
S P R I N G E R B R I E F S I N CO M P U T E R S C I E N C E

Amit Vasudevan
Jonathan M. McCune
James Newsome

Trustworthy
Execution on
Mobile Devices

SpringerBriefs in Computer Science

Series Editors

Stan Zdonik
Peng Ning
Shashi Shekhar
Jonathan Katz
Xindong Wu
Lakhmi C. Jain
David Padua
Xuemin Shen
Borko Furht
V. S. Subrahmanian
Martial Hebert
Katsushi Ikeuchi
Bruno Siciliano

For further volumes:
http://www.springer.com/series/10028

http://www.springer.com/series/10028

Amit Vasudevan • Jonathan M. McCune
James Newsome

Trustworthy Execution
on Mobile Devices

123

Amit Vasudevan
James Newsome
Carnegie Mellon University
Pittsburgh, PA
USA

Jonathan M. McCune
CyLab, Carnegie Mellon University
Pittsburgh, PA
USA

ISSN 2191-5768 ISSN 2191-5776 (electronic)
ISBN 978-1-4614-8189-8 ISBN 978-1-4614-8190-4 (eBook)
DOI 10.1007/978-1-4614-8190-4
Springer New York Heidelberg Dordrecht London

Library of Congress Control Number: 2013941912
ARM, the ARM Logo and any other trademark found on the ARM Trademarks List that are referred to
or displayed in this book are trademark[s] or registered trademark[s] of ARM Ltd or its subsidiaries.
Other names may be trademarks of their respective owners.

� The Author(s) 2014
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of
the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations,
recitation, broadcasting, reproduction on microfilms or in any other physical way, and transmission or
information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar
methodology now known or hereafter developed. Exempted from this legal reservation are brief
excerpts in connection with reviews or scholarly analysis or material supplied specifically for the
purpose of being entered and executed on a computer system, for exclusive use by the purchaser of the
work. Duplication of this publication or parts thereof is permitted only under the provisions of
the Copyright Law of the Publisher’s location, in its current version, and permission for use must
always be obtained from Springer. Permissions for use may be obtained through RightsLink at the
Copyright Clearance Center. Violations are liable to prosecution under the respective Copyright Law.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this
publication does not imply, even in the absence of a specific statement, that such names are exempt
from the relevant protective laws and regulations and therefore free for general use.
While the advice and information in this book are believed to be true and accurate at the date of
publication, neither the authors nor the editors nor the publisher can accept any legal responsibility for
any errors or omissions that may be made. The publisher makes no warranty, express or implied, with
respect to the material contained herein.

Printed on acid-free paper

Springer is part of Springer Science+Business Media (www.springer.com)

To my loving wife Deepa and my dear sons
Arjun and Akshay

—Amit Vasudevan

Kathleen, Adeline, and Lillian
—Jonathan M. McCune

For my loving wife, Bonnie Bogovich
—James Newsome

Preface

In June 2012, we presented a paper entitled Trustworthy Execution on Mobile
Devices: What Security Properties Can My Mobile Platform Give Me? at the 5th
International Conference on Trust and Trustworthy Computing [59]. Subsequently,
we were invited to expand our paper with the belief that given the increasing
importance of mobile device security, our review of the current state of the art on
trusted execution on mobile devices would be a great help to the security com-
munity, particularly to graduate students. This inspired us to expand our original
paper into the form you see here. We hope that it will be of service to the security
and privacy community.

Arlington, VA, March 2013 Amit Vasudevan
Santa Clara, CA Jonathan M. McCune
Pittsburgh, PA James Newsome

vii

Acknowledgments

The authors are especially grateful to our collaborators, Emmanuel Owusu,
Zongwei Zhou, Virgil Gligor, and Adrian Perrig, whose insights and enthusiasm
greatly enriched our work.

The authors would also like to thank Bill Hohl and Joe Bungo at ARM for
generously providing technical information and research hardware and software to
support this work.

This research was supported by CyLab at Carnegie Mellon University (CMU),
Northrup Grumman Corp., and Google Inc. The views and conclusions contained
here are those of the authors and should not be interpreted as necessarily repre-
senting the official policies or endorsements, either express or implied, of CyLab,
CMU, Northrup Grumman Corp., Google Inc., or the U.S. Government or any of
its agencies.

ix

Contents

1 Introduction . 1

2 Demand for Applications Requiring Hardware Security 5

3 Desired Security Features. 9
3.1 Isolated Execution . 9
3.2 Secure Storage . 10
3.3 Remote Attestation . 11
3.4 Secure Provisioning . 12
3.5 Trusted Path . 13

4 Available Hardware Primitives. 15
4.1 ARM Platform: Hardware and Security Architecture 15
4.2 Isolated Execution . 16

4.2.1 Split-World-Based Isolated Execution 16
4.2.2 Virtualization-Based Isolated Execution. 19

4.3 Secure Storage . 21
4.3.1 Secure Elements . 21

4.4 Remote Attestation . 22
4.5 Secure Provisioning . 22
4.6 Trusted Path . 23
4.7 Design Gaps and Challenges. 23
4.8 Platform Case Studies . 24

4.8.1 ARM Versatile Express . 24
4.8.2 FreeScale i.MX53 . 27
4.8.3 Texas Instruments OMAPTM and M-ShieldTM 30
4.8.4 Samsung ExynosTM. 34

5 Isolated Execution Environments . 37
5.1 Parallel Isolated Execution . 37
5.2 Hypervisors . 38

5.2.1 Hypervisor Attributes for Mobile Devices 38

xi

http://dx.doi.org/10.1007/978-1-4614-8190-4_1
http://dx.doi.org/10.1007/978-1-4614-8190-4_1
http://dx.doi.org/10.1007/978-1-4614-8190-4_2
http://dx.doi.org/10.1007/978-1-4614-8190-4_2
http://dx.doi.org/10.1007/978-1-4614-8190-4_3
http://dx.doi.org/10.1007/978-1-4614-8190-4_3
http://dx.doi.org/10.1007/978-1-4614-8190-4_3#Sec1
http://dx.doi.org/10.1007/978-1-4614-8190-4_3#Sec1
http://dx.doi.org/10.1007/978-1-4614-8190-4_3#Sec2
http://dx.doi.org/10.1007/978-1-4614-8190-4_3#Sec2
http://dx.doi.org/10.1007/978-1-4614-8190-4_3#Sec3
http://dx.doi.org/10.1007/978-1-4614-8190-4_3#Sec3
http://dx.doi.org/10.1007/978-1-4614-8190-4_3#Sec4
http://dx.doi.org/10.1007/978-1-4614-8190-4_3#Sec4
http://dx.doi.org/10.1007/978-1-4614-8190-4_3#Sec5
http://dx.doi.org/10.1007/978-1-4614-8190-4_3#Sec5
http://dx.doi.org/10.1007/978-1-4614-8190-4_4
http://dx.doi.org/10.1007/978-1-4614-8190-4_4
http://dx.doi.org/10.1007/978-1-4614-8190-4_4#Sec1
http://dx.doi.org/10.1007/978-1-4614-8190-4_4#Sec1
http://dx.doi.org/10.1007/978-1-4614-8190-4_4#Sec2
http://dx.doi.org/10.1007/978-1-4614-8190-4_4#Sec2
http://dx.doi.org/10.1007/978-1-4614-8190-4_4#Sec3
http://dx.doi.org/10.1007/978-1-4614-8190-4_4#Sec3
http://dx.doi.org/10.1007/978-1-4614-8190-4_4#Sec8
http://dx.doi.org/10.1007/978-1-4614-8190-4_4#Sec8
http://dx.doi.org/10.1007/978-1-4614-8190-4_4#Sec14
http://dx.doi.org/10.1007/978-1-4614-8190-4_4#Sec14
http://dx.doi.org/10.1007/978-1-4614-8190-4_4#Sec15
http://dx.doi.org/10.1007/978-1-4614-8190-4_4#Sec15
http://dx.doi.org/10.1007/978-1-4614-8190-4_4#Sec16
http://dx.doi.org/10.1007/978-1-4614-8190-4_4#Sec16
http://dx.doi.org/10.1007/978-1-4614-8190-4_4#Sec17
http://dx.doi.org/10.1007/978-1-4614-8190-4_4#Sec17
http://dx.doi.org/10.1007/978-1-4614-8190-4_4#Sec18
http://dx.doi.org/10.1007/978-1-4614-8190-4_4#Sec18
http://dx.doi.org/10.1007/978-1-4614-8190-4_4#Sec19
http://dx.doi.org/10.1007/978-1-4614-8190-4_4#Sec19
http://dx.doi.org/10.1007/978-1-4614-8190-4_4#Sec20
http://dx.doi.org/10.1007/978-1-4614-8190-4_4#Sec20
http://dx.doi.org/10.1007/978-1-4614-8190-4_4#Sec21
http://dx.doi.org/10.1007/978-1-4614-8190-4_4#Sec21
http://dx.doi.org/10.1007/978-1-4614-8190-4_4#Sec22
http://dx.doi.org/10.1007/978-1-4614-8190-4_4#Sec22
http://dx.doi.org/10.1007/978-1-4614-8190-4_4#Sec28
http://dx.doi.org/10.1007/978-1-4614-8190-4_4#Sec28
http://dx.doi.org/10.1007/978-1-4614-8190-4_4#Sec28
http://dx.doi.org/10.1007/978-1-4614-8190-4_4#Sec31
http://dx.doi.org/10.1007/978-1-4614-8190-4_4#Sec31
http://dx.doi.org/10.1007/978-1-4614-8190-4_5
http://dx.doi.org/10.1007/978-1-4614-8190-4_5
http://dx.doi.org/10.1007/978-1-4614-8190-4_5#Sec1
http://dx.doi.org/10.1007/978-1-4614-8190-4_5#Sec1
http://dx.doi.org/10.1007/978-1-4614-8190-4_5#Sec2
http://dx.doi.org/10.1007/978-1-4614-8190-4_5#Sec2
http://dx.doi.org/10.1007/978-1-4614-8190-4_5#Sec3
http://dx.doi.org/10.1007/978-1-4614-8190-4_5#Sec3

5.3 Hypervisor Case Studies. 39
5.3.1 KVM/ARM . 40
5.3.2 CodeZero . 41
5.3.3 OKL4 . 42
5.3.4 EmbeddedXen . 44
5.3.5 Xen/ARM . 45
5.3.6 eXtensible Modular Hypervisor Framework 46

5.4 Discussion . 47
5.4.1 Limitations of Paravirtualization 48

6 API Architectures . 49
6.1 API Types . 49
6.2 App-IEE-Only Model Versus App-IEE þ Module-IEE Model . . 49
6.3 Candidate APIs . 50

6.3.1 Mobile Trusted Module . 51
6.3.2 OnBoard Credentials . 51
6.3.3 TrustZoneTM API . 52
6.3.4 GP Trusted Execution Environment 53

7 Analysis and Recommendations . 55
7.1 Research Community Recommendations 56
7.2 Application Developer Recommendations. 56
7.3 Platform Integrator Recommendations 57
7.4 Hardware Vendor Recommendations . 57

8 Summary. 59

References . 61

About the Author . 65

Curriculum Vitae . 67

xii Contents

http://dx.doi.org/10.1007/978-1-4614-8190-4_5#Sec9
http://dx.doi.org/10.1007/978-1-4614-8190-4_5#Sec9
http://dx.doi.org/10.1007/978-1-4614-8190-4_5#Sec10
http://dx.doi.org/10.1007/978-1-4614-8190-4_5#Sec10
http://dx.doi.org/10.1007/978-1-4614-8190-4_5#Sec11
http://dx.doi.org/10.1007/978-1-4614-8190-4_5#Sec11
http://dx.doi.org/10.1007/978-1-4614-8190-4_5#Sec12
http://dx.doi.org/10.1007/978-1-4614-8190-4_5#Sec12
http://dx.doi.org/10.1007/978-1-4614-8190-4_5#Sec13
http://dx.doi.org/10.1007/978-1-4614-8190-4_5#Sec13
http://dx.doi.org/10.1007/978-1-4614-8190-4_5#Sec14
http://dx.doi.org/10.1007/978-1-4614-8190-4_5#Sec14
http://dx.doi.org/10.1007/978-1-4614-8190-4_5#Sec15
http://dx.doi.org/10.1007/978-1-4614-8190-4_5#Sec15
http://dx.doi.org/10.1007/978-1-4614-8190-4_5#Sec16
http://dx.doi.org/10.1007/978-1-4614-8190-4_5#Sec16
http://dx.doi.org/10.1007/978-1-4614-8190-4_5#Sec17
http://dx.doi.org/10.1007/978-1-4614-8190-4_5#Sec17
http://dx.doi.org/10.1007/978-1-4614-8190-4_6
http://dx.doi.org/10.1007/978-1-4614-8190-4_6
http://dx.doi.org/10.1007/978-1-4614-8190-4_6#Sec1
http://dx.doi.org/10.1007/978-1-4614-8190-4_6#Sec1
http://dx.doi.org/10.1007/978-1-4614-8190-4_6#Sec2
http://dx.doi.org/10.1007/978-1-4614-8190-4_6#Sec2
http://dx.doi.org/10.1007/978-1-4614-8190-4_6#Sec2
http://dx.doi.org/10.1007/978-1-4614-8190-4_6#Sec3
http://dx.doi.org/10.1007/978-1-4614-8190-4_6#Sec3
http://dx.doi.org/10.1007/978-1-4614-8190-4_6#Sec4
http://dx.doi.org/10.1007/978-1-4614-8190-4_6#Sec4
http://dx.doi.org/10.1007/978-1-4614-8190-4_6#Sec5
http://dx.doi.org/10.1007/978-1-4614-8190-4_6#Sec5
http://dx.doi.org/10.1007/978-1-4614-8190-4_6#Sec6
http://dx.doi.org/10.1007/978-1-4614-8190-4_6#Sec6
http://dx.doi.org/10.1007/978-1-4614-8190-4_6#Sec6
http://dx.doi.org/10.1007/978-1-4614-8190-4_6#Sec7
http://dx.doi.org/10.1007/978-1-4614-8190-4_6#Sec7
http://dx.doi.org/10.1007/978-1-4614-8190-4_7
http://dx.doi.org/10.1007/978-1-4614-8190-4_7
http://dx.doi.org/10.1007/978-1-4614-8190-4_7#Sec1
http://dx.doi.org/10.1007/978-1-4614-8190-4_7#Sec1
http://dx.doi.org/10.1007/978-1-4614-8190-4_7#Sec2
http://dx.doi.org/10.1007/978-1-4614-8190-4_7#Sec2
http://dx.doi.org/10.1007/978-1-4614-8190-4_7#Sec3
http://dx.doi.org/10.1007/978-1-4614-8190-4_7#Sec3
http://dx.doi.org/10.1007/978-1-4614-8190-4_7#Sec4
http://dx.doi.org/10.1007/978-1-4614-8190-4_7#Sec4
http://dx.doi.org/10.1007/978-1-4614-8190-4_8
http://dx.doi.org/10.1007/978-1-4614-8190-4_8

Acronyms

AES Advanced Encryption Standard
API Application Programming Interface
COTS Commodity Off-The-Shelf
DES Data Encryption Standard
DMA Direct Memory Access
MSSF Mobile Simplified Security Framework
NFC Near Field Communication
NVRAM Non-Volatile Random Access Memory
OEM Original Equipment Manufacturer
OS Operating System
PKI Public-Key Infrastructure
POS Point-Of-Sale
RSA Rivest Shamir Adleman Algorithm
RTS Root-of-Trust for Storage
SD Secure Digital
SE Secure Elements
SHA Secure Hash Algorithm
TCB Trusted Computing Base
TrEE Trusted Execution Environment
TCM Tightly Coupled Memory
TPM Trusted Platform Module
UICC Universal Integrated Circuit Card
USIM Universal Subscriber Identity Module

xiii

Chapter 1
Introduction

We are putting ever more trust in mobile devices. We use them for e-commerce
and banking, whether through a web browser or specialized apps. Such apps hold
high-value credentials and process sensitive data that need to be protected.

Meanwhile, mobile phone Operating Systems (OS) are untrustworthy. While in
principle they attempt to be more secure than desktop OSes (e.g., by preventing
modified OSes from booting, by using safer languages, or by sandboxing mecha-
nisms for third-party apps such as capabilities), in practice they are still fraught with
vulnerabilities.

Mobile OSes are as complex as desktop OSes. Isolation and sandboxing provided
by the OS is routinely broken, c.f. Apple™ iOS jail-breaking by clicking a button on
a web page [16, 50]. Mobile OSes often share code with open-source OSes such as
GNU Linux™, but often lag behind in applying security fixes, meaning that attackers
need only look at recent patches to the open-source code to find vulnerabilities in the
mobile device’s code. Therefore, there is a need for isolation and security primitives
exposed to application developers in such a way that they need not trust the host OS.

We argue that this problem is severe enough to have garnered significant attention
outside of the security community. Demand for mobile applications with stronger
security requirements has given rise to add-on hardware with stronger security prop-
erties (Chap. 2). This situation is unfortunate, given that many current mobile devices
already have hardware support for isolated execution environments and other secu-
rity features. However, these features are not made available to all parties who may
benefit from their presence.

Today’s mobile device hardware and software ecosystem consists of multiple
stake-holders, primarily comprising the OEM (handset manufacturer), telecommu-
nications provider or carrier, application developers, and the device’s owner (the
human user). Carriers typically also serve in the role of platform integrator, cus-
tomizing an OEM’s handset with additional features and branding (typically via
firmware or custom apps). To date, security properties desirable from the perspec-
tives of application developers and users have been secondary concerns to the OEMs
and carriers [14, 37, 56].

A. Vasudevan et al., Trustworthy Execution on Mobile Devices, SpringerBriefs 1
in Computer Science, DOI: 10.1007/978-1-4614-8190-4_1, © The Author(s) 2014

http://dx.doi.org/10.1007/978-1-4614-8190-4_2

2 1 Introduction

The historically closed partnerships between OEMs and carriers have lead to a
monolithic trust model within today’s fielded hardware security primitives. Every-
thing “inside” is assumed to be trustworthy, i.e., the software modules executing in
the isolated environment often reside in each other’s trusted computing base (TCB).
As long as this situation persists, OEMs and carriers will not allow third-party code
to leverage these features. Only in a few cases, where the OEM has partnered with
a third party, are these features used to protect the user’s data (c.f. Chap. 2, Google
Wallet).

We approach this scenario optimistically, and argue that there is room to meet
the needs of application developers and users while adding negligible cost. We
thus define the principal challenge for the technical community: to present sound
technical evidence that application developers and users can simultaneously
benefit from hardware security features without detracting from the security
properties required for the OEMs and carriers.1 Our goal in this paper is to sys-
tematize deployed (or readily available) hardware security features, and to provide
an extensive and realistic evaluation of existing (largely academic) proposals for
multiplexing these features amongst all stake-holders.

We first discuss the demand for mobile applications with stronger security
requirements that has given rise to add-on hardware with stronger security properties
(Chap. 2).

We then proceed in Chap. 3 by defining a set of security features that may be
useful for application developers that need to process sensitive data. Our focus is on
protecting secrets belonging to the user, such as credentials used to authenticate to
online services and locally cached data.

We next provide an overview of hardware security features available on today’s
mobile platforms (Chap. 4). We show that hardware security features that can provide
the desired properties to application developers are prevalent, but they are typically
not accessible in COTS devices’ default configurations.

We then move on to evaluate existing proposals (given the hardware security
features available on mobile devices) for creating a trustworthy execution environ-
ment that is able to safely run sensitive applications that are potentially considered
untrustworthy by other stake-holders (Chap. 5).

We show that multiplexing these secure execution environments for mutually-
distrusting sensitive applications is quite possible if the threat model for application
developers and users is primarily software-based attacks (Chap. 6).

Finally (Chap. 7), we provide an end-to-end analysis and recommendations for
the current best practices for making the most of mobile hardware-based security
features, from the points of view of each stake-holder.

Unfortunately, without firmware or software changes by OEMs and carriers,
individual application developers today have little opportunity to leverage the

1 We wish to distinguish this challenge from proposals that OEMs increase their hardware costs
by including additional hardware security features that are exclusively of interest to application
developers and users.Our intention in this book is to emphasize practicality, and thus define such
proposals to be out of scope.

http://dx.doi.org/10.1007/978-1-4614-8190-4_2
http://dx.doi.org/10.1007/978-1-4614-8190-4_2
http://dx.doi.org/10.1007/978-1-4614-8190-4_3
http://dx.doi.org/10.1007/978-1-4614-8190-4_4
http://dx.doi.org/10.1007/978-1-4614-8190-4_5
http://dx.doi.org/10.1007/978-1-4614-8190-4_6
http://dx.doi.org/10.1007/978-1-4614-8190-4_7

1 Introduction 3

hardware security primitives in today’s mobile platforms. The only real options
are either to partner with a mobile platform integrator, to distribute a customized
peripheral (e.g., a smart-card-like device that can integrate with a phone, such as
a storage card with additional functionality), or to purchase unlocked development
hardware. We provide recommendations for OEMs and carriers for how they can
make hardware-based security capabilities more readily accessible to application
developers without compromising the security of their existing uses.

Chapter 2
Demand for Applications Requiring
Hardware Security

Application developers are an important driver of sales for the entire smartphone
industry since compelling mobile applications and services are at the forefront of
a user’s smartphone experience. Handset manufacturers and mobile OS designers
have undertaken many initiatives to encourage application developers to create apps
for their platforms. For example, OEMs have provided development environments,
technical support, and publishing and sales infrastructures.

