Fys. Medd. 28, 1 (1954)

[5.54] R.W. Ditchfield, A.G. Cullis: Identification of impurity particles in epitaxi-
ally grown Si films using combined electron microscopy and energy analysis,
in [Ref. 1.55, Vol. 2, p. 125]

[5.55] R.F. Cook: Electron energy loss spectroscopy of glass, in [Ref. 1.55, Vol. 2,
p. 127]

[5.56] J. Hainfeld, M. Isaacson: The use of electron energy loss spectroscopy for
studying membrane architecture. Ultramicroscopy 3, 87 (1978)
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[5.95] C. von Festenberg, E. Kröger: Retardation effects for the electron energy
loss probability in GaP and Si. Phys. Lett. A 26, 339 (1968)

[5.96] C.H. Chen, J. Silcox, R. Vincent: Electron energy loss in silicon: Bulk and
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mikroskopie und ihre kontrastübertragungstheoretische Deutung. Optik 32,
74 (1970)

[6.139] A. Tonomura, A. Fukuhara, H. Watanabe, T. Komoda: Optical reconstruc-
tion of image from Fraunhofer electron hologram. Jpn. J. Appl. Phys. 7,
295 (1968)

[6.140] J. Munch: Experimental electron holography. Optik 43, 79 (1975)
[6.141] K.J. Hanszen, G. Ade, R. Lauer: Genauere Angaben über sphärische
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[8.50] W. Riecke, F. Stöcklein: Eine Objektkammer mit universell beweglichem
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gen im Ferrit. Arch. Eisenhüttenwesen 32, 493 and 573 (1961)
[8.117] S. Ogawa, D. Watanabe, H. Watanabe, T. Komoda: The direct observa-

tion of the long period of the ordered alloy CuAu(II) by means of electron
microscope, in [Ref. 1.52, Vol. 1, p. 334]

[8.118] S. Ogawa: On the antiphase domain structures in ordered alloys. J. Phys.
Soc. Jpn. 17, Suppl. B-II, 253 (1962)

[8.119] P. Goodman: A practical method of three-dimensional space group analysis
using CBED. Acta Cryst. A 31, 804 (1975)

[8.120] B.F. Buxton, J.A. Eades, J.W. Steeds, G.M. Rackham: The symmetry of
electron diffraction zone axis patterns. Philos. Trans. Roy. Soc. London A
281, 171 (1976)

[8.121] P.E. Champness: Convergent beam electron diffraction. Mineral. Mag. 51,
33 (1987)

[8.122] M. Tanaka: Symmetry analysis. J. Electron Microsc. Techn. 13, 27 (1989)
[8.123] J.W. Steeds, J.P. Morniroli: Selected area electron diffraction (SAED) and

convergent beam electron diffraction (CBED), in Minerals and Reactions
at the Atomic Scale: Transmission Electron Microscopy, Reviews in Min-
eralogy, Vol. 27, ed. by P.R. Buseck (Mineralogical Society of America,
Washington, 1992) p. 37

[8.124] J. Gjønnes, A.F. Moodie: Extinction conditions in the dynamical theory of
electron diffraction. Acta Cryst. 19, 65 (1965)

[8.125] J.W. Steeds, R. Vincent: Use of high-symmetry zone axes in electron dif-
fraction in determining crystal point and space groups. J. Appl. Cryst. 16,
317 (1983)

[8.126] I. Ackermann: Beobachtungen an dynamischen Interferenzerscheinungen im
konvergenten Elektronenbündel. Ann. Phys. 2, 19 and 41 (1948)

[8.127] P.M. Kelly, A. Jostsons, R.G. Blake, J.G. Napier: The determination of foil
thickness by STEM. Phys. Status Solidi A 31, 771 (1975)

[8.128] S.M. Allen: Foil thickness measurements from convergent beam diffraction
patterns. Philos. Mag. A 43, 325 (1981)

[8.129] R.G. Blake, A. Jostsons, P.M. Kelly, J.G. Napier: The determination of ex-
tinction distances and anomalous absorption coefficients by STEM. Philos.
Mag. A 37, 1 (1978)

[8.130] J.M. Zuo, J.C.H. Spence, M. O’Keefe: Bonding in GaAs. Phys. Rev. Lett.
61, 353 (1988)

[8.131] K. Kambe: Study of simultaneous reflexion in electron diffraction by crys-
tals. J. Phys. Soc. Jpn. 12, 13 (1957)

[8.132] J. Gjønnes, R. Høier: The application of non-systematic many-beam dy-
namical effects to structure-factor determination. Acta Cryst. A 27, 313
(1971)

[8.133] K. Marthinsen, R. Høier: Many-beam dynamic effects and phase informa-
tion in electron channelling patterns. Acta Cryst. A 42, 484 (1986)



546 References

[8.134] D.M. Bird, R. James, A.R. Preston: Direct measurement of crystallographic
phase by electron diffraction. Phys. Rev. Lett. 59, 1216 (1989)

[8.135] J.M. Cowley: The determination of structure factors from dynamical effects
in electron diffraction. Acta Cryst. A 25, 129 (1969)

[8.136] J.M. Zuo, K. Gjønnes, J.C.H. Spence: FORTRAN source listing for simu-
lating three-dimensional convergent beam patterns with absorption by the
Bloch wave method. J. Electron Microsc. Techn. 12, 29 (1989)

[8.137] J.M. Zuo, J.C.H. Spence: Automated structure factor measurement by
convergent-beam electron diffraction. Ultramicroscopy 35, 185 (1991)

[8.138] R. Høier, L.N. Bakken, K. Marthinsen, R. Holmestad: Structure factor de-
termination in non-centrosymmetric crystals by a 2-dimensional CBED-
based multi-parameter refinement method. Ultramicroscopy 49, 159 (1993)

[8.139] C. Deininger, G. Necker, J. Mayer: Determination of structure factors, lat-
tice strains and accelerating voltage by energy-filtered CBED. Ultrami-
croscopy 54, 15 (1994)

[8.140] J.M. Zuo. J.C.H. Spence, J. Downs, J. Mayer: Measurement of individual
structure-factor phases with tenth-degree accuracy: The 00.2 reflection in
BeO studied by electron and x-ray diffraction. Acta Cryst. A 49, 422 (1993)

[8.141] J.W. Steeds, K.K. Fung: Application of convergent beam electron mi-
croscopy in materials science, in [Ref. 1.57, p. 620]

[8.142] J.W. Steeds: Convergent beam electron diffraction, in [Ref. 1.66, p. 387]
[8.143] R. Ayer: Determination of unit cell. J. Electron Microsc. Techn. 13, 16

(1989)
[8.144] D.M. Bird: Theory of zone axis electron diffraction. J. Electron Microsc.

