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Preface

‘‘Topological’’ is an unlikely adjective to be associated with signal processing,
which is dominated by results flowing from geometric rigidity. However, heter-
ogeneous sensors and sensors in heterogeneous environments present a unique
challenge; there is too much uncertainty for rigidity to be of much use. This book
takes the perspective that signal processing has much to gain by taking a more
local approach; consistency between nearby sensors or measurements is expected,
but is not expected between sensors that are far apart. But how does one measure
distance without explicitly invoking geometry, which is potentially very uncer-
tain? This is the purview of topology; the lesson is that nearness can be studied
implicitly and local signals can be studied through the theory of sheaves.

Sheaves have an unduly bad reputation, even among mathematicians, so it was
unexpected that they could unify a number of signal processing concepts.
Therefore, this book places sheaves at the conceptual and computational center by
focusing exclusively on sheaves over cellular spaces. In this context (which is
somewhat more limiting than the usual definition), many of the venerable results
about sheaves still hold, but the proofs are substantially easier. Focusing on
sheaves means that the exposition treats cohomology almost exclusively, which is
more natural than singular or cellular homology for signals. For these reasons, it is
usually easy to connect a local signal-processing concept to the correct sheaf
theoretic tool.

Because the author is both a practitioner as well as a theoretician, due con-
sideration is given to implementation concerns. Each chapter contains at least one
case study in which the theoretical tools are used to address a relevant engineering
problem. In most cases, the case study outlines a prototype implementation
developed by the author that uses simulated or experimental data.

This book is intended for first-year graduate students and advanced under-
graduates in mathematics and engineering. As such, a background including both
linear algebra and multivariable calculus is expected and is used to motivate the
necessary topological concepts. Algebraic topology relies on point-set topology, at
least theoretically. There is an appendix on point-set topology, though intuition is
usually a good guide to the necessary concepts. In a few places, a passing
familiarity with abstract algebra and the structure of the ring Z is helpful but never
necessary, since another appendix reviews the necessary background.
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Because the book brings together many dissimilar concepts, it is meant to be
read in a linear fashion. Those readers comfortable with the material can skim
ahead, but should be wary. Of necessity, the treatment differs from the traditional
one both from a mathematical and an engineering perspective. That said, proofs,
remarks, and exercises are called out carefully so that they may be omitted on first
reading. No essential details are ‘‘buried’’ inside proofs, and some of the more
technical or less insightful proofs are merely referenced or sketched. Because of
this format, each topic is introduced informally, defined precisely, and then
explained through examples. Reading the examples is essential for mastery of the
subject. Engineering is built through a combination of theory and practice; the
examples highlight both.

Finally, I welcome comments, suggestions, and corrections from you, the
reader. Feel free to send me a message! I maintain a list of emendations on my
website http://www.drmichaelrobinson.net/ which you may find useful.

Washington, DC, December 2013 Michael Robinson

viii Preface

http://www.drmichaelrobinson.net/


Acknowledgments

I am grateful to Rob Ghrist for suggesting that I write this book, and for reassuring
me that writing it would not be an impossible task. The experience of writing has
been both clarifying and inspiring. My wonderful wife Donna really made this
book possible by her persistent encouragement.

I would like to thank my mentors, both in academia and in industry. A few of
them are worthy of special mention: John Hubbard, my thesis adviser, from whom
I first learned about sheaves and cohomology; Rob Ghrist, my postdoctoral adviser
and fellow applied topologist; and finally my friends and colleagues at SRC, Inc.:
D. J. Isereau, Mark Perillo, Sean O’Hara, and Eva Piltch-Boucher, whose con-
tinued collaboration with me has assured me that sophisticated mathematics has a
place in the real world.

I am thankful to the many people who read portions of this book and offered
extremely helpful suggestions as it was being written, especially Rob Ghrist,
Donna Dietz, and Morgan DeHart.

Finally, I gratefully acknowledge the financial support for this book and the
work that led to it, which includes internal funding from SRC, Inc. and the fol-
lowing Federal contracts HR0011-09-1-0050, HR0011-07-1-0002, FA9550-09-1-
0643, N000140810668.

ix



Contents

1 Introduction and Informal Discussion . . . . . . . . . . . . . . . . . . . . . . 1
1.1 Meet the Case Studies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.2 Discrete Approximations of Spaces . . . . . . . . . . . . . . . . . . . . . 4
1.3 Local Data: Filtering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
1.4 The Interplay Between Local Data and Global Inference:

Detection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
1.5 Coda: An Invitation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2 Parametrization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.1 Abstract Spaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.1.1 CW Complexes. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.1.2 Cellular Maps and Homotopy . . . . . . . . . . . . . . . . . . . . 16

2.2 Representation of Spaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
2.2.1 Abstract Simplicial Complexes . . . . . . . . . . . . . . . . . . . 17
2.2.2 Manifolds and Embeddings . . . . . . . . . . . . . . . . . . . . . 20

2.3 Case Study: Signal Manifolds for Localization, Tracking,
and Navigation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
2.3.1 Signal Manifold Fingerprinting . . . . . . . . . . . . . . . . . . . 32
2.3.2 Multiple Target Detection and Localization . . . . . . . . . . 34

2.4 Open Questions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

3 Signals. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
3.1 Locality: Principles and Axioms . . . . . . . . . . . . . . . . . . . . . . . 39

3.1.1 Sheaf Morphisms . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
3.2 Global Sections . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
3.3 Operations on Sheaves . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

3.3.1 Pushforwards and Pullbacks . . . . . . . . . . . . . . . . . . . . . 53
3.3.2 Algebraic Operations . . . . . . . . . . . . . . . . . . . . . . . . . . 59

3.4 Case Study: Topological Filters. . . . . . . . . . . . . . . . . . . . . . . . 61
3.4.1 Linear Shift-Invariant Systems . . . . . . . . . . . . . . . . . . . 61
3.4.2 Linear Filtering on Nontrivial Base Spaces . . . . . . . . . . 65
3.4.3 Thresholding Filters . . . . . . . . . . . . . . . . . . . . . . . . . . 67
3.4.4 Angle-Valued Filters . . . . . . . . . . . . . . . . . . . . . . . . . . 70

xi

http://dx.doi.org/10.1007/978-3-642-36104-3_1
http://dx.doi.org/10.1007/978-3-642-36104-3_1
http://dx.doi.org/10.1007/978-3-642-36104-3_1#Sec1
http://dx.doi.org/10.1007/978-3-642-36104-3_1#Sec1
http://dx.doi.org/10.1007/978-3-642-36104-3_1#Sec2
http://dx.doi.org/10.1007/978-3-642-36104-3_1#Sec2
http://dx.doi.org/10.1007/978-3-642-36104-3_1#Sec3
http://dx.doi.org/10.1007/978-3-642-36104-3_1#Sec3
http://dx.doi.org/10.1007/978-3-642-36104-3_1#Sec4
http://dx.doi.org/10.1007/978-3-642-36104-3_1#Sec4
http://dx.doi.org/10.1007/978-3-642-36104-3_1#Sec4
http://dx.doi.org/10.1007/978-3-642-36104-3_1#Sec5
http://dx.doi.org/10.1007/978-3-642-36104-3_1#Sec5
http://dx.doi.org/10.1007/978-3-642-36104-3_2
http://dx.doi.org/10.1007/978-3-642-36104-3_2
http://dx.doi.org/10.1007/978-3-642-36104-3_2#Sec1
http://dx.doi.org/10.1007/978-3-642-36104-3_2#Sec1
http://dx.doi.org/10.1007/978-3-642-36104-3_2#Sec2
http://dx.doi.org/10.1007/978-3-642-36104-3_2#Sec2
http://dx.doi.org/10.1007/978-3-642-36104-3_2#Sec3
http://dx.doi.org/10.1007/978-3-642-36104-3_2#Sec3
http://dx.doi.org/10.1007/978-3-642-36104-3_2#Sec4
http://dx.doi.org/10.1007/978-3-642-36104-3_2#Sec4
http://dx.doi.org/10.1007/978-3-642-36104-3_2#Sec5
http://dx.doi.org/10.1007/978-3-642-36104-3_2#Sec5
http://dx.doi.org/10.1007/978-3-642-36104-3_2#Sec6
http://dx.doi.org/10.1007/978-3-642-36104-3_2#Sec6
http://dx.doi.org/10.1007/978-3-642-36104-3_2#Sec7
http://dx.doi.org/10.1007/978-3-642-36104-3_2#Sec7
http://dx.doi.org/10.1007/978-3-642-36104-3_2#Sec7
http://dx.doi.org/10.1007/978-3-642-36104-3_2#Sec8
http://dx.doi.org/10.1007/978-3-642-36104-3_2#Sec8
http://dx.doi.org/10.1007/978-3-642-36104-3_2#Sec9
http://dx.doi.org/10.1007/978-3-642-36104-3_2#Sec9
http://dx.doi.org/10.1007/978-3-642-36104-3_2#Sec10
http://dx.doi.org/10.1007/978-3-642-36104-3_2#Sec10
http://dx.doi.org/10.1007/978-3-642-36104-3_2#Bib1
http://dx.doi.org/10.1007/978-3-642-36104-3_3
http://dx.doi.org/10.1007/978-3-642-36104-3_3
http://dx.doi.org/10.1007/978-3-642-36104-3_3#Sec1
http://dx.doi.org/10.1007/978-3-642-36104-3_3#Sec1
http://dx.doi.org/10.1007/978-3-642-36104-3_3#Sec2
http://dx.doi.org/10.1007/978-3-642-36104-3_3#Sec2
http://dx.doi.org/10.1007/978-3-642-36104-3_3#Sec3
http://dx.doi.org/10.1007/978-3-642-36104-3_3#Sec3
http://dx.doi.org/10.1007/978-3-642-36104-3_3#Sec4
http://dx.doi.org/10.1007/978-3-642-36104-3_3#Sec4
http://dx.doi.org/10.1007/978-3-642-36104-3_3#Sec5
http://dx.doi.org/10.1007/978-3-642-36104-3_3#Sec5
http://dx.doi.org/10.1007/978-3-642-36104-3_3#Sec6
http://dx.doi.org/10.1007/978-3-642-36104-3_3#Sec6
http://dx.doi.org/10.1007/978-3-642-36104-3_3#Sec7
http://dx.doi.org/10.1007/978-3-642-36104-3_3#Sec7
http://dx.doi.org/10.1007/978-3-642-36104-3_3#Sec8
http://dx.doi.org/10.1007/978-3-642-36104-3_3#Sec8
http://dx.doi.org/10.1007/978-3-642-36104-3_3#Sec9
http://dx.doi.org/10.1007/978-3-642-36104-3_3#Sec9
http://dx.doi.org/10.1007/978-3-642-36104-3_3#Sec10
http://dx.doi.org/10.1007/978-3-642-36104-3_3#Sec10
http://dx.doi.org/10.1007/978-3-642-36104-3_3#Sec11
http://dx.doi.org/10.1007/978-3-642-36104-3_3#Sec11


3.5 Case Study: Indoor Wave Propagation . . . . . . . . . . . . . . . . . . . 74
3.5.1 Transmission Line Sheaves . . . . . . . . . . . . . . . . . . . . . 75
3.5.2 Sheaf Pushforwards and Edge Collapse . . . . . . . . . . . . . 78

3.6 Open Questions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

4 Detection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85
4.1 Categories and Functors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

4.1.1 Detectors are Functors . . . . . . . . . . . . . . . . . . . . . . . . . 88
4.2 Exact Sequences . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89
4.3 Sheaf Cohomology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

4.3.1 Orientation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95
4.3.2 Definition of Sheaf Cohomology . . . . . . . . . . . . . . . . . 97
4.3.3 Interpretation and Examples . . . . . . . . . . . . . . . . . . . . . 104

4.4 Long Exact Sequences for Cohomology . . . . . . . . . . . . . . . . . . 107
4.4.1 Mayer-Vietoris Sequences for Sheaves . . . . . . . . . . . . . 107

4.5 General Sampling Theorem for Signal Sheaves . . . . . . . . . . . . . 109
4.5.1 The Shannon-Nyquist Theorem. . . . . . . . . . . . . . . . . . . 111
4.5.2 Sampling of Heterogeneous, Non-bandlimited Signals . . . 113
4.5.3 Sampling in Topological Filters . . . . . . . . . . . . . . . . . . 115

4.6 Case Study: Tracking Water Pollution . . . . . . . . . . . . . . . . . . . 117
4.6.1 A Sheaf of Concentrations . . . . . . . . . . . . . . . . . . . . . . 117
4.6.2 Elementary Water Flow Networks. . . . . . . . . . . . . . . . . 118
4.6.3 Measurement of Larger Networks . . . . . . . . . . . . . . . . . 122

4.7 Case Study: Extracting Topology from Intersections
in Coverage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123
4.7.1 The Nerve Model of a Space . . . . . . . . . . . . . . . . . . . . 123

4.8 Open Questions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131

5 Transforms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133
5.1 The Euler Characteristic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134

5.1.1 Valuations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137
5.1.2 The Euler Integral . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138

5.2 Case Study: Target Enumeration . . . . . . . . . . . . . . . . . . . . . . . 143
5.3 Euler Integral Transforms . . . . . . . . . . . . . . . . . . . . . . . . . . . . 146

5.3.1 The Euler–Fourier Transform . . . . . . . . . . . . . . . . . . . . 149
5.3.2 Euler–Bessel Transform. . . . . . . . . . . . . . . . . . . . . . . . 151
5.3.3 Sidelobe Cancellation . . . . . . . . . . . . . . . . . . . . . . . . . 156

5.4 Case Study: Shape Recognition in Computer Vision . . . . . . . . . 159
5.5 Open Questions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 159
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 161

xii Contents

http://dx.doi.org/10.1007/978-3-642-36104-3_3#Sec12
http://dx.doi.org/10.1007/978-3-642-36104-3_3#Sec12
http://dx.doi.org/10.1007/978-3-642-36104-3_3#Sec13
http://dx.doi.org/10.1007/978-3-642-36104-3_3#Sec13
http://dx.doi.org/10.1007/978-3-642-36104-3_3#Sec14
http://dx.doi.org/10.1007/978-3-642-36104-3_3#Sec14
http://dx.doi.org/10.1007/978-3-642-36104-3_3#Sec15
http://dx.doi.org/10.1007/978-3-642-36104-3_3#Sec15
http://dx.doi.org/10.1007/978-3-642-36104-3_3#Bib1
http://dx.doi.org/10.1007/978-3-642-36104-3_4
http://dx.doi.org/10.1007/978-3-642-36104-3_4
http://dx.doi.org/10.1007/978-3-642-36104-3_4#Sec1
http://dx.doi.org/10.1007/978-3-642-36104-3_4#Sec1
http://dx.doi.org/10.1007/978-3-642-36104-3_4#Sec2
http://dx.doi.org/10.1007/978-3-642-36104-3_4#Sec2
http://dx.doi.org/10.1007/978-3-642-36104-3_4#Sec3
http://dx.doi.org/10.1007/978-3-642-36104-3_4#Sec3
http://dx.doi.org/10.1007/978-3-642-36104-3_4#Sec4
http://dx.doi.org/10.1007/978-3-642-36104-3_4#Sec4
http://dx.doi.org/10.1007/978-3-642-36104-3_4#Sec5
http://dx.doi.org/10.1007/978-3-642-36104-3_4#Sec5
http://dx.doi.org/10.1007/978-3-642-36104-3_4#Sec6
http://dx.doi.org/10.1007/978-3-642-36104-3_4#Sec6
http://dx.doi.org/10.1007/978-3-642-36104-3_4#Sec7
http://dx.doi.org/10.1007/978-3-642-36104-3_4#Sec7
http://dx.doi.org/10.1007/978-3-642-36104-3_4#Sec8
http://dx.doi.org/10.1007/978-3-642-36104-3_4#Sec8
http://dx.doi.org/10.1007/978-3-642-36104-3_4#Sec9
http://dx.doi.org/10.1007/978-3-642-36104-3_4#Sec9
http://dx.doi.org/10.1007/978-3-642-36104-3_4#Sec10
http://dx.doi.org/10.1007/978-3-642-36104-3_4#Sec10
http://dx.doi.org/10.1007/978-3-642-36104-3_4#Sec11
http://dx.doi.org/10.1007/978-3-642-36104-3_4#Sec11
http://dx.doi.org/10.1007/978-3-642-36104-3_4#Sec12
http://dx.doi.org/10.1007/978-3-642-36104-3_4#Sec12
http://dx.doi.org/10.1007/978-3-642-36104-3_4#Sec13
http://dx.doi.org/10.1007/978-3-642-36104-3_4#Sec13
http://dx.doi.org/10.1007/978-3-642-36104-3_4#Sec14
http://dx.doi.org/10.1007/978-3-642-36104-3_4#Sec14
http://dx.doi.org/10.1007/978-3-642-36104-3_4#Sec15
http://dx.doi.org/10.1007/978-3-642-36104-3_4#Sec15
http://dx.doi.org/10.1007/978-3-642-36104-3_4#Sec16
http://dx.doi.org/10.1007/978-3-642-36104-3_4#Sec16
http://dx.doi.org/10.1007/978-3-642-36104-3_4#Sec17
http://dx.doi.org/10.1007/978-3-642-36104-3_4#Sec17
http://dx.doi.org/10.1007/978-3-642-36104-3_4#Sec18
http://dx.doi.org/10.1007/978-3-642-36104-3_4#Sec18
http://dx.doi.org/10.1007/978-3-642-36104-3_4#Sec18
http://dx.doi.org/10.1007/978-3-642-36104-3_4#Sec19
http://dx.doi.org/10.1007/978-3-642-36104-3_4#Sec19
http://dx.doi.org/10.1007/978-3-642-36104-3_4#Sec20
http://dx.doi.org/10.1007/978-3-642-36104-3_4#Sec20
http://dx.doi.org/10.1007/978-3-642-36104-3_4#Bib1
http://dx.doi.org/10.1007/978-3-642-36104-3_5
http://dx.doi.org/10.1007/978-3-642-36104-3_5
http://dx.doi.org/10.1007/978-3-642-36104-3_5#Sec1
http://dx.doi.org/10.1007/978-3-642-36104-3_5#Sec1
http://dx.doi.org/10.1007/978-3-642-36104-3_5#Sec2
http://dx.doi.org/10.1007/978-3-642-36104-3_5#Sec2
http://dx.doi.org/10.1007/978-3-642-36104-3_5#Sec3
http://dx.doi.org/10.1007/978-3-642-36104-3_5#Sec3
http://dx.doi.org/10.1007/978-3-642-36104-3_5#Sec4
http://dx.doi.org/10.1007/978-3-642-36104-3_5#Sec4
http://dx.doi.org/10.1007/978-3-642-36104-3_5#Sec5
http://dx.doi.org/10.1007/978-3-642-36104-3_5#Sec5
http://dx.doi.org/10.1007/978-3-642-36104-3_5#Sec6
http://dx.doi.org/10.1007/978-3-642-36104-3_5#Sec6
http://dx.doi.org/10.1007/978-3-642-36104-3_5#Sec7
http://dx.doi.org/10.1007/978-3-642-36104-3_5#Sec7
http://dx.doi.org/10.1007/978-3-642-36104-3_5#Sec8
http://dx.doi.org/10.1007/978-3-642-36104-3_5#Sec8
http://dx.doi.org/10.1007/978-3-642-36104-3_5#Sec9
http://dx.doi.org/10.1007/978-3-642-36104-3_5#Sec9
http://dx.doi.org/10.1007/978-3-642-36104-3_5#Sec10
http://dx.doi.org/10.1007/978-3-642-36104-3_5#Sec10
http://dx.doi.org/10.1007/978-3-642-36104-3_5#Bib1


6 Noise . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 163
6.1 Persistence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 165

6.1.1 Persistence Sheaves. . . . . . . . . . . . . . . . . . . . . . . . . . . 165
6.1.2 Interpretation of Persistent Cohomology . . . . . . . . . . . . 168

6.2 Case Study: Experimental Validation of Topology Extraction . . . 169
6.3 Persistent Cohomology is a Robust Detector. . . . . . . . . . . . . . . 173

6.3.1 Historical Context . . . . . . . . . . . . . . . . . . . . . . . . . . . . 176
6.4 Case Study: Quasi-Periodic Signals . . . . . . . . . . . . . . . . . . . . . 176

6.4.1 Experimental Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . 178
6.4.2 Results of Persistent Cohomology . . . . . . . . . . . . . . . . . 180

6.5 Recovering a Space from a Point Cloud . . . . . . . . . . . . . . . . . . 181
6.6 Case Study: Recovery of a Space from

Measurements of Waves. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 187
6.7 Open Questions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 191
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 192

Appendix A: Topological Spaces and Continuity. . . . . . . . . . . . . . . . . 195

Appendix B: Topological Groups . . . . . . . . . . . . . . . . . . . . . . . . . . . . 199

Index . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 203

Contents xiii

http://dx.doi.org/10.1007/978-3-642-36104-3_6
http://dx.doi.org/10.1007/978-3-642-36104-3_6
http://dx.doi.org/10.1007/978-3-642-36104-3_6#Sec1
http://dx.doi.org/10.1007/978-3-642-36104-3_6#Sec1
http://dx.doi.org/10.1007/978-3-642-36104-3_6#Sec2
http://dx.doi.org/10.1007/978-3-642-36104-3_6#Sec2
http://dx.doi.org/10.1007/978-3-642-36104-3_6#Sec3
http://dx.doi.org/10.1007/978-3-642-36104-3_6#Sec3
http://dx.doi.org/10.1007/978-3-642-36104-3_6#Sec4
http://dx.doi.org/10.1007/978-3-642-36104-3_6#Sec4
http://dx.doi.org/10.1007/978-3-642-36104-3_6#Sec5
http://dx.doi.org/10.1007/978-3-642-36104-3_6#Sec5
http://dx.doi.org/10.1007/978-3-642-36104-3_6#Sec6
http://dx.doi.org/10.1007/978-3-642-36104-3_6#Sec6
http://dx.doi.org/10.1007/978-3-642-36104-3_6#Sec7
http://dx.doi.org/10.1007/978-3-642-36104-3_6#Sec7
http://dx.doi.org/10.1007/978-3-642-36104-3_6#Sec8
http://dx.doi.org/10.1007/978-3-642-36104-3_6#Sec8
http://dx.doi.org/10.1007/978-3-642-36104-3_6#Sec9
http://dx.doi.org/10.1007/978-3-642-36104-3_6#Sec9
http://dx.doi.org/10.1007/978-3-642-36104-3_6#Sec10
http://dx.doi.org/10.1007/978-3-642-36104-3_6#Sec10
http://dx.doi.org/10.1007/978-3-642-36104-3_6#Sec11
http://dx.doi.org/10.1007/978-3-642-36104-3_6#Sec11
http://dx.doi.org/10.1007/978-3-642-36104-3_6#Sec11
http://dx.doi.org/10.1007/978-3-642-36104-3_6#Sec12
http://dx.doi.org/10.1007/978-3-642-36104-3_6#Sec12
http://dx.doi.org/10.1007/978-3-642-36104-3_6#Bib1


Symbols

M;Uð Þ A manifold M with an atlas U

V�; f�ð Þ A sequence of vector spaces
* The point added to compactify a space, or an external vertex
/ Quotient of two spaces
1A The indicator function on a set A
\v;w [ An inner product
argmax The location of the first maximal value in a list
 An attachment between two cells
\ Set difference
v The Euler characteristic
� Composition of two functions
coker The cokernel of a matrix
deg Degree of a vertex

Dk The standard k-simplex
dx Dirac measure concentrated at x
dep The depth of a cover
dim Dimension of a manifold
ed Edge distance between two vertices in a graph
F The face category of a cell complex
id The identity map
image The image of a matrix or a function
inf Infimum of a set, its greatest lower bound
7! Defines the input and output of a function
C The complex numbers
N The natural numbers (including 0)

RP
k k-dimensional real projective space

R The real line
Z The integers
med Maximal edge distance between two vertices in a graph
� Direct sum of spaces, or sum of sheaves
� Tensor product of spaces or sheaves

xv



�A The closure of a subset A
o The boundary of a topological subspace or manifold
? Value which indicates failure to receive a signal
pr A projection map
rank The rank of a matrix
reach K The reach of a subset K of Rn

PL The sheaf of piecewise linear functions on a cell complex

PSk The k-th persistence sheaf
S Script type is used for sheaves or collections of sets
S Uð Þ The sections of a sheaf S on a set U

SY The sheaf constructed from sampling stalks of S on a subcomplex
Y

SY The ambiguity sheaf for the morphism S!SY

� An equivalence relation
t Disjoint union
star The star over a cell in a cell complex
sup Supremum of a set, its least upper bound
supp The set of support for a function
span The span of a collection of vectors
C a; bð Þð Þ The continuous, real-valued functions on the open interval (a,b)
Ck X;Sð Þ k-cochains of a sheaf S on X

Ck
c X;Sð Þ Compactly supported k-cochains of a sheaf S on X

CFðX; YÞ The space of constructible functions from X to Y
Dk The k-dimensional closed unit disk
f �S The pullback of a sheaf S
f�S The pushforward of a sheaf S
Hk V�ð Þ The k-th cohomology of a sequence of vector spaces
Hk X;Sð Þ The k-th cohomology of a sheaf S over X

Hk
c X;Sð Þ The compactly supported k-th cohomology of a sheaf Sover X

Hk V�ð Þ The k-th homology of a sequence of vector spaces
Ke The e-offset of a set K
N U;Rð Þ The nerve of U witnessed by a set R
Sk The k-dimensional unit sphere
Xf A cell complex on whose cells a function f is constant
Cat Boldface type is used for categories
EFh, EBh Boldface is used for Euler integral transforms of a function h
Mor(C) Morphisms of a category C
Obj(C) Objects of a category C
ReP The Vietoris–Rips complex of size e

xvi Symbols



Chapter 1
Introduction and Informal Discussion

Signal processing is the discipline of extracting information from related collections
of measurements. To be effective, measurements must be organized and then filtered,
detected, or transformed in some way to expose the desired information. Distortions
from uncertainty and noise oppose these techniques, and degrade the performance
of practical signal processing systems. Statistical methods have been developed to
ensure consistent performance of these systems, but usually need large amounts of
data in aggressively uncertain situations.

What if systems could be developed that are completely insensitive to distortion?
We should not expect to obtain complete information in these settings, but can useful
questions still be answered? It happens that they can, by using topological tools—
those that model spaces only up to continuous transformations. Since the collection of
continuous transformations is large and varied, we should expect that tools which are
topologically-motivated should be automatically insensitive to substantial distortion.
A change in perspective is needed, since topology is both qualitative and precise.
Although the topological mindset sparks the discovery of powerful algorithmic ways
to treat data, it may appear foreign and surprising at first to those accustomed to more
traditional signal processing.

This book has three major goals:

1. To show that topological invariants provide qualitative information about signals
that is both relevant and practical for system analysis and design.

2. To show that the signal processing concepts of filtering, detection, and noise corre-
spond to the seemingly abstract mathematical concepts of sheaves, functoriality,
and sequences, respectively.

3. To advocate for the theory of sheaves, bringing it to the forefront of signal process-
ing theory and practice.

M. Robinson, Topological Signal Processing, 1
Mathematical Engineering, DOI: 10.1007/978-3-642-36104-3_1,
© Springer-Verlag Berlin Heidelberg 2014



2 1 Introduction and Informal Discussion

Fig. 1.1 A path on which the author walked while taking signal strength measurements of nearby
wireless access points (left) and a 2-dimensional projection of the data, in which his path’s topology
is visible (right)

1.1 Meet the Case Studies

Although this book contains both theorems and proofs, the focus is practical. The
direct application of theoretical tools to practical systems draws their benefits and
shortcomings into sharp focus, and highlights where new tools must be developed.
Therefore, each chapter is built around several case studies that emphasize the prac-
tical aspects of the techniques developed in that chapter. The applications center
around the author’s own work in remote sensing, localization, and sonar imaging.

1. Signal manifolds for localization, tracking, and navigation (Sect. 2.3). This case
study examines the use of ambient radio signals to localize a receiver. Each loca-
tion of the radio receiver and orientation of its antenna yields a different collection
of signal strengths for each transmitter that is visible. If enough independent mea-
surements are taken, the resulting information uniquely determines the location
of the receiver and orientation of its antenna. This idea is quite powerful, and can
be used to detect if a mobile receiver has returned to a given location as shown
in Fig. 1.1.

2. Topological filters (Sect. 3.4). The “processing” of signal processing is usually
performed by filters, which are often linear and translation invariant. We show
how to generalize these filters using sheaves; in doing so, we obtain a new class
of nonlinear, angle-sensitive image filters.

3. Indoor acoustics and quantum graphs (Sect. 3.5). This case study shows how to
organize the signal strengths associated to wave propagation in a convenient way.
This organizational improvement permits the extraction of distances between
transmitters and receivers, and distances along propagation paths. We use this
mathematical formulation to explain an algorithm that processes narrowband
signals, and scales linearly with the number of edges in the graph.

4. Tracking water pollution (Sect. 4.6). The Shannon-Nyquist theorem can be
interpreted as a consequence of the sheaf model of signals. However, the sheaf
theoretic model of sampling additionally applies to sampling on networks. We
demonstrate this model by showing how to track water pollutants to their source.

http://dx.doi.org/10.1007/978-3-642-36104-3_2
http://dx.doi.org/10.1007/978-3-642-36104-3_3
http://dx.doi.org/10.1007/978-3-642-36104-3_3
http://dx.doi.org/10.1007/978-3-642-36104-3_4
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5. Extracting topology from intersections in coverage (Sect. 4.7). This case study
builds on Case Studies 1 and 3, and adds the capability to construct a topologically
accurate, combinatorial model of the space of locations for the receiver. By using
knowledge of which transmitters can be decoded simultaneously, topological
detectors and filters help to construct this model with relatively little effort.

6. Target enumeration (Sect. 5.2). Knowing the number of vehicles that pass a col-
lection of sensors is an important part of traffic engineering. Sensors called “traffic
counters” tabulate the number of vehicles that cross over a rubber hose anchored
on the road, without recording any identifying information specific to the vehicle.
If the counter registers the correct number of counts when multiple vehicles cross
the hose simultaneously, then it is possible to accurately recover the total number
of vehicles that cross over a longer period of time. This idea can be generalized
to larger, dense networks of sensors that produce counts of the objects in their
immediate vicinity. This case study shows how the Euler characteristic integral
provides a theoretically justified (and easy to implement) way to obtain the total
number of detected objects from such a sensor network.

7. Shape recognition in computer vision (Sect. 5.4) can be treated topologically.
Traditional matched filter methods can detect congruent copies of a desired feature
in an image, but they fail if the feature’s size or orientation is changed. Euler
integral transforms can be developed that are insensitive to size or rotation; only
being sensitive to a feature’s shape. By tailoring (or “tuning”) a particular Euler
integral transform, it is possible to adjust its selectivity for particular shapes in
an image.

8. Experimental validation of topology extraction (Sect. 6.2). This case study
addresses the problem of noise tolerance in Case Studies 1, 3, and 5. Sadly, the
algorithm for topological reconstruction (Case Study 5) is not very noise tolerant.
We show how to improve it by separating significant topological features from
those that are likely to be spurious, by using persistent cohomology. This case
study presents an experimental study that validates the robustness of persistent
cohomology. Figure 1.2 shows the acoustic laboratory in which data for this case
study was collected.

9. Quasiperiodic signals (Sect. 6.4). This case study shows how rotating targets can
be detected even if their motion is not periodic, which occurs when the rotation
rate varies. Traditional methods for detecting rotation in this case tend to fail.
This case study uses acoustic echos from a ceiling fan collected by a cell phone to
demonstrate performance of a topological algorithm that robustly detects rotating
targets.

10. Recovery of a space from measurements of waves (Sect. 6.6). This case study ties
together the previous ones, by showing the modes of failure and correct operation
of topological algorithms in the presence of noise. Specifically, when measure-
ments of acoustic and radio signal strength are used to recover the topology of an
environment, topological errors can be caused by undersampling.

The sheer diversity of examples where topological signal processing makes a
contribution is remarkable. While it is true that many of these examples could

http://dx.doi.org/10.1007/978-3-642-36104-3_4
http://dx.doi.org/10.1007/978-3-642-36104-3_5
http://dx.doi.org/10.1007/978-3-642-36104-3_5
http://dx.doi.org/10.1007/978-3-642-36104-3_6
http://dx.doi.org/10.1007/978-3-642-36104-3_6
http://dx.doi.org/10.1007/978-3-642-36104-3_6


4 1 Introduction and Informal Discussion

Fig. 1.2 Setup for an acoustic obstacle detecting experiment, used in Case Study 8. There are three
transmitters and two obstacles. The receiver is not shown

be approached in an ad hoc manner without invoking topology, the power of a
topological approach is that it unifies the common themes among them. This common
framework provides a fertile ground for cross-disciplinary collaboration on widely
varying practical problems.

1.2 Discrete Approximations of Spaces

As a mathematical theory, the study of topology is based on the examination of topo-
logical spaces, which specify a consistent notion of the neighborhoods of a point. In
signal processing, topological spaces describe the sensors and their utilization during
the measurement process. If the phenomenon being measured is compatible with the
topological space, then sensors within a given neighborhood will measure consistent
readings in the absence of noise. This provides a solid context for describing filters
that reject noise by averaging.

The physical world in which signal processing systems operate imposes many
strong constraints on the underlying topological spaces of sensors. This book pri-
marily focuses on cell complexes, which are simply a collection of closed disks
of various dimensions glued together along their boundaries. Several examples are
shown in Fig. 1.3. We will usually find that an “exploded view” of a space called the
the attachment diagram (see Fig. 1.4) is a key tool for manipulating cell complexes.

Cell complexes offer a good balance between flexibility and the avoidance of
pathology. All of the complexity of a cell complex lies in its attachment diagram,
since it is assembled from convenient, topologically simple cells. We will usually
find that that this combinatorial structure is more than sufficient to represent any of
the spaces we desire. The payoff is a powerful theory for manipulating signals with
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Fig. 1.3 Example of several cell complexes

Fig. 1.4 Cell complex (left)
and its attachment diagram
(right)

minimal outlay; many celebrated and useful results are much easier to understand in
this context.

Sometimes it is useful to work with manifolds, a class of spaces that are even
better behaved than cell complexes. Manifolds are general spaces which have enough
structure to support the familiar operations of calculus. Because physical problems
are often described by differential equations, manifolds play an important supporting
role in joining more traditional concepts of signal processing to the topology. (We
do not lose much generality by this approach, since a manifold can be given the
structure of a cell complex.)

1.3 Local Data: Filtering

A signal consists of a collection of related measurements. Usually, not all of the
measurements in a signal are closely related; a given measurement is typically only
related to its neighbors in time, space, or frequency. However, most measurements
(even those of remote phenomena) are taken locally. For instance, the temperature
and pressure at a particular location are local, as is the electric field strength of a
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propagating wave. Therefore, the appropriate model and subsequent operations on
signals should respect the local structure of measurements.

It makes sense to use a mathematical construct that respects locality but is the-
oretically lightweight. The appropriate structure is that of a sheaf. Although often
relegated to obscurity (even within mathematics), a sheaf is merely a way to assign
different kinds of data to each part of a space and to check consistency of this data
between neighboring locations. In essence, sheaves are the correct data structure in
which to store local data and the correct abstraction of a topological signal model.

The signals themselves are rarely the most important feature of a signal processing
system. The filters, detectors, and transformations that make up the system are more
important. Signal processing systems can be represented as sequences of sheaf-
based topological filters, which generalize the concept of discrete, linear, translation-
invariant systems. Indeed, topological filters describe every manipulation of signals
(not just timeseries or images) that preserves locality, and are the basis of several
new and powerful algorithmic approaches to filter design.

1.4 The Interplay Between Local Data and Global
Inference: Detection

Much of the data in any signal is not of interest in a given problem; it is clutter.
The effectiveness of sheaves in signal processing hinges on their ability to reject or
mitigate clutter. For instance, consider the familiar situation of trying to listen to a
friend in a busy room. Usually, there is plenty of sound energy from your friend that
reaches your ears. The problem is the presence of many other conversations that you
also hear. This unwanted, but structured, portion of a signal is called clutter. Practical
usage of a signal processing system requires the removal of this clutter.

The solution to the clutter problem usually relies on the internal consistency of
the desired signal. The unique characteristics of your friend’s voice and patterns of
speech make it possible for your brain to extract it from many other competing voices.
Sheaves are particularly good at describing internally consistent information. Their
precise definition allows locally consistent signals to be assembled into globally
consistent ones, automatically removing inconsistent clutter.

This leads to a compelling definition of detectors; those operations that assemble
local data consistently into global data. Detectors summarize and extract the infor-
mation from a signal, leaving a highly compressed representation that preserves the
relationships between signals. When correctly designed, this representation reduces
the amount of information in the signal by rejecting clutter.

This text advocates for sheaf cohomological invariants as being the most promi-
nent class of detectors. By using sequences of topological filters (signal processing
chains instead of merely signals), robust cohomological invariants arise. Applying
detectors to these processing chains yields the notion of persistent cohomology,
which is a compelling way to detect topological features in datasets.
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This book also connects these cohomological invariants to signal reconstruc-
tion problems. For instance, the celebrated Shannon-Nyquist theorem guarantees
that a signal can be reconstructed from its samples if it is bandlimited. Similarly,
compressive sensing approaches explain how certain signal models support sparser
sampling. Both of these ideas can be expressed by stating that local measurements
containing complete information about a signal are reduced to those that lie on a
lower-dimensional subspace, which can be represented as a sequence of topologi-
cal filters. Studying the cohomology—a detector operating on these filters—leads
to a general condition for perfect reconstruction of a signal from samples on that
lower-dimensional subspace.

A different way to develop robust filters is to use the time-honored concept of
averaging. For instance, the Euler characteristic χ of a simplicial complex can be
used to build a consistent theory of integration. Once an integral has been defined,
integral transforms are natural and interesting tools for signal processing. Using the
Euler characteristic integral leads to non-local ways to manipulate local data that
allow the combined use of geometric constraints and topological flexibility.

1.5 Coda: An Invitation

Each chapter ends with a list of open questions, since statements of goals and
problems often lead to unexpected solutions. The lists are incomplete and many
of the questions are ill-specified. The author hopes these open questions will spark
ideas, discussion, and progress in the new and developing field of topological signal
processing.



Chapter 2
Parametrization

This chapter develops several models of topological spaces associated to collections
of measurements that

1. Parametrize the context in which the measurements are taken,
2. Set the stage for the understanding when measurements are consistent, and
3. Are convenient to implement in applications.

Local signals are collections of measurements which are related by their spatial,
temporal, or contextual proximity. This leads one to study the sets in which
“proximity” has a consistent mathematical meaning, namely topological spaces.
The general definition of a topological space, while elegant and intellectually effi-
cient, sadly admits many pathologies. (Indeed, it admits so many pathologies that at
least one book, Steen and Seebach (1978), has been written about them!) Because of
this, we will study several restricted classes of topological spaces which admit fewer
pathologies. Of course, there could be a situation of interest which is not admitted
in these classes, but the author has not yet found an example of such a situation.
Additionally, these classes of spaces are well-suited to algorithmic manipulation,
and therefore play an important role throughout this book.

The primary class of topological spaces that are used in applications are cell com-
plexes. These include some CW complexes and all simplicial complexes as shown
in Fig. 2.1. From a computational perspective, simplicial complexes are quite con-
venient to manipulate, though in high-dimensional settings they can incur a large
memory footprint. It is for this reason that others, for instance Kaczynski et al.
(2004), also consider cubical complexes. However, most of the cases of interest for
signal processing use lower dimensions, so we will avoid the additional technical
overhead of discussing cubical complexes.

When more structure is available in the problem, it is sometimes useful to instead
study manifolds, which are spaces that are locally like Euclidean space. Conveniently,
every manifold can be given the structure of a cell complex, and every compact
manifold can be given the structure of a CW complex. Unlike cell complexes and
CW complexes, manifolds admit a general notion of differential calculus. Because
manifolds admit both a differential and a combinatorial interpretation, manifolds

M. Robinson, Topological Signal Processing, 9
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Fig. 2.1 Some kinds of
topological spaces that are
important in applications

can be useful in cementing the relationship between a physical signal model (arising
from differential equations) and the algorithmic, combinatorial models we develop
in this book.

2.1 Abstract Spaces

We begin our study of restricted topological spaces with CW complexes. These spaces
are assembled from disks glued along their boundaries in a particular way. In the
end, we will focus on related spaces, called cell complexes, because these are the
most natural place to study sheaves and local signals.

2.1.1 CW Complexes

In order to connect computations concerning the structure of a space to data, it is
essential to have a constructive, combinatorial description of a space that arises from
attaching simpler topological spaces together.

Definition 2.1 Suppose that X and Y are topological spaces and that f : A ⊆ X→Y
is a continuous function from a subspace of X . Let Z = (X\A) � Y , and define the
function g : X � Y → Z by

g(p) =
{

p if p ∈ Y or p /∈ A

f (p) if p ∈ A

The adjunction space is the topological space (Z ,U ), whose topology U consists
of all subsets of Z whose preimages are open in X � Y . We say that Z consists of X
and Y attached along A ∼ f (A). (See Fig. 2.2 for a schematic of this construction.)

General attachments can be rather complicated, so we will instead consider spaces
that arise from attaching disks to one another along their boundaries.
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Fig. 2.2 An adjunction of
two spaces

Definition 2.2 The n-dimensional closed disk is the closed subset Dn = {(x1, . . . ,

xn) ∈ R
n : x2

1 +· · ·+ x2
n ≤ 1}. The boundary of such a disk is the n −1-dimensional

sphere χ Dn = Sn−1, the closed subset {(x1, . . . , xn) ∈ R
n : x2

1 + · · · + x2
n = 1}.

(We will use the notation χ A to represent the boundary of a set A.) Similarly, the
n-dimensional open disk is the subset {(x1, . . . , xn) ∈ R

n : x2
1 + · · · + x2

n < 1}.
Definition 2.3 Suppose that the topological space Xk consists of the (not necessarily
disjoint) union of a collection K of disks of dimension at most k, and that χ Dk+1

is decomposed as a finite union χ Dk+1 = A1 ∪ A2 · · · ∪ An . An attaching map1 or
attachment is a continuous function φ : χ Dk+1 → Xk , for which the image φ(Ai )

of each Ai is a disk, and each such image is in the collection K .

We then say that Dk+1 is attached to Xk and to each of the disks φ(Ai ), and will
write φ(Ai ) � Dk+1. Observe that the symbol � goes in the opposite direction as
the attaching map itself, a convention that is useful when we study sheaves.

The concept of a CW complex captures the idea of inductively constructing a space
from lower dimensions to higher dimensions using attaching maps, as suggested in
Fig. 2.3.

Definition 2.4 Suppose that X0 is a disjoint collection of points and that Xk is the
adjunction space formed by attaching finitely many disks to Xk−1 for k = 1, . . . , n
as above. Then X = Xn is a finite CW complex of dimension n, or simply a CW
complex. The space Xk is called the k-skeleton of X .