Does providing third-party developers with access to hardware-supported security
features make sense for the OEMs or carriers? This is an important consideration for
an industry where a few cents in cost savings can be the deciding factor for features.
We show that there are many applications on mobile devices that require strong
security features, and that must currently work-around the lack of those features.
Being forced to deal with these work-arounds stifles the market for security-sensitive
mobile applications, and endangers the security of the applications that are deployed
anyways.

We detail several applications requiring specific hardware security features.
Google Wallet™1 allows consumers to use their mobile phones as a virtual wallet.

The application stores users’ payment credentials locally, which are then used to make
transactions via near field communication (NFC) with point-of-sale (POS) devices.
To store the users’ credentials securely, Wallet relies on a co-processor called a Secure
Element (SE) which provides isolated execution (Sect. 3.1), secure storage (Sect. 3.2),
and a trusted path (Sect. 3.5) to the on-board NFC radio. Unfortunately, the SE only
runs code that is signed by the device manufacturer.2 This may be because the SE
lacks the ability to isolate authorized modules from each-other, or it may simply be
considered a waste of time. As a result, developers without Google™,s clout will not
be able to leverage these capabilities for their own applications.

Google Wallet™ achieves security, but it is not an open platform. It relies on a
co-processor called a Secure Element (SE), where only trusted programs are allowed

1 http://www.google.com/wallet/how-it-works-security.html
2 http://www.google.com/wallet/how-it-works-security.html

A. Vasudevan et al., Trustworthy Execution on Mobile Devices, SpringerBriefs 5
in Computer Science, DOI: 10.1007/978-1-4614-8190-4_2, © The Author(s) 2014

http://dx.doi.org/10.1007/978-1-4614-8190-4_3
http://dx.doi.org/10.1007/978-1-4614-8190-4_3
http://dx.doi.org/10.1007/978-1-4614-8190-4_3
http://www.google.com/wallet/how-it-works-security.html
http://www.google.com/wallet/how-it-works-security.html

6 2 Demand for Applications Requiring Hardware Security

to run. Additionally, the details on the exact security properties of the Secure Element
are thin.3

There is evidence that Apple™ has similar plans for its products; they recently
published a patent for an embedded SE with space allocated for both a Universal
Subscriber Identity Module (USIM) application and “other” applications [49].

Traditionally, setting up a merchant system required making arrangements with
a bank or credit card processing company in a process that involved fees and could
take weeks or months to complete. Mobile POS products promise to bypass the
complicated setup process and allow vendors to make sales anywhere.

Services such as Square and GoPay allows merchants to complete credit card
transactions with their mobile device using an application and a magnetic stripe
reader [38]. While Square’s security policies4 indicate that they do not store credit
card data on the mobile device, the data does not appear to be adequately protected
when it passes through the mobile device. Researchers have verified that the stripe
reader does not protect the secrecy or integrity of the read-data [41]. This implies that
malware on the mobile device could likely eavesdrop on credit-card data for swiped
cards or inject stolen credit-card information to make a purchase [41].

These applications could benefit greatly from the hardware-backed security fea-
tures we describe in Chap. 3. A trusted path (Sect. 3.5) could enforce that the intended
client application has exclusive access to the audio port (with which the card readers
interface), thus protecting the secrecy and integrity of that data from malware. They
could also benefit greatly from a remote attestation mechanism (Sect. 3.3) which the
servers could use to ensure that received-data is actually from the authorized client-
application, and that it used a trusted-path to the reader, thus helping to ensure that
the physical credit card was actually present.

Companies have attempted to fill the gap left behind by the lack of developer-
accessible hardware security features on mobile devices, by implementing removable
Secure Elements (SEs). Removable Secure Elements (also known as Independent
Secure Elements or Secure Memory Cards) are SEs interfaced to removable memory
such as a Universal Integrated Circuit Card (UICC) or Secure Digital (SD) Card [45].

Secure memory cards allow third-party developers to develop applications for
one Secure Element interface instead of having to account for the specific inter-
face requirements of various handset manufacturers. Since secure memory cards are
removable, consumers can easily move credentials to other handsets or devices. On
the other hand, removable SEs may be more vulnerable to physical attack (e.g., the
SE may be more easily lost, stolen, or corrupted).

UICC is a general-purpose platform for smart-card applications. UICC is ca-
pable of hosting applications for the card issuer—such as USIM for voice and
data access—in addition to hosting non-telecommunications applications including
mobile payments and ticketing. As a multi-tenant SE, the UICC’s operating system
manages memory access for multiple mutually-distrusting applications [29].

3 http://www.google.com/wallet/how-it-works-security.html
4 https://squareup.com/security

http://dx.doi.org/10.1007/978-1-4614-8190-4_3
http://dx.doi.org/10.1007/978-1-4614-8190-4_3
http://dx.doi.org/10.1007/978-1-4614-8190-4_3
http://www.google.com/wallet/how-it-works-security.html
https://squareup.com/security

2 Demand for Applications Requiring Hardware Security 7

Giesecke & Devrient offer the Mobile Security Card which is a 2 GB microSD card
coupled with a Secure Element—the Mobile Security Card. The SE on the Mobile
Security Card supports cryptographic functions including SHA-256, DES/3-DES,
AES, and RSA.5 This functionality enables security-sensitive applications such as
disk encryption, single sign-on, building access control, and PKI key management.
Tyfone offers a similar product called SideSafe.6

The number of new applications requiring hardware security features is evidence
that there is demand for hardware-backed security primitives among third-party
businesses and application developers. Unfortunately, some of the workarounds may
actually increase the attack surface for fraud [41]. Several third parties have stepped
in to provide hardware-backed security features in the form of removable Secure
Elements. OEMs could provide a more tightly integrated experience for develop-
ers, and avoid potential security vulnerabilities by opening up pre-existing hardware
security primitives to application developers.

5 http://www.gd-sfs.com/the-mobile-security-card/mobile-security-card-se-1-0/
6 http://tyfone.com

http://www.gd-sfs.com/the-mobile-security-card/mobile-security-card-se-1-0/
http://tyfone.com

Chapter 3
Desired Security Features

Here we describe a set of features intended to enable secure execution on mobile
devices. This can be interpreted as the wish-list for a security-conscious application
developer. The strength of these features can typically be measured by the size,
complexity, and attack surface of the components that must be relied upon for a
given security property to hold. This is often referred to as the trusted computing
base (TCB).

On many systems, the OS provides security-relevant APIs for application devel-
opers. However, this places the OS in the TCB, meaning that a compromised OS
voids the relevant security properties. We briefly discuss whether and how the secu-
rity features below are provided on today’s mobile platforms, and some strategies
for providing these properties to applications without including the OS in the TCB.

3.1 Isolated Execution

Isolated execution gives the application developer the ability to run a software mod-
ule in complete isolation from other code. It provides secrecy and integrity of that
module’s code and data at run-time. Today’s mobile OSes provide process-based iso-
lation to protect applications’ address spaces and other system resources. However,
these mechanisms are circumventable when the OS itself is compromised.

To provide isolated execution that does not depend on the operating system, some
alternative execution environment not under control of the OS is required. Such an
environment could be provided by a layer running under the OS on the same hardware
(i.e., a hypervisor), or in a parallel environment (such as a separate coprocessor). We
examine some candidate isolated execution environments and their suitability for
mobile platforms in Chap. 5.

Regarding today’s mobile platforms, the Meego Linux™ distribution for mobile
devices does include provisions for isolated execution. Meego’s Mobile Simplified

A. Vasudevan et al., Trustworthy Execution on Mobile Devices, SpringerBriefs 9
in Computer Science, DOI: 10.1007/978-1-4614-8190-4_3, © The Author(s) 2014

http://dx.doi.org/10.1007/978-1-4614-8190-4_5

10 3 Desired Security Features

Security Framework (MSSF) implements a trusted execution environment (TrEE)
that is protected from the OS [33]. However, this environment is not open to third
party developers.

3.2 Secure Storage

Secure storage provides secrecy, integrity, and/or freshness for a software module’s
data at rest (primarily when the device is powered off, but also under certain condi-
tions based upon which software has loaded). The most common example demon-
strating the need for secure storage is access credentials, such as a cached password
or a private asymmetric key. Other examples include sensitive information cached
for offline consumption, such as bills or medical information.

Most mobile OSes provide this property at least using file system permissions,
which are enforced by the operating system. File system permissions alone can
be circumvented by compromising the OS itself. They can also be circumvented
by offline attacks such as by loading an alternative OS that does not respect those
permissions, or by removing the storage media and accessing it directly.

A stronger form of secure storage can be built using a storage location that is
physically protected, and with access control implemented independently of the OS.
E.g., on the PC, the TPM has a small amount of on-board NVRAM for this purpose.
A physically protected piece of secure storage used in this way is called a root of
trust for storage, or RTS.

A root of trust for storage can be used to bootstrap a larger secure storage mech-
anism, using sealed storage. The sealed storage primitive uses a key protected by
the RTS to encrypt the given data, and to protect the authenticity of that data and of
attached meta-data. The metadata includes an access-control-policy for which code
is authorized to request decryption (e.g., represented as a hash over the code), and
potentially other data such as which software module sealed the data in the first place.
Sealed data (ciphertext) can then be stored on an unprotected storage device.

Extra steps are required to provide state continuity for sealed data on untrusted
storage; otherwise the sealed data may be undetectably rolled back to an older version.
This could be a problem, e.g., if the sealed data is an access-control list or a revocation
list. Freshness protection can be implemented using trusted counters, a small piece
of protected storage for a counter or hash, or a trusted time source [43].

Symbian and Meego make use of protected memory and sealed storage [33]. Sym-
bian’s installer system distinguishes between removable and permanently-installed
storage, and it calculates a hash over any applications installed to removable media,
and stores that hash in permanently-installed storage. Applications executed from
removable media are subsequently integrity-checked using the relevant hash.

MSSF uses keys kept in its Trusted Execution Environment (TrEE) (Sect. 3.1)
to protect the integrity of application binaries, and to provide a sealed storage
facility, which is available to third party developers [33]. While this offers protection
against offline attacks, since third party applications are not allowed to execute in

3.2 Secure Storage 11

the TrEE, data protected by this mechanism is vulnerable to online attacks via a
compromised OS.

Recent versions of iOS combine a user-secret with a protected device-key to
implement secure storage [6]. However, the device-key does not appear to be access-
controlled by code identity, meaning that an attacker can defeat this mechanism if
he is able to obtain the user secret, e.g., via malware, or via performing an online
brute-force attack [24, 31].

Android™ offers an AccountManager API [2]. The model used by this API sup-
ports code modules that perform operations on the stored credential rather than
releasing them directly, which would make it amenable to a model with sealed stor-
age and isolated execution. Unfortunately, it appears that the data is currently stored
in plaintext, and can be retrieved via direct access to the storage device or by com-
promising the operating system [1, 64].

Android™ began offering file-system encryption in version 3.0 [3]. However, this
feature is protected only by a user-secret entered at boot time, meaning that it can be
circumvented by compromising the operating system at runtime, or by brute-forcing
the user-secret in an offline attack. Android™ 4.0 will also support a new keychain
API [4]. The details of this API and of how the data is protected are not yet available.

3.3 Remote Attestation

Remote attestation allows remote parties to verify that a particular message originated
from a particular software module. Remote attestation is useful in cases where a
remote service wishes to ensure that it is communicating with a known client, and
not with malware. For attestation to be meaningful, it must attest to the entire TCB
of the given application. For an application running on a normal OS, the attestation
would necessarily include a measurement of the OS kernel, which is part of that TCB,
and of the application itself. A remote party, such as an online banking service, could
use this information, if it knew a list of valid OS kernel identities and a list of valid
client banking-app identities, to ensure that the system had booted a known-good
kernel, and that the OS had launched a known-good version of the client banking
app.

Remote attestations are more meaningful when the TCB is relatively small and
stable. In the example of a banking application, if a critical component of the app ran
as a module in an isolated execution environment with a remote-attestation capability,
then the attestation would only need to include a measurement of the smaller isolated
execution environment code, and of the given module. Not only would it be easier
to keep track of a list of known-good images (assuming that the isolated execution
environment’s code is relatively stable), but the attestation would be more meaningful
because the isolated execution environment is presumed to be less susceptible to run-
time compromise. This is important because the attestation only tells the verifier what
code was loaded; it would not detect if a run-time exploit overwrote that code with
unauthorized code.

12 3 Desired Security Features

Attestation mechanisms are typically built using a private key that is only
accessible by a small TCB (Sect. 3.1) and kept in secure storage (Sect. 3.2). A cer-
tificate issued by a trusted party, such as the device manufacturer, certifies that the
corresponding public key belongs to the device. One or more platform configuration
registers store measurements of loaded code. The private key can then be used to
generate signed attestations about its state or the state of the rest of the system.

Security-conscious developers of such application ecosystems can benefit from
the ability for a mobile device to report on its health. An obvious example is a
client-side anti-malware application that wishes to report that the most recent scan
completed successfully and using the latest known signatures. However, a whitelist-
based scenario is where such an architecture can really shine.

Given support for isolated execution (Sect. 3.1) and secure storage (Sect. 3.2), a
remote attestation protocol can be used to allow a remote server to deterministically
ascertain that the intended client-side code has loaded. This is especially pertinent
to the many mobile device applications that use a “cloud-based” architecture, where
the long-term storage of users’ data takes place in a data center, and attestation can be
used as an additional authentication metric to ensure that the desired client application
has loaded. This whitelist-based capability frees the application developer from the
burden of trying to understand all of the other third-party code that might be present
and potentially malicious on the mobile device (because that code is no longer a part
of the TCB for the sensitive portion of the application).

It can be useful to contrast an attestation scheme to a secure boot scheme. Secure
boot is the process of performing integrity checks (e.g., verifying a cryptographic
hash or digital signature) on each stage of the boot process, and halting if any stage
fails its check. A fully booted device is thus implicitly believed to be in an approved
configuration. Attestation separates the process of measuring (performing a crypto-
graphic hash) each stage of execution from the process of evaluating whether a set
of measurements represents a valid configuration. Especially when there are mul-
tiple stake-holders, secure boot does not scale all the way to individual third-party
applications. Remote attestation can convey meaningful information under such con-
ditions, because individual attestations can be sent to the relevant stake-holders for
evaluation.

Some forms of remote attestation are implemented and used on today’s mobile
platforms [33]. However, as far as we know, no such mechanisms are made available
to arbitrary third-party developers.

3.4 Secure Provisioning

Secure provisioning is a mechanism to send data to a specific software module,
running on a specific device, while protecting that data’s secrecy and integrity. This
is useful for migrating data between a user’s devices. For example, a user may have
a credential database that he wishes to migrate or synchronize across devices while

3.4 Secure Provisioning 13

ensuring that only the corresponding credential-application running on the intended
destination device will be able to access that data.

One way to build a secure provisioning mechanism is to use remote attestation
(Sect. 3.3) to attest that a public encryption key belongs to a particular software
module running on a particular device. The sender can then use that key to protect
data to be sent to the target software module on the target device.

Some of today’s mobile platforms implement mechanisms to authenticate exter-
nal information from the hardware stake-holders (e.g., software updates), with the
hash of the public portion of the signing key stored immutably on the device [33].
Other secure provisioning mechanisms are likely implemented and used by device
manufacturers to implement features such as digital rights management. As far as
we know, however, secure provisioning mechanisms are not available for direct use
by arbitrary third-party developers on mobile platforms.

3.5 Trusted Path

Trusted path protects authenticity, and optionally secrecy and availability, of commu-
nication between a software module and a peripheral (e.g., keyboard or touchscreen)
[26, 30, 36, 57, 66]. When used with human-interface devices, this property allows
a human user to ascertain precisely the application with which she is currently inter-
acting. With full trusted path support, malicious applications that attempt to spoof
legitimate applications by creating identical-looking user interfaces will conceivably
become ineffective. While human factors abound in designing the precise UI ele-
ments [18, 48], the technical underpinnings that enable any such architecture remain
a significant challenge.

Trusted path to sensors and actuators can be another useful feature. For example,
trusted paths to sensors can be used to facilitate “citizen-journalism” applications,
where a software module uses trusted path to ensure that it is receiving unaltered
sensor input, and then uses remote attestation mechanisms to attest to the accuracy
of the sensed data [25, 47].

Building secure trusted paths is a challenging problem. Zhou et al. propose a
trusted path on commodity x86 computers with a minimal TCB [66]. Their system
enables users to verify the states and configurations of one or more trusted-paths
using a simple, secret-less, hand-held device. In principle, many mobile platforms
support a form of trusted path, but the TCB is relatively large and untrustworthy.
For example, the Home button on iOS and Android™ devices constitutes a secure
attention sequence that by design uncircumventably transfers control of the user
interface to the OS’s “Home” screen. Once there, the user can transfer control to the
desired application.

However, the TCB for such mechanisms includes the entire OS. For the Android™
Home button, the TCB also includes third-party apps that the user installed with the
“launcher” capability. An app that the user installs with the launcher capability can
replace the Home screen with its own arbitrary interface (potentially impersonating

14 3 Desired Security Features

the previous Home screen if it didn’t advertise itself as a custom Home screen). It is
then free to impersonate other apps by spoofing the UI of the requested app instead
of launching the requested app.

The OS can be removed from the TCB of such trusted paths by preventing the
OS from communicating directly with the device and running the device driver in
an isolated environment. This requires the platform to support a low-level access-
control policy for access to peripherals. ARM’s TrustZone™ extensions facilitate
this type of isolation (Sect. 4.2.1).

http://dx.doi.org/10.1007/978-1-4614-8190-4_4

Chapter 4
Available Hardware Primitives

In this chapter we discuss currently-available hardware security primitives with a
focus on existing smartphone and tablet platforms. As the vast majority of these plat-
forms are built for the ARM architecture, we first present a generic ARM platform
hardware and security architecture, focusing our discussion on platform hardware
components that help realize the features discussed in Chap. 3. We then identify
design gaps and implementation challenges in off-the-shelf mobile devices that
prevent third-party application developers from fully realizing the desired security
properties. Finally, we provide two case studies of inexpensive mobile development
platforms with myriad security features, to serve as references against which to com-
pare mass-market devices.

4.1 ARM Platform: Hardware and Security Architecture

ARM’s platform architecture comprises the Advanced Microcontroller Bus Archi-
tecture (AMBA) and different types of interconnects, controllers and peripherals.
ARM calls these the “CoreLink”, which has four major components (Fig. 4.1).

• Network interconnects are the low-level physical on-chip interconnection prim-
itives that bind various system components together. These include switches,
bridges, and routing fabric. AMBA defines two basic types of interconnects: (i) the
Advanced eXtensible Interface (AXI)—a high performance master and slave inter-
connect interface, and (ii) the Advanced Peripheral Bus (APB)—a low-bandwidth
interface to peripherals.

• Memory controllers correspond to the predominant memory types: (i) static mem-
ory controllers (SMC) interfaced with SRAM, and (ii) dynamic memory con-
trollers (DMC) interfaced with DRAM.

• System controllers include the: (i) Generic interrupt controller (GIC)—for manag-
ing device interrupts, (ii) DMA controllers (DMAC)—for direct memory access
by peripheral devices, and (iii) TrustZone™ Address Space Controller (TZASC)

A. Vasudevan et al., Trustworthy Execution on Mobile Devices, SpringerBriefs 15
in Computer Science, DOI: 10.1007/978-1-4614-8190-4_4, © The Author(s) 2014

http://dx.doi.org/10.1007/978-1-4614-8190-4_3

16 4 Available Hardware Primitives

System Peripherals

Memory Controllers

Networks
Interconnects

System Controllers

Fig. 4.1 Generic ARM platform hardware and security architecture

and TrustZone™ Memory Adapter (TZMA)—for partitioning memory between
multiple “worlds” in a split-world architecture (Sect. 4.2.1).

• System peripherals include LCDs, timers, UARTs, GPIO pins, etc. These periph-
erals can be further assigned to specific “worlds”).

We now proceed to discuss the above components in the context of each of the
security features described in Chap. 3.

4.2 Isolated Execution

Multiple hardware primitives exist for isolated execution on ARM architecture
devices today. ARM first introduced their TrustZone™ Security Extensions in
2003 [7], enabling a “two-world” model, whereby both secure and non-secure soft-
ware can coexist on the same processor. Today, TrustZone™ features are available
for many system components beyond just the CPU(s), as we discuss below.

ARM recently announced hardware support for virtualization for their Cortex™

A15 CPU family [12]. These extensions enable more traditional virtualization solu-
tions in the form of hypervisors or virtual machine monitors [44].

4.2.1 Split-World-Based Isolated Execution

ARM’s TrustZone™ Security Extensions [8] enable a single physical processor
core to safely and efficiently execute code ins two “worlds”—the secure world for

http://dx.doi.org/10.1007/978-1-4614-8190-4_3

4.2 Isolated Execution 17

Monitor Mode

Secure-World

Supervisor Mode Supervisor Mode

HYP Mode

User ModeUser Mode

Normal-World

Fig. 4.2 ARM isolated execution hardware primitives. Split-world-based isolation enables both
secure and normal processor worlds. Virtualization-based isolation adds a higher-privileged layer
for a hypervisor in the normal world

security sensitive application code and the normal world for non-secure applications
(Fig. 4.2). CPU state is banked between both worlds; the secure-world can access all
normal-world state, but not vice-versa. A new processor mode, called the monitor
mode, supports context switching between the secure-world and the normal-world
and can be entered either asynchronously (e.g., as a result of hardware interrupts or
exceptions) or synchronously by the execution of the Secure Monitor Call (SMC)
instruction. Note that the SMC instruction can only be executed from the supervisor
mode (SVC) in the normal-world. The monitor mode software is responsible for
context-switching CPU state that is not automatically banked.