Techn. 13, 77 (1989)
[8.145] P.M. Jones, G.M. Rackham, J.W. Steeds: Higher order Laue zone effects in

electron diffraction and their use in lattice parameter determination. Proc.
Roy. Soc. London A 354, 197 (1977)

[8.146] B.F. Buxton: Bloch waves and higher order Laue zone effects in high energy
electron diffraction. Proc. Roy. Soc. (London) A 350, 335 (1976)

[8.147] J.W. Steeds: Information about the crystal potential from zone axis pat-
terns, in Electron Microscopy 1980, Vol. 4, ed. by P. Brederoo, J. Van
Landuyt (Seventh European Congress on Electron Microscopy Foundation,
Leiden, 1980) p. 96

[8.148] J.R. Baker, S. McKernan: Structure factor information from HOLZ beam
intensities in convergent-beam HEED, in Electron Microscopy and Analysis
1981, ed. by M.J. Goringe (IoP, London, 1982) p. 283

[8.149] G.M. Rackham, P.M. Jones, J.W. Steeds: Upper layer diffraction effects in
zone axis patterns, in [Ref. 1.55, Vol. 1, p. 336 and 355]

[8.150] J.E. Loveluck, J.W. Steeds: Crystallography of lithium tantalate and
quartz, in Developments in Electron Microscopy and Analysis 1977, ed.
by D.L. Misell (IoP, London, 1977) p. 293

[8.151] G.M. Rackham, J.W. Steeds: Convergent beam observation near boundaries
and interfaces, in Developments in Electron Microscopy and Analysis, ed.
by J.A. Venables (Academic, London, 1976) p. 457

[8.152] P. Goodman: A practical method for three-dimensional space-group analy-
sis using convergent beam electron diffraction. Acta Cryst. A 31, 804 (1975)

[8.153] P. Goodman: The symmetry of electron diffraction zone axis patterns. Phi-
los. Mag. A 281, 171 (1976)



References 547

[8.154] J.W. Steeds: Electron crystallography, in Quantitative Electron Microscopy,
ed. by J.N. Chapman, A.J. Craven (Scottish Universities Sommer School
in Physics, Edinburgh, 1984) p. 49

[8.155] T. Okuyama, S. Matsumura, N. Kuwano, K. Oki: Dynamical diffraction
effects on higher-order Laue zone lines in CBED patterns of semiconductors.
Ultramicroscopy 31, 309 (1989)

[8.156] Y.P. Lin, D.M. Bird, R. Vincent: Errors and correction terms for HOLZ
line simulations. Ultramicroscopy 27, 233 (1989)

[8.157] J.M. Zuo: Perturbation theory in high-energy transmission electron diffrac-
tion. Acta Cryst. A 47, 87 (1991)

[8.158] J.M. Zuo: Automated lattice parameter measurement from HOLZ lines
and their use for the measurement of oxygen content in YBa2Cu3O7−δ.
Ultramicroscopy 41, 211 (1992)

[8.159] Y. Kondo, Y. Harada: New electron diffraction technique to obtain HOLZ
patterns using hollow-cone illumination, in Electron Microscopy 1984,
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mikroskop. Z. Angew. Phys. 8, 221 (1956)
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[11.65] W. Lippert: Über Massendickeveränderungen bei Kunststoffen im Elektro-
nenmikroskop. Optik 19, 145 (1962)



570 References

[11.66] G. Siegel: Der Einfluß tiefer Temperaturen auf die Strahlenschädigung von
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G value, 469, 478
Z-contrast, 113
Ω-Filter, 121
α-fringes, 384
(A.S.T.M. Index), 345
(Gjønnes–Moodie lines), 352
(Grigson mode), 339

Aberration correction, 40, 404
absorption correction, 433, 435
absorptive power of radiation, 463
Acceleration voltage, 7, 17, 99, 107, 356,

357, 404
acceptance angle, 445–447
Achromatic circle, 234
Achromatic image plane, 120, 121
Adjustment, 92
Aharonov-Bohm effect, 48
Airy distribution, 70, 76, 94, 233
ALCHEMI, 434
Alignment, 43, 92, 107, 134, 249, 254
Alloy composition, 316
amino acid analyzer, 476
amorphization, 482
amorphous diffraction, 360
amorphous layer, 407
Amorphous specimen contrast, 196
Amorphous specimen diffraction, 317,

318
Amplitude-phase diagram (APD), 57,

292, 373, 374, 378, 392
Analytical Electron Microscopy, 5
analytical sensitivity, 453

angle-resolved EELS, 7, 126, 159, 168,
443

Angular momentum, 24, 152, 174

anisotropic aberration, 31, 38

annular Aperture, 213

annular detector, 337

Anode, 17, 85

Anomalous absorption, 306, 312, 325,
376, 380, 390, 434

anomalous electron transmission, 337

Anomalous transmission, 99, 309, 312,
335, 362, 369, 370, 372, 382

anticomplementary, 382

Anticontamination blade, 100, 101, 485,
486

antiferromagnetic domain, 384

antiphase boundaries, 351, 378, 383

Aperture illumination, 61

arrhenius plot, 478

Astigmatism, 31, 34, 40, 73, 92, 103,
104, 239, 244, 255, 331

atomic displacement, 409, 480, 484

atomic number correction, 432, 433

Auger electron, 155, 424, 427

Auger electron microanalysis, 14, 183

autoalignment, 43

Autobiasing, 87

Autocorrelation, 160, 254

Autofocusing, 250, 262

autoradiography, 477

Autotuning, 250, 404

Averaging by Fourier filtering, 255
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Averaging of periodic structures, 255,
261