Attachment constructions like these are powerful tools for understanding how a
space is assembled from its parts. They play a similar role to exploded view dia-
grams (see Fig. 2.4) in assemblies. Because of this graphical connection, attachment
constructions can be visualized with an attachment diagram, showing how the cells
are attached, such as in Fig. 2.5. Each cell is shown and the links represent attach-
ments (drawn from low dimensional cells to higher dimensional cells). Usually, we
suppress any attachments that are compositions of other attachments.

1 The term map will be used as shorthand for “continuous function” throughout the book.



12 2 Parametrization

Fig. 2.3 Example of an
attaching map (marked with
arrows) of a disk D2

Fig. 2.4 An attachment con-
struction is like an exploded
view for a topological space

Fig. 2.5 An attachment construction (left) and its attachment diagram (right)

Remark 2.1 The attachment diagram of an attachment construction is a set that is
partially ordered by the sequence of attachments. When we exhibit an attachment
diagrams, we display its Hasse diagram.
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Fig. 2.6 The compatibility
condition for attaching maps
in CW complexes; the attach-
ing map from the boundary
of C to A also restricts to the
attachment of A to E

Fig. 2.7 An attachment
construction that is not a
CW complex. Note that B
is an edge attached to a
2-dimensional disk C without
a vertex between them

Because we assume that attaching maps are continuous, no new attachments
between cells in Xk arise when we attach higher dimensional cells. As shown in
Fig. 2.6, if two cells A and B are both attached to a higher dimensional cell C at the
same place on C , then they must also be attached to the same lower dimensional cell
E there also. If we remove the higher dimensional cell C , the attachment diagram
retains the common attachments of A and B to E .

Remark 2.2 If the attaching maps are not assumed to be continuous, the resulting
construction would not necessarily be an adjunction space. For example, the disks A
and B in Fig. 2.7 would become detached from one another if the higher-dimensional
cell C were to be removed. With the cell C present, the 1-skeleton of the attachment
construction is a different topological space than with C removed.

Corollary 2.1 The k-skeleton of a CW complex is also a CW complex.

The boundaries of closed disks are CW complexes, and they can be easily
assembled inductively. To start the induction, we begin by constructing a circle as
a CW complex. This structure consists of two 1-cells (closed intervals) e1 = [0, 1]
and e2 = [0, 1], attached to two 0-cells (points) v1 and v2 as shown in Fig. 2.8.
Specifically, there are two attaching maps, namely

• a1 : χe1 = {0, 1} → X0 = {v1, v2} given by a1(0) = v1 and a1(1) = v2, and
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Fig. 2.8 CW complex struc-
tures for a circle (left) and
sphere (right). (From a geo-
metric perspective, this con-
struction of S2 looks more like
a “whoopie cushion” than a
sphere.)

• a2 : χe2 = {0, 1} → X0 = {v1, v2} given by a2(0) = v1 and a2(1) = v2.

To construct an n-dimensional sphere, we assume that the n − 1-skeleton Xn−1

consists of a single n − 1 dimensional sphere as a CW complex. We then attach two
n-dimensional disks by attaching the boundary of each to Xn−1 with a homeomor-
phism as shown in Fig. 2.8.

Other constructions are possible as well. For instance, the n-dimensional torus is
constructed by attaching opposite faces of the n-dimensional cube to each other. This
is not quite as constrained of a definition as it might first seem; how precisely the
attachment is made does matter. Consider the two-dimensional situation, in which
opposite sides of a square are attached to each other. If, for instance, (0, x) is attached
to (1, x) and (x, 0) is attached to (x, 1), the resulting space is a torus. However, if
instead we consider the CW complex that arises from attaching (0, x) to (1, x) and
(x, 0) to (1 − x, 1), the resulting space is called a Klein bottle and is quite differ-
ent. The Klein bottle is a space which cannot be homeomorphically mapped into a
2-dimensional subset of R3. A standard projection of its embedding2 into R

4 to R
3

is shown in Fig. 2.9.

Exercise 2.1 The real projective n-plane RP
n arises as a quotient of the closed n-

disk Dn by the equivalence v ∼ −v for each v ∈ χ Dn . Construct a CW complex
structure for RPn .

While flexible, CW complexes have the disadvantage that they are sometimes
too constrained. This is especially the case when studying graphs; a CW complex
representation of a graph requires both endpoints of every edge to be connected to a
vertex. Sometimes, however, it is more descriptive to remove a vertex from the end
of an edge. This might signal that the edge’s connection on that end is not useful to
consider, or might indicate a connection outside of the region being considered. The
appropriate generalization is that of a cell complex. A cell complex is a either (1) a
CW complex whose attaching maps are embeddings or (2) a space that becomes a
CW complex after being compactified, and whose attaching maps are embeddings
even once the space has been compactified.

2 An embedding is an injective continuous map f : X → Y whose image f (X) is homeomorphic
to its domain X .
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Fig. 2.9 Projection of an embedded Klein bottle into R
3

Fig. 2.10 A cell complex
(left) that is not a CW complex.
Its one-point compactification
(right) has the structure of a
CW complex

Definition 2.5 A cell complex consists of a topological space X and a collection
of disjoint open disks {ck}, each of which is a subspace of X , such that if we add
an additional external vertex ∗ and form {ck} ∪ {∗}, these are the cells of a CW
complex structure for the one-point compactification X ∪ {∗} (see Proposition A.7
in the Appendix) of X , whose attaching maps are all embeddings. We call the open
disks {ck} open cells whenever there is the possibility of confusion.

Figure 2.10 shows a cell complex that is not a CW complex, since only one
endpoint of each edge is attached to a vertex. However, its one-point compactification
is a CW complex.

The simpler space, consisting of a single open interval is not a cell complex,
however. Its one-point compactification is a circle, but its only attaching map is
not an embedding since both endpoints are attached to the same (new) point. This
problem can be rectified by subdividing the open interval into two open intervals
attached to a common point in the middle.
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2.1.2 Cellular Maps and Homotopy

Cell complexes can be related to one another in much the same way that continuous
maps relate topological spaces.

Definition 2.6 A continuous map f : X → Y between two cell complexes is called
a cellular map if

1. For each cell c ∈ X , f (c) is a cell in Y ,
2. If a � b is an attachment of two cells in X then f (a) � f (b) is an attachment

in Y , and
3. Given a cell c ∈ X and two other cells d, e ∈ f (c), then f −1(d) ∩ c is compact

if any only if f −1(e) ∩ c is also compact.

It is worth noting that condition (3) is automatically satisfied if X and Y are CW
complexes, and the last two conditions are automatically satisfied if X and Y are
both abstract simplicial complexes (Sect. 2.2.1).

Topology is popularly understood to be the branch of mathematics that deals with
deformations, particularly of images like the sequence shown in Fig. 2.11. This is an
example of a homotopy from one image to another.

Definition 2.7 A homotopy between two maps f : X → Y and g : X → Y
is a continuous function H : X × [0, 1] → Y in which H(x, 0) = f (x) and
H(x, 1) = g(x) for all x ∈ X . We call f and g homotopic (written f � g) if there
is a homotopy between f and g.

The fact that a single topological space may be described by several different
cell complex structures raises the question of how to tell if two cell complexes
are the “same”. One can ask whether two spaces are homeomorphic (or stronger,
homeomorphic through a cellular map), but this is too stringent of a criterion.
CW complexes are often best studied under a different criterion, called homotopy
equivalence.

Definition 2.8 A homotopy equivalence between two topological spaces X and Y
is a pair of maps f : X → Y and g : Y → X such that both f ◦ g and g ◦ f are
homotopic to identity maps. We say that X and Y are homotopy equivalent if there
exists a homotopy equivalence between them.

Fig. 2.11 A continuous deformation of one image into another
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Exercise 2.2 Show that [0, 1] is homotopy equivalent to itself, by showing that the
compositions of f, g : [0, 1] → [0, 1] given by

f (x) = √
3x and g(y) = 4y2

are homotopic to the identity map id[0,1](x) = x .

Rather than directly checking if the resulting topological spaces associated to
an attachment construction are homotopic, it is usually easier to look for algebraic
“homotopy invariants” that allow different spaces to be discriminated. If two spaces
are homotopy equivalent, they have the same sets of invariants; so if the invariants
associated to two spaces are different, then the spaces cannot be homotopy equivalent.
However, the converse is not true; if two spaces have the same set of invariants, they
may still not be homotopy equivalent.

For CW complexes, the invariants which discriminate between the most spaces
are found in homotopy groups. Unfortunately, computing homotopy groups is com-
putationally and theoretically very difficult, and there remain many open questions
about how to effectively perform the computation at all. On the other hand, much
of the complexity can be avoided by using weaker invariants called homology and
cohomology. While easier to compute, homological invariants cannot discriminate
between certain homotopy inequivalent spaces. Nevertheless, we will develop and
use homology theory throughout the rest of the book because of its computational
utility.

2.2 Representation of Spaces

As convenient as CW complexes are for constructing and manipulating spaces, they
are remarkably difficult to represent completely in software. Because of this, it is
useful to have more restricted descriptions of spaces that have the same notion
of topology as CW complexes, but are more computationally convenient. From
a theoretical point of view, one can switch between equivalent representations as
appropriate.

2.2.1 Abstract Simplicial Complexes

The prototypical combinatorial model of a space is an abstract simplicial complex.
It is extremely easy to store and manipulate an abstract simplicial complex in a
computer because it can be represented using ordered lists.
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Definition 2.9 An abstract simplicial complex X on a set A is a collection of
ordered3 lists of A that is closed under the operation of taking sublists. We call
each element of X , which is an ordered collection of elements of A, a simplex.
A simplex with k + 1 elements is called a k-simplex or a k-face, and we call a 0-face
a vertex and a 1-face an edge. A simplicial map f : X → Y between an abstract
simplicial complex on A to an abstract simplicial complex on B is a function induced
on simplices by a function A → B.

Example 2.1 Suppose that A = {p, q, r, s, t}.
• Then X = {{p, q}, {p}, {q}, {r}} is an abstract simplicial complex on A.
• Although X ⊗ = {{q, p}, {p}, {q}, {r}} consists of the same subsets as X , we regard

X and X ⊗ as being different simplicial complexes, since the ordering of the elements
is different.

• Y = {{p, q}, {p}} is not a simplicial complex, since it is missing the 0-simplex
{q}.

• Both Z = {{p, q}, {p, r}, {r, q}, {p}, {q}, {r}} and
• W = {{p, q, r}, {p, q}, {p, r}, {r, q}, {p}, {q}, {r}} are abstract simplicial com-

plexes.

Example 2.2 Suppose that X = {{p, q}, {r, s}, {p}, {q}, {r}, {s}} and Y = {{p, q},
{p}, {q}} are two simplicial complexes on A = {p, q, r, s} and that φ : A → A is a
function given by

φ(p) = p, φ(q) = q, φ(r) = p, φ(s) = q.

This function induces the following simplicial map:

{p, q} �→ {p, q}, {p} �→ {p}, {q} �→ {q}, {r, s} �→ {p, q}, {r} �→ {p}, {s} �→ {q}.

While very efficient, the definition of an abstract simplicial complex sometimes
obscures topological information. It is therefore important to be able to realize a
finite abstract simplicial complex X as a CW complex |X | in which simplicial maps
become cellular maps.

As shown in Fig. 2.12; each simplex in X corresponds to a cell in |X |, and is
attached to each of its faces. We begin by constructing the realization of a single
k-simplex.

Definition 2.10 The standard k-simplex is the closed subset of Rk+1 given by

Δk =
{

(x1, . . . xk+1) : xi ≥ 0 for all i , and
k+1∑
i=1

xi = 1

}
.

3 The elements of A are need not be ordered themselves.



2.2 Representation of Spaces 19

Fig. 2.12 A realization of an abstract simplicial complex

Fig. 2.13 The standard 2-simplex Δ2 and its faces: Δ0 are points and Δ1 are line segments

Observe that Δk is the convex combination of the k + 1 points whose coordinates
are all 0 except one which is 1.

As can be seen in Fig. 2.13, intersecting the standard 2-simplex with the cardinal
planes x = 0, y = 0, or z = 0 results in copies of the standard 1-simplex. This is
generally true, since

Δk−1 = Δk ∩ {(x1, . . . , xk−1, 0)}.

By permuting coordinates in the intersecting subspace, a total of k + 1 copies of the
standard k − 1-simplex form the boundary of the standard k-simplex. It follows that
intersecting Δk with a subspace formed by zeroing out n coordinates results in a
copy of Δk−n .

Definition 2.11 Let X be an abstract simplicial complex on the finite set A. We define
the realization |X | to be the attachment construction given by |X | = (⋃

α ξα

)
/ ∼,

where α is an index that ranges over all simplices in X and ξα = Δkα is a standard
simplex of dimension kα . We construct the attachment maps φα : χξα → |X |kα−1

so that each (kα − 1)-face of ξα is mapped homeomorphically onto an element of
|X |kα−1 as follows. Without loss of generality, suppose that ξα corresponds to the
k-simplex {1, 2, . . . , k}. Consider φα restricted to the face {1, 2, . . . , k − 1}. Since
Xk is an abstract simplicial complex, the simplex {1, 2, . . . , k − 1} is also contained
in Xk , and therefore corresponds to some other simplex ξβ . We therefore assign
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φ(χξα) = φα(x1, x2, . . . , xk−1, 0) = (x j1 , x j2 , . . . , x jk−1) ∈ Δk−1 = ξβ, (2.1)

where (1, . . . , k − 1) �→ ( j1, . . . , jk−1) is a permutation. We note that assembling
each φα from its restrictions to faces of ξα (given by (2.1)) is automatically contin-
uous, and it is therefore an attaching map.

Notice that since abstract simplicial complexes are closed under the operation of
taking subsets, the restriction of φα to the boundary of the preimage of ξβ is auto-
matically an attaching map. Further, each such φα is an embedding by construction.
Hence |X | is a cell complex.

Proposition 2.1 If X is a CW complex whose attaching maps are embeddings, then
there is an abstract simplicial complex Y for which X → |Y | is cellular homeomor-
phic to |Y |.
In other words, for any CW complex X , one can find an abstract simplicial complex
whose realization is a topological copy of X .

The statement is true if the attaching maps are not embeddings, though the proof
is more difficult. We will not need that level of generality, however.

Proof We can proceed by induction on attaching maps. A 0-dimensional complex
can be realized as a collection of vertices. If Xk can be realized as |Y k |, consider
attaching a k + 1-cell eα to Xk via the map φ. Suppose that A1 ∪ · · · ∪ An is a
decomposition such that all open cells in φ(eα) are one of the φ(Ai ). If n ≤ k + 2,
it is immediate (since φ is an embedding) that we merely need to add a single k + 1-
simplex to Y whose faces correspond to the φ(Ai ). If n > k + 2, then we merely
need to subdivide eα into simplices so that the union has n faces. (Figure 2.14 shows
the 2-dimensional case.) �

Corollary 2.2 If X is a noncompact cell complex, then it is cellular homeomorphic
to |Y |\{∗}, the geometric realization of some abstract simplicial complex Y with a
vertex removed. We will call ∗ the external vertex.

Corollary 2.3 If f : X → Y is a simplicial map, then f induces a cellular map
| f | : |X | → |Y |.

2.2.2 Manifolds and Embeddings

While cell complexes have an overall notion of dimension, their dimension is not
local. For example, the interior of an edge in a graph is homeomorphic to an open
interval; a 1-dimensional space. Perhaps at a vertex attached to one or two edges, the
dimension ought to be 1. But what about a vertex that is attached to three edges? It is
unclear what dimension should be assigned to such a vertex. This situation does not
arise in some applications, which constrains the allowable local topological structure
in those cases. This leads naturally to the concept of a manifold.
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Fig. 2.14 Subdividing a 2-cell with n edges into simplices

Fig. 2.15 An atlas with two charts on the 2-dimensional sphere S2

Our study of CW complexes is intimately tied to the structure of manifolds; a
compact manifold of a particular dimension can be given the structure of a CW
complex of that dimension. (This is why we will assume manifolds to be Hausdorff4

and paracompact,5 since CW complexes satisfy both properties.) The most elegant
proof of this fact involves the use of Morse theory. The author recommends several
excellent texts on the subject, for instance Milnor (1963), Banyaga and Hurtubise
(2004).

Definition 2.12 A topological manifold (M,U ) is a Hausdorff topological space
M that is paracompact and has an atlas, a cover U of open sets in which each
U ∈ U is homeomorphic to an open subset V of Euclidean space R

n through a
map φU : U → V , called a chart of U (n may depend on U and is called the local
dimension at U and is written dim U ).

Example 2.3 A sphere is an example of a manifold. The n-dimensional sphere is the
following closed subset of Rn+1

4 A space is Hausdorff if every two distinct points are contained in disjoint open neighborhoods.
5 A space is paracompact if every open cover U has a locally finite open refinement cover V in
which each element V ∈ V is a subset of some U ∈ U .
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Fig. 2.16 Several different charts for R

Sn =
{

(x1, . . . , xn+1) ∈ R
n+1 :

n+1∑
i=1

x2
i = 1

}
.

One convenient atlas for the sphere consists of two overlapping hemispheres U1, U2,
as shown in Fig. 2.15. (This atlas is analogous to the CW complex for the sphere
shown in Fig. 2.8.) It’s easiest to define φU1 and φU2 using the stereographic
projection:

φU1(x, y, z) =
(

x

1 + z
,

y

1 + z

)
for z > −1

and

φU2(x, y, z) =
(

x

1 − z
,

y

1 − z

)
for z < 1.

Definition 2.13 Suppose that U is an atlas of a topological manifold M . The tran-
sition maps of U are the functions φU1 ◦ φ−1

U2
for U1, U2 ∈ U , which are maps

between open subsets of Euclidean space. If the transition maps have k continuous
derivatives, then we say that U is a Ck atlas. If the transition maps have derivatives
of all orders, then we say that U is a C∞ atlas or a smooth atlas.

Exercise 2.3 Show that the transition maps φU1 ◦ φ−1
U2

and φU2 ◦ φ−1
U1

in Example

2.3 , which are functions R2\{(0, 0)} → R
2, both have continuous derivatives away

from the origin.

Definition 2.14 Two Ck atlases U and V are Ck compatible if their union U ∪ V
is also a Ck atlas.

Example 2.4 This example shows several different atlases that can be put on the real
line R. Consider two open sets, U1 = (−∞,−1), U2 = (1,∞) with charts φU1 :
U1 → R, φU2 : U2 → R given by φU1(x) = x and φU2(x) = x . We now consider
another open set U3 = (−2, 2) with three different possible charts (see Fig. 2.16),
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Fig. 2.17 A Ck function between two manifolds

φU3(x) = x, ψU3(x) = 2x, and θU3(x) =
{

x if x < 0

2x if x ≥ 0.

The atlases {φU1, φU2 , φU3} and {φU1 , φU2 , ψU3} are smoothly compatible, since
ψU3 ◦φ−1

U3
= 2x is smooth. However, the atlases {φU1, φU2 , φU3} and {φU1, φU2 , θU3}

are not compatible, since the transition map θU3 ◦φ−1
U3

has a discontinuous derivative.

Definition 2.15 Each Ck atlas U on a topological manifold M is compatible with a
unique largest Ck atlas, in the sense of inclusion. We call this atlas a maximal atlas.
A topological manifold (M,U ) in which U is a maximal Ck atlas is called a Ck

manifold. If U is a smooth atlas, then we call (M,U ) a smooth manifold, or simply
a manifold. Often we will abbreviate notation by stating “M is a smooth manifold
with atlas U ” instead of stating “(M,U ) is a smooth manifold.”

Continuous functions between manifolds that respect the manifold structure are
given special status.

Definition 2.16 Suppose that (M,U ) and (N ,V ) are manifolds and that f : M →
N is a continuous function. We call f a Ck map or Ck function if for each U ∈ U and
V ∈ V for which f (U ) intersects V , F = φV ◦ f ◦φ−1

U restricted to (φU ◦ f −1)(V )

has k continuous derivatives. This is well-defined because F is a function between
open subsets of Euclidean space, as shown in Fig. 2.17. The set of Ck maps between
M and N is written Ck(M, N ). If F has derivatives of all orders, we say f is a
smooth map in C∞(M, N ).

Ck manifolds are important in applications because they support a notion of
calculus. In particular, we can define a notion of a derivative for Ck maps.

Definition 2.17 Suppose f : M → N is a Ck function between Ck manifolds
with maximal atlases U and V , respectively. Given x ∈ U ∈ U and V ∈ V , the
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Fig. 2.18 Changes of charts on the domain and range of a Ck function between two manifolds

Fig. 2.19 Examples of different kinds of smooth maps of a 1-dimensional manifold

derivative of f at x is the Jacobian matrix of partial derivatives of φV ◦ f ◦ φ−1
U . We

will write d fx for the derivative of f at x .

Lemma 2.1 The rank of the derivative at a point x ∈ M of a Ck function f : M →
N between Ck manifolds is invariant under a change of charts.

Proof Suppose that U and V are maximal Ck atlases of M and N , respectively.
Observe that if x is also in U ⊗ ∈ U and f (x) is also in V ⊗, then (see Fig. 2.18)

φV ⊗ ◦ f ◦ φ−1
U ⊗ = φV ⊗ ◦

(
φ−1

V ◦ φV

)
◦ f ◦

(
φ−1

U ◦ φU

)
◦ φ−1

U ⊗

= φV ⊗ ◦ φ−1
V ◦

(
φV ◦ f ◦ φ−1

U

)
◦ φU ◦ φ−1

U ⊗

The maps φU ◦φ−1
U ⊗ and φV ⊗ ◦φ−1

V are homeomorphisms between two Euclidean open
sets and hence of full rank, a fact called the “invariance of dimension.” Therefore
φV ⊗ ◦ f ◦ φ−1

U ⊗ has the same rank as φV ◦ f ◦ φ−1
U . �

Since dimension is an important local invariant of manifolds, maps that interact
well with dimension have special names and properties as indicated in Fig. 2.19.
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Fig. 2.20 A submanifold chart

Definition 2.18 Suppose f : M → N is a Ck function between Ck manifolds.

1. f is a diffeomorphism if it is a Ck homeomorphism with a Ck inverse. If f is a
diffeomorphism, we say M and N are diffeomorphic.

2. If the derivative of f is injective at every point x ∈ M , then f is called an
immersion.

3. An immersion that is also a homeomorphism onto its image is called an embed-
ding.

4. If the derivative of f is surjective at every point x ∈ M , then f is called a
submersion.

Written more simply, if a diffeomorphism exists between two manifolds, they are
indistinguishable as manifolds. An embedding is a diffeomorphism into some ambi-
ent space. Immersions permit self-intersections. Submersions require the dimension
of the domain to be greater than or equal to dimension of the range.

Definition 2.19 Suppose that N is a topological subspace of a manifold (M,U ).
A submanifold chart for N is a chart φ : U → R

n of U in which φ(N ∩ U )

is the intersection of a linear subspace of Rn with φ(U ). Explicitly, the subman-
ifold dimension of N on U is the number k such that every point of the form
(x1, . . . , xk, 0, . . . , 0) ∈ φ(U ) ⊆ R

n is the preimage of a point in N .
A submanifold (N ,V ) of a manifold (M,U ) is a topological subspace of M

which has an atlas V of submanifold charts.

Submanifold charts arise whenever there are Ck maps whose derivatives have
constant rank.

Lemma 2.2 (Loosely following (Lee 2003, Theorem 7.8)) Suppose U ⊆ R
m and

V ⊆ R
n are open and f : U → V is a C1 map whose derivative has rank k at every

point x ∈ U. For any x ∈ U, there exist charts φ : U ⊗ → R
m and ψ : V ⊗ → R

n

with U ⊗ ⊆ U and f (U ) ⊆ V ⊗ ⊆ V such that (see Fig.2.20)
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ψ ◦ f ◦ φ−1(x1, . . . , xm) = (x1, . . . , xk, 0, . . . , 0).

The lemma is essentially a nonlinear form of the singular value decomposition,
since the derivative of f has rank k at x we have

d fx = A−1
(

Ik × k 0k × m−k

0n−k × k 0n−k × m−k

)
B.

But the Lemma is actually stronger; this equality can be made to hold everywhere in
the chart U ⊗.

Proof Without loss of generality, we can assume that x = 0, and that f (0) = 0. For
convenience, we will construct φ and ψ so that φ(0) = 0 and ψ(0) = 0. Without loss
of generality assume that by permuting dimensions in both the domain and range,
we can write f (x1, . . . , xm) = (g(x1, . . . , xm), h(x1, . . . , xm)), where g : U → R

k

has full rank and h : U → R
n−k . Given that we want ψ ◦ f ◦ φ−1 to be the identity

on the first k dimensions, let us define

φ(x1, . . . , xk, . . . , xm) = (g(x1, . . . , xk, . . . , xm), xk+1, . . . , xm).

We claim that φ−1 is defined, at least if φ is restricted to some smaller open set
U ⊗ ⊂ U , by the classical inverse function theorem. This follows because

dφ0 =
(

Ak × k Bk × m−k

0m−k × k Im−k × m−k

)

is nonsingular since (Ak × k Bk × m−k) is the matrix of partial derivatives of g, which
is of full rank by assumption. Therefore we have that on U ⊗,

f ◦ φ−1(x1, . . . , xm) = (x1, . . . , xk, c(x1, . . . , xm)),

where c : U ⊗ → R
n−k is a Ck function. Thus, we would like to define ψ to be

(y1, . . . , yk, yk+1 − ck+1(x1, . . . , xm), . . . , yn − cn(x1, . . . , xm)).

Perversely, though, this means that ψ isn’t a map to the subset of Rn we wanted.
However, we happen to be lucky since c is independent of xk+1, . . . , xm . Observe
that

d( f ◦ φ−1) =
(

Ik × k 0k × m−k

An−k × k Bk × m−k

)

must have column rank exactly equal to k, since φ is a Ck diffeomorphism by con-
struction. Therefore, Bk × m−k is actually a zero matrix, proving our claim that c is
independent of xk+1, . . . , xm .
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Fig. 2.21 Dimensional constraints in resolving self-intersections of an immersed manifold

Therefore, we have that c(x1, . . . , xk, xk+1, . . . , xm) = C(x1, . . . , xk), and so we
may define

ψ(y1, . . . , yn) = (y1, . . . , yk, yk+1 − Ck+1(y1, . . . , yk), . . . , yn − Cn(y1, . . . , yk)).

�

This lemma facilitates the following proposition, that embeddings inject a copy
of a manifold as a submanifold of another.

Proposition 2.2 A Ck embedding f : M → N of one Ck manifold into another is
also a Ck diffeomorphism onto its image f (M), which is a submanifold of N .

Proof Evidently, f is a homeomorphism when its range is restricted to f (M).
Since f is also an immersion, it is a map of constant (full) rank. Therefore, by the
Lemma, we have that for every x ∈ M , there exist charts φ : U ⊆ M → R

m and
ψ : V ⊆ N → R

n so that f (U ) = f (M) ∩ V (since f is a homeomorphism onto
its image) and

ψ ◦ f ◦ φ−1(x1, . . . , xm) = (x1, . . . , xm, 0, . . . , 0).

Hence ψ is a submanifold chart for f (M) at f (x). The inverse of f is Ck , since it
is the identity with this choice of charts. �

The prototypical theorem about embeddings is the Whitney approximation theo-
rem , which states that any compact manifold can be embedded in a Euclidean space
of high enough dimension.

Theorem 2.1 (Whitney approximation theorem (Whitney 1936, Theorem 2)) Sup-
pose that f : M → R

2n+1 is a Ck map of a compact n-dimensional Ck manifold.
Then for any ε > 0, there exists a g : M → R

2n+1 such that ≈g(x)≈ < ε for every
x ∈ M and f + g is an embedding. In this case, ≈v≈ is the length of a vector v in
R

2n+1.

The proof of Theorem 2.1 relies strongly on the (para) compactness of M , and a
rather technical result called Sard’s theorem. For an elementary proof, see Lee (2003).
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More sophisticated versions involving transversality theory can be found in Golu-
bitsky and Guillemin (1973). In contrast, an extremely elegant, elementary, and
constructive approach is taken by Yomdin and Comte (2004) using something called
“tame topology.” In all cases, there are two essential aspects to the proof:

1. Showing that a Ck map can be perturbed6 to a Ck immersion, and
2. Showing that a Ck immersion can be perturbed to a Ck embedding.

The dimensional limitation dim M ≤ 2n + 1 comes from the following observation.
Assume that our map f has a self intersection, that f (x) = f (y) for x ←= y. At worst
case, the derivatives at x and y span a subspace of dimension 2 dim M as shown in
Fig. 2.21. The matrix of derivatives

(
d fx d fy

)
is a matrix of size 2n + 1 × 2n and has rank at most 2n. Thus, there exists at a vector
v ←= 0 in the range of f that is not in the span of either derivative. We can move
either x or y a small amount (bounded by ε) in the direction of v to remove the self
intersection.

2.3 Case Study: Signal Manifolds for Localization,
Tracking, and Navigation

When trying to “map out” an unknown environment, the locations of the measure-
ments are of prime interest. Remote imaging, the process of inferring the location
and properties of targets in a scene from measurements taken at a distance from the
targets, has become an essential tool for cartographers. The measurements of a target
need to be an unambiguous function of its position and other properties in order to
be useful for locating and identifying it. Remote imaging requires sources of illumi-
nation or transmitters that provide signals that are scattered from targets in the scene
and measured by receivers. We will assume that the transmitters and receivers are
able to communicate amongst themselves without disrupting the collection process.
This enables them to perform localization tasks using a smaller number of transmit-
ters and receivers merely by moving them to different locations to form a “synthetic
aperture.”

Photographic techniques are often a preferred form of remote sensing due to their
ease of interpretation. However, they suffer from many limitations due to weather,
lighting conditions, and occlusions. For this reason, the use of lower frequencies both
acoustically and electromagnetically has gained an indispensable role in cartography.
Radio and sound waves can propagate long distances, which permits measurements
to be taken far from the scene. In all of these cases, each location in the scene
can be uniquely identified. For instance, positions in an optical image viewed by a

6 A perturbation is a small change to a mathematical object.
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Fig. 2.22 Taking measurements of multiple signals at a receiver

camera or the human eye are discriminated by angle. (The accuracy of most optical
sensors is usually quoted as an angular resolution.) Locations in a synthetic aperture
radar image are discriminated by a unique distance to the sensor and associated
Doppler frequency. If the signals in use do not travel in a straight line, it can seriously
complicate interpretation, however. Magicians have often played with this ambiguity;
the use of mirrors can result in an image for which the “easy” interpretation is
incorrect and surprising. However, this ambiguity could be useful; reflective signals
could permit imaging systems to “see around corners” (DARPA/STO 2010).

Remote imaging methods also play an important role in navigation, the method of
inferring the location of a receiver in the scene. For instance, it is easy to see that mea-
suring the distance from the receiver to three transmitters (in general position) whose
locations are known suffices to determine the location of the receiver, if all are con-
fined to move in a plane. What if the positions of the transmitters are not known, or the
signal measurements do not correspond directly to distance? The Whitney approx-
imation theorem provides a surprising answer: if the measurements of the signals
depend smoothly on the receiver’s location, then the receiver’s location is completely
determined using the signals from five (instead of three) transmitters. (Care must be
exercised to ensure transversality—a generalization of general position—holds.)

Consider a setup as shown in Fig. 2.22. To each transmission link, the receiver
takes a measurement, which is stored in a vector. To each receiver location, a different
such vector is obtained, though we make the assumption that these vectors depend
smoothly on the receiver location. Thus, all of the possible measurements can be
encoded in a smooth map from the 2-dimensional plane (receiver locations) to a vector
space whose dimension is the number of transmitters. The Whitney approximation
theorem states that this map can be approximated by an injective map when the
measurement dimension is more than twice the dimension of the plane, that is at
least 5.

Realistic navigation systems based on this idea have additional complexity and
redundancies. The most popular example is that of the Global Positioning System
(GPS), in which transmitters are located on a constellation of 24 satellites (see
Fig. 2.23) whose positions (as a function of time) are known very accurately. Each
satellite transmits one of 12 coded signals; satellites with the same code have orbits
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Fig. 2.23 A GPS satellite
(image courtesy of US Air
Force)

that place them on opposite sides of the earth. Therefore, every location on the earth
is visible to at most 12 uniquely identifiable transmitters.

In addition to identity, the coded signals convey accurate timing information,
which allows the receiver to synchronize its clock with the transmitter’s clock. By
measuring the apparent timing offsets between clocks associated to different trans-
mitters, the receiver can measure its distance to each transmitter, thereby solving for
its location. In order for this to succeed, the system of equations describing timing
as a function of location must have a unique solution. This requires each location to
have a unique collection of timing offsets.

Existing GPS systems also make the assumption that the signals propagate along
straight lines, though they do account for propagation variations due to the Earth’s
gravitational field, relativity, and for average ionospheric conditions. This has an
important implication: GPS does not work well in areas where reflective obstacles
are present. For instance, consider the GPS track in Fig. 2.24 collected by the author
near the University of Pennsylvania, in Philadelphia. The actual path was relatively
straight (within a few feet), and remained on one side of the road. However, the GPS
track shows erratic jumps in position, from one side of the road to the other. These
jumps align fairly closely with the edges of nearby buildings. When he crossed
38th street (moving to the west), the buildings were much farther from the road
and therefore diminished both the signal reflections and the GPS error. Because the
track was not broken, we can infer that the author’s position along this path was
uniquely determined by the GPS signals. However, since there were occlusions and
reflections, the GPS signals were no longer continuous (much less smooth) functions
of his position. Therefore, the Whitney approximation theorem cannot be used in this
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Fig. 2.24 An example GPS track collected by the author. East of 38th street, the buildings are close
to the road and cause substantial error (marked box). West of 38th street, the buildings are far from
the road so the error is reduced

Fig. 2.25 The signal strength associated with a land-mobile radio communication tower located
at the top of a hill varies dramatically with location. (Image produced using the model in Longley
and Rice (1968) as implemented by the author, in collaboration with SRC, Inc.)

situation. However, a generalization of the Whitney approximation theorem called
the Signal embedding theorem (Theorem 2.2), indicates that the receiver’s location
is still uniquely determined.
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2.3.1 Signal Manifold Fingerprinting

Suppose that the propagation environment is a manifold M , and that there are n
transmitters T = {t1, . . . , tn} ⊂ M , and m receivers R = {r1, . . . , rm} ⊂ M .
Each transmitter emits a signal whose properties can vary over some portion of M .
For instance, its signal strength, first time of signal arrival, polarization, antenna
orientation, or bit error rate can vary dramatically according to various physical
conditions as shown in Fig. 2.25. In order to provide substantial theoretical and
practical flexibility, we take a very general approach to the received signal. Therefore,
for each transmitter ti , we assign

1. An open submanifold with compact closure Ui ⊆ M describing the coverage
region over which the signal can be reliably received,

2. A signal manifold Si describing the possible parameters of the signal, for instance
its signal strength, direction of arrival, or polarization, and

3. A smooth propagation function Pi : Ui → Si , which describes the received
signal at every location in Ui .

Taken together, all of the transmitters generate a transmission profile that indicates
all of the received signals at every given location. Formally, we extend each signal
manifold with an additional point ⊥, which indicates failure to receive that transmit-
ter. Thus each propagation function extends to Pi : M → Si � ⊥, which is likely
to be discontinuous. We then collect all of these signal manifolds into a product,
making the transmission profile a function P : M → ∏n

i=1(Si � ⊥).
Unfortunately, the Whitney approximation theorem cannot be used on transmis-

sion profiles for two main reasons:

1. The overall collection of signals is discontinuous as a receiver crosses the bound-
ary of a coverage region.

2. The signal perturbations associated to different transmitters are independent of
one another.

However, a variant of the Whitney approximation theorem, called the signal embed-
ding theorem (Theorem 2.2) does apply. In this more general setting, the result is
somewhat weaker and does not imply that the transmission profile is an embedding
in the sense of manifolds. However, it allows one to assert that an arbitrarily small
perturbation of a transmission profile can be found which is injective and locally
an embedding. The discontinuities of the perturbed transmission profile then result
in a disconnected image in the signal manifold of a connected domain. In order to
prove this result, we need a few preliminaries from transversality theory (Lee 2003,
Golubitsky and Guillemin 1973).

Since the number of transmitters that each receiver can detect varies as a function
of position, we require a bound on this number.

Definition 2.20 For a transmission profile P , the smallest number of non-⊥ com-
ponents of P(x) over all of M is called the depth of P , depP . (See the left frame of
Fig. 2.26.)
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Fig. 2.26 Three coverage regions U1, U2, U3 with mutual intersections. The resulting depth as
a function of receiver location (left) and receiver locations partitioned according to transmitter
coverage (right). The total depth in this example is 1

Definition 2.21 Suppose M and N are Ck manifolds and that f : M → R
n , g :

N → R
n are immersions. We say that f and g are transverse at a point x if their

images intersect at x and the matrix of derivatives

(
d fx dgx

)
(2.2)

is of full rank.

Proposition 2.3 If f : M → R
n and g : M → R

n are transverse at x, their images
intersect in a submanifold of dimension n − dim M − dim N.

Proof This result is an immediate consequence of the dimension theorem in linear
algebra using two submanifold charts as constructed by Lemma 2.2. �

When the dimension n−dim M −dim N < 0, the method used to prove Theorem
2.1 (Whitney approximation) shows that a small perturbation of either map will result
in no intersection at all. Stated more precisely, the set of maps in the space Ck(M,Rn)

that do not intersect the image of g is open and dense (Golubitsky and Guillemin
1973). More generally, the set of maps in Ck(M,Rn) that are transverse to g is always
open and dense when M is compact.

Theorem 2.2 (Signal embedding theorem (Robinson and Ghrist 2012, Theorem 3))
There is an open and dense set of propagation functions for which the associated
transmission profile is injective if 2 dim M < depP.

Proof (sketch) Although the proof is fairly technical, the idea is simple: apply the
Whitney approximation theorem on subsets of M illuminated by the same set of
transmitters (right frame of Fig. 2.26). Points in different such subsets necessarily
have different transmission profiles, and so cannot spoil the injectivity of the profile.

The technical complexity of the proof comes from showing that the transmission
profile is injective on an open and dense set of propagation functions independently
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of one another; we sketch the argument here. Suppose that the transmission profile is
not injective, so that P(x) = P(y). Take open neighborhoods V and W around x and
y respectively, each contained entirely within the smallest intersections of coverage
regions. Therefore, the transmission profile restricts to two smooth maps f = P|V
and g = P|W . The set of smooth maps from V → R

depP that are transverse to g is
open and dense, as noted before. On this set, the intersection of the image of such a
map and the image of g will have dimension at most

depP − dim V − dim W = depP − 2 dim M,

since the image of the transmission profile has dimension at most depP . If this
intersection dimension is less than zero, the set of maps whose image do not intersect
the image of g will be open and dense. �

2.3.2 Multiple Target Detection and Localization

All forms of remote imaging rely on a unique signal response from each target in the
scene; as a result, several kinds of systems are applications of the signal embedding
theorem. As discussed previously, GPS is a popular navigation system that relies
on straight-line distances to satellite transmitters. Consider the satellite transmitters
with locations t1, . . . , t12, and the receiver with location r . If there are no reflections
and the transmitters are synchronized to one another, the time of arrival of each signal
at r is τi = d(ti , r)/c where c is the speed of light and d(·, ·) computes the distance
between two points (corrected for relativistic effects). Since the GPS receiver does
not have an accurate absolute time reference, it computes differences between the
first time of arrival and all the others. Therefore, the transmission profile is a smooth
map that takes r �→ (τ2 − τ1, . . . , τ12 − τ1).

The standard algorithm assumes that the signals propagate along geodesics, and
this map can be inverted explicitly. However, if six satellites are always in view, then
the transmission profile has depth 5. According to the signal embedding theorem, the
transmission profile will be injective on the 2-dimensional surface of the earth, even
if some of the signals have been reflected or occluded. If instead, seven satellites are
always in view, then the transmission profile can be used to discriminate between
receivers with the same latitude and longitude but different heights.

One could also take the transmission profile to be (r, t1) �→ (τ2−τ1, . . . , τ12−τ1),
which encodes the desire to solve for synchronization as well as location. In this
case, eight satellites could be used to solve for 3-dimensional position and absolute
time, again even if the signals have been reflected off buildings. At present, no GPS
receivers use this idea, as it would apparently require tabulating or computing the
expected reflections from known buildings. However, the signal embedding theorem
is important because it places lower bounds on what is possible.

Taking the GPS idea further, one can imagine a radar system called a moving
target indicator, which tracks a number of targets (Stimson 1998). In this case,
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Fig. 2.27 Multiple targets being tracked by a transmitter and receiver

suppose there is a single transmitter t , receiver r , and a number of targets x1, . . . , x p

as shown in Fig. 2.27. We can safely assume that the transmitter and receiver have
known locations and are synchronized, but that the scene may have complicated
reflective and obstructive geometry. Assume that the first time a signal traverses the
path t → xi → r is given by the propagation function τi (x), which is smooth on
some open set of positions for the target Ui ⊆ M . (Different targets may be more or
less visible, so τi and τ j may be different.) Outside of Ui , τi takes the value ⊥.

We can then assemble a transmission profile from the τi , which has a depth of at
most p. However, since there are p targets, the domain of the transmission profile has
dimension p dim M , which is too large for the signal embedding theorem. In this case,
the signal embedding theorem is indicating that the problem is underdetermined. We
can supply additional information in a variety of ways. For one, we can augment
τi with an additional dimension by measuring the signal strength of the response.
However, experience with radar and sonar systems suggests that this is somewhat
unreliable, due to substantial variations in scattering cross section (Stimson 1998).

Instead, the usual way to solve the problem is to add multiple transmitters
or receivers (or both) to supply additional measurements. If we add additional
transmitter-receiver pairs for a total of q pairs and construct them so that they do
not interfere, then the depth could be as large as pq. Thus, in the best case scenario
q > 2 dim M would suffice to uniquely solve for each target’s location, again without
constraints on the geometry.

Having multiple transmitters and receivers is often expensive, so many remote
sensing systems utilize moving sensors to form a synthetic apertures, see Jakowatz
et al. (1996), Carrara et al. (1995). (See Fig. 2.28 for an example image product.)
They usually rely on the choice of a coded waveform that permits the correlation of
temporal characteristics against other properties of the scene. In this way, if a unique
location can be extracted from the timing alone, one can then use the location to
extract other properties. Specifically, consider the case of a moving transmitter t (τ )



36 2 Parametrization

Fig. 2.28 An example synthetic aperture sonar image of the author’s kitchen

and receiver r(τ ). If M has a metric d on it, then we can write the range (distance
from transmitter, to target, to receiver) and Doppler frequency (rate of change of
range) explicitly. For location x ∈ M in the scene, one obtains a range (from arrival
times)

R(τ, x) = d(t (τ ), x) + d(x, r(τ )),

and a range rate (from the Doppler frequency offset)

D(τ, x) = χ

χτ
R(τ, x).