4.2.1.1 Memory Isolation

ARM’s TrustZone™ Security Extensions split CPU state into two distinct worlds,
but they alone cannot partition memory between the two worlds. Memory isolation
is achieved using a combination of TrustZone™-aware Memory Management Units
(MMU), TrustZone™ Address Space Controllers (TZASC), TrustZone™ Memory
Adapters (TZMA), and Tightly Coupled Memory (TCM).

A TrustZone™-aware MMU provides a distinct MMU interface for each processor
world, enabling each world to have a local set of virtual-to-physical memory address
translation tables. The translation tables have protection mechanisms which prevent
the normal-world from accessing secure-world memory. Such MMUs employ tagged
Translation Look-aside Buffers (TLB), where entries are tagged with the identity of
the world. This enables secure- and normal-world entries to co-exist so as to improve
performance [8].

The TZASC interfaces devices such as Dynamic Memory Controllers (DMC) to
partition DRAM into distinct memory regions. The TZASC has a secure-world-only
programming interface that can be used to designate a given memory region as secure
or normal. The TZASC rejects memory transactions from the normal-world that are
directed towards secure memory regions. The TZMA provides similar functionality
for off-chip ROM or SRAM. With a TZMA, ROM or SRAM can be partitioned
between the two worlds.

18 4 Available Hardware Primitives

Tightly Coupled Memory (TCM) is memory that is in the same physical package
as the CPU, so that physical tampering with the external pins of an integrated circuit
will be ineffective in trying to learn the information stored in TCM. TCMs are
typically blocks of fast on-chip SRAM that exist at the same level as the CPU’s
L1 cache subsystem. Secure-world software is responsible for configuring access
permissions (secure versus normal) for a given TCM block.

4.2.1.2 Peripheral Isolation

Peripherals in the ARM platform architecture can be designated as secure or normal.
Secure peripherals are intended to be accessible by the secure world while normal
peripherals can be accessed from both worlds. Thus, there is a need to isolate secure
and normal peripherals so that software running in the normal world cannot mali-
ciously or inadvertently address secure-world peripherals.

ARM’s “CoreLink” architecture connects high-speed system devices such as
the CPU and memory controllers using the Advanced eXtensible Interface (AXI)
bus [10]. The rest of the system peripherals are typically connected using the
Advanced Peripheral Bus (APB). The AXI-to-APB bridge device is responsible
for interfacing the APB interconnects with the AXI fabric. The AXI bus transaction
packets include an identification field that designates the transaction as secure or nor-
mal. However, the APB transactions do not have such a provision [11]. This places
the responsibility for managing security-relevant state with the AXI-to-APB bridge.

A TrustZone™-aware AXI-to-APB bridge contains address decode logic that
selects the desired peripheral based on the security state of the incoming AXI trans-
action; the bridge rejects normal-world transactions to peripherals designated to be
used by the secure-world. A TrustZone™ AXI-to-APB bridge can include an optional
software programming interface that allows dynamic switching of the security state
of a given peripheral. This can be used for sharing a peripheral between both the
secure and normal worlds.

4.2.1.3 DMA Protection

Certain peripherals (e.g., LCD controllers and storage controllers) can transfer
data to and from memory using Direct Memory Access (DMA), which is not
access-controlled by the AXI-to-APB bridge. A TrustZone™-aware DMA controller
(DMAC) supports concurrent secure and normal peripheral DMA accesses, each with
independent interrupt events. Together with the TZASC, TZMA, GIC, and the AXI-
to-APB bridge, the DMAC can prevent a peripheral assigned to the normal-world
from performing a DMA transfer to or from secure-world memory regions.

4.2 Isolated Execution 19

4.2.1.4 Hardware Interrupt Isolation

As peripherals can be assigned to either the secure or normal world, there is a need to
provide basic interrupt isolation so that interrupts from secure peripherals are always
handled in secure world.

Hardware interrupts on the current ARM platforms can be categorized into: IRQ
(normal interrupt request) and FIQ (fast interrupt request). The Generic Interrupt
Controller (GIC) can configure interrupt lines as secure or normal and enables
secure-world software (in monitor mode) to selectively trap such system hardware
interrupts. This enables flexible interrupt partitioning models. For example, IRQs can
be assigned for normal-world operations and FIQs for secure-world operations. The
CPU core provides support for interrupt identification and redirection. For example,
if an IRQ occurs during normal-world execution, it is handed over to the normal-
world interrupt handler immediately. However, if an IRQ occurs during secure-world
execution, the monitor-mode handler is invoked which can choose to handle the IRQ
or inject it back to the normal-world. The GIC hardware also includes logic to prevent
normal-world software from modifying secure interrupt line configurations. Thus,
secure world code and data can be protected from potentially malicious normal-
world interrupt handlers, but TrustZone™ by itself is not sufficient to implement
device virtualization.

4.2.2 Virtualization-based Isolated Execution

ARM’s Virtualization Extensions provide hardware virtualization support to normal-
world software starting with the Cortex™ A15 CPU family [12]. The basic model for
a virtualized system involves a hypervisor, that runs in a new normal-world mode
called Hyp mode (Fig. 4.2). The hypervisor is responsible for multiplexing guest
OSes, which run in the normal world’s traditional OS and user modes. Note that
software using the secure world is unchanged by this model, as the hypervisor has
no access to secure world state. The hypervisor can optionally trap any calls from a
guest OS to the secure world.

4.2.2.1 ARM Cortex™-A15

The ARM Cortex™-A15 processor architecture includes new capabilities for hard-
ware support for virtualization. The A15 processor retains full compatibility with
its predecessors (e.g., Cortex™-A9) and is based on the ARMv7 architecture. It
includes hardware support for virtualization extensions which can run multiple OS
binary instances simultaneously thereby enabling isolation of multiple execution
environments and associated data. The Cortex™-A15 also includes support for mul-
ticore processing and Large Physical Address Extensions (LPAE) which provides
the ability to use upto 1TB of physical memory. LPAE introduces 40-bit physical

20 4 Available Hardware Primitives

addressing that reduces address-map congestion by providing common global phys-
ical addressing while supporting multiple resident virtualized operating systems.

4.2.2.2 ARMv7 Virtualization Extensions

The ARMv7 Virtualization Extensions are similar to the x86 counterpart in terms of
the high-level isolation and virtualization mechanisms. A new non-secure level of
privilege level, called the HYP mode holds the hypervisor. The ARMv7 hardware
virtualization extensions provide various mechanisms for the guest such as interrupt
masking, page table management and communication with system interrupt con-
trollers (e.g., GIC) which avoid the need for hypervisor intervention during guest
execution. It also provides configurable traps into HYP mode for various system
control register accesses and instructions. The architecture also provides hypervisor
support for guest instruction emulation via general constructs called syndromes. The
ARMv7 virtualization extensions and the HYP mode are designed to co-exist with
the TrustZone™ secure execution architecture as shown in Fig. 4.2.

Two-Level Memory Virtualization

Before virtualization the OS owns the memory and allocates areas of memory to the
different applications. Modern OSes commonly use virtual memory for address space
seperation. With two-level memory virtualization, the address translation is divided
into two stages. Stage 1 translation is owned by each guest OS and Stage 2 translation
is owned by the hypervisor. Tables from Guest OS translate Virtual Address (VA) to
Intermediate Physical Address (IPA) and a second set of tables from the hypervisor
translate the IPA to the final physical address (PA). The hardware allows aborts to
be routed to the appropriate software layer (guest or hypervisor).

Interrupt Virtualization

An Interrupt might need to be routed to one of current or different guest operating
system, the hypervisor or an OS running in the secure TrustZone™ environment.
In the basic model of the ARM virtualization extensions, physical interrupts are
taken initially in the hypervisor. If the interrupt should go to a particular guest, the
hypervisor maps a “virtual” interrupt for that guest.

Virtualization Extensions provide the necessary infrastructure to aid in interrupt
virtualization. More specifically there are special system registers and flag-bits that
are banked (e.g., CPSR.I,A and F bits) which allow a particular guest to change these
bits without the hypervisor needing to trap and emulate them. All virtual interrupts
are routed to non-secure interrupt handlers in HYP mode (e.g., IRQ, FIQ and Aborts).
Finally, the guest manipulates a virtualized interrupt controller while the physical
interrupt controller is in control of the hypervisor.

4.2 Isolated Execution 21

Device Virtualization Support and DMA Protection

ARM I/O handling uses memory mapped devices. Reads and Writes to the device
registers have specific side-effects. Creating virtual devices requires emulation. Typ-
ically reads/writes to devices have to trap to the hypervisor which then interprets
the operation and performs emulation. Perfect virtualization means all possible
devices loads/stores emulated. Unfortunately, fetching and interpreting emulated
load/store is performance intensive. ARMv7 hardware virtualized architecture intro-
duces the “syndrome” construct to ameliorate this situation. Essentially, syndromes
store information on aborts for some loads/stores. It unpacks key information about
the instruction Source/Destination register, Size of data transfer, Size of the instruc-
tion, SignExtension etc. which the hypervisor can readily use for emulation purposes.

Providing address translation for devices is an important aspect of any virtualiza-
tion architecture since it allows containment of device memory accesses in order to
enforce isolation. It also allows for unmodified device drivers in the guest OS. If the
device can access memory, the guest will program it in the IPA.

ARMv7 hardware virtualization adds the option for a “system MMU” which
enables second stage memory translations in the system for devices. A system MMU
could also provide stage 1 translations allowing devices to be programmed into the
guests VA space. ARM is currently defining a common programming model where
the intent is for the system MMU to be present at the system bus level and configurable
by the hypervisor.

4.3 Secure Storage

Current ARM platform specifications do not include a root of trust for long-term
secure storage. Platform hardware vendors are free to choose and implement a pro-
prietary mechanism if desired. In this section we discuss hardware roots of trust for
secure storage that are available on devices today.

4.3.1 Secure Elements

The Secure Element (SE) provides a solution for establishing a root of trust for
mobile devices. SEs provide storage and processing of digital credentials and sen-
sitive data in a physically separate protected module such as a smart-card, thereby
reducing the physical attack surface. Ideally, the SE provides a flexible secure plat-
form that supports many applications, each of which can be customized and managed
independently [15]. Secure elements fall into three broad categories: software SEs,
embedded hardware SEs, and removable hardware SEs [45]. For the purposes of this
discussion we only consider hardware-based SE solutions.

22 4 Available Hardware Primitives

An embedded SE is an IC fixed to a mobile device to provide a high degree
of security for applications handling sensitive data. Embedded SEs are commonly
used to provide security for near field communication (NFC) applications such as
automated access control, ticketing, and mobile payment systems. For example,
Google Wallet™ uses embedded secure elements to store and manage encrypted
payment card credentials,1 so that they are never available to a compromised mobile
device OS. Development platforms such as the FreeScale i.MX53 (Sect. 4.8.2) and
Texas Instruments M-Shield™ (Sect. 4.8.3), employ an embedded SE to provide a
tamper-resistant secure execution and storage environment.

Removable SEs are interfaced to removable memory such as a Secure Digital (SD)
Card or Universal Integrated Circuit Card (UICC). With removable SEs, third-party
developers can develop applications against a single platform-independent interface.
However, removable SEs are readily physically separated from the mobile device
(e.g., the SE may be independently lost or stolen). Giesecke & Devrient and Tyfone
are notable vendors currently selling removable SEs.

4.4 Remote Attestation

A remote attestation primitive relies on a private key that is exclusively accessible
by a small TCB, and the presence of one or more registers to store measurements
(cryptographic hashes) of the loaded code (Sect. 3.3). A vast majority of off-the-shelf
mobile devices include support for secure or authenticated boot. The boot-ROM is
a small immutable piece of code which has access to a public key (or its hash)
and authenticates boot components that are signed by the device authority’s private
key. Platforms such as the FreeScale i.MX53 (Sect. 4.8.2) and Texas Instruments’
M-Shield™ (Sect. 4.8.3) contain secure on-chip keys (implemented using e-fuses)
that are one-time-programmable keys accessible only from inside a designated secure
environment for such authentication purposes. However, none of the hardware plat-
forms, to the best of our knowledge, support platform registers to accumulate mea-
surements of the loaded code. In principle, this support could be added in software by
leveraging the hardware isolation primitives and secure storage described previously.

4.5 Secure Provisioning

Current mobile platforms implement mechanisms to authenticate external informa-
tion, with the hash of the public portion of the signing key stored immutably on
the device [33]. However, such capabilities are currently restricted to OEMs or
carriers (e.g., software updates, assigning different identities to the device) and
remain unavailable for use by arbitrary third-party developers.

1 http://www.google.com/wallet/faq.html

http://dx.doi.org/10.1007/978-1-4614-8190-4_3
http://www.google.com/wallet/faq.html

4.6 Trusted Path 23

4.6 Trusted Path

Platforms such as M-Shield™ (Sect. 4.8.3) provide basic hardware primitives to
realize a trusted path. A special chip interconnect allows peripheral and memory
accesses only by the designated secure environment, and secure DMA channels to
guarantee data confidentiality from origin to destination. Such capabilities are being
used for DRM (video streaming) on certain off-the-shelf mobile devices [27], but it
remains unclear if they are available to third-party developers.

4.7 Design Gaps and Challenges

Having described the ARM hardware platform and security architecture and how
the different components interplay to provide various hardware security features,
we now identify design gaps and implementation challenges in off-the-shelf mobile
devices that prevent third-party application developers from fully realizing the desired
security features.

ARM’s hardware platform architecture is only a specification, leaving the OEMs
free to customize a specific implementation to suit their business needs. This means
that OEMs could leave out components whose absence can severely constrain some
security features and in some cases even break feature correctness. For example,
the absence of a TZASC (and/or TZMA) leaves main memory (DRAM/SRAM)
accessible to both the secure and normal worlds. The only way to enforce memory
isolation between the worlds is to use TCM (Sect. 4.2.1), which has a very limited
size (typically 16–32 KB). Similarly, DMA protection requires a TrustZone™-aware
DMA controller, GIC, TZASC (and/or TZMA), and a TrustZone™-aware AXI-to-
APB bridge. The absence of one of these components will result in the DMA pro-
tection being ineffective.

Unfortunately, most of today’s off-the-shelf mobile devices include a single set
of devices shared between the secure and normal worlds and do not include all the
required components to fully realize the hardware security primitives described pre-
viously. This results in a huge gap between functional specification and device imple-
mentation. OEMs and carriers are generally not concerned with DMA-style attacks
or including a TZASC (and/or TZMA) because their physical security requirements
already force them to process sensitive data in TCM or other device-specific isolated
environments unreachable via DMA.

Many OEMs explicitly lock-out platform security features. For example, TrustZone™

secure-world is enabled or disabled by a single bit in the system configuration
register [8]. Once this bit is set to 1 (disabling secure-world), it can no longer
be cleared until a device reset. In many off-the-shelf mobile devices such as the
Motorola™ Droid™, Droid™-X, BeagleBoard, and some Gumstix platforms, this
bit is set to 1 by the boot-ROM code, in essence allowing only normal-world
operations.

24 4 Available Hardware Primitives

From a developer’s perspective, an abundance of documentation and open-source
(or low-cost) development tools are two key factors that facilitate device and plat-
form adoption. While ARM offers decent documentation and development tools
(FastModel/RVDS/RTSM) to leverage the hardware security primitives, the cost of
the tools (outside of academia) is greater than cost of a typical device. We believe
this to be a significant reason why the open-source and hobbyist community has not
rallied around ARM’s tools.

4.8 Platform Case Studies

We now describe several readily available, inexpensive development platforms that
come with a host of interesting security features. These examples serve to show that
there is no shortage of security potential in mobile device platforms.

4.8.1 ARM Versatile Express

ARM provides a range of both hardware and software development platforms encap-
sulating both Split-world (TrustZone™) and Virtualization-based (VEAS) isolated
execution environments.

The Versatile Express family of development platforms from ARM provides
the required environment for prototyping the next generation of system-on-chip
designs. These development platforms feature flexible, modular architecture, and
high-speed interfaces, hardware and software applications can be developed and
debugged quickly and efficiently.

Versatile Express is based on Advanced Microcontroller Bus Architecture
(AMBA) and uses the Advanced eXtensible Interface (AXI) or custom logic for
use with ARM processors. The Versatile Express system has the following possible
sets of component boards (see Fig. 4.3):

• A Motherboard Express (e.g., V2M-P1)
• A CoreTile Express processor daughterboard.
• A LogicTile Express FPGA daughterboard.

The Motherboard Express is especially designed to support latest generations of
ARM processors (e.g., with hardware virtualization). It includes all the necessary
peripherals that enables porting and developing operating systems and applications
for new processors and graphics engines. The motherboard also supports hardware
and software application development and debugging through a range of plug-in
daughterboards.

The CoreTile Express daughterboard is used together with the Motherboard
Express for evaluation, benchmarking and prototyping with the Cortex™-A15 (with
hardware virtualization extensions) or Cortex™-A9 through Cortex™-A5 processors
(Fig. 4.4).

4.8 Platform Case Studies 25

Fig. 4.3 ARM Versatile Express Platform Architecture: comprises of a Motherboard Express,
a CoreTile Express Cortex™-A series processor daughterboard and a LogicTile Express daughter-
board for peripheral connectivity

The Versatile Express LogicTiles provide custom logic expansion capability for
the Versatile Express system. They enable peripheral prototyping, validation and
software device driver development alongside an ARM processor. A choice of boards
with different sized FPGAs and stacking capabilities are available to match design
and development requirements.

ARM also provides the RealView Development Suite (RVDS) as a co-ordinated
development environment for mobile and embedded systems applications running
on the ARM family of processors. RVDS consists of a suite of tools, together with
supporting documentation and examples. The tools enable you to write, build, and
debug your applications, either on target hardware or software simulators.

26 4 Available Hardware Primitives

Fig. 4.4 ARM Versatile Express Development Kit: supports both TrustZone™ (split-world) and
VEAS (Virtualization-based) isolated execution environments based on the Cortex™-A series
processors

The ARM software simulators enable development and debugging of software
without the requirement for actual hardware. The ARM FastModels and Real-Time
System Models (RTSM) provide a Programmer’s View (PV) models of processors
and devices. The functional behavior of a model is equivalent to real hardware.
Absolute timing accuracy is sacrificed to achieve fast simulated execution speed. This
means that you can use the PV models for confirming software functionality, but you
must not rely on the accuracy of cycle counts or low-level component interactions.

4.8 Platform Case Studies 27

Fig. 4.5 FreeScale i.MX53 Platform Architecture: salient security features include an internal
memory that is partitioned into secure and non-secure areas and other features such as secure-boot,
secure key storage, and secure DMA controller

4.8.2 FreeScale i.MX53

The FreeScale i.MX53 is a $149 MSRP development board with an ARM Cortex™

A8 CPU supporting the Split-world (TrustZone™) based isolated execution envi-
ronment. Figure 4.5 shows the overall architecture of the i.MX53. The memory
subsystem consists of a L1/L2 cache and a L2 internal memory. The L2 internal
memory is further divided into a boot-ROM and RAM that is partitioned into secure
and non-secure areas. The external memory interface can support upto 2GB DDR3
memory. The i.MX53 makes use of dedicated hardware accelerators to achieve high
performance and low power consumption while freeing up the CPU core for other
tasks. The system also supports efficient and smart power control and clocking. The
i.MX53 is available both as a development board and a tablet form-factor (Fig. 4.6)
which makes it a great choice for system prototyping.

The i.MX53 supplements a range of security features that can be used indi-
vidually or in concert to underpin the platform security architecture. Most of the

28 4 Available Hardware Primitives

Fig. 4.6 FreeScale i.MX53 Development Kit: includes a development board and a tablet form-
factor, both running the Cortex™-A8 ARM processor with TrustZone™ (split-world) isolation
enabled

i.MX53 security features provide protection against particular kinds of attack and
can be configured at various levels according to the required degree of protection.
These features are designed to work together and can be integrated with appropriate
software to create defensive layers. In addition to protection features, the i.MX53
includes a general-purpose accelerator to enhance the performance of selected
industry-standard cryptographic algorithms.

4.8 Platform Case Studies 29

Enhanced TrustZone™

i.MX53 supports the TrustZone™ Architecture (see previously) to provide a trusted
execution environment for security-critical software. In addition, the i.MX53 includes
a TrustZone™ Interrupt Controller (TZIC) and a TrustZone™ Watchdog (TZWDOG).
The TZIC collects interrupt requests from all sources and provides the interrupt inter-
face to the core. Each interrupt source can be configured dynamically as a Normal
or a Secure interrupt.

The TrustZone™ Watchdog (TZWDOG) protects against Normal World software
preventing a switch back to the Secure World, thereby starving security services of
access to the core. Once the TZWDOG is activated, it must be serviced by Secure
World software on a periodic basis. If servicing does not take place before the con-
figured time-out, the TZWDOG asserts a secure interrupt that forces a switch to the
Secure World. If it is still not served, the TZWDOG asserts a security violation alarm.
The TZWDOG cannot be programmed or deactivated from the Normal World.