Averaging rotational symmetry, 256

Back focal plane, 29, 96, 110
Backscattered electron coefficient, 193,

210
backscattered electrons (BSE), 13, 110,

138, 139, 192, 337, 429
Backscattering, 313, 324, 432
Backscattering coefficient, 139
Barber’s rule, 116
Bend contour, 268, 311, 315, 341,

358–360, 362, 363, 369, 370, 388,
401

Bethe approximation, 313
Bethe dynamic potential, 360
Bethe dynamical potential, 313, 314
Bethe formula, 187, 467
Bethe loss, 187, 194, 462, 477
Bethe range, 192
Bethe ridge, 7, 159
Bethe sum rule, 158, 440
Bethe surface, 158, 159
Binomial distribution, 132, 136
Biological sections, 8, 98, 100, 196, 203,

207, 209, 210, 259, 421, 452
Biomacromolecules, 249, 256
Biprism fringes, 246, 267, 268
Bloch wave, 294, 295, 297, 434
Bloch wave absorption, 306
Bloch wave absorption parameter, 308,

311, 313, 321–323
Bloch wave boundary condition, 297,

298, 306
Bloch wave dependent and independent

model, 311
Bloch wave excitation amplitude, 297,

305, 309
Bloch wave field, 297, 337, 370, 371
Bloch wave intensity, 312
Bloch wave probability density, 308, 313
Bloch wave type, 303
bloch-wave, 376
bloch-wave absorption, 397, 399
Bloch-wave channeling, 342, 372
bloch-wave excitation amplitude, 375,

376, 382, 383
bloch-wave method, 382, 383, 390, 405

bloch-wave type, 383
Blocking, 313
Boersch effect, 39, 82, 89
Bohr model, 423
Bohr radius, 147, 148
Boltzmann constant, 78
bond rupture, 469
Bormann effect, 434
Born approximation, 146, 148, 150, 151,

153, 200, 294
Bragg angle, 106, 284, 330, 364, 460
Bragg condition, 283, 285, 287, 292,

300, 342, 348
Bragg reflection, 98, 213, 306, 330, 335,

338, 342, 349, 359, 363, 369, 400
Bragg reflection amplitude, 291, 383
Bragg reflection intensity, 300
Bragg spot diameter, 333
Bragg transmission intensity, 300
Bright-field, 104, 196, 209, 219, 224, 329
Brillouin zone, 302
Burgers vector, 100, 357, 359, 386, 389,

394

cage effect, 479
Camera length, 104, 331, 339, 366, 395
Canonical momentum, 47
Castaing-Henry imaging energy filter,

121
Catalase, 108
Cathode, 17, 84, 86
Cathode lifetime, 79, 88
Cathode temperature, 78
Cathode-ray tube, 110
Cathodoluminescence, 13, 110, 127
Caustic, 76, 92, 336
cavity, 362, 366, 384
CBED, 333, 335, 342, 352–355
CCD, 1, 339, 353
Central beam stop, 218, 224
Centrifugal potential barrier, 176
Čerenkov radiation, 173
Channeling effects, 112, 194, 313
Channeling pattern, 194, 311
Charge density, 127, 129, 201, 467

distributions, 353
Charge-collection efficiency, 138
Charge-coupled-device (CCD), 107, 134
charge-sensitive amplifier, 428
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Charging, 332, 339, 340, 363

chemical etching, 370

Chromatic Aberration, 42

Chromatic Aberration Cc, 7, 94, 98,
103, 105, 106, 110, 120, 155,
188–190, 204, 370, 402

cleavage, 370

Cliff–Lorimer ratio, 179, 434, 435

Close-packed structure, 278

Coherence, 90, 230, 234, 400, 404, 406

Coherence condition, 55

Coherence length, 55

Coherence partial, 55

Coherence spatial, 55

Coherence temporal, 55

coherent Precipitates, 396

Cold finger, 100

Colloidal gold, 217, 238

Column approximation, 289, 373, 393

coma, 31, 37

Coma-free alignment, 32, 38, 43, 93,
241, 404

Complex scattering amplitude, 148,
152, 197, 200, 220

composition profile, 408

Compton angle, 446

Compton effect, 424

Compton scattering, 7, 160, 171, 326

condensation of gases, 461

Condenser lens, 90

condenser-objective Lens, 96, 109

Contamination, 90, 103, 108, 113, 238,
332, 333, 356, 362, 418, 435, 484

Contamination mark, 269

contamination needle, 488

contamination rate, 489

contamination ring, 489, 490

Contrast thickness, 198, 200, 205, 210,
445

Contrast transfer in STEM, 236, 237

Contrast tuning, 125, 206

contrast-transfer envelope, 402

Contrast-transfer function, 3, 4, 100,
105, 106, 130, 131, 213, 218, 220,
222, 228, 251, 404, 406

Contrast-transfer function envelope,
231, 232

Convergent beam electron diffraction
(CBED), 6, 7, 110, 329, 333, 341,
362, 412

Convolution, 64, 185, 191
Core polarizability, 167
Cornu spiral, 58, 61
correction of aberrations, 40, 404
Coulomb energy, 147, 152, 157, 178
Coulomb energy (potential), 285, 304,

347
Coulomb force, 51
Coulomb interactions, 82
Coulomb potential, 347
Critical voltage, 313, 321, 342, 460
Cross-correlation, 43, 249, 254, 257,

407, 480
cross-linking, 465, 469, 475, 484, 487
Crossover, 82, 86, 91, 96
cryo-methods, 437, 453
cryo-shield, 466
cryosection, 478
crystal bending, 333
Crystal boundaries, 357
Crystal orientation, 100, 343, 347, 349
crystal potential, 354
Crystal Structure, 345, 346, 349, 352
crystal symmetry, 342
crystal thicknesses, 346, 354
Crystal-structure imaging, 253, 402, 479
crystalline arrays of Biomacromolecules,

256
Crystallography, 274
Current density, 78
cyclotron frequency, 24

damage effects, 467
Dark-field mode, 93, 106, 201, 213, 218,

224, 350, 351, 359, 399, 412
Dark-field tilt method, 201, 224
Debye temperature, 317, 322
Debye–Scherrer ring, 342, 343, 460, 472
Debye–Waller factor, 183, 294, 319, 321,