Observe that the map x �→ (R(τ1, x), D(τ1, x), . . . , R(τp, x), D(τp, x)) is a signal
profile whose depth is 2p. Hence, if p > dim M , the signal embedding theorem
ensures that we can discriminate locations (and hence material properties at those
locations) based on timing alone.

2.4 Open Questions

1. The signal embedding theorem, while helpful from a feasibility point of view, is
unfortunately nonconstructive. If it states that the transmission profile is injective,
it provides no insight about how to implement a system to exploit the profile. The
obvious implementations of the applications we have outlined require substantial
tabulation of previous measurements, which is probably not ideal. At present, no
constructive algorithms exploit the transmission profile directly.

2. Within each coverage region, the propagation function is smooth and perhaps
therefore somewhat uninformative. Traditional methods focus on propagation
functions, because they can be completely characterized. This is a weakness if
there are many reflections and occlusions. On the other hand, the boundaries of
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the coverage regions are both well-defined and lower dimensional. Crossing a
shadow boundary therefore conveys substantial location information. Can one
organize the shadow boundary information more efficiently or effectively than
the individual propagation functions?

3. If there is a sufficiently dense set of reflective targets, these coverage region bound-
aries will be rather prevalent. However, the coverage regions are now dependent
on locations of scatterers as well as the locations of the transmitters and receivers,
and several coverage regions may arise from each illumination. What geometric
bounds arise are there on the prevalence of shadows?

4. The collection of intersections of coverage regions forms a cell complex, in which
the cells are labeled with which transmitters are detectable. Are there constraints
on how typical faces of these cells could be labeled? Are there statistical or
asymptotic properties that should be expected when the number of cells is large?

5. Traditional image formation methods require careful synchronization between
transmitter and receiver, as assumed in our discussion above. If relaxed, one can
construct a transmission profile to solve for the unknown time offsets. However,
it is unclear what algorithms are possible in this context. Specifically, is there a
general algorithmic formulation of synthetic aperture image formation that is not
dependent on knowledge of the collection geometry and timing?
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Chapter 3
Signals

This chapter will explain that

1. Signals can be encoded in cellular sheaves,
2. Sections of cellular sheaves capture the notion of local consistency,
3. Signal processing systems can be represented as sequences of cellular sheaves

called topological filters, and
4. Processing algorithms which exploit a sheaf model of signals can be more

bandwidth-efficient than traditional approaches.

Topological spaces are the stage on which signal processing plays. Based on the
tools developed in Chap. 2, it is advantageous to parametrize a collection of sensors
by a topological space. Sensors, however, do not exist merely to be related to one
another. Rather, they collect additional information about their environment. This
information should be aggregated so that inferences about the environment can be
made. This chapter outlines what form these measurements can take, how they are
organized, and several ways they can be manipulated.

The perspective of most sensors is local; they only measure their immediate envi-
ronment, or a very small portion of the wider environment. However, there is usually
an expectation of consistency between nearby sensors. This consistency facilitates
the comparison of measurements, as well as the process of drawing inferences from
them. The mathematical structure used to organize local information and expose it
conveniently for inferences is the sheaf.

3.1 Locality: Principles and Axioms

The central object in the study of topological signal processing is the sheaf, which
specifies the totality of possible measurements collected by a family of sensors.
We will usually use the conceptual model of a vector space to represent the range
of measurements collected by an individual sensor, and therefore will focus most
of our attention on sheaves of vector spaces. In almost all cases of interest, this level
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of generality is both sufficient to describe the phenomenon being measured, but not
too general to be awkward. Occasionally, we will have a need for a more general
class of measurements, such as sets or groups.

If information is local, it is only valid within some region. For instance, it may be
local in space, time, or frequency. Locality is described by two central principles:

1. Restricting attention from a larger region to a smaller region corresponds to a
well-defined way to restrict the information collected from the larger region to
the smaller region, and

2. If the information over two overlapping regions is mutually consistent, then the
information should be valid over the union of those two regions.

Therefore, our mathematical definition of a sheaf will follow both of these prin-
ciples. However, in order to facilitate a more computationally-feasible formulation,
we represent larger regions by lower dimensional cells of a cell complex. This rep-
resentation foreshadows the definition of a nerve of an open cover (Definition 4.17).

Definition 3.1 (following Shepard (1980)) A sheaf of vector spaces S (or a sheaf
or a signal) on a cell complex X (called the base space of S ) is the assignment of

1. A vector space S (c) to each cell c of X. This vector space is called the stalk at c.
2. A linear map S (a � b) : S (a) ⊆ S (b) to each attachment a � b of a higher

dimensional cell b to a lower dimensional one a, called the restriction of a to b

such that

1. the restriction of a to itself is the identity map, and
2. if a � b and b � c, then S (b � c) → S (a � b) = S (a � c).

In a similar way, a sheaf of groups assigns a group to each cell, and a group
homomorphism to each attachment. Sheaves of sets can be defined similarly, without
requiring the restrictions to be anything other than functions.

More plainly, a sheaf is an object that “lives” over a cell complex. The part of the
sheaf associated to a particular cell is called a stalk over that cell. If two cells are
attached, their stalks are related by a restriction, which is a function from the stalk
over the lower dimensional cell to the stalk over the higher dimensional cell.

Sheaves are quite flexible mathematical data structures. In order to highlight the
diversity of sheaves that is possible, and the diversity of their applications, several
significantly different examples are discussed below. Because of this diversity, and
because of the abstractness of the definition, it is remarkably helpful to visualize
sheaves in terms of the attachment diagram associated to the base space. The diagram
of restriction maps between stalks is the same as the attachment diagram.

Example 3.1 Each school that a student attends maintains records of that student’s
grades, which are only shared in a limited fashion. As a simplified example of this
process, consider a student who has attended high school, an undergraduate institu-
tion, a graduate institution, and then takes a postdoctoral position. We represent each
institution as a vertex in a cell complex, as shown in Fig. 3.1. Every pair of institutions
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Fig. 3.1 A network of academic institutions that might share information about a student (left),
and a sheaf representing pertinent information about a single student (right)

that share a piece of information is represented as an edge between their respective
vertices. A common piece of information that is shared among three institutions is
represented as a 2-simplex. For instance, high schools typically only communicate
with undergraduate institutions, so there are no edges between a high school’s vertex
and any other institutions.

Let us assume the following:

1. The high school only keeps a record of the high school GPA,
2. The undergraduate institution keeps records of both the high school GPA, and the

undergraduate GPA,
3. The graduate institution keeps records of the undergraduate GPA, graduate GPA,

and any graduate stipend,
4. The postdoctoral institution keeps records of the undergraduate GPA, graduate

GPA, and postdoctoral salary,
5. Stipend and salary information is not shared between institutions,
6. Grades are shared as appropriate, and should be consistent.

These assumptions lead to the sheaf structure shown on the right of Fig. 3.1. Each
piece of information is represented by a natural number (grades and salaries cannot
be negative, and are rounded to the nearest whole number). In this sheaf structure,
the stalk over each vertex contains the information held by each institution. Each
edge of the complex contains the information shared by the two institutions. Each
2-simplex contains the common information among three institutions, which in this
example is only the undergraduate GPA. Each restriction map is represented by a
projection matrix that selects the appropriate information to be shared. In partic-
ular, the restriction maps from the two postgraduate institutions do not share any
information regarding the student’s pay.

Unlike the previous example, the stalks and restriction maps might all be the
same. As we will see in Chap. 6, these constant sheaves are useful for studying the
topological structure of cell complexes, rather than any information stored “on” them.

http://dx.doi.org/10.1007/978-3-642-36104-3_6
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Example 3.2 Consider the following abstract simplicial complex structure X for R:
X0 = Z and X1 = {(n, n + 1)}. This is called the usual simplicial structure for R.
The easiest sheaf to construct from a given vector space V is the constant sheaf V ,
which assigns the stalk V (c) = V to each cell c, and assigns identity maps to each
attachment as the restrictions. For instance, the attachment diagram associated to
X is

· · · {n − 1}�� �� �� �� �������� {(n − 1, n)} {n}�� �� �� �� �������� {(n, n + 1)} · · ·�� �� �� ��

(3.1)
The constant sheaf on (3.1) is therefore given by the following diagram

· · · V
idV�� idV �� V V

idV�� idV �� V · · ·idV��

The concept of a sheaf is also flexible enough to allow neighboring cells to have
no consistency requirement.

Example 3.3 A different sheaf on the abstract simplicial complex (3.1) for R is the
V-sampling sheaf supported on Z ⊂ R. It has the diagram

· · · V�� �� 0 V�� �� 0 · · ·��

This sheaf structure will be useful in describing sampling theory (Sect. 4.5) in which
measurements are taken at discrete locations or times with no measurements in
between. In this particular situation, no consistency is maintained between neigh-
boring measurements because the restriction maps are all zero.

More generally, a V-sampling sheaf supported on a subset A of a cell complex
X is a sheaf whose stalks are V on each cell in A and 0 elsewhere. The restrictions
between two cells a � b both in A are identity maps, but all other restrictions are
zero maps.

Sheaves are well-suited to represent timeseries, images, and video. In each of these
data types, it is reasonable to suspect that the information they contain is concentrated
locally. The V -sampling sheaf is a convenient way to represent discrete timeseries
signals. The next example shows how to represent continuous timeseries using a
related construction.

Example 3.4 Suppose that C((a, b)) is the vector space of continuous functions on
the open interval (a, b). Then the following diagram describes the sheaf of continuous
functions over the real line

· · · �� C((−1, 0)) C((−1, 1))�� �� C((0, 1)) · · ·��

in which the arrows represent restricting the domain of a continuous function. For
instance, the arrow C((−1, 1)) ⊆ C((0, 1)) takes the function f = f (x) defined
on (−1, 1) to the function which takes the same values on (0, 1), but is not defined

http://dx.doi.org/10.1007/978-3-642-36104-3_4
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Fig. 3.2 The stalk of a sheaf should be thought of as specifying the data valid in an open set
containing a cell

outside that interval. In this way, the data stored over each cell is merely a part of a
function defined on a potentially much larger domain.

Exercise 3.1 Extend Example 3.4 to represent grayscale images, which are contin-
uous functions over the plane R

2. Use the 2-dimensional cell complex structure in
which vertices are points (x, y) with integer coordinates, edges are length 1 vertical
and horizontal line segments, and 2-cells are open squares with side length 1.

Remark 3.1 One should think of the stalk of a sheaf at a cell c as specifying the kind
of information that could be present in an open neighborhood containing c. Open
sets at a vertex therefore have a large impact in how information encoded in a sheaf
is related to information over the higher dimensional cells connected to that vertex,
as shown in Fig. 3.2. In this way, sheaves satisfy principle (1) of local information.
In order to see how sheaves satisfy principle (2), we will need to wait until the
definition of a section in Definition 3.3. This principle leads to the treatment of
sheaves over posets in Baclawski (1975), which is similar in structure to the cellular
theory discussed in this book.

The reader may find a comparison with more traditional treatments enlightening.
Both Iverson (1984) and Bredon (1997) are good introductions to the general theory
of sheaves, although the author sometimes finds the older Godement (1958) to be
helpful. Because these three texts treat sheaves over general topological spaces (as
opposed to sheaves over cell complexes), they must manage additional technical
complexity. A more intuitive treatment can be found in the appendix of Hubbard
(2006), which uses the Čech construction. The Čech construction defines sheaves
over a lattice of open covers, and has a combinatorial feel.

The next example shows how sheaves can be used to represent piecewise linear
functions on a graph. The sheaf structure allows the functions to have abrupt changes
in slope which occur at each vertex.

Example 3.5 Suppose G is a graph in which each vertex has finite degree (G can be
realized as an abstract simplicial complex). Assign arbitrary directions to each edge
in G, so that it has the structure of a directed graph. (The directions are used for
accounting purposes only, see Exercise 3.4). Let PL be the sheaf constructed on
G that assigns PL (v) = R

1+deg v to each vertex v and PL (e) = R
2 to each edge

e. (See Fig. 3.3). To each attachment of a degree k vertex v to an edge e, let PL
assign the linear function PL (v � e) : R1+k ⊆ R given by
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Fig. 3.3 Example of a graph (left), its attachment diagram (center), and sheaf PL (right)

PL (v � e)(y, m1, ..., me, ..., mk) =
(

1

2
me ± y, me

)

where we take the plus sign if e is pointing inward to v or the minus sign if e is
pointing outward from v. PL is the sheaf of piecewise linear functions on G.

Exercise 3.2 Explain why PL (from Example 3.5) is the sheaf of piecewise lin-
ear functions by constructing it on the usual simplicial structure for R. Hint: what
information is necessary to define a line segment from x = n to x = n+1 for a given
integer n?

Sheaves can model physical situations, including flows of commodities over net-
works. These flow sheaves are based on the idea of conservation laws and provide
numerous valuable examples.

Example 3.6 Suppose G is a directed graph in which each vertex has finite indegree
and outdegree. Let one vertex be labeled ∈, which represents the connection of the
network to the outside world. We call this ∈ the external vertex. We can represent the
flow of a commodity (Ghrist 2011) over this graph as a flow sheaf of F that takes
values in N. Each value specifies an amount of commodity in transit at a particular
location on the graph. We construct the sheaf according to the following specification
(see Fig. 3.4)

1. The stalk over each edge is N,
2. The stalk at the external vertex satisfies F (∈) = N

indeg ∈+outdeg ∈ (commodities
are not conserved at ∈),

3. For any other vertex, the stalk F (v) = {(a1, . . . , am, b1, . . . , bn) ∼ N
m+n :∑m

i=1 ai = ∑n
j=1 bj}, where m is the indegree of v and n is the outdegree, and

4. The restrictions F (v � e) are projections onto the component corresponding to
the edge e.
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Fig. 3.4 An example of a flow sheaf F (right) on a directed graph G (left)

(It is often actually easier to manipulate values in a ring such as Z or field such
as R, but these include negative or fractional amounts of commodities, which may
not be physically appropriate.)

Exercise 3.3 Construct flow sheaves on each of the following directed graphs. Be
sure to specify both the stalks and the restrictions.

1.
�� • ��

�� • ��

2.
•

���
��

��
��

�� •

���������

���
��

��
��

•

����������

		�
��

��
��

�

•

���������

3.

���
��

��
��

�� •

���������

���
��

��
�����������
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Fig. 3.5 A cell complex structure on the 2-dimensional sphere (left) and a sheaf over it (right)

4.

���
��

��
��

�� • �� •

���������

���
��

��
�����������

Example 3.7 Sheaves can be defined over higher dimensional cell complexes. Con-
sider the sheaf structure shown in Fig. 3.5. An important property of the diagram of
the sheaf is that it is commutative, since there are three ways that attach a vertex v
to the 2-cell f1, (directly, via e1, and via e2) each of these ways must yield the same
function F (v) ⊆ F (f1).

Remark 3.2 The algebraic and topological structure of the stalks is usually best
suggested by the problem under study. However, it is worth noting that sometimes
more algebraic structure than apparently necessary can yield important information.
The process of enriching the algebraic structure of a sheaf is called categorification
and is a fruitful way to obtain better indications of the behavior of a system. While
we will not attempt a systematic treatment of categorification, the interested reader
can find an example in Robinson (2012).

3.1.1 Sheaf Morphisms

A sheaf morphism is a consistent way to translate data in one sheaf into another. We
begin by defining a morphism between sheaves on a fixed space X, and then later
(Definition 3.4) extend the definition to handle sheaves on different spaces as well.
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Definition 3.2 A morphism f : S ⊆ R of sheaves on a cell complex X assigns a
linear map fa : S (a) ⊆ R(a) to each cell a so that for each attachment a � b, the
compatibility condition fb → S (a � b) = R(a � b) → fa holds. Sheaf morphisms
therefore commute with the restrictions of R and S . If the sheaves are not of
topological vector spaces, we require that the functions fa be the appropriate structure-
preserving map for the kind of sheaves in question. For instance, homomorphisms
are used for sheaves of groups. A sheaf isomorphism is a sheaf morphism in which
each of the fa are isomorphisms.

It is sometimes helpful to visualize the definition of a sheaf morphism graphically,
by way of a commutative diagram

S (a)
fa �����

S (a�b)





R(a)

R(a�b)




S (b)

fb
����� R(b)

which we say commutes, that is fb → S (a � b) = R(a � b) → fa.

Example 3.8 The diagram below exhibits a morphism (dotted arrows) between two
sheaves in which the restriction maps are either identities or sums of components

Z
id ���������������

Z

Z ≤ Z

id




sum

��

id ��

sum

��	 
 � � �  � � � �
Z ≤ Z

sum �����
Z Z

id

��

id




id
��

Z ≤ Z
sum ��������������

Z

Notice that every rectangle in the diagram commutes, for instance

id
Z

→sum = sum → id
Z≤Z

.

Exercise 3.4 Suppose that X and Y are two directed graphs which have the same
undirected graph structure (see Fig. 3.6). Show that the sheaves of piecewise linear
functions PL as defined in Example 3.5 constructed over X and Y are isomorphic,
by constructing an explicit sheaf isomorphism between them.

Example 3.9 Sampling theory is conveniently studied by using sheaf morphisms.
For instance, consider the sheaf of continuous functions defined in Example 3.4 and
the R-sampling sheaf defined in Example 3.3. These two sheaves are related; one
obtains a discrete timeseries from a continuous signal by sampling. This is encoded
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Fig. 3.6 Two directed graphs with the same undirected graph structure

Fig. 3.7 An attachment diagram (left) and sheaf (right) in which a high dimensional cell (c) is
attached to two lower dimensional cells (a and b)

in the construction

· · · �� C((−1, 0))





C((−1, 1))�� ��

s





C((0, 1))





· · ·��

· · · �� 0 R
�� �� 0 · · ·��

in which the function s takes a continuous function f and returns its value f (0) at
0. Since the diagram commutes (trivially, since half of the maps are zero), this is a
sheaf morphism.

3.2 Global Sections

Suppose that S is a sheaf on a cell complex X. For each cell a of X, an element in
S (a) (a “datum assigned at a”) determines elements in S (c) for each cell c that is
attached to a. If a cell c is attached to two lower-dimensional faces a � c and b � c
(see Fig. 3.7), then an element in S (a) and an element in S (b) will typically each
determine different elements of S (c). When they happen to determine the same
element in S (c) is a special circumstance, and represents consistency between local
information.

Definition 3.3 Suppose S is a sheaf on a cell complex X and that C and D are
collections of cells of X. An assignment s which assigns an element of S (c) to each
cell c ∼ C is called a section supported on C if for each attachment a � b of
cells in C , (S (a � b)) s(a) = s(b). Notice that s(a) is an element in the domain
of S (a � b) and s(b) is in its range. If r and s are sections supported on C ∪ D
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respectively, in which r(a) = s(a) for each a ∼ C , we say that s extends r or r is a
restriction of s. A global section is a section supported on all of X.

Example 3.10 Consider the sheaf of sets given by the following diagram

{0, 1, 2, 4}
0 ∗⊆0, 1 ∗⊆0, 2 ∗⊆1, 4 ∗⊆1

����

����
������������

{0, 1, 2, 3}
0 ∗⊆0, 1 ∗⊆0, 2 ∗⊆1

�� {0, 1} {0, 2}��

{0, 1, 2}
0 ∗⊆0, 1 ∗⊆3, 2 ∗⊆1, 3 ∗⊆1����

������

0 ∗⊆1, 1 ∗⊆0, 2 ∗⊆1
�� {0, 1, 2, 3}

0 ∗⊆0, 1 ∗⊆0, 2 ∗⊆1, 3 ∗⊆1

��

{1}
1 ∗⊆0����

������

1 ∗⊆1

��

in which the restriction maps are given by explicitly listing their inputs and outputs.
The following section supported on the boldfaced cells

0 �� 0

0

0 ∗⊆0, 1 ∗⊆3, 2 ∗⊆1���

�����

0 ∗⊆1, 1 ∗⊆0, 2 ∗⊆1
�� 1

��

can be extended to the underlined vertex, by assigning a value of 0 there. In contrast,
the section

1 �� 0

1 ∩= 2

0 ∗⊆0, 1 ∗⊆3, 2 ∗⊆1���

������

0 ∗⊆1, 1 ∗⊆0, 2 ∗⊆1
�� 0

��

cannot be extended to the underlined vertex, because the restriction maps require it
to have value 1 and 2 simultaneously.

The previous example indicates that some local sections of a sheaf of sets may
not extend to global sections. The same is true of sheaves of vector spaces. However,
if S is a sheaf of vector spaces, then the collection of sections supported on a given
set C forms a vector space, denoted by S (C ). If Y is a subcomplex of X, we usually
abuse notation slightly and write S (Y).

Example 3.11 Consider the cell complex X shown at left in Fig. 3.8 and the sheaf
V of vector spaces on the right. For the collection C1 = {v1, e1, e2}, the space of
sections V (C1) = R

2. The easiest way to see this is to observe that this space of
sections is parametrized by the value at the vertex v1. In the same way, the space
of sections over C2 = {v2, e1, e3} is parametrized by a value at v2, and so is a
1-dimensional vector space.
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Fig. 3.8 The cell complex X (left) and sheaf V (right) in Example 3.11

Enlargening the set of support for the local sections typically reduces the size
of the space of sections. For instance, consider C3 = {v1, v2, e1, e3}, for which the
space of sections is V (C3) = R. Notice that any section supported on C3 specifies
values s1 and s2 at v1 and v2 respectively, which must agree according to

(
1 0
0 1

)
s1 =

(
1
0

)
s2.

For this to be satisfied, it is both necessary and sufficient that s1 is a multiple of

(
1
0

)
.

The space of global sections is smaller yet, since any such section must also satisfy

(
1 2
0 0

)
s1 =

(
0
1

)
s2.

The only possibilities are s1 =
(

0
0

)
and s2 = 0. Therefore, V (X) is the trivial vector

space.

Example 3.12 The global sections of the sheaf PL defined in Example 3.5 are
piecewise linear functions on a graph G. The stalks of PL specify the value of the
function and the slopes of the function on the edges.

Exercise 3.5 Extend the sheaf of piecewise linear functions PL to a sheaf of
Taylor polynomials on a graph G.

Proposition 3.1 A morphism between sheaves of vector spaces induces a linear map
between spaces of global sections. Isomorphic sheaves have isomorphic spaces of
global sections.

Proof Suppose that f : R ⊆ S is morphism of sheaves on a cell complex X. Let r
be a global section of R. For each c ∼ X, define (f (r)) (c) = fc (r(c)). Suppose that
r, s are global sections of R and that a, b are scalars. Then for c ∼ X,
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(f (ar + bs)) (c) = fc ((ar + bs)(c))

= fc(ar(c) + bs(c))

= afc(r(c)) + bfc(s(c))

= a (f (r)) (c) + b (f (s)) (c),

so on each stalk, s ∗⊆ f (s) is linear. Now suppose a � b, so that

S (a � b) (f (r)) (a) = S (a � b)fa (r(a))

= fbR(a � b)r(a)

= fb (r(b))

= (f (r)) (b),

so f (r) is a section of S .
Now if f is an isomorphism, this means that fc is an isomorphism for each cell c. If

f (r) is zero on all cells, then by definition fc(r(c)) is zero for each cell c. Since fc is an
isomorphism, this means that r is zero on all cells; so f : R(X) ⊆ S (X) is injective
because of the linearity we just showed. Finally, suppose s is a global section of S .
Since f is an isomorphism, for each cell a there is an r(a) with fa(r(a)) = s(a). If
a � b, then for this assignment r,

s(b) = S (a � b)s(a)

= S (a � b)fa (r(a))

= fbR(a � b)r(a)

= fb(r(b))

hence R(a � b)r(a) = r(b), so r is a global section of R. Thus f is therefore
surjective. �◦

Much of the theory of sheaves is concerned with computing spaces of sections
and identifying obstructions to extending sections. Chapter 4 defines cohomology,
the primary tool for computing extensions of sections. However, for simple cases,
extensions and induced maps can be computed directly.

Example 3.13 Consider the sheaves

S = · · · �� C((−1, 0)) C((−1, 1))�� �� C((0, 1)) · · ·��

and
T = · · · �� 0 R

�� �� 0 · · ·��

from Examples 3.4 and 3.3. Both are sheaves over the real line with the usual cellular
structure. Observe that many local sections ofS do not extend to global sections, but
that all local sections of T extend to global sections. For instance, the section which

http://dx.doi.org/10.1007/978-3-642-36104-3_4
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assigns cos(2χx) (defined for x ∼ (−1, 1)) to the vertex 0 and sin(2χx) (defined for
x ∼ (0, 2)) to the vertex 1 does not extend to the edge (0, 1) since these two functions
take different values on the interval (0, 1).

The space of global sections of S is the space of continuous functions on the real
line, so the induced map described in Proposition 3.1 takes a continuous function to
a sequence of real numbers. Using the morphism in Example 3.9, this induced map
is given by

f ∗⊆ (. . . , f (−1), f (0), f (1), . . . ).

The topology of the base space can strongly impact the global sections of a sheaf.
If the base space has nontrivial topology, it often has the effect of preventing sections
from being extended.

Example 3.14 Consider the following two sheaves of sets:

· · · Z
−1�� +1 ��

Z Z
−1�� +1 ��

Z · · ·−1��

and
Z

Z

+1
���������

−1 ���
��

��
��

Z

−1
���������

+1����
��

��
�

Z

Observe that these two sheaves have the same restrictions and stalks, but different
topology. The first has many global sections (they are parametrized byZ). The second
has no global sections. For instance, the value of a section in the first sheaf could be
any integer n on any of the cells. In the second sheaf, there is no consistent choice
of values on all of the cells.

3.3 Operations on Sheaves

Sheaves are especially convenient for manipulating sets of local measurements
because they have a number of natural operations that preserve their structure.
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3.3.1 Pushforwards and Pullbacks

The definition of a sheaf morphism can be extended to handle sheaves on different
spaces. This plays an important role when relating information collected in different
contexts. It relies on the notion of spaces of local sections as follows.

Definition 3.4 A morphism m : S ⊆ R from a sheaf S over a space Y to a
sheaf R on X consists of a cellular map f : X ⊆ Y and a collection of linear
maps mx : S (f (x)) ⊆ R(x) such that for each x � y in X, the following diagram
commutes

S (f (x))

S (f (x)�f (y))




mx ����� R(x)

R(x�y)




S (f (y))
my ����� R(y)

Sometimes we will say that m is a sheaf morphism along f .

Example 3.15 Rainfall and snowfall are typically measured at discrete locations
using rain or snow gauges. Suppose that the rainfall and snowfall over a region X are
represented by a continuous function f : X ⊆ R

2. We can encode this as the sheaf
P over a space with one vertex ∈ whose stalk is C(X,R2), the set of continuous
R

2-valued functions.
A commonly-used (though faulty) heuristic is that a snowfall of 10 cm corresponds

to the same amount of precipitation as 1 cm of rain. Using this heuristic, the rain-
equivalent amount of precipitation at a location x ∼ X is given by the product

(
1 10

)
f (x).

If there are N rain gauges at locations x1, . . . , xN and M snow gauges at locations
y1, . . . , yM , we can represent the collection of rain-equivalent measurements as a
sheaf M over the discrete set of gauge locations G = {x1, . . . , xN , y1, . . . , yM}. This
sheaf simply consists of the assignment of R to each point in G.

The process of making precipitation measurements corresponds to a sheaf
morphism m : P ⊆ M , given by the diagram
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M (x1) = R

...

M (xN ) = R

P(∈) = C(X,R2)

f ∗⊆
(
1 0

)
f (x1)

��������������������������������� f ∗⊆
(
1 0

)
f (xN )

��

















f ∗⊆
(
0 10

)
f (y1)

������������������

f ∗⊆
(
0 10

)
f (yM )

���
��

��
��

��
��

��
��

��
��

��
��

��
��

��
��

M (y1) = R

...

M (yM) = R

Observe that the space of global sections of P is given by its single stalk, namely
C(X,R2). On the other hand, the space of global sections of M is RM+N . A straight-
forward calculation shows that the sheaf morphism m induces a linear map that takes
f ∼ C(X,R2) to ⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎝

(
1 0

)
f (x1)
...(

1 0
)

f (xN )(
0 10

)
f (y1)

...(
0 10

)
f (yM)

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

This example is an instance of a sampling morphism (see also Example 3.9),
which is treated more extensively in Sect. 4.5.

Remark 3.3 Some authors, notably Bredon (1997), call a general sheaf morphism
an “f -cohomomorphism.” We will not use this notation as it seems to complicate
matters.

The following example indicates how sections and morphisms are related.

Example 3.16 Suppose that f : X ⊆ ∈ is the map which collapses a cell complex X
to a single point. Each global section s of a sheaf S over X defines a morphism from

http://dx.doi.org/10.1007/978-3-642-36104-3_4
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the (unique) sheaf over a single point ∈ whose stalk is the field with two elements
F2, because then we simply define mx = s(x). The axioms for global sections given
in Definition 3.3 are precisely what is needed to show that m is a morphism.

Definition 3.5 Suppose that f : X ⊆ Y is a cellular map and that S is a sheaf on
Y . The pullback f ∈S is a sheaf on X given by

(f ∈S )(c) = S (f (c)),

and
(f ∈S )(a � b) = S (f (a) � f (b)),

which is an identity map if f (a) = f (b).

Lemma 3.1 If f : X ⊆ Y is a cellular map and S is a sheaf on Y, then f ∈ : S ⊆
f ∈S is a sheaf morphism given by the collection of maps f ∈

x : S (f (x)) ⊆ f ∈S (x)
which satisfy the equation

f ∈
x s = s(f (x))

for each cell x in X and s ∼ S (f (x)).

Proof We will compute both branches of the commutative diagram in Definition
3.4. Suppose that x � y in X and that s ∼ S (f (x)).

1. Lower branch:((
f ∈
y → f ∈S (x � y)

)
s
)

(y) =
((

f ∈
y → S (f (x) � f (y))

)
s
)

(y)

=
(

f ∈
y (S (f (x) � f (y))s)

)
(y)

= (S (f (x) � f (y))s)(f (y))

= S (f (x) � f (y))s(f (x))

2. Upper branch:

(f ∈S )(x � y)f ∈
x s = (f ∈S )(x � y)s(f (x))

= S (f (x) � f (y))s(f (x)) �◦
Example 3.17 Figure 3.9 shows an example of a cellular map f : X ⊆ Y and a sheaf
R on Y . The pullback sheaf f ∈R has the same stalks and the same restrictions as
R. The pullback morphism f ∈ : R ⊆ f ∈R is indicated by the right-to-left dashed
arrows in the figure.

Definition 3.6 Suppose x is a cell of a cell complex X. The star of x is the set

star x = {x} √ {y : x � y}.
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Fig. 3.9 Pullback of a sheaf R along a cellular map f : X ⊆ Y . Note in particular that the maps
which constitute the sheaf morphism travel in the opposite direction as the base space map

Fig. 3.10 The star of several cells in a cell complex

Typically, as Fig. 3.10 shows, the star of a cell in a cell complex is not itself a cell
complex. Caution should therefore be exercised when computing with stars.

Definition 3.7 Suppose f : X ⊆ Y is a cellular map and that R is a sheaf on X. The
pushforward f∈R is a sheaf on Y given by

(f∈R)(c) = R(f −1(star c)),

in which the restriction maps (f∈R)(a � b) are given by restricting a section s over
f −1(star a) to one over f −1(star b).

Lemma 3.2 If f : X ⊆ Y is a cellular map andR is a sheaf on X, then f∈ : f∈R ⊆ R
is a sheaf morphism given by

(f∈)xs = s(x)

where x ∼ X, and s ∼ f∈R(f (x)) = R(f −1(star f (x))).
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Fig. 3.11 The pushforward of a sheaf R

Proof We will again compute both branches of the commutative diagram in
Definition 3.4. Suppose that x � y in X and that s ∼ f∈R(f (x)).

1. Lower branch:

((
(f∈)y → f∈R(f (x) � f (y))

)
s
)
(y) = (f∈R(f (x) � f (y))s)(y)

= (R(x � y)s(x))(y)

2. Upper branch:

(R(x � y)(f∈)xs)(y) = (R(x � y)s(x))(y)
�◦

Again notice that the direction of the sheaf morphism f∈ : f∈R ⊆ R is opposite
from the base space map f : X ⊆ Y .

Remark 3.4 Because computing the pushforward involves computing the space of
global sections over the star of a cell, pushforwards are much more difficult to
manipulate in practice than pullbacks.

Example 3.18 Figure 3.11 shows an example of a cellular map f : X ⊆ Y and a
sheaf R on X. The pushforward sheaf f∈R has stalks that correspond to spaces of
global sections of R. From a computational standpoint, this means that the stalks of
f∈R are direct sums of stalks of R. The pushforward morphism f∈ : f∈R ⊆ R is
indicated by the right-to-left dashed arrows in the figure.

Pushforwards and pullbacks are important operations because they give rise to a
canonical way to address the effects of “switching” base spaces and the effects of
morphisms directly on the stalks.
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Proposition 3.2 Every morphism m : S ⊆ R uniquely factors in two ways, such
that the following diagram of sheaf morphisms commutes

S

m

����
��

��
��

�
f ∈

��

j




f ∈S

h




f∈R

f∈ �� R

where h is a morphism of sheaves on X and j is a morphism of sheaves on Y.

Proof (Following Bredon (1997, Sect. I.4)) Let us consider the upper branch of the
diagram, and define the morphism h of sheaves on X by

hx = mx → (
f ∈
x

)−1
.

Evidently, there is exactly one such choice for hx . Observe that
(
f ∈
x

)−1 is well-defined
because f ∈

x : S (f (x)) ⊆ f ∈S (x) is an isomorphism of vector spaces wherever it is
defined. Hence by the Lemma

f ∈
y → S (f (x) � f (y)) = S (f (x) � f (y)) → f ∈

x ,

by multiplying both sides of the equation by inverses, we obtain

S (f (x) � f (y)) → (
f ∈
x

)−1 =
(

f ∈
y

)−1 → S (f (x) � f (y)),

so that

hy → f ∈S (x � y) = my →
(

f ∈
y

)−1 → S (f (x) � f (y)

= my → S ((f (x) � f (y)) → (
f ∈
x

)−1

= R(x � y) → mx → (
f ∈
x

)−1

= R(x � y) → hx

so that h is a morphism of sheaves.
The pushforward is a bit more subtle. For a cell y ∼ Y , the definition of the

morphism m implies that there are maps my : S (y) ⊆ R(z) for each z ∼ f −1(y).
However, since these maps come from a morphism, they commute with the restric-
tions. Therefore, each value in the stalk S (y) determines a section over the star of
f −1(y) in R. But this is precisely the definition of f∈R(y). Hence, we have defined
a morphism j : S ⊆ f∈R. �◦
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This Proposition is helpful because it implies pushforwards and pullbacks are
functors (Definition 4.2), a concept which plays an essential role in the later chapters
of this book.

Proposition 3.3 Suppose that f : X ⊆ Y is a cellular map and that m : R ⊆ S is
a morphism of sheaves on X. Then there is a unique morphism f∈m that makes the
diagram below commute

f∈R

f∈m




f∈ �� R

m




f∈S

f∈ �� S

When R and S are sheaves on Y, then there is a unique morphism f ∈m that makes

R

m





f ∈
�� f ∈R

f ∈m




S
f ∈

�� f ∈S

commute.

Proof The trick is to notice that by Proposition 3.2 the diagram includes a diagonal
morphism j

f∈R

f∈m




f∈ ��

j

����
��

��
��

R

m




f∈S

f∈ �� S

The same argument as was used in the proof of Proposition 3.2 can be used to define
f∈m. Therefore the diagram commutes.

For the pullback, we merely need to define (f ∈m)f (x) = f ∈
f (x) → mf (x) → (f ∈

f (x))
−1

since the pullback morphism f ∈
y is an isomorphism on stalks. (Notice that the left

f ∈
f (x) in the definition of f ∈m is on S and the right f ∈

f (x) is on R). �◦

3.3.2 Algebraic Operations

Definition 3.8 Given two sheaves of vector spaces R and S on a cell complex X,
their sum R ≤ S is given by

(R ≤ S )(c) = R(c) ≤ S (c),
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and

(R ≤ S )(c � d)(v, w) = (R(c � d)v,S (c � d)w),

for v ∼ R(c) and w ∼ S (c). We can proceed in the same way to define R ⊗S , the
tensor product of two sheaves.

Example 3.19 Flow sheaves are useful for representing the transport of individual
commodities along a network. The sum of two flow sheaves therefore represents the
transport of two independent commodities on the same network. Suppose that apples
and oranges are being transported on a network N . Let the flow sheaf A represent
the amount of apples being transported on N . For instance, A (e) is the total number
of apples being transported along an edge e. Similarly, let O represent the number of
oranges in transit. The sum A ≤O represents the numbers of both kinds of fruit on
the network. Therefore (A ≤ O)(e) = N

2, representing the number of apples and
oranges on the edge e.

Definition 3.9 Suppose R and S are sheaves on X, and that for each cell c, R(c) ∪
S (c) and S (a � b) restricted to R(a) is equal to R(a � b). We call R a subsheaf
of S in this case. We form the quotient sheaf S /R by defining

(S /R)(c) = S (c)/R(c),

and

(S /R)(a � b)v =
(
χc → S (a � b) → χ−1

c

)
(v),

where χc : S (c) ⊆ S (c)/R(c) is the canonical projection. (Observe that since
S (a � b) is linear, the definition is well-defined.)

The definition of a quotient for sheaves of groups also makes sense if R(c) is a
normal subgroup of S (c).

Example 3.20 As a simple example of a subsheaf, consider the sheaf S (center,
below). A subsheaf R of S is shown at left below, where its inclusion into S is
shown with dotted arrows. Their quotient S /R is shown at right, below.

R
id ��������

R 0

R
2

(
1 0

)
��

id




⎛
⎜⎜⎝

1 −1
0 0
0 1

⎞
⎟⎟⎠

��������
R

3

(
1 3 1

)
��

(
1 0 1
0 0 1

)




R

��




R

2
id

��������
R

2 0
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Quotient sheaves will play an important role in sampling theory (Sect. 4.5), though
they also arise in much simpler settings. For instance, consider the sheaf PL of
piecewise linear functions (defined in Example 3.5) on a graph X. This sheaf has
a constant K as a subsheaf, in which the stalk at a vertex c ∼ X is given by
K (c) = {(y, 0, . . . , 0) : y ∼ R}. Observe that the restriction in PL between
two cells c � d

PL (c � d)(y, 0, . . . , 0) = (y, 0),

induces the identity map K (c � d) = id as a restriction in the sheaf K . The
quotientPL /K represents all piecewise linear functions defined up to the addition
of a constant. All of the nontrivial elements of PL /K consist of non-constant
functions.

3.4 Case Study: Topological Filters

Filters are the backbone of signal processing. In this case study, we show that sheaf
operations enable the description of sophisticated, possibly nonlinear filters from
simpler, locally-defined ones. In particular, a pair of sheaf morphisms can be used
to describe any finite impulse response filter. We show by example that these topo-
logical filters are the correct way to describe any filter that operates locally on an
input signal to produce an output signal. This more flexible definition paves the way
for the invention of powerful filters that can robustly highlight features of interest.
Specifically, we show that linear shift-invariant filters, the graph Laplacian, constant
false alarm detectors, and an angle-valued image filter are all examples of topolog-
ical filters. All of these filters involve processing adjacent blocks of measurements,
which is a convenient (but not strictly necessary) way to construct topological filters.

3.4.1 Linear Shift-Invariant Systems

Suppose that {xn}∞n=−∞ is a timeseries in a vector space V . A finite impulse response
filter F of order N is a linear shift-invariant map between sequences in V that can be
written in the form

yn = (F(x))n =
N∑

i=0

aixn−i = L(xn−N , . . . , xn), (3.2)

where L : VN+1 ⊆ V is linear. This filter produces a sequence {yn} by taking a
weighted average of a sliding window of N + 1 samples xn−N , . . . , xn, in which the
weights are {ai}N

i=0.

http://dx.doi.org/10.1007/978-3-642-36104-3_4
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Fig. 3.12 The construction of a linear shift-invariant filter as a sequence of two morphisms between
three sheaves

Example 3.21 The boxcar filter is a finite impulse response filter in which the
weights are all the same. Typically, one chooses ai = a = 1/(N + 1) or
ai = a = 1/

≥
N + 1 so that the signal’s 1-norm or its 2-norm (respectively) are

preserved. This filter is a low pass filter in that high frequency variations in {xn} are
reduced in {yn}. The choice of N sets the size of the pass band.

To analyze the frequency response of this filter, one usually makes use of what is
called the z-transform, which is merely a particular complex power series represen-
tation. Suppose that

xn = zn

for some z ∼ C. For instance, if z = eiφ, then {xn} is a signal with angular frequency1

φ. Substituting this choice of xn into (3.2), we obtain

yn =
N∑

i=0

aixn−i = a
N∑

i=0

zn−i = azn
N∑

i=0

z−i

= azn z−N−1 − 1

z−1 − 1
=

(
a

1 − zN+1

zN − zN+1

)
zn

=
(

a
1 − zN+1

1 − z

)
zn−N =

(
a

1 − zN+1

1 − z

)
xn−N

Therefore, the output signal is amplified by a factor of
(

a 1−zN+1

1−z

)
. In particular,

whenever zN+1 = 1 (and z ∩= 1), the output does not respond at all to the input. The
smallest such choice of z sets the bandwidth of the filter, which is 2χ

N+1 . Therefore, a
larger averaging window leads to a filter with a smaller bandwidth.

The construction of a topological filter from a linear shift-invariant one is sum-
marized in Fig. 3.12 and closely parallels the typical hardware implementation of
such a filter. We will represent the input signal {xn} as a global section of the

1 If the period 2χ/φ is an integer, then {xn} is periodic.
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V -sampling sheaf supported on vertices Z ⊂ R for the usual cell complex struc-
ture on R (Example 3.3). Explicitly, the space of global sections of the sheaf V

· · · �� 0 V�� �� 0 V�� �� · · ·

is isomorphic to the vector space of infinite sequences RZ in V .
We represent the internal state of the filter with the M-term grouping sheaf ,V (M),

in which V = V (1). This sheaf V (M) is given by the diagram

· · · VM
Δ−�� Δ+ �� VM−1 VM

Δ−�� Δ+ �� · · ·

in which

Δ−(x1, . . . , xM) = (x1, . . . , xM−1) and Δ+(x1, . . . , xM) = (x2, . . . , xM).

The first of the two sheaf morphisms p : V (N+1) ⊆ V , shows how terms of the
input {xi} are grouped into adjacent blocks of length N +1 for processing in F, stored
internal to the filter. We encode this by the diagram

· · · �� VN

0




VN+1�� ��

prN+1





VN

0




VN+1�� ��

prN+1





· · ·

· · · �� 0 V�� �� 0 V�� �� · · ·

in which the top row is V (N+1), and

prN+1(x1, . . . , xN+1) = xN+1 (3.3)

is the projection onto the last component.

Exercise 3.6 Show that p induces an isomorphism P : V (N+1)(R) ⊆ V (R) on
global sections, thereby showing that all of the V (N) have isomorphic spaces of
global sections.