Secure-Boot Process

Unauthorized software can enter the platform during upgrades or re-provisioning, or
when booting from USB/UART connections or removable devices. If permitted to
gain control of the boot sequence, unauthorized software can be the attack vector for
a variety of goals including exposing stored secrets, circumventing access controls
to sensitive data, services or networks, and re-purposing the platform. The i.MX53
supports a High Assurance Boot (HAB) process where the system boot-ROM pre-
vents the platform from executing unauthorized software during the boot sequence.
Using digital signatures to recognize authentic software, HAB supports booting the
device to a known initial state, running software signed by the (lifetime-write-once)
designated authority.

Secure Cryptographic Key Storage

The i.MX53 Security Controller provides a small Secure RAM area that is self-
clearing on tamper detection or software deallocation. The code can execute out of the
Secure RAM. The Secure RAM is divided into 4 seperate areas called partitions. The
security controller is TrustZone™-aware and provides configurable access controls
for each partition.

Secure Cryptographic Computing Engine

The i.MX53 Security Accelerator (SAHARA) provides a dedicated cryptographic
engine for importing data to or exporting data from Secure RAM. It has a 256-bit ded-
icated secret master key that is protected from other software or hardware accesses.

30 4 Available Hardware Primitives

Individual partition keys are bound to partition allocation, permissions and software-
supplied values. The SAHARA has a dedicated TrustZone™-aware DMA controller
and accelerates the following cryptographic functions: AES, DES/3DES, ARC4,
MD5, HMAC, SHA-1, SHA-224 and SHA-256. It also features entropy generation.

DMA Controller

The i.MX53 Smart Direct Memory Access (SDMA) controller is a software pro-
grammable DMA controller that enables data transfers between peripheral I/O
devices and internal/external memories. The SDMA supports two security levels:
(a) open mode—where the CPU has full control to load scripts and execution con-
text into SDMA RAM and modify SDMA registers; and (b) locked mode—where
selected SDMA registers become read-only to prevent modification of software reset,
exception, and debug handling.

4.8.3 Texas Instruments OMAPTM and M-ShieldTM

OMAP™ (Open Multimedia Applications Platform) developed by Texas Instruments
is a category of proprietary system on chips (SoCs) for portable and mobile mul-
timedia applications. OMAP™ devices include a general-purpose ARM architec-
ture processor core plus one or more specialized co-processors. OMAP™ SoCs are
found in many mobile phones including those from Nokia™ (N series), Motorola™

(Droid™) and Blackberry™.
The OMAP™ family consists of three processor groups classified by performance

and intended application: (a) High-performance applications processors, (b) Basic
multimedia applications processors, and (c) Integrated modem and applications
processors. The High-performance applications processors are chiefly used in smart-
phones today with processors powerful enough to run significant operating sys-
tems (such as Linux™, Android™ or Symbian), support connectivity to personal
computers, and support various audio and video applications. The Basic multimedia
and Integrated modem processors are intended to be highly integrated for use in low
cost cell phones.

Figure 4.7 shows the OMAP™ 4 platform architecture. We briefly discuss the
salient OMAP™ technologies below:

• Connectivity and System Integration The OMAP™ platform provides multiple
wireless connectivities such as Bluetooth, Wi-Fi, GPS and FM. Beyond wire-
less connectivity OMAP™ platforms also include pre-integration of a number of
application-specific protocols such as SD, EMMC, Ethernet, USB, SATA and PCI
Express.

• Programmable DSP OMAP™ processors contain a programmable DSP, which
can accelerate the decoding of images in real time. While other processors rely on

4.8 Platform Case Studies 31

Fig. 4.7 OMAP™ (Open Multimedia Applications Platform) Architecture: The OMAP™ platform
provides multiple connectivity options (Wi-Fi, SD, Ethernet, USB etc.) and also contains a pro-
grammable DSP which can be used to optimize image decoding and run various analytics. OMAP™

platforms offer the M-Shield™ system-level security solution that provides a trusted execution envi-
ronment with other security features such as secure-boot, secure DMA and public-key infrastructure

32 4 Available Hardware Primitives

their primary CPU cores, or a fixed function engine to decode images, OMAP™

processors enable flexible clients which use the programmable DSP to support
multiple protocols in single device. For example, the OMAP™ DSP can be also
programmed to optimize and accelerate vision algorithms, support stereo cameras
for functions requiring depth perception, and run analytics.

• Security OMAP™ processors support secure boot, which authorizes software
source and encryption prior to booting systems. OMAP™ processors also offer
the M-Shield™ security solution. M-Shield™ technology is a system-level secu-
rity solution that intimately interleaves hardware and software technologies to
provide security, forming a Trusted Execution Environment. It is operating system-
independent and not sensitive to software attacks. We discuss M-Shield™ in detail
below.

4.8.3.1 OMAP™ M-Shield™

The M-Shield™ mobile security technology [13] is a system-level security solution
with hardware and software components (Fig. 4.7).

The M-Shield™ secure environment has a secure state machine (SSM) as well
as secure ROM and RAM. The SSM enforces isolation by enforcing the system’s
security policy rules during secure environment entry, execution, and exit. The
M-Shield™ secure environment is built on top of the TrustZone™ isolated execution
environment architecture and exposes the TrustZone™ API (Sect. 6.3.3) for managing
secure services. According to the white-paper [13], there are associated middleware
and developer APIs for developing such secure services. However, documentation
detailing those APIs does not seem to be readily available.

M-Shield™ provides one-time programmable on-chip keys (using e-fuses) that
are accessible only from inside the secure environment, and are typically used for
authentication and encryption. M-Shield™ also provides a hardware AES and public-
key accelerator, as well as DES/3DES, SHA and MD5 hardware accelerators.

M-Shield™ also provides hardware primitives for trusted path. A Secure DMA
controller tags DMA transfers to protect the confidentiality of sensitive high-value
data during their processing and transfer throughout the platform. To further ensure
protection against attacks, a secure chip-interconnect allows accessing peripherals
and memories only by the secure environment and/or by secure DMA channels so
that the confidentiality of sensitive information is guaranteed through the entire data
path, from origin to destination.

M-Shield™ also includes a public-key infrastructure that provides a secure means
to validate the authenticity and integrity of software on the platform before execution,
thereby supporting secure-boot and enabling authenticated-boot.

http://dx.doi.org/10.1007/978-1-4614-8190-4_6

4.8 Platform Case Studies 33

4.8.3.2 OMAP™ Development Boards

OMAP™ (M-Shield™) SoCs are used as the basis for a number of hobbyist and pro-
totyping boards. We examine a few popular boards and their support for developing
security sensitive applications.

The Beagle Board, Panda Board and Gumstix are low-cost, fan-less single-board
computers based on the OMAP™ 3 device family, with all of the expandability of
today’s desktop machines, but without the bulk, expense, or noise (Fig. 4.8). At the
heart is the ARM Cortex™-A8 processor with TrustZone™ support. The design goal
of these boards was to make it as simple and cheap (they boards retail less than $150)
as possible e.g. not having a LCD added, but letting you connect all add-ons available
as cheap external components. They are reported to run Linux™ and Android™ OSes.

Logic’s Zoom Mobile Development Kit is a form-factor development platform that
leverages the processing capabilities of OMAP™ while offering developers a more
realistic system for development and validation. The platform runs a Cortex™-A8
ARM processor and can boot Linux. The kit comes with various software resources
including supporting kernel and libraries.

Unfortunately, all the above development boards have TrustZone™ disabled 2 and
lack access to any of the hardware security features.

Fig. 4.8 OMAP™ devel-
opment boards such as the
Gumstix are readily available
low-cost fan-less single-
board computers based on
the OMAP™ platform. Other
OMAP™ development boards
include the Beagle Board,
Panda Board and Logic’s
Zoom Mobile Development
Kit. Unfortunately, all the
above development boards
disable TrustZone™ within
the boot-ROM during power-
up and lack access to any of
the security features specified
by the OMAP™ M-Shield™

2 The Initial Program Load (IPL) ROM code seems to switch the Cortex™-A8 processor into Normal
world immediately on boot-up. http://e2e.ti.com/support/omap/f/849/t/58680.aspx.

http://e2e.ti.com/support/omap/f/849/t/58680.aspx

34 4 Available Hardware Primitives

4.8.4 Samsung ExynosTM

The Exynos™ 5 is System-on-a-chip (SoC) by Samsung that is based on the ARM
Cortex™-A15 processor. The Exynos™ 5 SoC provides a dual-core CPU, WQXGA
display and specialized 2D/3D graphics hardware. The platform also includes a ded-
icated Image Signal Processor and connectivity to high-speed peripheral interfaces
such as USB 3.0 and SATA3.

Figure 4.9 shows the high-level architecture of the Exynos™ 5 platform. At its
core, the platform includes an ARM Cortex™-A15 dual-core processor. Exynos™ 5
also features in addition the quad-core ARM ARM Mali T604 GPU to deliver superior
GPU performance. The advent of GPGPU’s, which represents a substantial change

Fig. 4.9 Samsung Exynos™ 5 Platform Architecture: comprises of a Cortex™-A15 processor with
support for both TrustZone™ and Virtualization-based isolated execution environments. The plat-
form also features a GPGPU for MIMD parallelism and supports various other security features
such as secure-boot, hardware cryptographic accelerators and key management

4.8 Platform Case Studies 35

in hardware architecture enables massive MIMD parallelism and utilize bandwidth
to get the most out of Exynos™’s shared memory architecture.

The Exynos™ 5 also incorporates several security features. The platform incor-
porates the TrustZone™ (split-world) isolated execution architecture with the ability
to run secure sensitive applications in a secure world. The Cortex™-A15 hardware
virtualization extensions enable the HYP mode or the hypervisor mode that can also
be used to implement an isolated execution environment to enforce desired security
properties.

The security subsystem also supports hardware cryptographic accelerators for
AES, DES/3DES, ARC4, SHA-1/SHA-256/MD5/HMAC/PRNG and TRNG. The
platform also supports secure-boot and contains a dedicated secure RAM that is only
accessible to the TrustZone™ secure-world. The platform also features a run-time
integrity check subsystem which can be configured to check memory data integrity
during runtime.

4.8.4.1 Exynos™ Development Kit

The Arndale Board, a new community development board is designed around the
Exynos™ 5 Dual system-on-chip (SoC). The development board offers the open
source developer community a rich environment for producing the highest caliber of
mobile applications focused in the areas of security, gaming, multimedia, and user
interface on multiple operating systems. The Arndale board also includes features
such as Near Field Communication (NFC), a Global Positioning System (GPS) and a
camera sensor. Wi-Fi and Bluetooth connectivity are also provided. The development
kit also features an add-on LCD component that can convert the development board
into a tablet-form factor.

Chapter 5
Isolated Execution Environments

An execution environment that is isolated from the device operating system (Sect. 3.1)
is perhaps the most critical security feature described in Chap. 3. Such an environment
can be used to run secure services that multiplex hardware-backed security features,
such as secure storage (Sect. 3.2), amongst the various stake-holders, including third
party application developers.

Greater flexibility can be offered to third-party developers by allowing them to
run modules inside that environment. This mechanism provides the strongest security
for those modules, since data can be prevented from leaving the secure environment.
However, it also requires ensuring that software modules in that environment cannot
compromise each other, the environment itself, or the main OS. While this increases
the size and complexity of the isolated environment’s trusted-computing-base, such
an environment remains smaller and more trustworthy than a full-featured OS.

The available isolated-execution hardware primitives Sect. 4.2 offer several options
for implementing isolated execution environments. We consider two high-level
approaches: either using a parallel execution environment, or multiplexing a sin-
gle execution environment using a hypervisor.

5.1 Parallel Isolated Execution

One strategy for isolated execution is to put sensitive code in a distinct, paral-
lel environment. As described in sect. 4.2.1, current ARM platforms that support
TrustZone™offer a mechanism by which secure software can execute in isolation
within a special processor world. Several research proposals [21–23, 34, 62, 65]
employ TrustZone™to achieve isolation and provide a subset of the security prop-
erties discussed in Chap. 3. Other approaches make use of a physically separate
protected module such as a smart-card to achieve isolation. One notable example is
the Trusted Execution Module (TEM) [17], which is capable of securely executing
procedures (called closures) expressing arbitrary computation. The TEM itself is a

A. Vasudevan et al., Trustworthy Execution on Mobile Devices, SpringerBriefs 37
in Computer Science, DOI: 10.1007/978-1-4614-8190-4_5, © The Author(s) 2014

http://dx.doi.org/10.1007/978-1-4614-8190-4_3
http://dx.doi.org/10.1007/978-1-4614-8190-4_3
http://dx.doi.org/10.1007/978-1-4614-8190-4_3
http://dx.doi.org/10.1007/978-1-4614-8190-4_4
http://dx.doi.org/10.1007/978-1-4614-8190-4_4
http://dx.doi.org/10.1007/978-1-4614-8190-4_3

38 5 Isolated Execution Environments

byte-code interpreter for a small special-purpose programming language. This inter-
preter is realized as a JavaCard applet, hosted inside a JavaCard-enabled [51] smart-
card. Another example is a smart-card-based Mobile Trusted Module (MTM) [20]
that implements the MTM functionality in Java applets that can be downloaded into
the smart-card. We provide a detailed discussion of the above frameworks in Chap. 6.

5.2 Hypervisors

A microkernel is a minimal OS, with many components that would be part of a
monolithic OS, particularly device drivers, either removed or running as deprivi-
leged processes. A hypervisor is a microkernel that can run other OSes as depriv-
ileged processes. OSes can run unmodified if the environment provided by the
hypervisor (optionally with help from some of its deprivileged services) matches
the physical hardware expected by that OS. Otherwise we say that the OS must be
para-virtualized—modified to run in the environment that is provided by the hyper-
visor.

A hypervisor can be used to implement an execution environment that is isolated
from the main OS by running the operating system as one process (a virtual machine),
and by running the modules to-be-isolated as separate processes.

5.2.1 Hypervisor Attributes for Mobile Devices

Hypervisors on mobile devices implement a different kind of abstraction with dif-
ferent constraints than other platforms. This section explores some of the constraints
and capabilities provided in the mobile device space.

Although mobile devices have been commonly associated with severe resource
constraints, today’s devices range from powerful processors with server-level func-
tionality (such as hardware support for virtualization) to power-optimized systems
with less compute capacity and resources. This variety creates a more demanding
environment for hypervisors on mobile devices than their mainframe and server
siblings.

Efficiency

All hypervisors strive for efficiency, but hypervisors on mobile devices must deal
with added constraints outside of traditional virtualization environments. Outside
of processor sharing, memory tends to be one of the key limiters to performance
in mobile device environments. For this reason, hypervisors designed for mobile
devices must be small and extremely efficient in their use of memory.

http://dx.doi.org/10.1007/978-1-4614-8190-4_6

5.2 Hypervisors 39

Security

A hypervisor being small has its advantages. The smaller the code size of an
application, the easier it is to validate and prove that it is bug free. In fact, some
mobile device hypervisor vendors have formally verified their hypervisors and guar-
anteed them to be bug free (e.g., seL4 [32]). The smaller the hypervisor, the more
secure and reliable the platform can be. This is because the hypervisor is typically
the only portion of the system to run in a privileged mode, which serves as what is
known as the Trusted Computing Base (TCB) and leads to a more secure platform.

Communication

Hypervisors for mobile devices are built for sharing a hardware platform with mul-
tiple guests and applications but also commonly extend communication methods to
allow them to interact. This channel for communication must be both efficient and
secure, permitting privileged and non-privileged applications to coexist.

Isolation

Related to security is the ability to isolate guests and applications from one another. In
addition to providing containment for security and reliability, it provides benefits in
terms of license segregation. Using the mobile device hypervisor’s communication
mechanism permits proprietary software and open source software to coexist in
isolated environments. As mobile devices become more open, the desire to mix
proprietary software with third-party and open source software is a key requirement.

Real-Time Capabilities

Finally, the mobile device hypervisor must support scheduling with real-time capa-
bilities. In the case of mobile phones, the hypervisor can share the platform with core
communication capabilities and third-party applications. Scheduling with real-time
characteristics allows the critical functions to coexist with applications that operate
on a best-effort basis.

5.3 Hypervisor Case Studies

We now describe in detail some noteworthy existing ARM hypervisor projects shown
in Table 5.1. Current closed-source hypervisors include Winter [62], seL4 [32],
OKL4 [39], and INTEGRITY [28]. Winter outlines an approach to merge TCG-
style Trusted Computing concepts with ARM TrustZone™ technology in order to

40 5 Isolated Execution Environments

Table 5.1 Noteworthy ARM hypervisors and microkernels

HyperVisor/Microkernel Virtualization type Code availability Maturity level

Winter Split-world Closed-source Unknown
SeL4 Para-virtualization Closed-source Unknown
OKL4 Para-virtualization Closed-source Mature
INTEGRITY Para-virtualization Closed-source Mature
KVM/ARM Full-virtualization Open-source Work-in-Progress
CodeZero Para-virtualization Open-source Work-in-Progress
EmbeddedXen Para-virtualization Open-source Work-in-Progress
Xen/ARM Para-virtualization Open-source Work-in-Progress
XMHF Full-virtualization Open-source Work-in-Progress

build an open Linux™ based embedded trusted computing platform. The seL4 project
gained notoriety in 2009 when they announced a formally verified microkernel for
the ARM architecture. OKL4 is a microkernel-based embedded hypervisor with a
small footprint and CPU support to target mobile telephony. The INTEGRITY mul-
tivisor uses a security kernel to provide domain isolation and is targeted at in-vehicle
infotainment and next-generation mobile devices.

KVM/ARM,1 Codezero,2 EmbeddedXen,3 XenARM [63], and XMHF4 are some
noteworthy open-source hypervisor initiatives. We now describe these hypervisors
in more detail.

5.3.1 KVM/ARM

The KVM for ARM project is focused on creating a open-source KVM-based virtual-
ization solution for ARM-based devices that can run virtual machines efficiently. The
project explores both software-only and hardware-assisted approaches, the latter by
leveraging ARM virtualization extensions. Figure 5.1 shows the overall hypervisor
architecture.

The software-only approach uses lightweight paravirtualization, a script-based
method to automatically modify the source code of an operating system kernel to
allow it to run in a virtual machine. Lightweight paravirtualization is architecture
specific, but operating system independent. It is minimally intrusive, automated,
and requires no knowledge or understanding of the guest operating system kernel
code [19].

1 http://wiki.ncl.cs.columbia.edu/wiki/KVMARM:MainPage
2 http://www.l4dev.org
3 http://sourceforge.net/projects/embeddedxen
4 http://xmhf.org

http://wiki.ncl.cs.columbia.edu/wiki/KVMARM:MainPage
http://www.l4dev.org
http://sourceforge.net/projects/embeddedxen
http://xmhf.org

5.3 Hypervisor Case Studies 41

Platform Hardware

Guest Applications

Guest OS

KVM/ARM

Host Applications

Host OS

Fig. 5.1 KVM/ARM hypervisor architecture

The basic idea behind lightweight paravirtualization is to modify the guest kernel
source-code to replace sensitive non-privileged instructions so that they can trap to
the hypervisor. The hypervisor then emulates the instruction. The key idea behind
the automation is to use a script based on regular expressions that parses the kernel
source code and performs such replacements automatically. The current KVM/ARM
software-only prototype is based on the Linux™ kernel used in Google™ Android™,
and is reported to run nearly unmodified Linux™ guest operating systems [5].

The KVM/ARM hardware-assisted approach focuses on ARM support for
hardware virtualization extensions. More specifically the current KVM/ARM
hardware-assisted prototype operates on the Cortex™-A15 processor using the ARM
FastModels emulator as well as the ARM Versatile Express hardware platform. At
a high level the KVM/ARM hardware-assisted approach leverages the ARM HYP
mode to context switch from host to guest and back. On every such context switch,
KVM saves and restores host and guest execution contexts (e.g., translation tables,
trap configurations, general purpose and system registers etc.). KVM also pre-empts
the guest on certain conditions such as interrupt delivery, translation faults and few
privileged system register accesses and cache maintenance operations. On guest exit,
the control is transferred to the host which then hadles the exit accordingly (e.g., inter-
rupts, page-faults). The hypervisor has no influence at all when running the host.
The current KVM/ARM hardware-assisted prototype is reported to successfully run
unmodified Linux™ guest operating systems [60].

5.3.2 CodeZero

The Codezero hypervisor is a new microkernel that follows the L4 architecture but
has been written from scratch to benefit from the latest research in microkernel
design. It follows the fundamental principles of microkernels in that it implements
address spaces, thread management, and IPC only in the privileged microkernel along
with virtualization capabilities. The current Codezero prototype supports the ARMv7

42 5 Isolated Execution Environments

Platform Hardware

CodeZero Hypervisor

Applications

Linux

Applications

Android

Applications

RTOS

Bare-metal
Software

Stack

Fig. 5.2 CodeZero hypervisor architecture

(hardware-virtualized) architecture and is reported to run multiple operating systems
at the same time on a single platform while ensuring a hardware-based isolation
between them.

As shown in Fig. 5.2, Codezero implements a typical abstraction layer over the
hardware platform. The abstraction layer implements threading, IPC, address space
management, address space mapping, security, power, and error recovery manage-
ment. Codezero’s scheduler includes kernel preemption for both guest threads and
microkernel threads (in addition to time slices for preemption).

Virtualization in Codezero is implemented through containers. Each container is
an isolated execution environment with its own set of resources (memory, threads,
and so on). The partition also works in concert with Codezero’s security and resource
management policies, which define capabilities for each container. Secure containers
can be created as many as needed, with the ease of software. Each secure container is
then populated with additional functionality, from simple applications to full blown
operating systems such as Android™ or Linux™.