322, 355, 356, 473
Debye-Scherrer ring broadening, 289
Debye-Scherrer ring intensity, 318
deconvolution, 438, 440, 442, 443, 452
decoration technique, 412
dedicated scanning transmission

electron microscope, 124
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dedicated Scanning transmission
electron microscopy (STEM), 207,
210, 225, 237

dedicated STEM, 112
Deep-level transient spectroscopy, 112
defect cluster, 398, 480, 484
deflection coil, 362
Defocus series, 34, 239, 256, 407
Defocusing, 3, 71, 109, 249, 254
Delocalization, 226
Depletion layer, 112, 138
Depth of focus, 109
Depth of image, 108
Detection limit, 456
Detection quantum efficiency, 132, 134,

136
Detector annular, 225, 227
detector aperture, 110, 114, 208, 336,

368
Detector half-plane, 269
detector Noise, 132
Detector quadrant, 269
Diaphragm annular, 202
Diaphragm half-plane, 233, 254
Dichroism, 183
dielectric, 439
Dielectric function, 164
Dielectric theory, 6, 163
differential Inelastic scattering, 156
differential Inelastic scattering cross

section, 163, 197
differential Phase contrast, 237, 269
diffraction, 331
Diffraction Contrast, 100, 104, 268, 360,

369, 384, 400, 415, 472
diffraction error, 32
Diffraction lens, 104
diffuse streaks, 350
Digital image processing, 134
Dipole matrix element, 158
dipole radiation, 419
Dislocation, 111, 357–359, 363, 367,

369, 371, 372, 375, 385
dislocation dipole, 393
Dislocation loop, 101, 388, 398, 461, 482
dislocation residual contrast, 396, 400
Dislocation screw, 386, 388, 390, 392,

394
dislocation simulated image, 390

Disorder, 183
Dispersion surface, 297, 302, 303, 305,

308, 311, 313, 314, 355, 357
displacement vector, 358, 376, 378, 379,

383, 384, 386, 397
dissociated dislocation, 383, 391, 393,

411
distortion, 31, 36, 331, 341–343
Drude model, 164
Duane–Hunt law, 419
Dynamical n-beam theory, 311
dynamical interaction, 354
Dynamical theory of electron diffrac-

tion, 98, 197, 292, 333, 359, 360,
366, 390

Dynamical theory of electron diffraction
fundamental equations, 295, 298,
306, 313

edge contour (fringe), 382, 384, 401
edge dislocation, 387, 388, 392, 394
Edge spread function, 136
effective number of electrons, 439, 440
Eigenvalue, 296, 298, 300, 306, 375, 405
Eigenvalue problem, 294, 296, 311
Eigenvector, 300, 375, 405
Eigenvector orthogonality relation, 297,

312
Eigenvector periodicity condition, 297
eikonal method, 32
elastic anisotropy, 396
Elastic scattering, 141
Elastic scattering amplitude, 146, 148,

183
Elastic scattering characteristing angle

θ0, 200, 225
Elastic scattering differential cross

section, 142
Elastic scattering mean free path, 141,

184, 197, 200
Electric field, 17, 18, 78, 86, 89
Electrometer, 140
Electron Acceleration, 17
electron channeling pattern, 13, 337,

341
Electron charge density distribution,

151
Electron deflection, 20, 49
electron distribution image, 448
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electron dose, 4, 467, 479
Electron emission, 78
Electron energy-loss spectroscopy

(EELS), 5, 9, 424, 434, 437, 454,
476, 477

Electron energy-loss spectroscopy
(EELS) ratio method, 446

electron energy-loss spectroscopy
(EELS) sensitivity, 454

electron energy-loss spectrum back-
ground, 447, 449

electron energy-loss spectrum back-
ground fitting, 441

electron energy-loss spectrum back-
ground subtraction, 441

Electron energy-loss spectrum delayed
edge, 178

Electron gun, 1, 78
Electron interferometry, 52
electron kinetic energy, 19
electron mass, 20
Electron momentum, 20, 143
Electron probe, 3, 12, 90, 93, 96, 109,

110, 113
Electron probe broadening, 99
Electron probe diameter, 94, 95, 97,

332, 435
Electron probe optimum aperture, 94
Electron range, 129, 138, 192, 193, 463
electron rest energy, 20
Electron spectrometer, 9, 115
Electron spectrometer double-stigmatic

focusing, 117
Electron spectrometer second-order

aberration, 118, 122, 123
Electron spectroscopic diffraction, 159,

168, 169, 326, 327, 353
Electron spectroscopic imaging, 99, 121,

125, 173, 448, 449, 453, 456
electron spectroscopic imaging series,

449
Electron spin, 20, 174
electron spin resonance, 477
Electron Trajectories, 22, 24
electron velocity, 20
Electron wavelength, 3, 20, 45
Electron–nucleus collision, 143
Electron–phonon scattering, 145, 185,

304, 350, 369

electron-backscattering pattern, 13, 340

Electron-beam-induced current (EBIC),
110

Electron-energy loss spectrum, 174

Electron-energy-loss spectroscopy, 90,
93, 107, 110, 113, 115, 120, 121

Electron-energy-loss spectroscopy
diffraction mode, 126

electron-hole pair, 112, 138, 193, 428,
429

Electron-optical refractive index, 51,
146, 148, 405

Electron-phonon scattering, 303, 306,
322, 326

electron-probe aperture, 94, 114

Electron-probe broadening, 188

electron-probe current, 427

Electron-probe stationary, 332, 335

Electron-spectroscopic diffraction, 121,
125

Electropolishing, 1, 99, 360

Electrostatic fields, 270

Element distribution image, 7, 125, 456

elemental map, 456

Embedding, 203, 452

Emission current density, 89

emission electron microscope, 10

enantiomorphic phase, 384

Energy dissipation, 165, 193

energy filtering, 339, 353, 369

Energy loss near-edge structure
(ELNES), 179

Energy spread, 55, 77, 81, 89, 90, 95,
218, 230, 232, 234, 402, 404, 406,
442

energy-dispersive plane, 120

energy-dispersive X-ray detector, 5

Energy-filtering, 334, 335

energy-filtering transmission electron
microscopy, 3, 99, 113, 124

energy-loss near-edge structure
(ELNES), 6, 442, 445

Environmental experiment, 8, 101

epitaxy, 365, 367

Equipotentials, 85

Ewald sphere, 283, 284, 287, 288, 295,
298, 299, 311, 314, 343–345, 350,
354, 393, 395, 414
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excitation, 333, 335, 336, 355, 357, 359,
360, 362, 368, 369, 372, 375, 379,
388, 391, 394, 403