The second morphism α : V (N+1) ⊆ V encodes the action of the map L on each
block of terms of {xn}. Again, this is efficiently defined using the diagram

· · · �� VN

0




VN+1�� ��

L




VN

0




VN+1�� ��

L




· · ·

· · · �� 0 V�� �� 0 V�� �� · · ·

This too induces a linear map ξ : V (N+1)(R) ⊆ V (R) on the space of global
sections, though not an isomorphism. Constructing the two morphisms one after
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another

V V (N+1)
α ��p�� V

results in a particular encoding of a finite impulse response filter.

Example 3.22 Suppose that the order N = 2 finite impulse response filter with
weights a0 = 1/5, a1 = 3/5, a2 = 1/5 is applied to the data stream x =
. . . , 1, 3, 5, 2, 4, . . . . This results in the following diagram of sections of the sheaves:

· · · 5�� �� 0 2�� �� 0 4�� �� · · ·

· · · (1, 3, 5)

��





�� �� (3, 5)

��





(3, 5, 2)

��





�� �� (5, 2)

��





(5, 2, 4)

��





�� �� · · ·

· · · 3�� �� 0 4�� �� 0 3�� �� · · ·

Observe that the middle row specifies which data is being stored in order to compute
each output value, and the output data stream . . . , 3, 4, 3, . . . can be read directly
from the bottom row.

Proposition 3.4 The composition of the two induced maps on global sections rep-
resents the linear shift-invariant filter F in the following way

F = ξ → P−1.

Remark 3.5 It is straightforward to generalize the construction to handle infinite
impulse response filters, by merely defining V (∞) to be the appropriate limit con-
struction of the V (N).

Proof (of Proposition 3.4) Suppose that {xn} is the sequence we input to F. In
that case, we have a section s of V that is given by s(n) = xn on each vertex
n. The corresponding section P−1s over V (N+1) at the vertex n will have value
(xn−N , . . . , xn). Finally, the sectionβ→P−1s over n will have value L(xn−N , . . . , xn) =
(F(x))n. �◦

This indicates that a general diagram of sheaf morphisms

S1 S2
m1�� m2 �� S3

should correspond to a kind of topological filter. We delay the precise definition until
Definition 4.15, though for the rest of this chapter we merely require that m1 induces
an isomorphism on the spaces of global sections S1(X) ⊆ S2(X).

Example 3.23 The delay filter (F(x))n = xn−1 can be encoded by the diagram
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· · · �� 0 V�� �� 0 V�� �� · · ·

· · · �� V

��





V2
(x,y) ∗⊆x
�� (x,y) ∗⊆y��

(x,y) ∗⊆y

��

(x,y) ∗⊆x





V

��





V2
(x,y) ∗⊆x
�� (x,y) ∗⊆y��

(x,y) ∗⊆y

��

(x,y) ∗⊆x





· · ·

· · · �� 0 V�� �� 0 V�� �� · · ·

Example 3.24 Consider the filter whose impulse response is zero except for three
consecutive terms, all equal to 1/3. If this filter is presented with the input sequence
. . . , 1, 1, 9, 2, . . . , it will produce the output sequence . . . , 2.7, 2.3, 3.7, 4, . . . . The
encoding described by Proposition 3.4 can be organized into the diagram

· · · �� 0 2 ���� 0 9 ���� 0 · · ·��

· · · �� (9, 2)

��





(1, 9, 2)

��





���� (1, 9)

��





(1, 1, 9)

��





���� (1, 1)

��





· · ·��

· · · �� 0 4 ���� 0 3.7 ���� 0 · · ·��

3.4.2 Linear Filtering on Nontrivial Base Spaces

Topological filters encompass certain non-shift-invariant filters, such as low pass
filters on graphs. This gives considerable expressive power and mirrors the typical
implementation of these filters.

We begin by using a generalization of the grouping sheaf employed in Sect. 3.4.1
to graphs. In this example, we show how to generalize V (3) and obtain a low-pass
filter based on the graph Laplacian.

Definition 3.10 Given a graph G with N vertices labeled {v1, . . . , vN }, the graph
Laplacian matrix L is the N × N matrix given by

Li,j =

⎧⎪⎨
⎪⎩

deg vi if i = j

−1 if vi is adjacent to vj

0 otherwise

If f is a real-valued function on the vertices of the graph, then f can be represented
by a vector in R

N , in which the i-th component represents the value of f at vi. Then
L can be interpreted as a linear operator on the space of functions on the graph.
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Fig. 3.13 An example of a
function on a directed graph
(left) and its section of the
grouping sheaf V (3) (right)

To realize the operator L as a topological filter, let V be the R-sampling sheaf on
G. That is, let V assign the stalk R to each vertex and the trivial vector space to each
edge. The space of global sections of V is RN .

We construct V (3) so that the stalk over each edge is R2 and the stalk over each
vertex vi is R

1+deg vi . To facilitate the construction, suppose that the edges of G
are oriented arbitrarily. Suppose that e is the k-th edge attached to a vertex v. The
restriction from V (3)(v � e) is given by its value on a vector

(
a1, . . . , a1+deg v

)
(
V (3)(v � e)

) (
a1, . . . , a1+deg v

) =
{

(a1, ak) if e points into v

(ak, a1) if e points away from v

See Fig. 3.13 for an example of V (3) on a graph. (This generalizes the construction
for V (3) given in the previous section since the vertices in the usual cell complex
structure for R all have degree 2.)

Exercise 3.7 Show that the linear map P : V (3)(G) ⊆ V (G) induced on the space
of global sections by the sheaf morphism p is an isomorphism of vector spaces. Hint:
do Exercise 3.6 first.

Exercise 3.8 Extend the construction of V (3) to construct generalizations of V (N)

on graphs. Hint: what should the stalk dimension over an edge be?

The construction of the topological filter proceeds as before, using the diagram
of sheaves

V V (3)
p�� α �� V .

We construct the morphisms p and α by their component maps as before. The mor-
phism p must be the zero map on each edge, but it is the projection R

1+deg v ⊆ R

onto the first component for each vertex. This too generalizes the construction of the
morphism p for shift-invariant filters.
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The morphism α is defined to capture the local structure of the graph Laplacian
matrix, namely its component maps have the form

αv
(
a1, . . . , a1+deg v

) = a1 deg v −
1+deg v∑

i=2

ai.

Proposition 3.5 The graph Laplacian L = β→P−1, where the maps P : V (3)(G) ⊆
V (G) and β : V (3)(G) ⊆ V (G) are induced on global sections by the sheaf
morphisms p and α.

More simply, the graph Laplacian can be implemented as a topological filter.

Proof The result follows from the observation that the space of global sections
V (3)(G) is isomorphic to R

N , where N is the number of vertices in the graph, and
that the i-th column of L can be read directly off the construction of αvi . �◦

3.4.3 Thresholding Filters

In addition to linear filters, topological filters are a good context for studying cer-
tain nonlinear filters. Although vitally important in applications, thresholding filters
have a rather different mathematical basis than linear filters, and are usually treated
specially. Since both are topological filters, sheaves provide a context for treating
both kinds of filters uniformly.

Example 3.25 (compare with Example 4.6) The canonical example of a nonlinear
filter is the thresholding filter. We can encode this as a topological filter from the
sheaf of continuous functions to a sheaf of open sets. It suffices to consider a single
morphism of sheaves of R, as given by the diagram

· · · �� C((−1, 0))





C((−1, 1))�� ��





C((0, 1))





· · ·��

· · · �� T ∞ (−1, 0) T ∞ (−1, 1)
U ∗⊆U∞(−1,0)

��
U ∗⊆U∞(0,1)

�� T ∞ (0, 1) · · ·��

in which T is the collection of open sets of R, and each downward arrow is given by
f ∗⊆ {x : f (x) > T}. Observe that while T is usually given no topological structure,
C((a, b)) is usually given a topology (the compact-open topology, for instance).
(Indeed, the downward maps C((n, n + 1)) ⊆ T ∞ (n, n + 1) are not continuous in
any of the commonly used topologies on sets of subsets.)

As an example of how this detector performs, consider the diagram
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which shows the progression of a function through the maps in the filter. The maps
to the left restrict the consideration from the function on (−1, 1) to (−1, 0). The
detected region is represented by the set of points where the function exceeds the
threshold T . This set is restricted as well.

Exercise 3.9 Extend the diagrams in Example 3.25 to the left and right. Hint: on
the immediate left of the existing diagrams, consider the values of the function on
(−2,−1).

In practice, the thresholding filter in Example 3.25 is too simplistic. The threshold
should be varied to account for a varying noise floor. If the threshold is chosen to
be proportional to a local average of the function, then the resulting detector locates
where the signal is anomalously large. This is called a constant false alarm rate
(CFAR) filter. Such a filter can be constructed from a topological filter that is based
on the thresholding filter constructed in the previous example.

As before, let V be the R-sampling sheaf supported on vertices Z ⊂ R for the
usual cell complex structure on R. Let V (M) be the M-term grouping sheaf with the
morphism p : V (M) ⊆ V whose component maps are given by the projection in
Eq. 3.3, again as before. The output of the CFAR filter will be placed in a sheaf B
that is a binary sampling sheaf, given by the diagram

· · · �� 0 {0, 1}�� �� 0 {0, 1}�� �� · · ·

The CFAR filter is then implemented by the following topological filter

V V (M)
p�� ψ �� B,

where ψ is defined by its component maps ψv : RM ⊆ {0, 1} on a vertex v. Each of
these component maps are given by

ψv(a1, . . . , aM) =
{

0 if a[M/2] ⊂ (1/M)
∑M

i=1 ai + Toffset

1 if a[M/2] > (1/M)
∑M

i=1 ai + Toffset

where Toffset is a parameter that adjusts the sensitivity of the filter. Larger val-
ues of Toffset make the filter less sensitive, while smaller values make it more
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Fig. 3.14 Thresholding a sonar signal (black) using the detection threshold (gray) to result in
detections (black dots)

sensitive. In implementations, the quantity (1/ M)
∑M

i=1 ai+Toffset is called the detec-
tion threshold.

As an example of the CFAR process, Fig. 3.14 shows sonar echos collected by
the author in which a reflective target was located at a range of 280 cm from the
sensor. The input signal is shown in black, and represents acoustic signal strength as
a function of distance to the sensor. This input signal is represented in the sheaf model
as a global section of V . The signal was collected using an acoustic horn antenna and
digitized by a laptop sound card at a sampling rate of 44.1 kHz. Blocks of 100 adjacent
samples (corresponding to about about 2.26 ms) were averaged to form the detection
threshold, which includes an offset of 6 dB. The resulting threshold is shown in gray
on Fig. 3.14. Distances where the signal strength exceeded this threshold are shown
as large dots at the −5 dB level, and correspond to the places where the global section
of B takes the value 1. The target’s echo is clearly visible, but the signal exceeded
the threshold at other locations as well. These other locations are called false alarms
and are probably due to other reflective obstacles in the scene.

Remark 3.6 The component maps ψv can be “tuned” considerably to reduce false
alarms. For instance, many implementations construct a detection threshold of the
form
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Fig. 3.15 An image (482 × 653 pixels) with curved striations (left) and its LSRA filtered image
(right), in which the colors represent angle in degrees. The filter used a block size of 30 pixels and
a spectral radius between 3 and 8 pixels

1

[M/2] − N

[M/2]−N∑
i=1

ai + 1

M − N − [M/2]
M∑

i=[M/2]+N

ai + Toffset,

which avoids biasing the threshold with potentially anomalous values. Other imple-
mentations weight the terms in the above sums. The interested reader is encouraged
to consult Stimson (1998) for details about practical CFAR implementations.

3.4.4 Angle-Valued Filters

Curved striations are sometimes an important feature to be detected in an image.
For instance, the left panel of Fig. 3.15 shows a photograph of a stack of dishes. The
collection of edges of the dishes forms a striated feature in the image. It is therefore
useful to have a filter that measures the orientation of striated features from an image.
It is most effective to describe this orientation by an angle.

In this section, we describe a topological filter called the local spectral rotation
angle (LSRA) which takes an intensity-valued image to an angle-valued image. Of
necessity, this filter will not be linear, since the space of angles is not a vector space
(it is a group). On the other hand, it is local since the orientation of striations should
be allowed to change across the image.

Topological filters provide a solid foundation on which to construct a method for
making local angular measurements of striations in an image. Essentially, the desired
filter should compute the angle of any striations in small patches of an image, and
then assemble the resulting computations into an angle-valued image, as shown
in Figure 3.16. The topological filter described here uses (1) the 2d-Fast Fourier
Transform of a small patch followed by (2) a threshold detection on an annular
window to determine the dominant angle.
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Fig. 3.16 Schematic of the local spectral angle calculation

The LSRA topological filter takes as input a rectangular grid of R-valued pixels
(the input image) and four parameters:

1. M, the number of rows in a local patch,
2. N , the number of columns in a local patch,
3. R1, the minimum spectral radius to test, and
4. R2, the maximum spectral radius to test.

It produces a new rectangular grid of pixels, for which the value of each pixel is an
angle.

Specifically, for a M × N patch s of pixels, the local process computes its discrete
Fourier transform

S(kx, ky) = 1

MN

N−1∑
x=0

M−1∑
y=0

e2χ i(kxx/N−kyy/M)sx,y

for kx = −N/2, . . . , N/2, ky = −M/2, . . . , M/2. The local process then computes
the frequency coordinates (Tx, Ty) of the largest spectral component in an annulus
via

(Tx, Ty) = argmax
R1⊂

√
k2

x +k2
y ⊂R2

|S(kx, ky)|

and returns the angle θx,y = tan−1 Ty
Tx

that the dominant spectral component makes
with the horizontal. By convention, we assume that −χ/2 ⊂ θx,y < χ/2. Note that
R1 and R2 are the spectral radius parameters that are specified in advance.

It is important to realize that the direction of the striations themselves is perpen-
dicular to the dominant spectral components. As Fig. 3.16 indicates, the striations
(left panel) make an angle of roughly 45→ with the horizontal, but the spectral band
makes an angle of −45→ with the horizontal. In this way, the local process implements
a function A : RMN ⊆ S1 taking the image patch to S1, the unit circle.

The construction of the LSRA filter as a topological filter proceeds much as in
the previous sections. We encode the input image as a sheaf V with diagram



72 3 Signals

R
�� ��

��





0 R
�� ��

��





0 R
�� ��

��




0 0 0

R
�� ��

��





0 R
�� ��

��





0 R
�� ��

��





which is an R-sampling sheaf on a square grid. Similarly, we define S to be
the S1-sampling sheaf on the same square grid. We construct a grouping sheaf
V (M,N) in much the same way as for a linear shift-invariant system, so that
it has diagram

R
MN�� ��

��





R
M(N−1)

R
MN�� ��

��





R
M(N−1)

R
MN�� ��

��




R

(M−1)N
R

(M−1)N
R

(M−1)N

R
MN�� ��

��





R
M(N−1)

R
MN�� ��

��





R
M(N−1)

R
MN�� ��

��





The LSRA is then the topological filter

V V (M,N)
p�� α �� S ,

where p has component maps that are projectionsRMN ⊆ R onto the first component
for each vertex, and α has component maps that are the function A on each vertex.

Exercise 3.10 Complete the construction of V (M,N) by specifying the restrictions
and show that p : V (M,N) ⊆ V induces an isomorphism on spaces of global sections.

Figures 3.15 and 3.17 show a collection of three grayscale photographs (left
panels), each of which are 482 × 653 pixels. Each such image contains striations at
different angles, and Fig. 3.15 contains curved striations. The LSRA was applied to



3.4 Case Study: Topological Filters 73

Fig. 3.17 Two example images (each 482 × 653 pixels) (left) and their local spectral angle trans-
forms (right) using a block size of 30 × 30 pixels and a spectral radius of between 3 and 8 pixels

each photograph (right panels) using a block size M = N = 30 pixels, and a spectral
radius between R1 = 3 and R2 = 8 pixels.

The specific angles produced by the LSRA correspond to the orientation of the
visually apparent striations, accounting for the addition of ±90→ as described earlier.
For instance, consider the lower left panel of Fig. 3.17, in which the striations (the
window blinds) are horizontal. This corresponds to an angle of 0→ made with the
horizontal, which yields a spectral angle of ±90→. This spectral angle is what is
visible in the the lower right frame, though there is some oscillation between +90→
(white) and −90→ (black). If the image is rotated, as in the upper frames of Fig. 3.17,
the corresponding angle measured by the LSRA changes by the applied rotation
angle as well.

In Fig. 3.15, the angles of the striations along the edge of the dishes progress from
roughly +45→ (left side) to −45→ (right side), passing through the branch cut at ±90→
along the way. Regions in which the striations are oriented in the same direction are
colored similarly, though there is some amount of “quantization.” This results in the
discontinuities in the center of the lower right panel of Figs. 3.17 and 3.15.

These examples indicate that the LSRA is an effective filter for measuring angles
in an image. Its robustness can be attributed to the fact that it is local; an error in
angle estimation disrupts only a limited portion of the image. The locality of the
filter also means that it retains much of the spatial resolution of the input image, and
that the resolution loss that does occur can be controlled by the choice of block size.
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Fig. 3.18 Representation of a dense urban environment (left, building geometry from Mannesmann
Mobilfunk GmbH (1999)) as a graph with edges weighted by length (right)

We close this case study by noting that the LSRA is one of many related topological
filters that perform local angle computations.

3.5 Case Study: Indoor Wave Propagation

One of the first places where signal processing got its start was in the transmission of
signals along telegraph wires. Traveling waves along strings or wires usually involve
the wave equation

τ2u

τt2 (t, x) = c2 τ2u

τx2 (t, x) (3.4)

with wave speed c, or the Helmholtz equation

τ2U

τx2 (x) + k2U(x) = 0,

which arises if u(t, x) = U(x)eikct , where k is the wavenumber. This remains a
good approximation if wave propagation happens along narrow channels, though
the domain is better represented as a graph G instead of R. (See Kostrykin (1999);
Kuchment (2002); Smilansky (2006); Molchanov (2006) for precise conditions under
which this approximation holds.) This situation often arises in the study of radio prop-
agation in urban canyons, for instance in the portion of Munich shown in Fig. 3.18.

Since the lengths of edges in such a graph G play an important role in the propa-
gation of waves, an important inverse problem is the reconstruction of these lengths
from measurements of a small number of waves. From an urban propagation per-
spective, the reconstruction of edge lengths from signal measurements is a form of
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Fig. 3.19 A section of a transmission line sheaf supported with value (w, z) on an edge with length L

1-dimensional topological “imaging” that produces a geometric map of an environ-
ment. As in Sect. 2.3, this map is somewhat more abstract and qualitative than what
traditional imaging algorithms produce.

Existing approaches for performing this inversion usually rely on wideband spec-
tral methods, which examine eigenfunctions of a differential operator on G that gener-

alizes the Helmholtz operator
(

τ2

τx2 + k2
)

. This has unfortunate

consequences for most urban sensing applications, since the available bandwidth
for sensing is limited.

In the context of wave propagation on a graph, the space of solutions forms a sheaf.
This even holds if the propagation is lossy, or if we instead consider fundamental
solutions, in which there are a number of sources (Robinson 2010). In this case study,
we show that sheaves provide a framework for a narrowband sensing methodology.

We will assume that the particular cell complex structure of the graph is known,
and then use measurements of waves on the graph to reconstruct the edge lengths.
This is not as limited as it might seem, since an algorithm is presented in Sect. 4.7
for reconstructing this assumed topological structure.

3.5.1 Transmission Line Sheaves

Suppose that X is a 1-dimensional cell complex representing the propagation envi-
ronment. Recall that the one-point compactification of X is X = X ◦ {∈}, which is a
CW complex. Let us suppose that each edge e of X whose closure does not intersect
∈ is assigned a positive real number L(e), called its length. Edges whose closure does
intersect ∈ will be called external edges and will be assigned a length of zero.

Definition 3.11 Suppose X is a 1-dimensional cell complex X whose edges e are
labeled by (1) a length L as above and (2) an arbitrary direction. The transmission
line sheaf T with wavenumber k is given by

1. T (v) = C
deg v for all vertices v,

2. T (e) = C
2 for all edges e, and

3. If em is the m-th edge attached to a degree n vertex v,

T (v � em)(u1, . . . , un) =
⎧⎨
⎩

(
um, e−ikL(em)

(
2
n

∑n
j=1 uj − um

))
if em is inward at v(

eikL(em)
(

2
n

∑n
j=1 uj − um

)
, um

)
if em is outward at v

http://dx.doi.org/10.1007/978-3-642-36104-3_2
http://dx.doi.org/10.1007/978-3-642-36104-3_4


76 3 Signals

The stalks of a transmission line sheaf represent the complex amplitudes of the
travelling waves exiting each of its two endpoints, measured at the endpoints. Because
each edge has an assumed orientation, the first component represents the wave ampli-
tude at the outgoing vertex, while the second component represents the wave ampli-
tude at the incoming vertex. It is important to note that the complex amplitudes
measured at other points will be phase shifted with respect to these points. On an
edge with length L, a travelling wave that exits with amplitude z will have complex
amplitude zeikL at the entrance. Figure 3.19 summarizes this interpretation of the
stalks over an edge in a transmission line sheaf. In contrast, the stalk over a vertex
represents the complex wave amplitudes of waves entering the vertex.

Example 3.26 The real line can be realized as a single edge, which results in a
transmission line sheaf whose global sections are parametrized by C

2 even though
this is not a cell complex structure for R. They correspond to left-moving and right-
moving waves, u1eikx + u2e−ikx , respectively.

The real line can also be realized as a cell complex with one vertex and two
external edges. In this case, the transmission line sheaf has diagram

C
2

C
2

f −
�� f +

��
C

2

where
f +(u1, u2) = (u1, u2) and f −(u1, u2) = (u2, u1).

Clearly, the space of global sections is still C2.

The global sections of a transmission line sheaf correspond to solutions to the
Helmholtz equation on each edge of X that satisfy the following Kirchhoff conditions
at each vertex v

1. All solutions on the edges attached to v extend to a single continuous function
at v

2. The sum of the derivatives (taken in the direction away from v) of each solution
at v is zero.

Exercise 3.11 Show that the two conditions above lead to the definition of the restric-
tion map for a transmission line sheaf.

Example 3.27 Consider the floorplan of the third floor of the David Rittenhouse
Laboratory of the University of Pennsylvania shown in Fig. 3.20. We can realize the
structure relevant to propagation in a cell complex, as shown on the left of Fig. 3.21.
In that figure, arbitrary orientations have been assigned to each edge.

Using Definition 3.11, a transmission line sheaf can be constructed on this cell
complex model. The diagram of this sheaf is shown at right of Fig. 3.21.

The restrictions are given by the following matrices:
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Fig. 3.20 Dimensioned floorplan of the third floor of David Rittenhouse Laboratory

Fig. 3.21 Directed graph (left) and transmission line sheaf (right) for the third floor of David
Rittenhouse Laboratory

T (v1 � e2) =
(− 1

3 eikL(e2) 2
3 eikL(e2) 2

3 eikL(e2)

1 0 0

)

T (v1 � e3) =
(

0 1 0
2
3 e−ikL(e3) − 1

3 e−ikL(e3) 2
3 e−ikL(e3)

)

T (v2 � e1) =
(

0 1 0
2
3 e−ikL(e1) − 1

3 e−ikL(e1) 2
3 e−ikL(e1)

)

T (v2 � e3) =
(− 1

3 eikL(e3) 2
3 eikL(e3) 2

3 eikL(e3)

1 0 0

)

T (v3 � e1) =
(− 1

3 eikL(e1) 2
3 eikL(e1) 2

3 eikL(e1)

1 0 0

)
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Fig. 3.22 The collapse of an edge (marked in gray) of a cell complex

Fig. 3.23 Vertices v1 and v2 incident to an edge e to be collapsed

T (v3 � e2) =
(

0 1 0
2
3 e−ikL(e2) − 1

3 e−ikL(e2) 2
3 e−ikL(e2)

)

Exercise 3.12 Following Definition 3.11, construct the restriction maps from the
vertices to the external edges in Example 3.27.

3.5.2 Sheaf Pushforwards and Edge Collapse

Transmission line sheaves behave particularly well under certain pushforwards. This
allows their structure to be simplified dramatically. The precise condition under
which the pushforward operation preserves a transmission line sheaf occurs when a
cellular map collapses an edge. Specifically, a cellular map f : X ⊆ Y is an edge
collapse (see Fig. 3.22) if it is a homeomorphism on all of X except a single edge e
with distinct endpoints which f takes to a single vertex.

Proposition 3.6 Suppose that T is a transmission line sheaf on X and that f : X ⊆
Y is an edge collapse. Then f∈ is an isomorphism of sheaves.

Proof Suppose that the endpoints of e are v1 and v2, with total degrees m and n
respectively. Let the stalk over v1 be spanned by c0, . . . , cm−1, the stalk over v2
be spanned by d0, . . . , dn−1, and the stalk over e be spanned by a, b, as shown in
Fig. 3.23.

It suffices to show (1) that the space of sections over v1, v2, and e is the same as
the space of sections over a vertex with degree m + n − 2 and (2) that restriction
maps of f∈T at f (e) satisfy the axioms for a transmission line sheaf up to an isomor-
phism. (In particular this means that the pushforward of the sheaf over v1, v2, e is an
isomorphism.)



3.5 Case Study: Indoor Wave Propagation 79

1. We compute the space of sections directly, by equating the restrictions of T
from v1 and v2 to e. Namely,

a = e−ikL(e)

⎛
⎝2

n

n−1∑
j=1

dj +
(

2

n
− 1

)
d0

⎞
⎠ = c0 (3.5)

and

b = eikL(e)

⎛
⎝ 2

m

m−1∑
j=1

cj +
(

2

m
− 1

)
c0

⎞
⎠ = d0,

where L(e) is the length of edge e. Substituting the equation for d0 yields an equa-
tion for c0 in terms of {c1, . . . , cm−1} and {d1, . . . , dn−1}. Hence, the dimension
of the space of global sections is parametrized by these two sets, and therefore
is m + n − 2. This is the same dimension as the stalk over f (e) should have in a
transmission line sheaf.

2. Continuing with the substitution in (1), we obtain

c0 = me−ikL(e)

m + n − 2

n−1∑
j=1

dj + 2 − n

m + n − 2

m−1∑
j=1

cj. (3.6)

Now let us verify that the pushforward sheaf is indeed a transmission line sheaf.
Suppose without loss of generality that the p-th edge connected to f (e) was
originally connected to v1. Restricting to this edge yields one trivial component,
and one which has the form

eikL(ep)

⎛
⎝ 2

m

m−1∑
j=0

cj − cp

⎞
⎠ .

Substituting (3.6) for c0, this reduces to

eikL(ep)

⎛
⎝ 2eikL(e)

m + n − 2

n−1∑
j=1

dj + 2

m + n − 2

m−1∑
j=1

cj − cp

⎞
⎠ ,

which is almost exactly the form given in Definition 3.11 for a degree m + n − 2
vertex, except for the presence of the factor of eikL(e). �◦

Example 3.28 Continuing Example 3.27, consider the cellular map f which col-
lapses edge e1. Let S = f∈T , whose diagram is shown in Fig. 3.24.

Using the calculations in the proof of Propostion 3.6, we have that the stalkS (v2)

has dimension 4, for which we assume a basis {a, b, c, d} (in that order) as shown
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Fig. 3.24 Directed graph (left) and transmission line sheaf (right) in Fig. 3.21 after collapsing
edge e1

in Fig. 3.21. The restrictions in the collapsed graph then are given by the following
(notice the presence of the L(e1) terms)

S (v1 � e2) =
(− 1

3 eikL(e2) 2
3 eikL(e2) 2

3 eikL(e2)

1 0 0

)

S (v1 � e3) =
(

0 1 0
2
3 e−ikL(e3) − 1

3 e−ikL(e3) 2
3 e−ikL(e3)

)

S (v2 � e2) =
(

0 0 0 1
1
2 eik(L(e1)−L(e2) 1

2 eik(L(e1)−L(e2)) 1
2 e−ikL(e2) − 1

2 e−ikL(e2)

)

S (v2 � e3) =
(− 1

2 eikL(e3) 1
2 eikL(e3) 1

2 eik(L(e3)−L(e1)) 1
2 eik(L(e3)−L(e3))

1 0 0 0

)
.

Proposition 3.6 is false when e does not have distinct endpoints. For instance, a
transmission line sheaf on a graph with a loop will have different global sections
than one on a simply connected graph.

Example 3.29 Consider the CW complex structure on the circle with one vertex v
and one edge e of length L. In this case, the global sections of a transmission line
sheaf are characterized by the equations

u1 = eikLu1 and u2 = e−ikLu2.

This means that the space of global solutions is either the trivial vector space if
kL /∼ 2χZ or is C

2 if kL ∼ 2χZ. In contrast, the space of global sections of a
transmission line sheaf on a single vertex is trivial. The case where the loop has more
global sections (when kL ∼ 2χZ) is called resonance.

A global section of a sheaf is uniquely specified by its value on all vertices.
In the case of a transmission line sheaf, a global section constrains the geometry
of the graph. The calculation of the values of a section along the collapsed edge
in Proposition 3.6 is a useful tool for “sounding” the length of edges in a graph.
One needs to place a directional sensor at each vertex in the graph and measure the
incoming wave amplitudes. For instance, a horn antenna could be placed at each
intersection of hallways in a building, and oriented in the direction of each hallway
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for each measurement. Then, the following Algorithm can be recursively called, once
for each edge with an unknown length.

Algorithm 1 (Extracting the geometry of a graph by sounding)
Input:

1. Graph model in which the edges are all marked with lengths except edge e, whose
length is unknown.

2. Complex signal measurements c0, d0, . . . , dn−1 taken from the ends of edge e,
and collected at several algebraically independent operating wavenumbers.

Output: L(e), the length of edge e.
Procedure:

1. Evaluate

L(e) = i

k
log

⎛
⎝ 1

c0

⎛
⎝2

n

n−1∑
j=1

dj +
(

2

n
− 1

)
d0

⎞
⎠

⎞
⎠ . (3.7)

for each wavenumber available, which is merely Eq. (3.5) solved for L(e).
2. Select the correct branch of the logarithm as being the one yielding a length

consistent with each of the available wavenumbers.

Example 3.30 Consider the case of attempting to measure the geometry of Fig. 3.20
from the graph model in Fig. 3.21. Suppose that three sensors are placed at each
of v1, v2, and v3, for which simulated magnitude and phase measurements shown
in Table 3.1. These measurements correspond to two operating frequencies, one at
905 MHz and one at 2.451 GHz (typical wireless network frequencies), and were
simulated by solving the lossless Helmholtz equation on a graph in which the edge
lengths were as shown in Fig. 3.20, namely L(e1) = 220 ft, L(e2) = 150 ft, and
L(e3) = 70 ft. The choice of frequences is important; frequencies with small common
factors make accurate measurements of edge lengths difficult.

Using the principal branches of Eq. 3.7 allows us to estimate the lengths of e1, e2,
and e3. For instance, using the operating frequency of 905 MHz yields the following
estimates:

• L(e1) ≈ −0.233 ft, which is too small by exactly 405 half-wavelengths,
• L(e2) ≈ 0.459 ft, which is too small by exactly 275 half-wavelengths, and
• L(e3) ≈ −0.148 ft, which is too small by exactly 129 half-wavelength.

Using 2.451 GHz alone isn’t more accurate, since it yields the following estimates:

• L(e1) ≈ 0.140 ft, which is too small by exactly 1095 half-wavelengths,
• L(e2) ≈ 0.0130 ft, which is too small by exactly 747 half-wavelengths, and
• L(e3) ≈ −0.0742 ft, which is too small by exactly 349 half-wavelengths.

However, combining the two frequencies alleviates the difficulty, in the following
way. Suppose we have two estimates L and L← for an edge length, associated to
wavelengths α and α←, we then search for the smallest such value that satisfies
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Table 3.1 Simulated magnitude and phase measurements for Example 3.30

Vertex Hallway Mag at Phase at Mag at Phase at
905 MHz (dB) 905 MHz (→) 2451 MHz (dB) 2451 MHz (→)

v1 External 1.4 −8.6 0.44 −14
v1 e2 −5.5 −1.5 −0.82 −28
v1 e3 −6.6 82 −4.9 83
v2 External 1.9 −78 0.57 −85
v2 e1 −3.4 156 −1.7 108
v2 e3 −6.6 131 −4.9 150
v3 External 0 0 0 0
v3 e1 −3.4 −126 −1.7 −17
v3 e2 −5.5 150 −0.82 −16

L + m
α

2
= L← + n

α←

2
,

where m and n are integers. Performing this search on each of the edges in our graph
yields the correct lengths, namely L(e1) ≈ 220 ft, L(e2) ≈ 150 ft, and L(e3) ≈ 70 ft.

3.6 Open Questions

1. Angle-valued image filters have only recently begun to be studied. The desirable
or undesirable performance characteristics have not yet been carefully described.
What constitutes signal-to-noise ratio for angle-valued filters, since the space of
angles (the unit circle) does not have a linear order? It is likely that some partial
order may suffice, but it is yet unclear how to make that assessment.

2. The topological filters described in this chapter have all made use of grouping
sheaves as their internal state. This is clearly not necessary to the construction;
what other useful classes of topological filters are there?

3. Signal propagation on a cell complex generalizes the notion of a quantum graph
to higher dimensional spaces. It is not difficult to write a description of a sheaf of
solutions, given reasonable matching conditions along lower-dimensional cells.
However, for complexes with cells of dimension 2 and higher, this sheaf has
infinite-dimensional stalks described by function spaces. What filtration of finite-
dimensional subsheaves can one use to approximate these sheaves and their spaces
of global sections? We want the representation to be well-behaved with respect
to the asymptotic expansions that give rise to geometric optics and diffraction!

4. Networks are an area of recent interest; communication and social networks are
often only loosely associated to physical locations, and so frustrate traditional
analyses. However, the agents involved in these networks do maintain some notion
of locality, for instance a collection of “friends.” Because of this, many researchers
believe that graphs (or 1d cell complexes) are appropriate for modeling the
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topological structure of a network. However, the true importance of a network
lies in the information it carries; therefore it seems that sheaves might be ideal for
studying networks. Several researchers Lilius (1993); Ghrist (2011); Robinson
(2012) have found specific networks that admit a straightforward sheaf model. Is
there a general sheaf-theoretic model of networks?
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Chapter 4
Detection

This chapter will explain

1. That typical detector algorithms are instances of functors,
2. The difference between detectors and filters by their effect on signals,
3. The class of detectors called sheaf cohomology, which compute global consis-

tency relationships between measurements,
4. That sampling theory is generalized by the use of exact sequences for cohomology,

and

will exhibit a direct, algorithmic application of cohomology that permits consistent
assembly of multi-sensor measurements of visibility.

Detectors are tools which extract and emphasize important features of a signal.
In order to be useful, a detector should be functorial, in that it preserves the features
of the signal. Which features are important may change depending on the context,
so the appropriate detector is also context-dependent.

In most practical settings, it is desirable for detectors to lose information. Specifi-
cally, one usually wants to transform a signal into a representation that removes noise
and irrelevant signals. Merely requiring that certain qualitative features of a signal be
preserved will motivate our definition of detectors as certain kinds of forgetful func-
tors. The most famous detector for sheaves of abelian groups is sheaf cohomology.
We will examine applications of cohomology to sampling theory and urban radio
mapping.

4.1 Categories and Functors

Signal processing posits that the world contains objects which are related to one
another, and that measurements can be used to make inferences about these objects
and their relationships. If this is to be a fruitful endeavor, the relationships between
measurements should be similar to the relationships between the objects they mea-
sure. This idea is distilled into the mathematical notion of a category.

M. Robinson, Topological Signal Processing, 85
Mathematical Engineering, DOI: 10.1007/978-3-642-36104-3_4,
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Definition 4.1 A category C is a class of objects Obj(C) and a class of morphisms
Mor(C) that satisfy the following axioms:

1. Each morphism m ⊆ Mor has a unique source and target, both of which are in
Obj. If the source of m is a ⊆ Obj and its target is b ⊆ Obj, we write m : a → b.

2. (Morphisms are composable) There is a binary operation on morphisms called
composition that for every pair of morphisms m : a → b and n : b → c (with
a, b, c ⊆ Obj) there is a unique morphism n ◦ m : a → c. In this case, m and n
are said to be composable.

3. (Composition is associative) If m : a → b, n : b → c, and p : c → d are three
morphisms, then (p ◦ n) ◦ m = p ◦ (n ◦ m).

4. There is an identity morphism ida : a → a for each object a ⊆ Obj, such that
for any other morphism m : a → a, the identity ida ◦ m = m ◦ ida = m holds.

A subcategory of a category C is a category D with Obj(D) ∈ Obj(C) and
Mor(D) ∈ Mor(C).

Remark 4.1 The reader should note the choice of terms in the definition of a category.
In particular, we have chosen the objects and morphisms to be classes rather than sets.
Informally, these are collections of objects that share a particular property of interest.
Importantly, all sets are classes. However, not all classes are sets. For instance, the
class of all sets is not a set. This is a technical way to avoid Russell’s paradox, which
arises from the question “Does the set of all sets contain itself?”

Categories are a unifying feature of mathematics. For instance, Table 4.1 lists
some elementary examples of categories (a few of which are defined later in this
chapter).

Example 4.1 We can realize any group G as a category G with one object ∼. Define
Mor(G) = G and the composition of morphisms to simply be the multiplication of
group elements. The axioms of a category are automatically satisfied by the axioms
of the group.

Substantial inferential power arises from converting a problem in one category
into another where the solution is easier. For instance, algebraic topology is the
discipline of translating topological problems (in Top) into algebraic ones (such as
Grp or Vec). The central theme of this book is that signal processing is a similar
translation; from a category of signals into a more convenient one. For instance, the
Signal Embedding Theorem 2.2 permits a translation of the collection of wireless
signals into Mank. In this chapter, we go further, translating the problem into Cell.

Any such translation of one category into another should preserve its structure.
The precise description of that translation leads to the definition of a functor.

Definition 4.2 A functor F from a category C to another D assigns each object
X ⊆ C to an object F(X) ⊆ D and a morphism F( f ) : F(X) → F(Y ) ⊆ Mor(D) to
each morphism f : X → Y ⊆ Mor(C) according to the following rules:
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Table 4.1 Several examples
of frequently used categories

Category Objects Morphisms

Set Sets Functions
Open Open sets Inclusions
Top Topological spaces Continuous functions
Cell Cell complexes Cellular maps
Mank Ck manifolds Ck maps
Simp Simplicial complexes Simplicial maps
Grp Groups Homomorphisms
Vec Vector spaces Linear maps
ShX Sheaves on X Sheaf morphisms
Kom Chain complexes Chain morphisms

1. F(idX ) = idF(X), and
2. either F( f ◦ g) = F( f ) ◦ F(g) for every pair of composable morphisms in C (in

which case we say F is covariant) or F( f ◦ g) = F(g) ◦ F( f ) (in which case we
say that F is contravariant).

Without qualification, the term functor could mean either kind of functor.

Example 4.2 Group representations are functors. Specifically, consider the category
G given in Example 4.1. A representation is a functor from G to Vec. For instance, the
group of face moves of a Rubik’s cube can be represented as a collection of 54 × 54
permutation matrices. In order to study the group of face moves of the Rubik’s cube,
it suffices to study these matrices, since the functor gives a perfect representation of
the group.

Sometimes functors are forgetful; they lose information. The next example shows
how information can be lost by a functor. This is sometimes desirable in applications,
since forgetful functors can be substantially easier to compute or substantially more
robust to variations.

Example 4.3 Consider the category C in which the objects are vector spaces and
a morphism exists between V, W ⊆ C if V ∈ W . In this case, computing the
dimension of a vector space is a forgetful covariant functor from C to the category
of natural numbers in which relations like a ≤ b are the morphisms.

Example 4.4 One particularly important category for sheaves is the face category
F X of a cell complex X , in which the objects are cells of X and attachments a � b
between cells a and b are the morphisms. Sheaves are covariant functors from the
face category into some other category C. For instance, a covariant functor from
F X to Vec is a sheaf of vector spaces.

Example 4.5 In the category of sheaves, if f : X → Y is a cellular map, then the
pushforward f∼ and pullback f ∼ operations (Sect. 3.3.1) are functors between the
categories of sheaves on X and Y .

http://dx.doi.org/10.1007/978-3-642-36104-3_3
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Functors between a pair of categories can also be translated from one to another.
This somewhat abstract idea is of considerable importance in the theory of sheaves,
and is the reason for the prevalence of commutative diagrams in the theory. Almost
every time a commutative diagram appears, it represents a natural transformation of
functors.

Definition 4.3 Given a pair of covariant functors F : C → D and G : C → D from
one category to another, a natural transformation N is an assignment of a morphism
NX : F(X) → G(X) to each object X, Y ⊆ Ob(C) such that for each morphism
( f : X → Y ) ⊆ Mor(C), the identity NY ◦ F( f ) = G( f ) ◦ NX holds. (We have
that NY : F(Y ) → G(Y ).) We represent this identity by saying that the following
diagram commutes.

F(X)
NX ��

F( f )

��

G(X)

G( f )

��
F(Y )

NY �� G(Y )

Exercise 4.1 Natural transformations can also be defined between

1. a pair of contravariant functors,
2. between contravariant and a covariant functor, and
3. between covariant and a contravariant functor.

Modify the definition to support these other cases.

One can think of natural transformations as being morphisms between functors.
Therefore, we can define the category Fun(C, D) whose objects are functors between
categories C and D and morphisms are natural transformations. This is not as abstract
as it might seem. Sheaf morphisms (Definition 3.4) are natural transformations of
sheaves, considered as covariant functors, so the category of sheaves of C over a
space X is Fun(F X, C).

4.1.1 Detectors are Functors

A signal is a collection of related measurements. The topology on these measure-
ments indicates how a given measurement responds to noise. A signal whose mea-
surements are taken from a discrete set has a rather brittle response to noise. Either
it is completely robust (and is not changed by noise) or its value is perturbed rather
far from the correct one. On the other hand, a signal whose measurements are taken
from a manifold can depend more smoothly on perturbations. A detector strips the
topological structure from signals; often translating smoothly-varying signals to ones
that have been quantized.

Definition 4.4 A detector is a functor to a subcategory of Set.
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Fig. 4.1 Several types of sequences of vector spaces that play a role in the study of sheaves

This definition is somewhat subtle, as it encodes the “intent” of the filter’s designer.
In particular, every topological space is also a set. However, by specifically indicating
that the output of a detector is a set and not a topological space, we indicate that
continuity is inappropriate when discussing the output.

Example 4.6 (compare with Example 3.25) A threshold detector can be realized as
a functor. Specifically, a threshold detector takes a continuous function f ⊆ C(R)

and returns the open set on which f (x) > T for some threshold T ⊆ R. We specify
the input to this functor to be the category C in which each continuous function is
an object. Let the morphisms of C be given by f → g whenever f (x) > g(x) for
all x ⊆ R. The detector is then given by a morphism F : C → Open that assigns
F( f ) = {x ⊆ R : f (x) > T } to each f ⊆ C(R). Observe that if f → g, then
F(g) ∪ F( f ). Hence F is a contravariant functor.