Codezero benefits from recent advancements in microkernel designs. For effi-
ciency, Codezero implements three forms of IPC (all based on the rendezvous model).
Codezero implements short IPC (between user space threads), full IPC (256 bytes),
and extended IPC (2048 bytes). IPC of larger buffers is performed through shared-
page mappings. Codezero was also designed specifically for mobile and embedded
platforms and supports multicore processors as well as ARM-based designs.

5.3.3 OKL4

In 2006, Open Kernel Labs (OK Labs) was founded for the development of micro-
kernels and hypervisors for mobile and embedded systems. The Lab’s work in each

5.3 Hypervisor Case Studies 43

of these domains coined the term microvisor, which represents a microkernel with
virtualization capabilities. OK Labs is by far the most successful in the space of
embedded virtualization, deploying its open source OKL4 microvisor into more
than a billion devices, such as the Evoke QA4 messaging phone, the first phone to
support virtualization and operation of two concurrent operating systems (including
Linux™).

The heritage of OKL4 comes from the L4 family of microkernels. L4 in turn was
inspired by Mach (the Carnegie Mellon University microkernel developed as a drop-
in replacement for the traditional unix kernel). L4 was originally designed entirely
in x86 assembly in order to realize an optimal solution. It then was developed in
C++ and exists in a family of microkernels (from L4Ka::Hazelnut, designed for Intel
Architecture, 32-bit, and ARM-based architectures, to L4Ka::Pistachio, designed
for platform independence and released under the Berkeley Software Distribution
license).

The OKL4 microvisor implements partitions known as secure cells for partition-
ing VMs in the architecture (Fig. 5.3). The OKL4 microvisor occupies the privileged
kernel space, and all VMs, native applications, and drivers are pushed into separate
isolated partitions with an efficient interprocess communication (IPC) mechanism
to allow cells to communicate and cooperate (see Fig. 4). In addition to traditional
IPC between VMs, because hardware device drivers are pushed outside of the micro-
visor (as is typical with microkernels), the IPC is important: It is a common path
input/output. Further, because individual applications and drivers can be integrated
into the platform without an operating system, the component model for OKL4 is
lightweight.

The microvisor implements the core microkernel with virtualization capabilities,
which includes resource management as well as scheduling with real-time capabil-
ities and low performance overhead. OKL4 implements paravirtualization, which

Platform Hardware

OKL4 Microvisor

Applications

Linux

Applications

Android

Applications

Drivers

Fig. 5.3 OKL4 hypervisor architecture

44 5 Isolated Execution Environments

means that operating systems must be instrumented to run on the microvisor. OK
Labs provides support for a number of paravirtualized operating systems, including
OK:Linux, OK:Android, and OK:Symbian.

5.3.4 EmbeddedXen

EmbeddedXEN is a particularly efficient virtualization framework tailored to ARM-
based core mobile and embedded systems. While security and OS isolation are key
features of conventional virtualization frameworks, the main concerns for Embed-
dedXEN are device heterogeneity and realtime aspects.

EmbeddedXEN mainly relies on the original XEN architecture but with major
differences in the way guest OS are handled: the hypervisor has been simplified,
and only two guest OS (dom0 and domU) can run simultaneously; while dom0 is
used to manage the native OS with drivers (original and backend splitted drivers),
a paravirtualized OS (domU) can be cross-compiled on a different ARM device, and
user applications can run seamlessly on the (virtualized) host device (Fig. 5.4).

Another important difference is that no user space tools are required to manage
the VMs; the framework produces a compact single binary image containing both
dom0 and domU guests, which can be easily deployed. The Xenbus architecture has
been adapted to that context.

EmbeddedXEN therefore allows the porting of an OS and its applications from
an ARM embedded device to latest generation ARM hardware, such as HTC Smart-
phone for example.

Platform Hardware

Dom-U Applications

Dom-U Kernel

Embedded Xen

Dom-0 Applications

Dom-0 Kernel
PV PV

Fig. 5.4 EmbeddedXen hypervisor architecture

5.3 Hypervisor Case Studies 45

5.3.5 Xen/ARM

The Xen/ARM project maintains an ARM variant of the Xen Hypervisor in a codeline
that is separate from the upstream Xen Hypervisor project. The Xen ARM Project
is led by Samsung, and delivers and maintains Xen support for a range of ARM
processors (ARM v5–v7) for mobile devices, using Xen Paravirtualization (PV).
The project is also working on problems such as solving real-time guarantees in a
virtualized environment and multi-processor support.

Xen Paravirtualization (PV) is an efficient and lightweight virtualization technique
introduced by Xen, later adopted by other virtualization solutions. Xen PV does not
require virtualization extensions from the host CPU and thus enables virtualization on
hardware architectures that do not support hardware-assisted virtualization. However,
Xen PV guests and control domains require kernel support and drivers that in the
past required special kernel builds, but are now part of the Linux™ kernel as well as
other operating systems.

Xen PV delivers higher performance than full virtualization because the operating
system and hypervisor work together more efficiently, without the overhead imposed
by the emulation of the system’s resources. This makes a big difference for disk and
network operations, where the use of Xen PV network, bus and block device drivers
enable near-native performance. Examples of devices which benefit from Xen PV
and where drivers are available are block (disks), SCSI, USB, VGA and PCI devices.
Architecturally, Xen PV works by opening additional channels of communication
between the hypervisor and the guest operating systems via Xen PV front end and
back end drivers as shown in Fig. 5.5.

Platform Hardware

Dom-U Applications

Dom-U Kernel

Xen/ARM

Dom-0 Applications

Dom-0 Kernel
PV PV

Fig. 5.5 Xen/ARM hypervisor architecture

46 5 Isolated Execution Environments

With the introduction of virtualization extensions on ARM processors, the Xen
community has taken steps to add ARM support for ARM CPUs to the Xen Hyper-
visor. This port is executed as part of of Xen hypervisor project, with no separate
codebase.

Xen/ARM with virtualization extensions is re-architected to exploit the (ARM)
platform hardware as much as possible. It only supports one type of guest which is
a modified Linux™ kernel with Xen PVH paravirtualization. Xen PVH is esentially
paravirtualized interfaces for I/O while running in a hardware virtual machine. Xen
PVH guests are essentially PV guests using PV drivers for boot and I/O. Otherwise
it uses hardware virtualization extensions, without the need for emulation. PVH has
the potential to combine the best trade-offs of all Xen virtualization modes, while
simplifying the Xen architecture significantly. The current Xen/ARM with hardware
virtualization support reportedly runs on currently runs on ARM RSTM/FastModels
emulator, ARM Versatile Express platform with Cortex™-A15 processor and work
is also underway to support the Samsung Exynos™ platform with the Arndale devel-
opment board.

5.3.6 eXtensible Modular Hypervisor Framework

The eXtensible and Modular Hypervisor Framework (XMHF)5 takes a developer-
centric approach to hypervisor design and implementation, and strives to be a compre-
hensible and flexible platform for performing (security-oriented) hypervisor research
and development on commodity computing platforms. Figure 5.6 shows the archi-
tecture of XMHF.

Platform Hardware

Guest Applications

Guest OS

XMHF

XMHF CoreHypapp

Security
Sensitive Code

Fig. 5.6 eXtensible and Modular Hypervisor Framework (XMHF) Architecture

5 http://xmhf.org

http://xmhf.org

5.3 Hypervisor Case Studies 47

XMHF encapsulates common hypervisor core functionality in a framework that
allows others to build custom hypervisor-based solutions (called “hypapps”). As a
small piece of software between the OS and the hardware, hypapps therefore enjoy a
unique advantage in terms of balance between security and versatility. They also help
reduce developer concerns with respect to other malicious applications within the OS
or OS vulnerabilities. Further, the hypapps can be architecture/platform independent
while relying on XMHF to provide the necessary platform support.

A significant design decision in XMHF motivated by minimalism is the support
of only a single full-featured commodity guest OS (rich guest). XMHF leverages
hardware virtualization primitives to allow the guest direct access to all performance
critical system devices and device interrupts. This model results in reduced hypervisor
complexity (since all devices are directly controlled by the OS) and consequently
TCB, while at the same time promising near-native guest performance.

XMHF’s minimal hypervisor design also enables automated and development
compatible verification of its C code implementation. XMHF has been successfully
verified at the source-code level using the CBMC model-checker to guarantee the
fundamental hypervisor security property of memory integrity [58]–that the hyper-
visors memory must not be modified by software running at a lower privilege level.
The combination of hardware virtualization primitives, and XMHF design and devel-
opment choices results in an architecture where manual auditing applies primarily to
a very small set of functions, and memory integrity can be automatically re-verified
in the face of common development changes.

XMHF currently supports both Intel and AMD x86 hardware virtualized platforms
and is capable of running unmodified legacy multiprocessor capable OSes such as
Windows and Linux. Work is currently underway to support both ARM TruztZone
and Virtualization Extensions with the Android™ OS.

XMHF provides a good starting point for research and development on hypervisors
with rigorous and “designed-in” security guarantees. Given XMHF’s features and
performance characteristics, it has the potential to significantly enhance (security-
oriented) hypervisor research and development.

5.4 Discussion

Hypervisor frameworks potentially hold value for all stake-holders (OEMs, carriers
developers, and users). From an OEM perspective, secure hypervisor frameworks
allow multiplexing security-critical baseband functionality on the same processor
as popular unmodified OSes and user-facing applications, thereby reducing the cost
of materials in a smartphone [39, 42]. Indeed, this appears to be OK Labs’ primary
business model. From a developer stand-point, hypervisor frameworks allow creation
of custom security applications that can benefit from improved isolation (e.g., mobile
banking and payments or anti-malware). From a user’s perspective, a hypervisor
framework may enable simultaneous execution of different OSes, offering a rich set
of security features and execution environments on a single mobile device.

48 5 Isolated Execution Environments

Hypervisors are deployed in custom (OEM- and carrier-specific) environments
on roughly 1 billion off-the-shelf mobile devices [39, 42]. These can be, and likely
already are, used to run security-critical services in isolation from a fully-featured OS
running on the same CPU. Unfortunately, we observe that this is done transparently
to the user and to third-party developers. These devices do not provide an open API to
third-party developers to run their own modules in an isolated execution environment
provided by the hypervisor.

5.4.1 Limitations of Paravirtualization

All known ARM hypervisors except for KVM/ARM and XMHF, use paravirtual-
ization to support guest OSes (Table 5.1). While paravirtualization in general has
proven successful, and many individual drivers are paravirtualized on many com-
modity platforms such as x86, there is an unavoidable additional maintenance cost
for paravirtualization. Unless the paravirtualized hardware architecture and corre-
sponding OS and driver changes are accepted as a first-class architecture by the OS
kernel, the maintainers of the paravirtualization-related changes will perpetually be
playing catch-up.

Thus, the price of paravirtualization is increased maintenance cost and more lim-
ited availability in terms of supported guest operating system versions. For example,
Samsung’s Xen for ARM requires modifying approximately 5000 lines of code in
the Linux kernel [63]. The most recent kernel version it can support is a modified
Linux 2.6.11 kernel, a relatively old version of Linux released in 2005.

Chapter 6
API Architectures

Having discussed the hardware primitives available on today’s mobile platforms in
Chap. 4 and how those can be used to implement reduced-TCB isolated execution
environments in Chap. 5 we now discuss potential application programmer interfaces
(APIs) that those isolated execution environments may expose to developers.

6.1 API Types

We distinguish between two types of APIs: App-IEE APIs and Module-IEE APIs.
App-IEE APIs specify how normal applications running on the main OS interact

with the isolated execution environment. Such APIs could include mechanisms for
communicating with modules running inside the isolated execution environment, for
discovering service-modules running inside the isolated execution environment, or
for loading third-party software modules into the isolated execution environment.

Module-IEE APIs specify how to develop modules running inside the isolated ex-
ecution environment. As discussed in Chaps. 3 and 5 such environments will typically
minimize their size and complexity by not offering the functionality of a full-featured
OS. Instead, these APIs will typically offer some or all of the security services dis-
cussed in Chap. 3 some APIs for communicating with software running on the full
OS, and possibly some APIs for communicating directly with peripherals (i.e., a
trusted path to those peripherals).

6.2 App-IEE-Only Model Versus App-IEE + Module-IEE Model

A minimal way to make hardware security features available to application devel-
opers is for OEMs or network carriers to provide security-relevant services run-
ning inside the isolated execution environment, and expose them via App-IEE APIs.

A. Vasudevan et al., Trustworthy Execution on Mobile Devices, SpringerBriefs 49
in Computer Science, DOI: 10.1007/978-1-4614-8190-4_6, © The Author(s) 2014

http://dx.doi.org/10.1007/978-1-4614-8190-4_4
http://dx.doi.org/10.1007/978-1-4614-8190-4_5
http://dx.doi.org/10.1007/978-1-4614-8190-4_3
http://dx.doi.org/10.1007/978-1-4614-8190-4_5
http://dx.doi.org/10.1007/978-1-4614-8190-4_3

50 6 API Architectures

This approach may be attractive to OEMs and carriers, who may not want to bear
the risk of allowing third-party code to run in the device’s isolated environment,
or the cost of implementing strong isolation between modules in that environment.
Unfortunately, without providing application developers with an isolated execution
environment (Sect. 3.1) in which to run their modules, the security properties gained
have a large TCB that includes the entire OS at runtime. Still, even this strategy
improves the set of security features available to third-party developers today, as we
detail below.

We first summarize the desirable properties that arise when a Module-IEE API for
running custom code in the isolated execution environment is available to applica-
tion developers. Module-IEE APIs for secure storage enable developers to ensure that
only their module can access sealed data, even if the OS is compromised. Module-IEE
APIs for remote attestation can run code isolated from the OS, and need not include
the OS’s measurements in their remote attestations. Module-IEE APIs for secure pro-
visioning can ensure that only the intended module running in the isolated execution
environment will be able to access provisioned data. A trusted path implemented via
Module-IEE APIs can provide assurance to the user that he is communicating with
the intended module running in the isolated execution environment.

We now summarize the benefits to application developers that arise from OEM-
or carrier-provided security services exposed through an App-IEE interface. Secure
storage (Sect. 3.2) can be implemented by allowing direct access to a secure storage
location, or by implementing a sealed-data API. Data sealed in this way would be
protected from offline attacks, and attacks where a different OS is booted (since
the sealed-data-service would refuse to unseal for the modified OS). Remote attes-
tation (Sect. 3.3) implemented in the App-IEE-only model can attest that a known
OS image booted. This can provide some assurance to remote parties that they are
communicating with a client that started in a known configuration. However, such
mechanisms cannot detect if the OS has been compromised after it was booted.
Similarly, a secure provisioning (Sect. 3.4) service built in the App-IEE-only model
can ensure that exported data can only be accessed by a known device that booted
a known OS. However, it would have to trust that OS to not compromise the data
itself or to allow unauthorized applications to access that data. A trusted-path ser-
vice (Sect. 3.5) implemented in the App-IEE-only model can ensure to the user that
an authorized OS booted, but not that the OS remains uncompromised after it has
booted.

6.3 Candidate APIs

We next discuss several published APIs. All of these specify App-IEE APIs; some
of them additionally specify Module-IEE APIs.

http://dx.doi.org/10.1007/978-1-4614-8190-4_3
http://dx.doi.org/10.1007/978-1-4614-8190-4_3
http://dx.doi.org/10.1007/978-1-4614-8190-4_3
http://dx.doi.org/10.1007/978-1-4614-8190-4_3
http://dx.doi.org/10.1007/978-1-4614-8190-4_3

6.3 Candidate APIs 51

6.3.1 Mobile Trusted Module

The Mobile Trusted Module (MTM) is a specification by the Trusted Computing
Group (TCG) for a set of trusted computing primitives [52]. Like the Trusted Platform
Module on PCs, the MTM provides APIs for secure storage and for attestation, but
does not by itself provide an isolated execution environment for third-party code or
facilities for trusted path.

Unlike the TPM, the MTM is explicitly designed to be implemented in software.
In particular, it is amenable to being implemented as a module running inside an
isolated execution environment on a mobile platform. Also unlike the TPM, the
MTM explicitly supports the instantiation of several parallel instances. This feature
is intended to support an instance for each of a few stake-holders on a mobile platform.
In principle, it could be used to support a private MTM instance to each individual
software module that is loaded into an isolated execution environment.

Adding an MTM alone to a mobile platform and allowing third-party developers to
access it via App-IEE APIs would serve to expose the underlying hardware security
features in a uniform way across hardware platforms.

The MTM could also be used in architectures where third-party code is allowed
to execute in an isolated execution environment. However, simply giving secure
modules direct access to a single shared MTM instance would put all running modules
into each-other’s TCB; e.g., modules would be able to unseal data belonging to other
modules. This limitation could be addressed by instantiating a fresh, private, MTM
instance for each module that runs. Optionally, to minimize complexity and resource-
usage, these on-demand MTMs could implement only a small subset of the MTM
specification. This is similar to the approach taken by previous research on x86
platforms, with the MTM taking the place of the TPM [40, 46].

Another, orthogonal, way to use an MTM is for the isolated execution environment
itself to use the MTM as a back-end. This strategy could provide a uniform interface
for implementing the isolated execution environment itself across multiple hardware
platforms.

While several researchers have implemented the MTM [20, 23, 35, 62, 65], it is
not to our knowledge implemented on any off-the-shelf mobile platforms.

6.3.2 OnBoard Credentials

OnBoard Credentials (ObC) [21, 34] is an architecture to provide an isolated
execution environment to third-party software modules written in the Lua1 scripting
language. It includes both App-IEE and Module-IEE APIs.

ObC provides most of the features described in Chap. 3 an isolated execution
environment, secure (sealed) storage, and secure provisioning. It also provides a form

1 www.lua.org

http://dx.doi.org/10.1007/978-1-4614-8190-4_3
www.lua.org

52 6 API Architectures

of trusted path, implemented using a management application with a customizable
interface. Unfortunately it does not provide a remote attestation API, though adding
one would be straightforward.

While ObC supports only Lua modules and not native-code modules, this design
decision was made so that its isolated execution environment would have very small
run-time memory requirements (6 KB for the Lua interpreter). This allows ObC to
fit into on-chip memory, thus mitigating physical attacks such as bus-sniffing. This
feature is beneficial for some use-cases, e.g., to protect the owner’s secrets from
being compromised if the device is physically lost or stolen, or DRM applications
where the legitimate owner of the physical device may be the attacker.

ObC’s key provisioning design relies heavily on the physical security of all
participating devices. Secured data is provisioned or migrated between devices by
encrypting it under a global program-family symmetric key. That key is, in turn,
provisioned to devices trusted to protect it and to use it in accordance with ObC
policy (i.e., only use it to encrypt or decrypt data for ObC programs that are part of
the program-family). In this model, compromising the program-family key from any
participating device is sufficient to compromise the confidentiality and integrity of
data migrated by that program-family on any device—a break-once, run-anywhere
attack. Hence, for applications protecting data that is confidential to the device owner,
such as web site or banking credentials, it would be preferable to reduce that attack
surface to the set of devices trusted by that user.

It may be possible to extend ObC to support a user-centric trust model, by replacing
program-family-keys with user-keys, and putting the user in charge of provisioning
those keys to the devices that the user owns or otherwise trusts. Such a provisioning
mechanism could be built using a remote-attestation mechanism; while ObC assumes
the existence of such a mechanism (using device-keys), its API does not expose a
remote attestation feature to secure software modules. However, adding such an API
would be straightforward.

The primary implementation of ObC uses Texas Instruments’ M-Shield™ [13]
to provide an isolated execution environment, secure storage, and integrity of the
isolated execution environment (via secure boot). While multiple commodity smart-
phones are equipped with the necessary hardware support for ObC, enabling it
requires a specially signed device firmware image from the OEM or carrier, and
is outside the reach of third-party developers and device owners.

6.3.3 TrustZoneTM API

The TrustZone™ API (not to be confused with the TrustZone™ hardware features)
is an App-IEE API for managing and invoking modules in an isolated execution
environment [9].

The TrustZone™ API appears to have been designed to work with services run-
ning in the TrustZone™ secure world (Sect. 4.2.1) in particular; however, the model
is fairly abstract and provides interfaces for selecting which secure “device” to

http://dx.doi.org/10.1007/978-1-4614-8190-4_4

6.3 Candidate APIs 53

communicate with. Hence, the TrustZone™ API could conceivably be implemented
to communicate with secure services backed with other protection mechanisms, or
even services running on a remote device.

The (publicly available) TrustZone™ API does not include Module-IEE APIs.
Hence, while it could be a useful set of APIs to expose to app developers, allowing
them to communicate with services running in an isolated execution environment, by
itself it does not fully specify the APIs needed for developing such service modules.

We are not aware of any mobile platforms where the TrustZone™ API is open to
third-party developers.

6.3.4 GP Trusted Execution Environment

The GlobalPlatform consortium is developing a set of standards for a Trusted
Execution Environment (TEE) [55]. It includes both App-IEE APIs for applica-
tions to interact with isolated modules [53], and Module-IEE APIs for developing
such modules [54].

While the system architecture specifically suggests options where the environment
is created by multiplexing resources with an untrusted OS, to our knowledge the
only implementations of the TEE use a dedicated device such as a Secure Element
Sect. 4.3.1 or smartcard, and only run applications in the secure environment that are
pre-approved by the entity deploying that device.