Excitation error, 268, 287, 292, 293,
301, 352

Excitation point, 297, 298, 303

exciton, 481

Exit wave function, 249, 253, 405

Extended energy-loss fine structure
(EXELFS), 6, 182, 442, 445

extinctiion rule, 378

Extinction distance, 290, 293, 294, 301,
314, 321, 360, 377, 379, 382, 390,
397, 412

extinction rules, 343, 345, 351

Extractor electrode, 88

extrinsic stacking fault, 378

fading of electron diffraction, 473, 477

Fano factor, 429

Faraday cage, 139, 184, 194, 339

Fast Fourier transform (FFT), 239

fault matrix, 376, 377

Faunhofer diffraction, 289

Fermi distribution, 78, 81

Fermi energy, 78

Fermi level, 78, 80, 154, 159, 166, 174,
180, 182, 194

Fermi surface, 302

Ferritin, 215, 455

Ferroelectric domain, 270, 384

fiber axis, 343, 344

Fiber plate, 139

fiber texture, 343, 344

fibre plate, 438

Field curvature, 244

Field emission, 80

Field emission gun, 89, 90, 92, 95, 113,
246

field-effect transistor, 428

field-emission gun, 4, 332

fluorescence correction, 433

Fluorescent screen, 91, 126

Flux quantum, 267

Fluxon criterion, 267

focal length, 330

Focus series, 215

Focusing, 109

forbidden reflection, 349, 352, 411, 412,
414

Formvar film, 99

forward-scattered electrons, 337, 341

Fourier filter, 251

Fourier sum, 68

Fourier synthesis, 345, 346

Fourier tranform, 218

Fourier transform, 3, 70, 74, 232, 281,
439

Fourier transform convolution theorem,
68, 76, 241, 251, 406, 443

Fourier transform translation theorem,
67, 252, 263

Fourier-log method, 442, 444

Fourier-ratio method, 441, 442

Fowler–Nordheim formula, 81

Fowler-Nordhein plot, 80

Fraunhofer Diffraction, 61, 146, 213

Fraunhofer Holography, 243, 244

Freeze-drying, 257

Freeze-fracturing, 257

frenkel defect, 398

Frenkel pair, 481

Fresnel biprism, 53

Fresnel diffraction, 55, 61, 242, 262, 289,
293, 406

Fresnel Fringes, 59, 61, 90, 233

Fresnel Holography, 243

Fresnel integral, 59

Fresnel mode, 184

Fresnel zone, 57, 290

Fresnel-zone lens, 242

Friedel’s law, 376

Front focal plane, 96

fundamental reflections, 383

Gaussian distribution, 83, 94, 230

Gaussian function, 191

Gaussian image plane, 243

generalized Oscillator strength (GOS),
158, 177

Gerchberg–Saxton algorithm, 253, 269

Goniometer, 100, 346, 360

grain boundary, 411, 484

Granularity, 212, 214, 239

Grease, 484

Green’s function, 304



Index 581

Guinier–Preston zone, 350, 398, 402
Gun brightness, 82, 91, 94, 404

Hamiltonian, 303
Hartree–Fock method, 147, 151, 153
Hartree–Slater wave function, 178
heat generation, 461
Heisenberg uncertainty relation, 55
heterostructures, 408
High resolution microscopy, 3, 9, 97,

104–106, 400–416
High Voltage Electron Microscopy, 7
high-angle annular-dark-field method

(HAADF), 412
High-order Laue zone (HOLZ), 6, 329,

346, 354
High-order Laue zone (HOLZ) line, 328
High-order Laue zone (HOLZ) pattern,

284, 326, 342, 354
High-resolution electron microscopy, 3
High-voltage electron microscopy, 1,

101, 112, 127, 135, 145, 190, 315,
360, 369, 372, 390, 477, 483

Hollow-beam, 86
Hollow-cone illumination, 2, 4, 93, 105,

202, 214, 225, 233, 234, 237
Holography, 4, 90, 241, 408
HOLZ line, 352, 355
HOLZ rings, 355
Honeycomb pattern, 135
Howie–Whelan equations, 293, 299, 306,

311, 373, 376, 390, 392
Huygens principle, 114
Hydrogenic model, 178
Hysteresis, 107

Ice embedding, 249
illumination aperture, 4, 42, 96, 104,

109, 110, 196, 230, 244, 331, 333,
367, 406

Illumination system, 96
Image drift, 241
Image EELS, 126
image matching, 407
image plate, 1
Image recording, 126
Image restoration, 238, 249, 252
image rotation, 348, 394
image shift, 407

image simulation, 407
Image-reconstruction, 215
imaginary Fourier coefficient, 306
imaginary Lattice potential, 306, 322
Imaging energy filter, 115, 119, 121,

123, 124
Imaging modes, 104
Imaging plate, 131
Imaging prism spectrometer, 124
Imaging system, 103
Impact parameter, 142
improvement Contrast-transfer

funktion, 238
in situ experiments, 100, 371, 483
incoherent precipitate, 396
inelastic cross-section, 370
Inelastic scattering, 153, 369
Inelastic scattering angular distribution,

237
Inelastic scattering characteristic angle

θE , 158, 237
Inelastic scattering in crystals, 302
Inelastic scattering localization, 3, 225
Inelastic scattering mean free path, 184
inelastic-to-elastic total cross sections,

205, 225
infrared absorption, 473
Inner potential, 248, 265, 295
Inner-shell cross section, 177, 178
Inner-shell cross section parametriza-

tion, 179
Inner-shell ionization, 6, 171, 174, 305,

306, 313, 369, 481
insibility criterion (g*b=0), 396
integrated Oscillator strength, 179
Interband excitation (transition), 154,

163, 166, 303, 305
interband transitions, 6
interface, 407
Intermediate lens, 103, 104
interstitial (site), 145, 398, 483
Intraband excitation (transition), 154,

163, 303, 305, 369
invisibility criterion, 357
Ion-beam etching, 1, 99, 370
Ionization depth distribution, 193
Ionization edge, 175
Ionization energy, 154, 174
Isoplanatic patch, 244
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Köhler illumination, 97
Kikuchi, 337, 340
Kikuchi band, 7, 305, 321, 323, 325,