This simple example is the first of many more powerful detectors. We will spend
the rest of this chapter examining detectors that arise from the cohomology of sheaves.

4.2 Exact Sequences

In order to develop the theory of cohomology, we need to first develop a mechanism
for managing related information in collections of vector spaces. In doing so, we
need to study sequences of vector spaces, with maps from one to the next. There
are several different kinds of sequences that play a role in our analysis, as indicated
by Fig. 4.1. In many situations, the most interesting ones are the non-exact chain
complexes.

Definition 4.5 A sequence of vector spaces (V•, d•) is a collection of vector spaces
Vi and linear maps di between them as follows

· · · di−1 �� Vi
di �� Vi+1

di+1 �� · · ·

Each Vi is called a term of the sequence.
A sequence of vector spaces is exact when ker di = image di−1. Exact sequences

are like telescoping series in that most terms “cancel,” as shown schematically in
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Fig. 4.2 A schematic of an exact sequence of vector spaces

Fig. 4.2. We call an exact sequence with finitely many nontrivial spaces, such as

0 → A → B → C → 0,

a short exact sequence.

Exercise 4.2 Show that the following sequence of vector spaces with the linear maps
as given is exact.

0

(
0
0

)

��
R

2




1 0
0 0
0 1
0 0


⎛

��
R

4




0 1 0 0
0 0 0 1
0 1 0 1


⎛

��
R

3

⎜
1 1 −1

⎝
��
R

0 �� 0

Exercise 4.3 (Useful properties of short exact sequences)

1. Show that if the following sequence is exact, then f is injective:

0 �� V
f �� W.

2. Show that if the following sequence is exact, then f is surjective:

V
f �� W �� 0.

3. Show that if the following sequence is exact, then f is an isomorphism:

0 �� V
f �� W �� 0.

Exact sequences are important because they generalize the dimension theorem (or
rank nullity theorem) from basic linear algebra. Recall that the dimension theorem
states that if f : V → W is a linear map between finite dimensional vector spaces,
then
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dim V = dim ker f + rank f, and dim W = dim coker f + rank f,

where we recall that coker f is the orthogonal complement of the image of f . Observe
that if

0 �� A �� V
f �� W �� B �� 0

is exact, then A ∗= ker f and B ∗= coker f . Hence,

V ∗= A ∩ image f ∗= ker f ∩ image f

and
W ∗= B ∩ image f ∗= coker f ∩ image f,

both of which are equivalent to the dimension theorem.
We will make extensive use of a particular sequence of vector spaces associ-

ated with a sheaf over cell complexes, which is typically not exact. Instead, such
sequences are “approximately” exact. Due to their historical association with cell
complexes (and particularly simplicial complexes), this kind of sequence is called a
chain complex.

Definition 4.6 A chain complex is a sequence of vector spaces

· · · di−1 �� Vi
di �� Vi+1

di+1 �� · · ·

in which di+1 ◦ di = 0 for all i .

Observe that if (V•, d•) is a chain complex, then image di−1 ∈ ker di . Therefore,
exact sequences are automatically chain complexes. But as the following exercise
shows, the converse is not true.

Exercise 4.4 Show that the following sequence is a chain complex, but not an exact
sequence.

0 ��
R

4 d0
��
R

6 d1
��
R

4 d2
��
R

�� 0.

where

d0 =




1 −1 0 0
1 0 −1 0
1 0 0 −1
0 1 −1 0
0 1 0 −1
0 0 1 −1


⎛

,
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d1 =




0 0 0 1 −1 1
0 −1 1 0 0 −1
1 0 −1 0 1 0

−1 1 0 −1 0 0


⎛ ,

and
d2 = ⎞

1 1 1 1
⎟
.

The perspective of category theory is that the best way to study objects is to also
study the morphisms between them. In the case of Vec, one studies vector spaces
by the linear maps between them. A natural direction of study for chain complexes,
then, is to look at a collection of term-by-term linear maps. In this case, we are led
to the following diagram from two chain complexes (V•, d•) and (W•, e•)

· · · di−1 �� Vi
di ��

Li

��

Vi+1
di+1 ��

Li+1

��

· · ·

· · · ei−1 �� Wi
ei �� Wi+1

ei+1 �� · · ·

(4.1)

where Li are linear.

Definition 4.7 A collection of linear maps Li : Vi → Wi is a chain map from the
chain complex (V•, d•) to (W•, e•) if the diagram (4.1) commutes. These are the
morphisms in the category Kom of chain complexes of vector spaces.

Example 4.7 The diagram below exhibits a chain map (columns) between two chain
complexes (rows)

0 ��
R

2

id
��

(
1 −1

−1 1

)

��
R

2

id
��

(
1 1
1 1

)

��
R

2

��

�� 0

0 ��
R

2(
1 −1

−1 1

)�� R2 �� 0 �� 0

Observe that each square commutes. In contrast, the similar looking diagram
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0 ��
R

2

id
��

(
1 −1

−1 1

)

��
R

2

id
��

�� 0

��

�� 0

0 ��
R

2(
1 −1

−1 1

)�� R2 (
1 1
1 1

) ��
R

2 �� 0

is not a chain map.

Let us return to the difference between chain complexes and exact sequences.
The terms in chain complexes can have larger kernels than in an exact sequence. The
maps collapse a larger set than simply the elements of the image of the previous map.

Definition 4.8 The homology of a chain complex (V•, d•) is the collection of vector
spaces H• given by

Hi (V•) = ker di/image di−1.

The homology spaces are all zero if and only if a chain complex is an exact
sequence.

Example 4.8 The homology of the sequence

0 ��
R

2
d0

(
1 −1

−1 1

)

��
R

2
d1

(
1 1
1 1

)

�� R2
d2

�� 0

is given by the sequence of spaces R, 0,R, 0, 0, . . . . Explicitly,

ker d0 = ker

⎠
1 −1

−1 1

)
= span

{⎠
1
1

)}
,

ker d1 = ker

⎠
1 1
1 1

)
= span

{⎠
1

−1

)}
= image

⎠
1 −1

−1 1

)
= image d0.

In contrast, the homology of

0 ��
R

2
d0

(
1 −1

−1 1

)

��
R

2
d1

⎜
1 1

⎝
��
R

d2

�� 0
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is given by the sequence of spaces R, 0, 0, . . . , since the matrix
⎞
1 1

⎟
represents a

surjective linear map.

Proposition 4.1 Chain maps induce linear maps between the associated homology
spaces. Therefore, each Hi is a functor Kom → Vec.

Proof Suppose that Li is a chain map from (V•, d•) to (W•, e•), two chain com-
plexes. If x ⊆ ker di , then di x = 0. Then ei ◦ Li x = Li+1 ◦ di x = Li+10 = 0
according to (4.1). Hence Li x ⊆ ker ei . Similarly, if x ⊆ image di−1, then
there is a y ⊆ Vi−1 for which di−1 y = x . Again, because Li is a chain map,
ei−1 ◦ Li−1 y = Li ◦di−1 y = Li x , so that Li x ⊆ image ei−1. Therefore L• descends
to a map on each quotient Hi . �

If we have a short exact sequence 0 → Ai → Bi → Ci → 0 of chain complexes
in which the arrows represent chain maps, this induces linear maps between the
homologies Hi (A) → Hi (B) → Hi (C). But there something more substantial:

Lemma 4.1 (The snake lemma) There is a connecting map δi : Hi (C) → Hi+1(A)

which makes the following sequence exact

· · · �� Hi (A) �� Hi (B) �� Hi (C)
δi �� Hi+1(A) �� · · ·

which we call the long exact sequence associated to the short exact sequence 0 →
Ai → Bi → Ci → 0 of chain complexes.

By hypothesis, we have the following commutative diagram

0 �� Ai ��

ai

��

Bi ��

bi

��

Ci ��

ci

��

0

0 �� Ai+1 �� Bi+1 �� Ci+1 �� 0

in which the rows are exact sequences. The snake lemma shows how to get from the
upper right part of the diagram to the lower left. Everything else in the long exact
sequence already follows via functoriality (Proposition 4.1). Building one instance
of the connecting map extends the long exact sequence by three terms, by “snaking”
them onto the end.

Proof One performs the following diagram chase, beginning in the upper right
corner with x ⊆ ker ci ∈ Ci .

1. Since the map Bi → Ci is surjective, this means that there is a y ⊆ Bi whose
image is x .

2. This y corresponds to a ỹ ⊆ Bi+1,
3. which by commutativity of the diagram, ỹ ⊆ ker (Bi+1 → Ci+1).
4. By exactness, there must be a x̃ ⊆ Ai+1 whose image is ỹ.
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Therefore, let δi : ker ci → Ai+1 be given by x �→ x̃ . Because the diagram com-
mutes, δi+1 takes the image of x to the image of ĩ . Therefore, δi maps the kernel
of ci to the kernel of ai+1 and the image of ci−1 to the image of ai . Therefore, δ is
actually a chain map, and so it induces a map on homology Hi (C) → Hi+1(A) and
makes the resulting sequence exact. �

4.3 Sheaf Cohomology

Sheaves of abelian groups give rise to a special chain complex that additionally
captures the topology and combinatorics of the underlying cell complex. We fol-
low Shepard (1980) closely, and study the homology of this complex, called sheaf
cohomology, which captures certain useful properties and is a powerful detector on
sheaves.

4.3.1 Orientation

Orientation of cells in a cell complex determines how information stored in a sheaf
is tested for consistency. Suppose that S is a sheaf on a cell complex in which v and
w are attached to an edge e, as shown in the diagram below

S (v)
S (v�e)�� S (e) S (w).

S (w�e)
��

In order to extend a section s that is supported on v and w to e, we must have that

(S (v � e)) s(v) = (S (w � e)) s(w) = s(e).

If S is a sheaf of abelian groups, this equation can be written

+ (S (v � e)) s(v) − (S (w � e)) s(w) = 0

or
− (S (v � e)) s(v) + (S (w � e)) s(w) = 0.

This suggests that v � e and w � e should be assigned opposite signs. The concept
of orientation makes this assignment precise.

We begin by defining the orientation of a nonsingular linear map L : V → V
between two vector spaces V .

Definition 4.9 The orientation of a nonsingular linear map L : V → V is the sign
of its determinant.
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Fig. 4.3 The orientation of a two linear maps L , T : R2 → R
2. The orientation of L is +1, while

the orientation of T is −1

This somewhat opaque definition has a convenient interpretation. Consider the
identity matrix id : V → V , which has determinant +1. Switching two rows or
columns of this matrix results in a matrix whose determinant has opposite sign. This
takes a basis a1, . . . , an for V to one in which the basis elements themselves are the
same, but are listed in a different order, as shown in Fig. 4.3.

Definition 4.10 Suppose that L : V → V is a nonsingular linear map that takes a
basis a1, . . . , an to another basis b1, . . . , bn . If the orientation of L is +1, we say
that the orientations of the two bases agree. If the orientation of L is −1, then we
say that the orientations of the bases disagree.

Suppose that a1, . . . , an is an orthonormal basis for Rn and that Dn is a disk in
R

n . Consider n smooth maps bi : Dn → R
n chosen so that for each x ⊆ Dn the

set {b1(x), . . . , bn(x)} is an orthonormal basis for Rn . Because of this choice, there
is a unique linear map T (x) : Rn → R

n that transforms the basis a1, . . . , an to the
basis b1(x), . . . , bn(x). The determinant of this T is ±1, since it is an isomorphism.
Observe that the function defined by

det


T (x)




b1(x)
...

bn(x)


⎛


⎛

is constant, since it is continuous, takes either the value +1 or −1, and is defined
on a connected set. This allows us to compare whether the orientation of the vector
space R

n agrees with the orientation of Dn .

Definition 4.11 An orientation of a disk Dn is a choice of n smooth maps bi :
Dn → R

n called the orientation frame (or orientation), chosen so that for each
x ⊆ Dn the set {b1(x), . . . , bn(x)} is a basis for Rn . By the previous discussion, the
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Fig. 4.4 Two oriented 1-cells attached to an oriented 2-cell

orientation frame can be chosen up to agreement of orientations. A different choice of
orientation frame which agrees with b1, . . . , bn is said to have the same orientation.

Suppose that A � B is the attachment of an n-dimensional cell A to the boundary
of an n +1-dimensional cell B, via an attaching map φ that is a diffeomorphism. Let
C ∪ ∂ B be the portion of B that φ(C) = A. Suppose that an orientation a1, . . . , an

is chosen for A and an orientation b1, . . . , bn+1 is chosen for B in which bn+1 is
normal to the boundary of B. Since φ was assumed to be a diffeomorphism, then
the derivative dφ is a linear isomorphism. Therefore, {dφ(b1), . . . , dφ(bn)} is an
orientation on A, called the induced orientation (see Fig. 4.4). We define the index
of A � B to be

[A : B] =
⎧

1 if the orientation of A agrees with the one induced by B

−1 if the orientation of A disagrees with the one induced by B

Conventionally, we define [A : B] = 0 if A is not attached to B. This has
a particularly simple form in the case of abstract simplicial complexes if σ and
τ are both simplices whose dimension differs by 1. If τ = (t1, . . . , tn) and
σ = (t1, . . . , tk−1, tk+1, . . . , tn), then [σ : τ ] = (−1)k .

4.3.2 Definition of Sheaf Cohomology

Suppose that S is a sheaf of abelian groups on a cell complex X . The k-th cochain
group with compact supports Ck

c (X;S ) of S is the direct sum of the stalks over
the k-cells of X . Explicitly, they are given by

Ck
c (X;S ) =

⎪
σ⊆Xk

S (σ ).
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Fig. 4.5 The sheaf in Example 4.9 (left) and its base space (right)

Notice that elements of Ck
c (X;S ) are functions from the k-cells to the stalks over

those cells. Most of the time, it is useful to exclude those cells whose closures are
not compact, since these cells represent external connections. We therefore define
the k-th cochain group

Ck(X;S ) =
⎪

σ⊆Xk :σ is compact

S (σ ).

The k-th coboundary homomorphism (or coboundary map) is the homomorphism
dk : Ck

c (X;S ) → Ck+1
c (X;S ) given by

(dk f )(τ ) =
⎨

σ⊆Xk

[σ : τ ]S (σ � τ) f (σ )

where τ ⊆ Xk+1 and f ⊆ Ck
c (X;S ). We define dk on Ck(X;S ) with the same

formula, but restrict our attention to the cells with compact closures.

Example 4.9 Consider the sheaf given by the diagram in Fig. 4.5. Using the orien-
tations indicated on the figure, the coboundary map d0 has the matrix form

d0 =




1 0 0 0 −1 0 0 0 0 0 0
0 0 0 0 0 0 3 0 0 −3 0
0 0 0 0 0 2 0 0 0 0 −2
0 0 0 0 0 1 0 0 0 0 −1
0 0 1 −1 0 0 0 −1 1 0 0


⎛ ,

where the blocks of columns correspond to A, B, and C respectively and the blocks
of rows correspond to D, E , F , and G respectively.

Lemma 4.2 If S is a sheaf on a cell complex X, then the composition dk+1 ◦ dk :
Ck(X;S ) → Ck+2(X;S ) is the zero map, so that (C•(X;S ), d•) is a chain
complex.
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Proof (following Shepard (1980) closely) We begin by observing that if σ � γ �
τ and each attachment increases the dimension by one, then there are exactly two
choices for γ . This follows immediately from the Jordan curve theorem,1 which
states that the complement of Sk in Sk+1 has two connected components. In our
case, the image of the attaching map from τ to γ is a sphere of dimension 1 less than
that of τ ; the image of the attaching map from τ to σ is a sphere of dimension 2 less
than that of τ . (This is false if X is a general CW complex where attaching maps
may not be embeddings, since the image of the attaching map might not be a sphere
of the proper dimension.) We therefore have the attachment diagram

τ

γ1

��
��

��
��

��

γ2

��
��

��
��

��

σ

��
��

��
��

��

��
��

��
��

��

These two choices γ1, γ2 satisfy [σ : γ1][γ1 : τ ] + [σ : γ2][γ2 : τ ] = 0. We
can prove this identity using abstract simplicial complexes without loss of generality,
since it is a local statement depending only on the four cells under discussion. Suppose
that σ = (s1, . . . , sn) and τ = (s1, . . . , sn+2). Then γ1 = (s1, . . . , sn, sn+1) and
γ2 = (s1, . . . , sn, sn+2). Evidently [σ : γ1] = [σ : γ2], but [γ1 : τ ] and [γ2 : τ ] are
of opposite signs.

We can then treat the calculation of the composition directly:

⎜
dk+1 ◦ dk f

⎝
(τ ) =

⎨
γ⊆Xk+1

[γ : τ ]S (γ � τ)(dk f )(γ )

=
⎨

γ⊆Xk+1

[γ : τ ]S (γ � τ)


 ⎨

σ⊆Xk

[σ : γ ]S (σ � γ ) f (σ )


⎛

=
⎨

γ⊆Xk+1

⎨
σ⊆Xk

[σ : γ ][γ : τ ]S (σ � τ) f (σ )

=
⎨

σ⊆Xk

([σ : γ1][γ1 : τ ] + [σ : γ2][γ2 : τ ])S (σ � τ) f (σ )

= 0.

�

1 The proof of the Jordan curve theorem (for instance see Hatcher (2002, Sect. 2.B)) usually relies
on singular homology, which does not depend on the sheaf cohomology theory we are developing
here.
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Definition 4.12 The cohomology H•(X;S ) of a sheafS of abelian groups on a cell
complex X is the homology of the chain complex (C•(X;S ), d•). When the base
space is implied from context, we will sometimes write H•(S ) for the cohomology
of S . Similarly, the cohomology of S with compact supports H•

c (X;S ) is the
homology of the chain complex (C•

c (X;S ), d•).

Remark 4.2 We call H•(X;S ) “cohomology” as opposed to “homology,” because
in the context of cell complexes the term “homology” refers to a chain complex in
which the maps decrease cell dimension. According to the definition of the cobound-
ary map, dk converts stalks over cells of dimension k to k + 1, which is the opposite.

Example 4.10 Consider the following directed graph X , which we interpret as a cell
complex

�� • ��
�� • ��

The flow sheaf F (Example 3.6) on this space is given by

R

R R
2

sum
��

pr1

���������

pr2

		�
��

��
��

� R
2 sum ��

pr1

����������

pr2

��
��

��
�

R

R

The cochain complex for this sheaf is given by

0 ��
R

4 d ��
R

2 �� 0

where the coboundary map has the structure

d =
⎠

pr1 −pr1
pr2 −pr2

)
=

⎠
1 0 −1 0
0 1 0 −1

)
.

The signs in d come from an assumed arbitrary choice of orientation on the cells.
Since the cohomology is a vector space, the precise choice of orientations is irrelevant
to the resulting cohomology since any consistent choice will result in isomorphic
vector spaces. The resulting cohomology spaces are given by

Hk(X;F ) =
⎧
R

2 if k = 0

0 otherwise

The cochain complex with compact supports for F is different, since there are two
edges with non-compact closures, so



4.3 Sheaf Cohomology 101

0 ��
R

4

d=




1 0 −1 0
0 1 0 −1
1 1 0 0
0 0 1 1


⎛

��
R

4 �� 0

Since the matrix d has rank 3, this results in the compactly supported cohomology

Hk
c (X;F ) =

⎧
R if k = 0, 1

0 otherwise

One could also interpret the compactly supported cohomology as being the coho-
mology of a somewhat different sheaf, namely

R

0 ��
R R

2
sum

��

pr1

���������

pr2

		�
��

��
��

� R
2 sum ��

pr1

����������

pr2

��
��

��
�

R 0��

R

Theorem 4.1 Sheaf morphisms induce chain maps between the cochain complexes
of sheaves. Therefore sheaf cohomology is both a functor and a detector on sheaves.

Proof Let m : S → R be a morphism of sheaves over a cellular map f : X → Y .
Then m extends linearly to a sequence of maps mk : Ck(Y ;S ) → Ck(X;R). Then
for σ ⊆ Xk and τ ⊆ Xk+1 with σ � τ , we have the following commutative diagram

S ( f (σ ))
mk

σ ��

S ( f (σ )� f (τ ))

��

R(σ )

R(σ�τ)

��
S ( f (τ ))

mk+1
τ �� R(τ )

This leads to the following calculation with s ⊆ Ck(Y ;S )

⎜
(mk+1 ◦ dk)s

⎝
(τ ) =

⎜
mk+1

τ ◦ dk
Y s

⎝
(τ )

= mk+1
τ


 ⎨

f (σ )⊆Y k

[ f (σ ) : f (τ )]S ( f (σ ) � f (τ ))s( f (σ ))


⎛
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=
⎨

f (σ )⊆Y k

[ f (σ ) : f (τ )]
⎜

mk+1
τ ◦ S ( f (σ ) � f (τ ))

⎝
s( f (σ ))

=
⎨

σ⊆Xk

[σ : τ ]
⎜
R(σ � τ) ◦ mk

σ

⎝
s( f (σ ))

=
⎨

σ⊆Xk

[σ : τ ]R(σ � τ)
⎜

mk
σ s( f (σ ))

⎝

=
⎜
(dk

X ◦ mk)s
⎝

(τ )

as desired. �

Example 4.11 Consider the cellular map of two directed graphs, given by the dashed
arrows in the diagram

Recall that F2 is the field with two elements, which models binary arithmetic
(addition = exclusive OR, multiplication = AND), and F

2
2 is the 2-dimensional

vector space over F2. The following diagram shows a sheaf morphism over the
cellular map

F
2
2 F

2
2 F

2
2(

1 0
0 1

)��� � �

(
1 0
0 1

)

�� �����	


F
4
2

��

���������

�������
F

2
2m

��� � � � � � �

��

��
F

2
2 F

2
2(

1 0
0 1

)��� � � � � � �
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Fig. 4.6 Combining images representing different color channels into a single full-color image

where m is either




1 0
0 0
0 0
0 1


⎛ or




0 1
1 1
1 1
1 0


⎛. Observe that each square in the diagram above

commutes, and that the arrows are reversed with respect to the cellular map. Both of
these are defining features of a sheaf morphism.

This morphism induces a homomorphism on the sheaf cohomologies, which up
to selection of bases for H0 is given by the matrix for m.

The definition of the pushforward operation on sheaves induces a sheaf mor-
phism, and therefore a homomorphism on cohomology. Under a certain important
circumstance, this is an isomorphism.

Theorem 4.2 (Vietoris mapping theorem (Bredon 1997, Section II.11)) Suppose
that f : X → Y is a cellular map and that S is a sheaf on X. There is an
induced map on cohomology Hk(Y ; f∼S ) → Hk(X;S ) by Proposition 4.1. If
Hk( f −1(star y);S ) = 0 for all cells y ⊆ Y and all k > 0, then this map is an
isomorphism.

The interested reader should consult Chapter II of Bredon (1997), which provides
a self-contained exposition leading up to the proof of this theorem about half way
through.

Example 4.12 Combining the red, green, and blue color channels to form a full-
color image is a standard procedure in digital photography. Sometimes it is more
convenient to work with separate color channels, and sometimes it is more convenient
to work with the image as a whole. Exercise 3.1 called for the construction of the
space of all images as a sheaf I over a grid Z

2 of pixels. We represent the collection
of separate color channels as a sheaf C over the disjoint union Z

2 ◦Z
2 ◦Z

2, in which
the restriction to each component (color channel) is a copy of I .

We represent the process of combining separate color channels as a map f which
takes each pixel location in a color channel to its corresponding location in the
combined image, as shown in Fig. 4.6. The Vietoris mapping theorem applies to this



104 4 Detection

Fig. 4.7 The pushforward of sheaf F along a map that glues together two edges results in isomor-
phic sheaf cohomology

situation and implies that C and f∼C have isomorphic cohomology. This means that
the information stored in the separate color channels is the same as that which is
stored in the combined image. Furthermore, f∼C = I ∩ I ∩ I , so each pixel in
the combined image contains information from each of the color channels.

Example 4.13 Consider the case of a flow sheaf F on a directed graph X as shown
in Fig. 4.7. If a cellular map f : X → Y collapses the two input edges to one input
edge (as shown in the figure), then the resulting pushforward sheaf f∼F has the same
cohomology as F by Theorem 4.2. In this example, it is easily verified by direct
computation that H0(X;F ) ∗= H0(Y ; f∼F ) ∗= R

2 and that all other cohomologies
are trivial.

4.3.3 Interpretation and Examples

Recall that a global section of a sheaf S on X assigns a value in S (e) for each
cell e ⊆ X , provided this assignment agrees with the restrictions. Therefore, a global
section is completely determined by its values on the vertices on X . Since a sheaf
is also a functor, any two different compositions S (b � c) ◦ S (a � b) and
S (d � c) ◦S (a � d) must actually be the same function S (a) → S (c). Taken
together, these two statements mean that the global sections of S can be recovered
by restricting our attention to the 1-skeleton X1 only. (The importance of global
sections in signal processing is why most of the examples in this book are sheaves
over graphs.)

Theorem 4.3 The space of global sections of a sheaf S on a cell complex X is
isomorphic to H0(X;S ).

Proof Observe that C0(X;S ) consists of assignments of stalk values to vertices.
Therefore, S (X) should be thought of as a subset of C0(X;S ). It then remains to
show that S (X) = ker d0.

Suppose without loss of generality that X is a 1-dimensional cell complex, repre-
sented as an abstract simplicial complex with the (possible) use of an external vertex
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∼. Because we have excluded cells without compact closure, we can abuse notation
slightly and suppose that e = (v1, v2) is an edge in X . Then [v1 : e] = −1 and
[v2 : e] = 1. If f is a global section, this means that

(dk f )(e) =
⎨

a⊆X0

[a : e]S (a � e) f (a)

= [v1 : e]S (v1 � e) f (v1) + [v2 : e]S (v2 � e) f (v2)

= − f (e) + f (e) = 0.

On the other hand, if (dk f )(e) = 0, the same calculation implies that S (v1 �
e) f (v1) = S (v2 � e) f (v2), so the section f can be extended to e. �

The constant sheaf Z , which assigns the group Z to each cell and identity maps
to each attachment, is a useful tool for comparing cell complexes. For instance, the
rank of the first cohomology H1(X;Z ) can discriminate between a line segment, a
circle, and several circles attached to one another at a single vertex.

Example 4.14 Consider the constant sheaf over the cell complex model of a circle
with two vertices and two edges:

Z

Z

id
��

id

���
��

��
��

Z

id

���������

id��





Z

In this case, the cochain complex (C•(X;Z ), d•) has two nonzero terms, and is
given by

Z
2

d0=
(

1 −1
−1 1

)
��
Z

2 �� 0

Observe that dk is a homomorphism with a rank-1 kernel, so we conclude
H0(X;Z ) ∗= H1(X;Z ) ∗= Z. This agrees with the interpretation given in The-
orem 4.3, since the space of global sections over the circle is also Z.

Example 4.15 The Theorem is false for compactly supported cohomology,
H0

c (X;S ). Consider the cell complex structure

•
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on the open interval (−1, 1) and the constant sheaf Z over it. This sheaf has the
diagram

Z Z
id ��

id
��

Z

so its space of global sections is isomorphic to Z. Consider C•
c (X;S ), which is

C0
c ((−1, 1);Z ) = Z

d0=
(

1
1

)
�� C0

c ((−1, 1);Z ) = Z
2 �� 0.

The kernel of d0 is trivial, so H0
c (X;S ) = 0, which is not the space of global

sections.

Exercise 4.5 Compute the sheaf cohomology over the circle again, but with a cell
complex structure with more than 2 vertices and edges. You should find the same
answer as Example 4.14.

Remark 4.3 One should be very careful to use cell complexes and not just CW com-
plexes when manipulating sheaves. For instance, consider the CW complex structure
of the circle which consists of a single vertex and edge.

The resulting cochains fit together according to the diagram

Z
id ��

Z
�� 0

which whose homology is not the sheaf cohomology.

Exercise 4.6 Suppose that X is a cell complex representing a collection of N circles
attached to a common point. Compute the isomorphism types of H0(X;Z ) and
H1(X;Z ).

It should be noted that the cohomology of a constant sheaf is not a perfect invariant
for homotopy type of cell complexes.
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Example 4.16 The real projective planeRPn consists of the space of all lines through
the origin in R

n+1. One can easily construct RPn as a CW complex by taking the
quotient of the closed unit ball in R

n+1 by the antipodal map which takes x �→ −x .
The constant sheaves over the product spaces RP2 × S3 and RP

3 × S2 have the same
cohomology, but the two spaces are not homotopy equivalent. The proof that their
cohomologies agree is straightforward, and is left as an exercise. To show that they
are not homotopy equivalent, one can prove that their cohomology rings are different,
which is beyond the scope of this book (the interested reader is referred to Hatcher
(2002, Chapter 4)).

4.4 Long Exact Sequences for Cohomology

It is often easy to relate several sheaves to one another via a short exact sequence.
The snake lemma (Lemma 4.1) creates long exact sequences from short ones. This
makes it easier to reason about the cohomology of these sheaves. For instance, long
exact sequences obtained in this way permit the assembly of local data over two small
spaces into data over their union, and the reconstruction of a signal from its samples
(reproducing the Shannon-Nyquist theorem due to Nyquist (1928), Shannon (1949)
as a result).

4.4.1 Mayer–Vietoris Sequences for Sheaves

Suppose a cell complex X is formed from the union of two subcomplexes A and
B, and that there is a sheaf S over X . We can restrict our attention to the sheaf
over A and B separately; which sections on these subcomplexes extend to all of X?
The pullback of A along the inclusion i A : A → X is a sheaf i∼AS , which agrees
with S on A. Similarly, i∼BS restricts S to B. If we define jA : A √ B → A and
jB : A √ B → B to be inclusions, then j∼Ai∼AS = j∼Bi∼BS = i∼A√BS .

These pieces of information can be assembled into a short exact sequence between
the following sheaves

0 �� S
i∼A∩i∼B

�� i∼AS ∩ i∼BS
Δ �� i∼A√BS

�� 0

where Δ = j∼A − j∼B . This induces the Mayer-Vietoris long exact sequence
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Fig. 4.8 Three sections of a flow sheaf on a graph. Left section cannot be extended to e; middle
exactly one extension possible to e; right many extensions to e possible

· · · �� Hk(A ⊗ B;S ) �� Hk(A; i∼AS ) ∩ Hk(i∼B B;S )

��																											

Hk(i∼A√B A √ B;S ) �� Hk+1(A ⊗ B;S ) �� · · ·

We can interpret this as stating that sections over A and B separately can extend to
global sections precisely when they agree on A √ B. Usually, we think of A and B
initially in isolation, before later taking their union, as the following example shows.

Example 4.17 Consider the case of a flow sheaf (Example 3.6) on the directed graph
shown in Fig. 4.8, with the subcomplexes A and B as marked. A √ B consists of the
single edge e, where consistency between sections over A and B must be maintained
for a section over A or B to extend to the whole graph. For instance, on the middle
graph, the section over A (an element of H0(A; i∼AS )) has values of edges 3, 2,
e = 4, 1 reading clockwise from top left. The corresponding section over B has
values e = 4, 3, 7. The map Δ computes the difference between the sections over
A and B when restricted to e. Clearly this is zero in the the middle case. Therefore,
since these two sections are in the kernel of Δ, they must appear in the image of
i∼A ∩ i∼B : H0(X;S ) → H0(A; i∼AS )∩ H0(B; i∼BS ) by exactness. Therefore they
come from a single section over X .

For the case in the left frame of Fig. 4.8, observe that the section over A has the
value 4 over e, but that the section over B has the value 5 there. In this case, the map
Δ takes this pair of sections to 1, which is nonzero. Therefore, by exactness, this pair
of sections does not come from a single section.

Finally, for the case in the right frame of Fig. 4.8, there are many possible values
for e for sections over A and B separately. Several of them will result in the same
value over e, and therefore lead to several possible global sections.
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4.5 General Sampling Theorem for Signal Sheaves

Another important long exact sequence arises from a sheaf S over a cell complex
X and a subcomplex Y . This exact sequence has implications for the reconstruction
of a section from its values; it therefore captures the essential features of sampling.
A version of the Shannon-Nyquist theorem can be proven using this long exact
sequence.

Suppose that M is a sheaf over X that is supported on the subcomplex Y and that
m : S → M is a sheaf morphism along the inclusion Y → X . Recognize that this
defines a collection of maps my : S ( f (y)) → M (y). We therefore define a sheaf
A over X whose stalks are the kernels of these maps, and whose restrictions are the
restrictions of S restricted to the stalks of A . We have the short exact sequence of
sheaves

0 �� A �� S
m �� M �� 0

and by the snake lemma, we have the long exact sequence of the pair (X, Y )

· · · �� Hk(X;A ) �� Hk(X;S )
m• �� Hk(Y ;M ) �� Hk+1(X;A ) �� · · ·

This sequence is particularly helpful for understanding how local sections of
a sheaf extend to global ones. If we suppose that Y → X is the inclusion and
M (y) = S (y) for each cell y ⊆ Y , then the global sections of M (elements of
H0(Y ;M )) are local sections of S . If each my is surjective, then A is isomorphic
to the quotient sheaf S /M (see Definition 3.9).

The long exact sequence indicates that if H0(X;A ) = 0, then the kernel of m•
is 0. In this case, the induced map takes each global section of S to a unique global
section of M . On the other hand, if H0(X;A ) �= 0 then some global sections of S
map to the same global section ofM . Therefore, a necessary condition to reconstruct
a local signal in S from its samples in M is that H0(X;A ) = 0. We therefore call
A the ambiguity sheaf associated to the sampling morphism m.

On the other side of the exact sequence, if H1(X;A ) = 0, then every possible set
of samples can arise from a section of S . Therefore, we have proven the following.

Theorem 4.4 (Local signal sampling) Suppose that m : S → M is a sheaf mor-
phism over an inclusion and A is the associated ambiguity sheaf. Global sections
of S can be uniquely recovered from sections of M when H0(X;A ) = 0. If addi-
tionally H1(X;A ) = 0, then every section of M corresponds to a section of S .

Theorem 4.4 gives a general condition for recovery of a signal from samples. We
now examine a sufficient condition (oversampling), and then a necessary condition
(removal of ambiguity) for this recovery to succeed. Both of these general conditions
rely on some sheaves derived from the sheaf of signals.
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Definition 4.13 Suppose that S is a sheaf on a cell complex X . For a closed sub-
complex Y of X , let S Y be the sheaf whose stalks are the stalks of S on Y and zero
elsewhere, and whose restrictions are either those of S on Y or zero as appropriate.
There is a surjective sheaf morphism S → S Y and an induced ambiguity sheaf
SY which can be constructed in exactly the same way as A before.

Thus, the dimension of each stalk ofS Y is at least as large as that of any sampling
sheaf, and the dimension of stalks of SY are therefore as small as or smaller than
that of any ambiguity sheaf.

Proposition 4.2 (Oversampling theorem) If Xk is the subcomplex generated by the
k-cells of a cell complex X who have compact closure, then Hk(Xk+1;SXk ) = 0.

Proof By direct computation, the k-cochains of SXk are

Ck(Xk+1;SXk ) = Ck(Xk+1;S )/Ck(Xk;S )

=
⎪

a a k-face of X with compact closure

S (a)/
⎪

a a k-face of X with compact closure

S (a)

= 0.

�

Corollary 4.1 H0(X;SY ) = 0 when Y is the set of vertices of X.

Proposition 4.3 (Sampling obstruction theorem) Suppose that Y is a closed subcom-
plex of a cell complex X and m : S → M is a sampling of sheaves on X supported
on Y . If H0(X,SY ) �= 0, then the induced map H0(X;S ) → H0(X;M ) is not
injective.

Succinctly, H0(X,SY ) is an obstruction to the recovery of global sections of S
from its samples taken on the set Y .

Proof We begin by constructing the ambiguity sheaf A as before so that

0 �� A �� S
m �� M �� 0

is a short exact sequence. Observe that M → S Y can be chosen to be injective,
because the stalks of M have dimension not more than the dimension of S (and
henceS Y also). Thus the induced map H0(X;M ) → H0(X;S Y ) is also injective.
Therefore, by a diagram chase on

0 �� H0(X;A ) �� H0(X;S ) ��

∗=
��

H0(X;M )

��
0 �� H0(X;SY ) �� H0(X;S ) �� H0(X;S Y )
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Fig. 4.9 A sheaf PL and a sampling of its values at the vertices

we infer that there is a surjection H0(X;A ) → H0(X;SY ). By hypothesis, this
means that H0(X;A ) �= 0, so in particular H0(X;S ) → H0(X;M ) cannot be
injective. �

Example 4.18 Consider the sheaf PL (defined in Sect. 3.5) on a simplicial com-
plex representation for the interval [−1, 1], as given by the top row of the diagram
in Fig. 4.9. Recall that the sections of this sheaf are continuous, piecewise linear
functions whose slope may have a jump at 0. The diagram in Fig. 4.9 represents the
operation of sampling the values of these functions at the three vertices. In this case,
the ambiguity sheaf A is

0 ��
R

2
R

2

(
0 1/2
0 1

)

��(−1/2 0
1 0

)��
R

2 0��

Intuitively, sampling a continuous, piecewise linear function at each of its vertices
should allow for perfect reconstruction of the function. To verify that this agrees
with Proposition 4.3, we therefore compute the coboundary map d0 associated to
A , which is

d0 =




0 1/2
0 1

1/2 0
−1 0


⎛

The kernel of this matrix is trivial so H0(A ) = 0, which implies that sampling is
unambiguous.

4.5.1 The Shannon–Nyquist Theorem

As a special case of the general sampling theorems, we prove the traditional Shannon-
Nyquist theorem, by considering a sheaf of bandlimited signals on the real line R.

http://dx.doi.org/10.1007/978-3-642-36104-3_3
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Fig. 4.10 The short exact sequence of sheaves for the Nyquist theorem, in which the dotted arrows
indicate sheaf morphisms. The middle column represents the sheaf of bandlimited functions, the
right sheaf represents its samples, and the left sheaf represents the resulting ambiguity sheaf

We will use the cell complex structure X given by X0 = Z and X1 = {(n, n + 1)}.
We construct the sheaf C of bandlimited signals in a short exact sequence, as shown
in Fig. 4.10 and detailed below.

• For every cell, we represent the bandlimited signals on that cell by their Fourier
transform. Therefore, let every stalk of C be Cc(R,C), the set of compactly sup-
ported complex-valued continuous functions.

• Let each inclusion C ({n} � {n, n + 1}) and C ({n + 1} � {n, n + 1}) be the
identity.

Then H0(R;C ) is just Cc(R,C). Construct the sheaf M whose stalk on each vertex
is C and each edge stalk is zero. We construct a morphism by the zero map on each
edge, and by the inverse Fourier transform as shown below on vertex {n}

m{n}( f ) =
⎩ ≥

−≥
f (ω)e−2π inωdω.

Then the ambiguity sheaf A has stalks Cc(R,C) on each edge, and

A ({n}) = { f ⊆ Cc(R,C) :
⎩ ≥

−≥
f (ω)e−2π inωdω = 0}

on each vertex {n}.
The sections of H0(X;A ) consist of global sections of C for which

⎩ ≥

−≥
f (ω)e−2π inωdω = 0 for all n.
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Fig. 4.11 Graphs G1, and G2 (left) and G3 (right) for Lemma 4.3. Filled vertices represent elements
of Y , empty ones are in the complement of Y

Because many functions satisfy this collection of equations, the obstruction to recon-
struction is fairly large. However, the Shannon-Nyquist theorem argues that if a global
band limit is chosen, the obstruction vanishes.

Theorem 4.5 (Traditional Shannon-Nyquist theorem) Suppose we replace Cc(R,C)

with the set of continuous functions supported on [−B, B]. Then if B ≤ 1/2, the
resulting ambiguity sheaf A has H0(X;A ) = 0.

Proof The elements of H0(X;A ) are now given by the compactly supported con-
tinuous functions f on [−B, B] for which

⎩ B

−B
f (ω)e−2π inωdω = 0 for all n.

Observe that if B ≤ 1/2, this is precisely the statement that the Fourier series
coefficients of f all vanish; hence f must vanish. This means that the only global
section of A is the zero function. (Ambiguities can arise if B > 1/2, because the
set of functions {e−2π inω}n⊆Z is then not complete.) �

4.5.2 Sampling of Heterogeneous, Non-bandlimited Signals

The real power of using sheaves in sampling theory is their generality. Besides band
limited signals, there are other classes of signals that can be reconstructed from
their samples. The sheaf-theoretic Nyquist theorem can treat nontrivial base space
topologies as well as samples of different dimensions. Consider the example of the
sheaf of piecewise linear functions PL on a graph introduced in Sect. 3.5 and the
sampling morphism s : PL → PL Y where Y is a subset of the vertices of X .
Excluding one or two vertices from Y does not prevent reconstruction in this case,
because the samples include information about slopes along adjacent edges.

Lemma 4.3 Consider PL Y , the subsheaf of PL whose sections vanish on a
vertex set Y and the graphs G1, G2, and G3 as shown in Fig.4.11. There are no

http://dx.doi.org/10.1007/978-3-642-36104-3_3
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Fig. 4.12 The three families of subgraphs that arise when med (Y ) > 1. Filled vertices represent
elements of Y , empty ones are in the complement of Y

nontrivial sections of PL Y on G1 and G2, but there are nontrivial sections of
PL Y on G3.

Proof If a section of PL vanishes at a vertex x with degree n, this means that the
value of the section there is an (n + 1)-dimensional zero vector. The value of the
section on every edge adjacent to x is then the 2-dimensional zero vector. Since the
dimensions in each stalk of PL represent the value of the piecewise linear function
and its slopes, linear extrapolation to the center vertex in G1 implies that its value is
zero too.

A similar idea applies in the case of G2. The stalk at v has dimension 3. Any
section at v that extends to the left must actually lie in the subspace spanned by
(0, 0, 1) (coordinates represent the value, left slope, right slope respectively). In the
same way, any section at w that extends to the right must lie in the subspace spanned
by (0, 1, 0). Any global section must extend to e, which must therefore have zero
slope and zero value.

Finally G3 has nontrivial global sections, spanned by the one shown in
Fig. 4.11. �

Definition 4.14 On a graph G, define the edge distance between two vertices v, w
to be

ed(v, w) =
⎧

minp{# edges in p where p is a PL-continuous path from v → w}
≥ if no such path exists

From this, the maximal distance to a vertex set Y is

med (Y ) = max
x⊆X0

{min
y⊆Y

ed(x, y)}.

Proposition 4.4 (Unambiguous sampling) Consider the sheaf PL on a graph X
and Y ∈ X0. Then H0(X;FY ) = 0 if and only if med (Y ) ≤ 1.

Proof (∞) Suppose that x ⊆ X0\Y is a vertex not in Y . Then there exists a path
with one edge connecting it to Y . Whence we are in the case of G1 of Lemma 4.3,
so any section at x must vanish.