The TEE client specification [53] includes APIs for connecting to and invoking a
secure application. The TEE internal specification [54] defines the runtime support
available to secure applications running inside the TEE. These include communica-
tion with calling code outside of the TEE, secure storage (though it is unclear if state
continuity is provided [43]), cryptographic primitives, and trusted time.

Of the security features from Chap. 3, those missing are remote attestation, secure
provisioning, and trusted path. In principle remote attestation can be added, which,
as discussed in Sect. 3.3, can be used to build secure provisioning.

http://dx.doi.org/10.1007/978-1-4614-8190-4_4
http://dx.doi.org/10.1007/978-1-4614-8190-4_3
http://dx.doi.org/10.1007/978-1-4614-8190-4_3

Chapter 7
Analysis and Recommendations

We now give our analysis of the security properties that today’s mobile devices can
provide, and offer recommendations to the research community, to app developers,
to platform integrators, and to hardware vendors.

The set of primary stake-holders today includes only the OEMs and telecommuni-
cations carriers (and their immediate business partners). Thus, the hardware security
primitives that are actually included in mass-market mobile devices are only those
of interest to the OEMs and telecommunications providers. It is our primary recom-
mendation that application developers and device owners be considered first-class
stake-holders by OEMs and telecommunications service providers. While economics
may prevent the inclusion of additional hardware security primitives in mass-market
devices without a compelling business reason, those primitives which are present
should be leveraged to offer additional security features to application developers
and devices owners.

We have shown that—while helpful—the security APIs provided to application
developers by today’s mobile OSes are inadequate because of the continuing ease
with which mobile device OSes are compromised. We have also shown (Chap. 2)
that the market has responded to the need for security features with add-on hardware
that provides Secure Element functionality, either exclusively or in conjunction with
new I/O interfaces. Some newer devices (e.g., the Nexus S) are beginning to include
embedded Secure Elements; unfortunately, this hardware is being monopolized by
a single application.

Given the rise in add-on security devices, it is reasonable to question why the
OEMs and carriers have not responded more aggressively by opening up or including
additional security features. On this issue we can only speculate, but we list here
a few plausible explanations: (1) an existing culture of security-through-obscurity
is reluctant to embrace change; (2) business interests are attempting to corner the
market for their exclusive use; (3) fragmentation in existing proposals hampers their
adoption for fear of future incompatibilities; or (4) there is little awareness of the
level of maturity for proposals for multiplexing hardware security features between
multiple stake-holders.

A. Vasudevan et al., Trustworthy Execution on Mobile Devices, SpringerBriefs 55
in Computer Science, DOI: 10.1007/978-1-4614-8190-4_7, © The Author(s) 2014

http://dx.doi.org/10.1007/978-1-4614-8190-4_2

56 7 Analysis and Recommendations

We reject the position that OEMs or carriers are unable to monetize such
additions. Features sell phones, and security primitives enable application developers
to produce new kinds of applications. We reject the position that DRM is the only
viable use for such features. Digital media is inherently break-once, run-anywhere,
and it will eventually be broken. We argue that hardware-backed security features
can immediately add significant value in such areas as protecting users’ cached login
credentials and encrypting users’ data while at rest on the phone. Mobile payments
and myriad other applications can follow in quick succession.

7.1 Research Community Recommendations

It is our recommendation to the research community to continue to investigate
viable architectures for multiplexing mutually-distrusting stake-holders on resource-
constrained hardware security primitives (Chap. 6). This is especially important
as virtualization extensions make their way to the ARM architecture (Sect. 4.2.2),
opening up the possibility for two divergent approaches (split-world versus
virtualization). Special attention should be paid to the possibility for a heteroge-
neous threat model: OEMs and carriers are concerned about defenses against physi-
cal attacks, whereas many use-cases for protecting the end-user’s data are primarily
concerned with software-based attacks that arrive via a network connection.

Development hardware with a multitude of unlocked security features is now
readily available and inexpensive (Sect. 4.8). Though hardware with virtualization
extensions remains unavailable at the time of this writing, ARM’s toolkit enables
emulation of Cortex A15 platforms today. Open-source contributions of viable mul-
tiplexing architectures can serve to raise awareness with OEMs, carriers, and appli-
cation developers. We are optimistic that a robust reference implementation could
even enjoy widespread deployment.

The fear of fragmentation of security APIs can be addressed by developing con-
sistent interfaces. We recommend the adoption of consistent Module-IEE and App-
IEE APIs, so that application developers that endeavor to privilege-separate their
programs today can continue to reap the security benefits into the future without
significant risk of incompatibility or maintenance / support nightmares. Support for
multiple feature sets may also be reasonable. For example, credential programs such
as those enabled by OnBoard Credentials (Sect. 6.3.2) may reasonably coexist with
more feature-rich isolated execution environments that allow arbitrary computation
(within resource limits).

7.2 Application Developer Recommendations

It is our recommendation to application developers to continue to demand improved
security APIs and primitives in the development environment for popular mobile
device platforms. The incredible volume of misinformation bandied about on Internet

http://dx.doi.org/10.1007/978-1-4614-8190-4_6
http://dx.doi.org/10.1007/978-1-4614-8190-4_4
http://dx.doi.org/10.1007/978-1-4614-8190-4_4
http://dx.doi.org/10.1007/978-1-4614-8190-4_6

7.2 Application Developer Recommendations 57

forums about how to protect cached credentials, encrypt data at rest, or give users a
false sense of security is deeply disturbing.

We encourage application developers to learn about existing proposals for Module-
IEE and App-IEE APIs, and to consider their implications for the architecture of their
applications. Especially those developers with an interest in open-source can pro-
duce reference implementations that we expect may be rapidly adopted by other
developers.

7.3 Platform Integrator Recommendations

We recommend that platform integrators (typically network carriers) take an interest
in the security of applications on their devices. We argue that they should adopt a
realistic perspective regarding the robustness of the OS APIs for security.

Hardware-backed or otherwise isolated security features are in demand by appli-
cation developers. Existing Module-IEE and App-IEE proposals should be adopted,
to avoid fragmentation and a lack of developer buy-in. These security features will
enable application developers to add new value to the mobile device platforms as a
whole, resulting in an overall increase in the utility of mobile devices.

We strongly urge platform integrators to make hardware security features available
that are otherwise included in the silicon but disabled immediately during every boot.
Other developers and the open-source community are likely to energize and do much
of the engineering. As a viable first step, we recommend an implementation of the
TCG’s Mobile Trusted Module (MTM) in devices with TrustZone™ capabilities that
are otherwise unused (Sect. 6.3.1). This suggestion is consistent with the App-IEE-
only approach discussed in (Sect. 6.1), and offers new security features to application
developers. Note that it does not give application developers the ability to directly
execute their own code inside of an isolated execution environment (Sect. 3.1) and
(Sect. 6.2). Thus, it is a reasonable compromise between conservative, risk-averse
OEMs and carriers, and a useful set of APIs for application developers.

We emphasize that platform openness and security are not fundamentally oppos-
ing trade-offs, and that additional access to hardware security primitives will not
somehow weaken them. The key to reconciling this common misconception is isola-
tion. A single vulnerable application—even a security-critical subcomponent of an
application—should never be in a position where it is able to compromise the entire
device.

7.4 Hardware Vendor Recommendations

Unconstrained memory isolation and improved protection against DMA-based
attacks (Sect. 4.7) are significant needs in current device hardware. It is more diffi-
cult for us to justify the added expense in device hardware at the present time. If the

http://dx.doi.org/10.1007/978-1-4614-8190-4_6
http://dx.doi.org/10.1007/978-1-4614-8190-4_6
http://dx.doi.org/10.1007/978-1-4614-8190-4_3
http://dx.doi.org/10.1007/978-1-4614-8190-4_6
http://dx.doi.org/10.1007/978-1-4614-8190-4_4

58 7 Analysis and Recommendations

market does indeed parallel our recommendations in the preceding sections, and
existing hardware security features begin to enable new applications, then the
logical next step is to offer additional hardware security features.

To this end, our recommendation is to address the DMA insecurity problem
(Sect. 4.7). This will not only add protection against currently prevalent attacks
from malicious peripherals [61], but will also result in the automatic inclusion of
memory address-space controllers such as a TZASC and/or TZMA (Sect. 4.2.1), so
that security-sensitive modules that execute in isolation need not grapple with today’s
dearth of Tightly Coupled Memory.

http://dx.doi.org/10.1007/978-1-4614-8190-4_4
http://dx.doi.org/10.1007/978-1-4614-8190-4_4

Chapter 8
Summary

We are now in the post-PC era, yet our mobile devices are insecure. In this book, we
consider the different stake-holders in today’s mobile device ecosystem, and ana-
lyze why widely-deployed hardware security primitives on mobile device platforms
are inaccessible to application developers and end-users. We systematize existing
proposals for leveraging such primitives, and show that they can indeed strengthen
the security properties available to applications and users, all without reducing the
properties currently enjoyed by OEMs and network carriers. We also highlight short-
comings of existing proposals and make recommendations for future research that
may yield practical, deployable results.

A. Vasudevan et al., Trustworthy Execution on Mobile Devices, SpringerBriefs 59
in Computer Science, DOI: 10.1007/978-1-4614-8190-4_8, © The Author(s) 2014

References

1. Android: an open handset alliance project—issue 10809: password is stored on disk in plain
text. http://code.google.com/ (2010)

2. Android Developers: Android API: AccountManager. http://developer.android.com/. Accessed
(2011)

3. Android Open Source: Notes on the implementation of encryption in Android 3.0. http://source.
android.com. Accessed (2011)

4. Android.com: Android 4.0 platform highlights. http://developer.android.com/sdk/android-4.
0-highlights.html

5. Andrus, J., Dall, C., Hof, A.V., Laadan, O., Nieh, J.: Cells: a virtual mobile smartphone archi-
tecture. In: Proceedings of the 23rd ACM Symposium on Operating Systems Principles (SOSP)
(2011)

6. Apple: iOS: understanding data protection. Article HT4175 (2011)
7. ARM Limited: ARM builds security foundation for future wireless and consumer devices.

ARM Press Release (2003)
8. ARM Limited: ARM security technology: building a secure system using TrustZone technol-

ogy. WhitePaper PRD29-GENC-009492C (2009)
9. ARM Limited: TrustZone API specification 3.0. Technical report PRD29-USGC-000089 3.1,

ARM (2009)
10. ARM Limited: AMBA 4 AXI4-stream protocol version 1.0 specification (2010)
11. ARM Limited: AMBA APB protocol version 2.0 specification (2010)
12. ARM Limited: Virtualization extensions architecture specification. http://infocenter.arm.com

(2010)
13. Azema, J., Fayad, G.: M-Shield mobile security: making wireless secure. Texas Instruments

WhitePaper (2008)
14. Becher, M., Freiling, F.C., Hoffman, J., Holz, T., Uellenbeck, S., Wolf, C.: Mobile security

catching up? revealing the nuts and bolts of the security of mobile devices. In: Proceedings of
the IEEE Symposium on Security and Privacy (2011)

15. Choudhary, B., Risikko, J.: Mobile device security element: Key findings from technical analy-
sis v1.0. In: Mobey Forum: Mobile Financial Services. http://www.mobeyforum.org/Press-
Documents/White-papers (2005)

16. Comex: JailbreakMe. http://jailbreakme.com/. Accessed (2011)
17. Costan, V., Sarmenta, L.F., van Dijk, M., Devadas, S.: The trusted execution module:

commodity general-purpose trusted computing. In: Proceedings of the CARDIS (2008)
18. Cranor, L.F.: What do they “indicate”?: evaluating security and privacy indicators. Interactions

13(3), 45–47 (2006)
19. Dall, C., Nieh, J.: Kvm for arm. In: Proceedings of the 12th Annual Linux, Symposium (2010)

A. Vasudevan et al., Trustworthy Execution on Mobile Devices, SpringerBriefs 61
in Computer Science, DOI: 10.1007/978-1-4614-8190-4, © The Author(s) 2014

http://code.google.com/
http://developer.android.com/
http://source.android.com
http://source.android.com
http://developer.android.com/sdk/android-4.0-highlights.html
http://developer.android.com/sdk/android-4.0-highlights.html
http://infocenter.arm.com
http://www.mobeyforum.org/Press-Documents/White-papers
http://www.mobeyforum.org/Press-Documents/White-papers
http://jailbreakme.com/

62 References

20. Dietrich, K., Winter, J.: Towards customizable, application specific mobile trusted modules.
In: Proceedings of the ACM workshop on Scalable Trusted Computing (2010)

21. Ekberg, J.E., Asokan, N., Kostiainen, K., Rantala, A.: Scheduling execution of credentials in
constrained secure environments. In: Proceedings of the ACM Workshop on Scalable Trusted
Computing (2008)

22. Ekberg, J.E., Kylänpää, M.: Mobile trusted module (mtm): an introduction. Technical report
NRC-TR-2007-015, Nokia Research Center (2007)

23. Ekberg, J.E., Kylänpää, M.: MTM implementation on the TPM emulator. Source code. http://
mtm.nrsec.com (2008)

24. ElcomSoft: Proactive software: iOS forensic toolkit (2011)
25. Gilbert, P., Cox, L.P., Jung, J., Wetherall, D.: Toward trustworthy mobile sensing. In: Proceed-

ings of the Workshop on Mobile Computing Systems and Applications (HotMobile) (2010)
26. Gligor, V.D., Chandersekaran, C.S., Chapman, R.S., Dotterer, L.J., Hecht, M.S., Jiang, W.D.,

Johri, A., Luckenbaugh, G.L., Vasudevan, N.: Design and implementation of secure Xenix.
IEEE Trans. Software Eng. 13, 208–221 (1986)

27. GottaBeMobile: Texas instruments ARM OMAP4 becomes first mobile CPU to get Netflix
certification for android HD streaming. http://gottabemobile.com/ (2011)

28. Green Hills Software: Emergence of the mobile multivisor. http://ghs.com/ (2011)
29. Guaus, J., Kanniainen, L., Koistinen, P., Laaksonen, P., Murphy, K., Remes, J., Taylor, N.,

Welin, O.: Best practice for mobile financial services v1.0. Technical report, Mobey Forum.
http://www.mobeyforum.org/Press-Documents/White-papers (2008)

30. Hecht, M.S., Carson, M.E., Chandersekaran, C.S., Chapman, R.S., Dotterrer, L.J., Gligor, V.D.,
Jiang, W.D., Johri, A., Luckenbaugh, G.L., Vasudevan, N.: UNIX without the superuser. In:
Proceedings of the USENIX Technical Conference, pp. 243–256 (1987)

31. Heider, J., Boll, M.: Lost iPhone? lost passwords! practical consideration of iOS device encryp-
tion security. Technical report, Fraunhofer SIT (2011)

32. Klein, G., Elphinstone, K., Heiser, G., Andronick, J., Cock, D., Derrin, P., Elkaduwe, D.,
Engelhardt, K., Kolanski, R., Norrish, M., Sewell, T., Tuch, H., Winwood, S.: seL4: formal
verification of an OS kernel. In: Proceedings of the ACM Symposium on Operating Systems
Principles (SOSP) (2009)

33. Koistiainen, K., Reshetova, E., Ekberg, J.E., Asokan, N.: Old, new, borrowed, blue-a perspective
on the evolution of mobile platform security architectures. In: Proceedings of the 1st ACM
Conference on Data and Application Security and Privacy (CODASPY) (2011)

34. Kostiainen, K., Ekberg, J.E., Asokan, N., Rantala, A.: On-board credentials with open provi-
sioning. In: Proceedings of the ASIACCS (2009)

35. Kursawe, K., Schellekens, D.: Flexible MicroTPMs through disembedding. In: Proceedings of
the ASIACCS (2009)

36. Lampson, B.: Usable security: how to get it. Commun. ACM 52(11) (2009)
37. Lineberry, A., Strazzere, T., Wyatt, T.: Inside the android security patch lifecycle. Presented at

BlackHat (2011)
38. Mastin, M.: Square versus intuit gopayment: mobile credit card systems compared. In:

PCWorld. http://www.pcworld.com/businesscenter/article/239250/ (2011)
39. McCammon, R.: How to build a more secure smartphone with mobile virtualization and other

commercial off-the-shelf technology. Open Kernel Labs Technology White Paper (2010)
40. McCune, J.M., Li, Y., Qu, N., Zhou, Z., Datta, A., Gligor, V., Perrig, A.: TrustVisor: efficient

TCB reduction and attestation. In: Proceedings of the IEEE Symposium on Security and Privacy
(2010)

41. Mills, E.: Researchers find avenues for fraud in square. In: CNET. http://news.cnet.com/8301-
27080_3-20088441-245/ (2011)

42. Open Kernel Labs: OK labs company datasheet. http://www.ok-labs.com (2010)
43. Parno, B., Lorch, J.R., Douceur, J.R., Mickens, J., McCune, J.M.: Memoir: Practical state

continuity for protected modules. In: Proceedings of the IEEE Symposium on Security and
Privacy (2011)

http://mtm.nrsec.com
http://mtm.nrsec.com
http://gottabemobile.com/
http://ghs.com/
http://www.mobeyforum.org/Press-Documents/White-papers
http://www.pcworld.com/businesscenter/article/239250/
http://news.cnet.com/8301-27080_3-20088441-245/
http://news.cnet.com/8301-27080_3-20088441-245/
http://www.ok-labs.com

References 63

44. Popek, G.J., Goldberg, R.P.: Formal requirements for virtualizable third generation architec-
tures. Commun. ACM 17 (1974)

45. Reveilhac, M., Pasquet, M.: Promising secure element alternatives for NFC technology. In:
Proceedings of the International Workshop on Near Field Communication (NFC) (2009)

46. Sailer, R., Jaeger, T., Valdez, E., Cáceres, R., Perez, R., Berger, S., Griffin, J., van Doorn, L.:
Building a MAC-based security architecture for the Xen opensource hypervisor. In: Proceedings
of the Annual Computer Security Applications Conference (2005)

47. Saroiu, S., Wolman, A.: I am a sensor, and I approve this message. In: Proceedings of the
Workshop on Mobile Computing Systems and Applications (HotMobile) (2010)

48. Schechter, S.E., Dhamija, R., Ozment, A., Fischer, I.: The emperor’s new security indicators.
In: IEEE Symposium on Security and Privacy (2007)

49. Schell, S.V., Narang, M., Caballero, R.: US patent 2011/0269423 Al: wireless network authen-
tication apparatus and methods (2011)

50. Schwartz, M.J.: Apple iOS zero-day PDF vulnerability exposed. In: InformationWeek. http://
www.informationweek.com/news/231001147 (2011)

51. Sun Microsystems, Inc.: Java card specifications v3.0.1: classic edition, connected edition
(2009)

52. TCG Mobile Phone Working Group: TCG mobile trusted module specification, version 1.0,
revision 7.02 (2010)

53. Global Platform Device Technology: TEE client API specification version 1.0. Technical report
GPD_SPE_007. http://globalplatform.org/ (2010)

54. GlobalPlatform Device Technology: TEE internal API specification version 0.27. Technical
report GPD_SPE_010. http://globalplatform.org/ (2011)

55. GlobalPlatform Device Technology: TEE system architecture version 0.4. Technical report
GPD_SPE_009. http://globalplatform.org/ (2011)

56. Texas Instruments E2E Community: Setup of secure world environment using TrustZone:
OMAP35X processors forum. http://e2e.ti.com/ (2010)

57. US Department of Defense: Trusted computer system evaluation criteria (orange book). DoD
5200.28-STD (1985)

58. Vasudevan, A., Chaki, S., Jia, L., McCune, J., Newsome, J., Datta, A.: Design, implementation
and verification of an extensible and modular hypervisor framework. In: Proceedings of the
IEEE Symposium on Security and Privacy (S&P) (2013)

59. Vasudevan, A., Owusu, E., Zhou, Z., Newsome, J., McCune, J.M.: Trustworthy execution on
mobile devices: what security properties can my mobile platform give me? In: Proceedings of
the 5th International Conference on Trust and Trustworthy Computing (Trust 2012) (2012)

60. Virtual Open Systems: Multi-core smp kvm full virtualization on cortex-a15 platforms. http://
www.virtualopensystems.com (2013)

61. Wang, Z., Stavrou, A.: Exploiting smart-phone usb connectivity for fun and profit. In: Proceed-
ings of the Annual Computer Security and Applications Conference (ACSAC) (2010)

62. Winter, J.: Trusted computing building blocks for embedded linux-based ARM TrustZone
platforms. In: Proceedings of the ACM Workshop on Scalable Trusted Computing (2008)

63. Xen.org: Xen ARM project. http://wiki.xen.org/wiki/XenARM. Accessed (2011)
64. Yao, Y.: Security issue exposed by android accountmanager. http://security-n-tech.blogspot.

com/2011/01/security-issue-exposed-by-android.html (2011)
65. Zhang, X., Aciicmez, O., Seifert, J.P.: A trusted mobile phone reference architecture via secure

kernel. In: Proceedings of the ACM Workshop on Scalable Trusted Computing (2007)
66. Zhou, Z., Gligor, V.D., Newsome, J., McCune, J.M.: Building verifiable trusted path on com-

modity x86 computers. In: Proceedings of the IEEE Symposium on Security and Privacy (2012)

http://www.informationweek.com/news/231001147
http://www.informationweek.com/news/231001147
http://globalplatform.org/
http://globalplatform.org/
http://globalplatform.org/
http://e2e.ti.com/
http://www.virtualopensystems.com
http://www.virtualopensystems.com
http://wiki.xen.org/wiki/XenARM.
http://security-n-tech.blogspot.com/2011/01/security-issue-exposed-by-android.html
http://security-n-tech.blogspot.com/2011/01/security-issue-exposed-by-android.html

About the Author

Amit Vasudevan (Bio)

Amit Vasudevan is a Research Scientist at CyLab, Carnegie Mellon University.
He received his Ph.D. and M.S degrees from the Computer Science Department
at UT Arlington and spent three years as a Post-doc at Carnegie Mellon University.
Before that, he obtained his B.E. from the Computer Science Department at the BMS
College of Engineering, India. His research interests include secure systems, virtu-
alization, trusted computing, malware analysis and operating systems. His present
research focuses on hypervisor-based trustworthy code execution and formal verifi-
cation methodologies. He is the principal force behind the design and development
of the eXtensible and Modular Hypervisor Framework (http://xmhf.org)—an open-
source, clean, bare-bones, formally verifiable hypervisor framework—which forms
the foundation for a new class of (security-oriented) hypervisor-based applications
(“hypapps”).