327, 335, 337, 353, 484
Kikuchi diagram (pattern), 311
Kikuchi line, 6, 305, 315, 321, 323, 325,

328, 332, 340, 348, 349, 355, 363,
393, 394

Kikuchi line intersecting technique, 317
Kinematical theory of electron diffrac-

tion, 210, 283, 294, 295, 298, 300,
302, 319, 373, 379, 380, 385, 387

Kirchhoff diffraction, 55
Kirchhoff’s law, 463
knock-of collision, 480, 482
Knock-on collision, 145
Kossel bands, 335
Kossel cone, 323, 325, 349, 394
Kossel pattern, 332, 334, 336
Kramers–Kronig relation, 167

LACBED, 6, 329, 333, 335, 336, 338,
352, 357, 358, 396

Landau theory, 186, 207
Lanthanum hexaboride (LaB6) cathode,

79, 84
large-angle convergent-beam

(LACBED), 335
large-angle convergent-beam diffraction

(LACBED), 335
large-angle convergent-beam electron

diffraction (LACBED), 396
large-angle Electron diffraction

(LACBED), 326
laser (Fraunhofer) diffraction, 339
Laser diffraction, 232, 238
laser microprobe mass analyser

(LAMMA), 476
latent electron dose, 473
Lattice amplitude, 285
Lattice defect, 99, 100, 111, 112, 259,

357, 359, 365, 367, 369
lattice defect symmetry rule, 376
lattice displacement, 367
lattice distortion, 333
Lattice fringes, 100
lattice parameters, 357
lattice planar faults, 376–378
Lattice plane, 277

Lattice plane imaging, 98, 108, 113
Lattice potential, 306, 315, 319, 322,

352
Lattice-plane distance (spacing), 275,

281, 473
lattice-plane fringes, 400, 402, 416
lattice-plane spacing, 342, 345
lattice-potential coefficients, 346
Laue equations (conditions), 281, 283
Laue zone, 282, 284, 326, 354, 412, 414
Laue zone (HOLZ), 346
layer structures, 354
Light pipe, 111, 139
light-optical Reconstruction, 246
Lindhard model, 166
Liquid crystal display, 239
Logarithmic amplifier, 210
long-rang strain cantrast, 398
Lorentz force, 262, 268
Lorentz force microscopy, 262
Lorentz microscopy, 84, 90, 91, 107,

113, 339
Lorentz microscopy Foucault mode,

264, 265, 269, 271
Lorentz microscopy Fresnel mode, 265,

269–271
Lorentz microscopy holographic mode,

269, 271
Lorentz microscopy STEM mode, 269
Lorentz microscopy stroboscopy, 270
Lorentz model, 166
low-dose exposure, 249, 257, 480
low-energy electron diffraction (LEED),

340, 416
Low-light-level camera, 134
low-voltage scanning electron mi-

croscopy (LVSEM), 13

Mach–Zehnder interferometer, 247, 248,
269

Magnetic domain wall, 263, 264
Magnetic domain wall thickness, 267
Magnetic scalar potential, 22
magnetic stray fields, 12
Magnetic vector potential, 47, 49, 248,

262
Magnetization ripple, 263, 268
Magnification, 107, 400
magnification calibration, 402
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Magnification standard, 108

Main transfer band, 229, 232

martensitic transformation, 384

masking function, 75

Mass density distribution, 259, 260

mass loss, 5, 469, 471, 477, 479

mass spectroscopy, 469

Mass thickness, 113, 196, 197, 201, 202,
209, 370, 470

Mass–thickness, 143

matrix method, 375

matrix strain-field contrast, 398

Maxwell–Boltzmann distribution, 81,
82, 86, 231

Mean energy, 187

Mean ionization energy, 162, 186, 197

micro-writing, 488

Microcalorimeter, 431

Microorganism, 209

microtwin, 363, 370

Miller indices, 277, 279, 319, 363

minimum-exposure technique, 480

Minority carrier, 112

Mirror charge, 78

Mirror Electron Microscopy, 11

mirror lines, 352

misfit, 397, 409

Missing cone, 260

moiré contrast, 397

Moiré fringes, 135, 365, 384, 397

Molecule excitation, 153

Monochromator, 119, 154

Monte Carlo simulation, 136, 188, 191,
194

most-probable Energy loss, 186, 187

Most-probable-loss imaging, 125, 207

Motiv detection, 257

Mott cross section, 152, 194

Muffin-tin model, 148, 152, 200, 285

multi-beam image (MBI), 369, 381, 390

Multichannel STEM detector, 237

multilayers, 358

multiple diffraction, 345

multiple internal reflection, 476

Multiple scattering, 99, 158, 171, 184,
202, 462, 487

Multiple scattering angular distribution,
184

Multiple scattering energy distribution,
186

Multiple-beam interferometry, 210
Multiple-scattering integral, 185, 191
Multislice method, 294, 405–407, 418
Multivariate statistical analysis, 257
Mutual-correlation function, 255
Myelin lamellae, 215

Negative staining, 98, 204, 257
Newton’s law, 164
non-centrosymmetric crystals, 353, 384
nuclear magnetic resonance, 477
nuclear track emulsion, 480

Objective aperture, 98, 104, 113, 196,
208, 359, 368

Objective diaphragm, 98, 100, 104, 198,
330, 360, 362, 366, 396, 400

Objective lens, 2, 104
Objective prefield lens, 96
Optical analog filtering, 250
Optical constants, 163
optical density, 472
Optical diffractometry, 70, 250, 257
optical Oscillator strength, 158
Optical path difference, 146
Optical theorem, 152, 221
Ordered Alloys, 350, 383
Organic Particle, 204
orientation contrast, 397

p-n junction, 112, 138
Parallax, 259
parallel recording electron energy-loss

spectroscopy (EELS), 437
parallel-recording EELS, 121, 124
partial coherence, 3
partial dislocation, 383, 390, 394
partial Inner-shell cross section, 178
Partial pressure, 100, 101, 478, 484–486,