(⊂) By contradiction. Assume med (Y ) > 1. Without loss of generality, consider
x ⊆ X0\Y , whose distance to Y is exactly 2. Then one of the subgraphs shown in
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Fig. 4.12 must be present in X . But case G3 of Lemma 4.3 makes it clear that the
most constrained of these (the middle panel of Fig. 4.12) has nontrivial sections at
x , merely looking at sections over the subgraph. �

Proposition 4.5 (Non-redundant sampling of PL ) Consider the case of s :
PL → PL Y . If Y = X0, then H1(X;A ) �= 0. If Y is such that med (Y ) ≤ 1
and |X0\Y | + ∑

y /⊆Y deg y = 2|X1|, then H1(X;A ) = 0.

Proof The stalk of A over each edge is R
2, and the stalk over a vertex in Y is

trival. However, the stalk over a vertex of degree n not in Y is Rn+1. Observe that
if H0(X;A ) = 0, then H1(X;A ) = C1(X;A )/C0(X;A ). Using the degree
sum formula in graph theory, we compute that H1(X;A ) has dimension 2|X1| −∑

y /⊆Y (deg y + 1). �

4.5.3 Sampling in Topological Filters

We now tie up a loose end from Sect. 3.4.1, that of the proper definition of a topo-
logical filter.

Definition 4.15 A diagram of sheaf morphisms

S1 S2
m1�� m2 �� S3

is called a topological filter from S1 → S3 when m1 induces isomorphisms on
sheaf cohomology. We call S1 the input, S3 the output, and S2 the state of the
topological filter.

This definition generalizes the properties already seen in Sect. 3.4.1 and proven in
Proposition 3.4. Specifically, all linear translation-invariant filters are topological
filters. However, the class of topological filters is strictly larger. One need only
consider an appropriate diagram of sheaves over a graph in order to obtain a filter
for which “translation invariance” has no meaning.

Example 4.19 An example of a topological filter that is not also a translation invariant
system is shown in Fig. 4.13. The sheaf on the left and the sheaf in the middle
have isomorphic cohomology, and the morphism between them is an isomorphism.
Therefore, according to Definition 4.15, the sheaf on the left represents the filter’s
input signal. The middle sheaf (representing the internal state of the filter) plays the
role of reformatting the input in a way that is convenient to translate it to the output
sheaf on the right. The filter removes information, since the dimension of the space
of global sections of F1 is larger than that of F2.

Remark 4.4 Readers already familiar with sheaf theory will recognize a topological
filter as being a special kind of morphism in the derived category of sheaves (see
Shepard 1980, Chapter 2). The usual definition also applies to chain complexes

http://dx.doi.org/10.1007/978-3-642-36104-3_3
http://dx.doi.org/10.1007/978-3-642-36104-3_3
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Fig. 4.13 A topological filter which is not translation invariant

(Definition 4.6) of sheaves and chain maps as well, though we will not require this
level of generality.

The ambiguity sheaf can be extended to treat topological filters. Suppose f :
S → M is a topological filter. This means that there are two sheaf morphisms

S R
f1

�� f2 �� M

in which f1 induces an isomorphism on H0. Let us suppose that S , R, and M are
sheaves on X , Y , and Z , respectively. Ambiguities in sampling arise when the kernel
K of the map f2• : H0(Y ;R) → H0(Z;M ) induced by f2 is nontrivial. Since
f1 induces an isomorphism H0(Y ;R) → H0(X;S ), this means that f2•(K ) is a
nontrivial subspace of the space of global sections of S .

We can recover the ambiguity sheaf using the following procedure. Let A ≈ be the
ambiguity sheaf constructed so that

0 �� A ≈ i �� R �� M

is exact, with i being a sheaf morphism over the identity map. Therefore, A ≈ is a
subsheaf of R, and so we can obtain A as the image of A ≈ through f1, a subsheaf
of S . By construction, the space of global sections of A is isomorphic to f2•(K ).
In other words, we have the following necessary condition for recovery of samples
from a topological filter.

Proposition 4.6 The input to a topological filter can be recovered from its output
when the global sections of its ambiguity sheaf A are all zero.
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Fig. 4.14 A water flow network (left), and the concentration sheaf on this network (right)

4.6 Case Study: Tracking Water Pollution

The abundance of clean drinking water is a hallmark of civilization. Bringing clean
water into a city away from sources of pollution has presented an important engineer-
ing challenge from the earliest times. Contamination of water sources is a serious
public health problem, for which penalties have been established. However, once a
contamination has occurred, it can be difficult to establish blame conclusively. The
sampling theory for sheaves provides a useful framework for ensuring that conta-
minant concentration levels are sufficiently measured and that polluters are located
without any doubt.

4.6.1 A Sheaf of Concentrations

The flow of water through a network of channels can be represented by an oriented
1-dimensional cell complex, whose edges are labelled by a real-valued function F
representing the volume flow rate of water over that edge (in units such as liters per
second). We assume that F satisfies a conservation law: the sum of flow rates into a
vertex equals the sum of the flow rates out of it. See Fig. 4.14 for an example of cell
complex labeled with flow rates.

Remark 4.5 The possible flow rate functions on a cell complex X are given by the
global sections of the flow sheaf on X , as described in Example 3.6.

The flow of a contaminant carried by moving water can be described by a collec-
tion of measurements of its concentration. We assume that the contaminant mixes
thoroughly at each junction. From a modeling perspective, this means that the mass
of the contaminant is conserved at each vertex in X and that the concentration along
each edge exiting a given vertex is the same. This leads to the following definition
of a sheaf that records the concentration of a contaminated water network.
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Definition 4.16 The concentration sheaf C on X with flow F has stalk

• C (v) = R
n over each vertex v of X with indegree n, and

• C (e) = R over each edge e of X .

Suppose that v is a vertex in X , that {e+
1 , . . . , e+

n } are the incoming edges attached
to v, and that {e−

1 , . . . , e−
m } are the outgoing edges attached to v. Suppose that

(c1, . . . , cn) ⊆ C (v) are the concentrations on each of the incoming edges, so that

⎞
C (v � e+

i )
⎟
(c1, . . . , cn) = ci .

Because of the perfect mixing assumption, the concentration along each outgoing
edge is the same value, namely

⎞
C (v � e−

i )
⎟
(c1, . . . , cn) =

∑n
j=1 F(e+

j )c j∑n
j=1 F(e+

j )
.

Example 4.20 Consider the network shown at left in Fig. 4.14. Its corresponding
concentration sheaf is shown at right. What should be immediately clear is that por-
tions of the network have the same concentration. The place where the concentration
changes abruptly is at the lower right vertex. The outflow from this “mixing point”
has a concentration that is a weighted average of the concentration of its inflows.

4.6.2 Elementary Water Flow Networks

Example 4.20 shows that the concentration of a contaminant carried by a water flow
network changes abruptly at specific locations. This fact has implications for water
quality analysis and tracking. Consider the case of a drinking water distribution
network that draws water from a variety of sources and delivers it to a collection of
customers. If the network is contaminated at a specific location, can this location be
recovered by measurements at the point of delivery? Or is it necessary to monitor
water quality internal to the network as well?

In order to address this problem, we make use of the ambiguity sheaf associated to
sampling the concentration sheaf for the network. The cohomology of the ambiguity
sheaf quantifies both

1. the ways that a contaminated water network can incorrectly appear to be clean
and

2. the ways to assign blame for polluting the network

given a set of concentration measurements.
The concentration sheaves associated to the two networks shown in Fig. 4.15 are

isomorphic. Any network can be decomposed into a union of networks like the two
shown in Fig. 4.16. We analyze the sampling of water quality on these two networks
to understand sampling larger networks.
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Fig. 4.15 The concentration sheaves for these two distribution networks are isomorphic

Fig. 4.16 Splitting a single water source among several points of delivery (left), combining several
water sources (right)

Exercise 4.7 Construct the sheaf isomorphism between the concentration sheaves
for the networks shown in Fig. 4.15.

The network on the right of Fig. 4.16 cannot be completely characterized by
measurements at the single delivery point. Specifically, if no contaminant is found
at the delivery point, then neither source was contaminated. However, if the delivery
point is contaminated, it is impossible to tell which source was the culprit, or if both
were contaminated. To make that inference, we must measure at the sources. To
demonstrate how the sheaf-theoretic sampling methodology works, observe that the
concentration sheaf for the network is given by the following diagram

R

... R
n

id

����������

id

����
��

��
��

M ��
R R

id
��

R

where M is given by a matrix that depends on the flow rates into the combiner. The
sampling sheaf associated to measuring at the delivery point has the diagram
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0

... 0

id

����������

id

����
��

��
��

�� 0 R
id

��

0

This leads to the following ambiguity sheaf A

R

... R
n

id

����������

id

����
��

��
��

M ��
R 0

id
��

R

which has coboundary map

d0 =
⎜

F(e1)
F(en+1)

F(e2)
F(en+1)

· · · F(en)
F(en+1)

⎝
.

This matrix has a kernel with dimension n−1, which is also the dimension of H0(A ).
Each element of this space of global sections can be generated by elements like

−1/Fi

...
(0, . . . , 0,−1/Fi , 0, . . . , 0, 1/Fj , 0, . . . , 0)

���������������������

��



















�� 0 0��

+1/Fj

This indicates that concentration at the output can be held constant by reducing
the concentration at one source and increasing it at the other. Referring back to the
original concentration sheaf, if the outflow concentration is zero, then no one is
polluting. However, if the outflow concentration is not zero, it is impossible to tell
which source is polluting. Sadly many rivers are like this, which makes tracking
contaminants and assigning blame impossible without additional measurements.

The network on the left of Fig. 4.16 can be measured completely at its delivery
points. This structure is very common in drinking water distribution networks, where
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a single water main is the source, and each delivery point represents a water customer.
In this case, the concentration sheaf has the particularly simple structure given by
the diagram

R R
id

��

R R
id��

id

��������

id
���

��
��

��
�

...

R R
id

��

By inspection, the space of sections is determined uniquely by measurement at any
one of the delivery points. Therefore, the contaminant concentration at the source
can be recovered exactly from a measurement at any of the delivery points. Because
of this reason, it is easy to ensure safe drinking water in a sealed distribution system
(and track contaminations to their source) by endpoint checks.

Exercise 4.8 Apply the sheaf-theoretic sampling formalism to the network on the
left of Fig. 4.16. Specifically,

1. Construct the sampling sheaf that represents measuring the contaminant concen-
tration at one of the delivery points,

2. Construct the associated ambiguity sheaf A for your sampling sheaf,
3. Write the coboundary map d0 : C0(A ) → C1(A ) as a matrix, and
4. Verify that the kernel of d0 is trivial.

Exercise 4.9 Consider the network

Channel

�������������

Source

������������

������������ Combiner �� Delivery point

Channel

�������������

1. Construct the concentration sheaf over this network (with flow rates left as
variables).

2. Compute cohomology of the ambiguity sheaf sampled at each of the Source,
Channel, and Combiner.

3. Interpret your results in terms of water quality measurement.
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Fig. 4.17 A water distribution network including a city, reservior, and industrial areas. Two sets of
water quality monitoring stations are marked: circles (water stream inputs) and stars (key nodes)

Fig. 4.18 The concentration sheaf associated with the water distribution network shown in Fig. 4.17

4.6.3 Measurement of Larger Networks

Consider the water distribution network shown in Fig. 4.17. This network contains
a number of sources, delivery points, and internal junctions. We will consider the
implication of sampling either at each source (points marked with circles) or at a few
key locations (points marked with stars). Although sampling at the water treatment
plant certainly ensures safe drinking water for the city, it provides no way to conclu-
sively detect pollution from the factory or the power plant. If pollution is detected,
it is unclear whether it is from the factory, the reservoir, or from the river. Worse,
pollution from the power plant will go undetected. This model illustrates why it is
difficult to ensure compliance with environmental regulations; they fundamentally
require some amount of cooperation from the polluters.

Consider the case of measuring the concentration at each source (the circles in
Fig. 4.17 using the concentration sheaf in Fig. 4.18). To obtain the ambiguity sheaf
from Fig. 4.18, it suffices to set each circled stalk to zero. The resulting ambiguity
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sheaf’s coboundary map has the form




1
1

∼ ∼ 1
1

∼ ∼ 1
1
1 1
1 1
1 1

1
∼ ∼ 1


⎛

which is of full rank. Hence there is no ambiguity that arises from sampling water
quality at each source.

This is perhaps wasteful in that it requires more measurements than is necessary
as the next exercise shows.

Exercise 4.10 Show, by computing the cohomology of the ambiguity sheaf, that
sampling at the starred nodes in Fig. 4.17 is sufficient to completely determine the
concentration at all points in the network.

4.7 Case Study: Extracting Topology from Intersections
in Coverage

We continue the case studies from Chaps. 2 and 3, in which we study the topology of
a wave propagating environment with multiple transmitters and receivers. By using
information about the shadows cast by various obstacles for different transmitters, it
is possible to assemble a cell complex model of the scene. Under favorable circum-
stances, this model is homotopy equivalent to the scene, where the occlusions are
represented as being regions where propagation is disallowed.

4.7.1 The Nerve Model of a Space

In order to construct the model of a propagating environment for transmitters and
receivers, we need to study the structure of open covers. We assign an open set Ui to
each transmitter i , which represents its coverage region, the region on which its signal
can be reliably received. We will assume that the collection U = {U1, . . . , Un} of
open sets forms a cover of the entire propagating environment X , by which we mean⋃

i Ui = X .

http://dx.doi.org/10.1007/978-3-642-36104-3_2
http://dx.doi.org/10.1007/978-3-642-36104-3_3
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Fig. 4.19 An open cover U (left) and its nerve (right)

Open covers play an important, general role in the topological study of spaces.
The notion of a nerve (Fig. 4.19) connects open covers to the homotopy type of a
topological space.

Definition 4.17 Suppose that U is an open cover of a topological space X . The
nerve of U (written N (U )) is the abstract simplicial complex on the elements of
U (the abstract vertices) in which there is a k-simplex {U1, . . . , Uk+1} for each
nonempty intersection U1 √ · · · √ Uk+1 of k + 1 sets U1, . . . , Uk+1 ⊆ U .

Because N (U ) is an abstract simplicial complex (see Sect. 2.2.1), it can be real-
ized (Definition 2.11) as a CW complex in which each attachment corresponds to a
subset relation. If a simplex τ = {Ui1 , . . . , Uin } is attached to σ = {U j1, . . . , U jm }
in the nerve of a cover U , this means that as sets of open sets

{Ui1 , . . . , Uin } ∪ {U j1, . . . , U jm }.

Therefore m > n, so the dimension of σ is larger than that of τ . However, as subsets
of X , observe that

U j1 √ · · · √ U jm ∪ Ui1 √ · · · √ Uin .

The intersection of open subsets of X corresponding to the higher dimensional sim-
plex σ is a subset of the lower dimensional simplex τ .

If the transmitters can be uniquely identified by the receivers, it is straightfor-
ward to assemble a nerve from the coverage regions U = {Ui }. The presence of a
nonempty intersection between coverage regions is witnessed by the existence of a
receiver detecting several transmitters simultaneously.

If a receiver r j detects the transmitter at ti , then r j ⊆ Ui . The nerve can then
be assembled using only knowledge of the r j and their membership in the coverage
regions. Practical systems often ascertain whether a receiver detects a transmitter or
not by testing whether the received signal strength from that transmitter is higher
than a specified detection threshold D. Additionally, it is possible for noise to cause

http://dx.doi.org/10.1007/978-3-642-36104-3_1
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a receiver to falsely detect a transmitter. Therefore, we assume that Ui1 √ · · · √Uik is
nonempty if and only if there is at least a minimum number of r j in that intersection.
This minimum number is called the witness threshold. Using this, we arrive at the
nerve N (U , R) of U witnessed by R = {r j }m

j=1, which can be a good approximation
to the nerve of U .

An algorithm for computing the nerve associated to a set of signal strength mea-
surements can be defined as follows.

Algorithm 2. (Computing the nerve of a cover)
Input:

1. The witness threshold W
2. The detection threshold D
3. A list of transmitters T and a list of receivers R
4. An n × m matrix of signal strengths si, j received by r j ⊆ R from transmitter

ti ⊆ T

Output: A list of lists of transmitters specifying the simplices the nerve N (U , R)

Procedure:

1. Nerve ← {}
2. For each subset {τ1, . . . , τk} ∈ {1, . . . , n},

a. counter ← 0
b. For j = 1 to m,

i. If all of the sτi , j > D for i = 0 to k, then increment counter
c. If counter > W , then append {τ1, . . . , τk} to Nerve

3. Return Nerve

This algorithm is not the most efficient one possible, because it iterates over all
possible simplices formed with transmitters as vertices. This set is quite large, and
can be managed by placing an upper bound on the dimension of simplices that will
be constructed.

Exercise 4.11 Describe how to modify Algorithm 2 for a general open cover. Hint:
Only one line really needs to be changed.

Example 4.21 Consider the floorplan of the third floor of the David Rittenhouse
Laboratory of the University of Pennsylvania shown in Fig. 4.20. There are eight
wireless network transmitters located on the walls as indicated in the figure. Using a
simple model of radio propagation, the received signal strength from each transmitter
was simulated on a dense grid of points spaced every 0.5 m. The signal strength
for transmitter 1 is shown in grayscale in Fig. 4.20. This simulated the process of
sampling the environment by moving a receiver to many locations.

Using these predicted measurements, the matrix of signal strengths was computed
and is shown in Fig. 4.21. Note in particular that the matrix has eight rows and many
columns, one for each location where the receiver was placed. The banded structure in
this matrix is an artifact of how the receiver was raster-scanned through the hallways.
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Fig. 4.20 Dimensioned floorplan of the third floor of David Rittenhouse Laboratory with the
received signal strength of transmitter 1 shown

The output of Algorithm 2 for several choices of witness and detection thresholds
is shown in Figs. 4.22 and 4.23. It is difficult to visualize the output nerves, which are
abstract simplicial complexes. Since the locations of the transmitters were known
in this simulation, they have been used to specify the locations of the vertices of
the nerves. This makes the relationship between the topology of the nerve and the
topology of the floorplan easier to see. In practice, this information may not be
available.

For certain choices of thresholds (as in Fig. 4.22), the nerve correctly recovers the
fact that there is a walled courtyard in the building, through which radio signals will
not propagate.

Figure 4.23 shows small changes in the thresholds can result in substantially differ-
ent nerves. This means that Algorithm 2 is not very robust; practical implementations
require that this defect be mitigated. An important first step is to establish theoretical
guarantees on correct performance of the Algorithm. We cannot hope for a geomet-
ric condition based on signal-to-noise ratio or the distances between measurements,
since the nerve only depends on the intersections of open sets. Instead, there is a
topological statement about the quality of the overall transmitter and receiver place-
ments. Although a complete characterization of placements that yield topologically
accurate nerves is elusive, there is a famous sufficient condition called the Nerve
Lemma, originally due to Borsuk (1948).
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Fig. 4.21 Simulated received signal strength matrix for the third floor of David Rittenhouse
Laboratory

Fig. 4.22 Two outputs of Algorithm 2. Left witness threshold at 1 location and detection threshold
at −19 dB. Right witness threshold at 50 locations and detection threshold at −22 dB

Theorem 4.6 (the Nerve Lemma) Let Z be the constant sheaf over a cell complex
X. If U is an open cover of X in which every intersection between sets in U is
contractible, then the cohomology of the constant sheaf over the nerve H•(N (U );Z)

is isomorphic to H•(X;Z).

The nerve lemma requires the use of singular cohomology and is proven in Bott
and Tu (1995, Thm. 8.9 and Prop. 10.6).
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Fig. 4.23 Two outputs of Algorithm 2. Left witness threshold at 1 location and detection threshold
at −18 dB. Right witness threshold at 1 location and detection threshold at −22 dB

Fig. 4.24 An open cover U (left), its nerve N (U ) (middle), and its witnessed nerve N (U , R)

(right)

Corollary 4.2 If there is a receiver in each k-wise intersection of U , then the coho-
mologies of the constant sheaves over N (U ) and N (U , R) are isomorphic. If there
is not, then the cohomologies of N (U ) and N (U , R) may be different, as shown in
Fig.4.24.

Algorithm 2 is fairly simple to implement, and can produce good results if the
coverage regions aren’t too complicated as the previous example shows. However, for
poor signal coverage or inappropriate choice of thresholds, the nerve will not reflect
the topology of the space, as shown in Fig. 4.23. Chapter 6 addresses the robustness
of the nerve as thresholds are varied. In particular, Sect. 6.6 shows that this particular
dataset is severely undersampled.

Corollary 4.2 provides some measure of control on the number of receivers or
transmitters necessary to properly witness the nerve. The more substantial problem
is that the coverage regions may intersect, but not in a contractible set. This problem
is particularly acute in the case of undersampled data, because the threshold needed
satisfy the Nerve Lemma will likely not be witnessed. (See Fig. 4.25 for an example.)

Increasing the detection threshold resolves this problem, but if there are enough
measurements, randomly downsampling them can also be effective. For instance,
using all measurements (on the rectangular 0.5 m spaced grid, a total of more than
2,500 receiver locations) at a detection threshold of −22 dB produced the nerve
at right in Fig. 4.23, which fails to detect the courtyard. Downsampling to only 100

http://dx.doi.org/10.1007/978-3-642-36104-3_6
http://dx.doi.org/10.1007/978-3-642-36104-3_6
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Fig. 4.25 A problem with the intersection of two coverage regions; it’s not contractible

Fig. 4.26 Output of Algorithm 2 with witness threshold at 1 location and detection threshold at
−22 dB, but using 100 randomly placed receivers

receiver locations recovers the missing topological feature representing the courtyard,
as shown in Fig. 4.26.

Instead of assembling the nerve of the coverage regions for the transmitters, it
is possible to build a nerve using the coverage regions for each receiver. Namely,
the coverage regions V = {Vj }m

j=1 are assigned to each receiver r j over which a
transmitter will be detected by r j . We could then construct N (V , T ). If there are
fewer receivers than transmitters, then N (V , T ) will have fewer cells than N (U , R)

which can ease the memory required for storing the nerve.
At first glance, it would seem that N (U , R) and N (V , T ) are very different.

However, both complexes come from a single relation P ∪ T × R where ti Pr j if and
only if r j can detect a transmission from ti . According to Dowker’s theorem below,
the geometric realizations |N (U , R)| and |N (V , T )| are homotopy equivalent.

Theorem 4.7 (Dowker’s theorem) Suppose that P ∪ T × R is a relation between
two finite sets. Suppose that K is an abstract simplicial complex in which each
simplex is a collection of elements of R related to a single element t ⊆ T . Dually,
suppose that L is an abstract simplicial complex in which each simplex is a collection
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Fig. 4.27 An example of a relation and the two complexes constructed by Dowker’s theorem

of elements of T related to a single element r ⊆ R. Then the realizations of K and
L are homotopy equivalent (See Fig.4.27).

Proof (sketch; see Dowker (1952) for a complete proof) The idea of the proof is
that cellular maps f : K → L and g : L → K can be constructed which take
each simplex in K to a simplex in L (nonuniquely) and vice versa. (For technical
reasons, it is sometimes necessary to subdivide a simplex first, thereby obtaining
a cellular map from a refinement of the domain rather than K or L .) For instance,
f is constructed so that every vertex of f (σ ) is R-related to every vertex of σ . This
is possible by the constructions of K and L . Under the appropriate choice of maps,
f and g form a homotopy equivalence. �

Example 4.22 Consider the relation shown in Fig. 4.27 and the associated complexes
K (associated to the columns of R) and L (associated to the rows of R). From the
figure, it is clear that the geometric realizations of the two complexes are homotopy
equivalent, since it is possible to deform L into K after relabeling simplices.

Considering the maps f and g defined in the sketch of the proof, there is only one
possibility for f . This is given by

f ({A}) = {a}, f ({B}) = {b}, f ({C}) = {c},
f ({A, B}) = {a, b}, f ({A, C}) = {a, c}, f ({B, C}) = {b, c}

Analogously, the only choice for g is

g({a}) = {A}, g({b} = {B}, g({c}) = {C}, g({d}) = {C},
g({a, b}) = {A, B}, g({a, c}) = {A, C}, g({b, c}) = {B, C},

g({b, d}) = {B, C}, g({c, d}) = {C}, g({b, c, d}) = {C}.
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4.8 Open Questions

1. The exact sequence of sheaf cohomology for a cellular pair (X, Y ) appears to be
a powerful inference tool. However, its use in the proof of the sampling theorems
appears to require detailed knowledge about the sheaf in question. Is there a
general sampling theorem that is less sensitive to the specific sheaf being sampled?
For instance, can Propositions 4.2 and 4.3 be generalized?

2. Is there always a sharp bound on the sampling rate required to recover signals
over networks (such as exhibited in Propositions 4.4 and 4.5), or are there classes
of networks for which such bounds cannot be given?

3. The nerve computed using Algorithm 2 appears to be rather sensitive to noise.
Can its robustness be improved, especially given that reducing the sampling rate
can apparently improve the result?
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Chapter 5
Transforms

This chapter will

1. Explain the Euler characteristic, a particular detector,
2. Connect the theory of detectors to the theory of integrals using the Euler charac-

teristic,
3. Explain how the Euler integral counts targets whose shape is uncertain, and
4. Use the Euler characteristic to develop a class of hybrid geometric/topological

transforms whose shape selectivity can be tailored.

Many filters arise from operating locally in a transformed space of functions. In
contrast to filters, the transforms themselves are non-local and have global symme-
tries. For instance, the uncertainty principle in the Fourier transform ensures that
the value of a function at a particular point can impact all frequencies. Most trans-
forms in traditional signal processing are geometrically rigid, and are associated to
a particular spatial geometry. For instance (Antimirov et al. 1993),

• Fourier series are associated to tori with definite radii,
• the Fourier transform is associated with Euclidean space,
• the Bessel transform is associated to disks,
• the spherical harmonics are associated to spheres, and
• the Mellin transform is associated with infinite wedges.

The usefulness of a transform relies on matching it to the domain; if the domain’s
geometry is unknown, then it is unclear which transform to use. Even if the domain is
known, much effort has been expended by many researchers in developing approxi-
mate transforms, or modifying existing transforms for them. These are noble pursuits,
resulting in useful matched filters that mitigate distortions and allow substantial
improvements in signal-to-noise ratio. On the other hand, any deviation from the
expected domain degrades the effectiveness of a transform-based method.

This chapter discusses transforms that use topological invariants to decrease their
sensitivity to the domain. Although presently there is no purely topological transform
theory, in which transforms are tailored to topological type rather than geometry, there
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Mathematical Engineering, DOI: 10.1007/978-3-642-36104-3_5,
© Springer-Verlag Berlin Heidelberg 2014



134 5 Transforms

is a way to reduce the impact of certain geometric dependencies. By developing the
theory of transforms based on the Euler integral, one can control which symmetries
the resulting transform preserves. Unlike traditional integration theory, based on the
Lebesgue measure, the Euler integral uses the Euler characteristic (a simple, but fun-
damental, topological invariant) in place of a measure. We discuss several important
examples of Euler integral transforms and their potential uses in applications.

5.1 The Euler Characteristic

Suppose that

· · · dk−1 �� Ck
dk �� Ck+1

dk+1 �� · · · (5.1)

is a chain complex (Definition 4.6).

Definition 5.1 The Euler characteristic of the chain complex (C•, d•) is the alter-
nating sum

χ(C•) =
∑

k

(−1)k dim Ck

of dimensions of the cochain groups.

If infinitely many terms of the chain complex are nontrivial, or any are infinite
dimensional, then the Euler characteristic is not defined. It is clear that the Euler
characteristics of two isomorphic chain complexes are the same. What is more sur-
prising is that the Euler characteristic only depends on the homology of the chain
complex, especially since the maps dk do not appear in the definition of the Euler
characteristic.

Example 5.1 Consider the chain complex (see Exercise 4.4)

0 ��
R

4 d0
��
R

6 d1
��
R

4 d2
��
R

�� 0.

where

d0 =




1 −1 0 0
1 0 −1 0
1 0 0 −1
0 1 −1 0
0 1 0 −1
0 0 1 −1




,
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d1 =




0 0 0 1 −1 1
0 −1 1 0 0 −1
1 0 −1 0 1 0

−1 1 0 −1 0 0


 ,

and
d2 = ⎛

1 1 1 1
⎜
.

The Euler characteristic of this chain complex is 4 − 6 + 4 − 1 = 1.
Now, let us consider the homology of this chain complex. Observe that by row

reducing d0, we find that rank d0 = 3, rank d1 = 3, and rank d2 = 1. Thus
dim H0 = 4 − 3 = 1, dim H1 = (6 − 3) − 3 = 0, and dim H2 = (4 − 1) − 3 = 0.
Hence, dim H0 − dim H1 + dim H2 = 1, which agrees with the Euler characteristic
of the chain complex.

Lemma 5.1 If the Euler characteristic of chain complex (C•, d•) is defined, then
the Euler characteristic of its homology, given by

χ(H•) =
∑

k

(−1)k dim Hk

has the same value.

Proof (standard, see for instance Hatcher 2002; Curry et al. 2012) Since the homol-
ogy Hk = ker dk/image dk−1, then

dim ker dk = dim Hk + dim image dk−1.

However, since dk+1 ⊆ dk = 0,

dim Ck = dim ker dk + dim image dk−2.

Therefore,

dim Ck = dim Hk + dim image dk−1 + dim image dk−2.

Now observe that

χ(C•) =
∑

k

(−1)k dim Ck

=
∑

k

(−1)k(dim Hk + dim image dk−1 + dim image dk−2)

=
∑

k

(−1)k dim Hk +
∑

(−1)k(dim image dk−1 + dim image dk−2)

=
∑

k

(−1)k dim Hk + (dim image d0 + 0) − (dim image d0 + dim image d1) + · · ·
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Fig. 5.1 The Euler characteristic generalizes the counting of connected components, though loops
(middle right) destroy the analogy

=
∑

k

(−1)k dim Hk .

→�
Definition 5.2 (Dimca 2004) The Euler characteristic χ(S ) of a sheaf S on X is
the Euler characteristic of its cochain complex (Ck(X;S ), dk). The compact Euler
characteristic χc(S ) is the Euler characteristic of its compactly supported cochain
complex (Ck

c (X;S ), dk). The Euler characteristic of a cell complex X is the compact
Euler characteristic of the constant sheaf R.

Proposition 5.1 The Euler characteristic of a cell complex X is given by

χc(X) =
∑
c∈X

(−1)dim c =
dim X∑
k=0

(−1)k#{cells of dimension k}.

Proof Simply construct the cochain complex for the constant sheaf R. →�
Example 5.2 If a CW complex is homotopy equivalent to a set of points, then its
Euler characteristic is the number of its connected components (see the far left,
middle left, and far right frames of Fig. 5.1). However, if the CW complex contains
loops (middle right frame of Fig. 5.1), then the Euler characteristic will differ from the
number of connected components. Specifically, if there are only vertices, the Euler
characteristic is the number of vertices. Each edge has two endpoints, and so adding
an edge usually removes a connected component. A loop has Euler characteristic zero,
so each 2-dimensional cell always adds back an additional connected component by
filling in a hole. As the definition of the Euler characteristic makes clear, this pattern
continues for higher-dimensional cells.

Exercise 5.1 Table 5.1 exhibits the Euler characteristic of some familiar cell com-
plexes, computed using Proposition 5.1.

1. Verify the entries in the table by constructing the cell complex and counting cells.
2. For each cell complex listed in the table, construct a different cell complex that

is homotopy equivalent to it. What are the Euler characteristics of the complexes
that you constructed?
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Table 5.1 Euler
characteristic of some
familiar cell complexes, each
with an assumed cell complex
structure

Cell complex dim C0 dim C1 dim C2 χ

Interval (0, 1) 0 1 0 −1
Interval [0, 1) 1 1 0 0
Interval [0, 1] 2 1 0 1
Disk 1 1 1 1
Annulus 2 3 1 0
Cube 8 12 6 2
Tetrahedron 4 6 4 2
Torus 1 2 1 0

Proposition 5.2 The cohomology of the constant sheaf is a homotopy invariant, and
therefore does not depend on the particular choice of cell decomposition.

For a proof of this proposition, see Hatcher (2002, Thm 2.27).

5.1.1 Valuations

The Euler characteristic generalizes counting for finite sets: if A is a finite set, then
the Euler characteristic A is equal to the cardinality of A. Valuations also general-
ize counting, and the Euler characteristic is one of the two best-known valuations.
Valuations are important because the concept of integration of functions extends to
valuations; this leads to topologically-motivated integral transforms.

Definition 5.3 Suppose that B is a collection of sets that is closed under union and
intersection. A valuation on B is a function v : B ∼ R that satisfies

v(A ≤ B) = v(A) + v(B) − v(A ∪ B) (5.2)

for all A, B ∈ B.

Example 5.3 The simplest example of a valuation is the counting measure | · |, which
returns the cardinality of a set. The counting measure is defined on the collection of
all sets, in which case (5.2) is merely the inclusion-exclusion principle.

Valuations therefore generalize the concept of counting. They can also describe
counting only the sets that “matter” as the next exercise shows.

Exercise 5.2 Suppose that B is closed under union and intersection and that x ∈⎝
B. Show that the Dirac measure δx concentrated at x defined by the formula

δx(A) =
⎞

1 if x ∈ A
0 otherwise.

is a valuation.
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Valuations also can be used for measuring area. Suppose that B is a finite collec-
tion of open subsets of R2 that is closed under unions and intersections. Then for a
set A ∈ B, let

a(A) =
⎟⎟

A
dx dy.

Exercise 5.3 Using the properties of integrals, show that a is a valuation.

Remark 5.1 Readers familiar with the definition of a measure will recognize that all
measures are valuations. However, there are two ways that valuations may fail to be
measures, namely

1. measures of a set must be nonnegative, but valuations can take negative values,
and

2. measures are σ-additive, while valuations usually are not.

The lack of σ-additivity typically means that all calculations involving valuations
must be finite; this is why cell complex decompositions and constructible functions
play an important role in the following sections. Since measures are somewhat better-
behaved, one can make practical use of them on substantially more pathological
collections of sets than is feasible with valuations.

Proposition 5.3 Suppose that X is a cell complex and that A ≤ B = X are two
subcomplexes. Then χ(X) = χ(A) + χ(B) − χ(A ∪ B), so the Euler characteristic
is a valuation.

Proof Observe that for the constant sheaf Z , the following sequence of cochains

0 �� Ck
c (X;Z ) �� Ck

c (A;Z ) ∗ Ck
c (B;Z ) �� Ck

c (A ∪ B;Z ) �� 0

is exact. (This is the Mayer-Vietoris short exact sequence for constant sheaves.) This
means that

dim Ck
c (X;Z ) = dim Ck

c (A;Z ) + dim Ck
c (B;Z ) − dim Ck

c (A ∪ B;Z )

whence the result follows immediately. →�

5.1.2 The Euler Integral

In order to build a suitable integration theory based on valuations, the functions we
integrate should be suitably controlled. Following the common theme of this book,
the appropriate functions are those that are compatible with an underlying cellular
structure.

Definition 5.4 A function f : X ∼ Y between topological spaces is constructible if
there exists a (nonunique) cell complex Xf for which (a) there exists a homeomorphism
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h : Xf ∼ X and (b) f ⊆ h is constant on each cell of Xf (Van Den Dries 1998). (Con-
structible functions are usually not continuous.) The space of constructible functions
from X to Y is denoted CF(X, Y). We will usually abuse notation and write f instead
of f ⊆ h.

Constructible functions are a particularly nice generalization of piecewise con-
stant functions, in which the discontinuities are confined to occur at cell boundaries.
Without too much loss of generality, we therefore usually constrain our attention to
CF(X,Z), integer-valued constructible functions.

Remark 5.2 In this book, we have been inspired by Shepard (1980) to use cellular
sheaves, which respect a fixed cell complex structure. These are very effective tools
for signal processing, but their use is at variance with the traditional literature on
sheaves. Under the more traditional definition, CF(X, Y) is a sheaf (Schürmann
2003). Since each function in CF(X, Y) is constructible with respect to a different
cell complex structure, CF(X, Y) is not a cellular sheaf. This is a weakness of cellular
sheaves, though it does not impact our exposition here.

Valuations are important because they permit the concept of integration to be
extended to functions of cell complexes in a rather general way.

Definition 5.5 Suppose f ∈ CF(X,Z), and that v is a valuation on the cells of Xf .
Then the v-integral of f is

⎟
f dv =

∩∑
k=−∩

kv
⎠

f −1(k)
)

.

If v = χ , the Euler characteristic, then the resulting integral is called the Euler
integral.

Example 5.4 Computation of the Euler integral of a constructible function can be
subtle. Figure 5.2 shows a constructible function and the breakdown of its Euler
integral computation. It is essential to account for the boundaries of each level set
correctly in order to arrive at the correct answer. In this example, we assume that the
function is upper semicontinuous, which means that the value of the function at each
jump discontinuity is equal to the largest of its possible limits. Therefore, the level
set where the function takes the value 4 includes its boundary. The other level sets
do not include the inner boundaries, but do include the outer boundaries.

Exercise 5.4 1. Show that if f ∈ CF(X,Z) only takes on finitely many values,
then ⎟

f dv =
∩∑

k=0

v
⎠

f −1((k,∩))
)

− v
⎠

f −1((−∩,−k))
)

.

2. This form of the Euler integral is more tolerant to discretization error than comput-
ing the Euler characteristic of level sets (Baryshnikov and Ghrist 2009). Explain
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Fig. 5.2 An example Euler integral computation

the difference between the two formulas for computing
∫

f dv when f is evaluated
at a discrete grid of points.

Example 5.5 The v-integrals of constructible indicator functions are particularly
simple. Suppose that A ⊂ X is a subcomplex of a cell complex X and that 1A is the
indicator function on A, namely that

1A(x) =
⎞

1 if x ∈ A
0 otherwise

Using the definition of the v-integral,

⎟
1A dv = 1v

⎠
1−1

A (1)
)

= v(A).

So the v-integral is a tool for extending valuations from sets to functions on sets.

Proposition 5.4 The v-integral, as a function CF(X;Z) ∼ Z is linear.

Proof Suppose that h, g ∈ CF(X;Z). By definition, this means that they can be
written in the form of sums of indicator functions

h =
∑

j

aj1Aj , g =
∑

k

bk1Bk .

Thus
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h + g =
∑

j

aj1Aj +
∑

k

bk1Bk

=
∑

j

∑
k

(aj + bk)1Aj∪Bk .

Considering the integral, we obtain

⎟
h + g dv =

⎟ ∑
j

∑
k

(aj + bk)1Aj∪Bk dv

=
∑

j

∑
k

(aj + bk)

⎟
1Aj∪Bk dv

=
∑

j

∑
k

(aj + bk)v(Aj ∪ Bk)

=
∑

j

ajv(Aj) +
∑

k

bkv(Bk)

=
⎟

hdv +
⎟

gdv. →�
Example 5.6 Like integration against a measure, v-integration generalizes the idea
of a weighted sum. Suppose that A is a finite set. Then if h is a constructible Z-valued
function on A, then ⎟

h dv =
∑

k

kv(h−1(k))

=
∑

k

k
∑

{a∈A:h(a)=k}
v({a})

=
∑
a∈A

h(a)v({a})

which is a weighted sum over A.

Remark 5.3 The definition of a v-integral seems to give substantial flexibility in
the kinds of integrals that can be defined. However, we usually want an integral to
have certain invariance properties, which restricts the possiblities for the valuation.
If we require a valuation to be dilation-, translation-, and rotation-invariant, then a
statement called Hadwiger’s theorem (see for instance Chen (2004)) implies there is
exactly one choice: a linear scaling of the Euler characteristic. This indicates that any
transform of functions defined by integrating against a valuation that is “topological”
must use the Euler integral.
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Fig. 5.3 Encoding a constructible function h ∈ CF(X,Z) as a sheaf H

The Euler integral has an interpretation in terms of compact Euler characteristics
of sheaves (Kashiwara and Schapira 1990, [Sect. 9.1]; Dimca 2004). Suppose that
h ∈ CF(X;Z) is a nonnegative function. It is easy to construct a sheaf H whose
stalk at x has dimension h(x), as shown in Fig. 5.3. While not unique, H can be
constructed as the sum (Definition 3.8) of constant sheaves over subcomplexes of X.
Observe that

χc(H ) =
∑

k

(−1)k dim Hk
c (X;H )

=
∑

k

(−1)k dim Ck
c (X;H )

=
∑

k

(−1)k
∑
x∈Xk

h(x)

=
∑

k

∑
x∈Xk

(−1)kh(x).

Since the double sum ranges over all cells in X, we can compute this sum by ranging
over level sets of h instead, to obtain

χc(H ) =
∩∑

s=0

s
∑

x∈X:h(x)=s

(−1)dim x

=
∩∑

s=0

sχ(h−1(s))

=
⎟

h dχ.

This derivation relied the assumption that h was nonnegative since it was used
as a dimension of the stalks. This restriction can be lifted by instead considering
sequences of sheaves.
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Definition 5.6 Suppose that

· · · �� Sk
�� Sk+1 �� · · ·

is a sequence of sheaves. The compact Euler characteristic χc(S•) of this sequence
is given by

χc(S•) =
∩∑

k=−∩
(−1)kχc(Sk).

Example 5.7 Given that we represent a constructible function h by the two-term
sequence

0 �� H0
�� H1

�� 0,

where

dim H0(x) =
⎞

h(x) if h(x) ◦ 0
0 otherwise

and

dim H1(x) =
⎞−h(x) if h(x) √ 0

0 otherwise

the previous calculation immediately shows that χc(H•) = ∫
h dχ .

5.2 Case Study: Target Enumeration

Because the Euler characteristic is an extension of counting (Example 5.2), the Euler
integral can be used to enumerate certain features of a signal. Consider the task of
counting a number of target signals using a dense field of sensors, each of which
returns a count of these target signals in its vicinity. Suppose that each sensor does not
assign a unique ID to each target signal it detects. Surprisingly, under mild topological
assumptions about the signals, the number of targets can be recovered.

Although dense fields of sensors are not particularly common in practice, they do
arise in a number of important settings, such as

1. The array of sensors of a digital camera (in which they are arrayed in a
2-dimensional rectangular grid),

2. An antenna array (usually 1- or 2-dimensional), in which each antenna element
is addressed separately,

3. In a 3-dimensional collection of underwater microphones (such as those used for
tracking the migration patterns of whales),

4. In configurations that blend spatial sensor diversity with time diversity, such as
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Fig. 5.4 Counting the number of overlapping sets via the Euler integral

(a) A single RFID interrogating sensor, which operates as a 1-dimensional (in
time) network of sensors

(b) A traffic counter, counting the number of vehicles passing over its hose
(c) A synthetic aperture imaging sensor, again as a 1-dimensional sensor network
(d) A transversely-scanning sonar sensor mounted on a moving vessel, which

operates as a 1-dimensional spatial network (in angle) plus a 1-dimensional
network in time.

We axiomize the target signals in a topological space X in which the sensors and
targets are located. To target k, assign an open set Uk ⊗ X called the target support
that consists of all locations at which a sensor detects the target. However, because we
assumed that target identities cannot be reported by the sensors, the most information
that could ever be available to a sensor network is the height function h : X ∼ Z

which is defined by letting h(x) be the number of elements of Uk ∈ U that contain
x ∈ X. Of course, the sensor network will return a discrete sampling of this function
at a finite number of points {x1, . . . , xn} ⊂ X.