Jonathan M. McCune (Bio)

Jonathan McCune is a Research Systems Scientist for CyLab at Carnegie Mellon
University. He earned his Ph.D. degree in Electrical and Computer Engineering
from Carnegie Mellon University, and received the A.G. Jordan thesis award. He
received his B.Sc. degree in Computer Engineering from the University of Virginia
(UVA). Jonathan’s research interests include secure systems, trusted computing, vir-
tualization, and spontaneous interaction between mobile devices. When keyboards
and LCDs get to be too much for him, Jon can usually be found riding a bike.

A. Vasudevan et al., Trustworthy Execution on Mobile Devices, SpringerBriefs 65
in Computer Science, DOI: 10.1007/978-1-4614-8190-4, © The Author(s) 2014

http://xmhf.org

66 About the Author

James Newsome (Bio)

James Newsome joined CyLab as a Research Scientist in 2010. James received his
B.Sc. from the University of Michigan in 2002 and his Ph.D. from Carnegie Mellon
University in 2008. He was a Research Engineer at Bosch Research Technology
Center from 2008–2010, where he analyzed and designed security mechanisms in
embedded and distributed systems. James’s previous and current research includes
automated software-exploit detection, analysis, signature-generation, and patch-
generation; binary analysis; information flow; secure distributed and embedded
system design; trusted computing; and isolated code execution.

Curriculum Vitae

Amit Vasudevan

Contact Information

Research Systems Scientist
CyLab, Carnegie Mellon University
4819 27th Road South, Arlington, VA 22206, USA
Phone: +1-571-329-6340
E-mail: amitvasudevan@acm.org
WWW: http://hypcode.org

Research Interests

• Trusted Computing and Virtualization Security

– Secure hypervisors and hypervisor verification methodologies
– Trustworthy execution and execution provenance/logging

• Security of mobile devices including mobile phones, laptops and tablets
• Malware (malicious-code) analysis and detection
• Operating system security and kernel architecture

Teaching Interests

Computer Architecture and Assembly Language Programming, C Program-
ming, Systems Programming, Virtualization/Hypervisors, Trusted Computing,
Malware Analysis, Operating Systems, Embedded Systems.

A. Vasudevan et al., Trustworthy Execution on Mobile Devices, SpringerBriefs 67
in Computer Science, DOI: 10.1007/978-1-4614-8190-4, © The Author(s) 2014

68 Curriculum Vitae

Education

The University of Texas, Arlington, Arlington, TX, USA

Ph.D., Computer Science and Engineering, May 2007

• Thesis title: WiLDCAT: An Integrated Stealth Environment for Dynamic
Malware Analysis

• Advisor: Prof. Ramesh Yerraballi
• GPA: 4.0/4.0

M.S., Computer Science and Engineering, December 2003

• Thesis title: Sakthi: A Retargetable Dynamic Framework for Binary-
Instrumentation

• Advisor: Prof. Ramesh Yerraballi
• GPA: 4.0/4.0

BMS College of Engineering (Bangalore University), Bangalore, India

B.E., Computer Science and Enginering, September 2001

• GPA: First Class with Distinction, 3.9/4.0

Academic Appointments

Carnegie Mellon University
Research Systems Scientist October 2010 to present
CyLab

Responsibilities include basic research in the field of computer security with
an emphasis on trustworthy computing, virtualization security and embed-
ded/mobile virtualization; software development, and solicitation of research
funding. Active research projects:

• eXtensible, Modular Hypervisor Framework (XMHF)
• Hypervisor Verification
• Hypervisor-based Verifiable Platform Resource Accounting
• Isolated Execution on Mobile Devices
• On-CPU Isolation and Root-of-Trust

Active open-source software development:

• xmhf.org. An extensible, modular and formally verifiable hypervisor frame-
work for x86 systems (AMD and Intel) with support for dynamic root of trust,
hypervisor boot integrity measurement and isolated execution for security-
sensitive code.

Curriculum Vitae 69

Carnegie Mellon University
Postdoctoral Researcher September 2007 to October 2010
CyLab

Responsibilities include research in virtualization security, malware analysis
and trustworthy computing; software development, and solicitation of research
funding.
Research projects include:

• Lockdown: Towards a Safe and Practical Architecture for Security
Applications

• Secure Execution Trace Recording
• SecVisor: Kernel-mode Execution Integrity
• Tracking Unknown (0-day) Malware

The University of Texas at Arlington
Assistant Instructor January 2004 to May 2007
Department of Computer Science and Engineering

Taught undergraduates CSE2312: Computer Organization and Assembly Lan-
guage Programming and CSE1301: Introduction to C Programming. Set course
syllabus, authored course lectures, designed exams and assignments.

Professional Experience

NoFuss Security, Inc, Pittsburgh, PA, USA
Senior Security Architect February 2011 to present

Member of three-person engineering team: design, development, and support for
commercialization of trustworthy computing technologies. Principal investigator
on a project on analysis of COTS hypervisor security. Major tasks included sys-
tematic attack surface enumeration, discovery of design-level vulnerabilities and
constructing mitigation approaches.

Cognizant Technologies and Solutions Corp., India
Programmer Analyst January 2002 to May 2002

Developed a bridge framework (native C to Enterprise Java Beans) for faster
porting of existing native Solaris/C application containers to Enterprise Java
Beans.

Bharat Electronics, India
Research Intern June 2001 to December 2001

Designed software control mechanisms and a command and control center for
monitoring and controlling a group of remote naval radar units.

70 Curriculum Vitae

Books and Book Chapters

1. Amit Vasudevan, Jonathan M. McCune, James Newsome. “Trustworthy execu-
tion on mobile devices”. What security properties can my mobile platform give
me?. In preparation. Springer Briefs. (Invited)

2. Amit Vasudevan. “Effective Malware Analysis Using Stealth Breakpoints”.
In Strategic and Practical Approaches for Information Security Governance:
Technologies and Applied Solutions. IGI Global, ISBN-10: 1466601973, 2012
(Invited)

Refereed Publications

1. Amit Vasudevan, Sagar Chaki, Limin Jia, Jonathan McCune, Jim Newsome,
Anupam Datta. “Design, Implementation and Verification of an eXtensible and
Modular Hypervisor Framework”. In IEEE Symposium on Security and Privacy,
2013. To appear.

2. Chen Chen, Petros Maniatis, Adrian Perrig, Amit Vasudevan, Vyas Sekar.
“Towards Verifiable Resource Accounting for Outsourced Computation”. In
ACM Virtual Execution Environments, 2013. To appear.

3. Carsten Willems, Ralf Hund, Amit Vasudevan, Andreas Fobian, Dennis Felsch,
Thorsten Holz. “Down to the Bare Metal: Using Processor Features for Binary
Analysis”. In IEEE Annual Computer Security and Applications Conference
(ACSAC), 2012.

4. Amit Vasudevan, Bryan Parno, Ning Qu, Virgil D. Gligor, Adrian Perrig. “Lock-
down: Towards a Safe and Practical Architecture for Security Applications on
Commodity Platforms”. In International Conference on Trust and Trustworthy
Computing (TRUST), Vienna, Austria, 2012.

5. Amit Vasudevan, Emmanuel Owusu, Zongwei Zhou, James Newsome,
Jonathan M. McCune. “Trustworthy Execution on Mobile Devices: What Secu-
rity Properties Can My Mobile Platform Give Me?”. In International Conference
on Trust and Trustworthy Computing (TRUST), Vienna, Austria, 2012.

6. Amit Vasudevan, Jonathan McCune, James Newsome, Adrian Perrig, Leendert
van Doorn. “CARMA: A Hardware Tamper-Resistant Isolated Execution Envi-
ronment on Commodity x86 Platforms”. In ACM Symposium on Information,
Computer and Communications Security (ASIACCS), 2012.

7. Jason Franklin, Sagar Chaki, Anupam Datta, Jonathan M. McCune, Amit
Vasudevan. “Parametric Verification of Address Space Separation”. In First
Conference on Principles of Security and Trust (POST) 2012. (Best Paper
Nomination)

8. Amit Vasudevan, Ning Qu and Adrian Perrig, “XTRec: Secure Real-time Exe-
cution Trace Recording on Commodity Platforms”. In 44th Hawaii Interna-
tional Conference in System Sciences (HICSS), Hawaii, 2011. (Best Paper
Nomination)

Curriculum Vitae 71

9. Amit Vasudevan, Jonathan M. McCune, Ning Qu, Leendert van Doorn and
Adrian Perrig, “Requirements for an Integrity-Protected Hypervisor on the x86
Hardware Virtualized Architecture”. In 3rd International Conference on Trust
and Trustworthy Computing (TRUST), Berlin, Germany, 2010.

10. Amit Vasudevan, “Reinforced Stealth Breakpoints”. In 4th IEEE Conference on
Risks in Internet Systems (CRiSIS), Toulouse, France, 2009.

11. Amit Vasudevan, “MalTRAK: Tracking and Eliminating Unknown Malware”. In
IEEE 24st Annual Computer Security and Applications Conference (ACSAC),
Anaheim, CA, 2008.

12. Amit Vasudevan and Ramesh Yerraballi, “Cobra: Fine-grained Malware
Analysis using Stealth Localized-executions”. In 2006 IEEE Symposium on
Security and Privacy, Oakland, CA.

13. Amit Vasudevan and Ramesh Yerraballi, “SPiKE: Engineering Malware
Analysis Tools using Unobtrusive Binary-Instrumentation”. In 29th Australasian
Conference in Computer Science (ACSC), Hobart, Australia, 2006. (Best Paper
Nomination)

14. Amit Vasudevan and Ramesh Yerraballi, “Stealth Breakpoints”. In IEEE 21st
Annual Computer Security and Applications Conference (ACSAC), Tucson, AZ,
2005.

15. Ashish Chawla, Ramesh Yerraballi and Amit Vasudevan, “Coalesced QoS: A
Pragmatic Approach to a Unified Model to Support Quality Of Service (QoS)
in High Performance Kernel-Less Operating System (KLOS)”. In Advances in
Systems, Computing Sciences and Software Engineering: Proceedings of SCSS
2005 (14), December 2005. ISBN-10: 1-4020-5262-6.

16. Amit Vasudevan, Ramesh Yerraballi and Ashish Chawla, “A High Performance
Kernel-Less Operating System Architecture”. In 28th Australasian Conference
in Computer Science (ACSC), New Castle, Australia, 2005.

17. Amit Vasudevan and Ramesh Yerraballi, “SAKTHI A Retargetable Dynamic
Framework for Binary Instrumentation”. In 2004 Hawaii International Confer-
ence on Computer Sciences (HICCS), Honolulu, HI, 2004. ISSN:1545-672.

18. Amit Vasudevan, Ramesh Yerraballi and Ashish Chawla, “KLOS A High Perfor-
mance Kernel-Less Operating System”. In 2003 IEEE RTSS Work in Progress.

Technical Reports

1. Sagar Chaki, Amit Vasudevan, Limin Jia, Jonathan M. McCune, and Anupam
Datta. “Design, Development and Automated Verification of an Integrity-
Protected Hypervisor”. CMU CyLab Technical Report CMU-CyLab-12-017.
July 2012.

2. Amit Vasudevan, Jonathan M. McCune, and James Newsome. “Design and
Implementation of an eXtensible and Modular Hypervisor Framework”. CMU
CyLab Technical Report CMU-CyLab-12-014. June 2012.

72 Curriculum Vitae

3. Jason Franklin, Sagar Chaki, Anupam Datta, Jonathan Mccune and Amit Vasude-
van. “Parametric Verification of Address Space Separation”. CMU Cylab Tech-
nical Report CMU-CyLab-12-001. January 2012.

4. Amit Vasudevan, Emmanuel Owusu, Zongwei Zhou, James Newsome, and
Jonathan McCune. “Trustworthy Execution on Mobile Devices: What security
properties can my mobile platform give me?”. CMU CyLab Technical Report
CMU-CyLab- 11-023. November 2011.

5. Amit Vasudevan, Bryan Parno, Ning Qu and Adrian Perrig. “Lockdown: A Safe
and Practical Environment for Security Applications”. CMU CyLab Technical
Report CMU-CyLab-09-011. July 2009.

6. Amit Vasudevan, Ning Qu, Adrian Perrig. “XTREC: Secure Realtime Instruction-
level Control Flow Recording on Commodity Platforms”. CMU CyLab
Technical Report CMU-CyLab-09-007. March 2009.

Patents

1. Application Number 61/273,454. Inventor(s): Virgil D. Gligor, Adrian Perrig,
Anupam Datta, Jonathan M. McCune, Ning Qu, Bryan J. Parno, Amit Vasudevan,
Yanlin Li (equal rights). “User-Verifiable Execution of Security-Sensitive Code
on Untrusted Platforms”, Filing Date: 04/2009 (Pending).

2. Application Number 60/861,621. Inventor(s): Amit Vasudevan. “Method and
System for Stealth Runtime Fine and Coarse-grained Malware Analysis”, Filing
Date: 11/28/2006 (Pending).

Grants

1. “COTS Hypervisor Security: Architectural Analysis”, United States Air Force,
2011. [Role: PI, $50,000]

2. “Real-time Execution Trace Recording and Analysis on Commodity Platforms”,
Northrup Grumman, 2009–2010. [Role: Co-PI, $200,000]

3. “Hypervisor-based Secure Virtualization”, United States Air Force, 2008–2009.
[Role: Lead Researcher, $170,000]

Curriculum Vitae 73

Teaching Experience

The University of Texas at Arlington, Arlington, TX

Assistant Instructor January 2004 to May 2007

• Instructor for CSE 2312: Computer Organization and Assembly Language Pro-
gramming

– Responsible for course lecture (3 hours/week), designing and grading exams
and assignments

– Students learnt low-level details of x86 platform architecture, devices and
assembly language programming in the context of various hands-on pro-
gramming assignments

• Instructor for CSE 1301: Introduction to C Programming

– Responsible for course lecture (3 hours/week), designing and grading exams
and assignments

– Students learnt various functional aspects of the C programming language
including data types, input and output functions, structures, pointers, arrays,
file handling, calling conventions with hands-on programming assignments

Teaching Assistant May 2006 to August 2006

• CSE5306: Operating Systems II

– Tutored students one-to-one and proctored exams
– Graded assignments and class project deliverables

Teaching Assistant August 2002 to January 2004

• CSE2312: Computer Organization and Assembly Language Programming

– Tutored students one-to-one, proctored and graded exams
– Prepared and graded assignments and class project deliverables

Hardware and Software Skills

Programming Languages/Tools:

• Assembly (x86 and ARM, 32/64-bit), C, C++, Java, JavaScript, Pascal, Perl,
UNIX shell scripting, GNU make, and others

Hypervisor Development:

• x86 and ARM hypervisor design and implementation: AMD Secure Virtual
Machine (SVM), Intel Virtualization Technology (VT), ARM TrustZone (TZ)
and Virtualization Extension Architecture Specficiation (VEAS)

74 Curriculum Vitae

• Dynamic Root-of-Trust/High-Assurance Boot, Nested and Shadow Paging, I/O
Virtualization, IOMMU (VT-d,TZPC) and SMM/TZ mode containers

• Principal force behind the design, implementation and verification of the eXten-
sible and Modular Hypervisor Framework (http://xmhf.org). Also explored
internals of other open-source hypervisors such as KVM and Xen

System-level Development:

• x86 and embedded ARM architectures: Trusted Platform Module (TPM),
custom BIOS development (e.g., coreboot), protected-mode, debugging/SMM/
TZ, hard- ware debug tools, PCI/PCI-E, power management (APM/ACPI),
multi-core (SMP), device interrupt interfaces (APIC/IOAPIC/GIC) and others.

• Device drivers: Linux Loadable Kernel Modules (LKM), Windows kernel-mode
legacy/WDM drivers, NDIS virtual miniports, and file-system filter drivers

• Linux/Windows kernel development, kernel instrumentation, Windows native
applications, disassemblers and emulators.

Software Verification Tools:

• CBMC, SATABS, Wolverine and BLAST

Version Control and Software Configuration Management:

• DVCS (Mercurial, Git) and VCS (SVN)

Embedded and Real-time Systems:

• Software and hardware development with several MCU and DSP platforms
(e.g., Freescale i.MX53, Atmel ATmega MCU’s, LPC2148 MCU’s, and others)

Operating Systems:

• Microsoft Windows family, Android, Linux

Productivity Applications:

• TEX (LATEX, BibTEX, PSTricks), Vim, most common productivity packages
(for Windows and Linux platforms)

Honors and Awards

• Whos Who Among Students in American Universities and Colleges, University
of Texas at Arlington (2005).

• University of Texas at Arlington University Scholar Award, University of Texas
at Arlington. (2004 and 2005)

• Cyneta Networks Outstanding Graduate Teaching Assistant Award, Dept. of
CSE, University of Texas at Arlington. (2004)

• Graduate Teaching Assistantship, Dept. of CSE, University of Texas at
Arlington. (2002–2004)

Curriculum Vitae 75

• Masters Dean Fellowship, University of Texas at Arlington. (2002–2004)
• National Science Talent Search Examination Prize. India. (1996)
• POWERS, Merit Scholarship, SSLC board, India. (1994)

Talks

• Trustworthy Execution on Mobile Devices: What Security Properties Can My
Mobile Platform Give Me?. TRUST, June 2012

• Lockdown: Towards a Safe and Practical Architecture for Security Applications
on Commodity Platforms. TRUST, June 2012

• Requirements for an Integrity-Protected Hypervisor on the x86 Hardware
Virtualized Architecture. TRUST, June 2010

• Enterprise Security Considerations/ Secure Practices for Distributed Computing
and Virtualization. Lockheed Martin Technical Leadership Meet, New Orleans,
USA, March 2009. (Invited)

• MalTRAK: Tracking and Eliminating Unknown Malware. IEEE ACSAC,
December 2008

• WiLDCAT: An Integrated Stealth Environment for Dynamic Malware Analysis.
Cy- Lab Seminar Series, CyLab, Carnegie Mellon University, USA, July 2007.
(Invited)

• Cobra: Fine-grained Malware Analysis using Stealth Localized-executions.
IEEE SP, May 2006.

• SPiKE: Engineering Malware Analysis tools using Unobtrusive Binary Instru-
mentation. ACSC, January 2006

• Stealth Breakpoints. IEEE ACSAC, December 2005.
• SAKTHI: A Retargetable Dynamic Framework for Binary Instrumentation.

HICCS, January 2004.

Professional Service

PC Member: International Conference on Availability, Reliability and Security
(AReS) 2013
PC Member: IEEE International Conference on Risks and Security of Internet
and Systems (CRiSIS) 2012
PC Member: IEEE International Conference on Risks and Security of Internet
and Systems (CRiSIS) 2011
PC Member: Conference on Decision and Game Theory for Security (GameSec)
2010
PC Member: IEEE International Conference on Risks and Security of Internet
and Systems (CRiSIS) 2010

76 Curriculum Vitae

PC Member: Asia-Pacific Signal and Information and Signal Processing
Association—Annual Conference 2009

Referee Service

• ACM Transactions on Computer Systems (TOCS)
• Journal of Systems and Software (JSS)
• ACM Symposium on Operating System Principles (SOSP)
• ACM Conference on Computers and Communication Systems (CCS)
• European Symposium on Research In Computer Security (ESORICS)
• Architectural Support for Programming Languages and Operating Systems

(ASPLOS)
• Network and Distributed Systems Symposium (NDSS)
• Operating System Design and Implementation (OSDI)

Professional Memberships

Institute for Electrical and Electronics Engineers (IEEE), Member,
2007–present
Assocation of Computing Machinery (ACM), Member, 2007–present

Jonathan M. McCune

Personal Details

Name: Jonathan M. McCune
Address: ECE and Cylab,
Carnegie Mellon University,
4720 Forbes Ave.,
2126 CIC Pittsburgh,
PA 15213 USA
Phone: +1-412-2683992
E-mail: jonmccune@cmu.edu,
Website: http://www.ece.cmu.edu/~jmmccune

jonmccune@cmu.edu
http://www.ece.cmu.edu/~jmmccune

Curriculum Vitae 77

Specialties

Operating system security, virtualization, trustworthy computing (e.g., TCG),
security of mobile and wireless devices, including mobile phones, laptops, tablets,
and sensor networks.