488
Partial wave analysis, 151, 197
Pauli’s principle, 174
Peltier cooling, 134
Pendellösung, 301, 310, 312, 335, 346,

353, 355, 360, 372
Phase contrast, 2, 55, 73, 90, 98, 105,

113, 114, 184, 204, 211, 262, 398,
415, 417
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Phase contrast of inelastic scattering,
224, 237

Phase plate, 238

phase shift, 3, 12, 56, 57, 146, 152, 183,
211, 271, 397, 405, 407, 409

phase shift by magnetic fields, 52, 262

phase transition, 460

phase-grating approximation, 405

Phonon excitation, 153, 156

Photoabsorption, 178

Photoelectron, 139

Photographic density, 127, 479

Photographic emulsion, 127, 129, 131,
192, 479, 480, 485

Photomultiplier, 139

plane Wave, 46

Plasmon, 6, 7, 154, 165

Plasmon cut-off angle, 169

Plasmon dispersion, 168, 169, 172

Plasmon frequency, 165

Plasmon loss, 163, 369, 481

Plasmon loss anisotropy, 169

Plasmon loss differential cross section,
169, 173

Plasmon loss imaging, 125, 237

Plasmon loss mean free path, 170

Plasmon loss of alloys, 168

plastic Scintillator, 138

point defect, 156, 371

point groups, 352

Point-spread function, 76, 136, 218, 251,
255

Poisson distribution, 133, 136, 370

Poisson distribution (statistics), 171,
185, 186, 479

Poisson’s ratio, 386, 398

Polystyrene spheres, 107, 188, 189

Potential barrier, 80, 81, 88

Potential energy, 78

powder scintillator, 134, 138

Precipitate, 101, 289, 349, 350, 367,
384, 396, 398

Preionization peak, 180

principal planes, 73

Probability density, 49

probe aperture, 208, 332, 336

Projected angular distribution, 191

Projected lateral distribution, 191

Pseudo-topographic contrast, 233, 265
Pupil function, 218, 251

Quadrant detector, 113
Quantum Efficiency, 132, 139
Quantum number, 174
Quantum-mechanical tunneling effect,

80

Radial density distribution, 183, 186
radiation chemistry, 467, 469, 478
Radiation damage, 4, 9, 90, 101, 108,

126, 139, 145, 156, 188, 204, 209,
225, 227, 249, 257, 260, 465

radiation damage by negative ions, 480
radiation damage inorganic specimens,

480
radiation damage measurements, 470
radiation damage organic specimens,

466
radiation damage reduction, 477
radiation-enhanced diffusion, 483, 484
radiation-induced reaction, 485
radical, 467, 478
radiolysis, 478, 481
Random conical tilting, 262
Random-phase approximation, 166
Reciprocal lattice, 279, 282, 284
Reciprocal lattice needles, 288
reciprocal lattice points, 340, 347, 349,

350
Reciprocal lattice vector, 280, 282
reciprocal-lattice vectors, 347
Reconstruction of off-axis hologram,

246
Reconstruction of phase and amplitude,

246
reconstruction surface layer, 415, 417
Reduced aperture, 70, 220
Reduced coordinates, 73, 228
Reduced defocus, 73, 220
Reflection Electron Microscope, 416
Reflection Electron Microscopy, 11, 340
Reflection electron microscopy (REM),

246
Reflection High-Energy Electron

Diffraction, 11, 340, 417
relation of scattering contrast Phase

contrast, 220
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Resolution, 1, 3, 188, 220, 241, 456
resolution limit, 456
retarding field Electron spectrometer,

118
retarding-field filter, 339
RHEED, 52, 344
Richardson’s law, 78
Rocking, 93, 109, 110, 194, 324, 336
rocking beam, 331, 336
Rocking curve, 301, 309, 311, 312, 315,

335, 352, 357, 358, 362, 369
rocking probe, 337
rocking-beam, 331
Rose condition, 479
Rutherford cross section, 152, 192, 193,

201, 337

SAED, 331, 349
sampling theorem, 70
scalar magnetic potential, 22
Scanning coils, 113, 331
Scanning electron diffraction, 339
Scanning Electron Microscopy, 12, 110,

417
Scanning transmission electron mi-

croscopy (STEM), 73, 94, 95, 99,
109, 112, 124, 189, 210, 246, 340,
367, 411, 471, 479, 486

scanning tunneling microscope, 14
Scanning tunnelling electron microscopy

(STEM), 3
Scanning-probe Microscopy, 14, 15
Scattering amplitude, 146, 148, 217
scattering amplitudes for x-rays, 347
Scattering contrast, 2, 104, 195, 220,

221, 396
Scattering contrast in STEM mode, 208
scattering matrix, 376
Scherzer defocus, 3
Scherzer focus, 220, 222
Scherzer formula, 73
Schottky barrier, 112
Schottky effect, 79
Schottky emission, 79, 81
Schottky emission gun, 84, 88, 89, 246
Schottky gun, 4
Schottky plot, 80
Schrödinger equation, 53, 146, 177, 375,

393

Scintillation detector, 138, 192, 193, 210
Scintilator-photomultiplier detector,

210
scintillator–photomultiplier combina-

tion, 339
Scintillator-photomultiplier detector,

110, 139
scission, 467, 469, 471, 477
Screening, 147, 150, 174, 178
screw dislocation, 386, 388, 390, 392,

394
Secondary electron, 110, 270, 340, 487
Secondary-electron yield, 139
sector field Electron spectrometer, 116
Selected-Area Electron Diffraction

(SAED), 6, 104, 329, 362
selection error, 330, 332
Selection rule, 156, 178
selector diaphragm, 329, 331, 335, 363
Semiconductor, 193
Semiconductor detector, 110, 138, 192,

210, 337
serial recording electron energy-loss

spectroscopy (EELS), 437
serial-recording EELS, 122
Shadow-casting film, 202, 257
shot Noise, 96, 132, 133, 139, 479
Sigle-sideband holography, 233
SIGMA programs, 178
Signal-to-noise ratio, 95, 96, 110, 131,

132, 134, 208, 255, 256
Single atom imaging, 113, 115, 221
Single atom imaging in STEM, 225
Single atom imaging in TEM, 221
Single sideband holography, 238
single-sideband Holography, 243, 244,

254, 265
Single-sideband transfer, 233
SIT camera, 134, 239
Small-Angle Electron Diffraction, 91,