The following calculation due to Baryshnikov and Ghrist (2009) shows how to
recover the number of elements of U = {U1, . . . } from h (see Fig. 5.4). It is useful
to think of h as the sum of indicator functions

h(x) =
∑

k

1Uk .

Suppose that Uk ∈ U , then

⎟
h dχ =

⎟ ∑
k

1Uk dχ =
∑

k

⎟
1Uk dχ =

∑
k

χ(Uk) = |U |χ(Uk).

Provided χ(Uk) �= 0, then
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Fig. 5.5 Values of the function h in which four target support sets overlap

|U | = 1

χ(Uk)

⎟
h dχ. (5.3)

The interpretation of this calculation is somewhat striking. Suppose that there is a
finite collection of large targets that are visible to a dense field of sensors spread over
a region X. If each sensor returns an anonymous count of the targets visible to it, this
calculation shows how to recover the total number of targets from these counts.

Example 5.8 Consider the function h shown in Fig. 5.5, which arises from the col-
lection of four contractible target support sets. (Since each target support is an open
set, this function is lower semicontinuous; the value along each boundary is the lower
of the two neighboring values.) Tabulating the values of the function according to
the dimension of the cells, we have

Value 0-cells 1-cells 2-cells χ(h−1({value}))
1 6 12 6 0
2 0 6 5 −1
3 0 0 2 2

Accumulating these values, the Euler integral is 3 × 2 + 2 × (−1) = 4, which is the
number of target support sets.

The example above embodies the idealized setting in which the field of sensors
always returns correct counts and is continuous. However, both of these sources of
error are far from benign. Since each vertex has Euler characteristic 1, the Euler inte-
gral is quite sensitive to errors. The treatment of errors due to random perturbations
of the sensor output is quite technical and is largely unexplored; the interested reader
should see Bobrowski and Borman (2012).
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Fig. 5.6 The function at left consists of two target support sets and has Euler integral −2. The
function at right is sampled from the one at left using the points marked with stars, and has Euler
integral −1

Discretization of a constructible function is a delicate operation, since con-
structible functions imply a particular cell complex decomposition of the underlying
space. If there are only finitely many sensors, though, it is necessary to discretize
the Euler integral. If the geometry of the topological space X is known, it is usually
most effective to let the sensors be the vertices in a Delaunay tesselation of X. If the
geometry is not known, then one way to proceed is to construct the Vietoris-Rips
complex, described in Sect. 6.2. Once the discretizaton of X has been specified, the
sensor values can be extended to a height function over all cells of X by way of
lower-semicontinuity. Specifically, the value at a given cell is the minimum value
over all (higher dimensional) cells that it attaches to.

Any discretization procedure is subject to errors when target support sets (or the
level sets of their height function) are tangent or close to being tangent. In this case, it
is difficult to determine if two sets are connected or not. This topological uncertainty
results in an inaccurate estimate of the Euler integral, which degrades its value in
target enumeration. Although in some situations (see Krupa (2012)) it is possible to
compensate for the bias that this introduces using statistical estimates, the only true
remedy appears to be a high sensor density.

Example 5.9 Consider the function shown at left in Fig. 5.6. Recall that the Euler
characteristic of an open interval is −1, so the Euler integral is negative the number of
targets. It is immediate that the Euler integral of this function is −2, which correctly
recovers the number of targets. However, if only the four points marked with stars
can be observed, then the estimate for the function is shown at right. This function
has Euler integral −1, which is incorrect.

5.3 Euler Integral Transforms

The study of Euler integral transforms began with a paper by Schapira (1995). This
chapter was ahead of its time, and the ideas lay dormant until a flurry of recent
activity (Curry et al. 2012; Ghrist and Robinson 2011; Baryshnikov et al. 2011). All
of the Euler integral transforms that have been developed have certain invariances
that allow a trade off between topological flexibility and geometric rigidity.

http://dx.doi.org/10.1007/978-3-642-36104-3_6
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Definition 5.7 Suppose that L : C(M) ∼ C(N) is a linear transformation of contin-
uous functions on a manifold M to continuous functions on a manifold N . Observe
that any diffeomorphism d : M ∼ M induces a linear map d̃ : C(M) ∼ C(M)

on the space of continuous functions. A pair of diffeomorphisms d : M ∼ M and
e : N ∼ N is called an invariance for L if the following diagram commutes

C(M)
L ��

d̃
��

C(N)

ẽ
��

C(M)
L �� C(N)

Example 5.10 Observe that the Euler integral is a linear operation because of
Proposition 5.4. If M is a manifold, then Proposition 5.2 implies that any diffeo-
morphism M ∼ M will not change the Euler characteristic. Hence the Euler integral
is invariant under any diffeomorphism paired with the identity.

Exercise 5.5 Show that the transformation (x y)T ≥∼ (x∞ y∞)T given by

(
x∞
y∞

⎧
=

(
x cos θ − y sin θ + p
x sin θ + y cos θ + q

⎧
.

is an invariance when paired with the identity for the Laplacian operator

∂2

∂x2 + ∂2

∂y2 .

Definition 5.8 (Compare to Schapira 1995; Baryshnikov et al. 2011, which treats
the Radon transform in a similar way.) Suppose that M and N are manifolds and that
P : M × N ∼ R is a smooth function. An Euler integral transform T subordinate
to P takes each constructible f ∈ CF(M,Z), to a function Tf : N ∼ R given by the
formula

Tf (x) =
⎟ ∩

−∩
k1(x, r)

⎟
{y∈M:P(y,x)=r}

k2(x, y)f (y)dχ(y) dr

where k1 : N × R ∼ R is smooth and k2(x, ·) ∈ CF(M,Z). Each surface {y ∈ M :
P(y, x) = r} is called an isocline for the transform (see Fig. 5.7).

Remark 5.4 Observe that if we instead consider a Lebesgue integral as the inner
integral, the Fubini theorem applies so that
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Fig. 5.7 An Euler integral transform operates by integrating along a collection of isoclines using
the Euler characteristic, and then integrating these results using the Riemann or Lebesgue integral

Tf (x) =
⎟ ∩

−∩
k1(x, r)

⎟
{y∈M:P(y,x)=r}

k2(x, y)f (y)dy dr

=
⎟ ∩

−∩

⎟
{y∈M:P(y,x)=r}

k1(x, r)k2(x, y)f (y)dy dr

=
⎟

M
k1(x, P(y, x))k2(x, y)f (y)dy

=
⎟

M
k(x, y)f (y)dy,

which is the typical formula for an integral transform from functions on M to functions
on N . Note that this derivation does not work for the hybrid combination of Lebesgue
and Euler integration, so we must treat the Euler and Lebesgue integrals separately.

Remark 5.5 Euler integral transforms cannot be morphisms of sheaves, because they
are manifestly not local from the definition. The value of a transformed function Tf
at x ∈ N depends on values of the function f at all y ∈ M.

The control of the invariances of an Euler integral is an important motivation for
their use; the following proposition summarizes how invariances may be identified.

Proposition 5.5 A pair of diffeomorphisms DM : M ∼ M and DN : N ∼ N are
an invariance for an Euler integral transform if

1. P(y, DN x) = P(DMy, x) for all x ∈ N and y ∈ M,
2. k1(DN x, r) = k1(x, r) for all x ∈ N and r ∈ R, and
3. k2(DN x, y) = k2(x, DMy) for all x ∈ N and y ∈ M.

Proof We merely proceed by direct computation:
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(DN ⊆ T)f (x) = Tf (DN x)

=
⎟ ∩

−∩
k1(DN x, r)

⎟
{y∈M:P(y,DN x)=r}

k2(DN x, y)f (y)dχ(y) dr

=
⎟ ∩

−∩
k1(x, r)

⎟
{y∈M:P(DM y,x)=r}

k2(x, DMy)f (y)dχ(y) dr

=
⎟ ∩

−∩
k1(x, r)

⎟
{y∈M:P(y,x)=r}

k2(x, y)f (D−1
M y)dχ(y) dr

= T(f ⊆ D−1
M )(x). →�

The remaining portion of this section examines two Euler integral transforms, in
which the level sets are affine subspaces (the Euler-Fourier transform) or topological
spheres (the Euler-Bessel transform) in R

n.

5.3.1 The Euler–Fourier Transform

By analogy with the Fourier transform, which has constant phase along parallel
planes, the Euler integral transform that uses parallel planes as isoclines is called the
Euler-Fourier transform.

Definition 5.9 (See Ghrist and Robinson 2011; Curry et al. 2012) Suppose that
h ∈ CF(Rn;Z). The Euler-Fourier transform of h is given by

EFh(ξ) =
⎟ ∩

−∩

⎟
<ξ,x>=s

h(x)dχ(x) ds,

where ξ is a unit vector Sn−1 ⊂ R
n, and < ·, · > is the usual dot product. The

transform is shown schematically in Fig. 5.8.

Proposition 5.6 The Euler-Fourier transform is rotation invariant. The Euler-
Fourier transform is insensitive to translations.

Proof Observe that if R is a rotation of R
n, then < Rξ, x >=< ξ, RT x >. So

the Euler-Fourier transform is rotation invariant by Proposition 5.5. Observe that
translation in x parallel to ξ does not change the value of EFh(ξ) because of the
translation invariance of the Lebesgue integral. Similarly, translation perpendicular
to ξ does not change the value of the transform because of the homeomorphism
invariance of the Euler integral. →�

The Euler-Fourier transform is sensitive to dilation, however. If h is the indicator
function on a disk D, the Euler-Fourier transform is a constant function, equal to the
diameter of D.
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Fig. 5.8 Euler-Fourier transform of an indicator function on a set; the family of lines L(s) are
perpendicular to ξ

Consider the Euler-Fourier transform of the indicator function 1L on a line segment
L in the plane. The transform can be written explicitly in this case. Since the Euler-
Fourier transform is rotation invariant, without loss of generality, we can assume that
its endpoints are (0, 0) and (0, L). Observe that if ξ = (cos θ, sin θ), then

EF1L(ξ) =
⎟ ∩

−∩

⎟
{<ξ,x>=s}

1L(x)dχ ds

=
⎟ ∩

−∩
1{0√s√L sin |θ |}(s)ds

= L sin |θ |.

Since the Euler-Fourier transform is linear, we can use the transform of a line
segment to compute the transforms of other polygons in the plane, merely by adding
indicator functions on each side. Care is not needed at the vertices, since the Euler-
Fourier transform of a half-open line segment is the same as the Euler-Fourier trans-
form of a closed line segment. Figure 5.9 shows the graphs of the Euler-Fourier
transforms of several regular polygons.

Corollary 5.1 The Euler-Fourier transform is not a homeomorphism invariant,
since the transforms of non-congruent polygons differ.
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Fig. 5.9 Euler-Fourier transform of indicator functions on several regular polygons

5.3.2 Euler–Bessel Transform

We can step back from the translation insensitivity of the Euler-Fourier transform by
making a small modification. It is reasonable to think of a set of parallel planes as
being a set of concentric spheres whose centers are located at infinity (the “far field”).
This idea connects the usual Fourier transform to the Bessel transform. Therefore,
by analogy, we call the Euler integral transform which has spherical isoclines the
Euler-Bessel transform.

Definition 5.10 (See Ghrist and Robinson 2011; Curry et al. 2012) Suppose that
⊂ · ⊂ is a norm on R

n and h ∈ CF(X;Z). The Euler-Bessel transform associated to
⊂ · ⊂ of h is given by

EBh(x) =
⎟ ∩

0

⎟
⊂x−y⊂=s

h(y)dχ(y) ds.

We usually call the Euler-Bessel transform associated to the usual 2-norm the
circular Euler-Bessel transform CEB (see Fig. 5.10) and the Euler-Bessel transform
associated to the ∩-norm the square Euler-Bessel transform SEB. These play an
important role in our exposition, largely because they are easiest to compute. The
many different kinds of Euler-Bessel transforms have different geometric properties,
though they share the following invariances.
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Fig. 5.10 Circular Euler-Bessel transform of an indicator function on a square; several represen-
tative values are shown

Theorem 5.1 The Euler-Bessel transform is translation invariant, but unlike the
Euler-Fourier transform only the circular Euler-Bessel transform is rotation
-invariant.

Proof The translation invariance is easy to see from Proposition 5.5 because ⊂(x +
h) − y⊂ = ⊂x − (y − h)⊂. Rotation invariance for the 2-norm also follows from
Proposition 5.5. That calculation relies on the fact that

⊂Rx − y⊂ = ⎪
< Rx − y, Rx − y >

= ⎪
< Rx, Rx > −2 < Rx, y > + < y, y >

=
⎨

< x, x > −2 < x, RT y > + < RT y, RT y >

= ⊂x − RT y⊂.

This is simply untrue for other norms. →�
The circular Euler-Bessel transform of the indicator function on a disk has a

striking form, as shown in Fig. 5.11. There is a local minimum, at the center of the
disk. Outside the disk, the transform’s value is equal to the diameter of the disk.

Using the same idea as for the Euler-Fourier transform, we can compute the
transform of indicator functions on polygons by first treating the case of a line
segment. The choice of norm matters in the final answer, unlike the Euler-Fourier
transform.

Since the circular Euler-Bessel transform is rotation-invariant, we treat that first,
by considering the line segment L from A = (0, 0) to B = (0, L) as before. The key
computation is then
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Fig. 5.11 Circular Euler-Bessel transform of an indicator function on a disk with radius 80 units

CEB1L(x) =
⎟ ∩

0

⎟
⊂x−y⊂=s

1L(y)dχ(y) ds,

where we observe that I(y) = ∫
⊂x−y⊂=s 1L(y)dχ(y) is the number of intersections

between the circle of radius s centered at x and L. Figure 5.12 shows I(y) for a
particular fixed s. Integrating this function with respect to s yields the following
explicit formula

CEB1L(x) = |d(A, x) − d(B, x)| + 2 (min{d(A, x), d(B, x)} − d(L, x)) . (5.4)

Exercise 5.6 The circular Euler-Bessel transform of a line segment is rather dif-
ferent from its square Euler-Bessel transform. The resulting transform of a vertical
line segment is shown schematically in Fig. 5.13. Compute the square Euler-Bessel
transform of a line segment that is not aligned with the cardinal axes.

Using the same reasoning as in the Euler-Fourier transform case, one can easily
add the explicit formulas for the Euler-Bessel transforms of line segments to obtain
expressions for polygons. For instance, Fig. 5.14 shows the transform of the indicator
functions on several polygons.

From Fig. 5.14, it is visually apparent that the Euler-Bessel transform has local
minima near the centers of each polygon. In the case of a circular Euler-Bessel
transform, this is easily shown.
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Fig. 5.12 The number of
intersections of a circle (with
fixed radius) and a line seg-
ment as a function of the
center position

Fig. 5.13 Schematic of the
square Euler-Bessel transform
of a vertical line segment
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Lemma 5.2 For a compact ball A in R
2n, the circular Euler-Bessel transform

CEB1A is a monotone increasing function on the distance to the center of A.

Proof For x at the center of the ball A, χ(∂Br(x) ∪ A) = χ(S2n−1) = 0 for all r. →�
Therefore, transforming the sum of indicator functions on several disjoint balls

results in a function with local minima at the center of each ball.
For transforms of indicator functions on sets that are not balls, there is considerable

variation in the Euler-Bessel transform away from the set. We call this variation
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Fig. 5.14 Circular Euler-Bessel transform of indicator functions on several regular polygons

Fig. 5.15 The geometry of Proposition 5.7

sidelobe structure by analogy with the traditional Fourier transform. It happens that
the sidelobe structure is entirely determined by the Euler-Fourier transform.

Proposition 5.7 The circular Euler-Bessel transform satisfies

lim
R∼∩ (CEB1K ) (R cos θ, R sin θ) = EF1K (cos θ, sin θ) = w(θ). (5.5)

Proof Without loss of generality, suppose that θ = 0, and that K is contained within
the rectangle −w(0)/2 √ x √ w(0)/2, −d/2 √ y √ d/2 as shown in Fig. 5.15. We
therefore need to estimate the difference between the largest and smallest radii of the
circles that intersect K centered at (R, 0). A lower bound for this distance is
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⎩(
R + w(0)

2

⎧2

+ d2

4
− (R − w(0)

2
) = R

⎩
1 + w(0)

R
+ w2(0)

4R2 + d2

4R2 − R + w(0)

2

≈ R + w(0)

2
+ w2(0)

8R
+ d2

8R
− R + w(0)

2
≈ w(0)

as R ∼ ∩. On the other hand, since K is compact and convex, the typical intersection
of K with ∂BR(x) will have Euler characteristic 1. While there may be cases where
this does not hold, especially at the larger radii, these will occupy zero Lebesgue
measure as R ∼ ∩. →�
Example 5.11 Consider the indicator function on an equilateral triangle with a radius
of 10 units. The circular Euler-Bessel transform of this indicator function is shown
in Fig. 5.16. Near the triangle, its Euler-Bessel transform reflects the curvature of the
circular contours, though farther away from the triangle the values of the transform
approach the Euler-Fourier transform. See Fig. 5.9 for comparison with the Euler-
Fourier transform.

5.3.3 Sidelobe Cancellation

The Euler-Bessel transform of the indicator function on a convex set will in general
not be as simple as that of a disk. Although within an inscribed circle, Lemma 5.2
ensures that the Euler-Bessel transform will have a local minimum, it may have
substantial variation outside. By analogy with Fourier signal processing, we call
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Fig. 5.17 Euler-Bessel transform of an indicator function of a square; circular isoclines (left),
square isoclines (middle), rotated square with square isoclines (right)

variation of the Euler-Bessel transform of a function h outside the support of h
sidelobe structure. In this way, the Euler-Fourier transform describes far field sidelobe
structure of the Euler-Bessel transform.

Sidelobes are readily apparent in the left frame of Fig. 5.17, in which a local
maximum for the far field occurs adjacent to each vertex of the square. This is a
general fact; considering the formula for the Euler-Bessel transform of a line in
(5.4), it is clear that each endpoint results in a higher-than-average contribution to
the Euler-Bessel transform.

Like the matched filtering in the Fourier transform, one can adjust the integral
transform to cancel the sidelobes. Briefly, the idea is that matched filtering for Euler
integral transforms amounts to choosing isoclines that are level surfaces of the func-
tions of interest. Therefore, if we consider the square Euler-Bessel transform of
the indicator function on a square, as shown in the middle frame of Fig. 5.17, the
sidelobes vanish. They reappear if the square is rotated (right frame of Fig. 5.17),
however, because the square Euler-Bessel transform is not rotation invariant.

A well-established method for canceling sidelobes in matched filtering is to tailor
the filter over the extent of the signal. The result is a nonlinear transform that preserves
many of the invariances of the original transform. This procedure is called spatially
variant apodization (Stankwitz et al. 1994; Carrara et al. 1995).

Definition 5.11 Suppose that Ps : M × N ∼ R is a family of smooth maps from
manifolds M and N , parametrized by s, that k1 : N × R ∼ R is smooth, and that
k2(x, ·) ∈ CF(M,Z). Then the Euler integral transform SVA T spatially variant
apodized by Ps is given by

SVA Th(x) = inf
s

⎟ ∩

−∩
k1(x, r)

⎟
{y∈M:Ps(y,x)=r}

k2(x, y)h(y)dχ(y) dr.

As an obvious special case, there is the spatially variant Euler-Bessel transform.

Definition 5.12 Suppose that Ns is a family of norms on R
n parametrized by s. The

Euler-Bessel transform, spatially variant apodized by Ns is given by the formula
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Fig. 5.18 SVA applied to square Euler-Bessel transform with parametrized rotation applied to a
single rotated square (left) and a pair of squares with different rotation angles (right)

Fig. 5.19 Square Euler-Bessel transform of a hexagon (left) and SVA applied to square Euler-Bessel
transform with parametrized rotation applied to the same hexagon (right)

SVA EBh(x) = inf
s

⎟ ∩

0

⎟
Ns(x−y)=r

h(y)dχ dr.

Consider the family of norms Nθ (x) = ⊂Rθ x⊂2 given by applying a rotation Rθ

before computing the ∩-norm in R
2. In this case, the square Euler-Bessel transform

can be apodized by this family of norms, to yield a rotation-invariant form of the
square Euler-Bessel transform. Figure 5.18 shows the application of this transform
to the indicator function on two disjoint squares. Evidently, the sidelobes of each
square have been greatly reduced.

Even if the isoclines are not perfectly matched to the shape of the support, the
application of SVA EB may dramatically reduce the sidelobes. For instance, Fig. 5.19
shows the application of this transform to the indicator function on a hexagon. The
sidelobes persist close to the hexagon, but they are substantially less prominent far
away from it.
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5.4 Case Study: Shape Recognition in Computer Vision

By selecting the families of isoclines to be used in spatially variant apodization, it
is possible to develop shape filters using the Euler-Bessel transform. Suppose that a
constructible function h ∈ CF(R2,Z) is given, and is known to consist of a sum

h =
N∑

i=1

1Ai

of an unknown number N of indicator functions on compact, convex sets Ai. We
do not know the shape of each Ai, but we do have a finite dictionary D = {Dk}
of possibilities for each. That is, each Ai is a rotated, translated, dilated copy of an
element of D . The task is to automatically count, locate, and classify the Ai given the
function h. For instance, we might be given the function that is the sum of indicator
functions on a disk and a square.

The theory of Euler integral transforms can provide an incomplete answer to this
problem. First, we can use the Euler integral to determine the precise value of N as
described in Sect. 5.2. Suppose that for a set B ⊂ R

2,

sB + x = {x + sb : b ∈ B}

is set obtained by dilating B by s and then translating it by x. If Rθ is a rotation by θ ,
Then for each Dk ∈ D , we can define a transform

FDkh(x) = inf
θ

⎟ ∩

0

⎟
x+sRθ Dk

h(y)dχ ds.

If the Ai are disjoint, or nearly so, FDkh will have local minima at the center of each.
If we consider a minimum at a location x, there will be a local minimum for the each
of the k at or near x also, by convexity of each Ai. The k that yields the smallest value
of FDk at x will indicate which Dk is likely to be centered at x.

Figure 5.20 shows two FDk transforms of a function h that is the indicator function
on several geometric figures. Notice that in the left frame (circular Euler-Bessel trans-
form), the global minimum value occurs at the center of the disk. In the right frame
(the spatially variant apodized square Euler-Bessel transform), the global minimum
has been switched to the center of the square.

5.5 Open Questions

1. The analysis of discretization error in the Euler integral is in its infancy. Little
work has extended beyond the observations of Baryshnikov and Ghrist (2009).
One such example are the statistical results discussed in Krupa (2012), which
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Fig. 5.20 The circular (left) and apodized square (right) Euler-Bessel transform of the indicator
function on two convex sets

analyze the frequency and expected values for errors when target supports are
discretized disks. The expected value for the errors allows for a bias compensation
and reduction in overall error when using the Euler integral for counting targets.
However, this compensation is strongly tied to the shape of the target supports,
so it is unclear how to proceed if the shape of each target support is complicated
or unknown.

2. Computation of the Euler-Fourier and Euler-Bessel transforms of indicator func-
tions on piecewise linear functions is straightforward, aided by the explicit for-
mulas. For more complicated functions, especially those that arise from level sets
of images, is there a faster way to compute the transforms? It is known that the
Euler-Fourier and Euler-Bessel transforms “concentrate” the Euler characteris-
tic valuation onto a small number of points, each to be counted with a special
weight. Because of this, it seems likely that Morse-theoretic reductions, such as
those used in (Harker et al. 2013; Mischaikow and Nanda 2013) could simplify
the required computations of the Euler characteristic substantially.

3. As a related problem, how can arbitrary FDk transforms be constructed efficiently?
It seems clear that explicit formulas could be constructed, but they would still seem
to require an approximate Lebesgue integration step, which is slow to compute. In
contrast, the explicit formulas exhibited for the circular and square Euler-Bessel
transforms include an exact computation of the Lebesgue integral.

4. Because the Euler characteristic of a cell complex consisting of a single point
is 1, Euler integral transforms are can be very sensitive to noise. Is there a way
to mitigate this sensitivity? Two obvious possibilities exist. The first is to extend
Euler integral transforms to definable functions using the definable Euler integral
described by Baryshnikov and Ghrist (2010). Initial experiments indicate that
applying a smoothing filter (such as the boxcar filter) can improve the estimates
of target counts obtained using the definable Euler integral, but an explanation
for why this occurs is not currently available. The second is to use the ideas of
persistent sheaf cohomology developed in Chap. 6 to increase robustness.

5. Discover and apply other interesting Euler integral transforms for image process-
ing tasks. This might be helpful in the context of automated target recognition.

http://dx.doi.org/10.1007/978-3-642-36104-3_6
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Chapter 6
Noise

This chapter will

1. Develop the theory of persistence for cohomology to improve its robustness as a
detector,

2. Demonstrate that the resulting detector can identify topological features such as
acoustically opaque obstacles or quasiperiodic signals in laboratory data,

3. Exhibit theoretical bounds on the detector’s robustness in terms of its required
sampling density, and

4. Show that these theoretical bounds are necessary to guarantee good detection
performance on experimental data.

All experimental measurements contain errors, so error tolerance is a desirable
feature of any signal processing system. At first sight, topological methods appear
to be both very tolerant and very intolerant to errors. This tension is characterized
by the fact that unknown deformations in the configuration of sensors can produce
little or no effect on the output of a topological filter or detector, yet deformations
in the values returned by each sensor can dramatically change the output of both
topological filters and detectors.

A deformation in the base space of a sheaf of local signals usually does not
change its cohomology, via the Vietoris mapping theorem (Theorem 4.2). On the
other hand, errors in the values of local sections can prevent them from extending
to global sections. As a result, cohomology as defined in Chap. 4 can be extremely
sensitive to noise. For instance, the number of connected components of the set of
points where a function exceeds a threshold is very sensitive to noise as shown in
Fig. 6.1. Since the cohomology of the constant sheaf over a space detects the number
of connected components, it is sensitive to this kind of effect.

We can improve the error tolerance of topological detectors (cohomology in par-
ticular) by changing how the measurement values are interpreted. Rather than taking
a statistical approach, which assumes a model of randomness associated to each mea-
surement and its relation to those nearby, we assume that whatever values are taken
must be self-consistent. In essence, we are not interested in the particular distribution
of values, but rather the possible deformations of the true values. From a traditional
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Fig. 6.1 The set of points where a non-noisy function exceeds a threshold has two connected
components (left). The same function with noise yields a level set with many more connected
components (right)

perspective, topological treatment of noise appears to address uniform distributions
of measurements only. This is a misunderstanding, however; while the measurements
themselves will be assumed to have sharp bounds on their values, their relationships
to one another will be substantially more flexible.

In this way, we will introduce geometry into the signal models under discus-
sion. The sharp bounds on each measurement taken will essentially amount to a
signal-to-noise ratio. Those collections of measurements that are locally or globally
consistent will be visible over large ranges of possible signal-to-noise ratio values.
This gives a way to both assess data quality and the applicability of a topological
filter or detector to that data simultaneously.

In most measurement systems, the resulting output is often organized into a point
cloud, a discrete subset of Rn . Considered as a topological space, this has exactly
one topological invariant: the number of points. However, considered as a metric
space—with distances between points—there is more useful topological structure
available. For example, although both point clouds in Fig. 6.2 have the same number
of points, the one on the left appears to describe a circle, while the one on the right
appears to suggest a disk.

In this chapter, we make these appearances precise. Persistent cohomology
ascribes a sheaf to a point cloud that encapsulates its geometry, and therefore
topology. This sheaf is a detector in the language of Chap. 4, but it is substantially
more robust than cohomology alone. A convenient visual representation of persistent
cohomology allows for quick, quantitative interpretation of this sheaf, and the iden-
tification of significant topological features of the point cloud. Supposing that the
point cloud is a discrete subset of a cell complex or manifold, persistent homology
can provide precise guarantees about the homology or cohomology of this underlying
space.

http://dx.doi.org/10.1007/978-3-642-36104-3_4
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Fig. 6.2 Two finite subsets of the plane with the same number of points: (left) one that appears
to be subsampling of a circle; (right) one that appears to be a sampling of a disk

6.1 Persistence

Persistent cohomology provides some measure of robustness against distortions in
the stalks of a sheaf by segregating those features that “persist” for a large range of
perturbations from those that are present only for a small collection of perturbations.

6.1.1 Persistence Sheaves

Suppose that the following is a sequence of topological filters, one after another

S ⊆
i−1

g−
i−1���������� g+

i−1

����
��

��
��

S ⊆
i

g−
i����

��
��

�� g+
i

����
��

��
��

· · · Si−1 Si Si+1 · · ·

Notice that the bottom row consists of the input and output of each filter and the top
row contains the state of each filter. This induces a similar looking sequence

· · · Hk(S ⊆
i−1)

f −
i−1������������ f +

i−1

������������
Hk(S ⊆

i )

f −
i����������� f +

i

������������
· · ·

Hk(Si−1) Hk(Si ) Hk(Si+1)

of linear maps between their cohomologies. It is immediate that this diagram itself is
a sheaf PS k , called a persistence sheaf over R. For this sheaf, the base space has
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the cellular decomposition of R in which the vertices are Z and open intervals of the
form (n, n + 1) are the edges. In this case, the stalks over the vertices are the spaces
Hk(S ⊆

i ), the stalks over the edges are the spaces Hk(Si ), and the restrictions f ±
i

are the maps induced by the sheaf morphisms g±
i .

Proposition 6.1 The persistence sheaf is a detector: a functor from a category of
sequences of topological filters to the category of sheaves over R.

Proof A morphism in the category of sequences of topological filters is a diagram

S ⊆
i−1

����������

����
��

��
��

��

S ⊆
i

����
��

��
��

����
��

��
��

��

· · · Si−1

��

Si

��

Si+1

��

· · ·

R ⊆
i−1

����������

����
��

��
��

R ⊆
i

����
��

��
��

����
��

��
��

· · · Ri−1 Ri Ri+1 · · ·

of sheaf morphisms in which all of the squares commute. This diagram induces a
similar commutative diagram on the level of the cohomologies of the sheaves. This
immediately satisfies the definition of a morphism of sheaves on R. �

Sections of the persistence sheaf PS k have a useful interpretation. Suppose that
c is a nonzero element of Hk(S ⊆

i ). Two questions are pertinent to the significance
of this element in the overall sequence:

1. Is f −
i c → Hk(Si ) in the image of f +

i−1? If not, then we say that c is born at time
i in the sequence.

2. Is f +
i c = 0 in Hk(Si+1)? If so, we say that c dies at time i + 1.

The age of c is the difference between its death and birth times. The principle of
persistence is that elements with longer ages represent more significant features.

If all of the Si and S ⊆
i are sheaves of vector spaces, then the diagram of

their cohomologies above is called a zig-zag. It then satisfies the following interval
decomposition theorem, which essentially states that interpreting sections of PS k

in terms of birth and death is canonical.

Theorem 6.1 (Interval decomposition, (Carlsson, de Silva 2010, Derksen and Wey-
man 2005, Gabriel 1972)) Every persistence sheaf PS k arising from a sequence of
sheaves of F-vector spaces can be written as the sum (see Definition 3.8) of sheaves
called intervals, which are F-sampling sheaves (see Example 3.3) supported on a
connected collection of vertices and edges. This decomposition is canonical; any
two such decompositions are related by a permutation of their summands.
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Fig. 6.3 A barcode diagram (left) and a persistence diagram (right) for a persistence sheaf with
four intervals

The interested reader should consult (Carlsson, de Silva 2010) for the proof of
Theorem 6.1, which is a self-contained account.

Remark 6.1 The interval decomposition fails (de Silva et al. 2011) to be canonical
if the sheaves Si and S ⊆

i are not sheaves of vector spaces.

Two graphical representations have become popular for representing the interval
decomposition of a persistence sheaf: barcode and persistence diagrams. They both
permit rapid, intuitive assessment of the significant (longer aged) features and the
prevalence of less significant features.

For a given cohomology degree k, the k-barcode diagram consists of a multiset1

of horizontal “bars,” one for each interval in the decomposition of PS k . Each bar
starts at its birth time and ends at its death time, and therefore has its age as its length.
One can visually identify significant features by locating the longest bars. The left
frame of Fig. 6.3 shows a barcode diagram in which the persistence sheaf has four
intervals; two more significant and two less so.

The persistence diagram for degree k (shown in the right frame of 6.3) captures
similar information to the barcode, and is a multiset whose points are contained in

{(x, y) → R
2 : x ≤ y}.

Each point in the persistence diagram corresponds to one of the intervals in the
decomposition of PS k with its birth time as the first coordinate and death time
as its second. The age of each interval is then easily measured as the distance from
the point to the diagonal; points far from the diagonal represent more significant
features.

1 A multiset is a set that can contain duplicate elements.
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6.1.2 Interpretation of Persistent Cohomology

Unfortunately, little is known about how to interpret the sheaf PS k for a general
sequence of topological filters. We will therefore constrain our attention to constant
sheaves of vector spaces. These have a strong connection to the topological analysis
of data. In this setting, it is usually sufficient to consider a sequence of cellular maps
between cell complexes

· · · Xi−1		 Xi		 Xi+1		 · · ·		

and constant sheaves on them with a field F as their stalks. This sequence of sheaves
induces a sequence of sheaf cohomologies

· · · 

 Hk(Xi−1;F) 

 Hk(Xi ;F) 

 Hk(Xi+1;F) 

 · · ·

Example 6.1 Consider a sequence of cellular maps below

in which e1, e2 in X2 maps to e1, e2 in X1 (respectively). With the constant sheaf R
over each of the cell complexes Xi , we have that

• H0(Xi ;R) ∈= R. (This indicates that each space has one path connected compo-
nent.)

• H1(X0;R) = H1(X3;R) = 0 since these two spaces have no edges.
• H1(X2;R) = R corresponding to a value on e1
• H1(X1;R) = R

2 corresponding to a value on each of e1 and e3.

The maps between these cohomology spaces are given by

• the identity map between each H0 space,
• the zero map for H1(X2;R) ∼ H1(X3;R) and for H1(X0;R) ∼ H1(X1;R),
• the rank 1 map given by the matrix

(
1 0

)
taking e1 to e1, and e3 to zero for

H1(X1;R) ∼ H1(X2;R).

These pieces of information are summarized by the barcode and persistence diagrams
in Fig. 6.4. The most significant H0 feature is the only one; the single connected
component. The most significant H1 feature, corresponding to the longest bar in the
barcode, is the loop corresponding to e1, e2.
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Fig. 6.4 A barcode diagram (left) and a persistence diagram (right) for Example 6.1

Fig. 6.5 The generation of a Vietoris-Rips complex from a point cloud

6.2 Case Study: Experimental Validation
of Topology Extraction

Suppose a robot is moving in a region where it does not have access to a global
position reference. This often occurs indoors or underground, since GPS satellite
visibility is limited in those cases. If enough other signals are received, and their
signal strength is recorded, then by the signal embedding theorem (Theorem 2.2),
the collection of received signals can be used as a proxy for location. As we saw
in Algorithm 2 of Sect. 4.7, this can be used to reconstruct a simplicial model of
the region. We can instead use the collection of all signal measurements to produce
a point cloud. The persistent homology of this point cloud can be used to identify
topological features in the region, and can provide an additional layer of robustness
over the simplicial model.

When interpreting point cloud data, an effective tool is the Vietoris-Rips complex
(Fig. 6.5), which is similar to the nerve (Definition 4.17).

Definition 6.1 Suppose that P is a discrete metric space; a collection of points and a
metric d = d(x, y) that computes the distance between any two points. The Vietoris-
Rips complex Rχ P of size χ is the abstract simplicial complex on P consisting of all
subsets A ≤ P in which pairwise distances between points in A are less than χ.

Observe that if χ1 < χ2, then Rχ1 P ≤ Rχ2 P . Therefore, for any increasing
sequence 0 = χ0 < χ1 < · · · < χn , there is a sequence of cellular inclusion maps

http://dx.doi.org/10.1007/978-3-642-36104-3_4
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Fig. 6.6 Example acoustic transmitter (left) and experimental setup (right)

Fig. 6.7 Signal strength data collected with no obstacle

P = Rχ0 P 

 Rχ1 P 

 · · · 

 Rχn P.

It would seem that for a bounded set P with radius r , one should choose N evenly
spaced points, namely χi = r i

N . Then with larger and larger N , better representations
of the persistence sheaf would be obtained. However, if P is a finite set of points,
there are only finitely many critical values for χ where the topology of Rχ P changes.
Therefore, it is only necessary to consider a finite collection of sizes to obtain the
complete representation of the persistence sheaf.

Consider the following controlled experiment, which was run in the author’s
laboratory (Robinson and Ghrist 2012). Four acoustic transmitters (left frame of
Fig. 6.6) were placed at corners of the experimental region, as shown in the right
frame of Fig. 6.6. The acoustic signal strength at a dense rectangular grid of points
(3 inches between samples) in the region was measured for each transmitter. The data
collected in this way is shown in Fig. 6.7; each measurement is a pixel in the grid.
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Fig. 6.8 Signal strength data collected with an obstacle. The battery of TX 3 was replaced before
its collection, which caused its absolute signal strength to differ from the other collections

Fig. 6.9 Signal strength point cloud projected to R
2; no obstacle (left), obstacle present (right)

To introduce a topological feature into the region, an acoustically opaque obstacle (a
stack of books) was placed in the center of the region. The same collection procedure
was used to measure the signal strength from each transmitter, though no data was
collected inside the obstacle. This resulted in the data shown in Fig. 6.8.

Therefore, at the conclusion of the data collections, each experiment consisted
of a collection of 4-dimensional vectors of signal strengths (each component repre-
sents a transmitter), one for each measurement. Therefore, we have two point clouds
embedded in R

4; can we tell which one has the obstacle? An easy, but inconclusive,
way is to project both datasets to a common 2-dimensional coordinate system. The
resulting point clouds are shown in Fig. 6.9.

Persistent cohomology can be computed for these point sets (using all four
dimensions). For instance, the output of JPlex (Sexton and Vejdemo-Johansson 2011)
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Fig. 6.10 Persistent homology barcodes for the acoustic signal strength data with no obstacle

Fig. 6.11 Persistent homology barcodes for the acoustic signal strength data with obstacle present;
significant 1-dimensional features are marked

is shown in Figs. 6.10 and 6.11. (The output of JPlex is a barcode diagram for persis-
tence homology rather than cohomology due to relatively minor technical differences
in how the computation is performed.)

Notice that even though the experimental region does not have the homotopy type
of a fully 2-dimensional space, there are a few features of dimension 2. However,
their ages are comparatively short, so they are not significant. On the other hand, once
the short-aged 0-dimensional features vanish, there are two persistent 1-dimensional
features in Fig. 6.11 that are not present in Fig. 6.10. These figures indicate the pres-
ence of an obstacle in the region, and so persistent homology is a robust detector,
even in this fairly noisy setting.
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6.3 Persistent Cohomology is a Robust Detector

The experimental results of Sect. 6.2 can be strengthened theoretically by a pair of
results that consider continuous data, rather than sampled data. Specifically, consider
the sublevel sets of a function f : X ∼ R. The sublevel set Fa is given by {x → X :
f (x) ≤ a}, so that Fa ≤ Fb whenever a ≤ b. If X is a compact manifold and f is a
Morse function—a smooth map f for which every critical point of has a nonsingular
matrix of second partial derivatives – then the homotopy type of Fa changes at a
finite set of critical values {c1, . . . , cn} = C f ∪ R. (See Milnor (1963); Banyaga
and Hurtubise (2004) for an introduction to Morse theory.) This can be generalized to
many other cases of interest; when f is piecewise linear or discrete (Forman 1998).
Then if we consider the sequence of spaces

Fc1


 Fc2



 · · · 

 Fcn ,

any larger collection of sublevel sets will yield no new information. The persistence
sheaf associated to this sequence of spaces then captures the topology of the sublevel
sets of f , and therefore is a topological detector. The resulting degree-k persistence
diagram Dk( f ) of this persistence sheaf is therefore a graphical account of the size
and topology of the sublevel sets of f .

Unlike merely considering the topology of these level sets, though (which the de-
tector defined by the formula Hk( f ((−∗, a]);R) also does) the persistence sheaf
associated to f is robust to noise. There is a natural metric on the space of persis-
tence diagrams called the bottleneck metric that is stable under perturbations of the
function f .

Definition 6.2 The bottleneck metric between two multisets X and Y inR2 is defined
to be

dB(X, Y ) = inf
φ

sup
x

∩x − φ (x)∩∗,

where φ : X ∼ Y ranges over all possible bijections. We interpret each point in a
multiset that has a multiplicity greater than 1 to consist of multiple distinct copies of
that point.

Theorem 6.2 (Stability of persistence diagrams (Cohen-Steiner et al. 2007)) If f
and g are Morse functions, then their persistence diagrams Dk( f ) and Dk(g) satisfy

dB(Dk( f ), Dk(g)) ≤ ∩ f − g∩∗,

where we assume that a persistence diagram always contains the entire diagonal in
R

2 (so Dk( f ) and Dk(g) are of the same cardinality).

The bottleneck metric is easy to see directly from two persistence diagrams.
Consider the functions f and g shown in Fig. 6.12. Notice that the functions differ
in that g has a local minimum and maximum. These two points give rise to another
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Fig. 6.12 Two similar functions and their degree-0 persistence diagrams for their sublevel sets

Fig. 6.13 The two rectangles
used in Lemma 6.1

topological feature, whose age is short. This topological feature is represented by a
point very close to the diagonal, so the resulting diagrams for f and g are not far
apart in the bottleneck metric.

This intuition inspires the proof of Theorem 6.2 by way of a technical lemma
called the Box Lemma.

Lemma 6.1 (See Cohen-Steiner et al. (2007) for a proof) Let R = [a, b]×[c, d] and
Rχ = [a+χ, b−χ]×[c+χ, d −χ] be the same box but shrunk by 2χ horizontally and
vertically (see Fig.6.13). If f and g are Morse functions for which ∩ f − g∩∗ < χ,
then the number of points of Dk( f ) that lie in Rχ is less than or equal to the number
of points of Dk(g) that lie in R.

The statement of Lemma 6.1 is symmetric and f and g, so the roles of f and g
may be swapped.

Proof (of Theorem 6.2) (Sketch; see Cohen-Steiner et al. (2007) for complete de-
tails) Begin by considering an easy case first, in which the bound on the bottleneck
metric can be constructed explicitly. Because there are finitely many points in the
persistence diagram Dk( f ) (not including the diagonal), we can enclose each of
these points in boxes so that each box contains exactly one such point. Without
loss of generality, we may assume each box is a square and each box has the same
side length. Let the number 2Δ f be the largest such side length for which each box
contains exactly one distinct point of Dk( f ). This number Δ f is given by
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Fig. 6.14 The persistence diagram of g is very close to that of f in the left frame, but not very
close in the right frame

Δ f = min{∩p − q∩∗ : p → Dk( f ), p /→ α, q → Dk( f ), and p �= q},

where α is the diagonal {(x, y) : x = y} and ∩r∩∗ is the largest of the coordinates
of r .