Education

Ph.D. in Electrical and Computer Engineering (January 2009)
Carnegie Mellon University, Pittsburgh, PA USA
Title: Reducing the Trusted Computing Base for Applications on Commodity
Systems.
Advisors: Adrian Perrig and Michael K. Reiter
Recipient of the A. G. Jordan Award for outstanding research and service within
CMU ECE

M.S. in Electrical and Computer Engineering (May 2005)
Carnegie Mellon University, Pittsburgh, PA USA

B.S. in Computer Engineering with High Distinction (May 2003)
University of Virginia, Charlottesville, VA USA

Academic Experience

Research Systems Scientist (February 2009–Present)
Carnegie Mellon University, Pittsburgh, PA USA
Responsibilities include basic research, software development, and solicitation of
research funding.
Active research projects:

• eXtensible, Modular Hypervisor Framework (XMHF)
• TrustVisor: Effcient TCB Reduction and Attestation
• Flicker: Minimal TCB Code Execution
• Isolated Execution on Mobile Devices
• Embedded Processor Root of Trust
• Datacenter Applications of Integrity Measurement Architectures and Trusted

Network Connect

Active Open-Source Software Development

• xmhf.org. Hypervisor boot integrity measurement (including dynamic root of
trust support on AMD and Intel platforms), cryptographic key management,
TrustVisor API and micro-TPM.

xmhf.org

78 Curriculum Vitae

• flickertcb.sf.net. Isolated execution for security-sensitive code on x86-class
systems from AMD and Intel with support for dynamic root of trust, and is
compatible with Linux and Windows.

Selected Publications

1. Bauer, L., Garriss, S., McCune, J.M., Reiter, M.K., Rouse, J., Rutenbar, P.:
Device-enabled authorization in the grey system. In: Proceedings of the Infor-
mation Security Conference, July 2005

2. Chen, C.-H.O., Chen, C.-W., Kuo, C., Lai, Y.-H., McCune, J.M., Studer, A.,
Perrig, A., Yang, B.-Y., Wu, T.-C.: GAnGS: gather, authenticate, and group
securely. In: Proceedings of the International Conference on Mobile Computing
and Networking (Mobicom), September 2008

3. Filyanov, A., McCune, J.M., Sadeghi, A.-R., Winandy, M.: Uni-directional
trusted path: transaction confirmation on just one device. In: Proceedings of
the IEEE/IFIP International Conference on Dependable Systems and Networks
(DSN), June 2011

4. Franklin, J., Chaki, S., Datta, A., McCune, J.M., Vasudevan, A.: Para-metric
verification of address space separation. In: Proceedings of the Conference on
Principles of Security and Trust (POST), March 2012

5. Li, Y., McCune, J.M., Perrig, A.: VIPER: verifying the integrity of PERipherals’
firmware. In: Proceedings of the ACM Conference on Computer and Commu-
nications Security (CCS), October 2011

6. Libonati, A., McCune, J.M., Reiter, M.K.: Usability testing a Malware-resistant
input mechanism. In: Proceedings of the Network and Distributed System
Security Symposium (NDSS), February 2011

7. Lin, Y.-H., Studer, A., Hsiao, H.-C., McCune, J.M., Wang, K.-H., Krohn, M.,
Lin, P.-L., Perrig, A., Sun, H.-M., Yang, B.-Y.: SPATE: small-group PKI-less
authenticated trust establishment. In: Proceedings of the Conference on Mobile
Systems, Applications and Services (MobiSys), June 2009 (Best Paper Award)

8. McCune, J.M., Berger, S., Cáceres, R., Jaeger, T., Sailer, R.: Shamon: a system for
distributed mandatory access control. In: Proceedings of the Annual Computer
Security Applications Conference (ACSAC), December 2006

9. McCune, J.M., Li, Y., Qu, N., Zhou, Z., Datta, A., Gligor, V., Perrig, A.:
TrustVisor: effcient TCB reduction and attestation. In: Proceedings of the IEEE
Symposium on Security and Privacy, May 2010

10. McCune, J.M., Parno, B., Perrig, A., Reiter, M.K., Seshadri, A.: Minimal TCB
code execution (extended abstract). In: Proceedings of the IEEE Symposium on
Security and Privacy, May 2007

11. McCune, J.M., Parno, B., Perrig, A., Reiter, M.K., Isozaki, H.: Flicker: an exe-
cution infrastructure for TCB minimization. In: Proceedings of the European
Conference on Computer Systems (EuroSys), April 2008

flickertcb.sf.net

Curriculum Vitae 79

12. McCune, J.M., Parno, B., Perrig, A., Reiter, M.K., Seshadri, A.: How low can you
go? recommendations for hardware-supported minimal TCB code execution.
In: Proceedings of the Architectural Support for Programming Languages and
Operating Systems (ASPLOS), March 2008

13. McCune, J.M., Perrig, A., Reiter, M.K.: Seeing is believing: using camera phones
for human-verifiable authentication. In: Proceedings of the IEEE Symposium on
Security and Privacy, May 2005

14. McCune, J.M., Perrig, A., Reiter, M.K.: Safe passage for passwords and other
sensitive data. In: Proceedings of the Network and Distributed System Security
Symposium (NDSS), February 2009

15. McCune, J.M., Perrig, A., Seshadri, A., van Doorn, L.: Turtles all the way down:
research challenges in user-based attestation. In: Proceedings of the USENIX
Workshop on Hot Topics in Security (HotSec ’07) (2007)

16. Parno, B., Lorch, J.R., Douceur, J.R., Mickens, J., McCune, J.M.: Memoir:
practical state continuity for protected modules. In: Proceedings of the IEEE
Symposium on Security and Privacy, May 2011

17. Parno, B., McCune, J.M., Perrig, A.: Bootstrapping trust in commodity com-
puters. In: Proceedings of the IEEE Symposium on Security and Privacy, May
2010

18. Schwartz, E.J., Brumley, D., McCune, J.M.: A contractual anonymity system.
In: Proceedings of the Network and Distributed System Security Symposium
(NDSS), February 2010

19. Vasudevan, A., McCune, J.M., Newsome, J., Perrig, A., van Doorn, L.: CARMA:
a hardware tamper-resistant isolated execution environment on commodity ×86
plat-forms. In: Proceedings of the ACM Symposium on Information, Computer
and Communications Security (ASIACCS), May 2012

20. Vasudevan, A., Owusu, E., Zhou, Z., Newsome, J., McCune, J.M.: Trustworthy
execution on mobile devices: what security properties can my mobile platform
give me? In: Proceedings of the International Conference on Trust and Trust-
worthy Computing (Trust), June 2012

21. Zhou, Z., Gligor, V.D., Newsome, J., McCune, J.M.: Building verifiable trusted
path on commodity ×86 computers. In: Proceedings of the IEEE Symposium
on Security and Privacy, May 2012

Selected Technical Reports

1. Chaki, S., Vasudevan, A., Jia, L., McCune, J., Datta, A.: Design, development,
and automated verification of an integrity-protected hypervisor. Technical Report
CMU-CyLab-12-017, CyLab, Carnegie Mellon University, Pittsburgh, PA, July
2012

2. Vasudevan, A., McCune, J.M., Newsome, J.: Design and implementation of an
eXtensible and modular hypervisor framework. Technical report CMU-CyLab-
12-014, Cylab, Carnegie Mellon University, Pittsburgh, PA, June 2012

80 Curriculum Vitae

Patents

1. McCune, J.M., Gligor, V.D., Perrig, A., Datta, A., Parno, B.J., Qu, N., Vasude-
van, A., Li, Y.: User-verifiable execution of security-sensitive code on untrusted
platforms. Serial No. 12/720,008, pending since June 2010

2. McCune, J.M., Perrig, A., Datta, A., Gligor, V.D., Qu, N.: Methods and appa-
ratuses for user-verifiable trusted path in the presence of Malware. International
Patent PCT/US2010/040334, WIPO No. WO 2011/037665, pending since June
2010

Professsional Experience

Co-Founder and President; Software Engineer (February 2010–Present)
NoFuss Security, Inc, Pittsburgh, PA USA

• Member of three-person engineering team: design, development, and sup-
port for commercialization of trustworthy computing technologies. Projects
include ongoing design and development for the Flicker system (Linux and
Windows driver development, AMD CPU microcode loading, Intel VT-d
DMA-protection mechanisms, ×86 virtual memory), and analysis of COTS
hypervisor security.

Software Engineer (May 2010–April 2012)
VDG, Inc, Pittsburgh, PA USA

• Phase II STTR, Army Research Offce (ARO) Topic A08-T005: Trustwor-
thy Execution of Security-Sensitive Code on Untrusted Systems. Design
and implementation of trustworthy computing functionality for the TrustVi-
sor hypervisor on top of XMHF. Includes boot integrity of XMHF itself
via dynamic root of trust and TPM, Micro-TPM API for code running in
TrustVisor’s protected environment, cryptographic key management, remote
attestation protocols, sealed storage APIs, ensuring state continuity for all
sensitive state, and regression testing infrastructure.

Consultant and Developer (2010–2011)
Wave Systems, Cupertino, CA USA

• Boot integrity, support for virtualization.

Consultant—Trusted Computing (February 2008–April 2008)
VMware Corporation, Palo Alto, CA USA

• Studied the applicability of emerging trusted computing technologies to vir-
tualization.

Curriculum Vitae 81

Summer Intern—Systems Security (May 2005–August 2005)
IBM Research, Hawthorne, NY USA

• Designed, implemented, and analyzed an extension to the sHype hypervisor
security architecture for the Xen hypervisor. This extension enables bridging
of mandatory access control (MAC) enforcement between two physically
separate systems.

Summer Intern—SDET (May 2002–August 2002)
Microsoft Corporation, Redmond, Washington USA

• Developed two performance benchmarking applications for WinFS based
on analysis of customer profiles. Designed, developed, and deployed an
application to automate benchmark installation, execution, and result analy-
sis for a cluster of performance-analysis machines. Shared the responsibility
of educating several full-time employees who were hired during my time at
Microsoft.

Talks

• TrustVisor: Effcient TCB Reduction and Attestation (IEEE S&P, Oakland,
CA, May 2010).

• Safe Passage for Passwords and Other Sensitive Data (NDSS, February 2009).
• How low can you go? Recommendations for Hardware-Supported Minimal

TCB Code Execution (ASPLOS, March 2008).
• Shamon: A System for Distributed Mandatory Access Control (ACSAC,

Miami Beach, FL, December 2006).
• Bump in the Ether: A Framework for Securing Sensitive User Input (Usenix

ATC, Boston, MA, June 2006).
• Seeing is Believing: Using Camera Phones for Human-Verifiable Authenti-

cation (IEEE S&P, Oakland, CA, May 2005).

Professional Service

• PC Member: 2013 International Conference on Architectural Support for Pro-
gramming Languages and Operating Systems (ASPLOS).

• PC Member: 2013 Network and Distributed System Security Symposium
(NDSS).

• PC Member: 2012 USENIX Workshop on Hot Topics in Security (HotSec).
• PC Member: 2012 USENIX Security Symposium.
• PC Member: TRUST 2012: International Conference on Trust and

Trustworthy Computing.

82 Curriculum Vitae

• PC Member: 2012 IEEE Symposium on Security and Privacy (Oakland).
• PC Member: 2011 Workshop on Scalable Trusted Computing (STC).
• General Chair: TRUST 2011: International Conference on Trust and Trust-

worthy Computing.
• PC Member: 2011 IEEE Symposium on Security and Privacy (Oakland)
• PC Member: 2011 International Workshop on Security and Privacy in Spon-

taneous Interaction and Mobile Phone Use.
• PC Member: 2010 Workshop on Scalable Trusted Computing (STC).
• PC Member: 2010 IEEE Symposium on Security and Privacy (Oakland).
• PC Member: 2010 International Workshop on Security and Privacy in Spon-

taneous Interaction and Mobile Phone Use.
• PC Member: TRUST 2010: International Conference on Trust and

Trustworthy Computing.
• PC Member: 2009 Workshop on Scalable Trusted Computing (STC).

Honors and Awards

• Best paper award for SPATE at MobiSys (2009).
• Recipient of the A. G. Jordan Award, for combining outstanding Ph.D. thesis

work with exceptional service to the ECE community (2009).
• Best paper award for GAnGS at MobiCom (2008).
• University of Virginia: graduated with High Distinction in Computer Engi-

neering (2003).
• Honorable Mention: ACM Programming Contest World Finals (2003).

Computer Skills

• Languages: C/C++, ×86 Assembly, Perl, Python, Java, shell
• Systems software: Linux, Xen, Apple OS X, Windows
• Low-level programming and tools

James Newsome

Personal Details

Name: James Newsome

E-mail: http://www.jimnewsome.net
jim@jimnewsome.net

http://www.jimnewsome.net
jim@jimnewsome.net

Curriculum Vitae 83

Education

M.S. in Electrical and Computer Engineering (December 2003)
Carnegie Mellon University, Pittsburgh, PA

Ph.D. in Electrical and Computer Engineering (December 2008)
Carnegie Mellon University, Pittsburgh, PA
GPA: 3.94

BSE in Computer Engineering (May 2002)
University of Michigan, Ann Arbor, MI
GPA: 3.88

Employment

Sole Proprietor (August 2012)
jimnewsome.net, Pittsburgh, PA

• I am an independent developer. I am available for freelance and consulting in
cyber-security and software development.

Systems Scientist (July 2010–August 2012)
Carnegie Mellon University, Pittsburgh, PA

• Performed research and development in virtualization and trusted computing.
I was especially involved in the development of the TrustVisor hypervisor,
and the TEE-SDK. These tools allow a piece of code to run in isolation
from the rest of the computer system, allowing security-critical Pieces of
Application Code to run securely even if the operating system is infested
with malware. We released these as open source as part of the xmhf project
(http://xmhf.org).

Research Engineer (November 2008–July 2010)
Bosch Research and Technology Center Pittsburgh, PA

• Performed internal consulting on cryptography and design of secure net-
worked embedded systems.

Intern Researcher (May 2004–January 2005, May 2005–August 2005)
Intel Research Pittsburgh, Pittsburgh, PA

• Researched and developed Polygraph, a system to automatically generate
signatures for polymorphic worms. Work resulted in an open source release,
and two publications (IEEE S&P 2005 and RAID 2006)

jimnewsome.net
http://xmhf.org

84 Curriculum Vitae

Peer-Reviewed Publications

1. Brumley, D., Caballero, J., Liang, Z., Newsome, J., Song, D.: Towards auto-
matic discovery of deviations in binary implementations with applications to
error detection and fingerprint generation. In: Proceedings of the 2007 USENIX
Security Conference (2007)

2. Brumley, D., Newsome, J., Song, D., Wang, H., Jha, S.: Towards automatic
generation of vulnerability-based signatures. In: Proceedings of the 2006 IEEE
Symposium on Security and Privacy, May 2006

3. Kim, T.H.-J., Bauer, L., Newsome, J., Perrig, A., Walker, J.: Challenges in access
right assignment for secure home networks. In: Proceedings of the 5th USENIX
Workshop on Hot Topics in Security (HotSec ’10) (2010)

4. Kim, T.H.-J., Bauer, L., Newsome, J., Perrig, A., Walker, J.: Access right assign-
ment mechanisms for secure home networks. J. Commun. Networks 13(2),
175–186 (2011)

5. Newsome, J., Brumley, D., Song, D.: Vulnerability-specific execution filtering
for exploit prevention on commodity software. In: Proceedings of the 13th
Annual Network and Distributed System Security Symposium (NDSS ’06),
February 2006

6. Newsome, J., Brumley, D., Franklin, J., Song, D.: Replayer: automatic protocol
replay by binary analysis. In: Proceedings of the 13th ACM Conference on
Computer and Communications Security (CCS), October 2006

7. Newsome, J., Karp, B., Song, D.: Olygraph: automatically generating signatures
for polymorphic worms. In: Proceedings of the IEEE Symposium on Security
and Privacy, May 2005

8. Newsome, J., Karp, B., Song, D.: Paragraph: thwarting signature learning by
training maliciously. In: Proceedings of the 9th International Symposium On
Recent Advances In Intrusion Detection (RAID 2006), September 2006

9. Newsome, J., McCamant, S., Song, D.: Measuring channel capacity to distin-
guish undue influence. In: Proceedings of the 4th ACM SIGPLAN Workshop
on Programming Languages and Analysis for Security (PLAS), June 2009

10. Newsome, J., Shi, R., Song, D., Perrig, A.:The sybil attack in sensor networks:
analysis & defenses. In: Proceedings of the 3rd International Symposium on
Information Processing in Sensor Networks (IPSN ’04), April 2004

11. Newsome, J., Song, D.: GEM: graph EMbedding for routing and data-centric
storage in wireless sensor networks. In: Proceedings of ACM SenSys, November
2003

12. Newsome, J., Song, D.: Dynamic taint analysis for automatic detection,
analysis, and signature generation of exploits on commodity software. In: Pro-
ceedings of the 12th Annual Network and Distributed System Security Sympo-
sium (NDSS ’05), February 2005

13. Vasudevan, A., McCune, J.M., Newsome, J., Perrig, A., van DoornCARMA,
L.: A hardware tamper-resistant isolated execution environment on commodity

Curriculum Vitae 85

×86 platforms. In: Proceedings of the ACM Symposium on Information, Com-
puter and Communications Security (ASIACCS) (2012)

14. Vasudevan, A., Owusu, E., Zhou, Z., Newsome, J., McCune, J.M.: Trustworthy
execution on mobile devices: what security properties can my mobile platform
give me? In: Proceedings of Trust and Trustworthy Computing (2012)

15. Tucek, J., Newsome, J., Lu, S., Huang, C., Xanthos, S., Brumley, D., Zhou, Y.,
Song, D.: Sweeper: a lightweight end-to-end system for defending against fast
worms. In: Proceedings of the 2nd ACM SIGOPS/EuroSys European Conference
on Computer Systems (2007)

16. Zhou, Z., Gligor, V., Newsome, J., McCune, J.: Building verifiable trusted path
on commodity ×86 computers. In: Proceedings of the IEEE Symposium on
Security and Privacy (2012)

Technical Reports

1. Brumley, D., Hartwig, C., Kang, M.G., Liang, Z., Newsome, J., Poosankam, P.,
Song, D., Yin, H.: BitScope: automatically dissecting malicious binaries. Tech-
nical report CMU-CS-07-133, Carnegie Mellon School of Computer Science,
March 2007

2. Brumley, D., Liang, Z., Newsome, J., Song, D.: Towards practical automatic
generation of multipath vulnerabity signatures. Technical report CMU-CS-07-
150, Carnegie Mellon University School of Computer Science (2007)

3. Brumley, D., Newsome, J.: Alias analysis for assembly. Technical report CMU-
CS-06-180, Carnegie Mellon University School of Computer Science, December
2006

4. Newsome, J., Brumley, D., Song, D.: Sting: an end-to-end self-healing system
for defending against zero-dayWorm attacks on commodity software. Technical
report CMU-CS-05-191 (2005)

5. Newsome, J., Song, D.: Influence: a quantitative approach for data integrity.
Technical report CMU-CyLab-08-005, Carnegie Mellon Cylab, February 2008

Book Chapters

1. Brumley, D., Hartwig, C., Liang, Z., Newsome, J., Poosankam, P., Song, D., Yin,
H.: Automatically identifying trigger-based behavior in Malware. In: Lee, W.,
Wang, C., Dagon, D. (eds.) Botnet Analysis and Defense, vol. 36 of Advances
in Information Security Series, pp. 65–88. Springer (2008)

2. Brumley, D., Newsome, J., Song, D.: Sting: an end-to-end self-healing system
for defending against internet worms. In: Malware Detection. Springer (2007)

	Preface
	Acknowledgments
	Contents
	Acronyms
	1 Introduction
	2 Demand for Applications Requiring Hardware Security
	3 Desired Security Features
	3.1 Isolated Execution
	3.2 Secure Storage
	3.3 Remote Attestation
	3.4 Secure Provisioning
	3.5 Trusted Path

	4 Available Hardware Primitives
	4.1 ARM Platform: Hardware and Security Architecture
	4.2 Isolated Execution
	4.2.1 Split-World-Based Isolated Execution
	4.2.2 Virtualization-based Isolated Execution

	4.3 Secure Storage
	4.3.1 Secure Elements

	4.4 Remote Attestation
	4.5 Secure Provisioning
	4.6 Trusted Path
	4.7 Design Gaps and Challenges
	4.8 Platform Case Studies
	4.8.1 ARM Versatile Express
	4.8.2 FreeScale i.MX53
	4.8.3 Texas Instruments OMAPTM and M-ShieldTM
	4.8.4 Samsung ExynosTM

	5 Isolated Execution Environments
	5.1 Parallel Isolated Execution
	5.2 Hypervisors
	5.2.1 Hypervisor Attributes for Mobile Devices

	5.3 Hypervisor Case Studies
	5.3.1 KVM/ARM
	5.3.2 CodeZero
	5.3.3 OKL4
	5.3.4 EmbeddedXen
	5.3.5 Xen/ARM
	5.3.6 eXtensible Modular Hypervisor Framework

	5.4 Discussion
	5.4.1 Limitations of Paravirtualization

	6 API Architectures
	6.1 API Types
	6.2 App-IEE-Only Model Versus App-IEE + Module-IEE Model
	6.3 Candidate APIs
	6.3.1 Mobile Trusted Module
	6.3.2 OnBoard Credentials
	6.3.3 TrustZoneTM API
	6.3.4 GP Trusted Execution Environment

	7 Analysis and Recommendations
	7.1 Research Community Recommendations
	7.2 Application Developer Recommendations
	7.3 Platform Integrator Recommendations
	7.4 Hardware Vendor Recommendations

	8 Summary
	 References
	

	 About the Author
	 Curriculum Vitae