338
space group, 342, 346, 352, 357
spartial Coherence, 3, 4, 105
Spatial distribution, 188
Spatial frequency, 62, 70, 73, 75, 104,

105, 109, 129, 212, 218, 228, 238,
243

Spatially resolved EELS, 126
Specimen annealing, 8, 101
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Specimen cartridge, 100
Specimen charging, 270
Specimen cooling, 101, 333, 355, 467,

469, 488
Specimen deformation, 101
Specimen drift, 90
Specimen grid, 99
Specimen Heating, 100, 188, 333, 459,

461, 462, 471, 482, 488
Specimen height, 107
Specimen manipulation, 100
Specimen mounting, 99
specimen Reconstruction, 249
Specimen rotation, 100
Specimen straining, 100
specimen temperature, 461, 463, 464,

472, 477, 478, 484
specimen temperature calculation, 461
specimen temperature measurement,

459
Specimen thickness, 98, 99
Specimen tilt, 100
Spherical aberration, 3, 94, 96, 103, 107,

115, 330, 336
Spherical aberration Cs, 212, 223, 239,

241, 249, 255, 405
spherical wave, 49
Spin-orbit interaction, 174
Spin-orbit splitting, 176
spinodal alloy, 401
Stacking fault, 101, 112, 348, 350, 358,

372, 375, 378–380, 383, 390, 395,
396

stacking fault contrast, 395, 397
stacking fault energy, 396, 411, 461
stacking fault fringes, 370
stacking fault tetrahedra, 398, 484
Staining, 203, 257
Stationary Electron Probe, 332, 335
Stefan–Boltzmann law, 463
STEM, 73, 340
STEM Phase contrast, 237
Stereo pair, 8, 100, 399
stereo viewer, 365
Stereology, 207
Stereometry, 258
Stigmator, 92, 103, 113
strain, 356, 358, 398
strain contrast, 397, 417

strain field, 375, 391, 397–399, 417
strain relaxation, 386
Streaks, 326
Stroboscopy, 252, 270
Structure amplitude, 281, 282, 285, 286,

289, 290, 294, 315, 349, 353, 354,
378, 383, 414

structure factor, 346, 353, 354
structure factor contrast, 397, 400
Structure-sensitive contrast, 125, 206
Superconducting transition, 268
Superconducting vortices, 246
Superlattice reflection, 326, 351, 383,

400
Superlattice Structure, 350
superstructure reflection, 416
Supporting film, 100, 201, 204, 209, 212,

214, 225, 226, 270, 412
surface dislocation, 418
surface Plasmon losses, 156, 171
Surface replica, 99, 107, 196, 202, 259,

417
surface step, 12, 412
Surface-charge wave, 171
surface-profile imaging, 418, 482
Systematic row, 311, 314, 346, 402

temporal coherence, 3, 4
terminal electron dose, 473
terminal mass loss, 471
Texture, 320, 343–345, 473
Theorem of reciprocity, 113, 114, 208,

225, 305, 331, 336, 341, 362, 411
thermal conductivity, 461, 463, 464, 466
Thermal diffuse scattering, 185, 210,

306, 321
Thermal expansion, 167, 294, 460
Thermionic electron gun, 84, 118, 332
Thermionic emission, 78
thermocouple, 460, 462
thickness fringes, 370
thickness-defocus tableau, 408
thin-film relaxations, 356
thin-foil Diaphragm, 265
Thomas–Fermi model, 147
Three-beam case, 311, 314
three-dimensional Reconstruction, 258
threefold astigmatism, 32, 43
Tilt coils, 343
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Tilt parameter, 299, 301, 311, 360, 379,
401

Tilt series, 260, 262
tilt stage, 360
Tilted-beam illumination, 233, 402
Time constant, 138, 140
Time-resolved EELS, 126
Tomography, 5, 100, 249, 259
Top–bottom effect, 189, 190, 206
total Elastic cross section, 143, 148,

152, 155
total Elastic scattering, 197
total Inelastic cross section, 155, 162,

163, 197
total Inelastic scattering cross-section,

197
traces of structures, 348
Transfer gap, 229, 233, 238, 239, 244,

249, 253
transfer matrix, 348
Translation vector, 274
Transmission, 151
Transmission polycrystalline films, 201,

210
Transmission amorphous films, 196
transmission crystalline specimen, 370
Triode gun, 82, 85
Tunneling effect, 80, 89
Two-beam case, 292, 293, 298, 309, 353,

375–377, 391, 400

Unit cell, 274

vacancy, 481, 483
Vacancy cluster, 215, 399
Vacuum, 85, 89, 112
Viewing screen, 109
Virtual source, 91, 92
vitrification, 482
Voltage center, 92

Wave aberration, 2, 70, 71, 109, 212,
219, 234, 239, 400–402, 404, 407

Wave amplitude, 46, 142
Wave function, 49, 156, 303
Wave optical imaging, 73
Wave packet, 49, 50
Wave-optical calculation, 216
Wavefront, 49
Wavelength, 45
wavelength-dispersive X-ray detector, 5
weak-beam method, 375, 377, 386, 391,

393, 394, 396, 411, 415
Wehnelt electrode, 82, 85, 86, 88
Wentzel (potential) atomic model, 147,

151, 153, 162, 200, 201
White line, 176, 177, 179, 181
Wien filter, 55, 116
Wiener optimum filter, 256
Wiener spectrum, 255
WKB method, 46, 146, 150, 152, 197,

200
WKB-approximation, 46
Wobbling, 109
Work function, 78, 89, 194

X-ray Compton scattering, 160
x-ray continuum, 8
X-ray crystallography, 352, 353
x-ray microanalyser, 5, 8
x-ray microanalysis, 14, 90, 93, 107,

110, 113, 469, 476
X-ray scattering amplitude, 150, 162

Y-modulation, 210
YAG single crystal Scintillator, 134, 138
young fringes, 241

Z-contrast, 209
Zernike phase plate, 211, 238
Zero-loss filtering, 7, 125, 190, 199, 205,

207, 238, 267, 318, 320, 326, 335,
353, 370, 404

Zone axis, 282, 284, 346, 352, 414
Zone plate, 238, 250
zone-axis pattern (ZAP), 338, 341, 362
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