If we consider the collection of squares centered on each point of Dk( f ) (now
including the diagonal), each with side length χ = Δ f /2, then the squares off the
diagonal are disjoint from the ones centered on diagonal points and from each other.

We call a function g very close to f if ∩ f −g∩∗ < χ < Δ f /2. (See Fig. 6.14.) Let
us prove the Theorem for g very close to f . In order to compute the bottleneck metric,
we must construct a bijection φ between Dk( f ) and Dk(g). Lemma 6.1 states that
the number of points (counted with multiplicity) of Dk(g) in each box of side length
2χ is not more than the number of points of Dk( f ) in the concentric box of side
length 4χ. Since 4χ < 2Δ f , each box of side length 4χ centered on an off-diagonal
point of Dk( f ) contains just that point (again counted with multiplicity). For each
off-diagonal point p in Dk( f ), we let φ (q) = p for each q in Dk(g) that is contained
in the box with side length 2χ centered at p.

There may be points of Dk(g) that aren’t covered by our definition of φ thus
far, but all of these points are within a distance of χ to the diagonal. Indeed, using
Lemma 6.1 the opposite way around, any point q → Dk(g) which was outside a side
length 4χ box centered on every off-diagonal point in Dk( f ) must have some points
of Dk( f ) nearby. These must be on the diagonal. Therefore, we merely make φ take
these points of Dk(g) to the diagonal. The resulting bijection φ moves points no
farther than χ so the bottleneck metric between f and g is bounded above by χ.

To complete the proof for general f and g, the authors of Cohen-Steiner et al.
(2007) reduce the Theorem to the case of piecewise linear functions, because the
level sets f −1((−∗, a]) of piecewise linear functions have persistence diagrams
with finitely many points. Since any smooth map can be approximated by a very
close piecewise linear function, this suffices. The key idea is to interpolate from f
to g via convex combinations, ht (x) = (1 − t) f (x) + tg(x) for t → [0, 1]. Because
[0, 1] is compact, it can be covered by finitely open intervals (ai , bi ), for which
hai is very close to hbi . Thus, there is a sequence of very close steps from f to g,
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along which the Theorem holds. By the triangle inequality, this places a bound on
the bottleneck metric. �

Remark 6.2 Theorem 6.2 can be strengthened if we instead consider the
p-Wasserstein distance between two persistence diagrams Wp(d1, d2), given by

Wp(d1, d2) =

inf

φ

∑
x→d1

∩x − φ (x)∩p∗




1/p

.

Under this metric, the space of persistence diagrams then has the requisite structure
to support statistical constructs, such as a concept of an expected persistence diagram
(Mileyko et al. 2011).

6.3.1 Historical Context

The idea of persistent homology, much as presented here was initially presented
in Edelsbrunner et al. (2002). Shortly thereafter, several sophisticated algorithms
were developed for its computation, such as those described in de Silva and Carls-
son (2004), Kaczynski et al. (2004), Zomorodian and Carlsson (2005), Mischaikow
and Nanda (2013). The next major advance occurred with the discovery of zig-zag
persistent homology by Carlsson, de Silva (2010), which was later discovered by
Patel (2011) to be a sheaf. This formulation allows the use of topological filters in
persistence. The use of a cohomological theory, as opposed to a homological one
was pioneered by de Silva et al. (2011). Finally, we point the reader to Ghrist (2008)
for a good survey article that outlines the historical details more substantially.

6.4 Case Study: Quasi-Periodic Signals

The use of topology permits the traditional rigidity of signal processing algorithms to
be relaxed. Rigidity is a rather prominent feature of Fourier processing for periodic
signals. For instance, suppose that f is a mapR ∼ M and that for a small perturbation
h of the zero function, the function g given by

g(t) = f (t + h(t)) (6.1)

is periodic. We call f quasiperiodic in this case, and the period of g is called the
quasiperiod of f . It is typically difficult to measure (or worse, even detect) the
quasiperiod of f from its Fourier transform. These problems intensify if f is sampled,
because h may not be bandlimited. The only solution to this problem would appear to
be a search over possible candidates for h, which is the basis for autofocus techniques
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(Jakowatz et al. 1996, Carrara et al. 1995). Although autofocus techniques can work
in certain settings, they rely on the convergence of an inherently unstable iterative
algorithm. Therefore, a more satisfactory approach is desirable.

Peristent cohomology can be used to detect and measure quasiperiods if they
exist. We begin with a quasiperiodic function f from R to a manifold M . If M is a
manifold of dimension at least 2, then the Whitney approximation theorem (Theorem
2.1) indicates that f is generically an embedding on each given quasiperiod, and an
immersion if we consider its entire domain. If M is 1-dimensional, then we can use
the Takens delay map (or quadrature signal) (Takens 1981) instead of f , namely

t ◦∼ ( f (t), f (t + ξ))

where ξ → R, to convert the image of f into a space with a loop.
Therefore, without loss of generality, let us suppose that f : R ∼ M is a quasi-

periodic function that is an immersion into a manifold M of dimension at least 2. We
suppose that f is sampled on some discrete set A. Because of its quasiperiodicity,
then the Vietoris-Rips complex of the image f (A) of this discrete set will have a
significant feature in its first cohomology H1. Therefore, quasiperiodic signals can
be robustly detected.

The perturbation h in (6.1) can also be estimated from the point cloud f (A)

(de Silva et al. 2011). This requires a bit more sophistication, though the general idea
is outlined here. A basic fact of homotopy theory is that the group of homotopy classes
of maps2 M ∼ S1 is isomorphic to the first cohomology H1(M;Z) of the constant
sheaf Z (Hatcher 2002). As has been discussed earlier, cohomology is not a robust
detector, so the direct application of this idea is not likely to work. Inconveniently,
we are also unable to apply persistent homology to the problem directly, because Z

is not a sheaf of vector spaces so the Interval Decomposition Theorem 6.1 fails to
apply.

The solution is to use the following short exact sequence of constant sheaves

0 


Z

×p 


Z



 Fp 

 0,

where p is a prime (so thatFp is a field). Then the resulting long exact sequence, called
the Bockstein sequence, contains a homomorphism b : H1(M;Z) ∼ H1(M;Fp),
which is surjective in many cases. Therefore, we can apply persistent cohomology
using Fp and then lift the relevant significant topological feature in H1(M;Fp) to
one in H1(M;Z). (When the desired feature is not in the image of b, the authors
of de Silva et al. (2011) note that choosing a different prime p usually solves the
problem.)

It remains to convert the element of H1(M;Z) to a map M ∼ S1. This process
requires selecting a corresponding, but smoother, element in C1(M;R) that is a
representative of the same homology class via an optimization procedure, and then

2 Two maps belong to the same homotopy class if there is a homotopy between them.
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integrating this element. We refer the reader to de Silva et al. (2011) for the details
of these steps.

These ideas are summarized in the following algorithmic prescription:

Algorithm 3 (Extracting circular coordinates)
Input: Values of a quasiperiodic function f : R ∼ M , evaluated at {x1, . . . , xn}.
This is interpreted as a point cloud A = { f (x1), . . . , f (xn)} in the manifold M
Output: A map β : A ∼ S1 representing the angle associated to each point in the
point cloud
Procedure:

1. Select a prime p
2. While loop:

a. Compute the persistent cohomology H1(A;Fp). If this space is trivial,
conclude that the function f was not actually quasiperiodic and exit
with an error.

b. Let ψ be a nontrivial element of H1(A;Fp).
c. Compute the image B of the Bockstein homomorphism b : H1(A;Z) ∼

H1(A;Fp).
d. If ψ → B, exit the loop. Otherwise select a different prime p and try again.

3. Let w → H1(A;Z) be selected so that b(w) = ψ.
4. Replace w by a harmonic cocycle w⊆. (See de Silva et al. (2011) for details on this

step, which results in a smoother output function β . Skipping this step results in
topologically correct output, but it is less smooth.)

5. Construct the coordinate by integating the cohomology class w⊆ according to
β(xk) = ⎛ xk

x1
w⊆.

6.4.1 Experimental Setup

We demonstrate Algorithm 3 by measuring the rotation rate of a ceiling fan using
a simple sonar setup. The ceiling fan’s speed drifted over the course of the sonar
collection, but not so much as to preclude a comparison of Algorithm 3 with more
traditional processing. Consider the collection geometry indicated in Fig. 6.15. In
this scenario, a rotating fan was located on the ceiling of a room with walls made of
drywall and a sonar platform was placed on the floor. We assume that the function
that takes the angular position of the fan’s blades to the train of echos received by the
sonar platform is quasiperiodic, which essentially makes the simplifying assumption
that the speed of sound is much faster than the fan’s rotation speed. Since the sonar
receiver was active during the entire collection (including during transmission), it is
reasonable to represent the collection as a function f : R ∼ R

n where n represents
the number of time samples collected after each pulse was transmitted.

For the experiment described here, the sonar platform consisted of the speaker
and microphone of a cell phone. The transmitted waveform was an impulse train with
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Fig. 6.15 Experimental setup: fan on ceiling, sensor on floor

Fig. 6.16 Doppler-processed pulses: fan stopped (left), rotating with a rate of approximately
0.85 Hz (right)

a bandwidth of 7 kHz, range resolution of 5 cm, and pulse repetition rate of 34 Hz.
In all, 175 pulses were collected.

Figure 6.16 summarizes the collected data, processed with traditional Fourier
methods. For each pulse, the received echo train was aligned so that the earliest
echo occurred at time zero. Each aligned pulse was stored as the column of a ma-
trix R. The Fourier transform was performed along each row of R, to produce the
new matrix R⊆. The interpretation is that each row of both R and R⊆ correspond to a
particular range or distance from the sonar. Each column of R⊆ corresponds to a par-
ticular Doppler frequency shift due to motion of targets. The amplitude of each entry
in R⊆ corresponds to the sonar reflectivity at the corresponding range and doppler
location; rigid obstacles tend to have higher sonar reflectivity. Several instances of
R⊆ are shown in Fig. 6.16, in which echos from moving fan blades are visible in the
right frame as localized bright spots.
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Fig. 6.17 Schematic diagram of the processing chain

Although there are several definite doppler frequencies that appear to be high-
lighted in the right frame of Fig. 6.16, there is some ambiguity as to the correct rota-
tion rate. In particular, there is a marked banding effect (visible at all ranges) because
the echos did not decay completely within the period of one pulse. This frustrates
traditional analyses, and it is unclear if the fan rate changed over the course of the
collection. Additionally, substantial blurring in doppler is present as the fan’s rotation
speed drifted over the course of the collection.

6.4.2 Results of Persistent Cohomology

(Thanks to Vin DeSilva for supplying the author with an implementation of Algorithm
3 to process the ceiling fan data described in this section.)

Although it is instructive to imagine processing all of the data, this turns out to
be impractical. Most importantly, as the left frame of Fig. 6.16 shows, there is sub-
stantial receiver desensitization at small ranges since (1) the reciever was not turned
off during pulse transmission and (2) there were a number of immobile, reflective
obstacles close to the sonar. Because of this, at small ranges the received signal
is approximately constant, which obscures the comparatively smaller quasiperiodic
echoes from the fan blades. Because of this, the samples corresponding to small
ranges were discarded; a process usually called range gating. However, as Fig. 6.17
indicates, no further preprocessing of the data was performed.

The output of Algorithm 3 is shown in Fig. 6.18. A persistence diagram is shown
at left, in which exactly one generator of H1 is significant (marked with a star). This
corresponds to the rotation of the fan, and is confirmation of the quasiperiodic nature
of its rotation.

The recovered angular coordinate is shown in the right panel of Fig. 6.18, in which
a steady (if a little wobbly) progression is clear. A close examination of the this
progression shows a very slight slowing of fan rotation rate as collection proceeded
(later times are on the right of the diagram). Although this might be traced to the
fact that the fan was spun by hand before the collection and allowed to coast during
the collection, the reader is cautioned against reading too much into the slope of the
angular progression. Algorithm 3 is topological in nature and the representation of
the angular coordinate as a cohomology class is not unique. Indeed, the “wobbles”
appearing at about 0.3 rotations are probably artifacts.
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Fig. 6.18 Persistence diagram of the output (left) along with recovered angular coordinate (right).
The recovered angular coordinate plot has time as its horizontal axis and angle in radians as its
vertical axis. Note the significant feature in the left panel, circled

Usually, Fourier methods are used to detect periodic signals. However, if the
signals are not periodic, Fourier methods become difficult to apply. Figure 6.19 shows
the range-doppler response of a fan slowing to a stop. The resulting echos of the
fan (occuring at a range of approximately 180 cm) are indistinguishable from the
echos of the (static) ceiling at around 210 cm. Persistent cohomology is a highly
effective solution to this problem. Figure 6.20 shows the persistence diagrams of
three situations in which the fan was stopped or slowing. In the middle and right
panels, the fan slowed to a stop. Observe that in the two cases where the fan was
in motion, a significant generator of H1 was present, which indicates that the echo
response was quasiperiodic.

6.5 Recovering a Space from a Point Cloud

The persistent cohomology associated to a point cloud accurately represents the
cohomology of its underlying space when the union of balls centered at the points
in the cloud encapsulates the same topological information as the space. When this
occurs, persistent cohomology is a more robust form of the sheaf cohomology defined
in Chap. 4. (Otherwise, it is still a robust detector, but captures different informa-
tion. For instance, the persistent cohomology of a sequence of non-constant sheaves
usually does not represent the cohomology of the space.)

Stated more precisely, suppose K ∪ R
n is a CW complex and P ∪ R

n is
a finite subset with p points. The persistent cohomology for P , with the metric
d = d(x, y) induced from R

n , was defined in the Sect. 6.4. Does this detector bear
any resemblance to the cohomology of a constant sheaf over K ?

http://dx.doi.org/10.1007/978-3-642-36104-3_4
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Fig. 6.19 Range-doppler plot of fan response as the fan slows to a stop. The aperiodic nature of
the echos causes blurring (marked) across the doppler (horizontal) direction
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Fig. 6.20 Persistence diagrams for a fan which is stopped (left), spinning counterclockwise
and slowing to a stop (middle), and spinning clockwise and slowing to a stop (right). Note the
off-diagonal generator in both of the cases when the fan was moving

We begin by supposing that the points in P may be in error. As in the case of
persistent cohomology, this error is modeled by balls of a given radius centered at
each x → P . The appropriate generalization of this idea is the notion of a specific
kind of sublevel set, called an offset.
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Fig. 6.21 The distance function to a collection of line segments using the Euclidean metric

Definition 6.3 Suppose that d = d(x, y) is the metric on R
n . The distance function

to K is the function (see Fig. 6.21)

R(x) = inf
y→K

d(x, y).

The χ-offset K χ of K is the sublevel set Rχ = R−1([0, χ)).

Although R is typically not a Morse function, since it may not be smooth, the
robustness described in Sect. 6.4 for persistent cohomology is a good guide to the
robustness properties enjoyed by offsets. The union of balls of radius χ around each
x → P is Pχ. With this definition in hand, we can compare how geometrically
different two subsets of Rn are.

Definition 6.4 If X, Y are subsets of Rn , then the Hausdorff metric between them is

dH (X, Y ) = inf
χ

{X ≤ Y χ and Y ≤ Xχ}.

If two sets are identical except for points on their boundaries, then their Hausdorff
metric is zero. If there are many sample points P , the Hausdorff metric between P
and K should be small in order to be a good approximation. However, the Hausdorff
metric is strictly geometric; two spaces can have small Hausdorff metric, yet be
topologically very different as shown in Fig. 6.22. We therefore need some additional
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Fig. 6.22 Computing the Hausdorff metric between two topologically distinct sets

Fig. 6.23 A set A with a cusp
has zero reach, because there
are always multiple closest
points y1, y2 for each point x
along the bisector

geometric conditions for ensuring that the offset of P accurately reflects the topology
of K . The most intuitive of these conditions is based on the concept of reach.

Definition 6.5 The reach (Federer 1959) of K is the largest μ such that if x → R
n

and R(x) < μ, then there exists a unique element of K closest to x . We usually write
reachK = μ.

Sets with infinite reach are convex, and sets with concave cusps such as shown in
Fig. 6.23 have zero reach.

Reach is an important concept for topology because gives conditions for offsets
to recover the topology of a space. Usually people work with sets whose reach is
nonzero, but according to tradition we call this situation “positive reach.”

Theorem 6.3 (Tubular neighborhood theorem for positive reach (Federer 1959,
Thm. 4.8)) Suppose that the reach of K is positive, then any offset K χ is homotopy
equivalent to K if χ < reachK as shown in Fig.6.24.

Proof The proof is proceeds by explicit construction; one considers a suitable gen-
eralization to the gradient vector field

√ R(x) = x − u(x)

R(x)
,
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Fig. 6.24 A tubular neighborhood K χ of K

where u associates x to the nearest point in K , which is unique by assumption. One
merely needs to show that this vector field is smooth enough to result in a unique
solution to the flow along it, and that it generates a family of diffeomorphisms. The
proofs of these claims are elementary, though a little tedious, and follow from the
existence and uniqueness theorem for solutions of ordinary differential equations.�

Remark 6.3 We note in passing that the notion of positive reach allows one to use
offsets to generalize the notion of tubular neighborhoods of compact manifolds. For
instance, (Lee 2003, Thm. 10.19) is a traditional account.

The theorem then allows us to pose a reasonable sampling density requirement:
the union of balls around each P must strictly lie within K μ, where μ is the reach of
K . In this way, positive reach sets a bound on the required measurement accuracy.
If the samples are less accurate than the reach of K , then recovery of the topology
could be impossible. Similarly, if K is of finite volume, this upper bound μ on the
size of each ball around points in P will set an upper bound on the volume of Pμ

given a fixed number of points. Therefore, the minimum number of sample points
can easily be determined from the volume of K and its reach.

One drawback of the tubular neighborhood theorem is that it does not explicitly
treat the presence of noise in measurements. In particular, if the points in the set
P do not lie on K , under what circumstances can they be used to infer topological
properties of K ? It is useful to quantify the error in an approximation P in terms of
the reach of K .

Definition 6.6 (Chazal and Lieutier, 2006) P is an χ-approximation to K if
dH (P, K ) < χ reachK .

With this definition, we can give explicit bounds on the required sampling density.

Theorem 6.4 (Homotopy reconstruction for submanifolds (Niyogi et al. 2004, Prop.
7.1, Chazal and Lieutier 2006, Cor. 3.3)) Suppose that K is a compact submanifold
of Rn. If χ < 3 − 2

⊗
2 ≈ 0.17 and P is an χ-approximation to K , then for every θ

satisfying
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Fig. 6.25 The geometry for
Theorem 6.4

reachK
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(1 + χ)2 − 8χ
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< θ <

reach

2

⎜
1 + χ +

⎝
(1 + χ)2 − 8χ

⎞

the offset Pθ is homotopy equivalent to the offset K θ .

Proof Suppose that x → K is given and that v → Pθ . It suffices to show that the line
segment connecting v to x lies entirely within Pθ , for then v could be retracted to
K . Since balls in R

n are convex, this statement is true whenever v lies within θ of x
and some point p → P .

Consider the case where this does not hold, shown in Fig. 6.25. Then there must
be a q → P within a distance of θ to v, but farther than θ from x . In order to “hand
off” points along the line segment from v to x , we employ another sample point
p → P that lies within a distance of θ to x .

Locate the point u along the line segment connecting v and x , that is closest to the
midpoint of the line segment connecting p and q. If u is inside the θ-offset of {p, q},
then the entire line segment from x to p will also be so contained. We therefore place
bounds on θ so that u lies within Pθ .

In the worst case, x , p, and v are colinear. So we must have

reachK − A < θ − χ reachK ,

where A = ⎝
(1 − χ)2(reachK )2 − θ2 is the distance from u to the boundary of the

θ-offset of {p, q} in the worst case. Reararanging, we find that

(reachK − θ + χ reachK )2 < A2 = (1 − χ)2(reachK )2 − θ2

which reduces to

θ2 − θ reachK (1 + χ) + 2χ(reachK )2 < 0.

This is satisfied provided
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reachK
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⎜
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⎝
(1 + χ)2 − 8χ
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reachK
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(1 + χ)2 − 8χ
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Of course, this requires that

(1 + χ)2 − 8χ > 0

1 + 2χ + χ2 − 8χ > 0

χ2 − 6χ + 1 > 0

which implies that we should ensure that

χ < 3 − 2
⊗

2. �

The presence of errors (χ > 0) impacts the sampling accuracy θ required. From
the bound on θ in Theorem 6.4, if the noise is larger than 1/8 of the true reach, then
it is impossible to accurately recover the original manifold K . Instead, we are forced
to recover a noisy estimate K ⊆.

It is difficult (or even impossible) to estimate the reach of K since K itself is
usually unknown. In practical settings one can attempt to estimate the reach using
the samples P; this can suggest whether the hypotheses of Theorem 6.4 are satisfied
or not. A low pass filter should be applied before making this estimate, or else the
estimate of reach will likely be too small as indicated in Fig. 6.26. If too small an
estimate for reach is obtained, it will suggest to sample at a much higher density than
is necessary.

6.6 Case Study: Recovery of a Space from Measurements
of Waves

When the hypotheses of Theorem 6.4 are satisfied, then the cohomology recovered
from the point cloud is the cohomology of the underlying space. Persistent coho-
mology taken with a collection of radii satisfying the hypotheses will then recover
exactly the same topological features; this validates the use of persistent cohomology
as a proxy for cohomology. Usually, the hypotheses are difficult to verify, since the
reach of the space is not known in advance, if ever. Worse, as noted by some prac-
tioners with analogous results to Theorem 6.4 (for instance Amenta et al. (2002)) the
sampling hypotheses are too stringent to be met in practice. Therefore, one typically
needs to rely on external sources of information to cross-validate the output of a
persistent cohomology computation.

Because of these considerations, the performance of persistent cohomology in
practice is best understood through example. This case study examines the recov-
ery of the topology of a propagation environment as in Sect. 6.2, but examines the
modes of failure as well. Two datasets with two different signal modalities will be
examined: radio propagation and acoustic propagation, whose relevant parameters
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Fig. 6.26 If the underlying
manifold K is unavailable,
a noisy estimate K ⊆ can have
much smaller reach

Table 6.1 Sampling
parameters of the two
scenarios in Sect. 6.6

Description Radio scenario Acoustic scenario

Data source Simulation Experiment
Frequency 2.5 GHz 4 kHz
Wavelength 12 cm 9 cm
Sample spacing 0.5 m 7.7 cm

4.2 wavelengths 0.85 wavelengths
Noise None simulated Present
Ratio of reach
to mean sample
spacing

2.6 % 28 %

are summarized in Table 6.1. The radio propagation example is also described in
Sect. 4.7, while the acoustic experiment was described earlier in this Chapter in
Sect. 6.2. The wavelengths used in each experiment are similar, though the sampling
densities are substantially different. The hypotheses of Theorem 6.4 are not met in
either of the two scenarios, but substantially fewer samples per wavelength are used
in the radio propagation scenario. This results in more reliable recovery of topo-
logical features in the acoustic scenario. In terms of the spatial sampling required,
longer wavelengths can be more useful for probing the topological features of an
environment.

Our experiments aim to compare the sampling density required by Theorem 6.4
with those reasonably attained in practice. Unfortunately, these requirements are
stated in terms of the reach of the unknown underlying manifold. In order to validate
performance against this criterion, we will use a priori knowledge of the geometry
of the environment to make this determination.

The experimental procedure measures the geometry and topology of the prop-
agation environment indirectly. As discussed in Chap. 2, the collection of received
signal stengths should be thought of as a map P : M ∼ S from the propagation en-
vironment M to a manifold of signals S. Under appropriate conditions (for instance
Theorem 2.2) this map is an embedding, so the image P(M) of the environment is
a topologically accurate model of M . It is this image P(M) that the experiments in
this case study attempt to recover. Therefore, although measurements are taken by

http://dx.doi.org/10.1007/978-3-642-36104-3_4
http://dx.doi.org/10.1007/978-3-642-36104-3_2
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Fig. 6.27 Simulated wireless signal strength (from Transmitter 1) on the third floor of David
Rittenhouse Laboratory. The hallway used to estimate manifold curvature is marked with a dashed
line

placing a receiver at points in M , the sample density must be assessed in P(M)

using a metric induced from S. From a practical perspective, this can make control-
ling sampling density difficult.

The radio propagation scenario uses the floorplan of the third floor of the David
Rittenhouse Laboratory at the University of Pennsylvania shown in Fig. 6.27. There
are eight wireless network transmitters located on the walls as indicated in the figure.
Using a simple model of radio propagation, the received signal strength from each
transmitter was predicted to a dense grid of points spaced every 0.5 m. The signal
strength for transmitter 1 is shown in grayscale in Fig. 6.27. This simulated the process
of sampling the environment by moving a receiver to many locations.

Measurements along one of the hallways (marked with a dashed line in Fig. 6.27)
were selected to perform analysis of the sampling density. Along this hallway, mea-
surements were spaced 0.5 m apart in the physical model. This does not correspond
directly to the distance between points in the signal manifold, however. The sig-
nal manifold distance between two points that are adjacent in physical space varies
substantially, as is shown by circles in Fig. 6.28. This is the sample density θ in
Theorem 6.4.

Since the simulation did not include noise, we can assume that the measure-
ments lie exactly on the signal manifold. In Theorem 6.4, we simply take χ = 0
and observe that sampling criterion is that the reach of the signal manifold must
be larger than the signal manifold sample density. The reach of the manifold in
this case is merely the least upper bound on the radii of curvature, a fact noted
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Fig. 6.28 Comparison between the distance between adjacent points (circles) and the local radius
of curvature (crosses) along the hallway marked in Fig. 6.27

Fig. 6.29 Persistent homology diagrams of the simulated third floor of David Rittenhouse Labo-
ratory (axes are in decibels)

in Niyogi et al. (2004, Section. 6). The local curvature of the signal manifold (at
each sample point) is plotted as crosses in Fig. 6.28. Clearly the sampling criterion is
not met essentially anywhere on the hallway under discussion. Indeed, the average
sample density is less than 3 % of that which is required by the sampling criterion.

The fact that this scenario is so undersampled explains why in Sect. 4.7 the nerves
are very sensitive to the choice of threshold. It is instructive to test persistent coho-
mology as well. The results of 0- and 1-degree homology are shown in Fig. 6.29.
There are no significant features in the persistent 1-homology, which contradicts the
fact that the hallways in Fig. 6.27 form a loop. Clearly the sampling density was too
low.

In contrast, although the acoustic data presented in Sect. 6.2 are undersampled,
they are less undersampled. Figure 6.30 shows the estimated curvature (left) and
adjacent distances (right) for the dataset with no obstacle. Both plots use the same

http://dx.doi.org/10.1007/978-3-642-36104-3_4
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Fig. 6.30 Local estimates of curvature (left) and nearest neighbor distance (right) both color scales
are in decibels

Fig. 6.31 Two sets of points
near the surface of a narrow
cylinder; is the hollow center
significant or not?

colorscale for consistency. As Table 6.1 shows, the sample density is about 28 % of
what is required. On the other hand, since this dataset contains noise, the ratio between
estimated reach and sample spacing is more pessimistic than needed. Although it is
difficult to determine by how much, the estimated reach may be substantially smaller
than the actual reach of the signal manifold. In any event, it appears that the results
of Sect. 6.2 (Figs. 6.10 and 6.11) are a reliable indication of the true topology of the
signal manifold.

6.7 Open Questions

1. Persistent cohomology of general sheaves has not been studied extensively. We
know that interval decomposition fails if coefficients aren’t fields, but what else
can be said?

2. We considered a linear chain of topological filters, one into the next. Most in-
teresting signal processing chains have a branched structure. Is there a relevant
interval decomposition (as in Carlsson, de Silva (2010)), and what is its inter-
pretation? There is probably no such decomposition, though the study of the
resulting zig-zag diagrams leads to quiver theory.

3. Eccentricity in the metric can cause problems for persistent homology. Depending
on the interpretation, a nontrivial H1 element arising points sampled from a thin
cylinder (See Fig. 6.31) may or may not be significant. Is there a systematic way
to assess the geometric sensitivity of these topological features?
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4. It has been recently found that the space of persistence diagrams supports statis-
tical constructs (Mileyko et al. 2011). Very little work has been done to explore
the statistical properties of the resulting detectors. In order to use persistence
diagrams as topological detectors in signal processing systems, it will be neces-
sary to understand how they interface with traditional statistical signal models.
Further, computing statistical parameters of interest such as a mean persistence
diagram appears to be computationally infeasible. Are there approximations that
requires less computation?

5. In order to verify the sampling criteria given in Theorem 6.4 in practice, it is
necessary to estimate the reach of the manifold being reconstructed. How do
errors in the reconstruction impact the estimate of its reach?

References

Amenta N, Choi S, Dey TK, Leekha N (2002) A simple algorithm for homeomorphic surface
reconstruction. Int J Comput Geom Appl 12(1,2):125–141

Banyaga A, Hurtubise D (2004) Morse homology. Springer, Dordrecht
Carlsson G, de Silva V (2010) Zigzag persistence. Found Comput Math 10(4):367–405
Carrara W, Goodman R, Majewski R (1995) Spotlight synthetic aperture radar: signal processing

algorithms. Artech House, Norwood
Chazal F, Lieutier A (2006) Topology guaranteeing manifold reconstruction using distance function

to noisy data. In: Proceedings of the 22st symposium on computational geometry, p. 112–118
Cohen-Steiner D, Edelsbrunner H, Harer J (2007) Stability of persistence diagrams. Discrete

Comput Geom 37(1):103–120
Derksen H, Weyman J (2005) Quiver representations. Not Am Math Assoc 52(2):200–206
Edelsbrunner H, Letscher D, Zomorodian A (2002) Topological persistence and simplification.

Discrete Comput Geom 28:511–533
Federer H (1959) Curvature measures. Trans Amer Math Soc 93(3):418–491
Forman R (1998) Morse theory for cell complexes. Adv Math 134:90–145
Gabriel P (1972) Unzerlegbare darstellungen i. Manuscripta Math 6:71–103
Ghrist R (2008) Barcodes: the persistent topology of data. Bull Am Math Soc 45(1):61
Hatcher, A (2002) Algebraic topology. Cambridge University Press, Cambridge
Jakowatz C, Wahl D, Eichel P, Ghiglia D, Thompson P (1996) Spotlight-mode synthetic aperture

radar: a signal processing approach, vol 101. Kluwer Academic Publishers, Boston
Kaczynski T, Mischaikow K, Mrozek M (2004) Computational homology. Springer, NY
Lee J (2003) Smooth manifolds. Springer, New York
Mileyko Y, Mukherjee S, Harer J (2011) Probability measures on the space of persistence diagrams.

Inverse Prob 27(12):124007
Milnor J (1963) Morse theory. Princeton University Press, NJ
Mischaikow K, Nanda V (2013) Morse theory for filtrations and efficient computation of persistent

homology. Discrete & Comput Geom 50(2):330–353
Niyogi P, Smale S, Weinberger S (2004) Finding the homology of submanifolds with high confidence

from random samples
Patel A (2011) A continuous theory of persistence for mappings between manifolds. arXiv, preprint

arXiv:1102.3395
Robinson M, Ghrist R (2012) Topological localization via signals of opportunity. IEEE Trans Signal

Process 60(5):2362–2373



References 193

Sexton H, Vejdemo-Johansson M (2011) JPlex simplicial complex library. http://comptop.stanford.
edu/programs/jplex/

Silva V de, Carlsson G (2004) Topological estimation using witness complexes. In: Alexa M,
Rusinkiewicz S (eds) Eurographics symposium on point-based graphics

Silva V de, Morozov D, Vejdemo-Johansson M (2011) Persistent cohomology and circular coordi-
nates. Discrete Comput Geom 45(4):737–759

Takens F (1981) Detecting strange attractors in turbulence. In: Rand DA, Young LS (eds) Dynamical
systems and turbulence, p. 366–381. Springer, Berlin

Zomorodian A, Carlsson G (2005) Computing persistent homology. Discrete Comput Geom
33(2):249–274

http://comptop.stanford.edu/programs/jplex/
http://comptop.stanford.edu/programs/jplex/


Appendix A
Topological Spaces and Continuity

Topology gives sets a notion of convergent sequences. This is the appropriate setting
for discussing iterative approximation. However, the minimal conditions for a space
to be adequate for sequence convergence are too general for the applications discussed
in this book. Most topologies that can be put on a set are in some sense pathological.
This appendix serves to remind the reader of the definitions and key examples of
commonly-used topological ideas, and is intended for quick reference rather than
detailed study.

Definition A.1 A topology on a set X is a collection T of subsets of X that satisfy
the following properties:

1. The empty set and X are both in T ,
2. Any union of elements in T is also in T ,
3. The intersection of any finite collection of elements in T is also in T .

The pair (X,T ) is called a topological space. The elements in T are referred to as
the open sets of (X,T ). Usually, the topology T is clear from context, in which
case we will abuse notation and say “X is a topological space.”

Example A.1 Given any set X, it can be endowed with the discrete topologyT which
consists of the set of all subsets of X. This topology is perhaps the least interesting
topology, as it represents all points as being far from one another.

Example A.2 The usual topology for the real line R consists of all possible unions
of intervals of the form (a, b) ⊆ R along with the empty set.

It is usually inefficient to specify a topology by listing all open sets. One easier way
to construct a topology is by considering the topology generated by a subset Y → X,
the intersection of all topologies containing Y . While theoretically convenient, the
topology generated by a subset is perhaps worse from a practical point of view.
Instead, we can construct a topology by taking unions of a smaller collection of sets,
called its base.
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Definition A.2 A collection B is called a base for a topology T if each U ∈ T is
a union of elements of B.

Proposition A.1 If B is a base for T , then the topology generated by B is T .

Most topologies that one encounters in applications are Hausdorff ; every two
points are contained in disjoint open neighborhoods.

Definition A.3 Suppose that (X,T ) is a topological space, and that A ⊆ X. We
call the set R = T ∈ A the subspace topology on A, and call (A,R) a topological
subspace of (X,T ). Again, if the topologies are clear from context, we will usually
abuse notation and say that “A is a subspace of X.”

Definition A.4 Suppose that (X,R) and (Y ,T ) are topological spaces. A function
f : X ∼ Y is called continuous if f −1(U) ∈ R for every U ∈ T . For brevity, we
usually call a continuous function a “map.” A continuous bijection whose inverse is
also continuous is called a homeomorphism.

Proposition A.2 A homeomorphism places the open sets of two topological spaces
in one-to-one correspondence.

Homeomorphisms are therefore topological equivalences; anything which is true
about a topological space (X,T ) is also true about any topological space homeo-
morphic to (X,T ).

The problem of determining if two topological spaces are homeomorphic is dif-
ficult in general; much of the theory of topology amounts to developing and classi-
fying invariants that can discriminate between pairs of non-homeomorphic spaces.
Cohomology (Chap. 4) is one such class of invariants. Dimension is another, weaker
invariant, that is particularly effective on disks.

Proposition A.3 (Invariance of dimension) An n-disk is homeomorphic to an m-disk
if and only if n = m.

Exercise A.1 Construct an explicit homeomorphism from the unit circle {(x, y) ∈
R

2 : x2 + y2 = 1} and the square {(x, y) ∈ R
2 : max{|x|, |y|} = 1}.

Definition A.5 Suppose that f : X ∼ Y is an injective map between two topological
spaces. If f is a homeomorphism between X and the subspace f (X) → Y , then f is
called an embedding.

Example A.3 If X → Y is a subspace, then the inclusion map i : X χ∼ Y , which
takes x ≤∼ x is an embedding.

Example A.4 A less trivial embedding is the map which takes the unit disk in R
2 to

the upper hemisphere in R
3, given by (x, y) ≤∼ (x, y,

√
1 − x2 − y2).

Definition A.6 A topological space (X,T ) is called path connected if for every pair
of points x, y ∈ X, there exists a map from the closed unit interval p : [0, 1] ∼ X
for which p(0) = x and p(1) = y.

http://dx.doi.org/10.1007/978-3-642-36104-3_4
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Exercise A.2 Path connectedness can be unintuitive if the topological space is finite.
Consider the topological space containing two points X = {0, 1} with the following
topology

T = {∪, {1}, {0, 1}}

Show that (X,T ) is path connected.

Definition A.7 In a topological space X, a subset A is called closed if its complement
X\A is open.

Definition A.8 The closure of a subspace Y → X is given by the set of points y
for which y ∈ U implies U ∈ Y is nonempty for every open U. The interior of a
subspace Y → X is the union of every open subset U of Y . The frontier or boundary
of a subspace is given by the intersection of its closure and the complement of its
interior.

Proposition A.4 The closure of a subset Y → X of a topological space is closed,
and is the smallest closed set which contains Y.

Definition A.9 Suppose that (X,T ) is a topological space and that there is an
equivalence relation ∗ on the elements of X. Let X/ ∗ be the set of equivalence
classes of X under the relation ∗. For each element x ∈ X, we denote its equivalence
class in X/ ∗ by [x]. We define the quotient topology on X/ ∗ to be

Q = {U → X/ ∗:
⋃

[x]∈U

x ∈ T }.

That is, each element of Q is set of equivalence classes for which a union of their
representatives is an open set in T .

Exercise A.3 Graphs can be given topologies by using a quotient construction. Sup-
pose G = (V , E) is a graph, by which we mean E → V × V . Consider the disjoint
union X of |E| open intervals inR, which we associate with the edges of G. Construct
an equivalence relation ∗ between points in these open intervals so that X/ ∗ has
the same topology as the realization (Definition 2.11) of G = V ∩ E, considered as
an abstract simplicial complex.

Definition A.10 If (X,T ) and (Y ,R) are topological spaces, then their product is
a topological space (X × Y ,T S ) where T S is the topology generated by sets of
the form U × V → X × Y for U ∈ T and V ∈ R.

Definition A.11 A collection of subsetsR are said to cover another set Y if Y ⊆ ∩R.
A topological space (X,T ) is called compact if every collection R ⊆ T of open
sets which cover X has a finite subset R which also covers X.

Compactness is important because it ensures convergence of portions of sequences.
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Proposition A.5 Every infinite sequence {xn} of points in a compact space has a
subsequence that converges.

Proposition A.6 (the Heine-Borel theorem) Compact subspaces of Euclidean space
consist precisely of those sets that are closed and bounded.

Every set can be made compact by adding an additional point. This idea is impor-
tant to generalize from CW complexes to cell complexes in Chap. 2.

Proposition A.7 (Alexandroff one-point compactification) Suppose that (X,T ) is
a topological space. Then the topological space (X ′,T ′) constructed by adding
another point ◦ to X, and

T ′ = T ∩ {U ∩ {◦} : U ∈ T and X\U is compact}

is a compact space.

http://dx.doi.org/10.1007/978-3-642-36104-3_2


Appendix B
Topological Groups

In practical settings, measurements often carry a group or group-like structure that
permits them to be related to one another.

Definition B.1 A group is a set G with a binary operation m : G × G ∼ G, that
satisfies the following axioms:

1. (Associativity) For any three a, b, c ∈ G, m(a, m(b, c)) = m(m(a, b), c).
2. (Identity) There is an element 1 ∈ G for which m(1, a) = m(a, 1) = a for all

a ∈ G.
3. (Existence of inverses) For each element a ∈ G, there is an element a−1 ∈ G for

which m(a, a−1) = m(a−1, a) = 1.

Usually, m(a, b) is written ab whenever no confusion can arise. If m(a, b) = m(b, a)

for all a, b ∈ G, we call G an abelian group and we usually write m(a, b) = a + b.

It is important that measurements be robust, which means that although a measure-
ment may be in error, it has nearly the correct value. An abstract notion of “nearly”
is encoded in the definition of topology. When we use a group to represent mea-
surements, we will usually want a topology on it that is compatible with the group
operation.

Definition B.2 A topological group G is both a group (G, m) and a topological
space (G,T ) in which the binary operation m and the inverse are both continuous.

A few examples of topological groups are listed in Table B.1 and outlined below,
but the reader can imagine many more.

Example B.1 Any group with the discrete topology1 is a topological group. This
effectively removes the continuity requirement on the definition, but encompasses
finite fields under addition and multiplication (excluding the zero) and the integers
under addition.

1 The topology in which all subsets are considered to be open. See Appendix A.
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Table B.1 Several examples of topological groups used for representing measurements

Measurement type Set Operation Abelian

Length, temperature, or mass R Addition Yes
Position R

3 Vector addition Yes
Discretized timeseries Z Addition Yes
Magnitude and phase C Addition Yes

of a sinusoid
Rotation angles n × n orthogonal matrices Matrix Multiplication No

with unit determinant SO(n)

Example B.2 R
n with the usual vector addition forms the group of translations,

since its identity is the zero vector, and the function which takes v to −v is the
inverse operation.

• Vector addition is continuous. The usual topology on R can be generated by taking
unions of open intervals (a, b). Suppose that φ > 0 and w = u + v ∈ R is given.
If Δ = φ/2 and u′, v′ ∈ R satisfy |u − u′| < Δ and |v − v′| < Δ, then

|(u′ + v′) − (u + v)| = |(u′ − u) + (v′ − v)|
√ |u′ − u| + |v′ − v|
√ 2Δ = φ,

Repeating this argument componentwise proves that vector addition is continuous
in the usual topology on R

n.
• Additive inversion is continuous. Merely observe that | − u − (−u′)| = |u′ − u| =

|u − u′| = φ for any φ > 0 and u′ chosen to satisfy the last equality.

Example B.3 By the previous example, complex numbers C under addition are
a topological group. Complex numbers without 0 under multiplication are also
a group. Recall that the complex numbers have a magnitude function z ≤∼ |z|.
This function generates the usual topology on C by taking unions of open disks
{z ∈ C : |z − z0| < r}.
• Multiplication in C is continuous. Suppose that φ > 0 and z = uv ∈ C are given.

Then if u′, v′ ∈ C are chosen so that

|u − u′| < min

{
φ/2,

φ

2|v| + φ

}

and

|v − v′| < min

{
φ/2,

φ

2|u| + φ

}
,
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then

|uv − u′v′| = |uv − u′v′ − u′v + u′v|
= |(uv − u′v) + (u′v − u′v′)|
= |(u − u′)v + u′(v − v′)|
√ |u − u′||v| + |u′||v − v′|
√ 2φ.

• Multiplicative inversion is continuous because 1/r is continuous when r ⊗= 0.

In almost all signal processing settings, topological vector spaces suffice to
represent measurements. About the only exception is the case of the group of
rotations.

Exercise B.1 The group of rotations in R
2 is given by the unit complex numbers.

This is continuous by the previous example. However, the group of rotations in R
3

is given by the set of orthogonal 3 × 3 matrices with unit determinant under matrix
multiplication, and is a non-abelian group. Topologically, the group of rotations has
the subspace topology coming from the space of all 3 × 3 matrices with the usual
topology. (The space of all 3 × 3 matrices is homeomorphic to R

9.) Prove that the
multiplication and matrix inversion are continuous under this topology. (Hint: you
can write out these operations explicitly in terms of the matrix elements.)
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